1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 45 #include "llvm/Analysis/ScalarEvolution.h" 46 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/Analysis/VectorUtils.h" 51 #include "llvm/IR/Attributes.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DebugLoc.h" 57 #include "llvm/IR/DerivedTypes.h" 58 #include "llvm/IR/Dominators.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/IRBuilder.h" 61 #include "llvm/IR/InstrTypes.h" 62 #include "llvm/IR/Instruction.h" 63 #include "llvm/IR/Instructions.h" 64 #include "llvm/IR/IntrinsicInst.h" 65 #include "llvm/IR/Intrinsics.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/NoFolder.h" 68 #include "llvm/IR/Operator.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/Verifier.h" 76 #include "llvm/InitializePasses.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/DOTGraphTraits.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/GraphWriter.h" 85 #include "llvm/Support/InstructionCost.h" 86 #include "llvm/Support/KnownBits.h" 87 #include "llvm/Support/MathExtras.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 90 #include "llvm/Transforms/Utils/LoopUtils.h" 91 #include "llvm/Transforms/Vectorize.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <memory> 97 #include <set> 98 #include <string> 99 #include <tuple> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 using namespace slpvectorizer; 106 107 #define SV_NAME "slp-vectorizer" 108 #define DEBUG_TYPE "SLP" 109 110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 111 112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 113 cl::desc("Run the SLP vectorization passes")); 114 115 static cl::opt<int> 116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 117 cl::desc("Only vectorize if you gain more than this " 118 "number ")); 119 120 static cl::opt<bool> 121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 122 cl::desc("Attempt to vectorize horizontal reductions")); 123 124 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 126 cl::desc( 127 "Attempt to vectorize horizontal reductions feeding into a store")); 128 129 static cl::opt<int> 130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 131 cl::desc("Attempt to vectorize for this register size in bits")); 132 133 static cl::opt<unsigned> 134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 135 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 136 137 static cl::opt<int> 138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 139 cl::desc("Maximum depth of the lookup for consecutive stores.")); 140 141 /// Limits the size of scheduling regions in a block. 142 /// It avoid long compile times for _very_ large blocks where vector 143 /// instructions are spread over a wide range. 144 /// This limit is way higher than needed by real-world functions. 145 static cl::opt<int> 146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 147 cl::desc("Limit the size of the SLP scheduling region per block")); 148 149 static cl::opt<int> MinVectorRegSizeOption( 150 "slp-min-reg-size", cl::init(128), cl::Hidden, 151 cl::desc("Attempt to vectorize for this register size in bits")); 152 153 static cl::opt<unsigned> RecursionMaxDepth( 154 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 155 cl::desc("Limit the recursion depth when building a vectorizable tree")); 156 157 static cl::opt<unsigned> MinTreeSize( 158 "slp-min-tree-size", cl::init(3), cl::Hidden, 159 cl::desc("Only vectorize small trees if they are fully vectorizable")); 160 161 // The maximum depth that the look-ahead score heuristic will explore. 162 // The higher this value, the higher the compilation time overhead. 163 static cl::opt<int> LookAheadMaxDepth( 164 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 165 cl::desc("The maximum look-ahead depth for operand reordering scores")); 166 167 // The Look-ahead heuristic goes through the users of the bundle to calculate 168 // the users cost in getExternalUsesCost(). To avoid compilation time increase 169 // we limit the number of users visited to this value. 170 static cl::opt<unsigned> LookAheadUsersBudget( 171 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, 172 cl::desc("The maximum number of users to visit while visiting the " 173 "predecessors. This prevents compilation time increase.")); 174 175 static cl::opt<bool> 176 ViewSLPTree("view-slp-tree", cl::Hidden, 177 cl::desc("Display the SLP trees with Graphviz")); 178 179 // Limit the number of alias checks. The limit is chosen so that 180 // it has no negative effect on the llvm benchmarks. 181 static const unsigned AliasedCheckLimit = 10; 182 183 // Another limit for the alias checks: The maximum distance between load/store 184 // instructions where alias checks are done. 185 // This limit is useful for very large basic blocks. 186 static const unsigned MaxMemDepDistance = 160; 187 188 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 189 /// regions to be handled. 190 static const int MinScheduleRegionSize = 16; 191 192 /// Predicate for the element types that the SLP vectorizer supports. 193 /// 194 /// The most important thing to filter here are types which are invalid in LLVM 195 /// vectors. We also filter target specific types which have absolutely no 196 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 197 /// avoids spending time checking the cost model and realizing that they will 198 /// be inevitably scalarized. 199 static bool isValidElementType(Type *Ty) { 200 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 201 !Ty->isPPC_FP128Ty(); 202 } 203 204 /// \returns True if the value is a constant (but not globals/constant 205 /// expressions). 206 static bool isConstant(Value *V) { 207 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 208 } 209 210 /// Checks if \p V is one of vector-like instructions, i.e. undef, 211 /// insertelement/extractelement with constant indices for fixed vector type or 212 /// extractvalue instruction. 213 static bool isVectorLikeInstWithConstOps(Value *V) { 214 if (!isa<InsertElementInst, ExtractElementInst>(V) && 215 !isa<ExtractValueInst, UndefValue>(V)) 216 return false; 217 auto *I = dyn_cast<Instruction>(V); 218 if (!I || isa<ExtractValueInst>(I)) 219 return true; 220 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 221 return false; 222 if (isa<ExtractElementInst>(I)) 223 return isConstant(I->getOperand(1)); 224 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 225 return isConstant(I->getOperand(2)); 226 } 227 228 /// \returns true if all of the instructions in \p VL are in the same block or 229 /// false otherwise. 230 static bool allSameBlock(ArrayRef<Value *> VL) { 231 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 232 if (!I0) 233 return false; 234 if (all_of(VL, isVectorLikeInstWithConstOps)) 235 return true; 236 237 BasicBlock *BB = I0->getParent(); 238 for (int I = 1, E = VL.size(); I < E; I++) { 239 auto *II = dyn_cast<Instruction>(VL[I]); 240 if (!II) 241 return false; 242 243 if (BB != II->getParent()) 244 return false; 245 } 246 return true; 247 } 248 249 /// \returns True if all of the values in \p VL are constants (but not 250 /// globals/constant expressions). 251 static bool allConstant(ArrayRef<Value *> VL) { 252 // Constant expressions and globals can't be vectorized like normal integer/FP 253 // constants. 254 return all_of(VL, isConstant); 255 } 256 257 /// \returns True if all of the values in \p VL are identical or some of them 258 /// are UndefValue. 259 static bool isSplat(ArrayRef<Value *> VL) { 260 Value *FirstNonUndef = nullptr; 261 for (Value *V : VL) { 262 if (isa<UndefValue>(V)) 263 continue; 264 if (!FirstNonUndef) { 265 FirstNonUndef = V; 266 continue; 267 } 268 if (V != FirstNonUndef) 269 return false; 270 } 271 return FirstNonUndef != nullptr; 272 } 273 274 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 275 static bool isCommutative(Instruction *I) { 276 if (auto *Cmp = dyn_cast<CmpInst>(I)) 277 return Cmp->isCommutative(); 278 if (auto *BO = dyn_cast<BinaryOperator>(I)) 279 return BO->isCommutative(); 280 // TODO: This should check for generic Instruction::isCommutative(), but 281 // we need to confirm that the caller code correctly handles Intrinsics 282 // for example (does not have 2 operands). 283 return false; 284 } 285 286 /// Checks if the vector of instructions can be represented as a shuffle, like: 287 /// %x0 = extractelement <4 x i8> %x, i32 0 288 /// %x3 = extractelement <4 x i8> %x, i32 3 289 /// %y1 = extractelement <4 x i8> %y, i32 1 290 /// %y2 = extractelement <4 x i8> %y, i32 2 291 /// %x0x0 = mul i8 %x0, %x0 292 /// %x3x3 = mul i8 %x3, %x3 293 /// %y1y1 = mul i8 %y1, %y1 294 /// %y2y2 = mul i8 %y2, %y2 295 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 296 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 297 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 298 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 299 /// ret <4 x i8> %ins4 300 /// can be transformed into: 301 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 302 /// i32 6> 303 /// %2 = mul <4 x i8> %1, %1 304 /// ret <4 x i8> %2 305 /// We convert this initially to something like: 306 /// %x0 = extractelement <4 x i8> %x, i32 0 307 /// %x3 = extractelement <4 x i8> %x, i32 3 308 /// %y1 = extractelement <4 x i8> %y, i32 1 309 /// %y2 = extractelement <4 x i8> %y, i32 2 310 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 311 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 312 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 313 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 314 /// %5 = mul <4 x i8> %4, %4 315 /// %6 = extractelement <4 x i8> %5, i32 0 316 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 317 /// %7 = extractelement <4 x i8> %5, i32 1 318 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 319 /// %8 = extractelement <4 x i8> %5, i32 2 320 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 321 /// %9 = extractelement <4 x i8> %5, i32 3 322 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 323 /// ret <4 x i8> %ins4 324 /// InstCombiner transforms this into a shuffle and vector mul 325 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 326 /// TODO: Can we split off and reuse the shuffle mask detection from 327 /// TargetTransformInfo::getInstructionThroughput? 328 static Optional<TargetTransformInfo::ShuffleKind> 329 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 330 auto *EI0 = cast<ExtractElementInst>(VL[0]); 331 if (isa<ScalableVectorType>(EI0->getVectorOperandType())) 332 return None; 333 unsigned Size = 334 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 335 Value *Vec1 = nullptr; 336 Value *Vec2 = nullptr; 337 enum ShuffleMode { Unknown, Select, Permute }; 338 ShuffleMode CommonShuffleMode = Unknown; 339 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 340 auto *EI = cast<ExtractElementInst>(VL[I]); 341 auto *Vec = EI->getVectorOperand(); 342 // All vector operands must have the same number of vector elements. 343 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 344 return None; 345 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 346 if (!Idx) 347 return None; 348 // Undefined behavior if Idx is negative or >= Size. 349 if (Idx->getValue().uge(Size)) { 350 Mask.push_back(UndefMaskElem); 351 continue; 352 } 353 unsigned IntIdx = Idx->getValue().getZExtValue(); 354 Mask.push_back(IntIdx); 355 // We can extractelement from undef or poison vector. 356 if (isa<UndefValue>(Vec)) 357 continue; 358 // For correct shuffling we have to have at most 2 different vector operands 359 // in all extractelement instructions. 360 if (!Vec1 || Vec1 == Vec) 361 Vec1 = Vec; 362 else if (!Vec2 || Vec2 == Vec) 363 Vec2 = Vec; 364 else 365 return None; 366 if (CommonShuffleMode == Permute) 367 continue; 368 // If the extract index is not the same as the operation number, it is a 369 // permutation. 370 if (IntIdx != I) { 371 CommonShuffleMode = Permute; 372 continue; 373 } 374 CommonShuffleMode = Select; 375 } 376 // If we're not crossing lanes in different vectors, consider it as blending. 377 if (CommonShuffleMode == Select && Vec2) 378 return TargetTransformInfo::SK_Select; 379 // If Vec2 was never used, we have a permutation of a single vector, otherwise 380 // we have permutation of 2 vectors. 381 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 382 : TargetTransformInfo::SK_PermuteSingleSrc; 383 } 384 385 namespace { 386 387 /// Main data required for vectorization of instructions. 388 struct InstructionsState { 389 /// The very first instruction in the list with the main opcode. 390 Value *OpValue = nullptr; 391 392 /// The main/alternate instruction. 393 Instruction *MainOp = nullptr; 394 Instruction *AltOp = nullptr; 395 396 /// The main/alternate opcodes for the list of instructions. 397 unsigned getOpcode() const { 398 return MainOp ? MainOp->getOpcode() : 0; 399 } 400 401 unsigned getAltOpcode() const { 402 return AltOp ? AltOp->getOpcode() : 0; 403 } 404 405 /// Some of the instructions in the list have alternate opcodes. 406 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 407 408 bool isOpcodeOrAlt(Instruction *I) const { 409 unsigned CheckedOpcode = I->getOpcode(); 410 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 411 } 412 413 InstructionsState() = delete; 414 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 415 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 416 }; 417 418 } // end anonymous namespace 419 420 /// Chooses the correct key for scheduling data. If \p Op has the same (or 421 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 422 /// OpValue. 423 static Value *isOneOf(const InstructionsState &S, Value *Op) { 424 auto *I = dyn_cast<Instruction>(Op); 425 if (I && S.isOpcodeOrAlt(I)) 426 return Op; 427 return S.OpValue; 428 } 429 430 /// \returns true if \p Opcode is allowed as part of of the main/alternate 431 /// instruction for SLP vectorization. 432 /// 433 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 434 /// "shuffled out" lane would result in division by zero. 435 static bool isValidForAlternation(unsigned Opcode) { 436 if (Instruction::isIntDivRem(Opcode)) 437 return false; 438 439 return true; 440 } 441 442 /// \returns analysis of the Instructions in \p VL described in 443 /// InstructionsState, the Opcode that we suppose the whole list 444 /// could be vectorized even if its structure is diverse. 445 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 446 unsigned BaseIndex = 0) { 447 // Make sure these are all Instructions. 448 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 449 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 450 451 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 452 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 453 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 454 unsigned AltOpcode = Opcode; 455 unsigned AltIndex = BaseIndex; 456 457 // Check for one alternate opcode from another BinaryOperator. 458 // TODO - generalize to support all operators (types, calls etc.). 459 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 460 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 461 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 462 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 463 continue; 464 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 465 isValidForAlternation(Opcode)) { 466 AltOpcode = InstOpcode; 467 AltIndex = Cnt; 468 continue; 469 } 470 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 471 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 472 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 473 if (Ty0 == Ty1) { 474 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 475 continue; 476 if (Opcode == AltOpcode) { 477 assert(isValidForAlternation(Opcode) && 478 isValidForAlternation(InstOpcode) && 479 "Cast isn't safe for alternation, logic needs to be updated!"); 480 AltOpcode = InstOpcode; 481 AltIndex = Cnt; 482 continue; 483 } 484 } 485 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 486 continue; 487 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 488 } 489 490 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 491 cast<Instruction>(VL[AltIndex])); 492 } 493 494 /// \returns true if all of the values in \p VL have the same type or false 495 /// otherwise. 496 static bool allSameType(ArrayRef<Value *> VL) { 497 Type *Ty = VL[0]->getType(); 498 for (int i = 1, e = VL.size(); i < e; i++) 499 if (VL[i]->getType() != Ty) 500 return false; 501 502 return true; 503 } 504 505 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 506 static Optional<unsigned> getExtractIndex(Instruction *E) { 507 unsigned Opcode = E->getOpcode(); 508 assert((Opcode == Instruction::ExtractElement || 509 Opcode == Instruction::ExtractValue) && 510 "Expected extractelement or extractvalue instruction."); 511 if (Opcode == Instruction::ExtractElement) { 512 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 513 if (!CI) 514 return None; 515 return CI->getZExtValue(); 516 } 517 ExtractValueInst *EI = cast<ExtractValueInst>(E); 518 if (EI->getNumIndices() != 1) 519 return None; 520 return *EI->idx_begin(); 521 } 522 523 /// \returns True if in-tree use also needs extract. This refers to 524 /// possible scalar operand in vectorized instruction. 525 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 526 TargetLibraryInfo *TLI) { 527 unsigned Opcode = UserInst->getOpcode(); 528 switch (Opcode) { 529 case Instruction::Load: { 530 LoadInst *LI = cast<LoadInst>(UserInst); 531 return (LI->getPointerOperand() == Scalar); 532 } 533 case Instruction::Store: { 534 StoreInst *SI = cast<StoreInst>(UserInst); 535 return (SI->getPointerOperand() == Scalar); 536 } 537 case Instruction::Call: { 538 CallInst *CI = cast<CallInst>(UserInst); 539 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 540 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 541 if (hasVectorInstrinsicScalarOpd(ID, i)) 542 return (CI->getArgOperand(i) == Scalar); 543 } 544 LLVM_FALLTHROUGH; 545 } 546 default: 547 return false; 548 } 549 } 550 551 /// \returns the AA location that is being access by the instruction. 552 static MemoryLocation getLocation(Instruction *I, AAResults *AA) { 553 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 554 return MemoryLocation::get(SI); 555 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 556 return MemoryLocation::get(LI); 557 return MemoryLocation(); 558 } 559 560 /// \returns True if the instruction is not a volatile or atomic load/store. 561 static bool isSimple(Instruction *I) { 562 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 563 return LI->isSimple(); 564 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 565 return SI->isSimple(); 566 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 567 return !MI->isVolatile(); 568 return true; 569 } 570 571 /// Shuffles \p Mask in accordance with the given \p SubMask. 572 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 573 if (SubMask.empty()) 574 return; 575 if (Mask.empty()) { 576 Mask.append(SubMask.begin(), SubMask.end()); 577 return; 578 } 579 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 580 int TermValue = std::min(Mask.size(), SubMask.size()); 581 for (int I = 0, E = SubMask.size(); I < E; ++I) { 582 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 583 Mask[SubMask[I]] >= TermValue) 584 continue; 585 NewMask[I] = Mask[SubMask[I]]; 586 } 587 Mask.swap(NewMask); 588 } 589 590 /// Order may have elements assigned special value (size) which is out of 591 /// bounds. Such indices only appear on places which correspond to undef values 592 /// (see canReuseExtract for details) and used in order to avoid undef values 593 /// have effect on operands ordering. 594 /// The first loop below simply finds all unused indices and then the next loop 595 /// nest assigns these indices for undef values positions. 596 /// As an example below Order has two undef positions and they have assigned 597 /// values 3 and 7 respectively: 598 /// before: 6 9 5 4 9 2 1 0 599 /// after: 6 3 5 4 7 2 1 0 600 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 601 const unsigned Sz = Order.size(); 602 SmallBitVector UsedIndices(Sz); 603 SmallVector<int> MaskedIndices; 604 for (unsigned I = 0; I < Sz; ++I) { 605 if (Order[I] < Sz) 606 UsedIndices.set(Order[I]); 607 else 608 MaskedIndices.push_back(I); 609 } 610 if (MaskedIndices.empty()) 611 return; 612 SmallVector<int> AvailableIndices(MaskedIndices.size()); 613 unsigned Cnt = 0; 614 int Idx = UsedIndices.find_first(); 615 do { 616 AvailableIndices[Cnt] = Idx; 617 Idx = UsedIndices.find_next(Idx); 618 ++Cnt; 619 } while (Idx > 0); 620 assert(Cnt == MaskedIndices.size() && "Non-synced masked/available indices."); 621 for (int I = 0, E = MaskedIndices.size(); I < E; ++I) 622 Order[MaskedIndices[I]] = AvailableIndices[I]; 623 } 624 625 namespace llvm { 626 627 static void inversePermutation(ArrayRef<unsigned> Indices, 628 SmallVectorImpl<int> &Mask) { 629 Mask.clear(); 630 const unsigned E = Indices.size(); 631 Mask.resize(E, UndefMaskElem); 632 for (unsigned I = 0; I < E; ++I) 633 Mask[Indices[I]] = I; 634 } 635 636 /// \returns inserting index of InsertElement or InsertValue instruction, 637 /// using Offset as base offset for index. 638 static Optional<int> getInsertIndex(Value *InsertInst, unsigned Offset) { 639 int Index = Offset; 640 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 641 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 642 auto *VT = cast<FixedVectorType>(IE->getType()); 643 if (CI->getValue().uge(VT->getNumElements())) 644 return UndefMaskElem; 645 Index *= VT->getNumElements(); 646 Index += CI->getZExtValue(); 647 return Index; 648 } 649 if (isa<UndefValue>(IE->getOperand(2))) 650 return UndefMaskElem; 651 return None; 652 } 653 654 auto *IV = cast<InsertValueInst>(InsertInst); 655 Type *CurrentType = IV->getType(); 656 for (unsigned I : IV->indices()) { 657 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 658 Index *= ST->getNumElements(); 659 CurrentType = ST->getElementType(I); 660 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 661 Index *= AT->getNumElements(); 662 CurrentType = AT->getElementType(); 663 } else { 664 return None; 665 } 666 Index += I; 667 } 668 return Index; 669 } 670 671 /// Reorders the list of scalars in accordance with the given \p Order and then 672 /// the \p Mask. \p Order - is the original order of the scalars, need to 673 /// reorder scalars into an unordered state at first according to the given 674 /// order. Then the ordered scalars are shuffled once again in accordance with 675 /// the provided mask. 676 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 677 ArrayRef<int> Mask) { 678 assert(!Mask.empty() && "Expected non-empty mask."); 679 SmallVector<Value *> Prev(Scalars.size(), 680 UndefValue::get(Scalars.front()->getType())); 681 Prev.swap(Scalars); 682 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 683 if (Mask[I] != UndefMaskElem) 684 Scalars[Mask[I]] = Prev[I]; 685 } 686 687 namespace slpvectorizer { 688 689 /// Bottom Up SLP Vectorizer. 690 class BoUpSLP { 691 struct TreeEntry; 692 struct ScheduleData; 693 694 public: 695 using ValueList = SmallVector<Value *, 8>; 696 using InstrList = SmallVector<Instruction *, 16>; 697 using ValueSet = SmallPtrSet<Value *, 16>; 698 using StoreList = SmallVector<StoreInst *, 8>; 699 using ExtraValueToDebugLocsMap = 700 MapVector<Value *, SmallVector<Instruction *, 2>>; 701 using OrdersType = SmallVector<unsigned, 4>; 702 703 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 704 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 705 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 706 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 707 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 708 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 709 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 710 // Use the vector register size specified by the target unless overridden 711 // by a command-line option. 712 // TODO: It would be better to limit the vectorization factor based on 713 // data type rather than just register size. For example, x86 AVX has 714 // 256-bit registers, but it does not support integer operations 715 // at that width (that requires AVX2). 716 if (MaxVectorRegSizeOption.getNumOccurrences()) 717 MaxVecRegSize = MaxVectorRegSizeOption; 718 else 719 MaxVecRegSize = 720 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 721 .getFixedSize(); 722 723 if (MinVectorRegSizeOption.getNumOccurrences()) 724 MinVecRegSize = MinVectorRegSizeOption; 725 else 726 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 727 } 728 729 /// Vectorize the tree that starts with the elements in \p VL. 730 /// Returns the vectorized root. 731 Value *vectorizeTree(); 732 733 /// Vectorize the tree but with the list of externally used values \p 734 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 735 /// generated extractvalue instructions. 736 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 737 738 /// \returns the cost incurred by unwanted spills and fills, caused by 739 /// holding live values over call sites. 740 InstructionCost getSpillCost() const; 741 742 /// \returns the vectorization cost of the subtree that starts at \p VL. 743 /// A negative number means that this is profitable. 744 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 745 746 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 747 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 748 void buildTree(ArrayRef<Value *> Roots, 749 ArrayRef<Value *> UserIgnoreLst = None); 750 751 /// Builds external uses of the vectorized scalars, i.e. the list of 752 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 753 /// ExternallyUsedValues contains additional list of external uses to handle 754 /// vectorization of reductions. 755 void 756 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 757 758 /// Clear the internal data structures that are created by 'buildTree'. 759 void deleteTree() { 760 VectorizableTree.clear(); 761 ScalarToTreeEntry.clear(); 762 MustGather.clear(); 763 ExternalUses.clear(); 764 for (auto &Iter : BlocksSchedules) { 765 BlockScheduling *BS = Iter.second.get(); 766 BS->clear(); 767 } 768 MinBWs.clear(); 769 InstrElementSize.clear(); 770 } 771 772 unsigned getTreeSize() const { return VectorizableTree.size(); } 773 774 /// Perform LICM and CSE on the newly generated gather sequences. 775 void optimizeGatherSequence(); 776 777 /// Checks if the specified gather tree entry \p TE can be represented as a 778 /// shuffled vector entry + (possibly) permutation with other gathers. It 779 /// implements the checks only for possibly ordered scalars (Loads, 780 /// ExtractElement, ExtractValue), which can be part of the graph. 781 Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); 782 783 /// Reorders the current graph to the most profitable order starting from the 784 /// root node to the leaf nodes. The best order is chosen only from the nodes 785 /// of the same size (vectorization factor). Smaller nodes are considered 786 /// parts of subgraph with smaller VF and they are reordered independently. We 787 /// can make it because we still need to extend smaller nodes to the wider VF 788 /// and we can merge reordering shuffles with the widening shuffles. 789 void reorderTopToBottom(); 790 791 /// Reorders the current graph to the most profitable order starting from 792 /// leaves to the root. It allows to rotate small subgraphs and reduce the 793 /// number of reshuffles if the leaf nodes use the same order. In this case we 794 /// can merge the orders and just shuffle user node instead of shuffling its 795 /// operands. Plus, even the leaf nodes have different orders, it allows to 796 /// sink reordering in the graph closer to the root node and merge it later 797 /// during analysis. 798 void reorderBottomToTop(bool IgnoreReorder = false); 799 800 /// \return The vector element size in bits to use when vectorizing the 801 /// expression tree ending at \p V. If V is a store, the size is the width of 802 /// the stored value. Otherwise, the size is the width of the largest loaded 803 /// value reaching V. This method is used by the vectorizer to calculate 804 /// vectorization factors. 805 unsigned getVectorElementSize(Value *V); 806 807 /// Compute the minimum type sizes required to represent the entries in a 808 /// vectorizable tree. 809 void computeMinimumValueSizes(); 810 811 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 812 unsigned getMaxVecRegSize() const { 813 return MaxVecRegSize; 814 } 815 816 // \returns minimum vector register size as set by cl::opt. 817 unsigned getMinVecRegSize() const { 818 return MinVecRegSize; 819 } 820 821 unsigned getMinVF(unsigned Sz) const { 822 return std::max(2U, getMinVecRegSize() / Sz); 823 } 824 825 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 826 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 827 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 828 return MaxVF ? MaxVF : UINT_MAX; 829 } 830 831 /// Check if homogeneous aggregate is isomorphic to some VectorType. 832 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 833 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 834 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 835 /// 836 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 837 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 838 839 /// \returns True if the VectorizableTree is both tiny and not fully 840 /// vectorizable. We do not vectorize such trees. 841 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; 842 843 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 844 /// can be load combined in the backend. Load combining may not be allowed in 845 /// the IR optimizer, so we do not want to alter the pattern. For example, 846 /// partially transforming a scalar bswap() pattern into vector code is 847 /// effectively impossible for the backend to undo. 848 /// TODO: If load combining is allowed in the IR optimizer, this analysis 849 /// may not be necessary. 850 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 851 852 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 853 /// can be load combined in the backend. Load combining may not be allowed in 854 /// the IR optimizer, so we do not want to alter the pattern. For example, 855 /// partially transforming a scalar bswap() pattern into vector code is 856 /// effectively impossible for the backend to undo. 857 /// TODO: If load combining is allowed in the IR optimizer, this analysis 858 /// may not be necessary. 859 bool isLoadCombineCandidate() const; 860 861 OptimizationRemarkEmitter *getORE() { return ORE; } 862 863 /// This structure holds any data we need about the edges being traversed 864 /// during buildTree_rec(). We keep track of: 865 /// (i) the user TreeEntry index, and 866 /// (ii) the index of the edge. 867 struct EdgeInfo { 868 EdgeInfo() = default; 869 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 870 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 871 /// The user TreeEntry. 872 TreeEntry *UserTE = nullptr; 873 /// The operand index of the use. 874 unsigned EdgeIdx = UINT_MAX; 875 #ifndef NDEBUG 876 friend inline raw_ostream &operator<<(raw_ostream &OS, 877 const BoUpSLP::EdgeInfo &EI) { 878 EI.dump(OS); 879 return OS; 880 } 881 /// Debug print. 882 void dump(raw_ostream &OS) const { 883 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 884 << " EdgeIdx:" << EdgeIdx << "}"; 885 } 886 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 887 #endif 888 }; 889 890 /// A helper data structure to hold the operands of a vector of instructions. 891 /// This supports a fixed vector length for all operand vectors. 892 class VLOperands { 893 /// For each operand we need (i) the value, and (ii) the opcode that it 894 /// would be attached to if the expression was in a left-linearized form. 895 /// This is required to avoid illegal operand reordering. 896 /// For example: 897 /// \verbatim 898 /// 0 Op1 899 /// |/ 900 /// Op1 Op2 Linearized + Op2 901 /// \ / ----------> |/ 902 /// - - 903 /// 904 /// Op1 - Op2 (0 + Op1) - Op2 905 /// \endverbatim 906 /// 907 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 908 /// 909 /// Another way to think of this is to track all the operations across the 910 /// path from the operand all the way to the root of the tree and to 911 /// calculate the operation that corresponds to this path. For example, the 912 /// path from Op2 to the root crosses the RHS of the '-', therefore the 913 /// corresponding operation is a '-' (which matches the one in the 914 /// linearized tree, as shown above). 915 /// 916 /// For lack of a better term, we refer to this operation as Accumulated 917 /// Path Operation (APO). 918 struct OperandData { 919 OperandData() = default; 920 OperandData(Value *V, bool APO, bool IsUsed) 921 : V(V), APO(APO), IsUsed(IsUsed) {} 922 /// The operand value. 923 Value *V = nullptr; 924 /// TreeEntries only allow a single opcode, or an alternate sequence of 925 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 926 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 927 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 928 /// (e.g., Add/Mul) 929 bool APO = false; 930 /// Helper data for the reordering function. 931 bool IsUsed = false; 932 }; 933 934 /// During operand reordering, we are trying to select the operand at lane 935 /// that matches best with the operand at the neighboring lane. Our 936 /// selection is based on the type of value we are looking for. For example, 937 /// if the neighboring lane has a load, we need to look for a load that is 938 /// accessing a consecutive address. These strategies are summarized in the 939 /// 'ReorderingMode' enumerator. 940 enum class ReorderingMode { 941 Load, ///< Matching loads to consecutive memory addresses 942 Opcode, ///< Matching instructions based on opcode (same or alternate) 943 Constant, ///< Matching constants 944 Splat, ///< Matching the same instruction multiple times (broadcast) 945 Failed, ///< We failed to create a vectorizable group 946 }; 947 948 using OperandDataVec = SmallVector<OperandData, 2>; 949 950 /// A vector of operand vectors. 951 SmallVector<OperandDataVec, 4> OpsVec; 952 953 const DataLayout &DL; 954 ScalarEvolution &SE; 955 const BoUpSLP &R; 956 957 /// \returns the operand data at \p OpIdx and \p Lane. 958 OperandData &getData(unsigned OpIdx, unsigned Lane) { 959 return OpsVec[OpIdx][Lane]; 960 } 961 962 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 963 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 964 return OpsVec[OpIdx][Lane]; 965 } 966 967 /// Clears the used flag for all entries. 968 void clearUsed() { 969 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 970 OpIdx != NumOperands; ++OpIdx) 971 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 972 ++Lane) 973 OpsVec[OpIdx][Lane].IsUsed = false; 974 } 975 976 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 977 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 978 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 979 } 980 981 // The hard-coded scores listed here are not very important. When computing 982 // the scores of matching one sub-tree with another, we are basically 983 // counting the number of values that are matching. So even if all scores 984 // are set to 1, we would still get a decent matching result. 985 // However, sometimes we have to break ties. For example we may have to 986 // choose between matching loads vs matching opcodes. This is what these 987 // scores are helping us with: they provide the order of preference. 988 989 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 990 static const int ScoreConsecutiveLoads = 3; 991 /// ExtractElementInst from same vector and consecutive indexes. 992 static const int ScoreConsecutiveExtracts = 3; 993 /// Constants. 994 static const int ScoreConstants = 2; 995 /// Instructions with the same opcode. 996 static const int ScoreSameOpcode = 2; 997 /// Instructions with alt opcodes (e.g, add + sub). 998 static const int ScoreAltOpcodes = 1; 999 /// Identical instructions (a.k.a. splat or broadcast). 1000 static const int ScoreSplat = 1; 1001 /// Matching with an undef is preferable to failing. 1002 static const int ScoreUndef = 1; 1003 /// Score for failing to find a decent match. 1004 static const int ScoreFail = 0; 1005 /// User exteranl to the vectorized code. 1006 static const int ExternalUseCost = 1; 1007 /// The user is internal but in a different lane. 1008 static const int UserInDiffLaneCost = ExternalUseCost; 1009 1010 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 1011 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 1012 ScalarEvolution &SE) { 1013 auto *LI1 = dyn_cast<LoadInst>(V1); 1014 auto *LI2 = dyn_cast<LoadInst>(V2); 1015 if (LI1 && LI2) { 1016 if (LI1->getParent() != LI2->getParent()) 1017 return VLOperands::ScoreFail; 1018 1019 Optional<int> Dist = getPointersDiff( 1020 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1021 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1022 return (Dist && *Dist == 1) ? VLOperands::ScoreConsecutiveLoads 1023 : VLOperands::ScoreFail; 1024 } 1025 1026 auto *C1 = dyn_cast<Constant>(V1); 1027 auto *C2 = dyn_cast<Constant>(V2); 1028 if (C1 && C2) 1029 return VLOperands::ScoreConstants; 1030 1031 // Extracts from consecutive indexes of the same vector better score as 1032 // the extracts could be optimized away. 1033 Value *EV; 1034 ConstantInt *Ex1Idx, *Ex2Idx; 1035 if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) && 1036 match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) && 1037 Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue()) 1038 return VLOperands::ScoreConsecutiveExtracts; 1039 1040 auto *I1 = dyn_cast<Instruction>(V1); 1041 auto *I2 = dyn_cast<Instruction>(V2); 1042 if (I1 && I2) { 1043 if (I1 == I2) 1044 return VLOperands::ScoreSplat; 1045 InstructionsState S = getSameOpcode({I1, I2}); 1046 // Note: Only consider instructions with <= 2 operands to avoid 1047 // complexity explosion. 1048 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) 1049 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 1050 : VLOperands::ScoreSameOpcode; 1051 } 1052 1053 if (isa<UndefValue>(V2)) 1054 return VLOperands::ScoreUndef; 1055 1056 return VLOperands::ScoreFail; 1057 } 1058 1059 /// Holds the values and their lane that are taking part in the look-ahead 1060 /// score calculation. This is used in the external uses cost calculation. 1061 SmallDenseMap<Value *, int> InLookAheadValues; 1062 1063 /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are 1064 /// either external to the vectorized code, or require shuffling. 1065 int getExternalUsesCost(const std::pair<Value *, int> &LHS, 1066 const std::pair<Value *, int> &RHS) { 1067 int Cost = 0; 1068 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}}; 1069 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { 1070 Value *V = Values[Idx].first; 1071 if (isa<Constant>(V)) { 1072 // Since this is a function pass, it doesn't make semantic sense to 1073 // walk the users of a subclass of Constant. The users could be in 1074 // another function, or even another module that happens to be in 1075 // the same LLVMContext. 1076 continue; 1077 } 1078 1079 // Calculate the absolute lane, using the minimum relative lane of LHS 1080 // and RHS as base and Idx as the offset. 1081 int Ln = std::min(LHS.second, RHS.second) + Idx; 1082 assert(Ln >= 0 && "Bad lane calculation"); 1083 unsigned UsersBudget = LookAheadUsersBudget; 1084 for (User *U : V->users()) { 1085 if (const TreeEntry *UserTE = R.getTreeEntry(U)) { 1086 // The user is in the VectorizableTree. Check if we need to insert. 1087 auto It = llvm::find(UserTE->Scalars, U); 1088 assert(It != UserTE->Scalars.end() && "U is in UserTE"); 1089 int UserLn = std::distance(UserTE->Scalars.begin(), It); 1090 assert(UserLn >= 0 && "Bad lane"); 1091 if (UserLn != Ln) 1092 Cost += UserInDiffLaneCost; 1093 } else { 1094 // Check if the user is in the look-ahead code. 1095 auto It2 = InLookAheadValues.find(U); 1096 if (It2 != InLookAheadValues.end()) { 1097 // The user is in the look-ahead code. Check the lane. 1098 if (It2->second != Ln) 1099 Cost += UserInDiffLaneCost; 1100 } else { 1101 // The user is neither in SLP tree nor in the look-ahead code. 1102 Cost += ExternalUseCost; 1103 } 1104 } 1105 // Limit the number of visited uses to cap compilation time. 1106 if (--UsersBudget == 0) 1107 break; 1108 } 1109 } 1110 return Cost; 1111 } 1112 1113 /// Go through the operands of \p LHS and \p RHS recursively until \p 1114 /// MaxLevel, and return the cummulative score. For example: 1115 /// \verbatim 1116 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1117 /// \ / \ / \ / \ / 1118 /// + + + + 1119 /// G1 G2 G3 G4 1120 /// \endverbatim 1121 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1122 /// each level recursively, accumulating the score. It starts from matching 1123 /// the additions at level 0, then moves on to the loads (level 1). The 1124 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1125 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1126 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1127 /// Please note that the order of the operands does not matter, as we 1128 /// evaluate the score of all profitable combinations of operands. In 1129 /// other words the score of G1 and G4 is the same as G1 and G2. This 1130 /// heuristic is based on ideas described in: 1131 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1132 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1133 /// Luís F. W. Góes 1134 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS, 1135 const std::pair<Value *, int> &RHS, int CurrLevel, 1136 int MaxLevel) { 1137 1138 Value *V1 = LHS.first; 1139 Value *V2 = RHS.first; 1140 // Get the shallow score of V1 and V2. 1141 int ShallowScoreAtThisLevel = 1142 std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) - 1143 getExternalUsesCost(LHS, RHS)); 1144 int Lane1 = LHS.second; 1145 int Lane2 = RHS.second; 1146 1147 // If reached MaxLevel, 1148 // or if V1 and V2 are not instructions, 1149 // or if they are SPLAT, 1150 // or if they are not consecutive, early return the current cost. 1151 auto *I1 = dyn_cast<Instruction>(V1); 1152 auto *I2 = dyn_cast<Instruction>(V2); 1153 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1154 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1155 (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel)) 1156 return ShallowScoreAtThisLevel; 1157 assert(I1 && I2 && "Should have early exited."); 1158 1159 // Keep track of in-tree values for determining the external-use cost. 1160 InLookAheadValues[V1] = Lane1; 1161 InLookAheadValues[V2] = Lane2; 1162 1163 // Contains the I2 operand indexes that got matched with I1 operands. 1164 SmallSet<unsigned, 4> Op2Used; 1165 1166 // Recursion towards the operands of I1 and I2. We are trying all possbile 1167 // operand pairs, and keeping track of the best score. 1168 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1169 OpIdx1 != NumOperands1; ++OpIdx1) { 1170 // Try to pair op1I with the best operand of I2. 1171 int MaxTmpScore = 0; 1172 unsigned MaxOpIdx2 = 0; 1173 bool FoundBest = false; 1174 // If I2 is commutative try all combinations. 1175 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1176 unsigned ToIdx = isCommutative(I2) 1177 ? I2->getNumOperands() 1178 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1179 assert(FromIdx <= ToIdx && "Bad index"); 1180 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1181 // Skip operands already paired with OpIdx1. 1182 if (Op2Used.count(OpIdx2)) 1183 continue; 1184 // Recursively calculate the cost at each level 1185 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, 1186 {I2->getOperand(OpIdx2), Lane2}, 1187 CurrLevel + 1, MaxLevel); 1188 // Look for the best score. 1189 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1190 MaxTmpScore = TmpScore; 1191 MaxOpIdx2 = OpIdx2; 1192 FoundBest = true; 1193 } 1194 } 1195 if (FoundBest) { 1196 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1197 Op2Used.insert(MaxOpIdx2); 1198 ShallowScoreAtThisLevel += MaxTmpScore; 1199 } 1200 } 1201 return ShallowScoreAtThisLevel; 1202 } 1203 1204 /// \Returns the look-ahead score, which tells us how much the sub-trees 1205 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1206 /// score. This helps break ties in an informed way when we cannot decide on 1207 /// the order of the operands by just considering the immediate 1208 /// predecessors. 1209 int getLookAheadScore(const std::pair<Value *, int> &LHS, 1210 const std::pair<Value *, int> &RHS) { 1211 InLookAheadValues.clear(); 1212 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); 1213 } 1214 1215 // Search all operands in Ops[*][Lane] for the one that matches best 1216 // Ops[OpIdx][LastLane] and return its opreand index. 1217 // If no good match can be found, return None. 1218 Optional<unsigned> 1219 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1220 ArrayRef<ReorderingMode> ReorderingModes) { 1221 unsigned NumOperands = getNumOperands(); 1222 1223 // The operand of the previous lane at OpIdx. 1224 Value *OpLastLane = getData(OpIdx, LastLane).V; 1225 1226 // Our strategy mode for OpIdx. 1227 ReorderingMode RMode = ReorderingModes[OpIdx]; 1228 1229 // The linearized opcode of the operand at OpIdx, Lane. 1230 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1231 1232 // The best operand index and its score. 1233 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1234 // are using the score to differentiate between the two. 1235 struct BestOpData { 1236 Optional<unsigned> Idx = None; 1237 unsigned Score = 0; 1238 } BestOp; 1239 1240 // Iterate through all unused operands and look for the best. 1241 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1242 // Get the operand at Idx and Lane. 1243 OperandData &OpData = getData(Idx, Lane); 1244 Value *Op = OpData.V; 1245 bool OpAPO = OpData.APO; 1246 1247 // Skip already selected operands. 1248 if (OpData.IsUsed) 1249 continue; 1250 1251 // Skip if we are trying to move the operand to a position with a 1252 // different opcode in the linearized tree form. This would break the 1253 // semantics. 1254 if (OpAPO != OpIdxAPO) 1255 continue; 1256 1257 // Look for an operand that matches the current mode. 1258 switch (RMode) { 1259 case ReorderingMode::Load: 1260 case ReorderingMode::Constant: 1261 case ReorderingMode::Opcode: { 1262 bool LeftToRight = Lane > LastLane; 1263 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1264 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1265 unsigned Score = 1266 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); 1267 if (Score > BestOp.Score) { 1268 BestOp.Idx = Idx; 1269 BestOp.Score = Score; 1270 } 1271 break; 1272 } 1273 case ReorderingMode::Splat: 1274 if (Op == OpLastLane) 1275 BestOp.Idx = Idx; 1276 break; 1277 case ReorderingMode::Failed: 1278 return None; 1279 } 1280 } 1281 1282 if (BestOp.Idx) { 1283 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 1284 return BestOp.Idx; 1285 } 1286 // If we could not find a good match return None. 1287 return None; 1288 } 1289 1290 /// Helper for reorderOperandVecs. \Returns the lane that we should start 1291 /// reordering from. This is the one which has the least number of operands 1292 /// that can freely move about. 1293 unsigned getBestLaneToStartReordering() const { 1294 unsigned BestLane = 0; 1295 unsigned Min = UINT_MAX; 1296 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1297 ++Lane) { 1298 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 1299 if (NumFreeOps < Min) { 1300 Min = NumFreeOps; 1301 BestLane = Lane; 1302 } 1303 } 1304 return BestLane; 1305 } 1306 1307 /// \Returns the maximum number of operands that are allowed to be reordered 1308 /// for \p Lane. This is used as a heuristic for selecting the first lane to 1309 /// start operand reordering. 1310 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1311 unsigned CntTrue = 0; 1312 unsigned NumOperands = getNumOperands(); 1313 // Operands with the same APO can be reordered. We therefore need to count 1314 // how many of them we have for each APO, like this: Cnt[APO] = x. 1315 // Since we only have two APOs, namely true and false, we can avoid using 1316 // a map. Instead we can simply count the number of operands that 1317 // correspond to one of them (in this case the 'true' APO), and calculate 1318 // the other by subtracting it from the total number of operands. 1319 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 1320 if (getData(OpIdx, Lane).APO) 1321 ++CntTrue; 1322 unsigned CntFalse = NumOperands - CntTrue; 1323 return std::max(CntTrue, CntFalse); 1324 } 1325 1326 /// Go through the instructions in VL and append their operands. 1327 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1328 assert(!VL.empty() && "Bad VL"); 1329 assert((empty() || VL.size() == getNumLanes()) && 1330 "Expected same number of lanes"); 1331 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1332 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1333 OpsVec.resize(NumOperands); 1334 unsigned NumLanes = VL.size(); 1335 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1336 OpsVec[OpIdx].resize(NumLanes); 1337 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1338 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1339 // Our tree has just 3 nodes: the root and two operands. 1340 // It is therefore trivial to get the APO. We only need to check the 1341 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1342 // RHS operand. The LHS operand of both add and sub is never attached 1343 // to an inversese operation in the linearized form, therefore its APO 1344 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1345 1346 // Since operand reordering is performed on groups of commutative 1347 // operations or alternating sequences (e.g., +, -), we can safely 1348 // tell the inverse operations by checking commutativity. 1349 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1350 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1351 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1352 APO, false}; 1353 } 1354 } 1355 } 1356 1357 /// \returns the number of operands. 1358 unsigned getNumOperands() const { return OpsVec.size(); } 1359 1360 /// \returns the number of lanes. 1361 unsigned getNumLanes() const { return OpsVec[0].size(); } 1362 1363 /// \returns the operand value at \p OpIdx and \p Lane. 1364 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1365 return getData(OpIdx, Lane).V; 1366 } 1367 1368 /// \returns true if the data structure is empty. 1369 bool empty() const { return OpsVec.empty(); } 1370 1371 /// Clears the data. 1372 void clear() { OpsVec.clear(); } 1373 1374 /// \Returns true if there are enough operands identical to \p Op to fill 1375 /// the whole vector. 1376 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1377 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1378 bool OpAPO = getData(OpIdx, Lane).APO; 1379 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1380 if (Ln == Lane) 1381 continue; 1382 // This is set to true if we found a candidate for broadcast at Lane. 1383 bool FoundCandidate = false; 1384 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1385 OperandData &Data = getData(OpI, Ln); 1386 if (Data.APO != OpAPO || Data.IsUsed) 1387 continue; 1388 if (Data.V == Op) { 1389 FoundCandidate = true; 1390 Data.IsUsed = true; 1391 break; 1392 } 1393 } 1394 if (!FoundCandidate) 1395 return false; 1396 } 1397 return true; 1398 } 1399 1400 public: 1401 /// Initialize with all the operands of the instruction vector \p RootVL. 1402 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1403 ScalarEvolution &SE, const BoUpSLP &R) 1404 : DL(DL), SE(SE), R(R) { 1405 // Append all the operands of RootVL. 1406 appendOperandsOfVL(RootVL); 1407 } 1408 1409 /// \Returns a value vector with the operands across all lanes for the 1410 /// opearnd at \p OpIdx. 1411 ValueList getVL(unsigned OpIdx) const { 1412 ValueList OpVL(OpsVec[OpIdx].size()); 1413 assert(OpsVec[OpIdx].size() == getNumLanes() && 1414 "Expected same num of lanes across all operands"); 1415 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1416 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1417 return OpVL; 1418 } 1419 1420 // Performs operand reordering for 2 or more operands. 1421 // The original operands are in OrigOps[OpIdx][Lane]. 1422 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1423 void reorder() { 1424 unsigned NumOperands = getNumOperands(); 1425 unsigned NumLanes = getNumLanes(); 1426 // Each operand has its own mode. We are using this mode to help us select 1427 // the instructions for each lane, so that they match best with the ones 1428 // we have selected so far. 1429 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1430 1431 // This is a greedy single-pass algorithm. We are going over each lane 1432 // once and deciding on the best order right away with no back-tracking. 1433 // However, in order to increase its effectiveness, we start with the lane 1434 // that has operands that can move the least. For example, given the 1435 // following lanes: 1436 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1437 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1438 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1439 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1440 // we will start at Lane 1, since the operands of the subtraction cannot 1441 // be reordered. Then we will visit the rest of the lanes in a circular 1442 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1443 1444 // Find the first lane that we will start our search from. 1445 unsigned FirstLane = getBestLaneToStartReordering(); 1446 1447 // Initialize the modes. 1448 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1449 Value *OpLane0 = getValue(OpIdx, FirstLane); 1450 // Keep track if we have instructions with all the same opcode on one 1451 // side. 1452 if (isa<LoadInst>(OpLane0)) 1453 ReorderingModes[OpIdx] = ReorderingMode::Load; 1454 else if (isa<Instruction>(OpLane0)) { 1455 // Check if OpLane0 should be broadcast. 1456 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1457 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1458 else 1459 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1460 } 1461 else if (isa<Constant>(OpLane0)) 1462 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1463 else if (isa<Argument>(OpLane0)) 1464 // Our best hope is a Splat. It may save some cost in some cases. 1465 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1466 else 1467 // NOTE: This should be unreachable. 1468 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1469 } 1470 1471 // If the initial strategy fails for any of the operand indexes, then we 1472 // perform reordering again in a second pass. This helps avoid assigning 1473 // high priority to the failed strategy, and should improve reordering for 1474 // the non-failed operand indexes. 1475 for (int Pass = 0; Pass != 2; ++Pass) { 1476 // Skip the second pass if the first pass did not fail. 1477 bool StrategyFailed = false; 1478 // Mark all operand data as free to use. 1479 clearUsed(); 1480 // We keep the original operand order for the FirstLane, so reorder the 1481 // rest of the lanes. We are visiting the nodes in a circular fashion, 1482 // using FirstLane as the center point and increasing the radius 1483 // distance. 1484 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1485 // Visit the lane on the right and then the lane on the left. 1486 for (int Direction : {+1, -1}) { 1487 int Lane = FirstLane + Direction * Distance; 1488 if (Lane < 0 || Lane >= (int)NumLanes) 1489 continue; 1490 int LastLane = Lane - Direction; 1491 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1492 "Out of bounds"); 1493 // Look for a good match for each operand. 1494 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1495 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1496 Optional<unsigned> BestIdx = 1497 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1498 // By not selecting a value, we allow the operands that follow to 1499 // select a better matching value. We will get a non-null value in 1500 // the next run of getBestOperand(). 1501 if (BestIdx) { 1502 // Swap the current operand with the one returned by 1503 // getBestOperand(). 1504 swap(OpIdx, BestIdx.getValue(), Lane); 1505 } else { 1506 // We failed to find a best operand, set mode to 'Failed'. 1507 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1508 // Enable the second pass. 1509 StrategyFailed = true; 1510 } 1511 } 1512 } 1513 } 1514 // Skip second pass if the strategy did not fail. 1515 if (!StrategyFailed) 1516 break; 1517 } 1518 } 1519 1520 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1521 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1522 switch (RMode) { 1523 case ReorderingMode::Load: 1524 return "Load"; 1525 case ReorderingMode::Opcode: 1526 return "Opcode"; 1527 case ReorderingMode::Constant: 1528 return "Constant"; 1529 case ReorderingMode::Splat: 1530 return "Splat"; 1531 case ReorderingMode::Failed: 1532 return "Failed"; 1533 } 1534 llvm_unreachable("Unimplemented Reordering Type"); 1535 } 1536 1537 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1538 raw_ostream &OS) { 1539 return OS << getModeStr(RMode); 1540 } 1541 1542 /// Debug print. 1543 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1544 printMode(RMode, dbgs()); 1545 } 1546 1547 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1548 return printMode(RMode, OS); 1549 } 1550 1551 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1552 const unsigned Indent = 2; 1553 unsigned Cnt = 0; 1554 for (const OperandDataVec &OpDataVec : OpsVec) { 1555 OS << "Operand " << Cnt++ << "\n"; 1556 for (const OperandData &OpData : OpDataVec) { 1557 OS.indent(Indent) << "{"; 1558 if (Value *V = OpData.V) 1559 OS << *V; 1560 else 1561 OS << "null"; 1562 OS << ", APO:" << OpData.APO << "}\n"; 1563 } 1564 OS << "\n"; 1565 } 1566 return OS; 1567 } 1568 1569 /// Debug print. 1570 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1571 #endif 1572 }; 1573 1574 /// Checks if the instruction is marked for deletion. 1575 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1576 1577 /// Marks values operands for later deletion by replacing them with Undefs. 1578 void eraseInstructions(ArrayRef<Value *> AV); 1579 1580 ~BoUpSLP(); 1581 1582 private: 1583 /// Checks if all users of \p I are the part of the vectorization tree. 1584 bool areAllUsersVectorized(Instruction *I, 1585 ArrayRef<Value *> VectorizedVals) const; 1586 1587 /// \returns the cost of the vectorizable entry. 1588 InstructionCost getEntryCost(const TreeEntry *E, 1589 ArrayRef<Value *> VectorizedVals); 1590 1591 /// This is the recursive part of buildTree. 1592 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1593 const EdgeInfo &EI); 1594 1595 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1596 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1597 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1598 /// returns false, setting \p CurrentOrder to either an empty vector or a 1599 /// non-identity permutation that allows to reuse extract instructions. 1600 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1601 SmallVectorImpl<unsigned> &CurrentOrder) const; 1602 1603 /// Vectorize a single entry in the tree. 1604 Value *vectorizeTree(TreeEntry *E); 1605 1606 /// Vectorize a single entry in the tree, starting in \p VL. 1607 Value *vectorizeTree(ArrayRef<Value *> VL); 1608 1609 /// \returns the scalarization cost for this type. Scalarization in this 1610 /// context means the creation of vectors from a group of scalars. If \p 1611 /// NeedToShuffle is true, need to add a cost of reshuffling some of the 1612 /// vector elements. 1613 InstructionCost getGatherCost(FixedVectorType *Ty, 1614 const DenseSet<unsigned> &ShuffledIndices, 1615 bool NeedToShuffle) const; 1616 1617 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 1618 /// tree entries. 1619 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 1620 /// previous tree entries. \p Mask is filled with the shuffle mask. 1621 Optional<TargetTransformInfo::ShuffleKind> 1622 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 1623 SmallVectorImpl<const TreeEntry *> &Entries); 1624 1625 /// \returns the scalarization cost for this list of values. Assuming that 1626 /// this subtree gets vectorized, we may need to extract the values from the 1627 /// roots. This method calculates the cost of extracting the values. 1628 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 1629 1630 /// Set the Builder insert point to one after the last instruction in 1631 /// the bundle 1632 void setInsertPointAfterBundle(const TreeEntry *E); 1633 1634 /// \returns a vector from a collection of scalars in \p VL. 1635 Value *gather(ArrayRef<Value *> VL); 1636 1637 /// \returns whether the VectorizableTree is fully vectorizable and will 1638 /// be beneficial even the tree height is tiny. 1639 bool isFullyVectorizableTinyTree(bool ForReduction) const; 1640 1641 /// Reorder commutative or alt operands to get better probability of 1642 /// generating vectorized code. 1643 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1644 SmallVectorImpl<Value *> &Left, 1645 SmallVectorImpl<Value *> &Right, 1646 const DataLayout &DL, 1647 ScalarEvolution &SE, 1648 const BoUpSLP &R); 1649 struct TreeEntry { 1650 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1651 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1652 1653 /// \returns true if the scalars in VL are equal to this entry. 1654 bool isSame(ArrayRef<Value *> VL) const { 1655 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 1656 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 1657 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1658 return VL.size() == Mask.size() && 1659 std::equal(VL.begin(), VL.end(), Mask.begin(), 1660 [Scalars](Value *V, int Idx) { 1661 return (isa<UndefValue>(V) && 1662 Idx == UndefMaskElem) || 1663 (Idx != UndefMaskElem && V == Scalars[Idx]); 1664 }); 1665 }; 1666 if (!ReorderIndices.empty()) { 1667 // TODO: implement matching if the nodes are just reordered, still can 1668 // treat the vector as the same if the list of scalars matches VL 1669 // directly, without reordering. 1670 SmallVector<int> Mask; 1671 inversePermutation(ReorderIndices, Mask); 1672 if (VL.size() == Scalars.size()) 1673 return IsSame(Scalars, Mask); 1674 if (VL.size() == ReuseShuffleIndices.size()) { 1675 ::addMask(Mask, ReuseShuffleIndices); 1676 return IsSame(Scalars, Mask); 1677 } 1678 return false; 1679 } 1680 return IsSame(Scalars, ReuseShuffleIndices); 1681 } 1682 1683 /// \returns true if current entry has same operands as \p TE. 1684 bool hasEqualOperands(const TreeEntry &TE) const { 1685 if (TE.getNumOperands() != getNumOperands()) 1686 return false; 1687 SmallBitVector Used(getNumOperands()); 1688 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 1689 unsigned PrevCount = Used.count(); 1690 for (unsigned K = 0; K < E; ++K) { 1691 if (Used.test(K)) 1692 continue; 1693 if (getOperand(K) == TE.getOperand(I)) { 1694 Used.set(K); 1695 break; 1696 } 1697 } 1698 // Check if we actually found the matching operand. 1699 if (PrevCount == Used.count()) 1700 return false; 1701 } 1702 return true; 1703 } 1704 1705 /// \return Final vectorization factor for the node. Defined by the total 1706 /// number of vectorized scalars, including those, used several times in the 1707 /// entry and counted in the \a ReuseShuffleIndices, if any. 1708 unsigned getVectorFactor() const { 1709 if (!ReuseShuffleIndices.empty()) 1710 return ReuseShuffleIndices.size(); 1711 return Scalars.size(); 1712 }; 1713 1714 /// A vector of scalars. 1715 ValueList Scalars; 1716 1717 /// The Scalars are vectorized into this value. It is initialized to Null. 1718 Value *VectorizedValue = nullptr; 1719 1720 /// Do we need to gather this sequence or vectorize it 1721 /// (either with vector instruction or with scatter/gather 1722 /// intrinsics for store/load)? 1723 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 1724 EntryState State; 1725 1726 /// Does this sequence require some shuffling? 1727 SmallVector<int, 4> ReuseShuffleIndices; 1728 1729 /// Does this entry require reordering? 1730 SmallVector<unsigned, 4> ReorderIndices; 1731 1732 /// Points back to the VectorizableTree. 1733 /// 1734 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1735 /// to be a pointer and needs to be able to initialize the child iterator. 1736 /// Thus we need a reference back to the container to translate the indices 1737 /// to entries. 1738 VecTreeTy &Container; 1739 1740 /// The TreeEntry index containing the user of this entry. We can actually 1741 /// have multiple users so the data structure is not truly a tree. 1742 SmallVector<EdgeInfo, 1> UserTreeIndices; 1743 1744 /// The index of this treeEntry in VectorizableTree. 1745 int Idx = -1; 1746 1747 private: 1748 /// The operands of each instruction in each lane Operands[op_index][lane]. 1749 /// Note: This helps avoid the replication of the code that performs the 1750 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1751 SmallVector<ValueList, 2> Operands; 1752 1753 /// The main/alternate instruction. 1754 Instruction *MainOp = nullptr; 1755 Instruction *AltOp = nullptr; 1756 1757 public: 1758 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1759 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1760 if (Operands.size() < OpIdx + 1) 1761 Operands.resize(OpIdx + 1); 1762 assert(Operands[OpIdx].empty() && "Already resized?"); 1763 Operands[OpIdx].resize(Scalars.size()); 1764 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1765 Operands[OpIdx][Lane] = OpVL[Lane]; 1766 } 1767 1768 /// Set the operands of this bundle in their original order. 1769 void setOperandsInOrder() { 1770 assert(Operands.empty() && "Already initialized?"); 1771 auto *I0 = cast<Instruction>(Scalars[0]); 1772 Operands.resize(I0->getNumOperands()); 1773 unsigned NumLanes = Scalars.size(); 1774 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1775 OpIdx != NumOperands; ++OpIdx) { 1776 Operands[OpIdx].resize(NumLanes); 1777 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1778 auto *I = cast<Instruction>(Scalars[Lane]); 1779 assert(I->getNumOperands() == NumOperands && 1780 "Expected same number of operands"); 1781 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1782 } 1783 } 1784 } 1785 1786 /// Reorders operands of the node to the given mask \p Mask. 1787 void reorderOperands(ArrayRef<int> Mask) { 1788 for (ValueList &Operand : Operands) 1789 reorderScalars(Operand, Mask); 1790 } 1791 1792 /// \returns the \p OpIdx operand of this TreeEntry. 1793 ValueList &getOperand(unsigned OpIdx) { 1794 assert(OpIdx < Operands.size() && "Off bounds"); 1795 return Operands[OpIdx]; 1796 } 1797 1798 /// \returns the \p OpIdx operand of this TreeEntry. 1799 ArrayRef<Value *> getOperand(unsigned OpIdx) const { 1800 assert(OpIdx < Operands.size() && "Off bounds"); 1801 return Operands[OpIdx]; 1802 } 1803 1804 /// \returns the number of operands. 1805 unsigned getNumOperands() const { return Operands.size(); } 1806 1807 /// \return the single \p OpIdx operand. 1808 Value *getSingleOperand(unsigned OpIdx) const { 1809 assert(OpIdx < Operands.size() && "Off bounds"); 1810 assert(!Operands[OpIdx].empty() && "No operand available"); 1811 return Operands[OpIdx][0]; 1812 } 1813 1814 /// Some of the instructions in the list have alternate opcodes. 1815 bool isAltShuffle() const { 1816 return getOpcode() != getAltOpcode(); 1817 } 1818 1819 bool isOpcodeOrAlt(Instruction *I) const { 1820 unsigned CheckedOpcode = I->getOpcode(); 1821 return (getOpcode() == CheckedOpcode || 1822 getAltOpcode() == CheckedOpcode); 1823 } 1824 1825 /// Chooses the correct key for scheduling data. If \p Op has the same (or 1826 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 1827 /// \p OpValue. 1828 Value *isOneOf(Value *Op) const { 1829 auto *I = dyn_cast<Instruction>(Op); 1830 if (I && isOpcodeOrAlt(I)) 1831 return Op; 1832 return MainOp; 1833 } 1834 1835 void setOperations(const InstructionsState &S) { 1836 MainOp = S.MainOp; 1837 AltOp = S.AltOp; 1838 } 1839 1840 Instruction *getMainOp() const { 1841 return MainOp; 1842 } 1843 1844 Instruction *getAltOp() const { 1845 return AltOp; 1846 } 1847 1848 /// The main/alternate opcodes for the list of instructions. 1849 unsigned getOpcode() const { 1850 return MainOp ? MainOp->getOpcode() : 0; 1851 } 1852 1853 unsigned getAltOpcode() const { 1854 return AltOp ? AltOp->getOpcode() : 0; 1855 } 1856 1857 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 1858 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 1859 int findLaneForValue(Value *V) const { 1860 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 1861 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 1862 if (!ReorderIndices.empty()) 1863 FoundLane = ReorderIndices[FoundLane]; 1864 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 1865 if (!ReuseShuffleIndices.empty()) { 1866 FoundLane = std::distance(ReuseShuffleIndices.begin(), 1867 find(ReuseShuffleIndices, FoundLane)); 1868 } 1869 return FoundLane; 1870 } 1871 1872 #ifndef NDEBUG 1873 /// Debug printer. 1874 LLVM_DUMP_METHOD void dump() const { 1875 dbgs() << Idx << ".\n"; 1876 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1877 dbgs() << "Operand " << OpI << ":\n"; 1878 for (const Value *V : Operands[OpI]) 1879 dbgs().indent(2) << *V << "\n"; 1880 } 1881 dbgs() << "Scalars: \n"; 1882 for (Value *V : Scalars) 1883 dbgs().indent(2) << *V << "\n"; 1884 dbgs() << "State: "; 1885 switch (State) { 1886 case Vectorize: 1887 dbgs() << "Vectorize\n"; 1888 break; 1889 case ScatterVectorize: 1890 dbgs() << "ScatterVectorize\n"; 1891 break; 1892 case NeedToGather: 1893 dbgs() << "NeedToGather\n"; 1894 break; 1895 } 1896 dbgs() << "MainOp: "; 1897 if (MainOp) 1898 dbgs() << *MainOp << "\n"; 1899 else 1900 dbgs() << "NULL\n"; 1901 dbgs() << "AltOp: "; 1902 if (AltOp) 1903 dbgs() << *AltOp << "\n"; 1904 else 1905 dbgs() << "NULL\n"; 1906 dbgs() << "VectorizedValue: "; 1907 if (VectorizedValue) 1908 dbgs() << *VectorizedValue << "\n"; 1909 else 1910 dbgs() << "NULL\n"; 1911 dbgs() << "ReuseShuffleIndices: "; 1912 if (ReuseShuffleIndices.empty()) 1913 dbgs() << "Empty"; 1914 else 1915 for (unsigned ReuseIdx : ReuseShuffleIndices) 1916 dbgs() << ReuseIdx << ", "; 1917 dbgs() << "\n"; 1918 dbgs() << "ReorderIndices: "; 1919 for (unsigned ReorderIdx : ReorderIndices) 1920 dbgs() << ReorderIdx << ", "; 1921 dbgs() << "\n"; 1922 dbgs() << "UserTreeIndices: "; 1923 for (const auto &EInfo : UserTreeIndices) 1924 dbgs() << EInfo << ", "; 1925 dbgs() << "\n"; 1926 } 1927 #endif 1928 }; 1929 1930 #ifndef NDEBUG 1931 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 1932 InstructionCost VecCost, 1933 InstructionCost ScalarCost) const { 1934 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 1935 dbgs() << "SLP: Costs:\n"; 1936 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 1937 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 1938 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 1939 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 1940 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 1941 } 1942 #endif 1943 1944 /// Create a new VectorizableTree entry. 1945 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 1946 const InstructionsState &S, 1947 const EdgeInfo &UserTreeIdx, 1948 ArrayRef<int> ReuseShuffleIndices = None, 1949 ArrayRef<unsigned> ReorderIndices = None) { 1950 TreeEntry::EntryState EntryState = 1951 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 1952 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 1953 ReuseShuffleIndices, ReorderIndices); 1954 } 1955 1956 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 1957 TreeEntry::EntryState EntryState, 1958 Optional<ScheduleData *> Bundle, 1959 const InstructionsState &S, 1960 const EdgeInfo &UserTreeIdx, 1961 ArrayRef<int> ReuseShuffleIndices = None, 1962 ArrayRef<unsigned> ReorderIndices = None) { 1963 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 1964 (Bundle && EntryState != TreeEntry::NeedToGather)) && 1965 "Need to vectorize gather entry?"); 1966 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 1967 TreeEntry *Last = VectorizableTree.back().get(); 1968 Last->Idx = VectorizableTree.size() - 1; 1969 Last->State = EntryState; 1970 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1971 ReuseShuffleIndices.end()); 1972 if (ReorderIndices.empty()) { 1973 Last->Scalars.assign(VL.begin(), VL.end()); 1974 Last->setOperations(S); 1975 } else { 1976 // Reorder scalars and build final mask. 1977 Last->Scalars.assign(VL.size(), nullptr); 1978 transform(ReorderIndices, Last->Scalars.begin(), 1979 [VL](unsigned Idx) -> Value * { 1980 if (Idx >= VL.size()) 1981 return UndefValue::get(VL.front()->getType()); 1982 return VL[Idx]; 1983 }); 1984 InstructionsState S = getSameOpcode(Last->Scalars); 1985 Last->setOperations(S); 1986 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 1987 } 1988 if (Last->State != TreeEntry::NeedToGather) { 1989 for (Value *V : VL) { 1990 assert(!getTreeEntry(V) && "Scalar already in tree!"); 1991 ScalarToTreeEntry[V] = Last; 1992 } 1993 // Update the scheduler bundle to point to this TreeEntry. 1994 unsigned Lane = 0; 1995 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 1996 BundleMember = BundleMember->NextInBundle) { 1997 BundleMember->TE = Last; 1998 BundleMember->Lane = Lane; 1999 ++Lane; 2000 } 2001 assert((!Bundle.getValue() || Lane == VL.size()) && 2002 "Bundle and VL out of sync"); 2003 } else { 2004 MustGather.insert(VL.begin(), VL.end()); 2005 } 2006 2007 if (UserTreeIdx.UserTE) 2008 Last->UserTreeIndices.push_back(UserTreeIdx); 2009 2010 return Last; 2011 } 2012 2013 /// -- Vectorization State -- 2014 /// Holds all of the tree entries. 2015 TreeEntry::VecTreeTy VectorizableTree; 2016 2017 #ifndef NDEBUG 2018 /// Debug printer. 2019 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 2020 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 2021 VectorizableTree[Id]->dump(); 2022 dbgs() << "\n"; 2023 } 2024 } 2025 #endif 2026 2027 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 2028 2029 const TreeEntry *getTreeEntry(Value *V) const { 2030 return ScalarToTreeEntry.lookup(V); 2031 } 2032 2033 /// Maps a specific scalar to its tree entry. 2034 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 2035 2036 /// Maps a value to the proposed vectorizable size. 2037 SmallDenseMap<Value *, unsigned> InstrElementSize; 2038 2039 /// A list of scalars that we found that we need to keep as scalars. 2040 ValueSet MustGather; 2041 2042 /// This POD struct describes one external user in the vectorized tree. 2043 struct ExternalUser { 2044 ExternalUser(Value *S, llvm::User *U, int L) 2045 : Scalar(S), User(U), Lane(L) {} 2046 2047 // Which scalar in our function. 2048 Value *Scalar; 2049 2050 // Which user that uses the scalar. 2051 llvm::User *User; 2052 2053 // Which lane does the scalar belong to. 2054 int Lane; 2055 }; 2056 using UserList = SmallVector<ExternalUser, 16>; 2057 2058 /// Checks if two instructions may access the same memory. 2059 /// 2060 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2061 /// is invariant in the calling loop. 2062 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2063 Instruction *Inst2) { 2064 // First check if the result is already in the cache. 2065 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2066 Optional<bool> &result = AliasCache[key]; 2067 if (result.hasValue()) { 2068 return result.getValue(); 2069 } 2070 bool aliased = true; 2071 if (Loc1.Ptr && isSimple(Inst1)) 2072 aliased = isModOrRefSet(AA->getModRefInfo(Inst2, Loc1)); 2073 // Store the result in the cache. 2074 result = aliased; 2075 return aliased; 2076 } 2077 2078 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2079 2080 /// Cache for alias results. 2081 /// TODO: consider moving this to the AliasAnalysis itself. 2082 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2083 2084 /// Removes an instruction from its block and eventually deletes it. 2085 /// It's like Instruction::eraseFromParent() except that the actual deletion 2086 /// is delayed until BoUpSLP is destructed. 2087 /// This is required to ensure that there are no incorrect collisions in the 2088 /// AliasCache, which can happen if a new instruction is allocated at the 2089 /// same address as a previously deleted instruction. 2090 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 2091 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 2092 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 2093 } 2094 2095 /// Temporary store for deleted instructions. Instructions will be deleted 2096 /// eventually when the BoUpSLP is destructed. 2097 DenseMap<Instruction *, bool> DeletedInstructions; 2098 2099 /// A list of values that need to extracted out of the tree. 2100 /// This list holds pairs of (Internal Scalar : External User). External User 2101 /// can be nullptr, it means that this Internal Scalar will be used later, 2102 /// after vectorization. 2103 UserList ExternalUses; 2104 2105 /// Values used only by @llvm.assume calls. 2106 SmallPtrSet<const Value *, 32> EphValues; 2107 2108 /// Holds all of the instructions that we gathered. 2109 SetVector<Instruction *> GatherShuffleSeq; 2110 2111 /// A list of blocks that we are going to CSE. 2112 SetVector<BasicBlock *> CSEBlocks; 2113 2114 /// Contains all scheduling relevant data for an instruction. 2115 /// A ScheduleData either represents a single instruction or a member of an 2116 /// instruction bundle (= a group of instructions which is combined into a 2117 /// vector instruction). 2118 struct ScheduleData { 2119 // The initial value for the dependency counters. It means that the 2120 // dependencies are not calculated yet. 2121 enum { InvalidDeps = -1 }; 2122 2123 ScheduleData() = default; 2124 2125 void init(int BlockSchedulingRegionID, Value *OpVal) { 2126 FirstInBundle = this; 2127 NextInBundle = nullptr; 2128 NextLoadStore = nullptr; 2129 IsScheduled = false; 2130 SchedulingRegionID = BlockSchedulingRegionID; 2131 UnscheduledDepsInBundle = UnscheduledDeps; 2132 clearDependencies(); 2133 OpValue = OpVal; 2134 TE = nullptr; 2135 Lane = -1; 2136 } 2137 2138 /// Returns true if the dependency information has been calculated. 2139 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2140 2141 /// Returns true for single instructions and for bundle representatives 2142 /// (= the head of a bundle). 2143 bool isSchedulingEntity() const { return FirstInBundle == this; } 2144 2145 /// Returns true if it represents an instruction bundle and not only a 2146 /// single instruction. 2147 bool isPartOfBundle() const { 2148 return NextInBundle != nullptr || FirstInBundle != this; 2149 } 2150 2151 /// Returns true if it is ready for scheduling, i.e. it has no more 2152 /// unscheduled depending instructions/bundles. 2153 bool isReady() const { 2154 assert(isSchedulingEntity() && 2155 "can't consider non-scheduling entity for ready list"); 2156 return UnscheduledDepsInBundle == 0 && !IsScheduled; 2157 } 2158 2159 /// Modifies the number of unscheduled dependencies, also updating it for 2160 /// the whole bundle. 2161 int incrementUnscheduledDeps(int Incr) { 2162 UnscheduledDeps += Incr; 2163 return FirstInBundle->UnscheduledDepsInBundle += Incr; 2164 } 2165 2166 /// Sets the number of unscheduled dependencies to the number of 2167 /// dependencies. 2168 void resetUnscheduledDeps() { 2169 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 2170 } 2171 2172 /// Clears all dependency information. 2173 void clearDependencies() { 2174 Dependencies = InvalidDeps; 2175 resetUnscheduledDeps(); 2176 MemoryDependencies.clear(); 2177 } 2178 2179 void dump(raw_ostream &os) const { 2180 if (!isSchedulingEntity()) { 2181 os << "/ " << *Inst; 2182 } else if (NextInBundle) { 2183 os << '[' << *Inst; 2184 ScheduleData *SD = NextInBundle; 2185 while (SD) { 2186 os << ';' << *SD->Inst; 2187 SD = SD->NextInBundle; 2188 } 2189 os << ']'; 2190 } else { 2191 os << *Inst; 2192 } 2193 } 2194 2195 Instruction *Inst = nullptr; 2196 2197 /// Points to the head in an instruction bundle (and always to this for 2198 /// single instructions). 2199 ScheduleData *FirstInBundle = nullptr; 2200 2201 /// Single linked list of all instructions in a bundle. Null if it is a 2202 /// single instruction. 2203 ScheduleData *NextInBundle = nullptr; 2204 2205 /// Single linked list of all memory instructions (e.g. load, store, call) 2206 /// in the block - until the end of the scheduling region. 2207 ScheduleData *NextLoadStore = nullptr; 2208 2209 /// The dependent memory instructions. 2210 /// This list is derived on demand in calculateDependencies(). 2211 SmallVector<ScheduleData *, 4> MemoryDependencies; 2212 2213 /// This ScheduleData is in the current scheduling region if this matches 2214 /// the current SchedulingRegionID of BlockScheduling. 2215 int SchedulingRegionID = 0; 2216 2217 /// Used for getting a "good" final ordering of instructions. 2218 int SchedulingPriority = 0; 2219 2220 /// The number of dependencies. Constitutes of the number of users of the 2221 /// instruction plus the number of dependent memory instructions (if any). 2222 /// This value is calculated on demand. 2223 /// If InvalidDeps, the number of dependencies is not calculated yet. 2224 int Dependencies = InvalidDeps; 2225 2226 /// The number of dependencies minus the number of dependencies of scheduled 2227 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2228 /// for scheduling. 2229 /// Note that this is negative as long as Dependencies is not calculated. 2230 int UnscheduledDeps = InvalidDeps; 2231 2232 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 2233 /// single instructions. 2234 int UnscheduledDepsInBundle = InvalidDeps; 2235 2236 /// True if this instruction is scheduled (or considered as scheduled in the 2237 /// dry-run). 2238 bool IsScheduled = false; 2239 2240 /// Opcode of the current instruction in the schedule data. 2241 Value *OpValue = nullptr; 2242 2243 /// The TreeEntry that this instruction corresponds to. 2244 TreeEntry *TE = nullptr; 2245 2246 /// The lane of this node in the TreeEntry. 2247 int Lane = -1; 2248 }; 2249 2250 #ifndef NDEBUG 2251 friend inline raw_ostream &operator<<(raw_ostream &os, 2252 const BoUpSLP::ScheduleData &SD) { 2253 SD.dump(os); 2254 return os; 2255 } 2256 #endif 2257 2258 friend struct GraphTraits<BoUpSLP *>; 2259 friend struct DOTGraphTraits<BoUpSLP *>; 2260 2261 /// Contains all scheduling data for a basic block. 2262 struct BlockScheduling { 2263 BlockScheduling(BasicBlock *BB) 2264 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2265 2266 void clear() { 2267 ReadyInsts.clear(); 2268 ScheduleStart = nullptr; 2269 ScheduleEnd = nullptr; 2270 FirstLoadStoreInRegion = nullptr; 2271 LastLoadStoreInRegion = nullptr; 2272 2273 // Reduce the maximum schedule region size by the size of the 2274 // previous scheduling run. 2275 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2276 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2277 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2278 ScheduleRegionSize = 0; 2279 2280 // Make a new scheduling region, i.e. all existing ScheduleData is not 2281 // in the new region yet. 2282 ++SchedulingRegionID; 2283 } 2284 2285 ScheduleData *getScheduleData(Value *V) { 2286 ScheduleData *SD = ScheduleDataMap[V]; 2287 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2288 return SD; 2289 return nullptr; 2290 } 2291 2292 ScheduleData *getScheduleData(Value *V, Value *Key) { 2293 if (V == Key) 2294 return getScheduleData(V); 2295 auto I = ExtraScheduleDataMap.find(V); 2296 if (I != ExtraScheduleDataMap.end()) { 2297 ScheduleData *SD = I->second[Key]; 2298 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2299 return SD; 2300 } 2301 return nullptr; 2302 } 2303 2304 bool isInSchedulingRegion(ScheduleData *SD) const { 2305 return SD->SchedulingRegionID == SchedulingRegionID; 2306 } 2307 2308 /// Marks an instruction as scheduled and puts all dependent ready 2309 /// instructions into the ready-list. 2310 template <typename ReadyListType> 2311 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2312 SD->IsScheduled = true; 2313 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2314 2315 ScheduleData *BundleMember = SD; 2316 while (BundleMember) { 2317 if (BundleMember->Inst != BundleMember->OpValue) { 2318 BundleMember = BundleMember->NextInBundle; 2319 continue; 2320 } 2321 // Handle the def-use chain dependencies. 2322 2323 // Decrement the unscheduled counter and insert to ready list if ready. 2324 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2325 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2326 if (OpDef && OpDef->hasValidDependencies() && 2327 OpDef->incrementUnscheduledDeps(-1) == 0) { 2328 // There are no more unscheduled dependencies after 2329 // decrementing, so we can put the dependent instruction 2330 // into the ready list. 2331 ScheduleData *DepBundle = OpDef->FirstInBundle; 2332 assert(!DepBundle->IsScheduled && 2333 "already scheduled bundle gets ready"); 2334 ReadyList.insert(DepBundle); 2335 LLVM_DEBUG(dbgs() 2336 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2337 } 2338 }); 2339 }; 2340 2341 // If BundleMember is a vector bundle, its operands may have been 2342 // reordered duiring buildTree(). We therefore need to get its operands 2343 // through the TreeEntry. 2344 if (TreeEntry *TE = BundleMember->TE) { 2345 int Lane = BundleMember->Lane; 2346 assert(Lane >= 0 && "Lane not set"); 2347 2348 // Since vectorization tree is being built recursively this assertion 2349 // ensures that the tree entry has all operands set before reaching 2350 // this code. Couple of exceptions known at the moment are extracts 2351 // where their second (immediate) operand is not added. Since 2352 // immediates do not affect scheduler behavior this is considered 2353 // okay. 2354 auto *In = TE->getMainOp(); 2355 assert(In && 2356 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2357 In->getNumOperands() == TE->getNumOperands()) && 2358 "Missed TreeEntry operands?"); 2359 (void)In; // fake use to avoid build failure when assertions disabled 2360 2361 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2362 OpIdx != NumOperands; ++OpIdx) 2363 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2364 DecrUnsched(I); 2365 } else { 2366 // If BundleMember is a stand-alone instruction, no operand reordering 2367 // has taken place, so we directly access its operands. 2368 for (Use &U : BundleMember->Inst->operands()) 2369 if (auto *I = dyn_cast<Instruction>(U.get())) 2370 DecrUnsched(I); 2371 } 2372 // Handle the memory dependencies. 2373 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2374 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2375 // There are no more unscheduled dependencies after decrementing, 2376 // so we can put the dependent instruction into the ready list. 2377 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2378 assert(!DepBundle->IsScheduled && 2379 "already scheduled bundle gets ready"); 2380 ReadyList.insert(DepBundle); 2381 LLVM_DEBUG(dbgs() 2382 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2383 } 2384 } 2385 BundleMember = BundleMember->NextInBundle; 2386 } 2387 } 2388 2389 void doForAllOpcodes(Value *V, 2390 function_ref<void(ScheduleData *SD)> Action) { 2391 if (ScheduleData *SD = getScheduleData(V)) 2392 Action(SD); 2393 auto I = ExtraScheduleDataMap.find(V); 2394 if (I != ExtraScheduleDataMap.end()) 2395 for (auto &P : I->second) 2396 if (P.second->SchedulingRegionID == SchedulingRegionID) 2397 Action(P.second); 2398 } 2399 2400 /// Put all instructions into the ReadyList which are ready for scheduling. 2401 template <typename ReadyListType> 2402 void initialFillReadyList(ReadyListType &ReadyList) { 2403 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2404 doForAllOpcodes(I, [&](ScheduleData *SD) { 2405 if (SD->isSchedulingEntity() && SD->isReady()) { 2406 ReadyList.insert(SD); 2407 LLVM_DEBUG(dbgs() 2408 << "SLP: initially in ready list: " << *I << "\n"); 2409 } 2410 }); 2411 } 2412 } 2413 2414 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2415 /// cyclic dependencies. This is only a dry-run, no instructions are 2416 /// actually moved at this stage. 2417 /// \returns the scheduling bundle. The returned Optional value is non-None 2418 /// if \p VL is allowed to be scheduled. 2419 Optional<ScheduleData *> 2420 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2421 const InstructionsState &S); 2422 2423 /// Un-bundles a group of instructions. 2424 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2425 2426 /// Allocates schedule data chunk. 2427 ScheduleData *allocateScheduleDataChunks(); 2428 2429 /// Extends the scheduling region so that V is inside the region. 2430 /// \returns true if the region size is within the limit. 2431 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2432 2433 /// Initialize the ScheduleData structures for new instructions in the 2434 /// scheduling region. 2435 void initScheduleData(Instruction *FromI, Instruction *ToI, 2436 ScheduleData *PrevLoadStore, 2437 ScheduleData *NextLoadStore); 2438 2439 /// Updates the dependency information of a bundle and of all instructions/ 2440 /// bundles which depend on the original bundle. 2441 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2442 BoUpSLP *SLP); 2443 2444 /// Sets all instruction in the scheduling region to un-scheduled. 2445 void resetSchedule(); 2446 2447 BasicBlock *BB; 2448 2449 /// Simple memory allocation for ScheduleData. 2450 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2451 2452 /// The size of a ScheduleData array in ScheduleDataChunks. 2453 int ChunkSize; 2454 2455 /// The allocator position in the current chunk, which is the last entry 2456 /// of ScheduleDataChunks. 2457 int ChunkPos; 2458 2459 /// Attaches ScheduleData to Instruction. 2460 /// Note that the mapping survives during all vectorization iterations, i.e. 2461 /// ScheduleData structures are recycled. 2462 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2463 2464 /// Attaches ScheduleData to Instruction with the leading key. 2465 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2466 ExtraScheduleDataMap; 2467 2468 struct ReadyList : SmallVector<ScheduleData *, 8> { 2469 void insert(ScheduleData *SD) { push_back(SD); } 2470 }; 2471 2472 /// The ready-list for scheduling (only used for the dry-run). 2473 ReadyList ReadyInsts; 2474 2475 /// The first instruction of the scheduling region. 2476 Instruction *ScheduleStart = nullptr; 2477 2478 /// The first instruction _after_ the scheduling region. 2479 Instruction *ScheduleEnd = nullptr; 2480 2481 /// The first memory accessing instruction in the scheduling region 2482 /// (can be null). 2483 ScheduleData *FirstLoadStoreInRegion = nullptr; 2484 2485 /// The last memory accessing instruction in the scheduling region 2486 /// (can be null). 2487 ScheduleData *LastLoadStoreInRegion = nullptr; 2488 2489 /// The current size of the scheduling region. 2490 int ScheduleRegionSize = 0; 2491 2492 /// The maximum size allowed for the scheduling region. 2493 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2494 2495 /// The ID of the scheduling region. For a new vectorization iteration this 2496 /// is incremented which "removes" all ScheduleData from the region. 2497 // Make sure that the initial SchedulingRegionID is greater than the 2498 // initial SchedulingRegionID in ScheduleData (which is 0). 2499 int SchedulingRegionID = 1; 2500 }; 2501 2502 /// Attaches the BlockScheduling structures to basic blocks. 2503 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2504 2505 /// Performs the "real" scheduling. Done before vectorization is actually 2506 /// performed in a basic block. 2507 void scheduleBlock(BlockScheduling *BS); 2508 2509 /// List of users to ignore during scheduling and that don't need extracting. 2510 ArrayRef<Value *> UserIgnoreList; 2511 2512 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2513 /// sorted SmallVectors of unsigned. 2514 struct OrdersTypeDenseMapInfo { 2515 static OrdersType getEmptyKey() { 2516 OrdersType V; 2517 V.push_back(~1U); 2518 return V; 2519 } 2520 2521 static OrdersType getTombstoneKey() { 2522 OrdersType V; 2523 V.push_back(~2U); 2524 return V; 2525 } 2526 2527 static unsigned getHashValue(const OrdersType &V) { 2528 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2529 } 2530 2531 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2532 return LHS == RHS; 2533 } 2534 }; 2535 2536 // Analysis and block reference. 2537 Function *F; 2538 ScalarEvolution *SE; 2539 TargetTransformInfo *TTI; 2540 TargetLibraryInfo *TLI; 2541 AAResults *AA; 2542 LoopInfo *LI; 2543 DominatorTree *DT; 2544 AssumptionCache *AC; 2545 DemandedBits *DB; 2546 const DataLayout *DL; 2547 OptimizationRemarkEmitter *ORE; 2548 2549 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2550 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2551 2552 /// Instruction builder to construct the vectorized tree. 2553 IRBuilder<> Builder; 2554 2555 /// A map of scalar integer values to the smallest bit width with which they 2556 /// can legally be represented. The values map to (width, signed) pairs, 2557 /// where "width" indicates the minimum bit width and "signed" is True if the 2558 /// value must be signed-extended, rather than zero-extended, back to its 2559 /// original width. 2560 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2561 }; 2562 2563 } // end namespace slpvectorizer 2564 2565 template <> struct GraphTraits<BoUpSLP *> { 2566 using TreeEntry = BoUpSLP::TreeEntry; 2567 2568 /// NodeRef has to be a pointer per the GraphWriter. 2569 using NodeRef = TreeEntry *; 2570 2571 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2572 2573 /// Add the VectorizableTree to the index iterator to be able to return 2574 /// TreeEntry pointers. 2575 struct ChildIteratorType 2576 : public iterator_adaptor_base< 2577 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2578 ContainerTy &VectorizableTree; 2579 2580 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2581 ContainerTy &VT) 2582 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2583 2584 NodeRef operator*() { return I->UserTE; } 2585 }; 2586 2587 static NodeRef getEntryNode(BoUpSLP &R) { 2588 return R.VectorizableTree[0].get(); 2589 } 2590 2591 static ChildIteratorType child_begin(NodeRef N) { 2592 return {N->UserTreeIndices.begin(), N->Container}; 2593 } 2594 2595 static ChildIteratorType child_end(NodeRef N) { 2596 return {N->UserTreeIndices.end(), N->Container}; 2597 } 2598 2599 /// For the node iterator we just need to turn the TreeEntry iterator into a 2600 /// TreeEntry* iterator so that it dereferences to NodeRef. 2601 class nodes_iterator { 2602 using ItTy = ContainerTy::iterator; 2603 ItTy It; 2604 2605 public: 2606 nodes_iterator(const ItTy &It2) : It(It2) {} 2607 NodeRef operator*() { return It->get(); } 2608 nodes_iterator operator++() { 2609 ++It; 2610 return *this; 2611 } 2612 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2613 }; 2614 2615 static nodes_iterator nodes_begin(BoUpSLP *R) { 2616 return nodes_iterator(R->VectorizableTree.begin()); 2617 } 2618 2619 static nodes_iterator nodes_end(BoUpSLP *R) { 2620 return nodes_iterator(R->VectorizableTree.end()); 2621 } 2622 2623 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2624 }; 2625 2626 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2627 using TreeEntry = BoUpSLP::TreeEntry; 2628 2629 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2630 2631 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2632 std::string Str; 2633 raw_string_ostream OS(Str); 2634 if (isSplat(Entry->Scalars)) 2635 OS << "<splat> "; 2636 for (auto V : Entry->Scalars) { 2637 OS << *V; 2638 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 2639 return EU.Scalar == V; 2640 })) 2641 OS << " <extract>"; 2642 OS << "\n"; 2643 } 2644 return Str; 2645 } 2646 2647 static std::string getNodeAttributes(const TreeEntry *Entry, 2648 const BoUpSLP *) { 2649 if (Entry->State == TreeEntry::NeedToGather) 2650 return "color=red"; 2651 return ""; 2652 } 2653 }; 2654 2655 } // end namespace llvm 2656 2657 BoUpSLP::~BoUpSLP() { 2658 for (const auto &Pair : DeletedInstructions) { 2659 // Replace operands of ignored instructions with Undefs in case if they were 2660 // marked for deletion. 2661 if (Pair.getSecond()) { 2662 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2663 Pair.getFirst()->replaceAllUsesWith(Undef); 2664 } 2665 Pair.getFirst()->dropAllReferences(); 2666 } 2667 for (const auto &Pair : DeletedInstructions) { 2668 assert(Pair.getFirst()->use_empty() && 2669 "trying to erase instruction with users."); 2670 Pair.getFirst()->eraseFromParent(); 2671 } 2672 #ifdef EXPENSIVE_CHECKS 2673 // If we could guarantee that this call is not extremely slow, we could 2674 // remove the ifdef limitation (see PR47712). 2675 assert(!verifyFunction(*F, &dbgs())); 2676 #endif 2677 } 2678 2679 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2680 for (auto *V : AV) { 2681 if (auto *I = dyn_cast<Instruction>(V)) 2682 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 2683 }; 2684 } 2685 2686 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 2687 /// contains original mask for the scalars reused in the node. Procedure 2688 /// transform this mask in accordance with the given \p Mask. 2689 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 2690 assert(!Mask.empty() && Reuses.size() == Mask.size() && 2691 "Expected non-empty mask."); 2692 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 2693 Prev.swap(Reuses); 2694 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 2695 if (Mask[I] != UndefMaskElem) 2696 Reuses[Mask[I]] = Prev[I]; 2697 } 2698 2699 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 2700 /// the original order of the scalars. Procedure transforms the provided order 2701 /// in accordance with the given \p Mask. If the resulting \p Order is just an 2702 /// identity order, \p Order is cleared. 2703 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 2704 assert(!Mask.empty() && "Expected non-empty mask."); 2705 SmallVector<int> MaskOrder; 2706 if (Order.empty()) { 2707 MaskOrder.resize(Mask.size()); 2708 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 2709 } else { 2710 inversePermutation(Order, MaskOrder); 2711 } 2712 reorderReuses(MaskOrder, Mask); 2713 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 2714 Order.clear(); 2715 return; 2716 } 2717 Order.assign(Mask.size(), Mask.size()); 2718 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 2719 if (MaskOrder[I] != UndefMaskElem) 2720 Order[MaskOrder[I]] = I; 2721 fixupOrderingIndices(Order); 2722 } 2723 2724 Optional<BoUpSLP::OrdersType> 2725 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { 2726 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 2727 unsigned NumScalars = TE.Scalars.size(); 2728 OrdersType CurrentOrder(NumScalars, NumScalars); 2729 SmallVector<int> Positions; 2730 SmallBitVector UsedPositions(NumScalars); 2731 const TreeEntry *STE = nullptr; 2732 // Try to find all gathered scalars that are gets vectorized in other 2733 // vectorize node. Here we can have only one single tree vector node to 2734 // correctly identify order of the gathered scalars. 2735 for (unsigned I = 0; I < NumScalars; ++I) { 2736 Value *V = TE.Scalars[I]; 2737 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) 2738 continue; 2739 if (const auto *LocalSTE = getTreeEntry(V)) { 2740 if (!STE) 2741 STE = LocalSTE; 2742 else if (STE != LocalSTE) 2743 // Take the order only from the single vector node. 2744 return None; 2745 unsigned Lane = 2746 std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); 2747 if (Lane >= NumScalars) 2748 return None; 2749 if (CurrentOrder[Lane] != NumScalars) { 2750 if (Lane != I) 2751 continue; 2752 UsedPositions.reset(CurrentOrder[Lane]); 2753 } 2754 // The partial identity (where only some elements of the gather node are 2755 // in the identity order) is good. 2756 CurrentOrder[Lane] = I; 2757 UsedPositions.set(I); 2758 } 2759 } 2760 // Need to keep the order if we have a vector entry and at least 2 scalars or 2761 // the vectorized entry has just 2 scalars. 2762 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { 2763 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { 2764 for (unsigned I = 0; I < NumScalars; ++I) 2765 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) 2766 return false; 2767 return true; 2768 }; 2769 if (IsIdentityOrder(CurrentOrder)) { 2770 CurrentOrder.clear(); 2771 return CurrentOrder; 2772 } 2773 auto *It = CurrentOrder.begin(); 2774 for (unsigned I = 0; I < NumScalars;) { 2775 if (UsedPositions.test(I)) { 2776 ++I; 2777 continue; 2778 } 2779 if (*It == NumScalars) { 2780 *It = I; 2781 ++I; 2782 } 2783 ++It; 2784 } 2785 return CurrentOrder; 2786 } 2787 return None; 2788 } 2789 2790 void BoUpSLP::reorderTopToBottom() { 2791 // Maps VF to the graph nodes. 2792 DenseMap<unsigned, SmallPtrSet<TreeEntry *, 4>> VFToOrderedEntries; 2793 // ExtractElement gather nodes which can be vectorized and need to handle 2794 // their ordering. 2795 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 2796 // Find all reorderable nodes with the given VF. 2797 // Currently the are vectorized loads,extracts + some gathering of extracts. 2798 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders]( 2799 const std::unique_ptr<TreeEntry> &TE) { 2800 // No need to reorder if need to shuffle reuses, still need to shuffle the 2801 // node. 2802 if (!TE->ReuseShuffleIndices.empty()) 2803 return; 2804 if (TE->State == TreeEntry::Vectorize && 2805 isa<LoadInst, ExtractElementInst, ExtractValueInst, StoreInst, 2806 InsertElementInst>(TE->getMainOp()) && 2807 !TE->isAltShuffle()) { 2808 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 2809 return; 2810 } 2811 if (TE->State == TreeEntry::NeedToGather) { 2812 if (TE->getOpcode() == Instruction::ExtractElement && 2813 !TE->isAltShuffle() && 2814 isa<FixedVectorType>(cast<ExtractElementInst>(TE->getMainOp()) 2815 ->getVectorOperandType()) && 2816 allSameType(TE->Scalars) && allSameBlock(TE->Scalars)) { 2817 // Check that gather of extractelements can be represented as 2818 // just a shuffle of a single vector. 2819 OrdersType CurrentOrder; 2820 bool Reuse = 2821 canReuseExtract(TE->Scalars, TE->getMainOp(), CurrentOrder); 2822 if (Reuse || !CurrentOrder.empty()) { 2823 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 2824 GathersToOrders.try_emplace(TE.get(), CurrentOrder); 2825 return; 2826 } 2827 } 2828 if (Optional<OrdersType> CurrentOrder = 2829 findReusedOrderedScalars(*TE.get())) { 2830 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 2831 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 2832 } 2833 } 2834 }); 2835 2836 // Reorder the graph nodes according to their vectorization factor. 2837 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 2838 VF /= 2) { 2839 auto It = VFToOrderedEntries.find(VF); 2840 if (It == VFToOrderedEntries.end()) 2841 continue; 2842 // Try to find the most profitable order. We just are looking for the most 2843 // used order and reorder scalar elements in the nodes according to this 2844 // mostly used order. 2845 const SmallPtrSetImpl<TreeEntry *> &OrderedEntries = It->getSecond(); 2846 // All operands are reordered and used only in this node - propagate the 2847 // most used order to the user node. 2848 MapVector<OrdersType, unsigned, 2849 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 2850 OrdersUses; 2851 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 2852 for (const TreeEntry *OpTE : OrderedEntries) { 2853 // No need to reorder this nodes, still need to extend and to use shuffle, 2854 // just need to merge reordering shuffle and the reuse shuffle. 2855 if (!OpTE->ReuseShuffleIndices.empty()) 2856 continue; 2857 // Count number of orders uses. 2858 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 2859 if (OpTE->State == TreeEntry::NeedToGather) 2860 return GathersToOrders.find(OpTE)->second; 2861 return OpTE->ReorderIndices; 2862 }(); 2863 // Stores actually store the mask, not the order, need to invert. 2864 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 2865 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 2866 SmallVector<int> Mask; 2867 inversePermutation(Order, Mask); 2868 unsigned E = Order.size(); 2869 OrdersType CurrentOrder(E, E); 2870 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 2871 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 2872 }); 2873 fixupOrderingIndices(CurrentOrder); 2874 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 2875 } else { 2876 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 2877 } 2878 } 2879 // Set order of the user node. 2880 if (OrdersUses.empty()) 2881 continue; 2882 // Choose the most used order. 2883 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 2884 unsigned Cnt = OrdersUses.front().second; 2885 for (const auto &Pair : drop_begin(OrdersUses)) { 2886 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 2887 BestOrder = Pair.first; 2888 Cnt = Pair.second; 2889 } 2890 } 2891 // Set order of the user node. 2892 if (BestOrder.empty()) 2893 continue; 2894 SmallVector<int> Mask; 2895 inversePermutation(BestOrder, Mask); 2896 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 2897 unsigned E = BestOrder.size(); 2898 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 2899 return I < E ? static_cast<int>(I) : UndefMaskElem; 2900 }); 2901 // Do an actual reordering, if profitable. 2902 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 2903 // Just do the reordering for the nodes with the given VF. 2904 if (TE->Scalars.size() != VF) { 2905 if (TE->ReuseShuffleIndices.size() == VF) { 2906 // Need to reorder the reuses masks of the operands with smaller VF to 2907 // be able to find the match between the graph nodes and scalar 2908 // operands of the given node during vectorization/cost estimation. 2909 assert(all_of(TE->UserTreeIndices, 2910 [VF, &TE](const EdgeInfo &EI) { 2911 return EI.UserTE->Scalars.size() == VF || 2912 EI.UserTE->Scalars.size() == 2913 TE->Scalars.size(); 2914 }) && 2915 "All users must be of VF size."); 2916 // Update ordering of the operands with the smaller VF than the given 2917 // one. 2918 reorderReuses(TE->ReuseShuffleIndices, Mask); 2919 } 2920 continue; 2921 } 2922 if (TE->State == TreeEntry::Vectorize && 2923 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 2924 InsertElementInst>(TE->getMainOp()) && 2925 !TE->isAltShuffle()) { 2926 // Build correct orders for extract{element,value}, loads and 2927 // stores. 2928 reorderOrder(TE->ReorderIndices, Mask); 2929 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 2930 TE->reorderOperands(Mask); 2931 } else { 2932 // Reorder the node and its operands. 2933 TE->reorderOperands(Mask); 2934 assert(TE->ReorderIndices.empty() && 2935 "Expected empty reorder sequence."); 2936 reorderScalars(TE->Scalars, Mask); 2937 } 2938 if (!TE->ReuseShuffleIndices.empty()) { 2939 // Apply reversed order to keep the original ordering of the reused 2940 // elements to avoid extra reorder indices shuffling. 2941 OrdersType CurrentOrder; 2942 reorderOrder(CurrentOrder, MaskOrder); 2943 SmallVector<int> NewReuses; 2944 inversePermutation(CurrentOrder, NewReuses); 2945 addMask(NewReuses, TE->ReuseShuffleIndices); 2946 TE->ReuseShuffleIndices.swap(NewReuses); 2947 } 2948 } 2949 } 2950 } 2951 2952 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { 2953 SetVector<TreeEntry *> OrderedEntries; 2954 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 2955 // Find all reorderable leaf nodes with the given VF. 2956 // Currently the are vectorized loads,extracts without alternate operands + 2957 // some gathering of extracts. 2958 SmallVector<TreeEntry *> NonVectorized; 2959 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 2960 &NonVectorized]( 2961 const std::unique_ptr<TreeEntry> &TE) { 2962 if (TE->State != TreeEntry::Vectorize) 2963 NonVectorized.push_back(TE.get()); 2964 // No need to reorder if need to shuffle reuses, still need to shuffle the 2965 // node. 2966 if (!TE->ReuseShuffleIndices.empty()) 2967 return; 2968 if (TE->State == TreeEntry::Vectorize && 2969 isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE->getMainOp()) && 2970 !TE->isAltShuffle()) { 2971 OrderedEntries.insert(TE.get()); 2972 return; 2973 } 2974 if (TE->State == TreeEntry::NeedToGather) { 2975 if (TE->getOpcode() == Instruction::ExtractElement && 2976 !TE->isAltShuffle() && 2977 isa<FixedVectorType>(cast<ExtractElementInst>(TE->getMainOp()) 2978 ->getVectorOperandType()) && 2979 allSameType(TE->Scalars) && allSameBlock(TE->Scalars)) { 2980 // Check that gather of extractelements can be represented as 2981 // just a shuffle of a single vector with a single user only. 2982 OrdersType CurrentOrder; 2983 bool Reuse = 2984 canReuseExtract(TE->Scalars, TE->getMainOp(), CurrentOrder); 2985 if ((Reuse || !CurrentOrder.empty()) && 2986 !any_of(VectorizableTree, 2987 [&TE](const std::unique_ptr<TreeEntry> &Entry) { 2988 return Entry->State == TreeEntry::NeedToGather && 2989 Entry.get() != TE.get() && 2990 Entry->isSame(TE->Scalars); 2991 })) { 2992 OrderedEntries.insert(TE.get()); 2993 GathersToOrders.try_emplace(TE.get(), CurrentOrder); 2994 return; 2995 } 2996 } 2997 if (Optional<OrdersType> CurrentOrder = 2998 findReusedOrderedScalars(*TE.get())) { 2999 OrderedEntries.insert(TE.get()); 3000 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3001 } 3002 } 3003 }); 3004 3005 // Checks if the operands of the users are reordarable and have only single 3006 // use. 3007 auto &&CheckOperands = 3008 [this, &NonVectorized](const auto &Data, 3009 SmallVectorImpl<TreeEntry *> &GatherOps) { 3010 for (unsigned I = 0, E = Data.first->getNumOperands(); I < E; ++I) { 3011 if (any_of(Data.second, 3012 [I](const std::pair<unsigned, TreeEntry *> &OpData) { 3013 return OpData.first == I && 3014 OpData.second->State == TreeEntry::Vectorize; 3015 })) 3016 continue; 3017 ArrayRef<Value *> VL = Data.first->getOperand(I); 3018 const TreeEntry *TE = nullptr; 3019 const auto *It = find_if(VL, [this, &TE](Value *V) { 3020 TE = getTreeEntry(V); 3021 return TE; 3022 }); 3023 if (It != VL.end() && TE->isSame(VL)) 3024 return false; 3025 TreeEntry *Gather = nullptr; 3026 if (count_if(NonVectorized, [VL, &Gather](TreeEntry *TE) { 3027 assert(TE->State != TreeEntry::Vectorize && 3028 "Only non-vectorized nodes are expected."); 3029 if (TE->isSame(VL)) { 3030 Gather = TE; 3031 return true; 3032 } 3033 return false; 3034 }) > 1) 3035 return false; 3036 if (Gather) 3037 GatherOps.push_back(Gather); 3038 } 3039 return true; 3040 }; 3041 // 1. Propagate order to the graph nodes, which use only reordered nodes. 3042 // I.e., if the node has operands, that are reordered, try to make at least 3043 // one operand order in the natural order and reorder others + reorder the 3044 // user node itself. 3045 SmallPtrSet<const TreeEntry *, 4> Visited; 3046 while (!OrderedEntries.empty()) { 3047 // 1. Filter out only reordered nodes. 3048 // 2. If the entry has multiple uses - skip it and jump to the next node. 3049 MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 3050 SmallVector<TreeEntry *> Filtered; 3051 for (TreeEntry *TE : OrderedEntries) { 3052 if (!(TE->State == TreeEntry::Vectorize || 3053 (TE->State == TreeEntry::NeedToGather && 3054 GathersToOrders.count(TE))) || 3055 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3056 !all_of(drop_begin(TE->UserTreeIndices), 3057 [TE](const EdgeInfo &EI) { 3058 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 3059 }) || 3060 !Visited.insert(TE).second) { 3061 Filtered.push_back(TE); 3062 continue; 3063 } 3064 // Build a map between user nodes and their operands order to speedup 3065 // search. The graph currently does not provide this dependency directly. 3066 for (EdgeInfo &EI : TE->UserTreeIndices) { 3067 TreeEntry *UserTE = EI.UserTE; 3068 auto It = Users.find(UserTE); 3069 if (It == Users.end()) 3070 It = Users.insert({UserTE, {}}).first; 3071 It->second.emplace_back(EI.EdgeIdx, TE); 3072 } 3073 } 3074 // Erase filtered entries. 3075 for_each(Filtered, 3076 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 3077 for (const auto &Data : Users) { 3078 // Check that operands are used only in the User node. 3079 SmallVector<TreeEntry *> GatherOps; 3080 if (!CheckOperands(Data, GatherOps)) { 3081 for_each(Data.second, 3082 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3083 OrderedEntries.remove(Op.second); 3084 }); 3085 continue; 3086 } 3087 // All operands are reordered and used only in this node - propagate the 3088 // most used order to the user node. 3089 MapVector<OrdersType, unsigned, 3090 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3091 OrdersUses; 3092 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3093 for (const auto &Op : Data.second) { 3094 TreeEntry *OpTE = Op.second; 3095 if (!OpTE->ReuseShuffleIndices.empty() || 3096 (IgnoreReorder && OpTE == VectorizableTree.front().get())) 3097 continue; 3098 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3099 if (OpTE->State == TreeEntry::NeedToGather) 3100 return GathersToOrders.find(OpTE)->second; 3101 return OpTE->ReorderIndices; 3102 }(); 3103 // Stores actually store the mask, not the order, need to invert. 3104 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3105 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3106 SmallVector<int> Mask; 3107 inversePermutation(Order, Mask); 3108 unsigned E = Order.size(); 3109 OrdersType CurrentOrder(E, E); 3110 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3111 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3112 }); 3113 fixupOrderingIndices(CurrentOrder); 3114 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3115 } else { 3116 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3117 } 3118 if (VisitedOps.insert(OpTE).second) 3119 OrdersUses.insert(std::make_pair(OrdersType(), 0)).first->second += 3120 OpTE->UserTreeIndices.size(); 3121 assert(OrdersUses[{}] > 0 && "Counter cannot be less than 0."); 3122 --OrdersUses[{}]; 3123 } 3124 // If no orders - skip current nodes and jump to the next one, if any. 3125 if (OrdersUses.empty()) { 3126 for_each(Data.second, 3127 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3128 OrderedEntries.remove(Op.second); 3129 }); 3130 continue; 3131 } 3132 // Choose the best order. 3133 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3134 unsigned Cnt = OrdersUses.front().second; 3135 for (const auto &Pair : drop_begin(OrdersUses)) { 3136 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3137 BestOrder = Pair.first; 3138 Cnt = Pair.second; 3139 } 3140 } 3141 // Set order of the user node (reordering of operands and user nodes). 3142 if (BestOrder.empty()) { 3143 for_each(Data.second, 3144 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3145 OrderedEntries.remove(Op.second); 3146 }); 3147 continue; 3148 } 3149 // Erase operands from OrderedEntries list and adjust their orders. 3150 VisitedOps.clear(); 3151 SmallVector<int> Mask; 3152 inversePermutation(BestOrder, Mask); 3153 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3154 unsigned E = BestOrder.size(); 3155 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3156 return I < E ? static_cast<int>(I) : UndefMaskElem; 3157 }); 3158 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 3159 TreeEntry *TE = Op.second; 3160 OrderedEntries.remove(TE); 3161 if (!VisitedOps.insert(TE).second) 3162 continue; 3163 if (!TE->ReuseShuffleIndices.empty() && TE->ReorderIndices.empty()) { 3164 // Just reorder reuses indices. 3165 reorderReuses(TE->ReuseShuffleIndices, Mask); 3166 continue; 3167 } 3168 // Gathers are processed separately. 3169 if (TE->State != TreeEntry::Vectorize) 3170 continue; 3171 assert((BestOrder.size() == TE->ReorderIndices.size() || 3172 TE->ReorderIndices.empty()) && 3173 "Non-matching sizes of user/operand entries."); 3174 reorderOrder(TE->ReorderIndices, Mask); 3175 } 3176 // For gathers just need to reorder its scalars. 3177 for (TreeEntry *Gather : GatherOps) { 3178 assert(Gather->ReorderIndices.empty() && 3179 "Unexpected reordering of gathers."); 3180 if (!Gather->ReuseShuffleIndices.empty()) { 3181 // Just reorder reuses indices. 3182 reorderReuses(Gather->ReuseShuffleIndices, Mask); 3183 continue; 3184 } 3185 reorderScalars(Gather->Scalars, Mask); 3186 OrderedEntries.remove(Gather); 3187 } 3188 // Reorder operands of the user node and set the ordering for the user 3189 // node itself. 3190 if (Data.first->State != TreeEntry::Vectorize || 3191 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 3192 Data.first->getMainOp()) || 3193 Data.first->isAltShuffle()) 3194 Data.first->reorderOperands(Mask); 3195 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 3196 Data.first->isAltShuffle()) { 3197 reorderScalars(Data.first->Scalars, Mask); 3198 reorderOrder(Data.first->ReorderIndices, MaskOrder); 3199 if (Data.first->ReuseShuffleIndices.empty() && 3200 !Data.first->ReorderIndices.empty() && 3201 !Data.first->isAltShuffle()) { 3202 // Insert user node to the list to try to sink reordering deeper in 3203 // the graph. 3204 OrderedEntries.insert(Data.first); 3205 } 3206 } else { 3207 reorderOrder(Data.first->ReorderIndices, Mask); 3208 } 3209 } 3210 } 3211 // If the reordering is unnecessary, just remove the reorder. 3212 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && 3213 VectorizableTree.front()->ReuseShuffleIndices.empty()) 3214 VectorizableTree.front()->ReorderIndices.clear(); 3215 } 3216 3217 void BoUpSLP::buildExternalUses( 3218 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3219 // Collect the values that we need to extract from the tree. 3220 for (auto &TEPtr : VectorizableTree) { 3221 TreeEntry *Entry = TEPtr.get(); 3222 3223 // No need to handle users of gathered values. 3224 if (Entry->State == TreeEntry::NeedToGather) 3225 continue; 3226 3227 // For each lane: 3228 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3229 Value *Scalar = Entry->Scalars[Lane]; 3230 int FoundLane = Entry->findLaneForValue(Scalar); 3231 3232 // Check if the scalar is externally used as an extra arg. 3233 auto ExtI = ExternallyUsedValues.find(Scalar); 3234 if (ExtI != ExternallyUsedValues.end()) { 3235 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 3236 << Lane << " from " << *Scalar << ".\n"); 3237 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 3238 } 3239 for (User *U : Scalar->users()) { 3240 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 3241 3242 Instruction *UserInst = dyn_cast<Instruction>(U); 3243 if (!UserInst) 3244 continue; 3245 3246 if (isDeleted(UserInst)) 3247 continue; 3248 3249 // Skip in-tree scalars that become vectors 3250 if (TreeEntry *UseEntry = getTreeEntry(U)) { 3251 Value *UseScalar = UseEntry->Scalars[0]; 3252 // Some in-tree scalars will remain as scalar in vectorized 3253 // instructions. If that is the case, the one in Lane 0 will 3254 // be used. 3255 if (UseScalar != U || 3256 UseEntry->State == TreeEntry::ScatterVectorize || 3257 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 3258 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 3259 << ".\n"); 3260 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 3261 continue; 3262 } 3263 } 3264 3265 // Ignore users in the user ignore list. 3266 if (is_contained(UserIgnoreList, UserInst)) 3267 continue; 3268 3269 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 3270 << Lane << " from " << *Scalar << ".\n"); 3271 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 3272 } 3273 } 3274 } 3275 } 3276 3277 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 3278 ArrayRef<Value *> UserIgnoreLst) { 3279 deleteTree(); 3280 UserIgnoreList = UserIgnoreLst; 3281 if (!allSameType(Roots)) 3282 return; 3283 buildTree_rec(Roots, 0, EdgeInfo()); 3284 } 3285 3286 namespace { 3287 /// Tracks the state we can represent the loads in the given sequence. 3288 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 3289 } // anonymous namespace 3290 3291 /// Checks if the given array of loads can be represented as a vectorized, 3292 /// scatter or just simple gather. 3293 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 3294 const TargetTransformInfo &TTI, 3295 const DataLayout &DL, ScalarEvolution &SE, 3296 SmallVectorImpl<unsigned> &Order, 3297 SmallVectorImpl<Value *> &PointerOps) { 3298 // Check that a vectorized load would load the same memory as a scalar 3299 // load. For example, we don't want to vectorize loads that are smaller 3300 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3301 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3302 // from such a struct, we read/write packed bits disagreeing with the 3303 // unvectorized version. 3304 Type *ScalarTy = VL0->getType(); 3305 3306 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 3307 return LoadsState::Gather; 3308 3309 // Make sure all loads in the bundle are simple - we can't vectorize 3310 // atomic or volatile loads. 3311 PointerOps.clear(); 3312 PointerOps.resize(VL.size()); 3313 auto *POIter = PointerOps.begin(); 3314 for (Value *V : VL) { 3315 auto *L = cast<LoadInst>(V); 3316 if (!L->isSimple()) 3317 return LoadsState::Gather; 3318 *POIter = L->getPointerOperand(); 3319 ++POIter; 3320 } 3321 3322 Order.clear(); 3323 // Check the order of pointer operands. 3324 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 3325 Value *Ptr0; 3326 Value *PtrN; 3327 if (Order.empty()) { 3328 Ptr0 = PointerOps.front(); 3329 PtrN = PointerOps.back(); 3330 } else { 3331 Ptr0 = PointerOps[Order.front()]; 3332 PtrN = PointerOps[Order.back()]; 3333 } 3334 Optional<int> Diff = 3335 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 3336 // Check that the sorted loads are consecutive. 3337 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 3338 return LoadsState::Vectorize; 3339 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 3340 for (Value *V : VL) 3341 CommonAlignment = 3342 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 3343 if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()), 3344 CommonAlignment)) 3345 return LoadsState::ScatterVectorize; 3346 } 3347 3348 return LoadsState::Gather; 3349 } 3350 3351 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 3352 const EdgeInfo &UserTreeIdx) { 3353 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 3354 3355 SmallVector<int> ReuseShuffleIndicies; 3356 SmallVector<Value *> UniqueValues; 3357 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, 3358 &UserTreeIdx, 3359 this](const InstructionsState &S) { 3360 // Check that every instruction appears once in this bundle. 3361 DenseMap<Value *, unsigned> UniquePositions; 3362 for (Value *V : VL) { 3363 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3364 ReuseShuffleIndicies.emplace_back(isa<UndefValue>(V) ? -1 3365 : Res.first->second); 3366 if (Res.second) 3367 UniqueValues.emplace_back(V); 3368 } 3369 size_t NumUniqueScalarValues = UniqueValues.size(); 3370 if (NumUniqueScalarValues == VL.size()) { 3371 ReuseShuffleIndicies.clear(); 3372 } else { 3373 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 3374 if (NumUniqueScalarValues <= 1 || 3375 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 3376 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 3377 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3378 return false; 3379 } 3380 VL = UniqueValues; 3381 } 3382 return true; 3383 }; 3384 3385 InstructionsState S = getSameOpcode(VL); 3386 if (Depth == RecursionMaxDepth) { 3387 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 3388 if (TryToFindDuplicates(S)) 3389 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3390 ReuseShuffleIndicies); 3391 return; 3392 } 3393 3394 // Don't handle scalable vectors 3395 if (S.getOpcode() == Instruction::ExtractElement && 3396 isa<ScalableVectorType>( 3397 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 3398 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 3399 if (TryToFindDuplicates(S)) 3400 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3401 ReuseShuffleIndicies); 3402 return; 3403 } 3404 3405 // Don't handle vectors. 3406 if (S.OpValue->getType()->isVectorTy() && 3407 !isa<InsertElementInst>(S.OpValue)) { 3408 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 3409 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3410 return; 3411 } 3412 3413 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 3414 if (SI->getValueOperand()->getType()->isVectorTy()) { 3415 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 3416 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3417 return; 3418 } 3419 3420 // If all of the operands are identical or constant we have a simple solution. 3421 // If we deal with insert/extract instructions, they all must have constant 3422 // indices, otherwise we should gather them, not try to vectorize. 3423 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() || 3424 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) && 3425 !all_of(VL, isVectorLikeInstWithConstOps))) { 3426 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 3427 if (TryToFindDuplicates(S)) 3428 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3429 ReuseShuffleIndicies); 3430 return; 3431 } 3432 3433 // We now know that this is a vector of instructions of the same type from 3434 // the same block. 3435 3436 // Don't vectorize ephemeral values. 3437 for (Value *V : VL) { 3438 if (EphValues.count(V)) { 3439 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3440 << ") is ephemeral.\n"); 3441 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3442 return; 3443 } 3444 } 3445 3446 // Check if this is a duplicate of another entry. 3447 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 3448 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 3449 if (!E->isSame(VL)) { 3450 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 3451 if (TryToFindDuplicates(S)) 3452 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3453 ReuseShuffleIndicies); 3454 return; 3455 } 3456 // Record the reuse of the tree node. FIXME, currently this is only used to 3457 // properly draw the graph rather than for the actual vectorization. 3458 E->UserTreeIndices.push_back(UserTreeIdx); 3459 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 3460 << ".\n"); 3461 return; 3462 } 3463 3464 // Check that none of the instructions in the bundle are already in the tree. 3465 for (Value *V : VL) { 3466 auto *I = dyn_cast<Instruction>(V); 3467 if (!I) 3468 continue; 3469 if (getTreeEntry(I)) { 3470 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3471 << ") is already in tree.\n"); 3472 if (TryToFindDuplicates(S)) 3473 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3474 ReuseShuffleIndicies); 3475 return; 3476 } 3477 } 3478 3479 // If any of the scalars is marked as a value that needs to stay scalar, then 3480 // we need to gather the scalars. 3481 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 3482 for (Value *V : VL) { 3483 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) { 3484 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 3485 if (TryToFindDuplicates(S)) 3486 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3487 ReuseShuffleIndicies); 3488 return; 3489 } 3490 } 3491 3492 // Check that all of the users of the scalars that we want to vectorize are 3493 // schedulable. 3494 auto *VL0 = cast<Instruction>(S.OpValue); 3495 BasicBlock *BB = VL0->getParent(); 3496 3497 if (!DT->isReachableFromEntry(BB)) { 3498 // Don't go into unreachable blocks. They may contain instructions with 3499 // dependency cycles which confuse the final scheduling. 3500 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 3501 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3502 return; 3503 } 3504 3505 // Check that every instruction appears once in this bundle. 3506 if (!TryToFindDuplicates(S)) 3507 return; 3508 3509 auto &BSRef = BlocksSchedules[BB]; 3510 if (!BSRef) 3511 BSRef = std::make_unique<BlockScheduling>(BB); 3512 3513 BlockScheduling &BS = *BSRef.get(); 3514 3515 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 3516 if (!Bundle) { 3517 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 3518 assert((!BS.getScheduleData(VL0) || 3519 !BS.getScheduleData(VL0)->isPartOfBundle()) && 3520 "tryScheduleBundle should cancelScheduling on failure"); 3521 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3522 ReuseShuffleIndicies); 3523 return; 3524 } 3525 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 3526 3527 unsigned ShuffleOrOp = S.isAltShuffle() ? 3528 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 3529 switch (ShuffleOrOp) { 3530 case Instruction::PHI: { 3531 auto *PH = cast<PHINode>(VL0); 3532 3533 // Check for terminator values (e.g. invoke). 3534 for (Value *V : VL) 3535 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 3536 Instruction *Term = dyn_cast<Instruction>( 3537 cast<PHINode>(V)->getIncomingValueForBlock( 3538 PH->getIncomingBlock(I))); 3539 if (Term && Term->isTerminator()) { 3540 LLVM_DEBUG(dbgs() 3541 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 3542 BS.cancelScheduling(VL, VL0); 3543 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3544 ReuseShuffleIndicies); 3545 return; 3546 } 3547 } 3548 3549 TreeEntry *TE = 3550 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 3551 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 3552 3553 // Keeps the reordered operands to avoid code duplication. 3554 SmallVector<ValueList, 2> OperandsVec; 3555 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 3556 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 3557 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 3558 TE->setOperand(I, Operands); 3559 OperandsVec.push_back(Operands); 3560 continue; 3561 } 3562 ValueList Operands; 3563 // Prepare the operand vector. 3564 for (Value *V : VL) 3565 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 3566 PH->getIncomingBlock(I))); 3567 TE->setOperand(I, Operands); 3568 OperandsVec.push_back(Operands); 3569 } 3570 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 3571 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 3572 return; 3573 } 3574 case Instruction::ExtractValue: 3575 case Instruction::ExtractElement: { 3576 OrdersType CurrentOrder; 3577 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 3578 if (Reuse) { 3579 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 3580 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3581 ReuseShuffleIndicies); 3582 // This is a special case, as it does not gather, but at the same time 3583 // we are not extending buildTree_rec() towards the operands. 3584 ValueList Op0; 3585 Op0.assign(VL.size(), VL0->getOperand(0)); 3586 VectorizableTree.back()->setOperand(0, Op0); 3587 return; 3588 } 3589 if (!CurrentOrder.empty()) { 3590 LLVM_DEBUG({ 3591 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 3592 "with order"; 3593 for (unsigned Idx : CurrentOrder) 3594 dbgs() << " " << Idx; 3595 dbgs() << "\n"; 3596 }); 3597 fixupOrderingIndices(CurrentOrder); 3598 // Insert new order with initial value 0, if it does not exist, 3599 // otherwise return the iterator to the existing one. 3600 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3601 ReuseShuffleIndicies, CurrentOrder); 3602 // This is a special case, as it does not gather, but at the same time 3603 // we are not extending buildTree_rec() towards the operands. 3604 ValueList Op0; 3605 Op0.assign(VL.size(), VL0->getOperand(0)); 3606 VectorizableTree.back()->setOperand(0, Op0); 3607 return; 3608 } 3609 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 3610 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3611 ReuseShuffleIndicies); 3612 BS.cancelScheduling(VL, VL0); 3613 return; 3614 } 3615 case Instruction::InsertElement: { 3616 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 3617 3618 // Check that we have a buildvector and not a shuffle of 2 or more 3619 // different vectors. 3620 ValueSet SourceVectors; 3621 int MinIdx = std::numeric_limits<int>::max(); 3622 for (Value *V : VL) { 3623 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 3624 Optional<int> Idx = *getInsertIndex(V, 0); 3625 if (!Idx || *Idx == UndefMaskElem) 3626 continue; 3627 MinIdx = std::min(MinIdx, *Idx); 3628 } 3629 3630 if (count_if(VL, [&SourceVectors](Value *V) { 3631 return !SourceVectors.contains(V); 3632 }) >= 2) { 3633 // Found 2nd source vector - cancel. 3634 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 3635 "different source vectors.\n"); 3636 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3637 BS.cancelScheduling(VL, VL0); 3638 return; 3639 } 3640 3641 auto OrdCompare = [](const std::pair<int, int> &P1, 3642 const std::pair<int, int> &P2) { 3643 return P1.first > P2.first; 3644 }; 3645 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 3646 decltype(OrdCompare)> 3647 Indices(OrdCompare); 3648 for (int I = 0, E = VL.size(); I < E; ++I) { 3649 Optional<int> Idx = *getInsertIndex(VL[I], 0); 3650 if (!Idx || *Idx == UndefMaskElem) 3651 continue; 3652 Indices.emplace(*Idx, I); 3653 } 3654 OrdersType CurrentOrder(VL.size(), VL.size()); 3655 bool IsIdentity = true; 3656 for (int I = 0, E = VL.size(); I < E; ++I) { 3657 CurrentOrder[Indices.top().second] = I; 3658 IsIdentity &= Indices.top().second == I; 3659 Indices.pop(); 3660 } 3661 if (IsIdentity) 3662 CurrentOrder.clear(); 3663 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3664 None, CurrentOrder); 3665 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 3666 3667 constexpr int NumOps = 2; 3668 ValueList VectorOperands[NumOps]; 3669 for (int I = 0; I < NumOps; ++I) { 3670 for (Value *V : VL) 3671 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 3672 3673 TE->setOperand(I, VectorOperands[I]); 3674 } 3675 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 3676 return; 3677 } 3678 case Instruction::Load: { 3679 // Check that a vectorized load would load the same memory as a scalar 3680 // load. For example, we don't want to vectorize loads that are smaller 3681 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3682 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3683 // from such a struct, we read/write packed bits disagreeing with the 3684 // unvectorized version. 3685 SmallVector<Value *> PointerOps; 3686 OrdersType CurrentOrder; 3687 TreeEntry *TE = nullptr; 3688 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 3689 PointerOps)) { 3690 case LoadsState::Vectorize: 3691 if (CurrentOrder.empty()) { 3692 // Original loads are consecutive and does not require reordering. 3693 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3694 ReuseShuffleIndicies); 3695 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 3696 } else { 3697 fixupOrderingIndices(CurrentOrder); 3698 // Need to reorder. 3699 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3700 ReuseShuffleIndicies, CurrentOrder); 3701 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 3702 } 3703 TE->setOperandsInOrder(); 3704 break; 3705 case LoadsState::ScatterVectorize: 3706 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 3707 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 3708 UserTreeIdx, ReuseShuffleIndicies); 3709 TE->setOperandsInOrder(); 3710 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 3711 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 3712 break; 3713 case LoadsState::Gather: 3714 BS.cancelScheduling(VL, VL0); 3715 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3716 ReuseShuffleIndicies); 3717 #ifndef NDEBUG 3718 Type *ScalarTy = VL0->getType(); 3719 if (DL->getTypeSizeInBits(ScalarTy) != 3720 DL->getTypeAllocSizeInBits(ScalarTy)) 3721 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 3722 else if (any_of(VL, [](Value *V) { 3723 return !cast<LoadInst>(V)->isSimple(); 3724 })) 3725 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 3726 else 3727 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 3728 #endif // NDEBUG 3729 break; 3730 } 3731 return; 3732 } 3733 case Instruction::ZExt: 3734 case Instruction::SExt: 3735 case Instruction::FPToUI: 3736 case Instruction::FPToSI: 3737 case Instruction::FPExt: 3738 case Instruction::PtrToInt: 3739 case Instruction::IntToPtr: 3740 case Instruction::SIToFP: 3741 case Instruction::UIToFP: 3742 case Instruction::Trunc: 3743 case Instruction::FPTrunc: 3744 case Instruction::BitCast: { 3745 Type *SrcTy = VL0->getOperand(0)->getType(); 3746 for (Value *V : VL) { 3747 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 3748 if (Ty != SrcTy || !isValidElementType(Ty)) { 3749 BS.cancelScheduling(VL, VL0); 3750 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3751 ReuseShuffleIndicies); 3752 LLVM_DEBUG(dbgs() 3753 << "SLP: Gathering casts with different src types.\n"); 3754 return; 3755 } 3756 } 3757 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3758 ReuseShuffleIndicies); 3759 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 3760 3761 TE->setOperandsInOrder(); 3762 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3763 ValueList Operands; 3764 // Prepare the operand vector. 3765 for (Value *V : VL) 3766 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3767 3768 buildTree_rec(Operands, Depth + 1, {TE, i}); 3769 } 3770 return; 3771 } 3772 case Instruction::ICmp: 3773 case Instruction::FCmp: { 3774 // Check that all of the compares have the same predicate. 3775 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 3776 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 3777 Type *ComparedTy = VL0->getOperand(0)->getType(); 3778 for (Value *V : VL) { 3779 CmpInst *Cmp = cast<CmpInst>(V); 3780 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 3781 Cmp->getOperand(0)->getType() != ComparedTy) { 3782 BS.cancelScheduling(VL, VL0); 3783 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3784 ReuseShuffleIndicies); 3785 LLVM_DEBUG(dbgs() 3786 << "SLP: Gathering cmp with different predicate.\n"); 3787 return; 3788 } 3789 } 3790 3791 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3792 ReuseShuffleIndicies); 3793 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 3794 3795 ValueList Left, Right; 3796 if (cast<CmpInst>(VL0)->isCommutative()) { 3797 // Commutative predicate - collect + sort operands of the instructions 3798 // so that each side is more likely to have the same opcode. 3799 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 3800 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3801 } else { 3802 // Collect operands - commute if it uses the swapped predicate. 3803 for (Value *V : VL) { 3804 auto *Cmp = cast<CmpInst>(V); 3805 Value *LHS = Cmp->getOperand(0); 3806 Value *RHS = Cmp->getOperand(1); 3807 if (Cmp->getPredicate() != P0) 3808 std::swap(LHS, RHS); 3809 Left.push_back(LHS); 3810 Right.push_back(RHS); 3811 } 3812 } 3813 TE->setOperand(0, Left); 3814 TE->setOperand(1, Right); 3815 buildTree_rec(Left, Depth + 1, {TE, 0}); 3816 buildTree_rec(Right, Depth + 1, {TE, 1}); 3817 return; 3818 } 3819 case Instruction::Select: 3820 case Instruction::FNeg: 3821 case Instruction::Add: 3822 case Instruction::FAdd: 3823 case Instruction::Sub: 3824 case Instruction::FSub: 3825 case Instruction::Mul: 3826 case Instruction::FMul: 3827 case Instruction::UDiv: 3828 case Instruction::SDiv: 3829 case Instruction::FDiv: 3830 case Instruction::URem: 3831 case Instruction::SRem: 3832 case Instruction::FRem: 3833 case Instruction::Shl: 3834 case Instruction::LShr: 3835 case Instruction::AShr: 3836 case Instruction::And: 3837 case Instruction::Or: 3838 case Instruction::Xor: { 3839 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3840 ReuseShuffleIndicies); 3841 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 3842 3843 // Sort operands of the instructions so that each side is more likely to 3844 // have the same opcode. 3845 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 3846 ValueList Left, Right; 3847 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3848 TE->setOperand(0, Left); 3849 TE->setOperand(1, Right); 3850 buildTree_rec(Left, Depth + 1, {TE, 0}); 3851 buildTree_rec(Right, Depth + 1, {TE, 1}); 3852 return; 3853 } 3854 3855 TE->setOperandsInOrder(); 3856 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3857 ValueList Operands; 3858 // Prepare the operand vector. 3859 for (Value *V : VL) 3860 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3861 3862 buildTree_rec(Operands, Depth + 1, {TE, i}); 3863 } 3864 return; 3865 } 3866 case Instruction::GetElementPtr: { 3867 // We don't combine GEPs with complicated (nested) indexing. 3868 for (Value *V : VL) { 3869 if (cast<Instruction>(V)->getNumOperands() != 2) { 3870 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 3871 BS.cancelScheduling(VL, VL0); 3872 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3873 ReuseShuffleIndicies); 3874 return; 3875 } 3876 } 3877 3878 // We can't combine several GEPs into one vector if they operate on 3879 // different types. 3880 Type *Ty0 = VL0->getOperand(0)->getType(); 3881 for (Value *V : VL) { 3882 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 3883 if (Ty0 != CurTy) { 3884 LLVM_DEBUG(dbgs() 3885 << "SLP: not-vectorizable GEP (different types).\n"); 3886 BS.cancelScheduling(VL, VL0); 3887 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3888 ReuseShuffleIndicies); 3889 return; 3890 } 3891 } 3892 3893 // We don't combine GEPs with non-constant indexes. 3894 Type *Ty1 = VL0->getOperand(1)->getType(); 3895 for (Value *V : VL) { 3896 auto Op = cast<Instruction>(V)->getOperand(1); 3897 if (!isa<ConstantInt>(Op) || 3898 (Op->getType() != Ty1 && 3899 Op->getType()->getScalarSizeInBits() > 3900 DL->getIndexSizeInBits( 3901 V->getType()->getPointerAddressSpace()))) { 3902 LLVM_DEBUG(dbgs() 3903 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 3904 BS.cancelScheduling(VL, VL0); 3905 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3906 ReuseShuffleIndicies); 3907 return; 3908 } 3909 } 3910 3911 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3912 ReuseShuffleIndicies); 3913 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 3914 SmallVector<ValueList, 2> Operands(2); 3915 // Prepare the operand vector for pointer operands. 3916 for (Value *V : VL) 3917 Operands.front().push_back( 3918 cast<GetElementPtrInst>(V)->getPointerOperand()); 3919 TE->setOperand(0, Operands.front()); 3920 // Need to cast all indices to the same type before vectorization to 3921 // avoid crash. 3922 // Required to be able to find correct matches between different gather 3923 // nodes and reuse the vectorized values rather than trying to gather them 3924 // again. 3925 int IndexIdx = 1; 3926 Type *VL0Ty = VL0->getOperand(IndexIdx)->getType(); 3927 Type *Ty = all_of(VL, 3928 [VL0Ty, IndexIdx](Value *V) { 3929 return VL0Ty == cast<GetElementPtrInst>(V) 3930 ->getOperand(IndexIdx) 3931 ->getType(); 3932 }) 3933 ? VL0Ty 3934 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 3935 ->getPointerOperandType() 3936 ->getScalarType()); 3937 // Prepare the operand vector. 3938 for (Value *V : VL) { 3939 auto *Op = cast<Instruction>(V)->getOperand(IndexIdx); 3940 auto *CI = cast<ConstantInt>(Op); 3941 Operands.back().push_back(ConstantExpr::getIntegerCast( 3942 CI, Ty, CI->getValue().isSignBitSet())); 3943 } 3944 TE->setOperand(IndexIdx, Operands.back()); 3945 3946 for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I) 3947 buildTree_rec(Operands[I], Depth + 1, {TE, I}); 3948 return; 3949 } 3950 case Instruction::Store: { 3951 // Check if the stores are consecutive or if we need to swizzle them. 3952 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 3953 // Avoid types that are padded when being allocated as scalars, while 3954 // being packed together in a vector (such as i1). 3955 if (DL->getTypeSizeInBits(ScalarTy) != 3956 DL->getTypeAllocSizeInBits(ScalarTy)) { 3957 BS.cancelScheduling(VL, VL0); 3958 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3959 ReuseShuffleIndicies); 3960 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 3961 return; 3962 } 3963 // Make sure all stores in the bundle are simple - we can't vectorize 3964 // atomic or volatile stores. 3965 SmallVector<Value *, 4> PointerOps(VL.size()); 3966 ValueList Operands(VL.size()); 3967 auto POIter = PointerOps.begin(); 3968 auto OIter = Operands.begin(); 3969 for (Value *V : VL) { 3970 auto *SI = cast<StoreInst>(V); 3971 if (!SI->isSimple()) { 3972 BS.cancelScheduling(VL, VL0); 3973 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3974 ReuseShuffleIndicies); 3975 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 3976 return; 3977 } 3978 *POIter = SI->getPointerOperand(); 3979 *OIter = SI->getValueOperand(); 3980 ++POIter; 3981 ++OIter; 3982 } 3983 3984 OrdersType CurrentOrder; 3985 // Check the order of pointer operands. 3986 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 3987 Value *Ptr0; 3988 Value *PtrN; 3989 if (CurrentOrder.empty()) { 3990 Ptr0 = PointerOps.front(); 3991 PtrN = PointerOps.back(); 3992 } else { 3993 Ptr0 = PointerOps[CurrentOrder.front()]; 3994 PtrN = PointerOps[CurrentOrder.back()]; 3995 } 3996 Optional<int> Dist = 3997 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 3998 // Check that the sorted pointer operands are consecutive. 3999 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 4000 if (CurrentOrder.empty()) { 4001 // Original stores are consecutive and does not require reordering. 4002 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 4003 UserTreeIdx, ReuseShuffleIndicies); 4004 TE->setOperandsInOrder(); 4005 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4006 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 4007 } else { 4008 fixupOrderingIndices(CurrentOrder); 4009 TreeEntry *TE = 4010 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4011 ReuseShuffleIndicies, CurrentOrder); 4012 TE->setOperandsInOrder(); 4013 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4014 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 4015 } 4016 return; 4017 } 4018 } 4019 4020 BS.cancelScheduling(VL, VL0); 4021 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4022 ReuseShuffleIndicies); 4023 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 4024 return; 4025 } 4026 case Instruction::Call: { 4027 // Check if the calls are all to the same vectorizable intrinsic or 4028 // library function. 4029 CallInst *CI = cast<CallInst>(VL0); 4030 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4031 4032 VFShape Shape = VFShape::get( 4033 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 4034 false /*HasGlobalPred*/); 4035 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4036 4037 if (!VecFunc && !isTriviallyVectorizable(ID)) { 4038 BS.cancelScheduling(VL, VL0); 4039 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4040 ReuseShuffleIndicies); 4041 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 4042 return; 4043 } 4044 Function *F = CI->getCalledFunction(); 4045 unsigned NumArgs = CI->arg_size(); 4046 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 4047 for (unsigned j = 0; j != NumArgs; ++j) 4048 if (hasVectorInstrinsicScalarOpd(ID, j)) 4049 ScalarArgs[j] = CI->getArgOperand(j); 4050 for (Value *V : VL) { 4051 CallInst *CI2 = dyn_cast<CallInst>(V); 4052 if (!CI2 || CI2->getCalledFunction() != F || 4053 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 4054 (VecFunc && 4055 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 4056 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 4057 BS.cancelScheduling(VL, VL0); 4058 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4059 ReuseShuffleIndicies); 4060 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 4061 << "\n"); 4062 return; 4063 } 4064 // Some intrinsics have scalar arguments and should be same in order for 4065 // them to be vectorized. 4066 for (unsigned j = 0; j != NumArgs; ++j) { 4067 if (hasVectorInstrinsicScalarOpd(ID, j)) { 4068 Value *A1J = CI2->getArgOperand(j); 4069 if (ScalarArgs[j] != A1J) { 4070 BS.cancelScheduling(VL, VL0); 4071 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4072 ReuseShuffleIndicies); 4073 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 4074 << " argument " << ScalarArgs[j] << "!=" << A1J 4075 << "\n"); 4076 return; 4077 } 4078 } 4079 } 4080 // Verify that the bundle operands are identical between the two calls. 4081 if (CI->hasOperandBundles() && 4082 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 4083 CI->op_begin() + CI->getBundleOperandsEndIndex(), 4084 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 4085 BS.cancelScheduling(VL, VL0); 4086 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4087 ReuseShuffleIndicies); 4088 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 4089 << *CI << "!=" << *V << '\n'); 4090 return; 4091 } 4092 } 4093 4094 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4095 ReuseShuffleIndicies); 4096 TE->setOperandsInOrder(); 4097 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 4098 // For scalar operands no need to to create an entry since no need to 4099 // vectorize it. 4100 if (hasVectorInstrinsicScalarOpd(ID, i)) 4101 continue; 4102 ValueList Operands; 4103 // Prepare the operand vector. 4104 for (Value *V : VL) { 4105 auto *CI2 = cast<CallInst>(V); 4106 Operands.push_back(CI2->getArgOperand(i)); 4107 } 4108 buildTree_rec(Operands, Depth + 1, {TE, i}); 4109 } 4110 return; 4111 } 4112 case Instruction::ShuffleVector: { 4113 // If this is not an alternate sequence of opcode like add-sub 4114 // then do not vectorize this instruction. 4115 if (!S.isAltShuffle()) { 4116 BS.cancelScheduling(VL, VL0); 4117 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4118 ReuseShuffleIndicies); 4119 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 4120 return; 4121 } 4122 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4123 ReuseShuffleIndicies); 4124 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 4125 4126 // Reorder operands if reordering would enable vectorization. 4127 if (isa<BinaryOperator>(VL0)) { 4128 ValueList Left, Right; 4129 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4130 TE->setOperand(0, Left); 4131 TE->setOperand(1, Right); 4132 buildTree_rec(Left, Depth + 1, {TE, 0}); 4133 buildTree_rec(Right, Depth + 1, {TE, 1}); 4134 return; 4135 } 4136 4137 TE->setOperandsInOrder(); 4138 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4139 ValueList Operands; 4140 // Prepare the operand vector. 4141 for (Value *V : VL) 4142 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4143 4144 buildTree_rec(Operands, Depth + 1, {TE, i}); 4145 } 4146 return; 4147 } 4148 default: 4149 BS.cancelScheduling(VL, VL0); 4150 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4151 ReuseShuffleIndicies); 4152 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 4153 return; 4154 } 4155 } 4156 4157 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 4158 unsigned N = 1; 4159 Type *EltTy = T; 4160 4161 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 4162 isa<VectorType>(EltTy)) { 4163 if (auto *ST = dyn_cast<StructType>(EltTy)) { 4164 // Check that struct is homogeneous. 4165 for (const auto *Ty : ST->elements()) 4166 if (Ty != *ST->element_begin()) 4167 return 0; 4168 N *= ST->getNumElements(); 4169 EltTy = *ST->element_begin(); 4170 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 4171 N *= AT->getNumElements(); 4172 EltTy = AT->getElementType(); 4173 } else { 4174 auto *VT = cast<FixedVectorType>(EltTy); 4175 N *= VT->getNumElements(); 4176 EltTy = VT->getElementType(); 4177 } 4178 } 4179 4180 if (!isValidElementType(EltTy)) 4181 return 0; 4182 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 4183 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 4184 return 0; 4185 return N; 4186 } 4187 4188 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 4189 SmallVectorImpl<unsigned> &CurrentOrder) const { 4190 Instruction *E0 = cast<Instruction>(OpValue); 4191 assert(E0->getOpcode() == Instruction::ExtractElement || 4192 E0->getOpcode() == Instruction::ExtractValue); 4193 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 4194 // Check if all of the extracts come from the same vector and from the 4195 // correct offset. 4196 Value *Vec = E0->getOperand(0); 4197 4198 CurrentOrder.clear(); 4199 4200 // We have to extract from a vector/aggregate with the same number of elements. 4201 unsigned NElts; 4202 if (E0->getOpcode() == Instruction::ExtractValue) { 4203 const DataLayout &DL = E0->getModule()->getDataLayout(); 4204 NElts = canMapToVector(Vec->getType(), DL); 4205 if (!NElts) 4206 return false; 4207 // Check if load can be rewritten as load of vector. 4208 LoadInst *LI = dyn_cast<LoadInst>(Vec); 4209 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 4210 return false; 4211 } else { 4212 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 4213 } 4214 4215 if (NElts != VL.size()) 4216 return false; 4217 4218 // Check that all of the indices extract from the correct offset. 4219 bool ShouldKeepOrder = true; 4220 unsigned E = VL.size(); 4221 // Assign to all items the initial value E + 1 so we can check if the extract 4222 // instruction index was used already. 4223 // Also, later we can check that all the indices are used and we have a 4224 // consecutive access in the extract instructions, by checking that no 4225 // element of CurrentOrder still has value E + 1. 4226 CurrentOrder.assign(E, E + 1); 4227 unsigned I = 0; 4228 for (; I < E; ++I) { 4229 auto *Inst = cast<Instruction>(VL[I]); 4230 if (Inst->getOperand(0) != Vec) 4231 break; 4232 Optional<unsigned> Idx = getExtractIndex(Inst); 4233 if (!Idx) 4234 break; 4235 const unsigned ExtIdx = *Idx; 4236 if (ExtIdx != I) { 4237 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 4238 break; 4239 ShouldKeepOrder = false; 4240 CurrentOrder[ExtIdx] = I; 4241 } else { 4242 if (CurrentOrder[I] != E + 1) 4243 break; 4244 CurrentOrder[I] = I; 4245 } 4246 } 4247 if (I < E) { 4248 CurrentOrder.clear(); 4249 return false; 4250 } 4251 4252 return ShouldKeepOrder; 4253 } 4254 4255 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 4256 ArrayRef<Value *> VectorizedVals) const { 4257 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 4258 llvm::all_of(I->users(), [this](User *U) { 4259 return ScalarToTreeEntry.count(U) > 0; 4260 }); 4261 } 4262 4263 static std::pair<InstructionCost, InstructionCost> 4264 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 4265 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 4266 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4267 4268 // Calculate the cost of the scalar and vector calls. 4269 SmallVector<Type *, 4> VecTys; 4270 for (Use &Arg : CI->args()) 4271 VecTys.push_back( 4272 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 4273 FastMathFlags FMF; 4274 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 4275 FMF = FPCI->getFastMathFlags(); 4276 SmallVector<const Value *> Arguments(CI->args()); 4277 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 4278 dyn_cast<IntrinsicInst>(CI)); 4279 auto IntrinsicCost = 4280 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 4281 4282 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4283 VecTy->getNumElements())), 4284 false /*HasGlobalPred*/); 4285 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4286 auto LibCost = IntrinsicCost; 4287 if (!CI->isNoBuiltin() && VecFunc) { 4288 // Calculate the cost of the vector library call. 4289 // If the corresponding vector call is cheaper, return its cost. 4290 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 4291 TTI::TCK_RecipThroughput); 4292 } 4293 return {IntrinsicCost, LibCost}; 4294 } 4295 4296 /// Compute the cost of creating a vector of type \p VecTy containing the 4297 /// extracted values from \p VL. 4298 static InstructionCost 4299 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 4300 TargetTransformInfo::ShuffleKind ShuffleKind, 4301 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 4302 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 4303 4304 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 4305 VecTy->getNumElements() < NumOfParts) 4306 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 4307 4308 bool AllConsecutive = true; 4309 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 4310 unsigned Idx = -1; 4311 InstructionCost Cost = 0; 4312 4313 // Process extracts in blocks of EltsPerVector to check if the source vector 4314 // operand can be re-used directly. If not, add the cost of creating a shuffle 4315 // to extract the values into a vector register. 4316 for (auto *V : VL) { 4317 ++Idx; 4318 4319 // Reached the start of a new vector registers. 4320 if (Idx % EltsPerVector == 0) { 4321 AllConsecutive = true; 4322 continue; 4323 } 4324 4325 // Check all extracts for a vector register on the target directly 4326 // extract values in order. 4327 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 4328 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 4329 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 4330 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 4331 4332 if (AllConsecutive) 4333 continue; 4334 4335 // Skip all indices, except for the last index per vector block. 4336 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 4337 continue; 4338 4339 // If we have a series of extracts which are not consecutive and hence 4340 // cannot re-use the source vector register directly, compute the shuffle 4341 // cost to extract the a vector with EltsPerVector elements. 4342 Cost += TTI.getShuffleCost( 4343 TargetTransformInfo::SK_PermuteSingleSrc, 4344 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 4345 } 4346 return Cost; 4347 } 4348 4349 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 4350 /// operations operands. 4351 static void 4352 buildSuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 4353 ArrayRef<int> ReusesIndices, 4354 const function_ref<bool(Instruction *)> IsAltOp, 4355 SmallVectorImpl<int> &Mask, 4356 SmallVectorImpl<Value *> *OpScalars = nullptr, 4357 SmallVectorImpl<Value *> *AltScalars = nullptr) { 4358 unsigned Sz = VL.size(); 4359 Mask.assign(Sz, UndefMaskElem); 4360 SmallVector<int> OrderMask; 4361 if (!ReorderIndices.empty()) 4362 inversePermutation(ReorderIndices, OrderMask); 4363 for (unsigned I = 0; I < Sz; ++I) { 4364 unsigned Idx = I; 4365 if (!ReorderIndices.empty()) 4366 Idx = OrderMask[I]; 4367 auto *OpInst = cast<Instruction>(VL[Idx]); 4368 if (IsAltOp(OpInst)) { 4369 Mask[I] = Sz + Idx; 4370 if (AltScalars) 4371 AltScalars->push_back(OpInst); 4372 } else { 4373 Mask[I] = Idx; 4374 if (OpScalars) 4375 OpScalars->push_back(OpInst); 4376 } 4377 } 4378 if (!ReusesIndices.empty()) { 4379 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 4380 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 4381 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 4382 }); 4383 Mask.swap(NewMask); 4384 } 4385 } 4386 4387 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 4388 ArrayRef<Value *> VectorizedVals) { 4389 ArrayRef<Value*> VL = E->Scalars; 4390 4391 Type *ScalarTy = VL[0]->getType(); 4392 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4393 ScalarTy = SI->getValueOperand()->getType(); 4394 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 4395 ScalarTy = CI->getOperand(0)->getType(); 4396 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 4397 ScalarTy = IE->getOperand(1)->getType(); 4398 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4399 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 4400 4401 // If we have computed a smaller type for the expression, update VecTy so 4402 // that the costs will be accurate. 4403 if (MinBWs.count(VL[0])) 4404 VecTy = FixedVectorType::get( 4405 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 4406 unsigned EntryVF = E->getVectorFactor(); 4407 auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF); 4408 4409 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4410 // FIXME: it tries to fix a problem with MSVC buildbots. 4411 TargetTransformInfo &TTIRef = *TTI; 4412 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 4413 VectorizedVals](InstructionCost &Cost, 4414 bool IsGather) { 4415 DenseMap<Value *, int> ExtractVectorsTys; 4416 for (auto *V : VL) { 4417 // If all users of instruction are going to be vectorized and this 4418 // instruction itself is not going to be vectorized, consider this 4419 // instruction as dead and remove its cost from the final cost of the 4420 // vectorized tree. 4421 if (!areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 4422 (IsGather && ScalarToTreeEntry.count(V))) 4423 continue; 4424 auto *EE = cast<ExtractElementInst>(V); 4425 unsigned Idx = *getExtractIndex(EE); 4426 if (TTIRef.getNumberOfParts(VecTy) != 4427 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 4428 auto It = 4429 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 4430 It->getSecond() = std::min<int>(It->second, Idx); 4431 } 4432 // Take credit for instruction that will become dead. 4433 if (EE->hasOneUse()) { 4434 Instruction *Ext = EE->user_back(); 4435 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4436 all_of(Ext->users(), 4437 [](User *U) { return isa<GetElementPtrInst>(U); })) { 4438 // Use getExtractWithExtendCost() to calculate the cost of 4439 // extractelement/ext pair. 4440 Cost -= 4441 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 4442 EE->getVectorOperandType(), Idx); 4443 // Add back the cost of s|zext which is subtracted separately. 4444 Cost += TTIRef.getCastInstrCost( 4445 Ext->getOpcode(), Ext->getType(), EE->getType(), 4446 TTI::getCastContextHint(Ext), CostKind, Ext); 4447 continue; 4448 } 4449 } 4450 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 4451 EE->getVectorOperandType(), Idx); 4452 } 4453 // Add a cost for subvector extracts/inserts if required. 4454 for (const auto &Data : ExtractVectorsTys) { 4455 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 4456 unsigned NumElts = VecTy->getNumElements(); 4457 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 4458 unsigned Idx = (Data.second / NumElts) * NumElts; 4459 unsigned EENumElts = EEVTy->getNumElements(); 4460 if (Idx + NumElts <= EENumElts) { 4461 Cost += 4462 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 4463 EEVTy, None, Idx, VecTy); 4464 } else { 4465 // Need to round up the subvector type vectorization factor to avoid a 4466 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 4467 // <= EENumElts. 4468 auto *SubVT = 4469 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 4470 Cost += 4471 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 4472 EEVTy, None, Idx, SubVT); 4473 } 4474 } else { 4475 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 4476 VecTy, None, 0, EEVTy); 4477 } 4478 } 4479 }; 4480 if (E->State == TreeEntry::NeedToGather) { 4481 if (allConstant(VL)) 4482 return 0; 4483 if (isa<InsertElementInst>(VL[0])) 4484 return InstructionCost::getInvalid(); 4485 SmallVector<int> Mask; 4486 SmallVector<const TreeEntry *> Entries; 4487 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 4488 isGatherShuffledEntry(E, Mask, Entries); 4489 if (Shuffle.hasValue()) { 4490 InstructionCost GatherCost = 0; 4491 if (ShuffleVectorInst::isIdentityMask(Mask)) { 4492 // Perfect match in the graph, will reuse the previously vectorized 4493 // node. Cost is 0. 4494 LLVM_DEBUG( 4495 dbgs() 4496 << "SLP: perfect diamond match for gather bundle that starts with " 4497 << *VL.front() << ".\n"); 4498 if (NeedToShuffleReuses) 4499 GatherCost = 4500 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 4501 FinalVecTy, E->ReuseShuffleIndices); 4502 } else { 4503 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 4504 << " entries for bundle that starts with " 4505 << *VL.front() << ".\n"); 4506 // Detected that instead of gather we can emit a shuffle of single/two 4507 // previously vectorized nodes. Add the cost of the permutation rather 4508 // than gather. 4509 ::addMask(Mask, E->ReuseShuffleIndices); 4510 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 4511 } 4512 return GatherCost; 4513 } 4514 if (isSplat(VL)) { 4515 // Found the broadcasting of the single scalar, calculate the cost as the 4516 // broadcast. 4517 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy); 4518 } 4519 if (E->getOpcode() == Instruction::ExtractElement && allSameType(VL) && 4520 allSameBlock(VL) && 4521 !isa<ScalableVectorType>( 4522 cast<ExtractElementInst>(E->getMainOp())->getVectorOperandType())) { 4523 // Check that gather of extractelements can be represented as just a 4524 // shuffle of a single/two vectors the scalars are extracted from. 4525 SmallVector<int> Mask; 4526 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 4527 isFixedVectorShuffle(VL, Mask); 4528 if (ShuffleKind.hasValue()) { 4529 // Found the bunch of extractelement instructions that must be gathered 4530 // into a vector and can be represented as a permutation elements in a 4531 // single input vector or of 2 input vectors. 4532 InstructionCost Cost = 4533 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 4534 AdjustExtractsCost(Cost, /*IsGather=*/true); 4535 if (NeedToShuffleReuses) 4536 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 4537 FinalVecTy, E->ReuseShuffleIndices); 4538 return Cost; 4539 } 4540 } 4541 InstructionCost ReuseShuffleCost = 0; 4542 if (NeedToShuffleReuses) 4543 ReuseShuffleCost = TTI->getShuffleCost( 4544 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 4545 // Improve gather cost for gather of loads, if we can group some of the 4546 // loads into vector loads. 4547 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 4548 !E->isAltShuffle()) { 4549 BoUpSLP::ValueSet VectorizedLoads; 4550 unsigned StartIdx = 0; 4551 unsigned VF = VL.size() / 2; 4552 unsigned VectorizedCnt = 0; 4553 unsigned ScatterVectorizeCnt = 0; 4554 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 4555 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 4556 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 4557 Cnt += VF) { 4558 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 4559 if (!VectorizedLoads.count(Slice.front()) && 4560 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 4561 SmallVector<Value *> PointerOps; 4562 OrdersType CurrentOrder; 4563 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 4564 *SE, CurrentOrder, PointerOps); 4565 switch (LS) { 4566 case LoadsState::Vectorize: 4567 case LoadsState::ScatterVectorize: 4568 // Mark the vectorized loads so that we don't vectorize them 4569 // again. 4570 if (LS == LoadsState::Vectorize) 4571 ++VectorizedCnt; 4572 else 4573 ++ScatterVectorizeCnt; 4574 VectorizedLoads.insert(Slice.begin(), Slice.end()); 4575 // If we vectorized initial block, no need to try to vectorize it 4576 // again. 4577 if (Cnt == StartIdx) 4578 StartIdx += VF; 4579 break; 4580 case LoadsState::Gather: 4581 break; 4582 } 4583 } 4584 } 4585 // Check if the whole array was vectorized already - exit. 4586 if (StartIdx >= VL.size()) 4587 break; 4588 // Found vectorizable parts - exit. 4589 if (!VectorizedLoads.empty()) 4590 break; 4591 } 4592 if (!VectorizedLoads.empty()) { 4593 InstructionCost GatherCost = 0; 4594 unsigned NumParts = TTI->getNumberOfParts(VecTy); 4595 bool NeedInsertSubvectorAnalysis = 4596 !NumParts || (VL.size() / VF) > NumParts; 4597 // Get the cost for gathered loads. 4598 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 4599 if (VectorizedLoads.contains(VL[I])) 4600 continue; 4601 GatherCost += getGatherCost(VL.slice(I, VF)); 4602 } 4603 // The cost for vectorized loads. 4604 InstructionCost ScalarsCost = 0; 4605 for (Value *V : VectorizedLoads) { 4606 auto *LI = cast<LoadInst>(V); 4607 ScalarsCost += TTI->getMemoryOpCost( 4608 Instruction::Load, LI->getType(), LI->getAlign(), 4609 LI->getPointerAddressSpace(), CostKind, LI); 4610 } 4611 auto *LI = cast<LoadInst>(E->getMainOp()); 4612 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 4613 Align Alignment = LI->getAlign(); 4614 GatherCost += 4615 VectorizedCnt * 4616 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 4617 LI->getPointerAddressSpace(), CostKind, LI); 4618 GatherCost += ScatterVectorizeCnt * 4619 TTI->getGatherScatterOpCost( 4620 Instruction::Load, LoadTy, LI->getPointerOperand(), 4621 /*VariableMask=*/false, Alignment, CostKind, LI); 4622 if (NeedInsertSubvectorAnalysis) { 4623 // Add the cost for the subvectors insert. 4624 for (int I = VF, E = VL.size(); I < E; I += VF) 4625 GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy, 4626 None, I, LoadTy); 4627 } 4628 return ReuseShuffleCost + GatherCost - ScalarsCost; 4629 } 4630 } 4631 return ReuseShuffleCost + getGatherCost(VL); 4632 } 4633 InstructionCost CommonCost = 0; 4634 SmallVector<int> Mask; 4635 if (!E->ReorderIndices.empty()) { 4636 SmallVector<int> NewMask; 4637 if (E->getOpcode() == Instruction::Store) { 4638 // For stores the order is actually a mask. 4639 NewMask.resize(E->ReorderIndices.size()); 4640 copy(E->ReorderIndices, NewMask.begin()); 4641 } else { 4642 inversePermutation(E->ReorderIndices, NewMask); 4643 } 4644 ::addMask(Mask, NewMask); 4645 } 4646 if (NeedToShuffleReuses) 4647 ::addMask(Mask, E->ReuseShuffleIndices); 4648 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 4649 CommonCost = 4650 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 4651 assert((E->State == TreeEntry::Vectorize || 4652 E->State == TreeEntry::ScatterVectorize) && 4653 "Unhandled state"); 4654 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 4655 Instruction *VL0 = E->getMainOp(); 4656 unsigned ShuffleOrOp = 4657 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 4658 switch (ShuffleOrOp) { 4659 case Instruction::PHI: 4660 return 0; 4661 4662 case Instruction::ExtractValue: 4663 case Instruction::ExtractElement: { 4664 // The common cost of removal ExtractElement/ExtractValue instructions + 4665 // the cost of shuffles, if required to resuffle the original vector. 4666 if (NeedToShuffleReuses) { 4667 unsigned Idx = 0; 4668 for (unsigned I : E->ReuseShuffleIndices) { 4669 if (ShuffleOrOp == Instruction::ExtractElement) { 4670 auto *EE = cast<ExtractElementInst>(VL[I]); 4671 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 4672 EE->getVectorOperandType(), 4673 *getExtractIndex(EE)); 4674 } else { 4675 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 4676 VecTy, Idx); 4677 ++Idx; 4678 } 4679 } 4680 Idx = EntryVF; 4681 for (Value *V : VL) { 4682 if (ShuffleOrOp == Instruction::ExtractElement) { 4683 auto *EE = cast<ExtractElementInst>(V); 4684 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 4685 EE->getVectorOperandType(), 4686 *getExtractIndex(EE)); 4687 } else { 4688 --Idx; 4689 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 4690 VecTy, Idx); 4691 } 4692 } 4693 } 4694 if (ShuffleOrOp == Instruction::ExtractValue) { 4695 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 4696 auto *EI = cast<Instruction>(VL[I]); 4697 // Take credit for instruction that will become dead. 4698 if (EI->hasOneUse()) { 4699 Instruction *Ext = EI->user_back(); 4700 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4701 all_of(Ext->users(), 4702 [](User *U) { return isa<GetElementPtrInst>(U); })) { 4703 // Use getExtractWithExtendCost() to calculate the cost of 4704 // extractelement/ext pair. 4705 CommonCost -= TTI->getExtractWithExtendCost( 4706 Ext->getOpcode(), Ext->getType(), VecTy, I); 4707 // Add back the cost of s|zext which is subtracted separately. 4708 CommonCost += TTI->getCastInstrCost( 4709 Ext->getOpcode(), Ext->getType(), EI->getType(), 4710 TTI::getCastContextHint(Ext), CostKind, Ext); 4711 continue; 4712 } 4713 } 4714 CommonCost -= 4715 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 4716 } 4717 } else { 4718 AdjustExtractsCost(CommonCost, /*IsGather=*/false); 4719 } 4720 return CommonCost; 4721 } 4722 case Instruction::InsertElement: { 4723 assert(E->ReuseShuffleIndices.empty() && 4724 "Unique insertelements only are expected."); 4725 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 4726 4727 unsigned const NumElts = SrcVecTy->getNumElements(); 4728 unsigned const NumScalars = VL.size(); 4729 APInt DemandedElts = APInt::getZero(NumElts); 4730 // TODO: Add support for Instruction::InsertValue. 4731 SmallVector<int> Mask; 4732 if (!E->ReorderIndices.empty()) { 4733 inversePermutation(E->ReorderIndices, Mask); 4734 Mask.append(NumElts - NumScalars, UndefMaskElem); 4735 } else { 4736 Mask.assign(NumElts, UndefMaskElem); 4737 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 4738 } 4739 unsigned Offset = *getInsertIndex(VL0, 0); 4740 bool IsIdentity = true; 4741 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 4742 Mask.swap(PrevMask); 4743 for (unsigned I = 0; I < NumScalars; ++I) { 4744 Optional<int> InsertIdx = getInsertIndex(VL[PrevMask[I]], 0); 4745 if (!InsertIdx || *InsertIdx == UndefMaskElem) 4746 continue; 4747 DemandedElts.setBit(*InsertIdx); 4748 IsIdentity &= *InsertIdx - Offset == I; 4749 Mask[*InsertIdx - Offset] = I; 4750 } 4751 assert(Offset < NumElts && "Failed to find vector index offset"); 4752 4753 InstructionCost Cost = 0; 4754 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 4755 /*Insert*/ true, /*Extract*/ false); 4756 4757 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 4758 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 4759 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 4760 Cost += TTI->getShuffleCost( 4761 TargetTransformInfo::SK_PermuteSingleSrc, 4762 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 4763 } else if (!IsIdentity) { 4764 auto *FirstInsert = 4765 cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 4766 return !is_contained(E->Scalars, 4767 cast<Instruction>(V)->getOperand(0)); 4768 })); 4769 if (isa<UndefValue>(FirstInsert->getOperand(0))) { 4770 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask); 4771 } else { 4772 SmallVector<int> InsertMask(NumElts); 4773 std::iota(InsertMask.begin(), InsertMask.end(), 0); 4774 for (unsigned I = 0; I < NumElts; I++) { 4775 if (Mask[I] != UndefMaskElem) 4776 InsertMask[Offset + I] = NumElts + I; 4777 } 4778 Cost += 4779 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask); 4780 } 4781 } 4782 4783 return Cost; 4784 } 4785 case Instruction::ZExt: 4786 case Instruction::SExt: 4787 case Instruction::FPToUI: 4788 case Instruction::FPToSI: 4789 case Instruction::FPExt: 4790 case Instruction::PtrToInt: 4791 case Instruction::IntToPtr: 4792 case Instruction::SIToFP: 4793 case Instruction::UIToFP: 4794 case Instruction::Trunc: 4795 case Instruction::FPTrunc: 4796 case Instruction::BitCast: { 4797 Type *SrcTy = VL0->getOperand(0)->getType(); 4798 InstructionCost ScalarEltCost = 4799 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 4800 TTI::getCastContextHint(VL0), CostKind, VL0); 4801 if (NeedToShuffleReuses) { 4802 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 4803 } 4804 4805 // Calculate the cost of this instruction. 4806 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 4807 4808 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 4809 InstructionCost VecCost = 0; 4810 // Check if the values are candidates to demote. 4811 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 4812 VecCost = CommonCost + TTI->getCastInstrCost( 4813 E->getOpcode(), VecTy, SrcVecTy, 4814 TTI::getCastContextHint(VL0), CostKind, VL0); 4815 } 4816 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4817 return VecCost - ScalarCost; 4818 } 4819 case Instruction::FCmp: 4820 case Instruction::ICmp: 4821 case Instruction::Select: { 4822 // Calculate the cost of this instruction. 4823 InstructionCost ScalarEltCost = 4824 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 4825 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 4826 if (NeedToShuffleReuses) { 4827 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 4828 } 4829 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 4830 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 4831 4832 // Check if all entries in VL are either compares or selects with compares 4833 // as condition that have the same predicates. 4834 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 4835 bool First = true; 4836 for (auto *V : VL) { 4837 CmpInst::Predicate CurrentPred; 4838 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 4839 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 4840 !match(V, MatchCmp)) || 4841 (!First && VecPred != CurrentPred)) { 4842 VecPred = CmpInst::BAD_ICMP_PREDICATE; 4843 break; 4844 } 4845 First = false; 4846 VecPred = CurrentPred; 4847 } 4848 4849 InstructionCost VecCost = TTI->getCmpSelInstrCost( 4850 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 4851 // Check if it is possible and profitable to use min/max for selects in 4852 // VL. 4853 // 4854 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 4855 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 4856 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 4857 {VecTy, VecTy}); 4858 InstructionCost IntrinsicCost = 4859 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 4860 // If the selects are the only uses of the compares, they will be dead 4861 // and we can adjust the cost by removing their cost. 4862 if (IntrinsicAndUse.second) 4863 IntrinsicCost -= 4864 TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy, 4865 CmpInst::BAD_ICMP_PREDICATE, CostKind); 4866 VecCost = std::min(VecCost, IntrinsicCost); 4867 } 4868 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4869 return CommonCost + VecCost - ScalarCost; 4870 } 4871 case Instruction::FNeg: 4872 case Instruction::Add: 4873 case Instruction::FAdd: 4874 case Instruction::Sub: 4875 case Instruction::FSub: 4876 case Instruction::Mul: 4877 case Instruction::FMul: 4878 case Instruction::UDiv: 4879 case Instruction::SDiv: 4880 case Instruction::FDiv: 4881 case Instruction::URem: 4882 case Instruction::SRem: 4883 case Instruction::FRem: 4884 case Instruction::Shl: 4885 case Instruction::LShr: 4886 case Instruction::AShr: 4887 case Instruction::And: 4888 case Instruction::Or: 4889 case Instruction::Xor: { 4890 // Certain instructions can be cheaper to vectorize if they have a 4891 // constant second vector operand. 4892 TargetTransformInfo::OperandValueKind Op1VK = 4893 TargetTransformInfo::OK_AnyValue; 4894 TargetTransformInfo::OperandValueKind Op2VK = 4895 TargetTransformInfo::OK_UniformConstantValue; 4896 TargetTransformInfo::OperandValueProperties Op1VP = 4897 TargetTransformInfo::OP_None; 4898 TargetTransformInfo::OperandValueProperties Op2VP = 4899 TargetTransformInfo::OP_PowerOf2; 4900 4901 // If all operands are exactly the same ConstantInt then set the 4902 // operand kind to OK_UniformConstantValue. 4903 // If instead not all operands are constants, then set the operand kind 4904 // to OK_AnyValue. If all operands are constants but not the same, 4905 // then set the operand kind to OK_NonUniformConstantValue. 4906 ConstantInt *CInt0 = nullptr; 4907 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 4908 const Instruction *I = cast<Instruction>(VL[i]); 4909 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 4910 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 4911 if (!CInt) { 4912 Op2VK = TargetTransformInfo::OK_AnyValue; 4913 Op2VP = TargetTransformInfo::OP_None; 4914 break; 4915 } 4916 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 4917 !CInt->getValue().isPowerOf2()) 4918 Op2VP = TargetTransformInfo::OP_None; 4919 if (i == 0) { 4920 CInt0 = CInt; 4921 continue; 4922 } 4923 if (CInt0 != CInt) 4924 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 4925 } 4926 4927 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 4928 InstructionCost ScalarEltCost = 4929 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 4930 Op2VK, Op1VP, Op2VP, Operands, VL0); 4931 if (NeedToShuffleReuses) { 4932 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 4933 } 4934 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 4935 InstructionCost VecCost = 4936 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 4937 Op2VK, Op1VP, Op2VP, Operands, VL0); 4938 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4939 return CommonCost + VecCost - ScalarCost; 4940 } 4941 case Instruction::GetElementPtr: { 4942 TargetTransformInfo::OperandValueKind Op1VK = 4943 TargetTransformInfo::OK_AnyValue; 4944 TargetTransformInfo::OperandValueKind Op2VK = 4945 TargetTransformInfo::OK_UniformConstantValue; 4946 4947 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 4948 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 4949 if (NeedToShuffleReuses) { 4950 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 4951 } 4952 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 4953 InstructionCost VecCost = TTI->getArithmeticInstrCost( 4954 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 4955 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4956 return CommonCost + VecCost - ScalarCost; 4957 } 4958 case Instruction::Load: { 4959 // Cost of wide load - cost of scalar loads. 4960 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 4961 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 4962 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 4963 if (NeedToShuffleReuses) { 4964 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 4965 } 4966 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 4967 InstructionCost VecLdCost; 4968 if (E->State == TreeEntry::Vectorize) { 4969 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 4970 CostKind, VL0); 4971 } else { 4972 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 4973 Align CommonAlignment = Alignment; 4974 for (Value *V : VL) 4975 CommonAlignment = 4976 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 4977 VecLdCost = TTI->getGatherScatterOpCost( 4978 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 4979 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 4980 } 4981 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 4982 return CommonCost + VecLdCost - ScalarLdCost; 4983 } 4984 case Instruction::Store: { 4985 // We know that we can merge the stores. Calculate the cost. 4986 bool IsReorder = !E->ReorderIndices.empty(); 4987 auto *SI = 4988 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 4989 Align Alignment = SI->getAlign(); 4990 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 4991 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 4992 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 4993 InstructionCost VecStCost = TTI->getMemoryOpCost( 4994 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 4995 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 4996 return CommonCost + VecStCost - ScalarStCost; 4997 } 4998 case Instruction::Call: { 4999 CallInst *CI = cast<CallInst>(VL0); 5000 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5001 5002 // Calculate the cost of the scalar and vector calls. 5003 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 5004 InstructionCost ScalarEltCost = 5005 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5006 if (NeedToShuffleReuses) { 5007 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5008 } 5009 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 5010 5011 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 5012 InstructionCost VecCallCost = 5013 std::min(VecCallCosts.first, VecCallCosts.second); 5014 5015 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 5016 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 5017 << " for " << *CI << "\n"); 5018 5019 return CommonCost + VecCallCost - ScalarCallCost; 5020 } 5021 case Instruction::ShuffleVector: { 5022 assert(E->isAltShuffle() && 5023 ((Instruction::isBinaryOp(E->getOpcode()) && 5024 Instruction::isBinaryOp(E->getAltOpcode())) || 5025 (Instruction::isCast(E->getOpcode()) && 5026 Instruction::isCast(E->getAltOpcode()))) && 5027 "Invalid Shuffle Vector Operand"); 5028 InstructionCost ScalarCost = 0; 5029 if (NeedToShuffleReuses) { 5030 for (unsigned Idx : E->ReuseShuffleIndices) { 5031 Instruction *I = cast<Instruction>(VL[Idx]); 5032 CommonCost -= TTI->getInstructionCost(I, CostKind); 5033 } 5034 for (Value *V : VL) { 5035 Instruction *I = cast<Instruction>(V); 5036 CommonCost += TTI->getInstructionCost(I, CostKind); 5037 } 5038 } 5039 for (Value *V : VL) { 5040 Instruction *I = cast<Instruction>(V); 5041 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5042 ScalarCost += TTI->getInstructionCost(I, CostKind); 5043 } 5044 // VecCost is equal to sum of the cost of creating 2 vectors 5045 // and the cost of creating shuffle. 5046 InstructionCost VecCost = 0; 5047 // Try to find the previous shuffle node with the same operands and same 5048 // main/alternate ops. 5049 auto &&TryFindNodeWithEqualOperands = [this, E]() { 5050 for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 5051 if (TE.get() == E) 5052 break; 5053 if (TE->isAltShuffle() && 5054 ((TE->getOpcode() == E->getOpcode() && 5055 TE->getAltOpcode() == E->getAltOpcode()) || 5056 (TE->getOpcode() == E->getAltOpcode() && 5057 TE->getAltOpcode() == E->getOpcode())) && 5058 TE->hasEqualOperands(*E)) 5059 return true; 5060 } 5061 return false; 5062 }; 5063 if (TryFindNodeWithEqualOperands()) { 5064 LLVM_DEBUG({ 5065 dbgs() << "SLP: diamond match for alternate node found.\n"; 5066 E->dump(); 5067 }); 5068 // No need to add new vector costs here since we're going to reuse 5069 // same main/alternate vector ops, just do different shuffling. 5070 } else if (Instruction::isBinaryOp(E->getOpcode())) { 5071 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 5072 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 5073 CostKind); 5074 } else { 5075 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 5076 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 5077 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 5078 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 5079 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 5080 TTI::CastContextHint::None, CostKind); 5081 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 5082 TTI::CastContextHint::None, CostKind); 5083 } 5084 5085 SmallVector<int> Mask; 5086 buildSuffleEntryMask( 5087 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 5088 [E](Instruction *I) { 5089 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5090 return I->getOpcode() == E->getAltOpcode(); 5091 }, 5092 Mask); 5093 CommonCost = 5094 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy, Mask); 5095 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5096 return CommonCost + VecCost - ScalarCost; 5097 } 5098 default: 5099 llvm_unreachable("Unknown instruction"); 5100 } 5101 } 5102 5103 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { 5104 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 5105 << VectorizableTree.size() << " is fully vectorizable .\n"); 5106 5107 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { 5108 SmallVector<int> Mask; 5109 return TE->State == TreeEntry::NeedToGather && 5110 !any_of(TE->Scalars, 5111 [this](Value *V) { return EphValues.contains(V); }) && 5112 (allConstant(TE->Scalars) || isSplat(TE->Scalars) || 5113 TE->Scalars.size() < Limit || 5114 (TE->getOpcode() == Instruction::ExtractElement && 5115 isFixedVectorShuffle(TE->Scalars, Mask)) || 5116 (TE->State == TreeEntry::NeedToGather && 5117 TE->getOpcode() == Instruction::Load && !TE->isAltShuffle())); 5118 }; 5119 5120 // We only handle trees of heights 1 and 2. 5121 if (VectorizableTree.size() == 1 && 5122 (VectorizableTree[0]->State == TreeEntry::Vectorize || 5123 (ForReduction && 5124 AreVectorizableGathers(VectorizableTree[0].get(), 5125 VectorizableTree[0]->Scalars.size()) && 5126 VectorizableTree[0]->getVectorFactor() > 2))) 5127 return true; 5128 5129 if (VectorizableTree.size() != 2) 5130 return false; 5131 5132 // Handle splat and all-constants stores. Also try to vectorize tiny trees 5133 // with the second gather nodes if they have less scalar operands rather than 5134 // the initial tree element (may be profitable to shuffle the second gather) 5135 // or they are extractelements, which form shuffle. 5136 SmallVector<int> Mask; 5137 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 5138 AreVectorizableGathers(VectorizableTree[1].get(), 5139 VectorizableTree[0]->Scalars.size())) 5140 return true; 5141 5142 // Gathering cost would be too much for tiny trees. 5143 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 5144 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 5145 VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) 5146 return false; 5147 5148 return true; 5149 } 5150 5151 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 5152 TargetTransformInfo *TTI, 5153 bool MustMatchOrInst) { 5154 // Look past the root to find a source value. Arbitrarily follow the 5155 // path through operand 0 of any 'or'. Also, peek through optional 5156 // shift-left-by-multiple-of-8-bits. 5157 Value *ZextLoad = Root; 5158 const APInt *ShAmtC; 5159 bool FoundOr = false; 5160 while (!isa<ConstantExpr>(ZextLoad) && 5161 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 5162 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 5163 ShAmtC->urem(8) == 0))) { 5164 auto *BinOp = cast<BinaryOperator>(ZextLoad); 5165 ZextLoad = BinOp->getOperand(0); 5166 if (BinOp->getOpcode() == Instruction::Or) 5167 FoundOr = true; 5168 } 5169 // Check if the input is an extended load of the required or/shift expression. 5170 Value *LoadPtr; 5171 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 5172 !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr))))) 5173 return false; 5174 5175 // Require that the total load bit width is a legal integer type. 5176 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 5177 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 5178 Type *SrcTy = LoadPtr->getType()->getPointerElementType(); 5179 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 5180 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 5181 return false; 5182 5183 // Everything matched - assume that we can fold the whole sequence using 5184 // load combining. 5185 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 5186 << *(cast<Instruction>(Root)) << "\n"); 5187 5188 return true; 5189 } 5190 5191 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 5192 if (RdxKind != RecurKind::Or) 5193 return false; 5194 5195 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5196 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 5197 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 5198 /* MatchOr */ false); 5199 } 5200 5201 bool BoUpSLP::isLoadCombineCandidate() const { 5202 // Peek through a final sequence of stores and check if all operations are 5203 // likely to be load-combined. 5204 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5205 for (Value *Scalar : VectorizableTree[0]->Scalars) { 5206 Value *X; 5207 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 5208 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 5209 return false; 5210 } 5211 return true; 5212 } 5213 5214 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { 5215 // No need to vectorize inserts of gathered values. 5216 if (VectorizableTree.size() == 2 && 5217 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 5218 VectorizableTree[1]->State == TreeEntry::NeedToGather) 5219 return true; 5220 5221 // We can vectorize the tree if its size is greater than or equal to the 5222 // minimum size specified by the MinTreeSize command line option. 5223 if (VectorizableTree.size() >= MinTreeSize) 5224 return false; 5225 5226 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 5227 // can vectorize it if we can prove it fully vectorizable. 5228 if (isFullyVectorizableTinyTree(ForReduction)) 5229 return false; 5230 5231 assert(VectorizableTree.empty() 5232 ? ExternalUses.empty() 5233 : true && "We shouldn't have any external users"); 5234 5235 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 5236 // vectorizable. 5237 return true; 5238 } 5239 5240 InstructionCost BoUpSLP::getSpillCost() const { 5241 // Walk from the bottom of the tree to the top, tracking which values are 5242 // live. When we see a call instruction that is not part of our tree, 5243 // query TTI to see if there is a cost to keeping values live over it 5244 // (for example, if spills and fills are required). 5245 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 5246 InstructionCost Cost = 0; 5247 5248 SmallPtrSet<Instruction*, 4> LiveValues; 5249 Instruction *PrevInst = nullptr; 5250 5251 // The entries in VectorizableTree are not necessarily ordered by their 5252 // position in basic blocks. Collect them and order them by dominance so later 5253 // instructions are guaranteed to be visited first. For instructions in 5254 // different basic blocks, we only scan to the beginning of the block, so 5255 // their order does not matter, as long as all instructions in a basic block 5256 // are grouped together. Using dominance ensures a deterministic order. 5257 SmallVector<Instruction *, 16> OrderedScalars; 5258 for (const auto &TEPtr : VectorizableTree) { 5259 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 5260 if (!Inst) 5261 continue; 5262 OrderedScalars.push_back(Inst); 5263 } 5264 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 5265 auto *NodeA = DT->getNode(A->getParent()); 5266 auto *NodeB = DT->getNode(B->getParent()); 5267 assert(NodeA && "Should only process reachable instructions"); 5268 assert(NodeB && "Should only process reachable instructions"); 5269 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 5270 "Different nodes should have different DFS numbers"); 5271 if (NodeA != NodeB) 5272 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 5273 return B->comesBefore(A); 5274 }); 5275 5276 for (Instruction *Inst : OrderedScalars) { 5277 if (!PrevInst) { 5278 PrevInst = Inst; 5279 continue; 5280 } 5281 5282 // Update LiveValues. 5283 LiveValues.erase(PrevInst); 5284 for (auto &J : PrevInst->operands()) { 5285 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 5286 LiveValues.insert(cast<Instruction>(&*J)); 5287 } 5288 5289 LLVM_DEBUG({ 5290 dbgs() << "SLP: #LV: " << LiveValues.size(); 5291 for (auto *X : LiveValues) 5292 dbgs() << " " << X->getName(); 5293 dbgs() << ", Looking at "; 5294 Inst->dump(); 5295 }); 5296 5297 // Now find the sequence of instructions between PrevInst and Inst. 5298 unsigned NumCalls = 0; 5299 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 5300 PrevInstIt = 5301 PrevInst->getIterator().getReverse(); 5302 while (InstIt != PrevInstIt) { 5303 if (PrevInstIt == PrevInst->getParent()->rend()) { 5304 PrevInstIt = Inst->getParent()->rbegin(); 5305 continue; 5306 } 5307 5308 // Debug information does not impact spill cost. 5309 if ((isa<CallInst>(&*PrevInstIt) && 5310 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 5311 &*PrevInstIt != PrevInst) 5312 NumCalls++; 5313 5314 ++PrevInstIt; 5315 } 5316 5317 if (NumCalls) { 5318 SmallVector<Type*, 4> V; 5319 for (auto *II : LiveValues) { 5320 auto *ScalarTy = II->getType(); 5321 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 5322 ScalarTy = VectorTy->getElementType(); 5323 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 5324 } 5325 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 5326 } 5327 5328 PrevInst = Inst; 5329 } 5330 5331 return Cost; 5332 } 5333 5334 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 5335 InstructionCost Cost = 0; 5336 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 5337 << VectorizableTree.size() << ".\n"); 5338 5339 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 5340 5341 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 5342 TreeEntry &TE = *VectorizableTree[I].get(); 5343 5344 InstructionCost C = getEntryCost(&TE, VectorizedVals); 5345 Cost += C; 5346 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5347 << " for bundle that starts with " << *TE.Scalars[0] 5348 << ".\n" 5349 << "SLP: Current total cost = " << Cost << "\n"); 5350 } 5351 5352 SmallPtrSet<Value *, 16> ExtractCostCalculated; 5353 InstructionCost ExtractCost = 0; 5354 SmallVector<unsigned> VF; 5355 SmallVector<SmallVector<int>> ShuffleMask; 5356 SmallVector<Value *> FirstUsers; 5357 SmallVector<APInt> DemandedElts; 5358 for (ExternalUser &EU : ExternalUses) { 5359 // We only add extract cost once for the same scalar. 5360 if (!ExtractCostCalculated.insert(EU.Scalar).second) 5361 continue; 5362 5363 // Uses by ephemeral values are free (because the ephemeral value will be 5364 // removed prior to code generation, and so the extraction will be 5365 // removed as well). 5366 if (EphValues.count(EU.User)) 5367 continue; 5368 5369 // No extract cost for vector "scalar" 5370 if (isa<FixedVectorType>(EU.Scalar->getType())) 5371 continue; 5372 5373 // Already counted the cost for external uses when tried to adjust the cost 5374 // for extractelements, no need to add it again. 5375 if (isa<ExtractElementInst>(EU.Scalar)) 5376 continue; 5377 5378 // If found user is an insertelement, do not calculate extract cost but try 5379 // to detect it as a final shuffled/identity match. 5380 if (isa_and_nonnull<InsertElementInst>(EU.User)) { 5381 if (auto *FTy = dyn_cast<FixedVectorType>(EU.User->getType())) { 5382 Optional<int> InsertIdx = getInsertIndex(EU.User, 0); 5383 if (!InsertIdx || *InsertIdx == UndefMaskElem) 5384 continue; 5385 Value *VU = EU.User; 5386 auto *It = find_if(FirstUsers, [VU](Value *V) { 5387 // Checks if 2 insertelements are from the same buildvector. 5388 if (VU->getType() != V->getType()) 5389 return false; 5390 auto *IE1 = cast<InsertElementInst>(VU); 5391 auto *IE2 = cast<InsertElementInst>(V); 5392 // Go through of insertelement instructions trying to find either VU 5393 // as the original vector for IE2 or V as the original vector for IE1. 5394 do { 5395 if (IE1 == VU || IE2 == V) 5396 return true; 5397 if (IE1) 5398 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 5399 if (IE2) 5400 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 5401 } while (IE1 || IE2); 5402 return false; 5403 }); 5404 int VecId = -1; 5405 if (It == FirstUsers.end()) { 5406 VF.push_back(FTy->getNumElements()); 5407 ShuffleMask.emplace_back(VF.back(), UndefMaskElem); 5408 FirstUsers.push_back(EU.User); 5409 DemandedElts.push_back(APInt::getZero(VF.back())); 5410 VecId = FirstUsers.size() - 1; 5411 } else { 5412 VecId = std::distance(FirstUsers.begin(), It); 5413 } 5414 int Idx = *InsertIdx; 5415 ShuffleMask[VecId][Idx] = EU.Lane; 5416 DemandedElts[VecId].setBit(Idx); 5417 } 5418 } 5419 5420 // If we plan to rewrite the tree in a smaller type, we will need to sign 5421 // extend the extracted value back to the original type. Here, we account 5422 // for the extract and the added cost of the sign extend if needed. 5423 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 5424 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 5425 if (MinBWs.count(ScalarRoot)) { 5426 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 5427 auto Extend = 5428 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 5429 VecTy = FixedVectorType::get(MinTy, BundleWidth); 5430 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 5431 VecTy, EU.Lane); 5432 } else { 5433 ExtractCost += 5434 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 5435 } 5436 } 5437 5438 InstructionCost SpillCost = getSpillCost(); 5439 Cost += SpillCost + ExtractCost; 5440 for (int I = 0, E = FirstUsers.size(); I < E; ++I) { 5441 // For the very first element - simple shuffle of the source vector. 5442 int Limit = ShuffleMask[I].size() * 2; 5443 if (I == 0 && 5444 all_of(ShuffleMask[I], [Limit](int Idx) { return Idx < Limit; }) && 5445 !ShuffleVectorInst::isIdentityMask(ShuffleMask[I])) { 5446 InstructionCost C = TTI->getShuffleCost( 5447 TTI::SK_PermuteSingleSrc, 5448 cast<FixedVectorType>(FirstUsers[I]->getType()), ShuffleMask[I]); 5449 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5450 << " for final shuffle of insertelement external users " 5451 << *VectorizableTree.front()->Scalars.front() << ".\n" 5452 << "SLP: Current total cost = " << Cost << "\n"); 5453 Cost += C; 5454 continue; 5455 } 5456 // Other elements - permutation of 2 vectors (the initial one and the next 5457 // Ith incoming vector). 5458 unsigned VF = ShuffleMask[I].size(); 5459 for (unsigned Idx = 0; Idx < VF; ++Idx) { 5460 int &Mask = ShuffleMask[I][Idx]; 5461 Mask = Mask == UndefMaskElem ? Idx : VF + Mask; 5462 } 5463 InstructionCost C = TTI->getShuffleCost( 5464 TTI::SK_PermuteTwoSrc, cast<FixedVectorType>(FirstUsers[I]->getType()), 5465 ShuffleMask[I]); 5466 LLVM_DEBUG( 5467 dbgs() 5468 << "SLP: Adding cost " << C 5469 << " for final shuffle of vector node and external insertelement users " 5470 << *VectorizableTree.front()->Scalars.front() << ".\n" 5471 << "SLP: Current total cost = " << Cost << "\n"); 5472 Cost += C; 5473 InstructionCost InsertCost = TTI->getScalarizationOverhead( 5474 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I], 5475 /*Insert*/ true, 5476 /*Extract*/ false); 5477 Cost -= InsertCost; 5478 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 5479 << " for insertelements gather.\n" 5480 << "SLP: Current total cost = " << Cost << "\n"); 5481 } 5482 5483 #ifndef NDEBUG 5484 SmallString<256> Str; 5485 { 5486 raw_svector_ostream OS(Str); 5487 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 5488 << "SLP: Extract Cost = " << ExtractCost << ".\n" 5489 << "SLP: Total Cost = " << Cost << ".\n"; 5490 } 5491 LLVM_DEBUG(dbgs() << Str); 5492 if (ViewSLPTree) 5493 ViewGraph(this, "SLP" + F->getName(), false, Str); 5494 #endif 5495 5496 return Cost; 5497 } 5498 5499 Optional<TargetTransformInfo::ShuffleKind> 5500 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 5501 SmallVectorImpl<const TreeEntry *> &Entries) { 5502 // TODO: currently checking only for Scalars in the tree entry, need to count 5503 // reused elements too for better cost estimation. 5504 Mask.assign(TE->Scalars.size(), UndefMaskElem); 5505 Entries.clear(); 5506 // Build a lists of values to tree entries. 5507 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 5508 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 5509 if (EntryPtr.get() == TE) 5510 break; 5511 if (EntryPtr->State != TreeEntry::NeedToGather) 5512 continue; 5513 for (Value *V : EntryPtr->Scalars) 5514 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 5515 } 5516 // Find all tree entries used by the gathered values. If no common entries 5517 // found - not a shuffle. 5518 // Here we build a set of tree nodes for each gathered value and trying to 5519 // find the intersection between these sets. If we have at least one common 5520 // tree node for each gathered value - we have just a permutation of the 5521 // single vector. If we have 2 different sets, we're in situation where we 5522 // have a permutation of 2 input vectors. 5523 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 5524 DenseMap<Value *, int> UsedValuesEntry; 5525 for (Value *V : TE->Scalars) { 5526 if (isa<UndefValue>(V)) 5527 continue; 5528 // Build a list of tree entries where V is used. 5529 SmallPtrSet<const TreeEntry *, 4> VToTEs; 5530 auto It = ValueToTEs.find(V); 5531 if (It != ValueToTEs.end()) 5532 VToTEs = It->second; 5533 if (const TreeEntry *VTE = getTreeEntry(V)) 5534 VToTEs.insert(VTE); 5535 if (VToTEs.empty()) 5536 return None; 5537 if (UsedTEs.empty()) { 5538 // The first iteration, just insert the list of nodes to vector. 5539 UsedTEs.push_back(VToTEs); 5540 } else { 5541 // Need to check if there are any previously used tree nodes which use V. 5542 // If there are no such nodes, consider that we have another one input 5543 // vector. 5544 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 5545 unsigned Idx = 0; 5546 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 5547 // Do we have a non-empty intersection of previously listed tree entries 5548 // and tree entries using current V? 5549 set_intersect(VToTEs, Set); 5550 if (!VToTEs.empty()) { 5551 // Yes, write the new subset and continue analysis for the next 5552 // scalar. 5553 Set.swap(VToTEs); 5554 break; 5555 } 5556 VToTEs = SavedVToTEs; 5557 ++Idx; 5558 } 5559 // No non-empty intersection found - need to add a second set of possible 5560 // source vectors. 5561 if (Idx == UsedTEs.size()) { 5562 // If the number of input vectors is greater than 2 - not a permutation, 5563 // fallback to the regular gather. 5564 if (UsedTEs.size() == 2) 5565 return None; 5566 UsedTEs.push_back(SavedVToTEs); 5567 Idx = UsedTEs.size() - 1; 5568 } 5569 UsedValuesEntry.try_emplace(V, Idx); 5570 } 5571 } 5572 5573 unsigned VF = 0; 5574 if (UsedTEs.size() == 1) { 5575 // Try to find the perfect match in another gather node at first. 5576 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 5577 return EntryPtr->isSame(TE->Scalars); 5578 }); 5579 if (It != UsedTEs.front().end()) { 5580 Entries.push_back(*It); 5581 std::iota(Mask.begin(), Mask.end(), 0); 5582 return TargetTransformInfo::SK_PermuteSingleSrc; 5583 } 5584 // No perfect match, just shuffle, so choose the first tree node. 5585 Entries.push_back(*UsedTEs.front().begin()); 5586 } else { 5587 // Try to find nodes with the same vector factor. 5588 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 5589 DenseMap<int, const TreeEntry *> VFToTE; 5590 for (const TreeEntry *TE : UsedTEs.front()) 5591 VFToTE.try_emplace(TE->getVectorFactor(), TE); 5592 for (const TreeEntry *TE : UsedTEs.back()) { 5593 auto It = VFToTE.find(TE->getVectorFactor()); 5594 if (It != VFToTE.end()) { 5595 VF = It->first; 5596 Entries.push_back(It->second); 5597 Entries.push_back(TE); 5598 break; 5599 } 5600 } 5601 // No 2 source vectors with the same vector factor - give up and do regular 5602 // gather. 5603 if (Entries.empty()) 5604 return None; 5605 } 5606 5607 // Build a shuffle mask for better cost estimation and vector emission. 5608 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 5609 Value *V = TE->Scalars[I]; 5610 if (isa<UndefValue>(V)) 5611 continue; 5612 unsigned Idx = UsedValuesEntry.lookup(V); 5613 const TreeEntry *VTE = Entries[Idx]; 5614 int FoundLane = VTE->findLaneForValue(V); 5615 Mask[I] = Idx * VF + FoundLane; 5616 // Extra check required by isSingleSourceMaskImpl function (called by 5617 // ShuffleVectorInst::isSingleSourceMask). 5618 if (Mask[I] >= 2 * E) 5619 return None; 5620 } 5621 switch (Entries.size()) { 5622 case 1: 5623 return TargetTransformInfo::SK_PermuteSingleSrc; 5624 case 2: 5625 return TargetTransformInfo::SK_PermuteTwoSrc; 5626 default: 5627 break; 5628 } 5629 return None; 5630 } 5631 5632 InstructionCost 5633 BoUpSLP::getGatherCost(FixedVectorType *Ty, 5634 const DenseSet<unsigned> &ShuffledIndices, 5635 bool NeedToShuffle) const { 5636 unsigned NumElts = Ty->getNumElements(); 5637 APInt DemandedElts = APInt::getZero(NumElts); 5638 for (unsigned I = 0; I < NumElts; ++I) 5639 if (!ShuffledIndices.count(I)) 5640 DemandedElts.setBit(I); 5641 InstructionCost Cost = 5642 TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true, 5643 /*Extract*/ false); 5644 if (NeedToShuffle) 5645 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 5646 return Cost; 5647 } 5648 5649 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 5650 // Find the type of the operands in VL. 5651 Type *ScalarTy = VL[0]->getType(); 5652 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 5653 ScalarTy = SI->getValueOperand()->getType(); 5654 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 5655 bool DuplicateNonConst = false; 5656 // Find the cost of inserting/extracting values from the vector. 5657 // Check if the same elements are inserted several times and count them as 5658 // shuffle candidates. 5659 DenseSet<unsigned> ShuffledElements; 5660 DenseSet<Value *> UniqueElements; 5661 // Iterate in reverse order to consider insert elements with the high cost. 5662 for (unsigned I = VL.size(); I > 0; --I) { 5663 unsigned Idx = I - 1; 5664 // No need to shuffle duplicates for constants. 5665 if (isConstant(VL[Idx])) { 5666 ShuffledElements.insert(Idx); 5667 continue; 5668 } 5669 if (!UniqueElements.insert(VL[Idx]).second) { 5670 DuplicateNonConst = true; 5671 ShuffledElements.insert(Idx); 5672 } 5673 } 5674 return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst); 5675 } 5676 5677 // Perform operand reordering on the instructions in VL and return the reordered 5678 // operands in Left and Right. 5679 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 5680 SmallVectorImpl<Value *> &Left, 5681 SmallVectorImpl<Value *> &Right, 5682 const DataLayout &DL, 5683 ScalarEvolution &SE, 5684 const BoUpSLP &R) { 5685 if (VL.empty()) 5686 return; 5687 VLOperands Ops(VL, DL, SE, R); 5688 // Reorder the operands in place. 5689 Ops.reorder(); 5690 Left = Ops.getVL(0); 5691 Right = Ops.getVL(1); 5692 } 5693 5694 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 5695 // Get the basic block this bundle is in. All instructions in the bundle 5696 // should be in this block. 5697 auto *Front = E->getMainOp(); 5698 auto *BB = Front->getParent(); 5699 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 5700 auto *I = cast<Instruction>(V); 5701 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 5702 })); 5703 5704 // The last instruction in the bundle in program order. 5705 Instruction *LastInst = nullptr; 5706 5707 // Find the last instruction. The common case should be that BB has been 5708 // scheduled, and the last instruction is VL.back(). So we start with 5709 // VL.back() and iterate over schedule data until we reach the end of the 5710 // bundle. The end of the bundle is marked by null ScheduleData. 5711 if (BlocksSchedules.count(BB)) { 5712 auto *Bundle = 5713 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 5714 if (Bundle && Bundle->isPartOfBundle()) 5715 for (; Bundle; Bundle = Bundle->NextInBundle) 5716 if (Bundle->OpValue == Bundle->Inst) 5717 LastInst = Bundle->Inst; 5718 } 5719 5720 // LastInst can still be null at this point if there's either not an entry 5721 // for BB in BlocksSchedules or there's no ScheduleData available for 5722 // VL.back(). This can be the case if buildTree_rec aborts for various 5723 // reasons (e.g., the maximum recursion depth is reached, the maximum region 5724 // size is reached, etc.). ScheduleData is initialized in the scheduling 5725 // "dry-run". 5726 // 5727 // If this happens, we can still find the last instruction by brute force. We 5728 // iterate forwards from Front (inclusive) until we either see all 5729 // instructions in the bundle or reach the end of the block. If Front is the 5730 // last instruction in program order, LastInst will be set to Front, and we 5731 // will visit all the remaining instructions in the block. 5732 // 5733 // One of the reasons we exit early from buildTree_rec is to place an upper 5734 // bound on compile-time. Thus, taking an additional compile-time hit here is 5735 // not ideal. However, this should be exceedingly rare since it requires that 5736 // we both exit early from buildTree_rec and that the bundle be out-of-order 5737 // (causing us to iterate all the way to the end of the block). 5738 if (!LastInst) { 5739 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 5740 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 5741 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 5742 LastInst = &I; 5743 if (Bundle.empty()) 5744 break; 5745 } 5746 } 5747 assert(LastInst && "Failed to find last instruction in bundle"); 5748 5749 // Set the insertion point after the last instruction in the bundle. Set the 5750 // debug location to Front. 5751 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 5752 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 5753 } 5754 5755 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 5756 // List of instructions/lanes from current block and/or the blocks which are 5757 // part of the current loop. These instructions will be inserted at the end to 5758 // make it possible to optimize loops and hoist invariant instructions out of 5759 // the loops body with better chances for success. 5760 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 5761 SmallSet<int, 4> PostponedIndices; 5762 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 5763 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 5764 SmallPtrSet<BasicBlock *, 4> Visited; 5765 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 5766 InsertBB = InsertBB->getSinglePredecessor(); 5767 return InsertBB && InsertBB == InstBB; 5768 }; 5769 for (int I = 0, E = VL.size(); I < E; ++I) { 5770 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 5771 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 5772 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 5773 PostponedIndices.insert(I).second) 5774 PostponedInsts.emplace_back(Inst, I); 5775 } 5776 5777 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 5778 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 5779 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 5780 if (!InsElt) 5781 return Vec; 5782 GatherShuffleSeq.insert(InsElt); 5783 CSEBlocks.insert(InsElt->getParent()); 5784 // Add to our 'need-to-extract' list. 5785 if (TreeEntry *Entry = getTreeEntry(V)) { 5786 // Find which lane we need to extract. 5787 unsigned FoundLane = Entry->findLaneForValue(V); 5788 ExternalUses.emplace_back(V, InsElt, FoundLane); 5789 } 5790 return Vec; 5791 }; 5792 Value *Val0 = 5793 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 5794 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 5795 Value *Vec = PoisonValue::get(VecTy); 5796 SmallVector<int> NonConsts; 5797 // Insert constant values at first. 5798 for (int I = 0, E = VL.size(); I < E; ++I) { 5799 if (PostponedIndices.contains(I)) 5800 continue; 5801 if (!isConstant(VL[I])) { 5802 NonConsts.push_back(I); 5803 continue; 5804 } 5805 Vec = CreateInsertElement(Vec, VL[I], I); 5806 } 5807 // Insert non-constant values. 5808 for (int I : NonConsts) 5809 Vec = CreateInsertElement(Vec, VL[I], I); 5810 // Append instructions, which are/may be part of the loop, in the end to make 5811 // it possible to hoist non-loop-based instructions. 5812 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 5813 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 5814 5815 return Vec; 5816 } 5817 5818 namespace { 5819 /// Merges shuffle masks and emits final shuffle instruction, if required. 5820 class ShuffleInstructionBuilder { 5821 IRBuilderBase &Builder; 5822 const unsigned VF = 0; 5823 bool IsFinalized = false; 5824 SmallVector<int, 4> Mask; 5825 5826 public: 5827 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF) 5828 : Builder(Builder), VF(VF) {} 5829 5830 /// Adds a mask, inverting it before applying. 5831 void addInversedMask(ArrayRef<unsigned> SubMask) { 5832 if (SubMask.empty()) 5833 return; 5834 SmallVector<int, 4> NewMask; 5835 inversePermutation(SubMask, NewMask); 5836 addMask(NewMask); 5837 } 5838 5839 /// Functions adds masks, merging them into single one. 5840 void addMask(ArrayRef<unsigned> SubMask) { 5841 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 5842 addMask(NewMask); 5843 } 5844 5845 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 5846 5847 Value *finalize(Value *V) { 5848 IsFinalized = true; 5849 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 5850 if (VF == ValueVF && Mask.empty()) 5851 return V; 5852 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 5853 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 5854 addMask(NormalizedMask); 5855 5856 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 5857 return V; 5858 return Builder.CreateShuffleVector(V, Mask, "shuffle"); 5859 } 5860 5861 ~ShuffleInstructionBuilder() { 5862 assert((IsFinalized || Mask.empty()) && 5863 "Shuffle construction must be finalized."); 5864 } 5865 }; 5866 } // namespace 5867 5868 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 5869 unsigned VF = VL.size(); 5870 InstructionsState S = getSameOpcode(VL); 5871 if (S.getOpcode()) { 5872 if (TreeEntry *E = getTreeEntry(S.OpValue)) 5873 if (E->isSame(VL)) { 5874 Value *V = vectorizeTree(E); 5875 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 5876 if (!E->ReuseShuffleIndices.empty()) { 5877 // Reshuffle to get only unique values. 5878 // If some of the scalars are duplicated in the vectorization tree 5879 // entry, we do not vectorize them but instead generate a mask for 5880 // the reuses. But if there are several users of the same entry, 5881 // they may have different vectorization factors. This is especially 5882 // important for PHI nodes. In this case, we need to adapt the 5883 // resulting instruction for the user vectorization factor and have 5884 // to reshuffle it again to take only unique elements of the vector. 5885 // Without this code the function incorrectly returns reduced vector 5886 // instruction with the same elements, not with the unique ones. 5887 5888 // block: 5889 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 5890 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> 5891 // ... (use %2) 5892 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} 5893 // br %block 5894 SmallVector<int> UniqueIdxs(VF, UndefMaskElem); 5895 SmallSet<int, 4> UsedIdxs; 5896 int Pos = 0; 5897 int Sz = VL.size(); 5898 for (int Idx : E->ReuseShuffleIndices) { 5899 if (Idx != Sz && Idx != UndefMaskElem && 5900 UsedIdxs.insert(Idx).second) 5901 UniqueIdxs[Idx] = Pos; 5902 ++Pos; 5903 } 5904 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 5905 "less than original vector size."); 5906 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 5907 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 5908 } else { 5909 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 5910 "Expected vectorization factor less " 5911 "than original vector size."); 5912 SmallVector<int> UniformMask(VF, 0); 5913 std::iota(UniformMask.begin(), UniformMask.end(), 0); 5914 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 5915 } 5916 } 5917 return V; 5918 } 5919 } 5920 5921 // Check that every instruction appears once in this bundle. 5922 SmallVector<int> ReuseShuffleIndicies; 5923 SmallVector<Value *> UniqueValues; 5924 if (VL.size() > 2) { 5925 DenseMap<Value *, unsigned> UniquePositions; 5926 unsigned NumValues = 5927 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 5928 return !isa<UndefValue>(V); 5929 }).base()); 5930 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 5931 int UniqueVals = 0; 5932 for (Value *V : VL.drop_back(VL.size() - VF)) { 5933 if (isa<UndefValue>(V)) { 5934 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 5935 continue; 5936 } 5937 if (isConstant(V)) { 5938 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 5939 UniqueValues.emplace_back(V); 5940 continue; 5941 } 5942 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 5943 ReuseShuffleIndicies.emplace_back(Res.first->second); 5944 if (Res.second) { 5945 UniqueValues.emplace_back(V); 5946 ++UniqueVals; 5947 } 5948 } 5949 if (UniqueVals == 1 && UniqueValues.size() == 1) { 5950 // Emit pure splat vector. 5951 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 5952 UndefMaskElem); 5953 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 5954 ReuseShuffleIndicies.clear(); 5955 UniqueValues.clear(); 5956 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 5957 } 5958 UniqueValues.append(VF - UniqueValues.size(), 5959 PoisonValue::get(VL[0]->getType())); 5960 VL = UniqueValues; 5961 } 5962 5963 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF); 5964 Value *Vec = gather(VL); 5965 if (!ReuseShuffleIndicies.empty()) { 5966 ShuffleBuilder.addMask(ReuseShuffleIndicies); 5967 Vec = ShuffleBuilder.finalize(Vec); 5968 if (auto *I = dyn_cast<Instruction>(Vec)) { 5969 GatherShuffleSeq.insert(I); 5970 CSEBlocks.insert(I->getParent()); 5971 } 5972 } 5973 return Vec; 5974 } 5975 5976 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 5977 IRBuilder<>::InsertPointGuard Guard(Builder); 5978 5979 if (E->VectorizedValue) { 5980 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 5981 return E->VectorizedValue; 5982 } 5983 5984 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 5985 unsigned VF = E->getVectorFactor(); 5986 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF); 5987 if (E->State == TreeEntry::NeedToGather) { 5988 if (E->getMainOp()) 5989 setInsertPointAfterBundle(E); 5990 Value *Vec; 5991 SmallVector<int> Mask; 5992 SmallVector<const TreeEntry *> Entries; 5993 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 5994 isGatherShuffledEntry(E, Mask, Entries); 5995 if (Shuffle.hasValue()) { 5996 assert((Entries.size() == 1 || Entries.size() == 2) && 5997 "Expected shuffle of 1 or 2 entries."); 5998 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 5999 Entries.back()->VectorizedValue, Mask); 6000 } else { 6001 Vec = gather(E->Scalars); 6002 } 6003 if (NeedToShuffleReuses) { 6004 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6005 Vec = ShuffleBuilder.finalize(Vec); 6006 if (auto *I = dyn_cast<Instruction>(Vec)) { 6007 GatherShuffleSeq.insert(I); 6008 CSEBlocks.insert(I->getParent()); 6009 } 6010 } 6011 E->VectorizedValue = Vec; 6012 return Vec; 6013 } 6014 6015 assert((E->State == TreeEntry::Vectorize || 6016 E->State == TreeEntry::ScatterVectorize) && 6017 "Unhandled state"); 6018 unsigned ShuffleOrOp = 6019 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 6020 Instruction *VL0 = E->getMainOp(); 6021 Type *ScalarTy = VL0->getType(); 6022 if (auto *Store = dyn_cast<StoreInst>(VL0)) 6023 ScalarTy = Store->getValueOperand()->getType(); 6024 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 6025 ScalarTy = IE->getOperand(1)->getType(); 6026 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 6027 switch (ShuffleOrOp) { 6028 case Instruction::PHI: { 6029 assert( 6030 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 6031 "PHI reordering is free."); 6032 auto *PH = cast<PHINode>(VL0); 6033 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 6034 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6035 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 6036 Value *V = NewPhi; 6037 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6038 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6039 V = ShuffleBuilder.finalize(V); 6040 6041 E->VectorizedValue = V; 6042 6043 // PHINodes may have multiple entries from the same block. We want to 6044 // visit every block once. 6045 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 6046 6047 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 6048 ValueList Operands; 6049 BasicBlock *IBB = PH->getIncomingBlock(i); 6050 6051 if (!VisitedBBs.insert(IBB).second) { 6052 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 6053 continue; 6054 } 6055 6056 Builder.SetInsertPoint(IBB->getTerminator()); 6057 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6058 Value *Vec = vectorizeTree(E->getOperand(i)); 6059 NewPhi->addIncoming(Vec, IBB); 6060 } 6061 6062 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 6063 "Invalid number of incoming values"); 6064 return V; 6065 } 6066 6067 case Instruction::ExtractElement: { 6068 Value *V = E->getSingleOperand(0); 6069 Builder.SetInsertPoint(VL0); 6070 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6071 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6072 V = ShuffleBuilder.finalize(V); 6073 E->VectorizedValue = V; 6074 return V; 6075 } 6076 case Instruction::ExtractValue: { 6077 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 6078 Builder.SetInsertPoint(LI); 6079 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 6080 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 6081 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 6082 Value *NewV = propagateMetadata(V, E->Scalars); 6083 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6084 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6085 NewV = ShuffleBuilder.finalize(NewV); 6086 E->VectorizedValue = NewV; 6087 return NewV; 6088 } 6089 case Instruction::InsertElement: { 6090 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 6091 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 6092 Value *V = vectorizeTree(E->getOperand(1)); 6093 6094 // Create InsertVector shuffle if necessary 6095 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 6096 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 6097 })); 6098 const unsigned NumElts = 6099 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 6100 const unsigned NumScalars = E->Scalars.size(); 6101 6102 unsigned Offset = *getInsertIndex(VL0, 0); 6103 assert(Offset < NumElts && "Failed to find vector index offset"); 6104 6105 // Create shuffle to resize vector 6106 SmallVector<int> Mask; 6107 if (!E->ReorderIndices.empty()) { 6108 inversePermutation(E->ReorderIndices, Mask); 6109 Mask.append(NumElts - NumScalars, UndefMaskElem); 6110 } else { 6111 Mask.assign(NumElts, UndefMaskElem); 6112 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 6113 } 6114 // Create InsertVector shuffle if necessary 6115 bool IsIdentity = true; 6116 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 6117 Mask.swap(PrevMask); 6118 for (unsigned I = 0; I < NumScalars; ++I) { 6119 Value *Scalar = E->Scalars[PrevMask[I]]; 6120 Optional<int> InsertIdx = getInsertIndex(Scalar, 0); 6121 if (!InsertIdx || *InsertIdx == UndefMaskElem) 6122 continue; 6123 IsIdentity &= *InsertIdx - Offset == I; 6124 Mask[*InsertIdx - Offset] = I; 6125 } 6126 if (!IsIdentity || NumElts != NumScalars) 6127 V = Builder.CreateShuffleVector(V, Mask); 6128 6129 if ((!IsIdentity || Offset != 0 || 6130 !isa<UndefValue>(FirstInsert->getOperand(0))) && 6131 NumElts != NumScalars) { 6132 SmallVector<int> InsertMask(NumElts); 6133 std::iota(InsertMask.begin(), InsertMask.end(), 0); 6134 for (unsigned I = 0; I < NumElts; I++) { 6135 if (Mask[I] != UndefMaskElem) 6136 InsertMask[Offset + I] = NumElts + I; 6137 } 6138 6139 V = Builder.CreateShuffleVector( 6140 FirstInsert->getOperand(0), V, InsertMask, 6141 cast<Instruction>(E->Scalars.back())->getName()); 6142 } 6143 6144 ++NumVectorInstructions; 6145 E->VectorizedValue = V; 6146 return V; 6147 } 6148 case Instruction::ZExt: 6149 case Instruction::SExt: 6150 case Instruction::FPToUI: 6151 case Instruction::FPToSI: 6152 case Instruction::FPExt: 6153 case Instruction::PtrToInt: 6154 case Instruction::IntToPtr: 6155 case Instruction::SIToFP: 6156 case Instruction::UIToFP: 6157 case Instruction::Trunc: 6158 case Instruction::FPTrunc: 6159 case Instruction::BitCast: { 6160 setInsertPointAfterBundle(E); 6161 6162 Value *InVec = vectorizeTree(E->getOperand(0)); 6163 6164 if (E->VectorizedValue) { 6165 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6166 return E->VectorizedValue; 6167 } 6168 6169 auto *CI = cast<CastInst>(VL0); 6170 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 6171 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6172 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6173 V = ShuffleBuilder.finalize(V); 6174 6175 E->VectorizedValue = V; 6176 ++NumVectorInstructions; 6177 return V; 6178 } 6179 case Instruction::FCmp: 6180 case Instruction::ICmp: { 6181 setInsertPointAfterBundle(E); 6182 6183 Value *L = vectorizeTree(E->getOperand(0)); 6184 Value *R = vectorizeTree(E->getOperand(1)); 6185 6186 if (E->VectorizedValue) { 6187 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6188 return E->VectorizedValue; 6189 } 6190 6191 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 6192 Value *V = Builder.CreateCmp(P0, L, R); 6193 propagateIRFlags(V, E->Scalars, VL0); 6194 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6195 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6196 V = ShuffleBuilder.finalize(V); 6197 6198 E->VectorizedValue = V; 6199 ++NumVectorInstructions; 6200 return V; 6201 } 6202 case Instruction::Select: { 6203 setInsertPointAfterBundle(E); 6204 6205 Value *Cond = vectorizeTree(E->getOperand(0)); 6206 Value *True = vectorizeTree(E->getOperand(1)); 6207 Value *False = vectorizeTree(E->getOperand(2)); 6208 6209 if (E->VectorizedValue) { 6210 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6211 return E->VectorizedValue; 6212 } 6213 6214 Value *V = Builder.CreateSelect(Cond, True, False); 6215 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6216 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6217 V = ShuffleBuilder.finalize(V); 6218 6219 E->VectorizedValue = V; 6220 ++NumVectorInstructions; 6221 return V; 6222 } 6223 case Instruction::FNeg: { 6224 setInsertPointAfterBundle(E); 6225 6226 Value *Op = vectorizeTree(E->getOperand(0)); 6227 6228 if (E->VectorizedValue) { 6229 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6230 return E->VectorizedValue; 6231 } 6232 6233 Value *V = Builder.CreateUnOp( 6234 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 6235 propagateIRFlags(V, E->Scalars, VL0); 6236 if (auto *I = dyn_cast<Instruction>(V)) 6237 V = propagateMetadata(I, E->Scalars); 6238 6239 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6240 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6241 V = ShuffleBuilder.finalize(V); 6242 6243 E->VectorizedValue = V; 6244 ++NumVectorInstructions; 6245 6246 return V; 6247 } 6248 case Instruction::Add: 6249 case Instruction::FAdd: 6250 case Instruction::Sub: 6251 case Instruction::FSub: 6252 case Instruction::Mul: 6253 case Instruction::FMul: 6254 case Instruction::UDiv: 6255 case Instruction::SDiv: 6256 case Instruction::FDiv: 6257 case Instruction::URem: 6258 case Instruction::SRem: 6259 case Instruction::FRem: 6260 case Instruction::Shl: 6261 case Instruction::LShr: 6262 case Instruction::AShr: 6263 case Instruction::And: 6264 case Instruction::Or: 6265 case Instruction::Xor: { 6266 setInsertPointAfterBundle(E); 6267 6268 Value *LHS = vectorizeTree(E->getOperand(0)); 6269 Value *RHS = vectorizeTree(E->getOperand(1)); 6270 6271 if (E->VectorizedValue) { 6272 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6273 return E->VectorizedValue; 6274 } 6275 6276 Value *V = Builder.CreateBinOp( 6277 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 6278 RHS); 6279 propagateIRFlags(V, E->Scalars, VL0); 6280 if (auto *I = dyn_cast<Instruction>(V)) 6281 V = propagateMetadata(I, E->Scalars); 6282 6283 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6284 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6285 V = ShuffleBuilder.finalize(V); 6286 6287 E->VectorizedValue = V; 6288 ++NumVectorInstructions; 6289 6290 return V; 6291 } 6292 case Instruction::Load: { 6293 // Loads are inserted at the head of the tree because we don't want to 6294 // sink them all the way down past store instructions. 6295 setInsertPointAfterBundle(E); 6296 6297 LoadInst *LI = cast<LoadInst>(VL0); 6298 Instruction *NewLI; 6299 unsigned AS = LI->getPointerAddressSpace(); 6300 Value *PO = LI->getPointerOperand(); 6301 if (E->State == TreeEntry::Vectorize) { 6302 6303 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 6304 6305 // The pointer operand uses an in-tree scalar so we add the new BitCast 6306 // to ExternalUses list to make sure that an extract will be generated 6307 // in the future. 6308 if (TreeEntry *Entry = getTreeEntry(PO)) { 6309 // Find which lane we need to extract. 6310 unsigned FoundLane = Entry->findLaneForValue(PO); 6311 ExternalUses.emplace_back(PO, cast<User>(VecPtr), FoundLane); 6312 } 6313 6314 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 6315 } else { 6316 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 6317 Value *VecPtr = vectorizeTree(E->getOperand(0)); 6318 // Use the minimum alignment of the gathered loads. 6319 Align CommonAlignment = LI->getAlign(); 6320 for (Value *V : E->Scalars) 6321 CommonAlignment = 6322 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 6323 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 6324 } 6325 Value *V = propagateMetadata(NewLI, E->Scalars); 6326 6327 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6328 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6329 V = ShuffleBuilder.finalize(V); 6330 E->VectorizedValue = V; 6331 ++NumVectorInstructions; 6332 return V; 6333 } 6334 case Instruction::Store: { 6335 auto *SI = cast<StoreInst>(VL0); 6336 unsigned AS = SI->getPointerAddressSpace(); 6337 6338 setInsertPointAfterBundle(E); 6339 6340 Value *VecValue = vectorizeTree(E->getOperand(0)); 6341 ShuffleBuilder.addMask(E->ReorderIndices); 6342 VecValue = ShuffleBuilder.finalize(VecValue); 6343 6344 Value *ScalarPtr = SI->getPointerOperand(); 6345 Value *VecPtr = Builder.CreateBitCast( 6346 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 6347 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 6348 SI->getAlign()); 6349 6350 // The pointer operand uses an in-tree scalar, so add the new BitCast to 6351 // ExternalUses to make sure that an extract will be generated in the 6352 // future. 6353 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 6354 // Find which lane we need to extract. 6355 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 6356 ExternalUses.push_back( 6357 ExternalUser(ScalarPtr, cast<User>(VecPtr), FoundLane)); 6358 } 6359 6360 Value *V = propagateMetadata(ST, E->Scalars); 6361 6362 E->VectorizedValue = V; 6363 ++NumVectorInstructions; 6364 return V; 6365 } 6366 case Instruction::GetElementPtr: { 6367 auto *GEP0 = cast<GetElementPtrInst>(VL0); 6368 setInsertPointAfterBundle(E); 6369 6370 Value *Op0 = vectorizeTree(E->getOperand(0)); 6371 6372 SmallVector<Value *> OpVecs; 6373 for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) { 6374 Value *OpVec = vectorizeTree(E->getOperand(J)); 6375 OpVecs.push_back(OpVec); 6376 } 6377 6378 Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs); 6379 if (Instruction *I = dyn_cast<Instruction>(V)) 6380 V = propagateMetadata(I, E->Scalars); 6381 6382 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6383 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6384 V = ShuffleBuilder.finalize(V); 6385 6386 E->VectorizedValue = V; 6387 ++NumVectorInstructions; 6388 6389 return V; 6390 } 6391 case Instruction::Call: { 6392 CallInst *CI = cast<CallInst>(VL0); 6393 setInsertPointAfterBundle(E); 6394 6395 Intrinsic::ID IID = Intrinsic::not_intrinsic; 6396 if (Function *FI = CI->getCalledFunction()) 6397 IID = FI->getIntrinsicID(); 6398 6399 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6400 6401 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 6402 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 6403 VecCallCosts.first <= VecCallCosts.second; 6404 6405 Value *ScalarArg = nullptr; 6406 std::vector<Value *> OpVecs; 6407 SmallVector<Type *, 2> TysForDecl = 6408 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 6409 for (int j = 0, e = CI->arg_size(); j < e; ++j) { 6410 ValueList OpVL; 6411 // Some intrinsics have scalar arguments. This argument should not be 6412 // vectorized. 6413 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 6414 CallInst *CEI = cast<CallInst>(VL0); 6415 ScalarArg = CEI->getArgOperand(j); 6416 OpVecs.push_back(CEI->getArgOperand(j)); 6417 if (hasVectorInstrinsicOverloadedScalarOpd(IID, j)) 6418 TysForDecl.push_back(ScalarArg->getType()); 6419 continue; 6420 } 6421 6422 Value *OpVec = vectorizeTree(E->getOperand(j)); 6423 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 6424 OpVecs.push_back(OpVec); 6425 } 6426 6427 Function *CF; 6428 if (!UseIntrinsic) { 6429 VFShape Shape = 6430 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 6431 VecTy->getNumElements())), 6432 false /*HasGlobalPred*/); 6433 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 6434 } else { 6435 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 6436 } 6437 6438 SmallVector<OperandBundleDef, 1> OpBundles; 6439 CI->getOperandBundlesAsDefs(OpBundles); 6440 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 6441 6442 // The scalar argument uses an in-tree scalar so we add the new vectorized 6443 // call to ExternalUses list to make sure that an extract will be 6444 // generated in the future. 6445 if (ScalarArg) { 6446 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 6447 // Find which lane we need to extract. 6448 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 6449 ExternalUses.push_back( 6450 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 6451 } 6452 } 6453 6454 propagateIRFlags(V, E->Scalars, VL0); 6455 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6456 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6457 V = ShuffleBuilder.finalize(V); 6458 6459 E->VectorizedValue = V; 6460 ++NumVectorInstructions; 6461 return V; 6462 } 6463 case Instruction::ShuffleVector: { 6464 assert(E->isAltShuffle() && 6465 ((Instruction::isBinaryOp(E->getOpcode()) && 6466 Instruction::isBinaryOp(E->getAltOpcode())) || 6467 (Instruction::isCast(E->getOpcode()) && 6468 Instruction::isCast(E->getAltOpcode()))) && 6469 "Invalid Shuffle Vector Operand"); 6470 6471 Value *LHS = nullptr, *RHS = nullptr; 6472 if (Instruction::isBinaryOp(E->getOpcode())) { 6473 setInsertPointAfterBundle(E); 6474 LHS = vectorizeTree(E->getOperand(0)); 6475 RHS = vectorizeTree(E->getOperand(1)); 6476 } else { 6477 setInsertPointAfterBundle(E); 6478 LHS = vectorizeTree(E->getOperand(0)); 6479 } 6480 6481 if (E->VectorizedValue) { 6482 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6483 return E->VectorizedValue; 6484 } 6485 6486 Value *V0, *V1; 6487 if (Instruction::isBinaryOp(E->getOpcode())) { 6488 V0 = Builder.CreateBinOp( 6489 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 6490 V1 = Builder.CreateBinOp( 6491 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 6492 } else { 6493 V0 = Builder.CreateCast( 6494 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 6495 V1 = Builder.CreateCast( 6496 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 6497 } 6498 // Add V0 and V1 to later analysis to try to find and remove matching 6499 // instruction, if any. 6500 for (Value *V : {V0, V1}) { 6501 if (auto *I = dyn_cast<Instruction>(V)) { 6502 GatherShuffleSeq.insert(I); 6503 CSEBlocks.insert(I->getParent()); 6504 } 6505 } 6506 6507 // Create shuffle to take alternate operations from the vector. 6508 // Also, gather up main and alt scalar ops to propagate IR flags to 6509 // each vector operation. 6510 ValueList OpScalars, AltScalars; 6511 SmallVector<int> Mask; 6512 buildSuffleEntryMask( 6513 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 6514 [E](Instruction *I) { 6515 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 6516 return I->getOpcode() == E->getAltOpcode(); 6517 }, 6518 Mask, &OpScalars, &AltScalars); 6519 6520 propagateIRFlags(V0, OpScalars); 6521 propagateIRFlags(V1, AltScalars); 6522 6523 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 6524 if (Instruction *I = dyn_cast<Instruction>(V)) 6525 V = propagateMetadata(I, E->Scalars); 6526 V = ShuffleBuilder.finalize(V); 6527 6528 E->VectorizedValue = V; 6529 ++NumVectorInstructions; 6530 6531 return V; 6532 } 6533 default: 6534 llvm_unreachable("unknown inst"); 6535 } 6536 return nullptr; 6537 } 6538 6539 Value *BoUpSLP::vectorizeTree() { 6540 ExtraValueToDebugLocsMap ExternallyUsedValues; 6541 return vectorizeTree(ExternallyUsedValues); 6542 } 6543 6544 Value * 6545 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 6546 // All blocks must be scheduled before any instructions are inserted. 6547 for (auto &BSIter : BlocksSchedules) { 6548 scheduleBlock(BSIter.second.get()); 6549 } 6550 6551 Builder.SetInsertPoint(&F->getEntryBlock().front()); 6552 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 6553 6554 // If the vectorized tree can be rewritten in a smaller type, we truncate the 6555 // vectorized root. InstCombine will then rewrite the entire expression. We 6556 // sign extend the extracted values below. 6557 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 6558 if (MinBWs.count(ScalarRoot)) { 6559 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 6560 // If current instr is a phi and not the last phi, insert it after the 6561 // last phi node. 6562 if (isa<PHINode>(I)) 6563 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 6564 else 6565 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 6566 } 6567 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 6568 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 6569 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 6570 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 6571 VectorizableTree[0]->VectorizedValue = Trunc; 6572 } 6573 6574 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 6575 << " values .\n"); 6576 6577 // Extract all of the elements with the external uses. 6578 for (const auto &ExternalUse : ExternalUses) { 6579 Value *Scalar = ExternalUse.Scalar; 6580 llvm::User *User = ExternalUse.User; 6581 6582 // Skip users that we already RAUW. This happens when one instruction 6583 // has multiple uses of the same value. 6584 if (User && !is_contained(Scalar->users(), User)) 6585 continue; 6586 TreeEntry *E = getTreeEntry(Scalar); 6587 assert(E && "Invalid scalar"); 6588 assert(E->State != TreeEntry::NeedToGather && 6589 "Extracting from a gather list"); 6590 6591 Value *Vec = E->VectorizedValue; 6592 assert(Vec && "Can't find vectorizable value"); 6593 6594 Value *Lane = Builder.getInt32(ExternalUse.Lane); 6595 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 6596 if (Scalar->getType() != Vec->getType()) { 6597 Value *Ex; 6598 // "Reuse" the existing extract to improve final codegen. 6599 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 6600 Ex = Builder.CreateExtractElement(ES->getOperand(0), 6601 ES->getOperand(1)); 6602 } else { 6603 Ex = Builder.CreateExtractElement(Vec, Lane); 6604 } 6605 // If necessary, sign-extend or zero-extend ScalarRoot 6606 // to the larger type. 6607 if (!MinBWs.count(ScalarRoot)) 6608 return Ex; 6609 if (MinBWs[ScalarRoot].second) 6610 return Builder.CreateSExt(Ex, Scalar->getType()); 6611 return Builder.CreateZExt(Ex, Scalar->getType()); 6612 } 6613 assert(isa<FixedVectorType>(Scalar->getType()) && 6614 isa<InsertElementInst>(Scalar) && 6615 "In-tree scalar of vector type is not insertelement?"); 6616 return Vec; 6617 }; 6618 // If User == nullptr, the Scalar is used as extra arg. Generate 6619 // ExtractElement instruction and update the record for this scalar in 6620 // ExternallyUsedValues. 6621 if (!User) { 6622 assert(ExternallyUsedValues.count(Scalar) && 6623 "Scalar with nullptr as an external user must be registered in " 6624 "ExternallyUsedValues map"); 6625 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 6626 Builder.SetInsertPoint(VecI->getParent(), 6627 std::next(VecI->getIterator())); 6628 } else { 6629 Builder.SetInsertPoint(&F->getEntryBlock().front()); 6630 } 6631 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6632 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 6633 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 6634 auto It = ExternallyUsedValues.find(Scalar); 6635 assert(It != ExternallyUsedValues.end() && 6636 "Externally used scalar is not found in ExternallyUsedValues"); 6637 NewInstLocs.append(It->second); 6638 ExternallyUsedValues.erase(Scalar); 6639 // Required to update internally referenced instructions. 6640 Scalar->replaceAllUsesWith(NewInst); 6641 continue; 6642 } 6643 6644 // Generate extracts for out-of-tree users. 6645 // Find the insertion point for the extractelement lane. 6646 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 6647 if (PHINode *PH = dyn_cast<PHINode>(User)) { 6648 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 6649 if (PH->getIncomingValue(i) == Scalar) { 6650 Instruction *IncomingTerminator = 6651 PH->getIncomingBlock(i)->getTerminator(); 6652 if (isa<CatchSwitchInst>(IncomingTerminator)) { 6653 Builder.SetInsertPoint(VecI->getParent(), 6654 std::next(VecI->getIterator())); 6655 } else { 6656 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 6657 } 6658 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6659 CSEBlocks.insert(PH->getIncomingBlock(i)); 6660 PH->setOperand(i, NewInst); 6661 } 6662 } 6663 } else { 6664 Builder.SetInsertPoint(cast<Instruction>(User)); 6665 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6666 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 6667 User->replaceUsesOfWith(Scalar, NewInst); 6668 } 6669 } else { 6670 Builder.SetInsertPoint(&F->getEntryBlock().front()); 6671 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6672 CSEBlocks.insert(&F->getEntryBlock()); 6673 User->replaceUsesOfWith(Scalar, NewInst); 6674 } 6675 6676 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 6677 } 6678 6679 // For each vectorized value: 6680 for (auto &TEPtr : VectorizableTree) { 6681 TreeEntry *Entry = TEPtr.get(); 6682 6683 // No need to handle users of gathered values. 6684 if (Entry->State == TreeEntry::NeedToGather) 6685 continue; 6686 6687 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 6688 6689 // For each lane: 6690 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 6691 Value *Scalar = Entry->Scalars[Lane]; 6692 6693 #ifndef NDEBUG 6694 Type *Ty = Scalar->getType(); 6695 if (!Ty->isVoidTy()) { 6696 for (User *U : Scalar->users()) { 6697 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 6698 6699 // It is legal to delete users in the ignorelist. 6700 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) || 6701 (isa_and_nonnull<Instruction>(U) && 6702 isDeleted(cast<Instruction>(U)))) && 6703 "Deleting out-of-tree value"); 6704 } 6705 } 6706 #endif 6707 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 6708 eraseInstruction(cast<Instruction>(Scalar)); 6709 } 6710 } 6711 6712 Builder.ClearInsertionPoint(); 6713 InstrElementSize.clear(); 6714 6715 return VectorizableTree[0]->VectorizedValue; 6716 } 6717 6718 void BoUpSLP::optimizeGatherSequence() { 6719 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size() 6720 << " gather sequences instructions.\n"); 6721 // LICM InsertElementInst sequences. 6722 for (Instruction *I : GatherShuffleSeq) { 6723 if (isDeleted(I)) 6724 continue; 6725 6726 // Check if this block is inside a loop. 6727 Loop *L = LI->getLoopFor(I->getParent()); 6728 if (!L) 6729 continue; 6730 6731 // Check if it has a preheader. 6732 BasicBlock *PreHeader = L->getLoopPreheader(); 6733 if (!PreHeader) 6734 continue; 6735 6736 // If the vector or the element that we insert into it are 6737 // instructions that are defined in this basic block then we can't 6738 // hoist this instruction. 6739 if (any_of(I->operands(), [L](Value *V) { 6740 auto *OpI = dyn_cast<Instruction>(V); 6741 return OpI && L->contains(OpI); 6742 })) 6743 continue; 6744 6745 // We can hoist this instruction. Move it to the pre-header. 6746 I->moveBefore(PreHeader->getTerminator()); 6747 } 6748 6749 // Make a list of all reachable blocks in our CSE queue. 6750 SmallVector<const DomTreeNode *, 8> CSEWorkList; 6751 CSEWorkList.reserve(CSEBlocks.size()); 6752 for (BasicBlock *BB : CSEBlocks) 6753 if (DomTreeNode *N = DT->getNode(BB)) { 6754 assert(DT->isReachableFromEntry(N)); 6755 CSEWorkList.push_back(N); 6756 } 6757 6758 // Sort blocks by domination. This ensures we visit a block after all blocks 6759 // dominating it are visited. 6760 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 6761 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 6762 "Different nodes should have different DFS numbers"); 6763 return A->getDFSNumIn() < B->getDFSNumIn(); 6764 }); 6765 6766 // Perform O(N^2) search over the gather sequences and merge identical 6767 // instructions. TODO: We can further optimize this scan if we split the 6768 // instructions into different buckets based on the insert lane. 6769 SmallVector<Instruction *, 16> Visited; 6770 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 6771 assert(*I && 6772 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 6773 "Worklist not sorted properly!"); 6774 BasicBlock *BB = (*I)->getBlock(); 6775 // For all instructions in blocks containing gather sequences: 6776 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 6777 if (isDeleted(&In)) 6778 continue; 6779 if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) && 6780 !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In)) 6781 continue; 6782 6783 // Check if we can replace this instruction with any of the 6784 // visited instructions. 6785 bool Replaced = false; 6786 for (Instruction *v : Visited) { 6787 if (In.isIdenticalTo(v) && 6788 DT->dominates(v->getParent(), In.getParent())) { 6789 In.replaceAllUsesWith(v); 6790 eraseInstruction(&In); 6791 Replaced = true; 6792 break; 6793 } 6794 } 6795 if (!Replaced) { 6796 assert(!is_contained(Visited, &In)); 6797 Visited.push_back(&In); 6798 } 6799 } 6800 } 6801 CSEBlocks.clear(); 6802 GatherShuffleSeq.clear(); 6803 } 6804 6805 // Groups the instructions to a bundle (which is then a single scheduling entity) 6806 // and schedules instructions until the bundle gets ready. 6807 Optional<BoUpSLP::ScheduleData *> 6808 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 6809 const InstructionsState &S) { 6810 // No need to schedule PHIs, insertelement, extractelement and extractvalue 6811 // instructions. 6812 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue)) 6813 return nullptr; 6814 6815 // Initialize the instruction bundle. 6816 Instruction *OldScheduleEnd = ScheduleEnd; 6817 ScheduleData *PrevInBundle = nullptr; 6818 ScheduleData *Bundle = nullptr; 6819 bool ReSchedule = false; 6820 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 6821 6822 auto &&TryScheduleBundle = [this, OldScheduleEnd, SLP](bool ReSchedule, 6823 ScheduleData *Bundle) { 6824 // The scheduling region got new instructions at the lower end (or it is a 6825 // new region for the first bundle). This makes it necessary to 6826 // recalculate all dependencies. 6827 // It is seldom that this needs to be done a second time after adding the 6828 // initial bundle to the region. 6829 if (ScheduleEnd != OldScheduleEnd) { 6830 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 6831 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 6832 ReSchedule = true; 6833 } 6834 if (ReSchedule) { 6835 resetSchedule(); 6836 initialFillReadyList(ReadyInsts); 6837 } 6838 if (Bundle) { 6839 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 6840 << " in block " << BB->getName() << "\n"); 6841 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 6842 } 6843 6844 // Now try to schedule the new bundle or (if no bundle) just calculate 6845 // dependencies. As soon as the bundle is "ready" it means that there are no 6846 // cyclic dependencies and we can schedule it. Note that's important that we 6847 // don't "schedule" the bundle yet (see cancelScheduling). 6848 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 6849 !ReadyInsts.empty()) { 6850 ScheduleData *Picked = ReadyInsts.pop_back_val(); 6851 if (Picked->isSchedulingEntity() && Picked->isReady()) 6852 schedule(Picked, ReadyInsts); 6853 } 6854 }; 6855 6856 // Make sure that the scheduling region contains all 6857 // instructions of the bundle. 6858 for (Value *V : VL) { 6859 if (!extendSchedulingRegion(V, S)) { 6860 // If the scheduling region got new instructions at the lower end (or it 6861 // is a new region for the first bundle). This makes it necessary to 6862 // recalculate all dependencies. 6863 // Otherwise the compiler may crash trying to incorrectly calculate 6864 // dependencies and emit instruction in the wrong order at the actual 6865 // scheduling. 6866 TryScheduleBundle(/*ReSchedule=*/false, nullptr); 6867 return None; 6868 } 6869 } 6870 6871 for (Value *V : VL) { 6872 ScheduleData *BundleMember = getScheduleData(V); 6873 assert(BundleMember && 6874 "no ScheduleData for bundle member (maybe not in same basic block)"); 6875 if (BundleMember->IsScheduled) { 6876 // A bundle member was scheduled as single instruction before and now 6877 // needs to be scheduled as part of the bundle. We just get rid of the 6878 // existing schedule. 6879 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 6880 << " was already scheduled\n"); 6881 ReSchedule = true; 6882 } 6883 assert(BundleMember->isSchedulingEntity() && 6884 "bundle member already part of other bundle"); 6885 if (PrevInBundle) { 6886 PrevInBundle->NextInBundle = BundleMember; 6887 } else { 6888 Bundle = BundleMember; 6889 } 6890 BundleMember->UnscheduledDepsInBundle = 0; 6891 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 6892 6893 // Group the instructions to a bundle. 6894 BundleMember->FirstInBundle = Bundle; 6895 PrevInBundle = BundleMember; 6896 } 6897 assert(Bundle && "Failed to find schedule bundle"); 6898 TryScheduleBundle(ReSchedule, Bundle); 6899 if (!Bundle->isReady()) { 6900 cancelScheduling(VL, S.OpValue); 6901 return None; 6902 } 6903 return Bundle; 6904 } 6905 6906 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 6907 Value *OpValue) { 6908 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue)) 6909 return; 6910 6911 ScheduleData *Bundle = getScheduleData(OpValue); 6912 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 6913 assert(!Bundle->IsScheduled && 6914 "Can't cancel bundle which is already scheduled"); 6915 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 6916 "tried to unbundle something which is not a bundle"); 6917 6918 // Un-bundle: make single instructions out of the bundle. 6919 ScheduleData *BundleMember = Bundle; 6920 while (BundleMember) { 6921 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 6922 BundleMember->FirstInBundle = BundleMember; 6923 ScheduleData *Next = BundleMember->NextInBundle; 6924 BundleMember->NextInBundle = nullptr; 6925 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 6926 if (BundleMember->UnscheduledDepsInBundle == 0) { 6927 ReadyInsts.insert(BundleMember); 6928 } 6929 BundleMember = Next; 6930 } 6931 } 6932 6933 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 6934 // Allocate a new ScheduleData for the instruction. 6935 if (ChunkPos >= ChunkSize) { 6936 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 6937 ChunkPos = 0; 6938 } 6939 return &(ScheduleDataChunks.back()[ChunkPos++]); 6940 } 6941 6942 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 6943 const InstructionsState &S) { 6944 if (getScheduleData(V, isOneOf(S, V))) 6945 return true; 6946 Instruction *I = dyn_cast<Instruction>(V); 6947 assert(I && "bundle member must be an instruction"); 6948 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 6949 "phi nodes/insertelements/extractelements/extractvalues don't need to " 6950 "be scheduled"); 6951 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 6952 ScheduleData *ISD = getScheduleData(I); 6953 if (!ISD) 6954 return false; 6955 assert(isInSchedulingRegion(ISD) && 6956 "ScheduleData not in scheduling region"); 6957 ScheduleData *SD = allocateScheduleDataChunks(); 6958 SD->Inst = I; 6959 SD->init(SchedulingRegionID, S.OpValue); 6960 ExtraScheduleDataMap[I][S.OpValue] = SD; 6961 return true; 6962 }; 6963 if (CheckSheduleForI(I)) 6964 return true; 6965 if (!ScheduleStart) { 6966 // It's the first instruction in the new region. 6967 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 6968 ScheduleStart = I; 6969 ScheduleEnd = I->getNextNode(); 6970 if (isOneOf(S, I) != I) 6971 CheckSheduleForI(I); 6972 assert(ScheduleEnd && "tried to vectorize a terminator?"); 6973 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 6974 return true; 6975 } 6976 // Search up and down at the same time, because we don't know if the new 6977 // instruction is above or below the existing scheduling region. 6978 BasicBlock::reverse_iterator UpIter = 6979 ++ScheduleStart->getIterator().getReverse(); 6980 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 6981 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 6982 BasicBlock::iterator LowerEnd = BB->end(); 6983 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 6984 &*DownIter != I) { 6985 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 6986 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 6987 return false; 6988 } 6989 6990 ++UpIter; 6991 ++DownIter; 6992 } 6993 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 6994 assert(I->getParent() == ScheduleStart->getParent() && 6995 "Instruction is in wrong basic block."); 6996 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 6997 ScheduleStart = I; 6998 if (isOneOf(S, I) != I) 6999 CheckSheduleForI(I); 7000 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 7001 << "\n"); 7002 return true; 7003 } 7004 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 7005 "Expected to reach top of the basic block or instruction down the " 7006 "lower end."); 7007 assert(I->getParent() == ScheduleEnd->getParent() && 7008 "Instruction is in wrong basic block."); 7009 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 7010 nullptr); 7011 ScheduleEnd = I->getNextNode(); 7012 if (isOneOf(S, I) != I) 7013 CheckSheduleForI(I); 7014 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7015 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 7016 return true; 7017 } 7018 7019 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 7020 Instruction *ToI, 7021 ScheduleData *PrevLoadStore, 7022 ScheduleData *NextLoadStore) { 7023 ScheduleData *CurrentLoadStore = PrevLoadStore; 7024 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 7025 ScheduleData *SD = ScheduleDataMap[I]; 7026 if (!SD) { 7027 SD = allocateScheduleDataChunks(); 7028 ScheduleDataMap[I] = SD; 7029 SD->Inst = I; 7030 } 7031 assert(!isInSchedulingRegion(SD) && 7032 "new ScheduleData already in scheduling region"); 7033 SD->init(SchedulingRegionID, I); 7034 7035 if (I->mayReadOrWriteMemory() && 7036 (!isa<IntrinsicInst>(I) || 7037 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 7038 cast<IntrinsicInst>(I)->getIntrinsicID() != 7039 Intrinsic::pseudoprobe))) { 7040 // Update the linked list of memory accessing instructions. 7041 if (CurrentLoadStore) { 7042 CurrentLoadStore->NextLoadStore = SD; 7043 } else { 7044 FirstLoadStoreInRegion = SD; 7045 } 7046 CurrentLoadStore = SD; 7047 } 7048 } 7049 if (NextLoadStore) { 7050 if (CurrentLoadStore) 7051 CurrentLoadStore->NextLoadStore = NextLoadStore; 7052 } else { 7053 LastLoadStoreInRegion = CurrentLoadStore; 7054 } 7055 } 7056 7057 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 7058 bool InsertInReadyList, 7059 BoUpSLP *SLP) { 7060 assert(SD->isSchedulingEntity()); 7061 7062 SmallVector<ScheduleData *, 10> WorkList; 7063 WorkList.push_back(SD); 7064 7065 while (!WorkList.empty()) { 7066 ScheduleData *SD = WorkList.pop_back_val(); 7067 7068 ScheduleData *BundleMember = SD; 7069 while (BundleMember) { 7070 assert(isInSchedulingRegion(BundleMember)); 7071 if (!BundleMember->hasValidDependencies()) { 7072 7073 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 7074 << "\n"); 7075 BundleMember->Dependencies = 0; 7076 BundleMember->resetUnscheduledDeps(); 7077 7078 // Handle def-use chain dependencies. 7079 if (BundleMember->OpValue != BundleMember->Inst) { 7080 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 7081 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 7082 BundleMember->Dependencies++; 7083 ScheduleData *DestBundle = UseSD->FirstInBundle; 7084 if (!DestBundle->IsScheduled) 7085 BundleMember->incrementUnscheduledDeps(1); 7086 if (!DestBundle->hasValidDependencies()) 7087 WorkList.push_back(DestBundle); 7088 } 7089 } else { 7090 for (User *U : BundleMember->Inst->users()) { 7091 if (isa<Instruction>(U)) { 7092 ScheduleData *UseSD = getScheduleData(U); 7093 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 7094 BundleMember->Dependencies++; 7095 ScheduleData *DestBundle = UseSD->FirstInBundle; 7096 if (!DestBundle->IsScheduled) 7097 BundleMember->incrementUnscheduledDeps(1); 7098 if (!DestBundle->hasValidDependencies()) 7099 WorkList.push_back(DestBundle); 7100 } 7101 } else { 7102 // I'm not sure if this can ever happen. But we need to be safe. 7103 // This lets the instruction/bundle never be scheduled and 7104 // eventually disable vectorization. 7105 BundleMember->Dependencies++; 7106 BundleMember->incrementUnscheduledDeps(1); 7107 } 7108 } 7109 } 7110 7111 // Handle the memory dependencies. 7112 ScheduleData *DepDest = BundleMember->NextLoadStore; 7113 if (DepDest) { 7114 Instruction *SrcInst = BundleMember->Inst; 7115 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 7116 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 7117 unsigned numAliased = 0; 7118 unsigned DistToSrc = 1; 7119 7120 while (DepDest) { 7121 assert(isInSchedulingRegion(DepDest)); 7122 7123 // We have two limits to reduce the complexity: 7124 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 7125 // SLP->isAliased (which is the expensive part in this loop). 7126 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 7127 // the whole loop (even if the loop is fast, it's quadratic). 7128 // It's important for the loop break condition (see below) to 7129 // check this limit even between two read-only instructions. 7130 if (DistToSrc >= MaxMemDepDistance || 7131 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 7132 (numAliased >= AliasedCheckLimit || 7133 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 7134 7135 // We increment the counter only if the locations are aliased 7136 // (instead of counting all alias checks). This gives a better 7137 // balance between reduced runtime and accurate dependencies. 7138 numAliased++; 7139 7140 DepDest->MemoryDependencies.push_back(BundleMember); 7141 BundleMember->Dependencies++; 7142 ScheduleData *DestBundle = DepDest->FirstInBundle; 7143 if (!DestBundle->IsScheduled) { 7144 BundleMember->incrementUnscheduledDeps(1); 7145 } 7146 if (!DestBundle->hasValidDependencies()) { 7147 WorkList.push_back(DestBundle); 7148 } 7149 } 7150 DepDest = DepDest->NextLoadStore; 7151 7152 // Example, explaining the loop break condition: Let's assume our 7153 // starting instruction is i0 and MaxMemDepDistance = 3. 7154 // 7155 // +--------v--v--v 7156 // i0,i1,i2,i3,i4,i5,i6,i7,i8 7157 // +--------^--^--^ 7158 // 7159 // MaxMemDepDistance let us stop alias-checking at i3 and we add 7160 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 7161 // Previously we already added dependencies from i3 to i6,i7,i8 7162 // (because of MaxMemDepDistance). As we added a dependency from 7163 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 7164 // and we can abort this loop at i6. 7165 if (DistToSrc >= 2 * MaxMemDepDistance) 7166 break; 7167 DistToSrc++; 7168 } 7169 } 7170 } 7171 BundleMember = BundleMember->NextInBundle; 7172 } 7173 if (InsertInReadyList && SD->isReady()) { 7174 ReadyInsts.push_back(SD); 7175 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 7176 << "\n"); 7177 } 7178 } 7179 } 7180 7181 void BoUpSLP::BlockScheduling::resetSchedule() { 7182 assert(ScheduleStart && 7183 "tried to reset schedule on block which has not been scheduled"); 7184 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 7185 doForAllOpcodes(I, [&](ScheduleData *SD) { 7186 assert(isInSchedulingRegion(SD) && 7187 "ScheduleData not in scheduling region"); 7188 SD->IsScheduled = false; 7189 SD->resetUnscheduledDeps(); 7190 }); 7191 } 7192 ReadyInsts.clear(); 7193 } 7194 7195 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 7196 if (!BS->ScheduleStart) 7197 return; 7198 7199 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 7200 7201 BS->resetSchedule(); 7202 7203 // For the real scheduling we use a more sophisticated ready-list: it is 7204 // sorted by the original instruction location. This lets the final schedule 7205 // be as close as possible to the original instruction order. 7206 struct ScheduleDataCompare { 7207 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 7208 return SD2->SchedulingPriority < SD1->SchedulingPriority; 7209 } 7210 }; 7211 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 7212 7213 // Ensure that all dependency data is updated and fill the ready-list with 7214 // initial instructions. 7215 int Idx = 0; 7216 int NumToSchedule = 0; 7217 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 7218 I = I->getNextNode()) { 7219 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 7220 assert((isVectorLikeInstWithConstOps(SD->Inst) || 7221 SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr)) && 7222 "scheduler and vectorizer bundle mismatch"); 7223 SD->FirstInBundle->SchedulingPriority = Idx++; 7224 if (SD->isSchedulingEntity()) { 7225 BS->calculateDependencies(SD, false, this); 7226 NumToSchedule++; 7227 } 7228 }); 7229 } 7230 BS->initialFillReadyList(ReadyInsts); 7231 7232 Instruction *LastScheduledInst = BS->ScheduleEnd; 7233 7234 // Do the "real" scheduling. 7235 while (!ReadyInsts.empty()) { 7236 ScheduleData *picked = *ReadyInsts.begin(); 7237 ReadyInsts.erase(ReadyInsts.begin()); 7238 7239 // Move the scheduled instruction(s) to their dedicated places, if not 7240 // there yet. 7241 ScheduleData *BundleMember = picked; 7242 while (BundleMember) { 7243 Instruction *pickedInst = BundleMember->Inst; 7244 if (pickedInst->getNextNode() != LastScheduledInst) { 7245 BS->BB->getInstList().remove(pickedInst); 7246 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 7247 pickedInst); 7248 } 7249 LastScheduledInst = pickedInst; 7250 BundleMember = BundleMember->NextInBundle; 7251 } 7252 7253 BS->schedule(picked, ReadyInsts); 7254 NumToSchedule--; 7255 } 7256 assert(NumToSchedule == 0 && "could not schedule all instructions"); 7257 7258 // Avoid duplicate scheduling of the block. 7259 BS->ScheduleStart = nullptr; 7260 } 7261 7262 unsigned BoUpSLP::getVectorElementSize(Value *V) { 7263 // If V is a store, just return the width of the stored value (or value 7264 // truncated just before storing) without traversing the expression tree. 7265 // This is the common case. 7266 if (auto *Store = dyn_cast<StoreInst>(V)) { 7267 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 7268 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 7269 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 7270 } 7271 7272 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 7273 return getVectorElementSize(IEI->getOperand(1)); 7274 7275 auto E = InstrElementSize.find(V); 7276 if (E != InstrElementSize.end()) 7277 return E->second; 7278 7279 // If V is not a store, we can traverse the expression tree to find loads 7280 // that feed it. The type of the loaded value may indicate a more suitable 7281 // width than V's type. We want to base the vector element size on the width 7282 // of memory operations where possible. 7283 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 7284 SmallPtrSet<Instruction *, 16> Visited; 7285 if (auto *I = dyn_cast<Instruction>(V)) { 7286 Worklist.emplace_back(I, I->getParent()); 7287 Visited.insert(I); 7288 } 7289 7290 // Traverse the expression tree in bottom-up order looking for loads. If we 7291 // encounter an instruction we don't yet handle, we give up. 7292 auto Width = 0u; 7293 while (!Worklist.empty()) { 7294 Instruction *I; 7295 BasicBlock *Parent; 7296 std::tie(I, Parent) = Worklist.pop_back_val(); 7297 7298 // We should only be looking at scalar instructions here. If the current 7299 // instruction has a vector type, skip. 7300 auto *Ty = I->getType(); 7301 if (isa<VectorType>(Ty)) 7302 continue; 7303 7304 // If the current instruction is a load, update MaxWidth to reflect the 7305 // width of the loaded value. 7306 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 7307 isa<ExtractValueInst>(I)) 7308 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 7309 7310 // Otherwise, we need to visit the operands of the instruction. We only 7311 // handle the interesting cases from buildTree here. If an operand is an 7312 // instruction we haven't yet visited and from the same basic block as the 7313 // user or the use is a PHI node, we add it to the worklist. 7314 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 7315 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 7316 isa<UnaryOperator>(I)) { 7317 for (Use &U : I->operands()) 7318 if (auto *J = dyn_cast<Instruction>(U.get())) 7319 if (Visited.insert(J).second && 7320 (isa<PHINode>(I) || J->getParent() == Parent)) 7321 Worklist.emplace_back(J, J->getParent()); 7322 } else { 7323 break; 7324 } 7325 } 7326 7327 // If we didn't encounter a memory access in the expression tree, or if we 7328 // gave up for some reason, just return the width of V. Otherwise, return the 7329 // maximum width we found. 7330 if (!Width) { 7331 if (auto *CI = dyn_cast<CmpInst>(V)) 7332 V = CI->getOperand(0); 7333 Width = DL->getTypeSizeInBits(V->getType()); 7334 } 7335 7336 for (Instruction *I : Visited) 7337 InstrElementSize[I] = Width; 7338 7339 return Width; 7340 } 7341 7342 // Determine if a value V in a vectorizable expression Expr can be demoted to a 7343 // smaller type with a truncation. We collect the values that will be demoted 7344 // in ToDemote and additional roots that require investigating in Roots. 7345 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 7346 SmallVectorImpl<Value *> &ToDemote, 7347 SmallVectorImpl<Value *> &Roots) { 7348 // We can always demote constants. 7349 if (isa<Constant>(V)) { 7350 ToDemote.push_back(V); 7351 return true; 7352 } 7353 7354 // If the value is not an instruction in the expression with only one use, it 7355 // cannot be demoted. 7356 auto *I = dyn_cast<Instruction>(V); 7357 if (!I || !I->hasOneUse() || !Expr.count(I)) 7358 return false; 7359 7360 switch (I->getOpcode()) { 7361 7362 // We can always demote truncations and extensions. Since truncations can 7363 // seed additional demotion, we save the truncated value. 7364 case Instruction::Trunc: 7365 Roots.push_back(I->getOperand(0)); 7366 break; 7367 case Instruction::ZExt: 7368 case Instruction::SExt: 7369 if (isa<ExtractElementInst>(I->getOperand(0)) || 7370 isa<InsertElementInst>(I->getOperand(0))) 7371 return false; 7372 break; 7373 7374 // We can demote certain binary operations if we can demote both of their 7375 // operands. 7376 case Instruction::Add: 7377 case Instruction::Sub: 7378 case Instruction::Mul: 7379 case Instruction::And: 7380 case Instruction::Or: 7381 case Instruction::Xor: 7382 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 7383 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 7384 return false; 7385 break; 7386 7387 // We can demote selects if we can demote their true and false values. 7388 case Instruction::Select: { 7389 SelectInst *SI = cast<SelectInst>(I); 7390 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 7391 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 7392 return false; 7393 break; 7394 } 7395 7396 // We can demote phis if we can demote all their incoming operands. Note that 7397 // we don't need to worry about cycles since we ensure single use above. 7398 case Instruction::PHI: { 7399 PHINode *PN = cast<PHINode>(I); 7400 for (Value *IncValue : PN->incoming_values()) 7401 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 7402 return false; 7403 break; 7404 } 7405 7406 // Otherwise, conservatively give up. 7407 default: 7408 return false; 7409 } 7410 7411 // Record the value that we can demote. 7412 ToDemote.push_back(V); 7413 return true; 7414 } 7415 7416 void BoUpSLP::computeMinimumValueSizes() { 7417 // If there are no external uses, the expression tree must be rooted by a 7418 // store. We can't demote in-memory values, so there is nothing to do here. 7419 if (ExternalUses.empty()) 7420 return; 7421 7422 // We only attempt to truncate integer expressions. 7423 auto &TreeRoot = VectorizableTree[0]->Scalars; 7424 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 7425 if (!TreeRootIT) 7426 return; 7427 7428 // If the expression is not rooted by a store, these roots should have 7429 // external uses. We will rely on InstCombine to rewrite the expression in 7430 // the narrower type. However, InstCombine only rewrites single-use values. 7431 // This means that if a tree entry other than a root is used externally, it 7432 // must have multiple uses and InstCombine will not rewrite it. The code 7433 // below ensures that only the roots are used externally. 7434 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 7435 for (auto &EU : ExternalUses) 7436 if (!Expr.erase(EU.Scalar)) 7437 return; 7438 if (!Expr.empty()) 7439 return; 7440 7441 // Collect the scalar values of the vectorizable expression. We will use this 7442 // context to determine which values can be demoted. If we see a truncation, 7443 // we mark it as seeding another demotion. 7444 for (auto &EntryPtr : VectorizableTree) 7445 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 7446 7447 // Ensure the roots of the vectorizable tree don't form a cycle. They must 7448 // have a single external user that is not in the vectorizable tree. 7449 for (auto *Root : TreeRoot) 7450 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 7451 return; 7452 7453 // Conservatively determine if we can actually truncate the roots of the 7454 // expression. Collect the values that can be demoted in ToDemote and 7455 // additional roots that require investigating in Roots. 7456 SmallVector<Value *, 32> ToDemote; 7457 SmallVector<Value *, 4> Roots; 7458 for (auto *Root : TreeRoot) 7459 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 7460 return; 7461 7462 // The maximum bit width required to represent all the values that can be 7463 // demoted without loss of precision. It would be safe to truncate the roots 7464 // of the expression to this width. 7465 auto MaxBitWidth = 8u; 7466 7467 // We first check if all the bits of the roots are demanded. If they're not, 7468 // we can truncate the roots to this narrower type. 7469 for (auto *Root : TreeRoot) { 7470 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 7471 MaxBitWidth = std::max<unsigned>( 7472 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 7473 } 7474 7475 // True if the roots can be zero-extended back to their original type, rather 7476 // than sign-extended. We know that if the leading bits are not demanded, we 7477 // can safely zero-extend. So we initialize IsKnownPositive to True. 7478 bool IsKnownPositive = true; 7479 7480 // If all the bits of the roots are demanded, we can try a little harder to 7481 // compute a narrower type. This can happen, for example, if the roots are 7482 // getelementptr indices. InstCombine promotes these indices to the pointer 7483 // width. Thus, all their bits are technically demanded even though the 7484 // address computation might be vectorized in a smaller type. 7485 // 7486 // We start by looking at each entry that can be demoted. We compute the 7487 // maximum bit width required to store the scalar by using ValueTracking to 7488 // compute the number of high-order bits we can truncate. 7489 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 7490 llvm::all_of(TreeRoot, [](Value *R) { 7491 assert(R->hasOneUse() && "Root should have only one use!"); 7492 return isa<GetElementPtrInst>(R->user_back()); 7493 })) { 7494 MaxBitWidth = 8u; 7495 7496 // Determine if the sign bit of all the roots is known to be zero. If not, 7497 // IsKnownPositive is set to False. 7498 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 7499 KnownBits Known = computeKnownBits(R, *DL); 7500 return Known.isNonNegative(); 7501 }); 7502 7503 // Determine the maximum number of bits required to store the scalar 7504 // values. 7505 for (auto *Scalar : ToDemote) { 7506 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 7507 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 7508 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 7509 } 7510 7511 // If we can't prove that the sign bit is zero, we must add one to the 7512 // maximum bit width to account for the unknown sign bit. This preserves 7513 // the existing sign bit so we can safely sign-extend the root back to the 7514 // original type. Otherwise, if we know the sign bit is zero, we will 7515 // zero-extend the root instead. 7516 // 7517 // FIXME: This is somewhat suboptimal, as there will be cases where adding 7518 // one to the maximum bit width will yield a larger-than-necessary 7519 // type. In general, we need to add an extra bit only if we can't 7520 // prove that the upper bit of the original type is equal to the 7521 // upper bit of the proposed smaller type. If these two bits are the 7522 // same (either zero or one) we know that sign-extending from the 7523 // smaller type will result in the same value. Here, since we can't 7524 // yet prove this, we are just making the proposed smaller type 7525 // larger to ensure correctness. 7526 if (!IsKnownPositive) 7527 ++MaxBitWidth; 7528 } 7529 7530 // Round MaxBitWidth up to the next power-of-two. 7531 if (!isPowerOf2_64(MaxBitWidth)) 7532 MaxBitWidth = NextPowerOf2(MaxBitWidth); 7533 7534 // If the maximum bit width we compute is less than the with of the roots' 7535 // type, we can proceed with the narrowing. Otherwise, do nothing. 7536 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 7537 return; 7538 7539 // If we can truncate the root, we must collect additional values that might 7540 // be demoted as a result. That is, those seeded by truncations we will 7541 // modify. 7542 while (!Roots.empty()) 7543 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 7544 7545 // Finally, map the values we can demote to the maximum bit with we computed. 7546 for (auto *Scalar : ToDemote) 7547 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 7548 } 7549 7550 namespace { 7551 7552 /// The SLPVectorizer Pass. 7553 struct SLPVectorizer : public FunctionPass { 7554 SLPVectorizerPass Impl; 7555 7556 /// Pass identification, replacement for typeid 7557 static char ID; 7558 7559 explicit SLPVectorizer() : FunctionPass(ID) { 7560 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 7561 } 7562 7563 bool doInitialization(Module &M) override { return false; } 7564 7565 bool runOnFunction(Function &F) override { 7566 if (skipFunction(F)) 7567 return false; 7568 7569 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 7570 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 7571 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 7572 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 7573 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 7574 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 7575 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 7576 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 7577 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 7578 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 7579 7580 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 7581 } 7582 7583 void getAnalysisUsage(AnalysisUsage &AU) const override { 7584 FunctionPass::getAnalysisUsage(AU); 7585 AU.addRequired<AssumptionCacheTracker>(); 7586 AU.addRequired<ScalarEvolutionWrapperPass>(); 7587 AU.addRequired<AAResultsWrapperPass>(); 7588 AU.addRequired<TargetTransformInfoWrapperPass>(); 7589 AU.addRequired<LoopInfoWrapperPass>(); 7590 AU.addRequired<DominatorTreeWrapperPass>(); 7591 AU.addRequired<DemandedBitsWrapperPass>(); 7592 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 7593 AU.addRequired<InjectTLIMappingsLegacy>(); 7594 AU.addPreserved<LoopInfoWrapperPass>(); 7595 AU.addPreserved<DominatorTreeWrapperPass>(); 7596 AU.addPreserved<AAResultsWrapperPass>(); 7597 AU.addPreserved<GlobalsAAWrapperPass>(); 7598 AU.setPreservesCFG(); 7599 } 7600 }; 7601 7602 } // end anonymous namespace 7603 7604 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 7605 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 7606 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 7607 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 7608 auto *AA = &AM.getResult<AAManager>(F); 7609 auto *LI = &AM.getResult<LoopAnalysis>(F); 7610 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 7611 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 7612 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 7613 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 7614 7615 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 7616 if (!Changed) 7617 return PreservedAnalyses::all(); 7618 7619 PreservedAnalyses PA; 7620 PA.preserveSet<CFGAnalyses>(); 7621 return PA; 7622 } 7623 7624 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 7625 TargetTransformInfo *TTI_, 7626 TargetLibraryInfo *TLI_, AAResults *AA_, 7627 LoopInfo *LI_, DominatorTree *DT_, 7628 AssumptionCache *AC_, DemandedBits *DB_, 7629 OptimizationRemarkEmitter *ORE_) { 7630 if (!RunSLPVectorization) 7631 return false; 7632 SE = SE_; 7633 TTI = TTI_; 7634 TLI = TLI_; 7635 AA = AA_; 7636 LI = LI_; 7637 DT = DT_; 7638 AC = AC_; 7639 DB = DB_; 7640 DL = &F.getParent()->getDataLayout(); 7641 7642 Stores.clear(); 7643 GEPs.clear(); 7644 bool Changed = false; 7645 7646 // If the target claims to have no vector registers don't attempt 7647 // vectorization. 7648 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) 7649 return false; 7650 7651 // Don't vectorize when the attribute NoImplicitFloat is used. 7652 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 7653 return false; 7654 7655 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 7656 7657 // Use the bottom up slp vectorizer to construct chains that start with 7658 // store instructions. 7659 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 7660 7661 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 7662 // delete instructions. 7663 7664 // Update DFS numbers now so that we can use them for ordering. 7665 DT->updateDFSNumbers(); 7666 7667 // Scan the blocks in the function in post order. 7668 for (auto BB : post_order(&F.getEntryBlock())) { 7669 collectSeedInstructions(BB); 7670 7671 // Vectorize trees that end at stores. 7672 if (!Stores.empty()) { 7673 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 7674 << " underlying objects.\n"); 7675 Changed |= vectorizeStoreChains(R); 7676 } 7677 7678 // Vectorize trees that end at reductions. 7679 Changed |= vectorizeChainsInBlock(BB, R); 7680 7681 // Vectorize the index computations of getelementptr instructions. This 7682 // is primarily intended to catch gather-like idioms ending at 7683 // non-consecutive loads. 7684 if (!GEPs.empty()) { 7685 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 7686 << " underlying objects.\n"); 7687 Changed |= vectorizeGEPIndices(BB, R); 7688 } 7689 } 7690 7691 if (Changed) { 7692 R.optimizeGatherSequence(); 7693 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 7694 } 7695 return Changed; 7696 } 7697 7698 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 7699 unsigned Idx) { 7700 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 7701 << "\n"); 7702 const unsigned Sz = R.getVectorElementSize(Chain[0]); 7703 const unsigned MinVF = R.getMinVecRegSize() / Sz; 7704 unsigned VF = Chain.size(); 7705 7706 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 7707 return false; 7708 7709 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 7710 << "\n"); 7711 7712 R.buildTree(Chain); 7713 if (R.isTreeTinyAndNotFullyVectorizable()) 7714 return false; 7715 if (R.isLoadCombineCandidate()) 7716 return false; 7717 R.reorderTopToBottom(); 7718 R.reorderBottomToTop(); 7719 R.buildExternalUses(); 7720 7721 R.computeMinimumValueSizes(); 7722 7723 InstructionCost Cost = R.getTreeCost(); 7724 7725 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 7726 if (Cost < -SLPCostThreshold) { 7727 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 7728 7729 using namespace ore; 7730 7731 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 7732 cast<StoreInst>(Chain[0])) 7733 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 7734 << " and with tree size " 7735 << NV("TreeSize", R.getTreeSize())); 7736 7737 R.vectorizeTree(); 7738 return true; 7739 } 7740 7741 return false; 7742 } 7743 7744 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 7745 BoUpSLP &R) { 7746 // We may run into multiple chains that merge into a single chain. We mark the 7747 // stores that we vectorized so that we don't visit the same store twice. 7748 BoUpSLP::ValueSet VectorizedStores; 7749 bool Changed = false; 7750 7751 int E = Stores.size(); 7752 SmallBitVector Tails(E, false); 7753 int MaxIter = MaxStoreLookup.getValue(); 7754 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 7755 E, std::make_pair(E, INT_MAX)); 7756 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 7757 int IterCnt; 7758 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 7759 &CheckedPairs, 7760 &ConsecutiveChain](int K, int Idx) { 7761 if (IterCnt >= MaxIter) 7762 return true; 7763 if (CheckedPairs[Idx].test(K)) 7764 return ConsecutiveChain[K].second == 1 && 7765 ConsecutiveChain[K].first == Idx; 7766 ++IterCnt; 7767 CheckedPairs[Idx].set(K); 7768 CheckedPairs[K].set(Idx); 7769 Optional<int> Diff = getPointersDiff( 7770 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 7771 Stores[Idx]->getValueOperand()->getType(), 7772 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 7773 if (!Diff || *Diff == 0) 7774 return false; 7775 int Val = *Diff; 7776 if (Val < 0) { 7777 if (ConsecutiveChain[Idx].second > -Val) { 7778 Tails.set(K); 7779 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 7780 } 7781 return false; 7782 } 7783 if (ConsecutiveChain[K].second <= Val) 7784 return false; 7785 7786 Tails.set(Idx); 7787 ConsecutiveChain[K] = std::make_pair(Idx, Val); 7788 return Val == 1; 7789 }; 7790 // Do a quadratic search on all of the given stores in reverse order and find 7791 // all of the pairs of stores that follow each other. 7792 for (int Idx = E - 1; Idx >= 0; --Idx) { 7793 // If a store has multiple consecutive store candidates, search according 7794 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 7795 // This is because usually pairing with immediate succeeding or preceding 7796 // candidate create the best chance to find slp vectorization opportunity. 7797 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 7798 IterCnt = 0; 7799 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 7800 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 7801 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 7802 break; 7803 } 7804 7805 // Tracks if we tried to vectorize stores starting from the given tail 7806 // already. 7807 SmallBitVector TriedTails(E, false); 7808 // For stores that start but don't end a link in the chain: 7809 for (int Cnt = E; Cnt > 0; --Cnt) { 7810 int I = Cnt - 1; 7811 if (ConsecutiveChain[I].first == E || Tails.test(I)) 7812 continue; 7813 // We found a store instr that starts a chain. Now follow the chain and try 7814 // to vectorize it. 7815 BoUpSLP::ValueList Operands; 7816 // Collect the chain into a list. 7817 while (I != E && !VectorizedStores.count(Stores[I])) { 7818 Operands.push_back(Stores[I]); 7819 Tails.set(I); 7820 if (ConsecutiveChain[I].second != 1) { 7821 // Mark the new end in the chain and go back, if required. It might be 7822 // required if the original stores come in reversed order, for example. 7823 if (ConsecutiveChain[I].first != E && 7824 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 7825 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 7826 TriedTails.set(I); 7827 Tails.reset(ConsecutiveChain[I].first); 7828 if (Cnt < ConsecutiveChain[I].first + 2) 7829 Cnt = ConsecutiveChain[I].first + 2; 7830 } 7831 break; 7832 } 7833 // Move to the next value in the chain. 7834 I = ConsecutiveChain[I].first; 7835 } 7836 assert(!Operands.empty() && "Expected non-empty list of stores."); 7837 7838 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 7839 unsigned EltSize = R.getVectorElementSize(Operands[0]); 7840 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 7841 7842 unsigned MinVF = R.getMinVF(EltSize); 7843 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 7844 MaxElts); 7845 7846 // FIXME: Is division-by-2 the correct step? Should we assert that the 7847 // register size is a power-of-2? 7848 unsigned StartIdx = 0; 7849 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 7850 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 7851 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 7852 if (!VectorizedStores.count(Slice.front()) && 7853 !VectorizedStores.count(Slice.back()) && 7854 vectorizeStoreChain(Slice, R, Cnt)) { 7855 // Mark the vectorized stores so that we don't vectorize them again. 7856 VectorizedStores.insert(Slice.begin(), Slice.end()); 7857 Changed = true; 7858 // If we vectorized initial block, no need to try to vectorize it 7859 // again. 7860 if (Cnt == StartIdx) 7861 StartIdx += Size; 7862 Cnt += Size; 7863 continue; 7864 } 7865 ++Cnt; 7866 } 7867 // Check if the whole array was vectorized already - exit. 7868 if (StartIdx >= Operands.size()) 7869 break; 7870 } 7871 } 7872 7873 return Changed; 7874 } 7875 7876 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 7877 // Initialize the collections. We will make a single pass over the block. 7878 Stores.clear(); 7879 GEPs.clear(); 7880 7881 // Visit the store and getelementptr instructions in BB and organize them in 7882 // Stores and GEPs according to the underlying objects of their pointer 7883 // operands. 7884 for (Instruction &I : *BB) { 7885 // Ignore store instructions that are volatile or have a pointer operand 7886 // that doesn't point to a scalar type. 7887 if (auto *SI = dyn_cast<StoreInst>(&I)) { 7888 if (!SI->isSimple()) 7889 continue; 7890 if (!isValidElementType(SI->getValueOperand()->getType())) 7891 continue; 7892 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 7893 } 7894 7895 // Ignore getelementptr instructions that have more than one index, a 7896 // constant index, or a pointer operand that doesn't point to a scalar 7897 // type. 7898 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 7899 auto Idx = GEP->idx_begin()->get(); 7900 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 7901 continue; 7902 if (!isValidElementType(Idx->getType())) 7903 continue; 7904 if (GEP->getType()->isVectorTy()) 7905 continue; 7906 GEPs[GEP->getPointerOperand()].push_back(GEP); 7907 } 7908 } 7909 } 7910 7911 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 7912 if (!A || !B) 7913 return false; 7914 Value *VL[] = {A, B}; 7915 return tryToVectorizeList(VL, R); 7916 } 7917 7918 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 7919 bool LimitForRegisterSize) { 7920 if (VL.size() < 2) 7921 return false; 7922 7923 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 7924 << VL.size() << ".\n"); 7925 7926 // Check that all of the parts are instructions of the same type, 7927 // we permit an alternate opcode via InstructionsState. 7928 InstructionsState S = getSameOpcode(VL); 7929 if (!S.getOpcode()) 7930 return false; 7931 7932 Instruction *I0 = cast<Instruction>(S.OpValue); 7933 // Make sure invalid types (including vector type) are rejected before 7934 // determining vectorization factor for scalar instructions. 7935 for (Value *V : VL) { 7936 Type *Ty = V->getType(); 7937 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 7938 // NOTE: the following will give user internal llvm type name, which may 7939 // not be useful. 7940 R.getORE()->emit([&]() { 7941 std::string type_str; 7942 llvm::raw_string_ostream rso(type_str); 7943 Ty->print(rso); 7944 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 7945 << "Cannot SLP vectorize list: type " 7946 << rso.str() + " is unsupported by vectorizer"; 7947 }); 7948 return false; 7949 } 7950 } 7951 7952 unsigned Sz = R.getVectorElementSize(I0); 7953 unsigned MinVF = R.getMinVF(Sz); 7954 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 7955 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 7956 if (MaxVF < 2) { 7957 R.getORE()->emit([&]() { 7958 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 7959 << "Cannot SLP vectorize list: vectorization factor " 7960 << "less than 2 is not supported"; 7961 }); 7962 return false; 7963 } 7964 7965 bool Changed = false; 7966 bool CandidateFound = false; 7967 InstructionCost MinCost = SLPCostThreshold.getValue(); 7968 Type *ScalarTy = VL[0]->getType(); 7969 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 7970 ScalarTy = IE->getOperand(1)->getType(); 7971 7972 unsigned NextInst = 0, MaxInst = VL.size(); 7973 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 7974 // No actual vectorization should happen, if number of parts is the same as 7975 // provided vectorization factor (i.e. the scalar type is used for vector 7976 // code during codegen). 7977 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 7978 if (TTI->getNumberOfParts(VecTy) == VF) 7979 continue; 7980 for (unsigned I = NextInst; I < MaxInst; ++I) { 7981 unsigned OpsWidth = 0; 7982 7983 if (I + VF > MaxInst) 7984 OpsWidth = MaxInst - I; 7985 else 7986 OpsWidth = VF; 7987 7988 if (!isPowerOf2_32(OpsWidth)) 7989 continue; 7990 7991 if ((LimitForRegisterSize && OpsWidth < MaxVF) || 7992 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 7993 break; 7994 7995 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 7996 // Check that a previous iteration of this loop did not delete the Value. 7997 if (llvm::any_of(Ops, [&R](Value *V) { 7998 auto *I = dyn_cast<Instruction>(V); 7999 return I && R.isDeleted(I); 8000 })) 8001 continue; 8002 8003 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 8004 << "\n"); 8005 8006 R.buildTree(Ops); 8007 if (R.isTreeTinyAndNotFullyVectorizable()) 8008 continue; 8009 R.reorderTopToBottom(); 8010 R.reorderBottomToTop(); 8011 R.buildExternalUses(); 8012 8013 R.computeMinimumValueSizes(); 8014 InstructionCost Cost = R.getTreeCost(); 8015 CandidateFound = true; 8016 MinCost = std::min(MinCost, Cost); 8017 8018 if (Cost < -SLPCostThreshold) { 8019 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 8020 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 8021 cast<Instruction>(Ops[0])) 8022 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 8023 << " and with tree size " 8024 << ore::NV("TreeSize", R.getTreeSize())); 8025 8026 R.vectorizeTree(); 8027 // Move to the next bundle. 8028 I += VF - 1; 8029 NextInst = I + 1; 8030 Changed = true; 8031 } 8032 } 8033 } 8034 8035 if (!Changed && CandidateFound) { 8036 R.getORE()->emit([&]() { 8037 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 8038 << "List vectorization was possible but not beneficial with cost " 8039 << ore::NV("Cost", MinCost) << " >= " 8040 << ore::NV("Treshold", -SLPCostThreshold); 8041 }); 8042 } else if (!Changed) { 8043 R.getORE()->emit([&]() { 8044 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 8045 << "Cannot SLP vectorize list: vectorization was impossible" 8046 << " with available vectorization factors"; 8047 }); 8048 } 8049 return Changed; 8050 } 8051 8052 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 8053 if (!I) 8054 return false; 8055 8056 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 8057 return false; 8058 8059 Value *P = I->getParent(); 8060 8061 // Vectorize in current basic block only. 8062 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 8063 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 8064 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 8065 return false; 8066 8067 // Try to vectorize V. 8068 if (tryToVectorizePair(Op0, Op1, R)) 8069 return true; 8070 8071 auto *A = dyn_cast<BinaryOperator>(Op0); 8072 auto *B = dyn_cast<BinaryOperator>(Op1); 8073 // Try to skip B. 8074 if (B && B->hasOneUse()) { 8075 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 8076 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 8077 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 8078 return true; 8079 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 8080 return true; 8081 } 8082 8083 // Try to skip A. 8084 if (A && A->hasOneUse()) { 8085 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 8086 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 8087 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 8088 return true; 8089 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 8090 return true; 8091 } 8092 return false; 8093 } 8094 8095 namespace { 8096 8097 /// Model horizontal reductions. 8098 /// 8099 /// A horizontal reduction is a tree of reduction instructions that has values 8100 /// that can be put into a vector as its leaves. For example: 8101 /// 8102 /// mul mul mul mul 8103 /// \ / \ / 8104 /// + + 8105 /// \ / 8106 /// + 8107 /// This tree has "mul" as its leaf values and "+" as its reduction 8108 /// instructions. A reduction can feed into a store or a binary operation 8109 /// feeding a phi. 8110 /// ... 8111 /// \ / 8112 /// + 8113 /// | 8114 /// phi += 8115 /// 8116 /// Or: 8117 /// ... 8118 /// \ / 8119 /// + 8120 /// | 8121 /// *p = 8122 /// 8123 class HorizontalReduction { 8124 using ReductionOpsType = SmallVector<Value *, 16>; 8125 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 8126 ReductionOpsListType ReductionOps; 8127 SmallVector<Value *, 32> ReducedVals; 8128 // Use map vector to make stable output. 8129 MapVector<Instruction *, Value *> ExtraArgs; 8130 WeakTrackingVH ReductionRoot; 8131 /// The type of reduction operation. 8132 RecurKind RdxKind; 8133 8134 const unsigned INVALID_OPERAND_INDEX = std::numeric_limits<unsigned>::max(); 8135 8136 static bool isCmpSelMinMax(Instruction *I) { 8137 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 8138 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 8139 } 8140 8141 // And/or are potentially poison-safe logical patterns like: 8142 // select x, y, false 8143 // select x, true, y 8144 static bool isBoolLogicOp(Instruction *I) { 8145 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 8146 match(I, m_LogicalOr(m_Value(), m_Value())); 8147 } 8148 8149 /// Checks if instruction is associative and can be vectorized. 8150 static bool isVectorizable(RecurKind Kind, Instruction *I) { 8151 if (Kind == RecurKind::None) 8152 return false; 8153 8154 // Integer ops that map to select instructions or intrinsics are fine. 8155 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 8156 isBoolLogicOp(I)) 8157 return true; 8158 8159 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 8160 // FP min/max are associative except for NaN and -0.0. We do not 8161 // have to rule out -0.0 here because the intrinsic semantics do not 8162 // specify a fixed result for it. 8163 return I->getFastMathFlags().noNaNs(); 8164 } 8165 8166 return I->isAssociative(); 8167 } 8168 8169 static Value *getRdxOperand(Instruction *I, unsigned Index) { 8170 // Poison-safe 'or' takes the form: select X, true, Y 8171 // To make that work with the normal operand processing, we skip the 8172 // true value operand. 8173 // TODO: Change the code and data structures to handle this without a hack. 8174 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 8175 return I->getOperand(2); 8176 return I->getOperand(Index); 8177 } 8178 8179 /// Checks if the ParentStackElem.first should be marked as a reduction 8180 /// operation with an extra argument or as extra argument itself. 8181 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 8182 Value *ExtraArg) { 8183 if (ExtraArgs.count(ParentStackElem.first)) { 8184 ExtraArgs[ParentStackElem.first] = nullptr; 8185 // We ran into something like: 8186 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 8187 // The whole ParentStackElem.first should be considered as an extra value 8188 // in this case. 8189 // Do not perform analysis of remaining operands of ParentStackElem.first 8190 // instruction, this whole instruction is an extra argument. 8191 ParentStackElem.second = INVALID_OPERAND_INDEX; 8192 } else { 8193 // We ran into something like: 8194 // ParentStackElem.first += ... + ExtraArg + ... 8195 ExtraArgs[ParentStackElem.first] = ExtraArg; 8196 } 8197 } 8198 8199 /// Creates reduction operation with the current opcode. 8200 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 8201 Value *RHS, const Twine &Name, bool UseSelect) { 8202 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 8203 switch (Kind) { 8204 case RecurKind::Or: 8205 if (UseSelect && 8206 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 8207 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); 8208 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8209 Name); 8210 case RecurKind::And: 8211 if (UseSelect && 8212 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 8213 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); 8214 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8215 Name); 8216 case RecurKind::Add: 8217 case RecurKind::Mul: 8218 case RecurKind::Xor: 8219 case RecurKind::FAdd: 8220 case RecurKind::FMul: 8221 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8222 Name); 8223 case RecurKind::FMax: 8224 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 8225 case RecurKind::FMin: 8226 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 8227 case RecurKind::SMax: 8228 if (UseSelect) { 8229 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 8230 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8231 } 8232 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 8233 case RecurKind::SMin: 8234 if (UseSelect) { 8235 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 8236 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8237 } 8238 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 8239 case RecurKind::UMax: 8240 if (UseSelect) { 8241 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 8242 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8243 } 8244 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 8245 case RecurKind::UMin: 8246 if (UseSelect) { 8247 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 8248 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8249 } 8250 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 8251 default: 8252 llvm_unreachable("Unknown reduction operation."); 8253 } 8254 } 8255 8256 /// Creates reduction operation with the current opcode with the IR flags 8257 /// from \p ReductionOps. 8258 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 8259 Value *RHS, const Twine &Name, 8260 const ReductionOpsListType &ReductionOps) { 8261 bool UseSelect = ReductionOps.size() == 2 || 8262 // Logical or/and. 8263 (ReductionOps.size() == 1 && 8264 isa<SelectInst>(ReductionOps.front().front())); 8265 assert((!UseSelect || ReductionOps.size() != 2 || 8266 isa<SelectInst>(ReductionOps[1][0])) && 8267 "Expected cmp + select pairs for reduction"); 8268 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 8269 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 8270 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 8271 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 8272 propagateIRFlags(Op, ReductionOps[1]); 8273 return Op; 8274 } 8275 } 8276 propagateIRFlags(Op, ReductionOps[0]); 8277 return Op; 8278 } 8279 8280 /// Creates reduction operation with the current opcode with the IR flags 8281 /// from \p I. 8282 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 8283 Value *RHS, const Twine &Name, Instruction *I) { 8284 auto *SelI = dyn_cast<SelectInst>(I); 8285 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 8286 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 8287 if (auto *Sel = dyn_cast<SelectInst>(Op)) 8288 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 8289 } 8290 propagateIRFlags(Op, I); 8291 return Op; 8292 } 8293 8294 static RecurKind getRdxKind(Instruction *I) { 8295 assert(I && "Expected instruction for reduction matching"); 8296 TargetTransformInfo::ReductionFlags RdxFlags; 8297 if (match(I, m_Add(m_Value(), m_Value()))) 8298 return RecurKind::Add; 8299 if (match(I, m_Mul(m_Value(), m_Value()))) 8300 return RecurKind::Mul; 8301 if (match(I, m_And(m_Value(), m_Value())) || 8302 match(I, m_LogicalAnd(m_Value(), m_Value()))) 8303 return RecurKind::And; 8304 if (match(I, m_Or(m_Value(), m_Value())) || 8305 match(I, m_LogicalOr(m_Value(), m_Value()))) 8306 return RecurKind::Or; 8307 if (match(I, m_Xor(m_Value(), m_Value()))) 8308 return RecurKind::Xor; 8309 if (match(I, m_FAdd(m_Value(), m_Value()))) 8310 return RecurKind::FAdd; 8311 if (match(I, m_FMul(m_Value(), m_Value()))) 8312 return RecurKind::FMul; 8313 8314 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 8315 return RecurKind::FMax; 8316 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 8317 return RecurKind::FMin; 8318 8319 // This matches either cmp+select or intrinsics. SLP is expected to handle 8320 // either form. 8321 // TODO: If we are canonicalizing to intrinsics, we can remove several 8322 // special-case paths that deal with selects. 8323 if (match(I, m_SMax(m_Value(), m_Value()))) 8324 return RecurKind::SMax; 8325 if (match(I, m_SMin(m_Value(), m_Value()))) 8326 return RecurKind::SMin; 8327 if (match(I, m_UMax(m_Value(), m_Value()))) 8328 return RecurKind::UMax; 8329 if (match(I, m_UMin(m_Value(), m_Value()))) 8330 return RecurKind::UMin; 8331 8332 if (auto *Select = dyn_cast<SelectInst>(I)) { 8333 // Try harder: look for min/max pattern based on instructions producing 8334 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 8335 // During the intermediate stages of SLP, it's very common to have 8336 // pattern like this (since optimizeGatherSequence is run only once 8337 // at the end): 8338 // %1 = extractelement <2 x i32> %a, i32 0 8339 // %2 = extractelement <2 x i32> %a, i32 1 8340 // %cond = icmp sgt i32 %1, %2 8341 // %3 = extractelement <2 x i32> %a, i32 0 8342 // %4 = extractelement <2 x i32> %a, i32 1 8343 // %select = select i1 %cond, i32 %3, i32 %4 8344 CmpInst::Predicate Pred; 8345 Instruction *L1; 8346 Instruction *L2; 8347 8348 Value *LHS = Select->getTrueValue(); 8349 Value *RHS = Select->getFalseValue(); 8350 Value *Cond = Select->getCondition(); 8351 8352 // TODO: Support inverse predicates. 8353 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 8354 if (!isa<ExtractElementInst>(RHS) || 8355 !L2->isIdenticalTo(cast<Instruction>(RHS))) 8356 return RecurKind::None; 8357 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 8358 if (!isa<ExtractElementInst>(LHS) || 8359 !L1->isIdenticalTo(cast<Instruction>(LHS))) 8360 return RecurKind::None; 8361 } else { 8362 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 8363 return RecurKind::None; 8364 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 8365 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 8366 !L2->isIdenticalTo(cast<Instruction>(RHS))) 8367 return RecurKind::None; 8368 } 8369 8370 TargetTransformInfo::ReductionFlags RdxFlags; 8371 switch (Pred) { 8372 default: 8373 return RecurKind::None; 8374 case CmpInst::ICMP_SGT: 8375 case CmpInst::ICMP_SGE: 8376 return RecurKind::SMax; 8377 case CmpInst::ICMP_SLT: 8378 case CmpInst::ICMP_SLE: 8379 return RecurKind::SMin; 8380 case CmpInst::ICMP_UGT: 8381 case CmpInst::ICMP_UGE: 8382 return RecurKind::UMax; 8383 case CmpInst::ICMP_ULT: 8384 case CmpInst::ICMP_ULE: 8385 return RecurKind::UMin; 8386 } 8387 } 8388 return RecurKind::None; 8389 } 8390 8391 /// Get the index of the first operand. 8392 static unsigned getFirstOperandIndex(Instruction *I) { 8393 return isCmpSelMinMax(I) ? 1 : 0; 8394 } 8395 8396 /// Total number of operands in the reduction operation. 8397 static unsigned getNumberOfOperands(Instruction *I) { 8398 return isCmpSelMinMax(I) ? 3 : 2; 8399 } 8400 8401 /// Checks if the instruction is in basic block \p BB. 8402 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 8403 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 8404 if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) { 8405 auto *Sel = cast<SelectInst>(I); 8406 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); 8407 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; 8408 } 8409 return I->getParent() == BB; 8410 } 8411 8412 /// Expected number of uses for reduction operations/reduced values. 8413 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 8414 if (IsCmpSelMinMax) { 8415 // SelectInst must be used twice while the condition op must have single 8416 // use only. 8417 if (auto *Sel = dyn_cast<SelectInst>(I)) 8418 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 8419 return I->hasNUses(2); 8420 } 8421 8422 // Arithmetic reduction operation must be used once only. 8423 return I->hasOneUse(); 8424 } 8425 8426 /// Initializes the list of reduction operations. 8427 void initReductionOps(Instruction *I) { 8428 if (isCmpSelMinMax(I)) 8429 ReductionOps.assign(2, ReductionOpsType()); 8430 else 8431 ReductionOps.assign(1, ReductionOpsType()); 8432 } 8433 8434 /// Add all reduction operations for the reduction instruction \p I. 8435 void addReductionOps(Instruction *I) { 8436 if (isCmpSelMinMax(I)) { 8437 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 8438 ReductionOps[1].emplace_back(I); 8439 } else { 8440 ReductionOps[0].emplace_back(I); 8441 } 8442 } 8443 8444 static Value *getLHS(RecurKind Kind, Instruction *I) { 8445 if (Kind == RecurKind::None) 8446 return nullptr; 8447 return I->getOperand(getFirstOperandIndex(I)); 8448 } 8449 static Value *getRHS(RecurKind Kind, Instruction *I) { 8450 if (Kind == RecurKind::None) 8451 return nullptr; 8452 return I->getOperand(getFirstOperandIndex(I) + 1); 8453 } 8454 8455 public: 8456 HorizontalReduction() = default; 8457 8458 /// Try to find a reduction tree. 8459 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst) { 8460 assert((!Phi || is_contained(Phi->operands(), Inst)) && 8461 "Phi needs to use the binary operator"); 8462 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 8463 isa<IntrinsicInst>(Inst)) && 8464 "Expected binop, select, or intrinsic for reduction matching"); 8465 RdxKind = getRdxKind(Inst); 8466 8467 // We could have a initial reductions that is not an add. 8468 // r *= v1 + v2 + v3 + v4 8469 // In such a case start looking for a tree rooted in the first '+'. 8470 if (Phi) { 8471 if (getLHS(RdxKind, Inst) == Phi) { 8472 Phi = nullptr; 8473 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 8474 if (!Inst) 8475 return false; 8476 RdxKind = getRdxKind(Inst); 8477 } else if (getRHS(RdxKind, Inst) == Phi) { 8478 Phi = nullptr; 8479 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 8480 if (!Inst) 8481 return false; 8482 RdxKind = getRdxKind(Inst); 8483 } 8484 } 8485 8486 if (!isVectorizable(RdxKind, Inst)) 8487 return false; 8488 8489 // Analyze "regular" integer/FP types for reductions - no target-specific 8490 // types or pointers. 8491 Type *Ty = Inst->getType(); 8492 if (!isValidElementType(Ty) || Ty->isPointerTy()) 8493 return false; 8494 8495 // Though the ultimate reduction may have multiple uses, its condition must 8496 // have only single use. 8497 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 8498 if (!Sel->getCondition()->hasOneUse()) 8499 return false; 8500 8501 ReductionRoot = Inst; 8502 8503 // The opcode for leaf values that we perform a reduction on. 8504 // For example: load(x) + load(y) + load(z) + fptoui(w) 8505 // The leaf opcode for 'w' does not match, so we don't include it as a 8506 // potential candidate for the reduction. 8507 unsigned LeafOpcode = 0; 8508 8509 // Post-order traverse the reduction tree starting at Inst. We only handle 8510 // true trees containing binary operators or selects. 8511 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 8512 Stack.push_back(std::make_pair(Inst, getFirstOperandIndex(Inst))); 8513 initReductionOps(Inst); 8514 while (!Stack.empty()) { 8515 Instruction *TreeN = Stack.back().first; 8516 unsigned EdgeToVisit = Stack.back().second++; 8517 const RecurKind TreeRdxKind = getRdxKind(TreeN); 8518 bool IsReducedValue = TreeRdxKind != RdxKind; 8519 8520 // Postorder visit. 8521 if (IsReducedValue || EdgeToVisit >= getNumberOfOperands(TreeN)) { 8522 if (IsReducedValue) 8523 ReducedVals.push_back(TreeN); 8524 else { 8525 auto ExtraArgsIter = ExtraArgs.find(TreeN); 8526 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) { 8527 // Check if TreeN is an extra argument of its parent operation. 8528 if (Stack.size() <= 1) { 8529 // TreeN can't be an extra argument as it is a root reduction 8530 // operation. 8531 return false; 8532 } 8533 // Yes, TreeN is an extra argument, do not add it to a list of 8534 // reduction operations. 8535 // Stack[Stack.size() - 2] always points to the parent operation. 8536 markExtraArg(Stack[Stack.size() - 2], TreeN); 8537 ExtraArgs.erase(TreeN); 8538 } else 8539 addReductionOps(TreeN); 8540 } 8541 // Retract. 8542 Stack.pop_back(); 8543 continue; 8544 } 8545 8546 // Visit operands. 8547 Value *EdgeVal = getRdxOperand(TreeN, EdgeToVisit); 8548 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 8549 if (!EdgeInst) { 8550 // Edge value is not a reduction instruction or a leaf instruction. 8551 // (It may be a constant, function argument, or something else.) 8552 markExtraArg(Stack.back(), EdgeVal); 8553 continue; 8554 } 8555 RecurKind EdgeRdxKind = getRdxKind(EdgeInst); 8556 // Continue analysis if the next operand is a reduction operation or 8557 // (possibly) a leaf value. If the leaf value opcode is not set, 8558 // the first met operation != reduction operation is considered as the 8559 // leaf opcode. 8560 // Only handle trees in the current basic block. 8561 // Each tree node needs to have minimal number of users except for the 8562 // ultimate reduction. 8563 const bool IsRdxInst = EdgeRdxKind == RdxKind; 8564 if (EdgeInst != Phi && EdgeInst != Inst && 8565 hasSameParent(EdgeInst, Inst->getParent()) && 8566 hasRequiredNumberOfUses(isCmpSelMinMax(Inst), EdgeInst) && 8567 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) { 8568 if (IsRdxInst) { 8569 // We need to be able to reassociate the reduction operations. 8570 if (!isVectorizable(EdgeRdxKind, EdgeInst)) { 8571 // I is an extra argument for TreeN (its parent operation). 8572 markExtraArg(Stack.back(), EdgeInst); 8573 continue; 8574 } 8575 } else if (!LeafOpcode) { 8576 LeafOpcode = EdgeInst->getOpcode(); 8577 } 8578 Stack.push_back( 8579 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst))); 8580 continue; 8581 } 8582 // I is an extra argument for TreeN (its parent operation). 8583 markExtraArg(Stack.back(), EdgeInst); 8584 } 8585 return true; 8586 } 8587 8588 /// Attempt to vectorize the tree found by matchAssociativeReduction. 8589 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 8590 // If there are a sufficient number of reduction values, reduce 8591 // to a nearby power-of-2. We can safely generate oversized 8592 // vectors and rely on the backend to split them to legal sizes. 8593 unsigned NumReducedVals = ReducedVals.size(); 8594 if (NumReducedVals < 4) 8595 return nullptr; 8596 8597 // Intersect the fast-math-flags from all reduction operations. 8598 FastMathFlags RdxFMF; 8599 RdxFMF.set(); 8600 for (ReductionOpsType &RdxOp : ReductionOps) { 8601 for (Value *RdxVal : RdxOp) { 8602 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 8603 RdxFMF &= FPMO->getFastMathFlags(); 8604 } 8605 } 8606 8607 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 8608 Builder.setFastMathFlags(RdxFMF); 8609 8610 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 8611 // The same extra argument may be used several times, so log each attempt 8612 // to use it. 8613 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 8614 assert(Pair.first && "DebugLoc must be set."); 8615 ExternallyUsedValues[Pair.second].push_back(Pair.first); 8616 } 8617 8618 // The compare instruction of a min/max is the insertion point for new 8619 // instructions and may be replaced with a new compare instruction. 8620 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 8621 assert(isa<SelectInst>(RdxRootInst) && 8622 "Expected min/max reduction to have select root instruction"); 8623 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 8624 assert(isa<Instruction>(ScalarCond) && 8625 "Expected min/max reduction to have compare condition"); 8626 return cast<Instruction>(ScalarCond); 8627 }; 8628 8629 // The reduction root is used as the insertion point for new instructions, 8630 // so set it as externally used to prevent it from being deleted. 8631 ExternallyUsedValues[ReductionRoot]; 8632 SmallVector<Value *, 16> IgnoreList; 8633 for (ReductionOpsType &RdxOp : ReductionOps) 8634 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 8635 8636 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 8637 if (NumReducedVals > ReduxWidth) { 8638 // In the loop below, we are building a tree based on a window of 8639 // 'ReduxWidth' values. 8640 // If the operands of those values have common traits (compare predicate, 8641 // constant operand, etc), then we want to group those together to 8642 // minimize the cost of the reduction. 8643 8644 // TODO: This should be extended to count common operands for 8645 // compares and binops. 8646 8647 // Step 1: Count the number of times each compare predicate occurs. 8648 SmallDenseMap<unsigned, unsigned> PredCountMap; 8649 for (Value *RdxVal : ReducedVals) { 8650 CmpInst::Predicate Pred; 8651 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 8652 ++PredCountMap[Pred]; 8653 } 8654 // Step 2: Sort the values so the most common predicates come first. 8655 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 8656 CmpInst::Predicate PredA, PredB; 8657 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 8658 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 8659 return PredCountMap[PredA] > PredCountMap[PredB]; 8660 } 8661 return false; 8662 }); 8663 } 8664 8665 Value *VectorizedTree = nullptr; 8666 unsigned i = 0; 8667 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 8668 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 8669 V.buildTree(VL, IgnoreList); 8670 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) 8671 break; 8672 if (V.isLoadCombineReductionCandidate(RdxKind)) 8673 break; 8674 V.reorderTopToBottom(); 8675 V.reorderBottomToTop(/*IgnoreReorder=*/true); 8676 V.buildExternalUses(ExternallyUsedValues); 8677 8678 // For a poison-safe boolean logic reduction, do not replace select 8679 // instructions with logic ops. All reduced values will be frozen (see 8680 // below) to prevent leaking poison. 8681 if (isa<SelectInst>(ReductionRoot) && 8682 isBoolLogicOp(cast<Instruction>(ReductionRoot)) && 8683 NumReducedVals != ReduxWidth) 8684 break; 8685 8686 V.computeMinimumValueSizes(); 8687 8688 // Estimate cost. 8689 InstructionCost TreeCost = 8690 V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth)); 8691 InstructionCost ReductionCost = 8692 getReductionCost(TTI, ReducedVals[i], ReduxWidth, RdxFMF); 8693 InstructionCost Cost = TreeCost + ReductionCost; 8694 if (!Cost.isValid()) { 8695 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 8696 return nullptr; 8697 } 8698 if (Cost >= -SLPCostThreshold) { 8699 V.getORE()->emit([&]() { 8700 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 8701 cast<Instruction>(VL[0])) 8702 << "Vectorizing horizontal reduction is possible" 8703 << "but not beneficial with cost " << ore::NV("Cost", Cost) 8704 << " and threshold " 8705 << ore::NV("Threshold", -SLPCostThreshold); 8706 }); 8707 break; 8708 } 8709 8710 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 8711 << Cost << ". (HorRdx)\n"); 8712 V.getORE()->emit([&]() { 8713 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 8714 cast<Instruction>(VL[0])) 8715 << "Vectorized horizontal reduction with cost " 8716 << ore::NV("Cost", Cost) << " and with tree size " 8717 << ore::NV("TreeSize", V.getTreeSize()); 8718 }); 8719 8720 // Vectorize a tree. 8721 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 8722 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 8723 8724 // Emit a reduction. If the root is a select (min/max idiom), the insert 8725 // point is the compare condition of that select. 8726 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 8727 if (isCmpSelMinMax(RdxRootInst)) 8728 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 8729 else 8730 Builder.SetInsertPoint(RdxRootInst); 8731 8732 // To prevent poison from leaking across what used to be sequential, safe, 8733 // scalar boolean logic operations, the reduction operand must be frozen. 8734 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 8735 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 8736 8737 Value *ReducedSubTree = 8738 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 8739 8740 if (!VectorizedTree) { 8741 // Initialize the final value in the reduction. 8742 VectorizedTree = ReducedSubTree; 8743 } else { 8744 // Update the final value in the reduction. 8745 Builder.SetCurrentDebugLocation(Loc); 8746 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 8747 ReducedSubTree, "op.rdx", ReductionOps); 8748 } 8749 i += ReduxWidth; 8750 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 8751 } 8752 8753 if (VectorizedTree) { 8754 // Finish the reduction. 8755 for (; i < NumReducedVals; ++i) { 8756 auto *I = cast<Instruction>(ReducedVals[i]); 8757 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 8758 VectorizedTree = 8759 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 8760 } 8761 for (auto &Pair : ExternallyUsedValues) { 8762 // Add each externally used value to the final reduction. 8763 for (auto *I : Pair.second) { 8764 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 8765 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 8766 Pair.first, "op.extra", I); 8767 } 8768 } 8769 8770 ReductionRoot->replaceAllUsesWith(VectorizedTree); 8771 8772 // Mark all scalar reduction ops for deletion, they are replaced by the 8773 // vector reductions. 8774 V.eraseInstructions(IgnoreList); 8775 } 8776 return VectorizedTree; 8777 } 8778 8779 unsigned numReductionValues() const { return ReducedVals.size(); } 8780 8781 private: 8782 /// Calculate the cost of a reduction. 8783 InstructionCost getReductionCost(TargetTransformInfo *TTI, 8784 Value *FirstReducedVal, unsigned ReduxWidth, 8785 FastMathFlags FMF) { 8786 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 8787 Type *ScalarTy = FirstReducedVal->getType(); 8788 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 8789 InstructionCost VectorCost, ScalarCost; 8790 switch (RdxKind) { 8791 case RecurKind::Add: 8792 case RecurKind::Mul: 8793 case RecurKind::Or: 8794 case RecurKind::And: 8795 case RecurKind::Xor: 8796 case RecurKind::FAdd: 8797 case RecurKind::FMul: { 8798 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 8799 VectorCost = 8800 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 8801 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 8802 break; 8803 } 8804 case RecurKind::FMax: 8805 case RecurKind::FMin: { 8806 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 8807 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 8808 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 8809 /*unsigned=*/false, CostKind); 8810 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 8811 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, 8812 SclCondTy, RdxPred, CostKind) + 8813 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 8814 SclCondTy, RdxPred, CostKind); 8815 break; 8816 } 8817 case RecurKind::SMax: 8818 case RecurKind::SMin: 8819 case RecurKind::UMax: 8820 case RecurKind::UMin: { 8821 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 8822 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 8823 bool IsUnsigned = 8824 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 8825 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned, 8826 CostKind); 8827 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 8828 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, 8829 SclCondTy, RdxPred, CostKind) + 8830 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 8831 SclCondTy, RdxPred, CostKind); 8832 break; 8833 } 8834 default: 8835 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 8836 } 8837 8838 // Scalar cost is repeated for N-1 elements. 8839 ScalarCost *= (ReduxWidth - 1); 8840 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 8841 << " for reduction that starts with " << *FirstReducedVal 8842 << " (It is a splitting reduction)\n"); 8843 return VectorCost - ScalarCost; 8844 } 8845 8846 /// Emit a horizontal reduction of the vectorized value. 8847 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 8848 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 8849 assert(VectorizedValue && "Need to have a vectorized tree node"); 8850 assert(isPowerOf2_32(ReduxWidth) && 8851 "We only handle power-of-two reductions for now"); 8852 assert(RdxKind != RecurKind::FMulAdd && 8853 "A call to the llvm.fmuladd intrinsic is not handled yet"); 8854 8855 ++NumVectorInstructions; 8856 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind, 8857 ReductionOps.back()); 8858 } 8859 }; 8860 8861 } // end anonymous namespace 8862 8863 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 8864 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 8865 return cast<FixedVectorType>(IE->getType())->getNumElements(); 8866 8867 unsigned AggregateSize = 1; 8868 auto *IV = cast<InsertValueInst>(InsertInst); 8869 Type *CurrentType = IV->getType(); 8870 do { 8871 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 8872 for (auto *Elt : ST->elements()) 8873 if (Elt != ST->getElementType(0)) // check homogeneity 8874 return None; 8875 AggregateSize *= ST->getNumElements(); 8876 CurrentType = ST->getElementType(0); 8877 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 8878 AggregateSize *= AT->getNumElements(); 8879 CurrentType = AT->getElementType(); 8880 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 8881 AggregateSize *= VT->getNumElements(); 8882 return AggregateSize; 8883 } else if (CurrentType->isSingleValueType()) { 8884 return AggregateSize; 8885 } else { 8886 return None; 8887 } 8888 } while (true); 8889 } 8890 8891 static bool findBuildAggregate_rec(Instruction *LastInsertInst, 8892 TargetTransformInfo *TTI, 8893 SmallVectorImpl<Value *> &BuildVectorOpds, 8894 SmallVectorImpl<Value *> &InsertElts, 8895 unsigned OperandOffset) { 8896 do { 8897 Value *InsertedOperand = LastInsertInst->getOperand(1); 8898 Optional<int> OperandIndex = getInsertIndex(LastInsertInst, OperandOffset); 8899 if (!OperandIndex) 8900 return false; 8901 if (isa<InsertElementInst>(InsertedOperand) || 8902 isa<InsertValueInst>(InsertedOperand)) { 8903 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 8904 BuildVectorOpds, InsertElts, *OperandIndex)) 8905 return false; 8906 } else { 8907 BuildVectorOpds[*OperandIndex] = InsertedOperand; 8908 InsertElts[*OperandIndex] = LastInsertInst; 8909 } 8910 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 8911 } while (LastInsertInst != nullptr && 8912 (isa<InsertValueInst>(LastInsertInst) || 8913 isa<InsertElementInst>(LastInsertInst)) && 8914 LastInsertInst->hasOneUse()); 8915 return true; 8916 } 8917 8918 /// Recognize construction of vectors like 8919 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 8920 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 8921 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 8922 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 8923 /// starting from the last insertelement or insertvalue instruction. 8924 /// 8925 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 8926 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 8927 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 8928 /// 8929 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 8930 /// 8931 /// \return true if it matches. 8932 static bool findBuildAggregate(Instruction *LastInsertInst, 8933 TargetTransformInfo *TTI, 8934 SmallVectorImpl<Value *> &BuildVectorOpds, 8935 SmallVectorImpl<Value *> &InsertElts) { 8936 8937 assert((isa<InsertElementInst>(LastInsertInst) || 8938 isa<InsertValueInst>(LastInsertInst)) && 8939 "Expected insertelement or insertvalue instruction!"); 8940 8941 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 8942 "Expected empty result vectors!"); 8943 8944 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 8945 if (!AggregateSize) 8946 return false; 8947 BuildVectorOpds.resize(*AggregateSize); 8948 InsertElts.resize(*AggregateSize); 8949 8950 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 8951 0)) { 8952 llvm::erase_value(BuildVectorOpds, nullptr); 8953 llvm::erase_value(InsertElts, nullptr); 8954 if (BuildVectorOpds.size() >= 2) 8955 return true; 8956 } 8957 8958 return false; 8959 } 8960 8961 /// Try and get a reduction value from a phi node. 8962 /// 8963 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 8964 /// if they come from either \p ParentBB or a containing loop latch. 8965 /// 8966 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 8967 /// if not possible. 8968 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 8969 BasicBlock *ParentBB, LoopInfo *LI) { 8970 // There are situations where the reduction value is not dominated by the 8971 // reduction phi. Vectorizing such cases has been reported to cause 8972 // miscompiles. See PR25787. 8973 auto DominatedReduxValue = [&](Value *R) { 8974 return isa<Instruction>(R) && 8975 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 8976 }; 8977 8978 Value *Rdx = nullptr; 8979 8980 // Return the incoming value if it comes from the same BB as the phi node. 8981 if (P->getIncomingBlock(0) == ParentBB) { 8982 Rdx = P->getIncomingValue(0); 8983 } else if (P->getIncomingBlock(1) == ParentBB) { 8984 Rdx = P->getIncomingValue(1); 8985 } 8986 8987 if (Rdx && DominatedReduxValue(Rdx)) 8988 return Rdx; 8989 8990 // Otherwise, check whether we have a loop latch to look at. 8991 Loop *BBL = LI->getLoopFor(ParentBB); 8992 if (!BBL) 8993 return nullptr; 8994 BasicBlock *BBLatch = BBL->getLoopLatch(); 8995 if (!BBLatch) 8996 return nullptr; 8997 8998 // There is a loop latch, return the incoming value if it comes from 8999 // that. This reduction pattern occasionally turns up. 9000 if (P->getIncomingBlock(0) == BBLatch) { 9001 Rdx = P->getIncomingValue(0); 9002 } else if (P->getIncomingBlock(1) == BBLatch) { 9003 Rdx = P->getIncomingValue(1); 9004 } 9005 9006 if (Rdx && DominatedReduxValue(Rdx)) 9007 return Rdx; 9008 9009 return nullptr; 9010 } 9011 9012 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 9013 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 9014 return true; 9015 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 9016 return true; 9017 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 9018 return true; 9019 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 9020 return true; 9021 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 9022 return true; 9023 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 9024 return true; 9025 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 9026 return true; 9027 return false; 9028 } 9029 9030 /// Attempt to reduce a horizontal reduction. 9031 /// If it is legal to match a horizontal reduction feeding the phi node \a P 9032 /// with reduction operators \a Root (or one of its operands) in a basic block 9033 /// \a BB, then check if it can be done. If horizontal reduction is not found 9034 /// and root instruction is a binary operation, vectorization of the operands is 9035 /// attempted. 9036 /// \returns true if a horizontal reduction was matched and reduced or operands 9037 /// of one of the binary instruction were vectorized. 9038 /// \returns false if a horizontal reduction was not matched (or not possible) 9039 /// or no vectorization of any binary operation feeding \a Root instruction was 9040 /// performed. 9041 static bool tryToVectorizeHorReductionOrInstOperands( 9042 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 9043 TargetTransformInfo *TTI, 9044 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 9045 if (!ShouldVectorizeHor) 9046 return false; 9047 9048 if (!Root) 9049 return false; 9050 9051 if (Root->getParent() != BB || isa<PHINode>(Root)) 9052 return false; 9053 // Start analysis starting from Root instruction. If horizontal reduction is 9054 // found, try to vectorize it. If it is not a horizontal reduction or 9055 // vectorization is not possible or not effective, and currently analyzed 9056 // instruction is a binary operation, try to vectorize the operands, using 9057 // pre-order DFS traversal order. If the operands were not vectorized, repeat 9058 // the same procedure considering each operand as a possible root of the 9059 // horizontal reduction. 9060 // Interrupt the process if the Root instruction itself was vectorized or all 9061 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 9062 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 9063 // CmpInsts so we can skip extra attempts in 9064 // tryToVectorizeHorReductionOrInstOperands and save compile time. 9065 std::queue<std::pair<Instruction *, unsigned>> Stack; 9066 Stack.emplace(Root, 0); 9067 SmallPtrSet<Value *, 8> VisitedInstrs; 9068 SmallVector<WeakTrackingVH> PostponedInsts; 9069 bool Res = false; 9070 auto &&TryToReduce = [TTI, &P, &R](Instruction *Inst, Value *&B0, 9071 Value *&B1) -> Value * { 9072 bool IsBinop = matchRdxBop(Inst, B0, B1); 9073 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 9074 if (IsBinop || IsSelect) { 9075 HorizontalReduction HorRdx; 9076 if (HorRdx.matchAssociativeReduction(P, Inst)) 9077 return HorRdx.tryToReduce(R, TTI); 9078 } 9079 return nullptr; 9080 }; 9081 while (!Stack.empty()) { 9082 Instruction *Inst; 9083 unsigned Level; 9084 std::tie(Inst, Level) = Stack.front(); 9085 Stack.pop(); 9086 // Do not try to analyze instruction that has already been vectorized. 9087 // This may happen when we vectorize instruction operands on a previous 9088 // iteration while stack was populated before that happened. 9089 if (R.isDeleted(Inst)) 9090 continue; 9091 Value *B0 = nullptr, *B1 = nullptr; 9092 if (Value *V = TryToReduce(Inst, B0, B1)) { 9093 Res = true; 9094 // Set P to nullptr to avoid re-analysis of phi node in 9095 // matchAssociativeReduction function unless this is the root node. 9096 P = nullptr; 9097 if (auto *I = dyn_cast<Instruction>(V)) { 9098 // Try to find another reduction. 9099 Stack.emplace(I, Level); 9100 continue; 9101 } 9102 } else { 9103 bool IsBinop = B0 && B1; 9104 if (P && IsBinop) { 9105 Inst = dyn_cast<Instruction>(B0); 9106 if (Inst == P) 9107 Inst = dyn_cast<Instruction>(B1); 9108 if (!Inst) { 9109 // Set P to nullptr to avoid re-analysis of phi node in 9110 // matchAssociativeReduction function unless this is the root node. 9111 P = nullptr; 9112 continue; 9113 } 9114 } 9115 // Set P to nullptr to avoid re-analysis of phi node in 9116 // matchAssociativeReduction function unless this is the root node. 9117 P = nullptr; 9118 // Do not try to vectorize CmpInst operands, this is done separately. 9119 // Final attempt for binop args vectorization should happen after the loop 9120 // to try to find reductions. 9121 if (!isa<CmpInst>(Inst)) 9122 PostponedInsts.push_back(Inst); 9123 } 9124 9125 // Try to vectorize operands. 9126 // Continue analysis for the instruction from the same basic block only to 9127 // save compile time. 9128 if (++Level < RecursionMaxDepth) 9129 for (auto *Op : Inst->operand_values()) 9130 if (VisitedInstrs.insert(Op).second) 9131 if (auto *I = dyn_cast<Instruction>(Op)) 9132 // Do not try to vectorize CmpInst operands, this is done 9133 // separately. 9134 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 9135 I->getParent() == BB) 9136 Stack.emplace(I, Level); 9137 } 9138 // Try to vectorized binops where reductions were not found. 9139 for (Value *V : PostponedInsts) 9140 if (auto *Inst = dyn_cast<Instruction>(V)) 9141 if (!R.isDeleted(Inst)) 9142 Res |= Vectorize(Inst, R); 9143 return Res; 9144 } 9145 9146 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 9147 BasicBlock *BB, BoUpSLP &R, 9148 TargetTransformInfo *TTI) { 9149 auto *I = dyn_cast_or_null<Instruction>(V); 9150 if (!I) 9151 return false; 9152 9153 if (!isa<BinaryOperator>(I)) 9154 P = nullptr; 9155 // Try to match and vectorize a horizontal reduction. 9156 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 9157 return tryToVectorize(I, R); 9158 }; 9159 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 9160 ExtraVectorization); 9161 } 9162 9163 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 9164 BasicBlock *BB, BoUpSLP &R) { 9165 const DataLayout &DL = BB->getModule()->getDataLayout(); 9166 if (!R.canMapToVector(IVI->getType(), DL)) 9167 return false; 9168 9169 SmallVector<Value *, 16> BuildVectorOpds; 9170 SmallVector<Value *, 16> BuildVectorInsts; 9171 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 9172 return false; 9173 9174 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 9175 // Aggregate value is unlikely to be processed in vector register, we need to 9176 // extract scalars into scalar registers, so NeedExtraction is set true. 9177 return tryToVectorizeList(BuildVectorOpds, R); 9178 } 9179 9180 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 9181 BasicBlock *BB, BoUpSLP &R) { 9182 SmallVector<Value *, 16> BuildVectorInsts; 9183 SmallVector<Value *, 16> BuildVectorOpds; 9184 SmallVector<int> Mask; 9185 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 9186 (llvm::all_of(BuildVectorOpds, 9187 [](Value *V) { return isa<ExtractElementInst>(V); }) && 9188 isFixedVectorShuffle(BuildVectorOpds, Mask))) 9189 return false; 9190 9191 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 9192 return tryToVectorizeList(BuildVectorInsts, R); 9193 } 9194 9195 bool SLPVectorizerPass::vectorizeSimpleInstructions( 9196 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 9197 bool AtTerminator) { 9198 bool OpsChanged = false; 9199 SmallVector<Instruction *, 4> PostponedCmps; 9200 for (auto *I : reverse(Instructions)) { 9201 if (R.isDeleted(I)) 9202 continue; 9203 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 9204 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 9205 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 9206 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 9207 else if (isa<CmpInst>(I)) 9208 PostponedCmps.push_back(I); 9209 } 9210 if (AtTerminator) { 9211 // Try to find reductions first. 9212 for (Instruction *I : PostponedCmps) { 9213 if (R.isDeleted(I)) 9214 continue; 9215 for (Value *Op : I->operands()) 9216 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 9217 } 9218 // Try to vectorize operands as vector bundles. 9219 for (Instruction *I : PostponedCmps) { 9220 if (R.isDeleted(I)) 9221 continue; 9222 OpsChanged |= tryToVectorize(I, R); 9223 } 9224 Instructions.clear(); 9225 } else { 9226 // Insert in reverse order since the PostponedCmps vector was filled in 9227 // reverse order. 9228 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 9229 } 9230 return OpsChanged; 9231 } 9232 9233 template <typename T> 9234 static bool 9235 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, 9236 function_ref<unsigned(T *)> Limit, 9237 function_ref<bool(T *, T *)> Comparator, 9238 function_ref<bool(T *, T *)> AreCompatible, 9239 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorize, 9240 bool LimitForRegisterSize) { 9241 bool Changed = false; 9242 // Sort by type, parent, operands. 9243 stable_sort(Incoming, Comparator); 9244 9245 // Try to vectorize elements base on their type. 9246 SmallVector<T *> Candidates; 9247 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { 9248 // Look for the next elements with the same type, parent and operand 9249 // kinds. 9250 auto *SameTypeIt = IncIt; 9251 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) 9252 ++SameTypeIt; 9253 9254 // Try to vectorize them. 9255 unsigned NumElts = (SameTypeIt - IncIt); 9256 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" 9257 << NumElts << ")\n"); 9258 // The vectorization is a 3-state attempt: 9259 // 1. Try to vectorize instructions with the same/alternate opcodes with the 9260 // size of maximal register at first. 9261 // 2. Try to vectorize remaining instructions with the same type, if 9262 // possible. This may result in the better vectorization results rather than 9263 // if we try just to vectorize instructions with the same/alternate opcodes. 9264 // 3. Final attempt to try to vectorize all instructions with the 9265 // same/alternate ops only, this may result in some extra final 9266 // vectorization. 9267 if (NumElts > 1 && 9268 TryToVectorize(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) { 9269 // Success start over because instructions might have been changed. 9270 Changed = true; 9271 } else if (NumElts < Limit(*IncIt) && 9272 (Candidates.empty() || 9273 Candidates.front()->getType() == (*IncIt)->getType())) { 9274 Candidates.append(IncIt, std::next(IncIt, NumElts)); 9275 } 9276 // Final attempt to vectorize instructions with the same types. 9277 if (Candidates.size() > 1 && 9278 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { 9279 if (TryToVectorize(Candidates, /*LimitForRegisterSize=*/false)) { 9280 // Success start over because instructions might have been changed. 9281 Changed = true; 9282 } else if (LimitForRegisterSize) { 9283 // Try to vectorize using small vectors. 9284 for (auto *It = Candidates.begin(), *End = Candidates.end(); 9285 It != End;) { 9286 auto *SameTypeIt = It; 9287 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) 9288 ++SameTypeIt; 9289 unsigned NumElts = (SameTypeIt - It); 9290 if (NumElts > 1 && TryToVectorize(makeArrayRef(It, NumElts), 9291 /*LimitForRegisterSize=*/false)) 9292 Changed = true; 9293 It = SameTypeIt; 9294 } 9295 } 9296 Candidates.clear(); 9297 } 9298 9299 // Start over at the next instruction of a different type (or the end). 9300 IncIt = SameTypeIt; 9301 } 9302 return Changed; 9303 } 9304 9305 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 9306 bool Changed = false; 9307 SmallVector<Value *, 4> Incoming; 9308 SmallPtrSet<Value *, 16> VisitedInstrs; 9309 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 9310 // node. Allows better to identify the chains that can be vectorized in the 9311 // better way. 9312 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 9313 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { 9314 assert(isValidElementType(V1->getType()) && 9315 isValidElementType(V2->getType()) && 9316 "Expected vectorizable types only."); 9317 // It is fine to compare type IDs here, since we expect only vectorizable 9318 // types, like ints, floats and pointers, we don't care about other type. 9319 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 9320 return true; 9321 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 9322 return false; 9323 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 9324 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 9325 if (Opcodes1.size() < Opcodes2.size()) 9326 return true; 9327 if (Opcodes1.size() > Opcodes2.size()) 9328 return false; 9329 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 9330 // Undefs are compatible with any other value. 9331 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 9332 continue; 9333 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 9334 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 9335 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 9336 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 9337 if (!NodeI1) 9338 return NodeI2 != nullptr; 9339 if (!NodeI2) 9340 return false; 9341 assert((NodeI1 == NodeI2) == 9342 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 9343 "Different nodes should have different DFS numbers"); 9344 if (NodeI1 != NodeI2) 9345 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 9346 InstructionsState S = getSameOpcode({I1, I2}); 9347 if (S.getOpcode()) 9348 continue; 9349 return I1->getOpcode() < I2->getOpcode(); 9350 } 9351 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 9352 continue; 9353 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 9354 return true; 9355 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 9356 return false; 9357 } 9358 return false; 9359 }; 9360 auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 9361 if (V1 == V2) 9362 return true; 9363 if (V1->getType() != V2->getType()) 9364 return false; 9365 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 9366 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 9367 if (Opcodes1.size() != Opcodes2.size()) 9368 return false; 9369 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 9370 // Undefs are compatible with any other value. 9371 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 9372 continue; 9373 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 9374 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 9375 if (I1->getParent() != I2->getParent()) 9376 return false; 9377 InstructionsState S = getSameOpcode({I1, I2}); 9378 if (S.getOpcode()) 9379 continue; 9380 return false; 9381 } 9382 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 9383 continue; 9384 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 9385 return false; 9386 } 9387 return true; 9388 }; 9389 auto Limit = [&R](Value *V) { 9390 unsigned EltSize = R.getVectorElementSize(V); 9391 return std::max(2U, R.getMaxVecRegSize() / EltSize); 9392 }; 9393 9394 bool HaveVectorizedPhiNodes = false; 9395 do { 9396 // Collect the incoming values from the PHIs. 9397 Incoming.clear(); 9398 for (Instruction &I : *BB) { 9399 PHINode *P = dyn_cast<PHINode>(&I); 9400 if (!P) 9401 break; 9402 9403 // No need to analyze deleted, vectorized and non-vectorizable 9404 // instructions. 9405 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 9406 isValidElementType(P->getType())) 9407 Incoming.push_back(P); 9408 } 9409 9410 // Find the corresponding non-phi nodes for better matching when trying to 9411 // build the tree. 9412 for (Value *V : Incoming) { 9413 SmallVectorImpl<Value *> &Opcodes = 9414 PHIToOpcodes.try_emplace(V).first->getSecond(); 9415 if (!Opcodes.empty()) 9416 continue; 9417 SmallVector<Value *, 4> Nodes(1, V); 9418 SmallPtrSet<Value *, 4> Visited; 9419 while (!Nodes.empty()) { 9420 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 9421 if (!Visited.insert(PHI).second) 9422 continue; 9423 for (Value *V : PHI->incoming_values()) { 9424 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 9425 Nodes.push_back(PHI1); 9426 continue; 9427 } 9428 Opcodes.emplace_back(V); 9429 } 9430 } 9431 } 9432 9433 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( 9434 Incoming, Limit, PHICompare, AreCompatiblePHIs, 9435 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 9436 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 9437 }, 9438 /*LimitForRegisterSize=*/true); 9439 Changed |= HaveVectorizedPhiNodes; 9440 VisitedInstrs.insert(Incoming.begin(), Incoming.end()); 9441 } while (HaveVectorizedPhiNodes); 9442 9443 VisitedInstrs.clear(); 9444 9445 SmallVector<Instruction *, 8> PostProcessInstructions; 9446 SmallDenseSet<Instruction *, 4> KeyNodes; 9447 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 9448 // Skip instructions with scalable type. The num of elements is unknown at 9449 // compile-time for scalable type. 9450 if (isa<ScalableVectorType>(it->getType())) 9451 continue; 9452 9453 // Skip instructions marked for the deletion. 9454 if (R.isDeleted(&*it)) 9455 continue; 9456 // We may go through BB multiple times so skip the one we have checked. 9457 if (!VisitedInstrs.insert(&*it).second) { 9458 if (it->use_empty() && KeyNodes.contains(&*it) && 9459 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 9460 it->isTerminator())) { 9461 // We would like to start over since some instructions are deleted 9462 // and the iterator may become invalid value. 9463 Changed = true; 9464 it = BB->begin(); 9465 e = BB->end(); 9466 } 9467 continue; 9468 } 9469 9470 if (isa<DbgInfoIntrinsic>(it)) 9471 continue; 9472 9473 // Try to vectorize reductions that use PHINodes. 9474 if (PHINode *P = dyn_cast<PHINode>(it)) { 9475 // Check that the PHI is a reduction PHI. 9476 if (P->getNumIncomingValues() == 2) { 9477 // Try to match and vectorize a horizontal reduction. 9478 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 9479 TTI)) { 9480 Changed = true; 9481 it = BB->begin(); 9482 e = BB->end(); 9483 continue; 9484 } 9485 } 9486 // Try to vectorize the incoming values of the PHI, to catch reductions 9487 // that feed into PHIs. 9488 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 9489 // Skip if the incoming block is the current BB for now. Also, bypass 9490 // unreachable IR for efficiency and to avoid crashing. 9491 // TODO: Collect the skipped incoming values and try to vectorize them 9492 // after processing BB. 9493 if (BB == P->getIncomingBlock(I) || 9494 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 9495 continue; 9496 9497 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 9498 P->getIncomingBlock(I), R, TTI); 9499 } 9500 continue; 9501 } 9502 9503 // Ran into an instruction without users, like terminator, or function call 9504 // with ignored return value, store. Ignore unused instructions (basing on 9505 // instruction type, except for CallInst and InvokeInst). 9506 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 9507 isa<InvokeInst>(it))) { 9508 KeyNodes.insert(&*it); 9509 bool OpsChanged = false; 9510 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 9511 for (auto *V : it->operand_values()) { 9512 // Try to match and vectorize a horizontal reduction. 9513 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 9514 } 9515 } 9516 // Start vectorization of post-process list of instructions from the 9517 // top-tree instructions to try to vectorize as many instructions as 9518 // possible. 9519 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 9520 it->isTerminator()); 9521 if (OpsChanged) { 9522 // We would like to start over since some instructions are deleted 9523 // and the iterator may become invalid value. 9524 Changed = true; 9525 it = BB->begin(); 9526 e = BB->end(); 9527 continue; 9528 } 9529 } 9530 9531 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 9532 isa<InsertValueInst>(it)) 9533 PostProcessInstructions.push_back(&*it); 9534 } 9535 9536 return Changed; 9537 } 9538 9539 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 9540 auto Changed = false; 9541 for (auto &Entry : GEPs) { 9542 // If the getelementptr list has fewer than two elements, there's nothing 9543 // to do. 9544 if (Entry.second.size() < 2) 9545 continue; 9546 9547 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 9548 << Entry.second.size() << ".\n"); 9549 9550 // Process the GEP list in chunks suitable for the target's supported 9551 // vector size. If a vector register can't hold 1 element, we are done. We 9552 // are trying to vectorize the index computations, so the maximum number of 9553 // elements is based on the size of the index expression, rather than the 9554 // size of the GEP itself (the target's pointer size). 9555 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 9556 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 9557 if (MaxVecRegSize < EltSize) 9558 continue; 9559 9560 unsigned MaxElts = MaxVecRegSize / EltSize; 9561 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 9562 auto Len = std::min<unsigned>(BE - BI, MaxElts); 9563 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 9564 9565 // Initialize a set a candidate getelementptrs. Note that we use a 9566 // SetVector here to preserve program order. If the index computations 9567 // are vectorizable and begin with loads, we want to minimize the chance 9568 // of having to reorder them later. 9569 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 9570 9571 // Some of the candidates may have already been vectorized after we 9572 // initially collected them. If so, they are marked as deleted, so remove 9573 // them from the set of candidates. 9574 Candidates.remove_if( 9575 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 9576 9577 // Remove from the set of candidates all pairs of getelementptrs with 9578 // constant differences. Such getelementptrs are likely not good 9579 // candidates for vectorization in a bottom-up phase since one can be 9580 // computed from the other. We also ensure all candidate getelementptr 9581 // indices are unique. 9582 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 9583 auto *GEPI = GEPList[I]; 9584 if (!Candidates.count(GEPI)) 9585 continue; 9586 auto *SCEVI = SE->getSCEV(GEPList[I]); 9587 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 9588 auto *GEPJ = GEPList[J]; 9589 auto *SCEVJ = SE->getSCEV(GEPList[J]); 9590 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 9591 Candidates.remove(GEPI); 9592 Candidates.remove(GEPJ); 9593 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 9594 Candidates.remove(GEPJ); 9595 } 9596 } 9597 } 9598 9599 // We break out of the above computation as soon as we know there are 9600 // fewer than two candidates remaining. 9601 if (Candidates.size() < 2) 9602 continue; 9603 9604 // Add the single, non-constant index of each candidate to the bundle. We 9605 // ensured the indices met these constraints when we originally collected 9606 // the getelementptrs. 9607 SmallVector<Value *, 16> Bundle(Candidates.size()); 9608 auto BundleIndex = 0u; 9609 for (auto *V : Candidates) { 9610 auto *GEP = cast<GetElementPtrInst>(V); 9611 auto *GEPIdx = GEP->idx_begin()->get(); 9612 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 9613 Bundle[BundleIndex++] = GEPIdx; 9614 } 9615 9616 // Try and vectorize the indices. We are currently only interested in 9617 // gather-like cases of the form: 9618 // 9619 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 9620 // 9621 // where the loads of "a", the loads of "b", and the subtractions can be 9622 // performed in parallel. It's likely that detecting this pattern in a 9623 // bottom-up phase will be simpler and less costly than building a 9624 // full-blown top-down phase beginning at the consecutive loads. 9625 Changed |= tryToVectorizeList(Bundle, R); 9626 } 9627 } 9628 return Changed; 9629 } 9630 9631 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 9632 bool Changed = false; 9633 // Sort by type, base pointers and values operand. Value operands must be 9634 // compatible (have the same opcode, same parent), otherwise it is 9635 // definitely not profitable to try to vectorize them. 9636 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 9637 if (V->getPointerOperandType()->getTypeID() < 9638 V2->getPointerOperandType()->getTypeID()) 9639 return true; 9640 if (V->getPointerOperandType()->getTypeID() > 9641 V2->getPointerOperandType()->getTypeID()) 9642 return false; 9643 // UndefValues are compatible with all other values. 9644 if (isa<UndefValue>(V->getValueOperand()) || 9645 isa<UndefValue>(V2->getValueOperand())) 9646 return false; 9647 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 9648 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 9649 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 9650 DT->getNode(I1->getParent()); 9651 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 9652 DT->getNode(I2->getParent()); 9653 assert(NodeI1 && "Should only process reachable instructions"); 9654 assert(NodeI1 && "Should only process reachable instructions"); 9655 assert((NodeI1 == NodeI2) == 9656 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 9657 "Different nodes should have different DFS numbers"); 9658 if (NodeI1 != NodeI2) 9659 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 9660 InstructionsState S = getSameOpcode({I1, I2}); 9661 if (S.getOpcode()) 9662 return false; 9663 return I1->getOpcode() < I2->getOpcode(); 9664 } 9665 if (isa<Constant>(V->getValueOperand()) && 9666 isa<Constant>(V2->getValueOperand())) 9667 return false; 9668 return V->getValueOperand()->getValueID() < 9669 V2->getValueOperand()->getValueID(); 9670 }; 9671 9672 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 9673 if (V1 == V2) 9674 return true; 9675 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 9676 return false; 9677 // Undefs are compatible with any other value. 9678 if (isa<UndefValue>(V1->getValueOperand()) || 9679 isa<UndefValue>(V2->getValueOperand())) 9680 return true; 9681 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 9682 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 9683 if (I1->getParent() != I2->getParent()) 9684 return false; 9685 InstructionsState S = getSameOpcode({I1, I2}); 9686 return S.getOpcode() > 0; 9687 } 9688 if (isa<Constant>(V1->getValueOperand()) && 9689 isa<Constant>(V2->getValueOperand())) 9690 return true; 9691 return V1->getValueOperand()->getValueID() == 9692 V2->getValueOperand()->getValueID(); 9693 }; 9694 auto Limit = [&R, this](StoreInst *SI) { 9695 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 9696 return R.getMinVF(EltSize); 9697 }; 9698 9699 // Attempt to sort and vectorize each of the store-groups. 9700 for (auto &Pair : Stores) { 9701 if (Pair.second.size() < 2) 9702 continue; 9703 9704 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 9705 << Pair.second.size() << ".\n"); 9706 9707 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) 9708 continue; 9709 9710 Changed |= tryToVectorizeSequence<StoreInst>( 9711 Pair.second, Limit, StoreSorter, AreCompatibleStores, 9712 [this, &R](ArrayRef<StoreInst *> Candidates, bool) { 9713 return vectorizeStores(Candidates, R); 9714 }, 9715 /*LimitForRegisterSize=*/false); 9716 } 9717 return Changed; 9718 } 9719 9720 char SLPVectorizer::ID = 0; 9721 9722 static const char lv_name[] = "SLP Vectorizer"; 9723 9724 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 9725 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 9726 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 9727 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 9728 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 9729 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 9730 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 9731 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 9732 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 9733 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 9734 9735 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 9736