1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/DenseSet.h" 23 #include "llvm/ADT/MapVector.h" 24 #include "llvm/ADT/None.h" 25 #include "llvm/ADT/Optional.h" 26 #include "llvm/ADT/PostOrderIterator.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SetVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/CodeMetrics.h" 37 #include "llvm/Analysis/DemandedBits.h" 38 #include "llvm/Analysis/GlobalsModRef.h" 39 #include "llvm/Analysis/LoopAccessAnalysis.h" 40 #include "llvm/Analysis/LoopInfo.h" 41 #include "llvm/Analysis/MemoryLocation.h" 42 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 43 #include "llvm/Analysis/ScalarEvolution.h" 44 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 45 #include "llvm/Analysis/TargetLibraryInfo.h" 46 #include "llvm/Analysis/TargetTransformInfo.h" 47 #include "llvm/Analysis/ValueTracking.h" 48 #include "llvm/Analysis/VectorUtils.h" 49 #include "llvm/IR/Attributes.h" 50 #include "llvm/IR/BasicBlock.h" 51 #include "llvm/IR/Constant.h" 52 #include "llvm/IR/Constants.h" 53 #include "llvm/IR/DataLayout.h" 54 #include "llvm/IR/DebugLoc.h" 55 #include "llvm/IR/DerivedTypes.h" 56 #include "llvm/IR/Dominators.h" 57 #include "llvm/IR/Function.h" 58 #include "llvm/IR/IRBuilder.h" 59 #include "llvm/IR/InstrTypes.h" 60 #include "llvm/IR/Instruction.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/IR/IntrinsicInst.h" 63 #include "llvm/IR/Intrinsics.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/NoFolder.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PassManager.h" 68 #include "llvm/IR/PatternMatch.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/IR/Verifier.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/Casting.h" 77 #include "llvm/Support/CommandLine.h" 78 #include "llvm/Support/Compiler.h" 79 #include "llvm/Support/DOTGraphTraits.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/ErrorHandling.h" 82 #include "llvm/Support/GraphWriter.h" 83 #include "llvm/Support/KnownBits.h" 84 #include "llvm/Support/MathExtras.h" 85 #include "llvm/Support/raw_ostream.h" 86 #include "llvm/Transforms/Utils/LoopUtils.h" 87 #include "llvm/Transforms/Vectorize.h" 88 #include <algorithm> 89 #include <cassert> 90 #include <cstdint> 91 #include <iterator> 92 #include <memory> 93 #include <set> 94 #include <string> 95 #include <tuple> 96 #include <utility> 97 #include <vector> 98 99 using namespace llvm; 100 using namespace llvm::PatternMatch; 101 using namespace slpvectorizer; 102 103 #define SV_NAME "slp-vectorizer" 104 #define DEBUG_TYPE "SLP" 105 106 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 107 108 static cl::opt<int> 109 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 110 cl::desc("Only vectorize if you gain more than this " 111 "number ")); 112 113 static cl::opt<bool> 114 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 115 cl::desc("Attempt to vectorize horizontal reductions")); 116 117 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 118 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 119 cl::desc( 120 "Attempt to vectorize horizontal reductions feeding into a store")); 121 122 static cl::opt<int> 123 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 124 cl::desc("Attempt to vectorize for this register size in bits")); 125 126 /// Limits the size of scheduling regions in a block. 127 /// It avoid long compile times for _very_ large blocks where vector 128 /// instructions are spread over a wide range. 129 /// This limit is way higher than needed by real-world functions. 130 static cl::opt<int> 131 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 132 cl::desc("Limit the size of the SLP scheduling region per block")); 133 134 static cl::opt<int> MinVectorRegSizeOption( 135 "slp-min-reg-size", cl::init(128), cl::Hidden, 136 cl::desc("Attempt to vectorize for this register size in bits")); 137 138 static cl::opt<unsigned> RecursionMaxDepth( 139 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 140 cl::desc("Limit the recursion depth when building a vectorizable tree")); 141 142 static cl::opt<unsigned> MinTreeSize( 143 "slp-min-tree-size", cl::init(3), cl::Hidden, 144 cl::desc("Only vectorize small trees if they are fully vectorizable")); 145 146 static cl::opt<bool> 147 ViewSLPTree("view-slp-tree", cl::Hidden, 148 cl::desc("Display the SLP trees with Graphviz")); 149 150 // Limit the number of alias checks. The limit is chosen so that 151 // it has no negative effect on the llvm benchmarks. 152 static const unsigned AliasedCheckLimit = 10; 153 154 // Another limit for the alias checks: The maximum distance between load/store 155 // instructions where alias checks are done. 156 // This limit is useful for very large basic blocks. 157 static const unsigned MaxMemDepDistance = 160; 158 159 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 160 /// regions to be handled. 161 static const int MinScheduleRegionSize = 16; 162 163 /// \brief Predicate for the element types that the SLP vectorizer supports. 164 /// 165 /// The most important thing to filter here are types which are invalid in LLVM 166 /// vectors. We also filter target specific types which have absolutely no 167 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 168 /// avoids spending time checking the cost model and realizing that they will 169 /// be inevitably scalarized. 170 static bool isValidElementType(Type *Ty) { 171 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 172 !Ty->isPPC_FP128Ty(); 173 } 174 175 /// \returns true if all of the instructions in \p VL are in the same block or 176 /// false otherwise. 177 static bool allSameBlock(ArrayRef<Value *> VL) { 178 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 179 if (!I0) 180 return false; 181 BasicBlock *BB = I0->getParent(); 182 for (int i = 1, e = VL.size(); i < e; i++) { 183 Instruction *I = dyn_cast<Instruction>(VL[i]); 184 if (!I) 185 return false; 186 187 if (BB != I->getParent()) 188 return false; 189 } 190 return true; 191 } 192 193 /// \returns True if all of the values in \p VL are constants. 194 static bool allConstant(ArrayRef<Value *> VL) { 195 for (Value *i : VL) 196 if (!isa<Constant>(i)) 197 return false; 198 return true; 199 } 200 201 /// \returns True if all of the values in \p VL are identical. 202 static bool isSplat(ArrayRef<Value *> VL) { 203 for (unsigned i = 1, e = VL.size(); i < e; ++i) 204 if (VL[i] != VL[0]) 205 return false; 206 return true; 207 } 208 209 /// Checks if the vector of instructions can be represented as a shuffle, like: 210 /// %x0 = extractelement <4 x i8> %x, i32 0 211 /// %x3 = extractelement <4 x i8> %x, i32 3 212 /// %y1 = extractelement <4 x i8> %y, i32 1 213 /// %y2 = extractelement <4 x i8> %y, i32 2 214 /// %x0x0 = mul i8 %x0, %x0 215 /// %x3x3 = mul i8 %x3, %x3 216 /// %y1y1 = mul i8 %y1, %y1 217 /// %y2y2 = mul i8 %y2, %y2 218 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0 219 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 220 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 221 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 222 /// ret <4 x i8> %ins4 223 /// can be transformed into: 224 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 225 /// i32 6> 226 /// %2 = mul <4 x i8> %1, %1 227 /// ret <4 x i8> %2 228 /// We convert this initially to something like: 229 /// %x0 = extractelement <4 x i8> %x, i32 0 230 /// %x3 = extractelement <4 x i8> %x, i32 3 231 /// %y1 = extractelement <4 x i8> %y, i32 1 232 /// %y2 = extractelement <4 x i8> %y, i32 2 233 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0 234 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 235 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 236 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 237 /// %5 = mul <4 x i8> %4, %4 238 /// %6 = extractelement <4 x i8> %5, i32 0 239 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0 240 /// %7 = extractelement <4 x i8> %5, i32 1 241 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 242 /// %8 = extractelement <4 x i8> %5, i32 2 243 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 244 /// %9 = extractelement <4 x i8> %5, i32 3 245 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 246 /// ret <4 x i8> %ins4 247 /// InstCombiner transforms this into a shuffle and vector mul 248 static Optional<TargetTransformInfo::ShuffleKind> 249 isShuffle(ArrayRef<Value *> VL) { 250 auto *EI0 = cast<ExtractElementInst>(VL[0]); 251 unsigned Size = EI0->getVectorOperandType()->getVectorNumElements(); 252 Value *Vec1 = nullptr; 253 Value *Vec2 = nullptr; 254 enum ShuffleMode {Unknown, FirstAlternate, SecondAlternate, Permute}; 255 ShuffleMode CommonShuffleMode = Unknown; 256 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 257 auto *EI = cast<ExtractElementInst>(VL[I]); 258 auto *Vec = EI->getVectorOperand(); 259 // All vector operands must have the same number of vector elements. 260 if (Vec->getType()->getVectorNumElements() != Size) 261 return None; 262 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 263 if (!Idx) 264 return None; 265 // Undefined behavior if Idx is negative or >= Size. 266 if (Idx->getValue().uge(Size)) 267 continue; 268 unsigned IntIdx = Idx->getValue().getZExtValue(); 269 // We can extractelement from undef vector. 270 if (isa<UndefValue>(Vec)) 271 continue; 272 // For correct shuffling we have to have at most 2 different vector operands 273 // in all extractelement instructions. 274 if (Vec1 && Vec2 && Vec != Vec1 && Vec != Vec2) 275 return None; 276 if (CommonShuffleMode == Permute) 277 continue; 278 // If the extract index is not the same as the operation number, it is a 279 // permutation. 280 if (IntIdx != I) { 281 CommonShuffleMode = Permute; 282 continue; 283 } 284 // Check the shuffle mode for the current operation. 285 if (!Vec1) 286 Vec1 = Vec; 287 else if (Vec != Vec1) 288 Vec2 = Vec; 289 // Example: shufflevector A, B, <0,5,2,7> 290 // I is odd and IntIdx for A == I - FirstAlternate shuffle. 291 // I is even and IntIdx for B == I - FirstAlternate shuffle. 292 // Example: shufflevector A, B, <4,1,6,3> 293 // I is even and IntIdx for A == I - SecondAlternate shuffle. 294 // I is odd and IntIdx for B == I - SecondAlternate shuffle. 295 const bool IIsEven = I & 1; 296 const bool CurrVecIsA = Vec == Vec1; 297 const bool IIsOdd = !IIsEven; 298 const bool CurrVecIsB = !CurrVecIsA; 299 ShuffleMode CurrentShuffleMode = 300 ((IIsOdd && CurrVecIsA) || (IIsEven && CurrVecIsB)) ? FirstAlternate 301 : SecondAlternate; 302 // Common mode is not set or the same as the shuffle mode of the current 303 // operation - alternate. 304 if (CommonShuffleMode == Unknown) 305 CommonShuffleMode = CurrentShuffleMode; 306 // Common shuffle mode is not the same as the shuffle mode of the current 307 // operation - permutation. 308 if (CommonShuffleMode != CurrentShuffleMode) 309 CommonShuffleMode = Permute; 310 } 311 // If we're not crossing lanes in different vectors, consider it as blending. 312 if ((CommonShuffleMode == FirstAlternate || 313 CommonShuffleMode == SecondAlternate) && 314 Vec2) 315 return TargetTransformInfo::SK_Alternate; 316 // If Vec2 was never used, we have a permutation of a single vector, otherwise 317 // we have permutation of 2 vectors. 318 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 319 : TargetTransformInfo::SK_PermuteSingleSrc; 320 } 321 322 ///\returns Opcode that can be clubbed with \p Op to create an alternate 323 /// sequence which can later be merged as a ShuffleVector instruction. 324 static unsigned getAltOpcode(unsigned Op) { 325 switch (Op) { 326 case Instruction::FAdd: 327 return Instruction::FSub; 328 case Instruction::FSub: 329 return Instruction::FAdd; 330 case Instruction::Add: 331 return Instruction::Sub; 332 case Instruction::Sub: 333 return Instruction::Add; 334 default: 335 return 0; 336 } 337 } 338 339 static bool isOdd(unsigned Value) { 340 return Value & 1; 341 } 342 343 static bool sameOpcodeOrAlt(unsigned Opcode, unsigned AltOpcode, 344 unsigned CheckedOpcode) { 345 return Opcode == CheckedOpcode || AltOpcode == CheckedOpcode; 346 } 347 348 /// Chooses the correct key for scheduling data. If \p Op has the same (or 349 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 350 /// OpValue. 351 static Value *isOneOf(Value *OpValue, Value *Op) { 352 auto *I = dyn_cast<Instruction>(Op); 353 if (!I) 354 return OpValue; 355 auto *OpInst = cast<Instruction>(OpValue); 356 unsigned OpInstOpcode = OpInst->getOpcode(); 357 unsigned IOpcode = I->getOpcode(); 358 if (sameOpcodeOrAlt(OpInstOpcode, getAltOpcode(OpInstOpcode), IOpcode)) 359 return Op; 360 return OpValue; 361 } 362 363 namespace { 364 /// Contains data for the instructions going to be vectorized. 365 struct RawInstructionsData { 366 /// Main Opcode of the instructions going to be vectorized. 367 unsigned Opcode = 0; 368 /// The list of instructions have some instructions with alternate opcodes. 369 bool HasAltOpcodes = false; 370 }; 371 } // namespace 372 373 /// Checks the list of the vectorized instructions \p VL and returns info about 374 /// this list. 375 static RawInstructionsData getMainOpcode(ArrayRef<Value *> VL) { 376 auto *I0 = dyn_cast<Instruction>(VL[0]); 377 if (!I0) 378 return {}; 379 RawInstructionsData Res; 380 unsigned Opcode = I0->getOpcode(); 381 // Walk through the list of the vectorized instructions 382 // in order to check its structure described by RawInstructionsData. 383 for (unsigned Cnt = 0, E = VL.size(); Cnt != E; ++Cnt) { 384 auto *I = dyn_cast<Instruction>(VL[Cnt]); 385 if (!I) 386 return {}; 387 if (Opcode != I->getOpcode()) 388 Res.HasAltOpcodes = true; 389 } 390 Res.Opcode = Opcode; 391 return Res; 392 } 393 394 namespace { 395 /// Main data required for vectorization of instructions. 396 struct InstructionsState { 397 /// The very first instruction in the list with the main opcode. 398 Value *OpValue = nullptr; 399 /// The main opcode for the list of instructions. 400 unsigned Opcode = 0; 401 /// Some of the instructions in the list have alternate opcodes. 402 bool IsAltShuffle = false; 403 InstructionsState() = default; 404 InstructionsState(Value *OpValue, unsigned Opcode, bool IsAltShuffle) 405 : OpValue(OpValue), Opcode(Opcode), IsAltShuffle(IsAltShuffle) {} 406 }; 407 } // namespace 408 409 /// \returns analysis of the Instructions in \p VL described in 410 /// InstructionsState, the Opcode that we suppose the whole list 411 /// could be vectorized even if its structure is diverse. 412 static InstructionsState getSameOpcode(ArrayRef<Value *> VL) { 413 auto Res = getMainOpcode(VL); 414 unsigned Opcode = Res.Opcode; 415 if (!Res.HasAltOpcodes) 416 return InstructionsState(VL[0], Opcode, false); 417 auto *OpInst = cast<Instruction>(VL[0]); 418 unsigned AltOpcode = getAltOpcode(Opcode); 419 // Examine each element in the list instructions VL to determine 420 // if some operations there could be considered as an alternative 421 // (for example as subtraction relates to addition operation). 422 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 423 auto *I = cast<Instruction>(VL[Cnt]); 424 unsigned InstOpcode = I->getOpcode(); 425 if ((Res.HasAltOpcodes && 426 InstOpcode != (isOdd(Cnt) ? AltOpcode : Opcode)) || 427 (!Res.HasAltOpcodes && InstOpcode != Opcode)) { 428 return InstructionsState(OpInst, 0, false); 429 } 430 } 431 return InstructionsState(OpInst, Opcode, Res.HasAltOpcodes); 432 } 433 434 /// \returns true if all of the values in \p VL have the same type or false 435 /// otherwise. 436 static bool allSameType(ArrayRef<Value *> VL) { 437 Type *Ty = VL[0]->getType(); 438 for (int i = 1, e = VL.size(); i < e; i++) 439 if (VL[i]->getType() != Ty) 440 return false; 441 442 return true; 443 } 444 445 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 446 static bool matchExtractIndex(Instruction *E, unsigned Idx, unsigned Opcode) { 447 assert(Opcode == Instruction::ExtractElement || 448 Opcode == Instruction::ExtractValue); 449 if (Opcode == Instruction::ExtractElement) { 450 ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 451 return CI && CI->getZExtValue() == Idx; 452 } else { 453 ExtractValueInst *EI = cast<ExtractValueInst>(E); 454 return EI->getNumIndices() == 1 && *EI->idx_begin() == Idx; 455 } 456 } 457 458 /// \returns True if in-tree use also needs extract. This refers to 459 /// possible scalar operand in vectorized instruction. 460 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 461 TargetLibraryInfo *TLI) { 462 unsigned Opcode = UserInst->getOpcode(); 463 switch (Opcode) { 464 case Instruction::Load: { 465 LoadInst *LI = cast<LoadInst>(UserInst); 466 return (LI->getPointerOperand() == Scalar); 467 } 468 case Instruction::Store: { 469 StoreInst *SI = cast<StoreInst>(UserInst); 470 return (SI->getPointerOperand() == Scalar); 471 } 472 case Instruction::Call: { 473 CallInst *CI = cast<CallInst>(UserInst); 474 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 475 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 476 return (CI->getArgOperand(1) == Scalar); 477 } 478 LLVM_FALLTHROUGH; 479 } 480 default: 481 return false; 482 } 483 } 484 485 /// \returns the AA location that is being access by the instruction. 486 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 487 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 488 return MemoryLocation::get(SI); 489 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 490 return MemoryLocation::get(LI); 491 return MemoryLocation(); 492 } 493 494 /// \returns True if the instruction is not a volatile or atomic load/store. 495 static bool isSimple(Instruction *I) { 496 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 497 return LI->isSimple(); 498 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 499 return SI->isSimple(); 500 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 501 return !MI->isVolatile(); 502 return true; 503 } 504 505 namespace llvm { 506 507 namespace slpvectorizer { 508 509 /// Bottom Up SLP Vectorizer. 510 class BoUpSLP { 511 public: 512 using ValueList = SmallVector<Value *, 8>; 513 using InstrList = SmallVector<Instruction *, 16>; 514 using ValueSet = SmallPtrSet<Value *, 16>; 515 using StoreList = SmallVector<StoreInst *, 8>; 516 using ExtraValueToDebugLocsMap = 517 MapVector<Value *, SmallVector<Instruction *, 2>>; 518 519 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 520 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 521 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 522 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 523 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 524 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 525 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 526 // Use the vector register size specified by the target unless overridden 527 // by a command-line option. 528 // TODO: It would be better to limit the vectorization factor based on 529 // data type rather than just register size. For example, x86 AVX has 530 // 256-bit registers, but it does not support integer operations 531 // at that width (that requires AVX2). 532 if (MaxVectorRegSizeOption.getNumOccurrences()) 533 MaxVecRegSize = MaxVectorRegSizeOption; 534 else 535 MaxVecRegSize = TTI->getRegisterBitWidth(true); 536 537 if (MinVectorRegSizeOption.getNumOccurrences()) 538 MinVecRegSize = MinVectorRegSizeOption; 539 else 540 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 541 } 542 543 /// \brief Vectorize the tree that starts with the elements in \p VL. 544 /// Returns the vectorized root. 545 Value *vectorizeTree(); 546 547 /// Vectorize the tree but with the list of externally used values \p 548 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 549 /// generated extractvalue instructions. 550 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 551 552 /// \returns the cost incurred by unwanted spills and fills, caused by 553 /// holding live values over call sites. 554 int getSpillCost(); 555 556 /// \returns the vectorization cost of the subtree that starts at \p VL. 557 /// A negative number means that this is profitable. 558 int getTreeCost(); 559 560 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 561 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 562 void buildTree(ArrayRef<Value *> Roots, 563 ArrayRef<Value *> UserIgnoreLst = None); 564 565 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 566 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 567 /// into account (anf updating it, if required) list of externally used 568 /// values stored in \p ExternallyUsedValues. 569 void buildTree(ArrayRef<Value *> Roots, 570 ExtraValueToDebugLocsMap &ExternallyUsedValues, 571 ArrayRef<Value *> UserIgnoreLst = None); 572 573 /// Clear the internal data structures that are created by 'buildTree'. 574 void deleteTree() { 575 VectorizableTree.clear(); 576 ScalarToTreeEntry.clear(); 577 MustGather.clear(); 578 ExternalUses.clear(); 579 NumLoadsWantToKeepOrder = 0; 580 NumLoadsWantToChangeOrder = 0; 581 for (auto &Iter : BlocksSchedules) { 582 BlockScheduling *BS = Iter.second.get(); 583 BS->clear(); 584 } 585 MinBWs.clear(); 586 } 587 588 unsigned getTreeSize() const { return VectorizableTree.size(); } 589 590 /// \brief Perform LICM and CSE on the newly generated gather sequences. 591 void optimizeGatherSequence(); 592 593 /// \returns true if it is beneficial to reverse the vector order. 594 bool shouldReorder() const { 595 return NumLoadsWantToChangeOrder > NumLoadsWantToKeepOrder; 596 } 597 598 /// \return The vector element size in bits to use when vectorizing the 599 /// expression tree ending at \p V. If V is a store, the size is the width of 600 /// the stored value. Otherwise, the size is the width of the largest loaded 601 /// value reaching V. This method is used by the vectorizer to calculate 602 /// vectorization factors. 603 unsigned getVectorElementSize(Value *V); 604 605 /// Compute the minimum type sizes required to represent the entries in a 606 /// vectorizable tree. 607 void computeMinimumValueSizes(); 608 609 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 610 unsigned getMaxVecRegSize() const { 611 return MaxVecRegSize; 612 } 613 614 // \returns minimum vector register size as set by cl::opt. 615 unsigned getMinVecRegSize() const { 616 return MinVecRegSize; 617 } 618 619 /// \brief Check if ArrayType or StructType is isomorphic to some VectorType. 620 /// 621 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 622 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 623 624 /// \returns True if the VectorizableTree is both tiny and not fully 625 /// vectorizable. We do not vectorize such trees. 626 bool isTreeTinyAndNotFullyVectorizable(); 627 628 OptimizationRemarkEmitter *getORE() { return ORE; } 629 630 private: 631 struct TreeEntry; 632 633 /// Checks if all users of \p I are the part of the vectorization tree. 634 bool areAllUsersVectorized(Instruction *I) const; 635 636 /// \returns the cost of the vectorizable entry. 637 int getEntryCost(TreeEntry *E); 638 639 /// This is the recursive part of buildTree. 640 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, int); 641 642 /// \returns True if the ExtractElement/ExtractValue instructions in VL can 643 /// be vectorized to use the original vector (or aggregate "bitcast" to a vector). 644 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue) const; 645 646 /// Vectorize a single entry in the tree. 647 Value *vectorizeTree(TreeEntry *E); 648 649 /// Vectorize a single entry in the tree, starting in \p VL. 650 Value *vectorizeTree(ArrayRef<Value *> VL); 651 652 /// \returns the pointer to the vectorized value if \p VL is already 653 /// vectorized, or NULL. They may happen in cycles. 654 Value *alreadyVectorized(ArrayRef<Value *> VL, Value *OpValue) const; 655 656 /// \returns the scalarization cost for this type. Scalarization in this 657 /// context means the creation of vectors from a group of scalars. 658 int getGatherCost(Type *Ty); 659 660 /// \returns the scalarization cost for this list of values. Assuming that 661 /// this subtree gets vectorized, we may need to extract the values from the 662 /// roots. This method calculates the cost of extracting the values. 663 int getGatherCost(ArrayRef<Value *> VL); 664 665 /// \brief Set the Builder insert point to one after the last instruction in 666 /// the bundle 667 void setInsertPointAfterBundle(ArrayRef<Value *> VL, Value *OpValue); 668 669 /// \returns a vector from a collection of scalars in \p VL. 670 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 671 672 /// \returns whether the VectorizableTree is fully vectorizable and will 673 /// be beneficial even the tree height is tiny. 674 bool isFullyVectorizableTinyTree(); 675 676 /// \reorder commutative operands in alt shuffle if they result in 677 /// vectorized code. 678 void reorderAltShuffleOperands(unsigned Opcode, ArrayRef<Value *> VL, 679 SmallVectorImpl<Value *> &Left, 680 SmallVectorImpl<Value *> &Right); 681 682 /// \reorder commutative operands to get better probability of 683 /// generating vectorized code. 684 void reorderInputsAccordingToOpcode(unsigned Opcode, ArrayRef<Value *> VL, 685 SmallVectorImpl<Value *> &Left, 686 SmallVectorImpl<Value *> &Right); 687 struct TreeEntry { 688 TreeEntry(std::vector<TreeEntry> &Container) : Container(Container) {} 689 690 /// \returns true if the scalars in VL are equal to this entry. 691 bool isSame(ArrayRef<Value *> VL) const { 692 assert(VL.size() == Scalars.size() && "Invalid size"); 693 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 694 } 695 696 /// A vector of scalars. 697 ValueList Scalars; 698 699 /// The Scalars are vectorized into this value. It is initialized to Null. 700 Value *VectorizedValue = nullptr; 701 702 /// Do we need to gather this sequence ? 703 bool NeedToGather = false; 704 705 /// Points back to the VectorizableTree. 706 /// 707 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 708 /// to be a pointer and needs to be able to initialize the child iterator. 709 /// Thus we need a reference back to the container to translate the indices 710 /// to entries. 711 std::vector<TreeEntry> &Container; 712 713 /// The TreeEntry index containing the user of this entry. We can actually 714 /// have multiple users so the data structure is not truly a tree. 715 SmallVector<int, 1> UserTreeIndices; 716 }; 717 718 /// Create a new VectorizableTree entry. 719 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized, 720 int &UserTreeIdx) { 721 VectorizableTree.emplace_back(VectorizableTree); 722 int idx = VectorizableTree.size() - 1; 723 TreeEntry *Last = &VectorizableTree[idx]; 724 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 725 Last->NeedToGather = !Vectorized; 726 if (Vectorized) { 727 for (int i = 0, e = VL.size(); i != e; ++i) { 728 assert(!getTreeEntry(VL[i]) && "Scalar already in tree!"); 729 ScalarToTreeEntry[VL[i]] = idx; 730 } 731 } else { 732 MustGather.insert(VL.begin(), VL.end()); 733 } 734 735 if (UserTreeIdx >= 0) 736 Last->UserTreeIndices.push_back(UserTreeIdx); 737 UserTreeIdx = idx; 738 return Last; 739 } 740 741 /// -- Vectorization State -- 742 /// Holds all of the tree entries. 743 std::vector<TreeEntry> VectorizableTree; 744 745 TreeEntry *getTreeEntry(Value *V) { 746 auto I = ScalarToTreeEntry.find(V); 747 if (I != ScalarToTreeEntry.end()) 748 return &VectorizableTree[I->second]; 749 return nullptr; 750 } 751 752 const TreeEntry *getTreeEntry(Value *V) const { 753 auto I = ScalarToTreeEntry.find(V); 754 if (I != ScalarToTreeEntry.end()) 755 return &VectorizableTree[I->second]; 756 return nullptr; 757 } 758 759 /// Maps a specific scalar to its tree entry. 760 SmallDenseMap<Value*, int> ScalarToTreeEntry; 761 762 /// A list of scalars that we found that we need to keep as scalars. 763 ValueSet MustGather; 764 765 /// This POD struct describes one external user in the vectorized tree. 766 struct ExternalUser { 767 ExternalUser(Value *S, llvm::User *U, int L) 768 : Scalar(S), User(U), Lane(L) {} 769 770 // Which scalar in our function. 771 Value *Scalar; 772 773 // Which user that uses the scalar. 774 llvm::User *User; 775 776 // Which lane does the scalar belong to. 777 int Lane; 778 }; 779 using UserList = SmallVector<ExternalUser, 16>; 780 781 /// Checks if two instructions may access the same memory. 782 /// 783 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 784 /// is invariant in the calling loop. 785 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 786 Instruction *Inst2) { 787 // First check if the result is already in the cache. 788 AliasCacheKey key = std::make_pair(Inst1, Inst2); 789 Optional<bool> &result = AliasCache[key]; 790 if (result.hasValue()) { 791 return result.getValue(); 792 } 793 MemoryLocation Loc2 = getLocation(Inst2, AA); 794 bool aliased = true; 795 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 796 // Do the alias check. 797 aliased = AA->alias(Loc1, Loc2); 798 } 799 // Store the result in the cache. 800 result = aliased; 801 return aliased; 802 } 803 804 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 805 806 /// Cache for alias results. 807 /// TODO: consider moving this to the AliasAnalysis itself. 808 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 809 810 /// Removes an instruction from its block and eventually deletes it. 811 /// It's like Instruction::eraseFromParent() except that the actual deletion 812 /// is delayed until BoUpSLP is destructed. 813 /// This is required to ensure that there are no incorrect collisions in the 814 /// AliasCache, which can happen if a new instruction is allocated at the 815 /// same address as a previously deleted instruction. 816 void eraseInstruction(Instruction *I) { 817 I->removeFromParent(); 818 I->dropAllReferences(); 819 DeletedInstructions.emplace_back(I); 820 } 821 822 /// Temporary store for deleted instructions. Instructions will be deleted 823 /// eventually when the BoUpSLP is destructed. 824 SmallVector<unique_value, 8> DeletedInstructions; 825 826 /// A list of values that need to extracted out of the tree. 827 /// This list holds pairs of (Internal Scalar : External User). External User 828 /// can be nullptr, it means that this Internal Scalar will be used later, 829 /// after vectorization. 830 UserList ExternalUses; 831 832 /// Values used only by @llvm.assume calls. 833 SmallPtrSet<const Value *, 32> EphValues; 834 835 /// Holds all of the instructions that we gathered. 836 SetVector<Instruction *> GatherSeq; 837 838 /// A list of blocks that we are going to CSE. 839 SetVector<BasicBlock *> CSEBlocks; 840 841 /// Contains all scheduling relevant data for an instruction. 842 /// A ScheduleData either represents a single instruction or a member of an 843 /// instruction bundle (= a group of instructions which is combined into a 844 /// vector instruction). 845 struct ScheduleData { 846 // The initial value for the dependency counters. It means that the 847 // dependencies are not calculated yet. 848 enum { InvalidDeps = -1 }; 849 850 ScheduleData() = default; 851 852 void init(int BlockSchedulingRegionID, Value *OpVal) { 853 FirstInBundle = this; 854 NextInBundle = nullptr; 855 NextLoadStore = nullptr; 856 IsScheduled = false; 857 SchedulingRegionID = BlockSchedulingRegionID; 858 UnscheduledDepsInBundle = UnscheduledDeps; 859 clearDependencies(); 860 OpValue = OpVal; 861 } 862 863 /// Returns true if the dependency information has been calculated. 864 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 865 866 /// Returns true for single instructions and for bundle representatives 867 /// (= the head of a bundle). 868 bool isSchedulingEntity() const { return FirstInBundle == this; } 869 870 /// Returns true if it represents an instruction bundle and not only a 871 /// single instruction. 872 bool isPartOfBundle() const { 873 return NextInBundle != nullptr || FirstInBundle != this; 874 } 875 876 /// Returns true if it is ready for scheduling, i.e. it has no more 877 /// unscheduled depending instructions/bundles. 878 bool isReady() const { 879 assert(isSchedulingEntity() && 880 "can't consider non-scheduling entity for ready list"); 881 return UnscheduledDepsInBundle == 0 && !IsScheduled; 882 } 883 884 /// Modifies the number of unscheduled dependencies, also updating it for 885 /// the whole bundle. 886 int incrementUnscheduledDeps(int Incr) { 887 UnscheduledDeps += Incr; 888 return FirstInBundle->UnscheduledDepsInBundle += Incr; 889 } 890 891 /// Sets the number of unscheduled dependencies to the number of 892 /// dependencies. 893 void resetUnscheduledDeps() { 894 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 895 } 896 897 /// Clears all dependency information. 898 void clearDependencies() { 899 Dependencies = InvalidDeps; 900 resetUnscheduledDeps(); 901 MemoryDependencies.clear(); 902 } 903 904 void dump(raw_ostream &os) const { 905 if (!isSchedulingEntity()) { 906 os << "/ " << *Inst; 907 } else if (NextInBundle) { 908 os << '[' << *Inst; 909 ScheduleData *SD = NextInBundle; 910 while (SD) { 911 os << ';' << *SD->Inst; 912 SD = SD->NextInBundle; 913 } 914 os << ']'; 915 } else { 916 os << *Inst; 917 } 918 } 919 920 Instruction *Inst = nullptr; 921 922 /// Points to the head in an instruction bundle (and always to this for 923 /// single instructions). 924 ScheduleData *FirstInBundle = nullptr; 925 926 /// Single linked list of all instructions in a bundle. Null if it is a 927 /// single instruction. 928 ScheduleData *NextInBundle = nullptr; 929 930 /// Single linked list of all memory instructions (e.g. load, store, call) 931 /// in the block - until the end of the scheduling region. 932 ScheduleData *NextLoadStore = nullptr; 933 934 /// The dependent memory instructions. 935 /// This list is derived on demand in calculateDependencies(). 936 SmallVector<ScheduleData *, 4> MemoryDependencies; 937 938 /// This ScheduleData is in the current scheduling region if this matches 939 /// the current SchedulingRegionID of BlockScheduling. 940 int SchedulingRegionID = 0; 941 942 /// Used for getting a "good" final ordering of instructions. 943 int SchedulingPriority = 0; 944 945 /// The number of dependencies. Constitutes of the number of users of the 946 /// instruction plus the number of dependent memory instructions (if any). 947 /// This value is calculated on demand. 948 /// If InvalidDeps, the number of dependencies is not calculated yet. 949 int Dependencies = InvalidDeps; 950 951 /// The number of dependencies minus the number of dependencies of scheduled 952 /// instructions. As soon as this is zero, the instruction/bundle gets ready 953 /// for scheduling. 954 /// Note that this is negative as long as Dependencies is not calculated. 955 int UnscheduledDeps = InvalidDeps; 956 957 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 958 /// single instructions. 959 int UnscheduledDepsInBundle = InvalidDeps; 960 961 /// True if this instruction is scheduled (or considered as scheduled in the 962 /// dry-run). 963 bool IsScheduled = false; 964 965 /// Opcode of the current instruction in the schedule data. 966 Value *OpValue = nullptr; 967 }; 968 969 #ifndef NDEBUG 970 friend inline raw_ostream &operator<<(raw_ostream &os, 971 const BoUpSLP::ScheduleData &SD) { 972 SD.dump(os); 973 return os; 974 } 975 #endif 976 friend struct GraphTraits<BoUpSLP *>; 977 friend struct DOTGraphTraits<BoUpSLP *>; 978 979 /// Contains all scheduling data for a basic block. 980 struct BlockScheduling { 981 BlockScheduling(BasicBlock *BB) 982 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 983 984 void clear() { 985 ReadyInsts.clear(); 986 ScheduleStart = nullptr; 987 ScheduleEnd = nullptr; 988 FirstLoadStoreInRegion = nullptr; 989 LastLoadStoreInRegion = nullptr; 990 991 // Reduce the maximum schedule region size by the size of the 992 // previous scheduling run. 993 ScheduleRegionSizeLimit -= ScheduleRegionSize; 994 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 995 ScheduleRegionSizeLimit = MinScheduleRegionSize; 996 ScheduleRegionSize = 0; 997 998 // Make a new scheduling region, i.e. all existing ScheduleData is not 999 // in the new region yet. 1000 ++SchedulingRegionID; 1001 } 1002 1003 ScheduleData *getScheduleData(Value *V) { 1004 ScheduleData *SD = ScheduleDataMap[V]; 1005 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1006 return SD; 1007 return nullptr; 1008 } 1009 1010 ScheduleData *getScheduleData(Value *V, Value *Key) { 1011 if (V == Key) 1012 return getScheduleData(V); 1013 auto I = ExtraScheduleDataMap.find(V); 1014 if (I != ExtraScheduleDataMap.end()) { 1015 ScheduleData *SD = I->second[Key]; 1016 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1017 return SD; 1018 } 1019 return nullptr; 1020 } 1021 1022 bool isInSchedulingRegion(ScheduleData *SD) { 1023 return SD->SchedulingRegionID == SchedulingRegionID; 1024 } 1025 1026 /// Marks an instruction as scheduled and puts all dependent ready 1027 /// instructions into the ready-list. 1028 template <typename ReadyListType> 1029 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 1030 SD->IsScheduled = true; 1031 DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 1032 1033 ScheduleData *BundleMember = SD; 1034 while (BundleMember) { 1035 if (BundleMember->Inst != BundleMember->OpValue) { 1036 BundleMember = BundleMember->NextInBundle; 1037 continue; 1038 } 1039 // Handle the def-use chain dependencies. 1040 for (Use &U : BundleMember->Inst->operands()) { 1041 auto *I = dyn_cast<Instruction>(U.get()); 1042 if (!I) 1043 continue; 1044 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 1045 if (OpDef && OpDef->hasValidDependencies() && 1046 OpDef->incrementUnscheduledDeps(-1) == 0) { 1047 // There are no more unscheduled dependencies after 1048 // decrementing, so we can put the dependent instruction 1049 // into the ready list. 1050 ScheduleData *DepBundle = OpDef->FirstInBundle; 1051 assert(!DepBundle->IsScheduled && 1052 "already scheduled bundle gets ready"); 1053 ReadyList.insert(DepBundle); 1054 DEBUG(dbgs() 1055 << "SLP: gets ready (def): " << *DepBundle << "\n"); 1056 } 1057 }); 1058 } 1059 // Handle the memory dependencies. 1060 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 1061 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 1062 // There are no more unscheduled dependencies after decrementing, 1063 // so we can put the dependent instruction into the ready list. 1064 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 1065 assert(!DepBundle->IsScheduled && 1066 "already scheduled bundle gets ready"); 1067 ReadyList.insert(DepBundle); 1068 DEBUG(dbgs() << "SLP: gets ready (mem): " << *DepBundle 1069 << "\n"); 1070 } 1071 } 1072 BundleMember = BundleMember->NextInBundle; 1073 } 1074 } 1075 1076 void doForAllOpcodes(Value *V, 1077 function_ref<void(ScheduleData *SD)> Action) { 1078 if (ScheduleData *SD = getScheduleData(V)) 1079 Action(SD); 1080 auto I = ExtraScheduleDataMap.find(V); 1081 if (I != ExtraScheduleDataMap.end()) 1082 for (auto &P : I->second) 1083 if (P.second->SchedulingRegionID == SchedulingRegionID) 1084 Action(P.second); 1085 } 1086 1087 /// Put all instructions into the ReadyList which are ready for scheduling. 1088 template <typename ReadyListType> 1089 void initialFillReadyList(ReadyListType &ReadyList) { 1090 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 1091 doForAllOpcodes(I, [&](ScheduleData *SD) { 1092 if (SD->isSchedulingEntity() && SD->isReady()) { 1093 ReadyList.insert(SD); 1094 DEBUG(dbgs() << "SLP: initially in ready list: " << *I << "\n"); 1095 } 1096 }); 1097 } 1098 } 1099 1100 /// Checks if a bundle of instructions can be scheduled, i.e. has no 1101 /// cyclic dependencies. This is only a dry-run, no instructions are 1102 /// actually moved at this stage. 1103 bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, Value *OpValue); 1104 1105 /// Un-bundles a group of instructions. 1106 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 1107 1108 /// Allocates schedule data chunk. 1109 ScheduleData *allocateScheduleDataChunks(); 1110 1111 /// Extends the scheduling region so that V is inside the region. 1112 /// \returns true if the region size is within the limit. 1113 bool extendSchedulingRegion(Value *V, Value *OpValue); 1114 1115 /// Initialize the ScheduleData structures for new instructions in the 1116 /// scheduling region. 1117 void initScheduleData(Instruction *FromI, Instruction *ToI, 1118 ScheduleData *PrevLoadStore, 1119 ScheduleData *NextLoadStore); 1120 1121 /// Updates the dependency information of a bundle and of all instructions/ 1122 /// bundles which depend on the original bundle. 1123 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 1124 BoUpSLP *SLP); 1125 1126 /// Sets all instruction in the scheduling region to un-scheduled. 1127 void resetSchedule(); 1128 1129 BasicBlock *BB; 1130 1131 /// Simple memory allocation for ScheduleData. 1132 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 1133 1134 /// The size of a ScheduleData array in ScheduleDataChunks. 1135 int ChunkSize; 1136 1137 /// The allocator position in the current chunk, which is the last entry 1138 /// of ScheduleDataChunks. 1139 int ChunkPos; 1140 1141 /// Attaches ScheduleData to Instruction. 1142 /// Note that the mapping survives during all vectorization iterations, i.e. 1143 /// ScheduleData structures are recycled. 1144 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 1145 1146 /// Attaches ScheduleData to Instruction with the leading key. 1147 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 1148 ExtraScheduleDataMap; 1149 1150 struct ReadyList : SmallVector<ScheduleData *, 8> { 1151 void insert(ScheduleData *SD) { push_back(SD); } 1152 }; 1153 1154 /// The ready-list for scheduling (only used for the dry-run). 1155 ReadyList ReadyInsts; 1156 1157 /// The first instruction of the scheduling region. 1158 Instruction *ScheduleStart = nullptr; 1159 1160 /// The first instruction _after_ the scheduling region. 1161 Instruction *ScheduleEnd = nullptr; 1162 1163 /// The first memory accessing instruction in the scheduling region 1164 /// (can be null). 1165 ScheduleData *FirstLoadStoreInRegion = nullptr; 1166 1167 /// The last memory accessing instruction in the scheduling region 1168 /// (can be null). 1169 ScheduleData *LastLoadStoreInRegion = nullptr; 1170 1171 /// The current size of the scheduling region. 1172 int ScheduleRegionSize = 0; 1173 1174 /// The maximum size allowed for the scheduling region. 1175 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 1176 1177 /// The ID of the scheduling region. For a new vectorization iteration this 1178 /// is incremented which "removes" all ScheduleData from the region. 1179 int SchedulingRegionID = 1; 1180 // Make sure that the initial SchedulingRegionID is greater than the 1181 // initial SchedulingRegionID in ScheduleData (which is 0). 1182 }; 1183 1184 /// Attaches the BlockScheduling structures to basic blocks. 1185 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 1186 1187 /// Performs the "real" scheduling. Done before vectorization is actually 1188 /// performed in a basic block. 1189 void scheduleBlock(BlockScheduling *BS); 1190 1191 /// List of users to ignore during scheduling and that don't need extracting. 1192 ArrayRef<Value *> UserIgnoreList; 1193 1194 // Number of load bundles that contain consecutive loads. 1195 int NumLoadsWantToKeepOrder = 0; 1196 1197 // Number of load bundles that contain consecutive loads in reversed order. 1198 int NumLoadsWantToChangeOrder = 0; 1199 1200 // Analysis and block reference. 1201 Function *F; 1202 ScalarEvolution *SE; 1203 TargetTransformInfo *TTI; 1204 TargetLibraryInfo *TLI; 1205 AliasAnalysis *AA; 1206 LoopInfo *LI; 1207 DominatorTree *DT; 1208 AssumptionCache *AC; 1209 DemandedBits *DB; 1210 const DataLayout *DL; 1211 OptimizationRemarkEmitter *ORE; 1212 1213 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 1214 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 1215 /// Instruction builder to construct the vectorized tree. 1216 IRBuilder<> Builder; 1217 1218 /// A map of scalar integer values to the smallest bit width with which they 1219 /// can legally be represented. The values map to (width, signed) pairs, 1220 /// where "width" indicates the minimum bit width and "signed" is True if the 1221 /// value must be signed-extended, rather than zero-extended, back to its 1222 /// original width. 1223 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 1224 }; 1225 1226 } // end namespace slpvectorizer 1227 1228 template <> struct GraphTraits<BoUpSLP *> { 1229 using TreeEntry = BoUpSLP::TreeEntry; 1230 1231 /// NodeRef has to be a pointer per the GraphWriter. 1232 using NodeRef = TreeEntry *; 1233 1234 /// \brief Add the VectorizableTree to the index iterator to be able to return 1235 /// TreeEntry pointers. 1236 struct ChildIteratorType 1237 : public iterator_adaptor_base<ChildIteratorType, 1238 SmallVector<int, 1>::iterator> { 1239 std::vector<TreeEntry> &VectorizableTree; 1240 1241 ChildIteratorType(SmallVector<int, 1>::iterator W, 1242 std::vector<TreeEntry> &VT) 1243 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 1244 1245 NodeRef operator*() { return &VectorizableTree[*I]; } 1246 }; 1247 1248 static NodeRef getEntryNode(BoUpSLP &R) { return &R.VectorizableTree[0]; } 1249 1250 static ChildIteratorType child_begin(NodeRef N) { 1251 return {N->UserTreeIndices.begin(), N->Container}; 1252 } 1253 1254 static ChildIteratorType child_end(NodeRef N) { 1255 return {N->UserTreeIndices.end(), N->Container}; 1256 } 1257 1258 /// For the node iterator we just need to turn the TreeEntry iterator into a 1259 /// TreeEntry* iterator so that it dereferences to NodeRef. 1260 using nodes_iterator = pointer_iterator<std::vector<TreeEntry>::iterator>; 1261 1262 static nodes_iterator nodes_begin(BoUpSLP *R) { 1263 return nodes_iterator(R->VectorizableTree.begin()); 1264 } 1265 1266 static nodes_iterator nodes_end(BoUpSLP *R) { 1267 return nodes_iterator(R->VectorizableTree.end()); 1268 } 1269 1270 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 1271 }; 1272 1273 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 1274 using TreeEntry = BoUpSLP::TreeEntry; 1275 1276 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 1277 1278 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 1279 std::string Str; 1280 raw_string_ostream OS(Str); 1281 if (isSplat(Entry->Scalars)) { 1282 OS << "<splat> " << *Entry->Scalars[0]; 1283 return Str; 1284 } 1285 for (auto V : Entry->Scalars) { 1286 OS << *V; 1287 if (std::any_of( 1288 R->ExternalUses.begin(), R->ExternalUses.end(), 1289 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; })) 1290 OS << " <extract>"; 1291 OS << "\n"; 1292 } 1293 return Str; 1294 } 1295 1296 static std::string getNodeAttributes(const TreeEntry *Entry, 1297 const BoUpSLP *) { 1298 if (Entry->NeedToGather) 1299 return "color=red"; 1300 return ""; 1301 } 1302 }; 1303 1304 } // end namespace llvm 1305 1306 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1307 ArrayRef<Value *> UserIgnoreLst) { 1308 ExtraValueToDebugLocsMap ExternallyUsedValues; 1309 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 1310 } 1311 1312 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1313 ExtraValueToDebugLocsMap &ExternallyUsedValues, 1314 ArrayRef<Value *> UserIgnoreLst) { 1315 deleteTree(); 1316 UserIgnoreList = UserIgnoreLst; 1317 if (!allSameType(Roots)) 1318 return; 1319 buildTree_rec(Roots, 0, -1); 1320 1321 // Collect the values that we need to extract from the tree. 1322 for (TreeEntry &EIdx : VectorizableTree) { 1323 TreeEntry *Entry = &EIdx; 1324 1325 // No need to handle users of gathered values. 1326 if (Entry->NeedToGather) 1327 continue; 1328 1329 // For each lane: 1330 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 1331 Value *Scalar = Entry->Scalars[Lane]; 1332 1333 // Check if the scalar is externally used as an extra arg. 1334 auto ExtI = ExternallyUsedValues.find(Scalar); 1335 if (ExtI != ExternallyUsedValues.end()) { 1336 DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " << 1337 Lane << " from " << *Scalar << ".\n"); 1338 ExternalUses.emplace_back(Scalar, nullptr, Lane); 1339 continue; 1340 } 1341 for (User *U : Scalar->users()) { 1342 DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 1343 1344 Instruction *UserInst = dyn_cast<Instruction>(U); 1345 if (!UserInst) 1346 continue; 1347 1348 // Skip in-tree scalars that become vectors 1349 if (TreeEntry *UseEntry = getTreeEntry(U)) { 1350 Value *UseScalar = UseEntry->Scalars[0]; 1351 // Some in-tree scalars will remain as scalar in vectorized 1352 // instructions. If that is the case, the one in Lane 0 will 1353 // be used. 1354 if (UseScalar != U || 1355 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 1356 DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 1357 << ".\n"); 1358 assert(!UseEntry->NeedToGather && "Bad state"); 1359 continue; 1360 } 1361 } 1362 1363 // Ignore users in the user ignore list. 1364 if (is_contained(UserIgnoreList, UserInst)) 1365 continue; 1366 1367 DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " << 1368 Lane << " from " << *Scalar << ".\n"); 1369 ExternalUses.push_back(ExternalUser(Scalar, U, Lane)); 1370 } 1371 } 1372 } 1373 } 1374 1375 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 1376 int UserTreeIdx) { 1377 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 1378 1379 InstructionsState S = getSameOpcode(VL); 1380 if (Depth == RecursionMaxDepth) { 1381 DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 1382 newTreeEntry(VL, false, UserTreeIdx); 1383 return; 1384 } 1385 1386 // Don't handle vectors. 1387 if (S.OpValue->getType()->isVectorTy()) { 1388 DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 1389 newTreeEntry(VL, false, UserTreeIdx); 1390 return; 1391 } 1392 1393 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 1394 if (SI->getValueOperand()->getType()->isVectorTy()) { 1395 DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 1396 newTreeEntry(VL, false, UserTreeIdx); 1397 return; 1398 } 1399 1400 // If all of the operands are identical or constant we have a simple solution. 1401 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.Opcode) { 1402 DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 1403 newTreeEntry(VL, false, UserTreeIdx); 1404 return; 1405 } 1406 1407 // We now know that this is a vector of instructions of the same type from 1408 // the same block. 1409 1410 // Don't vectorize ephemeral values. 1411 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1412 if (EphValues.count(VL[i])) { 1413 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1414 ") is ephemeral.\n"); 1415 newTreeEntry(VL, false, UserTreeIdx); 1416 return; 1417 } 1418 } 1419 1420 // Check if this is a duplicate of another entry. 1421 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 1422 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1423 DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n"); 1424 if (E->Scalars[i] != VL[i]) { 1425 DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 1426 newTreeEntry(VL, false, UserTreeIdx); 1427 return; 1428 } 1429 } 1430 // Record the reuse of the tree node. FIXME, currently this is only used to 1431 // properly draw the graph rather than for the actual vectorization. 1432 E->UserTreeIndices.push_back(UserTreeIdx); 1433 DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue << ".\n"); 1434 return; 1435 } 1436 1437 // Check that none of the instructions in the bundle are already in the tree. 1438 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1439 auto *I = dyn_cast<Instruction>(VL[i]); 1440 if (!I) 1441 continue; 1442 if (getTreeEntry(I)) { 1443 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1444 ") is already in tree.\n"); 1445 newTreeEntry(VL, false, UserTreeIdx); 1446 return; 1447 } 1448 } 1449 1450 // If any of the scalars is marked as a value that needs to stay scalar then 1451 // we need to gather the scalars. 1452 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1453 if (MustGather.count(VL[i])) { 1454 DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 1455 newTreeEntry(VL, false, UserTreeIdx); 1456 return; 1457 } 1458 } 1459 1460 // Check that all of the users of the scalars that we want to vectorize are 1461 // schedulable. 1462 Instruction *VL0 = cast<Instruction>(S.OpValue); 1463 BasicBlock *BB = VL0->getParent(); 1464 1465 if (!DT->isReachableFromEntry(BB)) { 1466 // Don't go into unreachable blocks. They may contain instructions with 1467 // dependency cycles which confuse the final scheduling. 1468 DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 1469 newTreeEntry(VL, false, UserTreeIdx); 1470 return; 1471 } 1472 1473 // Check that every instructions appears once in this bundle. 1474 for (unsigned i = 0, e = VL.size(); i < e; ++i) 1475 for (unsigned j = i+1; j < e; ++j) 1476 if (VL[i] == VL[j]) { 1477 DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 1478 newTreeEntry(VL, false, UserTreeIdx); 1479 return; 1480 } 1481 1482 auto &BSRef = BlocksSchedules[BB]; 1483 if (!BSRef) { 1484 BSRef = llvm::make_unique<BlockScheduling>(BB); 1485 } 1486 BlockScheduling &BS = *BSRef.get(); 1487 1488 if (!BS.tryScheduleBundle(VL, this, S.OpValue)) { 1489 DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 1490 assert((!BS.getScheduleData(VL0) || 1491 !BS.getScheduleData(VL0)->isPartOfBundle()) && 1492 "tryScheduleBundle should cancelScheduling on failure"); 1493 newTreeEntry(VL, false, UserTreeIdx); 1494 return; 1495 } 1496 DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 1497 1498 unsigned ShuffleOrOp = S.IsAltShuffle ? 1499 (unsigned) Instruction::ShuffleVector : S.Opcode; 1500 switch (ShuffleOrOp) { 1501 case Instruction::PHI: { 1502 PHINode *PH = dyn_cast<PHINode>(VL0); 1503 1504 // Check for terminator values (e.g. invoke). 1505 for (unsigned j = 0; j < VL.size(); ++j) 1506 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1507 TerminatorInst *Term = dyn_cast<TerminatorInst>( 1508 cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i))); 1509 if (Term) { 1510 DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n"); 1511 BS.cancelScheduling(VL, VL0); 1512 newTreeEntry(VL, false, UserTreeIdx); 1513 return; 1514 } 1515 } 1516 1517 newTreeEntry(VL, true, UserTreeIdx); 1518 DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 1519 1520 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1521 ValueList Operands; 1522 // Prepare the operand vector. 1523 for (Value *j : VL) 1524 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( 1525 PH->getIncomingBlock(i))); 1526 1527 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1528 } 1529 return; 1530 } 1531 case Instruction::ExtractValue: 1532 case Instruction::ExtractElement: { 1533 bool Reuse = canReuseExtract(VL, VL0); 1534 if (Reuse) { 1535 DEBUG(dbgs() << "SLP: Reusing extract sequence.\n"); 1536 } else { 1537 BS.cancelScheduling(VL, VL0); 1538 } 1539 newTreeEntry(VL, Reuse, UserTreeIdx); 1540 return; 1541 } 1542 case Instruction::Load: { 1543 // Check that a vectorized load would load the same memory as a scalar 1544 // load. 1545 // For example we don't want vectorize loads that are smaller than 8 bit. 1546 // Even though we have a packed struct {<i2, i2, i2, i2>} LLVM treats 1547 // loading/storing it as an i8 struct. If we vectorize loads/stores from 1548 // such a struct we read/write packed bits disagreeing with the 1549 // unvectorized version. 1550 Type *ScalarTy = VL0->getType(); 1551 1552 if (DL->getTypeSizeInBits(ScalarTy) != 1553 DL->getTypeAllocSizeInBits(ScalarTy)) { 1554 BS.cancelScheduling(VL, VL0); 1555 newTreeEntry(VL, false, UserTreeIdx); 1556 DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 1557 return; 1558 } 1559 1560 // Make sure all loads in the bundle are simple - we can't vectorize 1561 // atomic or volatile loads. 1562 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { 1563 LoadInst *L = cast<LoadInst>(VL[i]); 1564 if (!L->isSimple()) { 1565 BS.cancelScheduling(VL, VL0); 1566 newTreeEntry(VL, false, UserTreeIdx); 1567 DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 1568 return; 1569 } 1570 } 1571 1572 // Check if the loads are consecutive, reversed, or neither. 1573 // TODO: What we really want is to sort the loads, but for now, check 1574 // the two likely directions. 1575 bool Consecutive = true; 1576 bool ReverseConsecutive = true; 1577 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { 1578 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1579 Consecutive = false; 1580 break; 1581 } else { 1582 ReverseConsecutive = false; 1583 } 1584 } 1585 1586 if (Consecutive) { 1587 ++NumLoadsWantToKeepOrder; 1588 newTreeEntry(VL, true, UserTreeIdx); 1589 DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 1590 return; 1591 } 1592 1593 // If none of the load pairs were consecutive when checked in order, 1594 // check the reverse order. 1595 if (ReverseConsecutive) 1596 for (unsigned i = VL.size() - 1; i > 0; --i) 1597 if (!isConsecutiveAccess(VL[i], VL[i - 1], *DL, *SE)) { 1598 ReverseConsecutive = false; 1599 break; 1600 } 1601 1602 BS.cancelScheduling(VL, VL0); 1603 newTreeEntry(VL, false, UserTreeIdx); 1604 1605 if (ReverseConsecutive) { 1606 ++NumLoadsWantToChangeOrder; 1607 DEBUG(dbgs() << "SLP: Gathering reversed loads.\n"); 1608 } else { 1609 DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 1610 } 1611 return; 1612 } 1613 case Instruction::ZExt: 1614 case Instruction::SExt: 1615 case Instruction::FPToUI: 1616 case Instruction::FPToSI: 1617 case Instruction::FPExt: 1618 case Instruction::PtrToInt: 1619 case Instruction::IntToPtr: 1620 case Instruction::SIToFP: 1621 case Instruction::UIToFP: 1622 case Instruction::Trunc: 1623 case Instruction::FPTrunc: 1624 case Instruction::BitCast: { 1625 Type *SrcTy = VL0->getOperand(0)->getType(); 1626 for (unsigned i = 0; i < VL.size(); ++i) { 1627 Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType(); 1628 if (Ty != SrcTy || !isValidElementType(Ty)) { 1629 BS.cancelScheduling(VL, VL0); 1630 newTreeEntry(VL, false, UserTreeIdx); 1631 DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n"); 1632 return; 1633 } 1634 } 1635 newTreeEntry(VL, true, UserTreeIdx); 1636 DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 1637 1638 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1639 ValueList Operands; 1640 // Prepare the operand vector. 1641 for (Value *j : VL) 1642 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1643 1644 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1645 } 1646 return; 1647 } 1648 case Instruction::ICmp: 1649 case Instruction::FCmp: { 1650 // Check that all of the compares have the same predicate. 1651 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 1652 Type *ComparedTy = VL0->getOperand(0)->getType(); 1653 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1654 CmpInst *Cmp = cast<CmpInst>(VL[i]); 1655 if (Cmp->getPredicate() != P0 || 1656 Cmp->getOperand(0)->getType() != ComparedTy) { 1657 BS.cancelScheduling(VL, VL0); 1658 newTreeEntry(VL, false, UserTreeIdx); 1659 DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n"); 1660 return; 1661 } 1662 } 1663 1664 newTreeEntry(VL, true, UserTreeIdx); 1665 DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 1666 1667 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1668 ValueList Operands; 1669 // Prepare the operand vector. 1670 for (Value *j : VL) 1671 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1672 1673 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1674 } 1675 return; 1676 } 1677 case Instruction::Select: 1678 case Instruction::Add: 1679 case Instruction::FAdd: 1680 case Instruction::Sub: 1681 case Instruction::FSub: 1682 case Instruction::Mul: 1683 case Instruction::FMul: 1684 case Instruction::UDiv: 1685 case Instruction::SDiv: 1686 case Instruction::FDiv: 1687 case Instruction::URem: 1688 case Instruction::SRem: 1689 case Instruction::FRem: 1690 case Instruction::Shl: 1691 case Instruction::LShr: 1692 case Instruction::AShr: 1693 case Instruction::And: 1694 case Instruction::Or: 1695 case Instruction::Xor: 1696 newTreeEntry(VL, true, UserTreeIdx); 1697 DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); 1698 1699 // Sort operands of the instructions so that each side is more likely to 1700 // have the same opcode. 1701 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 1702 ValueList Left, Right; 1703 reorderInputsAccordingToOpcode(S.Opcode, VL, Left, Right); 1704 buildTree_rec(Left, Depth + 1, UserTreeIdx); 1705 buildTree_rec(Right, Depth + 1, UserTreeIdx); 1706 return; 1707 } 1708 1709 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1710 ValueList Operands; 1711 // Prepare the operand vector. 1712 for (Value *j : VL) 1713 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1714 1715 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1716 } 1717 return; 1718 1719 case Instruction::GetElementPtr: { 1720 // We don't combine GEPs with complicated (nested) indexing. 1721 for (unsigned j = 0; j < VL.size(); ++j) { 1722 if (cast<Instruction>(VL[j])->getNumOperands() != 2) { 1723 DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 1724 BS.cancelScheduling(VL, VL0); 1725 newTreeEntry(VL, false, UserTreeIdx); 1726 return; 1727 } 1728 } 1729 1730 // We can't combine several GEPs into one vector if they operate on 1731 // different types. 1732 Type *Ty0 = VL0->getOperand(0)->getType(); 1733 for (unsigned j = 0; j < VL.size(); ++j) { 1734 Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType(); 1735 if (Ty0 != CurTy) { 1736 DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n"); 1737 BS.cancelScheduling(VL, VL0); 1738 newTreeEntry(VL, false, UserTreeIdx); 1739 return; 1740 } 1741 } 1742 1743 // We don't combine GEPs with non-constant indexes. 1744 for (unsigned j = 0; j < VL.size(); ++j) { 1745 auto Op = cast<Instruction>(VL[j])->getOperand(1); 1746 if (!isa<ConstantInt>(Op)) { 1747 DEBUG( 1748 dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 1749 BS.cancelScheduling(VL, VL0); 1750 newTreeEntry(VL, false, UserTreeIdx); 1751 return; 1752 } 1753 } 1754 1755 newTreeEntry(VL, true, UserTreeIdx); 1756 DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 1757 for (unsigned i = 0, e = 2; i < e; ++i) { 1758 ValueList Operands; 1759 // Prepare the operand vector. 1760 for (Value *j : VL) 1761 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1762 1763 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1764 } 1765 return; 1766 } 1767 case Instruction::Store: { 1768 // Check if the stores are consecutive or of we need to swizzle them. 1769 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 1770 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1771 BS.cancelScheduling(VL, VL0); 1772 newTreeEntry(VL, false, UserTreeIdx); 1773 DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 1774 return; 1775 } 1776 1777 newTreeEntry(VL, true, UserTreeIdx); 1778 DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 1779 1780 ValueList Operands; 1781 for (Value *j : VL) 1782 Operands.push_back(cast<Instruction>(j)->getOperand(0)); 1783 1784 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1785 return; 1786 } 1787 case Instruction::Call: { 1788 // Check if the calls are all to the same vectorizable intrinsic. 1789 CallInst *CI = cast<CallInst>(VL0); 1790 // Check if this is an Intrinsic call or something that can be 1791 // represented by an intrinsic call 1792 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 1793 if (!isTriviallyVectorizable(ID)) { 1794 BS.cancelScheduling(VL, VL0); 1795 newTreeEntry(VL, false, UserTreeIdx); 1796 DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 1797 return; 1798 } 1799 Function *Int = CI->getCalledFunction(); 1800 Value *A1I = nullptr; 1801 if (hasVectorInstrinsicScalarOpd(ID, 1)) 1802 A1I = CI->getArgOperand(1); 1803 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 1804 CallInst *CI2 = dyn_cast<CallInst>(VL[i]); 1805 if (!CI2 || CI2->getCalledFunction() != Int || 1806 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 1807 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 1808 BS.cancelScheduling(VL, VL0); 1809 newTreeEntry(VL, false, UserTreeIdx); 1810 DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] 1811 << "\n"); 1812 return; 1813 } 1814 // ctlz,cttz and powi are special intrinsics whose second argument 1815 // should be same in order for them to be vectorized. 1816 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 1817 Value *A1J = CI2->getArgOperand(1); 1818 if (A1I != A1J) { 1819 BS.cancelScheduling(VL, VL0); 1820 newTreeEntry(VL, false, UserTreeIdx); 1821 DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 1822 << " argument "<< A1I<<"!=" << A1J 1823 << "\n"); 1824 return; 1825 } 1826 } 1827 // Verify that the bundle operands are identical between the two calls. 1828 if (CI->hasOperandBundles() && 1829 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 1830 CI->op_begin() + CI->getBundleOperandsEndIndex(), 1831 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 1832 BS.cancelScheduling(VL, VL0); 1833 newTreeEntry(VL, false, UserTreeIdx); 1834 DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" << *CI << "!=" 1835 << *VL[i] << '\n'); 1836 return; 1837 } 1838 } 1839 1840 newTreeEntry(VL, true, UserTreeIdx); 1841 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 1842 ValueList Operands; 1843 // Prepare the operand vector. 1844 for (Value *j : VL) { 1845 CallInst *CI2 = dyn_cast<CallInst>(j); 1846 Operands.push_back(CI2->getArgOperand(i)); 1847 } 1848 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1849 } 1850 return; 1851 } 1852 case Instruction::ShuffleVector: 1853 // If this is not an alternate sequence of opcode like add-sub 1854 // then do not vectorize this instruction. 1855 if (!S.IsAltShuffle) { 1856 BS.cancelScheduling(VL, VL0); 1857 newTreeEntry(VL, false, UserTreeIdx); 1858 DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 1859 return; 1860 } 1861 newTreeEntry(VL, true, UserTreeIdx); 1862 DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 1863 1864 // Reorder operands if reordering would enable vectorization. 1865 if (isa<BinaryOperator>(VL0)) { 1866 ValueList Left, Right; 1867 reorderAltShuffleOperands(S.Opcode, VL, Left, Right); 1868 buildTree_rec(Left, Depth + 1, UserTreeIdx); 1869 buildTree_rec(Right, Depth + 1, UserTreeIdx); 1870 return; 1871 } 1872 1873 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1874 ValueList Operands; 1875 // Prepare the operand vector. 1876 for (Value *j : VL) 1877 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1878 1879 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1880 } 1881 return; 1882 1883 default: 1884 BS.cancelScheduling(VL, VL0); 1885 newTreeEntry(VL, false, UserTreeIdx); 1886 DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 1887 return; 1888 } 1889 } 1890 1891 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 1892 unsigned N; 1893 Type *EltTy; 1894 auto *ST = dyn_cast<StructType>(T); 1895 if (ST) { 1896 N = ST->getNumElements(); 1897 EltTy = *ST->element_begin(); 1898 } else { 1899 N = cast<ArrayType>(T)->getNumElements(); 1900 EltTy = cast<ArrayType>(T)->getElementType(); 1901 } 1902 if (!isValidElementType(EltTy)) 1903 return 0; 1904 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); 1905 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 1906 return 0; 1907 if (ST) { 1908 // Check that struct is homogeneous. 1909 for (const auto *Ty : ST->elements()) 1910 if (Ty != EltTy) 1911 return 0; 1912 } 1913 return N; 1914 } 1915 1916 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue) const { 1917 Instruction *E0 = cast<Instruction>(OpValue); 1918 assert(E0->getOpcode() == Instruction::ExtractElement || 1919 E0->getOpcode() == Instruction::ExtractValue); 1920 assert(E0->getOpcode() == getSameOpcode(VL).Opcode && "Invalid opcode"); 1921 // Check if all of the extracts come from the same vector and from the 1922 // correct offset. 1923 Value *Vec = E0->getOperand(0); 1924 1925 // We have to extract from a vector/aggregate with the same number of elements. 1926 unsigned NElts; 1927 if (E0->getOpcode() == Instruction::ExtractValue) { 1928 const DataLayout &DL = E0->getModule()->getDataLayout(); 1929 NElts = canMapToVector(Vec->getType(), DL); 1930 if (!NElts) 1931 return false; 1932 // Check if load can be rewritten as load of vector. 1933 LoadInst *LI = dyn_cast<LoadInst>(Vec); 1934 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 1935 return false; 1936 } else { 1937 NElts = Vec->getType()->getVectorNumElements(); 1938 } 1939 1940 if (NElts != VL.size()) 1941 return false; 1942 1943 // Check that all of the indices extract from the correct offset. 1944 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 1945 Instruction *Inst = cast<Instruction>(VL[I]); 1946 if (!matchExtractIndex(Inst, I, Inst->getOpcode())) 1947 return false; 1948 if (Inst->getOperand(0) != Vec) 1949 return false; 1950 } 1951 1952 return true; 1953 } 1954 1955 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 1956 return I->hasOneUse() || 1957 std::all_of(I->user_begin(), I->user_end(), [this](User *U) { 1958 return ScalarToTreeEntry.count(U) > 0; 1959 }); 1960 } 1961 1962 int BoUpSLP::getEntryCost(TreeEntry *E) { 1963 ArrayRef<Value*> VL = E->Scalars; 1964 1965 Type *ScalarTy = VL[0]->getType(); 1966 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1967 ScalarTy = SI->getValueOperand()->getType(); 1968 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 1969 ScalarTy = CI->getOperand(0)->getType(); 1970 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1971 1972 // If we have computed a smaller type for the expression, update VecTy so 1973 // that the costs will be accurate. 1974 if (MinBWs.count(VL[0])) 1975 VecTy = VectorType::get( 1976 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 1977 1978 if (E->NeedToGather) { 1979 if (allConstant(VL)) 1980 return 0; 1981 if (isSplat(VL)) { 1982 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 1983 } 1984 if (getSameOpcode(VL).Opcode == Instruction::ExtractElement) { 1985 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 1986 if (ShuffleKind.hasValue()) { 1987 int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 1988 for (auto *V : VL) { 1989 // If all users of instruction are going to be vectorized and this 1990 // instruction itself is not going to be vectorized, consider this 1991 // instruction as dead and remove its cost from the final cost of the 1992 // vectorized tree. 1993 if (areAllUsersVectorized(cast<Instruction>(V)) && 1994 !ScalarToTreeEntry.count(V)) { 1995 auto *IO = cast<ConstantInt>( 1996 cast<ExtractElementInst>(V)->getIndexOperand()); 1997 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 1998 IO->getZExtValue()); 1999 } 2000 } 2001 return Cost; 2002 } 2003 } 2004 return getGatherCost(E->Scalars); 2005 } 2006 InstructionsState S = getSameOpcode(VL); 2007 assert(S.Opcode && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 2008 Instruction *VL0 = cast<Instruction>(S.OpValue); 2009 unsigned ShuffleOrOp = S.IsAltShuffle ? 2010 (unsigned) Instruction::ShuffleVector : S.Opcode; 2011 switch (ShuffleOrOp) { 2012 case Instruction::PHI: 2013 return 0; 2014 2015 case Instruction::ExtractValue: 2016 case Instruction::ExtractElement: 2017 if (canReuseExtract(VL, S.OpValue)) { 2018 int DeadCost = 0; 2019 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 2020 Instruction *E = cast<Instruction>(VL[i]); 2021 // If all users are going to be vectorized, instruction can be 2022 // considered as dead. 2023 // The same, if have only one user, it will be vectorized for sure. 2024 if (areAllUsersVectorized(E)) 2025 // Take credit for instruction that will become dead. 2026 DeadCost += 2027 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 2028 } 2029 return -DeadCost; 2030 } 2031 return getGatherCost(VecTy); 2032 2033 case Instruction::ZExt: 2034 case Instruction::SExt: 2035 case Instruction::FPToUI: 2036 case Instruction::FPToSI: 2037 case Instruction::FPExt: 2038 case Instruction::PtrToInt: 2039 case Instruction::IntToPtr: 2040 case Instruction::SIToFP: 2041 case Instruction::UIToFP: 2042 case Instruction::Trunc: 2043 case Instruction::FPTrunc: 2044 case Instruction::BitCast: { 2045 Type *SrcTy = VL0->getOperand(0)->getType(); 2046 2047 // Calculate the cost of this instruction. 2048 int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(), 2049 VL0->getType(), SrcTy, VL0); 2050 2051 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 2052 int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy, VL0); 2053 return VecCost - ScalarCost; 2054 } 2055 case Instruction::FCmp: 2056 case Instruction::ICmp: 2057 case Instruction::Select: { 2058 // Calculate the cost of this instruction. 2059 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 2060 int ScalarCost = VecTy->getNumElements() * 2061 TTI->getCmpSelInstrCost(S.Opcode, ScalarTy, Builder.getInt1Ty(), VL0); 2062 int VecCost = TTI->getCmpSelInstrCost(S.Opcode, VecTy, MaskTy, VL0); 2063 return VecCost - ScalarCost; 2064 } 2065 case Instruction::Add: 2066 case Instruction::FAdd: 2067 case Instruction::Sub: 2068 case Instruction::FSub: 2069 case Instruction::Mul: 2070 case Instruction::FMul: 2071 case Instruction::UDiv: 2072 case Instruction::SDiv: 2073 case Instruction::FDiv: 2074 case Instruction::URem: 2075 case Instruction::SRem: 2076 case Instruction::FRem: 2077 case Instruction::Shl: 2078 case Instruction::LShr: 2079 case Instruction::AShr: 2080 case Instruction::And: 2081 case Instruction::Or: 2082 case Instruction::Xor: { 2083 // Certain instructions can be cheaper to vectorize if they have a 2084 // constant second vector operand. 2085 TargetTransformInfo::OperandValueKind Op1VK = 2086 TargetTransformInfo::OK_AnyValue; 2087 TargetTransformInfo::OperandValueKind Op2VK = 2088 TargetTransformInfo::OK_UniformConstantValue; 2089 TargetTransformInfo::OperandValueProperties Op1VP = 2090 TargetTransformInfo::OP_None; 2091 TargetTransformInfo::OperandValueProperties Op2VP = 2092 TargetTransformInfo::OP_None; 2093 2094 // If all operands are exactly the same ConstantInt then set the 2095 // operand kind to OK_UniformConstantValue. 2096 // If instead not all operands are constants, then set the operand kind 2097 // to OK_AnyValue. If all operands are constants but not the same, 2098 // then set the operand kind to OK_NonUniformConstantValue. 2099 ConstantInt *CInt = nullptr; 2100 for (unsigned i = 0; i < VL.size(); ++i) { 2101 const Instruction *I = cast<Instruction>(VL[i]); 2102 if (!isa<ConstantInt>(I->getOperand(1))) { 2103 Op2VK = TargetTransformInfo::OK_AnyValue; 2104 break; 2105 } 2106 if (i == 0) { 2107 CInt = cast<ConstantInt>(I->getOperand(1)); 2108 continue; 2109 } 2110 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && 2111 CInt != cast<ConstantInt>(I->getOperand(1))) 2112 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 2113 } 2114 // FIXME: Currently cost of model modification for division by power of 2115 // 2 is handled for X86 and AArch64. Add support for other targets. 2116 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt && 2117 CInt->getValue().isPowerOf2()) 2118 Op2VP = TargetTransformInfo::OP_PowerOf2; 2119 2120 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 2121 int ScalarCost = 2122 VecTy->getNumElements() * 2123 TTI->getArithmeticInstrCost(S.Opcode, ScalarTy, Op1VK, Op2VK, Op1VP, 2124 Op2VP, Operands); 2125 int VecCost = TTI->getArithmeticInstrCost(S.Opcode, VecTy, Op1VK, Op2VK, 2126 Op1VP, Op2VP, Operands); 2127 return VecCost - ScalarCost; 2128 } 2129 case Instruction::GetElementPtr: { 2130 TargetTransformInfo::OperandValueKind Op1VK = 2131 TargetTransformInfo::OK_AnyValue; 2132 TargetTransformInfo::OperandValueKind Op2VK = 2133 TargetTransformInfo::OK_UniformConstantValue; 2134 2135 int ScalarCost = 2136 VecTy->getNumElements() * 2137 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 2138 int VecCost = 2139 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 2140 2141 return VecCost - ScalarCost; 2142 } 2143 case Instruction::Load: { 2144 // Cost of wide load - cost of scalar loads. 2145 unsigned alignment = dyn_cast<LoadInst>(VL0)->getAlignment(); 2146 int ScalarLdCost = VecTy->getNumElements() * 2147 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0); 2148 int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, 2149 VecTy, alignment, 0, VL0); 2150 return VecLdCost - ScalarLdCost; 2151 } 2152 case Instruction::Store: { 2153 // We know that we can merge the stores. Calculate the cost. 2154 unsigned alignment = dyn_cast<StoreInst>(VL0)->getAlignment(); 2155 int ScalarStCost = VecTy->getNumElements() * 2156 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0, VL0); 2157 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, 2158 VecTy, alignment, 0, VL0); 2159 return VecStCost - ScalarStCost; 2160 } 2161 case Instruction::Call: { 2162 CallInst *CI = cast<CallInst>(VL0); 2163 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2164 2165 // Calculate the cost of the scalar and vector calls. 2166 SmallVector<Type*, 4> ScalarTys; 2167 for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) 2168 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 2169 2170 FastMathFlags FMF; 2171 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 2172 FMF = FPMO->getFastMathFlags(); 2173 2174 int ScalarCallCost = VecTy->getNumElements() * 2175 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 2176 2177 SmallVector<Value *, 4> Args(CI->arg_operands()); 2178 int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF, 2179 VecTy->getNumElements()); 2180 2181 DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost 2182 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 2183 << " for " << *CI << "\n"); 2184 2185 return VecCallCost - ScalarCallCost; 2186 } 2187 case Instruction::ShuffleVector: { 2188 TargetTransformInfo::OperandValueKind Op1VK = 2189 TargetTransformInfo::OK_AnyValue; 2190 TargetTransformInfo::OperandValueKind Op2VK = 2191 TargetTransformInfo::OK_AnyValue; 2192 int ScalarCost = 0; 2193 int VecCost = 0; 2194 for (Value *i : VL) { 2195 Instruction *I = cast<Instruction>(i); 2196 if (!I) 2197 break; 2198 ScalarCost += 2199 TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK); 2200 } 2201 // VecCost is equal to sum of the cost of creating 2 vectors 2202 // and the cost of creating shuffle. 2203 Instruction *I0 = cast<Instruction>(VL[0]); 2204 VecCost = 2205 TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK); 2206 Instruction *I1 = cast<Instruction>(VL[1]); 2207 VecCost += 2208 TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK); 2209 VecCost += 2210 TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0); 2211 return VecCost - ScalarCost; 2212 } 2213 default: 2214 llvm_unreachable("Unknown instruction"); 2215 } 2216 } 2217 2218 bool BoUpSLP::isFullyVectorizableTinyTree() { 2219 DEBUG(dbgs() << "SLP: Check whether the tree with height " << 2220 VectorizableTree.size() << " is fully vectorizable .\n"); 2221 2222 // We only handle trees of heights 1 and 2. 2223 if (VectorizableTree.size() == 1 && !VectorizableTree[0].NeedToGather) 2224 return true; 2225 2226 if (VectorizableTree.size() != 2) 2227 return false; 2228 2229 // Handle splat and all-constants stores. 2230 if (!VectorizableTree[0].NeedToGather && 2231 (allConstant(VectorizableTree[1].Scalars) || 2232 isSplat(VectorizableTree[1].Scalars))) 2233 return true; 2234 2235 // Gathering cost would be too much for tiny trees. 2236 if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather) 2237 return false; 2238 2239 return true; 2240 } 2241 2242 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() { 2243 // We can vectorize the tree if its size is greater than or equal to the 2244 // minimum size specified by the MinTreeSize command line option. 2245 if (VectorizableTree.size() >= MinTreeSize) 2246 return false; 2247 2248 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 2249 // can vectorize it if we can prove it fully vectorizable. 2250 if (isFullyVectorizableTinyTree()) 2251 return false; 2252 2253 assert(VectorizableTree.empty() 2254 ? ExternalUses.empty() 2255 : true && "We shouldn't have any external users"); 2256 2257 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 2258 // vectorizable. 2259 return true; 2260 } 2261 2262 int BoUpSLP::getSpillCost() { 2263 // Walk from the bottom of the tree to the top, tracking which values are 2264 // live. When we see a call instruction that is not part of our tree, 2265 // query TTI to see if there is a cost to keeping values live over it 2266 // (for example, if spills and fills are required). 2267 unsigned BundleWidth = VectorizableTree.front().Scalars.size(); 2268 int Cost = 0; 2269 2270 SmallPtrSet<Instruction*, 4> LiveValues; 2271 Instruction *PrevInst = nullptr; 2272 2273 for (const auto &N : VectorizableTree) { 2274 Instruction *Inst = dyn_cast<Instruction>(N.Scalars[0]); 2275 if (!Inst) 2276 continue; 2277 2278 if (!PrevInst) { 2279 PrevInst = Inst; 2280 continue; 2281 } 2282 2283 // Update LiveValues. 2284 LiveValues.erase(PrevInst); 2285 for (auto &J : PrevInst->operands()) { 2286 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 2287 LiveValues.insert(cast<Instruction>(&*J)); 2288 } 2289 2290 DEBUG( 2291 dbgs() << "SLP: #LV: " << LiveValues.size(); 2292 for (auto *X : LiveValues) 2293 dbgs() << " " << X->getName(); 2294 dbgs() << ", Looking at "; 2295 Inst->dump(); 2296 ); 2297 2298 // Now find the sequence of instructions between PrevInst and Inst. 2299 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 2300 PrevInstIt = 2301 PrevInst->getIterator().getReverse(); 2302 while (InstIt != PrevInstIt) { 2303 if (PrevInstIt == PrevInst->getParent()->rend()) { 2304 PrevInstIt = Inst->getParent()->rbegin(); 2305 continue; 2306 } 2307 2308 if (isa<CallInst>(&*PrevInstIt) && &*PrevInstIt != PrevInst) { 2309 SmallVector<Type*, 4> V; 2310 for (auto *II : LiveValues) 2311 V.push_back(VectorType::get(II->getType(), BundleWidth)); 2312 Cost += TTI->getCostOfKeepingLiveOverCall(V); 2313 } 2314 2315 ++PrevInstIt; 2316 } 2317 2318 PrevInst = Inst; 2319 } 2320 2321 return Cost; 2322 } 2323 2324 int BoUpSLP::getTreeCost() { 2325 int Cost = 0; 2326 DEBUG(dbgs() << "SLP: Calculating cost for tree of size " << 2327 VectorizableTree.size() << ".\n"); 2328 2329 unsigned BundleWidth = VectorizableTree[0].Scalars.size(); 2330 2331 for (TreeEntry &TE : VectorizableTree) { 2332 int C = getEntryCost(&TE); 2333 DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with " 2334 << *TE.Scalars[0] << ".\n"); 2335 Cost += C; 2336 } 2337 2338 SmallSet<Value *, 16> ExtractCostCalculated; 2339 int ExtractCost = 0; 2340 for (ExternalUser &EU : ExternalUses) { 2341 // We only add extract cost once for the same scalar. 2342 if (!ExtractCostCalculated.insert(EU.Scalar).second) 2343 continue; 2344 2345 // Uses by ephemeral values are free (because the ephemeral value will be 2346 // removed prior to code generation, and so the extraction will be 2347 // removed as well). 2348 if (EphValues.count(EU.User)) 2349 continue; 2350 2351 // If we plan to rewrite the tree in a smaller type, we will need to sign 2352 // extend the extracted value back to the original type. Here, we account 2353 // for the extract and the added cost of the sign extend if needed. 2354 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); 2355 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 2356 if (MinBWs.count(ScalarRoot)) { 2357 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 2358 auto Extend = 2359 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 2360 VecTy = VectorType::get(MinTy, BundleWidth); 2361 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 2362 VecTy, EU.Lane); 2363 } else { 2364 ExtractCost += 2365 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 2366 } 2367 } 2368 2369 int SpillCost = getSpillCost(); 2370 Cost += SpillCost + ExtractCost; 2371 2372 std::string Str; 2373 { 2374 raw_string_ostream OS(Str); 2375 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 2376 << "SLP: Extract Cost = " << ExtractCost << ".\n" 2377 << "SLP: Total Cost = " << Cost << ".\n"; 2378 } 2379 DEBUG(dbgs() << Str); 2380 2381 if (ViewSLPTree) 2382 ViewGraph(this, "SLP" + F->getName(), false, Str); 2383 2384 return Cost; 2385 } 2386 2387 int BoUpSLP::getGatherCost(Type *Ty) { 2388 int Cost = 0; 2389 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 2390 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 2391 return Cost; 2392 } 2393 2394 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) { 2395 // Find the type of the operands in VL. 2396 Type *ScalarTy = VL[0]->getType(); 2397 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2398 ScalarTy = SI->getValueOperand()->getType(); 2399 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2400 // Find the cost of inserting/extracting values from the vector. 2401 return getGatherCost(VecTy); 2402 } 2403 2404 // Reorder commutative operations in alternate shuffle if the resulting vectors 2405 // are consecutive loads. This would allow us to vectorize the tree. 2406 // If we have something like- 2407 // load a[0] - load b[0] 2408 // load b[1] + load a[1] 2409 // load a[2] - load b[2] 2410 // load a[3] + load b[3] 2411 // Reordering the second load b[1] load a[1] would allow us to vectorize this 2412 // code. 2413 void BoUpSLP::reorderAltShuffleOperands(unsigned Opcode, ArrayRef<Value *> VL, 2414 SmallVectorImpl<Value *> &Left, 2415 SmallVectorImpl<Value *> &Right) { 2416 // Push left and right operands of binary operation into Left and Right 2417 unsigned AltOpcode = getAltOpcode(Opcode); 2418 (void)AltOpcode; 2419 for (Value *V : VL) { 2420 auto *I = cast<Instruction>(V); 2421 assert(sameOpcodeOrAlt(Opcode, AltOpcode, I->getOpcode()) && 2422 "Incorrect instruction in vector"); 2423 Left.push_back(I->getOperand(0)); 2424 Right.push_back(I->getOperand(1)); 2425 } 2426 2427 // Reorder if we have a commutative operation and consecutive access 2428 // are on either side of the alternate instructions. 2429 for (unsigned j = 0; j < VL.size() - 1; ++j) { 2430 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2431 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2432 Instruction *VL1 = cast<Instruction>(VL[j]); 2433 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 2434 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 2435 std::swap(Left[j], Right[j]); 2436 continue; 2437 } else if (VL2->isCommutative() && 2438 isConsecutiveAccess(L, L1, *DL, *SE)) { 2439 std::swap(Left[j + 1], Right[j + 1]); 2440 continue; 2441 } 2442 // else unchanged 2443 } 2444 } 2445 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2446 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2447 Instruction *VL1 = cast<Instruction>(VL[j]); 2448 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 2449 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 2450 std::swap(Left[j], Right[j]); 2451 continue; 2452 } else if (VL2->isCommutative() && 2453 isConsecutiveAccess(L, L1, *DL, *SE)) { 2454 std::swap(Left[j + 1], Right[j + 1]); 2455 continue; 2456 } 2457 // else unchanged 2458 } 2459 } 2460 } 2461 } 2462 2463 // Return true if I should be commuted before adding it's left and right 2464 // operands to the arrays Left and Right. 2465 // 2466 // The vectorizer is trying to either have all elements one side being 2467 // instruction with the same opcode to enable further vectorization, or having 2468 // a splat to lower the vectorizing cost. 2469 static bool shouldReorderOperands( 2470 int i, unsigned Opcode, Instruction &I, ArrayRef<Value *> Left, 2471 ArrayRef<Value *> Right, bool AllSameOpcodeLeft, bool AllSameOpcodeRight, 2472 bool SplatLeft, bool SplatRight, Value *&VLeft, Value *&VRight) { 2473 VLeft = I.getOperand(0); 2474 VRight = I.getOperand(1); 2475 // If we have "SplatRight", try to see if commuting is needed to preserve it. 2476 if (SplatRight) { 2477 if (VRight == Right[i - 1]) 2478 // Preserve SplatRight 2479 return false; 2480 if (VLeft == Right[i - 1]) { 2481 // Commuting would preserve SplatRight, but we don't want to break 2482 // SplatLeft either, i.e. preserve the original order if possible. 2483 // (FIXME: why do we care?) 2484 if (SplatLeft && VLeft == Left[i - 1]) 2485 return false; 2486 return true; 2487 } 2488 } 2489 // Symmetrically handle Right side. 2490 if (SplatLeft) { 2491 if (VLeft == Left[i - 1]) 2492 // Preserve SplatLeft 2493 return false; 2494 if (VRight == Left[i - 1]) 2495 return true; 2496 } 2497 2498 Instruction *ILeft = dyn_cast<Instruction>(VLeft); 2499 Instruction *IRight = dyn_cast<Instruction>(VRight); 2500 2501 // If we have "AllSameOpcodeRight", try to see if the left operands preserves 2502 // it and not the right, in this case we want to commute. 2503 if (AllSameOpcodeRight) { 2504 unsigned RightPrevOpcode = cast<Instruction>(Right[i - 1])->getOpcode(); 2505 if (IRight && RightPrevOpcode == IRight->getOpcode()) 2506 // Do not commute, a match on the right preserves AllSameOpcodeRight 2507 return false; 2508 if (ILeft && RightPrevOpcode == ILeft->getOpcode()) { 2509 // We have a match and may want to commute, but first check if there is 2510 // not also a match on the existing operands on the Left to preserve 2511 // AllSameOpcodeLeft, i.e. preserve the original order if possible. 2512 // (FIXME: why do we care?) 2513 if (AllSameOpcodeLeft && ILeft && 2514 cast<Instruction>(Left[i - 1])->getOpcode() == ILeft->getOpcode()) 2515 return false; 2516 return true; 2517 } 2518 } 2519 // Symmetrically handle Left side. 2520 if (AllSameOpcodeLeft) { 2521 unsigned LeftPrevOpcode = cast<Instruction>(Left[i - 1])->getOpcode(); 2522 if (ILeft && LeftPrevOpcode == ILeft->getOpcode()) 2523 return false; 2524 if (IRight && LeftPrevOpcode == IRight->getOpcode()) 2525 return true; 2526 } 2527 return false; 2528 } 2529 2530 void BoUpSLP::reorderInputsAccordingToOpcode(unsigned Opcode, 2531 ArrayRef<Value *> VL, 2532 SmallVectorImpl<Value *> &Left, 2533 SmallVectorImpl<Value *> &Right) { 2534 if (!VL.empty()) { 2535 // Peel the first iteration out of the loop since there's nothing 2536 // interesting to do anyway and it simplifies the checks in the loop. 2537 auto *I = cast<Instruction>(VL[0]); 2538 Value *VLeft = I->getOperand(0); 2539 Value *VRight = I->getOperand(1); 2540 if (!isa<Instruction>(VRight) && isa<Instruction>(VLeft)) 2541 // Favor having instruction to the right. FIXME: why? 2542 std::swap(VLeft, VRight); 2543 Left.push_back(VLeft); 2544 Right.push_back(VRight); 2545 } 2546 2547 // Keep track if we have instructions with all the same opcode on one side. 2548 bool AllSameOpcodeLeft = isa<Instruction>(Left[0]); 2549 bool AllSameOpcodeRight = isa<Instruction>(Right[0]); 2550 // Keep track if we have one side with all the same value (broadcast). 2551 bool SplatLeft = true; 2552 bool SplatRight = true; 2553 2554 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 2555 Instruction *I = cast<Instruction>(VL[i]); 2556 assert(((I->getOpcode() == Opcode && I->isCommutative()) || 2557 (I->getOpcode() != Opcode && Instruction::isCommutative(Opcode))) && 2558 "Can only process commutative instruction"); 2559 // Commute to favor either a splat or maximizing having the same opcodes on 2560 // one side. 2561 Value *VLeft; 2562 Value *VRight; 2563 if (shouldReorderOperands(i, Opcode, *I, Left, Right, AllSameOpcodeLeft, 2564 AllSameOpcodeRight, SplatLeft, SplatRight, VLeft, 2565 VRight)) { 2566 Left.push_back(VRight); 2567 Right.push_back(VLeft); 2568 } else { 2569 Left.push_back(VLeft); 2570 Right.push_back(VRight); 2571 } 2572 // Update Splat* and AllSameOpcode* after the insertion. 2573 SplatRight = SplatRight && (Right[i - 1] == Right[i]); 2574 SplatLeft = SplatLeft && (Left[i - 1] == Left[i]); 2575 AllSameOpcodeLeft = AllSameOpcodeLeft && isa<Instruction>(Left[i]) && 2576 (cast<Instruction>(Left[i - 1])->getOpcode() == 2577 cast<Instruction>(Left[i])->getOpcode()); 2578 AllSameOpcodeRight = AllSameOpcodeRight && isa<Instruction>(Right[i]) && 2579 (cast<Instruction>(Right[i - 1])->getOpcode() == 2580 cast<Instruction>(Right[i])->getOpcode()); 2581 } 2582 2583 // If one operand end up being broadcast, return this operand order. 2584 if (SplatRight || SplatLeft) 2585 return; 2586 2587 // Finally check if we can get longer vectorizable chain by reordering 2588 // without breaking the good operand order detected above. 2589 // E.g. If we have something like- 2590 // load a[0] load b[0] 2591 // load b[1] load a[1] 2592 // load a[2] load b[2] 2593 // load a[3] load b[3] 2594 // Reordering the second load b[1] load a[1] would allow us to vectorize 2595 // this code and we still retain AllSameOpcode property. 2596 // FIXME: This load reordering might break AllSameOpcode in some rare cases 2597 // such as- 2598 // add a[0],c[0] load b[0] 2599 // add a[1],c[2] load b[1] 2600 // b[2] load b[2] 2601 // add a[3],c[3] load b[3] 2602 for (unsigned j = 0; j < VL.size() - 1; ++j) { 2603 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2604 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2605 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2606 std::swap(Left[j + 1], Right[j + 1]); 2607 continue; 2608 } 2609 } 2610 } 2611 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2612 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2613 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2614 std::swap(Left[j + 1], Right[j + 1]); 2615 continue; 2616 } 2617 } 2618 } 2619 // else unchanged 2620 } 2621 } 2622 2623 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL, Value *OpValue) { 2624 // Get the basic block this bundle is in. All instructions in the bundle 2625 // should be in this block. 2626 auto *Front = cast<Instruction>(OpValue); 2627 auto *BB = Front->getParent(); 2628 const unsigned Opcode = cast<Instruction>(OpValue)->getOpcode(); 2629 const unsigned AltOpcode = getAltOpcode(Opcode); 2630 assert(llvm::all_of(make_range(VL.begin(), VL.end()), [=](Value *V) -> bool { 2631 return !sameOpcodeOrAlt(Opcode, AltOpcode, 2632 cast<Instruction>(V)->getOpcode()) || 2633 cast<Instruction>(V)->getParent() == BB; 2634 })); 2635 2636 // The last instruction in the bundle in program order. 2637 Instruction *LastInst = nullptr; 2638 2639 // Find the last instruction. The common case should be that BB has been 2640 // scheduled, and the last instruction is VL.back(). So we start with 2641 // VL.back() and iterate over schedule data until we reach the end of the 2642 // bundle. The end of the bundle is marked by null ScheduleData. 2643 if (BlocksSchedules.count(BB)) { 2644 auto *Bundle = 2645 BlocksSchedules[BB]->getScheduleData(isOneOf(OpValue, VL.back())); 2646 if (Bundle && Bundle->isPartOfBundle()) 2647 for (; Bundle; Bundle = Bundle->NextInBundle) 2648 if (Bundle->OpValue == Bundle->Inst) 2649 LastInst = Bundle->Inst; 2650 } 2651 2652 // LastInst can still be null at this point if there's either not an entry 2653 // for BB in BlocksSchedules or there's no ScheduleData available for 2654 // VL.back(). This can be the case if buildTree_rec aborts for various 2655 // reasons (e.g., the maximum recursion depth is reached, the maximum region 2656 // size is reached, etc.). ScheduleData is initialized in the scheduling 2657 // "dry-run". 2658 // 2659 // If this happens, we can still find the last instruction by brute force. We 2660 // iterate forwards from Front (inclusive) until we either see all 2661 // instructions in the bundle or reach the end of the block. If Front is the 2662 // last instruction in program order, LastInst will be set to Front, and we 2663 // will visit all the remaining instructions in the block. 2664 // 2665 // One of the reasons we exit early from buildTree_rec is to place an upper 2666 // bound on compile-time. Thus, taking an additional compile-time hit here is 2667 // not ideal. However, this should be exceedingly rare since it requires that 2668 // we both exit early from buildTree_rec and that the bundle be out-of-order 2669 // (causing us to iterate all the way to the end of the block). 2670 if (!LastInst) { 2671 SmallPtrSet<Value *, 16> Bundle(VL.begin(), VL.end()); 2672 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 2673 if (Bundle.erase(&I) && sameOpcodeOrAlt(Opcode, AltOpcode, I.getOpcode())) 2674 LastInst = &I; 2675 if (Bundle.empty()) 2676 break; 2677 } 2678 } 2679 2680 // Set the insertion point after the last instruction in the bundle. Set the 2681 // debug location to Front. 2682 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 2683 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 2684 } 2685 2686 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 2687 Value *Vec = UndefValue::get(Ty); 2688 // Generate the 'InsertElement' instruction. 2689 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 2690 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 2691 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { 2692 GatherSeq.insert(Insrt); 2693 CSEBlocks.insert(Insrt->getParent()); 2694 2695 // Add to our 'need-to-extract' list. 2696 if (TreeEntry *E = getTreeEntry(VL[i])) { 2697 // Find which lane we need to extract. 2698 int FoundLane = -1; 2699 for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) { 2700 // Is this the lane of the scalar that we are looking for ? 2701 if (E->Scalars[Lane] == VL[i]) { 2702 FoundLane = Lane; 2703 break; 2704 } 2705 } 2706 assert(FoundLane >= 0 && "Could not find the correct lane"); 2707 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 2708 } 2709 } 2710 } 2711 2712 return Vec; 2713 } 2714 2715 Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL, Value *OpValue) const { 2716 if (const TreeEntry *En = getTreeEntry(OpValue)) { 2717 if (En->isSame(VL) && En->VectorizedValue) 2718 return En->VectorizedValue; 2719 } 2720 return nullptr; 2721 } 2722 2723 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 2724 InstructionsState S = getSameOpcode(VL); 2725 if (S.Opcode) { 2726 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2727 if (E->isSame(VL)) 2728 return vectorizeTree(E); 2729 } 2730 } 2731 2732 Type *ScalarTy = S.OpValue->getType(); 2733 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2734 ScalarTy = SI->getValueOperand()->getType(); 2735 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2736 2737 return Gather(VL, VecTy); 2738 } 2739 2740 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 2741 IRBuilder<>::InsertPointGuard Guard(Builder); 2742 2743 if (E->VectorizedValue) { 2744 DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 2745 return E->VectorizedValue; 2746 } 2747 2748 InstructionsState S = getSameOpcode(E->Scalars); 2749 Instruction *VL0 = cast<Instruction>(E->Scalars[0]); 2750 Type *ScalarTy = VL0->getType(); 2751 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 2752 ScalarTy = SI->getValueOperand()->getType(); 2753 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 2754 2755 if (E->NeedToGather) { 2756 setInsertPointAfterBundle(E->Scalars, VL0); 2757 auto *V = Gather(E->Scalars, VecTy); 2758 E->VectorizedValue = V; 2759 return V; 2760 } 2761 2762 unsigned ShuffleOrOp = S.IsAltShuffle ? 2763 (unsigned) Instruction::ShuffleVector : S.Opcode; 2764 switch (ShuffleOrOp) { 2765 case Instruction::PHI: { 2766 PHINode *PH = dyn_cast<PHINode>(VL0); 2767 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 2768 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 2769 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 2770 E->VectorizedValue = NewPhi; 2771 2772 // PHINodes may have multiple entries from the same block. We want to 2773 // visit every block once. 2774 SmallSet<BasicBlock*, 4> VisitedBBs; 2775 2776 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2777 ValueList Operands; 2778 BasicBlock *IBB = PH->getIncomingBlock(i); 2779 2780 if (!VisitedBBs.insert(IBB).second) { 2781 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 2782 continue; 2783 } 2784 2785 // Prepare the operand vector. 2786 for (Value *V : E->Scalars) 2787 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB)); 2788 2789 Builder.SetInsertPoint(IBB->getTerminator()); 2790 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 2791 Value *Vec = vectorizeTree(Operands); 2792 NewPhi->addIncoming(Vec, IBB); 2793 } 2794 2795 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 2796 "Invalid number of incoming values"); 2797 return NewPhi; 2798 } 2799 2800 case Instruction::ExtractElement: { 2801 if (canReuseExtract(E->Scalars, VL0)) { 2802 Value *V = VL0->getOperand(0); 2803 E->VectorizedValue = V; 2804 return V; 2805 } 2806 setInsertPointAfterBundle(E->Scalars, VL0); 2807 auto *V = Gather(E->Scalars, VecTy); 2808 E->VectorizedValue = V; 2809 return V; 2810 } 2811 case Instruction::ExtractValue: { 2812 if (canReuseExtract(E->Scalars, VL0)) { 2813 LoadInst *LI = cast<LoadInst>(VL0->getOperand(0)); 2814 Builder.SetInsertPoint(LI); 2815 PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 2816 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 2817 LoadInst *V = Builder.CreateAlignedLoad(Ptr, LI->getAlignment()); 2818 E->VectorizedValue = V; 2819 return propagateMetadata(V, E->Scalars); 2820 } 2821 setInsertPointAfterBundle(E->Scalars, VL0); 2822 auto *V = Gather(E->Scalars, VecTy); 2823 E->VectorizedValue = V; 2824 return V; 2825 } 2826 case Instruction::ZExt: 2827 case Instruction::SExt: 2828 case Instruction::FPToUI: 2829 case Instruction::FPToSI: 2830 case Instruction::FPExt: 2831 case Instruction::PtrToInt: 2832 case Instruction::IntToPtr: 2833 case Instruction::SIToFP: 2834 case Instruction::UIToFP: 2835 case Instruction::Trunc: 2836 case Instruction::FPTrunc: 2837 case Instruction::BitCast: { 2838 ValueList INVL; 2839 for (Value *V : E->Scalars) 2840 INVL.push_back(cast<Instruction>(V)->getOperand(0)); 2841 2842 setInsertPointAfterBundle(E->Scalars, VL0); 2843 2844 Value *InVec = vectorizeTree(INVL); 2845 2846 if (Value *V = alreadyVectorized(E->Scalars, VL0)) 2847 return V; 2848 2849 CastInst *CI = dyn_cast<CastInst>(VL0); 2850 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 2851 E->VectorizedValue = V; 2852 ++NumVectorInstructions; 2853 return V; 2854 } 2855 case Instruction::FCmp: 2856 case Instruction::ICmp: { 2857 ValueList LHSV, RHSV; 2858 for (Value *V : E->Scalars) { 2859 LHSV.push_back(cast<Instruction>(V)->getOperand(0)); 2860 RHSV.push_back(cast<Instruction>(V)->getOperand(1)); 2861 } 2862 2863 setInsertPointAfterBundle(E->Scalars, VL0); 2864 2865 Value *L = vectorizeTree(LHSV); 2866 Value *R = vectorizeTree(RHSV); 2867 2868 if (Value *V = alreadyVectorized(E->Scalars, VL0)) 2869 return V; 2870 2871 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2872 Value *V; 2873 if (S.Opcode == Instruction::FCmp) 2874 V = Builder.CreateFCmp(P0, L, R); 2875 else 2876 V = Builder.CreateICmp(P0, L, R); 2877 2878 E->VectorizedValue = V; 2879 propagateIRFlags(E->VectorizedValue, E->Scalars, VL0); 2880 ++NumVectorInstructions; 2881 return V; 2882 } 2883 case Instruction::Select: { 2884 ValueList TrueVec, FalseVec, CondVec; 2885 for (Value *V : E->Scalars) { 2886 CondVec.push_back(cast<Instruction>(V)->getOperand(0)); 2887 TrueVec.push_back(cast<Instruction>(V)->getOperand(1)); 2888 FalseVec.push_back(cast<Instruction>(V)->getOperand(2)); 2889 } 2890 2891 setInsertPointAfterBundle(E->Scalars, VL0); 2892 2893 Value *Cond = vectorizeTree(CondVec); 2894 Value *True = vectorizeTree(TrueVec); 2895 Value *False = vectorizeTree(FalseVec); 2896 2897 if (Value *V = alreadyVectorized(E->Scalars, VL0)) 2898 return V; 2899 2900 Value *V = Builder.CreateSelect(Cond, True, False); 2901 E->VectorizedValue = V; 2902 ++NumVectorInstructions; 2903 return V; 2904 } 2905 case Instruction::Add: 2906 case Instruction::FAdd: 2907 case Instruction::Sub: 2908 case Instruction::FSub: 2909 case Instruction::Mul: 2910 case Instruction::FMul: 2911 case Instruction::UDiv: 2912 case Instruction::SDiv: 2913 case Instruction::FDiv: 2914 case Instruction::URem: 2915 case Instruction::SRem: 2916 case Instruction::FRem: 2917 case Instruction::Shl: 2918 case Instruction::LShr: 2919 case Instruction::AShr: 2920 case Instruction::And: 2921 case Instruction::Or: 2922 case Instruction::Xor: { 2923 ValueList LHSVL, RHSVL; 2924 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) 2925 reorderInputsAccordingToOpcode(S.Opcode, E->Scalars, LHSVL, 2926 RHSVL); 2927 else 2928 for (Value *V : E->Scalars) { 2929 auto *I = cast<Instruction>(V); 2930 LHSVL.push_back(I->getOperand(0)); 2931 RHSVL.push_back(I->getOperand(1)); 2932 } 2933 2934 setInsertPointAfterBundle(E->Scalars, VL0); 2935 2936 Value *LHS = vectorizeTree(LHSVL); 2937 Value *RHS = vectorizeTree(RHSVL); 2938 2939 if (Value *V = alreadyVectorized(E->Scalars, VL0)) 2940 return V; 2941 2942 Value *V = Builder.CreateBinOp( 2943 static_cast<Instruction::BinaryOps>(S.Opcode), LHS, RHS); 2944 E->VectorizedValue = V; 2945 propagateIRFlags(E->VectorizedValue, E->Scalars, VL0); 2946 ++NumVectorInstructions; 2947 2948 if (Instruction *I = dyn_cast<Instruction>(V)) 2949 return propagateMetadata(I, E->Scalars); 2950 2951 return V; 2952 } 2953 case Instruction::Load: { 2954 // Loads are inserted at the head of the tree because we don't want to 2955 // sink them all the way down past store instructions. 2956 setInsertPointAfterBundle(E->Scalars, VL0); 2957 2958 LoadInst *LI = cast<LoadInst>(VL0); 2959 Type *ScalarLoadTy = LI->getType(); 2960 unsigned AS = LI->getPointerAddressSpace(); 2961 2962 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 2963 VecTy->getPointerTo(AS)); 2964 2965 // The pointer operand uses an in-tree scalar so we add the new BitCast to 2966 // ExternalUses list to make sure that an extract will be generated in the 2967 // future. 2968 Value *PO = LI->getPointerOperand(); 2969 if (getTreeEntry(PO)) 2970 ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0)); 2971 2972 unsigned Alignment = LI->getAlignment(); 2973 LI = Builder.CreateLoad(VecPtr); 2974 if (!Alignment) { 2975 Alignment = DL->getABITypeAlignment(ScalarLoadTy); 2976 } 2977 LI->setAlignment(Alignment); 2978 E->VectorizedValue = LI; 2979 ++NumVectorInstructions; 2980 return propagateMetadata(LI, E->Scalars); 2981 } 2982 case Instruction::Store: { 2983 StoreInst *SI = cast<StoreInst>(VL0); 2984 unsigned Alignment = SI->getAlignment(); 2985 unsigned AS = SI->getPointerAddressSpace(); 2986 2987 ValueList ValueOp; 2988 for (Value *V : E->Scalars) 2989 ValueOp.push_back(cast<StoreInst>(V)->getValueOperand()); 2990 2991 setInsertPointAfterBundle(E->Scalars, VL0); 2992 2993 Value *VecValue = vectorizeTree(ValueOp); 2994 Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(), 2995 VecTy->getPointerTo(AS)); 2996 StoreInst *S = Builder.CreateStore(VecValue, VecPtr); 2997 2998 // The pointer operand uses an in-tree scalar so we add the new BitCast to 2999 // ExternalUses list to make sure that an extract will be generated in the 3000 // future. 3001 Value *PO = SI->getPointerOperand(); 3002 if (getTreeEntry(PO)) 3003 ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0)); 3004 3005 if (!Alignment) { 3006 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); 3007 } 3008 S->setAlignment(Alignment); 3009 E->VectorizedValue = S; 3010 ++NumVectorInstructions; 3011 return propagateMetadata(S, E->Scalars); 3012 } 3013 case Instruction::GetElementPtr: { 3014 setInsertPointAfterBundle(E->Scalars, VL0); 3015 3016 ValueList Op0VL; 3017 for (Value *V : E->Scalars) 3018 Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0)); 3019 3020 Value *Op0 = vectorizeTree(Op0VL); 3021 3022 std::vector<Value *> OpVecs; 3023 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 3024 ++j) { 3025 ValueList OpVL; 3026 for (Value *V : E->Scalars) 3027 OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j)); 3028 3029 Value *OpVec = vectorizeTree(OpVL); 3030 OpVecs.push_back(OpVec); 3031 } 3032 3033 Value *V = Builder.CreateGEP( 3034 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 3035 E->VectorizedValue = V; 3036 ++NumVectorInstructions; 3037 3038 if (Instruction *I = dyn_cast<Instruction>(V)) 3039 return propagateMetadata(I, E->Scalars); 3040 3041 return V; 3042 } 3043 case Instruction::Call: { 3044 CallInst *CI = cast<CallInst>(VL0); 3045 setInsertPointAfterBundle(E->Scalars, VL0); 3046 Function *FI; 3047 Intrinsic::ID IID = Intrinsic::not_intrinsic; 3048 Value *ScalarArg = nullptr; 3049 if (CI && (FI = CI->getCalledFunction())) { 3050 IID = FI->getIntrinsicID(); 3051 } 3052 std::vector<Value *> OpVecs; 3053 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 3054 ValueList OpVL; 3055 // ctlz,cttz and powi are special intrinsics whose second argument is 3056 // a scalar. This argument should not be vectorized. 3057 if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) { 3058 CallInst *CEI = cast<CallInst>(VL0); 3059 ScalarArg = CEI->getArgOperand(j); 3060 OpVecs.push_back(CEI->getArgOperand(j)); 3061 continue; 3062 } 3063 for (Value *V : E->Scalars) { 3064 CallInst *CEI = cast<CallInst>(V); 3065 OpVL.push_back(CEI->getArgOperand(j)); 3066 } 3067 3068 Value *OpVec = vectorizeTree(OpVL); 3069 DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 3070 OpVecs.push_back(OpVec); 3071 } 3072 3073 Module *M = F->getParent(); 3074 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3075 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 3076 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 3077 SmallVector<OperandBundleDef, 1> OpBundles; 3078 CI->getOperandBundlesAsDefs(OpBundles); 3079 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 3080 3081 // The scalar argument uses an in-tree scalar so we add the new vectorized 3082 // call to ExternalUses list to make sure that an extract will be 3083 // generated in the future. 3084 if (ScalarArg && getTreeEntry(ScalarArg)) 3085 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 3086 3087 E->VectorizedValue = V; 3088 propagateIRFlags(E->VectorizedValue, E->Scalars, VL0); 3089 ++NumVectorInstructions; 3090 return V; 3091 } 3092 case Instruction::ShuffleVector: { 3093 ValueList LHSVL, RHSVL; 3094 assert(Instruction::isBinaryOp(S.Opcode) && 3095 "Invalid Shuffle Vector Operand"); 3096 reorderAltShuffleOperands(S.Opcode, E->Scalars, LHSVL, RHSVL); 3097 setInsertPointAfterBundle(E->Scalars, VL0); 3098 3099 Value *LHS = vectorizeTree(LHSVL); 3100 Value *RHS = vectorizeTree(RHSVL); 3101 3102 if (Value *V = alreadyVectorized(E->Scalars, VL0)) 3103 return V; 3104 3105 // Create a vector of LHS op1 RHS 3106 Value *V0 = Builder.CreateBinOp( 3107 static_cast<Instruction::BinaryOps>(S.Opcode), LHS, RHS); 3108 3109 unsigned AltOpcode = getAltOpcode(S.Opcode); 3110 // Create a vector of LHS op2 RHS 3111 Value *V1 = Builder.CreateBinOp( 3112 static_cast<Instruction::BinaryOps>(AltOpcode), LHS, RHS); 3113 3114 // Create shuffle to take alternate operations from the vector. 3115 // Also, gather up odd and even scalar ops to propagate IR flags to 3116 // each vector operation. 3117 ValueList OddScalars, EvenScalars; 3118 unsigned e = E->Scalars.size(); 3119 SmallVector<Constant *, 8> Mask(e); 3120 for (unsigned i = 0; i < e; ++i) { 3121 if (isOdd(i)) { 3122 Mask[i] = Builder.getInt32(e + i); 3123 OddScalars.push_back(E->Scalars[i]); 3124 } else { 3125 Mask[i] = Builder.getInt32(i); 3126 EvenScalars.push_back(E->Scalars[i]); 3127 } 3128 } 3129 3130 Value *ShuffleMask = ConstantVector::get(Mask); 3131 propagateIRFlags(V0, EvenScalars); 3132 propagateIRFlags(V1, OddScalars); 3133 3134 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 3135 E->VectorizedValue = V; 3136 ++NumVectorInstructions; 3137 if (Instruction *I = dyn_cast<Instruction>(V)) 3138 return propagateMetadata(I, E->Scalars); 3139 3140 return V; 3141 } 3142 default: 3143 llvm_unreachable("unknown inst"); 3144 } 3145 return nullptr; 3146 } 3147 3148 Value *BoUpSLP::vectorizeTree() { 3149 ExtraValueToDebugLocsMap ExternallyUsedValues; 3150 return vectorizeTree(ExternallyUsedValues); 3151 } 3152 3153 Value * 3154 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3155 // All blocks must be scheduled before any instructions are inserted. 3156 for (auto &BSIter : BlocksSchedules) { 3157 scheduleBlock(BSIter.second.get()); 3158 } 3159 3160 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3161 auto *VectorRoot = vectorizeTree(&VectorizableTree[0]); 3162 3163 // If the vectorized tree can be rewritten in a smaller type, we truncate the 3164 // vectorized root. InstCombine will then rewrite the entire expression. We 3165 // sign extend the extracted values below. 3166 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 3167 if (MinBWs.count(ScalarRoot)) { 3168 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 3169 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 3170 auto BundleWidth = VectorizableTree[0].Scalars.size(); 3171 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 3172 auto *VecTy = VectorType::get(MinTy, BundleWidth); 3173 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 3174 VectorizableTree[0].VectorizedValue = Trunc; 3175 } 3176 3177 DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n"); 3178 3179 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 3180 // specified by ScalarType. 3181 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 3182 if (!MinBWs.count(ScalarRoot)) 3183 return Ex; 3184 if (MinBWs[ScalarRoot].second) 3185 return Builder.CreateSExt(Ex, ScalarType); 3186 return Builder.CreateZExt(Ex, ScalarType); 3187 }; 3188 3189 // Extract all of the elements with the external uses. 3190 for (const auto &ExternalUse : ExternalUses) { 3191 Value *Scalar = ExternalUse.Scalar; 3192 llvm::User *User = ExternalUse.User; 3193 3194 // Skip users that we already RAUW. This happens when one instruction 3195 // has multiple uses of the same value. 3196 if (User && !is_contained(Scalar->users(), User)) 3197 continue; 3198 TreeEntry *E = getTreeEntry(Scalar); 3199 assert(E && "Invalid scalar"); 3200 assert(!E->NeedToGather && "Extracting from a gather list"); 3201 3202 Value *Vec = E->VectorizedValue; 3203 assert(Vec && "Can't find vectorizable value"); 3204 3205 Value *Lane = Builder.getInt32(ExternalUse.Lane); 3206 // If User == nullptr, the Scalar is used as extra arg. Generate 3207 // ExtractElement instruction and update the record for this scalar in 3208 // ExternallyUsedValues. 3209 if (!User) { 3210 assert(ExternallyUsedValues.count(Scalar) && 3211 "Scalar with nullptr as an external user must be registered in " 3212 "ExternallyUsedValues map"); 3213 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 3214 Builder.SetInsertPoint(VecI->getParent(), 3215 std::next(VecI->getIterator())); 3216 } else { 3217 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3218 } 3219 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3220 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3221 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 3222 auto &Locs = ExternallyUsedValues[Scalar]; 3223 ExternallyUsedValues.insert({Ex, Locs}); 3224 ExternallyUsedValues.erase(Scalar); 3225 continue; 3226 } 3227 3228 // Generate extracts for out-of-tree users. 3229 // Find the insertion point for the extractelement lane. 3230 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 3231 if (PHINode *PH = dyn_cast<PHINode>(User)) { 3232 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 3233 if (PH->getIncomingValue(i) == Scalar) { 3234 TerminatorInst *IncomingTerminator = 3235 PH->getIncomingBlock(i)->getTerminator(); 3236 if (isa<CatchSwitchInst>(IncomingTerminator)) { 3237 Builder.SetInsertPoint(VecI->getParent(), 3238 std::next(VecI->getIterator())); 3239 } else { 3240 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 3241 } 3242 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3243 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3244 CSEBlocks.insert(PH->getIncomingBlock(i)); 3245 PH->setOperand(i, Ex); 3246 } 3247 } 3248 } else { 3249 Builder.SetInsertPoint(cast<Instruction>(User)); 3250 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3251 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3252 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 3253 User->replaceUsesOfWith(Scalar, Ex); 3254 } 3255 } else { 3256 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3257 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3258 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3259 CSEBlocks.insert(&F->getEntryBlock()); 3260 User->replaceUsesOfWith(Scalar, Ex); 3261 } 3262 3263 DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 3264 } 3265 3266 // For each vectorized value: 3267 for (TreeEntry &EIdx : VectorizableTree) { 3268 TreeEntry *Entry = &EIdx; 3269 3270 // No need to handle users of gathered values. 3271 if (Entry->NeedToGather) 3272 continue; 3273 3274 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 3275 3276 // For each lane: 3277 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3278 Value *Scalar = Entry->Scalars[Lane]; 3279 3280 Type *Ty = Scalar->getType(); 3281 if (!Ty->isVoidTy()) { 3282 #ifndef NDEBUG 3283 for (User *U : Scalar->users()) { 3284 DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 3285 3286 // It is legal to replace users in the ignorelist by undef. 3287 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 3288 "Replacing out-of-tree value with undef"); 3289 } 3290 #endif 3291 Value *Undef = UndefValue::get(Ty); 3292 Scalar->replaceAllUsesWith(Undef); 3293 } 3294 DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 3295 eraseInstruction(cast<Instruction>(Scalar)); 3296 } 3297 } 3298 3299 Builder.ClearInsertionPoint(); 3300 3301 return VectorizableTree[0].VectorizedValue; 3302 } 3303 3304 void BoUpSLP::optimizeGatherSequence() { 3305 DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 3306 << " gather sequences instructions.\n"); 3307 // LICM InsertElementInst sequences. 3308 for (Instruction *it : GatherSeq) { 3309 InsertElementInst *Insert = dyn_cast<InsertElementInst>(it); 3310 3311 if (!Insert) 3312 continue; 3313 3314 // Check if this block is inside a loop. 3315 Loop *L = LI->getLoopFor(Insert->getParent()); 3316 if (!L) 3317 continue; 3318 3319 // Check if it has a preheader. 3320 BasicBlock *PreHeader = L->getLoopPreheader(); 3321 if (!PreHeader) 3322 continue; 3323 3324 // If the vector or the element that we insert into it are 3325 // instructions that are defined in this basic block then we can't 3326 // hoist this instruction. 3327 Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0)); 3328 Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1)); 3329 if (CurrVec && L->contains(CurrVec)) 3330 continue; 3331 if (NewElem && L->contains(NewElem)) 3332 continue; 3333 3334 // We can hoist this instruction. Move it to the pre-header. 3335 Insert->moveBefore(PreHeader->getTerminator()); 3336 } 3337 3338 // Make a list of all reachable blocks in our CSE queue. 3339 SmallVector<const DomTreeNode *, 8> CSEWorkList; 3340 CSEWorkList.reserve(CSEBlocks.size()); 3341 for (BasicBlock *BB : CSEBlocks) 3342 if (DomTreeNode *N = DT->getNode(BB)) { 3343 assert(DT->isReachableFromEntry(N)); 3344 CSEWorkList.push_back(N); 3345 } 3346 3347 // Sort blocks by domination. This ensures we visit a block after all blocks 3348 // dominating it are visited. 3349 std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(), 3350 [this](const DomTreeNode *A, const DomTreeNode *B) { 3351 return DT->properlyDominates(A, B); 3352 }); 3353 3354 // Perform O(N^2) search over the gather sequences and merge identical 3355 // instructions. TODO: We can further optimize this scan if we split the 3356 // instructions into different buckets based on the insert lane. 3357 SmallVector<Instruction *, 16> Visited; 3358 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 3359 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 3360 "Worklist not sorted properly!"); 3361 BasicBlock *BB = (*I)->getBlock(); 3362 // For all instructions in blocks containing gather sequences: 3363 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 3364 Instruction *In = &*it++; 3365 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 3366 continue; 3367 3368 // Check if we can replace this instruction with any of the 3369 // visited instructions. 3370 for (Instruction *v : Visited) { 3371 if (In->isIdenticalTo(v) && 3372 DT->dominates(v->getParent(), In->getParent())) { 3373 In->replaceAllUsesWith(v); 3374 eraseInstruction(In); 3375 In = nullptr; 3376 break; 3377 } 3378 } 3379 if (In) { 3380 assert(!is_contained(Visited, In)); 3381 Visited.push_back(In); 3382 } 3383 } 3384 } 3385 CSEBlocks.clear(); 3386 GatherSeq.clear(); 3387 } 3388 3389 // Groups the instructions to a bundle (which is then a single scheduling entity) 3390 // and schedules instructions until the bundle gets ready. 3391 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, 3392 BoUpSLP *SLP, Value *OpValue) { 3393 if (isa<PHINode>(OpValue)) 3394 return true; 3395 3396 // Initialize the instruction bundle. 3397 Instruction *OldScheduleEnd = ScheduleEnd; 3398 ScheduleData *PrevInBundle = nullptr; 3399 ScheduleData *Bundle = nullptr; 3400 bool ReSchedule = false; 3401 DEBUG(dbgs() << "SLP: bundle: " << *OpValue << "\n"); 3402 3403 // Make sure that the scheduling region contains all 3404 // instructions of the bundle. 3405 for (Value *V : VL) { 3406 if (!extendSchedulingRegion(V, OpValue)) 3407 return false; 3408 } 3409 3410 for (Value *V : VL) { 3411 ScheduleData *BundleMember = getScheduleData(V); 3412 assert(BundleMember && 3413 "no ScheduleData for bundle member (maybe not in same basic block)"); 3414 if (BundleMember->IsScheduled) { 3415 // A bundle member was scheduled as single instruction before and now 3416 // needs to be scheduled as part of the bundle. We just get rid of the 3417 // existing schedule. 3418 DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 3419 << " was already scheduled\n"); 3420 ReSchedule = true; 3421 } 3422 assert(BundleMember->isSchedulingEntity() && 3423 "bundle member already part of other bundle"); 3424 if (PrevInBundle) { 3425 PrevInBundle->NextInBundle = BundleMember; 3426 } else { 3427 Bundle = BundleMember; 3428 } 3429 BundleMember->UnscheduledDepsInBundle = 0; 3430 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 3431 3432 // Group the instructions to a bundle. 3433 BundleMember->FirstInBundle = Bundle; 3434 PrevInBundle = BundleMember; 3435 } 3436 if (ScheduleEnd != OldScheduleEnd) { 3437 // The scheduling region got new instructions at the lower end (or it is a 3438 // new region for the first bundle). This makes it necessary to 3439 // recalculate all dependencies. 3440 // It is seldom that this needs to be done a second time after adding the 3441 // initial bundle to the region. 3442 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3443 doForAllOpcodes(I, [](ScheduleData *SD) { 3444 SD->clearDependencies(); 3445 }); 3446 } 3447 ReSchedule = true; 3448 } 3449 if (ReSchedule) { 3450 resetSchedule(); 3451 initialFillReadyList(ReadyInsts); 3452 } 3453 3454 DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 3455 << BB->getName() << "\n"); 3456 3457 calculateDependencies(Bundle, true, SLP); 3458 3459 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 3460 // means that there are no cyclic dependencies and we can schedule it. 3461 // Note that's important that we don't "schedule" the bundle yet (see 3462 // cancelScheduling). 3463 while (!Bundle->isReady() && !ReadyInsts.empty()) { 3464 3465 ScheduleData *pickedSD = ReadyInsts.back(); 3466 ReadyInsts.pop_back(); 3467 3468 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 3469 schedule(pickedSD, ReadyInsts); 3470 } 3471 } 3472 if (!Bundle->isReady()) { 3473 cancelScheduling(VL, OpValue); 3474 return false; 3475 } 3476 return true; 3477 } 3478 3479 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 3480 Value *OpValue) { 3481 if (isa<PHINode>(OpValue)) 3482 return; 3483 3484 ScheduleData *Bundle = getScheduleData(OpValue); 3485 DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 3486 assert(!Bundle->IsScheduled && 3487 "Can't cancel bundle which is already scheduled"); 3488 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 3489 "tried to unbundle something which is not a bundle"); 3490 3491 // Un-bundle: make single instructions out of the bundle. 3492 ScheduleData *BundleMember = Bundle; 3493 while (BundleMember) { 3494 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 3495 BundleMember->FirstInBundle = BundleMember; 3496 ScheduleData *Next = BundleMember->NextInBundle; 3497 BundleMember->NextInBundle = nullptr; 3498 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 3499 if (BundleMember->UnscheduledDepsInBundle == 0) { 3500 ReadyInsts.insert(BundleMember); 3501 } 3502 BundleMember = Next; 3503 } 3504 } 3505 3506 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 3507 // Allocate a new ScheduleData for the instruction. 3508 if (ChunkPos >= ChunkSize) { 3509 ScheduleDataChunks.push_back(llvm::make_unique<ScheduleData[]>(ChunkSize)); 3510 ChunkPos = 0; 3511 } 3512 return &(ScheduleDataChunks.back()[ChunkPos++]); 3513 } 3514 3515 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 3516 Value *OpValue) { 3517 if (getScheduleData(V, isOneOf(OpValue, V))) 3518 return true; 3519 Instruction *I = dyn_cast<Instruction>(V); 3520 assert(I && "bundle member must be an instruction"); 3521 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 3522 auto &&CheckSheduleForI = [this, OpValue](Instruction *I) -> bool { 3523 ScheduleData *ISD = getScheduleData(I); 3524 if (!ISD) 3525 return false; 3526 assert(isInSchedulingRegion(ISD) && 3527 "ScheduleData not in scheduling region"); 3528 ScheduleData *SD = allocateScheduleDataChunks(); 3529 SD->Inst = I; 3530 SD->init(SchedulingRegionID, OpValue); 3531 ExtraScheduleDataMap[I][OpValue] = SD; 3532 return true; 3533 }; 3534 if (CheckSheduleForI(I)) 3535 return true; 3536 if (!ScheduleStart) { 3537 // It's the first instruction in the new region. 3538 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 3539 ScheduleStart = I; 3540 ScheduleEnd = I->getNextNode(); 3541 if (isOneOf(OpValue, I) != I) 3542 CheckSheduleForI(I); 3543 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 3544 DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 3545 return true; 3546 } 3547 // Search up and down at the same time, because we don't know if the new 3548 // instruction is above or below the existing scheduling region. 3549 BasicBlock::reverse_iterator UpIter = 3550 ++ScheduleStart->getIterator().getReverse(); 3551 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 3552 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 3553 BasicBlock::iterator LowerEnd = BB->end(); 3554 while (true) { 3555 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 3556 DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 3557 return false; 3558 } 3559 3560 if (UpIter != UpperEnd) { 3561 if (&*UpIter == I) { 3562 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 3563 ScheduleStart = I; 3564 if (isOneOf(OpValue, I) != I) 3565 CheckSheduleForI(I); 3566 DEBUG(dbgs() << "SLP: extend schedule region start to " << *I << "\n"); 3567 return true; 3568 } 3569 UpIter++; 3570 } 3571 if (DownIter != LowerEnd) { 3572 if (&*DownIter == I) { 3573 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 3574 nullptr); 3575 ScheduleEnd = I->getNextNode(); 3576 if (isOneOf(OpValue, I) != I) 3577 CheckSheduleForI(I); 3578 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 3579 DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 3580 return true; 3581 } 3582 DownIter++; 3583 } 3584 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 3585 "instruction not found in block"); 3586 } 3587 return true; 3588 } 3589 3590 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 3591 Instruction *ToI, 3592 ScheduleData *PrevLoadStore, 3593 ScheduleData *NextLoadStore) { 3594 ScheduleData *CurrentLoadStore = PrevLoadStore; 3595 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 3596 ScheduleData *SD = ScheduleDataMap[I]; 3597 if (!SD) { 3598 // Allocate a new ScheduleData for the instruction. 3599 if (ChunkPos >= ChunkSize) { 3600 ScheduleDataChunks.push_back( 3601 llvm::make_unique<ScheduleData[]>(ChunkSize)); 3602 ChunkPos = 0; 3603 } 3604 SD = allocateScheduleDataChunks(); 3605 ScheduleDataMap[I] = SD; 3606 SD->Inst = I; 3607 } 3608 assert(!isInSchedulingRegion(SD) && 3609 "new ScheduleData already in scheduling region"); 3610 SD->init(SchedulingRegionID, I); 3611 3612 if (I->mayReadOrWriteMemory()) { 3613 // Update the linked list of memory accessing instructions. 3614 if (CurrentLoadStore) { 3615 CurrentLoadStore->NextLoadStore = SD; 3616 } else { 3617 FirstLoadStoreInRegion = SD; 3618 } 3619 CurrentLoadStore = SD; 3620 } 3621 } 3622 if (NextLoadStore) { 3623 if (CurrentLoadStore) 3624 CurrentLoadStore->NextLoadStore = NextLoadStore; 3625 } else { 3626 LastLoadStoreInRegion = CurrentLoadStore; 3627 } 3628 } 3629 3630 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 3631 bool InsertInReadyList, 3632 BoUpSLP *SLP) { 3633 assert(SD->isSchedulingEntity()); 3634 3635 SmallVector<ScheduleData *, 10> WorkList; 3636 WorkList.push_back(SD); 3637 3638 while (!WorkList.empty()) { 3639 ScheduleData *SD = WorkList.back(); 3640 WorkList.pop_back(); 3641 3642 ScheduleData *BundleMember = SD; 3643 while (BundleMember) { 3644 assert(isInSchedulingRegion(BundleMember)); 3645 if (!BundleMember->hasValidDependencies()) { 3646 3647 DEBUG(dbgs() << "SLP: update deps of " << *BundleMember << "\n"); 3648 BundleMember->Dependencies = 0; 3649 BundleMember->resetUnscheduledDeps(); 3650 3651 // Handle def-use chain dependencies. 3652 if (BundleMember->OpValue != BundleMember->Inst) { 3653 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 3654 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 3655 BundleMember->Dependencies++; 3656 ScheduleData *DestBundle = UseSD->FirstInBundle; 3657 if (!DestBundle->IsScheduled) 3658 BundleMember->incrementUnscheduledDeps(1); 3659 if (!DestBundle->hasValidDependencies()) 3660 WorkList.push_back(DestBundle); 3661 } 3662 } else { 3663 for (User *U : BundleMember->Inst->users()) { 3664 if (isa<Instruction>(U)) { 3665 ScheduleData *UseSD = getScheduleData(U); 3666 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 3667 BundleMember->Dependencies++; 3668 ScheduleData *DestBundle = UseSD->FirstInBundle; 3669 if (!DestBundle->IsScheduled) 3670 BundleMember->incrementUnscheduledDeps(1); 3671 if (!DestBundle->hasValidDependencies()) 3672 WorkList.push_back(DestBundle); 3673 } 3674 } else { 3675 // I'm not sure if this can ever happen. But we need to be safe. 3676 // This lets the instruction/bundle never be scheduled and 3677 // eventually disable vectorization. 3678 BundleMember->Dependencies++; 3679 BundleMember->incrementUnscheduledDeps(1); 3680 } 3681 } 3682 } 3683 3684 // Handle the memory dependencies. 3685 ScheduleData *DepDest = BundleMember->NextLoadStore; 3686 if (DepDest) { 3687 Instruction *SrcInst = BundleMember->Inst; 3688 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 3689 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 3690 unsigned numAliased = 0; 3691 unsigned DistToSrc = 1; 3692 3693 while (DepDest) { 3694 assert(isInSchedulingRegion(DepDest)); 3695 3696 // We have two limits to reduce the complexity: 3697 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 3698 // SLP->isAliased (which is the expensive part in this loop). 3699 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 3700 // the whole loop (even if the loop is fast, it's quadratic). 3701 // It's important for the loop break condition (see below) to 3702 // check this limit even between two read-only instructions. 3703 if (DistToSrc >= MaxMemDepDistance || 3704 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 3705 (numAliased >= AliasedCheckLimit || 3706 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 3707 3708 // We increment the counter only if the locations are aliased 3709 // (instead of counting all alias checks). This gives a better 3710 // balance between reduced runtime and accurate dependencies. 3711 numAliased++; 3712 3713 DepDest->MemoryDependencies.push_back(BundleMember); 3714 BundleMember->Dependencies++; 3715 ScheduleData *DestBundle = DepDest->FirstInBundle; 3716 if (!DestBundle->IsScheduled) { 3717 BundleMember->incrementUnscheduledDeps(1); 3718 } 3719 if (!DestBundle->hasValidDependencies()) { 3720 WorkList.push_back(DestBundle); 3721 } 3722 } 3723 DepDest = DepDest->NextLoadStore; 3724 3725 // Example, explaining the loop break condition: Let's assume our 3726 // starting instruction is i0 and MaxMemDepDistance = 3. 3727 // 3728 // +--------v--v--v 3729 // i0,i1,i2,i3,i4,i5,i6,i7,i8 3730 // +--------^--^--^ 3731 // 3732 // MaxMemDepDistance let us stop alias-checking at i3 and we add 3733 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 3734 // Previously we already added dependencies from i3 to i6,i7,i8 3735 // (because of MaxMemDepDistance). As we added a dependency from 3736 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 3737 // and we can abort this loop at i6. 3738 if (DistToSrc >= 2 * MaxMemDepDistance) 3739 break; 3740 DistToSrc++; 3741 } 3742 } 3743 } 3744 BundleMember = BundleMember->NextInBundle; 3745 } 3746 if (InsertInReadyList && SD->isReady()) { 3747 ReadyInsts.push_back(SD); 3748 DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst << "\n"); 3749 } 3750 } 3751 } 3752 3753 void BoUpSLP::BlockScheduling::resetSchedule() { 3754 assert(ScheduleStart && 3755 "tried to reset schedule on block which has not been scheduled"); 3756 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3757 doForAllOpcodes(I, [&](ScheduleData *SD) { 3758 assert(isInSchedulingRegion(SD) && 3759 "ScheduleData not in scheduling region"); 3760 SD->IsScheduled = false; 3761 SD->resetUnscheduledDeps(); 3762 }); 3763 } 3764 ReadyInsts.clear(); 3765 } 3766 3767 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 3768 if (!BS->ScheduleStart) 3769 return; 3770 3771 DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 3772 3773 BS->resetSchedule(); 3774 3775 // For the real scheduling we use a more sophisticated ready-list: it is 3776 // sorted by the original instruction location. This lets the final schedule 3777 // be as close as possible to the original instruction order. 3778 struct ScheduleDataCompare { 3779 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 3780 return SD2->SchedulingPriority < SD1->SchedulingPriority; 3781 } 3782 }; 3783 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 3784 3785 // Ensure that all dependency data is updated and fill the ready-list with 3786 // initial instructions. 3787 int Idx = 0; 3788 int NumToSchedule = 0; 3789 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 3790 I = I->getNextNode()) { 3791 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 3792 assert(SD->isPartOfBundle() == 3793 (getTreeEntry(SD->Inst) != nullptr) && 3794 "scheduler and vectorizer bundle mismatch"); 3795 SD->FirstInBundle->SchedulingPriority = Idx++; 3796 if (SD->isSchedulingEntity()) { 3797 BS->calculateDependencies(SD, false, this); 3798 NumToSchedule++; 3799 } 3800 }); 3801 } 3802 BS->initialFillReadyList(ReadyInsts); 3803 3804 Instruction *LastScheduledInst = BS->ScheduleEnd; 3805 3806 // Do the "real" scheduling. 3807 while (!ReadyInsts.empty()) { 3808 ScheduleData *picked = *ReadyInsts.begin(); 3809 ReadyInsts.erase(ReadyInsts.begin()); 3810 3811 // Move the scheduled instruction(s) to their dedicated places, if not 3812 // there yet. 3813 ScheduleData *BundleMember = picked; 3814 while (BundleMember) { 3815 Instruction *pickedInst = BundleMember->Inst; 3816 if (LastScheduledInst->getNextNode() != pickedInst) { 3817 BS->BB->getInstList().remove(pickedInst); 3818 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 3819 pickedInst); 3820 } 3821 LastScheduledInst = pickedInst; 3822 BundleMember = BundleMember->NextInBundle; 3823 } 3824 3825 BS->schedule(picked, ReadyInsts); 3826 NumToSchedule--; 3827 } 3828 assert(NumToSchedule == 0 && "could not schedule all instructions"); 3829 3830 // Avoid duplicate scheduling of the block. 3831 BS->ScheduleStart = nullptr; 3832 } 3833 3834 unsigned BoUpSLP::getVectorElementSize(Value *V) { 3835 // If V is a store, just return the width of the stored value without 3836 // traversing the expression tree. This is the common case. 3837 if (auto *Store = dyn_cast<StoreInst>(V)) 3838 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 3839 3840 // If V is not a store, we can traverse the expression tree to find loads 3841 // that feed it. The type of the loaded value may indicate a more suitable 3842 // width than V's type. We want to base the vector element size on the width 3843 // of memory operations where possible. 3844 SmallVector<Instruction *, 16> Worklist; 3845 SmallPtrSet<Instruction *, 16> Visited; 3846 if (auto *I = dyn_cast<Instruction>(V)) 3847 Worklist.push_back(I); 3848 3849 // Traverse the expression tree in bottom-up order looking for loads. If we 3850 // encounter an instruciton we don't yet handle, we give up. 3851 auto MaxWidth = 0u; 3852 auto FoundUnknownInst = false; 3853 while (!Worklist.empty() && !FoundUnknownInst) { 3854 auto *I = Worklist.pop_back_val(); 3855 Visited.insert(I); 3856 3857 // We should only be looking at scalar instructions here. If the current 3858 // instruction has a vector type, give up. 3859 auto *Ty = I->getType(); 3860 if (isa<VectorType>(Ty)) 3861 FoundUnknownInst = true; 3862 3863 // If the current instruction is a load, update MaxWidth to reflect the 3864 // width of the loaded value. 3865 else if (isa<LoadInst>(I)) 3866 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 3867 3868 // Otherwise, we need to visit the operands of the instruction. We only 3869 // handle the interesting cases from buildTree here. If an operand is an 3870 // instruction we haven't yet visited, we add it to the worklist. 3871 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 3872 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 3873 for (Use &U : I->operands()) 3874 if (auto *J = dyn_cast<Instruction>(U.get())) 3875 if (!Visited.count(J)) 3876 Worklist.push_back(J); 3877 } 3878 3879 // If we don't yet handle the instruction, give up. 3880 else 3881 FoundUnknownInst = true; 3882 } 3883 3884 // If we didn't encounter a memory access in the expression tree, or if we 3885 // gave up for some reason, just return the width of V. 3886 if (!MaxWidth || FoundUnknownInst) 3887 return DL->getTypeSizeInBits(V->getType()); 3888 3889 // Otherwise, return the maximum width we found. 3890 return MaxWidth; 3891 } 3892 3893 // Determine if a value V in a vectorizable expression Expr can be demoted to a 3894 // smaller type with a truncation. We collect the values that will be demoted 3895 // in ToDemote and additional roots that require investigating in Roots. 3896 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 3897 SmallVectorImpl<Value *> &ToDemote, 3898 SmallVectorImpl<Value *> &Roots) { 3899 // We can always demote constants. 3900 if (isa<Constant>(V)) { 3901 ToDemote.push_back(V); 3902 return true; 3903 } 3904 3905 // If the value is not an instruction in the expression with only one use, it 3906 // cannot be demoted. 3907 auto *I = dyn_cast<Instruction>(V); 3908 if (!I || !I->hasOneUse() || !Expr.count(I)) 3909 return false; 3910 3911 switch (I->getOpcode()) { 3912 3913 // We can always demote truncations and extensions. Since truncations can 3914 // seed additional demotion, we save the truncated value. 3915 case Instruction::Trunc: 3916 Roots.push_back(I->getOperand(0)); 3917 case Instruction::ZExt: 3918 case Instruction::SExt: 3919 break; 3920 3921 // We can demote certain binary operations if we can demote both of their 3922 // operands. 3923 case Instruction::Add: 3924 case Instruction::Sub: 3925 case Instruction::Mul: 3926 case Instruction::And: 3927 case Instruction::Or: 3928 case Instruction::Xor: 3929 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 3930 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 3931 return false; 3932 break; 3933 3934 // We can demote selects if we can demote their true and false values. 3935 case Instruction::Select: { 3936 SelectInst *SI = cast<SelectInst>(I); 3937 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 3938 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 3939 return false; 3940 break; 3941 } 3942 3943 // We can demote phis if we can demote all their incoming operands. Note that 3944 // we don't need to worry about cycles since we ensure single use above. 3945 case Instruction::PHI: { 3946 PHINode *PN = cast<PHINode>(I); 3947 for (Value *IncValue : PN->incoming_values()) 3948 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 3949 return false; 3950 break; 3951 } 3952 3953 // Otherwise, conservatively give up. 3954 default: 3955 return false; 3956 } 3957 3958 // Record the value that we can demote. 3959 ToDemote.push_back(V); 3960 return true; 3961 } 3962 3963 void BoUpSLP::computeMinimumValueSizes() { 3964 // If there are no external uses, the expression tree must be rooted by a 3965 // store. We can't demote in-memory values, so there is nothing to do here. 3966 if (ExternalUses.empty()) 3967 return; 3968 3969 // We only attempt to truncate integer expressions. 3970 auto &TreeRoot = VectorizableTree[0].Scalars; 3971 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 3972 if (!TreeRootIT) 3973 return; 3974 3975 // If the expression is not rooted by a store, these roots should have 3976 // external uses. We will rely on InstCombine to rewrite the expression in 3977 // the narrower type. However, InstCombine only rewrites single-use values. 3978 // This means that if a tree entry other than a root is used externally, it 3979 // must have multiple uses and InstCombine will not rewrite it. The code 3980 // below ensures that only the roots are used externally. 3981 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 3982 for (auto &EU : ExternalUses) 3983 if (!Expr.erase(EU.Scalar)) 3984 return; 3985 if (!Expr.empty()) 3986 return; 3987 3988 // Collect the scalar values of the vectorizable expression. We will use this 3989 // context to determine which values can be demoted. If we see a truncation, 3990 // we mark it as seeding another demotion. 3991 for (auto &Entry : VectorizableTree) 3992 Expr.insert(Entry.Scalars.begin(), Entry.Scalars.end()); 3993 3994 // Ensure the roots of the vectorizable tree don't form a cycle. They must 3995 // have a single external user that is not in the vectorizable tree. 3996 for (auto *Root : TreeRoot) 3997 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 3998 return; 3999 4000 // Conservatively determine if we can actually truncate the roots of the 4001 // expression. Collect the values that can be demoted in ToDemote and 4002 // additional roots that require investigating in Roots. 4003 SmallVector<Value *, 32> ToDemote; 4004 SmallVector<Value *, 4> Roots; 4005 for (auto *Root : TreeRoot) 4006 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 4007 return; 4008 4009 // The maximum bit width required to represent all the values that can be 4010 // demoted without loss of precision. It would be safe to truncate the roots 4011 // of the expression to this width. 4012 auto MaxBitWidth = 8u; 4013 4014 // We first check if all the bits of the roots are demanded. If they're not, 4015 // we can truncate the roots to this narrower type. 4016 for (auto *Root : TreeRoot) { 4017 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 4018 MaxBitWidth = std::max<unsigned>( 4019 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 4020 } 4021 4022 // True if the roots can be zero-extended back to their original type, rather 4023 // than sign-extended. We know that if the leading bits are not demanded, we 4024 // can safely zero-extend. So we initialize IsKnownPositive to True. 4025 bool IsKnownPositive = true; 4026 4027 // If all the bits of the roots are demanded, we can try a little harder to 4028 // compute a narrower type. This can happen, for example, if the roots are 4029 // getelementptr indices. InstCombine promotes these indices to the pointer 4030 // width. Thus, all their bits are technically demanded even though the 4031 // address computation might be vectorized in a smaller type. 4032 // 4033 // We start by looking at each entry that can be demoted. We compute the 4034 // maximum bit width required to store the scalar by using ValueTracking to 4035 // compute the number of high-order bits we can truncate. 4036 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType())) { 4037 MaxBitWidth = 8u; 4038 4039 // Determine if the sign bit of all the roots is known to be zero. If not, 4040 // IsKnownPositive is set to False. 4041 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 4042 KnownBits Known = computeKnownBits(R, *DL); 4043 return Known.isNonNegative(); 4044 }); 4045 4046 // Determine the maximum number of bits required to store the scalar 4047 // values. 4048 for (auto *Scalar : ToDemote) { 4049 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 4050 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 4051 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 4052 } 4053 4054 // If we can't prove that the sign bit is zero, we must add one to the 4055 // maximum bit width to account for the unknown sign bit. This preserves 4056 // the existing sign bit so we can safely sign-extend the root back to the 4057 // original type. Otherwise, if we know the sign bit is zero, we will 4058 // zero-extend the root instead. 4059 // 4060 // FIXME: This is somewhat suboptimal, as there will be cases where adding 4061 // one to the maximum bit width will yield a larger-than-necessary 4062 // type. In general, we need to add an extra bit only if we can't 4063 // prove that the upper bit of the original type is equal to the 4064 // upper bit of the proposed smaller type. If these two bits are the 4065 // same (either zero or one) we know that sign-extending from the 4066 // smaller type will result in the same value. Here, since we can't 4067 // yet prove this, we are just making the proposed smaller type 4068 // larger to ensure correctness. 4069 if (!IsKnownPositive) 4070 ++MaxBitWidth; 4071 } 4072 4073 // Round MaxBitWidth up to the next power-of-two. 4074 if (!isPowerOf2_64(MaxBitWidth)) 4075 MaxBitWidth = NextPowerOf2(MaxBitWidth); 4076 4077 // If the maximum bit width we compute is less than the with of the roots' 4078 // type, we can proceed with the narrowing. Otherwise, do nothing. 4079 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 4080 return; 4081 4082 // If we can truncate the root, we must collect additional values that might 4083 // be demoted as a result. That is, those seeded by truncations we will 4084 // modify. 4085 while (!Roots.empty()) 4086 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 4087 4088 // Finally, map the values we can demote to the maximum bit with we computed. 4089 for (auto *Scalar : ToDemote) 4090 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 4091 } 4092 4093 namespace { 4094 4095 /// The SLPVectorizer Pass. 4096 struct SLPVectorizer : public FunctionPass { 4097 SLPVectorizerPass Impl; 4098 4099 /// Pass identification, replacement for typeid 4100 static char ID; 4101 4102 explicit SLPVectorizer() : FunctionPass(ID) { 4103 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 4104 } 4105 4106 bool doInitialization(Module &M) override { 4107 return false; 4108 } 4109 4110 bool runOnFunction(Function &F) override { 4111 if (skipFunction(F)) 4112 return false; 4113 4114 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 4115 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 4116 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 4117 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 4118 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 4119 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 4120 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 4121 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 4122 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 4123 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 4124 4125 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 4126 } 4127 4128 void getAnalysisUsage(AnalysisUsage &AU) const override { 4129 FunctionPass::getAnalysisUsage(AU); 4130 AU.addRequired<AssumptionCacheTracker>(); 4131 AU.addRequired<ScalarEvolutionWrapperPass>(); 4132 AU.addRequired<AAResultsWrapperPass>(); 4133 AU.addRequired<TargetTransformInfoWrapperPass>(); 4134 AU.addRequired<LoopInfoWrapperPass>(); 4135 AU.addRequired<DominatorTreeWrapperPass>(); 4136 AU.addRequired<DemandedBitsWrapperPass>(); 4137 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 4138 AU.addPreserved<LoopInfoWrapperPass>(); 4139 AU.addPreserved<DominatorTreeWrapperPass>(); 4140 AU.addPreserved<AAResultsWrapperPass>(); 4141 AU.addPreserved<GlobalsAAWrapperPass>(); 4142 AU.setPreservesCFG(); 4143 } 4144 }; 4145 4146 } // end anonymous namespace 4147 4148 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 4149 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 4150 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 4151 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 4152 auto *AA = &AM.getResult<AAManager>(F); 4153 auto *LI = &AM.getResult<LoopAnalysis>(F); 4154 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 4155 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 4156 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 4157 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4158 4159 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 4160 if (!Changed) 4161 return PreservedAnalyses::all(); 4162 4163 PreservedAnalyses PA; 4164 PA.preserveSet<CFGAnalyses>(); 4165 PA.preserve<AAManager>(); 4166 PA.preserve<GlobalsAA>(); 4167 return PA; 4168 } 4169 4170 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 4171 TargetTransformInfo *TTI_, 4172 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 4173 LoopInfo *LI_, DominatorTree *DT_, 4174 AssumptionCache *AC_, DemandedBits *DB_, 4175 OptimizationRemarkEmitter *ORE_) { 4176 SE = SE_; 4177 TTI = TTI_; 4178 TLI = TLI_; 4179 AA = AA_; 4180 LI = LI_; 4181 DT = DT_; 4182 AC = AC_; 4183 DB = DB_; 4184 DL = &F.getParent()->getDataLayout(); 4185 4186 Stores.clear(); 4187 GEPs.clear(); 4188 bool Changed = false; 4189 4190 // If the target claims to have no vector registers don't attempt 4191 // vectorization. 4192 if (!TTI->getNumberOfRegisters(true)) 4193 return false; 4194 4195 // Don't vectorize when the attribute NoImplicitFloat is used. 4196 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 4197 return false; 4198 4199 DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 4200 4201 // Use the bottom up slp vectorizer to construct chains that start with 4202 // store instructions. 4203 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 4204 4205 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 4206 // delete instructions. 4207 4208 // Scan the blocks in the function in post order. 4209 for (auto BB : post_order(&F.getEntryBlock())) { 4210 collectSeedInstructions(BB); 4211 4212 // Vectorize trees that end at stores. 4213 if (!Stores.empty()) { 4214 DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 4215 << " underlying objects.\n"); 4216 Changed |= vectorizeStoreChains(R); 4217 } 4218 4219 // Vectorize trees that end at reductions. 4220 Changed |= vectorizeChainsInBlock(BB, R); 4221 4222 // Vectorize the index computations of getelementptr instructions. This 4223 // is primarily intended to catch gather-like idioms ending at 4224 // non-consecutive loads. 4225 if (!GEPs.empty()) { 4226 DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 4227 << " underlying objects.\n"); 4228 Changed |= vectorizeGEPIndices(BB, R); 4229 } 4230 } 4231 4232 if (Changed) { 4233 R.optimizeGatherSequence(); 4234 DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 4235 DEBUG(verifyFunction(F)); 4236 } 4237 return Changed; 4238 } 4239 4240 /// \brief Check that the Values in the slice in VL array are still existent in 4241 /// the WeakTrackingVH array. 4242 /// Vectorization of part of the VL array may cause later values in the VL array 4243 /// to become invalid. We track when this has happened in the WeakTrackingVH 4244 /// array. 4245 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, 4246 ArrayRef<WeakTrackingVH> VH, unsigned SliceBegin, 4247 unsigned SliceSize) { 4248 VL = VL.slice(SliceBegin, SliceSize); 4249 VH = VH.slice(SliceBegin, SliceSize); 4250 return !std::equal(VL.begin(), VL.end(), VH.begin()); 4251 } 4252 4253 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 4254 unsigned VecRegSize) { 4255 unsigned ChainLen = Chain.size(); 4256 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 4257 << "\n"); 4258 unsigned Sz = R.getVectorElementSize(Chain[0]); 4259 unsigned VF = VecRegSize / Sz; 4260 4261 if (!isPowerOf2_32(Sz) || VF < 2) 4262 return false; 4263 4264 // Keep track of values that were deleted by vectorizing in the loop below. 4265 SmallVector<WeakTrackingVH, 8> TrackValues(Chain.begin(), Chain.end()); 4266 4267 bool Changed = false; 4268 // Look for profitable vectorizable trees at all offsets, starting at zero. 4269 for (unsigned i = 0, e = ChainLen; i < e; ++i) { 4270 if (i + VF > e) 4271 break; 4272 4273 // Check that a previous iteration of this loop did not delete the Value. 4274 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) 4275 continue; 4276 4277 DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 4278 << "\n"); 4279 ArrayRef<Value *> Operands = Chain.slice(i, VF); 4280 4281 R.buildTree(Operands); 4282 if (R.isTreeTinyAndNotFullyVectorizable()) 4283 continue; 4284 4285 R.computeMinimumValueSizes(); 4286 4287 int Cost = R.getTreeCost(); 4288 4289 DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n"); 4290 if (Cost < -SLPCostThreshold) { 4291 DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 4292 4293 using namespace ore; 4294 4295 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 4296 cast<StoreInst>(Chain[i])) 4297 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 4298 << " and with tree size " 4299 << NV("TreeSize", R.getTreeSize())); 4300 4301 R.vectorizeTree(); 4302 4303 // Move to the next bundle. 4304 i += VF - 1; 4305 Changed = true; 4306 } 4307 } 4308 4309 return Changed; 4310 } 4311 4312 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 4313 BoUpSLP &R) { 4314 SetVector<StoreInst *> Heads, Tails; 4315 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 4316 4317 // We may run into multiple chains that merge into a single chain. We mark the 4318 // stores that we vectorized so that we don't visit the same store twice. 4319 BoUpSLP::ValueSet VectorizedStores; 4320 bool Changed = false; 4321 4322 // Do a quadratic search on all of the given stores and find 4323 // all of the pairs of stores that follow each other. 4324 SmallVector<unsigned, 16> IndexQueue; 4325 for (unsigned i = 0, e = Stores.size(); i < e; ++i) { 4326 IndexQueue.clear(); 4327 // If a store has multiple consecutive store candidates, search Stores 4328 // array according to the sequence: from i+1 to e, then from i-1 to 0. 4329 // This is because usually pairing with immediate succeeding or preceding 4330 // candidate create the best chance to find slp vectorization opportunity. 4331 unsigned j = 0; 4332 for (j = i + 1; j < e; ++j) 4333 IndexQueue.push_back(j); 4334 for (j = i; j > 0; --j) 4335 IndexQueue.push_back(j - 1); 4336 4337 for (auto &k : IndexQueue) { 4338 if (isConsecutiveAccess(Stores[i], Stores[k], *DL, *SE)) { 4339 Tails.insert(Stores[k]); 4340 Heads.insert(Stores[i]); 4341 ConsecutiveChain[Stores[i]] = Stores[k]; 4342 break; 4343 } 4344 } 4345 } 4346 4347 // For stores that start but don't end a link in the chain: 4348 for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end(); 4349 it != e; ++it) { 4350 if (Tails.count(*it)) 4351 continue; 4352 4353 // We found a store instr that starts a chain. Now follow the chain and try 4354 // to vectorize it. 4355 BoUpSLP::ValueList Operands; 4356 StoreInst *I = *it; 4357 // Collect the chain into a list. 4358 while (Tails.count(I) || Heads.count(I)) { 4359 if (VectorizedStores.count(I)) 4360 break; 4361 Operands.push_back(I); 4362 // Move to the next value in the chain. 4363 I = ConsecutiveChain[I]; 4364 } 4365 4366 // FIXME: Is division-by-2 the correct step? Should we assert that the 4367 // register size is a power-of-2? 4368 for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize(); 4369 Size /= 2) { 4370 if (vectorizeStoreChain(Operands, R, Size)) { 4371 // Mark the vectorized stores so that we don't vectorize them again. 4372 VectorizedStores.insert(Operands.begin(), Operands.end()); 4373 Changed = true; 4374 break; 4375 } 4376 } 4377 } 4378 4379 return Changed; 4380 } 4381 4382 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 4383 // Initialize the collections. We will make a single pass over the block. 4384 Stores.clear(); 4385 GEPs.clear(); 4386 4387 // Visit the store and getelementptr instructions in BB and organize them in 4388 // Stores and GEPs according to the underlying objects of their pointer 4389 // operands. 4390 for (Instruction &I : *BB) { 4391 // Ignore store instructions that are volatile or have a pointer operand 4392 // that doesn't point to a scalar type. 4393 if (auto *SI = dyn_cast<StoreInst>(&I)) { 4394 if (!SI->isSimple()) 4395 continue; 4396 if (!isValidElementType(SI->getValueOperand()->getType())) 4397 continue; 4398 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); 4399 } 4400 4401 // Ignore getelementptr instructions that have more than one index, a 4402 // constant index, or a pointer operand that doesn't point to a scalar 4403 // type. 4404 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 4405 auto Idx = GEP->idx_begin()->get(); 4406 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 4407 continue; 4408 if (!isValidElementType(Idx->getType())) 4409 continue; 4410 if (GEP->getType()->isVectorTy()) 4411 continue; 4412 GEPs[GetUnderlyingObject(GEP->getPointerOperand(), *DL)].push_back(GEP); 4413 } 4414 } 4415 } 4416 4417 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 4418 if (!A || !B) 4419 return false; 4420 Value *VL[] = { A, B }; 4421 return tryToVectorizeList(VL, R, None, true); 4422 } 4423 4424 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 4425 ArrayRef<Value *> BuildVector, 4426 bool AllowReorder) { 4427 if (VL.size() < 2) 4428 return false; 4429 4430 DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " << VL.size() 4431 << ".\n"); 4432 4433 // Check that all of the parts are scalar instructions of the same type. 4434 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 4435 if (!I0) 4436 return false; 4437 4438 unsigned Opcode0 = I0->getOpcode(); 4439 4440 unsigned Sz = R.getVectorElementSize(I0); 4441 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 4442 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 4443 if (MaxVF < 2) 4444 return false; 4445 4446 for (Value *V : VL) { 4447 Type *Ty = V->getType(); 4448 if (!isValidElementType(Ty)) 4449 return false; 4450 Instruction *Inst = dyn_cast<Instruction>(V); 4451 if (!Inst || Inst->getOpcode() != Opcode0) 4452 return false; 4453 } 4454 4455 bool Changed = false; 4456 4457 // Keep track of values that were deleted by vectorizing in the loop below. 4458 SmallVector<WeakTrackingVH, 8> TrackValues(VL.begin(), VL.end()); 4459 4460 unsigned NextInst = 0, MaxInst = VL.size(); 4461 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; 4462 VF /= 2) { 4463 // No actual vectorization should happen, if number of parts is the same as 4464 // provided vectorization factor (i.e. the scalar type is used for vector 4465 // code during codegen). 4466 auto *VecTy = VectorType::get(VL[0]->getType(), VF); 4467 if (TTI->getNumberOfParts(VecTy) == VF) 4468 continue; 4469 for (unsigned I = NextInst; I < MaxInst; ++I) { 4470 unsigned OpsWidth = 0; 4471 4472 if (I + VF > MaxInst) 4473 OpsWidth = MaxInst - I; 4474 else 4475 OpsWidth = VF; 4476 4477 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 4478 break; 4479 4480 // Check that a previous iteration of this loop did not delete the Value. 4481 if (hasValueBeenRAUWed(VL, TrackValues, I, OpsWidth)) 4482 continue; 4483 4484 DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 4485 << "\n"); 4486 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 4487 4488 ArrayRef<Value *> BuildVectorSlice; 4489 if (!BuildVector.empty()) 4490 BuildVectorSlice = BuildVector.slice(I, OpsWidth); 4491 4492 R.buildTree(Ops, BuildVectorSlice); 4493 // TODO: check if we can allow reordering for more cases. 4494 if (AllowReorder && R.shouldReorder()) { 4495 // Conceptually, there is nothing actually preventing us from trying to 4496 // reorder a larger list. In fact, we do exactly this when vectorizing 4497 // reductions. However, at this point, we only expect to get here when 4498 // there are exactly two operations. 4499 assert(Ops.size() == 2); 4500 assert(BuildVectorSlice.empty()); 4501 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 4502 R.buildTree(ReorderedOps, None); 4503 } 4504 if (R.isTreeTinyAndNotFullyVectorizable()) 4505 continue; 4506 4507 R.computeMinimumValueSizes(); 4508 int Cost = R.getTreeCost(); 4509 4510 if (Cost < -SLPCostThreshold) { 4511 DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 4512 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 4513 cast<Instruction>(Ops[0])) 4514 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 4515 << " and with tree size " 4516 << ore::NV("TreeSize", R.getTreeSize())); 4517 4518 Value *VectorizedRoot = R.vectorizeTree(); 4519 4520 // Reconstruct the build vector by extracting the vectorized root. This 4521 // way we handle the case where some elements of the vector are 4522 // undefined. 4523 // (return (inserelt <4 xi32> (insertelt undef (opd0) 0) (opd1) 2)) 4524 if (!BuildVectorSlice.empty()) { 4525 // The insert point is the last build vector instruction. The 4526 // vectorized root will precede it. This guarantees that we get an 4527 // instruction. The vectorized tree could have been constant folded. 4528 Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back()); 4529 unsigned VecIdx = 0; 4530 for (auto &V : BuildVectorSlice) { 4531 IRBuilder<NoFolder> Builder(InsertAfter->getParent(), 4532 ++BasicBlock::iterator(InsertAfter)); 4533 Instruction *I = cast<Instruction>(V); 4534 assert(isa<InsertElementInst>(I) || isa<InsertValueInst>(I)); 4535 Instruction *Extract = 4536 cast<Instruction>(Builder.CreateExtractElement( 4537 VectorizedRoot, Builder.getInt32(VecIdx++))); 4538 I->setOperand(1, Extract); 4539 I->moveAfter(Extract); 4540 InsertAfter = I; 4541 } 4542 } 4543 // Move to the next bundle. 4544 I += VF - 1; 4545 NextInst = I + 1; 4546 Changed = true; 4547 } 4548 } 4549 } 4550 4551 return Changed; 4552 } 4553 4554 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 4555 if (!I) 4556 return false; 4557 4558 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 4559 return false; 4560 4561 Value *P = I->getParent(); 4562 4563 // Vectorize in current basic block only. 4564 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 4565 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 4566 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 4567 return false; 4568 4569 // Try to vectorize V. 4570 if (tryToVectorizePair(Op0, Op1, R)) 4571 return true; 4572 4573 auto *A = dyn_cast<BinaryOperator>(Op0); 4574 auto *B = dyn_cast<BinaryOperator>(Op1); 4575 // Try to skip B. 4576 if (B && B->hasOneUse()) { 4577 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 4578 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 4579 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 4580 return true; 4581 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 4582 return true; 4583 } 4584 4585 // Try to skip A. 4586 if (A && A->hasOneUse()) { 4587 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 4588 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 4589 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 4590 return true; 4591 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 4592 return true; 4593 } 4594 return false; 4595 } 4596 4597 /// \brief Generate a shuffle mask to be used in a reduction tree. 4598 /// 4599 /// \param VecLen The length of the vector to be reduced. 4600 /// \param NumEltsToRdx The number of elements that should be reduced in the 4601 /// vector. 4602 /// \param IsPairwise Whether the reduction is a pairwise or splitting 4603 /// reduction. A pairwise reduction will generate a mask of 4604 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 4605 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 4606 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 4607 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 4608 bool IsPairwise, bool IsLeft, 4609 IRBuilder<> &Builder) { 4610 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 4611 4612 SmallVector<Constant *, 32> ShuffleMask( 4613 VecLen, UndefValue::get(Builder.getInt32Ty())); 4614 4615 if (IsPairwise) 4616 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 4617 for (unsigned i = 0; i != NumEltsToRdx; ++i) 4618 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 4619 else 4620 // Move the upper half of the vector to the lower half. 4621 for (unsigned i = 0; i != NumEltsToRdx; ++i) 4622 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 4623 4624 return ConstantVector::get(ShuffleMask); 4625 } 4626 4627 namespace { 4628 4629 /// Model horizontal reductions. 4630 /// 4631 /// A horizontal reduction is a tree of reduction operations (currently add and 4632 /// fadd) that has operations that can be put into a vector as its leaf. 4633 /// For example, this tree: 4634 /// 4635 /// mul mul mul mul 4636 /// \ / \ / 4637 /// + + 4638 /// \ / 4639 /// + 4640 /// This tree has "mul" as its reduced values and "+" as its reduction 4641 /// operations. A reduction might be feeding into a store or a binary operation 4642 /// feeding a phi. 4643 /// ... 4644 /// \ / 4645 /// + 4646 /// | 4647 /// phi += 4648 /// 4649 /// Or: 4650 /// ... 4651 /// \ / 4652 /// + 4653 /// | 4654 /// *p = 4655 /// 4656 class HorizontalReduction { 4657 SmallVector<Value *, 16> ReductionOps; 4658 SmallVector<Value *, 32> ReducedVals; 4659 // Use map vector to make stable output. 4660 MapVector<Instruction *, Value *> ExtraArgs; 4661 4662 /// Kind of the reduction data. 4663 enum ReductionKind { 4664 RK_None, /// Not a reduction. 4665 RK_Arithmetic, /// Binary reduction data. 4666 RK_Min, /// Minimum reduction data. 4667 RK_UMin, /// Unsigned minimum reduction data. 4668 RK_Max, /// Maximum reduction data. 4669 RK_UMax, /// Unsigned maximum reduction data. 4670 }; 4671 /// Contains info about operation, like its opcode, left and right operands. 4672 class OperationData { 4673 /// Opcode of the instruction. 4674 unsigned Opcode = 0; 4675 4676 /// Left operand of the reduction operation. 4677 Value *LHS = nullptr; 4678 4679 /// Right operand of the reduction operation. 4680 Value *RHS = nullptr; 4681 /// Kind of the reduction operation. 4682 ReductionKind Kind = RK_None; 4683 /// True if float point min/max reduction has no NaNs. 4684 bool NoNaN = false; 4685 4686 /// Checks if the reduction operation can be vectorized. 4687 bool isVectorizable() const { 4688 return LHS && RHS && 4689 // We currently only support adds && min/max reductions. 4690 ((Kind == RK_Arithmetic && 4691 (Opcode == Instruction::Add || Opcode == Instruction::FAdd)) || 4692 ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 4693 (Kind == RK_Min || Kind == RK_Max)) || 4694 (Opcode == Instruction::ICmp && 4695 (Kind == RK_UMin || Kind == RK_UMax))); 4696 } 4697 4698 public: 4699 explicit OperationData() = default; 4700 4701 /// Construction for reduced values. They are identified by opcode only and 4702 /// don't have associated LHS/RHS values. 4703 explicit OperationData(Value *V) : Kind(RK_None) { 4704 if (auto *I = dyn_cast<Instruction>(V)) 4705 Opcode = I->getOpcode(); 4706 } 4707 4708 /// Constructor for reduction operations with opcode and its left and 4709 /// right operands. 4710 OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind, 4711 bool NoNaN = false) 4712 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) { 4713 assert(Kind != RK_None && "One of the reduction operations is expected."); 4714 } 4715 explicit operator bool() const { return Opcode; } 4716 4717 /// Get the index of the first operand. 4718 unsigned getFirstOperandIndex() const { 4719 assert(!!*this && "The opcode is not set."); 4720 switch (Kind) { 4721 case RK_Min: 4722 case RK_UMin: 4723 case RK_Max: 4724 case RK_UMax: 4725 return 1; 4726 case RK_Arithmetic: 4727 case RK_None: 4728 break; 4729 } 4730 return 0; 4731 } 4732 4733 /// Total number of operands in the reduction operation. 4734 unsigned getNumberOfOperands() const { 4735 assert(Kind != RK_None && !!*this && LHS && RHS && 4736 "Expected reduction operation."); 4737 switch (Kind) { 4738 case RK_Arithmetic: 4739 return 2; 4740 case RK_Min: 4741 case RK_UMin: 4742 case RK_Max: 4743 case RK_UMax: 4744 return 3; 4745 case RK_None: 4746 break; 4747 } 4748 llvm_unreachable("Reduction kind is not set"); 4749 } 4750 4751 /// Expected number of uses for reduction operations/reduced values. 4752 unsigned getRequiredNumberOfUses() const { 4753 assert(Kind != RK_None && !!*this && LHS && RHS && 4754 "Expected reduction operation."); 4755 switch (Kind) { 4756 case RK_Arithmetic: 4757 return 1; 4758 case RK_Min: 4759 case RK_UMin: 4760 case RK_Max: 4761 case RK_UMax: 4762 return 2; 4763 case RK_None: 4764 break; 4765 } 4766 llvm_unreachable("Reduction kind is not set"); 4767 } 4768 4769 /// Checks if instruction is associative and can be vectorized. 4770 bool isAssociative(Instruction *I) const { 4771 assert(Kind != RK_None && *this && LHS && RHS && 4772 "Expected reduction operation."); 4773 switch (Kind) { 4774 case RK_Arithmetic: 4775 return I->isAssociative(); 4776 case RK_Min: 4777 case RK_Max: 4778 return Opcode == Instruction::ICmp || 4779 cast<Instruction>(I->getOperand(0))->hasUnsafeAlgebra(); 4780 case RK_UMin: 4781 case RK_UMax: 4782 assert(Opcode == Instruction::ICmp && 4783 "Only integer compare operation is expected."); 4784 return true; 4785 case RK_None: 4786 break; 4787 } 4788 llvm_unreachable("Reduction kind is not set"); 4789 } 4790 4791 /// Checks if the reduction operation can be vectorized. 4792 bool isVectorizable(Instruction *I) const { 4793 return isVectorizable() && isAssociative(I); 4794 } 4795 4796 /// Checks if two operation data are both a reduction op or both a reduced 4797 /// value. 4798 bool operator==(const OperationData &OD) { 4799 assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) && 4800 "One of the comparing operations is incorrect."); 4801 return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode); 4802 } 4803 bool operator!=(const OperationData &OD) { return !(*this == OD); } 4804 void clear() { 4805 Opcode = 0; 4806 LHS = nullptr; 4807 RHS = nullptr; 4808 Kind = RK_None; 4809 NoNaN = false; 4810 } 4811 4812 /// Get the opcode of the reduction operation. 4813 unsigned getOpcode() const { 4814 assert(isVectorizable() && "Expected vectorizable operation."); 4815 return Opcode; 4816 } 4817 4818 /// Get kind of reduction data. 4819 ReductionKind getKind() const { return Kind; } 4820 Value *getLHS() const { return LHS; } 4821 Value *getRHS() const { return RHS; } 4822 Type *getConditionType() const { 4823 switch (Kind) { 4824 case RK_Arithmetic: 4825 return nullptr; 4826 case RK_Min: 4827 case RK_Max: 4828 case RK_UMin: 4829 case RK_UMax: 4830 return CmpInst::makeCmpResultType(LHS->getType()); 4831 case RK_None: 4832 break; 4833 } 4834 llvm_unreachable("Reduction kind is not set"); 4835 } 4836 4837 /// Creates reduction operation with the current opcode. 4838 Value *createOp(IRBuilder<> &Builder, const Twine &Name = "") const { 4839 assert(isVectorizable() && 4840 "Expected add|fadd or min/max reduction operation."); 4841 Value *Cmp; 4842 switch (Kind) { 4843 case RK_Arithmetic: 4844 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS, 4845 Name); 4846 case RK_Min: 4847 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS) 4848 : Builder.CreateFCmpOLT(LHS, RHS); 4849 break; 4850 case RK_Max: 4851 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS) 4852 : Builder.CreateFCmpOGT(LHS, RHS); 4853 break; 4854 case RK_UMin: 4855 assert(Opcode == Instruction::ICmp && "Expected integer types."); 4856 Cmp = Builder.CreateICmpULT(LHS, RHS); 4857 break; 4858 case RK_UMax: 4859 assert(Opcode == Instruction::ICmp && "Expected integer types."); 4860 Cmp = Builder.CreateICmpUGT(LHS, RHS); 4861 break; 4862 case RK_None: 4863 llvm_unreachable("Unknown reduction operation."); 4864 } 4865 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 4866 } 4867 TargetTransformInfo::ReductionFlags getFlags() const { 4868 TargetTransformInfo::ReductionFlags Flags; 4869 Flags.NoNaN = NoNaN; 4870 switch (Kind) { 4871 case RK_Arithmetic: 4872 break; 4873 case RK_Min: 4874 Flags.IsSigned = Opcode == Instruction::ICmp; 4875 Flags.IsMaxOp = false; 4876 break; 4877 case RK_Max: 4878 Flags.IsSigned = Opcode == Instruction::ICmp; 4879 Flags.IsMaxOp = true; 4880 break; 4881 case RK_UMin: 4882 Flags.IsSigned = false; 4883 Flags.IsMaxOp = false; 4884 break; 4885 case RK_UMax: 4886 Flags.IsSigned = false; 4887 Flags.IsMaxOp = true; 4888 break; 4889 case RK_None: 4890 llvm_unreachable("Reduction kind is not set"); 4891 } 4892 return Flags; 4893 } 4894 }; 4895 4896 Instruction *ReductionRoot = nullptr; 4897 4898 /// The operation data of the reduction operation. 4899 OperationData ReductionData; 4900 4901 /// The operation data of the values we perform a reduction on. 4902 OperationData ReducedValueData; 4903 4904 /// Should we model this reduction as a pairwise reduction tree or a tree that 4905 /// splits the vector in halves and adds those halves. 4906 bool IsPairwiseReduction = false; 4907 4908 /// Checks if the ParentStackElem.first should be marked as a reduction 4909 /// operation with an extra argument or as extra argument itself. 4910 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 4911 Value *ExtraArg) { 4912 if (ExtraArgs.count(ParentStackElem.first)) { 4913 ExtraArgs[ParentStackElem.first] = nullptr; 4914 // We ran into something like: 4915 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 4916 // The whole ParentStackElem.first should be considered as an extra value 4917 // in this case. 4918 // Do not perform analysis of remaining operands of ParentStackElem.first 4919 // instruction, this whole instruction is an extra argument. 4920 ParentStackElem.second = ParentStackElem.first->getNumOperands(); 4921 } else { 4922 // We ran into something like: 4923 // ParentStackElem.first += ... + ExtraArg + ... 4924 ExtraArgs[ParentStackElem.first] = ExtraArg; 4925 } 4926 } 4927 4928 static OperationData getOperationData(Value *V) { 4929 if (!V) 4930 return OperationData(); 4931 4932 Value *LHS; 4933 Value *RHS; 4934 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) { 4935 return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS, 4936 RK_Arithmetic); 4937 } 4938 if (auto *Select = dyn_cast<SelectInst>(V)) { 4939 // Look for a min/max pattern. 4940 if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 4941 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 4942 } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 4943 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 4944 } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) || 4945 m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 4946 return OperationData( 4947 Instruction::FCmp, LHS, RHS, RK_Min, 4948 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 4949 } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 4950 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 4951 } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 4952 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 4953 } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) || 4954 m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 4955 return OperationData( 4956 Instruction::FCmp, LHS, RHS, RK_Max, 4957 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 4958 } 4959 } 4960 return OperationData(V); 4961 } 4962 4963 public: 4964 HorizontalReduction() = default; 4965 4966 /// \brief Try to find a reduction tree. 4967 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 4968 assert((!Phi || is_contained(Phi->operands(), B)) && 4969 "Thi phi needs to use the binary operator"); 4970 4971 ReductionData = getOperationData(B); 4972 4973 // We could have a initial reductions that is not an add. 4974 // r *= v1 + v2 + v3 + v4 4975 // In such a case start looking for a tree rooted in the first '+'. 4976 if (Phi) { 4977 if (ReductionData.getLHS() == Phi) { 4978 Phi = nullptr; 4979 B = dyn_cast<Instruction>(ReductionData.getRHS()); 4980 ReductionData = getOperationData(B); 4981 } else if (ReductionData.getRHS() == Phi) { 4982 Phi = nullptr; 4983 B = dyn_cast<Instruction>(ReductionData.getLHS()); 4984 ReductionData = getOperationData(B); 4985 } 4986 } 4987 4988 if (!ReductionData.isVectorizable(B)) 4989 return false; 4990 4991 Type *Ty = B->getType(); 4992 if (!isValidElementType(Ty)) 4993 return false; 4994 4995 ReducedValueData.clear(); 4996 ReductionRoot = B; 4997 4998 // Post order traverse the reduction tree starting at B. We only handle true 4999 // trees containing only binary operators. 5000 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 5001 Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex())); 5002 const unsigned NUses = ReductionData.getRequiredNumberOfUses(); 5003 while (!Stack.empty()) { 5004 Instruction *TreeN = Stack.back().first; 5005 unsigned EdgeToVist = Stack.back().second++; 5006 OperationData OpData = getOperationData(TreeN); 5007 bool IsReducedValue = OpData != ReductionData; 5008 5009 // Postorder vist. 5010 if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) { 5011 if (IsReducedValue) 5012 ReducedVals.push_back(TreeN); 5013 else { 5014 auto I = ExtraArgs.find(TreeN); 5015 if (I != ExtraArgs.end() && !I->second) { 5016 // Check if TreeN is an extra argument of its parent operation. 5017 if (Stack.size() <= 1) { 5018 // TreeN can't be an extra argument as it is a root reduction 5019 // operation. 5020 return false; 5021 } 5022 // Yes, TreeN is an extra argument, do not add it to a list of 5023 // reduction operations. 5024 // Stack[Stack.size() - 2] always points to the parent operation. 5025 markExtraArg(Stack[Stack.size() - 2], TreeN); 5026 ExtraArgs.erase(TreeN); 5027 } else 5028 ReductionOps.push_back(TreeN); 5029 } 5030 // Retract. 5031 Stack.pop_back(); 5032 continue; 5033 } 5034 5035 // Visit left or right. 5036 Value *NextV = TreeN->getOperand(EdgeToVist); 5037 if (NextV != Phi) { 5038 auto *I = dyn_cast<Instruction>(NextV); 5039 OpData = getOperationData(I); 5040 // Continue analysis if the next operand is a reduction operation or 5041 // (possibly) a reduced value. If the reduced value opcode is not set, 5042 // the first met operation != reduction operation is considered as the 5043 // reduced value class. 5044 if (I && (!ReducedValueData || OpData == ReducedValueData || 5045 OpData == ReductionData)) { 5046 // Only handle trees in the current basic block. 5047 if (I->getParent() != B->getParent()) { 5048 // I is an extra argument for TreeN (its parent operation). 5049 markExtraArg(Stack.back(), I); 5050 continue; 5051 } 5052 5053 // Each tree node needs to have minimal number of users except for the 5054 // ultimate reduction. 5055 if (!I->hasNUses(NUses) && I != B) { 5056 // I is an extra argument for TreeN (its parent operation). 5057 markExtraArg(Stack.back(), I); 5058 continue; 5059 } 5060 5061 if (OpData == ReductionData) { 5062 // We need to be able to reassociate the reduction operations. 5063 if (!OpData.isAssociative(I)) { 5064 // I is an extra argument for TreeN (its parent operation). 5065 markExtraArg(Stack.back(), I); 5066 continue; 5067 } 5068 } else if (ReducedValueData && 5069 ReducedValueData != OpData) { 5070 // Make sure that the opcodes of the operations that we are going to 5071 // reduce match. 5072 // I is an extra argument for TreeN (its parent operation). 5073 markExtraArg(Stack.back(), I); 5074 continue; 5075 } else if (!ReducedValueData) 5076 ReducedValueData = OpData; 5077 5078 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex())); 5079 continue; 5080 } 5081 } 5082 // NextV is an extra argument for TreeN (its parent operation). 5083 markExtraArg(Stack.back(), NextV); 5084 } 5085 return true; 5086 } 5087 5088 /// \brief Attempt to vectorize the tree found by 5089 /// matchAssociativeReduction. 5090 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 5091 if (ReducedVals.empty()) 5092 return false; 5093 5094 // If there is a sufficient number of reduction values, reduce 5095 // to a nearby power-of-2. Can safely generate oversized 5096 // vectors and rely on the backend to split them to legal sizes. 5097 unsigned NumReducedVals = ReducedVals.size(); 5098 if (NumReducedVals < 4) 5099 return false; 5100 5101 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 5102 5103 Value *VectorizedTree = nullptr; 5104 IRBuilder<> Builder(ReductionRoot); 5105 FastMathFlags Unsafe; 5106 Unsafe.setUnsafeAlgebra(); 5107 Builder.setFastMathFlags(Unsafe); 5108 unsigned i = 0; 5109 5110 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 5111 // The same extra argument may be used several time, so log each attempt 5112 // to use it. 5113 for (auto &Pair : ExtraArgs) 5114 ExternallyUsedValues[Pair.second].push_back(Pair.first); 5115 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 5116 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth); 5117 V.buildTree(VL, ExternallyUsedValues, ReductionOps); 5118 if (V.shouldReorder()) { 5119 SmallVector<Value *, 8> Reversed(VL.rbegin(), VL.rend()); 5120 V.buildTree(Reversed, ExternallyUsedValues, ReductionOps); 5121 } 5122 if (V.isTreeTinyAndNotFullyVectorizable()) 5123 break; 5124 5125 V.computeMinimumValueSizes(); 5126 5127 // Estimate cost. 5128 int Cost = 5129 V.getTreeCost() + getReductionCost(TTI, ReducedVals[i], ReduxWidth); 5130 if (Cost >= -SLPCostThreshold) 5131 break; 5132 5133 DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost 5134 << ". (HorRdx)\n"); 5135 auto *I0 = cast<Instruction>(VL[0]); 5136 V.getORE()->emit( 5137 OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", I0) 5138 << "Vectorized horizontal reduction with cost " 5139 << ore::NV("Cost", Cost) << " and with tree size " 5140 << ore::NV("TreeSize", V.getTreeSize())); 5141 5142 // Vectorize a tree. 5143 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 5144 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 5145 5146 // Emit a reduction. 5147 Value *ReducedSubTree = 5148 emitReduction(VectorizedRoot, Builder, ReduxWidth, ReductionOps, TTI); 5149 if (VectorizedTree) { 5150 Builder.SetCurrentDebugLocation(Loc); 5151 OperationData VectReductionData(ReductionData.getOpcode(), 5152 VectorizedTree, ReducedSubTree, 5153 ReductionData.getKind()); 5154 VectorizedTree = VectReductionData.createOp(Builder, "op.rdx"); 5155 propagateIRFlags(VectorizedTree, ReductionOps); 5156 } else 5157 VectorizedTree = ReducedSubTree; 5158 i += ReduxWidth; 5159 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 5160 } 5161 5162 if (VectorizedTree) { 5163 // Finish the reduction. 5164 for (; i < NumReducedVals; ++i) { 5165 auto *I = cast<Instruction>(ReducedVals[i]); 5166 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 5167 OperationData VectReductionData(ReductionData.getOpcode(), 5168 VectorizedTree, I, 5169 ReductionData.getKind()); 5170 VectorizedTree = VectReductionData.createOp(Builder); 5171 propagateIRFlags(VectorizedTree, ReductionOps); 5172 } 5173 for (auto &Pair : ExternallyUsedValues) { 5174 assert(!Pair.second.empty() && 5175 "At least one DebugLoc must be inserted"); 5176 // Add each externally used value to the final reduction. 5177 for (auto *I : Pair.second) { 5178 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 5179 OperationData VectReductionData(ReductionData.getOpcode(), 5180 VectorizedTree, Pair.first, 5181 ReductionData.getKind()); 5182 VectorizedTree = VectReductionData.createOp(Builder, "op.extra"); 5183 propagateIRFlags(VectorizedTree, I); 5184 } 5185 } 5186 // Update users. 5187 ReductionRoot->replaceAllUsesWith(VectorizedTree); 5188 } 5189 return VectorizedTree != nullptr; 5190 } 5191 5192 unsigned numReductionValues() const { 5193 return ReducedVals.size(); 5194 } 5195 5196 private: 5197 /// \brief Calculate the cost of a reduction. 5198 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 5199 unsigned ReduxWidth) { 5200 Type *ScalarTy = FirstReducedVal->getType(); 5201 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 5202 5203 int PairwiseRdxCost; 5204 int SplittingRdxCost; 5205 bool IsUnsigned = true; 5206 switch (ReductionData.getKind()) { 5207 case RK_Arithmetic: 5208 PairwiseRdxCost = 5209 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 5210 /*IsPairwiseForm=*/true); 5211 SplittingRdxCost = 5212 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 5213 /*IsPairwiseForm=*/false); 5214 break; 5215 case RK_Min: 5216 case RK_Max: 5217 IsUnsigned = false; 5218 case RK_UMin: 5219 case RK_UMax: { 5220 Type *VecCondTy = CmpInst::makeCmpResultType(VecTy); 5221 PairwiseRdxCost = 5222 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 5223 /*IsPairwiseForm=*/true, IsUnsigned); 5224 SplittingRdxCost = 5225 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 5226 /*IsPairwiseForm=*/false, IsUnsigned); 5227 break; 5228 } 5229 case RK_None: 5230 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 5231 } 5232 5233 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 5234 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 5235 5236 int ScalarReduxCost; 5237 switch (ReductionData.getKind()) { 5238 case RK_Arithmetic: 5239 ScalarReduxCost = 5240 TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy); 5241 break; 5242 case RK_Min: 5243 case RK_Max: 5244 case RK_UMin: 5245 case RK_UMax: 5246 ScalarReduxCost = 5247 TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) + 5248 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 5249 CmpInst::makeCmpResultType(ScalarTy)); 5250 break; 5251 case RK_None: 5252 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 5253 } 5254 ScalarReduxCost *= (ReduxWidth - 1); 5255 5256 DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 5257 << " for reduction that starts with " << *FirstReducedVal 5258 << " (It is a " 5259 << (IsPairwiseReduction ? "pairwise" : "splitting") 5260 << " reduction)\n"); 5261 5262 return VecReduxCost - ScalarReduxCost; 5263 } 5264 5265 /// \brief Emit a horizontal reduction of the vectorized value. 5266 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 5267 unsigned ReduxWidth, ArrayRef<Value *> RedOps, 5268 const TargetTransformInfo *TTI) { 5269 assert(VectorizedValue && "Need to have a vectorized tree node"); 5270 assert(isPowerOf2_32(ReduxWidth) && 5271 "We only handle power-of-two reductions for now"); 5272 5273 if (!IsPairwiseReduction) 5274 return createSimpleTargetReduction( 5275 Builder, TTI, ReductionData.getOpcode(), VectorizedValue, 5276 ReductionData.getFlags(), RedOps); 5277 5278 Value *TmpVec = VectorizedValue; 5279 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 5280 Value *LeftMask = 5281 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 5282 Value *RightMask = 5283 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 5284 5285 Value *LeftShuf = Builder.CreateShuffleVector( 5286 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 5287 Value *RightShuf = Builder.CreateShuffleVector( 5288 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 5289 "rdx.shuf.r"); 5290 OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf, 5291 RightShuf, ReductionData.getKind()); 5292 TmpVec = VectReductionData.createOp(Builder, "op.rdx"); 5293 propagateIRFlags(TmpVec, RedOps); 5294 } 5295 5296 // The result is in the first element of the vector. 5297 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 5298 } 5299 }; 5300 5301 } // end anonymous namespace 5302 5303 /// \brief Recognize construction of vectors like 5304 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 5305 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 5306 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 5307 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 5308 /// starting from the last insertelement instruction. 5309 /// 5310 /// Returns true if it matches 5311 /// 5312 static bool findBuildVector(InsertElementInst *LastInsertElem, 5313 SmallVectorImpl<Value *> &BuildVector, 5314 SmallVectorImpl<Value *> &BuildVectorOpds) { 5315 Value *V = nullptr; 5316 do { 5317 BuildVector.push_back(LastInsertElem); 5318 BuildVectorOpds.push_back(LastInsertElem->getOperand(1)); 5319 V = LastInsertElem->getOperand(0); 5320 if (isa<UndefValue>(V)) 5321 break; 5322 LastInsertElem = dyn_cast<InsertElementInst>(V); 5323 if (!LastInsertElem || !LastInsertElem->hasOneUse()) 5324 return false; 5325 } while (true); 5326 std::reverse(BuildVector.begin(), BuildVector.end()); 5327 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 5328 return true; 5329 } 5330 5331 /// \brief Like findBuildVector, but looks for construction of aggregate. 5332 /// 5333 /// \return true if it matches. 5334 static bool findBuildAggregate(InsertValueInst *IV, 5335 SmallVectorImpl<Value *> &BuildVector, 5336 SmallVectorImpl<Value *> &BuildVectorOpds) { 5337 Value *V; 5338 do { 5339 BuildVector.push_back(IV); 5340 BuildVectorOpds.push_back(IV->getInsertedValueOperand()); 5341 V = IV->getAggregateOperand(); 5342 if (isa<UndefValue>(V)) 5343 break; 5344 IV = dyn_cast<InsertValueInst>(V); 5345 if (!IV || !IV->hasOneUse()) 5346 return false; 5347 } while (true); 5348 std::reverse(BuildVector.begin(), BuildVector.end()); 5349 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 5350 return true; 5351 } 5352 5353 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 5354 return V->getType() < V2->getType(); 5355 } 5356 5357 /// \brief Try and get a reduction value from a phi node. 5358 /// 5359 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 5360 /// if they come from either \p ParentBB or a containing loop latch. 5361 /// 5362 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 5363 /// if not possible. 5364 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 5365 BasicBlock *ParentBB, LoopInfo *LI) { 5366 // There are situations where the reduction value is not dominated by the 5367 // reduction phi. Vectorizing such cases has been reported to cause 5368 // miscompiles. See PR25787. 5369 auto DominatedReduxValue = [&](Value *R) { 5370 return ( 5371 dyn_cast<Instruction>(R) && 5372 DT->dominates(P->getParent(), dyn_cast<Instruction>(R)->getParent())); 5373 }; 5374 5375 Value *Rdx = nullptr; 5376 5377 // Return the incoming value if it comes from the same BB as the phi node. 5378 if (P->getIncomingBlock(0) == ParentBB) { 5379 Rdx = P->getIncomingValue(0); 5380 } else if (P->getIncomingBlock(1) == ParentBB) { 5381 Rdx = P->getIncomingValue(1); 5382 } 5383 5384 if (Rdx && DominatedReduxValue(Rdx)) 5385 return Rdx; 5386 5387 // Otherwise, check whether we have a loop latch to look at. 5388 Loop *BBL = LI->getLoopFor(ParentBB); 5389 if (!BBL) 5390 return nullptr; 5391 BasicBlock *BBLatch = BBL->getLoopLatch(); 5392 if (!BBLatch) 5393 return nullptr; 5394 5395 // There is a loop latch, return the incoming value if it comes from 5396 // that. This reduction pattern occasionally turns up. 5397 if (P->getIncomingBlock(0) == BBLatch) { 5398 Rdx = P->getIncomingValue(0); 5399 } else if (P->getIncomingBlock(1) == BBLatch) { 5400 Rdx = P->getIncomingValue(1); 5401 } 5402 5403 if (Rdx && DominatedReduxValue(Rdx)) 5404 return Rdx; 5405 5406 return nullptr; 5407 } 5408 5409 /// Attempt to reduce a horizontal reduction. 5410 /// If it is legal to match a horizontal reduction feeding the phi node \a P 5411 /// with reduction operators \a Root (or one of its operands) in a basic block 5412 /// \a BB, then check if it can be done. If horizontal reduction is not found 5413 /// and root instruction is a binary operation, vectorization of the operands is 5414 /// attempted. 5415 /// \returns true if a horizontal reduction was matched and reduced or operands 5416 /// of one of the binary instruction were vectorized. 5417 /// \returns false if a horizontal reduction was not matched (or not possible) 5418 /// or no vectorization of any binary operation feeding \a Root instruction was 5419 /// performed. 5420 static bool tryToVectorizeHorReductionOrInstOperands( 5421 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 5422 TargetTransformInfo *TTI, 5423 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 5424 if (!ShouldVectorizeHor) 5425 return false; 5426 5427 if (!Root) 5428 return false; 5429 5430 if (Root->getParent() != BB || isa<PHINode>(Root)) 5431 return false; 5432 // Start analysis starting from Root instruction. If horizontal reduction is 5433 // found, try to vectorize it. If it is not a horizontal reduction or 5434 // vectorization is not possible or not effective, and currently analyzed 5435 // instruction is a binary operation, try to vectorize the operands, using 5436 // pre-order DFS traversal order. If the operands were not vectorized, repeat 5437 // the same procedure considering each operand as a possible root of the 5438 // horizontal reduction. 5439 // Interrupt the process if the Root instruction itself was vectorized or all 5440 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 5441 SmallVector<std::pair<WeakTrackingVH, unsigned>, 8> Stack(1, {Root, 0}); 5442 SmallSet<Value *, 8> VisitedInstrs; 5443 bool Res = false; 5444 while (!Stack.empty()) { 5445 Value *V; 5446 unsigned Level; 5447 std::tie(V, Level) = Stack.pop_back_val(); 5448 if (!V) 5449 continue; 5450 auto *Inst = dyn_cast<Instruction>(V); 5451 if (!Inst) 5452 continue; 5453 auto *BI = dyn_cast<BinaryOperator>(Inst); 5454 auto *SI = dyn_cast<SelectInst>(Inst); 5455 if (BI || SI) { 5456 HorizontalReduction HorRdx; 5457 if (HorRdx.matchAssociativeReduction(P, Inst)) { 5458 if (HorRdx.tryToReduce(R, TTI)) { 5459 Res = true; 5460 // Set P to nullptr to avoid re-analysis of phi node in 5461 // matchAssociativeReduction function unless this is the root node. 5462 P = nullptr; 5463 continue; 5464 } 5465 } 5466 if (P && BI) { 5467 Inst = dyn_cast<Instruction>(BI->getOperand(0)); 5468 if (Inst == P) 5469 Inst = dyn_cast<Instruction>(BI->getOperand(1)); 5470 if (!Inst) { 5471 // Set P to nullptr to avoid re-analysis of phi node in 5472 // matchAssociativeReduction function unless this is the root node. 5473 P = nullptr; 5474 continue; 5475 } 5476 } 5477 } 5478 // Set P to nullptr to avoid re-analysis of phi node in 5479 // matchAssociativeReduction function unless this is the root node. 5480 P = nullptr; 5481 if (Vectorize(Inst, R)) { 5482 Res = true; 5483 continue; 5484 } 5485 5486 // Try to vectorize operands. 5487 // Continue analysis for the instruction from the same basic block only to 5488 // save compile time. 5489 if (++Level < RecursionMaxDepth) 5490 for (auto *Op : Inst->operand_values()) 5491 if (VisitedInstrs.insert(Op).second) 5492 if (auto *I = dyn_cast<Instruction>(Op)) 5493 if (!isa<PHINode>(Inst) && I->getParent() == BB) 5494 Stack.emplace_back(Op, Level); 5495 } 5496 return Res; 5497 } 5498 5499 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 5500 BasicBlock *BB, BoUpSLP &R, 5501 TargetTransformInfo *TTI) { 5502 if (!V) 5503 return false; 5504 auto *I = dyn_cast<Instruction>(V); 5505 if (!I) 5506 return false; 5507 5508 if (!isa<BinaryOperator>(I)) 5509 P = nullptr; 5510 // Try to match and vectorize a horizontal reduction. 5511 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 5512 return tryToVectorize(I, R); 5513 }; 5514 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 5515 ExtraVectorization); 5516 } 5517 5518 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 5519 BasicBlock *BB, BoUpSLP &R) { 5520 const DataLayout &DL = BB->getModule()->getDataLayout(); 5521 if (!R.canMapToVector(IVI->getType(), DL)) 5522 return false; 5523 5524 SmallVector<Value *, 16> BuildVector; 5525 SmallVector<Value *, 16> BuildVectorOpds; 5526 if (!findBuildAggregate(IVI, BuildVector, BuildVectorOpds)) 5527 return false; 5528 5529 DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 5530 return tryToVectorizeList(BuildVectorOpds, R, BuildVector, false); 5531 } 5532 5533 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 5534 BasicBlock *BB, BoUpSLP &R) { 5535 SmallVector<Value *, 16> BuildVector; 5536 SmallVector<Value *, 16> BuildVectorOpds; 5537 if (!findBuildVector(IEI, BuildVector, BuildVectorOpds)) 5538 return false; 5539 5540 // Vectorize starting with the build vector operands ignoring the BuildVector 5541 // instructions for the purpose of scheduling and user extraction. 5542 return tryToVectorizeList(BuildVectorOpds, R, BuildVector); 5543 } 5544 5545 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 5546 BoUpSLP &R) { 5547 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 5548 return true; 5549 5550 bool OpsChanged = false; 5551 for (int Idx = 0; Idx < 2; ++Idx) { 5552 OpsChanged |= 5553 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 5554 } 5555 return OpsChanged; 5556 } 5557 5558 bool SLPVectorizerPass::vectorizeSimpleInstructions( 5559 SmallVectorImpl<WeakVH> &Instructions, BasicBlock *BB, BoUpSLP &R) { 5560 bool OpsChanged = false; 5561 for (auto &VH : reverse(Instructions)) { 5562 auto *I = dyn_cast_or_null<Instruction>(VH); 5563 if (!I) 5564 continue; 5565 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 5566 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 5567 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 5568 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 5569 else if (auto *CI = dyn_cast<CmpInst>(I)) 5570 OpsChanged |= vectorizeCmpInst(CI, BB, R); 5571 } 5572 Instructions.clear(); 5573 return OpsChanged; 5574 } 5575 5576 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 5577 bool Changed = false; 5578 SmallVector<Value *, 4> Incoming; 5579 SmallSet<Value *, 16> VisitedInstrs; 5580 5581 bool HaveVectorizedPhiNodes = true; 5582 while (HaveVectorizedPhiNodes) { 5583 HaveVectorizedPhiNodes = false; 5584 5585 // Collect the incoming values from the PHIs. 5586 Incoming.clear(); 5587 for (Instruction &I : *BB) { 5588 PHINode *P = dyn_cast<PHINode>(&I); 5589 if (!P) 5590 break; 5591 5592 if (!VisitedInstrs.count(P)) 5593 Incoming.push_back(P); 5594 } 5595 5596 // Sort by type. 5597 std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc); 5598 5599 // Try to vectorize elements base on their type. 5600 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 5601 E = Incoming.end(); 5602 IncIt != E;) { 5603 5604 // Look for the next elements with the same type. 5605 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 5606 while (SameTypeIt != E && 5607 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 5608 VisitedInstrs.insert(*SameTypeIt); 5609 ++SameTypeIt; 5610 } 5611 5612 // Try to vectorize them. 5613 unsigned NumElts = (SameTypeIt - IncIt); 5614 DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n"); 5615 // The order in which the phi nodes appear in the program does not matter. 5616 // So allow tryToVectorizeList to reorder them if it is beneficial. This 5617 // is done when there are exactly two elements since tryToVectorizeList 5618 // asserts that there are only two values when AllowReorder is true. 5619 bool AllowReorder = NumElts == 2; 5620 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, 5621 None, AllowReorder)) { 5622 // Success start over because instructions might have been changed. 5623 HaveVectorizedPhiNodes = true; 5624 Changed = true; 5625 break; 5626 } 5627 5628 // Start over at the next instruction of a different type (or the end). 5629 IncIt = SameTypeIt; 5630 } 5631 } 5632 5633 VisitedInstrs.clear(); 5634 5635 SmallVector<WeakVH, 8> PostProcessInstructions; 5636 SmallDenseSet<Instruction *, 4> KeyNodes; 5637 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) { 5638 // We may go through BB multiple times so skip the one we have checked. 5639 if (!VisitedInstrs.insert(&*it).second) { 5640 if (it->use_empty() && KeyNodes.count(&*it) > 0 && 5641 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 5642 // We would like to start over since some instructions are deleted 5643 // and the iterator may become invalid value. 5644 Changed = true; 5645 it = BB->begin(); 5646 e = BB->end(); 5647 } 5648 continue; 5649 } 5650 5651 if (isa<DbgInfoIntrinsic>(it)) 5652 continue; 5653 5654 // Try to vectorize reductions that use PHINodes. 5655 if (PHINode *P = dyn_cast<PHINode>(it)) { 5656 // Check that the PHI is a reduction PHI. 5657 if (P->getNumIncomingValues() != 2) 5658 return Changed; 5659 5660 // Try to match and vectorize a horizontal reduction. 5661 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 5662 TTI)) { 5663 Changed = true; 5664 it = BB->begin(); 5665 e = BB->end(); 5666 continue; 5667 } 5668 continue; 5669 } 5670 5671 // Ran into an instruction without users, like terminator, or function call 5672 // with ignored return value, store. Ignore unused instructions (basing on 5673 // instruction type, except for CallInst and InvokeInst). 5674 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 5675 isa<InvokeInst>(it))) { 5676 KeyNodes.insert(&*it); 5677 bool OpsChanged = false; 5678 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 5679 for (auto *V : it->operand_values()) { 5680 // Try to match and vectorize a horizontal reduction. 5681 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 5682 } 5683 } 5684 // Start vectorization of post-process list of instructions from the 5685 // top-tree instructions to try to vectorize as many instructions as 5686 // possible. 5687 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 5688 if (OpsChanged) { 5689 // We would like to start over since some instructions are deleted 5690 // and the iterator may become invalid value. 5691 Changed = true; 5692 it = BB->begin(); 5693 e = BB->end(); 5694 continue; 5695 } 5696 } 5697 5698 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 5699 isa<InsertValueInst>(it)) 5700 PostProcessInstructions.push_back(&*it); 5701 5702 } 5703 5704 return Changed; 5705 } 5706 5707 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 5708 auto Changed = false; 5709 for (auto &Entry : GEPs) { 5710 // If the getelementptr list has fewer than two elements, there's nothing 5711 // to do. 5712 if (Entry.second.size() < 2) 5713 continue; 5714 5715 DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 5716 << Entry.second.size() << ".\n"); 5717 5718 // We process the getelementptr list in chunks of 16 (like we do for 5719 // stores) to minimize compile-time. 5720 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) { 5721 auto Len = std::min<unsigned>(BE - BI, 16); 5722 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 5723 5724 // Initialize a set a candidate getelementptrs. Note that we use a 5725 // SetVector here to preserve program order. If the index computations 5726 // are vectorizable and begin with loads, we want to minimize the chance 5727 // of having to reorder them later. 5728 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 5729 5730 // Some of the candidates may have already been vectorized after we 5731 // initially collected them. If so, the WeakTrackingVHs will have 5732 // nullified the 5733 // values, so remove them from the set of candidates. 5734 Candidates.remove(nullptr); 5735 5736 // Remove from the set of candidates all pairs of getelementptrs with 5737 // constant differences. Such getelementptrs are likely not good 5738 // candidates for vectorization in a bottom-up phase since one can be 5739 // computed from the other. We also ensure all candidate getelementptr 5740 // indices are unique. 5741 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 5742 auto *GEPI = cast<GetElementPtrInst>(GEPList[I]); 5743 if (!Candidates.count(GEPI)) 5744 continue; 5745 auto *SCEVI = SE->getSCEV(GEPList[I]); 5746 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 5747 auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]); 5748 auto *SCEVJ = SE->getSCEV(GEPList[J]); 5749 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 5750 Candidates.remove(GEPList[I]); 5751 Candidates.remove(GEPList[J]); 5752 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 5753 Candidates.remove(GEPList[J]); 5754 } 5755 } 5756 } 5757 5758 // We break out of the above computation as soon as we know there are 5759 // fewer than two candidates remaining. 5760 if (Candidates.size() < 2) 5761 continue; 5762 5763 // Add the single, non-constant index of each candidate to the bundle. We 5764 // ensured the indices met these constraints when we originally collected 5765 // the getelementptrs. 5766 SmallVector<Value *, 16> Bundle(Candidates.size()); 5767 auto BundleIndex = 0u; 5768 for (auto *V : Candidates) { 5769 auto *GEP = cast<GetElementPtrInst>(V); 5770 auto *GEPIdx = GEP->idx_begin()->get(); 5771 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 5772 Bundle[BundleIndex++] = GEPIdx; 5773 } 5774 5775 // Try and vectorize the indices. We are currently only interested in 5776 // gather-like cases of the form: 5777 // 5778 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 5779 // 5780 // where the loads of "a", the loads of "b", and the subtractions can be 5781 // performed in parallel. It's likely that detecting this pattern in a 5782 // bottom-up phase will be simpler and less costly than building a 5783 // full-blown top-down phase beginning at the consecutive loads. 5784 Changed |= tryToVectorizeList(Bundle, R); 5785 } 5786 } 5787 return Changed; 5788 } 5789 5790 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 5791 bool Changed = false; 5792 // Attempt to sort and vectorize each of the store-groups. 5793 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 5794 ++it) { 5795 if (it->second.size() < 2) 5796 continue; 5797 5798 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 5799 << it->second.size() << ".\n"); 5800 5801 // Process the stores in chunks of 16. 5802 // TODO: The limit of 16 inhibits greater vectorization factors. 5803 // For example, AVX2 supports v32i8. Increasing this limit, however, 5804 // may cause a significant compile-time increase. 5805 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) { 5806 unsigned Len = std::min<unsigned>(CE - CI, 16); 5807 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R); 5808 } 5809 } 5810 return Changed; 5811 } 5812 5813 char SLPVectorizer::ID = 0; 5814 5815 static const char lv_name[] = "SLP Vectorizer"; 5816 5817 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 5818 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 5819 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5820 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 5821 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 5822 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5823 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 5824 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 5825 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 5826 5827 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 5828