1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 45 #include "llvm/Analysis/ScalarEvolution.h" 46 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/Analysis/VectorUtils.h" 51 #include "llvm/IR/Attributes.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DerivedTypes.h" 57 #include "llvm/IR/Dominators.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/IRBuilder.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #ifdef EXPENSIVE_CHECKS 74 #include "llvm/IR/Verifier.h" 75 #endif 76 #include "llvm/Pass.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/Compiler.h" 80 #include "llvm/Support/DOTGraphTraits.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/GraphWriter.h" 84 #include "llvm/Support/InstructionCost.h" 85 #include "llvm/Support/KnownBits.h" 86 #include "llvm/Support/MathExtras.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 89 #include "llvm/Transforms/Utils/Local.h" 90 #include "llvm/Transforms/Utils/LoopUtils.h" 91 #include "llvm/Transforms/Vectorize.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <memory> 97 #include <set> 98 #include <string> 99 #include <tuple> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 using namespace slpvectorizer; 106 107 #define SV_NAME "slp-vectorizer" 108 #define DEBUG_TYPE "SLP" 109 110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 111 112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 113 cl::desc("Run the SLP vectorization passes")); 114 115 static cl::opt<int> 116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 117 cl::desc("Only vectorize if you gain more than this " 118 "number ")); 119 120 static cl::opt<bool> 121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 122 cl::desc("Attempt to vectorize horizontal reductions")); 123 124 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 126 cl::desc( 127 "Attempt to vectorize horizontal reductions feeding into a store")); 128 129 static cl::opt<int> 130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 131 cl::desc("Attempt to vectorize for this register size in bits")); 132 133 static cl::opt<unsigned> 134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 135 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 136 137 static cl::opt<int> 138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 139 cl::desc("Maximum depth of the lookup for consecutive stores.")); 140 141 /// Limits the size of scheduling regions in a block. 142 /// It avoid long compile times for _very_ large blocks where vector 143 /// instructions are spread over a wide range. 144 /// This limit is way higher than needed by real-world functions. 145 static cl::opt<int> 146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 147 cl::desc("Limit the size of the SLP scheduling region per block")); 148 149 static cl::opt<int> MinVectorRegSizeOption( 150 "slp-min-reg-size", cl::init(128), cl::Hidden, 151 cl::desc("Attempt to vectorize for this register size in bits")); 152 153 static cl::opt<unsigned> RecursionMaxDepth( 154 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 155 cl::desc("Limit the recursion depth when building a vectorizable tree")); 156 157 static cl::opt<unsigned> MinTreeSize( 158 "slp-min-tree-size", cl::init(3), cl::Hidden, 159 cl::desc("Only vectorize small trees if they are fully vectorizable")); 160 161 // The maximum depth that the look-ahead score heuristic will explore. 162 // The higher this value, the higher the compilation time overhead. 163 static cl::opt<int> LookAheadMaxDepth( 164 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 165 cl::desc("The maximum look-ahead depth for operand reordering scores")); 166 167 static cl::opt<bool> 168 ViewSLPTree("view-slp-tree", cl::Hidden, 169 cl::desc("Display the SLP trees with Graphviz")); 170 171 // Limit the number of alias checks. The limit is chosen so that 172 // it has no negative effect on the llvm benchmarks. 173 static const unsigned AliasedCheckLimit = 10; 174 175 // Another limit for the alias checks: The maximum distance between load/store 176 // instructions where alias checks are done. 177 // This limit is useful for very large basic blocks. 178 static const unsigned MaxMemDepDistance = 160; 179 180 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 181 /// regions to be handled. 182 static const int MinScheduleRegionSize = 16; 183 184 /// Predicate for the element types that the SLP vectorizer supports. 185 /// 186 /// The most important thing to filter here are types which are invalid in LLVM 187 /// vectors. We also filter target specific types which have absolutely no 188 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 189 /// avoids spending time checking the cost model and realizing that they will 190 /// be inevitably scalarized. 191 static bool isValidElementType(Type *Ty) { 192 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 193 !Ty->isPPC_FP128Ty(); 194 } 195 196 /// \returns True if the value is a constant (but not globals/constant 197 /// expressions). 198 static bool isConstant(Value *V) { 199 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 200 } 201 202 /// Checks if \p V is one of vector-like instructions, i.e. undef, 203 /// insertelement/extractelement with constant indices for fixed vector type or 204 /// extractvalue instruction. 205 static bool isVectorLikeInstWithConstOps(Value *V) { 206 if (!isa<InsertElementInst, ExtractElementInst>(V) && 207 !isa<ExtractValueInst, UndefValue>(V)) 208 return false; 209 auto *I = dyn_cast<Instruction>(V); 210 if (!I || isa<ExtractValueInst>(I)) 211 return true; 212 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 213 return false; 214 if (isa<ExtractElementInst>(I)) 215 return isConstant(I->getOperand(1)); 216 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 217 return isConstant(I->getOperand(2)); 218 } 219 220 /// \returns true if all of the instructions in \p VL are in the same block or 221 /// false otherwise. 222 static bool allSameBlock(ArrayRef<Value *> VL) { 223 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 224 if (!I0) 225 return false; 226 if (all_of(VL, isVectorLikeInstWithConstOps)) 227 return true; 228 229 BasicBlock *BB = I0->getParent(); 230 for (int I = 1, E = VL.size(); I < E; I++) { 231 auto *II = dyn_cast<Instruction>(VL[I]); 232 if (!II) 233 return false; 234 235 if (BB != II->getParent()) 236 return false; 237 } 238 return true; 239 } 240 241 /// \returns True if all of the values in \p VL are constants (but not 242 /// globals/constant expressions). 243 static bool allConstant(ArrayRef<Value *> VL) { 244 // Constant expressions and globals can't be vectorized like normal integer/FP 245 // constants. 246 return all_of(VL, isConstant); 247 } 248 249 /// \returns True if all of the values in \p VL are identical or some of them 250 /// are UndefValue. 251 static bool isSplat(ArrayRef<Value *> VL) { 252 Value *FirstNonUndef = nullptr; 253 for (Value *V : VL) { 254 if (isa<UndefValue>(V)) 255 continue; 256 if (!FirstNonUndef) { 257 FirstNonUndef = V; 258 continue; 259 } 260 if (V != FirstNonUndef) 261 return false; 262 } 263 return FirstNonUndef != nullptr; 264 } 265 266 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 267 static bool isCommutative(Instruction *I) { 268 if (auto *Cmp = dyn_cast<CmpInst>(I)) 269 return Cmp->isCommutative(); 270 if (auto *BO = dyn_cast<BinaryOperator>(I)) 271 return BO->isCommutative(); 272 // TODO: This should check for generic Instruction::isCommutative(), but 273 // we need to confirm that the caller code correctly handles Intrinsics 274 // for example (does not have 2 operands). 275 return false; 276 } 277 278 /// Checks if the given value is actually an undefined constant vector. 279 static bool isUndefVector(const Value *V) { 280 if (isa<UndefValue>(V)) 281 return true; 282 auto *C = dyn_cast<Constant>(V); 283 if (!C) 284 return false; 285 if (!C->containsUndefOrPoisonElement()) 286 return false; 287 auto *VecTy = dyn_cast<FixedVectorType>(C->getType()); 288 if (!VecTy) 289 return false; 290 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { 291 if (Constant *Elem = C->getAggregateElement(I)) 292 if (!isa<UndefValue>(Elem)) 293 return false; 294 } 295 return true; 296 } 297 298 /// Checks if the vector of instructions can be represented as a shuffle, like: 299 /// %x0 = extractelement <4 x i8> %x, i32 0 300 /// %x3 = extractelement <4 x i8> %x, i32 3 301 /// %y1 = extractelement <4 x i8> %y, i32 1 302 /// %y2 = extractelement <4 x i8> %y, i32 2 303 /// %x0x0 = mul i8 %x0, %x0 304 /// %x3x3 = mul i8 %x3, %x3 305 /// %y1y1 = mul i8 %y1, %y1 306 /// %y2y2 = mul i8 %y2, %y2 307 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 308 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 309 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 310 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 311 /// ret <4 x i8> %ins4 312 /// can be transformed into: 313 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 314 /// i32 6> 315 /// %2 = mul <4 x i8> %1, %1 316 /// ret <4 x i8> %2 317 /// We convert this initially to something like: 318 /// %x0 = extractelement <4 x i8> %x, i32 0 319 /// %x3 = extractelement <4 x i8> %x, i32 3 320 /// %y1 = extractelement <4 x i8> %y, i32 1 321 /// %y2 = extractelement <4 x i8> %y, i32 2 322 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 323 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 324 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 325 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 326 /// %5 = mul <4 x i8> %4, %4 327 /// %6 = extractelement <4 x i8> %5, i32 0 328 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 329 /// %7 = extractelement <4 x i8> %5, i32 1 330 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 331 /// %8 = extractelement <4 x i8> %5, i32 2 332 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 333 /// %9 = extractelement <4 x i8> %5, i32 3 334 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 335 /// ret <4 x i8> %ins4 336 /// InstCombiner transforms this into a shuffle and vector mul 337 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 338 /// TODO: Can we split off and reuse the shuffle mask detection from 339 /// TargetTransformInfo::getInstructionThroughput? 340 static Optional<TargetTransformInfo::ShuffleKind> 341 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 342 const auto *It = 343 find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); }); 344 if (It == VL.end()) 345 return None; 346 auto *EI0 = cast<ExtractElementInst>(*It); 347 if (isa<ScalableVectorType>(EI0->getVectorOperandType())) 348 return None; 349 unsigned Size = 350 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 351 Value *Vec1 = nullptr; 352 Value *Vec2 = nullptr; 353 enum ShuffleMode { Unknown, Select, Permute }; 354 ShuffleMode CommonShuffleMode = Unknown; 355 Mask.assign(VL.size(), UndefMaskElem); 356 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 357 // Undef can be represented as an undef element in a vector. 358 if (isa<UndefValue>(VL[I])) 359 continue; 360 auto *EI = cast<ExtractElementInst>(VL[I]); 361 if (isa<ScalableVectorType>(EI->getVectorOperandType())) 362 return None; 363 auto *Vec = EI->getVectorOperand(); 364 // We can extractelement from undef or poison vector. 365 if (isUndefVector(Vec)) 366 continue; 367 // All vector operands must have the same number of vector elements. 368 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 369 return None; 370 if (isa<UndefValue>(EI->getIndexOperand())) 371 continue; 372 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 373 if (!Idx) 374 return None; 375 // Undefined behavior if Idx is negative or >= Size. 376 if (Idx->getValue().uge(Size)) 377 continue; 378 unsigned IntIdx = Idx->getValue().getZExtValue(); 379 Mask[I] = IntIdx; 380 // For correct shuffling we have to have at most 2 different vector operands 381 // in all extractelement instructions. 382 if (!Vec1 || Vec1 == Vec) { 383 Vec1 = Vec; 384 } else if (!Vec2 || Vec2 == Vec) { 385 Vec2 = Vec; 386 Mask[I] += Size; 387 } else { 388 return None; 389 } 390 if (CommonShuffleMode == Permute) 391 continue; 392 // If the extract index is not the same as the operation number, it is a 393 // permutation. 394 if (IntIdx != I) { 395 CommonShuffleMode = Permute; 396 continue; 397 } 398 CommonShuffleMode = Select; 399 } 400 // If we're not crossing lanes in different vectors, consider it as blending. 401 if (CommonShuffleMode == Select && Vec2) 402 return TargetTransformInfo::SK_Select; 403 // If Vec2 was never used, we have a permutation of a single vector, otherwise 404 // we have permutation of 2 vectors. 405 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 406 : TargetTransformInfo::SK_PermuteSingleSrc; 407 } 408 409 namespace { 410 411 /// Main data required for vectorization of instructions. 412 struct InstructionsState { 413 /// The very first instruction in the list with the main opcode. 414 Value *OpValue = nullptr; 415 416 /// The main/alternate instruction. 417 Instruction *MainOp = nullptr; 418 Instruction *AltOp = nullptr; 419 420 /// The main/alternate opcodes for the list of instructions. 421 unsigned getOpcode() const { 422 return MainOp ? MainOp->getOpcode() : 0; 423 } 424 425 unsigned getAltOpcode() const { 426 return AltOp ? AltOp->getOpcode() : 0; 427 } 428 429 /// Some of the instructions in the list have alternate opcodes. 430 bool isAltShuffle() const { return AltOp != MainOp; } 431 432 bool isOpcodeOrAlt(Instruction *I) const { 433 unsigned CheckedOpcode = I->getOpcode(); 434 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 435 } 436 437 InstructionsState() = delete; 438 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 439 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 440 }; 441 442 } // end anonymous namespace 443 444 /// Chooses the correct key for scheduling data. If \p Op has the same (or 445 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 446 /// OpValue. 447 static Value *isOneOf(const InstructionsState &S, Value *Op) { 448 auto *I = dyn_cast<Instruction>(Op); 449 if (I && S.isOpcodeOrAlt(I)) 450 return Op; 451 return S.OpValue; 452 } 453 454 /// \returns true if \p Opcode is allowed as part of of the main/alternate 455 /// instruction for SLP vectorization. 456 /// 457 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 458 /// "shuffled out" lane would result in division by zero. 459 static bool isValidForAlternation(unsigned Opcode) { 460 if (Instruction::isIntDivRem(Opcode)) 461 return false; 462 463 return true; 464 } 465 466 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 467 unsigned BaseIndex = 0); 468 469 /// Checks if the provided operands of 2 cmp instructions are compatible, i.e. 470 /// compatible instructions or constants, or just some other regular values. 471 static bool areCompatibleCmpOps(Value *BaseOp0, Value *BaseOp1, Value *Op0, 472 Value *Op1) { 473 return (isConstant(BaseOp0) && isConstant(Op0)) || 474 (isConstant(BaseOp1) && isConstant(Op1)) || 475 (!isa<Instruction>(BaseOp0) && !isa<Instruction>(Op0) && 476 !isa<Instruction>(BaseOp1) && !isa<Instruction>(Op1)) || 477 getSameOpcode({BaseOp0, Op0}).getOpcode() || 478 getSameOpcode({BaseOp1, Op1}).getOpcode(); 479 } 480 481 /// \returns analysis of the Instructions in \p VL described in 482 /// InstructionsState, the Opcode that we suppose the whole list 483 /// could be vectorized even if its structure is diverse. 484 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 485 unsigned BaseIndex) { 486 // Make sure these are all Instructions. 487 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 488 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 489 490 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 491 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 492 bool IsCmpOp = isa<CmpInst>(VL[BaseIndex]); 493 CmpInst::Predicate BasePred = 494 IsCmpOp ? cast<CmpInst>(VL[BaseIndex])->getPredicate() 495 : CmpInst::BAD_ICMP_PREDICATE; 496 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 497 unsigned AltOpcode = Opcode; 498 unsigned AltIndex = BaseIndex; 499 500 // Check for one alternate opcode from another BinaryOperator. 501 // TODO - generalize to support all operators (types, calls etc.). 502 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 503 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 504 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 505 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 506 continue; 507 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 508 isValidForAlternation(Opcode)) { 509 AltOpcode = InstOpcode; 510 AltIndex = Cnt; 511 continue; 512 } 513 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 514 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 515 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 516 if (Ty0 == Ty1) { 517 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 518 continue; 519 if (Opcode == AltOpcode) { 520 assert(isValidForAlternation(Opcode) && 521 isValidForAlternation(InstOpcode) && 522 "Cast isn't safe for alternation, logic needs to be updated!"); 523 AltOpcode = InstOpcode; 524 AltIndex = Cnt; 525 continue; 526 } 527 } 528 } else if (IsCmpOp && isa<CmpInst>(VL[Cnt])) { 529 auto *BaseInst = cast<Instruction>(VL[BaseIndex]); 530 auto *Inst = cast<Instruction>(VL[Cnt]); 531 Type *Ty0 = BaseInst->getOperand(0)->getType(); 532 Type *Ty1 = Inst->getOperand(0)->getType(); 533 if (Ty0 == Ty1) { 534 Value *BaseOp0 = BaseInst->getOperand(0); 535 Value *BaseOp1 = BaseInst->getOperand(1); 536 Value *Op0 = Inst->getOperand(0); 537 Value *Op1 = Inst->getOperand(1); 538 CmpInst::Predicate CurrentPred = 539 cast<CmpInst>(VL[Cnt])->getPredicate(); 540 CmpInst::Predicate SwappedCurrentPred = 541 CmpInst::getSwappedPredicate(CurrentPred); 542 // Check for compatible operands. If the corresponding operands are not 543 // compatible - need to perform alternate vectorization. 544 if (InstOpcode == Opcode) { 545 if (BasePred == CurrentPred && 546 areCompatibleCmpOps(BaseOp0, BaseOp1, Op0, Op1)) 547 continue; 548 if (BasePred == SwappedCurrentPred && 549 areCompatibleCmpOps(BaseOp0, BaseOp1, Op1, Op0)) 550 continue; 551 if (E == 2 && 552 (BasePred == CurrentPred || BasePred == SwappedCurrentPred)) 553 continue; 554 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 555 CmpInst::Predicate AltPred = AltInst->getPredicate(); 556 Value *AltOp0 = AltInst->getOperand(0); 557 Value *AltOp1 = AltInst->getOperand(1); 558 // Check if operands are compatible with alternate operands. 559 if (AltPred == CurrentPred && 560 areCompatibleCmpOps(AltOp0, AltOp1, Op0, Op1)) 561 continue; 562 if (AltPred == SwappedCurrentPred && 563 areCompatibleCmpOps(AltOp0, AltOp1, Op1, Op0)) 564 continue; 565 } 566 if (BaseIndex == AltIndex && BasePred != CurrentPred) { 567 assert(isValidForAlternation(Opcode) && 568 isValidForAlternation(InstOpcode) && 569 "Cast isn't safe for alternation, logic needs to be updated!"); 570 AltIndex = Cnt; 571 continue; 572 } 573 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 574 CmpInst::Predicate AltPred = AltInst->getPredicate(); 575 if (BasePred == CurrentPred || BasePred == SwappedCurrentPred || 576 AltPred == CurrentPred || AltPred == SwappedCurrentPred) 577 continue; 578 } 579 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 580 continue; 581 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 582 } 583 584 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 585 cast<Instruction>(VL[AltIndex])); 586 } 587 588 /// \returns true if all of the values in \p VL have the same type or false 589 /// otherwise. 590 static bool allSameType(ArrayRef<Value *> VL) { 591 Type *Ty = VL[0]->getType(); 592 for (int i = 1, e = VL.size(); i < e; i++) 593 if (VL[i]->getType() != Ty) 594 return false; 595 596 return true; 597 } 598 599 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 600 static Optional<unsigned> getExtractIndex(Instruction *E) { 601 unsigned Opcode = E->getOpcode(); 602 assert((Opcode == Instruction::ExtractElement || 603 Opcode == Instruction::ExtractValue) && 604 "Expected extractelement or extractvalue instruction."); 605 if (Opcode == Instruction::ExtractElement) { 606 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 607 if (!CI) 608 return None; 609 return CI->getZExtValue(); 610 } 611 ExtractValueInst *EI = cast<ExtractValueInst>(E); 612 if (EI->getNumIndices() != 1) 613 return None; 614 return *EI->idx_begin(); 615 } 616 617 /// \returns True if in-tree use also needs extract. This refers to 618 /// possible scalar operand in vectorized instruction. 619 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 620 TargetLibraryInfo *TLI) { 621 unsigned Opcode = UserInst->getOpcode(); 622 switch (Opcode) { 623 case Instruction::Load: { 624 LoadInst *LI = cast<LoadInst>(UserInst); 625 return (LI->getPointerOperand() == Scalar); 626 } 627 case Instruction::Store: { 628 StoreInst *SI = cast<StoreInst>(UserInst); 629 return (SI->getPointerOperand() == Scalar); 630 } 631 case Instruction::Call: { 632 CallInst *CI = cast<CallInst>(UserInst); 633 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 634 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 635 if (hasVectorInstrinsicScalarOpd(ID, i)) 636 return (CI->getArgOperand(i) == Scalar); 637 } 638 LLVM_FALLTHROUGH; 639 } 640 default: 641 return false; 642 } 643 } 644 645 /// \returns the AA location that is being access by the instruction. 646 static MemoryLocation getLocation(Instruction *I) { 647 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 648 return MemoryLocation::get(SI); 649 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 650 return MemoryLocation::get(LI); 651 return MemoryLocation(); 652 } 653 654 /// \returns True if the instruction is not a volatile or atomic load/store. 655 static bool isSimple(Instruction *I) { 656 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 657 return LI->isSimple(); 658 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 659 return SI->isSimple(); 660 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 661 return !MI->isVolatile(); 662 return true; 663 } 664 665 /// Shuffles \p Mask in accordance with the given \p SubMask. 666 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 667 if (SubMask.empty()) 668 return; 669 if (Mask.empty()) { 670 Mask.append(SubMask.begin(), SubMask.end()); 671 return; 672 } 673 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 674 int TermValue = std::min(Mask.size(), SubMask.size()); 675 for (int I = 0, E = SubMask.size(); I < E; ++I) { 676 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 677 Mask[SubMask[I]] >= TermValue) 678 continue; 679 NewMask[I] = Mask[SubMask[I]]; 680 } 681 Mask.swap(NewMask); 682 } 683 684 /// Order may have elements assigned special value (size) which is out of 685 /// bounds. Such indices only appear on places which correspond to undef values 686 /// (see canReuseExtract for details) and used in order to avoid undef values 687 /// have effect on operands ordering. 688 /// The first loop below simply finds all unused indices and then the next loop 689 /// nest assigns these indices for undef values positions. 690 /// As an example below Order has two undef positions and they have assigned 691 /// values 3 and 7 respectively: 692 /// before: 6 9 5 4 9 2 1 0 693 /// after: 6 3 5 4 7 2 1 0 694 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 695 const unsigned Sz = Order.size(); 696 SmallBitVector UnusedIndices(Sz, /*t=*/true); 697 SmallBitVector MaskedIndices(Sz); 698 for (unsigned I = 0; I < Sz; ++I) { 699 if (Order[I] < Sz) 700 UnusedIndices.reset(Order[I]); 701 else 702 MaskedIndices.set(I); 703 } 704 if (MaskedIndices.none()) 705 return; 706 assert(UnusedIndices.count() == MaskedIndices.count() && 707 "Non-synced masked/available indices."); 708 int Idx = UnusedIndices.find_first(); 709 int MIdx = MaskedIndices.find_first(); 710 while (MIdx >= 0) { 711 assert(Idx >= 0 && "Indices must be synced."); 712 Order[MIdx] = Idx; 713 Idx = UnusedIndices.find_next(Idx); 714 MIdx = MaskedIndices.find_next(MIdx); 715 } 716 } 717 718 namespace llvm { 719 720 static void inversePermutation(ArrayRef<unsigned> Indices, 721 SmallVectorImpl<int> &Mask) { 722 Mask.clear(); 723 const unsigned E = Indices.size(); 724 Mask.resize(E, UndefMaskElem); 725 for (unsigned I = 0; I < E; ++I) 726 Mask[Indices[I]] = I; 727 } 728 729 /// \returns inserting index of InsertElement or InsertValue instruction, 730 /// using Offset as base offset for index. 731 static Optional<unsigned> getInsertIndex(Value *InsertInst, 732 unsigned Offset = 0) { 733 int Index = Offset; 734 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 735 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 736 auto *VT = cast<FixedVectorType>(IE->getType()); 737 if (CI->getValue().uge(VT->getNumElements())) 738 return None; 739 Index *= VT->getNumElements(); 740 Index += CI->getZExtValue(); 741 return Index; 742 } 743 return None; 744 } 745 746 auto *IV = cast<InsertValueInst>(InsertInst); 747 Type *CurrentType = IV->getType(); 748 for (unsigned I : IV->indices()) { 749 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 750 Index *= ST->getNumElements(); 751 CurrentType = ST->getElementType(I); 752 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 753 Index *= AT->getNumElements(); 754 CurrentType = AT->getElementType(); 755 } else { 756 return None; 757 } 758 Index += I; 759 } 760 return Index; 761 } 762 763 /// Reorders the list of scalars in accordance with the given \p Mask. 764 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 765 ArrayRef<int> Mask) { 766 assert(!Mask.empty() && "Expected non-empty mask."); 767 SmallVector<Value *> Prev(Scalars.size(), 768 UndefValue::get(Scalars.front()->getType())); 769 Prev.swap(Scalars); 770 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 771 if (Mask[I] != UndefMaskElem) 772 Scalars[Mask[I]] = Prev[I]; 773 } 774 775 /// Checks if the provided value does not require scheduling. It does not 776 /// require scheduling if this is not an instruction or it is an instruction 777 /// that does not read/write memory and all operands are either not instructions 778 /// or phi nodes or instructions from different blocks. 779 static bool areAllOperandsNonInsts(Value *V) { 780 auto *I = dyn_cast<Instruction>(V); 781 if (!I) 782 return true; 783 return !mayHaveNonDefUseDependency(*I) && 784 all_of(I->operands(), [I](Value *V) { 785 auto *IO = dyn_cast<Instruction>(V); 786 if (!IO) 787 return true; 788 return isa<PHINode>(IO) || IO->getParent() != I->getParent(); 789 }); 790 } 791 792 /// Checks if the provided value does not require scheduling. It does not 793 /// require scheduling if this is not an instruction or it is an instruction 794 /// that does not read/write memory and all users are phi nodes or instructions 795 /// from the different blocks. 796 static bool isUsedOutsideBlock(Value *V) { 797 auto *I = dyn_cast<Instruction>(V); 798 if (!I) 799 return true; 800 // Limits the number of uses to save compile time. 801 constexpr int UsesLimit = 8; 802 return !I->mayReadOrWriteMemory() && !I->hasNUsesOrMore(UsesLimit) && 803 all_of(I->users(), [I](User *U) { 804 auto *IU = dyn_cast<Instruction>(U); 805 if (!IU) 806 return true; 807 return IU->getParent() != I->getParent() || isa<PHINode>(IU); 808 }); 809 } 810 811 /// Checks if the specified value does not require scheduling. It does not 812 /// require scheduling if all operands and all users do not need to be scheduled 813 /// in the current basic block. 814 static bool doesNotNeedToBeScheduled(Value *V) { 815 return areAllOperandsNonInsts(V) && isUsedOutsideBlock(V); 816 } 817 818 /// Checks if the specified array of instructions does not require scheduling. 819 /// It is so if all either instructions have operands that do not require 820 /// scheduling or their users do not require scheduling since they are phis or 821 /// in other basic blocks. 822 static bool doesNotNeedToSchedule(ArrayRef<Value *> VL) { 823 return !VL.empty() && 824 (all_of(VL, isUsedOutsideBlock) || all_of(VL, areAllOperandsNonInsts)); 825 } 826 827 namespace slpvectorizer { 828 829 /// Bottom Up SLP Vectorizer. 830 class BoUpSLP { 831 struct TreeEntry; 832 struct ScheduleData; 833 834 public: 835 using ValueList = SmallVector<Value *, 8>; 836 using InstrList = SmallVector<Instruction *, 16>; 837 using ValueSet = SmallPtrSet<Value *, 16>; 838 using StoreList = SmallVector<StoreInst *, 8>; 839 using ExtraValueToDebugLocsMap = 840 MapVector<Value *, SmallVector<Instruction *, 2>>; 841 using OrdersType = SmallVector<unsigned, 4>; 842 843 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 844 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 845 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 846 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 847 : BatchAA(*Aa), F(Func), SE(Se), TTI(Tti), TLI(TLi), LI(Li), 848 DT(Dt), AC(AC), DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 849 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 850 // Use the vector register size specified by the target unless overridden 851 // by a command-line option. 852 // TODO: It would be better to limit the vectorization factor based on 853 // data type rather than just register size. For example, x86 AVX has 854 // 256-bit registers, but it does not support integer operations 855 // at that width (that requires AVX2). 856 if (MaxVectorRegSizeOption.getNumOccurrences()) 857 MaxVecRegSize = MaxVectorRegSizeOption; 858 else 859 MaxVecRegSize = 860 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 861 .getFixedSize(); 862 863 if (MinVectorRegSizeOption.getNumOccurrences()) 864 MinVecRegSize = MinVectorRegSizeOption; 865 else 866 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 867 } 868 869 /// Vectorize the tree that starts with the elements in \p VL. 870 /// Returns the vectorized root. 871 Value *vectorizeTree(); 872 873 /// Vectorize the tree but with the list of externally used values \p 874 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 875 /// generated extractvalue instructions. 876 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 877 878 /// \returns the cost incurred by unwanted spills and fills, caused by 879 /// holding live values over call sites. 880 InstructionCost getSpillCost() const; 881 882 /// \returns the vectorization cost of the subtree that starts at \p VL. 883 /// A negative number means that this is profitable. 884 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 885 886 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 887 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 888 void buildTree(ArrayRef<Value *> Roots, 889 ArrayRef<Value *> UserIgnoreLst = None); 890 891 /// Builds external uses of the vectorized scalars, i.e. the list of 892 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 893 /// ExternallyUsedValues contains additional list of external uses to handle 894 /// vectorization of reductions. 895 void 896 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 897 898 /// Clear the internal data structures that are created by 'buildTree'. 899 void deleteTree() { 900 VectorizableTree.clear(); 901 ScalarToTreeEntry.clear(); 902 MustGather.clear(); 903 ExternalUses.clear(); 904 for (auto &Iter : BlocksSchedules) { 905 BlockScheduling *BS = Iter.second.get(); 906 BS->clear(); 907 } 908 MinBWs.clear(); 909 InstrElementSize.clear(); 910 } 911 912 unsigned getTreeSize() const { return VectorizableTree.size(); } 913 914 /// Perform LICM and CSE on the newly generated gather sequences. 915 void optimizeGatherSequence(); 916 917 /// Checks if the specified gather tree entry \p TE can be represented as a 918 /// shuffled vector entry + (possibly) permutation with other gathers. It 919 /// implements the checks only for possibly ordered scalars (Loads, 920 /// ExtractElement, ExtractValue), which can be part of the graph. 921 Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); 922 923 /// Gets reordering data for the given tree entry. If the entry is vectorized 924 /// - just return ReorderIndices, otherwise check if the scalars can be 925 /// reordered and return the most optimal order. 926 /// \param TopToBottom If true, include the order of vectorized stores and 927 /// insertelement nodes, otherwise skip them. 928 Optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom); 929 930 /// Reorders the current graph to the most profitable order starting from the 931 /// root node to the leaf nodes. The best order is chosen only from the nodes 932 /// of the same size (vectorization factor). Smaller nodes are considered 933 /// parts of subgraph with smaller VF and they are reordered independently. We 934 /// can make it because we still need to extend smaller nodes to the wider VF 935 /// and we can merge reordering shuffles with the widening shuffles. 936 void reorderTopToBottom(); 937 938 /// Reorders the current graph to the most profitable order starting from 939 /// leaves to the root. It allows to rotate small subgraphs and reduce the 940 /// number of reshuffles if the leaf nodes use the same order. In this case we 941 /// can merge the orders and just shuffle user node instead of shuffling its 942 /// operands. Plus, even the leaf nodes have different orders, it allows to 943 /// sink reordering in the graph closer to the root node and merge it later 944 /// during analysis. 945 void reorderBottomToTop(bool IgnoreReorder = false); 946 947 /// \return The vector element size in bits to use when vectorizing the 948 /// expression tree ending at \p V. If V is a store, the size is the width of 949 /// the stored value. Otherwise, the size is the width of the largest loaded 950 /// value reaching V. This method is used by the vectorizer to calculate 951 /// vectorization factors. 952 unsigned getVectorElementSize(Value *V); 953 954 /// Compute the minimum type sizes required to represent the entries in a 955 /// vectorizable tree. 956 void computeMinimumValueSizes(); 957 958 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 959 unsigned getMaxVecRegSize() const { 960 return MaxVecRegSize; 961 } 962 963 // \returns minimum vector register size as set by cl::opt. 964 unsigned getMinVecRegSize() const { 965 return MinVecRegSize; 966 } 967 968 unsigned getMinVF(unsigned Sz) const { 969 return std::max(2U, getMinVecRegSize() / Sz); 970 } 971 972 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 973 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 974 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 975 return MaxVF ? MaxVF : UINT_MAX; 976 } 977 978 /// Check if homogeneous aggregate is isomorphic to some VectorType. 979 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 980 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 981 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 982 /// 983 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 984 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 985 986 /// \returns True if the VectorizableTree is both tiny and not fully 987 /// vectorizable. We do not vectorize such trees. 988 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; 989 990 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 991 /// can be load combined in the backend. Load combining may not be allowed in 992 /// the IR optimizer, so we do not want to alter the pattern. For example, 993 /// partially transforming a scalar bswap() pattern into vector code is 994 /// effectively impossible for the backend to undo. 995 /// TODO: If load combining is allowed in the IR optimizer, this analysis 996 /// may not be necessary. 997 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 998 999 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 1000 /// can be load combined in the backend. Load combining may not be allowed in 1001 /// the IR optimizer, so we do not want to alter the pattern. For example, 1002 /// partially transforming a scalar bswap() pattern into vector code is 1003 /// effectively impossible for the backend to undo. 1004 /// TODO: If load combining is allowed in the IR optimizer, this analysis 1005 /// may not be necessary. 1006 bool isLoadCombineCandidate() const; 1007 1008 OptimizationRemarkEmitter *getORE() { return ORE; } 1009 1010 /// This structure holds any data we need about the edges being traversed 1011 /// during buildTree_rec(). We keep track of: 1012 /// (i) the user TreeEntry index, and 1013 /// (ii) the index of the edge. 1014 struct EdgeInfo { 1015 EdgeInfo() = default; 1016 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 1017 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 1018 /// The user TreeEntry. 1019 TreeEntry *UserTE = nullptr; 1020 /// The operand index of the use. 1021 unsigned EdgeIdx = UINT_MAX; 1022 #ifndef NDEBUG 1023 friend inline raw_ostream &operator<<(raw_ostream &OS, 1024 const BoUpSLP::EdgeInfo &EI) { 1025 EI.dump(OS); 1026 return OS; 1027 } 1028 /// Debug print. 1029 void dump(raw_ostream &OS) const { 1030 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 1031 << " EdgeIdx:" << EdgeIdx << "}"; 1032 } 1033 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 1034 #endif 1035 }; 1036 1037 /// A helper data structure to hold the operands of a vector of instructions. 1038 /// This supports a fixed vector length for all operand vectors. 1039 class VLOperands { 1040 /// For each operand we need (i) the value, and (ii) the opcode that it 1041 /// would be attached to if the expression was in a left-linearized form. 1042 /// This is required to avoid illegal operand reordering. 1043 /// For example: 1044 /// \verbatim 1045 /// 0 Op1 1046 /// |/ 1047 /// Op1 Op2 Linearized + Op2 1048 /// \ / ----------> |/ 1049 /// - - 1050 /// 1051 /// Op1 - Op2 (0 + Op1) - Op2 1052 /// \endverbatim 1053 /// 1054 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 1055 /// 1056 /// Another way to think of this is to track all the operations across the 1057 /// path from the operand all the way to the root of the tree and to 1058 /// calculate the operation that corresponds to this path. For example, the 1059 /// path from Op2 to the root crosses the RHS of the '-', therefore the 1060 /// corresponding operation is a '-' (which matches the one in the 1061 /// linearized tree, as shown above). 1062 /// 1063 /// For lack of a better term, we refer to this operation as Accumulated 1064 /// Path Operation (APO). 1065 struct OperandData { 1066 OperandData() = default; 1067 OperandData(Value *V, bool APO, bool IsUsed) 1068 : V(V), APO(APO), IsUsed(IsUsed) {} 1069 /// The operand value. 1070 Value *V = nullptr; 1071 /// TreeEntries only allow a single opcode, or an alternate sequence of 1072 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 1073 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 1074 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 1075 /// (e.g., Add/Mul) 1076 bool APO = false; 1077 /// Helper data for the reordering function. 1078 bool IsUsed = false; 1079 }; 1080 1081 /// During operand reordering, we are trying to select the operand at lane 1082 /// that matches best with the operand at the neighboring lane. Our 1083 /// selection is based on the type of value we are looking for. For example, 1084 /// if the neighboring lane has a load, we need to look for a load that is 1085 /// accessing a consecutive address. These strategies are summarized in the 1086 /// 'ReorderingMode' enumerator. 1087 enum class ReorderingMode { 1088 Load, ///< Matching loads to consecutive memory addresses 1089 Opcode, ///< Matching instructions based on opcode (same or alternate) 1090 Constant, ///< Matching constants 1091 Splat, ///< Matching the same instruction multiple times (broadcast) 1092 Failed, ///< We failed to create a vectorizable group 1093 }; 1094 1095 using OperandDataVec = SmallVector<OperandData, 2>; 1096 1097 /// A vector of operand vectors. 1098 SmallVector<OperandDataVec, 4> OpsVec; 1099 1100 const DataLayout &DL; 1101 ScalarEvolution &SE; 1102 const BoUpSLP &R; 1103 1104 /// \returns the operand data at \p OpIdx and \p Lane. 1105 OperandData &getData(unsigned OpIdx, unsigned Lane) { 1106 return OpsVec[OpIdx][Lane]; 1107 } 1108 1109 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 1110 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 1111 return OpsVec[OpIdx][Lane]; 1112 } 1113 1114 /// Clears the used flag for all entries. 1115 void clearUsed() { 1116 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 1117 OpIdx != NumOperands; ++OpIdx) 1118 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1119 ++Lane) 1120 OpsVec[OpIdx][Lane].IsUsed = false; 1121 } 1122 1123 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 1124 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 1125 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 1126 } 1127 1128 // The hard-coded scores listed here are not very important, though it shall 1129 // be higher for better matches to improve the resulting cost. When 1130 // computing the scores of matching one sub-tree with another, we are 1131 // basically counting the number of values that are matching. So even if all 1132 // scores are set to 1, we would still get a decent matching result. 1133 // However, sometimes we have to break ties. For example we may have to 1134 // choose between matching loads vs matching opcodes. This is what these 1135 // scores are helping us with: they provide the order of preference. Also, 1136 // this is important if the scalar is externally used or used in another 1137 // tree entry node in the different lane. 1138 1139 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 1140 static const int ScoreConsecutiveLoads = 4; 1141 /// The same load multiple times. This should have a better score than 1142 /// `ScoreSplat` because it in x86 for a 2-lane vector we can represent it 1143 /// with `movddup (%reg), xmm0` which has a throughput of 0.5 versus 0.5 for 1144 /// a vector load and 1.0 for a broadcast. 1145 static const int ScoreSplatLoads = 3; 1146 /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]). 1147 static const int ScoreReversedLoads = 3; 1148 /// ExtractElementInst from same vector and consecutive indexes. 1149 static const int ScoreConsecutiveExtracts = 4; 1150 /// ExtractElementInst from same vector and reversed indices. 1151 static const int ScoreReversedExtracts = 3; 1152 /// Constants. 1153 static const int ScoreConstants = 2; 1154 /// Instructions with the same opcode. 1155 static const int ScoreSameOpcode = 2; 1156 /// Instructions with alt opcodes (e.g, add + sub). 1157 static const int ScoreAltOpcodes = 1; 1158 /// Identical instructions (a.k.a. splat or broadcast). 1159 static const int ScoreSplat = 1; 1160 /// Matching with an undef is preferable to failing. 1161 static const int ScoreUndef = 1; 1162 /// Score for failing to find a decent match. 1163 static const int ScoreFail = 0; 1164 /// Score if all users are vectorized. 1165 static const int ScoreAllUserVectorized = 1; 1166 1167 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 1168 /// Also, checks if \p V1 and \p V2 are compatible with instructions in \p 1169 /// MainAltOps. 1170 int getShallowScore(Value *V1, Value *V2, Instruction *U1, Instruction *U2, 1171 const DataLayout &DL, ScalarEvolution &SE, int NumLanes, 1172 ArrayRef<Value *> MainAltOps) { 1173 if (V1 == V2) { 1174 if (isa<LoadInst>(V1)) { 1175 // Retruns true if the users of V1 and V2 won't need to be extracted. 1176 auto AllUsersAreInternal = [U1, U2, this](Value *V1, Value *V2) { 1177 // Bail out if we have too many uses to save compilation time. 1178 static constexpr unsigned Limit = 8; 1179 if (V1->hasNUsesOrMore(Limit) || V2->hasNUsesOrMore(Limit)) 1180 return false; 1181 1182 auto AllUsersVectorized = [U1, U2, this](Value *V) { 1183 return llvm::all_of(V->users(), [U1, U2, this](Value *U) { 1184 return U == U1 || U == U2 || R.getTreeEntry(U) != nullptr; 1185 }); 1186 }; 1187 return AllUsersVectorized(V1) && AllUsersVectorized(V2); 1188 }; 1189 // A broadcast of a load can be cheaper on some targets. 1190 if (R.TTI->isLegalBroadcastLoad(V1->getType(), NumLanes) && 1191 ((int)V1->getNumUses() == NumLanes || 1192 AllUsersAreInternal(V1, V2))) 1193 return VLOperands::ScoreSplatLoads; 1194 } 1195 return VLOperands::ScoreSplat; 1196 } 1197 1198 auto *LI1 = dyn_cast<LoadInst>(V1); 1199 auto *LI2 = dyn_cast<LoadInst>(V2); 1200 if (LI1 && LI2) { 1201 if (LI1->getParent() != LI2->getParent()) 1202 return VLOperands::ScoreFail; 1203 1204 Optional<int> Dist = getPointersDiff( 1205 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1206 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1207 if (!Dist || *Dist == 0) 1208 return VLOperands::ScoreFail; 1209 // The distance is too large - still may be profitable to use masked 1210 // loads/gathers. 1211 if (std::abs(*Dist) > NumLanes / 2) 1212 return VLOperands::ScoreAltOpcodes; 1213 // This still will detect consecutive loads, but we might have "holes" 1214 // in some cases. It is ok for non-power-2 vectorization and may produce 1215 // better results. It should not affect current vectorization. 1216 return (*Dist > 0) ? VLOperands::ScoreConsecutiveLoads 1217 : VLOperands::ScoreReversedLoads; 1218 } 1219 1220 auto *C1 = dyn_cast<Constant>(V1); 1221 auto *C2 = dyn_cast<Constant>(V2); 1222 if (C1 && C2) 1223 return VLOperands::ScoreConstants; 1224 1225 // Extracts from consecutive indexes of the same vector better score as 1226 // the extracts could be optimized away. 1227 Value *EV1; 1228 ConstantInt *Ex1Idx; 1229 if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) { 1230 // Undefs are always profitable for extractelements. 1231 if (isa<UndefValue>(V2)) 1232 return VLOperands::ScoreConsecutiveExtracts; 1233 Value *EV2 = nullptr; 1234 ConstantInt *Ex2Idx = nullptr; 1235 if (match(V2, 1236 m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx), 1237 m_Undef())))) { 1238 // Undefs are always profitable for extractelements. 1239 if (!Ex2Idx) 1240 return VLOperands::ScoreConsecutiveExtracts; 1241 if (isUndefVector(EV2) && EV2->getType() == EV1->getType()) 1242 return VLOperands::ScoreConsecutiveExtracts; 1243 if (EV2 == EV1) { 1244 int Idx1 = Ex1Idx->getZExtValue(); 1245 int Idx2 = Ex2Idx->getZExtValue(); 1246 int Dist = Idx2 - Idx1; 1247 // The distance is too large - still may be profitable to use 1248 // shuffles. 1249 if (std::abs(Dist) == 0) 1250 return VLOperands::ScoreSplat; 1251 if (std::abs(Dist) > NumLanes / 2) 1252 return VLOperands::ScoreSameOpcode; 1253 return (Dist > 0) ? VLOperands::ScoreConsecutiveExtracts 1254 : VLOperands::ScoreReversedExtracts; 1255 } 1256 return VLOperands::ScoreAltOpcodes; 1257 } 1258 return VLOperands::ScoreFail; 1259 } 1260 1261 auto *I1 = dyn_cast<Instruction>(V1); 1262 auto *I2 = dyn_cast<Instruction>(V2); 1263 if (I1 && I2) { 1264 if (I1->getParent() != I2->getParent()) 1265 return VLOperands::ScoreFail; 1266 SmallVector<Value *, 4> Ops(MainAltOps.begin(), MainAltOps.end()); 1267 Ops.push_back(I1); 1268 Ops.push_back(I2); 1269 InstructionsState S = getSameOpcode(Ops); 1270 // Note: Only consider instructions with <= 2 operands to avoid 1271 // complexity explosion. 1272 if (S.getOpcode() && 1273 (S.MainOp->getNumOperands() <= 2 || !MainAltOps.empty() || 1274 !S.isAltShuffle()) && 1275 all_of(Ops, [&S](Value *V) { 1276 return cast<Instruction>(V)->getNumOperands() == 1277 S.MainOp->getNumOperands(); 1278 })) 1279 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 1280 : VLOperands::ScoreSameOpcode; 1281 } 1282 1283 if (isa<UndefValue>(V2)) 1284 return VLOperands::ScoreUndef; 1285 1286 return VLOperands::ScoreFail; 1287 } 1288 1289 /// \param Lane lane of the operands under analysis. 1290 /// \param OpIdx operand index in \p Lane lane we're looking the best 1291 /// candidate for. 1292 /// \param Idx operand index of the current candidate value. 1293 /// \returns The additional score due to possible broadcasting of the 1294 /// elements in the lane. It is more profitable to have power-of-2 unique 1295 /// elements in the lane, it will be vectorized with higher probability 1296 /// after removing duplicates. Currently the SLP vectorizer supports only 1297 /// vectorization of the power-of-2 number of unique scalars. 1298 int getSplatScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1299 Value *IdxLaneV = getData(Idx, Lane).V; 1300 if (!isa<Instruction>(IdxLaneV) || IdxLaneV == getData(OpIdx, Lane).V) 1301 return 0; 1302 SmallPtrSet<Value *, 4> Uniques; 1303 for (unsigned Ln = 0, E = getNumLanes(); Ln < E; ++Ln) { 1304 if (Ln == Lane) 1305 continue; 1306 Value *OpIdxLnV = getData(OpIdx, Ln).V; 1307 if (!isa<Instruction>(OpIdxLnV)) 1308 return 0; 1309 Uniques.insert(OpIdxLnV); 1310 } 1311 int UniquesCount = Uniques.size(); 1312 int UniquesCntWithIdxLaneV = 1313 Uniques.contains(IdxLaneV) ? UniquesCount : UniquesCount + 1; 1314 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1315 int UniquesCntWithOpIdxLaneV = 1316 Uniques.contains(OpIdxLaneV) ? UniquesCount : UniquesCount + 1; 1317 if (UniquesCntWithIdxLaneV == UniquesCntWithOpIdxLaneV) 1318 return 0; 1319 return (PowerOf2Ceil(UniquesCntWithOpIdxLaneV) - 1320 UniquesCntWithOpIdxLaneV) - 1321 (PowerOf2Ceil(UniquesCntWithIdxLaneV) - UniquesCntWithIdxLaneV); 1322 } 1323 1324 /// \param Lane lane of the operands under analysis. 1325 /// \param OpIdx operand index in \p Lane lane we're looking the best 1326 /// candidate for. 1327 /// \param Idx operand index of the current candidate value. 1328 /// \returns The additional score for the scalar which users are all 1329 /// vectorized. 1330 int getExternalUseScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1331 Value *IdxLaneV = getData(Idx, Lane).V; 1332 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1333 // Do not care about number of uses for vector-like instructions 1334 // (extractelement/extractvalue with constant indices), they are extracts 1335 // themselves and already externally used. Vectorization of such 1336 // instructions does not add extra extractelement instruction, just may 1337 // remove it. 1338 if (isVectorLikeInstWithConstOps(IdxLaneV) && 1339 isVectorLikeInstWithConstOps(OpIdxLaneV)) 1340 return VLOperands::ScoreAllUserVectorized; 1341 auto *IdxLaneI = dyn_cast<Instruction>(IdxLaneV); 1342 if (!IdxLaneI || !isa<Instruction>(OpIdxLaneV)) 1343 return 0; 1344 return R.areAllUsersVectorized(IdxLaneI, None) 1345 ? VLOperands::ScoreAllUserVectorized 1346 : 0; 1347 } 1348 1349 /// Go through the operands of \p LHS and \p RHS recursively until \p 1350 /// MaxLevel, and return the cummulative score. For example: 1351 /// \verbatim 1352 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1353 /// \ / \ / \ / \ / 1354 /// + + + + 1355 /// G1 G2 G3 G4 1356 /// \endverbatim 1357 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1358 /// each level recursively, accumulating the score. It starts from matching 1359 /// the additions at level 0, then moves on to the loads (level 1). The 1360 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1361 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1362 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1363 /// Please note that the order of the operands does not matter, as we 1364 /// evaluate the score of all profitable combinations of operands. In 1365 /// other words the score of G1 and G4 is the same as G1 and G2. This 1366 /// heuristic is based on ideas described in: 1367 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1368 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1369 /// Luís F. W. Góes 1370 int getScoreAtLevelRec(Value *LHS, Value *RHS, Instruction *U1, 1371 Instruction *U2, int CurrLevel, int MaxLevel, 1372 ArrayRef<Value *> MainAltOps) { 1373 1374 // Get the shallow score of V1 and V2. 1375 int ShallowScoreAtThisLevel = 1376 getShallowScore(LHS, RHS, U1, U2, DL, SE, getNumLanes(), MainAltOps); 1377 1378 // If reached MaxLevel, 1379 // or if V1 and V2 are not instructions, 1380 // or if they are SPLAT, 1381 // or if they are not consecutive, 1382 // or if profitable to vectorize loads or extractelements, early return 1383 // the current cost. 1384 auto *I1 = dyn_cast<Instruction>(LHS); 1385 auto *I2 = dyn_cast<Instruction>(RHS); 1386 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1387 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1388 (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) || 1389 (I1->getNumOperands() > 2 && I2->getNumOperands() > 2) || 1390 (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) && 1391 ShallowScoreAtThisLevel)) 1392 return ShallowScoreAtThisLevel; 1393 assert(I1 && I2 && "Should have early exited."); 1394 1395 // Contains the I2 operand indexes that got matched with I1 operands. 1396 SmallSet<unsigned, 4> Op2Used; 1397 1398 // Recursion towards the operands of I1 and I2. We are trying all possible 1399 // operand pairs, and keeping track of the best score. 1400 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1401 OpIdx1 != NumOperands1; ++OpIdx1) { 1402 // Try to pair op1I with the best operand of I2. 1403 int MaxTmpScore = 0; 1404 unsigned MaxOpIdx2 = 0; 1405 bool FoundBest = false; 1406 // If I2 is commutative try all combinations. 1407 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1408 unsigned ToIdx = isCommutative(I2) 1409 ? I2->getNumOperands() 1410 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1411 assert(FromIdx <= ToIdx && "Bad index"); 1412 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1413 // Skip operands already paired with OpIdx1. 1414 if (Op2Used.count(OpIdx2)) 1415 continue; 1416 // Recursively calculate the cost at each level 1417 int TmpScore = 1418 getScoreAtLevelRec(I1->getOperand(OpIdx1), I2->getOperand(OpIdx2), 1419 I1, I2, CurrLevel + 1, MaxLevel, None); 1420 // Look for the best score. 1421 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1422 MaxTmpScore = TmpScore; 1423 MaxOpIdx2 = OpIdx2; 1424 FoundBest = true; 1425 } 1426 } 1427 if (FoundBest) { 1428 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1429 Op2Used.insert(MaxOpIdx2); 1430 ShallowScoreAtThisLevel += MaxTmpScore; 1431 } 1432 } 1433 return ShallowScoreAtThisLevel; 1434 } 1435 1436 /// Score scaling factor for fully compatible instructions but with 1437 /// different number of external uses. Allows better selection of the 1438 /// instructions with less external uses. 1439 static const int ScoreScaleFactor = 10; 1440 1441 /// \Returns the look-ahead score, which tells us how much the sub-trees 1442 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1443 /// score. This helps break ties in an informed way when we cannot decide on 1444 /// the order of the operands by just considering the immediate 1445 /// predecessors. 1446 int getLookAheadScore(Value *LHS, Value *RHS, ArrayRef<Value *> MainAltOps, 1447 int Lane, unsigned OpIdx, unsigned Idx, 1448 bool &IsUsed) { 1449 // Keep track of the instruction stack as we recurse into the operands 1450 // during the look-ahead score exploration. 1451 int Score = getScoreAtLevelRec(LHS, RHS, /*U1=*/nullptr, /*U2=*/nullptr, 1452 1, LookAheadMaxDepth, MainAltOps); 1453 if (Score) { 1454 int SplatScore = getSplatScore(Lane, OpIdx, Idx); 1455 if (Score <= -SplatScore) { 1456 // Set the minimum score for splat-like sequence to avoid setting 1457 // failed state. 1458 Score = 1; 1459 } else { 1460 Score += SplatScore; 1461 // Scale score to see the difference between different operands 1462 // and similar operands but all vectorized/not all vectorized 1463 // uses. It does not affect actual selection of the best 1464 // compatible operand in general, just allows to select the 1465 // operand with all vectorized uses. 1466 Score *= ScoreScaleFactor; 1467 Score += getExternalUseScore(Lane, OpIdx, Idx); 1468 IsUsed = true; 1469 } 1470 } 1471 return Score; 1472 } 1473 1474 /// Best defined scores per lanes between the passes. Used to choose the 1475 /// best operand (with the highest score) between the passes. 1476 /// The key - {Operand Index, Lane}. 1477 /// The value - the best score between the passes for the lane and the 1478 /// operand. 1479 SmallDenseMap<std::pair<unsigned, unsigned>, unsigned, 8> 1480 BestScoresPerLanes; 1481 1482 // Search all operands in Ops[*][Lane] for the one that matches best 1483 // Ops[OpIdx][LastLane] and return its opreand index. 1484 // If no good match can be found, return None. 1485 Optional<unsigned> getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1486 ArrayRef<ReorderingMode> ReorderingModes, 1487 ArrayRef<Value *> MainAltOps) { 1488 unsigned NumOperands = getNumOperands(); 1489 1490 // The operand of the previous lane at OpIdx. 1491 Value *OpLastLane = getData(OpIdx, LastLane).V; 1492 1493 // Our strategy mode for OpIdx. 1494 ReorderingMode RMode = ReorderingModes[OpIdx]; 1495 if (RMode == ReorderingMode::Failed) 1496 return None; 1497 1498 // The linearized opcode of the operand at OpIdx, Lane. 1499 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1500 1501 // The best operand index and its score. 1502 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1503 // are using the score to differentiate between the two. 1504 struct BestOpData { 1505 Optional<unsigned> Idx = None; 1506 unsigned Score = 0; 1507 } BestOp; 1508 BestOp.Score = 1509 BestScoresPerLanes.try_emplace(std::make_pair(OpIdx, Lane), 0) 1510 .first->second; 1511 1512 // Track if the operand must be marked as used. If the operand is set to 1513 // Score 1 explicitly (because of non power-of-2 unique scalars, we may 1514 // want to reestimate the operands again on the following iterations). 1515 bool IsUsed = 1516 RMode == ReorderingMode::Splat || RMode == ReorderingMode::Constant; 1517 // Iterate through all unused operands and look for the best. 1518 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1519 // Get the operand at Idx and Lane. 1520 OperandData &OpData = getData(Idx, Lane); 1521 Value *Op = OpData.V; 1522 bool OpAPO = OpData.APO; 1523 1524 // Skip already selected operands. 1525 if (OpData.IsUsed) 1526 continue; 1527 1528 // Skip if we are trying to move the operand to a position with a 1529 // different opcode in the linearized tree form. This would break the 1530 // semantics. 1531 if (OpAPO != OpIdxAPO) 1532 continue; 1533 1534 // Look for an operand that matches the current mode. 1535 switch (RMode) { 1536 case ReorderingMode::Load: 1537 case ReorderingMode::Constant: 1538 case ReorderingMode::Opcode: { 1539 bool LeftToRight = Lane > LastLane; 1540 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1541 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1542 int Score = getLookAheadScore(OpLeft, OpRight, MainAltOps, Lane, 1543 OpIdx, Idx, IsUsed); 1544 if (Score > static_cast<int>(BestOp.Score)) { 1545 BestOp.Idx = Idx; 1546 BestOp.Score = Score; 1547 BestScoresPerLanes[std::make_pair(OpIdx, Lane)] = Score; 1548 } 1549 break; 1550 } 1551 case ReorderingMode::Splat: 1552 if (Op == OpLastLane) 1553 BestOp.Idx = Idx; 1554 break; 1555 case ReorderingMode::Failed: 1556 llvm_unreachable("Not expected Failed reordering mode."); 1557 } 1558 } 1559 1560 if (BestOp.Idx) { 1561 getData(BestOp.Idx.getValue(), Lane).IsUsed = IsUsed; 1562 return BestOp.Idx; 1563 } 1564 // If we could not find a good match return None. 1565 return None; 1566 } 1567 1568 /// Helper for reorderOperandVecs. 1569 /// \returns the lane that we should start reordering from. This is the one 1570 /// which has the least number of operands that can freely move about or 1571 /// less profitable because it already has the most optimal set of operands. 1572 unsigned getBestLaneToStartReordering() const { 1573 unsigned Min = UINT_MAX; 1574 unsigned SameOpNumber = 0; 1575 // std::pair<unsigned, unsigned> is used to implement a simple voting 1576 // algorithm and choose the lane with the least number of operands that 1577 // can freely move about or less profitable because it already has the 1578 // most optimal set of operands. The first unsigned is a counter for 1579 // voting, the second unsigned is the counter of lanes with instructions 1580 // with same/alternate opcodes and same parent basic block. 1581 MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap; 1582 // Try to be closer to the original results, if we have multiple lanes 1583 // with same cost. If 2 lanes have the same cost, use the one with the 1584 // lowest index. 1585 for (int I = getNumLanes(); I > 0; --I) { 1586 unsigned Lane = I - 1; 1587 OperandsOrderData NumFreeOpsHash = 1588 getMaxNumOperandsThatCanBeReordered(Lane); 1589 // Compare the number of operands that can move and choose the one with 1590 // the least number. 1591 if (NumFreeOpsHash.NumOfAPOs < Min) { 1592 Min = NumFreeOpsHash.NumOfAPOs; 1593 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1594 HashMap.clear(); 1595 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1596 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1597 NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) { 1598 // Select the most optimal lane in terms of number of operands that 1599 // should be moved around. 1600 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1601 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1602 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1603 NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) { 1604 auto It = HashMap.find(NumFreeOpsHash.Hash); 1605 if (It == HashMap.end()) 1606 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1607 else 1608 ++It->second.first; 1609 } 1610 } 1611 // Select the lane with the minimum counter. 1612 unsigned BestLane = 0; 1613 unsigned CntMin = UINT_MAX; 1614 for (const auto &Data : reverse(HashMap)) { 1615 if (Data.second.first < CntMin) { 1616 CntMin = Data.second.first; 1617 BestLane = Data.second.second; 1618 } 1619 } 1620 return BestLane; 1621 } 1622 1623 /// Data structure that helps to reorder operands. 1624 struct OperandsOrderData { 1625 /// The best number of operands with the same APOs, which can be 1626 /// reordered. 1627 unsigned NumOfAPOs = UINT_MAX; 1628 /// Number of operands with the same/alternate instruction opcode and 1629 /// parent. 1630 unsigned NumOpsWithSameOpcodeParent = 0; 1631 /// Hash for the actual operands ordering. 1632 /// Used to count operands, actually their position id and opcode 1633 /// value. It is used in the voting mechanism to find the lane with the 1634 /// least number of operands that can freely move about or less profitable 1635 /// because it already has the most optimal set of operands. Can be 1636 /// replaced with SmallVector<unsigned> instead but hash code is faster 1637 /// and requires less memory. 1638 unsigned Hash = 0; 1639 }; 1640 /// \returns the maximum number of operands that are allowed to be reordered 1641 /// for \p Lane and the number of compatible instructions(with the same 1642 /// parent/opcode). This is used as a heuristic for selecting the first lane 1643 /// to start operand reordering. 1644 OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1645 unsigned CntTrue = 0; 1646 unsigned NumOperands = getNumOperands(); 1647 // Operands with the same APO can be reordered. We therefore need to count 1648 // how many of them we have for each APO, like this: Cnt[APO] = x. 1649 // Since we only have two APOs, namely true and false, we can avoid using 1650 // a map. Instead we can simply count the number of operands that 1651 // correspond to one of them (in this case the 'true' APO), and calculate 1652 // the other by subtracting it from the total number of operands. 1653 // Operands with the same instruction opcode and parent are more 1654 // profitable since we don't need to move them in many cases, with a high 1655 // probability such lane already can be vectorized effectively. 1656 bool AllUndefs = true; 1657 unsigned NumOpsWithSameOpcodeParent = 0; 1658 Instruction *OpcodeI = nullptr; 1659 BasicBlock *Parent = nullptr; 1660 unsigned Hash = 0; 1661 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1662 const OperandData &OpData = getData(OpIdx, Lane); 1663 if (OpData.APO) 1664 ++CntTrue; 1665 // Use Boyer-Moore majority voting for finding the majority opcode and 1666 // the number of times it occurs. 1667 if (auto *I = dyn_cast<Instruction>(OpData.V)) { 1668 if (!OpcodeI || !getSameOpcode({OpcodeI, I}).getOpcode() || 1669 I->getParent() != Parent) { 1670 if (NumOpsWithSameOpcodeParent == 0) { 1671 NumOpsWithSameOpcodeParent = 1; 1672 OpcodeI = I; 1673 Parent = I->getParent(); 1674 } else { 1675 --NumOpsWithSameOpcodeParent; 1676 } 1677 } else { 1678 ++NumOpsWithSameOpcodeParent; 1679 } 1680 } 1681 Hash = hash_combine( 1682 Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1))); 1683 AllUndefs = AllUndefs && isa<UndefValue>(OpData.V); 1684 } 1685 if (AllUndefs) 1686 return {}; 1687 OperandsOrderData Data; 1688 Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue); 1689 Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent; 1690 Data.Hash = Hash; 1691 return Data; 1692 } 1693 1694 /// Go through the instructions in VL and append their operands. 1695 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1696 assert(!VL.empty() && "Bad VL"); 1697 assert((empty() || VL.size() == getNumLanes()) && 1698 "Expected same number of lanes"); 1699 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1700 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1701 OpsVec.resize(NumOperands); 1702 unsigned NumLanes = VL.size(); 1703 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1704 OpsVec[OpIdx].resize(NumLanes); 1705 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1706 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1707 // Our tree has just 3 nodes: the root and two operands. 1708 // It is therefore trivial to get the APO. We only need to check the 1709 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1710 // RHS operand. The LHS operand of both add and sub is never attached 1711 // to an inversese operation in the linearized form, therefore its APO 1712 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1713 1714 // Since operand reordering is performed on groups of commutative 1715 // operations or alternating sequences (e.g., +, -), we can safely 1716 // tell the inverse operations by checking commutativity. 1717 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1718 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1719 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1720 APO, false}; 1721 } 1722 } 1723 } 1724 1725 /// \returns the number of operands. 1726 unsigned getNumOperands() const { return OpsVec.size(); } 1727 1728 /// \returns the number of lanes. 1729 unsigned getNumLanes() const { return OpsVec[0].size(); } 1730 1731 /// \returns the operand value at \p OpIdx and \p Lane. 1732 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1733 return getData(OpIdx, Lane).V; 1734 } 1735 1736 /// \returns true if the data structure is empty. 1737 bool empty() const { return OpsVec.empty(); } 1738 1739 /// Clears the data. 1740 void clear() { OpsVec.clear(); } 1741 1742 /// \Returns true if there are enough operands identical to \p Op to fill 1743 /// the whole vector. 1744 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1745 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1746 bool OpAPO = getData(OpIdx, Lane).APO; 1747 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1748 if (Ln == Lane) 1749 continue; 1750 // This is set to true if we found a candidate for broadcast at Lane. 1751 bool FoundCandidate = false; 1752 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1753 OperandData &Data = getData(OpI, Ln); 1754 if (Data.APO != OpAPO || Data.IsUsed) 1755 continue; 1756 if (Data.V == Op) { 1757 FoundCandidate = true; 1758 Data.IsUsed = true; 1759 break; 1760 } 1761 } 1762 if (!FoundCandidate) 1763 return false; 1764 } 1765 return true; 1766 } 1767 1768 public: 1769 /// Initialize with all the operands of the instruction vector \p RootVL. 1770 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1771 ScalarEvolution &SE, const BoUpSLP &R) 1772 : DL(DL), SE(SE), R(R) { 1773 // Append all the operands of RootVL. 1774 appendOperandsOfVL(RootVL); 1775 } 1776 1777 /// \Returns a value vector with the operands across all lanes for the 1778 /// opearnd at \p OpIdx. 1779 ValueList getVL(unsigned OpIdx) const { 1780 ValueList OpVL(OpsVec[OpIdx].size()); 1781 assert(OpsVec[OpIdx].size() == getNumLanes() && 1782 "Expected same num of lanes across all operands"); 1783 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1784 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1785 return OpVL; 1786 } 1787 1788 // Performs operand reordering for 2 or more operands. 1789 // The original operands are in OrigOps[OpIdx][Lane]. 1790 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1791 void reorder() { 1792 unsigned NumOperands = getNumOperands(); 1793 unsigned NumLanes = getNumLanes(); 1794 // Each operand has its own mode. We are using this mode to help us select 1795 // the instructions for each lane, so that they match best with the ones 1796 // we have selected so far. 1797 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1798 1799 // This is a greedy single-pass algorithm. We are going over each lane 1800 // once and deciding on the best order right away with no back-tracking. 1801 // However, in order to increase its effectiveness, we start with the lane 1802 // that has operands that can move the least. For example, given the 1803 // following lanes: 1804 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1805 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1806 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1807 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1808 // we will start at Lane 1, since the operands of the subtraction cannot 1809 // be reordered. Then we will visit the rest of the lanes in a circular 1810 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1811 1812 // Find the first lane that we will start our search from. 1813 unsigned FirstLane = getBestLaneToStartReordering(); 1814 1815 // Initialize the modes. 1816 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1817 Value *OpLane0 = getValue(OpIdx, FirstLane); 1818 // Keep track if we have instructions with all the same opcode on one 1819 // side. 1820 if (isa<LoadInst>(OpLane0)) 1821 ReorderingModes[OpIdx] = ReorderingMode::Load; 1822 else if (isa<Instruction>(OpLane0)) { 1823 // Check if OpLane0 should be broadcast. 1824 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1825 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1826 else 1827 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1828 } 1829 else if (isa<Constant>(OpLane0)) 1830 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1831 else if (isa<Argument>(OpLane0)) 1832 // Our best hope is a Splat. It may save some cost in some cases. 1833 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1834 else 1835 // NOTE: This should be unreachable. 1836 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1837 } 1838 1839 // Check that we don't have same operands. No need to reorder if operands 1840 // are just perfect diamond or shuffled diamond match. Do not do it only 1841 // for possible broadcasts or non-power of 2 number of scalars (just for 1842 // now). 1843 auto &&SkipReordering = [this]() { 1844 SmallPtrSet<Value *, 4> UniqueValues; 1845 ArrayRef<OperandData> Op0 = OpsVec.front(); 1846 for (const OperandData &Data : Op0) 1847 UniqueValues.insert(Data.V); 1848 for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) { 1849 if (any_of(Op, [&UniqueValues](const OperandData &Data) { 1850 return !UniqueValues.contains(Data.V); 1851 })) 1852 return false; 1853 } 1854 // TODO: Check if we can remove a check for non-power-2 number of 1855 // scalars after full support of non-power-2 vectorization. 1856 return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size()); 1857 }; 1858 1859 // If the initial strategy fails for any of the operand indexes, then we 1860 // perform reordering again in a second pass. This helps avoid assigning 1861 // high priority to the failed strategy, and should improve reordering for 1862 // the non-failed operand indexes. 1863 for (int Pass = 0; Pass != 2; ++Pass) { 1864 // Check if no need to reorder operands since they're are perfect or 1865 // shuffled diamond match. 1866 // Need to to do it to avoid extra external use cost counting for 1867 // shuffled matches, which may cause regressions. 1868 if (SkipReordering()) 1869 break; 1870 // Skip the second pass if the first pass did not fail. 1871 bool StrategyFailed = false; 1872 // Mark all operand data as free to use. 1873 clearUsed(); 1874 // We keep the original operand order for the FirstLane, so reorder the 1875 // rest of the lanes. We are visiting the nodes in a circular fashion, 1876 // using FirstLane as the center point and increasing the radius 1877 // distance. 1878 SmallVector<SmallVector<Value *, 2>> MainAltOps(NumOperands); 1879 for (unsigned I = 0; I < NumOperands; ++I) 1880 MainAltOps[I].push_back(getData(I, FirstLane).V); 1881 1882 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1883 // Visit the lane on the right and then the lane on the left. 1884 for (int Direction : {+1, -1}) { 1885 int Lane = FirstLane + Direction * Distance; 1886 if (Lane < 0 || Lane >= (int)NumLanes) 1887 continue; 1888 int LastLane = Lane - Direction; 1889 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1890 "Out of bounds"); 1891 // Look for a good match for each operand. 1892 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1893 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1894 Optional<unsigned> BestIdx = getBestOperand( 1895 OpIdx, Lane, LastLane, ReorderingModes, MainAltOps[OpIdx]); 1896 // By not selecting a value, we allow the operands that follow to 1897 // select a better matching value. We will get a non-null value in 1898 // the next run of getBestOperand(). 1899 if (BestIdx) { 1900 // Swap the current operand with the one returned by 1901 // getBestOperand(). 1902 swap(OpIdx, BestIdx.getValue(), Lane); 1903 } else { 1904 // We failed to find a best operand, set mode to 'Failed'. 1905 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1906 // Enable the second pass. 1907 StrategyFailed = true; 1908 } 1909 // Try to get the alternate opcode and follow it during analysis. 1910 if (MainAltOps[OpIdx].size() != 2) { 1911 OperandData &AltOp = getData(OpIdx, Lane); 1912 InstructionsState OpS = 1913 getSameOpcode({MainAltOps[OpIdx].front(), AltOp.V}); 1914 if (OpS.getOpcode() && OpS.isAltShuffle()) 1915 MainAltOps[OpIdx].push_back(AltOp.V); 1916 } 1917 } 1918 } 1919 } 1920 // Skip second pass if the strategy did not fail. 1921 if (!StrategyFailed) 1922 break; 1923 } 1924 } 1925 1926 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1927 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1928 switch (RMode) { 1929 case ReorderingMode::Load: 1930 return "Load"; 1931 case ReorderingMode::Opcode: 1932 return "Opcode"; 1933 case ReorderingMode::Constant: 1934 return "Constant"; 1935 case ReorderingMode::Splat: 1936 return "Splat"; 1937 case ReorderingMode::Failed: 1938 return "Failed"; 1939 } 1940 llvm_unreachable("Unimplemented Reordering Type"); 1941 } 1942 1943 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1944 raw_ostream &OS) { 1945 return OS << getModeStr(RMode); 1946 } 1947 1948 /// Debug print. 1949 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1950 printMode(RMode, dbgs()); 1951 } 1952 1953 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1954 return printMode(RMode, OS); 1955 } 1956 1957 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1958 const unsigned Indent = 2; 1959 unsigned Cnt = 0; 1960 for (const OperandDataVec &OpDataVec : OpsVec) { 1961 OS << "Operand " << Cnt++ << "\n"; 1962 for (const OperandData &OpData : OpDataVec) { 1963 OS.indent(Indent) << "{"; 1964 if (Value *V = OpData.V) 1965 OS << *V; 1966 else 1967 OS << "null"; 1968 OS << ", APO:" << OpData.APO << "}\n"; 1969 } 1970 OS << "\n"; 1971 } 1972 return OS; 1973 } 1974 1975 /// Debug print. 1976 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1977 #endif 1978 }; 1979 1980 /// Checks if the instruction is marked for deletion. 1981 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1982 1983 /// Removes an instruction from its block and eventually deletes it. 1984 /// It's like Instruction::eraseFromParent() except that the actual deletion 1985 /// is delayed until BoUpSLP is destructed. 1986 void eraseInstruction(Instruction *I) { 1987 DeletedInstructions.insert(I); 1988 } 1989 1990 ~BoUpSLP(); 1991 1992 private: 1993 /// Check if the operands on the edges \p Edges of the \p UserTE allows 1994 /// reordering (i.e. the operands can be reordered because they have only one 1995 /// user and reordarable). 1996 /// \param ReorderableGathers List of all gather nodes that require reordering 1997 /// (e.g., gather of extractlements or partially vectorizable loads). 1998 /// \param GatherOps List of gather operand nodes for \p UserTE that require 1999 /// reordering, subset of \p NonVectorized. 2000 bool 2001 canReorderOperands(TreeEntry *UserTE, 2002 SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 2003 ArrayRef<TreeEntry *> ReorderableGathers, 2004 SmallVectorImpl<TreeEntry *> &GatherOps); 2005 2006 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 2007 /// if any. If it is not vectorized (gather node), returns nullptr. 2008 TreeEntry *getVectorizedOperand(TreeEntry *UserTE, unsigned OpIdx) { 2009 ArrayRef<Value *> VL = UserTE->getOperand(OpIdx); 2010 TreeEntry *TE = nullptr; 2011 const auto *It = find_if(VL, [this, &TE](Value *V) { 2012 TE = getTreeEntry(V); 2013 return TE; 2014 }); 2015 if (It != VL.end() && TE->isSame(VL)) 2016 return TE; 2017 return nullptr; 2018 } 2019 2020 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 2021 /// if any. If it is not vectorized (gather node), returns nullptr. 2022 const TreeEntry *getVectorizedOperand(const TreeEntry *UserTE, 2023 unsigned OpIdx) const { 2024 return const_cast<BoUpSLP *>(this)->getVectorizedOperand( 2025 const_cast<TreeEntry *>(UserTE), OpIdx); 2026 } 2027 2028 /// Checks if all users of \p I are the part of the vectorization tree. 2029 bool areAllUsersVectorized(Instruction *I, 2030 ArrayRef<Value *> VectorizedVals) const; 2031 2032 /// \returns the cost of the vectorizable entry. 2033 InstructionCost getEntryCost(const TreeEntry *E, 2034 ArrayRef<Value *> VectorizedVals); 2035 2036 /// This is the recursive part of buildTree. 2037 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 2038 const EdgeInfo &EI); 2039 2040 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 2041 /// be vectorized to use the original vector (or aggregate "bitcast" to a 2042 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 2043 /// returns false, setting \p CurrentOrder to either an empty vector or a 2044 /// non-identity permutation that allows to reuse extract instructions. 2045 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 2046 SmallVectorImpl<unsigned> &CurrentOrder) const; 2047 2048 /// Vectorize a single entry in the tree. 2049 Value *vectorizeTree(TreeEntry *E); 2050 2051 /// Vectorize a single entry in the tree, starting in \p VL. 2052 Value *vectorizeTree(ArrayRef<Value *> VL); 2053 2054 /// Create a new vector from a list of scalar values. Produces a sequence 2055 /// which exploits values reused across lanes, and arranges the inserts 2056 /// for ease of later optimization. 2057 Value *createBuildVector(ArrayRef<Value *> VL); 2058 2059 /// \returns the scalarization cost for this type. Scalarization in this 2060 /// context means the creation of vectors from a group of scalars. If \p 2061 /// NeedToShuffle is true, need to add a cost of reshuffling some of the 2062 /// vector elements. 2063 InstructionCost getGatherCost(FixedVectorType *Ty, 2064 const APInt &ShuffledIndices, 2065 bool NeedToShuffle) const; 2066 2067 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 2068 /// tree entries. 2069 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 2070 /// previous tree entries. \p Mask is filled with the shuffle mask. 2071 Optional<TargetTransformInfo::ShuffleKind> 2072 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 2073 SmallVectorImpl<const TreeEntry *> &Entries); 2074 2075 /// \returns the scalarization cost for this list of values. Assuming that 2076 /// this subtree gets vectorized, we may need to extract the values from the 2077 /// roots. This method calculates the cost of extracting the values. 2078 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 2079 2080 /// Set the Builder insert point to one after the last instruction in 2081 /// the bundle 2082 void setInsertPointAfterBundle(const TreeEntry *E); 2083 2084 /// \returns a vector from a collection of scalars in \p VL. 2085 Value *gather(ArrayRef<Value *> VL); 2086 2087 /// \returns whether the VectorizableTree is fully vectorizable and will 2088 /// be beneficial even the tree height is tiny. 2089 bool isFullyVectorizableTinyTree(bool ForReduction) const; 2090 2091 /// Reorder commutative or alt operands to get better probability of 2092 /// generating vectorized code. 2093 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 2094 SmallVectorImpl<Value *> &Left, 2095 SmallVectorImpl<Value *> &Right, 2096 const DataLayout &DL, 2097 ScalarEvolution &SE, 2098 const BoUpSLP &R); 2099 struct TreeEntry { 2100 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 2101 TreeEntry(VecTreeTy &Container) : Container(Container) {} 2102 2103 /// \returns true if the scalars in VL are equal to this entry. 2104 bool isSame(ArrayRef<Value *> VL) const { 2105 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 2106 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 2107 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 2108 return VL.size() == Mask.size() && 2109 std::equal(VL.begin(), VL.end(), Mask.begin(), 2110 [Scalars](Value *V, int Idx) { 2111 return (isa<UndefValue>(V) && 2112 Idx == UndefMaskElem) || 2113 (Idx != UndefMaskElem && V == Scalars[Idx]); 2114 }); 2115 }; 2116 if (!ReorderIndices.empty()) { 2117 // TODO: implement matching if the nodes are just reordered, still can 2118 // treat the vector as the same if the list of scalars matches VL 2119 // directly, without reordering. 2120 SmallVector<int> Mask; 2121 inversePermutation(ReorderIndices, Mask); 2122 if (VL.size() == Scalars.size()) 2123 return IsSame(Scalars, Mask); 2124 if (VL.size() == ReuseShuffleIndices.size()) { 2125 ::addMask(Mask, ReuseShuffleIndices); 2126 return IsSame(Scalars, Mask); 2127 } 2128 return false; 2129 } 2130 return IsSame(Scalars, ReuseShuffleIndices); 2131 } 2132 2133 /// \returns true if current entry has same operands as \p TE. 2134 bool hasEqualOperands(const TreeEntry &TE) const { 2135 if (TE.getNumOperands() != getNumOperands()) 2136 return false; 2137 SmallBitVector Used(getNumOperands()); 2138 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 2139 unsigned PrevCount = Used.count(); 2140 for (unsigned K = 0; K < E; ++K) { 2141 if (Used.test(K)) 2142 continue; 2143 if (getOperand(K) == TE.getOperand(I)) { 2144 Used.set(K); 2145 break; 2146 } 2147 } 2148 // Check if we actually found the matching operand. 2149 if (PrevCount == Used.count()) 2150 return false; 2151 } 2152 return true; 2153 } 2154 2155 /// \return Final vectorization factor for the node. Defined by the total 2156 /// number of vectorized scalars, including those, used several times in the 2157 /// entry and counted in the \a ReuseShuffleIndices, if any. 2158 unsigned getVectorFactor() const { 2159 if (!ReuseShuffleIndices.empty()) 2160 return ReuseShuffleIndices.size(); 2161 return Scalars.size(); 2162 }; 2163 2164 /// A vector of scalars. 2165 ValueList Scalars; 2166 2167 /// The Scalars are vectorized into this value. It is initialized to Null. 2168 Value *VectorizedValue = nullptr; 2169 2170 /// Do we need to gather this sequence or vectorize it 2171 /// (either with vector instruction or with scatter/gather 2172 /// intrinsics for store/load)? 2173 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 2174 EntryState State; 2175 2176 /// Does this sequence require some shuffling? 2177 SmallVector<int, 4> ReuseShuffleIndices; 2178 2179 /// Does this entry require reordering? 2180 SmallVector<unsigned, 4> ReorderIndices; 2181 2182 /// Points back to the VectorizableTree. 2183 /// 2184 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 2185 /// to be a pointer and needs to be able to initialize the child iterator. 2186 /// Thus we need a reference back to the container to translate the indices 2187 /// to entries. 2188 VecTreeTy &Container; 2189 2190 /// The TreeEntry index containing the user of this entry. We can actually 2191 /// have multiple users so the data structure is not truly a tree. 2192 SmallVector<EdgeInfo, 1> UserTreeIndices; 2193 2194 /// The index of this treeEntry in VectorizableTree. 2195 int Idx = -1; 2196 2197 private: 2198 /// The operands of each instruction in each lane Operands[op_index][lane]. 2199 /// Note: This helps avoid the replication of the code that performs the 2200 /// reordering of operands during buildTree_rec() and vectorizeTree(). 2201 SmallVector<ValueList, 2> Operands; 2202 2203 /// The main/alternate instruction. 2204 Instruction *MainOp = nullptr; 2205 Instruction *AltOp = nullptr; 2206 2207 public: 2208 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 2209 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 2210 if (Operands.size() < OpIdx + 1) 2211 Operands.resize(OpIdx + 1); 2212 assert(Operands[OpIdx].empty() && "Already resized?"); 2213 assert(OpVL.size() <= Scalars.size() && 2214 "Number of operands is greater than the number of scalars."); 2215 Operands[OpIdx].resize(OpVL.size()); 2216 copy(OpVL, Operands[OpIdx].begin()); 2217 } 2218 2219 /// Set the operands of this bundle in their original order. 2220 void setOperandsInOrder() { 2221 assert(Operands.empty() && "Already initialized?"); 2222 auto *I0 = cast<Instruction>(Scalars[0]); 2223 Operands.resize(I0->getNumOperands()); 2224 unsigned NumLanes = Scalars.size(); 2225 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 2226 OpIdx != NumOperands; ++OpIdx) { 2227 Operands[OpIdx].resize(NumLanes); 2228 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 2229 auto *I = cast<Instruction>(Scalars[Lane]); 2230 assert(I->getNumOperands() == NumOperands && 2231 "Expected same number of operands"); 2232 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 2233 } 2234 } 2235 } 2236 2237 /// Reorders operands of the node to the given mask \p Mask. 2238 void reorderOperands(ArrayRef<int> Mask) { 2239 for (ValueList &Operand : Operands) 2240 reorderScalars(Operand, Mask); 2241 } 2242 2243 /// \returns the \p OpIdx operand of this TreeEntry. 2244 ValueList &getOperand(unsigned OpIdx) { 2245 assert(OpIdx < Operands.size() && "Off bounds"); 2246 return Operands[OpIdx]; 2247 } 2248 2249 /// \returns the \p OpIdx operand of this TreeEntry. 2250 ArrayRef<Value *> getOperand(unsigned OpIdx) const { 2251 assert(OpIdx < Operands.size() && "Off bounds"); 2252 return Operands[OpIdx]; 2253 } 2254 2255 /// \returns the number of operands. 2256 unsigned getNumOperands() const { return Operands.size(); } 2257 2258 /// \return the single \p OpIdx operand. 2259 Value *getSingleOperand(unsigned OpIdx) const { 2260 assert(OpIdx < Operands.size() && "Off bounds"); 2261 assert(!Operands[OpIdx].empty() && "No operand available"); 2262 return Operands[OpIdx][0]; 2263 } 2264 2265 /// Some of the instructions in the list have alternate opcodes. 2266 bool isAltShuffle() const { return MainOp != AltOp; } 2267 2268 bool isOpcodeOrAlt(Instruction *I) const { 2269 unsigned CheckedOpcode = I->getOpcode(); 2270 return (getOpcode() == CheckedOpcode || 2271 getAltOpcode() == CheckedOpcode); 2272 } 2273 2274 /// Chooses the correct key for scheduling data. If \p Op has the same (or 2275 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 2276 /// \p OpValue. 2277 Value *isOneOf(Value *Op) const { 2278 auto *I = dyn_cast<Instruction>(Op); 2279 if (I && isOpcodeOrAlt(I)) 2280 return Op; 2281 return MainOp; 2282 } 2283 2284 void setOperations(const InstructionsState &S) { 2285 MainOp = S.MainOp; 2286 AltOp = S.AltOp; 2287 } 2288 2289 Instruction *getMainOp() const { 2290 return MainOp; 2291 } 2292 2293 Instruction *getAltOp() const { 2294 return AltOp; 2295 } 2296 2297 /// The main/alternate opcodes for the list of instructions. 2298 unsigned getOpcode() const { 2299 return MainOp ? MainOp->getOpcode() : 0; 2300 } 2301 2302 unsigned getAltOpcode() const { 2303 return AltOp ? AltOp->getOpcode() : 0; 2304 } 2305 2306 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 2307 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 2308 int findLaneForValue(Value *V) const { 2309 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 2310 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2311 if (!ReorderIndices.empty()) 2312 FoundLane = ReorderIndices[FoundLane]; 2313 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2314 if (!ReuseShuffleIndices.empty()) { 2315 FoundLane = std::distance(ReuseShuffleIndices.begin(), 2316 find(ReuseShuffleIndices, FoundLane)); 2317 } 2318 return FoundLane; 2319 } 2320 2321 #ifndef NDEBUG 2322 /// Debug printer. 2323 LLVM_DUMP_METHOD void dump() const { 2324 dbgs() << Idx << ".\n"; 2325 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 2326 dbgs() << "Operand " << OpI << ":\n"; 2327 for (const Value *V : Operands[OpI]) 2328 dbgs().indent(2) << *V << "\n"; 2329 } 2330 dbgs() << "Scalars: \n"; 2331 for (Value *V : Scalars) 2332 dbgs().indent(2) << *V << "\n"; 2333 dbgs() << "State: "; 2334 switch (State) { 2335 case Vectorize: 2336 dbgs() << "Vectorize\n"; 2337 break; 2338 case ScatterVectorize: 2339 dbgs() << "ScatterVectorize\n"; 2340 break; 2341 case NeedToGather: 2342 dbgs() << "NeedToGather\n"; 2343 break; 2344 } 2345 dbgs() << "MainOp: "; 2346 if (MainOp) 2347 dbgs() << *MainOp << "\n"; 2348 else 2349 dbgs() << "NULL\n"; 2350 dbgs() << "AltOp: "; 2351 if (AltOp) 2352 dbgs() << *AltOp << "\n"; 2353 else 2354 dbgs() << "NULL\n"; 2355 dbgs() << "VectorizedValue: "; 2356 if (VectorizedValue) 2357 dbgs() << *VectorizedValue << "\n"; 2358 else 2359 dbgs() << "NULL\n"; 2360 dbgs() << "ReuseShuffleIndices: "; 2361 if (ReuseShuffleIndices.empty()) 2362 dbgs() << "Empty"; 2363 else 2364 for (int ReuseIdx : ReuseShuffleIndices) 2365 dbgs() << ReuseIdx << ", "; 2366 dbgs() << "\n"; 2367 dbgs() << "ReorderIndices: "; 2368 for (unsigned ReorderIdx : ReorderIndices) 2369 dbgs() << ReorderIdx << ", "; 2370 dbgs() << "\n"; 2371 dbgs() << "UserTreeIndices: "; 2372 for (const auto &EInfo : UserTreeIndices) 2373 dbgs() << EInfo << ", "; 2374 dbgs() << "\n"; 2375 } 2376 #endif 2377 }; 2378 2379 #ifndef NDEBUG 2380 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 2381 InstructionCost VecCost, 2382 InstructionCost ScalarCost) const { 2383 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 2384 dbgs() << "SLP: Costs:\n"; 2385 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 2386 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 2387 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 2388 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 2389 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 2390 } 2391 #endif 2392 2393 /// Create a new VectorizableTree entry. 2394 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 2395 const InstructionsState &S, 2396 const EdgeInfo &UserTreeIdx, 2397 ArrayRef<int> ReuseShuffleIndices = None, 2398 ArrayRef<unsigned> ReorderIndices = None) { 2399 TreeEntry::EntryState EntryState = 2400 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 2401 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 2402 ReuseShuffleIndices, ReorderIndices); 2403 } 2404 2405 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 2406 TreeEntry::EntryState EntryState, 2407 Optional<ScheduleData *> Bundle, 2408 const InstructionsState &S, 2409 const EdgeInfo &UserTreeIdx, 2410 ArrayRef<int> ReuseShuffleIndices = None, 2411 ArrayRef<unsigned> ReorderIndices = None) { 2412 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 2413 (Bundle && EntryState != TreeEntry::NeedToGather)) && 2414 "Need to vectorize gather entry?"); 2415 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 2416 TreeEntry *Last = VectorizableTree.back().get(); 2417 Last->Idx = VectorizableTree.size() - 1; 2418 Last->State = EntryState; 2419 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 2420 ReuseShuffleIndices.end()); 2421 if (ReorderIndices.empty()) { 2422 Last->Scalars.assign(VL.begin(), VL.end()); 2423 Last->setOperations(S); 2424 } else { 2425 // Reorder scalars and build final mask. 2426 Last->Scalars.assign(VL.size(), nullptr); 2427 transform(ReorderIndices, Last->Scalars.begin(), 2428 [VL](unsigned Idx) -> Value * { 2429 if (Idx >= VL.size()) 2430 return UndefValue::get(VL.front()->getType()); 2431 return VL[Idx]; 2432 }); 2433 InstructionsState S = getSameOpcode(Last->Scalars); 2434 Last->setOperations(S); 2435 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 2436 } 2437 if (Last->State != TreeEntry::NeedToGather) { 2438 for (Value *V : VL) { 2439 assert(!getTreeEntry(V) && "Scalar already in tree!"); 2440 ScalarToTreeEntry[V] = Last; 2441 } 2442 // Update the scheduler bundle to point to this TreeEntry. 2443 ScheduleData *BundleMember = Bundle.getValue(); 2444 assert((BundleMember || isa<PHINode>(S.MainOp) || 2445 isVectorLikeInstWithConstOps(S.MainOp) || 2446 doesNotNeedToSchedule(VL)) && 2447 "Bundle and VL out of sync"); 2448 if (BundleMember) { 2449 for (Value *V : VL) { 2450 if (doesNotNeedToBeScheduled(V)) 2451 continue; 2452 assert(BundleMember && "Unexpected end of bundle."); 2453 BundleMember->TE = Last; 2454 BundleMember = BundleMember->NextInBundle; 2455 } 2456 } 2457 assert(!BundleMember && "Bundle and VL out of sync"); 2458 } else { 2459 MustGather.insert(VL.begin(), VL.end()); 2460 } 2461 2462 if (UserTreeIdx.UserTE) 2463 Last->UserTreeIndices.push_back(UserTreeIdx); 2464 2465 return Last; 2466 } 2467 2468 /// -- Vectorization State -- 2469 /// Holds all of the tree entries. 2470 TreeEntry::VecTreeTy VectorizableTree; 2471 2472 #ifndef NDEBUG 2473 /// Debug printer. 2474 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 2475 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 2476 VectorizableTree[Id]->dump(); 2477 dbgs() << "\n"; 2478 } 2479 } 2480 #endif 2481 2482 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 2483 2484 const TreeEntry *getTreeEntry(Value *V) const { 2485 return ScalarToTreeEntry.lookup(V); 2486 } 2487 2488 /// Maps a specific scalar to its tree entry. 2489 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 2490 2491 /// Maps a value to the proposed vectorizable size. 2492 SmallDenseMap<Value *, unsigned> InstrElementSize; 2493 2494 /// A list of scalars that we found that we need to keep as scalars. 2495 ValueSet MustGather; 2496 2497 /// This POD struct describes one external user in the vectorized tree. 2498 struct ExternalUser { 2499 ExternalUser(Value *S, llvm::User *U, int L) 2500 : Scalar(S), User(U), Lane(L) {} 2501 2502 // Which scalar in our function. 2503 Value *Scalar; 2504 2505 // Which user that uses the scalar. 2506 llvm::User *User; 2507 2508 // Which lane does the scalar belong to. 2509 int Lane; 2510 }; 2511 using UserList = SmallVector<ExternalUser, 16>; 2512 2513 /// Checks if two instructions may access the same memory. 2514 /// 2515 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2516 /// is invariant in the calling loop. 2517 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2518 Instruction *Inst2) { 2519 // First check if the result is already in the cache. 2520 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2521 Optional<bool> &result = AliasCache[key]; 2522 if (result.hasValue()) { 2523 return result.getValue(); 2524 } 2525 bool aliased = true; 2526 if (Loc1.Ptr && isSimple(Inst1)) 2527 aliased = isModOrRefSet(BatchAA.getModRefInfo(Inst2, Loc1)); 2528 // Store the result in the cache. 2529 result = aliased; 2530 return aliased; 2531 } 2532 2533 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2534 2535 /// Cache for alias results. 2536 /// TODO: consider moving this to the AliasAnalysis itself. 2537 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2538 2539 // Cache for pointerMayBeCaptured calls inside AA. This is preserved 2540 // globally through SLP because we don't perform any action which 2541 // invalidates capture results. 2542 BatchAAResults BatchAA; 2543 2544 /// Temporary store for deleted instructions. Instructions will be deleted 2545 /// eventually when the BoUpSLP is destructed. The deferral is required to 2546 /// ensure that there are no incorrect collisions in the AliasCache, which 2547 /// can happen if a new instruction is allocated at the same address as a 2548 /// previously deleted instruction. 2549 DenseSet<Instruction *> DeletedInstructions; 2550 2551 /// A list of values that need to extracted out of the tree. 2552 /// This list holds pairs of (Internal Scalar : External User). External User 2553 /// can be nullptr, it means that this Internal Scalar will be used later, 2554 /// after vectorization. 2555 UserList ExternalUses; 2556 2557 /// Values used only by @llvm.assume calls. 2558 SmallPtrSet<const Value *, 32> EphValues; 2559 2560 /// Holds all of the instructions that we gathered. 2561 SetVector<Instruction *> GatherShuffleSeq; 2562 2563 /// A list of blocks that we are going to CSE. 2564 SetVector<BasicBlock *> CSEBlocks; 2565 2566 /// Contains all scheduling relevant data for an instruction. 2567 /// A ScheduleData either represents a single instruction or a member of an 2568 /// instruction bundle (= a group of instructions which is combined into a 2569 /// vector instruction). 2570 struct ScheduleData { 2571 // The initial value for the dependency counters. It means that the 2572 // dependencies are not calculated yet. 2573 enum { InvalidDeps = -1 }; 2574 2575 ScheduleData() = default; 2576 2577 void init(int BlockSchedulingRegionID, Value *OpVal) { 2578 FirstInBundle = this; 2579 NextInBundle = nullptr; 2580 NextLoadStore = nullptr; 2581 IsScheduled = false; 2582 SchedulingRegionID = BlockSchedulingRegionID; 2583 clearDependencies(); 2584 OpValue = OpVal; 2585 TE = nullptr; 2586 } 2587 2588 /// Verify basic self consistency properties 2589 void verify() { 2590 if (hasValidDependencies()) { 2591 assert(UnscheduledDeps <= Dependencies && "invariant"); 2592 } else { 2593 assert(UnscheduledDeps == Dependencies && "invariant"); 2594 } 2595 2596 if (IsScheduled) { 2597 assert(isSchedulingEntity() && 2598 "unexpected scheduled state"); 2599 for (const ScheduleData *BundleMember = this; BundleMember; 2600 BundleMember = BundleMember->NextInBundle) { 2601 assert(BundleMember->hasValidDependencies() && 2602 BundleMember->UnscheduledDeps == 0 && 2603 "unexpected scheduled state"); 2604 assert((BundleMember == this || !BundleMember->IsScheduled) && 2605 "only bundle is marked scheduled"); 2606 } 2607 } 2608 2609 assert(Inst->getParent() == FirstInBundle->Inst->getParent() && 2610 "all bundle members must be in same basic block"); 2611 } 2612 2613 /// Returns true if the dependency information has been calculated. 2614 /// Note that depenendency validity can vary between instructions within 2615 /// a single bundle. 2616 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2617 2618 /// Returns true for single instructions and for bundle representatives 2619 /// (= the head of a bundle). 2620 bool isSchedulingEntity() const { return FirstInBundle == this; } 2621 2622 /// Returns true if it represents an instruction bundle and not only a 2623 /// single instruction. 2624 bool isPartOfBundle() const { 2625 return NextInBundle != nullptr || FirstInBundle != this || TE; 2626 } 2627 2628 /// Returns true if it is ready for scheduling, i.e. it has no more 2629 /// unscheduled depending instructions/bundles. 2630 bool isReady() const { 2631 assert(isSchedulingEntity() && 2632 "can't consider non-scheduling entity for ready list"); 2633 return unscheduledDepsInBundle() == 0 && !IsScheduled; 2634 } 2635 2636 /// Modifies the number of unscheduled dependencies for this instruction, 2637 /// and returns the number of remaining dependencies for the containing 2638 /// bundle. 2639 int incrementUnscheduledDeps(int Incr) { 2640 assert(hasValidDependencies() && 2641 "increment of unscheduled deps would be meaningless"); 2642 UnscheduledDeps += Incr; 2643 return FirstInBundle->unscheduledDepsInBundle(); 2644 } 2645 2646 /// Sets the number of unscheduled dependencies to the number of 2647 /// dependencies. 2648 void resetUnscheduledDeps() { 2649 UnscheduledDeps = Dependencies; 2650 } 2651 2652 /// Clears all dependency information. 2653 void clearDependencies() { 2654 Dependencies = InvalidDeps; 2655 resetUnscheduledDeps(); 2656 MemoryDependencies.clear(); 2657 ControlDependencies.clear(); 2658 } 2659 2660 int unscheduledDepsInBundle() const { 2661 assert(isSchedulingEntity() && "only meaningful on the bundle"); 2662 int Sum = 0; 2663 for (const ScheduleData *BundleMember = this; BundleMember; 2664 BundleMember = BundleMember->NextInBundle) { 2665 if (BundleMember->UnscheduledDeps == InvalidDeps) 2666 return InvalidDeps; 2667 Sum += BundleMember->UnscheduledDeps; 2668 } 2669 return Sum; 2670 } 2671 2672 void dump(raw_ostream &os) const { 2673 if (!isSchedulingEntity()) { 2674 os << "/ " << *Inst; 2675 } else if (NextInBundle) { 2676 os << '[' << *Inst; 2677 ScheduleData *SD = NextInBundle; 2678 while (SD) { 2679 os << ';' << *SD->Inst; 2680 SD = SD->NextInBundle; 2681 } 2682 os << ']'; 2683 } else { 2684 os << *Inst; 2685 } 2686 } 2687 2688 Instruction *Inst = nullptr; 2689 2690 /// Opcode of the current instruction in the schedule data. 2691 Value *OpValue = nullptr; 2692 2693 /// The TreeEntry that this instruction corresponds to. 2694 TreeEntry *TE = nullptr; 2695 2696 /// Points to the head in an instruction bundle (and always to this for 2697 /// single instructions). 2698 ScheduleData *FirstInBundle = nullptr; 2699 2700 /// Single linked list of all instructions in a bundle. Null if it is a 2701 /// single instruction. 2702 ScheduleData *NextInBundle = nullptr; 2703 2704 /// Single linked list of all memory instructions (e.g. load, store, call) 2705 /// in the block - until the end of the scheduling region. 2706 ScheduleData *NextLoadStore = nullptr; 2707 2708 /// The dependent memory instructions. 2709 /// This list is derived on demand in calculateDependencies(). 2710 SmallVector<ScheduleData *, 4> MemoryDependencies; 2711 2712 /// List of instructions which this instruction could be control dependent 2713 /// on. Allowing such nodes to be scheduled below this one could introduce 2714 /// a runtime fault which didn't exist in the original program. 2715 /// ex: this is a load or udiv following a readonly call which inf loops 2716 SmallVector<ScheduleData *, 4> ControlDependencies; 2717 2718 /// This ScheduleData is in the current scheduling region if this matches 2719 /// the current SchedulingRegionID of BlockScheduling. 2720 int SchedulingRegionID = 0; 2721 2722 /// Used for getting a "good" final ordering of instructions. 2723 int SchedulingPriority = 0; 2724 2725 /// The number of dependencies. Constitutes of the number of users of the 2726 /// instruction plus the number of dependent memory instructions (if any). 2727 /// This value is calculated on demand. 2728 /// If InvalidDeps, the number of dependencies is not calculated yet. 2729 int Dependencies = InvalidDeps; 2730 2731 /// The number of dependencies minus the number of dependencies of scheduled 2732 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2733 /// for scheduling. 2734 /// Note that this is negative as long as Dependencies is not calculated. 2735 int UnscheduledDeps = InvalidDeps; 2736 2737 /// True if this instruction is scheduled (or considered as scheduled in the 2738 /// dry-run). 2739 bool IsScheduled = false; 2740 }; 2741 2742 #ifndef NDEBUG 2743 friend inline raw_ostream &operator<<(raw_ostream &os, 2744 const BoUpSLP::ScheduleData &SD) { 2745 SD.dump(os); 2746 return os; 2747 } 2748 #endif 2749 2750 friend struct GraphTraits<BoUpSLP *>; 2751 friend struct DOTGraphTraits<BoUpSLP *>; 2752 2753 /// Contains all scheduling data for a basic block. 2754 /// It does not schedules instructions, which are not memory read/write 2755 /// instructions and their operands are either constants, or arguments, or 2756 /// phis, or instructions from others blocks, or their users are phis or from 2757 /// the other blocks. The resulting vector instructions can be placed at the 2758 /// beginning of the basic block without scheduling (if operands does not need 2759 /// to be scheduled) or at the end of the block (if users are outside of the 2760 /// block). It allows to save some compile time and memory used by the 2761 /// compiler. 2762 /// ScheduleData is assigned for each instruction in between the boundaries of 2763 /// the tree entry, even for those, which are not part of the graph. It is 2764 /// required to correctly follow the dependencies between the instructions and 2765 /// their correct scheduling. The ScheduleData is not allocated for the 2766 /// instructions, which do not require scheduling, like phis, nodes with 2767 /// extractelements/insertelements only or nodes with instructions, with 2768 /// uses/operands outside of the block. 2769 struct BlockScheduling { 2770 BlockScheduling(BasicBlock *BB) 2771 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2772 2773 void clear() { 2774 ReadyInsts.clear(); 2775 ScheduleStart = nullptr; 2776 ScheduleEnd = nullptr; 2777 FirstLoadStoreInRegion = nullptr; 2778 LastLoadStoreInRegion = nullptr; 2779 RegionHasStackSave = false; 2780 2781 // Reduce the maximum schedule region size by the size of the 2782 // previous scheduling run. 2783 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2784 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2785 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2786 ScheduleRegionSize = 0; 2787 2788 // Make a new scheduling region, i.e. all existing ScheduleData is not 2789 // in the new region yet. 2790 ++SchedulingRegionID; 2791 } 2792 2793 ScheduleData *getScheduleData(Instruction *I) { 2794 if (BB != I->getParent()) 2795 // Avoid lookup if can't possibly be in map. 2796 return nullptr; 2797 ScheduleData *SD = ScheduleDataMap.lookup(I); 2798 if (SD && isInSchedulingRegion(SD)) 2799 return SD; 2800 return nullptr; 2801 } 2802 2803 ScheduleData *getScheduleData(Value *V) { 2804 if (auto *I = dyn_cast<Instruction>(V)) 2805 return getScheduleData(I); 2806 return nullptr; 2807 } 2808 2809 ScheduleData *getScheduleData(Value *V, Value *Key) { 2810 if (V == Key) 2811 return getScheduleData(V); 2812 auto I = ExtraScheduleDataMap.find(V); 2813 if (I != ExtraScheduleDataMap.end()) { 2814 ScheduleData *SD = I->second.lookup(Key); 2815 if (SD && isInSchedulingRegion(SD)) 2816 return SD; 2817 } 2818 return nullptr; 2819 } 2820 2821 bool isInSchedulingRegion(ScheduleData *SD) const { 2822 return SD->SchedulingRegionID == SchedulingRegionID; 2823 } 2824 2825 /// Marks an instruction as scheduled and puts all dependent ready 2826 /// instructions into the ready-list. 2827 template <typename ReadyListType> 2828 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2829 SD->IsScheduled = true; 2830 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2831 2832 for (ScheduleData *BundleMember = SD; BundleMember; 2833 BundleMember = BundleMember->NextInBundle) { 2834 if (BundleMember->Inst != BundleMember->OpValue) 2835 continue; 2836 2837 // Handle the def-use chain dependencies. 2838 2839 // Decrement the unscheduled counter and insert to ready list if ready. 2840 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2841 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2842 if (OpDef && OpDef->hasValidDependencies() && 2843 OpDef->incrementUnscheduledDeps(-1) == 0) { 2844 // There are no more unscheduled dependencies after 2845 // decrementing, so we can put the dependent instruction 2846 // into the ready list. 2847 ScheduleData *DepBundle = OpDef->FirstInBundle; 2848 assert(!DepBundle->IsScheduled && 2849 "already scheduled bundle gets ready"); 2850 ReadyList.insert(DepBundle); 2851 LLVM_DEBUG(dbgs() 2852 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2853 } 2854 }); 2855 }; 2856 2857 // If BundleMember is a vector bundle, its operands may have been 2858 // reordered during buildTree(). We therefore need to get its operands 2859 // through the TreeEntry. 2860 if (TreeEntry *TE = BundleMember->TE) { 2861 // Need to search for the lane since the tree entry can be reordered. 2862 int Lane = std::distance(TE->Scalars.begin(), 2863 find(TE->Scalars, BundleMember->Inst)); 2864 assert(Lane >= 0 && "Lane not set"); 2865 2866 // Since vectorization tree is being built recursively this assertion 2867 // ensures that the tree entry has all operands set before reaching 2868 // this code. Couple of exceptions known at the moment are extracts 2869 // where their second (immediate) operand is not added. Since 2870 // immediates do not affect scheduler behavior this is considered 2871 // okay. 2872 auto *In = BundleMember->Inst; 2873 assert(In && 2874 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2875 In->getNumOperands() == TE->getNumOperands()) && 2876 "Missed TreeEntry operands?"); 2877 (void)In; // fake use to avoid build failure when assertions disabled 2878 2879 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2880 OpIdx != NumOperands; ++OpIdx) 2881 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2882 DecrUnsched(I); 2883 } else { 2884 // If BundleMember is a stand-alone instruction, no operand reordering 2885 // has taken place, so we directly access its operands. 2886 for (Use &U : BundleMember->Inst->operands()) 2887 if (auto *I = dyn_cast<Instruction>(U.get())) 2888 DecrUnsched(I); 2889 } 2890 // Handle the memory dependencies. 2891 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2892 if (MemoryDepSD->hasValidDependencies() && 2893 MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2894 // There are no more unscheduled dependencies after decrementing, 2895 // so we can put the dependent instruction into the ready list. 2896 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2897 assert(!DepBundle->IsScheduled && 2898 "already scheduled bundle gets ready"); 2899 ReadyList.insert(DepBundle); 2900 LLVM_DEBUG(dbgs() 2901 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2902 } 2903 } 2904 // Handle the control dependencies. 2905 for (ScheduleData *DepSD : BundleMember->ControlDependencies) { 2906 if (DepSD->incrementUnscheduledDeps(-1) == 0) { 2907 // There are no more unscheduled dependencies after decrementing, 2908 // so we can put the dependent instruction into the ready list. 2909 ScheduleData *DepBundle = DepSD->FirstInBundle; 2910 assert(!DepBundle->IsScheduled && 2911 "already scheduled bundle gets ready"); 2912 ReadyList.insert(DepBundle); 2913 LLVM_DEBUG(dbgs() 2914 << "SLP: gets ready (ctl): " << *DepBundle << "\n"); 2915 } 2916 } 2917 2918 } 2919 } 2920 2921 /// Verify basic self consistency properties of the data structure. 2922 void verify() { 2923 if (!ScheduleStart) 2924 return; 2925 2926 assert(ScheduleStart->getParent() == ScheduleEnd->getParent() && 2927 ScheduleStart->comesBefore(ScheduleEnd) && 2928 "Not a valid scheduling region?"); 2929 2930 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2931 auto *SD = getScheduleData(I); 2932 if (!SD) 2933 continue; 2934 assert(isInSchedulingRegion(SD) && 2935 "primary schedule data not in window?"); 2936 assert(isInSchedulingRegion(SD->FirstInBundle) && 2937 "entire bundle in window!"); 2938 (void)SD; 2939 doForAllOpcodes(I, [](ScheduleData *SD) { SD->verify(); }); 2940 } 2941 2942 for (auto *SD : ReadyInsts) { 2943 assert(SD->isSchedulingEntity() && SD->isReady() && 2944 "item in ready list not ready?"); 2945 (void)SD; 2946 } 2947 } 2948 2949 void doForAllOpcodes(Value *V, 2950 function_ref<void(ScheduleData *SD)> Action) { 2951 if (ScheduleData *SD = getScheduleData(V)) 2952 Action(SD); 2953 auto I = ExtraScheduleDataMap.find(V); 2954 if (I != ExtraScheduleDataMap.end()) 2955 for (auto &P : I->second) 2956 if (isInSchedulingRegion(P.second)) 2957 Action(P.second); 2958 } 2959 2960 /// Put all instructions into the ReadyList which are ready for scheduling. 2961 template <typename ReadyListType> 2962 void initialFillReadyList(ReadyListType &ReadyList) { 2963 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2964 doForAllOpcodes(I, [&](ScheduleData *SD) { 2965 if (SD->isSchedulingEntity() && SD->hasValidDependencies() && 2966 SD->isReady()) { 2967 ReadyList.insert(SD); 2968 LLVM_DEBUG(dbgs() 2969 << "SLP: initially in ready list: " << *SD << "\n"); 2970 } 2971 }); 2972 } 2973 } 2974 2975 /// Build a bundle from the ScheduleData nodes corresponding to the 2976 /// scalar instruction for each lane. 2977 ScheduleData *buildBundle(ArrayRef<Value *> VL); 2978 2979 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2980 /// cyclic dependencies. This is only a dry-run, no instructions are 2981 /// actually moved at this stage. 2982 /// \returns the scheduling bundle. The returned Optional value is non-None 2983 /// if \p VL is allowed to be scheduled. 2984 Optional<ScheduleData *> 2985 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2986 const InstructionsState &S); 2987 2988 /// Un-bundles a group of instructions. 2989 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2990 2991 /// Allocates schedule data chunk. 2992 ScheduleData *allocateScheduleDataChunks(); 2993 2994 /// Extends the scheduling region so that V is inside the region. 2995 /// \returns true if the region size is within the limit. 2996 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2997 2998 /// Initialize the ScheduleData structures for new instructions in the 2999 /// scheduling region. 3000 void initScheduleData(Instruction *FromI, Instruction *ToI, 3001 ScheduleData *PrevLoadStore, 3002 ScheduleData *NextLoadStore); 3003 3004 /// Updates the dependency information of a bundle and of all instructions/ 3005 /// bundles which depend on the original bundle. 3006 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 3007 BoUpSLP *SLP); 3008 3009 /// Sets all instruction in the scheduling region to un-scheduled. 3010 void resetSchedule(); 3011 3012 BasicBlock *BB; 3013 3014 /// Simple memory allocation for ScheduleData. 3015 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 3016 3017 /// The size of a ScheduleData array in ScheduleDataChunks. 3018 int ChunkSize; 3019 3020 /// The allocator position in the current chunk, which is the last entry 3021 /// of ScheduleDataChunks. 3022 int ChunkPos; 3023 3024 /// Attaches ScheduleData to Instruction. 3025 /// Note that the mapping survives during all vectorization iterations, i.e. 3026 /// ScheduleData structures are recycled. 3027 DenseMap<Instruction *, ScheduleData *> ScheduleDataMap; 3028 3029 /// Attaches ScheduleData to Instruction with the leading key. 3030 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 3031 ExtraScheduleDataMap; 3032 3033 /// The ready-list for scheduling (only used for the dry-run). 3034 SetVector<ScheduleData *> ReadyInsts; 3035 3036 /// The first instruction of the scheduling region. 3037 Instruction *ScheduleStart = nullptr; 3038 3039 /// The first instruction _after_ the scheduling region. 3040 Instruction *ScheduleEnd = nullptr; 3041 3042 /// The first memory accessing instruction in the scheduling region 3043 /// (can be null). 3044 ScheduleData *FirstLoadStoreInRegion = nullptr; 3045 3046 /// The last memory accessing instruction in the scheduling region 3047 /// (can be null). 3048 ScheduleData *LastLoadStoreInRegion = nullptr; 3049 3050 /// Is there an llvm.stacksave or llvm.stackrestore in the scheduling 3051 /// region? Used to optimize the dependence calculation for the 3052 /// common case where there isn't. 3053 bool RegionHasStackSave = false; 3054 3055 /// The current size of the scheduling region. 3056 int ScheduleRegionSize = 0; 3057 3058 /// The maximum size allowed for the scheduling region. 3059 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 3060 3061 /// The ID of the scheduling region. For a new vectorization iteration this 3062 /// is incremented which "removes" all ScheduleData from the region. 3063 /// Make sure that the initial SchedulingRegionID is greater than the 3064 /// initial SchedulingRegionID in ScheduleData (which is 0). 3065 int SchedulingRegionID = 1; 3066 }; 3067 3068 /// Attaches the BlockScheduling structures to basic blocks. 3069 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 3070 3071 /// Performs the "real" scheduling. Done before vectorization is actually 3072 /// performed in a basic block. 3073 void scheduleBlock(BlockScheduling *BS); 3074 3075 /// List of users to ignore during scheduling and that don't need extracting. 3076 ArrayRef<Value *> UserIgnoreList; 3077 3078 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 3079 /// sorted SmallVectors of unsigned. 3080 struct OrdersTypeDenseMapInfo { 3081 static OrdersType getEmptyKey() { 3082 OrdersType V; 3083 V.push_back(~1U); 3084 return V; 3085 } 3086 3087 static OrdersType getTombstoneKey() { 3088 OrdersType V; 3089 V.push_back(~2U); 3090 return V; 3091 } 3092 3093 static unsigned getHashValue(const OrdersType &V) { 3094 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 3095 } 3096 3097 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 3098 return LHS == RHS; 3099 } 3100 }; 3101 3102 // Analysis and block reference. 3103 Function *F; 3104 ScalarEvolution *SE; 3105 TargetTransformInfo *TTI; 3106 TargetLibraryInfo *TLI; 3107 LoopInfo *LI; 3108 DominatorTree *DT; 3109 AssumptionCache *AC; 3110 DemandedBits *DB; 3111 const DataLayout *DL; 3112 OptimizationRemarkEmitter *ORE; 3113 3114 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 3115 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 3116 3117 /// Instruction builder to construct the vectorized tree. 3118 IRBuilder<> Builder; 3119 3120 /// A map of scalar integer values to the smallest bit width with which they 3121 /// can legally be represented. The values map to (width, signed) pairs, 3122 /// where "width" indicates the minimum bit width and "signed" is True if the 3123 /// value must be signed-extended, rather than zero-extended, back to its 3124 /// original width. 3125 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 3126 }; 3127 3128 } // end namespace slpvectorizer 3129 3130 template <> struct GraphTraits<BoUpSLP *> { 3131 using TreeEntry = BoUpSLP::TreeEntry; 3132 3133 /// NodeRef has to be a pointer per the GraphWriter. 3134 using NodeRef = TreeEntry *; 3135 3136 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 3137 3138 /// Add the VectorizableTree to the index iterator to be able to return 3139 /// TreeEntry pointers. 3140 struct ChildIteratorType 3141 : public iterator_adaptor_base< 3142 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 3143 ContainerTy &VectorizableTree; 3144 3145 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 3146 ContainerTy &VT) 3147 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 3148 3149 NodeRef operator*() { return I->UserTE; } 3150 }; 3151 3152 static NodeRef getEntryNode(BoUpSLP &R) { 3153 return R.VectorizableTree[0].get(); 3154 } 3155 3156 static ChildIteratorType child_begin(NodeRef N) { 3157 return {N->UserTreeIndices.begin(), N->Container}; 3158 } 3159 3160 static ChildIteratorType child_end(NodeRef N) { 3161 return {N->UserTreeIndices.end(), N->Container}; 3162 } 3163 3164 /// For the node iterator we just need to turn the TreeEntry iterator into a 3165 /// TreeEntry* iterator so that it dereferences to NodeRef. 3166 class nodes_iterator { 3167 using ItTy = ContainerTy::iterator; 3168 ItTy It; 3169 3170 public: 3171 nodes_iterator(const ItTy &It2) : It(It2) {} 3172 NodeRef operator*() { return It->get(); } 3173 nodes_iterator operator++() { 3174 ++It; 3175 return *this; 3176 } 3177 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 3178 }; 3179 3180 static nodes_iterator nodes_begin(BoUpSLP *R) { 3181 return nodes_iterator(R->VectorizableTree.begin()); 3182 } 3183 3184 static nodes_iterator nodes_end(BoUpSLP *R) { 3185 return nodes_iterator(R->VectorizableTree.end()); 3186 } 3187 3188 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 3189 }; 3190 3191 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 3192 using TreeEntry = BoUpSLP::TreeEntry; 3193 3194 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3195 3196 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 3197 std::string Str; 3198 raw_string_ostream OS(Str); 3199 if (isSplat(Entry->Scalars)) 3200 OS << "<splat> "; 3201 for (auto V : Entry->Scalars) { 3202 OS << *V; 3203 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 3204 return EU.Scalar == V; 3205 })) 3206 OS << " <extract>"; 3207 OS << "\n"; 3208 } 3209 return Str; 3210 } 3211 3212 static std::string getNodeAttributes(const TreeEntry *Entry, 3213 const BoUpSLP *) { 3214 if (Entry->State == TreeEntry::NeedToGather) 3215 return "color=red"; 3216 return ""; 3217 } 3218 }; 3219 3220 } // end namespace llvm 3221 3222 BoUpSLP::~BoUpSLP() { 3223 SmallVector<WeakTrackingVH> DeadInsts; 3224 for (auto *I : DeletedInstructions) { 3225 for (Use &U : I->operands()) { 3226 auto *Op = dyn_cast<Instruction>(U.get()); 3227 if (Op && !DeletedInstructions.count(Op) && Op->hasOneUser() && 3228 wouldInstructionBeTriviallyDead(Op, TLI)) 3229 DeadInsts.emplace_back(Op); 3230 } 3231 I->dropAllReferences(); 3232 } 3233 for (auto *I : DeletedInstructions) { 3234 assert(I->use_empty() && 3235 "trying to erase instruction with users."); 3236 I->eraseFromParent(); 3237 } 3238 3239 // Cleanup any dead scalar code feeding the vectorized instructions 3240 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI); 3241 3242 #ifdef EXPENSIVE_CHECKS 3243 // If we could guarantee that this call is not extremely slow, we could 3244 // remove the ifdef limitation (see PR47712). 3245 assert(!verifyFunction(*F, &dbgs())); 3246 #endif 3247 } 3248 3249 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 3250 /// contains original mask for the scalars reused in the node. Procedure 3251 /// transform this mask in accordance with the given \p Mask. 3252 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 3253 assert(!Mask.empty() && Reuses.size() == Mask.size() && 3254 "Expected non-empty mask."); 3255 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 3256 Prev.swap(Reuses); 3257 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 3258 if (Mask[I] != UndefMaskElem) 3259 Reuses[Mask[I]] = Prev[I]; 3260 } 3261 3262 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 3263 /// the original order of the scalars. Procedure transforms the provided order 3264 /// in accordance with the given \p Mask. If the resulting \p Order is just an 3265 /// identity order, \p Order is cleared. 3266 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 3267 assert(!Mask.empty() && "Expected non-empty mask."); 3268 SmallVector<int> MaskOrder; 3269 if (Order.empty()) { 3270 MaskOrder.resize(Mask.size()); 3271 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 3272 } else { 3273 inversePermutation(Order, MaskOrder); 3274 } 3275 reorderReuses(MaskOrder, Mask); 3276 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 3277 Order.clear(); 3278 return; 3279 } 3280 Order.assign(Mask.size(), Mask.size()); 3281 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 3282 if (MaskOrder[I] != UndefMaskElem) 3283 Order[MaskOrder[I]] = I; 3284 fixupOrderingIndices(Order); 3285 } 3286 3287 Optional<BoUpSLP::OrdersType> 3288 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { 3289 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 3290 unsigned NumScalars = TE.Scalars.size(); 3291 OrdersType CurrentOrder(NumScalars, NumScalars); 3292 SmallVector<int> Positions; 3293 SmallBitVector UsedPositions(NumScalars); 3294 const TreeEntry *STE = nullptr; 3295 // Try to find all gathered scalars that are gets vectorized in other 3296 // vectorize node. Here we can have only one single tree vector node to 3297 // correctly identify order of the gathered scalars. 3298 for (unsigned I = 0; I < NumScalars; ++I) { 3299 Value *V = TE.Scalars[I]; 3300 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) 3301 continue; 3302 if (const auto *LocalSTE = getTreeEntry(V)) { 3303 if (!STE) 3304 STE = LocalSTE; 3305 else if (STE != LocalSTE) 3306 // Take the order only from the single vector node. 3307 return None; 3308 unsigned Lane = 3309 std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); 3310 if (Lane >= NumScalars) 3311 return None; 3312 if (CurrentOrder[Lane] != NumScalars) { 3313 if (Lane != I) 3314 continue; 3315 UsedPositions.reset(CurrentOrder[Lane]); 3316 } 3317 // The partial identity (where only some elements of the gather node are 3318 // in the identity order) is good. 3319 CurrentOrder[Lane] = I; 3320 UsedPositions.set(I); 3321 } 3322 } 3323 // Need to keep the order if we have a vector entry and at least 2 scalars or 3324 // the vectorized entry has just 2 scalars. 3325 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { 3326 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { 3327 for (unsigned I = 0; I < NumScalars; ++I) 3328 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) 3329 return false; 3330 return true; 3331 }; 3332 if (IsIdentityOrder(CurrentOrder)) { 3333 CurrentOrder.clear(); 3334 return CurrentOrder; 3335 } 3336 auto *It = CurrentOrder.begin(); 3337 for (unsigned I = 0; I < NumScalars;) { 3338 if (UsedPositions.test(I)) { 3339 ++I; 3340 continue; 3341 } 3342 if (*It == NumScalars) { 3343 *It = I; 3344 ++I; 3345 } 3346 ++It; 3347 } 3348 return CurrentOrder; 3349 } 3350 return None; 3351 } 3352 3353 Optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE, 3354 bool TopToBottom) { 3355 // No need to reorder if need to shuffle reuses, still need to shuffle the 3356 // node. 3357 if (!TE.ReuseShuffleIndices.empty()) 3358 return None; 3359 if (TE.State == TreeEntry::Vectorize && 3360 (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) || 3361 (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) && 3362 !TE.isAltShuffle()) 3363 return TE.ReorderIndices; 3364 if (TE.State == TreeEntry::NeedToGather) { 3365 // TODO: add analysis of other gather nodes with extractelement 3366 // instructions and other values/instructions, not only undefs. 3367 if (((TE.getOpcode() == Instruction::ExtractElement && 3368 !TE.isAltShuffle()) || 3369 (all_of(TE.Scalars, 3370 [](Value *V) { 3371 return isa<UndefValue, ExtractElementInst>(V); 3372 }) && 3373 any_of(TE.Scalars, 3374 [](Value *V) { return isa<ExtractElementInst>(V); }))) && 3375 all_of(TE.Scalars, 3376 [](Value *V) { 3377 auto *EE = dyn_cast<ExtractElementInst>(V); 3378 return !EE || isa<FixedVectorType>(EE->getVectorOperandType()); 3379 }) && 3380 allSameType(TE.Scalars)) { 3381 // Check that gather of extractelements can be represented as 3382 // just a shuffle of a single vector. 3383 OrdersType CurrentOrder; 3384 bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder); 3385 if (Reuse || !CurrentOrder.empty()) { 3386 if (!CurrentOrder.empty()) 3387 fixupOrderingIndices(CurrentOrder); 3388 return CurrentOrder; 3389 } 3390 } 3391 if (Optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE)) 3392 return CurrentOrder; 3393 } 3394 return None; 3395 } 3396 3397 void BoUpSLP::reorderTopToBottom() { 3398 // Maps VF to the graph nodes. 3399 DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries; 3400 // ExtractElement gather nodes which can be vectorized and need to handle 3401 // their ordering. 3402 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3403 // Find all reorderable nodes with the given VF. 3404 // Currently the are vectorized stores,loads,extracts + some gathering of 3405 // extracts. 3406 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders]( 3407 const std::unique_ptr<TreeEntry> &TE) { 3408 if (Optional<OrdersType> CurrentOrder = 3409 getReorderingData(*TE, /*TopToBottom=*/true)) { 3410 // Do not include ordering for nodes used in the alt opcode vectorization, 3411 // better to reorder them during bottom-to-top stage. If follow the order 3412 // here, it causes reordering of the whole graph though actually it is 3413 // profitable just to reorder the subgraph that starts from the alternate 3414 // opcode vectorization node. Such nodes already end-up with the shuffle 3415 // instruction and it is just enough to change this shuffle rather than 3416 // rotate the scalars for the whole graph. 3417 unsigned Cnt = 0; 3418 const TreeEntry *UserTE = TE.get(); 3419 while (UserTE && Cnt < RecursionMaxDepth) { 3420 if (UserTE->UserTreeIndices.size() != 1) 3421 break; 3422 if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) { 3423 return EI.UserTE->State == TreeEntry::Vectorize && 3424 EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0; 3425 })) 3426 return; 3427 if (UserTE->UserTreeIndices.empty()) 3428 UserTE = nullptr; 3429 else 3430 UserTE = UserTE->UserTreeIndices.back().UserTE; 3431 ++Cnt; 3432 } 3433 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 3434 if (TE->State != TreeEntry::Vectorize) 3435 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3436 } 3437 }); 3438 3439 // Reorder the graph nodes according to their vectorization factor. 3440 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 3441 VF /= 2) { 3442 auto It = VFToOrderedEntries.find(VF); 3443 if (It == VFToOrderedEntries.end()) 3444 continue; 3445 // Try to find the most profitable order. We just are looking for the most 3446 // used order and reorder scalar elements in the nodes according to this 3447 // mostly used order. 3448 ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef(); 3449 // All operands are reordered and used only in this node - propagate the 3450 // most used order to the user node. 3451 MapVector<OrdersType, unsigned, 3452 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3453 OrdersUses; 3454 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3455 for (const TreeEntry *OpTE : OrderedEntries) { 3456 // No need to reorder this nodes, still need to extend and to use shuffle, 3457 // just need to merge reordering shuffle and the reuse shuffle. 3458 if (!OpTE->ReuseShuffleIndices.empty()) 3459 continue; 3460 // Count number of orders uses. 3461 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3462 if (OpTE->State == TreeEntry::NeedToGather) 3463 return GathersToOrders.find(OpTE)->second; 3464 return OpTE->ReorderIndices; 3465 }(); 3466 // Stores actually store the mask, not the order, need to invert. 3467 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3468 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3469 SmallVector<int> Mask; 3470 inversePermutation(Order, Mask); 3471 unsigned E = Order.size(); 3472 OrdersType CurrentOrder(E, E); 3473 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3474 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3475 }); 3476 fixupOrderingIndices(CurrentOrder); 3477 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3478 } else { 3479 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3480 } 3481 } 3482 // Set order of the user node. 3483 if (OrdersUses.empty()) 3484 continue; 3485 // Choose the most used order. 3486 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3487 unsigned Cnt = OrdersUses.front().second; 3488 for (const auto &Pair : drop_begin(OrdersUses)) { 3489 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3490 BestOrder = Pair.first; 3491 Cnt = Pair.second; 3492 } 3493 } 3494 // Set order of the user node. 3495 if (BestOrder.empty()) 3496 continue; 3497 SmallVector<int> Mask; 3498 inversePermutation(BestOrder, Mask); 3499 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3500 unsigned E = BestOrder.size(); 3501 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3502 return I < E ? static_cast<int>(I) : UndefMaskElem; 3503 }); 3504 // Do an actual reordering, if profitable. 3505 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 3506 // Just do the reordering for the nodes with the given VF. 3507 if (TE->Scalars.size() != VF) { 3508 if (TE->ReuseShuffleIndices.size() == VF) { 3509 // Need to reorder the reuses masks of the operands with smaller VF to 3510 // be able to find the match between the graph nodes and scalar 3511 // operands of the given node during vectorization/cost estimation. 3512 assert(all_of(TE->UserTreeIndices, 3513 [VF, &TE](const EdgeInfo &EI) { 3514 return EI.UserTE->Scalars.size() == VF || 3515 EI.UserTE->Scalars.size() == 3516 TE->Scalars.size(); 3517 }) && 3518 "All users must be of VF size."); 3519 // Update ordering of the operands with the smaller VF than the given 3520 // one. 3521 reorderReuses(TE->ReuseShuffleIndices, Mask); 3522 } 3523 continue; 3524 } 3525 if (TE->State == TreeEntry::Vectorize && 3526 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 3527 InsertElementInst>(TE->getMainOp()) && 3528 !TE->isAltShuffle()) { 3529 // Build correct orders for extract{element,value}, loads and 3530 // stores. 3531 reorderOrder(TE->ReorderIndices, Mask); 3532 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 3533 TE->reorderOperands(Mask); 3534 } else { 3535 // Reorder the node and its operands. 3536 TE->reorderOperands(Mask); 3537 assert(TE->ReorderIndices.empty() && 3538 "Expected empty reorder sequence."); 3539 reorderScalars(TE->Scalars, Mask); 3540 } 3541 if (!TE->ReuseShuffleIndices.empty()) { 3542 // Apply reversed order to keep the original ordering of the reused 3543 // elements to avoid extra reorder indices shuffling. 3544 OrdersType CurrentOrder; 3545 reorderOrder(CurrentOrder, MaskOrder); 3546 SmallVector<int> NewReuses; 3547 inversePermutation(CurrentOrder, NewReuses); 3548 addMask(NewReuses, TE->ReuseShuffleIndices); 3549 TE->ReuseShuffleIndices.swap(NewReuses); 3550 } 3551 } 3552 } 3553 } 3554 3555 bool BoUpSLP::canReorderOperands( 3556 TreeEntry *UserTE, SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 3557 ArrayRef<TreeEntry *> ReorderableGathers, 3558 SmallVectorImpl<TreeEntry *> &GatherOps) { 3559 for (unsigned I = 0, E = UserTE->getNumOperands(); I < E; ++I) { 3560 if (any_of(Edges, [I](const std::pair<unsigned, TreeEntry *> &OpData) { 3561 return OpData.first == I && 3562 OpData.second->State == TreeEntry::Vectorize; 3563 })) 3564 continue; 3565 if (TreeEntry *TE = getVectorizedOperand(UserTE, I)) { 3566 // Do not reorder if operand node is used by many user nodes. 3567 if (any_of(TE->UserTreeIndices, 3568 [UserTE](const EdgeInfo &EI) { return EI.UserTE != UserTE; })) 3569 return false; 3570 // Add the node to the list of the ordered nodes with the identity 3571 // order. 3572 Edges.emplace_back(I, TE); 3573 continue; 3574 } 3575 ArrayRef<Value *> VL = UserTE->getOperand(I); 3576 TreeEntry *Gather = nullptr; 3577 if (count_if(ReorderableGathers, [VL, &Gather](TreeEntry *TE) { 3578 assert(TE->State != TreeEntry::Vectorize && 3579 "Only non-vectorized nodes are expected."); 3580 if (TE->isSame(VL)) { 3581 Gather = TE; 3582 return true; 3583 } 3584 return false; 3585 }) > 1) 3586 return false; 3587 if (Gather) 3588 GatherOps.push_back(Gather); 3589 } 3590 return true; 3591 } 3592 3593 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { 3594 SetVector<TreeEntry *> OrderedEntries; 3595 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3596 // Find all reorderable leaf nodes with the given VF. 3597 // Currently the are vectorized loads,extracts without alternate operands + 3598 // some gathering of extracts. 3599 SmallVector<TreeEntry *> NonVectorized; 3600 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 3601 &NonVectorized]( 3602 const std::unique_ptr<TreeEntry> &TE) { 3603 if (TE->State != TreeEntry::Vectorize) 3604 NonVectorized.push_back(TE.get()); 3605 if (Optional<OrdersType> CurrentOrder = 3606 getReorderingData(*TE, /*TopToBottom=*/false)) { 3607 OrderedEntries.insert(TE.get()); 3608 if (TE->State != TreeEntry::Vectorize) 3609 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3610 } 3611 }); 3612 3613 // 1. Propagate order to the graph nodes, which use only reordered nodes. 3614 // I.e., if the node has operands, that are reordered, try to make at least 3615 // one operand order in the natural order and reorder others + reorder the 3616 // user node itself. 3617 SmallPtrSet<const TreeEntry *, 4> Visited; 3618 while (!OrderedEntries.empty()) { 3619 // 1. Filter out only reordered nodes. 3620 // 2. If the entry has multiple uses - skip it and jump to the next node. 3621 MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 3622 SmallVector<TreeEntry *> Filtered; 3623 for (TreeEntry *TE : OrderedEntries) { 3624 if (!(TE->State == TreeEntry::Vectorize || 3625 (TE->State == TreeEntry::NeedToGather && 3626 GathersToOrders.count(TE))) || 3627 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3628 !all_of(drop_begin(TE->UserTreeIndices), 3629 [TE](const EdgeInfo &EI) { 3630 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 3631 }) || 3632 !Visited.insert(TE).second) { 3633 Filtered.push_back(TE); 3634 continue; 3635 } 3636 // Build a map between user nodes and their operands order to speedup 3637 // search. The graph currently does not provide this dependency directly. 3638 for (EdgeInfo &EI : TE->UserTreeIndices) { 3639 TreeEntry *UserTE = EI.UserTE; 3640 auto It = Users.find(UserTE); 3641 if (It == Users.end()) 3642 It = Users.insert({UserTE, {}}).first; 3643 It->second.emplace_back(EI.EdgeIdx, TE); 3644 } 3645 } 3646 // Erase filtered entries. 3647 for_each(Filtered, 3648 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 3649 for (auto &Data : Users) { 3650 // Check that operands are used only in the User node. 3651 SmallVector<TreeEntry *> GatherOps; 3652 if (!canReorderOperands(Data.first, Data.second, NonVectorized, 3653 GatherOps)) { 3654 for_each(Data.second, 3655 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3656 OrderedEntries.remove(Op.second); 3657 }); 3658 continue; 3659 } 3660 // All operands are reordered and used only in this node - propagate the 3661 // most used order to the user node. 3662 MapVector<OrdersType, unsigned, 3663 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3664 OrdersUses; 3665 // Do the analysis for each tree entry only once, otherwise the order of 3666 // the same node my be considered several times, though might be not 3667 // profitable. 3668 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3669 SmallPtrSet<const TreeEntry *, 4> VisitedUsers; 3670 for (const auto &Op : Data.second) { 3671 TreeEntry *OpTE = Op.second; 3672 if (!VisitedOps.insert(OpTE).second) 3673 continue; 3674 if (!OpTE->ReuseShuffleIndices.empty() || 3675 (IgnoreReorder && OpTE == VectorizableTree.front().get())) 3676 continue; 3677 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3678 if (OpTE->State == TreeEntry::NeedToGather) 3679 return GathersToOrders.find(OpTE)->second; 3680 return OpTE->ReorderIndices; 3681 }(); 3682 unsigned NumOps = count_if( 3683 Data.second, [OpTE](const std::pair<unsigned, TreeEntry *> &P) { 3684 return P.second == OpTE; 3685 }); 3686 // Stores actually store the mask, not the order, need to invert. 3687 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3688 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3689 SmallVector<int> Mask; 3690 inversePermutation(Order, Mask); 3691 unsigned E = Order.size(); 3692 OrdersType CurrentOrder(E, E); 3693 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3694 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3695 }); 3696 fixupOrderingIndices(CurrentOrder); 3697 OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second += 3698 NumOps; 3699 } else { 3700 OrdersUses.insert(std::make_pair(Order, 0)).first->second += NumOps; 3701 } 3702 auto Res = OrdersUses.insert(std::make_pair(OrdersType(), 0)); 3703 const auto &&AllowsReordering = [IgnoreReorder, &GathersToOrders]( 3704 const TreeEntry *TE) { 3705 if (!TE->ReorderIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3706 (TE->State == TreeEntry::Vectorize && TE->isAltShuffle()) || 3707 (IgnoreReorder && TE->Idx == 0)) 3708 return true; 3709 if (TE->State == TreeEntry::NeedToGather) { 3710 auto It = GathersToOrders.find(TE); 3711 if (It != GathersToOrders.end()) 3712 return !It->second.empty(); 3713 return true; 3714 } 3715 return false; 3716 }; 3717 for (const EdgeInfo &EI : OpTE->UserTreeIndices) { 3718 TreeEntry *UserTE = EI.UserTE; 3719 if (!VisitedUsers.insert(UserTE).second) 3720 continue; 3721 // May reorder user node if it requires reordering, has reused 3722 // scalars, is an alternate op vectorize node or its op nodes require 3723 // reordering. 3724 if (AllowsReordering(UserTE)) 3725 continue; 3726 // Check if users allow reordering. 3727 // Currently look up just 1 level of operands to avoid increase of 3728 // the compile time. 3729 // Profitable to reorder if definitely more operands allow 3730 // reordering rather than those with natural order. 3731 ArrayRef<std::pair<unsigned, TreeEntry *>> Ops = Users[UserTE]; 3732 if (static_cast<unsigned>(count_if( 3733 Ops, [UserTE, &AllowsReordering]( 3734 const std::pair<unsigned, TreeEntry *> &Op) { 3735 return AllowsReordering(Op.second) && 3736 all_of(Op.second->UserTreeIndices, 3737 [UserTE](const EdgeInfo &EI) { 3738 return EI.UserTE == UserTE; 3739 }); 3740 })) <= Ops.size() / 2) 3741 ++Res.first->second; 3742 } 3743 } 3744 // If no orders - skip current nodes and jump to the next one, if any. 3745 if (OrdersUses.empty()) { 3746 for_each(Data.second, 3747 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3748 OrderedEntries.remove(Op.second); 3749 }); 3750 continue; 3751 } 3752 // Choose the best order. 3753 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3754 unsigned Cnt = OrdersUses.front().second; 3755 for (const auto &Pair : drop_begin(OrdersUses)) { 3756 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3757 BestOrder = Pair.first; 3758 Cnt = Pair.second; 3759 } 3760 } 3761 // Set order of the user node (reordering of operands and user nodes). 3762 if (BestOrder.empty()) { 3763 for_each(Data.second, 3764 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3765 OrderedEntries.remove(Op.second); 3766 }); 3767 continue; 3768 } 3769 // Erase operands from OrderedEntries list and adjust their orders. 3770 VisitedOps.clear(); 3771 SmallVector<int> Mask; 3772 inversePermutation(BestOrder, Mask); 3773 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3774 unsigned E = BestOrder.size(); 3775 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3776 return I < E ? static_cast<int>(I) : UndefMaskElem; 3777 }); 3778 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 3779 TreeEntry *TE = Op.second; 3780 OrderedEntries.remove(TE); 3781 if (!VisitedOps.insert(TE).second) 3782 continue; 3783 if (TE->ReuseShuffleIndices.size() == BestOrder.size()) { 3784 // Just reorder reuses indices. 3785 reorderReuses(TE->ReuseShuffleIndices, Mask); 3786 continue; 3787 } 3788 // Gathers are processed separately. 3789 if (TE->State != TreeEntry::Vectorize) 3790 continue; 3791 assert((BestOrder.size() == TE->ReorderIndices.size() || 3792 TE->ReorderIndices.empty()) && 3793 "Non-matching sizes of user/operand entries."); 3794 reorderOrder(TE->ReorderIndices, Mask); 3795 } 3796 // For gathers just need to reorder its scalars. 3797 for (TreeEntry *Gather : GatherOps) { 3798 assert(Gather->ReorderIndices.empty() && 3799 "Unexpected reordering of gathers."); 3800 if (!Gather->ReuseShuffleIndices.empty()) { 3801 // Just reorder reuses indices. 3802 reorderReuses(Gather->ReuseShuffleIndices, Mask); 3803 continue; 3804 } 3805 reorderScalars(Gather->Scalars, Mask); 3806 OrderedEntries.remove(Gather); 3807 } 3808 // Reorder operands of the user node and set the ordering for the user 3809 // node itself. 3810 if (Data.first->State != TreeEntry::Vectorize || 3811 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 3812 Data.first->getMainOp()) || 3813 Data.first->isAltShuffle()) 3814 Data.first->reorderOperands(Mask); 3815 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 3816 Data.first->isAltShuffle()) { 3817 reorderScalars(Data.first->Scalars, Mask); 3818 reorderOrder(Data.first->ReorderIndices, MaskOrder); 3819 if (Data.first->ReuseShuffleIndices.empty() && 3820 !Data.first->ReorderIndices.empty() && 3821 !Data.first->isAltShuffle()) { 3822 // Insert user node to the list to try to sink reordering deeper in 3823 // the graph. 3824 OrderedEntries.insert(Data.first); 3825 } 3826 } else { 3827 reorderOrder(Data.first->ReorderIndices, Mask); 3828 } 3829 } 3830 } 3831 // If the reordering is unnecessary, just remove the reorder. 3832 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && 3833 VectorizableTree.front()->ReuseShuffleIndices.empty()) 3834 VectorizableTree.front()->ReorderIndices.clear(); 3835 } 3836 3837 void BoUpSLP::buildExternalUses( 3838 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3839 // Collect the values that we need to extract from the tree. 3840 for (auto &TEPtr : VectorizableTree) { 3841 TreeEntry *Entry = TEPtr.get(); 3842 3843 // No need to handle users of gathered values. 3844 if (Entry->State == TreeEntry::NeedToGather) 3845 continue; 3846 3847 // For each lane: 3848 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3849 Value *Scalar = Entry->Scalars[Lane]; 3850 int FoundLane = Entry->findLaneForValue(Scalar); 3851 3852 // Check if the scalar is externally used as an extra arg. 3853 auto ExtI = ExternallyUsedValues.find(Scalar); 3854 if (ExtI != ExternallyUsedValues.end()) { 3855 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 3856 << Lane << " from " << *Scalar << ".\n"); 3857 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 3858 } 3859 for (User *U : Scalar->users()) { 3860 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 3861 3862 Instruction *UserInst = dyn_cast<Instruction>(U); 3863 if (!UserInst) 3864 continue; 3865 3866 if (isDeleted(UserInst)) 3867 continue; 3868 3869 // Skip in-tree scalars that become vectors 3870 if (TreeEntry *UseEntry = getTreeEntry(U)) { 3871 Value *UseScalar = UseEntry->Scalars[0]; 3872 // Some in-tree scalars will remain as scalar in vectorized 3873 // instructions. If that is the case, the one in Lane 0 will 3874 // be used. 3875 if (UseScalar != U || 3876 UseEntry->State == TreeEntry::ScatterVectorize || 3877 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 3878 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 3879 << ".\n"); 3880 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 3881 continue; 3882 } 3883 } 3884 3885 // Ignore users in the user ignore list. 3886 if (is_contained(UserIgnoreList, UserInst)) 3887 continue; 3888 3889 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 3890 << Lane << " from " << *Scalar << ".\n"); 3891 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 3892 } 3893 } 3894 } 3895 } 3896 3897 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 3898 ArrayRef<Value *> UserIgnoreLst) { 3899 deleteTree(); 3900 UserIgnoreList = UserIgnoreLst; 3901 if (!allSameType(Roots)) 3902 return; 3903 buildTree_rec(Roots, 0, EdgeInfo()); 3904 } 3905 3906 namespace { 3907 /// Tracks the state we can represent the loads in the given sequence. 3908 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 3909 } // anonymous namespace 3910 3911 /// Checks if the given array of loads can be represented as a vectorized, 3912 /// scatter or just simple gather. 3913 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 3914 const TargetTransformInfo &TTI, 3915 const DataLayout &DL, ScalarEvolution &SE, 3916 SmallVectorImpl<unsigned> &Order, 3917 SmallVectorImpl<Value *> &PointerOps) { 3918 // Check that a vectorized load would load the same memory as a scalar 3919 // load. For example, we don't want to vectorize loads that are smaller 3920 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3921 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3922 // from such a struct, we read/write packed bits disagreeing with the 3923 // unvectorized version. 3924 Type *ScalarTy = VL0->getType(); 3925 3926 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 3927 return LoadsState::Gather; 3928 3929 // Make sure all loads in the bundle are simple - we can't vectorize 3930 // atomic or volatile loads. 3931 PointerOps.clear(); 3932 PointerOps.resize(VL.size()); 3933 auto *POIter = PointerOps.begin(); 3934 for (Value *V : VL) { 3935 auto *L = cast<LoadInst>(V); 3936 if (!L->isSimple()) 3937 return LoadsState::Gather; 3938 *POIter = L->getPointerOperand(); 3939 ++POIter; 3940 } 3941 3942 Order.clear(); 3943 // Check the order of pointer operands. 3944 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 3945 Value *Ptr0; 3946 Value *PtrN; 3947 if (Order.empty()) { 3948 Ptr0 = PointerOps.front(); 3949 PtrN = PointerOps.back(); 3950 } else { 3951 Ptr0 = PointerOps[Order.front()]; 3952 PtrN = PointerOps[Order.back()]; 3953 } 3954 Optional<int> Diff = 3955 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 3956 // Check that the sorted loads are consecutive. 3957 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 3958 return LoadsState::Vectorize; 3959 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 3960 for (Value *V : VL) 3961 CommonAlignment = 3962 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 3963 if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()), 3964 CommonAlignment)) 3965 return LoadsState::ScatterVectorize; 3966 } 3967 3968 return LoadsState::Gather; 3969 } 3970 3971 /// \return true if the specified list of values has only one instruction that 3972 /// requires scheduling, false otherwise. 3973 #ifndef NDEBUG 3974 static bool needToScheduleSingleInstruction(ArrayRef<Value *> VL) { 3975 Value *NeedsScheduling = nullptr; 3976 for (Value *V : VL) { 3977 if (doesNotNeedToBeScheduled(V)) 3978 continue; 3979 if (!NeedsScheduling) { 3980 NeedsScheduling = V; 3981 continue; 3982 } 3983 return false; 3984 } 3985 return NeedsScheduling; 3986 } 3987 #endif 3988 3989 /// Generates key/subkey pair for the given value to provide effective sorting 3990 /// of the values and better detection of the vectorizable values sequences. The 3991 /// keys/subkeys can be used for better sorting of the values themselves (keys) 3992 /// and in values subgroups (subkeys). 3993 static std::pair<size_t, size_t> generateKeySubkey( 3994 Value *V, const TargetLibraryInfo *TLI, 3995 function_ref<hash_code(size_t, LoadInst *)> LoadsSubkeyGenerator, 3996 bool AllowAlternate) { 3997 hash_code Key = hash_value(V->getValueID() + 2); 3998 hash_code SubKey = hash_value(0); 3999 // Sort the loads by the distance between the pointers. 4000 if (auto *LI = dyn_cast<LoadInst>(V)) { 4001 Key = hash_combine(hash_value(LI->getParent()), Key); 4002 if (LI->isSimple()) 4003 SubKey = hash_value(LoadsSubkeyGenerator(Key, LI)); 4004 else 4005 SubKey = hash_value(LI); 4006 } else if (isVectorLikeInstWithConstOps(V)) { 4007 // Sort extracts by the vector operands. 4008 if (isa<ExtractElementInst, UndefValue>(V)) 4009 Key = hash_value(Value::UndefValueVal + 1); 4010 if (auto *EI = dyn_cast<ExtractElementInst>(V)) { 4011 if (!isUndefVector(EI->getVectorOperand()) && 4012 !isa<UndefValue>(EI->getIndexOperand())) 4013 SubKey = hash_value(EI->getVectorOperand()); 4014 } 4015 } else if (auto *I = dyn_cast<Instruction>(V)) { 4016 // Sort other instructions just by the opcodes except for CMPInst. 4017 // For CMP also sort by the predicate kind. 4018 if ((isa<BinaryOperator>(I) || isa<CastInst>(I)) && 4019 isValidForAlternation(I->getOpcode())) { 4020 if (AllowAlternate) 4021 Key = hash_value(isa<BinaryOperator>(I) ? 1 : 0); 4022 else 4023 Key = hash_combine(hash_value(I->getOpcode()), Key); 4024 SubKey = hash_combine( 4025 hash_value(I->getOpcode()), hash_value(I->getType()), 4026 hash_value(isa<BinaryOperator>(I) 4027 ? I->getType() 4028 : cast<CastInst>(I)->getOperand(0)->getType())); 4029 } else if (auto *CI = dyn_cast<CmpInst>(I)) { 4030 CmpInst::Predicate Pred = CI->getPredicate(); 4031 if (CI->isCommutative()) 4032 Pred = std::min(Pred, CmpInst::getInversePredicate(Pred)); 4033 CmpInst::Predicate SwapPred = CmpInst::getSwappedPredicate(Pred); 4034 SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(Pred), 4035 hash_value(SwapPred), 4036 hash_value(CI->getOperand(0)->getType())); 4037 } else if (auto *Call = dyn_cast<CallInst>(I)) { 4038 Intrinsic::ID ID = getVectorIntrinsicIDForCall(Call, TLI); 4039 if (isTriviallyVectorizable(ID)) 4040 SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(ID)); 4041 else if (!VFDatabase(*Call).getMappings(*Call).empty()) 4042 SubKey = hash_combine(hash_value(I->getOpcode()), 4043 hash_value(Call->getCalledFunction())); 4044 else 4045 SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(Call)); 4046 for (const CallBase::BundleOpInfo &Op : Call->bundle_op_infos()) 4047 SubKey = hash_combine(hash_value(Op.Begin), hash_value(Op.End), 4048 hash_value(Op.Tag), SubKey); 4049 } else if (auto *Gep = dyn_cast<GetElementPtrInst>(I)) { 4050 if (Gep->getNumOperands() == 2 && isa<ConstantInt>(Gep->getOperand(1))) 4051 SubKey = hash_value(Gep->getPointerOperand()); 4052 else 4053 SubKey = hash_value(Gep); 4054 } else if (BinaryOperator::isIntDivRem(I->getOpcode()) && 4055 !isa<ConstantInt>(I->getOperand(1))) { 4056 // Do not try to vectorize instructions with potentially high cost. 4057 SubKey = hash_value(I); 4058 } else { 4059 SubKey = hash_value(I->getOpcode()); 4060 } 4061 Key = hash_combine(hash_value(I->getParent()), Key); 4062 } 4063 return std::make_pair(Key, SubKey); 4064 } 4065 4066 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 4067 const EdgeInfo &UserTreeIdx) { 4068 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 4069 4070 SmallVector<int> ReuseShuffleIndicies; 4071 SmallVector<Value *> UniqueValues; 4072 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, 4073 &UserTreeIdx, 4074 this](const InstructionsState &S) { 4075 // Check that every instruction appears once in this bundle. 4076 DenseMap<Value *, unsigned> UniquePositions; 4077 for (Value *V : VL) { 4078 if (isConstant(V)) { 4079 ReuseShuffleIndicies.emplace_back( 4080 isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size()); 4081 UniqueValues.emplace_back(V); 4082 continue; 4083 } 4084 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 4085 ReuseShuffleIndicies.emplace_back(Res.first->second); 4086 if (Res.second) 4087 UniqueValues.emplace_back(V); 4088 } 4089 size_t NumUniqueScalarValues = UniqueValues.size(); 4090 if (NumUniqueScalarValues == VL.size()) { 4091 ReuseShuffleIndicies.clear(); 4092 } else { 4093 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 4094 if (NumUniqueScalarValues <= 1 || 4095 (UniquePositions.size() == 1 && all_of(UniqueValues, 4096 [](Value *V) { 4097 return isa<UndefValue>(V) || 4098 !isConstant(V); 4099 })) || 4100 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 4101 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 4102 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4103 return false; 4104 } 4105 VL = UniqueValues; 4106 } 4107 return true; 4108 }; 4109 4110 InstructionsState S = getSameOpcode(VL); 4111 if (Depth == RecursionMaxDepth) { 4112 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 4113 if (TryToFindDuplicates(S)) 4114 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4115 ReuseShuffleIndicies); 4116 return; 4117 } 4118 4119 // Don't handle scalable vectors 4120 if (S.getOpcode() == Instruction::ExtractElement && 4121 isa<ScalableVectorType>( 4122 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 4123 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 4124 if (TryToFindDuplicates(S)) 4125 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4126 ReuseShuffleIndicies); 4127 return; 4128 } 4129 4130 // Don't handle vectors. 4131 if (S.OpValue->getType()->isVectorTy() && 4132 !isa<InsertElementInst>(S.OpValue)) { 4133 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 4134 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4135 return; 4136 } 4137 4138 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 4139 if (SI->getValueOperand()->getType()->isVectorTy()) { 4140 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 4141 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4142 return; 4143 } 4144 4145 // If all of the operands are identical or constant we have a simple solution. 4146 // If we deal with insert/extract instructions, they all must have constant 4147 // indices, otherwise we should gather them, not try to vectorize. 4148 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() || 4149 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) && 4150 !all_of(VL, isVectorLikeInstWithConstOps))) { 4151 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 4152 if (TryToFindDuplicates(S)) 4153 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4154 ReuseShuffleIndicies); 4155 return; 4156 } 4157 4158 // We now know that this is a vector of instructions of the same type from 4159 // the same block. 4160 4161 // Don't vectorize ephemeral values. 4162 for (Value *V : VL) { 4163 if (EphValues.count(V)) { 4164 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 4165 << ") is ephemeral.\n"); 4166 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4167 return; 4168 } 4169 } 4170 4171 // Check if this is a duplicate of another entry. 4172 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 4173 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 4174 if (!E->isSame(VL)) { 4175 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 4176 if (TryToFindDuplicates(S)) 4177 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4178 ReuseShuffleIndicies); 4179 return; 4180 } 4181 // Record the reuse of the tree node. FIXME, currently this is only used to 4182 // properly draw the graph rather than for the actual vectorization. 4183 E->UserTreeIndices.push_back(UserTreeIdx); 4184 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 4185 << ".\n"); 4186 return; 4187 } 4188 4189 // Check that none of the instructions in the bundle are already in the tree. 4190 for (Value *V : VL) { 4191 auto *I = dyn_cast<Instruction>(V); 4192 if (!I) 4193 continue; 4194 if (getTreeEntry(I)) { 4195 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 4196 << ") is already in tree.\n"); 4197 if (TryToFindDuplicates(S)) 4198 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4199 ReuseShuffleIndicies); 4200 return; 4201 } 4202 } 4203 4204 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 4205 for (Value *V : VL) { 4206 if (is_contained(UserIgnoreList, V)) { 4207 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 4208 if (TryToFindDuplicates(S)) 4209 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4210 ReuseShuffleIndicies); 4211 return; 4212 } 4213 } 4214 4215 // Check that all of the users of the scalars that we want to vectorize are 4216 // schedulable. 4217 auto *VL0 = cast<Instruction>(S.OpValue); 4218 BasicBlock *BB = VL0->getParent(); 4219 4220 if (!DT->isReachableFromEntry(BB)) { 4221 // Don't go into unreachable blocks. They may contain instructions with 4222 // dependency cycles which confuse the final scheduling. 4223 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 4224 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4225 return; 4226 } 4227 4228 // Check that every instruction appears once in this bundle. 4229 if (!TryToFindDuplicates(S)) 4230 return; 4231 4232 auto &BSRef = BlocksSchedules[BB]; 4233 if (!BSRef) 4234 BSRef = std::make_unique<BlockScheduling>(BB); 4235 4236 BlockScheduling &BS = *BSRef; 4237 4238 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 4239 #ifdef EXPENSIVE_CHECKS 4240 // Make sure we didn't break any internal invariants 4241 BS.verify(); 4242 #endif 4243 if (!Bundle) { 4244 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 4245 assert((!BS.getScheduleData(VL0) || 4246 !BS.getScheduleData(VL0)->isPartOfBundle()) && 4247 "tryScheduleBundle should cancelScheduling on failure"); 4248 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4249 ReuseShuffleIndicies); 4250 return; 4251 } 4252 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 4253 4254 unsigned ShuffleOrOp = S.isAltShuffle() ? 4255 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 4256 switch (ShuffleOrOp) { 4257 case Instruction::PHI: { 4258 auto *PH = cast<PHINode>(VL0); 4259 4260 // Check for terminator values (e.g. invoke). 4261 for (Value *V : VL) 4262 for (Value *Incoming : cast<PHINode>(V)->incoming_values()) { 4263 Instruction *Term = dyn_cast<Instruction>(Incoming); 4264 if (Term && Term->isTerminator()) { 4265 LLVM_DEBUG(dbgs() 4266 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 4267 BS.cancelScheduling(VL, VL0); 4268 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4269 ReuseShuffleIndicies); 4270 return; 4271 } 4272 } 4273 4274 TreeEntry *TE = 4275 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 4276 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 4277 4278 // Keeps the reordered operands to avoid code duplication. 4279 SmallVector<ValueList, 2> OperandsVec; 4280 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 4281 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 4282 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 4283 TE->setOperand(I, Operands); 4284 OperandsVec.push_back(Operands); 4285 continue; 4286 } 4287 ValueList Operands; 4288 // Prepare the operand vector. 4289 for (Value *V : VL) 4290 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 4291 PH->getIncomingBlock(I))); 4292 TE->setOperand(I, Operands); 4293 OperandsVec.push_back(Operands); 4294 } 4295 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 4296 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 4297 return; 4298 } 4299 case Instruction::ExtractValue: 4300 case Instruction::ExtractElement: { 4301 OrdersType CurrentOrder; 4302 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 4303 if (Reuse) { 4304 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 4305 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4306 ReuseShuffleIndicies); 4307 // This is a special case, as it does not gather, but at the same time 4308 // we are not extending buildTree_rec() towards the operands. 4309 ValueList Op0; 4310 Op0.assign(VL.size(), VL0->getOperand(0)); 4311 VectorizableTree.back()->setOperand(0, Op0); 4312 return; 4313 } 4314 if (!CurrentOrder.empty()) { 4315 LLVM_DEBUG({ 4316 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 4317 "with order"; 4318 for (unsigned Idx : CurrentOrder) 4319 dbgs() << " " << Idx; 4320 dbgs() << "\n"; 4321 }); 4322 fixupOrderingIndices(CurrentOrder); 4323 // Insert new order with initial value 0, if it does not exist, 4324 // otherwise return the iterator to the existing one. 4325 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4326 ReuseShuffleIndicies, CurrentOrder); 4327 // This is a special case, as it does not gather, but at the same time 4328 // we are not extending buildTree_rec() towards the operands. 4329 ValueList Op0; 4330 Op0.assign(VL.size(), VL0->getOperand(0)); 4331 VectorizableTree.back()->setOperand(0, Op0); 4332 return; 4333 } 4334 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 4335 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4336 ReuseShuffleIndicies); 4337 BS.cancelScheduling(VL, VL0); 4338 return; 4339 } 4340 case Instruction::InsertElement: { 4341 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 4342 4343 // Check that we have a buildvector and not a shuffle of 2 or more 4344 // different vectors. 4345 ValueSet SourceVectors; 4346 for (Value *V : VL) { 4347 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 4348 assert(getInsertIndex(V) != None && "Non-constant or undef index?"); 4349 } 4350 4351 if (count_if(VL, [&SourceVectors](Value *V) { 4352 return !SourceVectors.contains(V); 4353 }) >= 2) { 4354 // Found 2nd source vector - cancel. 4355 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 4356 "different source vectors.\n"); 4357 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4358 BS.cancelScheduling(VL, VL0); 4359 return; 4360 } 4361 4362 auto OrdCompare = [](const std::pair<int, int> &P1, 4363 const std::pair<int, int> &P2) { 4364 return P1.first > P2.first; 4365 }; 4366 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 4367 decltype(OrdCompare)> 4368 Indices(OrdCompare); 4369 for (int I = 0, E = VL.size(); I < E; ++I) { 4370 unsigned Idx = *getInsertIndex(VL[I]); 4371 Indices.emplace(Idx, I); 4372 } 4373 OrdersType CurrentOrder(VL.size(), VL.size()); 4374 bool IsIdentity = true; 4375 for (int I = 0, E = VL.size(); I < E; ++I) { 4376 CurrentOrder[Indices.top().second] = I; 4377 IsIdentity &= Indices.top().second == I; 4378 Indices.pop(); 4379 } 4380 if (IsIdentity) 4381 CurrentOrder.clear(); 4382 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4383 None, CurrentOrder); 4384 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 4385 4386 constexpr int NumOps = 2; 4387 ValueList VectorOperands[NumOps]; 4388 for (int I = 0; I < NumOps; ++I) { 4389 for (Value *V : VL) 4390 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 4391 4392 TE->setOperand(I, VectorOperands[I]); 4393 } 4394 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 4395 return; 4396 } 4397 case Instruction::Load: { 4398 // Check that a vectorized load would load the same memory as a scalar 4399 // load. For example, we don't want to vectorize loads that are smaller 4400 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 4401 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 4402 // from such a struct, we read/write packed bits disagreeing with the 4403 // unvectorized version. 4404 SmallVector<Value *> PointerOps; 4405 OrdersType CurrentOrder; 4406 TreeEntry *TE = nullptr; 4407 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 4408 PointerOps)) { 4409 case LoadsState::Vectorize: 4410 if (CurrentOrder.empty()) { 4411 // Original loads are consecutive and does not require reordering. 4412 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4413 ReuseShuffleIndicies); 4414 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 4415 } else { 4416 fixupOrderingIndices(CurrentOrder); 4417 // Need to reorder. 4418 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4419 ReuseShuffleIndicies, CurrentOrder); 4420 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 4421 } 4422 TE->setOperandsInOrder(); 4423 break; 4424 case LoadsState::ScatterVectorize: 4425 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 4426 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 4427 UserTreeIdx, ReuseShuffleIndicies); 4428 TE->setOperandsInOrder(); 4429 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 4430 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 4431 break; 4432 case LoadsState::Gather: 4433 BS.cancelScheduling(VL, VL0); 4434 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4435 ReuseShuffleIndicies); 4436 #ifndef NDEBUG 4437 Type *ScalarTy = VL0->getType(); 4438 if (DL->getTypeSizeInBits(ScalarTy) != 4439 DL->getTypeAllocSizeInBits(ScalarTy)) 4440 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 4441 else if (any_of(VL, [](Value *V) { 4442 return !cast<LoadInst>(V)->isSimple(); 4443 })) 4444 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 4445 else 4446 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 4447 #endif // NDEBUG 4448 break; 4449 } 4450 return; 4451 } 4452 case Instruction::ZExt: 4453 case Instruction::SExt: 4454 case Instruction::FPToUI: 4455 case Instruction::FPToSI: 4456 case Instruction::FPExt: 4457 case Instruction::PtrToInt: 4458 case Instruction::IntToPtr: 4459 case Instruction::SIToFP: 4460 case Instruction::UIToFP: 4461 case Instruction::Trunc: 4462 case Instruction::FPTrunc: 4463 case Instruction::BitCast: { 4464 Type *SrcTy = VL0->getOperand(0)->getType(); 4465 for (Value *V : VL) { 4466 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 4467 if (Ty != SrcTy || !isValidElementType(Ty)) { 4468 BS.cancelScheduling(VL, VL0); 4469 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4470 ReuseShuffleIndicies); 4471 LLVM_DEBUG(dbgs() 4472 << "SLP: Gathering casts with different src types.\n"); 4473 return; 4474 } 4475 } 4476 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4477 ReuseShuffleIndicies); 4478 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 4479 4480 TE->setOperandsInOrder(); 4481 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4482 ValueList Operands; 4483 // Prepare the operand vector. 4484 for (Value *V : VL) 4485 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4486 4487 buildTree_rec(Operands, Depth + 1, {TE, i}); 4488 } 4489 return; 4490 } 4491 case Instruction::ICmp: 4492 case Instruction::FCmp: { 4493 // Check that all of the compares have the same predicate. 4494 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4495 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 4496 Type *ComparedTy = VL0->getOperand(0)->getType(); 4497 for (Value *V : VL) { 4498 CmpInst *Cmp = cast<CmpInst>(V); 4499 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 4500 Cmp->getOperand(0)->getType() != ComparedTy) { 4501 BS.cancelScheduling(VL, VL0); 4502 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4503 ReuseShuffleIndicies); 4504 LLVM_DEBUG(dbgs() 4505 << "SLP: Gathering cmp with different predicate.\n"); 4506 return; 4507 } 4508 } 4509 4510 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4511 ReuseShuffleIndicies); 4512 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 4513 4514 ValueList Left, Right; 4515 if (cast<CmpInst>(VL0)->isCommutative()) { 4516 // Commutative predicate - collect + sort operands of the instructions 4517 // so that each side is more likely to have the same opcode. 4518 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 4519 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4520 } else { 4521 // Collect operands - commute if it uses the swapped predicate. 4522 for (Value *V : VL) { 4523 auto *Cmp = cast<CmpInst>(V); 4524 Value *LHS = Cmp->getOperand(0); 4525 Value *RHS = Cmp->getOperand(1); 4526 if (Cmp->getPredicate() != P0) 4527 std::swap(LHS, RHS); 4528 Left.push_back(LHS); 4529 Right.push_back(RHS); 4530 } 4531 } 4532 TE->setOperand(0, Left); 4533 TE->setOperand(1, Right); 4534 buildTree_rec(Left, Depth + 1, {TE, 0}); 4535 buildTree_rec(Right, Depth + 1, {TE, 1}); 4536 return; 4537 } 4538 case Instruction::Select: 4539 case Instruction::FNeg: 4540 case Instruction::Add: 4541 case Instruction::FAdd: 4542 case Instruction::Sub: 4543 case Instruction::FSub: 4544 case Instruction::Mul: 4545 case Instruction::FMul: 4546 case Instruction::UDiv: 4547 case Instruction::SDiv: 4548 case Instruction::FDiv: 4549 case Instruction::URem: 4550 case Instruction::SRem: 4551 case Instruction::FRem: 4552 case Instruction::Shl: 4553 case Instruction::LShr: 4554 case Instruction::AShr: 4555 case Instruction::And: 4556 case Instruction::Or: 4557 case Instruction::Xor: { 4558 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4559 ReuseShuffleIndicies); 4560 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 4561 4562 // Sort operands of the instructions so that each side is more likely to 4563 // have the same opcode. 4564 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 4565 ValueList Left, Right; 4566 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4567 TE->setOperand(0, Left); 4568 TE->setOperand(1, Right); 4569 buildTree_rec(Left, Depth + 1, {TE, 0}); 4570 buildTree_rec(Right, Depth + 1, {TE, 1}); 4571 return; 4572 } 4573 4574 TE->setOperandsInOrder(); 4575 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4576 ValueList Operands; 4577 // Prepare the operand vector. 4578 for (Value *V : VL) 4579 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4580 4581 buildTree_rec(Operands, Depth + 1, {TE, i}); 4582 } 4583 return; 4584 } 4585 case Instruction::GetElementPtr: { 4586 // We don't combine GEPs with complicated (nested) indexing. 4587 for (Value *V : VL) { 4588 if (cast<Instruction>(V)->getNumOperands() != 2) { 4589 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 4590 BS.cancelScheduling(VL, VL0); 4591 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4592 ReuseShuffleIndicies); 4593 return; 4594 } 4595 } 4596 4597 // We can't combine several GEPs into one vector if they operate on 4598 // different types. 4599 Type *Ty0 = cast<GEPOperator>(VL0)->getSourceElementType(); 4600 for (Value *V : VL) { 4601 Type *CurTy = cast<GEPOperator>(V)->getSourceElementType(); 4602 if (Ty0 != CurTy) { 4603 LLVM_DEBUG(dbgs() 4604 << "SLP: not-vectorizable GEP (different types).\n"); 4605 BS.cancelScheduling(VL, VL0); 4606 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4607 ReuseShuffleIndicies); 4608 return; 4609 } 4610 } 4611 4612 // We don't combine GEPs with non-constant indexes. 4613 Type *Ty1 = VL0->getOperand(1)->getType(); 4614 for (Value *V : VL) { 4615 auto Op = cast<Instruction>(V)->getOperand(1); 4616 if (!isa<ConstantInt>(Op) || 4617 (Op->getType() != Ty1 && 4618 Op->getType()->getScalarSizeInBits() > 4619 DL->getIndexSizeInBits( 4620 V->getType()->getPointerAddressSpace()))) { 4621 LLVM_DEBUG(dbgs() 4622 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 4623 BS.cancelScheduling(VL, VL0); 4624 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4625 ReuseShuffleIndicies); 4626 return; 4627 } 4628 } 4629 4630 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4631 ReuseShuffleIndicies); 4632 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 4633 SmallVector<ValueList, 2> Operands(2); 4634 // Prepare the operand vector for pointer operands. 4635 for (Value *V : VL) 4636 Operands.front().push_back( 4637 cast<GetElementPtrInst>(V)->getPointerOperand()); 4638 TE->setOperand(0, Operands.front()); 4639 // Need to cast all indices to the same type before vectorization to 4640 // avoid crash. 4641 // Required to be able to find correct matches between different gather 4642 // nodes and reuse the vectorized values rather than trying to gather them 4643 // again. 4644 int IndexIdx = 1; 4645 Type *VL0Ty = VL0->getOperand(IndexIdx)->getType(); 4646 Type *Ty = all_of(VL, 4647 [VL0Ty, IndexIdx](Value *V) { 4648 return VL0Ty == cast<GetElementPtrInst>(V) 4649 ->getOperand(IndexIdx) 4650 ->getType(); 4651 }) 4652 ? VL0Ty 4653 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4654 ->getPointerOperandType() 4655 ->getScalarType()); 4656 // Prepare the operand vector. 4657 for (Value *V : VL) { 4658 auto *Op = cast<Instruction>(V)->getOperand(IndexIdx); 4659 auto *CI = cast<ConstantInt>(Op); 4660 Operands.back().push_back(ConstantExpr::getIntegerCast( 4661 CI, Ty, CI->getValue().isSignBitSet())); 4662 } 4663 TE->setOperand(IndexIdx, Operands.back()); 4664 4665 for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I) 4666 buildTree_rec(Operands[I], Depth + 1, {TE, I}); 4667 return; 4668 } 4669 case Instruction::Store: { 4670 // Check if the stores are consecutive or if we need to swizzle them. 4671 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 4672 // Avoid types that are padded when being allocated as scalars, while 4673 // being packed together in a vector (such as i1). 4674 if (DL->getTypeSizeInBits(ScalarTy) != 4675 DL->getTypeAllocSizeInBits(ScalarTy)) { 4676 BS.cancelScheduling(VL, VL0); 4677 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4678 ReuseShuffleIndicies); 4679 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 4680 return; 4681 } 4682 // Make sure all stores in the bundle are simple - we can't vectorize 4683 // atomic or volatile stores. 4684 SmallVector<Value *, 4> PointerOps(VL.size()); 4685 ValueList Operands(VL.size()); 4686 auto POIter = PointerOps.begin(); 4687 auto OIter = Operands.begin(); 4688 for (Value *V : VL) { 4689 auto *SI = cast<StoreInst>(V); 4690 if (!SI->isSimple()) { 4691 BS.cancelScheduling(VL, VL0); 4692 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4693 ReuseShuffleIndicies); 4694 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 4695 return; 4696 } 4697 *POIter = SI->getPointerOperand(); 4698 *OIter = SI->getValueOperand(); 4699 ++POIter; 4700 ++OIter; 4701 } 4702 4703 OrdersType CurrentOrder; 4704 // Check the order of pointer operands. 4705 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 4706 Value *Ptr0; 4707 Value *PtrN; 4708 if (CurrentOrder.empty()) { 4709 Ptr0 = PointerOps.front(); 4710 PtrN = PointerOps.back(); 4711 } else { 4712 Ptr0 = PointerOps[CurrentOrder.front()]; 4713 PtrN = PointerOps[CurrentOrder.back()]; 4714 } 4715 Optional<int> Dist = 4716 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 4717 // Check that the sorted pointer operands are consecutive. 4718 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 4719 if (CurrentOrder.empty()) { 4720 // Original stores are consecutive and does not require reordering. 4721 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 4722 UserTreeIdx, ReuseShuffleIndicies); 4723 TE->setOperandsInOrder(); 4724 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4725 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 4726 } else { 4727 fixupOrderingIndices(CurrentOrder); 4728 TreeEntry *TE = 4729 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4730 ReuseShuffleIndicies, CurrentOrder); 4731 TE->setOperandsInOrder(); 4732 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4733 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 4734 } 4735 return; 4736 } 4737 } 4738 4739 BS.cancelScheduling(VL, VL0); 4740 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4741 ReuseShuffleIndicies); 4742 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 4743 return; 4744 } 4745 case Instruction::Call: { 4746 // Check if the calls are all to the same vectorizable intrinsic or 4747 // library function. 4748 CallInst *CI = cast<CallInst>(VL0); 4749 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4750 4751 VFShape Shape = VFShape::get( 4752 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 4753 false /*HasGlobalPred*/); 4754 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4755 4756 if (!VecFunc && !isTriviallyVectorizable(ID)) { 4757 BS.cancelScheduling(VL, VL0); 4758 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4759 ReuseShuffleIndicies); 4760 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 4761 return; 4762 } 4763 Function *F = CI->getCalledFunction(); 4764 unsigned NumArgs = CI->arg_size(); 4765 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 4766 for (unsigned j = 0; j != NumArgs; ++j) 4767 if (hasVectorInstrinsicScalarOpd(ID, j)) 4768 ScalarArgs[j] = CI->getArgOperand(j); 4769 for (Value *V : VL) { 4770 CallInst *CI2 = dyn_cast<CallInst>(V); 4771 if (!CI2 || CI2->getCalledFunction() != F || 4772 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 4773 (VecFunc && 4774 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 4775 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 4776 BS.cancelScheduling(VL, VL0); 4777 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4778 ReuseShuffleIndicies); 4779 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 4780 << "\n"); 4781 return; 4782 } 4783 // Some intrinsics have scalar arguments and should be same in order for 4784 // them to be vectorized. 4785 for (unsigned j = 0; j != NumArgs; ++j) { 4786 if (hasVectorInstrinsicScalarOpd(ID, j)) { 4787 Value *A1J = CI2->getArgOperand(j); 4788 if (ScalarArgs[j] != A1J) { 4789 BS.cancelScheduling(VL, VL0); 4790 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4791 ReuseShuffleIndicies); 4792 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 4793 << " argument " << ScalarArgs[j] << "!=" << A1J 4794 << "\n"); 4795 return; 4796 } 4797 } 4798 } 4799 // Verify that the bundle operands are identical between the two calls. 4800 if (CI->hasOperandBundles() && 4801 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 4802 CI->op_begin() + CI->getBundleOperandsEndIndex(), 4803 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 4804 BS.cancelScheduling(VL, VL0); 4805 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4806 ReuseShuffleIndicies); 4807 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 4808 << *CI << "!=" << *V << '\n'); 4809 return; 4810 } 4811 } 4812 4813 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4814 ReuseShuffleIndicies); 4815 TE->setOperandsInOrder(); 4816 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 4817 // For scalar operands no need to to create an entry since no need to 4818 // vectorize it. 4819 if (hasVectorInstrinsicScalarOpd(ID, i)) 4820 continue; 4821 ValueList Operands; 4822 // Prepare the operand vector. 4823 for (Value *V : VL) { 4824 auto *CI2 = cast<CallInst>(V); 4825 Operands.push_back(CI2->getArgOperand(i)); 4826 } 4827 buildTree_rec(Operands, Depth + 1, {TE, i}); 4828 } 4829 return; 4830 } 4831 case Instruction::ShuffleVector: { 4832 // If this is not an alternate sequence of opcode like add-sub 4833 // then do not vectorize this instruction. 4834 if (!S.isAltShuffle()) { 4835 BS.cancelScheduling(VL, VL0); 4836 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4837 ReuseShuffleIndicies); 4838 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 4839 return; 4840 } 4841 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4842 ReuseShuffleIndicies); 4843 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 4844 4845 // Reorder operands if reordering would enable vectorization. 4846 auto *CI = dyn_cast<CmpInst>(VL0); 4847 if (isa<BinaryOperator>(VL0) || CI) { 4848 ValueList Left, Right; 4849 if (!CI || all_of(VL, [](Value *V) { 4850 return cast<CmpInst>(V)->isCommutative(); 4851 })) { 4852 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4853 } else { 4854 CmpInst::Predicate P0 = CI->getPredicate(); 4855 CmpInst::Predicate AltP0 = cast<CmpInst>(S.AltOp)->getPredicate(); 4856 assert(P0 != AltP0 && 4857 "Expected different main/alternate predicates."); 4858 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 4859 Value *BaseOp0 = VL0->getOperand(0); 4860 Value *BaseOp1 = VL0->getOperand(1); 4861 // Collect operands - commute if it uses the swapped predicate or 4862 // alternate operation. 4863 for (Value *V : VL) { 4864 auto *Cmp = cast<CmpInst>(V); 4865 Value *LHS = Cmp->getOperand(0); 4866 Value *RHS = Cmp->getOperand(1); 4867 CmpInst::Predicate CurrentPred = Cmp->getPredicate(); 4868 if (P0 == AltP0Swapped) { 4869 if (CI != Cmp && S.AltOp != Cmp && 4870 ((P0 == CurrentPred && 4871 !areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)) || 4872 (AltP0 == CurrentPred && 4873 areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)))) 4874 std::swap(LHS, RHS); 4875 } else if (P0 != CurrentPred && AltP0 != CurrentPred) { 4876 std::swap(LHS, RHS); 4877 } 4878 Left.push_back(LHS); 4879 Right.push_back(RHS); 4880 } 4881 } 4882 TE->setOperand(0, Left); 4883 TE->setOperand(1, Right); 4884 buildTree_rec(Left, Depth + 1, {TE, 0}); 4885 buildTree_rec(Right, Depth + 1, {TE, 1}); 4886 return; 4887 } 4888 4889 TE->setOperandsInOrder(); 4890 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4891 ValueList Operands; 4892 // Prepare the operand vector. 4893 for (Value *V : VL) 4894 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4895 4896 buildTree_rec(Operands, Depth + 1, {TE, i}); 4897 } 4898 return; 4899 } 4900 default: 4901 BS.cancelScheduling(VL, VL0); 4902 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4903 ReuseShuffleIndicies); 4904 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 4905 return; 4906 } 4907 } 4908 4909 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 4910 unsigned N = 1; 4911 Type *EltTy = T; 4912 4913 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 4914 isa<VectorType>(EltTy)) { 4915 if (auto *ST = dyn_cast<StructType>(EltTy)) { 4916 // Check that struct is homogeneous. 4917 for (const auto *Ty : ST->elements()) 4918 if (Ty != *ST->element_begin()) 4919 return 0; 4920 N *= ST->getNumElements(); 4921 EltTy = *ST->element_begin(); 4922 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 4923 N *= AT->getNumElements(); 4924 EltTy = AT->getElementType(); 4925 } else { 4926 auto *VT = cast<FixedVectorType>(EltTy); 4927 N *= VT->getNumElements(); 4928 EltTy = VT->getElementType(); 4929 } 4930 } 4931 4932 if (!isValidElementType(EltTy)) 4933 return 0; 4934 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 4935 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 4936 return 0; 4937 return N; 4938 } 4939 4940 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 4941 SmallVectorImpl<unsigned> &CurrentOrder) const { 4942 const auto *It = find_if(VL, [](Value *V) { 4943 return isa<ExtractElementInst, ExtractValueInst>(V); 4944 }); 4945 assert(It != VL.end() && "Expected at least one extract instruction."); 4946 auto *E0 = cast<Instruction>(*It); 4947 assert(all_of(VL, 4948 [](Value *V) { 4949 return isa<UndefValue, ExtractElementInst, ExtractValueInst>( 4950 V); 4951 }) && 4952 "Invalid opcode"); 4953 // Check if all of the extracts come from the same vector and from the 4954 // correct offset. 4955 Value *Vec = E0->getOperand(0); 4956 4957 CurrentOrder.clear(); 4958 4959 // We have to extract from a vector/aggregate with the same number of elements. 4960 unsigned NElts; 4961 if (E0->getOpcode() == Instruction::ExtractValue) { 4962 const DataLayout &DL = E0->getModule()->getDataLayout(); 4963 NElts = canMapToVector(Vec->getType(), DL); 4964 if (!NElts) 4965 return false; 4966 // Check if load can be rewritten as load of vector. 4967 LoadInst *LI = dyn_cast<LoadInst>(Vec); 4968 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 4969 return false; 4970 } else { 4971 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 4972 } 4973 4974 if (NElts != VL.size()) 4975 return false; 4976 4977 // Check that all of the indices extract from the correct offset. 4978 bool ShouldKeepOrder = true; 4979 unsigned E = VL.size(); 4980 // Assign to all items the initial value E + 1 so we can check if the extract 4981 // instruction index was used already. 4982 // Also, later we can check that all the indices are used and we have a 4983 // consecutive access in the extract instructions, by checking that no 4984 // element of CurrentOrder still has value E + 1. 4985 CurrentOrder.assign(E, E); 4986 unsigned I = 0; 4987 for (; I < E; ++I) { 4988 auto *Inst = dyn_cast<Instruction>(VL[I]); 4989 if (!Inst) 4990 continue; 4991 if (Inst->getOperand(0) != Vec) 4992 break; 4993 if (auto *EE = dyn_cast<ExtractElementInst>(Inst)) 4994 if (isa<UndefValue>(EE->getIndexOperand())) 4995 continue; 4996 Optional<unsigned> Idx = getExtractIndex(Inst); 4997 if (!Idx) 4998 break; 4999 const unsigned ExtIdx = *Idx; 5000 if (ExtIdx != I) { 5001 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E) 5002 break; 5003 ShouldKeepOrder = false; 5004 CurrentOrder[ExtIdx] = I; 5005 } else { 5006 if (CurrentOrder[I] != E) 5007 break; 5008 CurrentOrder[I] = I; 5009 } 5010 } 5011 if (I < E) { 5012 CurrentOrder.clear(); 5013 return false; 5014 } 5015 if (ShouldKeepOrder) 5016 CurrentOrder.clear(); 5017 5018 return ShouldKeepOrder; 5019 } 5020 5021 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 5022 ArrayRef<Value *> VectorizedVals) const { 5023 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 5024 all_of(I->users(), [this](User *U) { 5025 return ScalarToTreeEntry.count(U) > 0 || 5026 isVectorLikeInstWithConstOps(U) || 5027 (isa<ExtractElementInst>(U) && MustGather.contains(U)); 5028 }); 5029 } 5030 5031 static std::pair<InstructionCost, InstructionCost> 5032 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 5033 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 5034 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5035 5036 // Calculate the cost of the scalar and vector calls. 5037 SmallVector<Type *, 4> VecTys; 5038 for (Use &Arg : CI->args()) 5039 VecTys.push_back( 5040 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 5041 FastMathFlags FMF; 5042 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 5043 FMF = FPCI->getFastMathFlags(); 5044 SmallVector<const Value *> Arguments(CI->args()); 5045 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 5046 dyn_cast<IntrinsicInst>(CI)); 5047 auto IntrinsicCost = 5048 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 5049 5050 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 5051 VecTy->getNumElements())), 5052 false /*HasGlobalPred*/); 5053 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 5054 auto LibCost = IntrinsicCost; 5055 if (!CI->isNoBuiltin() && VecFunc) { 5056 // Calculate the cost of the vector library call. 5057 // If the corresponding vector call is cheaper, return its cost. 5058 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 5059 TTI::TCK_RecipThroughput); 5060 } 5061 return {IntrinsicCost, LibCost}; 5062 } 5063 5064 /// Compute the cost of creating a vector of type \p VecTy containing the 5065 /// extracted values from \p VL. 5066 static InstructionCost 5067 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 5068 TargetTransformInfo::ShuffleKind ShuffleKind, 5069 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 5070 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 5071 5072 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 5073 VecTy->getNumElements() < NumOfParts) 5074 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 5075 5076 bool AllConsecutive = true; 5077 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 5078 unsigned Idx = -1; 5079 InstructionCost Cost = 0; 5080 5081 // Process extracts in blocks of EltsPerVector to check if the source vector 5082 // operand can be re-used directly. If not, add the cost of creating a shuffle 5083 // to extract the values into a vector register. 5084 for (auto *V : VL) { 5085 ++Idx; 5086 5087 // Need to exclude undefs from analysis. 5088 if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem) 5089 continue; 5090 5091 // Reached the start of a new vector registers. 5092 if (Idx % EltsPerVector == 0) { 5093 AllConsecutive = true; 5094 continue; 5095 } 5096 5097 // Check all extracts for a vector register on the target directly 5098 // extract values in order. 5099 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 5100 if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) { 5101 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 5102 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 5103 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 5104 } 5105 5106 if (AllConsecutive) 5107 continue; 5108 5109 // Skip all indices, except for the last index per vector block. 5110 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 5111 continue; 5112 5113 // If we have a series of extracts which are not consecutive and hence 5114 // cannot re-use the source vector register directly, compute the shuffle 5115 // cost to extract the a vector with EltsPerVector elements. 5116 Cost += TTI.getShuffleCost( 5117 TargetTransformInfo::SK_PermuteSingleSrc, 5118 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 5119 } 5120 return Cost; 5121 } 5122 5123 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 5124 /// operations operands. 5125 static void 5126 buildShuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 5127 ArrayRef<int> ReusesIndices, 5128 const function_ref<bool(Instruction *)> IsAltOp, 5129 SmallVectorImpl<int> &Mask, 5130 SmallVectorImpl<Value *> *OpScalars = nullptr, 5131 SmallVectorImpl<Value *> *AltScalars = nullptr) { 5132 unsigned Sz = VL.size(); 5133 Mask.assign(Sz, UndefMaskElem); 5134 SmallVector<int> OrderMask; 5135 if (!ReorderIndices.empty()) 5136 inversePermutation(ReorderIndices, OrderMask); 5137 for (unsigned I = 0; I < Sz; ++I) { 5138 unsigned Idx = I; 5139 if (!ReorderIndices.empty()) 5140 Idx = OrderMask[I]; 5141 auto *OpInst = cast<Instruction>(VL[Idx]); 5142 if (IsAltOp(OpInst)) { 5143 Mask[I] = Sz + Idx; 5144 if (AltScalars) 5145 AltScalars->push_back(OpInst); 5146 } else { 5147 Mask[I] = Idx; 5148 if (OpScalars) 5149 OpScalars->push_back(OpInst); 5150 } 5151 } 5152 if (!ReusesIndices.empty()) { 5153 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 5154 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 5155 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 5156 }); 5157 Mask.swap(NewMask); 5158 } 5159 } 5160 5161 /// Checks if the specified instruction \p I is an alternate operation for the 5162 /// given \p MainOp and \p AltOp instructions. 5163 static bool isAlternateInstruction(const Instruction *I, 5164 const Instruction *MainOp, 5165 const Instruction *AltOp) { 5166 if (auto *CI0 = dyn_cast<CmpInst>(MainOp)) { 5167 auto *AltCI0 = cast<CmpInst>(AltOp); 5168 auto *CI = cast<CmpInst>(I); 5169 CmpInst::Predicate P0 = CI0->getPredicate(); 5170 CmpInst::Predicate AltP0 = AltCI0->getPredicate(); 5171 assert(P0 != AltP0 && "Expected different main/alternate predicates."); 5172 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 5173 CmpInst::Predicate CurrentPred = CI->getPredicate(); 5174 if (P0 == AltP0Swapped) 5175 return I == AltCI0 || 5176 (I != MainOp && 5177 !areCompatibleCmpOps(CI0->getOperand(0), CI0->getOperand(1), 5178 CI->getOperand(0), CI->getOperand(1))); 5179 return AltP0 == CurrentPred || AltP0Swapped == CurrentPred; 5180 } 5181 return I->getOpcode() == AltOp->getOpcode(); 5182 } 5183 5184 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 5185 ArrayRef<Value *> VectorizedVals) { 5186 ArrayRef<Value*> VL = E->Scalars; 5187 5188 Type *ScalarTy = VL[0]->getType(); 5189 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 5190 ScalarTy = SI->getValueOperand()->getType(); 5191 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 5192 ScalarTy = CI->getOperand(0)->getType(); 5193 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 5194 ScalarTy = IE->getOperand(1)->getType(); 5195 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 5196 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 5197 5198 // If we have computed a smaller type for the expression, update VecTy so 5199 // that the costs will be accurate. 5200 if (MinBWs.count(VL[0])) 5201 VecTy = FixedVectorType::get( 5202 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 5203 unsigned EntryVF = E->getVectorFactor(); 5204 auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF); 5205 5206 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 5207 // FIXME: it tries to fix a problem with MSVC buildbots. 5208 TargetTransformInfo &TTIRef = *TTI; 5209 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 5210 VectorizedVals, E](InstructionCost &Cost) { 5211 DenseMap<Value *, int> ExtractVectorsTys; 5212 SmallPtrSet<Value *, 4> CheckedExtracts; 5213 for (auto *V : VL) { 5214 if (isa<UndefValue>(V)) 5215 continue; 5216 // If all users of instruction are going to be vectorized and this 5217 // instruction itself is not going to be vectorized, consider this 5218 // instruction as dead and remove its cost from the final cost of the 5219 // vectorized tree. 5220 // Also, avoid adjusting the cost for extractelements with multiple uses 5221 // in different graph entries. 5222 const TreeEntry *VE = getTreeEntry(V); 5223 if (!CheckedExtracts.insert(V).second || 5224 !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 5225 (VE && VE != E)) 5226 continue; 5227 auto *EE = cast<ExtractElementInst>(V); 5228 Optional<unsigned> EEIdx = getExtractIndex(EE); 5229 if (!EEIdx) 5230 continue; 5231 unsigned Idx = *EEIdx; 5232 if (TTIRef.getNumberOfParts(VecTy) != 5233 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 5234 auto It = 5235 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 5236 It->getSecond() = std::min<int>(It->second, Idx); 5237 } 5238 // Take credit for instruction that will become dead. 5239 if (EE->hasOneUse()) { 5240 Instruction *Ext = EE->user_back(); 5241 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5242 all_of(Ext->users(), 5243 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5244 // Use getExtractWithExtendCost() to calculate the cost of 5245 // extractelement/ext pair. 5246 Cost -= 5247 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 5248 EE->getVectorOperandType(), Idx); 5249 // Add back the cost of s|zext which is subtracted separately. 5250 Cost += TTIRef.getCastInstrCost( 5251 Ext->getOpcode(), Ext->getType(), EE->getType(), 5252 TTI::getCastContextHint(Ext), CostKind, Ext); 5253 continue; 5254 } 5255 } 5256 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 5257 EE->getVectorOperandType(), Idx); 5258 } 5259 // Add a cost for subvector extracts/inserts if required. 5260 for (const auto &Data : ExtractVectorsTys) { 5261 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 5262 unsigned NumElts = VecTy->getNumElements(); 5263 if (Data.second % NumElts == 0) 5264 continue; 5265 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 5266 unsigned Idx = (Data.second / NumElts) * NumElts; 5267 unsigned EENumElts = EEVTy->getNumElements(); 5268 if (Idx + NumElts <= EENumElts) { 5269 Cost += 5270 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5271 EEVTy, None, Idx, VecTy); 5272 } else { 5273 // Need to round up the subvector type vectorization factor to avoid a 5274 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 5275 // <= EENumElts. 5276 auto *SubVT = 5277 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 5278 Cost += 5279 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5280 EEVTy, None, Idx, SubVT); 5281 } 5282 } else { 5283 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 5284 VecTy, None, 0, EEVTy); 5285 } 5286 } 5287 }; 5288 if (E->State == TreeEntry::NeedToGather) { 5289 if (allConstant(VL)) 5290 return 0; 5291 if (isa<InsertElementInst>(VL[0])) 5292 return InstructionCost::getInvalid(); 5293 SmallVector<int> Mask; 5294 SmallVector<const TreeEntry *> Entries; 5295 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 5296 isGatherShuffledEntry(E, Mask, Entries); 5297 if (Shuffle.hasValue()) { 5298 InstructionCost GatherCost = 0; 5299 if (ShuffleVectorInst::isIdentityMask(Mask)) { 5300 // Perfect match in the graph, will reuse the previously vectorized 5301 // node. Cost is 0. 5302 LLVM_DEBUG( 5303 dbgs() 5304 << "SLP: perfect diamond match for gather bundle that starts with " 5305 << *VL.front() << ".\n"); 5306 if (NeedToShuffleReuses) 5307 GatherCost = 5308 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5309 FinalVecTy, E->ReuseShuffleIndices); 5310 } else { 5311 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 5312 << " entries for bundle that starts with " 5313 << *VL.front() << ".\n"); 5314 // Detected that instead of gather we can emit a shuffle of single/two 5315 // previously vectorized nodes. Add the cost of the permutation rather 5316 // than gather. 5317 ::addMask(Mask, E->ReuseShuffleIndices); 5318 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 5319 } 5320 return GatherCost; 5321 } 5322 if ((E->getOpcode() == Instruction::ExtractElement || 5323 all_of(E->Scalars, 5324 [](Value *V) { 5325 return isa<ExtractElementInst, UndefValue>(V); 5326 })) && 5327 allSameType(VL)) { 5328 // Check that gather of extractelements can be represented as just a 5329 // shuffle of a single/two vectors the scalars are extracted from. 5330 SmallVector<int> Mask; 5331 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 5332 isFixedVectorShuffle(VL, Mask); 5333 if (ShuffleKind.hasValue()) { 5334 // Found the bunch of extractelement instructions that must be gathered 5335 // into a vector and can be represented as a permutation elements in a 5336 // single input vector or of 2 input vectors. 5337 InstructionCost Cost = 5338 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 5339 AdjustExtractsCost(Cost); 5340 if (NeedToShuffleReuses) 5341 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5342 FinalVecTy, E->ReuseShuffleIndices); 5343 return Cost; 5344 } 5345 } 5346 if (isSplat(VL)) { 5347 // Found the broadcasting of the single scalar, calculate the cost as the 5348 // broadcast. 5349 assert(VecTy == FinalVecTy && 5350 "No reused scalars expected for broadcast."); 5351 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 5352 /*Mask=*/None, /*Index=*/0, 5353 /*SubTp=*/nullptr, /*Args=*/VL); 5354 } 5355 InstructionCost ReuseShuffleCost = 0; 5356 if (NeedToShuffleReuses) 5357 ReuseShuffleCost = TTI->getShuffleCost( 5358 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 5359 // Improve gather cost for gather of loads, if we can group some of the 5360 // loads into vector loads. 5361 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 5362 !E->isAltShuffle()) { 5363 BoUpSLP::ValueSet VectorizedLoads; 5364 unsigned StartIdx = 0; 5365 unsigned VF = VL.size() / 2; 5366 unsigned VectorizedCnt = 0; 5367 unsigned ScatterVectorizeCnt = 0; 5368 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 5369 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 5370 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 5371 Cnt += VF) { 5372 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 5373 if (!VectorizedLoads.count(Slice.front()) && 5374 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 5375 SmallVector<Value *> PointerOps; 5376 OrdersType CurrentOrder; 5377 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 5378 *SE, CurrentOrder, PointerOps); 5379 switch (LS) { 5380 case LoadsState::Vectorize: 5381 case LoadsState::ScatterVectorize: 5382 // Mark the vectorized loads so that we don't vectorize them 5383 // again. 5384 if (LS == LoadsState::Vectorize) 5385 ++VectorizedCnt; 5386 else 5387 ++ScatterVectorizeCnt; 5388 VectorizedLoads.insert(Slice.begin(), Slice.end()); 5389 // If we vectorized initial block, no need to try to vectorize it 5390 // again. 5391 if (Cnt == StartIdx) 5392 StartIdx += VF; 5393 break; 5394 case LoadsState::Gather: 5395 break; 5396 } 5397 } 5398 } 5399 // Check if the whole array was vectorized already - exit. 5400 if (StartIdx >= VL.size()) 5401 break; 5402 // Found vectorizable parts - exit. 5403 if (!VectorizedLoads.empty()) 5404 break; 5405 } 5406 if (!VectorizedLoads.empty()) { 5407 InstructionCost GatherCost = 0; 5408 unsigned NumParts = TTI->getNumberOfParts(VecTy); 5409 bool NeedInsertSubvectorAnalysis = 5410 !NumParts || (VL.size() / VF) > NumParts; 5411 // Get the cost for gathered loads. 5412 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 5413 if (VectorizedLoads.contains(VL[I])) 5414 continue; 5415 GatherCost += getGatherCost(VL.slice(I, VF)); 5416 } 5417 // The cost for vectorized loads. 5418 InstructionCost ScalarsCost = 0; 5419 for (Value *V : VectorizedLoads) { 5420 auto *LI = cast<LoadInst>(V); 5421 ScalarsCost += TTI->getMemoryOpCost( 5422 Instruction::Load, LI->getType(), LI->getAlign(), 5423 LI->getPointerAddressSpace(), CostKind, LI); 5424 } 5425 auto *LI = cast<LoadInst>(E->getMainOp()); 5426 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 5427 Align Alignment = LI->getAlign(); 5428 GatherCost += 5429 VectorizedCnt * 5430 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 5431 LI->getPointerAddressSpace(), CostKind, LI); 5432 GatherCost += ScatterVectorizeCnt * 5433 TTI->getGatherScatterOpCost( 5434 Instruction::Load, LoadTy, LI->getPointerOperand(), 5435 /*VariableMask=*/false, Alignment, CostKind, LI); 5436 if (NeedInsertSubvectorAnalysis) { 5437 // Add the cost for the subvectors insert. 5438 for (int I = VF, E = VL.size(); I < E; I += VF) 5439 GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy, 5440 None, I, LoadTy); 5441 } 5442 return ReuseShuffleCost + GatherCost - ScalarsCost; 5443 } 5444 } 5445 return ReuseShuffleCost + getGatherCost(VL); 5446 } 5447 InstructionCost CommonCost = 0; 5448 SmallVector<int> Mask; 5449 if (!E->ReorderIndices.empty()) { 5450 SmallVector<int> NewMask; 5451 if (E->getOpcode() == Instruction::Store) { 5452 // For stores the order is actually a mask. 5453 NewMask.resize(E->ReorderIndices.size()); 5454 copy(E->ReorderIndices, NewMask.begin()); 5455 } else { 5456 inversePermutation(E->ReorderIndices, NewMask); 5457 } 5458 ::addMask(Mask, NewMask); 5459 } 5460 if (NeedToShuffleReuses) 5461 ::addMask(Mask, E->ReuseShuffleIndices); 5462 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 5463 CommonCost = 5464 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 5465 assert((E->State == TreeEntry::Vectorize || 5466 E->State == TreeEntry::ScatterVectorize) && 5467 "Unhandled state"); 5468 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 5469 Instruction *VL0 = E->getMainOp(); 5470 unsigned ShuffleOrOp = 5471 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 5472 switch (ShuffleOrOp) { 5473 case Instruction::PHI: 5474 return 0; 5475 5476 case Instruction::ExtractValue: 5477 case Instruction::ExtractElement: { 5478 // The common cost of removal ExtractElement/ExtractValue instructions + 5479 // the cost of shuffles, if required to resuffle the original vector. 5480 if (NeedToShuffleReuses) { 5481 unsigned Idx = 0; 5482 for (unsigned I : E->ReuseShuffleIndices) { 5483 if (ShuffleOrOp == Instruction::ExtractElement) { 5484 auto *EE = cast<ExtractElementInst>(VL[I]); 5485 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5486 EE->getVectorOperandType(), 5487 *getExtractIndex(EE)); 5488 } else { 5489 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5490 VecTy, Idx); 5491 ++Idx; 5492 } 5493 } 5494 Idx = EntryVF; 5495 for (Value *V : VL) { 5496 if (ShuffleOrOp == Instruction::ExtractElement) { 5497 auto *EE = cast<ExtractElementInst>(V); 5498 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5499 EE->getVectorOperandType(), 5500 *getExtractIndex(EE)); 5501 } else { 5502 --Idx; 5503 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5504 VecTy, Idx); 5505 } 5506 } 5507 } 5508 if (ShuffleOrOp == Instruction::ExtractValue) { 5509 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 5510 auto *EI = cast<Instruction>(VL[I]); 5511 // Take credit for instruction that will become dead. 5512 if (EI->hasOneUse()) { 5513 Instruction *Ext = EI->user_back(); 5514 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5515 all_of(Ext->users(), 5516 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5517 // Use getExtractWithExtendCost() to calculate the cost of 5518 // extractelement/ext pair. 5519 CommonCost -= TTI->getExtractWithExtendCost( 5520 Ext->getOpcode(), Ext->getType(), VecTy, I); 5521 // Add back the cost of s|zext which is subtracted separately. 5522 CommonCost += TTI->getCastInstrCost( 5523 Ext->getOpcode(), Ext->getType(), EI->getType(), 5524 TTI::getCastContextHint(Ext), CostKind, Ext); 5525 continue; 5526 } 5527 } 5528 CommonCost -= 5529 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 5530 } 5531 } else { 5532 AdjustExtractsCost(CommonCost); 5533 } 5534 return CommonCost; 5535 } 5536 case Instruction::InsertElement: { 5537 assert(E->ReuseShuffleIndices.empty() && 5538 "Unique insertelements only are expected."); 5539 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 5540 5541 unsigned const NumElts = SrcVecTy->getNumElements(); 5542 unsigned const NumScalars = VL.size(); 5543 APInt DemandedElts = APInt::getZero(NumElts); 5544 // TODO: Add support for Instruction::InsertValue. 5545 SmallVector<int> Mask; 5546 if (!E->ReorderIndices.empty()) { 5547 inversePermutation(E->ReorderIndices, Mask); 5548 Mask.append(NumElts - NumScalars, UndefMaskElem); 5549 } else { 5550 Mask.assign(NumElts, UndefMaskElem); 5551 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 5552 } 5553 unsigned Offset = *getInsertIndex(VL0); 5554 bool IsIdentity = true; 5555 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 5556 Mask.swap(PrevMask); 5557 for (unsigned I = 0; I < NumScalars; ++I) { 5558 unsigned InsertIdx = *getInsertIndex(VL[PrevMask[I]]); 5559 DemandedElts.setBit(InsertIdx); 5560 IsIdentity &= InsertIdx - Offset == I; 5561 Mask[InsertIdx - Offset] = I; 5562 } 5563 assert(Offset < NumElts && "Failed to find vector index offset"); 5564 5565 InstructionCost Cost = 0; 5566 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 5567 /*Insert*/ true, /*Extract*/ false); 5568 5569 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 5570 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 5571 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 5572 Cost += TTI->getShuffleCost( 5573 TargetTransformInfo::SK_PermuteSingleSrc, 5574 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 5575 } else if (!IsIdentity) { 5576 auto *FirstInsert = 5577 cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 5578 return !is_contained(E->Scalars, 5579 cast<Instruction>(V)->getOperand(0)); 5580 })); 5581 if (isUndefVector(FirstInsert->getOperand(0))) { 5582 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask); 5583 } else { 5584 SmallVector<int> InsertMask(NumElts); 5585 std::iota(InsertMask.begin(), InsertMask.end(), 0); 5586 for (unsigned I = 0; I < NumElts; I++) { 5587 if (Mask[I] != UndefMaskElem) 5588 InsertMask[Offset + I] = NumElts + I; 5589 } 5590 Cost += 5591 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask); 5592 } 5593 } 5594 5595 return Cost; 5596 } 5597 case Instruction::ZExt: 5598 case Instruction::SExt: 5599 case Instruction::FPToUI: 5600 case Instruction::FPToSI: 5601 case Instruction::FPExt: 5602 case Instruction::PtrToInt: 5603 case Instruction::IntToPtr: 5604 case Instruction::SIToFP: 5605 case Instruction::UIToFP: 5606 case Instruction::Trunc: 5607 case Instruction::FPTrunc: 5608 case Instruction::BitCast: { 5609 Type *SrcTy = VL0->getOperand(0)->getType(); 5610 InstructionCost ScalarEltCost = 5611 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 5612 TTI::getCastContextHint(VL0), CostKind, VL0); 5613 if (NeedToShuffleReuses) { 5614 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5615 } 5616 5617 // Calculate the cost of this instruction. 5618 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 5619 5620 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 5621 InstructionCost VecCost = 0; 5622 // Check if the values are candidates to demote. 5623 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 5624 VecCost = CommonCost + TTI->getCastInstrCost( 5625 E->getOpcode(), VecTy, SrcVecTy, 5626 TTI::getCastContextHint(VL0), CostKind, VL0); 5627 } 5628 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5629 return VecCost - ScalarCost; 5630 } 5631 case Instruction::FCmp: 5632 case Instruction::ICmp: 5633 case Instruction::Select: { 5634 // Calculate the cost of this instruction. 5635 InstructionCost ScalarEltCost = 5636 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5637 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 5638 if (NeedToShuffleReuses) { 5639 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5640 } 5641 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 5642 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5643 5644 // Check if all entries in VL are either compares or selects with compares 5645 // as condition that have the same predicates. 5646 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 5647 bool First = true; 5648 for (auto *V : VL) { 5649 CmpInst::Predicate CurrentPred; 5650 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 5651 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 5652 !match(V, MatchCmp)) || 5653 (!First && VecPred != CurrentPred)) { 5654 VecPred = CmpInst::BAD_ICMP_PREDICATE; 5655 break; 5656 } 5657 First = false; 5658 VecPred = CurrentPred; 5659 } 5660 5661 InstructionCost VecCost = TTI->getCmpSelInstrCost( 5662 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 5663 // Check if it is possible and profitable to use min/max for selects in 5664 // VL. 5665 // 5666 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 5667 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 5668 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 5669 {VecTy, VecTy}); 5670 InstructionCost IntrinsicCost = 5671 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5672 // If the selects are the only uses of the compares, they will be dead 5673 // and we can adjust the cost by removing their cost. 5674 if (IntrinsicAndUse.second) 5675 IntrinsicCost -= TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, 5676 MaskTy, VecPred, CostKind); 5677 VecCost = std::min(VecCost, IntrinsicCost); 5678 } 5679 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5680 return CommonCost + VecCost - ScalarCost; 5681 } 5682 case Instruction::FNeg: 5683 case Instruction::Add: 5684 case Instruction::FAdd: 5685 case Instruction::Sub: 5686 case Instruction::FSub: 5687 case Instruction::Mul: 5688 case Instruction::FMul: 5689 case Instruction::UDiv: 5690 case Instruction::SDiv: 5691 case Instruction::FDiv: 5692 case Instruction::URem: 5693 case Instruction::SRem: 5694 case Instruction::FRem: 5695 case Instruction::Shl: 5696 case Instruction::LShr: 5697 case Instruction::AShr: 5698 case Instruction::And: 5699 case Instruction::Or: 5700 case Instruction::Xor: { 5701 // Certain instructions can be cheaper to vectorize if they have a 5702 // constant second vector operand. 5703 TargetTransformInfo::OperandValueKind Op1VK = 5704 TargetTransformInfo::OK_AnyValue; 5705 TargetTransformInfo::OperandValueKind Op2VK = 5706 TargetTransformInfo::OK_UniformConstantValue; 5707 TargetTransformInfo::OperandValueProperties Op1VP = 5708 TargetTransformInfo::OP_None; 5709 TargetTransformInfo::OperandValueProperties Op2VP = 5710 TargetTransformInfo::OP_PowerOf2; 5711 5712 // If all operands are exactly the same ConstantInt then set the 5713 // operand kind to OK_UniformConstantValue. 5714 // If instead not all operands are constants, then set the operand kind 5715 // to OK_AnyValue. If all operands are constants but not the same, 5716 // then set the operand kind to OK_NonUniformConstantValue. 5717 ConstantInt *CInt0 = nullptr; 5718 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 5719 const Instruction *I = cast<Instruction>(VL[i]); 5720 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 5721 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 5722 if (!CInt) { 5723 Op2VK = TargetTransformInfo::OK_AnyValue; 5724 Op2VP = TargetTransformInfo::OP_None; 5725 break; 5726 } 5727 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 5728 !CInt->getValue().isPowerOf2()) 5729 Op2VP = TargetTransformInfo::OP_None; 5730 if (i == 0) { 5731 CInt0 = CInt; 5732 continue; 5733 } 5734 if (CInt0 != CInt) 5735 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5736 } 5737 5738 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 5739 InstructionCost ScalarEltCost = 5740 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 5741 Op2VK, Op1VP, Op2VP, Operands, VL0); 5742 if (NeedToShuffleReuses) { 5743 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5744 } 5745 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5746 InstructionCost VecCost = 5747 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 5748 Op2VK, Op1VP, Op2VP, Operands, VL0); 5749 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5750 return CommonCost + VecCost - ScalarCost; 5751 } 5752 case Instruction::GetElementPtr: { 5753 TargetTransformInfo::OperandValueKind Op1VK = 5754 TargetTransformInfo::OK_AnyValue; 5755 TargetTransformInfo::OperandValueKind Op2VK = 5756 TargetTransformInfo::OK_UniformConstantValue; 5757 5758 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 5759 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 5760 if (NeedToShuffleReuses) { 5761 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5762 } 5763 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5764 InstructionCost VecCost = TTI->getArithmeticInstrCost( 5765 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 5766 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5767 return CommonCost + VecCost - ScalarCost; 5768 } 5769 case Instruction::Load: { 5770 // Cost of wide load - cost of scalar loads. 5771 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 5772 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5773 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 5774 if (NeedToShuffleReuses) { 5775 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5776 } 5777 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 5778 InstructionCost VecLdCost; 5779 if (E->State == TreeEntry::Vectorize) { 5780 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 5781 CostKind, VL0); 5782 } else { 5783 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 5784 Align CommonAlignment = Alignment; 5785 for (Value *V : VL) 5786 CommonAlignment = 5787 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 5788 VecLdCost = TTI->getGatherScatterOpCost( 5789 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 5790 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 5791 } 5792 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 5793 return CommonCost + VecLdCost - ScalarLdCost; 5794 } 5795 case Instruction::Store: { 5796 // We know that we can merge the stores. Calculate the cost. 5797 bool IsReorder = !E->ReorderIndices.empty(); 5798 auto *SI = 5799 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 5800 Align Alignment = SI->getAlign(); 5801 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5802 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 5803 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 5804 InstructionCost VecStCost = TTI->getMemoryOpCost( 5805 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 5806 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 5807 return CommonCost + VecStCost - ScalarStCost; 5808 } 5809 case Instruction::Call: { 5810 CallInst *CI = cast<CallInst>(VL0); 5811 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5812 5813 // Calculate the cost of the scalar and vector calls. 5814 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 5815 InstructionCost ScalarEltCost = 5816 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5817 if (NeedToShuffleReuses) { 5818 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5819 } 5820 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 5821 5822 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 5823 InstructionCost VecCallCost = 5824 std::min(VecCallCosts.first, VecCallCosts.second); 5825 5826 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 5827 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 5828 << " for " << *CI << "\n"); 5829 5830 return CommonCost + VecCallCost - ScalarCallCost; 5831 } 5832 case Instruction::ShuffleVector: { 5833 assert(E->isAltShuffle() && 5834 ((Instruction::isBinaryOp(E->getOpcode()) && 5835 Instruction::isBinaryOp(E->getAltOpcode())) || 5836 (Instruction::isCast(E->getOpcode()) && 5837 Instruction::isCast(E->getAltOpcode())) || 5838 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 5839 "Invalid Shuffle Vector Operand"); 5840 InstructionCost ScalarCost = 0; 5841 if (NeedToShuffleReuses) { 5842 for (unsigned Idx : E->ReuseShuffleIndices) { 5843 Instruction *I = cast<Instruction>(VL[Idx]); 5844 CommonCost -= TTI->getInstructionCost(I, CostKind); 5845 } 5846 for (Value *V : VL) { 5847 Instruction *I = cast<Instruction>(V); 5848 CommonCost += TTI->getInstructionCost(I, CostKind); 5849 } 5850 } 5851 for (Value *V : VL) { 5852 Instruction *I = cast<Instruction>(V); 5853 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5854 ScalarCost += TTI->getInstructionCost(I, CostKind); 5855 } 5856 // VecCost is equal to sum of the cost of creating 2 vectors 5857 // and the cost of creating shuffle. 5858 InstructionCost VecCost = 0; 5859 // Try to find the previous shuffle node with the same operands and same 5860 // main/alternate ops. 5861 auto &&TryFindNodeWithEqualOperands = [this, E]() { 5862 for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 5863 if (TE.get() == E) 5864 break; 5865 if (TE->isAltShuffle() && 5866 ((TE->getOpcode() == E->getOpcode() && 5867 TE->getAltOpcode() == E->getAltOpcode()) || 5868 (TE->getOpcode() == E->getAltOpcode() && 5869 TE->getAltOpcode() == E->getOpcode())) && 5870 TE->hasEqualOperands(*E)) 5871 return true; 5872 } 5873 return false; 5874 }; 5875 if (TryFindNodeWithEqualOperands()) { 5876 LLVM_DEBUG({ 5877 dbgs() << "SLP: diamond match for alternate node found.\n"; 5878 E->dump(); 5879 }); 5880 // No need to add new vector costs here since we're going to reuse 5881 // same main/alternate vector ops, just do different shuffling. 5882 } else if (Instruction::isBinaryOp(E->getOpcode())) { 5883 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 5884 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 5885 CostKind); 5886 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 5887 VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 5888 Builder.getInt1Ty(), 5889 CI0->getPredicate(), CostKind, VL0); 5890 VecCost += TTI->getCmpSelInstrCost( 5891 E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5892 cast<CmpInst>(E->getAltOp())->getPredicate(), CostKind, 5893 E->getAltOp()); 5894 } else { 5895 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 5896 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 5897 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 5898 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 5899 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 5900 TTI::CastContextHint::None, CostKind); 5901 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 5902 TTI::CastContextHint::None, CostKind); 5903 } 5904 5905 SmallVector<int> Mask; 5906 buildShuffleEntryMask( 5907 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 5908 [E](Instruction *I) { 5909 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5910 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 5911 }, 5912 Mask); 5913 CommonCost = 5914 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy, Mask); 5915 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5916 return CommonCost + VecCost - ScalarCost; 5917 } 5918 default: 5919 llvm_unreachable("Unknown instruction"); 5920 } 5921 } 5922 5923 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { 5924 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 5925 << VectorizableTree.size() << " is fully vectorizable .\n"); 5926 5927 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { 5928 SmallVector<int> Mask; 5929 return TE->State == TreeEntry::NeedToGather && 5930 !any_of(TE->Scalars, 5931 [this](Value *V) { return EphValues.contains(V); }) && 5932 (allConstant(TE->Scalars) || isSplat(TE->Scalars) || 5933 TE->Scalars.size() < Limit || 5934 ((TE->getOpcode() == Instruction::ExtractElement || 5935 all_of(TE->Scalars, 5936 [](Value *V) { 5937 return isa<ExtractElementInst, UndefValue>(V); 5938 })) && 5939 isFixedVectorShuffle(TE->Scalars, Mask)) || 5940 (TE->State == TreeEntry::NeedToGather && 5941 TE->getOpcode() == Instruction::Load && !TE->isAltShuffle())); 5942 }; 5943 5944 // We only handle trees of heights 1 and 2. 5945 if (VectorizableTree.size() == 1 && 5946 (VectorizableTree[0]->State == TreeEntry::Vectorize || 5947 (ForReduction && 5948 AreVectorizableGathers(VectorizableTree[0].get(), 5949 VectorizableTree[0]->Scalars.size()) && 5950 VectorizableTree[0]->getVectorFactor() > 2))) 5951 return true; 5952 5953 if (VectorizableTree.size() != 2) 5954 return false; 5955 5956 // Handle splat and all-constants stores. Also try to vectorize tiny trees 5957 // with the second gather nodes if they have less scalar operands rather than 5958 // the initial tree element (may be profitable to shuffle the second gather) 5959 // or they are extractelements, which form shuffle. 5960 SmallVector<int> Mask; 5961 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 5962 AreVectorizableGathers(VectorizableTree[1].get(), 5963 VectorizableTree[0]->Scalars.size())) 5964 return true; 5965 5966 // Gathering cost would be too much for tiny trees. 5967 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 5968 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 5969 VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) 5970 return false; 5971 5972 return true; 5973 } 5974 5975 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 5976 TargetTransformInfo *TTI, 5977 bool MustMatchOrInst) { 5978 // Look past the root to find a source value. Arbitrarily follow the 5979 // path through operand 0 of any 'or'. Also, peek through optional 5980 // shift-left-by-multiple-of-8-bits. 5981 Value *ZextLoad = Root; 5982 const APInt *ShAmtC; 5983 bool FoundOr = false; 5984 while (!isa<ConstantExpr>(ZextLoad) && 5985 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 5986 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 5987 ShAmtC->urem(8) == 0))) { 5988 auto *BinOp = cast<BinaryOperator>(ZextLoad); 5989 ZextLoad = BinOp->getOperand(0); 5990 if (BinOp->getOpcode() == Instruction::Or) 5991 FoundOr = true; 5992 } 5993 // Check if the input is an extended load of the required or/shift expression. 5994 Value *Load; 5995 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 5996 !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load)) 5997 return false; 5998 5999 // Require that the total load bit width is a legal integer type. 6000 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 6001 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 6002 Type *SrcTy = Load->getType(); 6003 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 6004 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 6005 return false; 6006 6007 // Everything matched - assume that we can fold the whole sequence using 6008 // load combining. 6009 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 6010 << *(cast<Instruction>(Root)) << "\n"); 6011 6012 return true; 6013 } 6014 6015 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 6016 if (RdxKind != RecurKind::Or) 6017 return false; 6018 6019 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 6020 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 6021 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 6022 /* MatchOr */ false); 6023 } 6024 6025 bool BoUpSLP::isLoadCombineCandidate() const { 6026 // Peek through a final sequence of stores and check if all operations are 6027 // likely to be load-combined. 6028 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 6029 for (Value *Scalar : VectorizableTree[0]->Scalars) { 6030 Value *X; 6031 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 6032 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 6033 return false; 6034 } 6035 return true; 6036 } 6037 6038 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { 6039 // No need to vectorize inserts of gathered values. 6040 if (VectorizableTree.size() == 2 && 6041 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 6042 VectorizableTree[1]->State == TreeEntry::NeedToGather) 6043 return true; 6044 6045 // We can vectorize the tree if its size is greater than or equal to the 6046 // minimum size specified by the MinTreeSize command line option. 6047 if (VectorizableTree.size() >= MinTreeSize) 6048 return false; 6049 6050 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 6051 // can vectorize it if we can prove it fully vectorizable. 6052 if (isFullyVectorizableTinyTree(ForReduction)) 6053 return false; 6054 6055 assert(VectorizableTree.empty() 6056 ? ExternalUses.empty() 6057 : true && "We shouldn't have any external users"); 6058 6059 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 6060 // vectorizable. 6061 return true; 6062 } 6063 6064 InstructionCost BoUpSLP::getSpillCost() const { 6065 // Walk from the bottom of the tree to the top, tracking which values are 6066 // live. When we see a call instruction that is not part of our tree, 6067 // query TTI to see if there is a cost to keeping values live over it 6068 // (for example, if spills and fills are required). 6069 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 6070 InstructionCost Cost = 0; 6071 6072 SmallPtrSet<Instruction*, 4> LiveValues; 6073 Instruction *PrevInst = nullptr; 6074 6075 // The entries in VectorizableTree are not necessarily ordered by their 6076 // position in basic blocks. Collect them and order them by dominance so later 6077 // instructions are guaranteed to be visited first. For instructions in 6078 // different basic blocks, we only scan to the beginning of the block, so 6079 // their order does not matter, as long as all instructions in a basic block 6080 // are grouped together. Using dominance ensures a deterministic order. 6081 SmallVector<Instruction *, 16> OrderedScalars; 6082 for (const auto &TEPtr : VectorizableTree) { 6083 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 6084 if (!Inst) 6085 continue; 6086 OrderedScalars.push_back(Inst); 6087 } 6088 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 6089 auto *NodeA = DT->getNode(A->getParent()); 6090 auto *NodeB = DT->getNode(B->getParent()); 6091 assert(NodeA && "Should only process reachable instructions"); 6092 assert(NodeB && "Should only process reachable instructions"); 6093 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 6094 "Different nodes should have different DFS numbers"); 6095 if (NodeA != NodeB) 6096 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 6097 return B->comesBefore(A); 6098 }); 6099 6100 for (Instruction *Inst : OrderedScalars) { 6101 if (!PrevInst) { 6102 PrevInst = Inst; 6103 continue; 6104 } 6105 6106 // Update LiveValues. 6107 LiveValues.erase(PrevInst); 6108 for (auto &J : PrevInst->operands()) { 6109 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 6110 LiveValues.insert(cast<Instruction>(&*J)); 6111 } 6112 6113 LLVM_DEBUG({ 6114 dbgs() << "SLP: #LV: " << LiveValues.size(); 6115 for (auto *X : LiveValues) 6116 dbgs() << " " << X->getName(); 6117 dbgs() << ", Looking at "; 6118 Inst->dump(); 6119 }); 6120 6121 // Now find the sequence of instructions between PrevInst and Inst. 6122 unsigned NumCalls = 0; 6123 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 6124 PrevInstIt = 6125 PrevInst->getIterator().getReverse(); 6126 while (InstIt != PrevInstIt) { 6127 if (PrevInstIt == PrevInst->getParent()->rend()) { 6128 PrevInstIt = Inst->getParent()->rbegin(); 6129 continue; 6130 } 6131 6132 // Debug information does not impact spill cost. 6133 if ((isa<CallInst>(&*PrevInstIt) && 6134 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 6135 &*PrevInstIt != PrevInst) 6136 NumCalls++; 6137 6138 ++PrevInstIt; 6139 } 6140 6141 if (NumCalls) { 6142 SmallVector<Type*, 4> V; 6143 for (auto *II : LiveValues) { 6144 auto *ScalarTy = II->getType(); 6145 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 6146 ScalarTy = VectorTy->getElementType(); 6147 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 6148 } 6149 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 6150 } 6151 6152 PrevInst = Inst; 6153 } 6154 6155 return Cost; 6156 } 6157 6158 /// Check if two insertelement instructions are from the same buildvector. 6159 static bool areTwoInsertFromSameBuildVector(InsertElementInst *VU, 6160 InsertElementInst *V) { 6161 // Instructions must be from the same basic blocks. 6162 if (VU->getParent() != V->getParent()) 6163 return false; 6164 // Checks if 2 insertelements are from the same buildvector. 6165 if (VU->getType() != V->getType()) 6166 return false; 6167 // Multiple used inserts are separate nodes. 6168 if (!VU->hasOneUse() && !V->hasOneUse()) 6169 return false; 6170 auto *IE1 = VU; 6171 auto *IE2 = V; 6172 // Go through the vector operand of insertelement instructions trying to find 6173 // either VU as the original vector for IE2 or V as the original vector for 6174 // IE1. 6175 do { 6176 if (IE2 == VU || IE1 == V) 6177 return true; 6178 if (IE1) { 6179 if (IE1 != VU && !IE1->hasOneUse()) 6180 IE1 = nullptr; 6181 else 6182 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 6183 } 6184 if (IE2) { 6185 if (IE2 != V && !IE2->hasOneUse()) 6186 IE2 = nullptr; 6187 else 6188 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 6189 } 6190 } while (IE1 || IE2); 6191 return false; 6192 } 6193 6194 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 6195 InstructionCost Cost = 0; 6196 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 6197 << VectorizableTree.size() << ".\n"); 6198 6199 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 6200 6201 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 6202 TreeEntry &TE = *VectorizableTree[I]; 6203 6204 InstructionCost C = getEntryCost(&TE, VectorizedVals); 6205 Cost += C; 6206 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6207 << " for bundle that starts with " << *TE.Scalars[0] 6208 << ".\n" 6209 << "SLP: Current total cost = " << Cost << "\n"); 6210 } 6211 6212 SmallPtrSet<Value *, 16> ExtractCostCalculated; 6213 InstructionCost ExtractCost = 0; 6214 SmallVector<unsigned> VF; 6215 SmallVector<SmallVector<int>> ShuffleMask; 6216 SmallVector<Value *> FirstUsers; 6217 SmallVector<APInt> DemandedElts; 6218 for (ExternalUser &EU : ExternalUses) { 6219 // We only add extract cost once for the same scalar. 6220 if (!isa_and_nonnull<InsertElementInst>(EU.User) && 6221 !ExtractCostCalculated.insert(EU.Scalar).second) 6222 continue; 6223 6224 // Uses by ephemeral values are free (because the ephemeral value will be 6225 // removed prior to code generation, and so the extraction will be 6226 // removed as well). 6227 if (EphValues.count(EU.User)) 6228 continue; 6229 6230 // No extract cost for vector "scalar" 6231 if (isa<FixedVectorType>(EU.Scalar->getType())) 6232 continue; 6233 6234 // Already counted the cost for external uses when tried to adjust the cost 6235 // for extractelements, no need to add it again. 6236 if (isa<ExtractElementInst>(EU.Scalar)) 6237 continue; 6238 6239 // If found user is an insertelement, do not calculate extract cost but try 6240 // to detect it as a final shuffled/identity match. 6241 if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) { 6242 if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) { 6243 Optional<unsigned> InsertIdx = getInsertIndex(VU); 6244 if (InsertIdx) { 6245 auto *It = find_if(FirstUsers, [VU](Value *V) { 6246 return areTwoInsertFromSameBuildVector(VU, 6247 cast<InsertElementInst>(V)); 6248 }); 6249 int VecId = -1; 6250 if (It == FirstUsers.end()) { 6251 VF.push_back(FTy->getNumElements()); 6252 ShuffleMask.emplace_back(VF.back(), UndefMaskElem); 6253 // Find the insertvector, vectorized in tree, if any. 6254 Value *Base = VU; 6255 while (isa<InsertElementInst>(Base)) { 6256 // Build the mask for the vectorized insertelement instructions. 6257 if (const TreeEntry *E = getTreeEntry(Base)) { 6258 VU = cast<InsertElementInst>(Base); 6259 do { 6260 int Idx = E->findLaneForValue(Base); 6261 ShuffleMask.back()[Idx] = Idx; 6262 Base = cast<InsertElementInst>(Base)->getOperand(0); 6263 } while (E == getTreeEntry(Base)); 6264 break; 6265 } 6266 Base = cast<InsertElementInst>(Base)->getOperand(0); 6267 } 6268 FirstUsers.push_back(VU); 6269 DemandedElts.push_back(APInt::getZero(VF.back())); 6270 VecId = FirstUsers.size() - 1; 6271 } else { 6272 VecId = std::distance(FirstUsers.begin(), It); 6273 } 6274 ShuffleMask[VecId][*InsertIdx] = EU.Lane; 6275 DemandedElts[VecId].setBit(*InsertIdx); 6276 continue; 6277 } 6278 } 6279 } 6280 6281 // If we plan to rewrite the tree in a smaller type, we will need to sign 6282 // extend the extracted value back to the original type. Here, we account 6283 // for the extract and the added cost of the sign extend if needed. 6284 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 6285 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 6286 if (MinBWs.count(ScalarRoot)) { 6287 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 6288 auto Extend = 6289 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 6290 VecTy = FixedVectorType::get(MinTy, BundleWidth); 6291 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 6292 VecTy, EU.Lane); 6293 } else { 6294 ExtractCost += 6295 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 6296 } 6297 } 6298 6299 InstructionCost SpillCost = getSpillCost(); 6300 Cost += SpillCost + ExtractCost; 6301 if (FirstUsers.size() == 1) { 6302 int Limit = ShuffleMask.front().size() * 2; 6303 if (all_of(ShuffleMask.front(), [Limit](int Idx) { return Idx < Limit; }) && 6304 !ShuffleVectorInst::isIdentityMask(ShuffleMask.front())) { 6305 InstructionCost C = TTI->getShuffleCost( 6306 TTI::SK_PermuteSingleSrc, 6307 cast<FixedVectorType>(FirstUsers.front()->getType()), 6308 ShuffleMask.front()); 6309 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6310 << " for final shuffle of insertelement external users " 6311 << *VectorizableTree.front()->Scalars.front() << ".\n" 6312 << "SLP: Current total cost = " << Cost << "\n"); 6313 Cost += C; 6314 } 6315 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6316 cast<FixedVectorType>(FirstUsers.front()->getType()), 6317 DemandedElts.front(), /*Insert*/ true, /*Extract*/ false); 6318 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6319 << " for insertelements gather.\n" 6320 << "SLP: Current total cost = " << Cost << "\n"); 6321 Cost -= InsertCost; 6322 } else if (FirstUsers.size() >= 2) { 6323 unsigned MaxVF = *std::max_element(VF.begin(), VF.end()); 6324 // Combined masks of the first 2 vectors. 6325 SmallVector<int> CombinedMask(MaxVF, UndefMaskElem); 6326 copy(ShuffleMask.front(), CombinedMask.begin()); 6327 APInt CombinedDemandedElts = DemandedElts.front().zextOrSelf(MaxVF); 6328 auto *VecTy = FixedVectorType::get( 6329 cast<VectorType>(FirstUsers.front()->getType())->getElementType(), 6330 MaxVF); 6331 for (int I = 0, E = ShuffleMask[1].size(); I < E; ++I) { 6332 if (ShuffleMask[1][I] != UndefMaskElem) { 6333 CombinedMask[I] = ShuffleMask[1][I] + MaxVF; 6334 CombinedDemandedElts.setBit(I); 6335 } 6336 } 6337 InstructionCost C = 6338 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6339 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6340 << " for final shuffle of vector node and external " 6341 "insertelement users " 6342 << *VectorizableTree.front()->Scalars.front() << ".\n" 6343 << "SLP: Current total cost = " << Cost << "\n"); 6344 Cost += C; 6345 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6346 VecTy, CombinedDemandedElts, /*Insert*/ true, /*Extract*/ false); 6347 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6348 << " for insertelements gather.\n" 6349 << "SLP: Current total cost = " << Cost << "\n"); 6350 Cost -= InsertCost; 6351 for (int I = 2, E = FirstUsers.size(); I < E; ++I) { 6352 // Other elements - permutation of 2 vectors (the initial one and the 6353 // next Ith incoming vector). 6354 unsigned VF = ShuffleMask[I].size(); 6355 for (unsigned Idx = 0; Idx < VF; ++Idx) { 6356 int Mask = ShuffleMask[I][Idx]; 6357 if (Mask != UndefMaskElem) 6358 CombinedMask[Idx] = MaxVF + Mask; 6359 else if (CombinedMask[Idx] != UndefMaskElem) 6360 CombinedMask[Idx] = Idx; 6361 } 6362 for (unsigned Idx = VF; Idx < MaxVF; ++Idx) 6363 if (CombinedMask[Idx] != UndefMaskElem) 6364 CombinedMask[Idx] = Idx; 6365 InstructionCost C = 6366 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6367 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6368 << " for final shuffle of vector node and external " 6369 "insertelement users " 6370 << *VectorizableTree.front()->Scalars.front() << ".\n" 6371 << "SLP: Current total cost = " << Cost << "\n"); 6372 Cost += C; 6373 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6374 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I], 6375 /*Insert*/ true, /*Extract*/ false); 6376 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6377 << " for insertelements gather.\n" 6378 << "SLP: Current total cost = " << Cost << "\n"); 6379 Cost -= InsertCost; 6380 } 6381 } 6382 6383 #ifndef NDEBUG 6384 SmallString<256> Str; 6385 { 6386 raw_svector_ostream OS(Str); 6387 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 6388 << "SLP: Extract Cost = " << ExtractCost << ".\n" 6389 << "SLP: Total Cost = " << Cost << ".\n"; 6390 } 6391 LLVM_DEBUG(dbgs() << Str); 6392 if (ViewSLPTree) 6393 ViewGraph(this, "SLP" + F->getName(), false, Str); 6394 #endif 6395 6396 return Cost; 6397 } 6398 6399 Optional<TargetTransformInfo::ShuffleKind> 6400 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 6401 SmallVectorImpl<const TreeEntry *> &Entries) { 6402 // TODO: currently checking only for Scalars in the tree entry, need to count 6403 // reused elements too for better cost estimation. 6404 Mask.assign(TE->Scalars.size(), UndefMaskElem); 6405 Entries.clear(); 6406 // Build a lists of values to tree entries. 6407 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 6408 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 6409 if (EntryPtr.get() == TE) 6410 break; 6411 if (EntryPtr->State != TreeEntry::NeedToGather) 6412 continue; 6413 for (Value *V : EntryPtr->Scalars) 6414 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 6415 } 6416 // Find all tree entries used by the gathered values. If no common entries 6417 // found - not a shuffle. 6418 // Here we build a set of tree nodes for each gathered value and trying to 6419 // find the intersection between these sets. If we have at least one common 6420 // tree node for each gathered value - we have just a permutation of the 6421 // single vector. If we have 2 different sets, we're in situation where we 6422 // have a permutation of 2 input vectors. 6423 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 6424 DenseMap<Value *, int> UsedValuesEntry; 6425 for (Value *V : TE->Scalars) { 6426 if (isa<UndefValue>(V)) 6427 continue; 6428 // Build a list of tree entries where V is used. 6429 SmallPtrSet<const TreeEntry *, 4> VToTEs; 6430 auto It = ValueToTEs.find(V); 6431 if (It != ValueToTEs.end()) 6432 VToTEs = It->second; 6433 if (const TreeEntry *VTE = getTreeEntry(V)) 6434 VToTEs.insert(VTE); 6435 if (VToTEs.empty()) 6436 return None; 6437 if (UsedTEs.empty()) { 6438 // The first iteration, just insert the list of nodes to vector. 6439 UsedTEs.push_back(VToTEs); 6440 } else { 6441 // Need to check if there are any previously used tree nodes which use V. 6442 // If there are no such nodes, consider that we have another one input 6443 // vector. 6444 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 6445 unsigned Idx = 0; 6446 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 6447 // Do we have a non-empty intersection of previously listed tree entries 6448 // and tree entries using current V? 6449 set_intersect(VToTEs, Set); 6450 if (!VToTEs.empty()) { 6451 // Yes, write the new subset and continue analysis for the next 6452 // scalar. 6453 Set.swap(VToTEs); 6454 break; 6455 } 6456 VToTEs = SavedVToTEs; 6457 ++Idx; 6458 } 6459 // No non-empty intersection found - need to add a second set of possible 6460 // source vectors. 6461 if (Idx == UsedTEs.size()) { 6462 // If the number of input vectors is greater than 2 - not a permutation, 6463 // fallback to the regular gather. 6464 if (UsedTEs.size() == 2) 6465 return None; 6466 UsedTEs.push_back(SavedVToTEs); 6467 Idx = UsedTEs.size() - 1; 6468 } 6469 UsedValuesEntry.try_emplace(V, Idx); 6470 } 6471 } 6472 6473 if (UsedTEs.empty()) { 6474 assert(all_of(TE->Scalars, UndefValue::classof) && 6475 "Expected vector of undefs only."); 6476 return None; 6477 } 6478 6479 unsigned VF = 0; 6480 if (UsedTEs.size() == 1) { 6481 // Try to find the perfect match in another gather node at first. 6482 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 6483 return EntryPtr->isSame(TE->Scalars); 6484 }); 6485 if (It != UsedTEs.front().end()) { 6486 Entries.push_back(*It); 6487 std::iota(Mask.begin(), Mask.end(), 0); 6488 return TargetTransformInfo::SK_PermuteSingleSrc; 6489 } 6490 // No perfect match, just shuffle, so choose the first tree node. 6491 Entries.push_back(*UsedTEs.front().begin()); 6492 } else { 6493 // Try to find nodes with the same vector factor. 6494 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 6495 DenseMap<int, const TreeEntry *> VFToTE; 6496 for (const TreeEntry *TE : UsedTEs.front()) 6497 VFToTE.try_emplace(TE->getVectorFactor(), TE); 6498 for (const TreeEntry *TE : UsedTEs.back()) { 6499 auto It = VFToTE.find(TE->getVectorFactor()); 6500 if (It != VFToTE.end()) { 6501 VF = It->first; 6502 Entries.push_back(It->second); 6503 Entries.push_back(TE); 6504 break; 6505 } 6506 } 6507 // No 2 source vectors with the same vector factor - give up and do regular 6508 // gather. 6509 if (Entries.empty()) 6510 return None; 6511 } 6512 6513 // Build a shuffle mask for better cost estimation and vector emission. 6514 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 6515 Value *V = TE->Scalars[I]; 6516 if (isa<UndefValue>(V)) 6517 continue; 6518 unsigned Idx = UsedValuesEntry.lookup(V); 6519 const TreeEntry *VTE = Entries[Idx]; 6520 int FoundLane = VTE->findLaneForValue(V); 6521 Mask[I] = Idx * VF + FoundLane; 6522 // Extra check required by isSingleSourceMaskImpl function (called by 6523 // ShuffleVectorInst::isSingleSourceMask). 6524 if (Mask[I] >= 2 * E) 6525 return None; 6526 } 6527 switch (Entries.size()) { 6528 case 1: 6529 return TargetTransformInfo::SK_PermuteSingleSrc; 6530 case 2: 6531 return TargetTransformInfo::SK_PermuteTwoSrc; 6532 default: 6533 break; 6534 } 6535 return None; 6536 } 6537 6538 InstructionCost BoUpSLP::getGatherCost(FixedVectorType *Ty, 6539 const APInt &ShuffledIndices, 6540 bool NeedToShuffle) const { 6541 InstructionCost Cost = 6542 TTI->getScalarizationOverhead(Ty, ~ShuffledIndices, /*Insert*/ true, 6543 /*Extract*/ false); 6544 if (NeedToShuffle) 6545 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 6546 return Cost; 6547 } 6548 6549 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 6550 // Find the type of the operands in VL. 6551 Type *ScalarTy = VL[0]->getType(); 6552 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 6553 ScalarTy = SI->getValueOperand()->getType(); 6554 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 6555 bool DuplicateNonConst = false; 6556 // Find the cost of inserting/extracting values from the vector. 6557 // Check if the same elements are inserted several times and count them as 6558 // shuffle candidates. 6559 APInt ShuffledElements = APInt::getZero(VL.size()); 6560 DenseSet<Value *> UniqueElements; 6561 // Iterate in reverse order to consider insert elements with the high cost. 6562 for (unsigned I = VL.size(); I > 0; --I) { 6563 unsigned Idx = I - 1; 6564 // No need to shuffle duplicates for constants. 6565 if (isConstant(VL[Idx])) { 6566 ShuffledElements.setBit(Idx); 6567 continue; 6568 } 6569 if (!UniqueElements.insert(VL[Idx]).second) { 6570 DuplicateNonConst = true; 6571 ShuffledElements.setBit(Idx); 6572 } 6573 } 6574 return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst); 6575 } 6576 6577 // Perform operand reordering on the instructions in VL and return the reordered 6578 // operands in Left and Right. 6579 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 6580 SmallVectorImpl<Value *> &Left, 6581 SmallVectorImpl<Value *> &Right, 6582 const DataLayout &DL, 6583 ScalarEvolution &SE, 6584 const BoUpSLP &R) { 6585 if (VL.empty()) 6586 return; 6587 VLOperands Ops(VL, DL, SE, R); 6588 // Reorder the operands in place. 6589 Ops.reorder(); 6590 Left = Ops.getVL(0); 6591 Right = Ops.getVL(1); 6592 } 6593 6594 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 6595 // Get the basic block this bundle is in. All instructions in the bundle 6596 // should be in this block. 6597 auto *Front = E->getMainOp(); 6598 auto *BB = Front->getParent(); 6599 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 6600 auto *I = cast<Instruction>(V); 6601 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 6602 })); 6603 6604 auto &&FindLastInst = [E, Front]() { 6605 Instruction *LastInst = Front; 6606 for (Value *V : E->Scalars) { 6607 auto *I = dyn_cast<Instruction>(V); 6608 if (!I) 6609 continue; 6610 if (LastInst->comesBefore(I)) 6611 LastInst = I; 6612 } 6613 return LastInst; 6614 }; 6615 6616 auto &&FindFirstInst = [E, Front]() { 6617 Instruction *FirstInst = Front; 6618 for (Value *V : E->Scalars) { 6619 auto *I = dyn_cast<Instruction>(V); 6620 if (!I) 6621 continue; 6622 if (I->comesBefore(FirstInst)) 6623 FirstInst = I; 6624 } 6625 return FirstInst; 6626 }; 6627 6628 // Set the insert point to the beginning of the basic block if the entry 6629 // should not be scheduled. 6630 if (E->State != TreeEntry::NeedToGather && 6631 doesNotNeedToSchedule(E->Scalars)) { 6632 BasicBlock::iterator InsertPt; 6633 if (all_of(E->Scalars, isUsedOutsideBlock)) 6634 InsertPt = FindLastInst()->getIterator(); 6635 else 6636 InsertPt = FindFirstInst()->getIterator(); 6637 Builder.SetInsertPoint(BB, InsertPt); 6638 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 6639 return; 6640 } 6641 6642 // The last instruction in the bundle in program order. 6643 Instruction *LastInst = nullptr; 6644 6645 // Find the last instruction. The common case should be that BB has been 6646 // scheduled, and the last instruction is VL.back(). So we start with 6647 // VL.back() and iterate over schedule data until we reach the end of the 6648 // bundle. The end of the bundle is marked by null ScheduleData. 6649 if (BlocksSchedules.count(BB)) { 6650 Value *V = E->isOneOf(E->Scalars.back()); 6651 if (doesNotNeedToBeScheduled(V)) 6652 V = *find_if_not(E->Scalars, doesNotNeedToBeScheduled); 6653 auto *Bundle = BlocksSchedules[BB]->getScheduleData(V); 6654 if (Bundle && Bundle->isPartOfBundle()) 6655 for (; Bundle; Bundle = Bundle->NextInBundle) 6656 if (Bundle->OpValue == Bundle->Inst) 6657 LastInst = Bundle->Inst; 6658 } 6659 6660 // LastInst can still be null at this point if there's either not an entry 6661 // for BB in BlocksSchedules or there's no ScheduleData available for 6662 // VL.back(). This can be the case if buildTree_rec aborts for various 6663 // reasons (e.g., the maximum recursion depth is reached, the maximum region 6664 // size is reached, etc.). ScheduleData is initialized in the scheduling 6665 // "dry-run". 6666 // 6667 // If this happens, we can still find the last instruction by brute force. We 6668 // iterate forwards from Front (inclusive) until we either see all 6669 // instructions in the bundle or reach the end of the block. If Front is the 6670 // last instruction in program order, LastInst will be set to Front, and we 6671 // will visit all the remaining instructions in the block. 6672 // 6673 // One of the reasons we exit early from buildTree_rec is to place an upper 6674 // bound on compile-time. Thus, taking an additional compile-time hit here is 6675 // not ideal. However, this should be exceedingly rare since it requires that 6676 // we both exit early from buildTree_rec and that the bundle be out-of-order 6677 // (causing us to iterate all the way to the end of the block). 6678 if (!LastInst) 6679 LastInst = FindLastInst(); 6680 assert(LastInst && "Failed to find last instruction in bundle"); 6681 6682 // Set the insertion point after the last instruction in the bundle. Set the 6683 // debug location to Front. 6684 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 6685 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 6686 } 6687 6688 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 6689 // List of instructions/lanes from current block and/or the blocks which are 6690 // part of the current loop. These instructions will be inserted at the end to 6691 // make it possible to optimize loops and hoist invariant instructions out of 6692 // the loops body with better chances for success. 6693 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 6694 SmallSet<int, 4> PostponedIndices; 6695 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 6696 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 6697 SmallPtrSet<BasicBlock *, 4> Visited; 6698 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 6699 InsertBB = InsertBB->getSinglePredecessor(); 6700 return InsertBB && InsertBB == InstBB; 6701 }; 6702 for (int I = 0, E = VL.size(); I < E; ++I) { 6703 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 6704 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 6705 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 6706 PostponedIndices.insert(I).second) 6707 PostponedInsts.emplace_back(Inst, I); 6708 } 6709 6710 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 6711 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 6712 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 6713 if (!InsElt) 6714 return Vec; 6715 GatherShuffleSeq.insert(InsElt); 6716 CSEBlocks.insert(InsElt->getParent()); 6717 // Add to our 'need-to-extract' list. 6718 if (TreeEntry *Entry = getTreeEntry(V)) { 6719 // Find which lane we need to extract. 6720 unsigned FoundLane = Entry->findLaneForValue(V); 6721 ExternalUses.emplace_back(V, InsElt, FoundLane); 6722 } 6723 return Vec; 6724 }; 6725 Value *Val0 = 6726 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 6727 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 6728 Value *Vec = PoisonValue::get(VecTy); 6729 SmallVector<int> NonConsts; 6730 // Insert constant values at first. 6731 for (int I = 0, E = VL.size(); I < E; ++I) { 6732 if (PostponedIndices.contains(I)) 6733 continue; 6734 if (!isConstant(VL[I])) { 6735 NonConsts.push_back(I); 6736 continue; 6737 } 6738 Vec = CreateInsertElement(Vec, VL[I], I); 6739 } 6740 // Insert non-constant values. 6741 for (int I : NonConsts) 6742 Vec = CreateInsertElement(Vec, VL[I], I); 6743 // Append instructions, which are/may be part of the loop, in the end to make 6744 // it possible to hoist non-loop-based instructions. 6745 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 6746 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 6747 6748 return Vec; 6749 } 6750 6751 namespace { 6752 /// Merges shuffle masks and emits final shuffle instruction, if required. 6753 class ShuffleInstructionBuilder { 6754 IRBuilderBase &Builder; 6755 const unsigned VF = 0; 6756 bool IsFinalized = false; 6757 SmallVector<int, 4> Mask; 6758 /// Holds all of the instructions that we gathered. 6759 SetVector<Instruction *> &GatherShuffleSeq; 6760 /// A list of blocks that we are going to CSE. 6761 SetVector<BasicBlock *> &CSEBlocks; 6762 6763 public: 6764 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF, 6765 SetVector<Instruction *> &GatherShuffleSeq, 6766 SetVector<BasicBlock *> &CSEBlocks) 6767 : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq), 6768 CSEBlocks(CSEBlocks) {} 6769 6770 /// Adds a mask, inverting it before applying. 6771 void addInversedMask(ArrayRef<unsigned> SubMask) { 6772 if (SubMask.empty()) 6773 return; 6774 SmallVector<int, 4> NewMask; 6775 inversePermutation(SubMask, NewMask); 6776 addMask(NewMask); 6777 } 6778 6779 /// Functions adds masks, merging them into single one. 6780 void addMask(ArrayRef<unsigned> SubMask) { 6781 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 6782 addMask(NewMask); 6783 } 6784 6785 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 6786 6787 Value *finalize(Value *V) { 6788 IsFinalized = true; 6789 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 6790 if (VF == ValueVF && Mask.empty()) 6791 return V; 6792 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 6793 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 6794 addMask(NormalizedMask); 6795 6796 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 6797 return V; 6798 Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle"); 6799 if (auto *I = dyn_cast<Instruction>(Vec)) { 6800 GatherShuffleSeq.insert(I); 6801 CSEBlocks.insert(I->getParent()); 6802 } 6803 return Vec; 6804 } 6805 6806 ~ShuffleInstructionBuilder() { 6807 assert((IsFinalized || Mask.empty()) && 6808 "Shuffle construction must be finalized."); 6809 } 6810 }; 6811 } // namespace 6812 6813 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 6814 const unsigned VF = VL.size(); 6815 InstructionsState S = getSameOpcode(VL); 6816 if (S.getOpcode()) { 6817 if (TreeEntry *E = getTreeEntry(S.OpValue)) 6818 if (E->isSame(VL)) { 6819 Value *V = vectorizeTree(E); 6820 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 6821 if (!E->ReuseShuffleIndices.empty()) { 6822 // Reshuffle to get only unique values. 6823 // If some of the scalars are duplicated in the vectorization tree 6824 // entry, we do not vectorize them but instead generate a mask for 6825 // the reuses. But if there are several users of the same entry, 6826 // they may have different vectorization factors. This is especially 6827 // important for PHI nodes. In this case, we need to adapt the 6828 // resulting instruction for the user vectorization factor and have 6829 // to reshuffle it again to take only unique elements of the vector. 6830 // Without this code the function incorrectly returns reduced vector 6831 // instruction with the same elements, not with the unique ones. 6832 6833 // block: 6834 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 6835 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> 6836 // ... (use %2) 6837 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} 6838 // br %block 6839 SmallVector<int> UniqueIdxs(VF, UndefMaskElem); 6840 SmallSet<int, 4> UsedIdxs; 6841 int Pos = 0; 6842 int Sz = VL.size(); 6843 for (int Idx : E->ReuseShuffleIndices) { 6844 if (Idx != Sz && Idx != UndefMaskElem && 6845 UsedIdxs.insert(Idx).second) 6846 UniqueIdxs[Idx] = Pos; 6847 ++Pos; 6848 } 6849 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 6850 "less than original vector size."); 6851 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 6852 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 6853 } else { 6854 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 6855 "Expected vectorization factor less " 6856 "than original vector size."); 6857 SmallVector<int> UniformMask(VF, 0); 6858 std::iota(UniformMask.begin(), UniformMask.end(), 0); 6859 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 6860 } 6861 if (auto *I = dyn_cast<Instruction>(V)) { 6862 GatherShuffleSeq.insert(I); 6863 CSEBlocks.insert(I->getParent()); 6864 } 6865 } 6866 return V; 6867 } 6868 } 6869 6870 // Can't vectorize this, so simply build a new vector with each lane 6871 // corresponding to the requested value. 6872 return createBuildVector(VL); 6873 } 6874 Value *BoUpSLP::createBuildVector(ArrayRef<Value *> VL) { 6875 unsigned VF = VL.size(); 6876 // Exploit possible reuse of values across lanes. 6877 SmallVector<int> ReuseShuffleIndicies; 6878 SmallVector<Value *> UniqueValues; 6879 if (VL.size() > 2) { 6880 DenseMap<Value *, unsigned> UniquePositions; 6881 unsigned NumValues = 6882 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 6883 return !isa<UndefValue>(V); 6884 }).base()); 6885 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 6886 int UniqueVals = 0; 6887 for (Value *V : VL.drop_back(VL.size() - VF)) { 6888 if (isa<UndefValue>(V)) { 6889 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 6890 continue; 6891 } 6892 if (isConstant(V)) { 6893 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 6894 UniqueValues.emplace_back(V); 6895 continue; 6896 } 6897 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 6898 ReuseShuffleIndicies.emplace_back(Res.first->second); 6899 if (Res.second) { 6900 UniqueValues.emplace_back(V); 6901 ++UniqueVals; 6902 } 6903 } 6904 if (UniqueVals == 1 && UniqueValues.size() == 1) { 6905 // Emit pure splat vector. 6906 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 6907 UndefMaskElem); 6908 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 6909 ReuseShuffleIndicies.clear(); 6910 UniqueValues.clear(); 6911 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 6912 } 6913 UniqueValues.append(VF - UniqueValues.size(), 6914 PoisonValue::get(VL[0]->getType())); 6915 VL = UniqueValues; 6916 } 6917 6918 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6919 CSEBlocks); 6920 Value *Vec = gather(VL); 6921 if (!ReuseShuffleIndicies.empty()) { 6922 ShuffleBuilder.addMask(ReuseShuffleIndicies); 6923 Vec = ShuffleBuilder.finalize(Vec); 6924 } 6925 return Vec; 6926 } 6927 6928 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 6929 IRBuilder<>::InsertPointGuard Guard(Builder); 6930 6931 if (E->VectorizedValue) { 6932 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 6933 return E->VectorizedValue; 6934 } 6935 6936 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 6937 unsigned VF = E->getVectorFactor(); 6938 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6939 CSEBlocks); 6940 if (E->State == TreeEntry::NeedToGather) { 6941 if (E->getMainOp()) 6942 setInsertPointAfterBundle(E); 6943 Value *Vec; 6944 SmallVector<int> Mask; 6945 SmallVector<const TreeEntry *> Entries; 6946 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 6947 isGatherShuffledEntry(E, Mask, Entries); 6948 if (Shuffle.hasValue()) { 6949 assert((Entries.size() == 1 || Entries.size() == 2) && 6950 "Expected shuffle of 1 or 2 entries."); 6951 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 6952 Entries.back()->VectorizedValue, Mask); 6953 if (auto *I = dyn_cast<Instruction>(Vec)) { 6954 GatherShuffleSeq.insert(I); 6955 CSEBlocks.insert(I->getParent()); 6956 } 6957 } else { 6958 Vec = gather(E->Scalars); 6959 } 6960 if (NeedToShuffleReuses) { 6961 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6962 Vec = ShuffleBuilder.finalize(Vec); 6963 } 6964 E->VectorizedValue = Vec; 6965 return Vec; 6966 } 6967 6968 assert((E->State == TreeEntry::Vectorize || 6969 E->State == TreeEntry::ScatterVectorize) && 6970 "Unhandled state"); 6971 unsigned ShuffleOrOp = 6972 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 6973 Instruction *VL0 = E->getMainOp(); 6974 Type *ScalarTy = VL0->getType(); 6975 if (auto *Store = dyn_cast<StoreInst>(VL0)) 6976 ScalarTy = Store->getValueOperand()->getType(); 6977 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 6978 ScalarTy = IE->getOperand(1)->getType(); 6979 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 6980 switch (ShuffleOrOp) { 6981 case Instruction::PHI: { 6982 assert( 6983 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 6984 "PHI reordering is free."); 6985 auto *PH = cast<PHINode>(VL0); 6986 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 6987 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6988 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 6989 Value *V = NewPhi; 6990 6991 // Adjust insertion point once all PHI's have been generated. 6992 Builder.SetInsertPoint(&*PH->getParent()->getFirstInsertionPt()); 6993 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6994 6995 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6996 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6997 V = ShuffleBuilder.finalize(V); 6998 6999 E->VectorizedValue = V; 7000 7001 // PHINodes may have multiple entries from the same block. We want to 7002 // visit every block once. 7003 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 7004 7005 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 7006 ValueList Operands; 7007 BasicBlock *IBB = PH->getIncomingBlock(i); 7008 7009 if (!VisitedBBs.insert(IBB).second) { 7010 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 7011 continue; 7012 } 7013 7014 Builder.SetInsertPoint(IBB->getTerminator()); 7015 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 7016 Value *Vec = vectorizeTree(E->getOperand(i)); 7017 NewPhi->addIncoming(Vec, IBB); 7018 } 7019 7020 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 7021 "Invalid number of incoming values"); 7022 return V; 7023 } 7024 7025 case Instruction::ExtractElement: { 7026 Value *V = E->getSingleOperand(0); 7027 Builder.SetInsertPoint(VL0); 7028 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7029 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7030 V = ShuffleBuilder.finalize(V); 7031 E->VectorizedValue = V; 7032 return V; 7033 } 7034 case Instruction::ExtractValue: { 7035 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 7036 Builder.SetInsertPoint(LI); 7037 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 7038 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 7039 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 7040 Value *NewV = propagateMetadata(V, E->Scalars); 7041 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7042 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7043 NewV = ShuffleBuilder.finalize(NewV); 7044 E->VectorizedValue = NewV; 7045 return NewV; 7046 } 7047 case Instruction::InsertElement: { 7048 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 7049 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 7050 Value *V = vectorizeTree(E->getOperand(1)); 7051 7052 // Create InsertVector shuffle if necessary 7053 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 7054 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 7055 })); 7056 const unsigned NumElts = 7057 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 7058 const unsigned NumScalars = E->Scalars.size(); 7059 7060 unsigned Offset = *getInsertIndex(VL0); 7061 assert(Offset < NumElts && "Failed to find vector index offset"); 7062 7063 // Create shuffle to resize vector 7064 SmallVector<int> Mask; 7065 if (!E->ReorderIndices.empty()) { 7066 inversePermutation(E->ReorderIndices, Mask); 7067 Mask.append(NumElts - NumScalars, UndefMaskElem); 7068 } else { 7069 Mask.assign(NumElts, UndefMaskElem); 7070 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 7071 } 7072 // Create InsertVector shuffle if necessary 7073 bool IsIdentity = true; 7074 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 7075 Mask.swap(PrevMask); 7076 for (unsigned I = 0; I < NumScalars; ++I) { 7077 Value *Scalar = E->Scalars[PrevMask[I]]; 7078 unsigned InsertIdx = *getInsertIndex(Scalar); 7079 IsIdentity &= InsertIdx - Offset == I; 7080 Mask[InsertIdx - Offset] = I; 7081 } 7082 if (!IsIdentity || NumElts != NumScalars) { 7083 V = Builder.CreateShuffleVector(V, Mask); 7084 if (auto *I = dyn_cast<Instruction>(V)) { 7085 GatherShuffleSeq.insert(I); 7086 CSEBlocks.insert(I->getParent()); 7087 } 7088 } 7089 7090 if ((!IsIdentity || Offset != 0 || 7091 !isUndefVector(FirstInsert->getOperand(0))) && 7092 NumElts != NumScalars) { 7093 SmallVector<int> InsertMask(NumElts); 7094 std::iota(InsertMask.begin(), InsertMask.end(), 0); 7095 for (unsigned I = 0; I < NumElts; I++) { 7096 if (Mask[I] != UndefMaskElem) 7097 InsertMask[Offset + I] = NumElts + I; 7098 } 7099 7100 V = Builder.CreateShuffleVector( 7101 FirstInsert->getOperand(0), V, InsertMask, 7102 cast<Instruction>(E->Scalars.back())->getName()); 7103 if (auto *I = dyn_cast<Instruction>(V)) { 7104 GatherShuffleSeq.insert(I); 7105 CSEBlocks.insert(I->getParent()); 7106 } 7107 } 7108 7109 ++NumVectorInstructions; 7110 E->VectorizedValue = V; 7111 return V; 7112 } 7113 case Instruction::ZExt: 7114 case Instruction::SExt: 7115 case Instruction::FPToUI: 7116 case Instruction::FPToSI: 7117 case Instruction::FPExt: 7118 case Instruction::PtrToInt: 7119 case Instruction::IntToPtr: 7120 case Instruction::SIToFP: 7121 case Instruction::UIToFP: 7122 case Instruction::Trunc: 7123 case Instruction::FPTrunc: 7124 case Instruction::BitCast: { 7125 setInsertPointAfterBundle(E); 7126 7127 Value *InVec = vectorizeTree(E->getOperand(0)); 7128 7129 if (E->VectorizedValue) { 7130 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7131 return E->VectorizedValue; 7132 } 7133 7134 auto *CI = cast<CastInst>(VL0); 7135 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 7136 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7137 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7138 V = ShuffleBuilder.finalize(V); 7139 7140 E->VectorizedValue = V; 7141 ++NumVectorInstructions; 7142 return V; 7143 } 7144 case Instruction::FCmp: 7145 case Instruction::ICmp: { 7146 setInsertPointAfterBundle(E); 7147 7148 Value *L = vectorizeTree(E->getOperand(0)); 7149 Value *R = vectorizeTree(E->getOperand(1)); 7150 7151 if (E->VectorizedValue) { 7152 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7153 return E->VectorizedValue; 7154 } 7155 7156 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 7157 Value *V = Builder.CreateCmp(P0, L, R); 7158 propagateIRFlags(V, E->Scalars, VL0); 7159 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7160 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7161 V = ShuffleBuilder.finalize(V); 7162 7163 E->VectorizedValue = V; 7164 ++NumVectorInstructions; 7165 return V; 7166 } 7167 case Instruction::Select: { 7168 setInsertPointAfterBundle(E); 7169 7170 Value *Cond = vectorizeTree(E->getOperand(0)); 7171 Value *True = vectorizeTree(E->getOperand(1)); 7172 Value *False = vectorizeTree(E->getOperand(2)); 7173 7174 if (E->VectorizedValue) { 7175 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7176 return E->VectorizedValue; 7177 } 7178 7179 Value *V = Builder.CreateSelect(Cond, True, False); 7180 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7181 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7182 V = ShuffleBuilder.finalize(V); 7183 7184 E->VectorizedValue = V; 7185 ++NumVectorInstructions; 7186 return V; 7187 } 7188 case Instruction::FNeg: { 7189 setInsertPointAfterBundle(E); 7190 7191 Value *Op = vectorizeTree(E->getOperand(0)); 7192 7193 if (E->VectorizedValue) { 7194 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7195 return E->VectorizedValue; 7196 } 7197 7198 Value *V = Builder.CreateUnOp( 7199 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 7200 propagateIRFlags(V, E->Scalars, VL0); 7201 if (auto *I = dyn_cast<Instruction>(V)) 7202 V = propagateMetadata(I, E->Scalars); 7203 7204 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7205 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7206 V = ShuffleBuilder.finalize(V); 7207 7208 E->VectorizedValue = V; 7209 ++NumVectorInstructions; 7210 7211 return V; 7212 } 7213 case Instruction::Add: 7214 case Instruction::FAdd: 7215 case Instruction::Sub: 7216 case Instruction::FSub: 7217 case Instruction::Mul: 7218 case Instruction::FMul: 7219 case Instruction::UDiv: 7220 case Instruction::SDiv: 7221 case Instruction::FDiv: 7222 case Instruction::URem: 7223 case Instruction::SRem: 7224 case Instruction::FRem: 7225 case Instruction::Shl: 7226 case Instruction::LShr: 7227 case Instruction::AShr: 7228 case Instruction::And: 7229 case Instruction::Or: 7230 case Instruction::Xor: { 7231 setInsertPointAfterBundle(E); 7232 7233 Value *LHS = vectorizeTree(E->getOperand(0)); 7234 Value *RHS = vectorizeTree(E->getOperand(1)); 7235 7236 if (E->VectorizedValue) { 7237 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7238 return E->VectorizedValue; 7239 } 7240 7241 Value *V = Builder.CreateBinOp( 7242 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 7243 RHS); 7244 propagateIRFlags(V, E->Scalars, VL0); 7245 if (auto *I = dyn_cast<Instruction>(V)) 7246 V = propagateMetadata(I, E->Scalars); 7247 7248 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7249 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7250 V = ShuffleBuilder.finalize(V); 7251 7252 E->VectorizedValue = V; 7253 ++NumVectorInstructions; 7254 7255 return V; 7256 } 7257 case Instruction::Load: { 7258 // Loads are inserted at the head of the tree because we don't want to 7259 // sink them all the way down past store instructions. 7260 setInsertPointAfterBundle(E); 7261 7262 LoadInst *LI = cast<LoadInst>(VL0); 7263 Instruction *NewLI; 7264 unsigned AS = LI->getPointerAddressSpace(); 7265 Value *PO = LI->getPointerOperand(); 7266 if (E->State == TreeEntry::Vectorize) { 7267 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 7268 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 7269 7270 // The pointer operand uses an in-tree scalar so we add the new BitCast 7271 // or LoadInst to ExternalUses list to make sure that an extract will 7272 // be generated in the future. 7273 if (TreeEntry *Entry = getTreeEntry(PO)) { 7274 // Find which lane we need to extract. 7275 unsigned FoundLane = Entry->findLaneForValue(PO); 7276 ExternalUses.emplace_back( 7277 PO, PO != VecPtr ? cast<User>(VecPtr) : NewLI, FoundLane); 7278 } 7279 } else { 7280 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 7281 Value *VecPtr = vectorizeTree(E->getOperand(0)); 7282 // Use the minimum alignment of the gathered loads. 7283 Align CommonAlignment = LI->getAlign(); 7284 for (Value *V : E->Scalars) 7285 CommonAlignment = 7286 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 7287 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 7288 } 7289 Value *V = propagateMetadata(NewLI, E->Scalars); 7290 7291 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7292 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7293 V = ShuffleBuilder.finalize(V); 7294 E->VectorizedValue = V; 7295 ++NumVectorInstructions; 7296 return V; 7297 } 7298 case Instruction::Store: { 7299 auto *SI = cast<StoreInst>(VL0); 7300 unsigned AS = SI->getPointerAddressSpace(); 7301 7302 setInsertPointAfterBundle(E); 7303 7304 Value *VecValue = vectorizeTree(E->getOperand(0)); 7305 ShuffleBuilder.addMask(E->ReorderIndices); 7306 VecValue = ShuffleBuilder.finalize(VecValue); 7307 7308 Value *ScalarPtr = SI->getPointerOperand(); 7309 Value *VecPtr = Builder.CreateBitCast( 7310 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 7311 StoreInst *ST = 7312 Builder.CreateAlignedStore(VecValue, VecPtr, SI->getAlign()); 7313 7314 // The pointer operand uses an in-tree scalar, so add the new BitCast or 7315 // StoreInst to ExternalUses to make sure that an extract will be 7316 // generated in the future. 7317 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 7318 // Find which lane we need to extract. 7319 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 7320 ExternalUses.push_back(ExternalUser( 7321 ScalarPtr, ScalarPtr != VecPtr ? cast<User>(VecPtr) : ST, 7322 FoundLane)); 7323 } 7324 7325 Value *V = propagateMetadata(ST, E->Scalars); 7326 7327 E->VectorizedValue = V; 7328 ++NumVectorInstructions; 7329 return V; 7330 } 7331 case Instruction::GetElementPtr: { 7332 auto *GEP0 = cast<GetElementPtrInst>(VL0); 7333 setInsertPointAfterBundle(E); 7334 7335 Value *Op0 = vectorizeTree(E->getOperand(0)); 7336 7337 SmallVector<Value *> OpVecs; 7338 for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) { 7339 Value *OpVec = vectorizeTree(E->getOperand(J)); 7340 OpVecs.push_back(OpVec); 7341 } 7342 7343 Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs); 7344 if (Instruction *I = dyn_cast<Instruction>(V)) 7345 V = propagateMetadata(I, E->Scalars); 7346 7347 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7348 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7349 V = ShuffleBuilder.finalize(V); 7350 7351 E->VectorizedValue = V; 7352 ++NumVectorInstructions; 7353 7354 return V; 7355 } 7356 case Instruction::Call: { 7357 CallInst *CI = cast<CallInst>(VL0); 7358 setInsertPointAfterBundle(E); 7359 7360 Intrinsic::ID IID = Intrinsic::not_intrinsic; 7361 if (Function *FI = CI->getCalledFunction()) 7362 IID = FI->getIntrinsicID(); 7363 7364 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7365 7366 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 7367 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 7368 VecCallCosts.first <= VecCallCosts.second; 7369 7370 Value *ScalarArg = nullptr; 7371 std::vector<Value *> OpVecs; 7372 SmallVector<Type *, 2> TysForDecl = 7373 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 7374 for (int j = 0, e = CI->arg_size(); j < e; ++j) { 7375 ValueList OpVL; 7376 // Some intrinsics have scalar arguments. This argument should not be 7377 // vectorized. 7378 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 7379 CallInst *CEI = cast<CallInst>(VL0); 7380 ScalarArg = CEI->getArgOperand(j); 7381 OpVecs.push_back(CEI->getArgOperand(j)); 7382 if (hasVectorInstrinsicOverloadedScalarOpd(IID, j)) 7383 TysForDecl.push_back(ScalarArg->getType()); 7384 continue; 7385 } 7386 7387 Value *OpVec = vectorizeTree(E->getOperand(j)); 7388 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 7389 OpVecs.push_back(OpVec); 7390 } 7391 7392 Function *CF; 7393 if (!UseIntrinsic) { 7394 VFShape Shape = 7395 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 7396 VecTy->getNumElements())), 7397 false /*HasGlobalPred*/); 7398 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 7399 } else { 7400 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 7401 } 7402 7403 SmallVector<OperandBundleDef, 1> OpBundles; 7404 CI->getOperandBundlesAsDefs(OpBundles); 7405 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 7406 7407 // The scalar argument uses an in-tree scalar so we add the new vectorized 7408 // call to ExternalUses list to make sure that an extract will be 7409 // generated in the future. 7410 if (ScalarArg) { 7411 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 7412 // Find which lane we need to extract. 7413 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 7414 ExternalUses.push_back( 7415 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 7416 } 7417 } 7418 7419 propagateIRFlags(V, E->Scalars, VL0); 7420 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7421 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7422 V = ShuffleBuilder.finalize(V); 7423 7424 E->VectorizedValue = V; 7425 ++NumVectorInstructions; 7426 return V; 7427 } 7428 case Instruction::ShuffleVector: { 7429 assert(E->isAltShuffle() && 7430 ((Instruction::isBinaryOp(E->getOpcode()) && 7431 Instruction::isBinaryOp(E->getAltOpcode())) || 7432 (Instruction::isCast(E->getOpcode()) && 7433 Instruction::isCast(E->getAltOpcode())) || 7434 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 7435 "Invalid Shuffle Vector Operand"); 7436 7437 Value *LHS = nullptr, *RHS = nullptr; 7438 if (Instruction::isBinaryOp(E->getOpcode()) || isa<CmpInst>(VL0)) { 7439 setInsertPointAfterBundle(E); 7440 LHS = vectorizeTree(E->getOperand(0)); 7441 RHS = vectorizeTree(E->getOperand(1)); 7442 } else { 7443 setInsertPointAfterBundle(E); 7444 LHS = vectorizeTree(E->getOperand(0)); 7445 } 7446 7447 if (E->VectorizedValue) { 7448 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7449 return E->VectorizedValue; 7450 } 7451 7452 Value *V0, *V1; 7453 if (Instruction::isBinaryOp(E->getOpcode())) { 7454 V0 = Builder.CreateBinOp( 7455 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 7456 V1 = Builder.CreateBinOp( 7457 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 7458 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 7459 V0 = Builder.CreateCmp(CI0->getPredicate(), LHS, RHS); 7460 auto *AltCI = cast<CmpInst>(E->getAltOp()); 7461 CmpInst::Predicate AltPred = AltCI->getPredicate(); 7462 V1 = Builder.CreateCmp(AltPred, LHS, RHS); 7463 } else { 7464 V0 = Builder.CreateCast( 7465 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 7466 V1 = Builder.CreateCast( 7467 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 7468 } 7469 // Add V0 and V1 to later analysis to try to find and remove matching 7470 // instruction, if any. 7471 for (Value *V : {V0, V1}) { 7472 if (auto *I = dyn_cast<Instruction>(V)) { 7473 GatherShuffleSeq.insert(I); 7474 CSEBlocks.insert(I->getParent()); 7475 } 7476 } 7477 7478 // Create shuffle to take alternate operations from the vector. 7479 // Also, gather up main and alt scalar ops to propagate IR flags to 7480 // each vector operation. 7481 ValueList OpScalars, AltScalars; 7482 SmallVector<int> Mask; 7483 buildShuffleEntryMask( 7484 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 7485 [E](Instruction *I) { 7486 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 7487 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 7488 }, 7489 Mask, &OpScalars, &AltScalars); 7490 7491 propagateIRFlags(V0, OpScalars); 7492 propagateIRFlags(V1, AltScalars); 7493 7494 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 7495 if (auto *I = dyn_cast<Instruction>(V)) { 7496 V = propagateMetadata(I, E->Scalars); 7497 GatherShuffleSeq.insert(I); 7498 CSEBlocks.insert(I->getParent()); 7499 } 7500 V = ShuffleBuilder.finalize(V); 7501 7502 E->VectorizedValue = V; 7503 ++NumVectorInstructions; 7504 7505 return V; 7506 } 7507 default: 7508 llvm_unreachable("unknown inst"); 7509 } 7510 return nullptr; 7511 } 7512 7513 Value *BoUpSLP::vectorizeTree() { 7514 ExtraValueToDebugLocsMap ExternallyUsedValues; 7515 return vectorizeTree(ExternallyUsedValues); 7516 } 7517 7518 Value * 7519 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 7520 // All blocks must be scheduled before any instructions are inserted. 7521 for (auto &BSIter : BlocksSchedules) { 7522 scheduleBlock(BSIter.second.get()); 7523 } 7524 7525 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7526 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 7527 7528 // If the vectorized tree can be rewritten in a smaller type, we truncate the 7529 // vectorized root. InstCombine will then rewrite the entire expression. We 7530 // sign extend the extracted values below. 7531 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 7532 if (MinBWs.count(ScalarRoot)) { 7533 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 7534 // If current instr is a phi and not the last phi, insert it after the 7535 // last phi node. 7536 if (isa<PHINode>(I)) 7537 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 7538 else 7539 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 7540 } 7541 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 7542 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 7543 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 7544 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 7545 VectorizableTree[0]->VectorizedValue = Trunc; 7546 } 7547 7548 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 7549 << " values .\n"); 7550 7551 // Extract all of the elements with the external uses. 7552 for (const auto &ExternalUse : ExternalUses) { 7553 Value *Scalar = ExternalUse.Scalar; 7554 llvm::User *User = ExternalUse.User; 7555 7556 // Skip users that we already RAUW. This happens when one instruction 7557 // has multiple uses of the same value. 7558 if (User && !is_contained(Scalar->users(), User)) 7559 continue; 7560 TreeEntry *E = getTreeEntry(Scalar); 7561 assert(E && "Invalid scalar"); 7562 assert(E->State != TreeEntry::NeedToGather && 7563 "Extracting from a gather list"); 7564 7565 Value *Vec = E->VectorizedValue; 7566 assert(Vec && "Can't find vectorizable value"); 7567 7568 Value *Lane = Builder.getInt32(ExternalUse.Lane); 7569 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 7570 if (Scalar->getType() != Vec->getType()) { 7571 Value *Ex; 7572 // "Reuse" the existing extract to improve final codegen. 7573 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 7574 Ex = Builder.CreateExtractElement(ES->getOperand(0), 7575 ES->getOperand(1)); 7576 } else { 7577 Ex = Builder.CreateExtractElement(Vec, Lane); 7578 } 7579 // If necessary, sign-extend or zero-extend ScalarRoot 7580 // to the larger type. 7581 if (!MinBWs.count(ScalarRoot)) 7582 return Ex; 7583 if (MinBWs[ScalarRoot].second) 7584 return Builder.CreateSExt(Ex, Scalar->getType()); 7585 return Builder.CreateZExt(Ex, Scalar->getType()); 7586 } 7587 assert(isa<FixedVectorType>(Scalar->getType()) && 7588 isa<InsertElementInst>(Scalar) && 7589 "In-tree scalar of vector type is not insertelement?"); 7590 return Vec; 7591 }; 7592 // If User == nullptr, the Scalar is used as extra arg. Generate 7593 // ExtractElement instruction and update the record for this scalar in 7594 // ExternallyUsedValues. 7595 if (!User) { 7596 assert(ExternallyUsedValues.count(Scalar) && 7597 "Scalar with nullptr as an external user must be registered in " 7598 "ExternallyUsedValues map"); 7599 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7600 Builder.SetInsertPoint(VecI->getParent(), 7601 std::next(VecI->getIterator())); 7602 } else { 7603 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7604 } 7605 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7606 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 7607 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 7608 auto It = ExternallyUsedValues.find(Scalar); 7609 assert(It != ExternallyUsedValues.end() && 7610 "Externally used scalar is not found in ExternallyUsedValues"); 7611 NewInstLocs.append(It->second); 7612 ExternallyUsedValues.erase(Scalar); 7613 // Required to update internally referenced instructions. 7614 Scalar->replaceAllUsesWith(NewInst); 7615 continue; 7616 } 7617 7618 // Generate extracts for out-of-tree users. 7619 // Find the insertion point for the extractelement lane. 7620 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7621 if (PHINode *PH = dyn_cast<PHINode>(User)) { 7622 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 7623 if (PH->getIncomingValue(i) == Scalar) { 7624 Instruction *IncomingTerminator = 7625 PH->getIncomingBlock(i)->getTerminator(); 7626 if (isa<CatchSwitchInst>(IncomingTerminator)) { 7627 Builder.SetInsertPoint(VecI->getParent(), 7628 std::next(VecI->getIterator())); 7629 } else { 7630 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 7631 } 7632 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7633 CSEBlocks.insert(PH->getIncomingBlock(i)); 7634 PH->setOperand(i, NewInst); 7635 } 7636 } 7637 } else { 7638 Builder.SetInsertPoint(cast<Instruction>(User)); 7639 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7640 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 7641 User->replaceUsesOfWith(Scalar, NewInst); 7642 } 7643 } else { 7644 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7645 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7646 CSEBlocks.insert(&F->getEntryBlock()); 7647 User->replaceUsesOfWith(Scalar, NewInst); 7648 } 7649 7650 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 7651 } 7652 7653 // For each vectorized value: 7654 for (auto &TEPtr : VectorizableTree) { 7655 TreeEntry *Entry = TEPtr.get(); 7656 7657 // No need to handle users of gathered values. 7658 if (Entry->State == TreeEntry::NeedToGather) 7659 continue; 7660 7661 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 7662 7663 // For each lane: 7664 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 7665 Value *Scalar = Entry->Scalars[Lane]; 7666 7667 #ifndef NDEBUG 7668 Type *Ty = Scalar->getType(); 7669 if (!Ty->isVoidTy()) { 7670 for (User *U : Scalar->users()) { 7671 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 7672 7673 // It is legal to delete users in the ignorelist. 7674 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) || 7675 (isa_and_nonnull<Instruction>(U) && 7676 isDeleted(cast<Instruction>(U)))) && 7677 "Deleting out-of-tree value"); 7678 } 7679 } 7680 #endif 7681 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 7682 eraseInstruction(cast<Instruction>(Scalar)); 7683 } 7684 } 7685 7686 Builder.ClearInsertionPoint(); 7687 InstrElementSize.clear(); 7688 7689 return VectorizableTree[0]->VectorizedValue; 7690 } 7691 7692 void BoUpSLP::optimizeGatherSequence() { 7693 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size() 7694 << " gather sequences instructions.\n"); 7695 // LICM InsertElementInst sequences. 7696 for (Instruction *I : GatherShuffleSeq) { 7697 if (isDeleted(I)) 7698 continue; 7699 7700 // Check if this block is inside a loop. 7701 Loop *L = LI->getLoopFor(I->getParent()); 7702 if (!L) 7703 continue; 7704 7705 // Check if it has a preheader. 7706 BasicBlock *PreHeader = L->getLoopPreheader(); 7707 if (!PreHeader) 7708 continue; 7709 7710 // If the vector or the element that we insert into it are 7711 // instructions that are defined in this basic block then we can't 7712 // hoist this instruction. 7713 if (any_of(I->operands(), [L](Value *V) { 7714 auto *OpI = dyn_cast<Instruction>(V); 7715 return OpI && L->contains(OpI); 7716 })) 7717 continue; 7718 7719 // We can hoist this instruction. Move it to the pre-header. 7720 I->moveBefore(PreHeader->getTerminator()); 7721 } 7722 7723 // Make a list of all reachable blocks in our CSE queue. 7724 SmallVector<const DomTreeNode *, 8> CSEWorkList; 7725 CSEWorkList.reserve(CSEBlocks.size()); 7726 for (BasicBlock *BB : CSEBlocks) 7727 if (DomTreeNode *N = DT->getNode(BB)) { 7728 assert(DT->isReachableFromEntry(N)); 7729 CSEWorkList.push_back(N); 7730 } 7731 7732 // Sort blocks by domination. This ensures we visit a block after all blocks 7733 // dominating it are visited. 7734 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 7735 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 7736 "Different nodes should have different DFS numbers"); 7737 return A->getDFSNumIn() < B->getDFSNumIn(); 7738 }); 7739 7740 // Less defined shuffles can be replaced by the more defined copies. 7741 // Between two shuffles one is less defined if it has the same vector operands 7742 // and its mask indeces are the same as in the first one or undefs. E.g. 7743 // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0, 7744 // poison, <0, 0, 0, 0>. 7745 auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2, 7746 SmallVectorImpl<int> &NewMask) { 7747 if (I1->getType() != I2->getType()) 7748 return false; 7749 auto *SI1 = dyn_cast<ShuffleVectorInst>(I1); 7750 auto *SI2 = dyn_cast<ShuffleVectorInst>(I2); 7751 if (!SI1 || !SI2) 7752 return I1->isIdenticalTo(I2); 7753 if (SI1->isIdenticalTo(SI2)) 7754 return true; 7755 for (int I = 0, E = SI1->getNumOperands(); I < E; ++I) 7756 if (SI1->getOperand(I) != SI2->getOperand(I)) 7757 return false; 7758 // Check if the second instruction is more defined than the first one. 7759 NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end()); 7760 ArrayRef<int> SM1 = SI1->getShuffleMask(); 7761 // Count trailing undefs in the mask to check the final number of used 7762 // registers. 7763 unsigned LastUndefsCnt = 0; 7764 for (int I = 0, E = NewMask.size(); I < E; ++I) { 7765 if (SM1[I] == UndefMaskElem) 7766 ++LastUndefsCnt; 7767 else 7768 LastUndefsCnt = 0; 7769 if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem && 7770 NewMask[I] != SM1[I]) 7771 return false; 7772 if (NewMask[I] == UndefMaskElem) 7773 NewMask[I] = SM1[I]; 7774 } 7775 // Check if the last undefs actually change the final number of used vector 7776 // registers. 7777 return SM1.size() - LastUndefsCnt > 1 && 7778 TTI->getNumberOfParts(SI1->getType()) == 7779 TTI->getNumberOfParts( 7780 FixedVectorType::get(SI1->getType()->getElementType(), 7781 SM1.size() - LastUndefsCnt)); 7782 }; 7783 // Perform O(N^2) search over the gather/shuffle sequences and merge identical 7784 // instructions. TODO: We can further optimize this scan if we split the 7785 // instructions into different buckets based on the insert lane. 7786 SmallVector<Instruction *, 16> Visited; 7787 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 7788 assert(*I && 7789 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 7790 "Worklist not sorted properly!"); 7791 BasicBlock *BB = (*I)->getBlock(); 7792 // For all instructions in blocks containing gather sequences: 7793 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 7794 if (isDeleted(&In)) 7795 continue; 7796 if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) && 7797 !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In)) 7798 continue; 7799 7800 // Check if we can replace this instruction with any of the 7801 // visited instructions. 7802 bool Replaced = false; 7803 for (Instruction *&V : Visited) { 7804 SmallVector<int> NewMask; 7805 if (IsIdenticalOrLessDefined(&In, V, NewMask) && 7806 DT->dominates(V->getParent(), In.getParent())) { 7807 In.replaceAllUsesWith(V); 7808 eraseInstruction(&In); 7809 if (auto *SI = dyn_cast<ShuffleVectorInst>(V)) 7810 if (!NewMask.empty()) 7811 SI->setShuffleMask(NewMask); 7812 Replaced = true; 7813 break; 7814 } 7815 if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) && 7816 GatherShuffleSeq.contains(V) && 7817 IsIdenticalOrLessDefined(V, &In, NewMask) && 7818 DT->dominates(In.getParent(), V->getParent())) { 7819 In.moveAfter(V); 7820 V->replaceAllUsesWith(&In); 7821 eraseInstruction(V); 7822 if (auto *SI = dyn_cast<ShuffleVectorInst>(&In)) 7823 if (!NewMask.empty()) 7824 SI->setShuffleMask(NewMask); 7825 V = &In; 7826 Replaced = true; 7827 break; 7828 } 7829 } 7830 if (!Replaced) { 7831 assert(!is_contained(Visited, &In)); 7832 Visited.push_back(&In); 7833 } 7834 } 7835 } 7836 CSEBlocks.clear(); 7837 GatherShuffleSeq.clear(); 7838 } 7839 7840 BoUpSLP::ScheduleData * 7841 BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) { 7842 ScheduleData *Bundle = nullptr; 7843 ScheduleData *PrevInBundle = nullptr; 7844 for (Value *V : VL) { 7845 if (doesNotNeedToBeScheduled(V)) 7846 continue; 7847 ScheduleData *BundleMember = getScheduleData(V); 7848 assert(BundleMember && 7849 "no ScheduleData for bundle member " 7850 "(maybe not in same basic block)"); 7851 assert(BundleMember->isSchedulingEntity() && 7852 "bundle member already part of other bundle"); 7853 if (PrevInBundle) { 7854 PrevInBundle->NextInBundle = BundleMember; 7855 } else { 7856 Bundle = BundleMember; 7857 } 7858 7859 // Group the instructions to a bundle. 7860 BundleMember->FirstInBundle = Bundle; 7861 PrevInBundle = BundleMember; 7862 } 7863 assert(Bundle && "Failed to find schedule bundle"); 7864 return Bundle; 7865 } 7866 7867 // Groups the instructions to a bundle (which is then a single scheduling entity) 7868 // and schedules instructions until the bundle gets ready. 7869 Optional<BoUpSLP::ScheduleData *> 7870 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 7871 const InstructionsState &S) { 7872 // No need to schedule PHIs, insertelement, extractelement and extractvalue 7873 // instructions. 7874 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue) || 7875 doesNotNeedToSchedule(VL)) 7876 return nullptr; 7877 7878 // Initialize the instruction bundle. 7879 Instruction *OldScheduleEnd = ScheduleEnd; 7880 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 7881 7882 auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule, 7883 ScheduleData *Bundle) { 7884 // The scheduling region got new instructions at the lower end (or it is a 7885 // new region for the first bundle). This makes it necessary to 7886 // recalculate all dependencies. 7887 // It is seldom that this needs to be done a second time after adding the 7888 // initial bundle to the region. 7889 if (ScheduleEnd != OldScheduleEnd) { 7890 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 7891 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 7892 ReSchedule = true; 7893 } 7894 if (Bundle) { 7895 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 7896 << " in block " << BB->getName() << "\n"); 7897 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 7898 } 7899 7900 if (ReSchedule) { 7901 resetSchedule(); 7902 initialFillReadyList(ReadyInsts); 7903 } 7904 7905 // Now try to schedule the new bundle or (if no bundle) just calculate 7906 // dependencies. As soon as the bundle is "ready" it means that there are no 7907 // cyclic dependencies and we can schedule it. Note that's important that we 7908 // don't "schedule" the bundle yet (see cancelScheduling). 7909 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 7910 !ReadyInsts.empty()) { 7911 ScheduleData *Picked = ReadyInsts.pop_back_val(); 7912 assert(Picked->isSchedulingEntity() && Picked->isReady() && 7913 "must be ready to schedule"); 7914 schedule(Picked, ReadyInsts); 7915 } 7916 }; 7917 7918 // Make sure that the scheduling region contains all 7919 // instructions of the bundle. 7920 for (Value *V : VL) { 7921 if (doesNotNeedToBeScheduled(V)) 7922 continue; 7923 if (!extendSchedulingRegion(V, S)) { 7924 // If the scheduling region got new instructions at the lower end (or it 7925 // is a new region for the first bundle). This makes it necessary to 7926 // recalculate all dependencies. 7927 // Otherwise the compiler may crash trying to incorrectly calculate 7928 // dependencies and emit instruction in the wrong order at the actual 7929 // scheduling. 7930 TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr); 7931 return None; 7932 } 7933 } 7934 7935 bool ReSchedule = false; 7936 for (Value *V : VL) { 7937 if (doesNotNeedToBeScheduled(V)) 7938 continue; 7939 ScheduleData *BundleMember = getScheduleData(V); 7940 assert(BundleMember && 7941 "no ScheduleData for bundle member (maybe not in same basic block)"); 7942 7943 // Make sure we don't leave the pieces of the bundle in the ready list when 7944 // whole bundle might not be ready. 7945 ReadyInsts.remove(BundleMember); 7946 7947 if (!BundleMember->IsScheduled) 7948 continue; 7949 // A bundle member was scheduled as single instruction before and now 7950 // needs to be scheduled as part of the bundle. We just get rid of the 7951 // existing schedule. 7952 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 7953 << " was already scheduled\n"); 7954 ReSchedule = true; 7955 } 7956 7957 auto *Bundle = buildBundle(VL); 7958 TryScheduleBundleImpl(ReSchedule, Bundle); 7959 if (!Bundle->isReady()) { 7960 cancelScheduling(VL, S.OpValue); 7961 return None; 7962 } 7963 return Bundle; 7964 } 7965 7966 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 7967 Value *OpValue) { 7968 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue) || 7969 doesNotNeedToSchedule(VL)) 7970 return; 7971 7972 if (doesNotNeedToBeScheduled(OpValue)) 7973 OpValue = *find_if_not(VL, doesNotNeedToBeScheduled); 7974 ScheduleData *Bundle = getScheduleData(OpValue); 7975 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 7976 assert(!Bundle->IsScheduled && 7977 "Can't cancel bundle which is already scheduled"); 7978 assert(Bundle->isSchedulingEntity() && 7979 (Bundle->isPartOfBundle() || needToScheduleSingleInstruction(VL)) && 7980 "tried to unbundle something which is not a bundle"); 7981 7982 // Remove the bundle from the ready list. 7983 if (Bundle->isReady()) 7984 ReadyInsts.remove(Bundle); 7985 7986 // Un-bundle: make single instructions out of the bundle. 7987 ScheduleData *BundleMember = Bundle; 7988 while (BundleMember) { 7989 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 7990 BundleMember->FirstInBundle = BundleMember; 7991 ScheduleData *Next = BundleMember->NextInBundle; 7992 BundleMember->NextInBundle = nullptr; 7993 BundleMember->TE = nullptr; 7994 if (BundleMember->unscheduledDepsInBundle() == 0) { 7995 ReadyInsts.insert(BundleMember); 7996 } 7997 BundleMember = Next; 7998 } 7999 } 8000 8001 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 8002 // Allocate a new ScheduleData for the instruction. 8003 if (ChunkPos >= ChunkSize) { 8004 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 8005 ChunkPos = 0; 8006 } 8007 return &(ScheduleDataChunks.back()[ChunkPos++]); 8008 } 8009 8010 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 8011 const InstructionsState &S) { 8012 if (getScheduleData(V, isOneOf(S, V))) 8013 return true; 8014 Instruction *I = dyn_cast<Instruction>(V); 8015 assert(I && "bundle member must be an instruction"); 8016 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 8017 !doesNotNeedToBeScheduled(I) && 8018 "phi nodes/insertelements/extractelements/extractvalues don't need to " 8019 "be scheduled"); 8020 auto &&CheckScheduleForI = [this, &S](Instruction *I) -> bool { 8021 ScheduleData *ISD = getScheduleData(I); 8022 if (!ISD) 8023 return false; 8024 assert(isInSchedulingRegion(ISD) && 8025 "ScheduleData not in scheduling region"); 8026 ScheduleData *SD = allocateScheduleDataChunks(); 8027 SD->Inst = I; 8028 SD->init(SchedulingRegionID, S.OpValue); 8029 ExtraScheduleDataMap[I][S.OpValue] = SD; 8030 return true; 8031 }; 8032 if (CheckScheduleForI(I)) 8033 return true; 8034 if (!ScheduleStart) { 8035 // It's the first instruction in the new region. 8036 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 8037 ScheduleStart = I; 8038 ScheduleEnd = I->getNextNode(); 8039 if (isOneOf(S, I) != I) 8040 CheckScheduleForI(I); 8041 assert(ScheduleEnd && "tried to vectorize a terminator?"); 8042 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 8043 return true; 8044 } 8045 // Search up and down at the same time, because we don't know if the new 8046 // instruction is above or below the existing scheduling region. 8047 BasicBlock::reverse_iterator UpIter = 8048 ++ScheduleStart->getIterator().getReverse(); 8049 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 8050 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 8051 BasicBlock::iterator LowerEnd = BB->end(); 8052 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 8053 &*DownIter != I) { 8054 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 8055 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 8056 return false; 8057 } 8058 8059 ++UpIter; 8060 ++DownIter; 8061 } 8062 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 8063 assert(I->getParent() == ScheduleStart->getParent() && 8064 "Instruction is in wrong basic block."); 8065 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 8066 ScheduleStart = I; 8067 if (isOneOf(S, I) != I) 8068 CheckScheduleForI(I); 8069 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 8070 << "\n"); 8071 return true; 8072 } 8073 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 8074 "Expected to reach top of the basic block or instruction down the " 8075 "lower end."); 8076 assert(I->getParent() == ScheduleEnd->getParent() && 8077 "Instruction is in wrong basic block."); 8078 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 8079 nullptr); 8080 ScheduleEnd = I->getNextNode(); 8081 if (isOneOf(S, I) != I) 8082 CheckScheduleForI(I); 8083 assert(ScheduleEnd && "tried to vectorize a terminator?"); 8084 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 8085 return true; 8086 } 8087 8088 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 8089 Instruction *ToI, 8090 ScheduleData *PrevLoadStore, 8091 ScheduleData *NextLoadStore) { 8092 ScheduleData *CurrentLoadStore = PrevLoadStore; 8093 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 8094 // No need to allocate data for non-schedulable instructions. 8095 if (doesNotNeedToBeScheduled(I)) 8096 continue; 8097 ScheduleData *SD = ScheduleDataMap.lookup(I); 8098 if (!SD) { 8099 SD = allocateScheduleDataChunks(); 8100 ScheduleDataMap[I] = SD; 8101 SD->Inst = I; 8102 } 8103 assert(!isInSchedulingRegion(SD) && 8104 "new ScheduleData already in scheduling region"); 8105 SD->init(SchedulingRegionID, I); 8106 8107 if (I->mayReadOrWriteMemory() && 8108 (!isa<IntrinsicInst>(I) || 8109 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 8110 cast<IntrinsicInst>(I)->getIntrinsicID() != 8111 Intrinsic::pseudoprobe))) { 8112 // Update the linked list of memory accessing instructions. 8113 if (CurrentLoadStore) { 8114 CurrentLoadStore->NextLoadStore = SD; 8115 } else { 8116 FirstLoadStoreInRegion = SD; 8117 } 8118 CurrentLoadStore = SD; 8119 } 8120 8121 if (match(I, m_Intrinsic<Intrinsic::stacksave>()) || 8122 match(I, m_Intrinsic<Intrinsic::stackrestore>())) 8123 RegionHasStackSave = true; 8124 } 8125 if (NextLoadStore) { 8126 if (CurrentLoadStore) 8127 CurrentLoadStore->NextLoadStore = NextLoadStore; 8128 } else { 8129 LastLoadStoreInRegion = CurrentLoadStore; 8130 } 8131 } 8132 8133 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 8134 bool InsertInReadyList, 8135 BoUpSLP *SLP) { 8136 assert(SD->isSchedulingEntity()); 8137 8138 SmallVector<ScheduleData *, 10> WorkList; 8139 WorkList.push_back(SD); 8140 8141 while (!WorkList.empty()) { 8142 ScheduleData *SD = WorkList.pop_back_val(); 8143 for (ScheduleData *BundleMember = SD; BundleMember; 8144 BundleMember = BundleMember->NextInBundle) { 8145 assert(isInSchedulingRegion(BundleMember)); 8146 if (BundleMember->hasValidDependencies()) 8147 continue; 8148 8149 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 8150 << "\n"); 8151 BundleMember->Dependencies = 0; 8152 BundleMember->resetUnscheduledDeps(); 8153 8154 // Handle def-use chain dependencies. 8155 if (BundleMember->OpValue != BundleMember->Inst) { 8156 if (ScheduleData *UseSD = getScheduleData(BundleMember->Inst)) { 8157 BundleMember->Dependencies++; 8158 ScheduleData *DestBundle = UseSD->FirstInBundle; 8159 if (!DestBundle->IsScheduled) 8160 BundleMember->incrementUnscheduledDeps(1); 8161 if (!DestBundle->hasValidDependencies()) 8162 WorkList.push_back(DestBundle); 8163 } 8164 } else { 8165 for (User *U : BundleMember->Inst->users()) { 8166 if (ScheduleData *UseSD = getScheduleData(cast<Instruction>(U))) { 8167 BundleMember->Dependencies++; 8168 ScheduleData *DestBundle = UseSD->FirstInBundle; 8169 if (!DestBundle->IsScheduled) 8170 BundleMember->incrementUnscheduledDeps(1); 8171 if (!DestBundle->hasValidDependencies()) 8172 WorkList.push_back(DestBundle); 8173 } 8174 } 8175 } 8176 8177 auto makeControlDependent = [&](Instruction *I) { 8178 auto *DepDest = getScheduleData(I); 8179 assert(DepDest && "must be in schedule window"); 8180 DepDest->ControlDependencies.push_back(BundleMember); 8181 BundleMember->Dependencies++; 8182 ScheduleData *DestBundle = DepDest->FirstInBundle; 8183 if (!DestBundle->IsScheduled) 8184 BundleMember->incrementUnscheduledDeps(1); 8185 if (!DestBundle->hasValidDependencies()) 8186 WorkList.push_back(DestBundle); 8187 }; 8188 8189 // Any instruction which isn't safe to speculate at the begining of the 8190 // block is control dependend on any early exit or non-willreturn call 8191 // which proceeds it. 8192 if (!isGuaranteedToTransferExecutionToSuccessor(BundleMember->Inst)) { 8193 for (Instruction *I = BundleMember->Inst->getNextNode(); 8194 I != ScheduleEnd; I = I->getNextNode()) { 8195 if (isSafeToSpeculativelyExecute(I, &*BB->begin())) 8196 continue; 8197 8198 // Add the dependency 8199 makeControlDependent(I); 8200 8201 if (!isGuaranteedToTransferExecutionToSuccessor(I)) 8202 // Everything past here must be control dependent on I. 8203 break; 8204 } 8205 } 8206 8207 if (RegionHasStackSave) { 8208 // If we have an inalloc alloca instruction, it needs to be scheduled 8209 // after any preceeding stacksave. We also need to prevent any alloca 8210 // from reordering above a preceeding stackrestore. 8211 if (match(BundleMember->Inst, m_Intrinsic<Intrinsic::stacksave>()) || 8212 match(BundleMember->Inst, m_Intrinsic<Intrinsic::stackrestore>())) { 8213 for (Instruction *I = BundleMember->Inst->getNextNode(); 8214 I != ScheduleEnd; I = I->getNextNode()) { 8215 if (match(I, m_Intrinsic<Intrinsic::stacksave>()) || 8216 match(I, m_Intrinsic<Intrinsic::stackrestore>())) 8217 // Any allocas past here must be control dependent on I, and I 8218 // must be memory dependend on BundleMember->Inst. 8219 break; 8220 8221 if (!isa<AllocaInst>(I)) 8222 continue; 8223 8224 // Add the dependency 8225 makeControlDependent(I); 8226 } 8227 } 8228 8229 // In addition to the cases handle just above, we need to prevent 8230 // allocas from moving below a stacksave. The stackrestore case 8231 // is currently thought to be conservatism. 8232 if (isa<AllocaInst>(BundleMember->Inst)) { 8233 for (Instruction *I = BundleMember->Inst->getNextNode(); 8234 I != ScheduleEnd; I = I->getNextNode()) { 8235 if (!match(I, m_Intrinsic<Intrinsic::stacksave>()) && 8236 !match(I, m_Intrinsic<Intrinsic::stackrestore>())) 8237 continue; 8238 8239 // Add the dependency 8240 makeControlDependent(I); 8241 break; 8242 } 8243 } 8244 } 8245 8246 // Handle the memory dependencies (if any). 8247 ScheduleData *DepDest = BundleMember->NextLoadStore; 8248 if (!DepDest) 8249 continue; 8250 Instruction *SrcInst = BundleMember->Inst; 8251 assert(SrcInst->mayReadOrWriteMemory() && 8252 "NextLoadStore list for non memory effecting bundle?"); 8253 MemoryLocation SrcLoc = getLocation(SrcInst); 8254 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 8255 unsigned numAliased = 0; 8256 unsigned DistToSrc = 1; 8257 8258 for ( ; DepDest; DepDest = DepDest->NextLoadStore) { 8259 assert(isInSchedulingRegion(DepDest)); 8260 8261 // We have two limits to reduce the complexity: 8262 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 8263 // SLP->isAliased (which is the expensive part in this loop). 8264 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 8265 // the whole loop (even if the loop is fast, it's quadratic). 8266 // It's important for the loop break condition (see below) to 8267 // check this limit even between two read-only instructions. 8268 if (DistToSrc >= MaxMemDepDistance || 8269 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 8270 (numAliased >= AliasedCheckLimit || 8271 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 8272 8273 // We increment the counter only if the locations are aliased 8274 // (instead of counting all alias checks). This gives a better 8275 // balance between reduced runtime and accurate dependencies. 8276 numAliased++; 8277 8278 DepDest->MemoryDependencies.push_back(BundleMember); 8279 BundleMember->Dependencies++; 8280 ScheduleData *DestBundle = DepDest->FirstInBundle; 8281 if (!DestBundle->IsScheduled) { 8282 BundleMember->incrementUnscheduledDeps(1); 8283 } 8284 if (!DestBundle->hasValidDependencies()) { 8285 WorkList.push_back(DestBundle); 8286 } 8287 } 8288 8289 // Example, explaining the loop break condition: Let's assume our 8290 // starting instruction is i0 and MaxMemDepDistance = 3. 8291 // 8292 // +--------v--v--v 8293 // i0,i1,i2,i3,i4,i5,i6,i7,i8 8294 // +--------^--^--^ 8295 // 8296 // MaxMemDepDistance let us stop alias-checking at i3 and we add 8297 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 8298 // Previously we already added dependencies from i3 to i6,i7,i8 8299 // (because of MaxMemDepDistance). As we added a dependency from 8300 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 8301 // and we can abort this loop at i6. 8302 if (DistToSrc >= 2 * MaxMemDepDistance) 8303 break; 8304 DistToSrc++; 8305 } 8306 } 8307 if (InsertInReadyList && SD->isReady()) { 8308 ReadyInsts.insert(SD); 8309 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 8310 << "\n"); 8311 } 8312 } 8313 } 8314 8315 void BoUpSLP::BlockScheduling::resetSchedule() { 8316 assert(ScheduleStart && 8317 "tried to reset schedule on block which has not been scheduled"); 8318 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 8319 doForAllOpcodes(I, [&](ScheduleData *SD) { 8320 assert(isInSchedulingRegion(SD) && 8321 "ScheduleData not in scheduling region"); 8322 SD->IsScheduled = false; 8323 SD->resetUnscheduledDeps(); 8324 }); 8325 } 8326 ReadyInsts.clear(); 8327 } 8328 8329 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 8330 if (!BS->ScheduleStart) 8331 return; 8332 8333 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 8334 8335 // A key point - if we got here, pre-scheduling was able to find a valid 8336 // scheduling of the sub-graph of the scheduling window which consists 8337 // of all vector bundles and their transitive users. As such, we do not 8338 // need to reschedule anything *outside of* that subgraph. 8339 8340 BS->resetSchedule(); 8341 8342 // For the real scheduling we use a more sophisticated ready-list: it is 8343 // sorted by the original instruction location. This lets the final schedule 8344 // be as close as possible to the original instruction order. 8345 // WARNING: If changing this order causes a correctness issue, that means 8346 // there is some missing dependence edge in the schedule data graph. 8347 struct ScheduleDataCompare { 8348 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 8349 return SD2->SchedulingPriority < SD1->SchedulingPriority; 8350 } 8351 }; 8352 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 8353 8354 // Ensure that all dependency data is updated (for nodes in the sub-graph) 8355 // and fill the ready-list with initial instructions. 8356 int Idx = 0; 8357 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 8358 I = I->getNextNode()) { 8359 BS->doForAllOpcodes(I, [this, &Idx, BS](ScheduleData *SD) { 8360 TreeEntry *SDTE = getTreeEntry(SD->Inst); 8361 (void)SDTE; 8362 assert((isVectorLikeInstWithConstOps(SD->Inst) || 8363 SD->isPartOfBundle() == 8364 (SDTE && !doesNotNeedToSchedule(SDTE->Scalars))) && 8365 "scheduler and vectorizer bundle mismatch"); 8366 SD->FirstInBundle->SchedulingPriority = Idx++; 8367 8368 if (SD->isSchedulingEntity() && SD->isPartOfBundle()) 8369 BS->calculateDependencies(SD, false, this); 8370 }); 8371 } 8372 BS->initialFillReadyList(ReadyInsts); 8373 8374 Instruction *LastScheduledInst = BS->ScheduleEnd; 8375 8376 // Do the "real" scheduling. 8377 while (!ReadyInsts.empty()) { 8378 ScheduleData *picked = *ReadyInsts.begin(); 8379 ReadyInsts.erase(ReadyInsts.begin()); 8380 8381 // Move the scheduled instruction(s) to their dedicated places, if not 8382 // there yet. 8383 for (ScheduleData *BundleMember = picked; BundleMember; 8384 BundleMember = BundleMember->NextInBundle) { 8385 Instruction *pickedInst = BundleMember->Inst; 8386 if (pickedInst->getNextNode() != LastScheduledInst) 8387 pickedInst->moveBefore(LastScheduledInst); 8388 LastScheduledInst = pickedInst; 8389 } 8390 8391 BS->schedule(picked, ReadyInsts); 8392 } 8393 8394 // Check that we didn't break any of our invariants. 8395 #ifdef EXPENSIVE_CHECKS 8396 BS->verify(); 8397 #endif 8398 8399 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS) 8400 // Check that all schedulable entities got scheduled 8401 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; I = I->getNextNode()) { 8402 BS->doForAllOpcodes(I, [&](ScheduleData *SD) { 8403 if (SD->isSchedulingEntity() && SD->hasValidDependencies()) { 8404 assert(SD->IsScheduled && "must be scheduled at this point"); 8405 } 8406 }); 8407 } 8408 #endif 8409 8410 // Avoid duplicate scheduling of the block. 8411 BS->ScheduleStart = nullptr; 8412 } 8413 8414 unsigned BoUpSLP::getVectorElementSize(Value *V) { 8415 // If V is a store, just return the width of the stored value (or value 8416 // truncated just before storing) without traversing the expression tree. 8417 // This is the common case. 8418 if (auto *Store = dyn_cast<StoreInst>(V)) { 8419 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 8420 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 8421 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 8422 } 8423 8424 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 8425 return getVectorElementSize(IEI->getOperand(1)); 8426 8427 auto E = InstrElementSize.find(V); 8428 if (E != InstrElementSize.end()) 8429 return E->second; 8430 8431 // If V is not a store, we can traverse the expression tree to find loads 8432 // that feed it. The type of the loaded value may indicate a more suitable 8433 // width than V's type. We want to base the vector element size on the width 8434 // of memory operations where possible. 8435 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 8436 SmallPtrSet<Instruction *, 16> Visited; 8437 if (auto *I = dyn_cast<Instruction>(V)) { 8438 Worklist.emplace_back(I, I->getParent()); 8439 Visited.insert(I); 8440 } 8441 8442 // Traverse the expression tree in bottom-up order looking for loads. If we 8443 // encounter an instruction we don't yet handle, we give up. 8444 auto Width = 0u; 8445 while (!Worklist.empty()) { 8446 Instruction *I; 8447 BasicBlock *Parent; 8448 std::tie(I, Parent) = Worklist.pop_back_val(); 8449 8450 // We should only be looking at scalar instructions here. If the current 8451 // instruction has a vector type, skip. 8452 auto *Ty = I->getType(); 8453 if (isa<VectorType>(Ty)) 8454 continue; 8455 8456 // If the current instruction is a load, update MaxWidth to reflect the 8457 // width of the loaded value. 8458 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 8459 isa<ExtractValueInst>(I)) 8460 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 8461 8462 // Otherwise, we need to visit the operands of the instruction. We only 8463 // handle the interesting cases from buildTree here. If an operand is an 8464 // instruction we haven't yet visited and from the same basic block as the 8465 // user or the use is a PHI node, we add it to the worklist. 8466 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 8467 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 8468 isa<UnaryOperator>(I)) { 8469 for (Use &U : I->operands()) 8470 if (auto *J = dyn_cast<Instruction>(U.get())) 8471 if (Visited.insert(J).second && 8472 (isa<PHINode>(I) || J->getParent() == Parent)) 8473 Worklist.emplace_back(J, J->getParent()); 8474 } else { 8475 break; 8476 } 8477 } 8478 8479 // If we didn't encounter a memory access in the expression tree, or if we 8480 // gave up for some reason, just return the width of V. Otherwise, return the 8481 // maximum width we found. 8482 if (!Width) { 8483 if (auto *CI = dyn_cast<CmpInst>(V)) 8484 V = CI->getOperand(0); 8485 Width = DL->getTypeSizeInBits(V->getType()); 8486 } 8487 8488 for (Instruction *I : Visited) 8489 InstrElementSize[I] = Width; 8490 8491 return Width; 8492 } 8493 8494 // Determine if a value V in a vectorizable expression Expr can be demoted to a 8495 // smaller type with a truncation. We collect the values that will be demoted 8496 // in ToDemote and additional roots that require investigating in Roots. 8497 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 8498 SmallVectorImpl<Value *> &ToDemote, 8499 SmallVectorImpl<Value *> &Roots) { 8500 // We can always demote constants. 8501 if (isa<Constant>(V)) { 8502 ToDemote.push_back(V); 8503 return true; 8504 } 8505 8506 // If the value is not an instruction in the expression with only one use, it 8507 // cannot be demoted. 8508 auto *I = dyn_cast<Instruction>(V); 8509 if (!I || !I->hasOneUse() || !Expr.count(I)) 8510 return false; 8511 8512 switch (I->getOpcode()) { 8513 8514 // We can always demote truncations and extensions. Since truncations can 8515 // seed additional demotion, we save the truncated value. 8516 case Instruction::Trunc: 8517 Roots.push_back(I->getOperand(0)); 8518 break; 8519 case Instruction::ZExt: 8520 case Instruction::SExt: 8521 if (isa<ExtractElementInst>(I->getOperand(0)) || 8522 isa<InsertElementInst>(I->getOperand(0))) 8523 return false; 8524 break; 8525 8526 // We can demote certain binary operations if we can demote both of their 8527 // operands. 8528 case Instruction::Add: 8529 case Instruction::Sub: 8530 case Instruction::Mul: 8531 case Instruction::And: 8532 case Instruction::Or: 8533 case Instruction::Xor: 8534 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 8535 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 8536 return false; 8537 break; 8538 8539 // We can demote selects if we can demote their true and false values. 8540 case Instruction::Select: { 8541 SelectInst *SI = cast<SelectInst>(I); 8542 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 8543 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 8544 return false; 8545 break; 8546 } 8547 8548 // We can demote phis if we can demote all their incoming operands. Note that 8549 // we don't need to worry about cycles since we ensure single use above. 8550 case Instruction::PHI: { 8551 PHINode *PN = cast<PHINode>(I); 8552 for (Value *IncValue : PN->incoming_values()) 8553 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 8554 return false; 8555 break; 8556 } 8557 8558 // Otherwise, conservatively give up. 8559 default: 8560 return false; 8561 } 8562 8563 // Record the value that we can demote. 8564 ToDemote.push_back(V); 8565 return true; 8566 } 8567 8568 void BoUpSLP::computeMinimumValueSizes() { 8569 // If there are no external uses, the expression tree must be rooted by a 8570 // store. We can't demote in-memory values, so there is nothing to do here. 8571 if (ExternalUses.empty()) 8572 return; 8573 8574 // We only attempt to truncate integer expressions. 8575 auto &TreeRoot = VectorizableTree[0]->Scalars; 8576 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 8577 if (!TreeRootIT) 8578 return; 8579 8580 // If the expression is not rooted by a store, these roots should have 8581 // external uses. We will rely on InstCombine to rewrite the expression in 8582 // the narrower type. However, InstCombine only rewrites single-use values. 8583 // This means that if a tree entry other than a root is used externally, it 8584 // must have multiple uses and InstCombine will not rewrite it. The code 8585 // below ensures that only the roots are used externally. 8586 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 8587 for (auto &EU : ExternalUses) 8588 if (!Expr.erase(EU.Scalar)) 8589 return; 8590 if (!Expr.empty()) 8591 return; 8592 8593 // Collect the scalar values of the vectorizable expression. We will use this 8594 // context to determine which values can be demoted. If we see a truncation, 8595 // we mark it as seeding another demotion. 8596 for (auto &EntryPtr : VectorizableTree) 8597 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 8598 8599 // Ensure the roots of the vectorizable tree don't form a cycle. They must 8600 // have a single external user that is not in the vectorizable tree. 8601 for (auto *Root : TreeRoot) 8602 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 8603 return; 8604 8605 // Conservatively determine if we can actually truncate the roots of the 8606 // expression. Collect the values that can be demoted in ToDemote and 8607 // additional roots that require investigating in Roots. 8608 SmallVector<Value *, 32> ToDemote; 8609 SmallVector<Value *, 4> Roots; 8610 for (auto *Root : TreeRoot) 8611 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 8612 return; 8613 8614 // The maximum bit width required to represent all the values that can be 8615 // demoted without loss of precision. It would be safe to truncate the roots 8616 // of the expression to this width. 8617 auto MaxBitWidth = 8u; 8618 8619 // We first check if all the bits of the roots are demanded. If they're not, 8620 // we can truncate the roots to this narrower type. 8621 for (auto *Root : TreeRoot) { 8622 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 8623 MaxBitWidth = std::max<unsigned>( 8624 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 8625 } 8626 8627 // True if the roots can be zero-extended back to their original type, rather 8628 // than sign-extended. We know that if the leading bits are not demanded, we 8629 // can safely zero-extend. So we initialize IsKnownPositive to True. 8630 bool IsKnownPositive = true; 8631 8632 // If all the bits of the roots are demanded, we can try a little harder to 8633 // compute a narrower type. This can happen, for example, if the roots are 8634 // getelementptr indices. InstCombine promotes these indices to the pointer 8635 // width. Thus, all their bits are technically demanded even though the 8636 // address computation might be vectorized in a smaller type. 8637 // 8638 // We start by looking at each entry that can be demoted. We compute the 8639 // maximum bit width required to store the scalar by using ValueTracking to 8640 // compute the number of high-order bits we can truncate. 8641 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 8642 llvm::all_of(TreeRoot, [](Value *R) { 8643 assert(R->hasOneUse() && "Root should have only one use!"); 8644 return isa<GetElementPtrInst>(R->user_back()); 8645 })) { 8646 MaxBitWidth = 8u; 8647 8648 // Determine if the sign bit of all the roots is known to be zero. If not, 8649 // IsKnownPositive is set to False. 8650 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 8651 KnownBits Known = computeKnownBits(R, *DL); 8652 return Known.isNonNegative(); 8653 }); 8654 8655 // Determine the maximum number of bits required to store the scalar 8656 // values. 8657 for (auto *Scalar : ToDemote) { 8658 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 8659 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 8660 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 8661 } 8662 8663 // If we can't prove that the sign bit is zero, we must add one to the 8664 // maximum bit width to account for the unknown sign bit. This preserves 8665 // the existing sign bit so we can safely sign-extend the root back to the 8666 // original type. Otherwise, if we know the sign bit is zero, we will 8667 // zero-extend the root instead. 8668 // 8669 // FIXME: This is somewhat suboptimal, as there will be cases where adding 8670 // one to the maximum bit width will yield a larger-than-necessary 8671 // type. In general, we need to add an extra bit only if we can't 8672 // prove that the upper bit of the original type is equal to the 8673 // upper bit of the proposed smaller type. If these two bits are the 8674 // same (either zero or one) we know that sign-extending from the 8675 // smaller type will result in the same value. Here, since we can't 8676 // yet prove this, we are just making the proposed smaller type 8677 // larger to ensure correctness. 8678 if (!IsKnownPositive) 8679 ++MaxBitWidth; 8680 } 8681 8682 // Round MaxBitWidth up to the next power-of-two. 8683 if (!isPowerOf2_64(MaxBitWidth)) 8684 MaxBitWidth = NextPowerOf2(MaxBitWidth); 8685 8686 // If the maximum bit width we compute is less than the with of the roots' 8687 // type, we can proceed with the narrowing. Otherwise, do nothing. 8688 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 8689 return; 8690 8691 // If we can truncate the root, we must collect additional values that might 8692 // be demoted as a result. That is, those seeded by truncations we will 8693 // modify. 8694 while (!Roots.empty()) 8695 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 8696 8697 // Finally, map the values we can demote to the maximum bit with we computed. 8698 for (auto *Scalar : ToDemote) 8699 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 8700 } 8701 8702 namespace { 8703 8704 /// The SLPVectorizer Pass. 8705 struct SLPVectorizer : public FunctionPass { 8706 SLPVectorizerPass Impl; 8707 8708 /// Pass identification, replacement for typeid 8709 static char ID; 8710 8711 explicit SLPVectorizer() : FunctionPass(ID) { 8712 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 8713 } 8714 8715 bool doInitialization(Module &M) override { return false; } 8716 8717 bool runOnFunction(Function &F) override { 8718 if (skipFunction(F)) 8719 return false; 8720 8721 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 8722 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 8723 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 8724 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 8725 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 8726 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 8727 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 8728 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 8729 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 8730 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 8731 8732 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8733 } 8734 8735 void getAnalysisUsage(AnalysisUsage &AU) const override { 8736 FunctionPass::getAnalysisUsage(AU); 8737 AU.addRequired<AssumptionCacheTracker>(); 8738 AU.addRequired<ScalarEvolutionWrapperPass>(); 8739 AU.addRequired<AAResultsWrapperPass>(); 8740 AU.addRequired<TargetTransformInfoWrapperPass>(); 8741 AU.addRequired<LoopInfoWrapperPass>(); 8742 AU.addRequired<DominatorTreeWrapperPass>(); 8743 AU.addRequired<DemandedBitsWrapperPass>(); 8744 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 8745 AU.addRequired<InjectTLIMappingsLegacy>(); 8746 AU.addPreserved<LoopInfoWrapperPass>(); 8747 AU.addPreserved<DominatorTreeWrapperPass>(); 8748 AU.addPreserved<AAResultsWrapperPass>(); 8749 AU.addPreserved<GlobalsAAWrapperPass>(); 8750 AU.setPreservesCFG(); 8751 } 8752 }; 8753 8754 } // end anonymous namespace 8755 8756 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 8757 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 8758 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 8759 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 8760 auto *AA = &AM.getResult<AAManager>(F); 8761 auto *LI = &AM.getResult<LoopAnalysis>(F); 8762 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 8763 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 8764 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 8765 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8766 8767 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8768 if (!Changed) 8769 return PreservedAnalyses::all(); 8770 8771 PreservedAnalyses PA; 8772 PA.preserveSet<CFGAnalyses>(); 8773 return PA; 8774 } 8775 8776 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 8777 TargetTransformInfo *TTI_, 8778 TargetLibraryInfo *TLI_, AAResults *AA_, 8779 LoopInfo *LI_, DominatorTree *DT_, 8780 AssumptionCache *AC_, DemandedBits *DB_, 8781 OptimizationRemarkEmitter *ORE_) { 8782 if (!RunSLPVectorization) 8783 return false; 8784 SE = SE_; 8785 TTI = TTI_; 8786 TLI = TLI_; 8787 AA = AA_; 8788 LI = LI_; 8789 DT = DT_; 8790 AC = AC_; 8791 DB = DB_; 8792 DL = &F.getParent()->getDataLayout(); 8793 8794 Stores.clear(); 8795 GEPs.clear(); 8796 bool Changed = false; 8797 8798 // If the target claims to have no vector registers don't attempt 8799 // vectorization. 8800 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) { 8801 LLVM_DEBUG( 8802 dbgs() << "SLP: Didn't find any vector registers for target, abort.\n"); 8803 return false; 8804 } 8805 8806 // Don't vectorize when the attribute NoImplicitFloat is used. 8807 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 8808 return false; 8809 8810 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 8811 8812 // Use the bottom up slp vectorizer to construct chains that start with 8813 // store instructions. 8814 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 8815 8816 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 8817 // delete instructions. 8818 8819 // Update DFS numbers now so that we can use them for ordering. 8820 DT->updateDFSNumbers(); 8821 8822 // Scan the blocks in the function in post order. 8823 for (auto BB : post_order(&F.getEntryBlock())) { 8824 collectSeedInstructions(BB); 8825 8826 // Vectorize trees that end at stores. 8827 if (!Stores.empty()) { 8828 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 8829 << " underlying objects.\n"); 8830 Changed |= vectorizeStoreChains(R); 8831 } 8832 8833 // Vectorize trees that end at reductions. 8834 Changed |= vectorizeChainsInBlock(BB, R); 8835 8836 // Vectorize the index computations of getelementptr instructions. This 8837 // is primarily intended to catch gather-like idioms ending at 8838 // non-consecutive loads. 8839 if (!GEPs.empty()) { 8840 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 8841 << " underlying objects.\n"); 8842 Changed |= vectorizeGEPIndices(BB, R); 8843 } 8844 } 8845 8846 if (Changed) { 8847 R.optimizeGatherSequence(); 8848 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 8849 } 8850 return Changed; 8851 } 8852 8853 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 8854 unsigned Idx) { 8855 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 8856 << "\n"); 8857 const unsigned Sz = R.getVectorElementSize(Chain[0]); 8858 const unsigned MinVF = R.getMinVecRegSize() / Sz; 8859 unsigned VF = Chain.size(); 8860 8861 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 8862 return false; 8863 8864 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 8865 << "\n"); 8866 8867 R.buildTree(Chain); 8868 if (R.isTreeTinyAndNotFullyVectorizable()) 8869 return false; 8870 if (R.isLoadCombineCandidate()) 8871 return false; 8872 R.reorderTopToBottom(); 8873 R.reorderBottomToTop(); 8874 R.buildExternalUses(); 8875 8876 R.computeMinimumValueSizes(); 8877 8878 InstructionCost Cost = R.getTreeCost(); 8879 8880 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 8881 if (Cost < -SLPCostThreshold) { 8882 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 8883 8884 using namespace ore; 8885 8886 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 8887 cast<StoreInst>(Chain[0])) 8888 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 8889 << " and with tree size " 8890 << NV("TreeSize", R.getTreeSize())); 8891 8892 R.vectorizeTree(); 8893 return true; 8894 } 8895 8896 return false; 8897 } 8898 8899 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 8900 BoUpSLP &R) { 8901 // We may run into multiple chains that merge into a single chain. We mark the 8902 // stores that we vectorized so that we don't visit the same store twice. 8903 BoUpSLP::ValueSet VectorizedStores; 8904 bool Changed = false; 8905 8906 int E = Stores.size(); 8907 SmallBitVector Tails(E, false); 8908 int MaxIter = MaxStoreLookup.getValue(); 8909 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 8910 E, std::make_pair(E, INT_MAX)); 8911 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 8912 int IterCnt; 8913 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 8914 &CheckedPairs, 8915 &ConsecutiveChain](int K, int Idx) { 8916 if (IterCnt >= MaxIter) 8917 return true; 8918 if (CheckedPairs[Idx].test(K)) 8919 return ConsecutiveChain[K].second == 1 && 8920 ConsecutiveChain[K].first == Idx; 8921 ++IterCnt; 8922 CheckedPairs[Idx].set(K); 8923 CheckedPairs[K].set(Idx); 8924 Optional<int> Diff = getPointersDiff( 8925 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 8926 Stores[Idx]->getValueOperand()->getType(), 8927 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 8928 if (!Diff || *Diff == 0) 8929 return false; 8930 int Val = *Diff; 8931 if (Val < 0) { 8932 if (ConsecutiveChain[Idx].second > -Val) { 8933 Tails.set(K); 8934 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 8935 } 8936 return false; 8937 } 8938 if (ConsecutiveChain[K].second <= Val) 8939 return false; 8940 8941 Tails.set(Idx); 8942 ConsecutiveChain[K] = std::make_pair(Idx, Val); 8943 return Val == 1; 8944 }; 8945 // Do a quadratic search on all of the given stores in reverse order and find 8946 // all of the pairs of stores that follow each other. 8947 for (int Idx = E - 1; Idx >= 0; --Idx) { 8948 // If a store has multiple consecutive store candidates, search according 8949 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 8950 // This is because usually pairing with immediate succeeding or preceding 8951 // candidate create the best chance to find slp vectorization opportunity. 8952 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 8953 IterCnt = 0; 8954 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 8955 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 8956 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 8957 break; 8958 } 8959 8960 // Tracks if we tried to vectorize stores starting from the given tail 8961 // already. 8962 SmallBitVector TriedTails(E, false); 8963 // For stores that start but don't end a link in the chain: 8964 for (int Cnt = E; Cnt > 0; --Cnt) { 8965 int I = Cnt - 1; 8966 if (ConsecutiveChain[I].first == E || Tails.test(I)) 8967 continue; 8968 // We found a store instr that starts a chain. Now follow the chain and try 8969 // to vectorize it. 8970 BoUpSLP::ValueList Operands; 8971 // Collect the chain into a list. 8972 while (I != E && !VectorizedStores.count(Stores[I])) { 8973 Operands.push_back(Stores[I]); 8974 Tails.set(I); 8975 if (ConsecutiveChain[I].second != 1) { 8976 // Mark the new end in the chain and go back, if required. It might be 8977 // required if the original stores come in reversed order, for example. 8978 if (ConsecutiveChain[I].first != E && 8979 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 8980 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 8981 TriedTails.set(I); 8982 Tails.reset(ConsecutiveChain[I].first); 8983 if (Cnt < ConsecutiveChain[I].first + 2) 8984 Cnt = ConsecutiveChain[I].first + 2; 8985 } 8986 break; 8987 } 8988 // Move to the next value in the chain. 8989 I = ConsecutiveChain[I].first; 8990 } 8991 assert(!Operands.empty() && "Expected non-empty list of stores."); 8992 8993 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 8994 unsigned EltSize = R.getVectorElementSize(Operands[0]); 8995 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 8996 8997 unsigned MinVF = R.getMinVF(EltSize); 8998 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 8999 MaxElts); 9000 9001 // FIXME: Is division-by-2 the correct step? Should we assert that the 9002 // register size is a power-of-2? 9003 unsigned StartIdx = 0; 9004 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 9005 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 9006 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 9007 if (!VectorizedStores.count(Slice.front()) && 9008 !VectorizedStores.count(Slice.back()) && 9009 vectorizeStoreChain(Slice, R, Cnt)) { 9010 // Mark the vectorized stores so that we don't vectorize them again. 9011 VectorizedStores.insert(Slice.begin(), Slice.end()); 9012 Changed = true; 9013 // If we vectorized initial block, no need to try to vectorize it 9014 // again. 9015 if (Cnt == StartIdx) 9016 StartIdx += Size; 9017 Cnt += Size; 9018 continue; 9019 } 9020 ++Cnt; 9021 } 9022 // Check if the whole array was vectorized already - exit. 9023 if (StartIdx >= Operands.size()) 9024 break; 9025 } 9026 } 9027 9028 return Changed; 9029 } 9030 9031 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 9032 // Initialize the collections. We will make a single pass over the block. 9033 Stores.clear(); 9034 GEPs.clear(); 9035 9036 // Visit the store and getelementptr instructions in BB and organize them in 9037 // Stores and GEPs according to the underlying objects of their pointer 9038 // operands. 9039 for (Instruction &I : *BB) { 9040 // Ignore store instructions that are volatile or have a pointer operand 9041 // that doesn't point to a scalar type. 9042 if (auto *SI = dyn_cast<StoreInst>(&I)) { 9043 if (!SI->isSimple()) 9044 continue; 9045 if (!isValidElementType(SI->getValueOperand()->getType())) 9046 continue; 9047 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 9048 } 9049 9050 // Ignore getelementptr instructions that have more than one index, a 9051 // constant index, or a pointer operand that doesn't point to a scalar 9052 // type. 9053 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 9054 auto Idx = GEP->idx_begin()->get(); 9055 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 9056 continue; 9057 if (!isValidElementType(Idx->getType())) 9058 continue; 9059 if (GEP->getType()->isVectorTy()) 9060 continue; 9061 GEPs[GEP->getPointerOperand()].push_back(GEP); 9062 } 9063 } 9064 } 9065 9066 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 9067 if (!A || !B) 9068 return false; 9069 if (isa<InsertElementInst>(A) || isa<InsertElementInst>(B)) 9070 return false; 9071 Value *VL[] = {A, B}; 9072 return tryToVectorizeList(VL, R); 9073 } 9074 9075 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 9076 bool LimitForRegisterSize) { 9077 if (VL.size() < 2) 9078 return false; 9079 9080 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 9081 << VL.size() << ".\n"); 9082 9083 // Check that all of the parts are instructions of the same type, 9084 // we permit an alternate opcode via InstructionsState. 9085 InstructionsState S = getSameOpcode(VL); 9086 if (!S.getOpcode()) 9087 return false; 9088 9089 Instruction *I0 = cast<Instruction>(S.OpValue); 9090 // Make sure invalid types (including vector type) are rejected before 9091 // determining vectorization factor for scalar instructions. 9092 for (Value *V : VL) { 9093 Type *Ty = V->getType(); 9094 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 9095 // NOTE: the following will give user internal llvm type name, which may 9096 // not be useful. 9097 R.getORE()->emit([&]() { 9098 std::string type_str; 9099 llvm::raw_string_ostream rso(type_str); 9100 Ty->print(rso); 9101 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 9102 << "Cannot SLP vectorize list: type " 9103 << rso.str() + " is unsupported by vectorizer"; 9104 }); 9105 return false; 9106 } 9107 } 9108 9109 unsigned Sz = R.getVectorElementSize(I0); 9110 unsigned MinVF = R.getMinVF(Sz); 9111 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 9112 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 9113 if (MaxVF < 2) { 9114 R.getORE()->emit([&]() { 9115 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 9116 << "Cannot SLP vectorize list: vectorization factor " 9117 << "less than 2 is not supported"; 9118 }); 9119 return false; 9120 } 9121 9122 bool Changed = false; 9123 bool CandidateFound = false; 9124 InstructionCost MinCost = SLPCostThreshold.getValue(); 9125 Type *ScalarTy = VL[0]->getType(); 9126 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 9127 ScalarTy = IE->getOperand(1)->getType(); 9128 9129 unsigned NextInst = 0, MaxInst = VL.size(); 9130 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 9131 // No actual vectorization should happen, if number of parts is the same as 9132 // provided vectorization factor (i.e. the scalar type is used for vector 9133 // code during codegen). 9134 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 9135 if (TTI->getNumberOfParts(VecTy) == VF) 9136 continue; 9137 for (unsigned I = NextInst; I < MaxInst; ++I) { 9138 unsigned OpsWidth = 0; 9139 9140 if (I + VF > MaxInst) 9141 OpsWidth = MaxInst - I; 9142 else 9143 OpsWidth = VF; 9144 9145 if (!isPowerOf2_32(OpsWidth)) 9146 continue; 9147 9148 if ((LimitForRegisterSize && OpsWidth < MaxVF) || 9149 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 9150 break; 9151 9152 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 9153 // Check that a previous iteration of this loop did not delete the Value. 9154 if (llvm::any_of(Ops, [&R](Value *V) { 9155 auto *I = dyn_cast<Instruction>(V); 9156 return I && R.isDeleted(I); 9157 })) 9158 continue; 9159 9160 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 9161 << "\n"); 9162 9163 R.buildTree(Ops); 9164 if (R.isTreeTinyAndNotFullyVectorizable()) 9165 continue; 9166 R.reorderTopToBottom(); 9167 R.reorderBottomToTop(!isa<InsertElementInst>(Ops.front())); 9168 R.buildExternalUses(); 9169 9170 R.computeMinimumValueSizes(); 9171 InstructionCost Cost = R.getTreeCost(); 9172 CandidateFound = true; 9173 MinCost = std::min(MinCost, Cost); 9174 9175 if (Cost < -SLPCostThreshold) { 9176 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 9177 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 9178 cast<Instruction>(Ops[0])) 9179 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 9180 << " and with tree size " 9181 << ore::NV("TreeSize", R.getTreeSize())); 9182 9183 R.vectorizeTree(); 9184 // Move to the next bundle. 9185 I += VF - 1; 9186 NextInst = I + 1; 9187 Changed = true; 9188 } 9189 } 9190 } 9191 9192 if (!Changed && CandidateFound) { 9193 R.getORE()->emit([&]() { 9194 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 9195 << "List vectorization was possible but not beneficial with cost " 9196 << ore::NV("Cost", MinCost) << " >= " 9197 << ore::NV("Treshold", -SLPCostThreshold); 9198 }); 9199 } else if (!Changed) { 9200 R.getORE()->emit([&]() { 9201 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 9202 << "Cannot SLP vectorize list: vectorization was impossible" 9203 << " with available vectorization factors"; 9204 }); 9205 } 9206 return Changed; 9207 } 9208 9209 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 9210 if (!I) 9211 return false; 9212 9213 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 9214 return false; 9215 9216 Value *P = I->getParent(); 9217 9218 // Vectorize in current basic block only. 9219 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 9220 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 9221 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 9222 return false; 9223 9224 // Try to vectorize V. 9225 if (tryToVectorizePair(Op0, Op1, R)) 9226 return true; 9227 9228 auto *A = dyn_cast<BinaryOperator>(Op0); 9229 auto *B = dyn_cast<BinaryOperator>(Op1); 9230 // Try to skip B. 9231 if (B && B->hasOneUse()) { 9232 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 9233 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 9234 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 9235 return true; 9236 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 9237 return true; 9238 } 9239 9240 // Try to skip A. 9241 if (A && A->hasOneUse()) { 9242 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 9243 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 9244 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 9245 return true; 9246 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 9247 return true; 9248 } 9249 return false; 9250 } 9251 9252 namespace { 9253 9254 /// Model horizontal reductions. 9255 /// 9256 /// A horizontal reduction is a tree of reduction instructions that has values 9257 /// that can be put into a vector as its leaves. For example: 9258 /// 9259 /// mul mul mul mul 9260 /// \ / \ / 9261 /// + + 9262 /// \ / 9263 /// + 9264 /// This tree has "mul" as its leaf values and "+" as its reduction 9265 /// instructions. A reduction can feed into a store or a binary operation 9266 /// feeding a phi. 9267 /// ... 9268 /// \ / 9269 /// + 9270 /// | 9271 /// phi += 9272 /// 9273 /// Or: 9274 /// ... 9275 /// \ / 9276 /// + 9277 /// | 9278 /// *p = 9279 /// 9280 class HorizontalReduction { 9281 using ReductionOpsType = SmallVector<Value *, 16>; 9282 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 9283 ReductionOpsListType ReductionOps; 9284 /// List of possibly reduced values. 9285 SmallVector<SmallVector<Value *>> ReducedVals; 9286 /// Maps reduced value to the corresponding reduction operation. 9287 DenseMap<Value *, Instruction *> ReducedValsToOps; 9288 // Use map vector to make stable output. 9289 MapVector<Instruction *, Value *> ExtraArgs; 9290 WeakTrackingVH ReductionRoot; 9291 /// The type of reduction operation. 9292 RecurKind RdxKind; 9293 9294 static bool isCmpSelMinMax(Instruction *I) { 9295 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 9296 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 9297 } 9298 9299 // And/or are potentially poison-safe logical patterns like: 9300 // select x, y, false 9301 // select x, true, y 9302 static bool isBoolLogicOp(Instruction *I) { 9303 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 9304 match(I, m_LogicalOr(m_Value(), m_Value())); 9305 } 9306 9307 /// Checks if instruction is associative and can be vectorized. 9308 static bool isVectorizable(RecurKind Kind, Instruction *I) { 9309 if (Kind == RecurKind::None) 9310 return false; 9311 9312 // Integer ops that map to select instructions or intrinsics are fine. 9313 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 9314 isBoolLogicOp(I)) 9315 return true; 9316 9317 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 9318 // FP min/max are associative except for NaN and -0.0. We do not 9319 // have to rule out -0.0 here because the intrinsic semantics do not 9320 // specify a fixed result for it. 9321 return I->getFastMathFlags().noNaNs(); 9322 } 9323 9324 return I->isAssociative(); 9325 } 9326 9327 static Value *getRdxOperand(Instruction *I, unsigned Index) { 9328 // Poison-safe 'or' takes the form: select X, true, Y 9329 // To make that work with the normal operand processing, we skip the 9330 // true value operand. 9331 // TODO: Change the code and data structures to handle this without a hack. 9332 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 9333 return I->getOperand(2); 9334 return I->getOperand(Index); 9335 } 9336 9337 /// Creates reduction operation with the current opcode. 9338 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 9339 Value *RHS, const Twine &Name, bool UseSelect) { 9340 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 9341 switch (Kind) { 9342 case RecurKind::Or: 9343 if (UseSelect && 9344 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 9345 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); 9346 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9347 Name); 9348 case RecurKind::And: 9349 if (UseSelect && 9350 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 9351 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); 9352 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9353 Name); 9354 case RecurKind::Add: 9355 case RecurKind::Mul: 9356 case RecurKind::Xor: 9357 case RecurKind::FAdd: 9358 case RecurKind::FMul: 9359 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9360 Name); 9361 case RecurKind::FMax: 9362 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 9363 case RecurKind::FMin: 9364 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 9365 case RecurKind::SMax: 9366 if (UseSelect) { 9367 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 9368 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9369 } 9370 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 9371 case RecurKind::SMin: 9372 if (UseSelect) { 9373 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 9374 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9375 } 9376 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 9377 case RecurKind::UMax: 9378 if (UseSelect) { 9379 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 9380 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9381 } 9382 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 9383 case RecurKind::UMin: 9384 if (UseSelect) { 9385 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 9386 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9387 } 9388 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 9389 default: 9390 llvm_unreachable("Unknown reduction operation."); 9391 } 9392 } 9393 9394 /// Creates reduction operation with the current opcode with the IR flags 9395 /// from \p ReductionOps. 9396 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 9397 Value *RHS, const Twine &Name, 9398 const ReductionOpsListType &ReductionOps) { 9399 bool UseSelect = ReductionOps.size() == 2 || 9400 // Logical or/and. 9401 (ReductionOps.size() == 1 && 9402 isa<SelectInst>(ReductionOps.front().front())); 9403 assert((!UseSelect || ReductionOps.size() != 2 || 9404 isa<SelectInst>(ReductionOps[1][0])) && 9405 "Expected cmp + select pairs for reduction"); 9406 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 9407 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 9408 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 9409 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 9410 propagateIRFlags(Op, ReductionOps[1]); 9411 return Op; 9412 } 9413 } 9414 propagateIRFlags(Op, ReductionOps[0]); 9415 return Op; 9416 } 9417 9418 /// Creates reduction operation with the current opcode with the IR flags 9419 /// from \p I. 9420 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 9421 Value *RHS, const Twine &Name, Value *I) { 9422 auto *SelI = dyn_cast<SelectInst>(I); 9423 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 9424 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 9425 if (auto *Sel = dyn_cast<SelectInst>(Op)) 9426 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 9427 } 9428 propagateIRFlags(Op, I); 9429 return Op; 9430 } 9431 9432 static RecurKind getRdxKind(Value *V) { 9433 auto *I = dyn_cast<Instruction>(V); 9434 if (!I) 9435 return RecurKind::None; 9436 if (match(I, m_Add(m_Value(), m_Value()))) 9437 return RecurKind::Add; 9438 if (match(I, m_Mul(m_Value(), m_Value()))) 9439 return RecurKind::Mul; 9440 if (match(I, m_And(m_Value(), m_Value())) || 9441 match(I, m_LogicalAnd(m_Value(), m_Value()))) 9442 return RecurKind::And; 9443 if (match(I, m_Or(m_Value(), m_Value())) || 9444 match(I, m_LogicalOr(m_Value(), m_Value()))) 9445 return RecurKind::Or; 9446 if (match(I, m_Xor(m_Value(), m_Value()))) 9447 return RecurKind::Xor; 9448 if (match(I, m_FAdd(m_Value(), m_Value()))) 9449 return RecurKind::FAdd; 9450 if (match(I, m_FMul(m_Value(), m_Value()))) 9451 return RecurKind::FMul; 9452 9453 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 9454 return RecurKind::FMax; 9455 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 9456 return RecurKind::FMin; 9457 9458 // This matches either cmp+select or intrinsics. SLP is expected to handle 9459 // either form. 9460 // TODO: If we are canonicalizing to intrinsics, we can remove several 9461 // special-case paths that deal with selects. 9462 if (match(I, m_SMax(m_Value(), m_Value()))) 9463 return RecurKind::SMax; 9464 if (match(I, m_SMin(m_Value(), m_Value()))) 9465 return RecurKind::SMin; 9466 if (match(I, m_UMax(m_Value(), m_Value()))) 9467 return RecurKind::UMax; 9468 if (match(I, m_UMin(m_Value(), m_Value()))) 9469 return RecurKind::UMin; 9470 9471 if (auto *Select = dyn_cast<SelectInst>(I)) { 9472 // Try harder: look for min/max pattern based on instructions producing 9473 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 9474 // During the intermediate stages of SLP, it's very common to have 9475 // pattern like this (since optimizeGatherSequence is run only once 9476 // at the end): 9477 // %1 = extractelement <2 x i32> %a, i32 0 9478 // %2 = extractelement <2 x i32> %a, i32 1 9479 // %cond = icmp sgt i32 %1, %2 9480 // %3 = extractelement <2 x i32> %a, i32 0 9481 // %4 = extractelement <2 x i32> %a, i32 1 9482 // %select = select i1 %cond, i32 %3, i32 %4 9483 CmpInst::Predicate Pred; 9484 Instruction *L1; 9485 Instruction *L2; 9486 9487 Value *LHS = Select->getTrueValue(); 9488 Value *RHS = Select->getFalseValue(); 9489 Value *Cond = Select->getCondition(); 9490 9491 // TODO: Support inverse predicates. 9492 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 9493 if (!isa<ExtractElementInst>(RHS) || 9494 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9495 return RecurKind::None; 9496 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 9497 if (!isa<ExtractElementInst>(LHS) || 9498 !L1->isIdenticalTo(cast<Instruction>(LHS))) 9499 return RecurKind::None; 9500 } else { 9501 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 9502 return RecurKind::None; 9503 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 9504 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 9505 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9506 return RecurKind::None; 9507 } 9508 9509 switch (Pred) { 9510 default: 9511 return RecurKind::None; 9512 case CmpInst::ICMP_SGT: 9513 case CmpInst::ICMP_SGE: 9514 return RecurKind::SMax; 9515 case CmpInst::ICMP_SLT: 9516 case CmpInst::ICMP_SLE: 9517 return RecurKind::SMin; 9518 case CmpInst::ICMP_UGT: 9519 case CmpInst::ICMP_UGE: 9520 return RecurKind::UMax; 9521 case CmpInst::ICMP_ULT: 9522 case CmpInst::ICMP_ULE: 9523 return RecurKind::UMin; 9524 } 9525 } 9526 return RecurKind::None; 9527 } 9528 9529 /// Get the index of the first operand. 9530 static unsigned getFirstOperandIndex(Instruction *I) { 9531 return isCmpSelMinMax(I) ? 1 : 0; 9532 } 9533 9534 /// Total number of operands in the reduction operation. 9535 static unsigned getNumberOfOperands(Instruction *I) { 9536 return isCmpSelMinMax(I) ? 3 : 2; 9537 } 9538 9539 /// Checks if the instruction is in basic block \p BB. 9540 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 9541 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 9542 if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) { 9543 auto *Sel = cast<SelectInst>(I); 9544 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); 9545 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; 9546 } 9547 return I->getParent() == BB; 9548 } 9549 9550 /// Expected number of uses for reduction operations/reduced values. 9551 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 9552 if (IsCmpSelMinMax) { 9553 // SelectInst must be used twice while the condition op must have single 9554 // use only. 9555 if (auto *Sel = dyn_cast<SelectInst>(I)) 9556 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 9557 return I->hasNUses(2); 9558 } 9559 9560 // Arithmetic reduction operation must be used once only. 9561 return I->hasOneUse(); 9562 } 9563 9564 /// Initializes the list of reduction operations. 9565 void initReductionOps(Instruction *I) { 9566 if (isCmpSelMinMax(I)) 9567 ReductionOps.assign(2, ReductionOpsType()); 9568 else 9569 ReductionOps.assign(1, ReductionOpsType()); 9570 } 9571 9572 /// Add all reduction operations for the reduction instruction \p I. 9573 void addReductionOps(Instruction *I) { 9574 if (isCmpSelMinMax(I)) { 9575 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 9576 ReductionOps[1].emplace_back(I); 9577 } else { 9578 ReductionOps[0].emplace_back(I); 9579 } 9580 } 9581 9582 static Value *getLHS(RecurKind Kind, Instruction *I) { 9583 if (Kind == RecurKind::None) 9584 return nullptr; 9585 return I->getOperand(getFirstOperandIndex(I)); 9586 } 9587 static Value *getRHS(RecurKind Kind, Instruction *I) { 9588 if (Kind == RecurKind::None) 9589 return nullptr; 9590 return I->getOperand(getFirstOperandIndex(I) + 1); 9591 } 9592 9593 public: 9594 HorizontalReduction() = default; 9595 9596 /// Try to find a reduction tree. 9597 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst, 9598 ScalarEvolution &SE, const DataLayout &DL, 9599 const TargetLibraryInfo &TLI) { 9600 assert((!Phi || is_contained(Phi->operands(), Inst)) && 9601 "Phi needs to use the binary operator"); 9602 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 9603 isa<IntrinsicInst>(Inst)) && 9604 "Expected binop, select, or intrinsic for reduction matching"); 9605 RdxKind = getRdxKind(Inst); 9606 9607 // We could have a initial reductions that is not an add. 9608 // r *= v1 + v2 + v3 + v4 9609 // In such a case start looking for a tree rooted in the first '+'. 9610 if (Phi) { 9611 if (getLHS(RdxKind, Inst) == Phi) { 9612 Phi = nullptr; 9613 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 9614 if (!Inst) 9615 return false; 9616 RdxKind = getRdxKind(Inst); 9617 } else if (getRHS(RdxKind, Inst) == Phi) { 9618 Phi = nullptr; 9619 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 9620 if (!Inst) 9621 return false; 9622 RdxKind = getRdxKind(Inst); 9623 } 9624 } 9625 9626 if (!isVectorizable(RdxKind, Inst)) 9627 return false; 9628 9629 // Analyze "regular" integer/FP types for reductions - no target-specific 9630 // types or pointers. 9631 Type *Ty = Inst->getType(); 9632 if (!isValidElementType(Ty) || Ty->isPointerTy()) 9633 return false; 9634 9635 // Though the ultimate reduction may have multiple uses, its condition must 9636 // have only single use. 9637 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 9638 if (!Sel->getCondition()->hasOneUse()) 9639 return false; 9640 9641 ReductionRoot = Inst; 9642 9643 // Iterate through all the operands of the possible reduction tree and 9644 // gather all the reduced values, sorting them by their value id. 9645 BasicBlock *BB = Inst->getParent(); 9646 bool IsCmpSelMinMax = isCmpSelMinMax(Inst); 9647 SmallVector<Instruction *> Worklist(1, Inst); 9648 // Checks if the operands of the \p TreeN instruction are also reduction 9649 // operations or should be treated as reduced values or an extra argument, 9650 // which is not part of the reduction. 9651 auto &&CheckOperands = [this, IsCmpSelMinMax, 9652 BB](Instruction *TreeN, 9653 SmallVectorImpl<Value *> &ExtraArgs, 9654 SmallVectorImpl<Value *> &PossibleReducedVals, 9655 SmallVectorImpl<Instruction *> &ReductionOps) { 9656 for (int I = getFirstOperandIndex(TreeN), 9657 End = getNumberOfOperands(TreeN); 9658 I < End; ++I) { 9659 Value *EdgeVal = getRdxOperand(TreeN, I); 9660 ReducedValsToOps.try_emplace(EdgeVal, TreeN); 9661 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 9662 // Edge has wrong parent - mark as an extra argument. 9663 if (EdgeInst && !isVectorLikeInstWithConstOps(EdgeInst) && 9664 !hasSameParent(EdgeInst, BB)) { 9665 ExtraArgs.push_back(EdgeVal); 9666 continue; 9667 } 9668 // If the edge is not an instruction, or it is different from the main 9669 // reduction opcode or has too many uses - possible reduced value. 9670 if (!EdgeInst || getRdxKind(EdgeInst) != RdxKind || 9671 !hasRequiredNumberOfUses(IsCmpSelMinMax, EdgeInst) || 9672 !isVectorizable(getRdxKind(EdgeInst), EdgeInst)) { 9673 PossibleReducedVals.push_back(EdgeVal); 9674 continue; 9675 } 9676 ReductionOps.push_back(EdgeInst); 9677 } 9678 }; 9679 // Try to regroup reduced values so that it gets more profitable to try to 9680 // reduce them. Values are grouped by their value ids, instructions - by 9681 // instruction op id and/or alternate op id, plus do extra analysis for 9682 // loads (grouping them by the distabce between pointers) and cmp 9683 // instructions (grouping them by the predicate). 9684 MapVector<size_t, MapVector<size_t, SmallVector<Value *>>> 9685 PossibleReducedVals; 9686 initReductionOps(Inst); 9687 while (!Worklist.empty()) { 9688 Instruction *TreeN = Worklist.pop_back_val(); 9689 SmallVector<Value *> Args; 9690 SmallVector<Value *> PossibleRedVals; 9691 SmallVector<Instruction *> PossibleReductionOps; 9692 CheckOperands(TreeN, Args, PossibleRedVals, PossibleReductionOps); 9693 // If too many extra args - mark the instruction itself as a reduction 9694 // value, not a reduction operation. 9695 if (Args.size() < 2) { 9696 addReductionOps(TreeN); 9697 // Add extra args. 9698 if (!Args.empty()) { 9699 assert(Args.size() == 1 && "Expected only single argument."); 9700 ExtraArgs[TreeN] = Args.front(); 9701 } 9702 // Add reduction values. The values are sorted for better vectorization 9703 // results. 9704 for (Value *V : PossibleRedVals) { 9705 size_t Key, Idx; 9706 std::tie(Key, Idx) = generateKeySubkey( 9707 V, &TLI, 9708 [&PossibleReducedVals, &DL, &SE](size_t Key, LoadInst *LI) { 9709 for (const auto &LoadData : PossibleReducedVals[Key]) { 9710 auto *RLI = cast<LoadInst>(LoadData.second.front()); 9711 if (getPointersDiff(RLI->getType(), RLI->getPointerOperand(), 9712 LI->getType(), LI->getPointerOperand(), 9713 DL, SE, /*StrictCheck=*/true)) 9714 return hash_value(RLI->getPointerOperand()); 9715 } 9716 return hash_value(LI->getPointerOperand()); 9717 }, 9718 /*AllowAlternate=*/false); 9719 PossibleReducedVals[Key][Idx].push_back(V); 9720 } 9721 Worklist.append(PossibleReductionOps.begin(), 9722 PossibleReductionOps.end()); 9723 } else { 9724 size_t Key, Idx; 9725 std::tie(Key, Idx) = generateKeySubkey( 9726 TreeN, &TLI, 9727 [&PossibleReducedVals, &DL, &SE](size_t Key, LoadInst *LI) { 9728 for (const auto &LoadData : PossibleReducedVals[Key]) { 9729 auto *RLI = cast<LoadInst>(LoadData.second.front()); 9730 if (getPointersDiff(RLI->getType(), RLI->getPointerOperand(), 9731 LI->getType(), LI->getPointerOperand(), DL, 9732 SE, /*StrictCheck=*/true)) 9733 return hash_value(RLI->getPointerOperand()); 9734 } 9735 return hash_value(LI->getPointerOperand()); 9736 }, 9737 /*AllowAlternate=*/false); 9738 PossibleReducedVals[Key][Idx].push_back(TreeN); 9739 } 9740 } 9741 auto PossibleReducedValsVect = PossibleReducedVals.takeVector(); 9742 // Sort values by the total number of values kinds to start the reduction 9743 // from the longest possible reduced values sequences. 9744 for (auto &PossibleReducedVals : PossibleReducedValsVect) { 9745 auto PossibleRedVals = PossibleReducedVals.second.takeVector(); 9746 stable_sort(PossibleRedVals, [](const auto &P1, const auto &P2) { 9747 return P1.second.size() > P2.second.size(); 9748 }); 9749 ReducedVals.emplace_back(); 9750 for (auto &Data : PossibleRedVals) 9751 ReducedVals.back().append(Data.second.rbegin(), Data.second.rend()); 9752 } 9753 // Sort the reduced values by number of same/alternate opcode and/or pointer 9754 // operand. 9755 stable_sort(ReducedVals, [](ArrayRef<Value *> P1, ArrayRef<Value *> P2) { 9756 return P1.size() > P2.size(); 9757 }); 9758 return true; 9759 } 9760 9761 /// Attempt to vectorize the tree found by matchAssociativeReduction. 9762 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 9763 // If there are a sufficient number of reduction values, reduce 9764 // to a nearby power-of-2. We can safely generate oversized 9765 // vectors and rely on the backend to split them to legal sizes. 9766 unsigned NumReducedVals = std::accumulate( 9767 ReducedVals.begin(), ReducedVals.end(), 0, 9768 [](int Num, ArrayRef<Value *> Vals) { return Num + Vals.size(); }); 9769 if (NumReducedVals < 4) 9770 return nullptr; 9771 9772 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 9773 9774 // Track the reduced values in case if they are replaced by extractelement 9775 // because of the vectorization. 9776 DenseMap<Value *, WeakTrackingVH> TrackedVals; 9777 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 9778 // The same extra argument may be used several times, so log each attempt 9779 // to use it. 9780 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 9781 assert(Pair.first && "DebugLoc must be set."); 9782 ExternallyUsedValues[Pair.second].push_back(Pair.first); 9783 TrackedVals.try_emplace(Pair.second, Pair.second); 9784 } 9785 9786 // The compare instruction of a min/max is the insertion point for new 9787 // instructions and may be replaced with a new compare instruction. 9788 auto &&GetCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 9789 assert(isa<SelectInst>(RdxRootInst) && 9790 "Expected min/max reduction to have select root instruction"); 9791 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 9792 assert(isa<Instruction>(ScalarCond) && 9793 "Expected min/max reduction to have compare condition"); 9794 return cast<Instruction>(ScalarCond); 9795 }; 9796 9797 // The reduction root is used as the insertion point for new instructions, 9798 // so set it as externally used to prevent it from being deleted. 9799 ExternallyUsedValues[ReductionRoot]; 9800 SmallVector<Value *> IgnoreList; 9801 for (ReductionOpsType &RdxOps : ReductionOps) 9802 for (Value *RdxOp : RdxOps) { 9803 if (!RdxOp) 9804 continue; 9805 IgnoreList.push_back(RdxOp); 9806 } 9807 9808 // Need to track reduced vals, they may be changed during vectorization of 9809 // subvectors. 9810 for (ArrayRef<Value *> Candidates : ReducedVals) 9811 for (Value *V : Candidates) 9812 TrackedVals.try_emplace(V, V); 9813 9814 DenseMap<Value *, unsigned> VectorizedVals; 9815 Value *VectorizedTree = nullptr; 9816 // Try to vectorize elements based on their type. 9817 for (unsigned I = 0, E = ReducedVals.size(); I < E; ++I) { 9818 ArrayRef<Value *> OrigReducedVals = ReducedVals[I]; 9819 InstructionsState S = getSameOpcode(OrigReducedVals); 9820 SmallVector<Value *> Candidates; 9821 DenseMap<Value *, Value *> TrackedToOrig; 9822 for (unsigned Cnt = 0, Sz = OrigReducedVals.size(); Cnt < Sz; ++Cnt) { 9823 Value *RdxVal = TrackedVals.find(OrigReducedVals[Cnt])->second; 9824 // Check if the reduction value was not overriden by the extractelement 9825 // instruction because of the vectorization and exclude it, if it is not 9826 // compatible with other values. 9827 if (auto *Inst = dyn_cast<Instruction>(RdxVal)) 9828 if (isVectorLikeInstWithConstOps(Inst) && 9829 (!S.getOpcode() || !S.isOpcodeOrAlt(Inst))) 9830 continue; 9831 Candidates.push_back(RdxVal); 9832 TrackedToOrig.try_emplace(RdxVal, OrigReducedVals[Cnt]); 9833 } 9834 bool ShuffledExtracts = false; 9835 // Try to handle shuffled extractelements. 9836 if (S.getOpcode() == Instruction::ExtractElement && !S.isAltShuffle() && 9837 I + 1 < E) { 9838 InstructionsState NextS = getSameOpcode(ReducedVals[I + 1]); 9839 if (NextS.getOpcode() == Instruction::ExtractElement && 9840 !NextS.isAltShuffle()) { 9841 SmallVector<Value *> CommonCandidates(Candidates); 9842 for (Value *RV : ReducedVals[I + 1]) { 9843 Value *RdxVal = TrackedVals.find(RV)->second; 9844 // Check if the reduction value was not overriden by the 9845 // extractelement instruction because of the vectorization and 9846 // exclude it, if it is not compatible with other values. 9847 if (auto *Inst = dyn_cast<Instruction>(RdxVal)) 9848 if (!NextS.getOpcode() || !NextS.isOpcodeOrAlt(Inst)) 9849 continue; 9850 CommonCandidates.push_back(RdxVal); 9851 TrackedToOrig.try_emplace(RdxVal, RV); 9852 } 9853 SmallVector<int> Mask; 9854 if (isFixedVectorShuffle(CommonCandidates, Mask)) { 9855 ++I; 9856 Candidates.swap(CommonCandidates); 9857 ShuffledExtracts = true; 9858 } 9859 } 9860 } 9861 unsigned NumReducedVals = Candidates.size(); 9862 if (NumReducedVals < 4) 9863 continue; 9864 9865 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 9866 unsigned Start = 0; 9867 unsigned Pos = Start; 9868 // Restarts vectorization attempt with lower vector factor. 9869 auto &&AdjustReducedVals = [&Pos, &Start, &ReduxWidth, NumReducedVals]() { 9870 if (ReduxWidth == 4 || Pos >= NumReducedVals - ReduxWidth + 1) { 9871 ++Start; 9872 ReduxWidth = PowerOf2Floor(NumReducedVals - Start) * 2; 9873 } 9874 Pos = Start; 9875 ReduxWidth /= 2; 9876 }; 9877 while (Pos < NumReducedVals - ReduxWidth + 1 && ReduxWidth >= 4) { 9878 ArrayRef<Value *> VL(std::next(Candidates.begin(), Pos), ReduxWidth); 9879 V.buildTree(VL, IgnoreList); 9880 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) { 9881 AdjustReducedVals(); 9882 continue; 9883 } 9884 if (V.isLoadCombineReductionCandidate(RdxKind)) { 9885 AdjustReducedVals(); 9886 continue; 9887 } 9888 V.reorderTopToBottom(); 9889 // No need to reorder the root node at all. 9890 V.reorderBottomToTop(/*IgnoreReorder=*/true); 9891 // Keep extracted other reduction values, if they are used in the 9892 // vectorization trees. 9893 BoUpSLP::ExtraValueToDebugLocsMap LocalExternallyUsedValues( 9894 ExternallyUsedValues); 9895 for (unsigned Cnt = 0, Sz = ReducedVals.size(); Cnt < Sz; ++Cnt) { 9896 if (Cnt == I || (ShuffledExtracts && Cnt == I - 1)) 9897 continue; 9898 for_each(ReducedVals[Cnt], 9899 [&LocalExternallyUsedValues, &TrackedVals](Value *V) { 9900 if (isa<Instruction>(V)) 9901 LocalExternallyUsedValues[TrackedVals[V]]; 9902 }); 9903 } 9904 for (unsigned Cnt = 0; Cnt < NumReducedVals; ++Cnt) { 9905 if (Cnt >= Pos && Cnt < Pos + ReduxWidth) 9906 continue; 9907 if (VectorizedVals.count(Candidates[Cnt])) 9908 continue; 9909 LocalExternallyUsedValues[Candidates[Cnt]]; 9910 } 9911 V.buildExternalUses(LocalExternallyUsedValues); 9912 9913 V.computeMinimumValueSizes(); 9914 9915 // Intersect the fast-math-flags from all reduction operations. 9916 FastMathFlags RdxFMF; 9917 RdxFMF.set(); 9918 for (Value *RdxVal : VL) { 9919 if (auto *FPMO = dyn_cast<FPMathOperator>( 9920 ReducedValsToOps.find(RdxVal)->second)) 9921 RdxFMF &= FPMO->getFastMathFlags(); 9922 } 9923 // Estimate cost. 9924 InstructionCost TreeCost = V.getTreeCost(VL); 9925 InstructionCost ReductionCost = 9926 getReductionCost(TTI, VL[0], ReduxWidth, RdxFMF); 9927 InstructionCost Cost = TreeCost + ReductionCost; 9928 if (!Cost.isValid()) { 9929 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 9930 return nullptr; 9931 } 9932 if (Cost >= -SLPCostThreshold) { 9933 V.getORE()->emit([&]() { 9934 return OptimizationRemarkMissed( 9935 SV_NAME, "HorSLPNotBeneficial", 9936 ReducedValsToOps.find(VL[0])->second) 9937 << "Vectorizing horizontal reduction is possible" 9938 << "but not beneficial with cost " << ore::NV("Cost", Cost) 9939 << " and threshold " 9940 << ore::NV("Threshold", -SLPCostThreshold); 9941 }); 9942 AdjustReducedVals(); 9943 continue; 9944 } 9945 9946 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 9947 << Cost << ". (HorRdx)\n"); 9948 V.getORE()->emit([&]() { 9949 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 9950 ReducedValsToOps.find(VL[0])->second) 9951 << "Vectorized horizontal reduction with cost " 9952 << ore::NV("Cost", Cost) << " and with tree size " 9953 << ore::NV("TreeSize", V.getTreeSize()); 9954 }); 9955 9956 Builder.setFastMathFlags(RdxFMF); 9957 9958 // Vectorize a tree. 9959 Value *VectorizedRoot = V.vectorizeTree(LocalExternallyUsedValues); 9960 9961 // Emit a reduction. If the root is a select (min/max idiom), the insert 9962 // point is the compare condition of that select. 9963 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 9964 if (isCmpSelMinMax(RdxRootInst)) 9965 Builder.SetInsertPoint(GetCmpForMinMaxReduction(RdxRootInst)); 9966 else 9967 Builder.SetInsertPoint(RdxRootInst); 9968 9969 // To prevent poison from leaking across what used to be sequential, 9970 // safe, scalar boolean logic operations, the reduction operand must be 9971 // frozen. 9972 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 9973 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 9974 9975 Value *ReducedSubTree = 9976 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 9977 9978 if (!VectorizedTree) { 9979 // Initialize the final value in the reduction. 9980 VectorizedTree = ReducedSubTree; 9981 } else { 9982 // Update the final value in the reduction. 9983 Builder.SetCurrentDebugLocation( 9984 cast<Instruction>(ReductionOps.front().front())->getDebugLoc()); 9985 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9986 ReducedSubTree, "op.rdx", ReductionOps); 9987 } 9988 // Count vectorized reduced values to exclude them from final reduction. 9989 for (Value *V : VL) 9990 ++VectorizedVals.try_emplace(TrackedToOrig.find(V)->second, 0) 9991 .first->getSecond(); 9992 Pos += ReduxWidth; 9993 Start = Pos; 9994 ReduxWidth = PowerOf2Floor(NumReducedVals - Pos); 9995 } 9996 } 9997 if (VectorizedTree) { 9998 // Finish the reduction. 9999 // Need to add extra arguments and not vectorized possible reduction 10000 // values. 10001 for (unsigned I = 0, E = ReducedVals.size(); I < E; ++I) { 10002 ArrayRef<Value *> Candidates = ReducedVals[I]; 10003 for (Value *RdxVal : Candidates) { 10004 auto It = VectorizedVals.find(RdxVal); 10005 if (It != VectorizedVals.end()) { 10006 --It->getSecond(); 10007 if (It->second == 0) 10008 VectorizedVals.erase(It); 10009 continue; 10010 } 10011 Instruction *RedOp = ReducedValsToOps.find(RdxVal)->second; 10012 Builder.SetCurrentDebugLocation(RedOp->getDebugLoc()); 10013 ReductionOpsListType Ops; 10014 if (auto *Sel = dyn_cast<SelectInst>(RedOp)) 10015 Ops.emplace_back().push_back(Sel->getCondition()); 10016 Ops.emplace_back().push_back(RedOp); 10017 Value *StableRdxVal = RdxVal; 10018 auto TVIt = TrackedVals.find(RdxVal); 10019 if (TVIt != TrackedVals.end()) 10020 StableRdxVal = TVIt->second; 10021 10022 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 10023 StableRdxVal, "op.rdx", RedOp); 10024 } 10025 } 10026 for (auto &Pair : ExternallyUsedValues) { 10027 // Add each externally used value to the final reduction. 10028 for (auto *I : Pair.second) { 10029 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 10030 ReductionOpsListType Ops; 10031 if (auto *Sel = dyn_cast<SelectInst>(I)) 10032 Ops.emplace_back().push_back(Sel->getCondition()); 10033 Ops.emplace_back().push_back(I); 10034 Value *StableRdxVal = Pair.first; 10035 auto TVIt = TrackedVals.find(Pair.first); 10036 if (TVIt != TrackedVals.end()) 10037 StableRdxVal = TVIt->second; 10038 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 10039 StableRdxVal, "op.rdx", Ops); 10040 } 10041 } 10042 10043 ReductionRoot->replaceAllUsesWith(VectorizedTree); 10044 10045 // The original scalar reduction is expected to have no remaining 10046 // uses outside the reduction tree itself. Assert that we got this 10047 // correct, replace internal uses with undef, and mark for eventual 10048 // deletion. 10049 #ifndef NDEBUG 10050 SmallSet<Value *, 4> IgnoreSet; 10051 IgnoreSet.insert(IgnoreList.begin(), IgnoreList.end()); 10052 #endif 10053 for (auto *Ignore : IgnoreList) { 10054 #ifndef NDEBUG 10055 for (auto *U : Ignore->users()) { 10056 assert(IgnoreSet.count(U)); 10057 } 10058 #endif 10059 if (!Ignore->use_empty()) { 10060 Value *Undef = UndefValue::get(Ignore->getType()); 10061 Ignore->replaceAllUsesWith(Undef); 10062 } 10063 V.eraseInstruction(cast<Instruction>(Ignore)); 10064 } 10065 } 10066 return VectorizedTree; 10067 } 10068 10069 unsigned numReductionValues() const { return ReducedVals.size(); } 10070 10071 private: 10072 /// Calculate the cost of a reduction. 10073 InstructionCost getReductionCost(TargetTransformInfo *TTI, 10074 Value *FirstReducedVal, unsigned ReduxWidth, 10075 FastMathFlags FMF) { 10076 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 10077 Type *ScalarTy = FirstReducedVal->getType(); 10078 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 10079 InstructionCost VectorCost, ScalarCost; 10080 switch (RdxKind) { 10081 case RecurKind::Add: 10082 case RecurKind::Mul: 10083 case RecurKind::Or: 10084 case RecurKind::And: 10085 case RecurKind::Xor: 10086 case RecurKind::FAdd: 10087 case RecurKind::FMul: { 10088 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 10089 VectorCost = 10090 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 10091 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 10092 break; 10093 } 10094 case RecurKind::FMax: 10095 case RecurKind::FMin: { 10096 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 10097 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 10098 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 10099 /*IsUnsigned=*/false, CostKind); 10100 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 10101 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, 10102 SclCondTy, RdxPred, CostKind) + 10103 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 10104 SclCondTy, RdxPred, CostKind); 10105 break; 10106 } 10107 case RecurKind::SMax: 10108 case RecurKind::SMin: 10109 case RecurKind::UMax: 10110 case RecurKind::UMin: { 10111 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 10112 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 10113 bool IsUnsigned = 10114 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 10115 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned, 10116 CostKind); 10117 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 10118 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, 10119 SclCondTy, RdxPred, CostKind) + 10120 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 10121 SclCondTy, RdxPred, CostKind); 10122 break; 10123 } 10124 default: 10125 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 10126 } 10127 10128 // Scalar cost is repeated for N-1 elements. 10129 ScalarCost *= (ReduxWidth - 1); 10130 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 10131 << " for reduction that starts with " << *FirstReducedVal 10132 << " (It is a splitting reduction)\n"); 10133 return VectorCost - ScalarCost; 10134 } 10135 10136 /// Emit a horizontal reduction of the vectorized value. 10137 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 10138 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 10139 assert(VectorizedValue && "Need to have a vectorized tree node"); 10140 assert(isPowerOf2_32(ReduxWidth) && 10141 "We only handle power-of-two reductions for now"); 10142 assert(RdxKind != RecurKind::FMulAdd && 10143 "A call to the llvm.fmuladd intrinsic is not handled yet"); 10144 10145 ++NumVectorInstructions; 10146 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind); 10147 } 10148 }; 10149 10150 } // end anonymous namespace 10151 10152 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 10153 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 10154 return cast<FixedVectorType>(IE->getType())->getNumElements(); 10155 10156 unsigned AggregateSize = 1; 10157 auto *IV = cast<InsertValueInst>(InsertInst); 10158 Type *CurrentType = IV->getType(); 10159 do { 10160 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 10161 for (auto *Elt : ST->elements()) 10162 if (Elt != ST->getElementType(0)) // check homogeneity 10163 return None; 10164 AggregateSize *= ST->getNumElements(); 10165 CurrentType = ST->getElementType(0); 10166 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 10167 AggregateSize *= AT->getNumElements(); 10168 CurrentType = AT->getElementType(); 10169 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 10170 AggregateSize *= VT->getNumElements(); 10171 return AggregateSize; 10172 } else if (CurrentType->isSingleValueType()) { 10173 return AggregateSize; 10174 } else { 10175 return None; 10176 } 10177 } while (true); 10178 } 10179 10180 static void findBuildAggregate_rec(Instruction *LastInsertInst, 10181 TargetTransformInfo *TTI, 10182 SmallVectorImpl<Value *> &BuildVectorOpds, 10183 SmallVectorImpl<Value *> &InsertElts, 10184 unsigned OperandOffset) { 10185 do { 10186 Value *InsertedOperand = LastInsertInst->getOperand(1); 10187 Optional<unsigned> OperandIndex = 10188 getInsertIndex(LastInsertInst, OperandOffset); 10189 if (!OperandIndex) 10190 return; 10191 if (isa<InsertElementInst>(InsertedOperand) || 10192 isa<InsertValueInst>(InsertedOperand)) { 10193 findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 10194 BuildVectorOpds, InsertElts, *OperandIndex); 10195 10196 } else { 10197 BuildVectorOpds[*OperandIndex] = InsertedOperand; 10198 InsertElts[*OperandIndex] = LastInsertInst; 10199 } 10200 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 10201 } while (LastInsertInst != nullptr && 10202 (isa<InsertValueInst>(LastInsertInst) || 10203 isa<InsertElementInst>(LastInsertInst)) && 10204 LastInsertInst->hasOneUse()); 10205 } 10206 10207 /// Recognize construction of vectors like 10208 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 10209 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 10210 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 10211 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 10212 /// starting from the last insertelement or insertvalue instruction. 10213 /// 10214 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 10215 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 10216 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 10217 /// 10218 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 10219 /// 10220 /// \return true if it matches. 10221 static bool findBuildAggregate(Instruction *LastInsertInst, 10222 TargetTransformInfo *TTI, 10223 SmallVectorImpl<Value *> &BuildVectorOpds, 10224 SmallVectorImpl<Value *> &InsertElts) { 10225 10226 assert((isa<InsertElementInst>(LastInsertInst) || 10227 isa<InsertValueInst>(LastInsertInst)) && 10228 "Expected insertelement or insertvalue instruction!"); 10229 10230 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 10231 "Expected empty result vectors!"); 10232 10233 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 10234 if (!AggregateSize) 10235 return false; 10236 BuildVectorOpds.resize(*AggregateSize); 10237 InsertElts.resize(*AggregateSize); 10238 10239 findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 0); 10240 llvm::erase_value(BuildVectorOpds, nullptr); 10241 llvm::erase_value(InsertElts, nullptr); 10242 if (BuildVectorOpds.size() >= 2) 10243 return true; 10244 10245 return false; 10246 } 10247 10248 /// Try and get a reduction value from a phi node. 10249 /// 10250 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 10251 /// if they come from either \p ParentBB or a containing loop latch. 10252 /// 10253 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 10254 /// if not possible. 10255 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 10256 BasicBlock *ParentBB, LoopInfo *LI) { 10257 // There are situations where the reduction value is not dominated by the 10258 // reduction phi. Vectorizing such cases has been reported to cause 10259 // miscompiles. See PR25787. 10260 auto DominatedReduxValue = [&](Value *R) { 10261 return isa<Instruction>(R) && 10262 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 10263 }; 10264 10265 Value *Rdx = nullptr; 10266 10267 // Return the incoming value if it comes from the same BB as the phi node. 10268 if (P->getIncomingBlock(0) == ParentBB) { 10269 Rdx = P->getIncomingValue(0); 10270 } else if (P->getIncomingBlock(1) == ParentBB) { 10271 Rdx = P->getIncomingValue(1); 10272 } 10273 10274 if (Rdx && DominatedReduxValue(Rdx)) 10275 return Rdx; 10276 10277 // Otherwise, check whether we have a loop latch to look at. 10278 Loop *BBL = LI->getLoopFor(ParentBB); 10279 if (!BBL) 10280 return nullptr; 10281 BasicBlock *BBLatch = BBL->getLoopLatch(); 10282 if (!BBLatch) 10283 return nullptr; 10284 10285 // There is a loop latch, return the incoming value if it comes from 10286 // that. This reduction pattern occasionally turns up. 10287 if (P->getIncomingBlock(0) == BBLatch) { 10288 Rdx = P->getIncomingValue(0); 10289 } else if (P->getIncomingBlock(1) == BBLatch) { 10290 Rdx = P->getIncomingValue(1); 10291 } 10292 10293 if (Rdx && DominatedReduxValue(Rdx)) 10294 return Rdx; 10295 10296 return nullptr; 10297 } 10298 10299 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 10300 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 10301 return true; 10302 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 10303 return true; 10304 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 10305 return true; 10306 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 10307 return true; 10308 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 10309 return true; 10310 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 10311 return true; 10312 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 10313 return true; 10314 return false; 10315 } 10316 10317 /// Attempt to reduce a horizontal reduction. 10318 /// If it is legal to match a horizontal reduction feeding the phi node \a P 10319 /// with reduction operators \a Root (or one of its operands) in a basic block 10320 /// \a BB, then check if it can be done. If horizontal reduction is not found 10321 /// and root instruction is a binary operation, vectorization of the operands is 10322 /// attempted. 10323 /// \returns true if a horizontal reduction was matched and reduced or operands 10324 /// of one of the binary instruction were vectorized. 10325 /// \returns false if a horizontal reduction was not matched (or not possible) 10326 /// or no vectorization of any binary operation feeding \a Root instruction was 10327 /// performed. 10328 static bool tryToVectorizeHorReductionOrInstOperands( 10329 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 10330 TargetTransformInfo *TTI, ScalarEvolution &SE, const DataLayout &DL, 10331 const TargetLibraryInfo &TLI, 10332 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 10333 if (!ShouldVectorizeHor) 10334 return false; 10335 10336 if (!Root) 10337 return false; 10338 10339 if (Root->getParent() != BB || isa<PHINode>(Root)) 10340 return false; 10341 // Start analysis starting from Root instruction. If horizontal reduction is 10342 // found, try to vectorize it. If it is not a horizontal reduction or 10343 // vectorization is not possible or not effective, and currently analyzed 10344 // instruction is a binary operation, try to vectorize the operands, using 10345 // pre-order DFS traversal order. If the operands were not vectorized, repeat 10346 // the same procedure considering each operand as a possible root of the 10347 // horizontal reduction. 10348 // Interrupt the process if the Root instruction itself was vectorized or all 10349 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 10350 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 10351 // CmpInsts so we can skip extra attempts in 10352 // tryToVectorizeHorReductionOrInstOperands and save compile time. 10353 std::queue<std::pair<Instruction *, unsigned>> Stack; 10354 Stack.emplace(Root, 0); 10355 SmallPtrSet<Value *, 8> VisitedInstrs; 10356 SmallVector<WeakTrackingVH> PostponedInsts; 10357 bool Res = false; 10358 auto &&TryToReduce = [TTI, &SE, &DL, &P, &R, &TLI](Instruction *Inst, 10359 Value *&B0, 10360 Value *&B1) -> Value * { 10361 bool IsBinop = matchRdxBop(Inst, B0, B1); 10362 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 10363 if (IsBinop || IsSelect) { 10364 HorizontalReduction HorRdx; 10365 if (HorRdx.matchAssociativeReduction(P, Inst, SE, DL, TLI)) 10366 return HorRdx.tryToReduce(R, TTI); 10367 } 10368 return nullptr; 10369 }; 10370 while (!Stack.empty()) { 10371 Instruction *Inst; 10372 unsigned Level; 10373 std::tie(Inst, Level) = Stack.front(); 10374 Stack.pop(); 10375 // Do not try to analyze instruction that has already been vectorized. 10376 // This may happen when we vectorize instruction operands on a previous 10377 // iteration while stack was populated before that happened. 10378 if (R.isDeleted(Inst)) 10379 continue; 10380 Value *B0 = nullptr, *B1 = nullptr; 10381 if (Value *V = TryToReduce(Inst, B0, B1)) { 10382 Res = true; 10383 // Set P to nullptr to avoid re-analysis of phi node in 10384 // matchAssociativeReduction function unless this is the root node. 10385 P = nullptr; 10386 if (auto *I = dyn_cast<Instruction>(V)) { 10387 // Try to find another reduction. 10388 Stack.emplace(I, Level); 10389 continue; 10390 } 10391 } else { 10392 bool IsBinop = B0 && B1; 10393 if (P && IsBinop) { 10394 Inst = dyn_cast<Instruction>(B0); 10395 if (Inst == P) 10396 Inst = dyn_cast<Instruction>(B1); 10397 if (!Inst) { 10398 // Set P to nullptr to avoid re-analysis of phi node in 10399 // matchAssociativeReduction function unless this is the root node. 10400 P = nullptr; 10401 continue; 10402 } 10403 } 10404 // Set P to nullptr to avoid re-analysis of phi node in 10405 // matchAssociativeReduction function unless this is the root node. 10406 P = nullptr; 10407 // Do not try to vectorize CmpInst operands, this is done separately. 10408 // Final attempt for binop args vectorization should happen after the loop 10409 // to try to find reductions. 10410 if (!isa<CmpInst>(Inst)) 10411 PostponedInsts.push_back(Inst); 10412 } 10413 10414 // Try to vectorize operands. 10415 // Continue analysis for the instruction from the same basic block only to 10416 // save compile time. 10417 if (++Level < RecursionMaxDepth) 10418 for (auto *Op : Inst->operand_values()) 10419 if (VisitedInstrs.insert(Op).second) 10420 if (auto *I = dyn_cast<Instruction>(Op)) 10421 // Do not try to vectorize CmpInst operands, this is done 10422 // separately. 10423 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 10424 I->getParent() == BB) 10425 Stack.emplace(I, Level); 10426 } 10427 // Try to vectorized binops where reductions were not found. 10428 for (Value *V : PostponedInsts) 10429 if (auto *Inst = dyn_cast<Instruction>(V)) 10430 if (!R.isDeleted(Inst)) 10431 Res |= Vectorize(Inst, R); 10432 return Res; 10433 } 10434 10435 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 10436 BasicBlock *BB, BoUpSLP &R, 10437 TargetTransformInfo *TTI) { 10438 auto *I = dyn_cast_or_null<Instruction>(V); 10439 if (!I) 10440 return false; 10441 10442 if (!isa<BinaryOperator>(I)) 10443 P = nullptr; 10444 // Try to match and vectorize a horizontal reduction. 10445 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 10446 return tryToVectorize(I, R); 10447 }; 10448 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, *SE, *DL, 10449 *TLI, ExtraVectorization); 10450 } 10451 10452 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 10453 BasicBlock *BB, BoUpSLP &R) { 10454 const DataLayout &DL = BB->getModule()->getDataLayout(); 10455 if (!R.canMapToVector(IVI->getType(), DL)) 10456 return false; 10457 10458 SmallVector<Value *, 16> BuildVectorOpds; 10459 SmallVector<Value *, 16> BuildVectorInsts; 10460 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 10461 return false; 10462 10463 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 10464 // Aggregate value is unlikely to be processed in vector register. 10465 return tryToVectorizeList(BuildVectorOpds, R); 10466 } 10467 10468 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 10469 BasicBlock *BB, BoUpSLP &R) { 10470 SmallVector<Value *, 16> BuildVectorInsts; 10471 SmallVector<Value *, 16> BuildVectorOpds; 10472 SmallVector<int> Mask; 10473 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 10474 (llvm::all_of( 10475 BuildVectorOpds, 10476 [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) && 10477 isFixedVectorShuffle(BuildVectorOpds, Mask))) 10478 return false; 10479 10480 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 10481 return tryToVectorizeList(BuildVectorInsts, R); 10482 } 10483 10484 template <typename T> 10485 static bool 10486 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, 10487 function_ref<unsigned(T *)> Limit, 10488 function_ref<bool(T *, T *)> Comparator, 10489 function_ref<bool(T *, T *)> AreCompatible, 10490 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper, 10491 bool LimitForRegisterSize) { 10492 bool Changed = false; 10493 // Sort by type, parent, operands. 10494 stable_sort(Incoming, Comparator); 10495 10496 // Try to vectorize elements base on their type. 10497 SmallVector<T *> Candidates; 10498 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { 10499 // Look for the next elements with the same type, parent and operand 10500 // kinds. 10501 auto *SameTypeIt = IncIt; 10502 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) 10503 ++SameTypeIt; 10504 10505 // Try to vectorize them. 10506 unsigned NumElts = (SameTypeIt - IncIt); 10507 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" 10508 << NumElts << ")\n"); 10509 // The vectorization is a 3-state attempt: 10510 // 1. Try to vectorize instructions with the same/alternate opcodes with the 10511 // size of maximal register at first. 10512 // 2. Try to vectorize remaining instructions with the same type, if 10513 // possible. This may result in the better vectorization results rather than 10514 // if we try just to vectorize instructions with the same/alternate opcodes. 10515 // 3. Final attempt to try to vectorize all instructions with the 10516 // same/alternate ops only, this may result in some extra final 10517 // vectorization. 10518 if (NumElts > 1 && 10519 TryToVectorizeHelper(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) { 10520 // Success start over because instructions might have been changed. 10521 Changed = true; 10522 } else if (NumElts < Limit(*IncIt) && 10523 (Candidates.empty() || 10524 Candidates.front()->getType() == (*IncIt)->getType())) { 10525 Candidates.append(IncIt, std::next(IncIt, NumElts)); 10526 } 10527 // Final attempt to vectorize instructions with the same types. 10528 if (Candidates.size() > 1 && 10529 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { 10530 if (TryToVectorizeHelper(Candidates, /*LimitForRegisterSize=*/false)) { 10531 // Success start over because instructions might have been changed. 10532 Changed = true; 10533 } else if (LimitForRegisterSize) { 10534 // Try to vectorize using small vectors. 10535 for (auto *It = Candidates.begin(), *End = Candidates.end(); 10536 It != End;) { 10537 auto *SameTypeIt = It; 10538 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) 10539 ++SameTypeIt; 10540 unsigned NumElts = (SameTypeIt - It); 10541 if (NumElts > 1 && TryToVectorizeHelper(makeArrayRef(It, NumElts), 10542 /*LimitForRegisterSize=*/false)) 10543 Changed = true; 10544 It = SameTypeIt; 10545 } 10546 } 10547 Candidates.clear(); 10548 } 10549 10550 // Start over at the next instruction of a different type (or the end). 10551 IncIt = SameTypeIt; 10552 } 10553 return Changed; 10554 } 10555 10556 /// Compare two cmp instructions. If IsCompatibility is true, function returns 10557 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding 10558 /// operands. If IsCompatibility is false, function implements strict weak 10559 /// ordering relation between two cmp instructions, returning true if the first 10560 /// instruction is "less" than the second, i.e. its predicate is less than the 10561 /// predicate of the second or the operands IDs are less than the operands IDs 10562 /// of the second cmp instruction. 10563 template <bool IsCompatibility> 10564 static bool compareCmp(Value *V, Value *V2, 10565 function_ref<bool(Instruction *)> IsDeleted) { 10566 auto *CI1 = cast<CmpInst>(V); 10567 auto *CI2 = cast<CmpInst>(V2); 10568 if (IsDeleted(CI2) || !isValidElementType(CI2->getType())) 10569 return false; 10570 if (CI1->getOperand(0)->getType()->getTypeID() < 10571 CI2->getOperand(0)->getType()->getTypeID()) 10572 return !IsCompatibility; 10573 if (CI1->getOperand(0)->getType()->getTypeID() > 10574 CI2->getOperand(0)->getType()->getTypeID()) 10575 return false; 10576 CmpInst::Predicate Pred1 = CI1->getPredicate(); 10577 CmpInst::Predicate Pred2 = CI2->getPredicate(); 10578 CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1); 10579 CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2); 10580 CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1); 10581 CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2); 10582 if (BasePred1 < BasePred2) 10583 return !IsCompatibility; 10584 if (BasePred1 > BasePred2) 10585 return false; 10586 // Compare operands. 10587 bool LEPreds = Pred1 <= Pred2; 10588 bool GEPreds = Pred1 >= Pred2; 10589 for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) { 10590 auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1); 10591 auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1); 10592 if (Op1->getValueID() < Op2->getValueID()) 10593 return !IsCompatibility; 10594 if (Op1->getValueID() > Op2->getValueID()) 10595 return false; 10596 if (auto *I1 = dyn_cast<Instruction>(Op1)) 10597 if (auto *I2 = dyn_cast<Instruction>(Op2)) { 10598 if (I1->getParent() != I2->getParent()) 10599 return false; 10600 InstructionsState S = getSameOpcode({I1, I2}); 10601 if (S.getOpcode()) 10602 continue; 10603 return false; 10604 } 10605 } 10606 return IsCompatibility; 10607 } 10608 10609 bool SLPVectorizerPass::vectorizeSimpleInstructions( 10610 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 10611 bool AtTerminator) { 10612 bool OpsChanged = false; 10613 SmallVector<Instruction *, 4> PostponedCmps; 10614 for (auto *I : reverse(Instructions)) { 10615 if (R.isDeleted(I)) 10616 continue; 10617 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 10618 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 10619 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 10620 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 10621 else if (isa<CmpInst>(I)) 10622 PostponedCmps.push_back(I); 10623 } 10624 if (AtTerminator) { 10625 // Try to find reductions first. 10626 for (Instruction *I : PostponedCmps) { 10627 if (R.isDeleted(I)) 10628 continue; 10629 for (Value *Op : I->operands()) 10630 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 10631 } 10632 // Try to vectorize operands as vector bundles. 10633 for (Instruction *I : PostponedCmps) { 10634 if (R.isDeleted(I)) 10635 continue; 10636 OpsChanged |= tryToVectorize(I, R); 10637 } 10638 // Try to vectorize list of compares. 10639 // Sort by type, compare predicate, etc. 10640 auto &&CompareSorter = [&R](Value *V, Value *V2) { 10641 return compareCmp<false>(V, V2, 10642 [&R](Instruction *I) { return R.isDeleted(I); }); 10643 }; 10644 10645 auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) { 10646 if (V1 == V2) 10647 return true; 10648 return compareCmp<true>(V1, V2, 10649 [&R](Instruction *I) { return R.isDeleted(I); }); 10650 }; 10651 auto Limit = [&R](Value *V) { 10652 unsigned EltSize = R.getVectorElementSize(V); 10653 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10654 }; 10655 10656 SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end()); 10657 OpsChanged |= tryToVectorizeSequence<Value>( 10658 Vals, Limit, CompareSorter, AreCompatibleCompares, 10659 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10660 // Exclude possible reductions from other blocks. 10661 bool ArePossiblyReducedInOtherBlock = 10662 any_of(Candidates, [](Value *V) { 10663 return any_of(V->users(), [V](User *U) { 10664 return isa<SelectInst>(U) && 10665 cast<SelectInst>(U)->getParent() != 10666 cast<Instruction>(V)->getParent(); 10667 }); 10668 }); 10669 if (ArePossiblyReducedInOtherBlock) 10670 return false; 10671 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10672 }, 10673 /*LimitForRegisterSize=*/true); 10674 Instructions.clear(); 10675 } else { 10676 // Insert in reverse order since the PostponedCmps vector was filled in 10677 // reverse order. 10678 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 10679 } 10680 return OpsChanged; 10681 } 10682 10683 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 10684 bool Changed = false; 10685 SmallVector<Value *, 4> Incoming; 10686 SmallPtrSet<Value *, 16> VisitedInstrs; 10687 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 10688 // node. Allows better to identify the chains that can be vectorized in the 10689 // better way. 10690 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 10691 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { 10692 assert(isValidElementType(V1->getType()) && 10693 isValidElementType(V2->getType()) && 10694 "Expected vectorizable types only."); 10695 // It is fine to compare type IDs here, since we expect only vectorizable 10696 // types, like ints, floats and pointers, we don't care about other type. 10697 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 10698 return true; 10699 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 10700 return false; 10701 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10702 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10703 if (Opcodes1.size() < Opcodes2.size()) 10704 return true; 10705 if (Opcodes1.size() > Opcodes2.size()) 10706 return false; 10707 Optional<bool> ConstOrder; 10708 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10709 // Undefs are compatible with any other value. 10710 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) { 10711 if (!ConstOrder) 10712 ConstOrder = 10713 !isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]); 10714 continue; 10715 } 10716 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10717 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10718 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 10719 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 10720 if (!NodeI1) 10721 return NodeI2 != nullptr; 10722 if (!NodeI2) 10723 return false; 10724 assert((NodeI1 == NodeI2) == 10725 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10726 "Different nodes should have different DFS numbers"); 10727 if (NodeI1 != NodeI2) 10728 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10729 InstructionsState S = getSameOpcode({I1, I2}); 10730 if (S.getOpcode()) 10731 continue; 10732 return I1->getOpcode() < I2->getOpcode(); 10733 } 10734 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) { 10735 if (!ConstOrder) 10736 ConstOrder = Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID(); 10737 continue; 10738 } 10739 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 10740 return true; 10741 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 10742 return false; 10743 } 10744 return ConstOrder && *ConstOrder; 10745 }; 10746 auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 10747 if (V1 == V2) 10748 return true; 10749 if (V1->getType() != V2->getType()) 10750 return false; 10751 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10752 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10753 if (Opcodes1.size() != Opcodes2.size()) 10754 return false; 10755 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10756 // Undefs are compatible with any other value. 10757 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 10758 continue; 10759 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10760 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10761 if (I1->getParent() != I2->getParent()) 10762 return false; 10763 InstructionsState S = getSameOpcode({I1, I2}); 10764 if (S.getOpcode()) 10765 continue; 10766 return false; 10767 } 10768 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 10769 continue; 10770 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 10771 return false; 10772 } 10773 return true; 10774 }; 10775 auto Limit = [&R](Value *V) { 10776 unsigned EltSize = R.getVectorElementSize(V); 10777 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10778 }; 10779 10780 bool HaveVectorizedPhiNodes = false; 10781 do { 10782 // Collect the incoming values from the PHIs. 10783 Incoming.clear(); 10784 for (Instruction &I : *BB) { 10785 PHINode *P = dyn_cast<PHINode>(&I); 10786 if (!P) 10787 break; 10788 10789 // No need to analyze deleted, vectorized and non-vectorizable 10790 // instructions. 10791 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 10792 isValidElementType(P->getType())) 10793 Incoming.push_back(P); 10794 } 10795 10796 // Find the corresponding non-phi nodes for better matching when trying to 10797 // build the tree. 10798 for (Value *V : Incoming) { 10799 SmallVectorImpl<Value *> &Opcodes = 10800 PHIToOpcodes.try_emplace(V).first->getSecond(); 10801 if (!Opcodes.empty()) 10802 continue; 10803 SmallVector<Value *, 4> Nodes(1, V); 10804 SmallPtrSet<Value *, 4> Visited; 10805 while (!Nodes.empty()) { 10806 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 10807 if (!Visited.insert(PHI).second) 10808 continue; 10809 for (Value *V : PHI->incoming_values()) { 10810 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 10811 Nodes.push_back(PHI1); 10812 continue; 10813 } 10814 Opcodes.emplace_back(V); 10815 } 10816 } 10817 } 10818 10819 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( 10820 Incoming, Limit, PHICompare, AreCompatiblePHIs, 10821 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10822 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10823 }, 10824 /*LimitForRegisterSize=*/true); 10825 Changed |= HaveVectorizedPhiNodes; 10826 VisitedInstrs.insert(Incoming.begin(), Incoming.end()); 10827 } while (HaveVectorizedPhiNodes); 10828 10829 VisitedInstrs.clear(); 10830 10831 SmallVector<Instruction *, 8> PostProcessInstructions; 10832 SmallDenseSet<Instruction *, 4> KeyNodes; 10833 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 10834 // Skip instructions with scalable type. The num of elements is unknown at 10835 // compile-time for scalable type. 10836 if (isa<ScalableVectorType>(it->getType())) 10837 continue; 10838 10839 // Skip instructions marked for the deletion. 10840 if (R.isDeleted(&*it)) 10841 continue; 10842 // We may go through BB multiple times so skip the one we have checked. 10843 if (!VisitedInstrs.insert(&*it).second) { 10844 if (it->use_empty() && KeyNodes.contains(&*it) && 10845 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10846 it->isTerminator())) { 10847 // We would like to start over since some instructions are deleted 10848 // and the iterator may become invalid value. 10849 Changed = true; 10850 it = BB->begin(); 10851 e = BB->end(); 10852 } 10853 continue; 10854 } 10855 10856 if (isa<DbgInfoIntrinsic>(it)) 10857 continue; 10858 10859 // Try to vectorize reductions that use PHINodes. 10860 if (PHINode *P = dyn_cast<PHINode>(it)) { 10861 // Check that the PHI is a reduction PHI. 10862 if (P->getNumIncomingValues() == 2) { 10863 // Try to match and vectorize a horizontal reduction. 10864 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 10865 TTI)) { 10866 Changed = true; 10867 it = BB->begin(); 10868 e = BB->end(); 10869 continue; 10870 } 10871 } 10872 // Try to vectorize the incoming values of the PHI, to catch reductions 10873 // that feed into PHIs. 10874 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 10875 // Skip if the incoming block is the current BB for now. Also, bypass 10876 // unreachable IR for efficiency and to avoid crashing. 10877 // TODO: Collect the skipped incoming values and try to vectorize them 10878 // after processing BB. 10879 if (BB == P->getIncomingBlock(I) || 10880 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 10881 continue; 10882 10883 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 10884 P->getIncomingBlock(I), R, TTI); 10885 } 10886 continue; 10887 } 10888 10889 // Ran into an instruction without users, like terminator, or function call 10890 // with ignored return value, store. Ignore unused instructions (basing on 10891 // instruction type, except for CallInst and InvokeInst). 10892 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 10893 isa<InvokeInst>(it))) { 10894 KeyNodes.insert(&*it); 10895 bool OpsChanged = false; 10896 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 10897 for (auto *V : it->operand_values()) { 10898 // Try to match and vectorize a horizontal reduction. 10899 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 10900 } 10901 } 10902 // Start vectorization of post-process list of instructions from the 10903 // top-tree instructions to try to vectorize as many instructions as 10904 // possible. 10905 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10906 it->isTerminator()); 10907 if (OpsChanged) { 10908 // We would like to start over since some instructions are deleted 10909 // and the iterator may become invalid value. 10910 Changed = true; 10911 it = BB->begin(); 10912 e = BB->end(); 10913 continue; 10914 } 10915 } 10916 10917 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 10918 isa<InsertValueInst>(it)) 10919 PostProcessInstructions.push_back(&*it); 10920 } 10921 10922 return Changed; 10923 } 10924 10925 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 10926 auto Changed = false; 10927 for (auto &Entry : GEPs) { 10928 // If the getelementptr list has fewer than two elements, there's nothing 10929 // to do. 10930 if (Entry.second.size() < 2) 10931 continue; 10932 10933 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 10934 << Entry.second.size() << ".\n"); 10935 10936 // Process the GEP list in chunks suitable for the target's supported 10937 // vector size. If a vector register can't hold 1 element, we are done. We 10938 // are trying to vectorize the index computations, so the maximum number of 10939 // elements is based on the size of the index expression, rather than the 10940 // size of the GEP itself (the target's pointer size). 10941 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 10942 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 10943 if (MaxVecRegSize < EltSize) 10944 continue; 10945 10946 unsigned MaxElts = MaxVecRegSize / EltSize; 10947 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 10948 auto Len = std::min<unsigned>(BE - BI, MaxElts); 10949 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 10950 10951 // Initialize a set a candidate getelementptrs. Note that we use a 10952 // SetVector here to preserve program order. If the index computations 10953 // are vectorizable and begin with loads, we want to minimize the chance 10954 // of having to reorder them later. 10955 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 10956 10957 // Some of the candidates may have already been vectorized after we 10958 // initially collected them. If so, they are marked as deleted, so remove 10959 // them from the set of candidates. 10960 Candidates.remove_if( 10961 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 10962 10963 // Remove from the set of candidates all pairs of getelementptrs with 10964 // constant differences. Such getelementptrs are likely not good 10965 // candidates for vectorization in a bottom-up phase since one can be 10966 // computed from the other. We also ensure all candidate getelementptr 10967 // indices are unique. 10968 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 10969 auto *GEPI = GEPList[I]; 10970 if (!Candidates.count(GEPI)) 10971 continue; 10972 auto *SCEVI = SE->getSCEV(GEPList[I]); 10973 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 10974 auto *GEPJ = GEPList[J]; 10975 auto *SCEVJ = SE->getSCEV(GEPList[J]); 10976 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 10977 Candidates.remove(GEPI); 10978 Candidates.remove(GEPJ); 10979 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 10980 Candidates.remove(GEPJ); 10981 } 10982 } 10983 } 10984 10985 // We break out of the above computation as soon as we know there are 10986 // fewer than two candidates remaining. 10987 if (Candidates.size() < 2) 10988 continue; 10989 10990 // Add the single, non-constant index of each candidate to the bundle. We 10991 // ensured the indices met these constraints when we originally collected 10992 // the getelementptrs. 10993 SmallVector<Value *, 16> Bundle(Candidates.size()); 10994 auto BundleIndex = 0u; 10995 for (auto *V : Candidates) { 10996 auto *GEP = cast<GetElementPtrInst>(V); 10997 auto *GEPIdx = GEP->idx_begin()->get(); 10998 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 10999 Bundle[BundleIndex++] = GEPIdx; 11000 } 11001 11002 // Try and vectorize the indices. We are currently only interested in 11003 // gather-like cases of the form: 11004 // 11005 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 11006 // 11007 // where the loads of "a", the loads of "b", and the subtractions can be 11008 // performed in parallel. It's likely that detecting this pattern in a 11009 // bottom-up phase will be simpler and less costly than building a 11010 // full-blown top-down phase beginning at the consecutive loads. 11011 Changed |= tryToVectorizeList(Bundle, R); 11012 } 11013 } 11014 return Changed; 11015 } 11016 11017 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 11018 bool Changed = false; 11019 // Sort by type, base pointers and values operand. Value operands must be 11020 // compatible (have the same opcode, same parent), otherwise it is 11021 // definitely not profitable to try to vectorize them. 11022 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 11023 if (V->getPointerOperandType()->getTypeID() < 11024 V2->getPointerOperandType()->getTypeID()) 11025 return true; 11026 if (V->getPointerOperandType()->getTypeID() > 11027 V2->getPointerOperandType()->getTypeID()) 11028 return false; 11029 // UndefValues are compatible with all other values. 11030 if (isa<UndefValue>(V->getValueOperand()) || 11031 isa<UndefValue>(V2->getValueOperand())) 11032 return false; 11033 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 11034 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 11035 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 11036 DT->getNode(I1->getParent()); 11037 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 11038 DT->getNode(I2->getParent()); 11039 assert(NodeI1 && "Should only process reachable instructions"); 11040 assert(NodeI1 && "Should only process reachable instructions"); 11041 assert((NodeI1 == NodeI2) == 11042 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 11043 "Different nodes should have different DFS numbers"); 11044 if (NodeI1 != NodeI2) 11045 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 11046 InstructionsState S = getSameOpcode({I1, I2}); 11047 if (S.getOpcode()) 11048 return false; 11049 return I1->getOpcode() < I2->getOpcode(); 11050 } 11051 if (isa<Constant>(V->getValueOperand()) && 11052 isa<Constant>(V2->getValueOperand())) 11053 return false; 11054 return V->getValueOperand()->getValueID() < 11055 V2->getValueOperand()->getValueID(); 11056 }; 11057 11058 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 11059 if (V1 == V2) 11060 return true; 11061 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 11062 return false; 11063 // Undefs are compatible with any other value. 11064 if (isa<UndefValue>(V1->getValueOperand()) || 11065 isa<UndefValue>(V2->getValueOperand())) 11066 return true; 11067 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 11068 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 11069 if (I1->getParent() != I2->getParent()) 11070 return false; 11071 InstructionsState S = getSameOpcode({I1, I2}); 11072 return S.getOpcode() > 0; 11073 } 11074 if (isa<Constant>(V1->getValueOperand()) && 11075 isa<Constant>(V2->getValueOperand())) 11076 return true; 11077 return V1->getValueOperand()->getValueID() == 11078 V2->getValueOperand()->getValueID(); 11079 }; 11080 auto Limit = [&R, this](StoreInst *SI) { 11081 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 11082 return R.getMinVF(EltSize); 11083 }; 11084 11085 // Attempt to sort and vectorize each of the store-groups. 11086 for (auto &Pair : Stores) { 11087 if (Pair.second.size() < 2) 11088 continue; 11089 11090 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 11091 << Pair.second.size() << ".\n"); 11092 11093 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) 11094 continue; 11095 11096 Changed |= tryToVectorizeSequence<StoreInst>( 11097 Pair.second, Limit, StoreSorter, AreCompatibleStores, 11098 [this, &R](ArrayRef<StoreInst *> Candidates, bool) { 11099 return vectorizeStores(Candidates, R); 11100 }, 11101 /*LimitForRegisterSize=*/false); 11102 } 11103 return Changed; 11104 } 11105 11106 char SLPVectorizer::ID = 0; 11107 11108 static const char lv_name[] = "SLP Vectorizer"; 11109 11110 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 11111 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 11112 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 11113 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 11114 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 11115 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 11116 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 11117 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 11118 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 11119 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 11120 11121 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 11122