1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/DenseSet.h" 23 #include "llvm/ADT/MapVector.h" 24 #include "llvm/ADT/None.h" 25 #include "llvm/ADT/Optional.h" 26 #include "llvm/ADT/PostOrderIterator.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SetVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/CodeMetrics.h" 37 #include "llvm/Analysis/DemandedBits.h" 38 #include "llvm/Analysis/GlobalsModRef.h" 39 #include "llvm/Analysis/LoopAccessAnalysis.h" 40 #include "llvm/Analysis/LoopInfo.h" 41 #include "llvm/Analysis/MemoryLocation.h" 42 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 43 #include "llvm/Analysis/ScalarEvolution.h" 44 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 45 #include "llvm/Analysis/TargetLibraryInfo.h" 46 #include "llvm/Analysis/TargetTransformInfo.h" 47 #include "llvm/Analysis/ValueTracking.h" 48 #include "llvm/Analysis/VectorUtils.h" 49 #include "llvm/IR/Attributes.h" 50 #include "llvm/IR/BasicBlock.h" 51 #include "llvm/IR/Constant.h" 52 #include "llvm/IR/Constants.h" 53 #include "llvm/IR/DataLayout.h" 54 #include "llvm/IR/DebugLoc.h" 55 #include "llvm/IR/DerivedTypes.h" 56 #include "llvm/IR/Dominators.h" 57 #include "llvm/IR/Function.h" 58 #include "llvm/IR/IRBuilder.h" 59 #include "llvm/IR/InstrTypes.h" 60 #include "llvm/IR/Instruction.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/IR/IntrinsicInst.h" 63 #include "llvm/IR/Intrinsics.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/NoFolder.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PassManager.h" 68 #include "llvm/IR/PatternMatch.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/IR/Verifier.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/Casting.h" 77 #include "llvm/Support/CommandLine.h" 78 #include "llvm/Support/Compiler.h" 79 #include "llvm/Support/DOTGraphTraits.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/ErrorHandling.h" 82 #include "llvm/Support/GraphWriter.h" 83 #include "llvm/Support/KnownBits.h" 84 #include "llvm/Support/MathExtras.h" 85 #include "llvm/Support/raw_ostream.h" 86 #include "llvm/Transforms/Utils/LoopUtils.h" 87 #include "llvm/Transforms/Vectorize.h" 88 #include <algorithm> 89 #include <cassert> 90 #include <cstdint> 91 #include <iterator> 92 #include <memory> 93 #include <set> 94 #include <string> 95 #include <tuple> 96 #include <utility> 97 #include <vector> 98 99 using namespace llvm; 100 using namespace llvm::PatternMatch; 101 using namespace slpvectorizer; 102 103 #define SV_NAME "slp-vectorizer" 104 #define DEBUG_TYPE "SLP" 105 106 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 107 108 cl::opt<bool> 109 llvm::RunSLPVectorization("vectorize-slp", cl::init(false), cl::Hidden, 110 cl::desc("Run the SLP vectorization passes")); 111 112 static cl::opt<int> 113 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 114 cl::desc("Only vectorize if you gain more than this " 115 "number ")); 116 117 static cl::opt<bool> 118 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 119 cl::desc("Attempt to vectorize horizontal reductions")); 120 121 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 122 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 123 cl::desc( 124 "Attempt to vectorize horizontal reductions feeding into a store")); 125 126 static cl::opt<int> 127 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 128 cl::desc("Attempt to vectorize for this register size in bits")); 129 130 /// Limits the size of scheduling regions in a block. 131 /// It avoid long compile times for _very_ large blocks where vector 132 /// instructions are spread over a wide range. 133 /// This limit is way higher than needed by real-world functions. 134 static cl::opt<int> 135 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 136 cl::desc("Limit the size of the SLP scheduling region per block")); 137 138 static cl::opt<int> MinVectorRegSizeOption( 139 "slp-min-reg-size", cl::init(128), cl::Hidden, 140 cl::desc("Attempt to vectorize for this register size in bits")); 141 142 static cl::opt<unsigned> RecursionMaxDepth( 143 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 144 cl::desc("Limit the recursion depth when building a vectorizable tree")); 145 146 static cl::opt<unsigned> MinTreeSize( 147 "slp-min-tree-size", cl::init(3), cl::Hidden, 148 cl::desc("Only vectorize small trees if they are fully vectorizable")); 149 150 static cl::opt<bool> 151 ViewSLPTree("view-slp-tree", cl::Hidden, 152 cl::desc("Display the SLP trees with Graphviz")); 153 154 // Limit the number of alias checks. The limit is chosen so that 155 // it has no negative effect on the llvm benchmarks. 156 static const unsigned AliasedCheckLimit = 10; 157 158 // Another limit for the alias checks: The maximum distance between load/store 159 // instructions where alias checks are done. 160 // This limit is useful for very large basic blocks. 161 static const unsigned MaxMemDepDistance = 160; 162 163 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 164 /// regions to be handled. 165 static const int MinScheduleRegionSize = 16; 166 167 /// Predicate for the element types that the SLP vectorizer supports. 168 /// 169 /// The most important thing to filter here are types which are invalid in LLVM 170 /// vectors. We also filter target specific types which have absolutely no 171 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 172 /// avoids spending time checking the cost model and realizing that they will 173 /// be inevitably scalarized. 174 static bool isValidElementType(Type *Ty) { 175 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 176 !Ty->isPPC_FP128Ty(); 177 } 178 179 /// \returns true if all of the instructions in \p VL are in the same block or 180 /// false otherwise. 181 static bool allSameBlock(ArrayRef<Value *> VL) { 182 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 183 if (!I0) 184 return false; 185 BasicBlock *BB = I0->getParent(); 186 for (int i = 1, e = VL.size(); i < e; i++) { 187 Instruction *I = dyn_cast<Instruction>(VL[i]); 188 if (!I) 189 return false; 190 191 if (BB != I->getParent()) 192 return false; 193 } 194 return true; 195 } 196 197 /// \returns True if all of the values in \p VL are constants (but not 198 /// globals/constant expressions). 199 static bool allConstant(ArrayRef<Value *> VL) { 200 // Constant expressions and globals can't be vectorized like normal integer/FP 201 // constants. 202 for (Value *i : VL) 203 if (!isa<Constant>(i) || isa<ConstantExpr>(i) || isa<GlobalValue>(i)) 204 return false; 205 return true; 206 } 207 208 /// \returns True if all of the values in \p VL are identical. 209 static bool isSplat(ArrayRef<Value *> VL) { 210 for (unsigned i = 1, e = VL.size(); i < e; ++i) 211 if (VL[i] != VL[0]) 212 return false; 213 return true; 214 } 215 216 /// \returns True if \p I is commutative, handles CmpInst as well as Instruction. 217 static bool isCommutative(Instruction *I) { 218 if (auto *IC = dyn_cast<CmpInst>(I)) 219 return IC->isCommutative(); 220 return I->isCommutative(); 221 } 222 223 /// Checks if the vector of instructions can be represented as a shuffle, like: 224 /// %x0 = extractelement <4 x i8> %x, i32 0 225 /// %x3 = extractelement <4 x i8> %x, i32 3 226 /// %y1 = extractelement <4 x i8> %y, i32 1 227 /// %y2 = extractelement <4 x i8> %y, i32 2 228 /// %x0x0 = mul i8 %x0, %x0 229 /// %x3x3 = mul i8 %x3, %x3 230 /// %y1y1 = mul i8 %y1, %y1 231 /// %y2y2 = mul i8 %y2, %y2 232 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0 233 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 234 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 235 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 236 /// ret <4 x i8> %ins4 237 /// can be transformed into: 238 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 239 /// i32 6> 240 /// %2 = mul <4 x i8> %1, %1 241 /// ret <4 x i8> %2 242 /// We convert this initially to something like: 243 /// %x0 = extractelement <4 x i8> %x, i32 0 244 /// %x3 = extractelement <4 x i8> %x, i32 3 245 /// %y1 = extractelement <4 x i8> %y, i32 1 246 /// %y2 = extractelement <4 x i8> %y, i32 2 247 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0 248 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 249 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 250 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 251 /// %5 = mul <4 x i8> %4, %4 252 /// %6 = extractelement <4 x i8> %5, i32 0 253 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0 254 /// %7 = extractelement <4 x i8> %5, i32 1 255 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 256 /// %8 = extractelement <4 x i8> %5, i32 2 257 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 258 /// %9 = extractelement <4 x i8> %5, i32 3 259 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 260 /// ret <4 x i8> %ins4 261 /// InstCombiner transforms this into a shuffle and vector mul 262 /// TODO: Can we split off and reuse the shuffle mask detection from 263 /// TargetTransformInfo::getInstructionThroughput? 264 static Optional<TargetTransformInfo::ShuffleKind> 265 isShuffle(ArrayRef<Value *> VL) { 266 auto *EI0 = cast<ExtractElementInst>(VL[0]); 267 unsigned Size = EI0->getVectorOperandType()->getVectorNumElements(); 268 Value *Vec1 = nullptr; 269 Value *Vec2 = nullptr; 270 enum ShuffleMode { Unknown, Select, Permute }; 271 ShuffleMode CommonShuffleMode = Unknown; 272 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 273 auto *EI = cast<ExtractElementInst>(VL[I]); 274 auto *Vec = EI->getVectorOperand(); 275 // All vector operands must have the same number of vector elements. 276 if (Vec->getType()->getVectorNumElements() != Size) 277 return None; 278 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 279 if (!Idx) 280 return None; 281 // Undefined behavior if Idx is negative or >= Size. 282 if (Idx->getValue().uge(Size)) 283 continue; 284 unsigned IntIdx = Idx->getValue().getZExtValue(); 285 // We can extractelement from undef vector. 286 if (isa<UndefValue>(Vec)) 287 continue; 288 // For correct shuffling we have to have at most 2 different vector operands 289 // in all extractelement instructions. 290 if (!Vec1 || Vec1 == Vec) 291 Vec1 = Vec; 292 else if (!Vec2 || Vec2 == Vec) 293 Vec2 = Vec; 294 else 295 return None; 296 if (CommonShuffleMode == Permute) 297 continue; 298 // If the extract index is not the same as the operation number, it is a 299 // permutation. 300 if (IntIdx != I) { 301 CommonShuffleMode = Permute; 302 continue; 303 } 304 CommonShuffleMode = Select; 305 } 306 // If we're not crossing lanes in different vectors, consider it as blending. 307 if (CommonShuffleMode == Select && Vec2) 308 return TargetTransformInfo::SK_Select; 309 // If Vec2 was never used, we have a permutation of a single vector, otherwise 310 // we have permutation of 2 vectors. 311 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 312 : TargetTransformInfo::SK_PermuteSingleSrc; 313 } 314 315 namespace { 316 317 /// Main data required for vectorization of instructions. 318 struct InstructionsState { 319 /// The very first instruction in the list with the main opcode. 320 Value *OpValue = nullptr; 321 322 /// The main/alternate instruction. 323 Instruction *MainOp = nullptr; 324 Instruction *AltOp = nullptr; 325 326 /// The main/alternate opcodes for the list of instructions. 327 unsigned getOpcode() const { 328 return MainOp ? MainOp->getOpcode() : 0; 329 } 330 331 unsigned getAltOpcode() const { 332 return AltOp ? AltOp->getOpcode() : 0; 333 } 334 335 /// Some of the instructions in the list have alternate opcodes. 336 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 337 338 bool isOpcodeOrAlt(Instruction *I) const { 339 unsigned CheckedOpcode = I->getOpcode(); 340 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 341 } 342 343 InstructionsState() = delete; 344 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 345 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 346 }; 347 348 } // end anonymous namespace 349 350 /// Chooses the correct key for scheduling data. If \p Op has the same (or 351 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 352 /// OpValue. 353 static Value *isOneOf(const InstructionsState &S, Value *Op) { 354 auto *I = dyn_cast<Instruction>(Op); 355 if (I && S.isOpcodeOrAlt(I)) 356 return Op; 357 return S.OpValue; 358 } 359 360 /// \returns analysis of the Instructions in \p VL described in 361 /// InstructionsState, the Opcode that we suppose the whole list 362 /// could be vectorized even if its structure is diverse. 363 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 364 unsigned BaseIndex = 0) { 365 // Make sure these are all Instructions. 366 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 367 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 368 369 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 370 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 371 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 372 unsigned AltOpcode = Opcode; 373 unsigned AltIndex = BaseIndex; 374 375 // Check for one alternate opcode from another BinaryOperator. 376 // TODO - generalize to support all operators (types, calls etc.). 377 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 378 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 379 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 380 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 381 continue; 382 if (Opcode == AltOpcode) { 383 AltOpcode = InstOpcode; 384 AltIndex = Cnt; 385 continue; 386 } 387 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 388 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 389 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 390 if (Ty0 == Ty1) { 391 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 392 continue; 393 if (Opcode == AltOpcode) { 394 AltOpcode = InstOpcode; 395 AltIndex = Cnt; 396 continue; 397 } 398 } 399 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 400 continue; 401 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 402 } 403 404 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 405 cast<Instruction>(VL[AltIndex])); 406 } 407 408 /// \returns true if all of the values in \p VL have the same type or false 409 /// otherwise. 410 static bool allSameType(ArrayRef<Value *> VL) { 411 Type *Ty = VL[0]->getType(); 412 for (int i = 1, e = VL.size(); i < e; i++) 413 if (VL[i]->getType() != Ty) 414 return false; 415 416 return true; 417 } 418 419 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 420 static Optional<unsigned> getExtractIndex(Instruction *E) { 421 unsigned Opcode = E->getOpcode(); 422 assert((Opcode == Instruction::ExtractElement || 423 Opcode == Instruction::ExtractValue) && 424 "Expected extractelement or extractvalue instruction."); 425 if (Opcode == Instruction::ExtractElement) { 426 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 427 if (!CI) 428 return None; 429 return CI->getZExtValue(); 430 } 431 ExtractValueInst *EI = cast<ExtractValueInst>(E); 432 if (EI->getNumIndices() != 1) 433 return None; 434 return *EI->idx_begin(); 435 } 436 437 /// \returns True if in-tree use also needs extract. This refers to 438 /// possible scalar operand in vectorized instruction. 439 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 440 TargetLibraryInfo *TLI) { 441 unsigned Opcode = UserInst->getOpcode(); 442 switch (Opcode) { 443 case Instruction::Load: { 444 LoadInst *LI = cast<LoadInst>(UserInst); 445 return (LI->getPointerOperand() == Scalar); 446 } 447 case Instruction::Store: { 448 StoreInst *SI = cast<StoreInst>(UserInst); 449 return (SI->getPointerOperand() == Scalar); 450 } 451 case Instruction::Call: { 452 CallInst *CI = cast<CallInst>(UserInst); 453 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 454 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 455 if (hasVectorInstrinsicScalarOpd(ID, i)) 456 return (CI->getArgOperand(i) == Scalar); 457 } 458 LLVM_FALLTHROUGH; 459 } 460 default: 461 return false; 462 } 463 } 464 465 /// \returns the AA location that is being access by the instruction. 466 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 467 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 468 return MemoryLocation::get(SI); 469 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 470 return MemoryLocation::get(LI); 471 return MemoryLocation(); 472 } 473 474 /// \returns True if the instruction is not a volatile or atomic load/store. 475 static bool isSimple(Instruction *I) { 476 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 477 return LI->isSimple(); 478 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 479 return SI->isSimple(); 480 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 481 return !MI->isVolatile(); 482 return true; 483 } 484 485 namespace llvm { 486 487 namespace slpvectorizer { 488 489 /// Bottom Up SLP Vectorizer. 490 class BoUpSLP { 491 struct TreeEntry; 492 struct ScheduleData; 493 494 public: 495 using ValueList = SmallVector<Value *, 8>; 496 using InstrList = SmallVector<Instruction *, 16>; 497 using ValueSet = SmallPtrSet<Value *, 16>; 498 using StoreList = SmallVector<StoreInst *, 8>; 499 using ExtraValueToDebugLocsMap = 500 MapVector<Value *, SmallVector<Instruction *, 2>>; 501 502 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 503 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 504 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 505 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 506 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 507 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 508 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 509 // Use the vector register size specified by the target unless overridden 510 // by a command-line option. 511 // TODO: It would be better to limit the vectorization factor based on 512 // data type rather than just register size. For example, x86 AVX has 513 // 256-bit registers, but it does not support integer operations 514 // at that width (that requires AVX2). 515 if (MaxVectorRegSizeOption.getNumOccurrences()) 516 MaxVecRegSize = MaxVectorRegSizeOption; 517 else 518 MaxVecRegSize = TTI->getRegisterBitWidth(true); 519 520 if (MinVectorRegSizeOption.getNumOccurrences()) 521 MinVecRegSize = MinVectorRegSizeOption; 522 else 523 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 524 } 525 526 /// Vectorize the tree that starts with the elements in \p VL. 527 /// Returns the vectorized root. 528 Value *vectorizeTree(); 529 530 /// Vectorize the tree but with the list of externally used values \p 531 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 532 /// generated extractvalue instructions. 533 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 534 535 /// \returns the cost incurred by unwanted spills and fills, caused by 536 /// holding live values over call sites. 537 int getSpillCost() const; 538 539 /// \returns the vectorization cost of the subtree that starts at \p VL. 540 /// A negative number means that this is profitable. 541 int getTreeCost(); 542 543 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 544 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 545 void buildTree(ArrayRef<Value *> Roots, 546 ArrayRef<Value *> UserIgnoreLst = None); 547 548 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 549 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 550 /// into account (anf updating it, if required) list of externally used 551 /// values stored in \p ExternallyUsedValues. 552 void buildTree(ArrayRef<Value *> Roots, 553 ExtraValueToDebugLocsMap &ExternallyUsedValues, 554 ArrayRef<Value *> UserIgnoreLst = None); 555 556 /// Clear the internal data structures that are created by 'buildTree'. 557 void deleteTree() { 558 VectorizableTree.clear(); 559 ScalarToTreeEntry.clear(); 560 MustGather.clear(); 561 ExternalUses.clear(); 562 NumOpsWantToKeepOrder.clear(); 563 NumOpsWantToKeepOriginalOrder = 0; 564 for (auto &Iter : BlocksSchedules) { 565 BlockScheduling *BS = Iter.second.get(); 566 BS->clear(); 567 } 568 MinBWs.clear(); 569 } 570 571 unsigned getTreeSize() const { return VectorizableTree.size(); } 572 573 /// Perform LICM and CSE on the newly generated gather sequences. 574 void optimizeGatherSequence(); 575 576 /// \returns The best order of instructions for vectorization. 577 Optional<ArrayRef<unsigned>> bestOrder() const { 578 auto I = std::max_element( 579 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 580 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 581 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 582 return D1.second < D2.second; 583 }); 584 if (I == NumOpsWantToKeepOrder.end() || 585 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 586 return None; 587 588 return makeArrayRef(I->getFirst()); 589 } 590 591 /// \return The vector element size in bits to use when vectorizing the 592 /// expression tree ending at \p V. If V is a store, the size is the width of 593 /// the stored value. Otherwise, the size is the width of the largest loaded 594 /// value reaching V. This method is used by the vectorizer to calculate 595 /// vectorization factors. 596 unsigned getVectorElementSize(Value *V) const; 597 598 /// Compute the minimum type sizes required to represent the entries in a 599 /// vectorizable tree. 600 void computeMinimumValueSizes(); 601 602 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 603 unsigned getMaxVecRegSize() const { 604 return MaxVecRegSize; 605 } 606 607 // \returns minimum vector register size as set by cl::opt. 608 unsigned getMinVecRegSize() const { 609 return MinVecRegSize; 610 } 611 612 /// Check if ArrayType or StructType is isomorphic to some VectorType. 613 /// 614 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 615 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 616 617 /// \returns True if the VectorizableTree is both tiny and not fully 618 /// vectorizable. We do not vectorize such trees. 619 bool isTreeTinyAndNotFullyVectorizable() const; 620 621 OptimizationRemarkEmitter *getORE() { return ORE; } 622 623 /// This structure holds any data we need about the edges being traversed 624 /// during buildTree_rec(). We keep track of: 625 /// (i) the user TreeEntry index, and 626 /// (ii) the index of the edge. 627 struct EdgeInfo { 628 EdgeInfo() = default; 629 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 630 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 631 /// The user TreeEntry. 632 TreeEntry *UserTE = nullptr; 633 /// The operand index of the use. 634 unsigned EdgeIdx = UINT_MAX; 635 #ifndef NDEBUG 636 friend inline raw_ostream &operator<<(raw_ostream &OS, 637 const BoUpSLP::EdgeInfo &EI) { 638 EI.dump(OS); 639 return OS; 640 } 641 /// Debug print. 642 void dump(raw_ostream &OS) const { 643 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 644 << " EdgeIdx:" << EdgeIdx << "}"; 645 } 646 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 647 #endif 648 }; 649 650 /// A helper data structure to hold the operands of a vector of instructions. 651 /// This supports a fixed vector length for all operand vectors. 652 class VLOperands { 653 /// For each operand we need (i) the value, and (ii) the opcode that it 654 /// would be attached to if the expression was in a left-linearized form. 655 /// This is required to avoid illegal operand reordering. 656 /// For example: 657 /// \verbatim 658 /// 0 Op1 659 /// |/ 660 /// Op1 Op2 Linearized + Op2 661 /// \ / ----------> |/ 662 /// - - 663 /// 664 /// Op1 - Op2 (0 + Op1) - Op2 665 /// \endverbatim 666 /// 667 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 668 /// 669 /// Another way to think of this is to track all the operations across the 670 /// path from the operand all the way to the root of the tree and to 671 /// calculate the operation that corresponds to this path. For example, the 672 /// path from Op2 to the root crosses the RHS of the '-', therefore the 673 /// corresponding operation is a '-' (which matches the one in the 674 /// linearized tree, as shown above). 675 /// 676 /// For lack of a better term, we refer to this operation as Accumulated 677 /// Path Operation (APO). 678 struct OperandData { 679 OperandData() = default; 680 OperandData(Value *V, bool APO, bool IsUsed) 681 : V(V), APO(APO), IsUsed(IsUsed) {} 682 /// The operand value. 683 Value *V = nullptr; 684 /// TreeEntries only allow a single opcode, or an alternate sequence of 685 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 686 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 687 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 688 /// (e.g., Add/Mul) 689 bool APO = false; 690 /// Helper data for the reordering function. 691 bool IsUsed = false; 692 }; 693 694 /// During operand reordering, we are trying to select the operand at lane 695 /// that matches best with the operand at the neighboring lane. Our 696 /// selection is based on the type of value we are looking for. For example, 697 /// if the neighboring lane has a load, we need to look for a load that is 698 /// accessing a consecutive address. These strategies are summarized in the 699 /// 'ReorderingMode' enumerator. 700 enum class ReorderingMode { 701 Load, ///< Matching loads to consecutive memory addresses 702 Opcode, ///< Matching instructions based on opcode (same or alternate) 703 Constant, ///< Matching constants 704 Splat, ///< Matching the same instruction multiple times (broadcast) 705 Failed, ///< We failed to create a vectorizable group 706 }; 707 708 using OperandDataVec = SmallVector<OperandData, 2>; 709 710 /// A vector of operand vectors. 711 SmallVector<OperandDataVec, 4> OpsVec; 712 713 const DataLayout &DL; 714 ScalarEvolution &SE; 715 716 /// \returns the operand data at \p OpIdx and \p Lane. 717 OperandData &getData(unsigned OpIdx, unsigned Lane) { 718 return OpsVec[OpIdx][Lane]; 719 } 720 721 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 722 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 723 return OpsVec[OpIdx][Lane]; 724 } 725 726 /// Clears the used flag for all entries. 727 void clearUsed() { 728 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 729 OpIdx != NumOperands; ++OpIdx) 730 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 731 ++Lane) 732 OpsVec[OpIdx][Lane].IsUsed = false; 733 } 734 735 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 736 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 737 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 738 } 739 740 // Search all operands in Ops[*][Lane] for the one that matches best 741 // Ops[OpIdx][LastLane] and return its opreand index. 742 // If no good match can be found, return None. 743 Optional<unsigned> 744 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 745 ArrayRef<ReorderingMode> ReorderingModes) { 746 unsigned NumOperands = getNumOperands(); 747 748 // The operand of the previous lane at OpIdx. 749 Value *OpLastLane = getData(OpIdx, LastLane).V; 750 751 // Our strategy mode for OpIdx. 752 ReorderingMode RMode = ReorderingModes[OpIdx]; 753 754 // The linearized opcode of the operand at OpIdx, Lane. 755 bool OpIdxAPO = getData(OpIdx, Lane).APO; 756 757 const unsigned BestScore = 2; 758 const unsigned GoodScore = 1; 759 760 // The best operand index and its score. 761 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 762 // are using the score to differentiate between the two. 763 struct BestOpData { 764 Optional<unsigned> Idx = None; 765 unsigned Score = 0; 766 } BestOp; 767 768 // Iterate through all unused operands and look for the best. 769 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 770 // Get the operand at Idx and Lane. 771 OperandData &OpData = getData(Idx, Lane); 772 Value *Op = OpData.V; 773 bool OpAPO = OpData.APO; 774 775 // Skip already selected operands. 776 if (OpData.IsUsed) 777 continue; 778 779 // Skip if we are trying to move the operand to a position with a 780 // different opcode in the linearized tree form. This would break the 781 // semantics. 782 if (OpAPO != OpIdxAPO) 783 continue; 784 785 // Look for an operand that matches the current mode. 786 switch (RMode) { 787 case ReorderingMode::Load: 788 if (isa<LoadInst>(Op)) { 789 // Figure out which is left and right, so that we can check for 790 // consecutive loads 791 bool LeftToRight = Lane > LastLane; 792 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 793 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 794 if (isConsecutiveAccess(cast<LoadInst>(OpLeft), 795 cast<LoadInst>(OpRight), DL, SE)) 796 BestOp.Idx = Idx; 797 } 798 break; 799 case ReorderingMode::Opcode: 800 // We accept both Instructions and Undefs, but with different scores. 801 if ((isa<Instruction>(Op) && isa<Instruction>(OpLastLane) && 802 cast<Instruction>(Op)->getOpcode() == 803 cast<Instruction>(OpLastLane)->getOpcode()) || 804 (isa<UndefValue>(OpLastLane) && isa<Instruction>(Op)) || 805 isa<UndefValue>(Op)) { 806 // An instruction has a higher score than an undef. 807 unsigned Score = (isa<UndefValue>(Op)) ? GoodScore : BestScore; 808 if (Score > BestOp.Score) { 809 BestOp.Idx = Idx; 810 BestOp.Score = Score; 811 } 812 } 813 break; 814 case ReorderingMode::Constant: 815 if (isa<Constant>(Op)) { 816 unsigned Score = (isa<UndefValue>(Op)) ? GoodScore : BestScore; 817 if (Score > BestOp.Score) { 818 BestOp.Idx = Idx; 819 BestOp.Score = Score; 820 } 821 } 822 break; 823 case ReorderingMode::Splat: 824 if (Op == OpLastLane) 825 BestOp.Idx = Idx; 826 break; 827 case ReorderingMode::Failed: 828 return None; 829 } 830 } 831 832 if (BestOp.Idx) { 833 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 834 return BestOp.Idx; 835 } 836 // If we could not find a good match return None. 837 return None; 838 } 839 840 /// Helper for reorderOperandVecs. \Returns the lane that we should start 841 /// reordering from. This is the one which has the least number of operands 842 /// that can freely move about. 843 unsigned getBestLaneToStartReordering() const { 844 unsigned BestLane = 0; 845 unsigned Min = UINT_MAX; 846 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 847 ++Lane) { 848 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 849 if (NumFreeOps < Min) { 850 Min = NumFreeOps; 851 BestLane = Lane; 852 } 853 } 854 return BestLane; 855 } 856 857 /// \Returns the maximum number of operands that are allowed to be reordered 858 /// for \p Lane. This is used as a heuristic for selecting the first lane to 859 /// start operand reordering. 860 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 861 unsigned CntTrue = 0; 862 unsigned NumOperands = getNumOperands(); 863 // Operands with the same APO can be reordered. We therefore need to count 864 // how many of them we have for each APO, like this: Cnt[APO] = x. 865 // Since we only have two APOs, namely true and false, we can avoid using 866 // a map. Instead we can simply count the number of operands that 867 // correspond to one of them (in this case the 'true' APO), and calculate 868 // the other by subtracting it from the total number of operands. 869 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 870 if (getData(OpIdx, Lane).APO) 871 ++CntTrue; 872 unsigned CntFalse = NumOperands - CntTrue; 873 return std::max(CntTrue, CntFalse); 874 } 875 876 /// Go through the instructions in VL and append their operands. 877 void appendOperandsOfVL(ArrayRef<Value *> VL) { 878 assert(!VL.empty() && "Bad VL"); 879 assert((empty() || VL.size() == getNumLanes()) && 880 "Expected same number of lanes"); 881 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 882 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 883 OpsVec.resize(NumOperands); 884 unsigned NumLanes = VL.size(); 885 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 886 OpsVec[OpIdx].resize(NumLanes); 887 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 888 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 889 // Our tree has just 3 nodes: the root and two operands. 890 // It is therefore trivial to get the APO. We only need to check the 891 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 892 // RHS operand. The LHS operand of both add and sub is never attached 893 // to an inversese operation in the linearized form, therefore its APO 894 // is false. The RHS is true only if VL[Lane] is an inverse operation. 895 896 // Since operand reordering is performed on groups of commutative 897 // operations or alternating sequences (e.g., +, -), we can safely 898 // tell the inverse operations by checking commutativity. 899 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 900 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 901 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 902 APO, false}; 903 } 904 } 905 } 906 907 /// \returns the number of operands. 908 unsigned getNumOperands() const { return OpsVec.size(); } 909 910 /// \returns the number of lanes. 911 unsigned getNumLanes() const { return OpsVec[0].size(); } 912 913 /// \returns the operand value at \p OpIdx and \p Lane. 914 Value *getValue(unsigned OpIdx, unsigned Lane) const { 915 return getData(OpIdx, Lane).V; 916 } 917 918 /// \returns true if the data structure is empty. 919 bool empty() const { return OpsVec.empty(); } 920 921 /// Clears the data. 922 void clear() { OpsVec.clear(); } 923 924 /// \Returns true if there are enough operands identical to \p Op to fill 925 /// the whole vector. 926 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 927 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 928 bool OpAPO = getData(OpIdx, Lane).APO; 929 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 930 if (Ln == Lane) 931 continue; 932 // This is set to true if we found a candidate for broadcast at Lane. 933 bool FoundCandidate = false; 934 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 935 OperandData &Data = getData(OpI, Ln); 936 if (Data.APO != OpAPO || Data.IsUsed) 937 continue; 938 if (Data.V == Op) { 939 FoundCandidate = true; 940 Data.IsUsed = true; 941 break; 942 } 943 } 944 if (!FoundCandidate) 945 return false; 946 } 947 return true; 948 } 949 950 public: 951 /// Initialize with all the operands of the instruction vector \p RootVL. 952 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 953 ScalarEvolution &SE) 954 : DL(DL), SE(SE) { 955 // Append all the operands of RootVL. 956 appendOperandsOfVL(RootVL); 957 } 958 959 /// \Returns a value vector with the operands across all lanes for the 960 /// opearnd at \p OpIdx. 961 ValueList getVL(unsigned OpIdx) const { 962 ValueList OpVL(OpsVec[OpIdx].size()); 963 assert(OpsVec[OpIdx].size() == getNumLanes() && 964 "Expected same num of lanes across all operands"); 965 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 966 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 967 return OpVL; 968 } 969 970 // Performs operand reordering for 2 or more operands. 971 // The original operands are in OrigOps[OpIdx][Lane]. 972 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 973 void reorder() { 974 unsigned NumOperands = getNumOperands(); 975 unsigned NumLanes = getNumLanes(); 976 // Each operand has its own mode. We are using this mode to help us select 977 // the instructions for each lane, so that they match best with the ones 978 // we have selected so far. 979 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 980 981 // This is a greedy single-pass algorithm. We are going over each lane 982 // once and deciding on the best order right away with no back-tracking. 983 // However, in order to increase its effectiveness, we start with the lane 984 // that has operands that can move the least. For example, given the 985 // following lanes: 986 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 987 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 988 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 989 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 990 // we will start at Lane 1, since the operands of the subtraction cannot 991 // be reordered. Then we will visit the rest of the lanes in a circular 992 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 993 994 // Find the first lane that we will start our search from. 995 unsigned FirstLane = getBestLaneToStartReordering(); 996 997 // Initialize the modes. 998 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 999 Value *OpLane0 = getValue(OpIdx, FirstLane); 1000 // Keep track if we have instructions with all the same opcode on one 1001 // side. 1002 if (isa<LoadInst>(OpLane0)) 1003 ReorderingModes[OpIdx] = ReorderingMode::Load; 1004 else if (isa<Instruction>(OpLane0)) { 1005 // Check if OpLane0 should be broadcast. 1006 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1007 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1008 else 1009 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1010 } 1011 else if (isa<Constant>(OpLane0)) 1012 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1013 else if (isa<Argument>(OpLane0)) 1014 // Our best hope is a Splat. It may save some cost in some cases. 1015 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1016 else 1017 // NOTE: This should be unreachable. 1018 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1019 } 1020 1021 // If the initial strategy fails for any of the operand indexes, then we 1022 // perform reordering again in a second pass. This helps avoid assigning 1023 // high priority to the failed strategy, and should improve reordering for 1024 // the non-failed operand indexes. 1025 for (int Pass = 0; Pass != 2; ++Pass) { 1026 // Skip the second pass if the first pass did not fail. 1027 bool StrategyFailed = false; 1028 // Mark all operand data as free to use. 1029 clearUsed(); 1030 // We keep the original operand order for the FirstLane, so reorder the 1031 // rest of the lanes. We are visiting the nodes in a circular fashion, 1032 // using FirstLane as the center point and increasing the radius 1033 // distance. 1034 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1035 // Visit the lane on the right and then the lane on the left. 1036 for (int Direction : {+1, -1}) { 1037 int Lane = FirstLane + Direction * Distance; 1038 if (Lane < 0 || Lane >= (int)NumLanes) 1039 continue; 1040 int LastLane = Lane - Direction; 1041 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1042 "Out of bounds"); 1043 // Look for a good match for each operand. 1044 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1045 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1046 Optional<unsigned> BestIdx = 1047 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1048 // By not selecting a value, we allow the operands that follow to 1049 // select a better matching value. We will get a non-null value in 1050 // the next run of getBestOperand(). 1051 if (BestIdx) { 1052 // Swap the current operand with the one returned by 1053 // getBestOperand(). 1054 swap(OpIdx, BestIdx.getValue(), Lane); 1055 } else { 1056 // We failed to find a best operand, set mode to 'Failed'. 1057 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1058 // Enable the second pass. 1059 StrategyFailed = true; 1060 } 1061 } 1062 } 1063 } 1064 // Skip second pass if the strategy did not fail. 1065 if (!StrategyFailed) 1066 break; 1067 } 1068 } 1069 1070 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1071 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1072 switch (RMode) { 1073 case ReorderingMode::Load: 1074 return "Load"; 1075 case ReorderingMode::Opcode: 1076 return "Opcode"; 1077 case ReorderingMode::Constant: 1078 return "Constant"; 1079 case ReorderingMode::Splat: 1080 return "Splat"; 1081 case ReorderingMode::Failed: 1082 return "Failed"; 1083 } 1084 llvm_unreachable("Unimplemented Reordering Type"); 1085 } 1086 1087 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1088 raw_ostream &OS) { 1089 return OS << getModeStr(RMode); 1090 } 1091 1092 /// Debug print. 1093 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1094 printMode(RMode, dbgs()); 1095 } 1096 1097 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1098 return printMode(RMode, OS); 1099 } 1100 1101 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1102 const unsigned Indent = 2; 1103 unsigned Cnt = 0; 1104 for (const OperandDataVec &OpDataVec : OpsVec) { 1105 OS << "Operand " << Cnt++ << "\n"; 1106 for (const OperandData &OpData : OpDataVec) { 1107 OS.indent(Indent) << "{"; 1108 if (Value *V = OpData.V) 1109 OS << *V; 1110 else 1111 OS << "null"; 1112 OS << ", APO:" << OpData.APO << "}\n"; 1113 } 1114 OS << "\n"; 1115 } 1116 return OS; 1117 } 1118 1119 /// Debug print. 1120 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1121 #endif 1122 }; 1123 1124 /// Checks if the instruction is marked for deletion. 1125 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1126 1127 /// Marks values operands for later deletion by replacing them with Undefs. 1128 void eraseInstructions(ArrayRef<Value *> AV); 1129 1130 ~BoUpSLP(); 1131 1132 private: 1133 /// Checks if all users of \p I are the part of the vectorization tree. 1134 bool areAllUsersVectorized(Instruction *I) const; 1135 1136 /// \returns the cost of the vectorizable entry. 1137 int getEntryCost(TreeEntry *E); 1138 1139 /// This is the recursive part of buildTree. 1140 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1141 const EdgeInfo &EI); 1142 1143 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1144 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1145 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1146 /// returns false, setting \p CurrentOrder to either an empty vector or a 1147 /// non-identity permutation that allows to reuse extract instructions. 1148 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1149 SmallVectorImpl<unsigned> &CurrentOrder) const; 1150 1151 /// Vectorize a single entry in the tree. 1152 Value *vectorizeTree(TreeEntry *E); 1153 1154 /// Vectorize a single entry in the tree, starting in \p VL. 1155 Value *vectorizeTree(ArrayRef<Value *> VL); 1156 1157 /// \returns the scalarization cost for this type. Scalarization in this 1158 /// context means the creation of vectors from a group of scalars. 1159 int getGatherCost(Type *Ty, const DenseSet<unsigned> &ShuffledIndices) const; 1160 1161 /// \returns the scalarization cost for this list of values. Assuming that 1162 /// this subtree gets vectorized, we may need to extract the values from the 1163 /// roots. This method calculates the cost of extracting the values. 1164 int getGatherCost(ArrayRef<Value *> VL) const; 1165 1166 /// Set the Builder insert point to one after the last instruction in 1167 /// the bundle 1168 void setInsertPointAfterBundle(TreeEntry *E); 1169 1170 /// \returns a vector from a collection of scalars in \p VL. 1171 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 1172 1173 /// \returns whether the VectorizableTree is fully vectorizable and will 1174 /// be beneficial even the tree height is tiny. 1175 bool isFullyVectorizableTinyTree() const; 1176 1177 /// Reorder commutative or alt operands to get better probability of 1178 /// generating vectorized code. 1179 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1180 SmallVectorImpl<Value *> &Left, 1181 SmallVectorImpl<Value *> &Right, 1182 const DataLayout &DL, 1183 ScalarEvolution &SE); 1184 struct TreeEntry { 1185 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1186 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1187 1188 /// \returns true if the scalars in VL are equal to this entry. 1189 bool isSame(ArrayRef<Value *> VL) const { 1190 if (VL.size() == Scalars.size()) 1191 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1192 return VL.size() == ReuseShuffleIndices.size() && 1193 std::equal( 1194 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 1195 [this](Value *V, unsigned Idx) { return V == Scalars[Idx]; }); 1196 } 1197 1198 /// A vector of scalars. 1199 ValueList Scalars; 1200 1201 /// The Scalars are vectorized into this value. It is initialized to Null. 1202 Value *VectorizedValue = nullptr; 1203 1204 /// Do we need to gather this sequence ? 1205 bool NeedToGather = false; 1206 1207 /// Does this sequence require some shuffling? 1208 SmallVector<unsigned, 4> ReuseShuffleIndices; 1209 1210 /// Does this entry require reordering? 1211 ArrayRef<unsigned> ReorderIndices; 1212 1213 /// Points back to the VectorizableTree. 1214 /// 1215 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1216 /// to be a pointer and needs to be able to initialize the child iterator. 1217 /// Thus we need a reference back to the container to translate the indices 1218 /// to entries. 1219 VecTreeTy &Container; 1220 1221 /// The TreeEntry index containing the user of this entry. We can actually 1222 /// have multiple users so the data structure is not truly a tree. 1223 SmallVector<EdgeInfo, 1> UserTreeIndices; 1224 1225 /// The index of this treeEntry in VectorizableTree. 1226 int Idx = -1; 1227 1228 private: 1229 /// The operands of each instruction in each lane Operands[op_index][lane]. 1230 /// Note: This helps avoid the replication of the code that performs the 1231 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1232 SmallVector<ValueList, 2> Operands; 1233 1234 /// The main/alternate instruction. 1235 Instruction *MainOp = nullptr; 1236 Instruction *AltOp = nullptr; 1237 1238 public: 1239 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1240 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1241 if (Operands.size() < OpIdx + 1) 1242 Operands.resize(OpIdx + 1); 1243 assert(Operands[OpIdx].size() == 0 && "Already resized?"); 1244 Operands[OpIdx].resize(Scalars.size()); 1245 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1246 Operands[OpIdx][Lane] = OpVL[Lane]; 1247 } 1248 1249 /// Set the operands of this bundle in their original order. 1250 void setOperandsInOrder() { 1251 assert(Operands.empty() && "Already initialized?"); 1252 auto *I0 = cast<Instruction>(Scalars[0]); 1253 Operands.resize(I0->getNumOperands()); 1254 unsigned NumLanes = Scalars.size(); 1255 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1256 OpIdx != NumOperands; ++OpIdx) { 1257 Operands[OpIdx].resize(NumLanes); 1258 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1259 auto *I = cast<Instruction>(Scalars[Lane]); 1260 assert(I->getNumOperands() == NumOperands && 1261 "Expected same number of operands"); 1262 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1263 } 1264 } 1265 } 1266 1267 /// \returns the \p OpIdx operand of this TreeEntry. 1268 ValueList &getOperand(unsigned OpIdx) { 1269 assert(OpIdx < Operands.size() && "Off bounds"); 1270 return Operands[OpIdx]; 1271 } 1272 1273 /// \returns the number of operands. 1274 unsigned getNumOperands() const { return Operands.size(); } 1275 1276 /// \return the single \p OpIdx operand. 1277 Value *getSingleOperand(unsigned OpIdx) const { 1278 assert(OpIdx < Operands.size() && "Off bounds"); 1279 assert(!Operands[OpIdx].empty() && "No operand available"); 1280 return Operands[OpIdx][0]; 1281 } 1282 1283 /// Some of the instructions in the list have alternate opcodes. 1284 bool isAltShuffle() const { 1285 return getOpcode() != getAltOpcode(); 1286 } 1287 1288 bool isOpcodeOrAlt(Instruction *I) const { 1289 unsigned CheckedOpcode = I->getOpcode(); 1290 return (getOpcode() == CheckedOpcode || 1291 getAltOpcode() == CheckedOpcode); 1292 } 1293 1294 /// Chooses the correct key for scheduling data. If \p Op has the same (or 1295 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 1296 /// \p OpValue. 1297 Value *isOneOf(Value *Op) const { 1298 auto *I = dyn_cast<Instruction>(Op); 1299 if (I && isOpcodeOrAlt(I)) 1300 return Op; 1301 return MainOp; 1302 } 1303 1304 void setOperations(const InstructionsState &S) { 1305 MainOp = S.MainOp; 1306 AltOp = S.AltOp; 1307 } 1308 1309 Instruction *getMainOp() const { 1310 return MainOp; 1311 } 1312 1313 Instruction *getAltOp() const { 1314 return AltOp; 1315 } 1316 1317 /// The main/alternate opcodes for the list of instructions. 1318 unsigned getOpcode() const { 1319 return MainOp ? MainOp->getOpcode() : 0; 1320 } 1321 1322 unsigned getAltOpcode() const { 1323 return AltOp ? AltOp->getOpcode() : 0; 1324 } 1325 1326 /// Update operations state of this entry if reorder occurred. 1327 bool updateStateIfReorder() { 1328 if (ReorderIndices.empty()) 1329 return false; 1330 InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front()); 1331 setOperations(S); 1332 return true; 1333 } 1334 1335 #ifndef NDEBUG 1336 /// Debug printer. 1337 LLVM_DUMP_METHOD void dump() const { 1338 dbgs() << Idx << ".\n"; 1339 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1340 dbgs() << "Operand " << OpI << ":\n"; 1341 for (const Value *V : Operands[OpI]) 1342 dbgs().indent(2) << *V << "\n"; 1343 } 1344 dbgs() << "Scalars: \n"; 1345 for (Value *V : Scalars) 1346 dbgs().indent(2) << *V << "\n"; 1347 dbgs() << "NeedToGather: " << NeedToGather << "\n"; 1348 dbgs() << "MainOp: " << *MainOp << "\n"; 1349 dbgs() << "AltOp: " << *AltOp << "\n"; 1350 dbgs() << "VectorizedValue: "; 1351 if (VectorizedValue) 1352 dbgs() << *VectorizedValue; 1353 else 1354 dbgs() << "NULL"; 1355 dbgs() << "\n"; 1356 dbgs() << "ReuseShuffleIndices: "; 1357 if (ReuseShuffleIndices.empty()) 1358 dbgs() << "Emtpy"; 1359 else 1360 for (unsigned ReuseIdx : ReuseShuffleIndices) 1361 dbgs() << ReuseIdx << ", "; 1362 dbgs() << "\n"; 1363 dbgs() << "ReorderIndices: "; 1364 for (unsigned ReorderIdx : ReorderIndices) 1365 dbgs() << ReorderIdx << ", "; 1366 dbgs() << "\n"; 1367 dbgs() << "UserTreeIndices: "; 1368 for (const auto &EInfo : UserTreeIndices) 1369 dbgs() << EInfo << ", "; 1370 dbgs() << "\n"; 1371 } 1372 #endif 1373 }; 1374 1375 /// Create a new VectorizableTree entry. 1376 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 1377 const InstructionsState &S, 1378 const EdgeInfo &UserTreeIdx, 1379 ArrayRef<unsigned> ReuseShuffleIndices = None, 1380 ArrayRef<unsigned> ReorderIndices = None) { 1381 bool Vectorized = (bool)Bundle; 1382 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 1383 TreeEntry *Last = VectorizableTree.back().get(); 1384 Last->Idx = VectorizableTree.size() - 1; 1385 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 1386 Last->NeedToGather = !Vectorized; 1387 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1388 ReuseShuffleIndices.end()); 1389 Last->ReorderIndices = ReorderIndices; 1390 Last->setOperations(S); 1391 if (Vectorized) { 1392 for (int i = 0, e = VL.size(); i != e; ++i) { 1393 assert(!getTreeEntry(VL[i]) && "Scalar already in tree!"); 1394 ScalarToTreeEntry[VL[i]] = Last; 1395 } 1396 // Update the scheduler bundle to point to this TreeEntry. 1397 unsigned Lane = 0; 1398 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 1399 BundleMember = BundleMember->NextInBundle) { 1400 BundleMember->TE = Last; 1401 BundleMember->Lane = Lane; 1402 ++Lane; 1403 } 1404 assert((!Bundle.getValue() || Lane == VL.size()) && 1405 "Bundle and VL out of sync"); 1406 } else { 1407 MustGather.insert(VL.begin(), VL.end()); 1408 } 1409 1410 if (UserTreeIdx.UserTE) 1411 Last->UserTreeIndices.push_back(UserTreeIdx); 1412 1413 return Last; 1414 } 1415 1416 /// -- Vectorization State -- 1417 /// Holds all of the tree entries. 1418 TreeEntry::VecTreeTy VectorizableTree; 1419 1420 #ifndef NDEBUG 1421 /// Debug printer. 1422 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 1423 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 1424 VectorizableTree[Id]->dump(); 1425 dbgs() << "\n"; 1426 } 1427 } 1428 #endif 1429 1430 TreeEntry *getTreeEntry(Value *V) { 1431 auto I = ScalarToTreeEntry.find(V); 1432 if (I != ScalarToTreeEntry.end()) 1433 return I->second; 1434 return nullptr; 1435 } 1436 1437 const TreeEntry *getTreeEntry(Value *V) const { 1438 auto I = ScalarToTreeEntry.find(V); 1439 if (I != ScalarToTreeEntry.end()) 1440 return I->second; 1441 return nullptr; 1442 } 1443 1444 /// Maps a specific scalar to its tree entry. 1445 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 1446 1447 /// A list of scalars that we found that we need to keep as scalars. 1448 ValueSet MustGather; 1449 1450 /// This POD struct describes one external user in the vectorized tree. 1451 struct ExternalUser { 1452 ExternalUser(Value *S, llvm::User *U, int L) 1453 : Scalar(S), User(U), Lane(L) {} 1454 1455 // Which scalar in our function. 1456 Value *Scalar; 1457 1458 // Which user that uses the scalar. 1459 llvm::User *User; 1460 1461 // Which lane does the scalar belong to. 1462 int Lane; 1463 }; 1464 using UserList = SmallVector<ExternalUser, 16>; 1465 1466 /// Checks if two instructions may access the same memory. 1467 /// 1468 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 1469 /// is invariant in the calling loop. 1470 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 1471 Instruction *Inst2) { 1472 // First check if the result is already in the cache. 1473 AliasCacheKey key = std::make_pair(Inst1, Inst2); 1474 Optional<bool> &result = AliasCache[key]; 1475 if (result.hasValue()) { 1476 return result.getValue(); 1477 } 1478 MemoryLocation Loc2 = getLocation(Inst2, AA); 1479 bool aliased = true; 1480 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 1481 // Do the alias check. 1482 aliased = AA->alias(Loc1, Loc2); 1483 } 1484 // Store the result in the cache. 1485 result = aliased; 1486 return aliased; 1487 } 1488 1489 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 1490 1491 /// Cache for alias results. 1492 /// TODO: consider moving this to the AliasAnalysis itself. 1493 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 1494 1495 /// Removes an instruction from its block and eventually deletes it. 1496 /// It's like Instruction::eraseFromParent() except that the actual deletion 1497 /// is delayed until BoUpSLP is destructed. 1498 /// This is required to ensure that there are no incorrect collisions in the 1499 /// AliasCache, which can happen if a new instruction is allocated at the 1500 /// same address as a previously deleted instruction. 1501 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 1502 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 1503 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 1504 } 1505 1506 /// Temporary store for deleted instructions. Instructions will be deleted 1507 /// eventually when the BoUpSLP is destructed. 1508 DenseMap<Instruction *, bool> DeletedInstructions; 1509 1510 /// A list of values that need to extracted out of the tree. 1511 /// This list holds pairs of (Internal Scalar : External User). External User 1512 /// can be nullptr, it means that this Internal Scalar will be used later, 1513 /// after vectorization. 1514 UserList ExternalUses; 1515 1516 /// Values used only by @llvm.assume calls. 1517 SmallPtrSet<const Value *, 32> EphValues; 1518 1519 /// Holds all of the instructions that we gathered. 1520 SetVector<Instruction *> GatherSeq; 1521 1522 /// A list of blocks that we are going to CSE. 1523 SetVector<BasicBlock *> CSEBlocks; 1524 1525 /// Contains all scheduling relevant data for an instruction. 1526 /// A ScheduleData either represents a single instruction or a member of an 1527 /// instruction bundle (= a group of instructions which is combined into a 1528 /// vector instruction). 1529 struct ScheduleData { 1530 // The initial value for the dependency counters. It means that the 1531 // dependencies are not calculated yet. 1532 enum { InvalidDeps = -1 }; 1533 1534 ScheduleData() = default; 1535 1536 void init(int BlockSchedulingRegionID, Value *OpVal) { 1537 FirstInBundle = this; 1538 NextInBundle = nullptr; 1539 NextLoadStore = nullptr; 1540 IsScheduled = false; 1541 SchedulingRegionID = BlockSchedulingRegionID; 1542 UnscheduledDepsInBundle = UnscheduledDeps; 1543 clearDependencies(); 1544 OpValue = OpVal; 1545 TE = nullptr; 1546 Lane = -1; 1547 } 1548 1549 /// Returns true if the dependency information has been calculated. 1550 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 1551 1552 /// Returns true for single instructions and for bundle representatives 1553 /// (= the head of a bundle). 1554 bool isSchedulingEntity() const { return FirstInBundle == this; } 1555 1556 /// Returns true if it represents an instruction bundle and not only a 1557 /// single instruction. 1558 bool isPartOfBundle() const { 1559 return NextInBundle != nullptr || FirstInBundle != this; 1560 } 1561 1562 /// Returns true if it is ready for scheduling, i.e. it has no more 1563 /// unscheduled depending instructions/bundles. 1564 bool isReady() const { 1565 assert(isSchedulingEntity() && 1566 "can't consider non-scheduling entity for ready list"); 1567 return UnscheduledDepsInBundle == 0 && !IsScheduled; 1568 } 1569 1570 /// Modifies the number of unscheduled dependencies, also updating it for 1571 /// the whole bundle. 1572 int incrementUnscheduledDeps(int Incr) { 1573 UnscheduledDeps += Incr; 1574 return FirstInBundle->UnscheduledDepsInBundle += Incr; 1575 } 1576 1577 /// Sets the number of unscheduled dependencies to the number of 1578 /// dependencies. 1579 void resetUnscheduledDeps() { 1580 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 1581 } 1582 1583 /// Clears all dependency information. 1584 void clearDependencies() { 1585 Dependencies = InvalidDeps; 1586 resetUnscheduledDeps(); 1587 MemoryDependencies.clear(); 1588 } 1589 1590 void dump(raw_ostream &os) const { 1591 if (!isSchedulingEntity()) { 1592 os << "/ " << *Inst; 1593 } else if (NextInBundle) { 1594 os << '[' << *Inst; 1595 ScheduleData *SD = NextInBundle; 1596 while (SD) { 1597 os << ';' << *SD->Inst; 1598 SD = SD->NextInBundle; 1599 } 1600 os << ']'; 1601 } else { 1602 os << *Inst; 1603 } 1604 } 1605 1606 Instruction *Inst = nullptr; 1607 1608 /// Points to the head in an instruction bundle (and always to this for 1609 /// single instructions). 1610 ScheduleData *FirstInBundle = nullptr; 1611 1612 /// Single linked list of all instructions in a bundle. Null if it is a 1613 /// single instruction. 1614 ScheduleData *NextInBundle = nullptr; 1615 1616 /// Single linked list of all memory instructions (e.g. load, store, call) 1617 /// in the block - until the end of the scheduling region. 1618 ScheduleData *NextLoadStore = nullptr; 1619 1620 /// The dependent memory instructions. 1621 /// This list is derived on demand in calculateDependencies(). 1622 SmallVector<ScheduleData *, 4> MemoryDependencies; 1623 1624 /// This ScheduleData is in the current scheduling region if this matches 1625 /// the current SchedulingRegionID of BlockScheduling. 1626 int SchedulingRegionID = 0; 1627 1628 /// Used for getting a "good" final ordering of instructions. 1629 int SchedulingPriority = 0; 1630 1631 /// The number of dependencies. Constitutes of the number of users of the 1632 /// instruction plus the number of dependent memory instructions (if any). 1633 /// This value is calculated on demand. 1634 /// If InvalidDeps, the number of dependencies is not calculated yet. 1635 int Dependencies = InvalidDeps; 1636 1637 /// The number of dependencies minus the number of dependencies of scheduled 1638 /// instructions. As soon as this is zero, the instruction/bundle gets ready 1639 /// for scheduling. 1640 /// Note that this is negative as long as Dependencies is not calculated. 1641 int UnscheduledDeps = InvalidDeps; 1642 1643 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 1644 /// single instructions. 1645 int UnscheduledDepsInBundle = InvalidDeps; 1646 1647 /// True if this instruction is scheduled (or considered as scheduled in the 1648 /// dry-run). 1649 bool IsScheduled = false; 1650 1651 /// Opcode of the current instruction in the schedule data. 1652 Value *OpValue = nullptr; 1653 1654 /// The TreeEntry that this instruction corresponds to. 1655 TreeEntry *TE = nullptr; 1656 1657 /// The lane of this node in the TreeEntry. 1658 int Lane = -1; 1659 }; 1660 1661 #ifndef NDEBUG 1662 friend inline raw_ostream &operator<<(raw_ostream &os, 1663 const BoUpSLP::ScheduleData &SD) { 1664 SD.dump(os); 1665 return os; 1666 } 1667 #endif 1668 1669 friend struct GraphTraits<BoUpSLP *>; 1670 friend struct DOTGraphTraits<BoUpSLP *>; 1671 1672 /// Contains all scheduling data for a basic block. 1673 struct BlockScheduling { 1674 BlockScheduling(BasicBlock *BB) 1675 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 1676 1677 void clear() { 1678 ReadyInsts.clear(); 1679 ScheduleStart = nullptr; 1680 ScheduleEnd = nullptr; 1681 FirstLoadStoreInRegion = nullptr; 1682 LastLoadStoreInRegion = nullptr; 1683 1684 // Reduce the maximum schedule region size by the size of the 1685 // previous scheduling run. 1686 ScheduleRegionSizeLimit -= ScheduleRegionSize; 1687 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 1688 ScheduleRegionSizeLimit = MinScheduleRegionSize; 1689 ScheduleRegionSize = 0; 1690 1691 // Make a new scheduling region, i.e. all existing ScheduleData is not 1692 // in the new region yet. 1693 ++SchedulingRegionID; 1694 } 1695 1696 ScheduleData *getScheduleData(Value *V) { 1697 ScheduleData *SD = ScheduleDataMap[V]; 1698 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1699 return SD; 1700 return nullptr; 1701 } 1702 1703 ScheduleData *getScheduleData(Value *V, Value *Key) { 1704 if (V == Key) 1705 return getScheduleData(V); 1706 auto I = ExtraScheduleDataMap.find(V); 1707 if (I != ExtraScheduleDataMap.end()) { 1708 ScheduleData *SD = I->second[Key]; 1709 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1710 return SD; 1711 } 1712 return nullptr; 1713 } 1714 1715 bool isInSchedulingRegion(ScheduleData *SD) { 1716 return SD->SchedulingRegionID == SchedulingRegionID; 1717 } 1718 1719 /// Marks an instruction as scheduled and puts all dependent ready 1720 /// instructions into the ready-list. 1721 template <typename ReadyListType> 1722 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 1723 SD->IsScheduled = true; 1724 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 1725 1726 ScheduleData *BundleMember = SD; 1727 while (BundleMember) { 1728 if (BundleMember->Inst != BundleMember->OpValue) { 1729 BundleMember = BundleMember->NextInBundle; 1730 continue; 1731 } 1732 // Handle the def-use chain dependencies. 1733 1734 // Decrement the unscheduled counter and insert to ready list if ready. 1735 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 1736 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 1737 if (OpDef && OpDef->hasValidDependencies() && 1738 OpDef->incrementUnscheduledDeps(-1) == 0) { 1739 // There are no more unscheduled dependencies after 1740 // decrementing, so we can put the dependent instruction 1741 // into the ready list. 1742 ScheduleData *DepBundle = OpDef->FirstInBundle; 1743 assert(!DepBundle->IsScheduled && 1744 "already scheduled bundle gets ready"); 1745 ReadyList.insert(DepBundle); 1746 LLVM_DEBUG(dbgs() 1747 << "SLP: gets ready (def): " << *DepBundle << "\n"); 1748 } 1749 }); 1750 }; 1751 1752 // If BundleMember is a vector bundle, its operands may have been 1753 // reordered duiring buildTree(). We therefore need to get its operands 1754 // through the TreeEntry. 1755 if (TreeEntry *TE = BundleMember->TE) { 1756 int Lane = BundleMember->Lane; 1757 assert(Lane >= 0 && "Lane not set"); 1758 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 1759 OpIdx != NumOperands; ++OpIdx) 1760 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 1761 DecrUnsched(I); 1762 } else { 1763 // If BundleMember is a stand-alone instruction, no operand reordering 1764 // has taken place, so we directly access its operands. 1765 for (Use &U : BundleMember->Inst->operands()) 1766 if (auto *I = dyn_cast<Instruction>(U.get())) 1767 DecrUnsched(I); 1768 } 1769 // Handle the memory dependencies. 1770 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 1771 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 1772 // There are no more unscheduled dependencies after decrementing, 1773 // so we can put the dependent instruction into the ready list. 1774 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 1775 assert(!DepBundle->IsScheduled && 1776 "already scheduled bundle gets ready"); 1777 ReadyList.insert(DepBundle); 1778 LLVM_DEBUG(dbgs() 1779 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 1780 } 1781 } 1782 BundleMember = BundleMember->NextInBundle; 1783 } 1784 } 1785 1786 void doForAllOpcodes(Value *V, 1787 function_ref<void(ScheduleData *SD)> Action) { 1788 if (ScheduleData *SD = getScheduleData(V)) 1789 Action(SD); 1790 auto I = ExtraScheduleDataMap.find(V); 1791 if (I != ExtraScheduleDataMap.end()) 1792 for (auto &P : I->second) 1793 if (P.second->SchedulingRegionID == SchedulingRegionID) 1794 Action(P.second); 1795 } 1796 1797 /// Put all instructions into the ReadyList which are ready for scheduling. 1798 template <typename ReadyListType> 1799 void initialFillReadyList(ReadyListType &ReadyList) { 1800 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 1801 doForAllOpcodes(I, [&](ScheduleData *SD) { 1802 if (SD->isSchedulingEntity() && SD->isReady()) { 1803 ReadyList.insert(SD); 1804 LLVM_DEBUG(dbgs() 1805 << "SLP: initially in ready list: " << *I << "\n"); 1806 } 1807 }); 1808 } 1809 } 1810 1811 /// Checks if a bundle of instructions can be scheduled, i.e. has no 1812 /// cyclic dependencies. This is only a dry-run, no instructions are 1813 /// actually moved at this stage. 1814 /// \returns the scheduling bundle. The returned Optional value is non-None 1815 /// if \p VL is allowed to be scheduled. 1816 Optional<ScheduleData *> 1817 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 1818 const InstructionsState &S); 1819 1820 /// Un-bundles a group of instructions. 1821 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 1822 1823 /// Allocates schedule data chunk. 1824 ScheduleData *allocateScheduleDataChunks(); 1825 1826 /// Extends the scheduling region so that V is inside the region. 1827 /// \returns true if the region size is within the limit. 1828 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 1829 1830 /// Initialize the ScheduleData structures for new instructions in the 1831 /// scheduling region. 1832 void initScheduleData(Instruction *FromI, Instruction *ToI, 1833 ScheduleData *PrevLoadStore, 1834 ScheduleData *NextLoadStore); 1835 1836 /// Updates the dependency information of a bundle and of all instructions/ 1837 /// bundles which depend on the original bundle. 1838 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 1839 BoUpSLP *SLP); 1840 1841 /// Sets all instruction in the scheduling region to un-scheduled. 1842 void resetSchedule(); 1843 1844 BasicBlock *BB; 1845 1846 /// Simple memory allocation for ScheduleData. 1847 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 1848 1849 /// The size of a ScheduleData array in ScheduleDataChunks. 1850 int ChunkSize; 1851 1852 /// The allocator position in the current chunk, which is the last entry 1853 /// of ScheduleDataChunks. 1854 int ChunkPos; 1855 1856 /// Attaches ScheduleData to Instruction. 1857 /// Note that the mapping survives during all vectorization iterations, i.e. 1858 /// ScheduleData structures are recycled. 1859 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 1860 1861 /// Attaches ScheduleData to Instruction with the leading key. 1862 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 1863 ExtraScheduleDataMap; 1864 1865 struct ReadyList : SmallVector<ScheduleData *, 8> { 1866 void insert(ScheduleData *SD) { push_back(SD); } 1867 }; 1868 1869 /// The ready-list for scheduling (only used for the dry-run). 1870 ReadyList ReadyInsts; 1871 1872 /// The first instruction of the scheduling region. 1873 Instruction *ScheduleStart = nullptr; 1874 1875 /// The first instruction _after_ the scheduling region. 1876 Instruction *ScheduleEnd = nullptr; 1877 1878 /// The first memory accessing instruction in the scheduling region 1879 /// (can be null). 1880 ScheduleData *FirstLoadStoreInRegion = nullptr; 1881 1882 /// The last memory accessing instruction in the scheduling region 1883 /// (can be null). 1884 ScheduleData *LastLoadStoreInRegion = nullptr; 1885 1886 /// The current size of the scheduling region. 1887 int ScheduleRegionSize = 0; 1888 1889 /// The maximum size allowed for the scheduling region. 1890 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 1891 1892 /// The ID of the scheduling region. For a new vectorization iteration this 1893 /// is incremented which "removes" all ScheduleData from the region. 1894 // Make sure that the initial SchedulingRegionID is greater than the 1895 // initial SchedulingRegionID in ScheduleData (which is 0). 1896 int SchedulingRegionID = 1; 1897 }; 1898 1899 /// Attaches the BlockScheduling structures to basic blocks. 1900 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 1901 1902 /// Performs the "real" scheduling. Done before vectorization is actually 1903 /// performed in a basic block. 1904 void scheduleBlock(BlockScheduling *BS); 1905 1906 /// List of users to ignore during scheduling and that don't need extracting. 1907 ArrayRef<Value *> UserIgnoreList; 1908 1909 using OrdersType = SmallVector<unsigned, 4>; 1910 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 1911 /// sorted SmallVectors of unsigned. 1912 struct OrdersTypeDenseMapInfo { 1913 static OrdersType getEmptyKey() { 1914 OrdersType V; 1915 V.push_back(~1U); 1916 return V; 1917 } 1918 1919 static OrdersType getTombstoneKey() { 1920 OrdersType V; 1921 V.push_back(~2U); 1922 return V; 1923 } 1924 1925 static unsigned getHashValue(const OrdersType &V) { 1926 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1927 } 1928 1929 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 1930 return LHS == RHS; 1931 } 1932 }; 1933 1934 /// Contains orders of operations along with the number of bundles that have 1935 /// operations in this order. It stores only those orders that require 1936 /// reordering, if reordering is not required it is counted using \a 1937 /// NumOpsWantToKeepOriginalOrder. 1938 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 1939 /// Number of bundles that do not require reordering. 1940 unsigned NumOpsWantToKeepOriginalOrder = 0; 1941 1942 // Analysis and block reference. 1943 Function *F; 1944 ScalarEvolution *SE; 1945 TargetTransformInfo *TTI; 1946 TargetLibraryInfo *TLI; 1947 AliasAnalysis *AA; 1948 LoopInfo *LI; 1949 DominatorTree *DT; 1950 AssumptionCache *AC; 1951 DemandedBits *DB; 1952 const DataLayout *DL; 1953 OptimizationRemarkEmitter *ORE; 1954 1955 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 1956 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 1957 1958 /// Instruction builder to construct the vectorized tree. 1959 IRBuilder<> Builder; 1960 1961 /// A map of scalar integer values to the smallest bit width with which they 1962 /// can legally be represented. The values map to (width, signed) pairs, 1963 /// where "width" indicates the minimum bit width and "signed" is True if the 1964 /// value must be signed-extended, rather than zero-extended, back to its 1965 /// original width. 1966 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 1967 }; 1968 1969 } // end namespace slpvectorizer 1970 1971 template <> struct GraphTraits<BoUpSLP *> { 1972 using TreeEntry = BoUpSLP::TreeEntry; 1973 1974 /// NodeRef has to be a pointer per the GraphWriter. 1975 using NodeRef = TreeEntry *; 1976 1977 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 1978 1979 /// Add the VectorizableTree to the index iterator to be able to return 1980 /// TreeEntry pointers. 1981 struct ChildIteratorType 1982 : public iterator_adaptor_base< 1983 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 1984 ContainerTy &VectorizableTree; 1985 1986 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 1987 ContainerTy &VT) 1988 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 1989 1990 NodeRef operator*() { return I->UserTE; } 1991 }; 1992 1993 static NodeRef getEntryNode(BoUpSLP &R) { 1994 return R.VectorizableTree[0].get(); 1995 } 1996 1997 static ChildIteratorType child_begin(NodeRef N) { 1998 return {N->UserTreeIndices.begin(), N->Container}; 1999 } 2000 2001 static ChildIteratorType child_end(NodeRef N) { 2002 return {N->UserTreeIndices.end(), N->Container}; 2003 } 2004 2005 /// For the node iterator we just need to turn the TreeEntry iterator into a 2006 /// TreeEntry* iterator so that it dereferences to NodeRef. 2007 class nodes_iterator { 2008 using ItTy = ContainerTy::iterator; 2009 ItTy It; 2010 2011 public: 2012 nodes_iterator(const ItTy &It2) : It(It2) {} 2013 NodeRef operator*() { return It->get(); } 2014 nodes_iterator operator++() { 2015 ++It; 2016 return *this; 2017 } 2018 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2019 }; 2020 2021 static nodes_iterator nodes_begin(BoUpSLP *R) { 2022 return nodes_iterator(R->VectorizableTree.begin()); 2023 } 2024 2025 static nodes_iterator nodes_end(BoUpSLP *R) { 2026 return nodes_iterator(R->VectorizableTree.end()); 2027 } 2028 2029 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2030 }; 2031 2032 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2033 using TreeEntry = BoUpSLP::TreeEntry; 2034 2035 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2036 2037 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2038 std::string Str; 2039 raw_string_ostream OS(Str); 2040 if (isSplat(Entry->Scalars)) { 2041 OS << "<splat> " << *Entry->Scalars[0]; 2042 return Str; 2043 } 2044 for (auto V : Entry->Scalars) { 2045 OS << *V; 2046 if (std::any_of( 2047 R->ExternalUses.begin(), R->ExternalUses.end(), 2048 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; })) 2049 OS << " <extract>"; 2050 OS << "\n"; 2051 } 2052 return Str; 2053 } 2054 2055 static std::string getNodeAttributes(const TreeEntry *Entry, 2056 const BoUpSLP *) { 2057 if (Entry->NeedToGather) 2058 return "color=red"; 2059 return ""; 2060 } 2061 }; 2062 2063 } // end namespace llvm 2064 2065 BoUpSLP::~BoUpSLP() { 2066 for (const auto &Pair : DeletedInstructions) { 2067 // Replace operands of ignored instructions with Undefs in case if they were 2068 // marked for deletion. 2069 if (Pair.getSecond()) { 2070 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2071 Pair.getFirst()->replaceAllUsesWith(Undef); 2072 } 2073 Pair.getFirst()->dropAllReferences(); 2074 } 2075 for (const auto &Pair : DeletedInstructions) { 2076 assert(Pair.getFirst()->use_empty() && 2077 "trying to erase instruction with users."); 2078 Pair.getFirst()->eraseFromParent(); 2079 } 2080 } 2081 2082 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2083 for (auto *V : AV) { 2084 if (auto *I = dyn_cast<Instruction>(V)) 2085 eraseInstruction(I, /*ReplaceWithUndef=*/true); 2086 }; 2087 } 2088 2089 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2090 ArrayRef<Value *> UserIgnoreLst) { 2091 ExtraValueToDebugLocsMap ExternallyUsedValues; 2092 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 2093 } 2094 2095 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2096 ExtraValueToDebugLocsMap &ExternallyUsedValues, 2097 ArrayRef<Value *> UserIgnoreLst) { 2098 deleteTree(); 2099 UserIgnoreList = UserIgnoreLst; 2100 if (!allSameType(Roots)) 2101 return; 2102 buildTree_rec(Roots, 0, EdgeInfo()); 2103 2104 // Collect the values that we need to extract from the tree. 2105 for (auto &TEPtr : VectorizableTree) { 2106 TreeEntry *Entry = TEPtr.get(); 2107 2108 // No need to handle users of gathered values. 2109 if (Entry->NeedToGather) 2110 continue; 2111 2112 // For each lane: 2113 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2114 Value *Scalar = Entry->Scalars[Lane]; 2115 int FoundLane = Lane; 2116 if (!Entry->ReuseShuffleIndices.empty()) { 2117 FoundLane = 2118 std::distance(Entry->ReuseShuffleIndices.begin(), 2119 llvm::find(Entry->ReuseShuffleIndices, FoundLane)); 2120 } 2121 2122 // Check if the scalar is externally used as an extra arg. 2123 auto ExtI = ExternallyUsedValues.find(Scalar); 2124 if (ExtI != ExternallyUsedValues.end()) { 2125 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 2126 << Lane << " from " << *Scalar << ".\n"); 2127 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 2128 } 2129 for (User *U : Scalar->users()) { 2130 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 2131 2132 Instruction *UserInst = dyn_cast<Instruction>(U); 2133 if (!UserInst) 2134 continue; 2135 2136 // Skip in-tree scalars that become vectors 2137 if (TreeEntry *UseEntry = getTreeEntry(U)) { 2138 Value *UseScalar = UseEntry->Scalars[0]; 2139 // Some in-tree scalars will remain as scalar in vectorized 2140 // instructions. If that is the case, the one in Lane 0 will 2141 // be used. 2142 if (UseScalar != U || 2143 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 2144 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 2145 << ".\n"); 2146 assert(!UseEntry->NeedToGather && "Bad state"); 2147 continue; 2148 } 2149 } 2150 2151 // Ignore users in the user ignore list. 2152 if (is_contained(UserIgnoreList, UserInst)) 2153 continue; 2154 2155 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 2156 << Lane << " from " << *Scalar << ".\n"); 2157 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 2158 } 2159 } 2160 } 2161 } 2162 2163 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 2164 const EdgeInfo &UserTreeIdx) { 2165 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 2166 2167 InstructionsState S = getSameOpcode(VL); 2168 if (Depth == RecursionMaxDepth) { 2169 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 2170 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2171 return; 2172 } 2173 2174 // Don't handle vectors. 2175 if (S.OpValue->getType()->isVectorTy()) { 2176 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 2177 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2178 return; 2179 } 2180 2181 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2182 if (SI->getValueOperand()->getType()->isVectorTy()) { 2183 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 2184 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2185 return; 2186 } 2187 2188 // If all of the operands are identical or constant we have a simple solution. 2189 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 2190 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 2191 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2192 return; 2193 } 2194 2195 // We now know that this is a vector of instructions of the same type from 2196 // the same block. 2197 2198 // Don't vectorize ephemeral values. 2199 for (Value *V : VL) { 2200 if (EphValues.count(V)) { 2201 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2202 << ") is ephemeral.\n"); 2203 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2204 return; 2205 } 2206 } 2207 2208 // Check if this is a duplicate of another entry. 2209 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2210 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 2211 if (!E->isSame(VL)) { 2212 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 2213 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2214 return; 2215 } 2216 // Record the reuse of the tree node. FIXME, currently this is only used to 2217 // properly draw the graph rather than for the actual vectorization. 2218 E->UserTreeIndices.push_back(UserTreeIdx); 2219 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 2220 << ".\n"); 2221 return; 2222 } 2223 2224 // Check that none of the instructions in the bundle are already in the tree. 2225 for (Value *V : VL) { 2226 auto *I = dyn_cast<Instruction>(V); 2227 if (!I) 2228 continue; 2229 if (getTreeEntry(I)) { 2230 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2231 << ") is already in tree.\n"); 2232 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2233 return; 2234 } 2235 } 2236 2237 // If any of the scalars is marked as a value that needs to stay scalar, then 2238 // we need to gather the scalars. 2239 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 2240 for (Value *V : VL) { 2241 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) { 2242 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 2243 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2244 return; 2245 } 2246 } 2247 2248 // Check that all of the users of the scalars that we want to vectorize are 2249 // schedulable. 2250 auto *VL0 = cast<Instruction>(S.OpValue); 2251 BasicBlock *BB = VL0->getParent(); 2252 2253 if (!DT->isReachableFromEntry(BB)) { 2254 // Don't go into unreachable blocks. They may contain instructions with 2255 // dependency cycles which confuse the final scheduling. 2256 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 2257 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2258 return; 2259 } 2260 2261 // Check that every instruction appears once in this bundle. 2262 SmallVector<unsigned, 4> ReuseShuffleIndicies; 2263 SmallVector<Value *, 4> UniqueValues; 2264 DenseMap<Value *, unsigned> UniquePositions; 2265 for (Value *V : VL) { 2266 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 2267 ReuseShuffleIndicies.emplace_back(Res.first->second); 2268 if (Res.second) 2269 UniqueValues.emplace_back(V); 2270 } 2271 size_t NumUniqueScalarValues = UniqueValues.size(); 2272 if (NumUniqueScalarValues == VL.size()) { 2273 ReuseShuffleIndicies.clear(); 2274 } else { 2275 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 2276 if (NumUniqueScalarValues <= 1 || 2277 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 2278 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 2279 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2280 return; 2281 } 2282 VL = UniqueValues; 2283 } 2284 2285 auto &BSRef = BlocksSchedules[BB]; 2286 if (!BSRef) 2287 BSRef = std::make_unique<BlockScheduling>(BB); 2288 2289 BlockScheduling &BS = *BSRef.get(); 2290 2291 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 2292 if (!Bundle) { 2293 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 2294 assert((!BS.getScheduleData(VL0) || 2295 !BS.getScheduleData(VL0)->isPartOfBundle()) && 2296 "tryScheduleBundle should cancelScheduling on failure"); 2297 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2298 ReuseShuffleIndicies); 2299 return; 2300 } 2301 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 2302 2303 unsigned ShuffleOrOp = S.isAltShuffle() ? 2304 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2305 switch (ShuffleOrOp) { 2306 case Instruction::PHI: { 2307 auto *PH = cast<PHINode>(VL0); 2308 2309 // Check for terminator values (e.g. invoke). 2310 for (unsigned j = 0; j < VL.size(); ++j) 2311 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2312 Instruction *Term = dyn_cast<Instruction>( 2313 cast<PHINode>(VL[j])->getIncomingValueForBlock( 2314 PH->getIncomingBlock(i))); 2315 if (Term && Term->isTerminator()) { 2316 LLVM_DEBUG(dbgs() 2317 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 2318 BS.cancelScheduling(VL, VL0); 2319 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2320 ReuseShuffleIndicies); 2321 return; 2322 } 2323 } 2324 2325 TreeEntry *TE = 2326 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 2327 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 2328 2329 // Keeps the reordered operands to avoid code duplication. 2330 SmallVector<ValueList, 2> OperandsVec; 2331 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2332 ValueList Operands; 2333 // Prepare the operand vector. 2334 for (Value *j : VL) 2335 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( 2336 PH->getIncomingBlock(i))); 2337 TE->setOperand(i, Operands); 2338 OperandsVec.push_back(Operands); 2339 } 2340 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 2341 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 2342 return; 2343 } 2344 case Instruction::ExtractValue: 2345 case Instruction::ExtractElement: { 2346 OrdersType CurrentOrder; 2347 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 2348 if (Reuse) { 2349 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 2350 ++NumOpsWantToKeepOriginalOrder; 2351 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2352 ReuseShuffleIndicies); 2353 // This is a special case, as it does not gather, but at the same time 2354 // we are not extending buildTree_rec() towards the operands. 2355 ValueList Op0; 2356 Op0.assign(VL.size(), VL0->getOperand(0)); 2357 VectorizableTree.back()->setOperand(0, Op0); 2358 return; 2359 } 2360 if (!CurrentOrder.empty()) { 2361 LLVM_DEBUG({ 2362 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 2363 "with order"; 2364 for (unsigned Idx : CurrentOrder) 2365 dbgs() << " " << Idx; 2366 dbgs() << "\n"; 2367 }); 2368 // Insert new order with initial value 0, if it does not exist, 2369 // otherwise return the iterator to the existing one. 2370 auto StoredCurrentOrderAndNum = 2371 NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 2372 ++StoredCurrentOrderAndNum->getSecond(); 2373 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2374 ReuseShuffleIndicies, 2375 StoredCurrentOrderAndNum->getFirst()); 2376 // This is a special case, as it does not gather, but at the same time 2377 // we are not extending buildTree_rec() towards the operands. 2378 ValueList Op0; 2379 Op0.assign(VL.size(), VL0->getOperand(0)); 2380 VectorizableTree.back()->setOperand(0, Op0); 2381 return; 2382 } 2383 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 2384 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2385 ReuseShuffleIndicies); 2386 BS.cancelScheduling(VL, VL0); 2387 return; 2388 } 2389 case Instruction::Load: { 2390 // Check that a vectorized load would load the same memory as a scalar 2391 // load. For example, we don't want to vectorize loads that are smaller 2392 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 2393 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 2394 // from such a struct, we read/write packed bits disagreeing with the 2395 // unvectorized version. 2396 Type *ScalarTy = VL0->getType(); 2397 2398 if (DL->getTypeSizeInBits(ScalarTy) != 2399 DL->getTypeAllocSizeInBits(ScalarTy)) { 2400 BS.cancelScheduling(VL, VL0); 2401 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2402 ReuseShuffleIndicies); 2403 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 2404 return; 2405 } 2406 2407 // Make sure all loads in the bundle are simple - we can't vectorize 2408 // atomic or volatile loads. 2409 SmallVector<Value *, 4> PointerOps(VL.size()); 2410 auto POIter = PointerOps.begin(); 2411 for (Value *V : VL) { 2412 auto *L = cast<LoadInst>(V); 2413 if (!L->isSimple()) { 2414 BS.cancelScheduling(VL, VL0); 2415 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2416 ReuseShuffleIndicies); 2417 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 2418 return; 2419 } 2420 *POIter = L->getPointerOperand(); 2421 ++POIter; 2422 } 2423 2424 OrdersType CurrentOrder; 2425 // Check the order of pointer operands. 2426 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 2427 Value *Ptr0; 2428 Value *PtrN; 2429 if (CurrentOrder.empty()) { 2430 Ptr0 = PointerOps.front(); 2431 PtrN = PointerOps.back(); 2432 } else { 2433 Ptr0 = PointerOps[CurrentOrder.front()]; 2434 PtrN = PointerOps[CurrentOrder.back()]; 2435 } 2436 const SCEV *Scev0 = SE->getSCEV(Ptr0); 2437 const SCEV *ScevN = SE->getSCEV(PtrN); 2438 const auto *Diff = 2439 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 2440 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 2441 // Check that the sorted loads are consecutive. 2442 if (Diff && Diff->getAPInt().getZExtValue() == (VL.size() - 1) * Size) { 2443 if (CurrentOrder.empty()) { 2444 // Original loads are consecutive and does not require reordering. 2445 ++NumOpsWantToKeepOriginalOrder; 2446 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 2447 UserTreeIdx, ReuseShuffleIndicies); 2448 TE->setOperandsInOrder(); 2449 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 2450 } else { 2451 // Need to reorder. 2452 auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 2453 ++I->getSecond(); 2454 TreeEntry *TE = 2455 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2456 ReuseShuffleIndicies, I->getFirst()); 2457 TE->setOperandsInOrder(); 2458 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 2459 } 2460 return; 2461 } 2462 } 2463 2464 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 2465 BS.cancelScheduling(VL, VL0); 2466 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2467 ReuseShuffleIndicies); 2468 return; 2469 } 2470 case Instruction::ZExt: 2471 case Instruction::SExt: 2472 case Instruction::FPToUI: 2473 case Instruction::FPToSI: 2474 case Instruction::FPExt: 2475 case Instruction::PtrToInt: 2476 case Instruction::IntToPtr: 2477 case Instruction::SIToFP: 2478 case Instruction::UIToFP: 2479 case Instruction::Trunc: 2480 case Instruction::FPTrunc: 2481 case Instruction::BitCast: { 2482 Type *SrcTy = VL0->getOperand(0)->getType(); 2483 for (Value *V : VL) { 2484 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 2485 if (Ty != SrcTy || !isValidElementType(Ty)) { 2486 BS.cancelScheduling(VL, VL0); 2487 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2488 ReuseShuffleIndicies); 2489 LLVM_DEBUG(dbgs() 2490 << "SLP: Gathering casts with different src types.\n"); 2491 return; 2492 } 2493 } 2494 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2495 ReuseShuffleIndicies); 2496 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 2497 2498 TE->setOperandsInOrder(); 2499 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2500 ValueList Operands; 2501 // Prepare the operand vector. 2502 for (Value *V : VL) 2503 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2504 2505 buildTree_rec(Operands, Depth + 1, {TE, i}); 2506 } 2507 return; 2508 } 2509 case Instruction::ICmp: 2510 case Instruction::FCmp: { 2511 // Check that all of the compares have the same predicate. 2512 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2513 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 2514 Type *ComparedTy = VL0->getOperand(0)->getType(); 2515 for (Value *V : VL) { 2516 CmpInst *Cmp = cast<CmpInst>(V); 2517 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 2518 Cmp->getOperand(0)->getType() != ComparedTy) { 2519 BS.cancelScheduling(VL, VL0); 2520 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2521 ReuseShuffleIndicies); 2522 LLVM_DEBUG(dbgs() 2523 << "SLP: Gathering cmp with different predicate.\n"); 2524 return; 2525 } 2526 } 2527 2528 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2529 ReuseShuffleIndicies); 2530 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 2531 2532 ValueList Left, Right; 2533 if (cast<CmpInst>(VL0)->isCommutative()) { 2534 // Commutative predicate - collect + sort operands of the instructions 2535 // so that each side is more likely to have the same opcode. 2536 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 2537 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE); 2538 } else { 2539 // Collect operands - commute if it uses the swapped predicate. 2540 for (Value *V : VL) { 2541 auto *Cmp = cast<CmpInst>(V); 2542 Value *LHS = Cmp->getOperand(0); 2543 Value *RHS = Cmp->getOperand(1); 2544 if (Cmp->getPredicate() != P0) 2545 std::swap(LHS, RHS); 2546 Left.push_back(LHS); 2547 Right.push_back(RHS); 2548 } 2549 } 2550 TE->setOperand(0, Left); 2551 TE->setOperand(1, Right); 2552 buildTree_rec(Left, Depth + 1, {TE, 0}); 2553 buildTree_rec(Right, Depth + 1, {TE, 1}); 2554 return; 2555 } 2556 case Instruction::Select: 2557 case Instruction::FNeg: 2558 case Instruction::Add: 2559 case Instruction::FAdd: 2560 case Instruction::Sub: 2561 case Instruction::FSub: 2562 case Instruction::Mul: 2563 case Instruction::FMul: 2564 case Instruction::UDiv: 2565 case Instruction::SDiv: 2566 case Instruction::FDiv: 2567 case Instruction::URem: 2568 case Instruction::SRem: 2569 case Instruction::FRem: 2570 case Instruction::Shl: 2571 case Instruction::LShr: 2572 case Instruction::AShr: 2573 case Instruction::And: 2574 case Instruction::Or: 2575 case Instruction::Xor: { 2576 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2577 ReuseShuffleIndicies); 2578 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 2579 2580 // Sort operands of the instructions so that each side is more likely to 2581 // have the same opcode. 2582 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 2583 ValueList Left, Right; 2584 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE); 2585 TE->setOperand(0, Left); 2586 TE->setOperand(1, Right); 2587 buildTree_rec(Left, Depth + 1, {TE, 0}); 2588 buildTree_rec(Right, Depth + 1, {TE, 1}); 2589 return; 2590 } 2591 2592 TE->setOperandsInOrder(); 2593 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2594 ValueList Operands; 2595 // Prepare the operand vector. 2596 for (Value *j : VL) 2597 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 2598 2599 buildTree_rec(Operands, Depth + 1, {TE, i}); 2600 } 2601 return; 2602 } 2603 case Instruction::GetElementPtr: { 2604 // We don't combine GEPs with complicated (nested) indexing. 2605 for (Value *V : VL) { 2606 if (cast<Instruction>(V)->getNumOperands() != 2) { 2607 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 2608 BS.cancelScheduling(VL, VL0); 2609 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2610 ReuseShuffleIndicies); 2611 return; 2612 } 2613 } 2614 2615 // We can't combine several GEPs into one vector if they operate on 2616 // different types. 2617 Type *Ty0 = VL0->getOperand(0)->getType(); 2618 for (Value *V : VL) { 2619 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 2620 if (Ty0 != CurTy) { 2621 LLVM_DEBUG(dbgs() 2622 << "SLP: not-vectorizable GEP (different types).\n"); 2623 BS.cancelScheduling(VL, VL0); 2624 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2625 ReuseShuffleIndicies); 2626 return; 2627 } 2628 } 2629 2630 // We don't combine GEPs with non-constant indexes. 2631 for (Value *V : VL) { 2632 auto Op = cast<Instruction>(V)->getOperand(1); 2633 if (!isa<ConstantInt>(Op)) { 2634 LLVM_DEBUG(dbgs() 2635 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 2636 BS.cancelScheduling(VL, VL0); 2637 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2638 ReuseShuffleIndicies); 2639 return; 2640 } 2641 } 2642 2643 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2644 ReuseShuffleIndicies); 2645 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 2646 TE->setOperandsInOrder(); 2647 for (unsigned i = 0, e = 2; i < e; ++i) { 2648 ValueList Operands; 2649 // Prepare the operand vector. 2650 for (Value *V : VL) 2651 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2652 2653 buildTree_rec(Operands, Depth + 1, {TE, i}); 2654 } 2655 return; 2656 } 2657 case Instruction::Store: { 2658 // Check if the stores are consecutive or if we need to swizzle them. 2659 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 2660 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 2661 BS.cancelScheduling(VL, VL0); 2662 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2663 ReuseShuffleIndicies); 2664 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 2665 return; 2666 } 2667 2668 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2669 ReuseShuffleIndicies); 2670 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 2671 2672 ValueList Operands; 2673 for (Value *V : VL) 2674 Operands.push_back(cast<Instruction>(V)->getOperand(0)); 2675 TE->setOperandsInOrder(); 2676 buildTree_rec(Operands, Depth + 1, {TE, 0}); 2677 return; 2678 } 2679 case Instruction::Call: { 2680 // Check if the calls are all to the same vectorizable intrinsic. 2681 CallInst *CI = cast<CallInst>(VL0); 2682 // Check if this is an Intrinsic call or something that can be 2683 // represented by an intrinsic call 2684 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2685 if (!isTriviallyVectorizable(ID)) { 2686 BS.cancelScheduling(VL, VL0); 2687 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2688 ReuseShuffleIndicies); 2689 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 2690 return; 2691 } 2692 Function *Int = CI->getCalledFunction(); 2693 unsigned NumArgs = CI->getNumArgOperands(); 2694 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 2695 for (unsigned j = 0; j != NumArgs; ++j) 2696 if (hasVectorInstrinsicScalarOpd(ID, j)) 2697 ScalarArgs[j] = CI->getArgOperand(j); 2698 for (Value *V : VL) { 2699 CallInst *CI2 = dyn_cast<CallInst>(V); 2700 if (!CI2 || CI2->getCalledFunction() != Int || 2701 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 2702 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 2703 BS.cancelScheduling(VL, VL0); 2704 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2705 ReuseShuffleIndicies); 2706 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 2707 << "\n"); 2708 return; 2709 } 2710 // Some intrinsics have scalar arguments and should be same in order for 2711 // them to be vectorized. 2712 for (unsigned j = 0; j != NumArgs; ++j) { 2713 if (hasVectorInstrinsicScalarOpd(ID, j)) { 2714 Value *A1J = CI2->getArgOperand(j); 2715 if (ScalarArgs[j] != A1J) { 2716 BS.cancelScheduling(VL, VL0); 2717 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2718 ReuseShuffleIndicies); 2719 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 2720 << " argument " << ScalarArgs[j] << "!=" << A1J 2721 << "\n"); 2722 return; 2723 } 2724 } 2725 } 2726 // Verify that the bundle operands are identical between the two calls. 2727 if (CI->hasOperandBundles() && 2728 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 2729 CI->op_begin() + CI->getBundleOperandsEndIndex(), 2730 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 2731 BS.cancelScheduling(VL, VL0); 2732 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2733 ReuseShuffleIndicies); 2734 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 2735 << *CI << "!=" << *V << '\n'); 2736 return; 2737 } 2738 } 2739 2740 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2741 ReuseShuffleIndicies); 2742 TE->setOperandsInOrder(); 2743 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 2744 ValueList Operands; 2745 // Prepare the operand vector. 2746 for (Value *V : VL) { 2747 auto *CI2 = cast<CallInst>(V); 2748 Operands.push_back(CI2->getArgOperand(i)); 2749 } 2750 buildTree_rec(Operands, Depth + 1, {TE, i}); 2751 } 2752 return; 2753 } 2754 case Instruction::ShuffleVector: { 2755 // If this is not an alternate sequence of opcode like add-sub 2756 // then do not vectorize this instruction. 2757 if (!S.isAltShuffle()) { 2758 BS.cancelScheduling(VL, VL0); 2759 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2760 ReuseShuffleIndicies); 2761 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 2762 return; 2763 } 2764 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2765 ReuseShuffleIndicies); 2766 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 2767 2768 // Reorder operands if reordering would enable vectorization. 2769 if (isa<BinaryOperator>(VL0)) { 2770 ValueList Left, Right; 2771 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE); 2772 TE->setOperand(0, Left); 2773 TE->setOperand(1, Right); 2774 buildTree_rec(Left, Depth + 1, {TE, 0}); 2775 buildTree_rec(Right, Depth + 1, {TE, 1}); 2776 return; 2777 } 2778 2779 TE->setOperandsInOrder(); 2780 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2781 ValueList Operands; 2782 // Prepare the operand vector. 2783 for (Value *V : VL) 2784 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2785 2786 buildTree_rec(Operands, Depth + 1, {TE, i}); 2787 } 2788 return; 2789 } 2790 default: 2791 BS.cancelScheduling(VL, VL0); 2792 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2793 ReuseShuffleIndicies); 2794 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 2795 return; 2796 } 2797 } 2798 2799 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 2800 unsigned N; 2801 Type *EltTy; 2802 auto *ST = dyn_cast<StructType>(T); 2803 if (ST) { 2804 N = ST->getNumElements(); 2805 EltTy = *ST->element_begin(); 2806 } else { 2807 N = cast<ArrayType>(T)->getNumElements(); 2808 EltTy = cast<ArrayType>(T)->getElementType(); 2809 } 2810 if (!isValidElementType(EltTy)) 2811 return 0; 2812 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); 2813 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 2814 return 0; 2815 if (ST) { 2816 // Check that struct is homogeneous. 2817 for (const auto *Ty : ST->elements()) 2818 if (Ty != EltTy) 2819 return 0; 2820 } 2821 return N; 2822 } 2823 2824 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 2825 SmallVectorImpl<unsigned> &CurrentOrder) const { 2826 Instruction *E0 = cast<Instruction>(OpValue); 2827 assert(E0->getOpcode() == Instruction::ExtractElement || 2828 E0->getOpcode() == Instruction::ExtractValue); 2829 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 2830 // Check if all of the extracts come from the same vector and from the 2831 // correct offset. 2832 Value *Vec = E0->getOperand(0); 2833 2834 CurrentOrder.clear(); 2835 2836 // We have to extract from a vector/aggregate with the same number of elements. 2837 unsigned NElts; 2838 if (E0->getOpcode() == Instruction::ExtractValue) { 2839 const DataLayout &DL = E0->getModule()->getDataLayout(); 2840 NElts = canMapToVector(Vec->getType(), DL); 2841 if (!NElts) 2842 return false; 2843 // Check if load can be rewritten as load of vector. 2844 LoadInst *LI = dyn_cast<LoadInst>(Vec); 2845 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 2846 return false; 2847 } else { 2848 NElts = Vec->getType()->getVectorNumElements(); 2849 } 2850 2851 if (NElts != VL.size()) 2852 return false; 2853 2854 // Check that all of the indices extract from the correct offset. 2855 bool ShouldKeepOrder = true; 2856 unsigned E = VL.size(); 2857 // Assign to all items the initial value E + 1 so we can check if the extract 2858 // instruction index was used already. 2859 // Also, later we can check that all the indices are used and we have a 2860 // consecutive access in the extract instructions, by checking that no 2861 // element of CurrentOrder still has value E + 1. 2862 CurrentOrder.assign(E, E + 1); 2863 unsigned I = 0; 2864 for (; I < E; ++I) { 2865 auto *Inst = cast<Instruction>(VL[I]); 2866 if (Inst->getOperand(0) != Vec) 2867 break; 2868 Optional<unsigned> Idx = getExtractIndex(Inst); 2869 if (!Idx) 2870 break; 2871 const unsigned ExtIdx = *Idx; 2872 if (ExtIdx != I) { 2873 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 2874 break; 2875 ShouldKeepOrder = false; 2876 CurrentOrder[ExtIdx] = I; 2877 } else { 2878 if (CurrentOrder[I] != E + 1) 2879 break; 2880 CurrentOrder[I] = I; 2881 } 2882 } 2883 if (I < E) { 2884 CurrentOrder.clear(); 2885 return false; 2886 } 2887 2888 return ShouldKeepOrder; 2889 } 2890 2891 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 2892 return I->hasOneUse() || 2893 std::all_of(I->user_begin(), I->user_end(), [this](User *U) { 2894 return ScalarToTreeEntry.count(U) > 0; 2895 }); 2896 } 2897 2898 int BoUpSLP::getEntryCost(TreeEntry *E) { 2899 ArrayRef<Value*> VL = E->Scalars; 2900 2901 Type *ScalarTy = VL[0]->getType(); 2902 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2903 ScalarTy = SI->getValueOperand()->getType(); 2904 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 2905 ScalarTy = CI->getOperand(0)->getType(); 2906 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2907 2908 // If we have computed a smaller type for the expression, update VecTy so 2909 // that the costs will be accurate. 2910 if (MinBWs.count(VL[0])) 2911 VecTy = VectorType::get( 2912 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 2913 2914 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 2915 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 2916 int ReuseShuffleCost = 0; 2917 if (NeedToShuffleReuses) { 2918 ReuseShuffleCost = 2919 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2920 } 2921 if (E->NeedToGather) { 2922 if (allConstant(VL)) 2923 return 0; 2924 if (isSplat(VL)) { 2925 return ReuseShuffleCost + 2926 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 2927 } 2928 if (E->getOpcode() == Instruction::ExtractElement && 2929 allSameType(VL) && allSameBlock(VL)) { 2930 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 2931 if (ShuffleKind.hasValue()) { 2932 int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 2933 for (auto *V : VL) { 2934 // If all users of instruction are going to be vectorized and this 2935 // instruction itself is not going to be vectorized, consider this 2936 // instruction as dead and remove its cost from the final cost of the 2937 // vectorized tree. 2938 if (areAllUsersVectorized(cast<Instruction>(V)) && 2939 !ScalarToTreeEntry.count(V)) { 2940 auto *IO = cast<ConstantInt>( 2941 cast<ExtractElementInst>(V)->getIndexOperand()); 2942 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 2943 IO->getZExtValue()); 2944 } 2945 } 2946 return ReuseShuffleCost + Cost; 2947 } 2948 } 2949 return ReuseShuffleCost + getGatherCost(VL); 2950 } 2951 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 2952 Instruction *VL0 = E->getMainOp(); 2953 unsigned ShuffleOrOp = 2954 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 2955 switch (ShuffleOrOp) { 2956 case Instruction::PHI: 2957 return 0; 2958 2959 case Instruction::ExtractValue: 2960 case Instruction::ExtractElement: 2961 if (NeedToShuffleReuses) { 2962 unsigned Idx = 0; 2963 for (unsigned I : E->ReuseShuffleIndices) { 2964 if (ShuffleOrOp == Instruction::ExtractElement) { 2965 auto *IO = cast<ConstantInt>( 2966 cast<ExtractElementInst>(VL[I])->getIndexOperand()); 2967 Idx = IO->getZExtValue(); 2968 ReuseShuffleCost -= TTI->getVectorInstrCost( 2969 Instruction::ExtractElement, VecTy, Idx); 2970 } else { 2971 ReuseShuffleCost -= TTI->getVectorInstrCost( 2972 Instruction::ExtractElement, VecTy, Idx); 2973 ++Idx; 2974 } 2975 } 2976 Idx = ReuseShuffleNumbers; 2977 for (Value *V : VL) { 2978 if (ShuffleOrOp == Instruction::ExtractElement) { 2979 auto *IO = cast<ConstantInt>( 2980 cast<ExtractElementInst>(V)->getIndexOperand()); 2981 Idx = IO->getZExtValue(); 2982 } else { 2983 --Idx; 2984 } 2985 ReuseShuffleCost += 2986 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); 2987 } 2988 } 2989 if (!E->NeedToGather) { 2990 int DeadCost = ReuseShuffleCost; 2991 if (!E->ReorderIndices.empty()) { 2992 // TODO: Merge this shuffle with the ReuseShuffleCost. 2993 DeadCost += TTI->getShuffleCost( 2994 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2995 } 2996 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 2997 Instruction *E = cast<Instruction>(VL[i]); 2998 // If all users are going to be vectorized, instruction can be 2999 // considered as dead. 3000 // The same, if have only one user, it will be vectorized for sure. 3001 if (areAllUsersVectorized(E)) { 3002 // Take credit for instruction that will become dead. 3003 if (E->hasOneUse()) { 3004 Instruction *Ext = E->user_back(); 3005 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3006 all_of(Ext->users(), 3007 [](User *U) { return isa<GetElementPtrInst>(U); })) { 3008 // Use getExtractWithExtendCost() to calculate the cost of 3009 // extractelement/ext pair. 3010 DeadCost -= TTI->getExtractWithExtendCost( 3011 Ext->getOpcode(), Ext->getType(), VecTy, i); 3012 // Add back the cost of s|zext which is subtracted separately. 3013 DeadCost += TTI->getCastInstrCost( 3014 Ext->getOpcode(), Ext->getType(), E->getType(), Ext); 3015 continue; 3016 } 3017 } 3018 DeadCost -= 3019 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 3020 } 3021 } 3022 return DeadCost; 3023 } 3024 return ReuseShuffleCost + getGatherCost(VL); 3025 3026 case Instruction::ZExt: 3027 case Instruction::SExt: 3028 case Instruction::FPToUI: 3029 case Instruction::FPToSI: 3030 case Instruction::FPExt: 3031 case Instruction::PtrToInt: 3032 case Instruction::IntToPtr: 3033 case Instruction::SIToFP: 3034 case Instruction::UIToFP: 3035 case Instruction::Trunc: 3036 case Instruction::FPTrunc: 3037 case Instruction::BitCast: { 3038 Type *SrcTy = VL0->getOperand(0)->getType(); 3039 int ScalarEltCost = 3040 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, VL0); 3041 if (NeedToShuffleReuses) { 3042 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3043 } 3044 3045 // Calculate the cost of this instruction. 3046 int ScalarCost = VL.size() * ScalarEltCost; 3047 3048 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 3049 int VecCost = 0; 3050 // Check if the values are candidates to demote. 3051 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 3052 VecCost = ReuseShuffleCost + 3053 TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy, VL0); 3054 } 3055 return VecCost - ScalarCost; 3056 } 3057 case Instruction::FCmp: 3058 case Instruction::ICmp: 3059 case Instruction::Select: { 3060 // Calculate the cost of this instruction. 3061 int ScalarEltCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 3062 Builder.getInt1Ty(), VL0); 3063 if (NeedToShuffleReuses) { 3064 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3065 } 3066 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 3067 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3068 int VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), VecTy, MaskTy, VL0); 3069 return ReuseShuffleCost + VecCost - ScalarCost; 3070 } 3071 case Instruction::FNeg: 3072 case Instruction::Add: 3073 case Instruction::FAdd: 3074 case Instruction::Sub: 3075 case Instruction::FSub: 3076 case Instruction::Mul: 3077 case Instruction::FMul: 3078 case Instruction::UDiv: 3079 case Instruction::SDiv: 3080 case Instruction::FDiv: 3081 case Instruction::URem: 3082 case Instruction::SRem: 3083 case Instruction::FRem: 3084 case Instruction::Shl: 3085 case Instruction::LShr: 3086 case Instruction::AShr: 3087 case Instruction::And: 3088 case Instruction::Or: 3089 case Instruction::Xor: { 3090 // Certain instructions can be cheaper to vectorize if they have a 3091 // constant second vector operand. 3092 TargetTransformInfo::OperandValueKind Op1VK = 3093 TargetTransformInfo::OK_AnyValue; 3094 TargetTransformInfo::OperandValueKind Op2VK = 3095 TargetTransformInfo::OK_UniformConstantValue; 3096 TargetTransformInfo::OperandValueProperties Op1VP = 3097 TargetTransformInfo::OP_None; 3098 TargetTransformInfo::OperandValueProperties Op2VP = 3099 TargetTransformInfo::OP_PowerOf2; 3100 3101 // If all operands are exactly the same ConstantInt then set the 3102 // operand kind to OK_UniformConstantValue. 3103 // If instead not all operands are constants, then set the operand kind 3104 // to OK_AnyValue. If all operands are constants but not the same, 3105 // then set the operand kind to OK_NonUniformConstantValue. 3106 ConstantInt *CInt0 = nullptr; 3107 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3108 const Instruction *I = cast<Instruction>(VL[i]); 3109 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 3110 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 3111 if (!CInt) { 3112 Op2VK = TargetTransformInfo::OK_AnyValue; 3113 Op2VP = TargetTransformInfo::OP_None; 3114 break; 3115 } 3116 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 3117 !CInt->getValue().isPowerOf2()) 3118 Op2VP = TargetTransformInfo::OP_None; 3119 if (i == 0) { 3120 CInt0 = CInt; 3121 continue; 3122 } 3123 if (CInt0 != CInt) 3124 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 3125 } 3126 3127 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 3128 int ScalarEltCost = TTI->getArithmeticInstrCost( 3129 E->getOpcode(), ScalarTy, Op1VK, Op2VK, Op1VP, Op2VP, Operands); 3130 if (NeedToShuffleReuses) { 3131 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3132 } 3133 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3134 int VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, Op1VK, 3135 Op2VK, Op1VP, Op2VP, Operands); 3136 return ReuseShuffleCost + VecCost - ScalarCost; 3137 } 3138 case Instruction::GetElementPtr: { 3139 TargetTransformInfo::OperandValueKind Op1VK = 3140 TargetTransformInfo::OK_AnyValue; 3141 TargetTransformInfo::OperandValueKind Op2VK = 3142 TargetTransformInfo::OK_UniformConstantValue; 3143 3144 int ScalarEltCost = 3145 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 3146 if (NeedToShuffleReuses) { 3147 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3148 } 3149 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3150 int VecCost = 3151 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 3152 return ReuseShuffleCost + VecCost - ScalarCost; 3153 } 3154 case Instruction::Load: { 3155 // Cost of wide load - cost of scalar loads. 3156 unsigned alignment = cast<LoadInst>(VL0)->getAlignment(); 3157 int ScalarEltCost = 3158 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0); 3159 if (NeedToShuffleReuses) { 3160 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3161 } 3162 int ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 3163 int VecLdCost = 3164 TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, VL0); 3165 if (!E->ReorderIndices.empty()) { 3166 // TODO: Merge this shuffle with the ReuseShuffleCost. 3167 VecLdCost += TTI->getShuffleCost( 3168 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3169 } 3170 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 3171 } 3172 case Instruction::Store: { 3173 // We know that we can merge the stores. Calculate the cost. 3174 unsigned alignment = cast<StoreInst>(VL0)->getAlignment(); 3175 int ScalarEltCost = 3176 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0, VL0); 3177 if (NeedToShuffleReuses) { 3178 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3179 } 3180 int ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 3181 int VecStCost = 3182 TTI->getMemoryOpCost(Instruction::Store, VecTy, alignment, 0, VL0); 3183 return ReuseShuffleCost + VecStCost - ScalarStCost; 3184 } 3185 case Instruction::Call: { 3186 CallInst *CI = cast<CallInst>(VL0); 3187 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3188 3189 // Calculate the cost of the scalar and vector calls. 3190 SmallVector<Type *, 4> ScalarTys; 3191 for (unsigned op = 0, opc = CI->getNumArgOperands(); op != opc; ++op) 3192 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 3193 3194 FastMathFlags FMF; 3195 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3196 FMF = FPMO->getFastMathFlags(); 3197 3198 int ScalarEltCost = 3199 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 3200 if (NeedToShuffleReuses) { 3201 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3202 } 3203 int ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 3204 3205 SmallVector<Value *, 4> Args(CI->arg_operands()); 3206 int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF, 3207 VecTy->getNumElements()); 3208 3209 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 3210 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 3211 << " for " << *CI << "\n"); 3212 3213 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 3214 } 3215 case Instruction::ShuffleVector: { 3216 assert(E->isAltShuffle() && 3217 ((Instruction::isBinaryOp(E->getOpcode()) && 3218 Instruction::isBinaryOp(E->getAltOpcode())) || 3219 (Instruction::isCast(E->getOpcode()) && 3220 Instruction::isCast(E->getAltOpcode()))) && 3221 "Invalid Shuffle Vector Operand"); 3222 int ScalarCost = 0; 3223 if (NeedToShuffleReuses) { 3224 for (unsigned Idx : E->ReuseShuffleIndices) { 3225 Instruction *I = cast<Instruction>(VL[Idx]); 3226 ReuseShuffleCost -= TTI->getInstructionCost( 3227 I, TargetTransformInfo::TCK_RecipThroughput); 3228 } 3229 for (Value *V : VL) { 3230 Instruction *I = cast<Instruction>(V); 3231 ReuseShuffleCost += TTI->getInstructionCost( 3232 I, TargetTransformInfo::TCK_RecipThroughput); 3233 } 3234 } 3235 for (Value *V : VL) { 3236 Instruction *I = cast<Instruction>(V); 3237 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 3238 ScalarCost += TTI->getInstructionCost( 3239 I, TargetTransformInfo::TCK_RecipThroughput); 3240 } 3241 // VecCost is equal to sum of the cost of creating 2 vectors 3242 // and the cost of creating shuffle. 3243 int VecCost = 0; 3244 if (Instruction::isBinaryOp(E->getOpcode())) { 3245 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy); 3246 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy); 3247 } else { 3248 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 3249 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 3250 VectorType *Src0Ty = VectorType::get(Src0SclTy, VL.size()); 3251 VectorType *Src1Ty = VectorType::get(Src1SclTy, VL.size()); 3252 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty); 3253 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty); 3254 } 3255 VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0); 3256 return ReuseShuffleCost + VecCost - ScalarCost; 3257 } 3258 default: 3259 llvm_unreachable("Unknown instruction"); 3260 } 3261 } 3262 3263 bool BoUpSLP::isFullyVectorizableTinyTree() const { 3264 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 3265 << VectorizableTree.size() << " is fully vectorizable .\n"); 3266 3267 // We only handle trees of heights 1 and 2. 3268 if (VectorizableTree.size() == 1 && !VectorizableTree[0]->NeedToGather) 3269 return true; 3270 3271 if (VectorizableTree.size() != 2) 3272 return false; 3273 3274 // Handle splat and all-constants stores. 3275 if (!VectorizableTree[0]->NeedToGather && 3276 (allConstant(VectorizableTree[1]->Scalars) || 3277 isSplat(VectorizableTree[1]->Scalars))) 3278 return true; 3279 3280 // Gathering cost would be too much for tiny trees. 3281 if (VectorizableTree[0]->NeedToGather || VectorizableTree[1]->NeedToGather) 3282 return false; 3283 3284 return true; 3285 } 3286 3287 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const { 3288 // We can vectorize the tree if its size is greater than or equal to the 3289 // minimum size specified by the MinTreeSize command line option. 3290 if (VectorizableTree.size() >= MinTreeSize) 3291 return false; 3292 3293 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 3294 // can vectorize it if we can prove it fully vectorizable. 3295 if (isFullyVectorizableTinyTree()) 3296 return false; 3297 3298 assert(VectorizableTree.empty() 3299 ? ExternalUses.empty() 3300 : true && "We shouldn't have any external users"); 3301 3302 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 3303 // vectorizable. 3304 return true; 3305 } 3306 3307 int BoUpSLP::getSpillCost() const { 3308 // Walk from the bottom of the tree to the top, tracking which values are 3309 // live. When we see a call instruction that is not part of our tree, 3310 // query TTI to see if there is a cost to keeping values live over it 3311 // (for example, if spills and fills are required). 3312 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 3313 int Cost = 0; 3314 3315 SmallPtrSet<Instruction*, 4> LiveValues; 3316 Instruction *PrevInst = nullptr; 3317 3318 for (const auto &TEPtr : VectorizableTree) { 3319 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 3320 if (!Inst) 3321 continue; 3322 3323 if (!PrevInst) { 3324 PrevInst = Inst; 3325 continue; 3326 } 3327 3328 // Update LiveValues. 3329 LiveValues.erase(PrevInst); 3330 for (auto &J : PrevInst->operands()) { 3331 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 3332 LiveValues.insert(cast<Instruction>(&*J)); 3333 } 3334 3335 LLVM_DEBUG({ 3336 dbgs() << "SLP: #LV: " << LiveValues.size(); 3337 for (auto *X : LiveValues) 3338 dbgs() << " " << X->getName(); 3339 dbgs() << ", Looking at "; 3340 Inst->dump(); 3341 }); 3342 3343 // Now find the sequence of instructions between PrevInst and Inst. 3344 unsigned NumCalls = 0; 3345 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 3346 PrevInstIt = 3347 PrevInst->getIterator().getReverse(); 3348 while (InstIt != PrevInstIt) { 3349 if (PrevInstIt == PrevInst->getParent()->rend()) { 3350 PrevInstIt = Inst->getParent()->rbegin(); 3351 continue; 3352 } 3353 3354 // Debug informations don't impact spill cost. 3355 if ((isa<CallInst>(&*PrevInstIt) && 3356 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 3357 &*PrevInstIt != PrevInst) 3358 NumCalls++; 3359 3360 ++PrevInstIt; 3361 } 3362 3363 if (NumCalls) { 3364 SmallVector<Type*, 4> V; 3365 for (auto *II : LiveValues) 3366 V.push_back(VectorType::get(II->getType(), BundleWidth)); 3367 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 3368 } 3369 3370 PrevInst = Inst; 3371 } 3372 3373 return Cost; 3374 } 3375 3376 int BoUpSLP::getTreeCost() { 3377 int Cost = 0; 3378 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 3379 << VectorizableTree.size() << ".\n"); 3380 3381 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 3382 3383 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 3384 TreeEntry &TE = *VectorizableTree[I].get(); 3385 3386 // We create duplicate tree entries for gather sequences that have multiple 3387 // uses. However, we should not compute the cost of duplicate sequences. 3388 // For example, if we have a build vector (i.e., insertelement sequence) 3389 // that is used by more than one vector instruction, we only need to 3390 // compute the cost of the insertelement instructions once. The redundant 3391 // instructions will be eliminated by CSE. 3392 // 3393 // We should consider not creating duplicate tree entries for gather 3394 // sequences, and instead add additional edges to the tree representing 3395 // their uses. Since such an approach results in fewer total entries, 3396 // existing heuristics based on tree size may yield different results. 3397 // 3398 if (TE.NeedToGather && 3399 std::any_of( 3400 std::next(VectorizableTree.begin(), I + 1), VectorizableTree.end(), 3401 [TE](const std::unique_ptr<TreeEntry> &EntryPtr) { 3402 return EntryPtr->NeedToGather && EntryPtr->isSame(TE.Scalars); 3403 })) 3404 continue; 3405 3406 int C = getEntryCost(&TE); 3407 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 3408 << " for bundle that starts with " << *TE.Scalars[0] 3409 << ".\n"); 3410 Cost += C; 3411 } 3412 3413 SmallPtrSet<Value *, 16> ExtractCostCalculated; 3414 int ExtractCost = 0; 3415 for (ExternalUser &EU : ExternalUses) { 3416 // We only add extract cost once for the same scalar. 3417 if (!ExtractCostCalculated.insert(EU.Scalar).second) 3418 continue; 3419 3420 // Uses by ephemeral values are free (because the ephemeral value will be 3421 // removed prior to code generation, and so the extraction will be 3422 // removed as well). 3423 if (EphValues.count(EU.User)) 3424 continue; 3425 3426 // If we plan to rewrite the tree in a smaller type, we will need to sign 3427 // extend the extracted value back to the original type. Here, we account 3428 // for the extract and the added cost of the sign extend if needed. 3429 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); 3430 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 3431 if (MinBWs.count(ScalarRoot)) { 3432 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 3433 auto Extend = 3434 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 3435 VecTy = VectorType::get(MinTy, BundleWidth); 3436 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 3437 VecTy, EU.Lane); 3438 } else { 3439 ExtractCost += 3440 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 3441 } 3442 } 3443 3444 int SpillCost = getSpillCost(); 3445 Cost += SpillCost + ExtractCost; 3446 3447 std::string Str; 3448 { 3449 raw_string_ostream OS(Str); 3450 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 3451 << "SLP: Extract Cost = " << ExtractCost << ".\n" 3452 << "SLP: Total Cost = " << Cost << ".\n"; 3453 } 3454 LLVM_DEBUG(dbgs() << Str); 3455 3456 if (ViewSLPTree) 3457 ViewGraph(this, "SLP" + F->getName(), false, Str); 3458 3459 return Cost; 3460 } 3461 3462 int BoUpSLP::getGatherCost(Type *Ty, 3463 const DenseSet<unsigned> &ShuffledIndices) const { 3464 int Cost = 0; 3465 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 3466 if (!ShuffledIndices.count(i)) 3467 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 3468 if (!ShuffledIndices.empty()) 3469 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 3470 return Cost; 3471 } 3472 3473 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 3474 // Find the type of the operands in VL. 3475 Type *ScalarTy = VL[0]->getType(); 3476 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 3477 ScalarTy = SI->getValueOperand()->getType(); 3478 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 3479 // Find the cost of inserting/extracting values from the vector. 3480 // Check if the same elements are inserted several times and count them as 3481 // shuffle candidates. 3482 DenseSet<unsigned> ShuffledElements; 3483 DenseSet<Value *> UniqueElements; 3484 // Iterate in reverse order to consider insert elements with the high cost. 3485 for (unsigned I = VL.size(); I > 0; --I) { 3486 unsigned Idx = I - 1; 3487 if (!UniqueElements.insert(VL[Idx]).second) 3488 ShuffledElements.insert(Idx); 3489 } 3490 return getGatherCost(VecTy, ShuffledElements); 3491 } 3492 3493 // Perform operand reordering on the instructions in VL and return the reordered 3494 // operands in Left and Right. 3495 void BoUpSLP::reorderInputsAccordingToOpcode( 3496 ArrayRef<Value *> VL, SmallVectorImpl<Value *> &Left, 3497 SmallVectorImpl<Value *> &Right, const DataLayout &DL, 3498 ScalarEvolution &SE) { 3499 if (VL.empty()) 3500 return; 3501 VLOperands Ops(VL, DL, SE); 3502 // Reorder the operands in place. 3503 Ops.reorder(); 3504 Left = Ops.getVL(0); 3505 Right = Ops.getVL(1); 3506 } 3507 3508 void BoUpSLP::setInsertPointAfterBundle(TreeEntry *E) { 3509 // Get the basic block this bundle is in. All instructions in the bundle 3510 // should be in this block. 3511 auto *Front = E->getMainOp(); 3512 auto *BB = Front->getParent(); 3513 assert(llvm::all_of(make_range(E->Scalars.begin(), E->Scalars.end()), 3514 [=](Value *V) -> bool { 3515 auto *I = cast<Instruction>(V); 3516 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 3517 })); 3518 3519 // The last instruction in the bundle in program order. 3520 Instruction *LastInst = nullptr; 3521 3522 // Find the last instruction. The common case should be that BB has been 3523 // scheduled, and the last instruction is VL.back(). So we start with 3524 // VL.back() and iterate over schedule data until we reach the end of the 3525 // bundle. The end of the bundle is marked by null ScheduleData. 3526 if (BlocksSchedules.count(BB)) { 3527 auto *Bundle = 3528 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 3529 if (Bundle && Bundle->isPartOfBundle()) 3530 for (; Bundle; Bundle = Bundle->NextInBundle) 3531 if (Bundle->OpValue == Bundle->Inst) 3532 LastInst = Bundle->Inst; 3533 } 3534 3535 // LastInst can still be null at this point if there's either not an entry 3536 // for BB in BlocksSchedules or there's no ScheduleData available for 3537 // VL.back(). This can be the case if buildTree_rec aborts for various 3538 // reasons (e.g., the maximum recursion depth is reached, the maximum region 3539 // size is reached, etc.). ScheduleData is initialized in the scheduling 3540 // "dry-run". 3541 // 3542 // If this happens, we can still find the last instruction by brute force. We 3543 // iterate forwards from Front (inclusive) until we either see all 3544 // instructions in the bundle or reach the end of the block. If Front is the 3545 // last instruction in program order, LastInst will be set to Front, and we 3546 // will visit all the remaining instructions in the block. 3547 // 3548 // One of the reasons we exit early from buildTree_rec is to place an upper 3549 // bound on compile-time. Thus, taking an additional compile-time hit here is 3550 // not ideal. However, this should be exceedingly rare since it requires that 3551 // we both exit early from buildTree_rec and that the bundle be out-of-order 3552 // (causing us to iterate all the way to the end of the block). 3553 if (!LastInst) { 3554 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 3555 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 3556 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 3557 LastInst = &I; 3558 if (Bundle.empty()) 3559 break; 3560 } 3561 } 3562 assert(LastInst && "Failed to find last instruction in bundle"); 3563 3564 // Set the insertion point after the last instruction in the bundle. Set the 3565 // debug location to Front. 3566 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 3567 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 3568 } 3569 3570 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 3571 Value *Vec = UndefValue::get(Ty); 3572 // Generate the 'InsertElement' instruction. 3573 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 3574 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 3575 if (auto *Insrt = dyn_cast<InsertElementInst>(Vec)) { 3576 GatherSeq.insert(Insrt); 3577 CSEBlocks.insert(Insrt->getParent()); 3578 3579 // Add to our 'need-to-extract' list. 3580 if (TreeEntry *E = getTreeEntry(VL[i])) { 3581 // Find which lane we need to extract. 3582 int FoundLane = -1; 3583 for (unsigned Lane = 0, LE = E->Scalars.size(); Lane != LE; ++Lane) { 3584 // Is this the lane of the scalar that we are looking for ? 3585 if (E->Scalars[Lane] == VL[i]) { 3586 FoundLane = Lane; 3587 break; 3588 } 3589 } 3590 assert(FoundLane >= 0 && "Could not find the correct lane"); 3591 if (!E->ReuseShuffleIndices.empty()) { 3592 FoundLane = 3593 std::distance(E->ReuseShuffleIndices.begin(), 3594 llvm::find(E->ReuseShuffleIndices, FoundLane)); 3595 } 3596 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 3597 } 3598 } 3599 } 3600 3601 return Vec; 3602 } 3603 3604 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 3605 InstructionsState S = getSameOpcode(VL); 3606 if (S.getOpcode()) { 3607 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 3608 if (E->isSame(VL)) { 3609 Value *V = vectorizeTree(E); 3610 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 3611 // We need to get the vectorized value but without shuffle. 3612 if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) { 3613 V = SV->getOperand(0); 3614 } else { 3615 // Reshuffle to get only unique values. 3616 SmallVector<unsigned, 4> UniqueIdxs; 3617 SmallSet<unsigned, 4> UsedIdxs; 3618 for(unsigned Idx : E->ReuseShuffleIndices) 3619 if (UsedIdxs.insert(Idx).second) 3620 UniqueIdxs.emplace_back(Idx); 3621 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 3622 UniqueIdxs); 3623 } 3624 } 3625 return V; 3626 } 3627 } 3628 } 3629 3630 Type *ScalarTy = S.OpValue->getType(); 3631 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 3632 ScalarTy = SI->getValueOperand()->getType(); 3633 3634 // Check that every instruction appears once in this bundle. 3635 SmallVector<unsigned, 4> ReuseShuffleIndicies; 3636 SmallVector<Value *, 4> UniqueValues; 3637 if (VL.size() > 2) { 3638 DenseMap<Value *, unsigned> UniquePositions; 3639 for (Value *V : VL) { 3640 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3641 ReuseShuffleIndicies.emplace_back(Res.first->second); 3642 if (Res.second || isa<Constant>(V)) 3643 UniqueValues.emplace_back(V); 3644 } 3645 // Do not shuffle single element or if number of unique values is not power 3646 // of 2. 3647 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 3648 !llvm::isPowerOf2_32(UniqueValues.size())) 3649 ReuseShuffleIndicies.clear(); 3650 else 3651 VL = UniqueValues; 3652 } 3653 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 3654 3655 Value *V = Gather(VL, VecTy); 3656 if (!ReuseShuffleIndicies.empty()) { 3657 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3658 ReuseShuffleIndicies, "shuffle"); 3659 if (auto *I = dyn_cast<Instruction>(V)) { 3660 GatherSeq.insert(I); 3661 CSEBlocks.insert(I->getParent()); 3662 } 3663 } 3664 return V; 3665 } 3666 3667 static void inversePermutation(ArrayRef<unsigned> Indices, 3668 SmallVectorImpl<unsigned> &Mask) { 3669 Mask.clear(); 3670 const unsigned E = Indices.size(); 3671 Mask.resize(E); 3672 for (unsigned I = 0; I < E; ++I) 3673 Mask[Indices[I]] = I; 3674 } 3675 3676 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 3677 IRBuilder<>::InsertPointGuard Guard(Builder); 3678 3679 if (E->VectorizedValue) { 3680 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 3681 return E->VectorizedValue; 3682 } 3683 3684 Instruction *VL0 = E->getMainOp(); 3685 Type *ScalarTy = VL0->getType(); 3686 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 3687 ScalarTy = SI->getValueOperand()->getType(); 3688 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 3689 3690 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3691 3692 if (E->NeedToGather) { 3693 setInsertPointAfterBundle(E); 3694 auto *V = Gather(E->Scalars, VecTy); 3695 if (NeedToShuffleReuses) { 3696 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3697 E->ReuseShuffleIndices, "shuffle"); 3698 if (auto *I = dyn_cast<Instruction>(V)) { 3699 GatherSeq.insert(I); 3700 CSEBlocks.insert(I->getParent()); 3701 } 3702 } 3703 E->VectorizedValue = V; 3704 return V; 3705 } 3706 3707 unsigned ShuffleOrOp = 3708 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 3709 switch (ShuffleOrOp) { 3710 case Instruction::PHI: { 3711 auto *PH = cast<PHINode>(VL0); 3712 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 3713 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 3714 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 3715 Value *V = NewPhi; 3716 if (NeedToShuffleReuses) { 3717 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3718 E->ReuseShuffleIndices, "shuffle"); 3719 } 3720 E->VectorizedValue = V; 3721 3722 // PHINodes may have multiple entries from the same block. We want to 3723 // visit every block once. 3724 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 3725 3726 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 3727 ValueList Operands; 3728 BasicBlock *IBB = PH->getIncomingBlock(i); 3729 3730 if (!VisitedBBs.insert(IBB).second) { 3731 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 3732 continue; 3733 } 3734 3735 Builder.SetInsertPoint(IBB->getTerminator()); 3736 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 3737 Value *Vec = vectorizeTree(E->getOperand(i)); 3738 NewPhi->addIncoming(Vec, IBB); 3739 } 3740 3741 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 3742 "Invalid number of incoming values"); 3743 return V; 3744 } 3745 3746 case Instruction::ExtractElement: { 3747 if (!E->NeedToGather) { 3748 Value *V = E->getSingleOperand(0); 3749 if (!E->ReorderIndices.empty()) { 3750 OrdersType Mask; 3751 inversePermutation(E->ReorderIndices, Mask); 3752 Builder.SetInsertPoint(VL0); 3753 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), Mask, 3754 "reorder_shuffle"); 3755 } 3756 if (NeedToShuffleReuses) { 3757 // TODO: Merge this shuffle with the ReorderShuffleMask. 3758 if (E->ReorderIndices.empty()) 3759 Builder.SetInsertPoint(VL0); 3760 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3761 E->ReuseShuffleIndices, "shuffle"); 3762 } 3763 E->VectorizedValue = V; 3764 return V; 3765 } 3766 setInsertPointAfterBundle(E); 3767 auto *V = Gather(E->Scalars, VecTy); 3768 if (NeedToShuffleReuses) { 3769 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3770 E->ReuseShuffleIndices, "shuffle"); 3771 if (auto *I = dyn_cast<Instruction>(V)) { 3772 GatherSeq.insert(I); 3773 CSEBlocks.insert(I->getParent()); 3774 } 3775 } 3776 E->VectorizedValue = V; 3777 return V; 3778 } 3779 case Instruction::ExtractValue: { 3780 if (!E->NeedToGather) { 3781 LoadInst *LI = cast<LoadInst>(E->getSingleOperand(0)); 3782 Builder.SetInsertPoint(LI); 3783 PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 3784 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 3785 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlignment()); 3786 Value *NewV = propagateMetadata(V, E->Scalars); 3787 if (!E->ReorderIndices.empty()) { 3788 OrdersType Mask; 3789 inversePermutation(E->ReorderIndices, Mask); 3790 NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), Mask, 3791 "reorder_shuffle"); 3792 } 3793 if (NeedToShuffleReuses) { 3794 // TODO: Merge this shuffle with the ReorderShuffleMask. 3795 NewV = Builder.CreateShuffleVector( 3796 NewV, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle"); 3797 } 3798 E->VectorizedValue = NewV; 3799 return NewV; 3800 } 3801 setInsertPointAfterBundle(E); 3802 auto *V = Gather(E->Scalars, VecTy); 3803 if (NeedToShuffleReuses) { 3804 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3805 E->ReuseShuffleIndices, "shuffle"); 3806 if (auto *I = dyn_cast<Instruction>(V)) { 3807 GatherSeq.insert(I); 3808 CSEBlocks.insert(I->getParent()); 3809 } 3810 } 3811 E->VectorizedValue = V; 3812 return V; 3813 } 3814 case Instruction::ZExt: 3815 case Instruction::SExt: 3816 case Instruction::FPToUI: 3817 case Instruction::FPToSI: 3818 case Instruction::FPExt: 3819 case Instruction::PtrToInt: 3820 case Instruction::IntToPtr: 3821 case Instruction::SIToFP: 3822 case Instruction::UIToFP: 3823 case Instruction::Trunc: 3824 case Instruction::FPTrunc: 3825 case Instruction::BitCast: { 3826 setInsertPointAfterBundle(E); 3827 3828 Value *InVec = vectorizeTree(E->getOperand(0)); 3829 3830 if (E->VectorizedValue) { 3831 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3832 return E->VectorizedValue; 3833 } 3834 3835 auto *CI = cast<CastInst>(VL0); 3836 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 3837 if (NeedToShuffleReuses) { 3838 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3839 E->ReuseShuffleIndices, "shuffle"); 3840 } 3841 E->VectorizedValue = V; 3842 ++NumVectorInstructions; 3843 return V; 3844 } 3845 case Instruction::FCmp: 3846 case Instruction::ICmp: { 3847 setInsertPointAfterBundle(E); 3848 3849 Value *L = vectorizeTree(E->getOperand(0)); 3850 Value *R = vectorizeTree(E->getOperand(1)); 3851 3852 if (E->VectorizedValue) { 3853 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3854 return E->VectorizedValue; 3855 } 3856 3857 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 3858 Value *V; 3859 if (E->getOpcode() == Instruction::FCmp) 3860 V = Builder.CreateFCmp(P0, L, R); 3861 else 3862 V = Builder.CreateICmp(P0, L, R); 3863 3864 propagateIRFlags(V, E->Scalars, VL0); 3865 if (NeedToShuffleReuses) { 3866 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3867 E->ReuseShuffleIndices, "shuffle"); 3868 } 3869 E->VectorizedValue = V; 3870 ++NumVectorInstructions; 3871 return V; 3872 } 3873 case Instruction::Select: { 3874 setInsertPointAfterBundle(E); 3875 3876 Value *Cond = vectorizeTree(E->getOperand(0)); 3877 Value *True = vectorizeTree(E->getOperand(1)); 3878 Value *False = vectorizeTree(E->getOperand(2)); 3879 3880 if (E->VectorizedValue) { 3881 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3882 return E->VectorizedValue; 3883 } 3884 3885 Value *V = Builder.CreateSelect(Cond, True, False); 3886 if (NeedToShuffleReuses) { 3887 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3888 E->ReuseShuffleIndices, "shuffle"); 3889 } 3890 E->VectorizedValue = V; 3891 ++NumVectorInstructions; 3892 return V; 3893 } 3894 case Instruction::FNeg: { 3895 setInsertPointAfterBundle(E); 3896 3897 Value *Op = vectorizeTree(E->getOperand(0)); 3898 3899 if (E->VectorizedValue) { 3900 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3901 return E->VectorizedValue; 3902 } 3903 3904 Value *V = Builder.CreateUnOp( 3905 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 3906 propagateIRFlags(V, E->Scalars, VL0); 3907 if (auto *I = dyn_cast<Instruction>(V)) 3908 V = propagateMetadata(I, E->Scalars); 3909 3910 if (NeedToShuffleReuses) { 3911 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3912 E->ReuseShuffleIndices, "shuffle"); 3913 } 3914 E->VectorizedValue = V; 3915 ++NumVectorInstructions; 3916 3917 return V; 3918 } 3919 case Instruction::Add: 3920 case Instruction::FAdd: 3921 case Instruction::Sub: 3922 case Instruction::FSub: 3923 case Instruction::Mul: 3924 case Instruction::FMul: 3925 case Instruction::UDiv: 3926 case Instruction::SDiv: 3927 case Instruction::FDiv: 3928 case Instruction::URem: 3929 case Instruction::SRem: 3930 case Instruction::FRem: 3931 case Instruction::Shl: 3932 case Instruction::LShr: 3933 case Instruction::AShr: 3934 case Instruction::And: 3935 case Instruction::Or: 3936 case Instruction::Xor: { 3937 setInsertPointAfterBundle(E); 3938 3939 Value *LHS = vectorizeTree(E->getOperand(0)); 3940 Value *RHS = vectorizeTree(E->getOperand(1)); 3941 3942 if (E->VectorizedValue) { 3943 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3944 return E->VectorizedValue; 3945 } 3946 3947 Value *V = Builder.CreateBinOp( 3948 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 3949 RHS); 3950 propagateIRFlags(V, E->Scalars, VL0); 3951 if (auto *I = dyn_cast<Instruction>(V)) 3952 V = propagateMetadata(I, E->Scalars); 3953 3954 if (NeedToShuffleReuses) { 3955 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3956 E->ReuseShuffleIndices, "shuffle"); 3957 } 3958 E->VectorizedValue = V; 3959 ++NumVectorInstructions; 3960 3961 return V; 3962 } 3963 case Instruction::Load: { 3964 // Loads are inserted at the head of the tree because we don't want to 3965 // sink them all the way down past store instructions. 3966 bool IsReorder = E->updateStateIfReorder(); 3967 if (IsReorder) 3968 VL0 = E->getMainOp(); 3969 setInsertPointAfterBundle(E); 3970 3971 LoadInst *LI = cast<LoadInst>(VL0); 3972 Type *ScalarLoadTy = LI->getType(); 3973 unsigned AS = LI->getPointerAddressSpace(); 3974 3975 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 3976 VecTy->getPointerTo(AS)); 3977 3978 // The pointer operand uses an in-tree scalar so we add the new BitCast to 3979 // ExternalUses list to make sure that an extract will be generated in the 3980 // future. 3981 Value *PO = LI->getPointerOperand(); 3982 if (getTreeEntry(PO)) 3983 ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0)); 3984 3985 MaybeAlign Alignment = MaybeAlign(LI->getAlignment()); 3986 LI = Builder.CreateLoad(VecTy, VecPtr); 3987 if (!Alignment) 3988 Alignment = MaybeAlign(DL->getABITypeAlignment(ScalarLoadTy)); 3989 LI->setAlignment(Alignment); 3990 Value *V = propagateMetadata(LI, E->Scalars); 3991 if (IsReorder) { 3992 OrdersType Mask; 3993 inversePermutation(E->ReorderIndices, Mask); 3994 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 3995 Mask, "reorder_shuffle"); 3996 } 3997 if (NeedToShuffleReuses) { 3998 // TODO: Merge this shuffle with the ReorderShuffleMask. 3999 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4000 E->ReuseShuffleIndices, "shuffle"); 4001 } 4002 E->VectorizedValue = V; 4003 ++NumVectorInstructions; 4004 return V; 4005 } 4006 case Instruction::Store: { 4007 StoreInst *SI = cast<StoreInst>(VL0); 4008 unsigned Alignment = SI->getAlignment(); 4009 unsigned AS = SI->getPointerAddressSpace(); 4010 4011 setInsertPointAfterBundle(E); 4012 4013 Value *VecValue = vectorizeTree(E->getOperand(0)); 4014 Value *ScalarPtr = SI->getPointerOperand(); 4015 Value *VecPtr = Builder.CreateBitCast(ScalarPtr, VecTy->getPointerTo(AS)); 4016 StoreInst *ST = Builder.CreateStore(VecValue, VecPtr); 4017 4018 // The pointer operand uses an in-tree scalar, so add the new BitCast to 4019 // ExternalUses to make sure that an extract will be generated in the 4020 // future. 4021 if (getTreeEntry(ScalarPtr)) 4022 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 4023 4024 if (!Alignment) 4025 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); 4026 4027 ST->setAlignment(Align(Alignment)); 4028 Value *V = propagateMetadata(ST, E->Scalars); 4029 if (NeedToShuffleReuses) { 4030 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4031 E->ReuseShuffleIndices, "shuffle"); 4032 } 4033 E->VectorizedValue = V; 4034 ++NumVectorInstructions; 4035 return V; 4036 } 4037 case Instruction::GetElementPtr: { 4038 setInsertPointAfterBundle(E); 4039 4040 Value *Op0 = vectorizeTree(E->getOperand(0)); 4041 4042 std::vector<Value *> OpVecs; 4043 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 4044 ++j) { 4045 Value *OpVec = vectorizeTree(E->getOperand(j)); 4046 OpVecs.push_back(OpVec); 4047 } 4048 4049 Value *V = Builder.CreateGEP( 4050 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 4051 if (Instruction *I = dyn_cast<Instruction>(V)) 4052 V = propagateMetadata(I, E->Scalars); 4053 4054 if (NeedToShuffleReuses) { 4055 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4056 E->ReuseShuffleIndices, "shuffle"); 4057 } 4058 E->VectorizedValue = V; 4059 ++NumVectorInstructions; 4060 4061 return V; 4062 } 4063 case Instruction::Call: { 4064 CallInst *CI = cast<CallInst>(VL0); 4065 setInsertPointAfterBundle(E); 4066 4067 Intrinsic::ID IID = Intrinsic::not_intrinsic; 4068 if (Function *FI = CI->getCalledFunction()) 4069 IID = FI->getIntrinsicID(); 4070 4071 Value *ScalarArg = nullptr; 4072 std::vector<Value *> OpVecs; 4073 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 4074 ValueList OpVL; 4075 // Some intrinsics have scalar arguments. This argument should not be 4076 // vectorized. 4077 if (hasVectorInstrinsicScalarOpd(IID, j)) { 4078 CallInst *CEI = cast<CallInst>(VL0); 4079 ScalarArg = CEI->getArgOperand(j); 4080 OpVecs.push_back(CEI->getArgOperand(j)); 4081 continue; 4082 } 4083 4084 Value *OpVec = vectorizeTree(E->getOperand(j)); 4085 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 4086 OpVecs.push_back(OpVec); 4087 } 4088 4089 Module *M = F->getParent(); 4090 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4091 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 4092 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 4093 SmallVector<OperandBundleDef, 1> OpBundles; 4094 CI->getOperandBundlesAsDefs(OpBundles); 4095 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 4096 4097 // The scalar argument uses an in-tree scalar so we add the new vectorized 4098 // call to ExternalUses list to make sure that an extract will be 4099 // generated in the future. 4100 if (ScalarArg && getTreeEntry(ScalarArg)) 4101 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 4102 4103 propagateIRFlags(V, E->Scalars, VL0); 4104 if (NeedToShuffleReuses) { 4105 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4106 E->ReuseShuffleIndices, "shuffle"); 4107 } 4108 E->VectorizedValue = V; 4109 ++NumVectorInstructions; 4110 return V; 4111 } 4112 case Instruction::ShuffleVector: { 4113 assert(E->isAltShuffle() && 4114 ((Instruction::isBinaryOp(E->getOpcode()) && 4115 Instruction::isBinaryOp(E->getAltOpcode())) || 4116 (Instruction::isCast(E->getOpcode()) && 4117 Instruction::isCast(E->getAltOpcode()))) && 4118 "Invalid Shuffle Vector Operand"); 4119 4120 Value *LHS = nullptr, *RHS = nullptr; 4121 if (Instruction::isBinaryOp(E->getOpcode())) { 4122 setInsertPointAfterBundle(E); 4123 LHS = vectorizeTree(E->getOperand(0)); 4124 RHS = vectorizeTree(E->getOperand(1)); 4125 } else { 4126 setInsertPointAfterBundle(E); 4127 LHS = vectorizeTree(E->getOperand(0)); 4128 } 4129 4130 if (E->VectorizedValue) { 4131 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4132 return E->VectorizedValue; 4133 } 4134 4135 Value *V0, *V1; 4136 if (Instruction::isBinaryOp(E->getOpcode())) { 4137 V0 = Builder.CreateBinOp( 4138 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 4139 V1 = Builder.CreateBinOp( 4140 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 4141 } else { 4142 V0 = Builder.CreateCast( 4143 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 4144 V1 = Builder.CreateCast( 4145 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 4146 } 4147 4148 // Create shuffle to take alternate operations from the vector. 4149 // Also, gather up main and alt scalar ops to propagate IR flags to 4150 // each vector operation. 4151 ValueList OpScalars, AltScalars; 4152 unsigned e = E->Scalars.size(); 4153 SmallVector<Constant *, 8> Mask(e); 4154 for (unsigned i = 0; i < e; ++i) { 4155 auto *OpInst = cast<Instruction>(E->Scalars[i]); 4156 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 4157 if (OpInst->getOpcode() == E->getAltOpcode()) { 4158 Mask[i] = Builder.getInt32(e + i); 4159 AltScalars.push_back(E->Scalars[i]); 4160 } else { 4161 Mask[i] = Builder.getInt32(i); 4162 OpScalars.push_back(E->Scalars[i]); 4163 } 4164 } 4165 4166 Value *ShuffleMask = ConstantVector::get(Mask); 4167 propagateIRFlags(V0, OpScalars); 4168 propagateIRFlags(V1, AltScalars); 4169 4170 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 4171 if (Instruction *I = dyn_cast<Instruction>(V)) 4172 V = propagateMetadata(I, E->Scalars); 4173 if (NeedToShuffleReuses) { 4174 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4175 E->ReuseShuffleIndices, "shuffle"); 4176 } 4177 E->VectorizedValue = V; 4178 ++NumVectorInstructions; 4179 4180 return V; 4181 } 4182 default: 4183 llvm_unreachable("unknown inst"); 4184 } 4185 return nullptr; 4186 } 4187 4188 Value *BoUpSLP::vectorizeTree() { 4189 ExtraValueToDebugLocsMap ExternallyUsedValues; 4190 return vectorizeTree(ExternallyUsedValues); 4191 } 4192 4193 Value * 4194 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 4195 // All blocks must be scheduled before any instructions are inserted. 4196 for (auto &BSIter : BlocksSchedules) { 4197 scheduleBlock(BSIter.second.get()); 4198 } 4199 4200 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4201 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 4202 4203 // If the vectorized tree can be rewritten in a smaller type, we truncate the 4204 // vectorized root. InstCombine will then rewrite the entire expression. We 4205 // sign extend the extracted values below. 4206 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4207 if (MinBWs.count(ScalarRoot)) { 4208 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 4209 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 4210 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 4211 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4212 auto *VecTy = VectorType::get(MinTy, BundleWidth); 4213 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 4214 VectorizableTree[0]->VectorizedValue = Trunc; 4215 } 4216 4217 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 4218 << " values .\n"); 4219 4220 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 4221 // specified by ScalarType. 4222 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 4223 if (!MinBWs.count(ScalarRoot)) 4224 return Ex; 4225 if (MinBWs[ScalarRoot].second) 4226 return Builder.CreateSExt(Ex, ScalarType); 4227 return Builder.CreateZExt(Ex, ScalarType); 4228 }; 4229 4230 // Extract all of the elements with the external uses. 4231 for (const auto &ExternalUse : ExternalUses) { 4232 Value *Scalar = ExternalUse.Scalar; 4233 llvm::User *User = ExternalUse.User; 4234 4235 // Skip users that we already RAUW. This happens when one instruction 4236 // has multiple uses of the same value. 4237 if (User && !is_contained(Scalar->users(), User)) 4238 continue; 4239 TreeEntry *E = getTreeEntry(Scalar); 4240 assert(E && "Invalid scalar"); 4241 assert(!E->NeedToGather && "Extracting from a gather list"); 4242 4243 Value *Vec = E->VectorizedValue; 4244 assert(Vec && "Can't find vectorizable value"); 4245 4246 Value *Lane = Builder.getInt32(ExternalUse.Lane); 4247 // If User == nullptr, the Scalar is used as extra arg. Generate 4248 // ExtractElement instruction and update the record for this scalar in 4249 // ExternallyUsedValues. 4250 if (!User) { 4251 assert(ExternallyUsedValues.count(Scalar) && 4252 "Scalar with nullptr as an external user must be registered in " 4253 "ExternallyUsedValues map"); 4254 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4255 Builder.SetInsertPoint(VecI->getParent(), 4256 std::next(VecI->getIterator())); 4257 } else { 4258 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4259 } 4260 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4261 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4262 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 4263 auto &Locs = ExternallyUsedValues[Scalar]; 4264 ExternallyUsedValues.insert({Ex, Locs}); 4265 ExternallyUsedValues.erase(Scalar); 4266 // Required to update internally referenced instructions. 4267 Scalar->replaceAllUsesWith(Ex); 4268 continue; 4269 } 4270 4271 // Generate extracts for out-of-tree users. 4272 // Find the insertion point for the extractelement lane. 4273 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4274 if (PHINode *PH = dyn_cast<PHINode>(User)) { 4275 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 4276 if (PH->getIncomingValue(i) == Scalar) { 4277 Instruction *IncomingTerminator = 4278 PH->getIncomingBlock(i)->getTerminator(); 4279 if (isa<CatchSwitchInst>(IncomingTerminator)) { 4280 Builder.SetInsertPoint(VecI->getParent(), 4281 std::next(VecI->getIterator())); 4282 } else { 4283 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 4284 } 4285 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4286 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4287 CSEBlocks.insert(PH->getIncomingBlock(i)); 4288 PH->setOperand(i, Ex); 4289 } 4290 } 4291 } else { 4292 Builder.SetInsertPoint(cast<Instruction>(User)); 4293 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4294 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4295 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 4296 User->replaceUsesOfWith(Scalar, Ex); 4297 } 4298 } else { 4299 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4300 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4301 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4302 CSEBlocks.insert(&F->getEntryBlock()); 4303 User->replaceUsesOfWith(Scalar, Ex); 4304 } 4305 4306 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 4307 } 4308 4309 // For each vectorized value: 4310 for (auto &TEPtr : VectorizableTree) { 4311 TreeEntry *Entry = TEPtr.get(); 4312 4313 // No need to handle users of gathered values. 4314 if (Entry->NeedToGather) 4315 continue; 4316 4317 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 4318 4319 // For each lane: 4320 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 4321 Value *Scalar = Entry->Scalars[Lane]; 4322 4323 #ifndef NDEBUG 4324 Type *Ty = Scalar->getType(); 4325 if (!Ty->isVoidTy()) { 4326 for (User *U : Scalar->users()) { 4327 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 4328 4329 // It is legal to delete users in the ignorelist. 4330 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 4331 "Deleting out-of-tree value"); 4332 } 4333 } 4334 #endif 4335 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 4336 eraseInstruction(cast<Instruction>(Scalar)); 4337 } 4338 } 4339 4340 Builder.ClearInsertionPoint(); 4341 4342 return VectorizableTree[0]->VectorizedValue; 4343 } 4344 4345 void BoUpSLP::optimizeGatherSequence() { 4346 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 4347 << " gather sequences instructions.\n"); 4348 // LICM InsertElementInst sequences. 4349 for (Instruction *I : GatherSeq) { 4350 if (isDeleted(I)) 4351 continue; 4352 4353 // Check if this block is inside a loop. 4354 Loop *L = LI->getLoopFor(I->getParent()); 4355 if (!L) 4356 continue; 4357 4358 // Check if it has a preheader. 4359 BasicBlock *PreHeader = L->getLoopPreheader(); 4360 if (!PreHeader) 4361 continue; 4362 4363 // If the vector or the element that we insert into it are 4364 // instructions that are defined in this basic block then we can't 4365 // hoist this instruction. 4366 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 4367 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 4368 if (Op0 && L->contains(Op0)) 4369 continue; 4370 if (Op1 && L->contains(Op1)) 4371 continue; 4372 4373 // We can hoist this instruction. Move it to the pre-header. 4374 I->moveBefore(PreHeader->getTerminator()); 4375 } 4376 4377 // Make a list of all reachable blocks in our CSE queue. 4378 SmallVector<const DomTreeNode *, 8> CSEWorkList; 4379 CSEWorkList.reserve(CSEBlocks.size()); 4380 for (BasicBlock *BB : CSEBlocks) 4381 if (DomTreeNode *N = DT->getNode(BB)) { 4382 assert(DT->isReachableFromEntry(N)); 4383 CSEWorkList.push_back(N); 4384 } 4385 4386 // Sort blocks by domination. This ensures we visit a block after all blocks 4387 // dominating it are visited. 4388 llvm::stable_sort(CSEWorkList, 4389 [this](const DomTreeNode *A, const DomTreeNode *B) { 4390 return DT->properlyDominates(A, B); 4391 }); 4392 4393 // Perform O(N^2) search over the gather sequences and merge identical 4394 // instructions. TODO: We can further optimize this scan if we split the 4395 // instructions into different buckets based on the insert lane. 4396 SmallVector<Instruction *, 16> Visited; 4397 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 4398 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 4399 "Worklist not sorted properly!"); 4400 BasicBlock *BB = (*I)->getBlock(); 4401 // For all instructions in blocks containing gather sequences: 4402 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 4403 Instruction *In = &*it++; 4404 if (isDeleted(In)) 4405 continue; 4406 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 4407 continue; 4408 4409 // Check if we can replace this instruction with any of the 4410 // visited instructions. 4411 for (Instruction *v : Visited) { 4412 if (In->isIdenticalTo(v) && 4413 DT->dominates(v->getParent(), In->getParent())) { 4414 In->replaceAllUsesWith(v); 4415 eraseInstruction(In); 4416 In = nullptr; 4417 break; 4418 } 4419 } 4420 if (In) { 4421 assert(!is_contained(Visited, In)); 4422 Visited.push_back(In); 4423 } 4424 } 4425 } 4426 CSEBlocks.clear(); 4427 GatherSeq.clear(); 4428 } 4429 4430 // Groups the instructions to a bundle (which is then a single scheduling entity) 4431 // and schedules instructions until the bundle gets ready. 4432 Optional<BoUpSLP::ScheduleData *> 4433 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 4434 const InstructionsState &S) { 4435 if (isa<PHINode>(S.OpValue)) 4436 return nullptr; 4437 4438 // Initialize the instruction bundle. 4439 Instruction *OldScheduleEnd = ScheduleEnd; 4440 ScheduleData *PrevInBundle = nullptr; 4441 ScheduleData *Bundle = nullptr; 4442 bool ReSchedule = false; 4443 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 4444 4445 // Make sure that the scheduling region contains all 4446 // instructions of the bundle. 4447 for (Value *V : VL) { 4448 if (!extendSchedulingRegion(V, S)) 4449 return None; 4450 } 4451 4452 for (Value *V : VL) { 4453 ScheduleData *BundleMember = getScheduleData(V); 4454 assert(BundleMember && 4455 "no ScheduleData for bundle member (maybe not in same basic block)"); 4456 if (BundleMember->IsScheduled) { 4457 // A bundle member was scheduled as single instruction before and now 4458 // needs to be scheduled as part of the bundle. We just get rid of the 4459 // existing schedule. 4460 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 4461 << " was already scheduled\n"); 4462 ReSchedule = true; 4463 } 4464 assert(BundleMember->isSchedulingEntity() && 4465 "bundle member already part of other bundle"); 4466 if (PrevInBundle) { 4467 PrevInBundle->NextInBundle = BundleMember; 4468 } else { 4469 Bundle = BundleMember; 4470 } 4471 BundleMember->UnscheduledDepsInBundle = 0; 4472 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 4473 4474 // Group the instructions to a bundle. 4475 BundleMember->FirstInBundle = Bundle; 4476 PrevInBundle = BundleMember; 4477 } 4478 if (ScheduleEnd != OldScheduleEnd) { 4479 // The scheduling region got new instructions at the lower end (or it is a 4480 // new region for the first bundle). This makes it necessary to 4481 // recalculate all dependencies. 4482 // It is seldom that this needs to be done a second time after adding the 4483 // initial bundle to the region. 4484 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 4485 doForAllOpcodes(I, [](ScheduleData *SD) { 4486 SD->clearDependencies(); 4487 }); 4488 } 4489 ReSchedule = true; 4490 } 4491 if (ReSchedule) { 4492 resetSchedule(); 4493 initialFillReadyList(ReadyInsts); 4494 } 4495 assert(Bundle && "Failed to find schedule bundle"); 4496 4497 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 4498 << BB->getName() << "\n"); 4499 4500 calculateDependencies(Bundle, true, SLP); 4501 4502 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 4503 // means that there are no cyclic dependencies and we can schedule it. 4504 // Note that's important that we don't "schedule" the bundle yet (see 4505 // cancelScheduling). 4506 while (!Bundle->isReady() && !ReadyInsts.empty()) { 4507 4508 ScheduleData *pickedSD = ReadyInsts.back(); 4509 ReadyInsts.pop_back(); 4510 4511 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 4512 schedule(pickedSD, ReadyInsts); 4513 } 4514 } 4515 if (!Bundle->isReady()) { 4516 cancelScheduling(VL, S.OpValue); 4517 return None; 4518 } 4519 return Bundle; 4520 } 4521 4522 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 4523 Value *OpValue) { 4524 if (isa<PHINode>(OpValue)) 4525 return; 4526 4527 ScheduleData *Bundle = getScheduleData(OpValue); 4528 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 4529 assert(!Bundle->IsScheduled && 4530 "Can't cancel bundle which is already scheduled"); 4531 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 4532 "tried to unbundle something which is not a bundle"); 4533 4534 // Un-bundle: make single instructions out of the bundle. 4535 ScheduleData *BundleMember = Bundle; 4536 while (BundleMember) { 4537 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 4538 BundleMember->FirstInBundle = BundleMember; 4539 ScheduleData *Next = BundleMember->NextInBundle; 4540 BundleMember->NextInBundle = nullptr; 4541 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 4542 if (BundleMember->UnscheduledDepsInBundle == 0) { 4543 ReadyInsts.insert(BundleMember); 4544 } 4545 BundleMember = Next; 4546 } 4547 } 4548 4549 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 4550 // Allocate a new ScheduleData for the instruction. 4551 if (ChunkPos >= ChunkSize) { 4552 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 4553 ChunkPos = 0; 4554 } 4555 return &(ScheduleDataChunks.back()[ChunkPos++]); 4556 } 4557 4558 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 4559 const InstructionsState &S) { 4560 if (getScheduleData(V, isOneOf(S, V))) 4561 return true; 4562 Instruction *I = dyn_cast<Instruction>(V); 4563 assert(I && "bundle member must be an instruction"); 4564 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 4565 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 4566 ScheduleData *ISD = getScheduleData(I); 4567 if (!ISD) 4568 return false; 4569 assert(isInSchedulingRegion(ISD) && 4570 "ScheduleData not in scheduling region"); 4571 ScheduleData *SD = allocateScheduleDataChunks(); 4572 SD->Inst = I; 4573 SD->init(SchedulingRegionID, S.OpValue); 4574 ExtraScheduleDataMap[I][S.OpValue] = SD; 4575 return true; 4576 }; 4577 if (CheckSheduleForI(I)) 4578 return true; 4579 if (!ScheduleStart) { 4580 // It's the first instruction in the new region. 4581 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 4582 ScheduleStart = I; 4583 ScheduleEnd = I->getNextNode(); 4584 if (isOneOf(S, I) != I) 4585 CheckSheduleForI(I); 4586 assert(ScheduleEnd && "tried to vectorize a terminator?"); 4587 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 4588 return true; 4589 } 4590 // Search up and down at the same time, because we don't know if the new 4591 // instruction is above or below the existing scheduling region. 4592 BasicBlock::reverse_iterator UpIter = 4593 ++ScheduleStart->getIterator().getReverse(); 4594 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 4595 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 4596 BasicBlock::iterator LowerEnd = BB->end(); 4597 while (true) { 4598 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 4599 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 4600 return false; 4601 } 4602 4603 if (UpIter != UpperEnd) { 4604 if (&*UpIter == I) { 4605 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 4606 ScheduleStart = I; 4607 if (isOneOf(S, I) != I) 4608 CheckSheduleForI(I); 4609 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 4610 << "\n"); 4611 return true; 4612 } 4613 ++UpIter; 4614 } 4615 if (DownIter != LowerEnd) { 4616 if (&*DownIter == I) { 4617 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 4618 nullptr); 4619 ScheduleEnd = I->getNextNode(); 4620 if (isOneOf(S, I) != I) 4621 CheckSheduleForI(I); 4622 assert(ScheduleEnd && "tried to vectorize a terminator?"); 4623 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I 4624 << "\n"); 4625 return true; 4626 } 4627 ++DownIter; 4628 } 4629 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 4630 "instruction not found in block"); 4631 } 4632 return true; 4633 } 4634 4635 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 4636 Instruction *ToI, 4637 ScheduleData *PrevLoadStore, 4638 ScheduleData *NextLoadStore) { 4639 ScheduleData *CurrentLoadStore = PrevLoadStore; 4640 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 4641 ScheduleData *SD = ScheduleDataMap[I]; 4642 if (!SD) { 4643 SD = allocateScheduleDataChunks(); 4644 ScheduleDataMap[I] = SD; 4645 SD->Inst = I; 4646 } 4647 assert(!isInSchedulingRegion(SD) && 4648 "new ScheduleData already in scheduling region"); 4649 SD->init(SchedulingRegionID, I); 4650 4651 if (I->mayReadOrWriteMemory() && 4652 (!isa<IntrinsicInst>(I) || 4653 cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) { 4654 // Update the linked list of memory accessing instructions. 4655 if (CurrentLoadStore) { 4656 CurrentLoadStore->NextLoadStore = SD; 4657 } else { 4658 FirstLoadStoreInRegion = SD; 4659 } 4660 CurrentLoadStore = SD; 4661 } 4662 } 4663 if (NextLoadStore) { 4664 if (CurrentLoadStore) 4665 CurrentLoadStore->NextLoadStore = NextLoadStore; 4666 } else { 4667 LastLoadStoreInRegion = CurrentLoadStore; 4668 } 4669 } 4670 4671 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 4672 bool InsertInReadyList, 4673 BoUpSLP *SLP) { 4674 assert(SD->isSchedulingEntity()); 4675 4676 SmallVector<ScheduleData *, 10> WorkList; 4677 WorkList.push_back(SD); 4678 4679 while (!WorkList.empty()) { 4680 ScheduleData *SD = WorkList.back(); 4681 WorkList.pop_back(); 4682 4683 ScheduleData *BundleMember = SD; 4684 while (BundleMember) { 4685 assert(isInSchedulingRegion(BundleMember)); 4686 if (!BundleMember->hasValidDependencies()) { 4687 4688 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 4689 << "\n"); 4690 BundleMember->Dependencies = 0; 4691 BundleMember->resetUnscheduledDeps(); 4692 4693 // Handle def-use chain dependencies. 4694 if (BundleMember->OpValue != BundleMember->Inst) { 4695 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 4696 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 4697 BundleMember->Dependencies++; 4698 ScheduleData *DestBundle = UseSD->FirstInBundle; 4699 if (!DestBundle->IsScheduled) 4700 BundleMember->incrementUnscheduledDeps(1); 4701 if (!DestBundle->hasValidDependencies()) 4702 WorkList.push_back(DestBundle); 4703 } 4704 } else { 4705 for (User *U : BundleMember->Inst->users()) { 4706 if (isa<Instruction>(U)) { 4707 ScheduleData *UseSD = getScheduleData(U); 4708 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 4709 BundleMember->Dependencies++; 4710 ScheduleData *DestBundle = UseSD->FirstInBundle; 4711 if (!DestBundle->IsScheduled) 4712 BundleMember->incrementUnscheduledDeps(1); 4713 if (!DestBundle->hasValidDependencies()) 4714 WorkList.push_back(DestBundle); 4715 } 4716 } else { 4717 // I'm not sure if this can ever happen. But we need to be safe. 4718 // This lets the instruction/bundle never be scheduled and 4719 // eventually disable vectorization. 4720 BundleMember->Dependencies++; 4721 BundleMember->incrementUnscheduledDeps(1); 4722 } 4723 } 4724 } 4725 4726 // Handle the memory dependencies. 4727 ScheduleData *DepDest = BundleMember->NextLoadStore; 4728 if (DepDest) { 4729 Instruction *SrcInst = BundleMember->Inst; 4730 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 4731 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 4732 unsigned numAliased = 0; 4733 unsigned DistToSrc = 1; 4734 4735 while (DepDest) { 4736 assert(isInSchedulingRegion(DepDest)); 4737 4738 // We have two limits to reduce the complexity: 4739 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 4740 // SLP->isAliased (which is the expensive part in this loop). 4741 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 4742 // the whole loop (even if the loop is fast, it's quadratic). 4743 // It's important for the loop break condition (see below) to 4744 // check this limit even between two read-only instructions. 4745 if (DistToSrc >= MaxMemDepDistance || 4746 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 4747 (numAliased >= AliasedCheckLimit || 4748 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 4749 4750 // We increment the counter only if the locations are aliased 4751 // (instead of counting all alias checks). This gives a better 4752 // balance between reduced runtime and accurate dependencies. 4753 numAliased++; 4754 4755 DepDest->MemoryDependencies.push_back(BundleMember); 4756 BundleMember->Dependencies++; 4757 ScheduleData *DestBundle = DepDest->FirstInBundle; 4758 if (!DestBundle->IsScheduled) { 4759 BundleMember->incrementUnscheduledDeps(1); 4760 } 4761 if (!DestBundle->hasValidDependencies()) { 4762 WorkList.push_back(DestBundle); 4763 } 4764 } 4765 DepDest = DepDest->NextLoadStore; 4766 4767 // Example, explaining the loop break condition: Let's assume our 4768 // starting instruction is i0 and MaxMemDepDistance = 3. 4769 // 4770 // +--------v--v--v 4771 // i0,i1,i2,i3,i4,i5,i6,i7,i8 4772 // +--------^--^--^ 4773 // 4774 // MaxMemDepDistance let us stop alias-checking at i3 and we add 4775 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 4776 // Previously we already added dependencies from i3 to i6,i7,i8 4777 // (because of MaxMemDepDistance). As we added a dependency from 4778 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 4779 // and we can abort this loop at i6. 4780 if (DistToSrc >= 2 * MaxMemDepDistance) 4781 break; 4782 DistToSrc++; 4783 } 4784 } 4785 } 4786 BundleMember = BundleMember->NextInBundle; 4787 } 4788 if (InsertInReadyList && SD->isReady()) { 4789 ReadyInsts.push_back(SD); 4790 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 4791 << "\n"); 4792 } 4793 } 4794 } 4795 4796 void BoUpSLP::BlockScheduling::resetSchedule() { 4797 assert(ScheduleStart && 4798 "tried to reset schedule on block which has not been scheduled"); 4799 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 4800 doForAllOpcodes(I, [&](ScheduleData *SD) { 4801 assert(isInSchedulingRegion(SD) && 4802 "ScheduleData not in scheduling region"); 4803 SD->IsScheduled = false; 4804 SD->resetUnscheduledDeps(); 4805 }); 4806 } 4807 ReadyInsts.clear(); 4808 } 4809 4810 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 4811 if (!BS->ScheduleStart) 4812 return; 4813 4814 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 4815 4816 BS->resetSchedule(); 4817 4818 // For the real scheduling we use a more sophisticated ready-list: it is 4819 // sorted by the original instruction location. This lets the final schedule 4820 // be as close as possible to the original instruction order. 4821 struct ScheduleDataCompare { 4822 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 4823 return SD2->SchedulingPriority < SD1->SchedulingPriority; 4824 } 4825 }; 4826 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 4827 4828 // Ensure that all dependency data is updated and fill the ready-list with 4829 // initial instructions. 4830 int Idx = 0; 4831 int NumToSchedule = 0; 4832 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 4833 I = I->getNextNode()) { 4834 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 4835 assert(SD->isPartOfBundle() == 4836 (getTreeEntry(SD->Inst) != nullptr) && 4837 "scheduler and vectorizer bundle mismatch"); 4838 SD->FirstInBundle->SchedulingPriority = Idx++; 4839 if (SD->isSchedulingEntity()) { 4840 BS->calculateDependencies(SD, false, this); 4841 NumToSchedule++; 4842 } 4843 }); 4844 } 4845 BS->initialFillReadyList(ReadyInsts); 4846 4847 Instruction *LastScheduledInst = BS->ScheduleEnd; 4848 4849 // Do the "real" scheduling. 4850 while (!ReadyInsts.empty()) { 4851 ScheduleData *picked = *ReadyInsts.begin(); 4852 ReadyInsts.erase(ReadyInsts.begin()); 4853 4854 // Move the scheduled instruction(s) to their dedicated places, if not 4855 // there yet. 4856 ScheduleData *BundleMember = picked; 4857 while (BundleMember) { 4858 Instruction *pickedInst = BundleMember->Inst; 4859 if (LastScheduledInst->getNextNode() != pickedInst) { 4860 BS->BB->getInstList().remove(pickedInst); 4861 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 4862 pickedInst); 4863 } 4864 LastScheduledInst = pickedInst; 4865 BundleMember = BundleMember->NextInBundle; 4866 } 4867 4868 BS->schedule(picked, ReadyInsts); 4869 NumToSchedule--; 4870 } 4871 assert(NumToSchedule == 0 && "could not schedule all instructions"); 4872 4873 // Avoid duplicate scheduling of the block. 4874 BS->ScheduleStart = nullptr; 4875 } 4876 4877 unsigned BoUpSLP::getVectorElementSize(Value *V) const { 4878 // If V is a store, just return the width of the stored value without 4879 // traversing the expression tree. This is the common case. 4880 if (auto *Store = dyn_cast<StoreInst>(V)) 4881 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 4882 4883 // If V is not a store, we can traverse the expression tree to find loads 4884 // that feed it. The type of the loaded value may indicate a more suitable 4885 // width than V's type. We want to base the vector element size on the width 4886 // of memory operations where possible. 4887 SmallVector<Instruction *, 16> Worklist; 4888 SmallPtrSet<Instruction *, 16> Visited; 4889 if (auto *I = dyn_cast<Instruction>(V)) 4890 Worklist.push_back(I); 4891 4892 // Traverse the expression tree in bottom-up order looking for loads. If we 4893 // encounter an instruction we don't yet handle, we give up. 4894 auto MaxWidth = 0u; 4895 auto FoundUnknownInst = false; 4896 while (!Worklist.empty() && !FoundUnknownInst) { 4897 auto *I = Worklist.pop_back_val(); 4898 Visited.insert(I); 4899 4900 // We should only be looking at scalar instructions here. If the current 4901 // instruction has a vector type, give up. 4902 auto *Ty = I->getType(); 4903 if (isa<VectorType>(Ty)) 4904 FoundUnknownInst = true; 4905 4906 // If the current instruction is a load, update MaxWidth to reflect the 4907 // width of the loaded value. 4908 else if (isa<LoadInst>(I)) 4909 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 4910 4911 // Otherwise, we need to visit the operands of the instruction. We only 4912 // handle the interesting cases from buildTree here. If an operand is an 4913 // instruction we haven't yet visited, we add it to the worklist. 4914 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 4915 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 4916 for (Use &U : I->operands()) 4917 if (auto *J = dyn_cast<Instruction>(U.get())) 4918 if (!Visited.count(J)) 4919 Worklist.push_back(J); 4920 } 4921 4922 // If we don't yet handle the instruction, give up. 4923 else 4924 FoundUnknownInst = true; 4925 } 4926 4927 // If we didn't encounter a memory access in the expression tree, or if we 4928 // gave up for some reason, just return the width of V. 4929 if (!MaxWidth || FoundUnknownInst) 4930 return DL->getTypeSizeInBits(V->getType()); 4931 4932 // Otherwise, return the maximum width we found. 4933 return MaxWidth; 4934 } 4935 4936 // Determine if a value V in a vectorizable expression Expr can be demoted to a 4937 // smaller type with a truncation. We collect the values that will be demoted 4938 // in ToDemote and additional roots that require investigating in Roots. 4939 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 4940 SmallVectorImpl<Value *> &ToDemote, 4941 SmallVectorImpl<Value *> &Roots) { 4942 // We can always demote constants. 4943 if (isa<Constant>(V)) { 4944 ToDemote.push_back(V); 4945 return true; 4946 } 4947 4948 // If the value is not an instruction in the expression with only one use, it 4949 // cannot be demoted. 4950 auto *I = dyn_cast<Instruction>(V); 4951 if (!I || !I->hasOneUse() || !Expr.count(I)) 4952 return false; 4953 4954 switch (I->getOpcode()) { 4955 4956 // We can always demote truncations and extensions. Since truncations can 4957 // seed additional demotion, we save the truncated value. 4958 case Instruction::Trunc: 4959 Roots.push_back(I->getOperand(0)); 4960 break; 4961 case Instruction::ZExt: 4962 case Instruction::SExt: 4963 break; 4964 4965 // We can demote certain binary operations if we can demote both of their 4966 // operands. 4967 case Instruction::Add: 4968 case Instruction::Sub: 4969 case Instruction::Mul: 4970 case Instruction::And: 4971 case Instruction::Or: 4972 case Instruction::Xor: 4973 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 4974 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 4975 return false; 4976 break; 4977 4978 // We can demote selects if we can demote their true and false values. 4979 case Instruction::Select: { 4980 SelectInst *SI = cast<SelectInst>(I); 4981 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 4982 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 4983 return false; 4984 break; 4985 } 4986 4987 // We can demote phis if we can demote all their incoming operands. Note that 4988 // we don't need to worry about cycles since we ensure single use above. 4989 case Instruction::PHI: { 4990 PHINode *PN = cast<PHINode>(I); 4991 for (Value *IncValue : PN->incoming_values()) 4992 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 4993 return false; 4994 break; 4995 } 4996 4997 // Otherwise, conservatively give up. 4998 default: 4999 return false; 5000 } 5001 5002 // Record the value that we can demote. 5003 ToDemote.push_back(V); 5004 return true; 5005 } 5006 5007 void BoUpSLP::computeMinimumValueSizes() { 5008 // If there are no external uses, the expression tree must be rooted by a 5009 // store. We can't demote in-memory values, so there is nothing to do here. 5010 if (ExternalUses.empty()) 5011 return; 5012 5013 // We only attempt to truncate integer expressions. 5014 auto &TreeRoot = VectorizableTree[0]->Scalars; 5015 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 5016 if (!TreeRootIT) 5017 return; 5018 5019 // If the expression is not rooted by a store, these roots should have 5020 // external uses. We will rely on InstCombine to rewrite the expression in 5021 // the narrower type. However, InstCombine only rewrites single-use values. 5022 // This means that if a tree entry other than a root is used externally, it 5023 // must have multiple uses and InstCombine will not rewrite it. The code 5024 // below ensures that only the roots are used externally. 5025 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 5026 for (auto &EU : ExternalUses) 5027 if (!Expr.erase(EU.Scalar)) 5028 return; 5029 if (!Expr.empty()) 5030 return; 5031 5032 // Collect the scalar values of the vectorizable expression. We will use this 5033 // context to determine which values can be demoted. If we see a truncation, 5034 // we mark it as seeding another demotion. 5035 for (auto &EntryPtr : VectorizableTree) 5036 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 5037 5038 // Ensure the roots of the vectorizable tree don't form a cycle. They must 5039 // have a single external user that is not in the vectorizable tree. 5040 for (auto *Root : TreeRoot) 5041 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 5042 return; 5043 5044 // Conservatively determine if we can actually truncate the roots of the 5045 // expression. Collect the values that can be demoted in ToDemote and 5046 // additional roots that require investigating in Roots. 5047 SmallVector<Value *, 32> ToDemote; 5048 SmallVector<Value *, 4> Roots; 5049 for (auto *Root : TreeRoot) 5050 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 5051 return; 5052 5053 // The maximum bit width required to represent all the values that can be 5054 // demoted without loss of precision. It would be safe to truncate the roots 5055 // of the expression to this width. 5056 auto MaxBitWidth = 8u; 5057 5058 // We first check if all the bits of the roots are demanded. If they're not, 5059 // we can truncate the roots to this narrower type. 5060 for (auto *Root : TreeRoot) { 5061 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 5062 MaxBitWidth = std::max<unsigned>( 5063 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 5064 } 5065 5066 // True if the roots can be zero-extended back to their original type, rather 5067 // than sign-extended. We know that if the leading bits are not demanded, we 5068 // can safely zero-extend. So we initialize IsKnownPositive to True. 5069 bool IsKnownPositive = true; 5070 5071 // If all the bits of the roots are demanded, we can try a little harder to 5072 // compute a narrower type. This can happen, for example, if the roots are 5073 // getelementptr indices. InstCombine promotes these indices to the pointer 5074 // width. Thus, all their bits are technically demanded even though the 5075 // address computation might be vectorized in a smaller type. 5076 // 5077 // We start by looking at each entry that can be demoted. We compute the 5078 // maximum bit width required to store the scalar by using ValueTracking to 5079 // compute the number of high-order bits we can truncate. 5080 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 5081 llvm::all_of(TreeRoot, [](Value *R) { 5082 assert(R->hasOneUse() && "Root should have only one use!"); 5083 return isa<GetElementPtrInst>(R->user_back()); 5084 })) { 5085 MaxBitWidth = 8u; 5086 5087 // Determine if the sign bit of all the roots is known to be zero. If not, 5088 // IsKnownPositive is set to False. 5089 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 5090 KnownBits Known = computeKnownBits(R, *DL); 5091 return Known.isNonNegative(); 5092 }); 5093 5094 // Determine the maximum number of bits required to store the scalar 5095 // values. 5096 for (auto *Scalar : ToDemote) { 5097 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 5098 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 5099 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 5100 } 5101 5102 // If we can't prove that the sign bit is zero, we must add one to the 5103 // maximum bit width to account for the unknown sign bit. This preserves 5104 // the existing sign bit so we can safely sign-extend the root back to the 5105 // original type. Otherwise, if we know the sign bit is zero, we will 5106 // zero-extend the root instead. 5107 // 5108 // FIXME: This is somewhat suboptimal, as there will be cases where adding 5109 // one to the maximum bit width will yield a larger-than-necessary 5110 // type. In general, we need to add an extra bit only if we can't 5111 // prove that the upper bit of the original type is equal to the 5112 // upper bit of the proposed smaller type. If these two bits are the 5113 // same (either zero or one) we know that sign-extending from the 5114 // smaller type will result in the same value. Here, since we can't 5115 // yet prove this, we are just making the proposed smaller type 5116 // larger to ensure correctness. 5117 if (!IsKnownPositive) 5118 ++MaxBitWidth; 5119 } 5120 5121 // Round MaxBitWidth up to the next power-of-two. 5122 if (!isPowerOf2_64(MaxBitWidth)) 5123 MaxBitWidth = NextPowerOf2(MaxBitWidth); 5124 5125 // If the maximum bit width we compute is less than the with of the roots' 5126 // type, we can proceed with the narrowing. Otherwise, do nothing. 5127 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 5128 return; 5129 5130 // If we can truncate the root, we must collect additional values that might 5131 // be demoted as a result. That is, those seeded by truncations we will 5132 // modify. 5133 while (!Roots.empty()) 5134 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 5135 5136 // Finally, map the values we can demote to the maximum bit with we computed. 5137 for (auto *Scalar : ToDemote) 5138 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 5139 } 5140 5141 namespace { 5142 5143 /// The SLPVectorizer Pass. 5144 struct SLPVectorizer : public FunctionPass { 5145 SLPVectorizerPass Impl; 5146 5147 /// Pass identification, replacement for typeid 5148 static char ID; 5149 5150 explicit SLPVectorizer() : FunctionPass(ID) { 5151 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 5152 } 5153 5154 bool doInitialization(Module &M) override { 5155 return false; 5156 } 5157 5158 bool runOnFunction(Function &F) override { 5159 if (skipFunction(F)) 5160 return false; 5161 5162 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5163 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 5164 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 5165 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 5166 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 5167 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5168 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5169 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 5170 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 5171 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 5172 5173 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5174 } 5175 5176 void getAnalysisUsage(AnalysisUsage &AU) const override { 5177 FunctionPass::getAnalysisUsage(AU); 5178 AU.addRequired<AssumptionCacheTracker>(); 5179 AU.addRequired<ScalarEvolutionWrapperPass>(); 5180 AU.addRequired<AAResultsWrapperPass>(); 5181 AU.addRequired<TargetTransformInfoWrapperPass>(); 5182 AU.addRequired<LoopInfoWrapperPass>(); 5183 AU.addRequired<DominatorTreeWrapperPass>(); 5184 AU.addRequired<DemandedBitsWrapperPass>(); 5185 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 5186 AU.addPreserved<LoopInfoWrapperPass>(); 5187 AU.addPreserved<DominatorTreeWrapperPass>(); 5188 AU.addPreserved<AAResultsWrapperPass>(); 5189 AU.addPreserved<GlobalsAAWrapperPass>(); 5190 AU.setPreservesCFG(); 5191 } 5192 }; 5193 5194 } // end anonymous namespace 5195 5196 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 5197 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 5198 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 5199 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 5200 auto *AA = &AM.getResult<AAManager>(F); 5201 auto *LI = &AM.getResult<LoopAnalysis>(F); 5202 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 5203 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 5204 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 5205 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 5206 5207 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5208 if (!Changed) 5209 return PreservedAnalyses::all(); 5210 5211 PreservedAnalyses PA; 5212 PA.preserveSet<CFGAnalyses>(); 5213 PA.preserve<AAManager>(); 5214 PA.preserve<GlobalsAA>(); 5215 return PA; 5216 } 5217 5218 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 5219 TargetTransformInfo *TTI_, 5220 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 5221 LoopInfo *LI_, DominatorTree *DT_, 5222 AssumptionCache *AC_, DemandedBits *DB_, 5223 OptimizationRemarkEmitter *ORE_) { 5224 SE = SE_; 5225 TTI = TTI_; 5226 TLI = TLI_; 5227 AA = AA_; 5228 LI = LI_; 5229 DT = DT_; 5230 AC = AC_; 5231 DB = DB_; 5232 DL = &F.getParent()->getDataLayout(); 5233 5234 Stores.clear(); 5235 GEPs.clear(); 5236 bool Changed = false; 5237 5238 // If the target claims to have no vector registers don't attempt 5239 // vectorization. 5240 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) 5241 return false; 5242 5243 // Don't vectorize when the attribute NoImplicitFloat is used. 5244 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 5245 return false; 5246 5247 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 5248 5249 // Use the bottom up slp vectorizer to construct chains that start with 5250 // store instructions. 5251 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 5252 5253 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 5254 // delete instructions. 5255 5256 // Scan the blocks in the function in post order. 5257 for (auto BB : post_order(&F.getEntryBlock())) { 5258 collectSeedInstructions(BB); 5259 5260 // Vectorize trees that end at stores. 5261 if (!Stores.empty()) { 5262 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 5263 << " underlying objects.\n"); 5264 Changed |= vectorizeStoreChains(R); 5265 } 5266 5267 // Vectorize trees that end at reductions. 5268 Changed |= vectorizeChainsInBlock(BB, R); 5269 5270 // Vectorize the index computations of getelementptr instructions. This 5271 // is primarily intended to catch gather-like idioms ending at 5272 // non-consecutive loads. 5273 if (!GEPs.empty()) { 5274 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 5275 << " underlying objects.\n"); 5276 Changed |= vectorizeGEPIndices(BB, R); 5277 } 5278 } 5279 5280 if (Changed) { 5281 R.optimizeGatherSequence(); 5282 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 5283 LLVM_DEBUG(verifyFunction(F)); 5284 } 5285 return Changed; 5286 } 5287 5288 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 5289 unsigned VecRegSize) { 5290 const unsigned ChainLen = Chain.size(); 5291 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 5292 << "\n"); 5293 const unsigned Sz = R.getVectorElementSize(Chain[0]); 5294 const unsigned VF = VecRegSize / Sz; 5295 5296 if (!isPowerOf2_32(Sz) || VF < 2) 5297 return false; 5298 5299 bool Changed = false; 5300 // Look for profitable vectorizable trees at all offsets, starting at zero. 5301 for (unsigned i = 0, e = ChainLen; i + VF <= e; ++i) { 5302 5303 ArrayRef<Value *> Operands = Chain.slice(i, VF); 5304 // Check that a previous iteration of this loop did not delete the Value. 5305 if (llvm::any_of(Operands, [&R](Value *V) { 5306 auto *I = dyn_cast<Instruction>(V); 5307 return I && R.isDeleted(I); 5308 })) 5309 continue; 5310 5311 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 5312 << "\n"); 5313 5314 R.buildTree(Operands); 5315 if (R.isTreeTinyAndNotFullyVectorizable()) 5316 continue; 5317 5318 R.computeMinimumValueSizes(); 5319 5320 int Cost = R.getTreeCost(); 5321 5322 LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF 5323 << "\n"); 5324 if (Cost < -SLPCostThreshold) { 5325 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 5326 5327 using namespace ore; 5328 5329 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 5330 cast<StoreInst>(Chain[i])) 5331 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 5332 << " and with tree size " 5333 << NV("TreeSize", R.getTreeSize())); 5334 5335 R.vectorizeTree(); 5336 5337 // Move to the next bundle. 5338 i += VF - 1; 5339 Changed = true; 5340 } 5341 } 5342 5343 return Changed; 5344 } 5345 5346 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 5347 BoUpSLP &R) { 5348 SetVector<StoreInst *> Heads; 5349 SmallDenseSet<StoreInst *> Tails; 5350 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 5351 5352 // We may run into multiple chains that merge into a single chain. We mark the 5353 // stores that we vectorized so that we don't visit the same store twice. 5354 BoUpSLP::ValueSet VectorizedStores; 5355 bool Changed = false; 5356 5357 auto &&FindConsecutiveAccess = 5358 [this, &Stores, &Heads, &Tails, &ConsecutiveChain] (int K, int Idx) { 5359 if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) 5360 return false; 5361 5362 Tails.insert(Stores[Idx]); 5363 Heads.insert(Stores[K]); 5364 ConsecutiveChain[Stores[K]] = Stores[Idx]; 5365 return true; 5366 }; 5367 5368 // Do a quadratic search on all of the given stores in reverse order and find 5369 // all of the pairs of stores that follow each other. 5370 int E = Stores.size(); 5371 for (int Idx = E - 1; Idx >= 0; --Idx) { 5372 // If a store has multiple consecutive store candidates, search according 5373 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 5374 // This is because usually pairing with immediate succeeding or preceding 5375 // candidate create the best chance to find slp vectorization opportunity. 5376 for (int Offset = 1, F = std::max(E - Idx, Idx + 1); Offset < F; ++Offset) 5377 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 5378 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 5379 break; 5380 } 5381 5382 // For stores that start but don't end a link in the chain: 5383 for (auto *SI : llvm::reverse(Heads)) { 5384 if (Tails.count(SI)) 5385 continue; 5386 5387 // We found a store instr that starts a chain. Now follow the chain and try 5388 // to vectorize it. 5389 BoUpSLP::ValueList Operands; 5390 StoreInst *I = SI; 5391 // Collect the chain into a list. 5392 while ((Tails.count(I) || Heads.count(I)) && !VectorizedStores.count(I)) { 5393 Operands.push_back(I); 5394 // Move to the next value in the chain. 5395 I = ConsecutiveChain[I]; 5396 } 5397 5398 // FIXME: Is division-by-2 the correct step? Should we assert that the 5399 // register size is a power-of-2? 5400 for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize(); 5401 Size /= 2) { 5402 if (vectorizeStoreChain(Operands, R, Size)) { 5403 // Mark the vectorized stores so that we don't vectorize them again. 5404 VectorizedStores.insert(Operands.begin(), Operands.end()); 5405 Changed = true; 5406 break; 5407 } 5408 } 5409 } 5410 5411 return Changed; 5412 } 5413 5414 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 5415 // Initialize the collections. We will make a single pass over the block. 5416 Stores.clear(); 5417 GEPs.clear(); 5418 5419 // Visit the store and getelementptr instructions in BB and organize them in 5420 // Stores and GEPs according to the underlying objects of their pointer 5421 // operands. 5422 for (Instruction &I : *BB) { 5423 // Ignore store instructions that are volatile or have a pointer operand 5424 // that doesn't point to a scalar type. 5425 if (auto *SI = dyn_cast<StoreInst>(&I)) { 5426 if (!SI->isSimple()) 5427 continue; 5428 if (!isValidElementType(SI->getValueOperand()->getType())) 5429 continue; 5430 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); 5431 } 5432 5433 // Ignore getelementptr instructions that have more than one index, a 5434 // constant index, or a pointer operand that doesn't point to a scalar 5435 // type. 5436 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 5437 auto Idx = GEP->idx_begin()->get(); 5438 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 5439 continue; 5440 if (!isValidElementType(Idx->getType())) 5441 continue; 5442 if (GEP->getType()->isVectorTy()) 5443 continue; 5444 GEPs[GEP->getPointerOperand()].push_back(GEP); 5445 } 5446 } 5447 } 5448 5449 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 5450 if (!A || !B) 5451 return false; 5452 Value *VL[] = { A, B }; 5453 return tryToVectorizeList(VL, R, /*UserCost=*/0, true); 5454 } 5455 5456 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 5457 int UserCost, bool AllowReorder) { 5458 if (VL.size() < 2) 5459 return false; 5460 5461 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 5462 << VL.size() << ".\n"); 5463 5464 // Check that all of the parts are scalar instructions of the same type, 5465 // we permit an alternate opcode via InstructionsState. 5466 InstructionsState S = getSameOpcode(VL); 5467 if (!S.getOpcode()) 5468 return false; 5469 5470 Instruction *I0 = cast<Instruction>(S.OpValue); 5471 unsigned Sz = R.getVectorElementSize(I0); 5472 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 5473 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 5474 if (MaxVF < 2) { 5475 R.getORE()->emit([&]() { 5476 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 5477 << "Cannot SLP vectorize list: vectorization factor " 5478 << "less than 2 is not supported"; 5479 }); 5480 return false; 5481 } 5482 5483 for (Value *V : VL) { 5484 Type *Ty = V->getType(); 5485 if (!isValidElementType(Ty)) { 5486 // NOTE: the following will give user internal llvm type name, which may 5487 // not be useful. 5488 R.getORE()->emit([&]() { 5489 std::string type_str; 5490 llvm::raw_string_ostream rso(type_str); 5491 Ty->print(rso); 5492 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 5493 << "Cannot SLP vectorize list: type " 5494 << rso.str() + " is unsupported by vectorizer"; 5495 }); 5496 return false; 5497 } 5498 } 5499 5500 bool Changed = false; 5501 bool CandidateFound = false; 5502 int MinCost = SLPCostThreshold; 5503 5504 unsigned NextInst = 0, MaxInst = VL.size(); 5505 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 5506 // No actual vectorization should happen, if number of parts is the same as 5507 // provided vectorization factor (i.e. the scalar type is used for vector 5508 // code during codegen). 5509 auto *VecTy = VectorType::get(VL[0]->getType(), VF); 5510 if (TTI->getNumberOfParts(VecTy) == VF) 5511 continue; 5512 for (unsigned I = NextInst; I < MaxInst; ++I) { 5513 unsigned OpsWidth = 0; 5514 5515 if (I + VF > MaxInst) 5516 OpsWidth = MaxInst - I; 5517 else 5518 OpsWidth = VF; 5519 5520 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 5521 break; 5522 5523 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 5524 // Check that a previous iteration of this loop did not delete the Value. 5525 if (llvm::any_of(Ops, [&R](Value *V) { 5526 auto *I = dyn_cast<Instruction>(V); 5527 return I && R.isDeleted(I); 5528 })) 5529 continue; 5530 5531 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 5532 << "\n"); 5533 5534 R.buildTree(Ops); 5535 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 5536 // TODO: check if we can allow reordering for more cases. 5537 if (AllowReorder && Order) { 5538 // TODO: reorder tree nodes without tree rebuilding. 5539 // Conceptually, there is nothing actually preventing us from trying to 5540 // reorder a larger list. In fact, we do exactly this when vectorizing 5541 // reductions. However, at this point, we only expect to get here when 5542 // there are exactly two operations. 5543 assert(Ops.size() == 2); 5544 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 5545 R.buildTree(ReorderedOps, None); 5546 } 5547 if (R.isTreeTinyAndNotFullyVectorizable()) 5548 continue; 5549 5550 R.computeMinimumValueSizes(); 5551 int Cost = R.getTreeCost() - UserCost; 5552 CandidateFound = true; 5553 MinCost = std::min(MinCost, Cost); 5554 5555 if (Cost < -SLPCostThreshold) { 5556 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 5557 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 5558 cast<Instruction>(Ops[0])) 5559 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 5560 << " and with tree size " 5561 << ore::NV("TreeSize", R.getTreeSize())); 5562 5563 R.vectorizeTree(); 5564 // Move to the next bundle. 5565 I += VF - 1; 5566 NextInst = I + 1; 5567 Changed = true; 5568 } 5569 } 5570 } 5571 5572 if (!Changed && CandidateFound) { 5573 R.getORE()->emit([&]() { 5574 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 5575 << "List vectorization was possible but not beneficial with cost " 5576 << ore::NV("Cost", MinCost) << " >= " 5577 << ore::NV("Treshold", -SLPCostThreshold); 5578 }); 5579 } else if (!Changed) { 5580 R.getORE()->emit([&]() { 5581 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 5582 << "Cannot SLP vectorize list: vectorization was impossible" 5583 << " with available vectorization factors"; 5584 }); 5585 } 5586 return Changed; 5587 } 5588 5589 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 5590 if (!I) 5591 return false; 5592 5593 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 5594 return false; 5595 5596 Value *P = I->getParent(); 5597 5598 // Vectorize in current basic block only. 5599 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 5600 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 5601 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 5602 return false; 5603 5604 // Try to vectorize V. 5605 if (tryToVectorizePair(Op0, Op1, R)) 5606 return true; 5607 5608 auto *A = dyn_cast<BinaryOperator>(Op0); 5609 auto *B = dyn_cast<BinaryOperator>(Op1); 5610 // Try to skip B. 5611 if (B && B->hasOneUse()) { 5612 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 5613 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 5614 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 5615 return true; 5616 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 5617 return true; 5618 } 5619 5620 // Try to skip A. 5621 if (A && A->hasOneUse()) { 5622 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 5623 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 5624 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 5625 return true; 5626 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 5627 return true; 5628 } 5629 return false; 5630 } 5631 5632 /// Generate a shuffle mask to be used in a reduction tree. 5633 /// 5634 /// \param VecLen The length of the vector to be reduced. 5635 /// \param NumEltsToRdx The number of elements that should be reduced in the 5636 /// vector. 5637 /// \param IsPairwise Whether the reduction is a pairwise or splitting 5638 /// reduction. A pairwise reduction will generate a mask of 5639 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 5640 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 5641 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 5642 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 5643 bool IsPairwise, bool IsLeft, 5644 IRBuilder<> &Builder) { 5645 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 5646 5647 SmallVector<Constant *, 32> ShuffleMask( 5648 VecLen, UndefValue::get(Builder.getInt32Ty())); 5649 5650 if (IsPairwise) 5651 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 5652 for (unsigned i = 0; i != NumEltsToRdx; ++i) 5653 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 5654 else 5655 // Move the upper half of the vector to the lower half. 5656 for (unsigned i = 0; i != NumEltsToRdx; ++i) 5657 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 5658 5659 return ConstantVector::get(ShuffleMask); 5660 } 5661 5662 namespace { 5663 5664 /// Model horizontal reductions. 5665 /// 5666 /// A horizontal reduction is a tree of reduction operations (currently add and 5667 /// fadd) that has operations that can be put into a vector as its leaf. 5668 /// For example, this tree: 5669 /// 5670 /// mul mul mul mul 5671 /// \ / \ / 5672 /// + + 5673 /// \ / 5674 /// + 5675 /// This tree has "mul" as its reduced values and "+" as its reduction 5676 /// operations. A reduction might be feeding into a store or a binary operation 5677 /// feeding a phi. 5678 /// ... 5679 /// \ / 5680 /// + 5681 /// | 5682 /// phi += 5683 /// 5684 /// Or: 5685 /// ... 5686 /// \ / 5687 /// + 5688 /// | 5689 /// *p = 5690 /// 5691 class HorizontalReduction { 5692 using ReductionOpsType = SmallVector<Value *, 16>; 5693 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 5694 ReductionOpsListType ReductionOps; 5695 SmallVector<Value *, 32> ReducedVals; 5696 // Use map vector to make stable output. 5697 MapVector<Instruction *, Value *> ExtraArgs; 5698 5699 /// Kind of the reduction data. 5700 enum ReductionKind { 5701 RK_None, /// Not a reduction. 5702 RK_Arithmetic, /// Binary reduction data. 5703 RK_Min, /// Minimum reduction data. 5704 RK_UMin, /// Unsigned minimum reduction data. 5705 RK_Max, /// Maximum reduction data. 5706 RK_UMax, /// Unsigned maximum reduction data. 5707 }; 5708 5709 /// Contains info about operation, like its opcode, left and right operands. 5710 class OperationData { 5711 /// Opcode of the instruction. 5712 unsigned Opcode = 0; 5713 5714 /// Left operand of the reduction operation. 5715 Value *LHS = nullptr; 5716 5717 /// Right operand of the reduction operation. 5718 Value *RHS = nullptr; 5719 5720 /// Kind of the reduction operation. 5721 ReductionKind Kind = RK_None; 5722 5723 /// True if float point min/max reduction has no NaNs. 5724 bool NoNaN = false; 5725 5726 /// Checks if the reduction operation can be vectorized. 5727 bool isVectorizable() const { 5728 return LHS && RHS && 5729 // We currently only support add/mul/logical && min/max reductions. 5730 ((Kind == RK_Arithmetic && 5731 (Opcode == Instruction::Add || Opcode == Instruction::FAdd || 5732 Opcode == Instruction::Mul || Opcode == Instruction::FMul || 5733 Opcode == Instruction::And || Opcode == Instruction::Or || 5734 Opcode == Instruction::Xor)) || 5735 ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 5736 (Kind == RK_Min || Kind == RK_Max)) || 5737 (Opcode == Instruction::ICmp && 5738 (Kind == RK_UMin || Kind == RK_UMax))); 5739 } 5740 5741 /// Creates reduction operation with the current opcode. 5742 Value *createOp(IRBuilder<> &Builder, const Twine &Name) const { 5743 assert(isVectorizable() && 5744 "Expected add|fadd or min/max reduction operation."); 5745 Value *Cmp = nullptr; 5746 switch (Kind) { 5747 case RK_Arithmetic: 5748 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS, 5749 Name); 5750 case RK_Min: 5751 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS) 5752 : Builder.CreateFCmpOLT(LHS, RHS); 5753 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 5754 case RK_Max: 5755 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS) 5756 : Builder.CreateFCmpOGT(LHS, RHS); 5757 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 5758 case RK_UMin: 5759 assert(Opcode == Instruction::ICmp && "Expected integer types."); 5760 Cmp = Builder.CreateICmpULT(LHS, RHS); 5761 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 5762 case RK_UMax: 5763 assert(Opcode == Instruction::ICmp && "Expected integer types."); 5764 Cmp = Builder.CreateICmpUGT(LHS, RHS); 5765 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 5766 case RK_None: 5767 break; 5768 } 5769 llvm_unreachable("Unknown reduction operation."); 5770 } 5771 5772 public: 5773 explicit OperationData() = default; 5774 5775 /// Construction for reduced values. They are identified by opcode only and 5776 /// don't have associated LHS/RHS values. 5777 explicit OperationData(Value *V) { 5778 if (auto *I = dyn_cast<Instruction>(V)) 5779 Opcode = I->getOpcode(); 5780 } 5781 5782 /// Constructor for reduction operations with opcode and its left and 5783 /// right operands. 5784 OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind, 5785 bool NoNaN = false) 5786 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) { 5787 assert(Kind != RK_None && "One of the reduction operations is expected."); 5788 } 5789 5790 explicit operator bool() const { return Opcode; } 5791 5792 /// Get the index of the first operand. 5793 unsigned getFirstOperandIndex() const { 5794 assert(!!*this && "The opcode is not set."); 5795 switch (Kind) { 5796 case RK_Min: 5797 case RK_UMin: 5798 case RK_Max: 5799 case RK_UMax: 5800 return 1; 5801 case RK_Arithmetic: 5802 case RK_None: 5803 break; 5804 } 5805 return 0; 5806 } 5807 5808 /// Total number of operands in the reduction operation. 5809 unsigned getNumberOfOperands() const { 5810 assert(Kind != RK_None && !!*this && LHS && RHS && 5811 "Expected reduction operation."); 5812 switch (Kind) { 5813 case RK_Arithmetic: 5814 return 2; 5815 case RK_Min: 5816 case RK_UMin: 5817 case RK_Max: 5818 case RK_UMax: 5819 return 3; 5820 case RK_None: 5821 break; 5822 } 5823 llvm_unreachable("Reduction kind is not set"); 5824 } 5825 5826 /// Checks if the operation has the same parent as \p P. 5827 bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const { 5828 assert(Kind != RK_None && !!*this && LHS && RHS && 5829 "Expected reduction operation."); 5830 if (!IsRedOp) 5831 return I->getParent() == P; 5832 switch (Kind) { 5833 case RK_Arithmetic: 5834 // Arithmetic reduction operation must be used once only. 5835 return I->getParent() == P; 5836 case RK_Min: 5837 case RK_UMin: 5838 case RK_Max: 5839 case RK_UMax: { 5840 // SelectInst must be used twice while the condition op must have single 5841 // use only. 5842 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition()); 5843 return I->getParent() == P && Cmp && Cmp->getParent() == P; 5844 } 5845 case RK_None: 5846 break; 5847 } 5848 llvm_unreachable("Reduction kind is not set"); 5849 } 5850 /// Expected number of uses for reduction operations/reduced values. 5851 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const { 5852 assert(Kind != RK_None && !!*this && LHS && RHS && 5853 "Expected reduction operation."); 5854 switch (Kind) { 5855 case RK_Arithmetic: 5856 return I->hasOneUse(); 5857 case RK_Min: 5858 case RK_UMin: 5859 case RK_Max: 5860 case RK_UMax: 5861 return I->hasNUses(2) && 5862 (!IsReductionOp || 5863 cast<SelectInst>(I)->getCondition()->hasOneUse()); 5864 case RK_None: 5865 break; 5866 } 5867 llvm_unreachable("Reduction kind is not set"); 5868 } 5869 5870 /// Initializes the list of reduction operations. 5871 void initReductionOps(ReductionOpsListType &ReductionOps) { 5872 assert(Kind != RK_None && !!*this && LHS && RHS && 5873 "Expected reduction operation."); 5874 switch (Kind) { 5875 case RK_Arithmetic: 5876 ReductionOps.assign(1, ReductionOpsType()); 5877 break; 5878 case RK_Min: 5879 case RK_UMin: 5880 case RK_Max: 5881 case RK_UMax: 5882 ReductionOps.assign(2, ReductionOpsType()); 5883 break; 5884 case RK_None: 5885 llvm_unreachable("Reduction kind is not set"); 5886 } 5887 } 5888 /// Add all reduction operations for the reduction instruction \p I. 5889 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) { 5890 assert(Kind != RK_None && !!*this && LHS && RHS && 5891 "Expected reduction operation."); 5892 switch (Kind) { 5893 case RK_Arithmetic: 5894 ReductionOps[0].emplace_back(I); 5895 break; 5896 case RK_Min: 5897 case RK_UMin: 5898 case RK_Max: 5899 case RK_UMax: 5900 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 5901 ReductionOps[1].emplace_back(I); 5902 break; 5903 case RK_None: 5904 llvm_unreachable("Reduction kind is not set"); 5905 } 5906 } 5907 5908 /// Checks if instruction is associative and can be vectorized. 5909 bool isAssociative(Instruction *I) const { 5910 assert(Kind != RK_None && *this && LHS && RHS && 5911 "Expected reduction operation."); 5912 switch (Kind) { 5913 case RK_Arithmetic: 5914 return I->isAssociative(); 5915 case RK_Min: 5916 case RK_Max: 5917 return Opcode == Instruction::ICmp || 5918 cast<Instruction>(I->getOperand(0))->isFast(); 5919 case RK_UMin: 5920 case RK_UMax: 5921 assert(Opcode == Instruction::ICmp && 5922 "Only integer compare operation is expected."); 5923 return true; 5924 case RK_None: 5925 break; 5926 } 5927 llvm_unreachable("Reduction kind is not set"); 5928 } 5929 5930 /// Checks if the reduction operation can be vectorized. 5931 bool isVectorizable(Instruction *I) const { 5932 return isVectorizable() && isAssociative(I); 5933 } 5934 5935 /// Checks if two operation data are both a reduction op or both a reduced 5936 /// value. 5937 bool operator==(const OperationData &OD) { 5938 assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) && 5939 "One of the comparing operations is incorrect."); 5940 return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode); 5941 } 5942 bool operator!=(const OperationData &OD) { return !(*this == OD); } 5943 void clear() { 5944 Opcode = 0; 5945 LHS = nullptr; 5946 RHS = nullptr; 5947 Kind = RK_None; 5948 NoNaN = false; 5949 } 5950 5951 /// Get the opcode of the reduction operation. 5952 unsigned getOpcode() const { 5953 assert(isVectorizable() && "Expected vectorizable operation."); 5954 return Opcode; 5955 } 5956 5957 /// Get kind of reduction data. 5958 ReductionKind getKind() const { return Kind; } 5959 Value *getLHS() const { return LHS; } 5960 Value *getRHS() const { return RHS; } 5961 Type *getConditionType() const { 5962 switch (Kind) { 5963 case RK_Arithmetic: 5964 return nullptr; 5965 case RK_Min: 5966 case RK_Max: 5967 case RK_UMin: 5968 case RK_UMax: 5969 return CmpInst::makeCmpResultType(LHS->getType()); 5970 case RK_None: 5971 break; 5972 } 5973 llvm_unreachable("Reduction kind is not set"); 5974 } 5975 5976 /// Creates reduction operation with the current opcode with the IR flags 5977 /// from \p ReductionOps. 5978 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 5979 const ReductionOpsListType &ReductionOps) const { 5980 assert(isVectorizable() && 5981 "Expected add|fadd or min/max reduction operation."); 5982 auto *Op = createOp(Builder, Name); 5983 switch (Kind) { 5984 case RK_Arithmetic: 5985 propagateIRFlags(Op, ReductionOps[0]); 5986 return Op; 5987 case RK_Min: 5988 case RK_Max: 5989 case RK_UMin: 5990 case RK_UMax: 5991 if (auto *SI = dyn_cast<SelectInst>(Op)) 5992 propagateIRFlags(SI->getCondition(), ReductionOps[0]); 5993 propagateIRFlags(Op, ReductionOps[1]); 5994 return Op; 5995 case RK_None: 5996 break; 5997 } 5998 llvm_unreachable("Unknown reduction operation."); 5999 } 6000 /// Creates reduction operation with the current opcode with the IR flags 6001 /// from \p I. 6002 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 6003 Instruction *I) const { 6004 assert(isVectorizable() && 6005 "Expected add|fadd or min/max reduction operation."); 6006 auto *Op = createOp(Builder, Name); 6007 switch (Kind) { 6008 case RK_Arithmetic: 6009 propagateIRFlags(Op, I); 6010 return Op; 6011 case RK_Min: 6012 case RK_Max: 6013 case RK_UMin: 6014 case RK_UMax: 6015 if (auto *SI = dyn_cast<SelectInst>(Op)) { 6016 propagateIRFlags(SI->getCondition(), 6017 cast<SelectInst>(I)->getCondition()); 6018 } 6019 propagateIRFlags(Op, I); 6020 return Op; 6021 case RK_None: 6022 break; 6023 } 6024 llvm_unreachable("Unknown reduction operation."); 6025 } 6026 6027 TargetTransformInfo::ReductionFlags getFlags() const { 6028 TargetTransformInfo::ReductionFlags Flags; 6029 Flags.NoNaN = NoNaN; 6030 switch (Kind) { 6031 case RK_Arithmetic: 6032 break; 6033 case RK_Min: 6034 Flags.IsSigned = Opcode == Instruction::ICmp; 6035 Flags.IsMaxOp = false; 6036 break; 6037 case RK_Max: 6038 Flags.IsSigned = Opcode == Instruction::ICmp; 6039 Flags.IsMaxOp = true; 6040 break; 6041 case RK_UMin: 6042 Flags.IsSigned = false; 6043 Flags.IsMaxOp = false; 6044 break; 6045 case RK_UMax: 6046 Flags.IsSigned = false; 6047 Flags.IsMaxOp = true; 6048 break; 6049 case RK_None: 6050 llvm_unreachable("Reduction kind is not set"); 6051 } 6052 return Flags; 6053 } 6054 }; 6055 6056 WeakTrackingVH ReductionRoot; 6057 6058 /// The operation data of the reduction operation. 6059 OperationData ReductionData; 6060 6061 /// The operation data of the values we perform a reduction on. 6062 OperationData ReducedValueData; 6063 6064 /// Should we model this reduction as a pairwise reduction tree or a tree that 6065 /// splits the vector in halves and adds those halves. 6066 bool IsPairwiseReduction = false; 6067 6068 /// Checks if the ParentStackElem.first should be marked as a reduction 6069 /// operation with an extra argument or as extra argument itself. 6070 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 6071 Value *ExtraArg) { 6072 if (ExtraArgs.count(ParentStackElem.first)) { 6073 ExtraArgs[ParentStackElem.first] = nullptr; 6074 // We ran into something like: 6075 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 6076 // The whole ParentStackElem.first should be considered as an extra value 6077 // in this case. 6078 // Do not perform analysis of remaining operands of ParentStackElem.first 6079 // instruction, this whole instruction is an extra argument. 6080 ParentStackElem.second = ParentStackElem.first->getNumOperands(); 6081 } else { 6082 // We ran into something like: 6083 // ParentStackElem.first += ... + ExtraArg + ... 6084 ExtraArgs[ParentStackElem.first] = ExtraArg; 6085 } 6086 } 6087 6088 static OperationData getOperationData(Value *V) { 6089 if (!V) 6090 return OperationData(); 6091 6092 Value *LHS; 6093 Value *RHS; 6094 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) { 6095 return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS, 6096 RK_Arithmetic); 6097 } 6098 if (auto *Select = dyn_cast<SelectInst>(V)) { 6099 // Look for a min/max pattern. 6100 if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6101 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 6102 } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6103 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 6104 } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) || 6105 m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6106 return OperationData( 6107 Instruction::FCmp, LHS, RHS, RK_Min, 6108 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 6109 } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6110 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 6111 } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6112 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 6113 } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) || 6114 m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6115 return OperationData( 6116 Instruction::FCmp, LHS, RHS, RK_Max, 6117 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 6118 } else { 6119 // Try harder: look for min/max pattern based on instructions producing 6120 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 6121 // During the intermediate stages of SLP, it's very common to have 6122 // pattern like this (since optimizeGatherSequence is run only once 6123 // at the end): 6124 // %1 = extractelement <2 x i32> %a, i32 0 6125 // %2 = extractelement <2 x i32> %a, i32 1 6126 // %cond = icmp sgt i32 %1, %2 6127 // %3 = extractelement <2 x i32> %a, i32 0 6128 // %4 = extractelement <2 x i32> %a, i32 1 6129 // %select = select i1 %cond, i32 %3, i32 %4 6130 CmpInst::Predicate Pred; 6131 Instruction *L1; 6132 Instruction *L2; 6133 6134 LHS = Select->getTrueValue(); 6135 RHS = Select->getFalseValue(); 6136 Value *Cond = Select->getCondition(); 6137 6138 // TODO: Support inverse predicates. 6139 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 6140 if (!isa<ExtractElementInst>(RHS) || 6141 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6142 return OperationData(V); 6143 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 6144 if (!isa<ExtractElementInst>(LHS) || 6145 !L1->isIdenticalTo(cast<Instruction>(LHS))) 6146 return OperationData(V); 6147 } else { 6148 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 6149 return OperationData(V); 6150 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 6151 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 6152 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6153 return OperationData(V); 6154 } 6155 switch (Pred) { 6156 default: 6157 return OperationData(V); 6158 6159 case CmpInst::ICMP_ULT: 6160 case CmpInst::ICMP_ULE: 6161 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 6162 6163 case CmpInst::ICMP_SLT: 6164 case CmpInst::ICMP_SLE: 6165 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 6166 6167 case CmpInst::FCMP_OLT: 6168 case CmpInst::FCMP_OLE: 6169 case CmpInst::FCMP_ULT: 6170 case CmpInst::FCMP_ULE: 6171 return OperationData(Instruction::FCmp, LHS, RHS, RK_Min, 6172 cast<Instruction>(Cond)->hasNoNaNs()); 6173 6174 case CmpInst::ICMP_UGT: 6175 case CmpInst::ICMP_UGE: 6176 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 6177 6178 case CmpInst::ICMP_SGT: 6179 case CmpInst::ICMP_SGE: 6180 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 6181 6182 case CmpInst::FCMP_OGT: 6183 case CmpInst::FCMP_OGE: 6184 case CmpInst::FCMP_UGT: 6185 case CmpInst::FCMP_UGE: 6186 return OperationData(Instruction::FCmp, LHS, RHS, RK_Max, 6187 cast<Instruction>(Cond)->hasNoNaNs()); 6188 } 6189 } 6190 } 6191 return OperationData(V); 6192 } 6193 6194 public: 6195 HorizontalReduction() = default; 6196 6197 /// Try to find a reduction tree. 6198 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 6199 assert((!Phi || is_contained(Phi->operands(), B)) && 6200 "Thi phi needs to use the binary operator"); 6201 6202 ReductionData = getOperationData(B); 6203 6204 // We could have a initial reductions that is not an add. 6205 // r *= v1 + v2 + v3 + v4 6206 // In such a case start looking for a tree rooted in the first '+'. 6207 if (Phi) { 6208 if (ReductionData.getLHS() == Phi) { 6209 Phi = nullptr; 6210 B = dyn_cast<Instruction>(ReductionData.getRHS()); 6211 ReductionData = getOperationData(B); 6212 } else if (ReductionData.getRHS() == Phi) { 6213 Phi = nullptr; 6214 B = dyn_cast<Instruction>(ReductionData.getLHS()); 6215 ReductionData = getOperationData(B); 6216 } 6217 } 6218 6219 if (!ReductionData.isVectorizable(B)) 6220 return false; 6221 6222 Type *Ty = B->getType(); 6223 if (!isValidElementType(Ty)) 6224 return false; 6225 if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy()) 6226 return false; 6227 6228 ReducedValueData.clear(); 6229 ReductionRoot = B; 6230 6231 // Post order traverse the reduction tree starting at B. We only handle true 6232 // trees containing only binary operators. 6233 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 6234 Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex())); 6235 ReductionData.initReductionOps(ReductionOps); 6236 while (!Stack.empty()) { 6237 Instruction *TreeN = Stack.back().first; 6238 unsigned EdgeToVist = Stack.back().second++; 6239 OperationData OpData = getOperationData(TreeN); 6240 bool IsReducedValue = OpData != ReductionData; 6241 6242 // Postorder vist. 6243 if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) { 6244 if (IsReducedValue) 6245 ReducedVals.push_back(TreeN); 6246 else { 6247 auto I = ExtraArgs.find(TreeN); 6248 if (I != ExtraArgs.end() && !I->second) { 6249 // Check if TreeN is an extra argument of its parent operation. 6250 if (Stack.size() <= 1) { 6251 // TreeN can't be an extra argument as it is a root reduction 6252 // operation. 6253 return false; 6254 } 6255 // Yes, TreeN is an extra argument, do not add it to a list of 6256 // reduction operations. 6257 // Stack[Stack.size() - 2] always points to the parent operation. 6258 markExtraArg(Stack[Stack.size() - 2], TreeN); 6259 ExtraArgs.erase(TreeN); 6260 } else 6261 ReductionData.addReductionOps(TreeN, ReductionOps); 6262 } 6263 // Retract. 6264 Stack.pop_back(); 6265 continue; 6266 } 6267 6268 // Visit left or right. 6269 Value *NextV = TreeN->getOperand(EdgeToVist); 6270 if (NextV != Phi) { 6271 auto *I = dyn_cast<Instruction>(NextV); 6272 OpData = getOperationData(I); 6273 // Continue analysis if the next operand is a reduction operation or 6274 // (possibly) a reduced value. If the reduced value opcode is not set, 6275 // the first met operation != reduction operation is considered as the 6276 // reduced value class. 6277 if (I && (!ReducedValueData || OpData == ReducedValueData || 6278 OpData == ReductionData)) { 6279 const bool IsReductionOperation = OpData == ReductionData; 6280 // Only handle trees in the current basic block. 6281 if (!ReductionData.hasSameParent(I, B->getParent(), 6282 IsReductionOperation)) { 6283 // I is an extra argument for TreeN (its parent operation). 6284 markExtraArg(Stack.back(), I); 6285 continue; 6286 } 6287 6288 // Each tree node needs to have minimal number of users except for the 6289 // ultimate reduction. 6290 if (!ReductionData.hasRequiredNumberOfUses(I, 6291 OpData == ReductionData) && 6292 I != B) { 6293 // I is an extra argument for TreeN (its parent operation). 6294 markExtraArg(Stack.back(), I); 6295 continue; 6296 } 6297 6298 if (IsReductionOperation) { 6299 // We need to be able to reassociate the reduction operations. 6300 if (!OpData.isAssociative(I)) { 6301 // I is an extra argument for TreeN (its parent operation). 6302 markExtraArg(Stack.back(), I); 6303 continue; 6304 } 6305 } else if (ReducedValueData && 6306 ReducedValueData != OpData) { 6307 // Make sure that the opcodes of the operations that we are going to 6308 // reduce match. 6309 // I is an extra argument for TreeN (its parent operation). 6310 markExtraArg(Stack.back(), I); 6311 continue; 6312 } else if (!ReducedValueData) 6313 ReducedValueData = OpData; 6314 6315 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex())); 6316 continue; 6317 } 6318 } 6319 // NextV is an extra argument for TreeN (its parent operation). 6320 markExtraArg(Stack.back(), NextV); 6321 } 6322 return true; 6323 } 6324 6325 /// Attempt to vectorize the tree found by 6326 /// matchAssociativeReduction. 6327 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 6328 if (ReducedVals.empty()) 6329 return false; 6330 6331 // If there is a sufficient number of reduction values, reduce 6332 // to a nearby power-of-2. Can safely generate oversized 6333 // vectors and rely on the backend to split them to legal sizes. 6334 unsigned NumReducedVals = ReducedVals.size(); 6335 if (NumReducedVals < 4) 6336 return false; 6337 6338 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 6339 6340 Value *VectorizedTree = nullptr; 6341 6342 // FIXME: Fast-math-flags should be set based on the instructions in the 6343 // reduction (not all of 'fast' are required). 6344 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 6345 FastMathFlags Unsafe; 6346 Unsafe.setFast(); 6347 Builder.setFastMathFlags(Unsafe); 6348 unsigned i = 0; 6349 6350 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 6351 // The same extra argument may be used several time, so log each attempt 6352 // to use it. 6353 for (auto &Pair : ExtraArgs) { 6354 assert(Pair.first && "DebugLoc must be set."); 6355 ExternallyUsedValues[Pair.second].push_back(Pair.first); 6356 } 6357 // The reduction root is used as the insertion point for new instructions, 6358 // so set it as externally used to prevent it from being deleted. 6359 ExternallyUsedValues[ReductionRoot]; 6360 SmallVector<Value *, 16> IgnoreList; 6361 for (auto &V : ReductionOps) 6362 IgnoreList.append(V.begin(), V.end()); 6363 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 6364 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth); 6365 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 6366 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 6367 // TODO: Handle orders of size less than number of elements in the vector. 6368 if (Order && Order->size() == VL.size()) { 6369 // TODO: reorder tree nodes without tree rebuilding. 6370 SmallVector<Value *, 4> ReorderedOps(VL.size()); 6371 llvm::transform(*Order, ReorderedOps.begin(), 6372 [VL](const unsigned Idx) { return VL[Idx]; }); 6373 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 6374 } 6375 if (V.isTreeTinyAndNotFullyVectorizable()) 6376 break; 6377 6378 V.computeMinimumValueSizes(); 6379 6380 // Estimate cost. 6381 int TreeCost = V.getTreeCost(); 6382 int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth); 6383 int Cost = TreeCost + ReductionCost; 6384 if (Cost >= -SLPCostThreshold) { 6385 V.getORE()->emit([&]() { 6386 return OptimizationRemarkMissed( 6387 SV_NAME, "HorSLPNotBeneficial", cast<Instruction>(VL[0])) 6388 << "Vectorizing horizontal reduction is possible" 6389 << "but not beneficial with cost " 6390 << ore::NV("Cost", Cost) << " and threshold " 6391 << ore::NV("Threshold", -SLPCostThreshold); 6392 }); 6393 break; 6394 } 6395 6396 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 6397 << Cost << ". (HorRdx)\n"); 6398 V.getORE()->emit([&]() { 6399 return OptimizationRemark( 6400 SV_NAME, "VectorizedHorizontalReduction", cast<Instruction>(VL[0])) 6401 << "Vectorized horizontal reduction with cost " 6402 << ore::NV("Cost", Cost) << " and with tree size " 6403 << ore::NV("TreeSize", V.getTreeSize()); 6404 }); 6405 6406 // Vectorize a tree. 6407 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 6408 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 6409 6410 // Emit a reduction. 6411 Builder.SetInsertPoint(cast<Instruction>(ReductionRoot)); 6412 Value *ReducedSubTree = 6413 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 6414 if (VectorizedTree) { 6415 Builder.SetCurrentDebugLocation(Loc); 6416 OperationData VectReductionData(ReductionData.getOpcode(), 6417 VectorizedTree, ReducedSubTree, 6418 ReductionData.getKind()); 6419 VectorizedTree = 6420 VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 6421 } else 6422 VectorizedTree = ReducedSubTree; 6423 i += ReduxWidth; 6424 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 6425 } 6426 6427 if (VectorizedTree) { 6428 // Finish the reduction. 6429 for (; i < NumReducedVals; ++i) { 6430 auto *I = cast<Instruction>(ReducedVals[i]); 6431 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 6432 OperationData VectReductionData(ReductionData.getOpcode(), 6433 VectorizedTree, I, 6434 ReductionData.getKind()); 6435 VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps); 6436 } 6437 for (auto &Pair : ExternallyUsedValues) { 6438 // Add each externally used value to the final reduction. 6439 for (auto *I : Pair.second) { 6440 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 6441 OperationData VectReductionData(ReductionData.getOpcode(), 6442 VectorizedTree, Pair.first, 6443 ReductionData.getKind()); 6444 VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I); 6445 } 6446 } 6447 // Update users. 6448 ReductionRoot->replaceAllUsesWith(VectorizedTree); 6449 // Mark all scalar reduction ops for deletion, they are replaced by the 6450 // vector reductions. 6451 V.eraseInstructions(IgnoreList); 6452 } 6453 return VectorizedTree != nullptr; 6454 } 6455 6456 unsigned numReductionValues() const { 6457 return ReducedVals.size(); 6458 } 6459 6460 private: 6461 /// Calculate the cost of a reduction. 6462 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 6463 unsigned ReduxWidth) { 6464 Type *ScalarTy = FirstReducedVal->getType(); 6465 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 6466 6467 int PairwiseRdxCost; 6468 int SplittingRdxCost; 6469 switch (ReductionData.getKind()) { 6470 case RK_Arithmetic: 6471 PairwiseRdxCost = 6472 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 6473 /*IsPairwiseForm=*/true); 6474 SplittingRdxCost = 6475 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 6476 /*IsPairwiseForm=*/false); 6477 break; 6478 case RK_Min: 6479 case RK_Max: 6480 case RK_UMin: 6481 case RK_UMax: { 6482 Type *VecCondTy = CmpInst::makeCmpResultType(VecTy); 6483 bool IsUnsigned = ReductionData.getKind() == RK_UMin || 6484 ReductionData.getKind() == RK_UMax; 6485 PairwiseRdxCost = 6486 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 6487 /*IsPairwiseForm=*/true, IsUnsigned); 6488 SplittingRdxCost = 6489 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 6490 /*IsPairwiseForm=*/false, IsUnsigned); 6491 break; 6492 } 6493 case RK_None: 6494 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 6495 } 6496 6497 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 6498 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 6499 6500 int ScalarReduxCost = 0; 6501 switch (ReductionData.getKind()) { 6502 case RK_Arithmetic: 6503 ScalarReduxCost = 6504 TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy); 6505 break; 6506 case RK_Min: 6507 case RK_Max: 6508 case RK_UMin: 6509 case RK_UMax: 6510 ScalarReduxCost = 6511 TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) + 6512 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 6513 CmpInst::makeCmpResultType(ScalarTy)); 6514 break; 6515 case RK_None: 6516 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 6517 } 6518 ScalarReduxCost *= (ReduxWidth - 1); 6519 6520 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 6521 << " for reduction that starts with " << *FirstReducedVal 6522 << " (It is a " 6523 << (IsPairwiseReduction ? "pairwise" : "splitting") 6524 << " reduction)\n"); 6525 6526 return VecReduxCost - ScalarReduxCost; 6527 } 6528 6529 /// Emit a horizontal reduction of the vectorized value. 6530 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 6531 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 6532 assert(VectorizedValue && "Need to have a vectorized tree node"); 6533 assert(isPowerOf2_32(ReduxWidth) && 6534 "We only handle power-of-two reductions for now"); 6535 6536 if (!IsPairwiseReduction) { 6537 // FIXME: The builder should use an FMF guard. It should not be hard-coded 6538 // to 'fast'. 6539 assert(Builder.getFastMathFlags().isFast() && "Expected 'fast' FMF"); 6540 return createSimpleTargetReduction( 6541 Builder, TTI, ReductionData.getOpcode(), VectorizedValue, 6542 ReductionData.getFlags(), ReductionOps.back()); 6543 } 6544 6545 Value *TmpVec = VectorizedValue; 6546 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 6547 Value *LeftMask = 6548 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 6549 Value *RightMask = 6550 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 6551 6552 Value *LeftShuf = Builder.CreateShuffleVector( 6553 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 6554 Value *RightShuf = Builder.CreateShuffleVector( 6555 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 6556 "rdx.shuf.r"); 6557 OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf, 6558 RightShuf, ReductionData.getKind()); 6559 TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 6560 } 6561 6562 // The result is in the first element of the vector. 6563 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 6564 } 6565 }; 6566 6567 } // end anonymous namespace 6568 6569 /// Recognize construction of vectors like 6570 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 6571 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 6572 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 6573 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 6574 /// starting from the last insertelement instruction. 6575 /// 6576 /// Returns true if it matches 6577 static bool findBuildVector(InsertElementInst *LastInsertElem, 6578 TargetTransformInfo *TTI, 6579 SmallVectorImpl<Value *> &BuildVectorOpds, 6580 int &UserCost) { 6581 UserCost = 0; 6582 Value *V = nullptr; 6583 do { 6584 if (auto *CI = dyn_cast<ConstantInt>(LastInsertElem->getOperand(2))) { 6585 UserCost += TTI->getVectorInstrCost(Instruction::InsertElement, 6586 LastInsertElem->getType(), 6587 CI->getZExtValue()); 6588 } 6589 BuildVectorOpds.push_back(LastInsertElem->getOperand(1)); 6590 V = LastInsertElem->getOperand(0); 6591 if (isa<UndefValue>(V)) 6592 break; 6593 LastInsertElem = dyn_cast<InsertElementInst>(V); 6594 if (!LastInsertElem || !LastInsertElem->hasOneUse()) 6595 return false; 6596 } while (true); 6597 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 6598 return true; 6599 } 6600 6601 /// Like findBuildVector, but looks for construction of aggregate. 6602 /// 6603 /// \return true if it matches. 6604 static bool findBuildAggregate(InsertValueInst *IV, 6605 SmallVectorImpl<Value *> &BuildVectorOpds) { 6606 do { 6607 BuildVectorOpds.push_back(IV->getInsertedValueOperand()); 6608 Value *V = IV->getAggregateOperand(); 6609 if (isa<UndefValue>(V)) 6610 break; 6611 IV = dyn_cast<InsertValueInst>(V); 6612 if (!IV || !IV->hasOneUse()) 6613 return false; 6614 } while (true); 6615 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 6616 return true; 6617 } 6618 6619 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 6620 return V->getType() < V2->getType(); 6621 } 6622 6623 /// Try and get a reduction value from a phi node. 6624 /// 6625 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 6626 /// if they come from either \p ParentBB or a containing loop latch. 6627 /// 6628 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 6629 /// if not possible. 6630 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 6631 BasicBlock *ParentBB, LoopInfo *LI) { 6632 // There are situations where the reduction value is not dominated by the 6633 // reduction phi. Vectorizing such cases has been reported to cause 6634 // miscompiles. See PR25787. 6635 auto DominatedReduxValue = [&](Value *R) { 6636 return isa<Instruction>(R) && 6637 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 6638 }; 6639 6640 Value *Rdx = nullptr; 6641 6642 // Return the incoming value if it comes from the same BB as the phi node. 6643 if (P->getIncomingBlock(0) == ParentBB) { 6644 Rdx = P->getIncomingValue(0); 6645 } else if (P->getIncomingBlock(1) == ParentBB) { 6646 Rdx = P->getIncomingValue(1); 6647 } 6648 6649 if (Rdx && DominatedReduxValue(Rdx)) 6650 return Rdx; 6651 6652 // Otherwise, check whether we have a loop latch to look at. 6653 Loop *BBL = LI->getLoopFor(ParentBB); 6654 if (!BBL) 6655 return nullptr; 6656 BasicBlock *BBLatch = BBL->getLoopLatch(); 6657 if (!BBLatch) 6658 return nullptr; 6659 6660 // There is a loop latch, return the incoming value if it comes from 6661 // that. This reduction pattern occasionally turns up. 6662 if (P->getIncomingBlock(0) == BBLatch) { 6663 Rdx = P->getIncomingValue(0); 6664 } else if (P->getIncomingBlock(1) == BBLatch) { 6665 Rdx = P->getIncomingValue(1); 6666 } 6667 6668 if (Rdx && DominatedReduxValue(Rdx)) 6669 return Rdx; 6670 6671 return nullptr; 6672 } 6673 6674 /// Attempt to reduce a horizontal reduction. 6675 /// If it is legal to match a horizontal reduction feeding the phi node \a P 6676 /// with reduction operators \a Root (or one of its operands) in a basic block 6677 /// \a BB, then check if it can be done. If horizontal reduction is not found 6678 /// and root instruction is a binary operation, vectorization of the operands is 6679 /// attempted. 6680 /// \returns true if a horizontal reduction was matched and reduced or operands 6681 /// of one of the binary instruction were vectorized. 6682 /// \returns false if a horizontal reduction was not matched (or not possible) 6683 /// or no vectorization of any binary operation feeding \a Root instruction was 6684 /// performed. 6685 static bool tryToVectorizeHorReductionOrInstOperands( 6686 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 6687 TargetTransformInfo *TTI, 6688 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 6689 if (!ShouldVectorizeHor) 6690 return false; 6691 6692 if (!Root) 6693 return false; 6694 6695 if (Root->getParent() != BB || isa<PHINode>(Root)) 6696 return false; 6697 // Start analysis starting from Root instruction. If horizontal reduction is 6698 // found, try to vectorize it. If it is not a horizontal reduction or 6699 // vectorization is not possible or not effective, and currently analyzed 6700 // instruction is a binary operation, try to vectorize the operands, using 6701 // pre-order DFS traversal order. If the operands were not vectorized, repeat 6702 // the same procedure considering each operand as a possible root of the 6703 // horizontal reduction. 6704 // Interrupt the process if the Root instruction itself was vectorized or all 6705 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 6706 SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0}); 6707 SmallPtrSet<Value *, 8> VisitedInstrs; 6708 bool Res = false; 6709 while (!Stack.empty()) { 6710 Instruction *Inst; 6711 unsigned Level; 6712 std::tie(Inst, Level) = Stack.pop_back_val(); 6713 auto *BI = dyn_cast<BinaryOperator>(Inst); 6714 auto *SI = dyn_cast<SelectInst>(Inst); 6715 if (BI || SI) { 6716 HorizontalReduction HorRdx; 6717 if (HorRdx.matchAssociativeReduction(P, Inst)) { 6718 if (HorRdx.tryToReduce(R, TTI)) { 6719 Res = true; 6720 // Set P to nullptr to avoid re-analysis of phi node in 6721 // matchAssociativeReduction function unless this is the root node. 6722 P = nullptr; 6723 continue; 6724 } 6725 } 6726 if (P && BI) { 6727 Inst = dyn_cast<Instruction>(BI->getOperand(0)); 6728 if (Inst == P) 6729 Inst = dyn_cast<Instruction>(BI->getOperand(1)); 6730 if (!Inst) { 6731 // Set P to nullptr to avoid re-analysis of phi node in 6732 // matchAssociativeReduction function unless this is the root node. 6733 P = nullptr; 6734 continue; 6735 } 6736 } 6737 } 6738 // Set P to nullptr to avoid re-analysis of phi node in 6739 // matchAssociativeReduction function unless this is the root node. 6740 P = nullptr; 6741 if (Vectorize(Inst, R)) { 6742 Res = true; 6743 continue; 6744 } 6745 6746 // Try to vectorize operands. 6747 // Continue analysis for the instruction from the same basic block only to 6748 // save compile time. 6749 if (++Level < RecursionMaxDepth) 6750 for (auto *Op : Inst->operand_values()) 6751 if (VisitedInstrs.insert(Op).second) 6752 if (auto *I = dyn_cast<Instruction>(Op)) 6753 if (!isa<PHINode>(I) && !R.isDeleted(I) && I->getParent() == BB) 6754 Stack.emplace_back(I, Level); 6755 } 6756 return Res; 6757 } 6758 6759 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 6760 BasicBlock *BB, BoUpSLP &R, 6761 TargetTransformInfo *TTI) { 6762 if (!V) 6763 return false; 6764 auto *I = dyn_cast<Instruction>(V); 6765 if (!I) 6766 return false; 6767 6768 if (!isa<BinaryOperator>(I)) 6769 P = nullptr; 6770 // Try to match and vectorize a horizontal reduction. 6771 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 6772 return tryToVectorize(I, R); 6773 }; 6774 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 6775 ExtraVectorization); 6776 } 6777 6778 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 6779 BasicBlock *BB, BoUpSLP &R) { 6780 const DataLayout &DL = BB->getModule()->getDataLayout(); 6781 if (!R.canMapToVector(IVI->getType(), DL)) 6782 return false; 6783 6784 SmallVector<Value *, 16> BuildVectorOpds; 6785 if (!findBuildAggregate(IVI, BuildVectorOpds)) 6786 return false; 6787 6788 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 6789 // Aggregate value is unlikely to be processed in vector register, we need to 6790 // extract scalars into scalar registers, so NeedExtraction is set true. 6791 return tryToVectorizeList(BuildVectorOpds, R); 6792 } 6793 6794 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 6795 BasicBlock *BB, BoUpSLP &R) { 6796 int UserCost; 6797 SmallVector<Value *, 16> BuildVectorOpds; 6798 if (!findBuildVector(IEI, TTI, BuildVectorOpds, UserCost) || 6799 (llvm::all_of(BuildVectorOpds, 6800 [](Value *V) { return isa<ExtractElementInst>(V); }) && 6801 isShuffle(BuildVectorOpds))) 6802 return false; 6803 6804 // Vectorize starting with the build vector operands ignoring the BuildVector 6805 // instructions for the purpose of scheduling and user extraction. 6806 return tryToVectorizeList(BuildVectorOpds, R, UserCost); 6807 } 6808 6809 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 6810 BoUpSLP &R) { 6811 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 6812 return true; 6813 6814 bool OpsChanged = false; 6815 for (int Idx = 0; Idx < 2; ++Idx) { 6816 OpsChanged |= 6817 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 6818 } 6819 return OpsChanged; 6820 } 6821 6822 bool SLPVectorizerPass::vectorizeSimpleInstructions( 6823 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R) { 6824 bool OpsChanged = false; 6825 for (auto *I : reverse(Instructions)) { 6826 if (R.isDeleted(I)) 6827 continue; 6828 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 6829 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 6830 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 6831 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 6832 else if (auto *CI = dyn_cast<CmpInst>(I)) 6833 OpsChanged |= vectorizeCmpInst(CI, BB, R); 6834 } 6835 Instructions.clear(); 6836 return OpsChanged; 6837 } 6838 6839 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 6840 bool Changed = false; 6841 SmallVector<Value *, 4> Incoming; 6842 SmallPtrSet<Value *, 16> VisitedInstrs; 6843 6844 bool HaveVectorizedPhiNodes = true; 6845 while (HaveVectorizedPhiNodes) { 6846 HaveVectorizedPhiNodes = false; 6847 6848 // Collect the incoming values from the PHIs. 6849 Incoming.clear(); 6850 for (Instruction &I : *BB) { 6851 PHINode *P = dyn_cast<PHINode>(&I); 6852 if (!P) 6853 break; 6854 6855 if (!VisitedInstrs.count(P) && !R.isDeleted(P)) 6856 Incoming.push_back(P); 6857 } 6858 6859 // Sort by type. 6860 llvm::stable_sort(Incoming, PhiTypeSorterFunc); 6861 6862 // Try to vectorize elements base on their type. 6863 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 6864 E = Incoming.end(); 6865 IncIt != E;) { 6866 6867 // Look for the next elements with the same type. 6868 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 6869 while (SameTypeIt != E && 6870 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 6871 VisitedInstrs.insert(*SameTypeIt); 6872 ++SameTypeIt; 6873 } 6874 6875 // Try to vectorize them. 6876 unsigned NumElts = (SameTypeIt - IncIt); 6877 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 6878 << NumElts << ")\n"); 6879 // The order in which the phi nodes appear in the program does not matter. 6880 // So allow tryToVectorizeList to reorder them if it is beneficial. This 6881 // is done when there are exactly two elements since tryToVectorizeList 6882 // asserts that there are only two values when AllowReorder is true. 6883 bool AllowReorder = NumElts == 2; 6884 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, 6885 /*UserCost=*/0, AllowReorder)) { 6886 // Success start over because instructions might have been changed. 6887 HaveVectorizedPhiNodes = true; 6888 Changed = true; 6889 break; 6890 } 6891 6892 // Start over at the next instruction of a different type (or the end). 6893 IncIt = SameTypeIt; 6894 } 6895 } 6896 6897 VisitedInstrs.clear(); 6898 6899 SmallVector<Instruction *, 8> PostProcessInstructions; 6900 SmallDenseSet<Instruction *, 4> KeyNodes; 6901 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 6902 // Skip instructions marked for the deletion. 6903 if (R.isDeleted(&*it)) 6904 continue; 6905 // We may go through BB multiple times so skip the one we have checked. 6906 if (!VisitedInstrs.insert(&*it).second) { 6907 if (it->use_empty() && KeyNodes.count(&*it) > 0 && 6908 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 6909 // We would like to start over since some instructions are deleted 6910 // and the iterator may become invalid value. 6911 Changed = true; 6912 it = BB->begin(); 6913 e = BB->end(); 6914 } 6915 continue; 6916 } 6917 6918 if (isa<DbgInfoIntrinsic>(it)) 6919 continue; 6920 6921 // Try to vectorize reductions that use PHINodes. 6922 if (PHINode *P = dyn_cast<PHINode>(it)) { 6923 // Check that the PHI is a reduction PHI. 6924 if (P->getNumIncomingValues() != 2) 6925 return Changed; 6926 6927 // Try to match and vectorize a horizontal reduction. 6928 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 6929 TTI)) { 6930 Changed = true; 6931 it = BB->begin(); 6932 e = BB->end(); 6933 continue; 6934 } 6935 continue; 6936 } 6937 6938 // Ran into an instruction without users, like terminator, or function call 6939 // with ignored return value, store. Ignore unused instructions (basing on 6940 // instruction type, except for CallInst and InvokeInst). 6941 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 6942 isa<InvokeInst>(it))) { 6943 KeyNodes.insert(&*it); 6944 bool OpsChanged = false; 6945 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 6946 for (auto *V : it->operand_values()) { 6947 // Try to match and vectorize a horizontal reduction. 6948 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 6949 } 6950 } 6951 // Start vectorization of post-process list of instructions from the 6952 // top-tree instructions to try to vectorize as many instructions as 6953 // possible. 6954 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 6955 if (OpsChanged) { 6956 // We would like to start over since some instructions are deleted 6957 // and the iterator may become invalid value. 6958 Changed = true; 6959 it = BB->begin(); 6960 e = BB->end(); 6961 continue; 6962 } 6963 } 6964 6965 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 6966 isa<InsertValueInst>(it)) 6967 PostProcessInstructions.push_back(&*it); 6968 } 6969 6970 return Changed; 6971 } 6972 6973 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 6974 auto Changed = false; 6975 for (auto &Entry : GEPs) { 6976 // If the getelementptr list has fewer than two elements, there's nothing 6977 // to do. 6978 if (Entry.second.size() < 2) 6979 continue; 6980 6981 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 6982 << Entry.second.size() << ".\n"); 6983 6984 // Process the GEP list in chunks suitable for the target's supported 6985 // vector size. If a vector register can't hold 1 element, we are done. 6986 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 6987 unsigned EltSize = R.getVectorElementSize(Entry.second[0]); 6988 if (MaxVecRegSize < EltSize) 6989 continue; 6990 6991 unsigned MaxElts = MaxVecRegSize / EltSize; 6992 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 6993 auto Len = std::min<unsigned>(BE - BI, MaxElts); 6994 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 6995 6996 // Initialize a set a candidate getelementptrs. Note that we use a 6997 // SetVector here to preserve program order. If the index computations 6998 // are vectorizable and begin with loads, we want to minimize the chance 6999 // of having to reorder them later. 7000 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 7001 7002 // Some of the candidates may have already been vectorized after we 7003 // initially collected them. If so, they are marked as deleted, so remove 7004 // them from the set of candidates. 7005 Candidates.remove_if( 7006 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 7007 7008 // Remove from the set of candidates all pairs of getelementptrs with 7009 // constant differences. Such getelementptrs are likely not good 7010 // candidates for vectorization in a bottom-up phase since one can be 7011 // computed from the other. We also ensure all candidate getelementptr 7012 // indices are unique. 7013 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 7014 auto *GEPI = GEPList[I]; 7015 if (!Candidates.count(GEPI)) 7016 continue; 7017 auto *SCEVI = SE->getSCEV(GEPList[I]); 7018 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 7019 auto *GEPJ = GEPList[J]; 7020 auto *SCEVJ = SE->getSCEV(GEPList[J]); 7021 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 7022 Candidates.remove(GEPI); 7023 Candidates.remove(GEPJ); 7024 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 7025 Candidates.remove(GEPJ); 7026 } 7027 } 7028 } 7029 7030 // We break out of the above computation as soon as we know there are 7031 // fewer than two candidates remaining. 7032 if (Candidates.size() < 2) 7033 continue; 7034 7035 // Add the single, non-constant index of each candidate to the bundle. We 7036 // ensured the indices met these constraints when we originally collected 7037 // the getelementptrs. 7038 SmallVector<Value *, 16> Bundle(Candidates.size()); 7039 auto BundleIndex = 0u; 7040 for (auto *V : Candidates) { 7041 auto *GEP = cast<GetElementPtrInst>(V); 7042 auto *GEPIdx = GEP->idx_begin()->get(); 7043 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 7044 Bundle[BundleIndex++] = GEPIdx; 7045 } 7046 7047 // Try and vectorize the indices. We are currently only interested in 7048 // gather-like cases of the form: 7049 // 7050 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 7051 // 7052 // where the loads of "a", the loads of "b", and the subtractions can be 7053 // performed in parallel. It's likely that detecting this pattern in a 7054 // bottom-up phase will be simpler and less costly than building a 7055 // full-blown top-down phase beginning at the consecutive loads. 7056 Changed |= tryToVectorizeList(Bundle, R); 7057 } 7058 } 7059 return Changed; 7060 } 7061 7062 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 7063 bool Changed = false; 7064 // Attempt to sort and vectorize each of the store-groups. 7065 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 7066 ++it) { 7067 if (it->second.size() < 2) 7068 continue; 7069 7070 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 7071 << it->second.size() << ".\n"); 7072 7073 // Process the stores in chunks of 16. 7074 // TODO: The limit of 16 inhibits greater vectorization factors. 7075 // For example, AVX2 supports v32i8. Increasing this limit, however, 7076 // may cause a significant compile-time increase. 7077 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI += 16) { 7078 unsigned Len = std::min<unsigned>(CE - CI, 16); 7079 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R); 7080 } 7081 } 7082 return Changed; 7083 } 7084 7085 char SLPVectorizer::ID = 0; 7086 7087 static const char lv_name[] = "SLP Vectorizer"; 7088 7089 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 7090 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7091 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7092 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7093 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7094 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 7095 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7096 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7097 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 7098 7099 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 7100