1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 45 #include "llvm/Analysis/ScalarEvolution.h" 46 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/Analysis/VectorUtils.h" 51 #include "llvm/IR/Attributes.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DebugLoc.h" 57 #include "llvm/IR/DerivedTypes.h" 58 #include "llvm/IR/Dominators.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/IRBuilder.h" 61 #include "llvm/IR/InstrTypes.h" 62 #include "llvm/IR/Instruction.h" 63 #include "llvm/IR/Instructions.h" 64 #include "llvm/IR/IntrinsicInst.h" 65 #include "llvm/IR/Intrinsics.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/NoFolder.h" 68 #include "llvm/IR/Operator.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/Verifier.h" 76 #include "llvm/InitializePasses.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/DOTGraphTraits.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/GraphWriter.h" 85 #include "llvm/Support/InstructionCost.h" 86 #include "llvm/Support/KnownBits.h" 87 #include "llvm/Support/MathExtras.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 90 #include "llvm/Transforms/Utils/LoopUtils.h" 91 #include "llvm/Transforms/Vectorize.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <memory> 97 #include <set> 98 #include <string> 99 #include <tuple> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 using namespace slpvectorizer; 106 107 #define SV_NAME "slp-vectorizer" 108 #define DEBUG_TYPE "SLP" 109 110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 111 112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 113 cl::desc("Run the SLP vectorization passes")); 114 115 static cl::opt<int> 116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 117 cl::desc("Only vectorize if you gain more than this " 118 "number ")); 119 120 static cl::opt<bool> 121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 122 cl::desc("Attempt to vectorize horizontal reductions")); 123 124 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 126 cl::desc( 127 "Attempt to vectorize horizontal reductions feeding into a store")); 128 129 static cl::opt<int> 130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 131 cl::desc("Attempt to vectorize for this register size in bits")); 132 133 static cl::opt<unsigned> 134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 135 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 136 137 static cl::opt<int> 138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 139 cl::desc("Maximum depth of the lookup for consecutive stores.")); 140 141 /// Limits the size of scheduling regions in a block. 142 /// It avoid long compile times for _very_ large blocks where vector 143 /// instructions are spread over a wide range. 144 /// This limit is way higher than needed by real-world functions. 145 static cl::opt<int> 146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 147 cl::desc("Limit the size of the SLP scheduling region per block")); 148 149 static cl::opt<int> MinVectorRegSizeOption( 150 "slp-min-reg-size", cl::init(128), cl::Hidden, 151 cl::desc("Attempt to vectorize for this register size in bits")); 152 153 static cl::opt<unsigned> RecursionMaxDepth( 154 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 155 cl::desc("Limit the recursion depth when building a vectorizable tree")); 156 157 static cl::opt<unsigned> MinTreeSize( 158 "slp-min-tree-size", cl::init(3), cl::Hidden, 159 cl::desc("Only vectorize small trees if they are fully vectorizable")); 160 161 // The maximum depth that the look-ahead score heuristic will explore. 162 // The higher this value, the higher the compilation time overhead. 163 static cl::opt<int> LookAheadMaxDepth( 164 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 165 cl::desc("The maximum look-ahead depth for operand reordering scores")); 166 167 // The Look-ahead heuristic goes through the users of the bundle to calculate 168 // the users cost in getExternalUsesCost(). To avoid compilation time increase 169 // we limit the number of users visited to this value. 170 static cl::opt<unsigned> LookAheadUsersBudget( 171 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, 172 cl::desc("The maximum number of users to visit while visiting the " 173 "predecessors. This prevents compilation time increase.")); 174 175 static cl::opt<bool> 176 ViewSLPTree("view-slp-tree", cl::Hidden, 177 cl::desc("Display the SLP trees with Graphviz")); 178 179 // Limit the number of alias checks. The limit is chosen so that 180 // it has no negative effect on the llvm benchmarks. 181 static const unsigned AliasedCheckLimit = 10; 182 183 // Another limit for the alias checks: The maximum distance between load/store 184 // instructions where alias checks are done. 185 // This limit is useful for very large basic blocks. 186 static const unsigned MaxMemDepDistance = 160; 187 188 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 189 /// regions to be handled. 190 static const int MinScheduleRegionSize = 16; 191 192 /// Predicate for the element types that the SLP vectorizer supports. 193 /// 194 /// The most important thing to filter here are types which are invalid in LLVM 195 /// vectors. We also filter target specific types which have absolutely no 196 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 197 /// avoids spending time checking the cost model and realizing that they will 198 /// be inevitably scalarized. 199 static bool isValidElementType(Type *Ty) { 200 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 201 !Ty->isPPC_FP128Ty(); 202 } 203 204 /// \returns True if the value is a constant (but not globals/constant 205 /// expressions). 206 static bool isConstant(Value *V) { 207 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 208 } 209 210 /// Checks if \p V is one of vector-like instructions, i.e. undef, 211 /// insertelement/extractelement with constant indices for fixed vector type or 212 /// extractvalue instruction. 213 static bool isVectorLikeInstWithConstOps(Value *V) { 214 if (!isa<InsertElementInst, ExtractElementInst>(V) && 215 !isa<ExtractValueInst, UndefValue>(V)) 216 return false; 217 auto *I = dyn_cast<Instruction>(V); 218 if (!I || isa<ExtractValueInst>(I)) 219 return true; 220 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 221 return false; 222 if (isa<ExtractElementInst>(I)) 223 return isConstant(I->getOperand(1)); 224 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 225 return isConstant(I->getOperand(2)); 226 } 227 228 /// \returns true if all of the instructions in \p VL are in the same block or 229 /// false otherwise. 230 static bool allSameBlock(ArrayRef<Value *> VL) { 231 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 232 if (!I0) 233 return false; 234 if (all_of(VL, isVectorLikeInstWithConstOps)) 235 return true; 236 237 BasicBlock *BB = I0->getParent(); 238 for (int I = 1, E = VL.size(); I < E; I++) { 239 auto *II = dyn_cast<Instruction>(VL[I]); 240 if (!II) 241 return false; 242 243 if (BB != II->getParent()) 244 return false; 245 } 246 return true; 247 } 248 249 /// \returns True if all of the values in \p VL are constants (but not 250 /// globals/constant expressions). 251 static bool allConstant(ArrayRef<Value *> VL) { 252 // Constant expressions and globals can't be vectorized like normal integer/FP 253 // constants. 254 return all_of(VL, isConstant); 255 } 256 257 /// \returns True if all of the values in \p VL are identical or some of them 258 /// are UndefValue. 259 static bool isSplat(ArrayRef<Value *> VL) { 260 Value *FirstNonUndef = nullptr; 261 for (Value *V : VL) { 262 if (isa<UndefValue>(V)) 263 continue; 264 if (!FirstNonUndef) { 265 FirstNonUndef = V; 266 continue; 267 } 268 if (V != FirstNonUndef) 269 return false; 270 } 271 return FirstNonUndef != nullptr; 272 } 273 274 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 275 static bool isCommutative(Instruction *I) { 276 if (auto *Cmp = dyn_cast<CmpInst>(I)) 277 return Cmp->isCommutative(); 278 if (auto *BO = dyn_cast<BinaryOperator>(I)) 279 return BO->isCommutative(); 280 // TODO: This should check for generic Instruction::isCommutative(), but 281 // we need to confirm that the caller code correctly handles Intrinsics 282 // for example (does not have 2 operands). 283 return false; 284 } 285 286 /// Checks if the vector of instructions can be represented as a shuffle, like: 287 /// %x0 = extractelement <4 x i8> %x, i32 0 288 /// %x3 = extractelement <4 x i8> %x, i32 3 289 /// %y1 = extractelement <4 x i8> %y, i32 1 290 /// %y2 = extractelement <4 x i8> %y, i32 2 291 /// %x0x0 = mul i8 %x0, %x0 292 /// %x3x3 = mul i8 %x3, %x3 293 /// %y1y1 = mul i8 %y1, %y1 294 /// %y2y2 = mul i8 %y2, %y2 295 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 296 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 297 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 298 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 299 /// ret <4 x i8> %ins4 300 /// can be transformed into: 301 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 302 /// i32 6> 303 /// %2 = mul <4 x i8> %1, %1 304 /// ret <4 x i8> %2 305 /// We convert this initially to something like: 306 /// %x0 = extractelement <4 x i8> %x, i32 0 307 /// %x3 = extractelement <4 x i8> %x, i32 3 308 /// %y1 = extractelement <4 x i8> %y, i32 1 309 /// %y2 = extractelement <4 x i8> %y, i32 2 310 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 311 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 312 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 313 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 314 /// %5 = mul <4 x i8> %4, %4 315 /// %6 = extractelement <4 x i8> %5, i32 0 316 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 317 /// %7 = extractelement <4 x i8> %5, i32 1 318 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 319 /// %8 = extractelement <4 x i8> %5, i32 2 320 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 321 /// %9 = extractelement <4 x i8> %5, i32 3 322 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 323 /// ret <4 x i8> %ins4 324 /// InstCombiner transforms this into a shuffle and vector mul 325 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 326 /// TODO: Can we split off and reuse the shuffle mask detection from 327 /// TargetTransformInfo::getInstructionThroughput? 328 static Optional<TargetTransformInfo::ShuffleKind> 329 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 330 const auto *It = 331 find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); }); 332 if (It == VL.end()) 333 return None; 334 auto *EI0 = cast<ExtractElementInst>(*It); 335 if (isa<ScalableVectorType>(EI0->getVectorOperandType())) 336 return None; 337 unsigned Size = 338 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 339 Value *Vec1 = nullptr; 340 Value *Vec2 = nullptr; 341 enum ShuffleMode { Unknown, Select, Permute }; 342 ShuffleMode CommonShuffleMode = Unknown; 343 Mask.assign(VL.size(), UndefMaskElem); 344 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 345 // Undef can be represented as an undef element in a vector. 346 if (isa<UndefValue>(VL[I])) 347 continue; 348 auto *EI = cast<ExtractElementInst>(VL[I]); 349 if (isa<ScalableVectorType>(EI->getVectorOperandType())) 350 return None; 351 auto *Vec = EI->getVectorOperand(); 352 // We can extractelement from undef or poison vector. 353 if (isa<UndefValue>(Vec)) 354 continue; 355 // All vector operands must have the same number of vector elements. 356 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 357 return None; 358 if (isa<UndefValue>(EI->getIndexOperand())) 359 continue; 360 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 361 if (!Idx) 362 return None; 363 // Undefined behavior if Idx is negative or >= Size. 364 if (Idx->getValue().uge(Size)) 365 continue; 366 unsigned IntIdx = Idx->getValue().getZExtValue(); 367 Mask[I] = IntIdx; 368 // For correct shuffling we have to have at most 2 different vector operands 369 // in all extractelement instructions. 370 if (!Vec1 || Vec1 == Vec) { 371 Vec1 = Vec; 372 } else if (!Vec2 || Vec2 == Vec) { 373 Vec2 = Vec; 374 Mask[I] += Size; 375 } else { 376 return None; 377 } 378 if (CommonShuffleMode == Permute) 379 continue; 380 // If the extract index is not the same as the operation number, it is a 381 // permutation. 382 if (IntIdx != I) { 383 CommonShuffleMode = Permute; 384 continue; 385 } 386 CommonShuffleMode = Select; 387 } 388 // If we're not crossing lanes in different vectors, consider it as blending. 389 if (CommonShuffleMode == Select && Vec2) 390 return TargetTransformInfo::SK_Select; 391 // If Vec2 was never used, we have a permutation of a single vector, otherwise 392 // we have permutation of 2 vectors. 393 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 394 : TargetTransformInfo::SK_PermuteSingleSrc; 395 } 396 397 namespace { 398 399 /// Main data required for vectorization of instructions. 400 struct InstructionsState { 401 /// The very first instruction in the list with the main opcode. 402 Value *OpValue = nullptr; 403 404 /// The main/alternate instruction. 405 Instruction *MainOp = nullptr; 406 Instruction *AltOp = nullptr; 407 408 /// The main/alternate opcodes for the list of instructions. 409 unsigned getOpcode() const { 410 return MainOp ? MainOp->getOpcode() : 0; 411 } 412 413 unsigned getAltOpcode() const { 414 return AltOp ? AltOp->getOpcode() : 0; 415 } 416 417 /// Some of the instructions in the list have alternate opcodes. 418 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 419 420 bool isOpcodeOrAlt(Instruction *I) const { 421 unsigned CheckedOpcode = I->getOpcode(); 422 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 423 } 424 425 InstructionsState() = delete; 426 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 427 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 428 }; 429 430 } // end anonymous namespace 431 432 /// Chooses the correct key for scheduling data. If \p Op has the same (or 433 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 434 /// OpValue. 435 static Value *isOneOf(const InstructionsState &S, Value *Op) { 436 auto *I = dyn_cast<Instruction>(Op); 437 if (I && S.isOpcodeOrAlt(I)) 438 return Op; 439 return S.OpValue; 440 } 441 442 /// \returns true if \p Opcode is allowed as part of of the main/alternate 443 /// instruction for SLP vectorization. 444 /// 445 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 446 /// "shuffled out" lane would result in division by zero. 447 static bool isValidForAlternation(unsigned Opcode) { 448 if (Instruction::isIntDivRem(Opcode)) 449 return false; 450 451 return true; 452 } 453 454 /// \returns analysis of the Instructions in \p VL described in 455 /// InstructionsState, the Opcode that we suppose the whole list 456 /// could be vectorized even if its structure is diverse. 457 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 458 unsigned BaseIndex = 0) { 459 // Make sure these are all Instructions. 460 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 461 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 462 463 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 464 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 465 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 466 unsigned AltOpcode = Opcode; 467 unsigned AltIndex = BaseIndex; 468 469 // Check for one alternate opcode from another BinaryOperator. 470 // TODO - generalize to support all operators (types, calls etc.). 471 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 472 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 473 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 474 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 475 continue; 476 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 477 isValidForAlternation(Opcode)) { 478 AltOpcode = InstOpcode; 479 AltIndex = Cnt; 480 continue; 481 } 482 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 483 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 484 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 485 if (Ty0 == Ty1) { 486 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 487 continue; 488 if (Opcode == AltOpcode) { 489 assert(isValidForAlternation(Opcode) && 490 isValidForAlternation(InstOpcode) && 491 "Cast isn't safe for alternation, logic needs to be updated!"); 492 AltOpcode = InstOpcode; 493 AltIndex = Cnt; 494 continue; 495 } 496 } 497 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 498 continue; 499 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 500 } 501 502 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 503 cast<Instruction>(VL[AltIndex])); 504 } 505 506 /// \returns true if all of the values in \p VL have the same type or false 507 /// otherwise. 508 static bool allSameType(ArrayRef<Value *> VL) { 509 Type *Ty = VL[0]->getType(); 510 for (int i = 1, e = VL.size(); i < e; i++) 511 if (VL[i]->getType() != Ty) 512 return false; 513 514 return true; 515 } 516 517 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 518 static Optional<unsigned> getExtractIndex(Instruction *E) { 519 unsigned Opcode = E->getOpcode(); 520 assert((Opcode == Instruction::ExtractElement || 521 Opcode == Instruction::ExtractValue) && 522 "Expected extractelement or extractvalue instruction."); 523 if (Opcode == Instruction::ExtractElement) { 524 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 525 if (!CI) 526 return None; 527 return CI->getZExtValue(); 528 } 529 ExtractValueInst *EI = cast<ExtractValueInst>(E); 530 if (EI->getNumIndices() != 1) 531 return None; 532 return *EI->idx_begin(); 533 } 534 535 /// \returns True if in-tree use also needs extract. This refers to 536 /// possible scalar operand in vectorized instruction. 537 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 538 TargetLibraryInfo *TLI) { 539 unsigned Opcode = UserInst->getOpcode(); 540 switch (Opcode) { 541 case Instruction::Load: { 542 LoadInst *LI = cast<LoadInst>(UserInst); 543 return (LI->getPointerOperand() == Scalar); 544 } 545 case Instruction::Store: { 546 StoreInst *SI = cast<StoreInst>(UserInst); 547 return (SI->getPointerOperand() == Scalar); 548 } 549 case Instruction::Call: { 550 CallInst *CI = cast<CallInst>(UserInst); 551 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 552 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 553 if (hasVectorInstrinsicScalarOpd(ID, i)) 554 return (CI->getArgOperand(i) == Scalar); 555 } 556 LLVM_FALLTHROUGH; 557 } 558 default: 559 return false; 560 } 561 } 562 563 /// \returns the AA location that is being access by the instruction. 564 static MemoryLocation getLocation(Instruction *I, AAResults *AA) { 565 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 566 return MemoryLocation::get(SI); 567 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 568 return MemoryLocation::get(LI); 569 return MemoryLocation(); 570 } 571 572 /// \returns True if the instruction is not a volatile or atomic load/store. 573 static bool isSimple(Instruction *I) { 574 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 575 return LI->isSimple(); 576 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 577 return SI->isSimple(); 578 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 579 return !MI->isVolatile(); 580 return true; 581 } 582 583 /// Shuffles \p Mask in accordance with the given \p SubMask. 584 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 585 if (SubMask.empty()) 586 return; 587 if (Mask.empty()) { 588 Mask.append(SubMask.begin(), SubMask.end()); 589 return; 590 } 591 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 592 int TermValue = std::min(Mask.size(), SubMask.size()); 593 for (int I = 0, E = SubMask.size(); I < E; ++I) { 594 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 595 Mask[SubMask[I]] >= TermValue) 596 continue; 597 NewMask[I] = Mask[SubMask[I]]; 598 } 599 Mask.swap(NewMask); 600 } 601 602 /// Order may have elements assigned special value (size) which is out of 603 /// bounds. Such indices only appear on places which correspond to undef values 604 /// (see canReuseExtract for details) and used in order to avoid undef values 605 /// have effect on operands ordering. 606 /// The first loop below simply finds all unused indices and then the next loop 607 /// nest assigns these indices for undef values positions. 608 /// As an example below Order has two undef positions and they have assigned 609 /// values 3 and 7 respectively: 610 /// before: 6 9 5 4 9 2 1 0 611 /// after: 6 3 5 4 7 2 1 0 612 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 613 const unsigned Sz = Order.size(); 614 SmallBitVector UsedIndices(Sz); 615 SmallVector<int> MaskedIndices; 616 for (unsigned I = 0; I < Sz; ++I) { 617 if (Order[I] < Sz) 618 UsedIndices.set(Order[I]); 619 else 620 MaskedIndices.push_back(I); 621 } 622 if (MaskedIndices.empty()) 623 return; 624 SmallVector<int> AvailableIndices(MaskedIndices.size()); 625 unsigned Cnt = 0; 626 int Idx = UsedIndices.find_first(); 627 do { 628 AvailableIndices[Cnt] = Idx; 629 Idx = UsedIndices.find_next(Idx); 630 ++Cnt; 631 } while (Idx > 0); 632 assert(Cnt == MaskedIndices.size() && "Non-synced masked/available indices."); 633 for (int I = 0, E = MaskedIndices.size(); I < E; ++I) 634 Order[MaskedIndices[I]] = AvailableIndices[I]; 635 } 636 637 namespace llvm { 638 639 static void inversePermutation(ArrayRef<unsigned> Indices, 640 SmallVectorImpl<int> &Mask) { 641 Mask.clear(); 642 const unsigned E = Indices.size(); 643 Mask.resize(E, UndefMaskElem); 644 for (unsigned I = 0; I < E; ++I) 645 Mask[Indices[I]] = I; 646 } 647 648 /// \returns inserting index of InsertElement or InsertValue instruction, 649 /// using Offset as base offset for index. 650 static Optional<int> getInsertIndex(Value *InsertInst, unsigned Offset) { 651 int Index = Offset; 652 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 653 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 654 auto *VT = cast<FixedVectorType>(IE->getType()); 655 if (CI->getValue().uge(VT->getNumElements())) 656 return UndefMaskElem; 657 Index *= VT->getNumElements(); 658 Index += CI->getZExtValue(); 659 return Index; 660 } 661 if (isa<UndefValue>(IE->getOperand(2))) 662 return UndefMaskElem; 663 return None; 664 } 665 666 auto *IV = cast<InsertValueInst>(InsertInst); 667 Type *CurrentType = IV->getType(); 668 for (unsigned I : IV->indices()) { 669 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 670 Index *= ST->getNumElements(); 671 CurrentType = ST->getElementType(I); 672 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 673 Index *= AT->getNumElements(); 674 CurrentType = AT->getElementType(); 675 } else { 676 return None; 677 } 678 Index += I; 679 } 680 return Index; 681 } 682 683 /// Reorders the list of scalars in accordance with the given \p Order and then 684 /// the \p Mask. \p Order - is the original order of the scalars, need to 685 /// reorder scalars into an unordered state at first according to the given 686 /// order. Then the ordered scalars are shuffled once again in accordance with 687 /// the provided mask. 688 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 689 ArrayRef<int> Mask) { 690 assert(!Mask.empty() && "Expected non-empty mask."); 691 SmallVector<Value *> Prev(Scalars.size(), 692 UndefValue::get(Scalars.front()->getType())); 693 Prev.swap(Scalars); 694 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 695 if (Mask[I] != UndefMaskElem) 696 Scalars[Mask[I]] = Prev[I]; 697 } 698 699 namespace slpvectorizer { 700 701 /// Bottom Up SLP Vectorizer. 702 class BoUpSLP { 703 struct TreeEntry; 704 struct ScheduleData; 705 706 public: 707 using ValueList = SmallVector<Value *, 8>; 708 using InstrList = SmallVector<Instruction *, 16>; 709 using ValueSet = SmallPtrSet<Value *, 16>; 710 using StoreList = SmallVector<StoreInst *, 8>; 711 using ExtraValueToDebugLocsMap = 712 MapVector<Value *, SmallVector<Instruction *, 2>>; 713 using OrdersType = SmallVector<unsigned, 4>; 714 715 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 716 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 717 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 718 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 719 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 720 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 721 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 722 // Use the vector register size specified by the target unless overridden 723 // by a command-line option. 724 // TODO: It would be better to limit the vectorization factor based on 725 // data type rather than just register size. For example, x86 AVX has 726 // 256-bit registers, but it does not support integer operations 727 // at that width (that requires AVX2). 728 if (MaxVectorRegSizeOption.getNumOccurrences()) 729 MaxVecRegSize = MaxVectorRegSizeOption; 730 else 731 MaxVecRegSize = 732 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 733 .getFixedSize(); 734 735 if (MinVectorRegSizeOption.getNumOccurrences()) 736 MinVecRegSize = MinVectorRegSizeOption; 737 else 738 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 739 } 740 741 /// Vectorize the tree that starts with the elements in \p VL. 742 /// Returns the vectorized root. 743 Value *vectorizeTree(); 744 745 /// Vectorize the tree but with the list of externally used values \p 746 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 747 /// generated extractvalue instructions. 748 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 749 750 /// \returns the cost incurred by unwanted spills and fills, caused by 751 /// holding live values over call sites. 752 InstructionCost getSpillCost() const; 753 754 /// \returns the vectorization cost of the subtree that starts at \p VL. 755 /// A negative number means that this is profitable. 756 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 757 758 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 759 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 760 void buildTree(ArrayRef<Value *> Roots, 761 ArrayRef<Value *> UserIgnoreLst = None); 762 763 /// Builds external uses of the vectorized scalars, i.e. the list of 764 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 765 /// ExternallyUsedValues contains additional list of external uses to handle 766 /// vectorization of reductions. 767 void 768 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 769 770 /// Clear the internal data structures that are created by 'buildTree'. 771 void deleteTree() { 772 VectorizableTree.clear(); 773 ScalarToTreeEntry.clear(); 774 MustGather.clear(); 775 ExternalUses.clear(); 776 for (auto &Iter : BlocksSchedules) { 777 BlockScheduling *BS = Iter.second.get(); 778 BS->clear(); 779 } 780 MinBWs.clear(); 781 InstrElementSize.clear(); 782 } 783 784 unsigned getTreeSize() const { return VectorizableTree.size(); } 785 786 /// Perform LICM and CSE on the newly generated gather sequences. 787 void optimizeGatherSequence(); 788 789 /// Checks if the specified gather tree entry \p TE can be represented as a 790 /// shuffled vector entry + (possibly) permutation with other gathers. It 791 /// implements the checks only for possibly ordered scalars (Loads, 792 /// ExtractElement, ExtractValue), which can be part of the graph. 793 Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); 794 795 /// Reorders the current graph to the most profitable order starting from the 796 /// root node to the leaf nodes. The best order is chosen only from the nodes 797 /// of the same size (vectorization factor). Smaller nodes are considered 798 /// parts of subgraph with smaller VF and they are reordered independently. We 799 /// can make it because we still need to extend smaller nodes to the wider VF 800 /// and we can merge reordering shuffles with the widening shuffles. 801 void reorderTopToBottom(); 802 803 /// Reorders the current graph to the most profitable order starting from 804 /// leaves to the root. It allows to rotate small subgraphs and reduce the 805 /// number of reshuffles if the leaf nodes use the same order. In this case we 806 /// can merge the orders and just shuffle user node instead of shuffling its 807 /// operands. Plus, even the leaf nodes have different orders, it allows to 808 /// sink reordering in the graph closer to the root node and merge it later 809 /// during analysis. 810 void reorderBottomToTop(bool IgnoreReorder = false); 811 812 /// \return The vector element size in bits to use when vectorizing the 813 /// expression tree ending at \p V. If V is a store, the size is the width of 814 /// the stored value. Otherwise, the size is the width of the largest loaded 815 /// value reaching V. This method is used by the vectorizer to calculate 816 /// vectorization factors. 817 unsigned getVectorElementSize(Value *V); 818 819 /// Compute the minimum type sizes required to represent the entries in a 820 /// vectorizable tree. 821 void computeMinimumValueSizes(); 822 823 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 824 unsigned getMaxVecRegSize() const { 825 return MaxVecRegSize; 826 } 827 828 // \returns minimum vector register size as set by cl::opt. 829 unsigned getMinVecRegSize() const { 830 return MinVecRegSize; 831 } 832 833 unsigned getMinVF(unsigned Sz) const { 834 return std::max(2U, getMinVecRegSize() / Sz); 835 } 836 837 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 838 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 839 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 840 return MaxVF ? MaxVF : UINT_MAX; 841 } 842 843 /// Check if homogeneous aggregate is isomorphic to some VectorType. 844 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 845 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 846 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 847 /// 848 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 849 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 850 851 /// \returns True if the VectorizableTree is both tiny and not fully 852 /// vectorizable. We do not vectorize such trees. 853 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; 854 855 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 856 /// can be load combined in the backend. Load combining may not be allowed in 857 /// the IR optimizer, so we do not want to alter the pattern. For example, 858 /// partially transforming a scalar bswap() pattern into vector code is 859 /// effectively impossible for the backend to undo. 860 /// TODO: If load combining is allowed in the IR optimizer, this analysis 861 /// may not be necessary. 862 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 863 864 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 865 /// can be load combined in the backend. Load combining may not be allowed in 866 /// the IR optimizer, so we do not want to alter the pattern. For example, 867 /// partially transforming a scalar bswap() pattern into vector code is 868 /// effectively impossible for the backend to undo. 869 /// TODO: If load combining is allowed in the IR optimizer, this analysis 870 /// may not be necessary. 871 bool isLoadCombineCandidate() const; 872 873 OptimizationRemarkEmitter *getORE() { return ORE; } 874 875 /// This structure holds any data we need about the edges being traversed 876 /// during buildTree_rec(). We keep track of: 877 /// (i) the user TreeEntry index, and 878 /// (ii) the index of the edge. 879 struct EdgeInfo { 880 EdgeInfo() = default; 881 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 882 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 883 /// The user TreeEntry. 884 TreeEntry *UserTE = nullptr; 885 /// The operand index of the use. 886 unsigned EdgeIdx = UINT_MAX; 887 #ifndef NDEBUG 888 friend inline raw_ostream &operator<<(raw_ostream &OS, 889 const BoUpSLP::EdgeInfo &EI) { 890 EI.dump(OS); 891 return OS; 892 } 893 /// Debug print. 894 void dump(raw_ostream &OS) const { 895 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 896 << " EdgeIdx:" << EdgeIdx << "}"; 897 } 898 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 899 #endif 900 }; 901 902 /// A helper data structure to hold the operands of a vector of instructions. 903 /// This supports a fixed vector length for all operand vectors. 904 class VLOperands { 905 /// For each operand we need (i) the value, and (ii) the opcode that it 906 /// would be attached to if the expression was in a left-linearized form. 907 /// This is required to avoid illegal operand reordering. 908 /// For example: 909 /// \verbatim 910 /// 0 Op1 911 /// |/ 912 /// Op1 Op2 Linearized + Op2 913 /// \ / ----------> |/ 914 /// - - 915 /// 916 /// Op1 - Op2 (0 + Op1) - Op2 917 /// \endverbatim 918 /// 919 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 920 /// 921 /// Another way to think of this is to track all the operations across the 922 /// path from the operand all the way to the root of the tree and to 923 /// calculate the operation that corresponds to this path. For example, the 924 /// path from Op2 to the root crosses the RHS of the '-', therefore the 925 /// corresponding operation is a '-' (which matches the one in the 926 /// linearized tree, as shown above). 927 /// 928 /// For lack of a better term, we refer to this operation as Accumulated 929 /// Path Operation (APO). 930 struct OperandData { 931 OperandData() = default; 932 OperandData(Value *V, bool APO, bool IsUsed) 933 : V(V), APO(APO), IsUsed(IsUsed) {} 934 /// The operand value. 935 Value *V = nullptr; 936 /// TreeEntries only allow a single opcode, or an alternate sequence of 937 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 938 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 939 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 940 /// (e.g., Add/Mul) 941 bool APO = false; 942 /// Helper data for the reordering function. 943 bool IsUsed = false; 944 }; 945 946 /// During operand reordering, we are trying to select the operand at lane 947 /// that matches best with the operand at the neighboring lane. Our 948 /// selection is based on the type of value we are looking for. For example, 949 /// if the neighboring lane has a load, we need to look for a load that is 950 /// accessing a consecutive address. These strategies are summarized in the 951 /// 'ReorderingMode' enumerator. 952 enum class ReorderingMode { 953 Load, ///< Matching loads to consecutive memory addresses 954 Opcode, ///< Matching instructions based on opcode (same or alternate) 955 Constant, ///< Matching constants 956 Splat, ///< Matching the same instruction multiple times (broadcast) 957 Failed, ///< We failed to create a vectorizable group 958 }; 959 960 using OperandDataVec = SmallVector<OperandData, 2>; 961 962 /// A vector of operand vectors. 963 SmallVector<OperandDataVec, 4> OpsVec; 964 965 const DataLayout &DL; 966 ScalarEvolution &SE; 967 const BoUpSLP &R; 968 969 /// \returns the operand data at \p OpIdx and \p Lane. 970 OperandData &getData(unsigned OpIdx, unsigned Lane) { 971 return OpsVec[OpIdx][Lane]; 972 } 973 974 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 975 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 976 return OpsVec[OpIdx][Lane]; 977 } 978 979 /// Clears the used flag for all entries. 980 void clearUsed() { 981 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 982 OpIdx != NumOperands; ++OpIdx) 983 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 984 ++Lane) 985 OpsVec[OpIdx][Lane].IsUsed = false; 986 } 987 988 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 989 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 990 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 991 } 992 993 // The hard-coded scores listed here are not very important. When computing 994 // the scores of matching one sub-tree with another, we are basically 995 // counting the number of values that are matching. So even if all scores 996 // are set to 1, we would still get a decent matching result. 997 // However, sometimes we have to break ties. For example we may have to 998 // choose between matching loads vs matching opcodes. This is what these 999 // scores are helping us with: they provide the order of preference. 1000 1001 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 1002 static const int ScoreConsecutiveLoads = 3; 1003 /// ExtractElementInst from same vector and consecutive indexes. 1004 static const int ScoreConsecutiveExtracts = 3; 1005 /// Constants. 1006 static const int ScoreConstants = 2; 1007 /// Instructions with the same opcode. 1008 static const int ScoreSameOpcode = 2; 1009 /// Instructions with alt opcodes (e.g, add + sub). 1010 static const int ScoreAltOpcodes = 1; 1011 /// Identical instructions (a.k.a. splat or broadcast). 1012 static const int ScoreSplat = 1; 1013 /// Matching with an undef is preferable to failing. 1014 static const int ScoreUndef = 1; 1015 /// Score for failing to find a decent match. 1016 static const int ScoreFail = 0; 1017 /// User exteranl to the vectorized code. 1018 static const int ExternalUseCost = 1; 1019 /// The user is internal but in a different lane. 1020 static const int UserInDiffLaneCost = ExternalUseCost; 1021 1022 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 1023 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 1024 ScalarEvolution &SE) { 1025 auto *LI1 = dyn_cast<LoadInst>(V1); 1026 auto *LI2 = dyn_cast<LoadInst>(V2); 1027 if (LI1 && LI2) { 1028 if (LI1->getParent() != LI2->getParent()) 1029 return VLOperands::ScoreFail; 1030 1031 Optional<int> Dist = getPointersDiff( 1032 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1033 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1034 return (Dist && *Dist == 1) ? VLOperands::ScoreConsecutiveLoads 1035 : VLOperands::ScoreFail; 1036 } 1037 1038 auto *C1 = dyn_cast<Constant>(V1); 1039 auto *C2 = dyn_cast<Constant>(V2); 1040 if (C1 && C2) 1041 return VLOperands::ScoreConstants; 1042 1043 // Extracts from consecutive indexes of the same vector better score as 1044 // the extracts could be optimized away. 1045 Value *EV; 1046 ConstantInt *Ex1Idx, *Ex2Idx; 1047 if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) && 1048 match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) && 1049 Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue()) 1050 return VLOperands::ScoreConsecutiveExtracts; 1051 1052 auto *I1 = dyn_cast<Instruction>(V1); 1053 auto *I2 = dyn_cast<Instruction>(V2); 1054 if (I1 && I2) { 1055 if (I1 == I2) 1056 return VLOperands::ScoreSplat; 1057 InstructionsState S = getSameOpcode({I1, I2}); 1058 // Note: Only consider instructions with <= 2 operands to avoid 1059 // complexity explosion. 1060 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) 1061 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 1062 : VLOperands::ScoreSameOpcode; 1063 } 1064 1065 if (isa<UndefValue>(V2)) 1066 return VLOperands::ScoreUndef; 1067 1068 return VLOperands::ScoreFail; 1069 } 1070 1071 /// Holds the values and their lane that are taking part in the look-ahead 1072 /// score calculation. This is used in the external uses cost calculation. 1073 SmallDenseMap<Value *, int> InLookAheadValues; 1074 1075 /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are 1076 /// either external to the vectorized code, or require shuffling. 1077 int getExternalUsesCost(const std::pair<Value *, int> &LHS, 1078 const std::pair<Value *, int> &RHS) { 1079 int Cost = 0; 1080 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}}; 1081 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { 1082 Value *V = Values[Idx].first; 1083 if (isa<Constant>(V)) { 1084 // Since this is a function pass, it doesn't make semantic sense to 1085 // walk the users of a subclass of Constant. The users could be in 1086 // another function, or even another module that happens to be in 1087 // the same LLVMContext. 1088 continue; 1089 } 1090 1091 // Calculate the absolute lane, using the minimum relative lane of LHS 1092 // and RHS as base and Idx as the offset. 1093 int Ln = std::min(LHS.second, RHS.second) + Idx; 1094 assert(Ln >= 0 && "Bad lane calculation"); 1095 unsigned UsersBudget = LookAheadUsersBudget; 1096 for (User *U : V->users()) { 1097 if (const TreeEntry *UserTE = R.getTreeEntry(U)) { 1098 // The user is in the VectorizableTree. Check if we need to insert. 1099 auto It = llvm::find(UserTE->Scalars, U); 1100 assert(It != UserTE->Scalars.end() && "U is in UserTE"); 1101 int UserLn = std::distance(UserTE->Scalars.begin(), It); 1102 assert(UserLn >= 0 && "Bad lane"); 1103 if (UserLn != Ln) 1104 Cost += UserInDiffLaneCost; 1105 } else { 1106 // Check if the user is in the look-ahead code. 1107 auto It2 = InLookAheadValues.find(U); 1108 if (It2 != InLookAheadValues.end()) { 1109 // The user is in the look-ahead code. Check the lane. 1110 if (It2->second != Ln) 1111 Cost += UserInDiffLaneCost; 1112 } else { 1113 // The user is neither in SLP tree nor in the look-ahead code. 1114 Cost += ExternalUseCost; 1115 } 1116 } 1117 // Limit the number of visited uses to cap compilation time. 1118 if (--UsersBudget == 0) 1119 break; 1120 } 1121 } 1122 return Cost; 1123 } 1124 1125 /// Go through the operands of \p LHS and \p RHS recursively until \p 1126 /// MaxLevel, and return the cummulative score. For example: 1127 /// \verbatim 1128 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1129 /// \ / \ / \ / \ / 1130 /// + + + + 1131 /// G1 G2 G3 G4 1132 /// \endverbatim 1133 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1134 /// each level recursively, accumulating the score. It starts from matching 1135 /// the additions at level 0, then moves on to the loads (level 1). The 1136 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1137 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1138 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1139 /// Please note that the order of the operands does not matter, as we 1140 /// evaluate the score of all profitable combinations of operands. In 1141 /// other words the score of G1 and G4 is the same as G1 and G2. This 1142 /// heuristic is based on ideas described in: 1143 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1144 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1145 /// Luís F. W. Góes 1146 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS, 1147 const std::pair<Value *, int> &RHS, int CurrLevel, 1148 int MaxLevel) { 1149 1150 Value *V1 = LHS.first; 1151 Value *V2 = RHS.first; 1152 // Get the shallow score of V1 and V2. 1153 int ShallowScoreAtThisLevel = 1154 std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) - 1155 getExternalUsesCost(LHS, RHS)); 1156 int Lane1 = LHS.second; 1157 int Lane2 = RHS.second; 1158 1159 // If reached MaxLevel, 1160 // or if V1 and V2 are not instructions, 1161 // or if they are SPLAT, 1162 // or if they are not consecutive, early return the current cost. 1163 auto *I1 = dyn_cast<Instruction>(V1); 1164 auto *I2 = dyn_cast<Instruction>(V2); 1165 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1166 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1167 (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel)) 1168 return ShallowScoreAtThisLevel; 1169 assert(I1 && I2 && "Should have early exited."); 1170 1171 // Keep track of in-tree values for determining the external-use cost. 1172 InLookAheadValues[V1] = Lane1; 1173 InLookAheadValues[V2] = Lane2; 1174 1175 // Contains the I2 operand indexes that got matched with I1 operands. 1176 SmallSet<unsigned, 4> Op2Used; 1177 1178 // Recursion towards the operands of I1 and I2. We are trying all possbile 1179 // operand pairs, and keeping track of the best score. 1180 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1181 OpIdx1 != NumOperands1; ++OpIdx1) { 1182 // Try to pair op1I with the best operand of I2. 1183 int MaxTmpScore = 0; 1184 unsigned MaxOpIdx2 = 0; 1185 bool FoundBest = false; 1186 // If I2 is commutative try all combinations. 1187 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1188 unsigned ToIdx = isCommutative(I2) 1189 ? I2->getNumOperands() 1190 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1191 assert(FromIdx <= ToIdx && "Bad index"); 1192 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1193 // Skip operands already paired with OpIdx1. 1194 if (Op2Used.count(OpIdx2)) 1195 continue; 1196 // Recursively calculate the cost at each level 1197 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, 1198 {I2->getOperand(OpIdx2), Lane2}, 1199 CurrLevel + 1, MaxLevel); 1200 // Look for the best score. 1201 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1202 MaxTmpScore = TmpScore; 1203 MaxOpIdx2 = OpIdx2; 1204 FoundBest = true; 1205 } 1206 } 1207 if (FoundBest) { 1208 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1209 Op2Used.insert(MaxOpIdx2); 1210 ShallowScoreAtThisLevel += MaxTmpScore; 1211 } 1212 } 1213 return ShallowScoreAtThisLevel; 1214 } 1215 1216 /// \Returns the look-ahead score, which tells us how much the sub-trees 1217 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1218 /// score. This helps break ties in an informed way when we cannot decide on 1219 /// the order of the operands by just considering the immediate 1220 /// predecessors. 1221 int getLookAheadScore(const std::pair<Value *, int> &LHS, 1222 const std::pair<Value *, int> &RHS) { 1223 InLookAheadValues.clear(); 1224 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); 1225 } 1226 1227 // Search all operands in Ops[*][Lane] for the one that matches best 1228 // Ops[OpIdx][LastLane] and return its opreand index. 1229 // If no good match can be found, return None. 1230 Optional<unsigned> 1231 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1232 ArrayRef<ReorderingMode> ReorderingModes) { 1233 unsigned NumOperands = getNumOperands(); 1234 1235 // The operand of the previous lane at OpIdx. 1236 Value *OpLastLane = getData(OpIdx, LastLane).V; 1237 1238 // Our strategy mode for OpIdx. 1239 ReorderingMode RMode = ReorderingModes[OpIdx]; 1240 1241 // The linearized opcode of the operand at OpIdx, Lane. 1242 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1243 1244 // The best operand index and its score. 1245 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1246 // are using the score to differentiate between the two. 1247 struct BestOpData { 1248 Optional<unsigned> Idx = None; 1249 unsigned Score = 0; 1250 } BestOp; 1251 1252 // Iterate through all unused operands and look for the best. 1253 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1254 // Get the operand at Idx and Lane. 1255 OperandData &OpData = getData(Idx, Lane); 1256 Value *Op = OpData.V; 1257 bool OpAPO = OpData.APO; 1258 1259 // Skip already selected operands. 1260 if (OpData.IsUsed) 1261 continue; 1262 1263 // Skip if we are trying to move the operand to a position with a 1264 // different opcode in the linearized tree form. This would break the 1265 // semantics. 1266 if (OpAPO != OpIdxAPO) 1267 continue; 1268 1269 // Look for an operand that matches the current mode. 1270 switch (RMode) { 1271 case ReorderingMode::Load: 1272 case ReorderingMode::Constant: 1273 case ReorderingMode::Opcode: { 1274 bool LeftToRight = Lane > LastLane; 1275 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1276 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1277 unsigned Score = 1278 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); 1279 if (Score > BestOp.Score) { 1280 BestOp.Idx = Idx; 1281 BestOp.Score = Score; 1282 } 1283 break; 1284 } 1285 case ReorderingMode::Splat: 1286 if (Op == OpLastLane) 1287 BestOp.Idx = Idx; 1288 break; 1289 case ReorderingMode::Failed: 1290 return None; 1291 } 1292 } 1293 1294 if (BestOp.Idx) { 1295 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 1296 return BestOp.Idx; 1297 } 1298 // If we could not find a good match return None. 1299 return None; 1300 } 1301 1302 /// Helper for reorderOperandVecs. \Returns the lane that we should start 1303 /// reordering from. This is the one which has the least number of operands 1304 /// that can freely move about. 1305 unsigned getBestLaneToStartReordering() const { 1306 unsigned BestLane = 0; 1307 unsigned Min = UINT_MAX; 1308 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1309 ++Lane) { 1310 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 1311 if (NumFreeOps < Min) { 1312 Min = NumFreeOps; 1313 BestLane = Lane; 1314 } 1315 } 1316 return BestLane; 1317 } 1318 1319 /// \Returns the maximum number of operands that are allowed to be reordered 1320 /// for \p Lane. This is used as a heuristic for selecting the first lane to 1321 /// start operand reordering. 1322 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1323 unsigned CntTrue = 0; 1324 unsigned NumOperands = getNumOperands(); 1325 // Operands with the same APO can be reordered. We therefore need to count 1326 // how many of them we have for each APO, like this: Cnt[APO] = x. 1327 // Since we only have two APOs, namely true and false, we can avoid using 1328 // a map. Instead we can simply count the number of operands that 1329 // correspond to one of them (in this case the 'true' APO), and calculate 1330 // the other by subtracting it from the total number of operands. 1331 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 1332 if (getData(OpIdx, Lane).APO) 1333 ++CntTrue; 1334 unsigned CntFalse = NumOperands - CntTrue; 1335 return std::max(CntTrue, CntFalse); 1336 } 1337 1338 /// Go through the instructions in VL and append their operands. 1339 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1340 assert(!VL.empty() && "Bad VL"); 1341 assert((empty() || VL.size() == getNumLanes()) && 1342 "Expected same number of lanes"); 1343 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1344 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1345 OpsVec.resize(NumOperands); 1346 unsigned NumLanes = VL.size(); 1347 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1348 OpsVec[OpIdx].resize(NumLanes); 1349 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1350 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1351 // Our tree has just 3 nodes: the root and two operands. 1352 // It is therefore trivial to get the APO. We only need to check the 1353 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1354 // RHS operand. The LHS operand of both add and sub is never attached 1355 // to an inversese operation in the linearized form, therefore its APO 1356 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1357 1358 // Since operand reordering is performed on groups of commutative 1359 // operations or alternating sequences (e.g., +, -), we can safely 1360 // tell the inverse operations by checking commutativity. 1361 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1362 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1363 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1364 APO, false}; 1365 } 1366 } 1367 } 1368 1369 /// \returns the number of operands. 1370 unsigned getNumOperands() const { return OpsVec.size(); } 1371 1372 /// \returns the number of lanes. 1373 unsigned getNumLanes() const { return OpsVec[0].size(); } 1374 1375 /// \returns the operand value at \p OpIdx and \p Lane. 1376 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1377 return getData(OpIdx, Lane).V; 1378 } 1379 1380 /// \returns true if the data structure is empty. 1381 bool empty() const { return OpsVec.empty(); } 1382 1383 /// Clears the data. 1384 void clear() { OpsVec.clear(); } 1385 1386 /// \Returns true if there are enough operands identical to \p Op to fill 1387 /// the whole vector. 1388 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1389 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1390 bool OpAPO = getData(OpIdx, Lane).APO; 1391 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1392 if (Ln == Lane) 1393 continue; 1394 // This is set to true if we found a candidate for broadcast at Lane. 1395 bool FoundCandidate = false; 1396 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1397 OperandData &Data = getData(OpI, Ln); 1398 if (Data.APO != OpAPO || Data.IsUsed) 1399 continue; 1400 if (Data.V == Op) { 1401 FoundCandidate = true; 1402 Data.IsUsed = true; 1403 break; 1404 } 1405 } 1406 if (!FoundCandidate) 1407 return false; 1408 } 1409 return true; 1410 } 1411 1412 public: 1413 /// Initialize with all the operands of the instruction vector \p RootVL. 1414 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1415 ScalarEvolution &SE, const BoUpSLP &R) 1416 : DL(DL), SE(SE), R(R) { 1417 // Append all the operands of RootVL. 1418 appendOperandsOfVL(RootVL); 1419 } 1420 1421 /// \Returns a value vector with the operands across all lanes for the 1422 /// opearnd at \p OpIdx. 1423 ValueList getVL(unsigned OpIdx) const { 1424 ValueList OpVL(OpsVec[OpIdx].size()); 1425 assert(OpsVec[OpIdx].size() == getNumLanes() && 1426 "Expected same num of lanes across all operands"); 1427 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1428 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1429 return OpVL; 1430 } 1431 1432 // Performs operand reordering for 2 or more operands. 1433 // The original operands are in OrigOps[OpIdx][Lane]. 1434 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1435 void reorder() { 1436 unsigned NumOperands = getNumOperands(); 1437 unsigned NumLanes = getNumLanes(); 1438 // Each operand has its own mode. We are using this mode to help us select 1439 // the instructions for each lane, so that they match best with the ones 1440 // we have selected so far. 1441 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1442 1443 // This is a greedy single-pass algorithm. We are going over each lane 1444 // once and deciding on the best order right away with no back-tracking. 1445 // However, in order to increase its effectiveness, we start with the lane 1446 // that has operands that can move the least. For example, given the 1447 // following lanes: 1448 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1449 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1450 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1451 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1452 // we will start at Lane 1, since the operands of the subtraction cannot 1453 // be reordered. Then we will visit the rest of the lanes in a circular 1454 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1455 1456 // Find the first lane that we will start our search from. 1457 unsigned FirstLane = getBestLaneToStartReordering(); 1458 1459 // Initialize the modes. 1460 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1461 Value *OpLane0 = getValue(OpIdx, FirstLane); 1462 // Keep track if we have instructions with all the same opcode on one 1463 // side. 1464 if (isa<LoadInst>(OpLane0)) 1465 ReorderingModes[OpIdx] = ReorderingMode::Load; 1466 else if (isa<Instruction>(OpLane0)) { 1467 // Check if OpLane0 should be broadcast. 1468 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1469 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1470 else 1471 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1472 } 1473 else if (isa<Constant>(OpLane0)) 1474 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1475 else if (isa<Argument>(OpLane0)) 1476 // Our best hope is a Splat. It may save some cost in some cases. 1477 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1478 else 1479 // NOTE: This should be unreachable. 1480 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1481 } 1482 1483 // If the initial strategy fails for any of the operand indexes, then we 1484 // perform reordering again in a second pass. This helps avoid assigning 1485 // high priority to the failed strategy, and should improve reordering for 1486 // the non-failed operand indexes. 1487 for (int Pass = 0; Pass != 2; ++Pass) { 1488 // Skip the second pass if the first pass did not fail. 1489 bool StrategyFailed = false; 1490 // Mark all operand data as free to use. 1491 clearUsed(); 1492 // We keep the original operand order for the FirstLane, so reorder the 1493 // rest of the lanes. We are visiting the nodes in a circular fashion, 1494 // using FirstLane as the center point and increasing the radius 1495 // distance. 1496 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1497 // Visit the lane on the right and then the lane on the left. 1498 for (int Direction : {+1, -1}) { 1499 int Lane = FirstLane + Direction * Distance; 1500 if (Lane < 0 || Lane >= (int)NumLanes) 1501 continue; 1502 int LastLane = Lane - Direction; 1503 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1504 "Out of bounds"); 1505 // Look for a good match for each operand. 1506 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1507 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1508 Optional<unsigned> BestIdx = 1509 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1510 // By not selecting a value, we allow the operands that follow to 1511 // select a better matching value. We will get a non-null value in 1512 // the next run of getBestOperand(). 1513 if (BestIdx) { 1514 // Swap the current operand with the one returned by 1515 // getBestOperand(). 1516 swap(OpIdx, BestIdx.getValue(), Lane); 1517 } else { 1518 // We failed to find a best operand, set mode to 'Failed'. 1519 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1520 // Enable the second pass. 1521 StrategyFailed = true; 1522 } 1523 } 1524 } 1525 } 1526 // Skip second pass if the strategy did not fail. 1527 if (!StrategyFailed) 1528 break; 1529 } 1530 } 1531 1532 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1533 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1534 switch (RMode) { 1535 case ReorderingMode::Load: 1536 return "Load"; 1537 case ReorderingMode::Opcode: 1538 return "Opcode"; 1539 case ReorderingMode::Constant: 1540 return "Constant"; 1541 case ReorderingMode::Splat: 1542 return "Splat"; 1543 case ReorderingMode::Failed: 1544 return "Failed"; 1545 } 1546 llvm_unreachable("Unimplemented Reordering Type"); 1547 } 1548 1549 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1550 raw_ostream &OS) { 1551 return OS << getModeStr(RMode); 1552 } 1553 1554 /// Debug print. 1555 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1556 printMode(RMode, dbgs()); 1557 } 1558 1559 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1560 return printMode(RMode, OS); 1561 } 1562 1563 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1564 const unsigned Indent = 2; 1565 unsigned Cnt = 0; 1566 for (const OperandDataVec &OpDataVec : OpsVec) { 1567 OS << "Operand " << Cnt++ << "\n"; 1568 for (const OperandData &OpData : OpDataVec) { 1569 OS.indent(Indent) << "{"; 1570 if (Value *V = OpData.V) 1571 OS << *V; 1572 else 1573 OS << "null"; 1574 OS << ", APO:" << OpData.APO << "}\n"; 1575 } 1576 OS << "\n"; 1577 } 1578 return OS; 1579 } 1580 1581 /// Debug print. 1582 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1583 #endif 1584 }; 1585 1586 /// Checks if the instruction is marked for deletion. 1587 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1588 1589 /// Marks values operands for later deletion by replacing them with Undefs. 1590 void eraseInstructions(ArrayRef<Value *> AV); 1591 1592 ~BoUpSLP(); 1593 1594 private: 1595 /// Checks if all users of \p I are the part of the vectorization tree. 1596 bool areAllUsersVectorized(Instruction *I, 1597 ArrayRef<Value *> VectorizedVals) const; 1598 1599 /// \returns the cost of the vectorizable entry. 1600 InstructionCost getEntryCost(const TreeEntry *E, 1601 ArrayRef<Value *> VectorizedVals); 1602 1603 /// This is the recursive part of buildTree. 1604 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1605 const EdgeInfo &EI); 1606 1607 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1608 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1609 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1610 /// returns false, setting \p CurrentOrder to either an empty vector or a 1611 /// non-identity permutation that allows to reuse extract instructions. 1612 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1613 SmallVectorImpl<unsigned> &CurrentOrder) const; 1614 1615 /// Vectorize a single entry in the tree. 1616 Value *vectorizeTree(TreeEntry *E); 1617 1618 /// Vectorize a single entry in the tree, starting in \p VL. 1619 Value *vectorizeTree(ArrayRef<Value *> VL); 1620 1621 /// \returns the scalarization cost for this type. Scalarization in this 1622 /// context means the creation of vectors from a group of scalars. If \p 1623 /// NeedToShuffle is true, need to add a cost of reshuffling some of the 1624 /// vector elements. 1625 InstructionCost getGatherCost(FixedVectorType *Ty, 1626 const DenseSet<unsigned> &ShuffledIndices, 1627 bool NeedToShuffle) const; 1628 1629 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 1630 /// tree entries. 1631 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 1632 /// previous tree entries. \p Mask is filled with the shuffle mask. 1633 Optional<TargetTransformInfo::ShuffleKind> 1634 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 1635 SmallVectorImpl<const TreeEntry *> &Entries); 1636 1637 /// \returns the scalarization cost for this list of values. Assuming that 1638 /// this subtree gets vectorized, we may need to extract the values from the 1639 /// roots. This method calculates the cost of extracting the values. 1640 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 1641 1642 /// Set the Builder insert point to one after the last instruction in 1643 /// the bundle 1644 void setInsertPointAfterBundle(const TreeEntry *E); 1645 1646 /// \returns a vector from a collection of scalars in \p VL. 1647 Value *gather(ArrayRef<Value *> VL); 1648 1649 /// \returns whether the VectorizableTree is fully vectorizable and will 1650 /// be beneficial even the tree height is tiny. 1651 bool isFullyVectorizableTinyTree(bool ForReduction) const; 1652 1653 /// Reorder commutative or alt operands to get better probability of 1654 /// generating vectorized code. 1655 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1656 SmallVectorImpl<Value *> &Left, 1657 SmallVectorImpl<Value *> &Right, 1658 const DataLayout &DL, 1659 ScalarEvolution &SE, 1660 const BoUpSLP &R); 1661 struct TreeEntry { 1662 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1663 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1664 1665 /// \returns true if the scalars in VL are equal to this entry. 1666 bool isSame(ArrayRef<Value *> VL) const { 1667 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 1668 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 1669 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1670 return VL.size() == Mask.size() && 1671 std::equal(VL.begin(), VL.end(), Mask.begin(), 1672 [Scalars](Value *V, int Idx) { 1673 return (isa<UndefValue>(V) && 1674 Idx == UndefMaskElem) || 1675 (Idx != UndefMaskElem && V == Scalars[Idx]); 1676 }); 1677 }; 1678 if (!ReorderIndices.empty()) { 1679 // TODO: implement matching if the nodes are just reordered, still can 1680 // treat the vector as the same if the list of scalars matches VL 1681 // directly, without reordering. 1682 SmallVector<int> Mask; 1683 inversePermutation(ReorderIndices, Mask); 1684 if (VL.size() == Scalars.size()) 1685 return IsSame(Scalars, Mask); 1686 if (VL.size() == ReuseShuffleIndices.size()) { 1687 ::addMask(Mask, ReuseShuffleIndices); 1688 return IsSame(Scalars, Mask); 1689 } 1690 return false; 1691 } 1692 return IsSame(Scalars, ReuseShuffleIndices); 1693 } 1694 1695 /// \returns true if current entry has same operands as \p TE. 1696 bool hasEqualOperands(const TreeEntry &TE) const { 1697 if (TE.getNumOperands() != getNumOperands()) 1698 return false; 1699 SmallBitVector Used(getNumOperands()); 1700 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 1701 unsigned PrevCount = Used.count(); 1702 for (unsigned K = 0; K < E; ++K) { 1703 if (Used.test(K)) 1704 continue; 1705 if (getOperand(K) == TE.getOperand(I)) { 1706 Used.set(K); 1707 break; 1708 } 1709 } 1710 // Check if we actually found the matching operand. 1711 if (PrevCount == Used.count()) 1712 return false; 1713 } 1714 return true; 1715 } 1716 1717 /// \return Final vectorization factor for the node. Defined by the total 1718 /// number of vectorized scalars, including those, used several times in the 1719 /// entry and counted in the \a ReuseShuffleIndices, if any. 1720 unsigned getVectorFactor() const { 1721 if (!ReuseShuffleIndices.empty()) 1722 return ReuseShuffleIndices.size(); 1723 return Scalars.size(); 1724 }; 1725 1726 /// A vector of scalars. 1727 ValueList Scalars; 1728 1729 /// The Scalars are vectorized into this value. It is initialized to Null. 1730 Value *VectorizedValue = nullptr; 1731 1732 /// Do we need to gather this sequence or vectorize it 1733 /// (either with vector instruction or with scatter/gather 1734 /// intrinsics for store/load)? 1735 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 1736 EntryState State; 1737 1738 /// Does this sequence require some shuffling? 1739 SmallVector<int, 4> ReuseShuffleIndices; 1740 1741 /// Does this entry require reordering? 1742 SmallVector<unsigned, 4> ReorderIndices; 1743 1744 /// Points back to the VectorizableTree. 1745 /// 1746 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1747 /// to be a pointer and needs to be able to initialize the child iterator. 1748 /// Thus we need a reference back to the container to translate the indices 1749 /// to entries. 1750 VecTreeTy &Container; 1751 1752 /// The TreeEntry index containing the user of this entry. We can actually 1753 /// have multiple users so the data structure is not truly a tree. 1754 SmallVector<EdgeInfo, 1> UserTreeIndices; 1755 1756 /// The index of this treeEntry in VectorizableTree. 1757 int Idx = -1; 1758 1759 private: 1760 /// The operands of each instruction in each lane Operands[op_index][lane]. 1761 /// Note: This helps avoid the replication of the code that performs the 1762 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1763 SmallVector<ValueList, 2> Operands; 1764 1765 /// The main/alternate instruction. 1766 Instruction *MainOp = nullptr; 1767 Instruction *AltOp = nullptr; 1768 1769 public: 1770 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1771 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1772 if (Operands.size() < OpIdx + 1) 1773 Operands.resize(OpIdx + 1); 1774 assert(Operands[OpIdx].empty() && "Already resized?"); 1775 Operands[OpIdx].resize(Scalars.size()); 1776 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1777 Operands[OpIdx][Lane] = OpVL[Lane]; 1778 } 1779 1780 /// Set the operands of this bundle in their original order. 1781 void setOperandsInOrder() { 1782 assert(Operands.empty() && "Already initialized?"); 1783 auto *I0 = cast<Instruction>(Scalars[0]); 1784 Operands.resize(I0->getNumOperands()); 1785 unsigned NumLanes = Scalars.size(); 1786 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1787 OpIdx != NumOperands; ++OpIdx) { 1788 Operands[OpIdx].resize(NumLanes); 1789 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1790 auto *I = cast<Instruction>(Scalars[Lane]); 1791 assert(I->getNumOperands() == NumOperands && 1792 "Expected same number of operands"); 1793 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1794 } 1795 } 1796 } 1797 1798 /// Reorders operands of the node to the given mask \p Mask. 1799 void reorderOperands(ArrayRef<int> Mask) { 1800 for (ValueList &Operand : Operands) 1801 reorderScalars(Operand, Mask); 1802 } 1803 1804 /// \returns the \p OpIdx operand of this TreeEntry. 1805 ValueList &getOperand(unsigned OpIdx) { 1806 assert(OpIdx < Operands.size() && "Off bounds"); 1807 return Operands[OpIdx]; 1808 } 1809 1810 /// \returns the \p OpIdx operand of this TreeEntry. 1811 ArrayRef<Value *> getOperand(unsigned OpIdx) const { 1812 assert(OpIdx < Operands.size() && "Off bounds"); 1813 return Operands[OpIdx]; 1814 } 1815 1816 /// \returns the number of operands. 1817 unsigned getNumOperands() const { return Operands.size(); } 1818 1819 /// \return the single \p OpIdx operand. 1820 Value *getSingleOperand(unsigned OpIdx) const { 1821 assert(OpIdx < Operands.size() && "Off bounds"); 1822 assert(!Operands[OpIdx].empty() && "No operand available"); 1823 return Operands[OpIdx][0]; 1824 } 1825 1826 /// Some of the instructions in the list have alternate opcodes. 1827 bool isAltShuffle() const { 1828 return getOpcode() != getAltOpcode(); 1829 } 1830 1831 bool isOpcodeOrAlt(Instruction *I) const { 1832 unsigned CheckedOpcode = I->getOpcode(); 1833 return (getOpcode() == CheckedOpcode || 1834 getAltOpcode() == CheckedOpcode); 1835 } 1836 1837 /// Chooses the correct key for scheduling data. If \p Op has the same (or 1838 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 1839 /// \p OpValue. 1840 Value *isOneOf(Value *Op) const { 1841 auto *I = dyn_cast<Instruction>(Op); 1842 if (I && isOpcodeOrAlt(I)) 1843 return Op; 1844 return MainOp; 1845 } 1846 1847 void setOperations(const InstructionsState &S) { 1848 MainOp = S.MainOp; 1849 AltOp = S.AltOp; 1850 } 1851 1852 Instruction *getMainOp() const { 1853 return MainOp; 1854 } 1855 1856 Instruction *getAltOp() const { 1857 return AltOp; 1858 } 1859 1860 /// The main/alternate opcodes for the list of instructions. 1861 unsigned getOpcode() const { 1862 return MainOp ? MainOp->getOpcode() : 0; 1863 } 1864 1865 unsigned getAltOpcode() const { 1866 return AltOp ? AltOp->getOpcode() : 0; 1867 } 1868 1869 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 1870 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 1871 int findLaneForValue(Value *V) const { 1872 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 1873 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 1874 if (!ReorderIndices.empty()) 1875 FoundLane = ReorderIndices[FoundLane]; 1876 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 1877 if (!ReuseShuffleIndices.empty()) { 1878 FoundLane = std::distance(ReuseShuffleIndices.begin(), 1879 find(ReuseShuffleIndices, FoundLane)); 1880 } 1881 return FoundLane; 1882 } 1883 1884 #ifndef NDEBUG 1885 /// Debug printer. 1886 LLVM_DUMP_METHOD void dump() const { 1887 dbgs() << Idx << ".\n"; 1888 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1889 dbgs() << "Operand " << OpI << ":\n"; 1890 for (const Value *V : Operands[OpI]) 1891 dbgs().indent(2) << *V << "\n"; 1892 } 1893 dbgs() << "Scalars: \n"; 1894 for (Value *V : Scalars) 1895 dbgs().indent(2) << *V << "\n"; 1896 dbgs() << "State: "; 1897 switch (State) { 1898 case Vectorize: 1899 dbgs() << "Vectorize\n"; 1900 break; 1901 case ScatterVectorize: 1902 dbgs() << "ScatterVectorize\n"; 1903 break; 1904 case NeedToGather: 1905 dbgs() << "NeedToGather\n"; 1906 break; 1907 } 1908 dbgs() << "MainOp: "; 1909 if (MainOp) 1910 dbgs() << *MainOp << "\n"; 1911 else 1912 dbgs() << "NULL\n"; 1913 dbgs() << "AltOp: "; 1914 if (AltOp) 1915 dbgs() << *AltOp << "\n"; 1916 else 1917 dbgs() << "NULL\n"; 1918 dbgs() << "VectorizedValue: "; 1919 if (VectorizedValue) 1920 dbgs() << *VectorizedValue << "\n"; 1921 else 1922 dbgs() << "NULL\n"; 1923 dbgs() << "ReuseShuffleIndices: "; 1924 if (ReuseShuffleIndices.empty()) 1925 dbgs() << "Empty"; 1926 else 1927 for (unsigned ReuseIdx : ReuseShuffleIndices) 1928 dbgs() << ReuseIdx << ", "; 1929 dbgs() << "\n"; 1930 dbgs() << "ReorderIndices: "; 1931 for (unsigned ReorderIdx : ReorderIndices) 1932 dbgs() << ReorderIdx << ", "; 1933 dbgs() << "\n"; 1934 dbgs() << "UserTreeIndices: "; 1935 for (const auto &EInfo : UserTreeIndices) 1936 dbgs() << EInfo << ", "; 1937 dbgs() << "\n"; 1938 } 1939 #endif 1940 }; 1941 1942 #ifndef NDEBUG 1943 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 1944 InstructionCost VecCost, 1945 InstructionCost ScalarCost) const { 1946 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 1947 dbgs() << "SLP: Costs:\n"; 1948 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 1949 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 1950 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 1951 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 1952 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 1953 } 1954 #endif 1955 1956 /// Create a new VectorizableTree entry. 1957 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 1958 const InstructionsState &S, 1959 const EdgeInfo &UserTreeIdx, 1960 ArrayRef<int> ReuseShuffleIndices = None, 1961 ArrayRef<unsigned> ReorderIndices = None) { 1962 TreeEntry::EntryState EntryState = 1963 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 1964 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 1965 ReuseShuffleIndices, ReorderIndices); 1966 } 1967 1968 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 1969 TreeEntry::EntryState EntryState, 1970 Optional<ScheduleData *> Bundle, 1971 const InstructionsState &S, 1972 const EdgeInfo &UserTreeIdx, 1973 ArrayRef<int> ReuseShuffleIndices = None, 1974 ArrayRef<unsigned> ReorderIndices = None) { 1975 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 1976 (Bundle && EntryState != TreeEntry::NeedToGather)) && 1977 "Need to vectorize gather entry?"); 1978 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 1979 TreeEntry *Last = VectorizableTree.back().get(); 1980 Last->Idx = VectorizableTree.size() - 1; 1981 Last->State = EntryState; 1982 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1983 ReuseShuffleIndices.end()); 1984 if (ReorderIndices.empty()) { 1985 Last->Scalars.assign(VL.begin(), VL.end()); 1986 Last->setOperations(S); 1987 } else { 1988 // Reorder scalars and build final mask. 1989 Last->Scalars.assign(VL.size(), nullptr); 1990 transform(ReorderIndices, Last->Scalars.begin(), 1991 [VL](unsigned Idx) -> Value * { 1992 if (Idx >= VL.size()) 1993 return UndefValue::get(VL.front()->getType()); 1994 return VL[Idx]; 1995 }); 1996 InstructionsState S = getSameOpcode(Last->Scalars); 1997 Last->setOperations(S); 1998 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 1999 } 2000 if (Last->State != TreeEntry::NeedToGather) { 2001 for (Value *V : VL) { 2002 assert(!getTreeEntry(V) && "Scalar already in tree!"); 2003 ScalarToTreeEntry[V] = Last; 2004 } 2005 // Update the scheduler bundle to point to this TreeEntry. 2006 unsigned Lane = 0; 2007 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 2008 BundleMember = BundleMember->NextInBundle) { 2009 BundleMember->TE = Last; 2010 BundleMember->Lane = Lane; 2011 ++Lane; 2012 } 2013 assert((!Bundle.getValue() || Lane == VL.size()) && 2014 "Bundle and VL out of sync"); 2015 } else { 2016 MustGather.insert(VL.begin(), VL.end()); 2017 } 2018 2019 if (UserTreeIdx.UserTE) 2020 Last->UserTreeIndices.push_back(UserTreeIdx); 2021 2022 return Last; 2023 } 2024 2025 /// -- Vectorization State -- 2026 /// Holds all of the tree entries. 2027 TreeEntry::VecTreeTy VectorizableTree; 2028 2029 #ifndef NDEBUG 2030 /// Debug printer. 2031 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 2032 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 2033 VectorizableTree[Id]->dump(); 2034 dbgs() << "\n"; 2035 } 2036 } 2037 #endif 2038 2039 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 2040 2041 const TreeEntry *getTreeEntry(Value *V) const { 2042 return ScalarToTreeEntry.lookup(V); 2043 } 2044 2045 /// Maps a specific scalar to its tree entry. 2046 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 2047 2048 /// Maps a value to the proposed vectorizable size. 2049 SmallDenseMap<Value *, unsigned> InstrElementSize; 2050 2051 /// A list of scalars that we found that we need to keep as scalars. 2052 ValueSet MustGather; 2053 2054 /// This POD struct describes one external user in the vectorized tree. 2055 struct ExternalUser { 2056 ExternalUser(Value *S, llvm::User *U, int L) 2057 : Scalar(S), User(U), Lane(L) {} 2058 2059 // Which scalar in our function. 2060 Value *Scalar; 2061 2062 // Which user that uses the scalar. 2063 llvm::User *User; 2064 2065 // Which lane does the scalar belong to. 2066 int Lane; 2067 }; 2068 using UserList = SmallVector<ExternalUser, 16>; 2069 2070 /// Checks if two instructions may access the same memory. 2071 /// 2072 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2073 /// is invariant in the calling loop. 2074 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2075 Instruction *Inst2) { 2076 // First check if the result is already in the cache. 2077 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2078 Optional<bool> &result = AliasCache[key]; 2079 if (result.hasValue()) { 2080 return result.getValue(); 2081 } 2082 bool aliased = true; 2083 if (Loc1.Ptr && isSimple(Inst1)) 2084 aliased = isModOrRefSet(AA->getModRefInfo(Inst2, Loc1)); 2085 // Store the result in the cache. 2086 result = aliased; 2087 return aliased; 2088 } 2089 2090 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2091 2092 /// Cache for alias results. 2093 /// TODO: consider moving this to the AliasAnalysis itself. 2094 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2095 2096 /// Removes an instruction from its block and eventually deletes it. 2097 /// It's like Instruction::eraseFromParent() except that the actual deletion 2098 /// is delayed until BoUpSLP is destructed. 2099 /// This is required to ensure that there are no incorrect collisions in the 2100 /// AliasCache, which can happen if a new instruction is allocated at the 2101 /// same address as a previously deleted instruction. 2102 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 2103 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 2104 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 2105 } 2106 2107 /// Temporary store for deleted instructions. Instructions will be deleted 2108 /// eventually when the BoUpSLP is destructed. 2109 DenseMap<Instruction *, bool> DeletedInstructions; 2110 2111 /// A list of values that need to extracted out of the tree. 2112 /// This list holds pairs of (Internal Scalar : External User). External User 2113 /// can be nullptr, it means that this Internal Scalar will be used later, 2114 /// after vectorization. 2115 UserList ExternalUses; 2116 2117 /// Values used only by @llvm.assume calls. 2118 SmallPtrSet<const Value *, 32> EphValues; 2119 2120 /// Holds all of the instructions that we gathered. 2121 SetVector<Instruction *> GatherShuffleSeq; 2122 2123 /// A list of blocks that we are going to CSE. 2124 SetVector<BasicBlock *> CSEBlocks; 2125 2126 /// Contains all scheduling relevant data for an instruction. 2127 /// A ScheduleData either represents a single instruction or a member of an 2128 /// instruction bundle (= a group of instructions which is combined into a 2129 /// vector instruction). 2130 struct ScheduleData { 2131 // The initial value for the dependency counters. It means that the 2132 // dependencies are not calculated yet. 2133 enum { InvalidDeps = -1 }; 2134 2135 ScheduleData() = default; 2136 2137 void init(int BlockSchedulingRegionID, Value *OpVal) { 2138 FirstInBundle = this; 2139 NextInBundle = nullptr; 2140 NextLoadStore = nullptr; 2141 IsScheduled = false; 2142 SchedulingRegionID = BlockSchedulingRegionID; 2143 UnscheduledDepsInBundle = UnscheduledDeps; 2144 clearDependencies(); 2145 OpValue = OpVal; 2146 TE = nullptr; 2147 Lane = -1; 2148 } 2149 2150 /// Returns true if the dependency information has been calculated. 2151 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2152 2153 /// Returns true for single instructions and for bundle representatives 2154 /// (= the head of a bundle). 2155 bool isSchedulingEntity() const { return FirstInBundle == this; } 2156 2157 /// Returns true if it represents an instruction bundle and not only a 2158 /// single instruction. 2159 bool isPartOfBundle() const { 2160 return NextInBundle != nullptr || FirstInBundle != this; 2161 } 2162 2163 /// Returns true if it is ready for scheduling, i.e. it has no more 2164 /// unscheduled depending instructions/bundles. 2165 bool isReady() const { 2166 assert(isSchedulingEntity() && 2167 "can't consider non-scheduling entity for ready list"); 2168 return UnscheduledDepsInBundle == 0 && !IsScheduled; 2169 } 2170 2171 /// Modifies the number of unscheduled dependencies, also updating it for 2172 /// the whole bundle. 2173 int incrementUnscheduledDeps(int Incr) { 2174 UnscheduledDeps += Incr; 2175 return FirstInBundle->UnscheduledDepsInBundle += Incr; 2176 } 2177 2178 /// Sets the number of unscheduled dependencies to the number of 2179 /// dependencies. 2180 void resetUnscheduledDeps() { 2181 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 2182 } 2183 2184 /// Clears all dependency information. 2185 void clearDependencies() { 2186 Dependencies = InvalidDeps; 2187 resetUnscheduledDeps(); 2188 MemoryDependencies.clear(); 2189 } 2190 2191 void dump(raw_ostream &os) const { 2192 if (!isSchedulingEntity()) { 2193 os << "/ " << *Inst; 2194 } else if (NextInBundle) { 2195 os << '[' << *Inst; 2196 ScheduleData *SD = NextInBundle; 2197 while (SD) { 2198 os << ';' << *SD->Inst; 2199 SD = SD->NextInBundle; 2200 } 2201 os << ']'; 2202 } else { 2203 os << *Inst; 2204 } 2205 } 2206 2207 Instruction *Inst = nullptr; 2208 2209 /// Points to the head in an instruction bundle (and always to this for 2210 /// single instructions). 2211 ScheduleData *FirstInBundle = nullptr; 2212 2213 /// Single linked list of all instructions in a bundle. Null if it is a 2214 /// single instruction. 2215 ScheduleData *NextInBundle = nullptr; 2216 2217 /// Single linked list of all memory instructions (e.g. load, store, call) 2218 /// in the block - until the end of the scheduling region. 2219 ScheduleData *NextLoadStore = nullptr; 2220 2221 /// The dependent memory instructions. 2222 /// This list is derived on demand in calculateDependencies(). 2223 SmallVector<ScheduleData *, 4> MemoryDependencies; 2224 2225 /// This ScheduleData is in the current scheduling region if this matches 2226 /// the current SchedulingRegionID of BlockScheduling. 2227 int SchedulingRegionID = 0; 2228 2229 /// Used for getting a "good" final ordering of instructions. 2230 int SchedulingPriority = 0; 2231 2232 /// The number of dependencies. Constitutes of the number of users of the 2233 /// instruction plus the number of dependent memory instructions (if any). 2234 /// This value is calculated on demand. 2235 /// If InvalidDeps, the number of dependencies is not calculated yet. 2236 int Dependencies = InvalidDeps; 2237 2238 /// The number of dependencies minus the number of dependencies of scheduled 2239 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2240 /// for scheduling. 2241 /// Note that this is negative as long as Dependencies is not calculated. 2242 int UnscheduledDeps = InvalidDeps; 2243 2244 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 2245 /// single instructions. 2246 int UnscheduledDepsInBundle = InvalidDeps; 2247 2248 /// True if this instruction is scheduled (or considered as scheduled in the 2249 /// dry-run). 2250 bool IsScheduled = false; 2251 2252 /// Opcode of the current instruction in the schedule data. 2253 Value *OpValue = nullptr; 2254 2255 /// The TreeEntry that this instruction corresponds to. 2256 TreeEntry *TE = nullptr; 2257 2258 /// The lane of this node in the TreeEntry. 2259 int Lane = -1; 2260 }; 2261 2262 #ifndef NDEBUG 2263 friend inline raw_ostream &operator<<(raw_ostream &os, 2264 const BoUpSLP::ScheduleData &SD) { 2265 SD.dump(os); 2266 return os; 2267 } 2268 #endif 2269 2270 friend struct GraphTraits<BoUpSLP *>; 2271 friend struct DOTGraphTraits<BoUpSLP *>; 2272 2273 /// Contains all scheduling data for a basic block. 2274 struct BlockScheduling { 2275 BlockScheduling(BasicBlock *BB) 2276 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2277 2278 void clear() { 2279 ReadyInsts.clear(); 2280 ScheduleStart = nullptr; 2281 ScheduleEnd = nullptr; 2282 FirstLoadStoreInRegion = nullptr; 2283 LastLoadStoreInRegion = nullptr; 2284 2285 // Reduce the maximum schedule region size by the size of the 2286 // previous scheduling run. 2287 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2288 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2289 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2290 ScheduleRegionSize = 0; 2291 2292 // Make a new scheduling region, i.e. all existing ScheduleData is not 2293 // in the new region yet. 2294 ++SchedulingRegionID; 2295 } 2296 2297 ScheduleData *getScheduleData(Value *V) { 2298 ScheduleData *SD = ScheduleDataMap[V]; 2299 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2300 return SD; 2301 return nullptr; 2302 } 2303 2304 ScheduleData *getScheduleData(Value *V, Value *Key) { 2305 if (V == Key) 2306 return getScheduleData(V); 2307 auto I = ExtraScheduleDataMap.find(V); 2308 if (I != ExtraScheduleDataMap.end()) { 2309 ScheduleData *SD = I->second[Key]; 2310 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2311 return SD; 2312 } 2313 return nullptr; 2314 } 2315 2316 bool isInSchedulingRegion(ScheduleData *SD) const { 2317 return SD->SchedulingRegionID == SchedulingRegionID; 2318 } 2319 2320 /// Marks an instruction as scheduled and puts all dependent ready 2321 /// instructions into the ready-list. 2322 template <typename ReadyListType> 2323 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2324 SD->IsScheduled = true; 2325 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2326 2327 ScheduleData *BundleMember = SD; 2328 while (BundleMember) { 2329 if (BundleMember->Inst != BundleMember->OpValue) { 2330 BundleMember = BundleMember->NextInBundle; 2331 continue; 2332 } 2333 // Handle the def-use chain dependencies. 2334 2335 // Decrement the unscheduled counter and insert to ready list if ready. 2336 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2337 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2338 if (OpDef && OpDef->hasValidDependencies() && 2339 OpDef->incrementUnscheduledDeps(-1) == 0) { 2340 // There are no more unscheduled dependencies after 2341 // decrementing, so we can put the dependent instruction 2342 // into the ready list. 2343 ScheduleData *DepBundle = OpDef->FirstInBundle; 2344 assert(!DepBundle->IsScheduled && 2345 "already scheduled bundle gets ready"); 2346 ReadyList.insert(DepBundle); 2347 LLVM_DEBUG(dbgs() 2348 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2349 } 2350 }); 2351 }; 2352 2353 // If BundleMember is a vector bundle, its operands may have been 2354 // reordered duiring buildTree(). We therefore need to get its operands 2355 // through the TreeEntry. 2356 if (TreeEntry *TE = BundleMember->TE) { 2357 int Lane = BundleMember->Lane; 2358 assert(Lane >= 0 && "Lane not set"); 2359 2360 // Since vectorization tree is being built recursively this assertion 2361 // ensures that the tree entry has all operands set before reaching 2362 // this code. Couple of exceptions known at the moment are extracts 2363 // where their second (immediate) operand is not added. Since 2364 // immediates do not affect scheduler behavior this is considered 2365 // okay. 2366 auto *In = TE->getMainOp(); 2367 assert(In && 2368 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2369 In->getNumOperands() == TE->getNumOperands()) && 2370 "Missed TreeEntry operands?"); 2371 (void)In; // fake use to avoid build failure when assertions disabled 2372 2373 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2374 OpIdx != NumOperands; ++OpIdx) 2375 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2376 DecrUnsched(I); 2377 } else { 2378 // If BundleMember is a stand-alone instruction, no operand reordering 2379 // has taken place, so we directly access its operands. 2380 for (Use &U : BundleMember->Inst->operands()) 2381 if (auto *I = dyn_cast<Instruction>(U.get())) 2382 DecrUnsched(I); 2383 } 2384 // Handle the memory dependencies. 2385 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2386 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2387 // There are no more unscheduled dependencies after decrementing, 2388 // so we can put the dependent instruction into the ready list. 2389 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2390 assert(!DepBundle->IsScheduled && 2391 "already scheduled bundle gets ready"); 2392 ReadyList.insert(DepBundle); 2393 LLVM_DEBUG(dbgs() 2394 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2395 } 2396 } 2397 BundleMember = BundleMember->NextInBundle; 2398 } 2399 } 2400 2401 void doForAllOpcodes(Value *V, 2402 function_ref<void(ScheduleData *SD)> Action) { 2403 if (ScheduleData *SD = getScheduleData(V)) 2404 Action(SD); 2405 auto I = ExtraScheduleDataMap.find(V); 2406 if (I != ExtraScheduleDataMap.end()) 2407 for (auto &P : I->second) 2408 if (P.second->SchedulingRegionID == SchedulingRegionID) 2409 Action(P.second); 2410 } 2411 2412 /// Put all instructions into the ReadyList which are ready for scheduling. 2413 template <typename ReadyListType> 2414 void initialFillReadyList(ReadyListType &ReadyList) { 2415 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2416 doForAllOpcodes(I, [&](ScheduleData *SD) { 2417 if (SD->isSchedulingEntity() && SD->isReady()) { 2418 ReadyList.insert(SD); 2419 LLVM_DEBUG(dbgs() 2420 << "SLP: initially in ready list: " << *I << "\n"); 2421 } 2422 }); 2423 } 2424 } 2425 2426 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2427 /// cyclic dependencies. This is only a dry-run, no instructions are 2428 /// actually moved at this stage. 2429 /// \returns the scheduling bundle. The returned Optional value is non-None 2430 /// if \p VL is allowed to be scheduled. 2431 Optional<ScheduleData *> 2432 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2433 const InstructionsState &S); 2434 2435 /// Un-bundles a group of instructions. 2436 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2437 2438 /// Allocates schedule data chunk. 2439 ScheduleData *allocateScheduleDataChunks(); 2440 2441 /// Extends the scheduling region so that V is inside the region. 2442 /// \returns true if the region size is within the limit. 2443 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2444 2445 /// Initialize the ScheduleData structures for new instructions in the 2446 /// scheduling region. 2447 void initScheduleData(Instruction *FromI, Instruction *ToI, 2448 ScheduleData *PrevLoadStore, 2449 ScheduleData *NextLoadStore); 2450 2451 /// Updates the dependency information of a bundle and of all instructions/ 2452 /// bundles which depend on the original bundle. 2453 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2454 BoUpSLP *SLP); 2455 2456 /// Sets all instruction in the scheduling region to un-scheduled. 2457 void resetSchedule(); 2458 2459 BasicBlock *BB; 2460 2461 /// Simple memory allocation for ScheduleData. 2462 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2463 2464 /// The size of a ScheduleData array in ScheduleDataChunks. 2465 int ChunkSize; 2466 2467 /// The allocator position in the current chunk, which is the last entry 2468 /// of ScheduleDataChunks. 2469 int ChunkPos; 2470 2471 /// Attaches ScheduleData to Instruction. 2472 /// Note that the mapping survives during all vectorization iterations, i.e. 2473 /// ScheduleData structures are recycled. 2474 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2475 2476 /// Attaches ScheduleData to Instruction with the leading key. 2477 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2478 ExtraScheduleDataMap; 2479 2480 struct ReadyList : SmallVector<ScheduleData *, 8> { 2481 void insert(ScheduleData *SD) { push_back(SD); } 2482 }; 2483 2484 /// The ready-list for scheduling (only used for the dry-run). 2485 ReadyList ReadyInsts; 2486 2487 /// The first instruction of the scheduling region. 2488 Instruction *ScheduleStart = nullptr; 2489 2490 /// The first instruction _after_ the scheduling region. 2491 Instruction *ScheduleEnd = nullptr; 2492 2493 /// The first memory accessing instruction in the scheduling region 2494 /// (can be null). 2495 ScheduleData *FirstLoadStoreInRegion = nullptr; 2496 2497 /// The last memory accessing instruction in the scheduling region 2498 /// (can be null). 2499 ScheduleData *LastLoadStoreInRegion = nullptr; 2500 2501 /// The current size of the scheduling region. 2502 int ScheduleRegionSize = 0; 2503 2504 /// The maximum size allowed for the scheduling region. 2505 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2506 2507 /// The ID of the scheduling region. For a new vectorization iteration this 2508 /// is incremented which "removes" all ScheduleData from the region. 2509 // Make sure that the initial SchedulingRegionID is greater than the 2510 // initial SchedulingRegionID in ScheduleData (which is 0). 2511 int SchedulingRegionID = 1; 2512 }; 2513 2514 /// Attaches the BlockScheduling structures to basic blocks. 2515 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2516 2517 /// Performs the "real" scheduling. Done before vectorization is actually 2518 /// performed in a basic block. 2519 void scheduleBlock(BlockScheduling *BS); 2520 2521 /// List of users to ignore during scheduling and that don't need extracting. 2522 ArrayRef<Value *> UserIgnoreList; 2523 2524 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2525 /// sorted SmallVectors of unsigned. 2526 struct OrdersTypeDenseMapInfo { 2527 static OrdersType getEmptyKey() { 2528 OrdersType V; 2529 V.push_back(~1U); 2530 return V; 2531 } 2532 2533 static OrdersType getTombstoneKey() { 2534 OrdersType V; 2535 V.push_back(~2U); 2536 return V; 2537 } 2538 2539 static unsigned getHashValue(const OrdersType &V) { 2540 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2541 } 2542 2543 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2544 return LHS == RHS; 2545 } 2546 }; 2547 2548 // Analysis and block reference. 2549 Function *F; 2550 ScalarEvolution *SE; 2551 TargetTransformInfo *TTI; 2552 TargetLibraryInfo *TLI; 2553 AAResults *AA; 2554 LoopInfo *LI; 2555 DominatorTree *DT; 2556 AssumptionCache *AC; 2557 DemandedBits *DB; 2558 const DataLayout *DL; 2559 OptimizationRemarkEmitter *ORE; 2560 2561 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2562 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2563 2564 /// Instruction builder to construct the vectorized tree. 2565 IRBuilder<> Builder; 2566 2567 /// A map of scalar integer values to the smallest bit width with which they 2568 /// can legally be represented. The values map to (width, signed) pairs, 2569 /// where "width" indicates the minimum bit width and "signed" is True if the 2570 /// value must be signed-extended, rather than zero-extended, back to its 2571 /// original width. 2572 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2573 }; 2574 2575 } // end namespace slpvectorizer 2576 2577 template <> struct GraphTraits<BoUpSLP *> { 2578 using TreeEntry = BoUpSLP::TreeEntry; 2579 2580 /// NodeRef has to be a pointer per the GraphWriter. 2581 using NodeRef = TreeEntry *; 2582 2583 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2584 2585 /// Add the VectorizableTree to the index iterator to be able to return 2586 /// TreeEntry pointers. 2587 struct ChildIteratorType 2588 : public iterator_adaptor_base< 2589 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2590 ContainerTy &VectorizableTree; 2591 2592 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2593 ContainerTy &VT) 2594 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2595 2596 NodeRef operator*() { return I->UserTE; } 2597 }; 2598 2599 static NodeRef getEntryNode(BoUpSLP &R) { 2600 return R.VectorizableTree[0].get(); 2601 } 2602 2603 static ChildIteratorType child_begin(NodeRef N) { 2604 return {N->UserTreeIndices.begin(), N->Container}; 2605 } 2606 2607 static ChildIteratorType child_end(NodeRef N) { 2608 return {N->UserTreeIndices.end(), N->Container}; 2609 } 2610 2611 /// For the node iterator we just need to turn the TreeEntry iterator into a 2612 /// TreeEntry* iterator so that it dereferences to NodeRef. 2613 class nodes_iterator { 2614 using ItTy = ContainerTy::iterator; 2615 ItTy It; 2616 2617 public: 2618 nodes_iterator(const ItTy &It2) : It(It2) {} 2619 NodeRef operator*() { return It->get(); } 2620 nodes_iterator operator++() { 2621 ++It; 2622 return *this; 2623 } 2624 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2625 }; 2626 2627 static nodes_iterator nodes_begin(BoUpSLP *R) { 2628 return nodes_iterator(R->VectorizableTree.begin()); 2629 } 2630 2631 static nodes_iterator nodes_end(BoUpSLP *R) { 2632 return nodes_iterator(R->VectorizableTree.end()); 2633 } 2634 2635 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2636 }; 2637 2638 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2639 using TreeEntry = BoUpSLP::TreeEntry; 2640 2641 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2642 2643 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2644 std::string Str; 2645 raw_string_ostream OS(Str); 2646 if (isSplat(Entry->Scalars)) 2647 OS << "<splat> "; 2648 for (auto V : Entry->Scalars) { 2649 OS << *V; 2650 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 2651 return EU.Scalar == V; 2652 })) 2653 OS << " <extract>"; 2654 OS << "\n"; 2655 } 2656 return Str; 2657 } 2658 2659 static std::string getNodeAttributes(const TreeEntry *Entry, 2660 const BoUpSLP *) { 2661 if (Entry->State == TreeEntry::NeedToGather) 2662 return "color=red"; 2663 return ""; 2664 } 2665 }; 2666 2667 } // end namespace llvm 2668 2669 BoUpSLP::~BoUpSLP() { 2670 for (const auto &Pair : DeletedInstructions) { 2671 // Replace operands of ignored instructions with Undefs in case if they were 2672 // marked for deletion. 2673 if (Pair.getSecond()) { 2674 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2675 Pair.getFirst()->replaceAllUsesWith(Undef); 2676 } 2677 Pair.getFirst()->dropAllReferences(); 2678 } 2679 for (const auto &Pair : DeletedInstructions) { 2680 assert(Pair.getFirst()->use_empty() && 2681 "trying to erase instruction with users."); 2682 Pair.getFirst()->eraseFromParent(); 2683 } 2684 #ifdef EXPENSIVE_CHECKS 2685 // If we could guarantee that this call is not extremely slow, we could 2686 // remove the ifdef limitation (see PR47712). 2687 assert(!verifyFunction(*F, &dbgs())); 2688 #endif 2689 } 2690 2691 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2692 for (auto *V : AV) { 2693 if (auto *I = dyn_cast<Instruction>(V)) 2694 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 2695 }; 2696 } 2697 2698 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 2699 /// contains original mask for the scalars reused in the node. Procedure 2700 /// transform this mask in accordance with the given \p Mask. 2701 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 2702 assert(!Mask.empty() && Reuses.size() == Mask.size() && 2703 "Expected non-empty mask."); 2704 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 2705 Prev.swap(Reuses); 2706 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 2707 if (Mask[I] != UndefMaskElem) 2708 Reuses[Mask[I]] = Prev[I]; 2709 } 2710 2711 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 2712 /// the original order of the scalars. Procedure transforms the provided order 2713 /// in accordance with the given \p Mask. If the resulting \p Order is just an 2714 /// identity order, \p Order is cleared. 2715 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 2716 assert(!Mask.empty() && "Expected non-empty mask."); 2717 SmallVector<int> MaskOrder; 2718 if (Order.empty()) { 2719 MaskOrder.resize(Mask.size()); 2720 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 2721 } else { 2722 inversePermutation(Order, MaskOrder); 2723 } 2724 reorderReuses(MaskOrder, Mask); 2725 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 2726 Order.clear(); 2727 return; 2728 } 2729 Order.assign(Mask.size(), Mask.size()); 2730 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 2731 if (MaskOrder[I] != UndefMaskElem) 2732 Order[MaskOrder[I]] = I; 2733 fixupOrderingIndices(Order); 2734 } 2735 2736 Optional<BoUpSLP::OrdersType> 2737 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { 2738 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 2739 unsigned NumScalars = TE.Scalars.size(); 2740 OrdersType CurrentOrder(NumScalars, NumScalars); 2741 SmallVector<int> Positions; 2742 SmallBitVector UsedPositions(NumScalars); 2743 const TreeEntry *STE = nullptr; 2744 // Try to find all gathered scalars that are gets vectorized in other 2745 // vectorize node. Here we can have only one single tree vector node to 2746 // correctly identify order of the gathered scalars. 2747 for (unsigned I = 0; I < NumScalars; ++I) { 2748 Value *V = TE.Scalars[I]; 2749 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) 2750 continue; 2751 if (const auto *LocalSTE = getTreeEntry(V)) { 2752 if (!STE) 2753 STE = LocalSTE; 2754 else if (STE != LocalSTE) 2755 // Take the order only from the single vector node. 2756 return None; 2757 unsigned Lane = 2758 std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); 2759 if (Lane >= NumScalars) 2760 return None; 2761 if (CurrentOrder[Lane] != NumScalars) { 2762 if (Lane != I) 2763 continue; 2764 UsedPositions.reset(CurrentOrder[Lane]); 2765 } 2766 // The partial identity (where only some elements of the gather node are 2767 // in the identity order) is good. 2768 CurrentOrder[Lane] = I; 2769 UsedPositions.set(I); 2770 } 2771 } 2772 // Need to keep the order if we have a vector entry and at least 2 scalars or 2773 // the vectorized entry has just 2 scalars. 2774 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { 2775 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { 2776 for (unsigned I = 0; I < NumScalars; ++I) 2777 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) 2778 return false; 2779 return true; 2780 }; 2781 if (IsIdentityOrder(CurrentOrder)) { 2782 CurrentOrder.clear(); 2783 return CurrentOrder; 2784 } 2785 auto *It = CurrentOrder.begin(); 2786 for (unsigned I = 0; I < NumScalars;) { 2787 if (UsedPositions.test(I)) { 2788 ++I; 2789 continue; 2790 } 2791 if (*It == NumScalars) { 2792 *It = I; 2793 ++I; 2794 } 2795 ++It; 2796 } 2797 return CurrentOrder; 2798 } 2799 return None; 2800 } 2801 2802 void BoUpSLP::reorderTopToBottom() { 2803 // Maps VF to the graph nodes. 2804 DenseMap<unsigned, SmallPtrSet<TreeEntry *, 4>> VFToOrderedEntries; 2805 // ExtractElement gather nodes which can be vectorized and need to handle 2806 // their ordering. 2807 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 2808 // Find all reorderable nodes with the given VF. 2809 // Currently the are vectorized loads,extracts + some gathering of extracts. 2810 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders]( 2811 const std::unique_ptr<TreeEntry> &TE) { 2812 // No need to reorder if need to shuffle reuses, still need to shuffle the 2813 // node. 2814 if (!TE->ReuseShuffleIndices.empty()) 2815 return; 2816 if (TE->State == TreeEntry::Vectorize && 2817 isa<LoadInst, ExtractElementInst, ExtractValueInst, StoreInst, 2818 InsertElementInst>(TE->getMainOp()) && 2819 !TE->isAltShuffle()) { 2820 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 2821 return; 2822 } 2823 if (TE->State == TreeEntry::NeedToGather) { 2824 if (TE->getOpcode() == Instruction::ExtractElement && 2825 !TE->isAltShuffle() && 2826 isa<FixedVectorType>(cast<ExtractElementInst>(TE->getMainOp()) 2827 ->getVectorOperandType()) && 2828 allSameType(TE->Scalars) && allSameBlock(TE->Scalars)) { 2829 // Check that gather of extractelements can be represented as 2830 // just a shuffle of a single vector. 2831 OrdersType CurrentOrder; 2832 bool Reuse = 2833 canReuseExtract(TE->Scalars, TE->getMainOp(), CurrentOrder); 2834 if (Reuse || !CurrentOrder.empty()) { 2835 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 2836 GathersToOrders.try_emplace(TE.get(), CurrentOrder); 2837 return; 2838 } 2839 } 2840 if (Optional<OrdersType> CurrentOrder = 2841 findReusedOrderedScalars(*TE.get())) { 2842 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 2843 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 2844 } 2845 } 2846 }); 2847 2848 // Reorder the graph nodes according to their vectorization factor. 2849 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 2850 VF /= 2) { 2851 auto It = VFToOrderedEntries.find(VF); 2852 if (It == VFToOrderedEntries.end()) 2853 continue; 2854 // Try to find the most profitable order. We just are looking for the most 2855 // used order and reorder scalar elements in the nodes according to this 2856 // mostly used order. 2857 const SmallPtrSetImpl<TreeEntry *> &OrderedEntries = It->getSecond(); 2858 // All operands are reordered and used only in this node - propagate the 2859 // most used order to the user node. 2860 MapVector<OrdersType, unsigned, 2861 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 2862 OrdersUses; 2863 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 2864 for (const TreeEntry *OpTE : OrderedEntries) { 2865 // No need to reorder this nodes, still need to extend and to use shuffle, 2866 // just need to merge reordering shuffle and the reuse shuffle. 2867 if (!OpTE->ReuseShuffleIndices.empty()) 2868 continue; 2869 // Count number of orders uses. 2870 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 2871 if (OpTE->State == TreeEntry::NeedToGather) 2872 return GathersToOrders.find(OpTE)->second; 2873 return OpTE->ReorderIndices; 2874 }(); 2875 // Stores actually store the mask, not the order, need to invert. 2876 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 2877 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 2878 SmallVector<int> Mask; 2879 inversePermutation(Order, Mask); 2880 unsigned E = Order.size(); 2881 OrdersType CurrentOrder(E, E); 2882 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 2883 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 2884 }); 2885 fixupOrderingIndices(CurrentOrder); 2886 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 2887 } else { 2888 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 2889 } 2890 } 2891 // Set order of the user node. 2892 if (OrdersUses.empty()) 2893 continue; 2894 // Choose the most used order. 2895 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 2896 unsigned Cnt = OrdersUses.front().second; 2897 for (const auto &Pair : drop_begin(OrdersUses)) { 2898 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 2899 BestOrder = Pair.first; 2900 Cnt = Pair.second; 2901 } 2902 } 2903 // Set order of the user node. 2904 if (BestOrder.empty()) 2905 continue; 2906 SmallVector<int> Mask; 2907 inversePermutation(BestOrder, Mask); 2908 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 2909 unsigned E = BestOrder.size(); 2910 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 2911 return I < E ? static_cast<int>(I) : UndefMaskElem; 2912 }); 2913 // Do an actual reordering, if profitable. 2914 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 2915 // Just do the reordering for the nodes with the given VF. 2916 if (TE->Scalars.size() != VF) { 2917 if (TE->ReuseShuffleIndices.size() == VF) { 2918 // Need to reorder the reuses masks of the operands with smaller VF to 2919 // be able to find the match between the graph nodes and scalar 2920 // operands of the given node during vectorization/cost estimation. 2921 assert(all_of(TE->UserTreeIndices, 2922 [VF, &TE](const EdgeInfo &EI) { 2923 return EI.UserTE->Scalars.size() == VF || 2924 EI.UserTE->Scalars.size() == 2925 TE->Scalars.size(); 2926 }) && 2927 "All users must be of VF size."); 2928 // Update ordering of the operands with the smaller VF than the given 2929 // one. 2930 reorderReuses(TE->ReuseShuffleIndices, Mask); 2931 } 2932 continue; 2933 } 2934 if (TE->State == TreeEntry::Vectorize && 2935 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 2936 InsertElementInst>(TE->getMainOp()) && 2937 !TE->isAltShuffle()) { 2938 // Build correct orders for extract{element,value}, loads and 2939 // stores. 2940 reorderOrder(TE->ReorderIndices, Mask); 2941 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 2942 TE->reorderOperands(Mask); 2943 } else { 2944 // Reorder the node and its operands. 2945 TE->reorderOperands(Mask); 2946 assert(TE->ReorderIndices.empty() && 2947 "Expected empty reorder sequence."); 2948 reorderScalars(TE->Scalars, Mask); 2949 } 2950 if (!TE->ReuseShuffleIndices.empty()) { 2951 // Apply reversed order to keep the original ordering of the reused 2952 // elements to avoid extra reorder indices shuffling. 2953 OrdersType CurrentOrder; 2954 reorderOrder(CurrentOrder, MaskOrder); 2955 SmallVector<int> NewReuses; 2956 inversePermutation(CurrentOrder, NewReuses); 2957 addMask(NewReuses, TE->ReuseShuffleIndices); 2958 TE->ReuseShuffleIndices.swap(NewReuses); 2959 } 2960 } 2961 } 2962 } 2963 2964 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { 2965 SetVector<TreeEntry *> OrderedEntries; 2966 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 2967 // Find all reorderable leaf nodes with the given VF. 2968 // Currently the are vectorized loads,extracts without alternate operands + 2969 // some gathering of extracts. 2970 SmallVector<TreeEntry *> NonVectorized; 2971 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 2972 &NonVectorized]( 2973 const std::unique_ptr<TreeEntry> &TE) { 2974 if (TE->State != TreeEntry::Vectorize) 2975 NonVectorized.push_back(TE.get()); 2976 // No need to reorder if need to shuffle reuses, still need to shuffle the 2977 // node. 2978 if (!TE->ReuseShuffleIndices.empty()) 2979 return; 2980 if (TE->State == TreeEntry::Vectorize && 2981 isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE->getMainOp()) && 2982 !TE->isAltShuffle()) { 2983 OrderedEntries.insert(TE.get()); 2984 return; 2985 } 2986 if (TE->State == TreeEntry::NeedToGather) { 2987 if (TE->getOpcode() == Instruction::ExtractElement && 2988 !TE->isAltShuffle() && 2989 isa<FixedVectorType>(cast<ExtractElementInst>(TE->getMainOp()) 2990 ->getVectorOperandType()) && 2991 allSameType(TE->Scalars) && allSameBlock(TE->Scalars)) { 2992 // Check that gather of extractelements can be represented as 2993 // just a shuffle of a single vector with a single user only. 2994 OrdersType CurrentOrder; 2995 bool Reuse = 2996 canReuseExtract(TE->Scalars, TE->getMainOp(), CurrentOrder); 2997 if ((Reuse || !CurrentOrder.empty()) && 2998 !any_of(VectorizableTree, 2999 [&TE](const std::unique_ptr<TreeEntry> &Entry) { 3000 return Entry->State == TreeEntry::NeedToGather && 3001 Entry.get() != TE.get() && 3002 Entry->isSame(TE->Scalars); 3003 })) { 3004 OrderedEntries.insert(TE.get()); 3005 GathersToOrders.try_emplace(TE.get(), CurrentOrder); 3006 return; 3007 } 3008 } 3009 if (Optional<OrdersType> CurrentOrder = 3010 findReusedOrderedScalars(*TE.get())) { 3011 OrderedEntries.insert(TE.get()); 3012 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3013 } 3014 } 3015 }); 3016 3017 // Checks if the operands of the users are reordarable and have only single 3018 // use. 3019 auto &&CheckOperands = 3020 [this, &NonVectorized](const auto &Data, 3021 SmallVectorImpl<TreeEntry *> &GatherOps) { 3022 for (unsigned I = 0, E = Data.first->getNumOperands(); I < E; ++I) { 3023 if (any_of(Data.second, 3024 [I](const std::pair<unsigned, TreeEntry *> &OpData) { 3025 return OpData.first == I && 3026 OpData.second->State == TreeEntry::Vectorize; 3027 })) 3028 continue; 3029 ArrayRef<Value *> VL = Data.first->getOperand(I); 3030 const TreeEntry *TE = nullptr; 3031 const auto *It = find_if(VL, [this, &TE](Value *V) { 3032 TE = getTreeEntry(V); 3033 return TE; 3034 }); 3035 if (It != VL.end() && TE->isSame(VL)) 3036 return false; 3037 TreeEntry *Gather = nullptr; 3038 if (count_if(NonVectorized, [VL, &Gather](TreeEntry *TE) { 3039 assert(TE->State != TreeEntry::Vectorize && 3040 "Only non-vectorized nodes are expected."); 3041 if (TE->isSame(VL)) { 3042 Gather = TE; 3043 return true; 3044 } 3045 return false; 3046 }) > 1) 3047 return false; 3048 if (Gather) 3049 GatherOps.push_back(Gather); 3050 } 3051 return true; 3052 }; 3053 // 1. Propagate order to the graph nodes, which use only reordered nodes. 3054 // I.e., if the node has operands, that are reordered, try to make at least 3055 // one operand order in the natural order and reorder others + reorder the 3056 // user node itself. 3057 SmallPtrSet<const TreeEntry *, 4> Visited; 3058 while (!OrderedEntries.empty()) { 3059 // 1. Filter out only reordered nodes. 3060 // 2. If the entry has multiple uses - skip it and jump to the next node. 3061 MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 3062 SmallVector<TreeEntry *> Filtered; 3063 for (TreeEntry *TE : OrderedEntries) { 3064 if (!(TE->State == TreeEntry::Vectorize || 3065 (TE->State == TreeEntry::NeedToGather && 3066 GathersToOrders.count(TE))) || 3067 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3068 !all_of(drop_begin(TE->UserTreeIndices), 3069 [TE](const EdgeInfo &EI) { 3070 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 3071 }) || 3072 !Visited.insert(TE).second) { 3073 Filtered.push_back(TE); 3074 continue; 3075 } 3076 // Build a map between user nodes and their operands order to speedup 3077 // search. The graph currently does not provide this dependency directly. 3078 for (EdgeInfo &EI : TE->UserTreeIndices) { 3079 TreeEntry *UserTE = EI.UserTE; 3080 auto It = Users.find(UserTE); 3081 if (It == Users.end()) 3082 It = Users.insert({UserTE, {}}).first; 3083 It->second.emplace_back(EI.EdgeIdx, TE); 3084 } 3085 } 3086 // Erase filtered entries. 3087 for_each(Filtered, 3088 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 3089 for (const auto &Data : Users) { 3090 // Check that operands are used only in the User node. 3091 SmallVector<TreeEntry *> GatherOps; 3092 if (!CheckOperands(Data, GatherOps)) { 3093 for_each(Data.second, 3094 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3095 OrderedEntries.remove(Op.second); 3096 }); 3097 continue; 3098 } 3099 // All operands are reordered and used only in this node - propagate the 3100 // most used order to the user node. 3101 MapVector<OrdersType, unsigned, 3102 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3103 OrdersUses; 3104 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3105 for (const auto &Op : Data.second) { 3106 TreeEntry *OpTE = Op.second; 3107 if (!OpTE->ReuseShuffleIndices.empty() || 3108 (IgnoreReorder && OpTE == VectorizableTree.front().get())) 3109 continue; 3110 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3111 if (OpTE->State == TreeEntry::NeedToGather) 3112 return GathersToOrders.find(OpTE)->second; 3113 return OpTE->ReorderIndices; 3114 }(); 3115 // Stores actually store the mask, not the order, need to invert. 3116 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3117 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3118 SmallVector<int> Mask; 3119 inversePermutation(Order, Mask); 3120 unsigned E = Order.size(); 3121 OrdersType CurrentOrder(E, E); 3122 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3123 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3124 }); 3125 fixupOrderingIndices(CurrentOrder); 3126 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3127 } else { 3128 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3129 } 3130 if (VisitedOps.insert(OpTE).second) 3131 OrdersUses.insert(std::make_pair(OrdersType(), 0)).first->second += 3132 OpTE->UserTreeIndices.size(); 3133 assert(OrdersUses[{}] > 0 && "Counter cannot be less than 0."); 3134 --OrdersUses[{}]; 3135 } 3136 // If no orders - skip current nodes and jump to the next one, if any. 3137 if (OrdersUses.empty()) { 3138 for_each(Data.second, 3139 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3140 OrderedEntries.remove(Op.second); 3141 }); 3142 continue; 3143 } 3144 // Choose the best order. 3145 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3146 unsigned Cnt = OrdersUses.front().second; 3147 for (const auto &Pair : drop_begin(OrdersUses)) { 3148 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3149 BestOrder = Pair.first; 3150 Cnt = Pair.second; 3151 } 3152 } 3153 // Set order of the user node (reordering of operands and user nodes). 3154 if (BestOrder.empty()) { 3155 for_each(Data.second, 3156 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3157 OrderedEntries.remove(Op.second); 3158 }); 3159 continue; 3160 } 3161 // Erase operands from OrderedEntries list and adjust their orders. 3162 VisitedOps.clear(); 3163 SmallVector<int> Mask; 3164 inversePermutation(BestOrder, Mask); 3165 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3166 unsigned E = BestOrder.size(); 3167 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3168 return I < E ? static_cast<int>(I) : UndefMaskElem; 3169 }); 3170 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 3171 TreeEntry *TE = Op.second; 3172 OrderedEntries.remove(TE); 3173 if (!VisitedOps.insert(TE).second) 3174 continue; 3175 if (!TE->ReuseShuffleIndices.empty() && TE->ReorderIndices.empty()) { 3176 // Just reorder reuses indices. 3177 reorderReuses(TE->ReuseShuffleIndices, Mask); 3178 continue; 3179 } 3180 // Gathers are processed separately. 3181 if (TE->State != TreeEntry::Vectorize) 3182 continue; 3183 assert((BestOrder.size() == TE->ReorderIndices.size() || 3184 TE->ReorderIndices.empty()) && 3185 "Non-matching sizes of user/operand entries."); 3186 reorderOrder(TE->ReorderIndices, Mask); 3187 } 3188 // For gathers just need to reorder its scalars. 3189 for (TreeEntry *Gather : GatherOps) { 3190 assert(Gather->ReorderIndices.empty() && 3191 "Unexpected reordering of gathers."); 3192 if (!Gather->ReuseShuffleIndices.empty()) { 3193 // Just reorder reuses indices. 3194 reorderReuses(Gather->ReuseShuffleIndices, Mask); 3195 continue; 3196 } 3197 reorderScalars(Gather->Scalars, Mask); 3198 OrderedEntries.remove(Gather); 3199 } 3200 // Reorder operands of the user node and set the ordering for the user 3201 // node itself. 3202 if (Data.first->State != TreeEntry::Vectorize || 3203 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 3204 Data.first->getMainOp()) || 3205 Data.first->isAltShuffle()) 3206 Data.first->reorderOperands(Mask); 3207 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 3208 Data.first->isAltShuffle()) { 3209 reorderScalars(Data.first->Scalars, Mask); 3210 reorderOrder(Data.first->ReorderIndices, MaskOrder); 3211 if (Data.first->ReuseShuffleIndices.empty() && 3212 !Data.first->ReorderIndices.empty() && 3213 !Data.first->isAltShuffle()) { 3214 // Insert user node to the list to try to sink reordering deeper in 3215 // the graph. 3216 OrderedEntries.insert(Data.first); 3217 } 3218 } else { 3219 reorderOrder(Data.first->ReorderIndices, Mask); 3220 } 3221 } 3222 } 3223 // If the reordering is unnecessary, just remove the reorder. 3224 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && 3225 VectorizableTree.front()->ReuseShuffleIndices.empty()) 3226 VectorizableTree.front()->ReorderIndices.clear(); 3227 } 3228 3229 void BoUpSLP::buildExternalUses( 3230 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3231 // Collect the values that we need to extract from the tree. 3232 for (auto &TEPtr : VectorizableTree) { 3233 TreeEntry *Entry = TEPtr.get(); 3234 3235 // No need to handle users of gathered values. 3236 if (Entry->State == TreeEntry::NeedToGather) 3237 continue; 3238 3239 // For each lane: 3240 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3241 Value *Scalar = Entry->Scalars[Lane]; 3242 int FoundLane = Entry->findLaneForValue(Scalar); 3243 3244 // Check if the scalar is externally used as an extra arg. 3245 auto ExtI = ExternallyUsedValues.find(Scalar); 3246 if (ExtI != ExternallyUsedValues.end()) { 3247 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 3248 << Lane << " from " << *Scalar << ".\n"); 3249 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 3250 } 3251 for (User *U : Scalar->users()) { 3252 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 3253 3254 Instruction *UserInst = dyn_cast<Instruction>(U); 3255 if (!UserInst) 3256 continue; 3257 3258 if (isDeleted(UserInst)) 3259 continue; 3260 3261 // Skip in-tree scalars that become vectors 3262 if (TreeEntry *UseEntry = getTreeEntry(U)) { 3263 Value *UseScalar = UseEntry->Scalars[0]; 3264 // Some in-tree scalars will remain as scalar in vectorized 3265 // instructions. If that is the case, the one in Lane 0 will 3266 // be used. 3267 if (UseScalar != U || 3268 UseEntry->State == TreeEntry::ScatterVectorize || 3269 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 3270 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 3271 << ".\n"); 3272 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 3273 continue; 3274 } 3275 } 3276 3277 // Ignore users in the user ignore list. 3278 if (is_contained(UserIgnoreList, UserInst)) 3279 continue; 3280 3281 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 3282 << Lane << " from " << *Scalar << ".\n"); 3283 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 3284 } 3285 } 3286 } 3287 } 3288 3289 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 3290 ArrayRef<Value *> UserIgnoreLst) { 3291 deleteTree(); 3292 UserIgnoreList = UserIgnoreLst; 3293 if (!allSameType(Roots)) 3294 return; 3295 buildTree_rec(Roots, 0, EdgeInfo()); 3296 } 3297 3298 namespace { 3299 /// Tracks the state we can represent the loads in the given sequence. 3300 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 3301 } // anonymous namespace 3302 3303 /// Checks if the given array of loads can be represented as a vectorized, 3304 /// scatter or just simple gather. 3305 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 3306 const TargetTransformInfo &TTI, 3307 const DataLayout &DL, ScalarEvolution &SE, 3308 SmallVectorImpl<unsigned> &Order, 3309 SmallVectorImpl<Value *> &PointerOps) { 3310 // Check that a vectorized load would load the same memory as a scalar 3311 // load. For example, we don't want to vectorize loads that are smaller 3312 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3313 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3314 // from such a struct, we read/write packed bits disagreeing with the 3315 // unvectorized version. 3316 Type *ScalarTy = VL0->getType(); 3317 3318 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 3319 return LoadsState::Gather; 3320 3321 // Make sure all loads in the bundle are simple - we can't vectorize 3322 // atomic or volatile loads. 3323 PointerOps.clear(); 3324 PointerOps.resize(VL.size()); 3325 auto *POIter = PointerOps.begin(); 3326 for (Value *V : VL) { 3327 auto *L = cast<LoadInst>(V); 3328 if (!L->isSimple()) 3329 return LoadsState::Gather; 3330 *POIter = L->getPointerOperand(); 3331 ++POIter; 3332 } 3333 3334 Order.clear(); 3335 // Check the order of pointer operands. 3336 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 3337 Value *Ptr0; 3338 Value *PtrN; 3339 if (Order.empty()) { 3340 Ptr0 = PointerOps.front(); 3341 PtrN = PointerOps.back(); 3342 } else { 3343 Ptr0 = PointerOps[Order.front()]; 3344 PtrN = PointerOps[Order.back()]; 3345 } 3346 Optional<int> Diff = 3347 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 3348 // Check that the sorted loads are consecutive. 3349 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 3350 return LoadsState::Vectorize; 3351 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 3352 for (Value *V : VL) 3353 CommonAlignment = 3354 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 3355 if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()), 3356 CommonAlignment)) 3357 return LoadsState::ScatterVectorize; 3358 } 3359 3360 return LoadsState::Gather; 3361 } 3362 3363 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 3364 const EdgeInfo &UserTreeIdx) { 3365 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 3366 3367 SmallVector<int> ReuseShuffleIndicies; 3368 SmallVector<Value *> UniqueValues; 3369 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, 3370 &UserTreeIdx, 3371 this](const InstructionsState &S) { 3372 // Check that every instruction appears once in this bundle. 3373 DenseMap<Value *, unsigned> UniquePositions; 3374 for (Value *V : VL) { 3375 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3376 ReuseShuffleIndicies.emplace_back(isa<UndefValue>(V) ? -1 3377 : Res.first->second); 3378 if (Res.second) 3379 UniqueValues.emplace_back(V); 3380 } 3381 size_t NumUniqueScalarValues = UniqueValues.size(); 3382 if (NumUniqueScalarValues == VL.size()) { 3383 ReuseShuffleIndicies.clear(); 3384 } else { 3385 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 3386 if (NumUniqueScalarValues <= 1 || 3387 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 3388 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 3389 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3390 return false; 3391 } 3392 VL = UniqueValues; 3393 } 3394 return true; 3395 }; 3396 3397 InstructionsState S = getSameOpcode(VL); 3398 if (Depth == RecursionMaxDepth) { 3399 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 3400 if (TryToFindDuplicates(S)) 3401 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3402 ReuseShuffleIndicies); 3403 return; 3404 } 3405 3406 // Don't handle scalable vectors 3407 if (S.getOpcode() == Instruction::ExtractElement && 3408 isa<ScalableVectorType>( 3409 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 3410 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 3411 if (TryToFindDuplicates(S)) 3412 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3413 ReuseShuffleIndicies); 3414 return; 3415 } 3416 3417 // Don't handle vectors. 3418 if (S.OpValue->getType()->isVectorTy() && 3419 !isa<InsertElementInst>(S.OpValue)) { 3420 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 3421 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3422 return; 3423 } 3424 3425 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 3426 if (SI->getValueOperand()->getType()->isVectorTy()) { 3427 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 3428 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3429 return; 3430 } 3431 3432 // If all of the operands are identical or constant we have a simple solution. 3433 // If we deal with insert/extract instructions, they all must have constant 3434 // indices, otherwise we should gather them, not try to vectorize. 3435 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() || 3436 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) && 3437 !all_of(VL, isVectorLikeInstWithConstOps))) { 3438 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 3439 if (TryToFindDuplicates(S)) 3440 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3441 ReuseShuffleIndicies); 3442 return; 3443 } 3444 3445 // We now know that this is a vector of instructions of the same type from 3446 // the same block. 3447 3448 // Don't vectorize ephemeral values. 3449 for (Value *V : VL) { 3450 if (EphValues.count(V)) { 3451 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3452 << ") is ephemeral.\n"); 3453 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3454 return; 3455 } 3456 } 3457 3458 // Check if this is a duplicate of another entry. 3459 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 3460 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 3461 if (!E->isSame(VL)) { 3462 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 3463 if (TryToFindDuplicates(S)) 3464 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3465 ReuseShuffleIndicies); 3466 return; 3467 } 3468 // Record the reuse of the tree node. FIXME, currently this is only used to 3469 // properly draw the graph rather than for the actual vectorization. 3470 E->UserTreeIndices.push_back(UserTreeIdx); 3471 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 3472 << ".\n"); 3473 return; 3474 } 3475 3476 // Check that none of the instructions in the bundle are already in the tree. 3477 for (Value *V : VL) { 3478 auto *I = dyn_cast<Instruction>(V); 3479 if (!I) 3480 continue; 3481 if (getTreeEntry(I)) { 3482 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3483 << ") is already in tree.\n"); 3484 if (TryToFindDuplicates(S)) 3485 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3486 ReuseShuffleIndicies); 3487 return; 3488 } 3489 } 3490 3491 // If any of the scalars is marked as a value that needs to stay scalar, then 3492 // we need to gather the scalars. 3493 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 3494 for (Value *V : VL) { 3495 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) { 3496 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 3497 if (TryToFindDuplicates(S)) 3498 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3499 ReuseShuffleIndicies); 3500 return; 3501 } 3502 } 3503 3504 // Check that all of the users of the scalars that we want to vectorize are 3505 // schedulable. 3506 auto *VL0 = cast<Instruction>(S.OpValue); 3507 BasicBlock *BB = VL0->getParent(); 3508 3509 if (!DT->isReachableFromEntry(BB)) { 3510 // Don't go into unreachable blocks. They may contain instructions with 3511 // dependency cycles which confuse the final scheduling. 3512 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 3513 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3514 return; 3515 } 3516 3517 // Check that every instruction appears once in this bundle. 3518 if (!TryToFindDuplicates(S)) 3519 return; 3520 3521 auto &BSRef = BlocksSchedules[BB]; 3522 if (!BSRef) 3523 BSRef = std::make_unique<BlockScheduling>(BB); 3524 3525 BlockScheduling &BS = *BSRef.get(); 3526 3527 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 3528 if (!Bundle) { 3529 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 3530 assert((!BS.getScheduleData(VL0) || 3531 !BS.getScheduleData(VL0)->isPartOfBundle()) && 3532 "tryScheduleBundle should cancelScheduling on failure"); 3533 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3534 ReuseShuffleIndicies); 3535 return; 3536 } 3537 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 3538 3539 unsigned ShuffleOrOp = S.isAltShuffle() ? 3540 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 3541 switch (ShuffleOrOp) { 3542 case Instruction::PHI: { 3543 auto *PH = cast<PHINode>(VL0); 3544 3545 // Check for terminator values (e.g. invoke). 3546 for (Value *V : VL) 3547 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 3548 Instruction *Term = dyn_cast<Instruction>( 3549 cast<PHINode>(V)->getIncomingValueForBlock( 3550 PH->getIncomingBlock(I))); 3551 if (Term && Term->isTerminator()) { 3552 LLVM_DEBUG(dbgs() 3553 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 3554 BS.cancelScheduling(VL, VL0); 3555 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3556 ReuseShuffleIndicies); 3557 return; 3558 } 3559 } 3560 3561 TreeEntry *TE = 3562 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 3563 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 3564 3565 // Keeps the reordered operands to avoid code duplication. 3566 SmallVector<ValueList, 2> OperandsVec; 3567 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 3568 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 3569 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 3570 TE->setOperand(I, Operands); 3571 OperandsVec.push_back(Operands); 3572 continue; 3573 } 3574 ValueList Operands; 3575 // Prepare the operand vector. 3576 for (Value *V : VL) 3577 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 3578 PH->getIncomingBlock(I))); 3579 TE->setOperand(I, Operands); 3580 OperandsVec.push_back(Operands); 3581 } 3582 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 3583 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 3584 return; 3585 } 3586 case Instruction::ExtractValue: 3587 case Instruction::ExtractElement: { 3588 OrdersType CurrentOrder; 3589 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 3590 if (Reuse) { 3591 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 3592 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3593 ReuseShuffleIndicies); 3594 // This is a special case, as it does not gather, but at the same time 3595 // we are not extending buildTree_rec() towards the operands. 3596 ValueList Op0; 3597 Op0.assign(VL.size(), VL0->getOperand(0)); 3598 VectorizableTree.back()->setOperand(0, Op0); 3599 return; 3600 } 3601 if (!CurrentOrder.empty()) { 3602 LLVM_DEBUG({ 3603 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 3604 "with order"; 3605 for (unsigned Idx : CurrentOrder) 3606 dbgs() << " " << Idx; 3607 dbgs() << "\n"; 3608 }); 3609 fixupOrderingIndices(CurrentOrder); 3610 // Insert new order with initial value 0, if it does not exist, 3611 // otherwise return the iterator to the existing one. 3612 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3613 ReuseShuffleIndicies, CurrentOrder); 3614 // This is a special case, as it does not gather, but at the same time 3615 // we are not extending buildTree_rec() towards the operands. 3616 ValueList Op0; 3617 Op0.assign(VL.size(), VL0->getOperand(0)); 3618 VectorizableTree.back()->setOperand(0, Op0); 3619 return; 3620 } 3621 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 3622 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3623 ReuseShuffleIndicies); 3624 BS.cancelScheduling(VL, VL0); 3625 return; 3626 } 3627 case Instruction::InsertElement: { 3628 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 3629 3630 // Check that we have a buildvector and not a shuffle of 2 or more 3631 // different vectors. 3632 ValueSet SourceVectors; 3633 int MinIdx = std::numeric_limits<int>::max(); 3634 for (Value *V : VL) { 3635 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 3636 Optional<int> Idx = *getInsertIndex(V, 0); 3637 if (!Idx || *Idx == UndefMaskElem) 3638 continue; 3639 MinIdx = std::min(MinIdx, *Idx); 3640 } 3641 3642 if (count_if(VL, [&SourceVectors](Value *V) { 3643 return !SourceVectors.contains(V); 3644 }) >= 2) { 3645 // Found 2nd source vector - cancel. 3646 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 3647 "different source vectors.\n"); 3648 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3649 BS.cancelScheduling(VL, VL0); 3650 return; 3651 } 3652 3653 auto OrdCompare = [](const std::pair<int, int> &P1, 3654 const std::pair<int, int> &P2) { 3655 return P1.first > P2.first; 3656 }; 3657 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 3658 decltype(OrdCompare)> 3659 Indices(OrdCompare); 3660 for (int I = 0, E = VL.size(); I < E; ++I) { 3661 Optional<int> Idx = *getInsertIndex(VL[I], 0); 3662 if (!Idx || *Idx == UndefMaskElem) 3663 continue; 3664 Indices.emplace(*Idx, I); 3665 } 3666 OrdersType CurrentOrder(VL.size(), VL.size()); 3667 bool IsIdentity = true; 3668 for (int I = 0, E = VL.size(); I < E; ++I) { 3669 CurrentOrder[Indices.top().second] = I; 3670 IsIdentity &= Indices.top().second == I; 3671 Indices.pop(); 3672 } 3673 if (IsIdentity) 3674 CurrentOrder.clear(); 3675 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3676 None, CurrentOrder); 3677 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 3678 3679 constexpr int NumOps = 2; 3680 ValueList VectorOperands[NumOps]; 3681 for (int I = 0; I < NumOps; ++I) { 3682 for (Value *V : VL) 3683 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 3684 3685 TE->setOperand(I, VectorOperands[I]); 3686 } 3687 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 3688 return; 3689 } 3690 case Instruction::Load: { 3691 // Check that a vectorized load would load the same memory as a scalar 3692 // load. For example, we don't want to vectorize loads that are smaller 3693 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3694 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3695 // from such a struct, we read/write packed bits disagreeing with the 3696 // unvectorized version. 3697 SmallVector<Value *> PointerOps; 3698 OrdersType CurrentOrder; 3699 TreeEntry *TE = nullptr; 3700 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 3701 PointerOps)) { 3702 case LoadsState::Vectorize: 3703 if (CurrentOrder.empty()) { 3704 // Original loads are consecutive and does not require reordering. 3705 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3706 ReuseShuffleIndicies); 3707 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 3708 } else { 3709 fixupOrderingIndices(CurrentOrder); 3710 // Need to reorder. 3711 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3712 ReuseShuffleIndicies, CurrentOrder); 3713 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 3714 } 3715 TE->setOperandsInOrder(); 3716 break; 3717 case LoadsState::ScatterVectorize: 3718 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 3719 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 3720 UserTreeIdx, ReuseShuffleIndicies); 3721 TE->setOperandsInOrder(); 3722 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 3723 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 3724 break; 3725 case LoadsState::Gather: 3726 BS.cancelScheduling(VL, VL0); 3727 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3728 ReuseShuffleIndicies); 3729 #ifndef NDEBUG 3730 Type *ScalarTy = VL0->getType(); 3731 if (DL->getTypeSizeInBits(ScalarTy) != 3732 DL->getTypeAllocSizeInBits(ScalarTy)) 3733 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 3734 else if (any_of(VL, [](Value *V) { 3735 return !cast<LoadInst>(V)->isSimple(); 3736 })) 3737 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 3738 else 3739 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 3740 #endif // NDEBUG 3741 break; 3742 } 3743 return; 3744 } 3745 case Instruction::ZExt: 3746 case Instruction::SExt: 3747 case Instruction::FPToUI: 3748 case Instruction::FPToSI: 3749 case Instruction::FPExt: 3750 case Instruction::PtrToInt: 3751 case Instruction::IntToPtr: 3752 case Instruction::SIToFP: 3753 case Instruction::UIToFP: 3754 case Instruction::Trunc: 3755 case Instruction::FPTrunc: 3756 case Instruction::BitCast: { 3757 Type *SrcTy = VL0->getOperand(0)->getType(); 3758 for (Value *V : VL) { 3759 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 3760 if (Ty != SrcTy || !isValidElementType(Ty)) { 3761 BS.cancelScheduling(VL, VL0); 3762 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3763 ReuseShuffleIndicies); 3764 LLVM_DEBUG(dbgs() 3765 << "SLP: Gathering casts with different src types.\n"); 3766 return; 3767 } 3768 } 3769 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3770 ReuseShuffleIndicies); 3771 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 3772 3773 TE->setOperandsInOrder(); 3774 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3775 ValueList Operands; 3776 // Prepare the operand vector. 3777 for (Value *V : VL) 3778 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3779 3780 buildTree_rec(Operands, Depth + 1, {TE, i}); 3781 } 3782 return; 3783 } 3784 case Instruction::ICmp: 3785 case Instruction::FCmp: { 3786 // Check that all of the compares have the same predicate. 3787 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 3788 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 3789 Type *ComparedTy = VL0->getOperand(0)->getType(); 3790 for (Value *V : VL) { 3791 CmpInst *Cmp = cast<CmpInst>(V); 3792 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 3793 Cmp->getOperand(0)->getType() != ComparedTy) { 3794 BS.cancelScheduling(VL, VL0); 3795 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3796 ReuseShuffleIndicies); 3797 LLVM_DEBUG(dbgs() 3798 << "SLP: Gathering cmp with different predicate.\n"); 3799 return; 3800 } 3801 } 3802 3803 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3804 ReuseShuffleIndicies); 3805 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 3806 3807 ValueList Left, Right; 3808 if (cast<CmpInst>(VL0)->isCommutative()) { 3809 // Commutative predicate - collect + sort operands of the instructions 3810 // so that each side is more likely to have the same opcode. 3811 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 3812 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3813 } else { 3814 // Collect operands - commute if it uses the swapped predicate. 3815 for (Value *V : VL) { 3816 auto *Cmp = cast<CmpInst>(V); 3817 Value *LHS = Cmp->getOperand(0); 3818 Value *RHS = Cmp->getOperand(1); 3819 if (Cmp->getPredicate() != P0) 3820 std::swap(LHS, RHS); 3821 Left.push_back(LHS); 3822 Right.push_back(RHS); 3823 } 3824 } 3825 TE->setOperand(0, Left); 3826 TE->setOperand(1, Right); 3827 buildTree_rec(Left, Depth + 1, {TE, 0}); 3828 buildTree_rec(Right, Depth + 1, {TE, 1}); 3829 return; 3830 } 3831 case Instruction::Select: 3832 case Instruction::FNeg: 3833 case Instruction::Add: 3834 case Instruction::FAdd: 3835 case Instruction::Sub: 3836 case Instruction::FSub: 3837 case Instruction::Mul: 3838 case Instruction::FMul: 3839 case Instruction::UDiv: 3840 case Instruction::SDiv: 3841 case Instruction::FDiv: 3842 case Instruction::URem: 3843 case Instruction::SRem: 3844 case Instruction::FRem: 3845 case Instruction::Shl: 3846 case Instruction::LShr: 3847 case Instruction::AShr: 3848 case Instruction::And: 3849 case Instruction::Or: 3850 case Instruction::Xor: { 3851 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3852 ReuseShuffleIndicies); 3853 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 3854 3855 // Sort operands of the instructions so that each side is more likely to 3856 // have the same opcode. 3857 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 3858 ValueList Left, Right; 3859 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3860 TE->setOperand(0, Left); 3861 TE->setOperand(1, Right); 3862 buildTree_rec(Left, Depth + 1, {TE, 0}); 3863 buildTree_rec(Right, Depth + 1, {TE, 1}); 3864 return; 3865 } 3866 3867 TE->setOperandsInOrder(); 3868 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3869 ValueList Operands; 3870 // Prepare the operand vector. 3871 for (Value *V : VL) 3872 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3873 3874 buildTree_rec(Operands, Depth + 1, {TE, i}); 3875 } 3876 return; 3877 } 3878 case Instruction::GetElementPtr: { 3879 // We don't combine GEPs with complicated (nested) indexing. 3880 for (Value *V : VL) { 3881 if (cast<Instruction>(V)->getNumOperands() != 2) { 3882 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 3883 BS.cancelScheduling(VL, VL0); 3884 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3885 ReuseShuffleIndicies); 3886 return; 3887 } 3888 } 3889 3890 // We can't combine several GEPs into one vector if they operate on 3891 // different types. 3892 Type *Ty0 = VL0->getOperand(0)->getType(); 3893 for (Value *V : VL) { 3894 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 3895 if (Ty0 != CurTy) { 3896 LLVM_DEBUG(dbgs() 3897 << "SLP: not-vectorizable GEP (different types).\n"); 3898 BS.cancelScheduling(VL, VL0); 3899 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3900 ReuseShuffleIndicies); 3901 return; 3902 } 3903 } 3904 3905 // We don't combine GEPs with non-constant indexes. 3906 Type *Ty1 = VL0->getOperand(1)->getType(); 3907 for (Value *V : VL) { 3908 auto Op = cast<Instruction>(V)->getOperand(1); 3909 if (!isa<ConstantInt>(Op) || 3910 (Op->getType() != Ty1 && 3911 Op->getType()->getScalarSizeInBits() > 3912 DL->getIndexSizeInBits( 3913 V->getType()->getPointerAddressSpace()))) { 3914 LLVM_DEBUG(dbgs() 3915 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 3916 BS.cancelScheduling(VL, VL0); 3917 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3918 ReuseShuffleIndicies); 3919 return; 3920 } 3921 } 3922 3923 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3924 ReuseShuffleIndicies); 3925 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 3926 SmallVector<ValueList, 2> Operands(2); 3927 // Prepare the operand vector for pointer operands. 3928 for (Value *V : VL) 3929 Operands.front().push_back( 3930 cast<GetElementPtrInst>(V)->getPointerOperand()); 3931 TE->setOperand(0, Operands.front()); 3932 // Need to cast all indices to the same type before vectorization to 3933 // avoid crash. 3934 // Required to be able to find correct matches between different gather 3935 // nodes and reuse the vectorized values rather than trying to gather them 3936 // again. 3937 int IndexIdx = 1; 3938 Type *VL0Ty = VL0->getOperand(IndexIdx)->getType(); 3939 Type *Ty = all_of(VL, 3940 [VL0Ty, IndexIdx](Value *V) { 3941 return VL0Ty == cast<GetElementPtrInst>(V) 3942 ->getOperand(IndexIdx) 3943 ->getType(); 3944 }) 3945 ? VL0Ty 3946 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 3947 ->getPointerOperandType() 3948 ->getScalarType()); 3949 // Prepare the operand vector. 3950 for (Value *V : VL) { 3951 auto *Op = cast<Instruction>(V)->getOperand(IndexIdx); 3952 auto *CI = cast<ConstantInt>(Op); 3953 Operands.back().push_back(ConstantExpr::getIntegerCast( 3954 CI, Ty, CI->getValue().isSignBitSet())); 3955 } 3956 TE->setOperand(IndexIdx, Operands.back()); 3957 3958 for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I) 3959 buildTree_rec(Operands[I], Depth + 1, {TE, I}); 3960 return; 3961 } 3962 case Instruction::Store: { 3963 // Check if the stores are consecutive or if we need to swizzle them. 3964 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 3965 // Avoid types that are padded when being allocated as scalars, while 3966 // being packed together in a vector (such as i1). 3967 if (DL->getTypeSizeInBits(ScalarTy) != 3968 DL->getTypeAllocSizeInBits(ScalarTy)) { 3969 BS.cancelScheduling(VL, VL0); 3970 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3971 ReuseShuffleIndicies); 3972 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 3973 return; 3974 } 3975 // Make sure all stores in the bundle are simple - we can't vectorize 3976 // atomic or volatile stores. 3977 SmallVector<Value *, 4> PointerOps(VL.size()); 3978 ValueList Operands(VL.size()); 3979 auto POIter = PointerOps.begin(); 3980 auto OIter = Operands.begin(); 3981 for (Value *V : VL) { 3982 auto *SI = cast<StoreInst>(V); 3983 if (!SI->isSimple()) { 3984 BS.cancelScheduling(VL, VL0); 3985 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3986 ReuseShuffleIndicies); 3987 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 3988 return; 3989 } 3990 *POIter = SI->getPointerOperand(); 3991 *OIter = SI->getValueOperand(); 3992 ++POIter; 3993 ++OIter; 3994 } 3995 3996 OrdersType CurrentOrder; 3997 // Check the order of pointer operands. 3998 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 3999 Value *Ptr0; 4000 Value *PtrN; 4001 if (CurrentOrder.empty()) { 4002 Ptr0 = PointerOps.front(); 4003 PtrN = PointerOps.back(); 4004 } else { 4005 Ptr0 = PointerOps[CurrentOrder.front()]; 4006 PtrN = PointerOps[CurrentOrder.back()]; 4007 } 4008 Optional<int> Dist = 4009 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 4010 // Check that the sorted pointer operands are consecutive. 4011 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 4012 if (CurrentOrder.empty()) { 4013 // Original stores are consecutive and does not require reordering. 4014 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 4015 UserTreeIdx, ReuseShuffleIndicies); 4016 TE->setOperandsInOrder(); 4017 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4018 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 4019 } else { 4020 fixupOrderingIndices(CurrentOrder); 4021 TreeEntry *TE = 4022 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4023 ReuseShuffleIndicies, CurrentOrder); 4024 TE->setOperandsInOrder(); 4025 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4026 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 4027 } 4028 return; 4029 } 4030 } 4031 4032 BS.cancelScheduling(VL, VL0); 4033 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4034 ReuseShuffleIndicies); 4035 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 4036 return; 4037 } 4038 case Instruction::Call: { 4039 // Check if the calls are all to the same vectorizable intrinsic or 4040 // library function. 4041 CallInst *CI = cast<CallInst>(VL0); 4042 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4043 4044 VFShape Shape = VFShape::get( 4045 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 4046 false /*HasGlobalPred*/); 4047 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4048 4049 if (!VecFunc && !isTriviallyVectorizable(ID)) { 4050 BS.cancelScheduling(VL, VL0); 4051 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4052 ReuseShuffleIndicies); 4053 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 4054 return; 4055 } 4056 Function *F = CI->getCalledFunction(); 4057 unsigned NumArgs = CI->arg_size(); 4058 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 4059 for (unsigned j = 0; j != NumArgs; ++j) 4060 if (hasVectorInstrinsicScalarOpd(ID, j)) 4061 ScalarArgs[j] = CI->getArgOperand(j); 4062 for (Value *V : VL) { 4063 CallInst *CI2 = dyn_cast<CallInst>(V); 4064 if (!CI2 || CI2->getCalledFunction() != F || 4065 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 4066 (VecFunc && 4067 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 4068 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 4069 BS.cancelScheduling(VL, VL0); 4070 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4071 ReuseShuffleIndicies); 4072 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 4073 << "\n"); 4074 return; 4075 } 4076 // Some intrinsics have scalar arguments and should be same in order for 4077 // them to be vectorized. 4078 for (unsigned j = 0; j != NumArgs; ++j) { 4079 if (hasVectorInstrinsicScalarOpd(ID, j)) { 4080 Value *A1J = CI2->getArgOperand(j); 4081 if (ScalarArgs[j] != A1J) { 4082 BS.cancelScheduling(VL, VL0); 4083 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4084 ReuseShuffleIndicies); 4085 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 4086 << " argument " << ScalarArgs[j] << "!=" << A1J 4087 << "\n"); 4088 return; 4089 } 4090 } 4091 } 4092 // Verify that the bundle operands are identical between the two calls. 4093 if (CI->hasOperandBundles() && 4094 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 4095 CI->op_begin() + CI->getBundleOperandsEndIndex(), 4096 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 4097 BS.cancelScheduling(VL, VL0); 4098 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4099 ReuseShuffleIndicies); 4100 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 4101 << *CI << "!=" << *V << '\n'); 4102 return; 4103 } 4104 } 4105 4106 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4107 ReuseShuffleIndicies); 4108 TE->setOperandsInOrder(); 4109 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 4110 // For scalar operands no need to to create an entry since no need to 4111 // vectorize it. 4112 if (hasVectorInstrinsicScalarOpd(ID, i)) 4113 continue; 4114 ValueList Operands; 4115 // Prepare the operand vector. 4116 for (Value *V : VL) { 4117 auto *CI2 = cast<CallInst>(V); 4118 Operands.push_back(CI2->getArgOperand(i)); 4119 } 4120 buildTree_rec(Operands, Depth + 1, {TE, i}); 4121 } 4122 return; 4123 } 4124 case Instruction::ShuffleVector: { 4125 // If this is not an alternate sequence of opcode like add-sub 4126 // then do not vectorize this instruction. 4127 if (!S.isAltShuffle()) { 4128 BS.cancelScheduling(VL, VL0); 4129 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4130 ReuseShuffleIndicies); 4131 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 4132 return; 4133 } 4134 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4135 ReuseShuffleIndicies); 4136 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 4137 4138 // Reorder operands if reordering would enable vectorization. 4139 if (isa<BinaryOperator>(VL0)) { 4140 ValueList Left, Right; 4141 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4142 TE->setOperand(0, Left); 4143 TE->setOperand(1, Right); 4144 buildTree_rec(Left, Depth + 1, {TE, 0}); 4145 buildTree_rec(Right, Depth + 1, {TE, 1}); 4146 return; 4147 } 4148 4149 TE->setOperandsInOrder(); 4150 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4151 ValueList Operands; 4152 // Prepare the operand vector. 4153 for (Value *V : VL) 4154 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4155 4156 buildTree_rec(Operands, Depth + 1, {TE, i}); 4157 } 4158 return; 4159 } 4160 default: 4161 BS.cancelScheduling(VL, VL0); 4162 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4163 ReuseShuffleIndicies); 4164 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 4165 return; 4166 } 4167 } 4168 4169 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 4170 unsigned N = 1; 4171 Type *EltTy = T; 4172 4173 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 4174 isa<VectorType>(EltTy)) { 4175 if (auto *ST = dyn_cast<StructType>(EltTy)) { 4176 // Check that struct is homogeneous. 4177 for (const auto *Ty : ST->elements()) 4178 if (Ty != *ST->element_begin()) 4179 return 0; 4180 N *= ST->getNumElements(); 4181 EltTy = *ST->element_begin(); 4182 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 4183 N *= AT->getNumElements(); 4184 EltTy = AT->getElementType(); 4185 } else { 4186 auto *VT = cast<FixedVectorType>(EltTy); 4187 N *= VT->getNumElements(); 4188 EltTy = VT->getElementType(); 4189 } 4190 } 4191 4192 if (!isValidElementType(EltTy)) 4193 return 0; 4194 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 4195 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 4196 return 0; 4197 return N; 4198 } 4199 4200 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 4201 SmallVectorImpl<unsigned> &CurrentOrder) const { 4202 Instruction *E0 = cast<Instruction>(OpValue); 4203 assert(E0->getOpcode() == Instruction::ExtractElement || 4204 E0->getOpcode() == Instruction::ExtractValue); 4205 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 4206 // Check if all of the extracts come from the same vector and from the 4207 // correct offset. 4208 Value *Vec = E0->getOperand(0); 4209 4210 CurrentOrder.clear(); 4211 4212 // We have to extract from a vector/aggregate with the same number of elements. 4213 unsigned NElts; 4214 if (E0->getOpcode() == Instruction::ExtractValue) { 4215 const DataLayout &DL = E0->getModule()->getDataLayout(); 4216 NElts = canMapToVector(Vec->getType(), DL); 4217 if (!NElts) 4218 return false; 4219 // Check if load can be rewritten as load of vector. 4220 LoadInst *LI = dyn_cast<LoadInst>(Vec); 4221 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 4222 return false; 4223 } else { 4224 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 4225 } 4226 4227 if (NElts != VL.size()) 4228 return false; 4229 4230 // Check that all of the indices extract from the correct offset. 4231 bool ShouldKeepOrder = true; 4232 unsigned E = VL.size(); 4233 // Assign to all items the initial value E + 1 so we can check if the extract 4234 // instruction index was used already. 4235 // Also, later we can check that all the indices are used and we have a 4236 // consecutive access in the extract instructions, by checking that no 4237 // element of CurrentOrder still has value E + 1. 4238 CurrentOrder.assign(E, E + 1); 4239 unsigned I = 0; 4240 for (; I < E; ++I) { 4241 auto *Inst = cast<Instruction>(VL[I]); 4242 if (Inst->getOperand(0) != Vec) 4243 break; 4244 Optional<unsigned> Idx = getExtractIndex(Inst); 4245 if (!Idx) 4246 break; 4247 const unsigned ExtIdx = *Idx; 4248 if (ExtIdx != I) { 4249 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 4250 break; 4251 ShouldKeepOrder = false; 4252 CurrentOrder[ExtIdx] = I; 4253 } else { 4254 if (CurrentOrder[I] != E + 1) 4255 break; 4256 CurrentOrder[I] = I; 4257 } 4258 } 4259 if (I < E) { 4260 CurrentOrder.clear(); 4261 return false; 4262 } 4263 4264 return ShouldKeepOrder; 4265 } 4266 4267 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 4268 ArrayRef<Value *> VectorizedVals) const { 4269 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 4270 llvm::all_of(I->users(), [this](User *U) { 4271 return ScalarToTreeEntry.count(U) > 0; 4272 }); 4273 } 4274 4275 static std::pair<InstructionCost, InstructionCost> 4276 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 4277 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 4278 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4279 4280 // Calculate the cost of the scalar and vector calls. 4281 SmallVector<Type *, 4> VecTys; 4282 for (Use &Arg : CI->args()) 4283 VecTys.push_back( 4284 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 4285 FastMathFlags FMF; 4286 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 4287 FMF = FPCI->getFastMathFlags(); 4288 SmallVector<const Value *> Arguments(CI->args()); 4289 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 4290 dyn_cast<IntrinsicInst>(CI)); 4291 auto IntrinsicCost = 4292 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 4293 4294 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4295 VecTy->getNumElements())), 4296 false /*HasGlobalPred*/); 4297 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4298 auto LibCost = IntrinsicCost; 4299 if (!CI->isNoBuiltin() && VecFunc) { 4300 // Calculate the cost of the vector library call. 4301 // If the corresponding vector call is cheaper, return its cost. 4302 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 4303 TTI::TCK_RecipThroughput); 4304 } 4305 return {IntrinsicCost, LibCost}; 4306 } 4307 4308 /// Compute the cost of creating a vector of type \p VecTy containing the 4309 /// extracted values from \p VL. 4310 static InstructionCost 4311 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 4312 TargetTransformInfo::ShuffleKind ShuffleKind, 4313 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 4314 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 4315 4316 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 4317 VecTy->getNumElements() < NumOfParts) 4318 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 4319 4320 bool AllConsecutive = true; 4321 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 4322 unsigned Idx = -1; 4323 InstructionCost Cost = 0; 4324 4325 // Process extracts in blocks of EltsPerVector to check if the source vector 4326 // operand can be re-used directly. If not, add the cost of creating a shuffle 4327 // to extract the values into a vector register. 4328 for (auto *V : VL) { 4329 ++Idx; 4330 4331 // Reached the start of a new vector registers. 4332 if (Idx % EltsPerVector == 0) { 4333 AllConsecutive = true; 4334 continue; 4335 } 4336 4337 // Check all extracts for a vector register on the target directly 4338 // extract values in order. 4339 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 4340 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 4341 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 4342 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 4343 4344 if (AllConsecutive) 4345 continue; 4346 4347 // Skip all indices, except for the last index per vector block. 4348 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 4349 continue; 4350 4351 // If we have a series of extracts which are not consecutive and hence 4352 // cannot re-use the source vector register directly, compute the shuffle 4353 // cost to extract the a vector with EltsPerVector elements. 4354 Cost += TTI.getShuffleCost( 4355 TargetTransformInfo::SK_PermuteSingleSrc, 4356 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 4357 } 4358 return Cost; 4359 } 4360 4361 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 4362 /// operations operands. 4363 static void 4364 buildSuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 4365 ArrayRef<int> ReusesIndices, 4366 const function_ref<bool(Instruction *)> IsAltOp, 4367 SmallVectorImpl<int> &Mask, 4368 SmallVectorImpl<Value *> *OpScalars = nullptr, 4369 SmallVectorImpl<Value *> *AltScalars = nullptr) { 4370 unsigned Sz = VL.size(); 4371 Mask.assign(Sz, UndefMaskElem); 4372 SmallVector<int> OrderMask; 4373 if (!ReorderIndices.empty()) 4374 inversePermutation(ReorderIndices, OrderMask); 4375 for (unsigned I = 0; I < Sz; ++I) { 4376 unsigned Idx = I; 4377 if (!ReorderIndices.empty()) 4378 Idx = OrderMask[I]; 4379 auto *OpInst = cast<Instruction>(VL[Idx]); 4380 if (IsAltOp(OpInst)) { 4381 Mask[I] = Sz + Idx; 4382 if (AltScalars) 4383 AltScalars->push_back(OpInst); 4384 } else { 4385 Mask[I] = Idx; 4386 if (OpScalars) 4387 OpScalars->push_back(OpInst); 4388 } 4389 } 4390 if (!ReusesIndices.empty()) { 4391 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 4392 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 4393 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 4394 }); 4395 Mask.swap(NewMask); 4396 } 4397 } 4398 4399 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 4400 ArrayRef<Value *> VectorizedVals) { 4401 ArrayRef<Value*> VL = E->Scalars; 4402 4403 Type *ScalarTy = VL[0]->getType(); 4404 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4405 ScalarTy = SI->getValueOperand()->getType(); 4406 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 4407 ScalarTy = CI->getOperand(0)->getType(); 4408 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 4409 ScalarTy = IE->getOperand(1)->getType(); 4410 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4411 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 4412 4413 // If we have computed a smaller type for the expression, update VecTy so 4414 // that the costs will be accurate. 4415 if (MinBWs.count(VL[0])) 4416 VecTy = FixedVectorType::get( 4417 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 4418 unsigned EntryVF = E->getVectorFactor(); 4419 auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF); 4420 4421 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4422 // FIXME: it tries to fix a problem with MSVC buildbots. 4423 TargetTransformInfo &TTIRef = *TTI; 4424 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 4425 VectorizedVals](InstructionCost &Cost, 4426 bool IsGather) { 4427 DenseMap<Value *, int> ExtractVectorsTys; 4428 for (auto *V : VL) { 4429 if (isa<UndefValue>(V)) 4430 continue; 4431 // If all users of instruction are going to be vectorized and this 4432 // instruction itself is not going to be vectorized, consider this 4433 // instruction as dead and remove its cost from the final cost of the 4434 // vectorized tree. 4435 if (!areAllUsersVectorized(cast<Instruction>(V), VectorizedVals)) 4436 continue; 4437 auto *EE = cast<ExtractElementInst>(V); 4438 Optional<unsigned> EEIdx = getExtractIndex(EE); 4439 if (!EEIdx) 4440 continue; 4441 unsigned Idx = *EEIdx; 4442 if (TTIRef.getNumberOfParts(VecTy) != 4443 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 4444 auto It = 4445 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 4446 It->getSecond() = std::min<int>(It->second, Idx); 4447 } 4448 // Take credit for instruction that will become dead. 4449 if (EE->hasOneUse()) { 4450 Instruction *Ext = EE->user_back(); 4451 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4452 all_of(Ext->users(), 4453 [](User *U) { return isa<GetElementPtrInst>(U); })) { 4454 // Use getExtractWithExtendCost() to calculate the cost of 4455 // extractelement/ext pair. 4456 Cost -= 4457 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 4458 EE->getVectorOperandType(), Idx); 4459 // Add back the cost of s|zext which is subtracted separately. 4460 Cost += TTIRef.getCastInstrCost( 4461 Ext->getOpcode(), Ext->getType(), EE->getType(), 4462 TTI::getCastContextHint(Ext), CostKind, Ext); 4463 continue; 4464 } 4465 } 4466 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 4467 EE->getVectorOperandType(), Idx); 4468 } 4469 // Add a cost for subvector extracts/inserts if required. 4470 for (const auto &Data : ExtractVectorsTys) { 4471 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 4472 unsigned NumElts = VecTy->getNumElements(); 4473 if (Data.second % NumElts == 0) 4474 continue; 4475 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 4476 unsigned Idx = (Data.second / NumElts) * NumElts; 4477 unsigned EENumElts = EEVTy->getNumElements(); 4478 if (Idx + NumElts <= EENumElts) { 4479 Cost += 4480 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 4481 EEVTy, None, Idx, VecTy); 4482 } else { 4483 // Need to round up the subvector type vectorization factor to avoid a 4484 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 4485 // <= EENumElts. 4486 auto *SubVT = 4487 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 4488 Cost += 4489 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 4490 EEVTy, None, Idx, SubVT); 4491 } 4492 } else { 4493 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 4494 VecTy, None, 0, EEVTy); 4495 } 4496 } 4497 }; 4498 if (E->State == TreeEntry::NeedToGather) { 4499 if (allConstant(VL)) 4500 return 0; 4501 if (isa<InsertElementInst>(VL[0])) 4502 return InstructionCost::getInvalid(); 4503 SmallVector<int> Mask; 4504 SmallVector<const TreeEntry *> Entries; 4505 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 4506 isGatherShuffledEntry(E, Mask, Entries); 4507 if (Shuffle.hasValue()) { 4508 InstructionCost GatherCost = 0; 4509 if (ShuffleVectorInst::isIdentityMask(Mask)) { 4510 // Perfect match in the graph, will reuse the previously vectorized 4511 // node. Cost is 0. 4512 LLVM_DEBUG( 4513 dbgs() 4514 << "SLP: perfect diamond match for gather bundle that starts with " 4515 << *VL.front() << ".\n"); 4516 if (NeedToShuffleReuses) 4517 GatherCost = 4518 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 4519 FinalVecTy, E->ReuseShuffleIndices); 4520 } else { 4521 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 4522 << " entries for bundle that starts with " 4523 << *VL.front() << ".\n"); 4524 // Detected that instead of gather we can emit a shuffle of single/two 4525 // previously vectorized nodes. Add the cost of the permutation rather 4526 // than gather. 4527 ::addMask(Mask, E->ReuseShuffleIndices); 4528 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 4529 } 4530 return GatherCost; 4531 } 4532 if (isSplat(VL)) { 4533 // Found the broadcasting of the single scalar, calculate the cost as the 4534 // broadcast. 4535 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy); 4536 } 4537 if ((E->getOpcode() == Instruction::ExtractElement || 4538 all_of(E->Scalars, 4539 [](Value *V) { 4540 return isa<ExtractElementInst, UndefValue>(V); 4541 })) && 4542 allSameType(VL)) { 4543 // Check that gather of extractelements can be represented as just a 4544 // shuffle of a single/two vectors the scalars are extracted from. 4545 SmallVector<int> Mask; 4546 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 4547 isFixedVectorShuffle(VL, Mask); 4548 if (ShuffleKind.hasValue()) { 4549 // Found the bunch of extractelement instructions that must be gathered 4550 // into a vector and can be represented as a permutation elements in a 4551 // single input vector or of 2 input vectors. 4552 InstructionCost Cost = 4553 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 4554 AdjustExtractsCost(Cost, /*IsGather=*/true); 4555 if (NeedToShuffleReuses) 4556 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 4557 FinalVecTy, E->ReuseShuffleIndices); 4558 return Cost; 4559 } 4560 } 4561 InstructionCost ReuseShuffleCost = 0; 4562 if (NeedToShuffleReuses) 4563 ReuseShuffleCost = TTI->getShuffleCost( 4564 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 4565 // Improve gather cost for gather of loads, if we can group some of the 4566 // loads into vector loads. 4567 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 4568 !E->isAltShuffle()) { 4569 BoUpSLP::ValueSet VectorizedLoads; 4570 unsigned StartIdx = 0; 4571 unsigned VF = VL.size() / 2; 4572 unsigned VectorizedCnt = 0; 4573 unsigned ScatterVectorizeCnt = 0; 4574 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 4575 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 4576 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 4577 Cnt += VF) { 4578 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 4579 if (!VectorizedLoads.count(Slice.front()) && 4580 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 4581 SmallVector<Value *> PointerOps; 4582 OrdersType CurrentOrder; 4583 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 4584 *SE, CurrentOrder, PointerOps); 4585 switch (LS) { 4586 case LoadsState::Vectorize: 4587 case LoadsState::ScatterVectorize: 4588 // Mark the vectorized loads so that we don't vectorize them 4589 // again. 4590 if (LS == LoadsState::Vectorize) 4591 ++VectorizedCnt; 4592 else 4593 ++ScatterVectorizeCnt; 4594 VectorizedLoads.insert(Slice.begin(), Slice.end()); 4595 // If we vectorized initial block, no need to try to vectorize it 4596 // again. 4597 if (Cnt == StartIdx) 4598 StartIdx += VF; 4599 break; 4600 case LoadsState::Gather: 4601 break; 4602 } 4603 } 4604 } 4605 // Check if the whole array was vectorized already - exit. 4606 if (StartIdx >= VL.size()) 4607 break; 4608 // Found vectorizable parts - exit. 4609 if (!VectorizedLoads.empty()) 4610 break; 4611 } 4612 if (!VectorizedLoads.empty()) { 4613 InstructionCost GatherCost = 0; 4614 unsigned NumParts = TTI->getNumberOfParts(VecTy); 4615 bool NeedInsertSubvectorAnalysis = 4616 !NumParts || (VL.size() / VF) > NumParts; 4617 // Get the cost for gathered loads. 4618 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 4619 if (VectorizedLoads.contains(VL[I])) 4620 continue; 4621 GatherCost += getGatherCost(VL.slice(I, VF)); 4622 } 4623 // The cost for vectorized loads. 4624 InstructionCost ScalarsCost = 0; 4625 for (Value *V : VectorizedLoads) { 4626 auto *LI = cast<LoadInst>(V); 4627 ScalarsCost += TTI->getMemoryOpCost( 4628 Instruction::Load, LI->getType(), LI->getAlign(), 4629 LI->getPointerAddressSpace(), CostKind, LI); 4630 } 4631 auto *LI = cast<LoadInst>(E->getMainOp()); 4632 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 4633 Align Alignment = LI->getAlign(); 4634 GatherCost += 4635 VectorizedCnt * 4636 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 4637 LI->getPointerAddressSpace(), CostKind, LI); 4638 GatherCost += ScatterVectorizeCnt * 4639 TTI->getGatherScatterOpCost( 4640 Instruction::Load, LoadTy, LI->getPointerOperand(), 4641 /*VariableMask=*/false, Alignment, CostKind, LI); 4642 if (NeedInsertSubvectorAnalysis) { 4643 // Add the cost for the subvectors insert. 4644 for (int I = VF, E = VL.size(); I < E; I += VF) 4645 GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy, 4646 None, I, LoadTy); 4647 } 4648 return ReuseShuffleCost + GatherCost - ScalarsCost; 4649 } 4650 } 4651 return ReuseShuffleCost + getGatherCost(VL); 4652 } 4653 InstructionCost CommonCost = 0; 4654 SmallVector<int> Mask; 4655 if (!E->ReorderIndices.empty()) { 4656 SmallVector<int> NewMask; 4657 if (E->getOpcode() == Instruction::Store) { 4658 // For stores the order is actually a mask. 4659 NewMask.resize(E->ReorderIndices.size()); 4660 copy(E->ReorderIndices, NewMask.begin()); 4661 } else { 4662 inversePermutation(E->ReorderIndices, NewMask); 4663 } 4664 ::addMask(Mask, NewMask); 4665 } 4666 if (NeedToShuffleReuses) 4667 ::addMask(Mask, E->ReuseShuffleIndices); 4668 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 4669 CommonCost = 4670 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 4671 assert((E->State == TreeEntry::Vectorize || 4672 E->State == TreeEntry::ScatterVectorize) && 4673 "Unhandled state"); 4674 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 4675 Instruction *VL0 = E->getMainOp(); 4676 unsigned ShuffleOrOp = 4677 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 4678 switch (ShuffleOrOp) { 4679 case Instruction::PHI: 4680 return 0; 4681 4682 case Instruction::ExtractValue: 4683 case Instruction::ExtractElement: { 4684 // The common cost of removal ExtractElement/ExtractValue instructions + 4685 // the cost of shuffles, if required to resuffle the original vector. 4686 if (NeedToShuffleReuses) { 4687 unsigned Idx = 0; 4688 for (unsigned I : E->ReuseShuffleIndices) { 4689 if (ShuffleOrOp == Instruction::ExtractElement) { 4690 auto *EE = cast<ExtractElementInst>(VL[I]); 4691 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 4692 EE->getVectorOperandType(), 4693 *getExtractIndex(EE)); 4694 } else { 4695 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 4696 VecTy, Idx); 4697 ++Idx; 4698 } 4699 } 4700 Idx = EntryVF; 4701 for (Value *V : VL) { 4702 if (ShuffleOrOp == Instruction::ExtractElement) { 4703 auto *EE = cast<ExtractElementInst>(V); 4704 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 4705 EE->getVectorOperandType(), 4706 *getExtractIndex(EE)); 4707 } else { 4708 --Idx; 4709 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 4710 VecTy, Idx); 4711 } 4712 } 4713 } 4714 if (ShuffleOrOp == Instruction::ExtractValue) { 4715 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 4716 auto *EI = cast<Instruction>(VL[I]); 4717 // Take credit for instruction that will become dead. 4718 if (EI->hasOneUse()) { 4719 Instruction *Ext = EI->user_back(); 4720 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4721 all_of(Ext->users(), 4722 [](User *U) { return isa<GetElementPtrInst>(U); })) { 4723 // Use getExtractWithExtendCost() to calculate the cost of 4724 // extractelement/ext pair. 4725 CommonCost -= TTI->getExtractWithExtendCost( 4726 Ext->getOpcode(), Ext->getType(), VecTy, I); 4727 // Add back the cost of s|zext which is subtracted separately. 4728 CommonCost += TTI->getCastInstrCost( 4729 Ext->getOpcode(), Ext->getType(), EI->getType(), 4730 TTI::getCastContextHint(Ext), CostKind, Ext); 4731 continue; 4732 } 4733 } 4734 CommonCost -= 4735 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 4736 } 4737 } else { 4738 AdjustExtractsCost(CommonCost, /*IsGather=*/false); 4739 } 4740 return CommonCost; 4741 } 4742 case Instruction::InsertElement: { 4743 assert(E->ReuseShuffleIndices.empty() && 4744 "Unique insertelements only are expected."); 4745 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 4746 4747 unsigned const NumElts = SrcVecTy->getNumElements(); 4748 unsigned const NumScalars = VL.size(); 4749 APInt DemandedElts = APInt::getZero(NumElts); 4750 // TODO: Add support for Instruction::InsertValue. 4751 SmallVector<int> Mask; 4752 if (!E->ReorderIndices.empty()) { 4753 inversePermutation(E->ReorderIndices, Mask); 4754 Mask.append(NumElts - NumScalars, UndefMaskElem); 4755 } else { 4756 Mask.assign(NumElts, UndefMaskElem); 4757 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 4758 } 4759 unsigned Offset = *getInsertIndex(VL0, 0); 4760 bool IsIdentity = true; 4761 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 4762 Mask.swap(PrevMask); 4763 for (unsigned I = 0; I < NumScalars; ++I) { 4764 Optional<int> InsertIdx = getInsertIndex(VL[PrevMask[I]], 0); 4765 if (!InsertIdx || *InsertIdx == UndefMaskElem) 4766 continue; 4767 DemandedElts.setBit(*InsertIdx); 4768 IsIdentity &= *InsertIdx - Offset == I; 4769 Mask[*InsertIdx - Offset] = I; 4770 } 4771 assert(Offset < NumElts && "Failed to find vector index offset"); 4772 4773 InstructionCost Cost = 0; 4774 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 4775 /*Insert*/ true, /*Extract*/ false); 4776 4777 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 4778 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 4779 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 4780 Cost += TTI->getShuffleCost( 4781 TargetTransformInfo::SK_PermuteSingleSrc, 4782 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 4783 } else if (!IsIdentity) { 4784 auto *FirstInsert = 4785 cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 4786 return !is_contained(E->Scalars, 4787 cast<Instruction>(V)->getOperand(0)); 4788 })); 4789 if (isa<UndefValue>(FirstInsert->getOperand(0))) { 4790 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask); 4791 } else { 4792 SmallVector<int> InsertMask(NumElts); 4793 std::iota(InsertMask.begin(), InsertMask.end(), 0); 4794 for (unsigned I = 0; I < NumElts; I++) { 4795 if (Mask[I] != UndefMaskElem) 4796 InsertMask[Offset + I] = NumElts + I; 4797 } 4798 Cost += 4799 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask); 4800 } 4801 } 4802 4803 return Cost; 4804 } 4805 case Instruction::ZExt: 4806 case Instruction::SExt: 4807 case Instruction::FPToUI: 4808 case Instruction::FPToSI: 4809 case Instruction::FPExt: 4810 case Instruction::PtrToInt: 4811 case Instruction::IntToPtr: 4812 case Instruction::SIToFP: 4813 case Instruction::UIToFP: 4814 case Instruction::Trunc: 4815 case Instruction::FPTrunc: 4816 case Instruction::BitCast: { 4817 Type *SrcTy = VL0->getOperand(0)->getType(); 4818 InstructionCost ScalarEltCost = 4819 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 4820 TTI::getCastContextHint(VL0), CostKind, VL0); 4821 if (NeedToShuffleReuses) { 4822 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 4823 } 4824 4825 // Calculate the cost of this instruction. 4826 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 4827 4828 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 4829 InstructionCost VecCost = 0; 4830 // Check if the values are candidates to demote. 4831 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 4832 VecCost = CommonCost + TTI->getCastInstrCost( 4833 E->getOpcode(), VecTy, SrcVecTy, 4834 TTI::getCastContextHint(VL0), CostKind, VL0); 4835 } 4836 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4837 return VecCost - ScalarCost; 4838 } 4839 case Instruction::FCmp: 4840 case Instruction::ICmp: 4841 case Instruction::Select: { 4842 // Calculate the cost of this instruction. 4843 InstructionCost ScalarEltCost = 4844 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 4845 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 4846 if (NeedToShuffleReuses) { 4847 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 4848 } 4849 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 4850 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 4851 4852 // Check if all entries in VL are either compares or selects with compares 4853 // as condition that have the same predicates. 4854 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 4855 bool First = true; 4856 for (auto *V : VL) { 4857 CmpInst::Predicate CurrentPred; 4858 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 4859 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 4860 !match(V, MatchCmp)) || 4861 (!First && VecPred != CurrentPred)) { 4862 VecPred = CmpInst::BAD_ICMP_PREDICATE; 4863 break; 4864 } 4865 First = false; 4866 VecPred = CurrentPred; 4867 } 4868 4869 InstructionCost VecCost = TTI->getCmpSelInstrCost( 4870 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 4871 // Check if it is possible and profitable to use min/max for selects in 4872 // VL. 4873 // 4874 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 4875 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 4876 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 4877 {VecTy, VecTy}); 4878 InstructionCost IntrinsicCost = 4879 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 4880 // If the selects are the only uses of the compares, they will be dead 4881 // and we can adjust the cost by removing their cost. 4882 if (IntrinsicAndUse.second) 4883 IntrinsicCost -= 4884 TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy, 4885 CmpInst::BAD_ICMP_PREDICATE, CostKind); 4886 VecCost = std::min(VecCost, IntrinsicCost); 4887 } 4888 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4889 return CommonCost + VecCost - ScalarCost; 4890 } 4891 case Instruction::FNeg: 4892 case Instruction::Add: 4893 case Instruction::FAdd: 4894 case Instruction::Sub: 4895 case Instruction::FSub: 4896 case Instruction::Mul: 4897 case Instruction::FMul: 4898 case Instruction::UDiv: 4899 case Instruction::SDiv: 4900 case Instruction::FDiv: 4901 case Instruction::URem: 4902 case Instruction::SRem: 4903 case Instruction::FRem: 4904 case Instruction::Shl: 4905 case Instruction::LShr: 4906 case Instruction::AShr: 4907 case Instruction::And: 4908 case Instruction::Or: 4909 case Instruction::Xor: { 4910 // Certain instructions can be cheaper to vectorize if they have a 4911 // constant second vector operand. 4912 TargetTransformInfo::OperandValueKind Op1VK = 4913 TargetTransformInfo::OK_AnyValue; 4914 TargetTransformInfo::OperandValueKind Op2VK = 4915 TargetTransformInfo::OK_UniformConstantValue; 4916 TargetTransformInfo::OperandValueProperties Op1VP = 4917 TargetTransformInfo::OP_None; 4918 TargetTransformInfo::OperandValueProperties Op2VP = 4919 TargetTransformInfo::OP_PowerOf2; 4920 4921 // If all operands are exactly the same ConstantInt then set the 4922 // operand kind to OK_UniformConstantValue. 4923 // If instead not all operands are constants, then set the operand kind 4924 // to OK_AnyValue. If all operands are constants but not the same, 4925 // then set the operand kind to OK_NonUniformConstantValue. 4926 ConstantInt *CInt0 = nullptr; 4927 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 4928 const Instruction *I = cast<Instruction>(VL[i]); 4929 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 4930 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 4931 if (!CInt) { 4932 Op2VK = TargetTransformInfo::OK_AnyValue; 4933 Op2VP = TargetTransformInfo::OP_None; 4934 break; 4935 } 4936 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 4937 !CInt->getValue().isPowerOf2()) 4938 Op2VP = TargetTransformInfo::OP_None; 4939 if (i == 0) { 4940 CInt0 = CInt; 4941 continue; 4942 } 4943 if (CInt0 != CInt) 4944 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 4945 } 4946 4947 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 4948 InstructionCost ScalarEltCost = 4949 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 4950 Op2VK, Op1VP, Op2VP, Operands, VL0); 4951 if (NeedToShuffleReuses) { 4952 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 4953 } 4954 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 4955 InstructionCost VecCost = 4956 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 4957 Op2VK, Op1VP, Op2VP, Operands, VL0); 4958 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4959 return CommonCost + VecCost - ScalarCost; 4960 } 4961 case Instruction::GetElementPtr: { 4962 TargetTransformInfo::OperandValueKind Op1VK = 4963 TargetTransformInfo::OK_AnyValue; 4964 TargetTransformInfo::OperandValueKind Op2VK = 4965 TargetTransformInfo::OK_UniformConstantValue; 4966 4967 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 4968 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 4969 if (NeedToShuffleReuses) { 4970 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 4971 } 4972 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 4973 InstructionCost VecCost = TTI->getArithmeticInstrCost( 4974 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 4975 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 4976 return CommonCost + VecCost - ScalarCost; 4977 } 4978 case Instruction::Load: { 4979 // Cost of wide load - cost of scalar loads. 4980 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 4981 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 4982 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 4983 if (NeedToShuffleReuses) { 4984 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 4985 } 4986 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 4987 InstructionCost VecLdCost; 4988 if (E->State == TreeEntry::Vectorize) { 4989 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 4990 CostKind, VL0); 4991 } else { 4992 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 4993 Align CommonAlignment = Alignment; 4994 for (Value *V : VL) 4995 CommonAlignment = 4996 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 4997 VecLdCost = TTI->getGatherScatterOpCost( 4998 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 4999 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 5000 } 5001 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 5002 return CommonCost + VecLdCost - ScalarLdCost; 5003 } 5004 case Instruction::Store: { 5005 // We know that we can merge the stores. Calculate the cost. 5006 bool IsReorder = !E->ReorderIndices.empty(); 5007 auto *SI = 5008 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 5009 Align Alignment = SI->getAlign(); 5010 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5011 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 5012 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 5013 InstructionCost VecStCost = TTI->getMemoryOpCost( 5014 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 5015 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 5016 return CommonCost + VecStCost - ScalarStCost; 5017 } 5018 case Instruction::Call: { 5019 CallInst *CI = cast<CallInst>(VL0); 5020 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5021 5022 // Calculate the cost of the scalar and vector calls. 5023 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 5024 InstructionCost ScalarEltCost = 5025 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5026 if (NeedToShuffleReuses) { 5027 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5028 } 5029 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 5030 5031 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 5032 InstructionCost VecCallCost = 5033 std::min(VecCallCosts.first, VecCallCosts.second); 5034 5035 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 5036 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 5037 << " for " << *CI << "\n"); 5038 5039 return CommonCost + VecCallCost - ScalarCallCost; 5040 } 5041 case Instruction::ShuffleVector: { 5042 assert(E->isAltShuffle() && 5043 ((Instruction::isBinaryOp(E->getOpcode()) && 5044 Instruction::isBinaryOp(E->getAltOpcode())) || 5045 (Instruction::isCast(E->getOpcode()) && 5046 Instruction::isCast(E->getAltOpcode()))) && 5047 "Invalid Shuffle Vector Operand"); 5048 InstructionCost ScalarCost = 0; 5049 if (NeedToShuffleReuses) { 5050 for (unsigned Idx : E->ReuseShuffleIndices) { 5051 Instruction *I = cast<Instruction>(VL[Idx]); 5052 CommonCost -= TTI->getInstructionCost(I, CostKind); 5053 } 5054 for (Value *V : VL) { 5055 Instruction *I = cast<Instruction>(V); 5056 CommonCost += TTI->getInstructionCost(I, CostKind); 5057 } 5058 } 5059 for (Value *V : VL) { 5060 Instruction *I = cast<Instruction>(V); 5061 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5062 ScalarCost += TTI->getInstructionCost(I, CostKind); 5063 } 5064 // VecCost is equal to sum of the cost of creating 2 vectors 5065 // and the cost of creating shuffle. 5066 InstructionCost VecCost = 0; 5067 // Try to find the previous shuffle node with the same operands and same 5068 // main/alternate ops. 5069 auto &&TryFindNodeWithEqualOperands = [this, E]() { 5070 for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 5071 if (TE.get() == E) 5072 break; 5073 if (TE->isAltShuffle() && 5074 ((TE->getOpcode() == E->getOpcode() && 5075 TE->getAltOpcode() == E->getAltOpcode()) || 5076 (TE->getOpcode() == E->getAltOpcode() && 5077 TE->getAltOpcode() == E->getOpcode())) && 5078 TE->hasEqualOperands(*E)) 5079 return true; 5080 } 5081 return false; 5082 }; 5083 if (TryFindNodeWithEqualOperands()) { 5084 LLVM_DEBUG({ 5085 dbgs() << "SLP: diamond match for alternate node found.\n"; 5086 E->dump(); 5087 }); 5088 // No need to add new vector costs here since we're going to reuse 5089 // same main/alternate vector ops, just do different shuffling. 5090 } else if (Instruction::isBinaryOp(E->getOpcode())) { 5091 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 5092 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 5093 CostKind); 5094 } else { 5095 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 5096 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 5097 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 5098 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 5099 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 5100 TTI::CastContextHint::None, CostKind); 5101 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 5102 TTI::CastContextHint::None, CostKind); 5103 } 5104 5105 SmallVector<int> Mask; 5106 buildSuffleEntryMask( 5107 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 5108 [E](Instruction *I) { 5109 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5110 return I->getOpcode() == E->getAltOpcode(); 5111 }, 5112 Mask); 5113 CommonCost = 5114 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy, Mask); 5115 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5116 return CommonCost + VecCost - ScalarCost; 5117 } 5118 default: 5119 llvm_unreachable("Unknown instruction"); 5120 } 5121 } 5122 5123 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { 5124 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 5125 << VectorizableTree.size() << " is fully vectorizable .\n"); 5126 5127 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { 5128 SmallVector<int> Mask; 5129 return TE->State == TreeEntry::NeedToGather && 5130 !any_of(TE->Scalars, 5131 [this](Value *V) { return EphValues.contains(V); }) && 5132 (allConstant(TE->Scalars) || isSplat(TE->Scalars) || 5133 TE->Scalars.size() < Limit || 5134 ((TE->getOpcode() == Instruction::ExtractElement || 5135 all_of(TE->Scalars, 5136 [](Value *V) { 5137 return isa<ExtractElementInst, UndefValue>(V); 5138 })) && 5139 isFixedVectorShuffle(TE->Scalars, Mask)) || 5140 (TE->State == TreeEntry::NeedToGather && 5141 TE->getOpcode() == Instruction::Load && !TE->isAltShuffle())); 5142 }; 5143 5144 // We only handle trees of heights 1 and 2. 5145 if (VectorizableTree.size() == 1 && 5146 (VectorizableTree[0]->State == TreeEntry::Vectorize || 5147 (ForReduction && 5148 AreVectorizableGathers(VectorizableTree[0].get(), 5149 VectorizableTree[0]->Scalars.size()) && 5150 VectorizableTree[0]->getVectorFactor() > 2))) 5151 return true; 5152 5153 if (VectorizableTree.size() != 2) 5154 return false; 5155 5156 // Handle splat and all-constants stores. Also try to vectorize tiny trees 5157 // with the second gather nodes if they have less scalar operands rather than 5158 // the initial tree element (may be profitable to shuffle the second gather) 5159 // or they are extractelements, which form shuffle. 5160 SmallVector<int> Mask; 5161 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 5162 AreVectorizableGathers(VectorizableTree[1].get(), 5163 VectorizableTree[0]->Scalars.size())) 5164 return true; 5165 5166 // Gathering cost would be too much for tiny trees. 5167 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 5168 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 5169 VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) 5170 return false; 5171 5172 return true; 5173 } 5174 5175 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 5176 TargetTransformInfo *TTI, 5177 bool MustMatchOrInst) { 5178 // Look past the root to find a source value. Arbitrarily follow the 5179 // path through operand 0 of any 'or'. Also, peek through optional 5180 // shift-left-by-multiple-of-8-bits. 5181 Value *ZextLoad = Root; 5182 const APInt *ShAmtC; 5183 bool FoundOr = false; 5184 while (!isa<ConstantExpr>(ZextLoad) && 5185 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 5186 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 5187 ShAmtC->urem(8) == 0))) { 5188 auto *BinOp = cast<BinaryOperator>(ZextLoad); 5189 ZextLoad = BinOp->getOperand(0); 5190 if (BinOp->getOpcode() == Instruction::Or) 5191 FoundOr = true; 5192 } 5193 // Check if the input is an extended load of the required or/shift expression. 5194 Value *LoadPtr; 5195 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 5196 !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr))))) 5197 return false; 5198 5199 // Require that the total load bit width is a legal integer type. 5200 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 5201 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 5202 Type *SrcTy = LoadPtr->getType()->getPointerElementType(); 5203 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 5204 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 5205 return false; 5206 5207 // Everything matched - assume that we can fold the whole sequence using 5208 // load combining. 5209 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 5210 << *(cast<Instruction>(Root)) << "\n"); 5211 5212 return true; 5213 } 5214 5215 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 5216 if (RdxKind != RecurKind::Or) 5217 return false; 5218 5219 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5220 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 5221 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 5222 /* MatchOr */ false); 5223 } 5224 5225 bool BoUpSLP::isLoadCombineCandidate() const { 5226 // Peek through a final sequence of stores and check if all operations are 5227 // likely to be load-combined. 5228 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5229 for (Value *Scalar : VectorizableTree[0]->Scalars) { 5230 Value *X; 5231 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 5232 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 5233 return false; 5234 } 5235 return true; 5236 } 5237 5238 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { 5239 // No need to vectorize inserts of gathered values. 5240 if (VectorizableTree.size() == 2 && 5241 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 5242 VectorizableTree[1]->State == TreeEntry::NeedToGather) 5243 return true; 5244 5245 // We can vectorize the tree if its size is greater than or equal to the 5246 // minimum size specified by the MinTreeSize command line option. 5247 if (VectorizableTree.size() >= MinTreeSize) 5248 return false; 5249 5250 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 5251 // can vectorize it if we can prove it fully vectorizable. 5252 if (isFullyVectorizableTinyTree(ForReduction)) 5253 return false; 5254 5255 assert(VectorizableTree.empty() 5256 ? ExternalUses.empty() 5257 : true && "We shouldn't have any external users"); 5258 5259 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 5260 // vectorizable. 5261 return true; 5262 } 5263 5264 InstructionCost BoUpSLP::getSpillCost() const { 5265 // Walk from the bottom of the tree to the top, tracking which values are 5266 // live. When we see a call instruction that is not part of our tree, 5267 // query TTI to see if there is a cost to keeping values live over it 5268 // (for example, if spills and fills are required). 5269 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 5270 InstructionCost Cost = 0; 5271 5272 SmallPtrSet<Instruction*, 4> LiveValues; 5273 Instruction *PrevInst = nullptr; 5274 5275 // The entries in VectorizableTree are not necessarily ordered by their 5276 // position in basic blocks. Collect them and order them by dominance so later 5277 // instructions are guaranteed to be visited first. For instructions in 5278 // different basic blocks, we only scan to the beginning of the block, so 5279 // their order does not matter, as long as all instructions in a basic block 5280 // are grouped together. Using dominance ensures a deterministic order. 5281 SmallVector<Instruction *, 16> OrderedScalars; 5282 for (const auto &TEPtr : VectorizableTree) { 5283 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 5284 if (!Inst) 5285 continue; 5286 OrderedScalars.push_back(Inst); 5287 } 5288 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 5289 auto *NodeA = DT->getNode(A->getParent()); 5290 auto *NodeB = DT->getNode(B->getParent()); 5291 assert(NodeA && "Should only process reachable instructions"); 5292 assert(NodeB && "Should only process reachable instructions"); 5293 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 5294 "Different nodes should have different DFS numbers"); 5295 if (NodeA != NodeB) 5296 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 5297 return B->comesBefore(A); 5298 }); 5299 5300 for (Instruction *Inst : OrderedScalars) { 5301 if (!PrevInst) { 5302 PrevInst = Inst; 5303 continue; 5304 } 5305 5306 // Update LiveValues. 5307 LiveValues.erase(PrevInst); 5308 for (auto &J : PrevInst->operands()) { 5309 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 5310 LiveValues.insert(cast<Instruction>(&*J)); 5311 } 5312 5313 LLVM_DEBUG({ 5314 dbgs() << "SLP: #LV: " << LiveValues.size(); 5315 for (auto *X : LiveValues) 5316 dbgs() << " " << X->getName(); 5317 dbgs() << ", Looking at "; 5318 Inst->dump(); 5319 }); 5320 5321 // Now find the sequence of instructions between PrevInst and Inst. 5322 unsigned NumCalls = 0; 5323 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 5324 PrevInstIt = 5325 PrevInst->getIterator().getReverse(); 5326 while (InstIt != PrevInstIt) { 5327 if (PrevInstIt == PrevInst->getParent()->rend()) { 5328 PrevInstIt = Inst->getParent()->rbegin(); 5329 continue; 5330 } 5331 5332 // Debug information does not impact spill cost. 5333 if ((isa<CallInst>(&*PrevInstIt) && 5334 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 5335 &*PrevInstIt != PrevInst) 5336 NumCalls++; 5337 5338 ++PrevInstIt; 5339 } 5340 5341 if (NumCalls) { 5342 SmallVector<Type*, 4> V; 5343 for (auto *II : LiveValues) { 5344 auto *ScalarTy = II->getType(); 5345 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 5346 ScalarTy = VectorTy->getElementType(); 5347 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 5348 } 5349 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 5350 } 5351 5352 PrevInst = Inst; 5353 } 5354 5355 return Cost; 5356 } 5357 5358 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 5359 InstructionCost Cost = 0; 5360 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 5361 << VectorizableTree.size() << ".\n"); 5362 5363 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 5364 5365 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 5366 TreeEntry &TE = *VectorizableTree[I].get(); 5367 5368 InstructionCost C = getEntryCost(&TE, VectorizedVals); 5369 Cost += C; 5370 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5371 << " for bundle that starts with " << *TE.Scalars[0] 5372 << ".\n" 5373 << "SLP: Current total cost = " << Cost << "\n"); 5374 } 5375 5376 SmallPtrSet<Value *, 16> ExtractCostCalculated; 5377 InstructionCost ExtractCost = 0; 5378 SmallVector<unsigned> VF; 5379 SmallVector<SmallVector<int>> ShuffleMask; 5380 SmallVector<Value *> FirstUsers; 5381 SmallVector<APInt> DemandedElts; 5382 for (ExternalUser &EU : ExternalUses) { 5383 // We only add extract cost once for the same scalar. 5384 if (!ExtractCostCalculated.insert(EU.Scalar).second) 5385 continue; 5386 5387 // Uses by ephemeral values are free (because the ephemeral value will be 5388 // removed prior to code generation, and so the extraction will be 5389 // removed as well). 5390 if (EphValues.count(EU.User)) 5391 continue; 5392 5393 // No extract cost for vector "scalar" 5394 if (isa<FixedVectorType>(EU.Scalar->getType())) 5395 continue; 5396 5397 // Already counted the cost for external uses when tried to adjust the cost 5398 // for extractelements, no need to add it again. 5399 if (isa<ExtractElementInst>(EU.Scalar)) 5400 continue; 5401 5402 // If found user is an insertelement, do not calculate extract cost but try 5403 // to detect it as a final shuffled/identity match. 5404 if (isa_and_nonnull<InsertElementInst>(EU.User)) { 5405 if (auto *FTy = dyn_cast<FixedVectorType>(EU.User->getType())) { 5406 Optional<int> InsertIdx = getInsertIndex(EU.User, 0); 5407 if (!InsertIdx || *InsertIdx == UndefMaskElem) 5408 continue; 5409 Value *VU = EU.User; 5410 auto *It = find_if(FirstUsers, [VU](Value *V) { 5411 // Checks if 2 insertelements are from the same buildvector. 5412 if (VU->getType() != V->getType()) 5413 return false; 5414 auto *IE1 = cast<InsertElementInst>(VU); 5415 auto *IE2 = cast<InsertElementInst>(V); 5416 // Go through of insertelement instructions trying to find either VU 5417 // as the original vector for IE2 or V as the original vector for IE1. 5418 do { 5419 if (IE1 == VU || IE2 == V) 5420 return true; 5421 if (IE1) 5422 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 5423 if (IE2) 5424 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 5425 } while (IE1 || IE2); 5426 return false; 5427 }); 5428 int VecId = -1; 5429 if (It == FirstUsers.end()) { 5430 VF.push_back(FTy->getNumElements()); 5431 ShuffleMask.emplace_back(VF.back(), UndefMaskElem); 5432 FirstUsers.push_back(EU.User); 5433 DemandedElts.push_back(APInt::getZero(VF.back())); 5434 VecId = FirstUsers.size() - 1; 5435 } else { 5436 VecId = std::distance(FirstUsers.begin(), It); 5437 } 5438 int Idx = *InsertIdx; 5439 ShuffleMask[VecId][Idx] = EU.Lane; 5440 DemandedElts[VecId].setBit(Idx); 5441 } 5442 } 5443 5444 // If we plan to rewrite the tree in a smaller type, we will need to sign 5445 // extend the extracted value back to the original type. Here, we account 5446 // for the extract and the added cost of the sign extend if needed. 5447 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 5448 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 5449 if (MinBWs.count(ScalarRoot)) { 5450 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 5451 auto Extend = 5452 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 5453 VecTy = FixedVectorType::get(MinTy, BundleWidth); 5454 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 5455 VecTy, EU.Lane); 5456 } else { 5457 ExtractCost += 5458 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 5459 } 5460 } 5461 5462 InstructionCost SpillCost = getSpillCost(); 5463 Cost += SpillCost + ExtractCost; 5464 for (int I = 0, E = FirstUsers.size(); I < E; ++I) { 5465 // For the very first element - simple shuffle of the source vector. 5466 int Limit = ShuffleMask[I].size() * 2; 5467 if (I == 0 && 5468 all_of(ShuffleMask[I], [Limit](int Idx) { return Idx < Limit; }) && 5469 !ShuffleVectorInst::isIdentityMask(ShuffleMask[I])) { 5470 InstructionCost C = TTI->getShuffleCost( 5471 TTI::SK_PermuteSingleSrc, 5472 cast<FixedVectorType>(FirstUsers[I]->getType()), ShuffleMask[I]); 5473 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5474 << " for final shuffle of insertelement external users " 5475 << *VectorizableTree.front()->Scalars.front() << ".\n" 5476 << "SLP: Current total cost = " << Cost << "\n"); 5477 Cost += C; 5478 continue; 5479 } 5480 // Other elements - permutation of 2 vectors (the initial one and the next 5481 // Ith incoming vector). 5482 unsigned VF = ShuffleMask[I].size(); 5483 for (unsigned Idx = 0; Idx < VF; ++Idx) { 5484 int &Mask = ShuffleMask[I][Idx]; 5485 Mask = Mask == UndefMaskElem ? Idx : VF + Mask; 5486 } 5487 InstructionCost C = TTI->getShuffleCost( 5488 TTI::SK_PermuteTwoSrc, cast<FixedVectorType>(FirstUsers[I]->getType()), 5489 ShuffleMask[I]); 5490 LLVM_DEBUG( 5491 dbgs() 5492 << "SLP: Adding cost " << C 5493 << " for final shuffle of vector node and external insertelement users " 5494 << *VectorizableTree.front()->Scalars.front() << ".\n" 5495 << "SLP: Current total cost = " << Cost << "\n"); 5496 Cost += C; 5497 InstructionCost InsertCost = TTI->getScalarizationOverhead( 5498 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I], 5499 /*Insert*/ true, 5500 /*Extract*/ false); 5501 Cost -= InsertCost; 5502 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 5503 << " for insertelements gather.\n" 5504 << "SLP: Current total cost = " << Cost << "\n"); 5505 } 5506 5507 #ifndef NDEBUG 5508 SmallString<256> Str; 5509 { 5510 raw_svector_ostream OS(Str); 5511 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 5512 << "SLP: Extract Cost = " << ExtractCost << ".\n" 5513 << "SLP: Total Cost = " << Cost << ".\n"; 5514 } 5515 LLVM_DEBUG(dbgs() << Str); 5516 if (ViewSLPTree) 5517 ViewGraph(this, "SLP" + F->getName(), false, Str); 5518 #endif 5519 5520 return Cost; 5521 } 5522 5523 Optional<TargetTransformInfo::ShuffleKind> 5524 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 5525 SmallVectorImpl<const TreeEntry *> &Entries) { 5526 // TODO: currently checking only for Scalars in the tree entry, need to count 5527 // reused elements too for better cost estimation. 5528 Mask.assign(TE->Scalars.size(), UndefMaskElem); 5529 Entries.clear(); 5530 // Build a lists of values to tree entries. 5531 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 5532 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 5533 if (EntryPtr.get() == TE) 5534 break; 5535 if (EntryPtr->State != TreeEntry::NeedToGather) 5536 continue; 5537 for (Value *V : EntryPtr->Scalars) 5538 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 5539 } 5540 // Find all tree entries used by the gathered values. If no common entries 5541 // found - not a shuffle. 5542 // Here we build a set of tree nodes for each gathered value and trying to 5543 // find the intersection between these sets. If we have at least one common 5544 // tree node for each gathered value - we have just a permutation of the 5545 // single vector. If we have 2 different sets, we're in situation where we 5546 // have a permutation of 2 input vectors. 5547 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 5548 DenseMap<Value *, int> UsedValuesEntry; 5549 for (Value *V : TE->Scalars) { 5550 if (isa<UndefValue>(V)) 5551 continue; 5552 // Build a list of tree entries where V is used. 5553 SmallPtrSet<const TreeEntry *, 4> VToTEs; 5554 auto It = ValueToTEs.find(V); 5555 if (It != ValueToTEs.end()) 5556 VToTEs = It->second; 5557 if (const TreeEntry *VTE = getTreeEntry(V)) 5558 VToTEs.insert(VTE); 5559 if (VToTEs.empty()) 5560 return None; 5561 if (UsedTEs.empty()) { 5562 // The first iteration, just insert the list of nodes to vector. 5563 UsedTEs.push_back(VToTEs); 5564 } else { 5565 // Need to check if there are any previously used tree nodes which use V. 5566 // If there are no such nodes, consider that we have another one input 5567 // vector. 5568 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 5569 unsigned Idx = 0; 5570 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 5571 // Do we have a non-empty intersection of previously listed tree entries 5572 // and tree entries using current V? 5573 set_intersect(VToTEs, Set); 5574 if (!VToTEs.empty()) { 5575 // Yes, write the new subset and continue analysis for the next 5576 // scalar. 5577 Set.swap(VToTEs); 5578 break; 5579 } 5580 VToTEs = SavedVToTEs; 5581 ++Idx; 5582 } 5583 // No non-empty intersection found - need to add a second set of possible 5584 // source vectors. 5585 if (Idx == UsedTEs.size()) { 5586 // If the number of input vectors is greater than 2 - not a permutation, 5587 // fallback to the regular gather. 5588 if (UsedTEs.size() == 2) 5589 return None; 5590 UsedTEs.push_back(SavedVToTEs); 5591 Idx = UsedTEs.size() - 1; 5592 } 5593 UsedValuesEntry.try_emplace(V, Idx); 5594 } 5595 } 5596 5597 unsigned VF = 0; 5598 if (UsedTEs.size() == 1) { 5599 // Try to find the perfect match in another gather node at first. 5600 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 5601 return EntryPtr->isSame(TE->Scalars); 5602 }); 5603 if (It != UsedTEs.front().end()) { 5604 Entries.push_back(*It); 5605 std::iota(Mask.begin(), Mask.end(), 0); 5606 return TargetTransformInfo::SK_PermuteSingleSrc; 5607 } 5608 // No perfect match, just shuffle, so choose the first tree node. 5609 Entries.push_back(*UsedTEs.front().begin()); 5610 } else { 5611 // Try to find nodes with the same vector factor. 5612 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 5613 DenseMap<int, const TreeEntry *> VFToTE; 5614 for (const TreeEntry *TE : UsedTEs.front()) 5615 VFToTE.try_emplace(TE->getVectorFactor(), TE); 5616 for (const TreeEntry *TE : UsedTEs.back()) { 5617 auto It = VFToTE.find(TE->getVectorFactor()); 5618 if (It != VFToTE.end()) { 5619 VF = It->first; 5620 Entries.push_back(It->second); 5621 Entries.push_back(TE); 5622 break; 5623 } 5624 } 5625 // No 2 source vectors with the same vector factor - give up and do regular 5626 // gather. 5627 if (Entries.empty()) 5628 return None; 5629 } 5630 5631 // Build a shuffle mask for better cost estimation and vector emission. 5632 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 5633 Value *V = TE->Scalars[I]; 5634 if (isa<UndefValue>(V)) 5635 continue; 5636 unsigned Idx = UsedValuesEntry.lookup(V); 5637 const TreeEntry *VTE = Entries[Idx]; 5638 int FoundLane = VTE->findLaneForValue(V); 5639 Mask[I] = Idx * VF + FoundLane; 5640 // Extra check required by isSingleSourceMaskImpl function (called by 5641 // ShuffleVectorInst::isSingleSourceMask). 5642 if (Mask[I] >= 2 * E) 5643 return None; 5644 } 5645 switch (Entries.size()) { 5646 case 1: 5647 return TargetTransformInfo::SK_PermuteSingleSrc; 5648 case 2: 5649 return TargetTransformInfo::SK_PermuteTwoSrc; 5650 default: 5651 break; 5652 } 5653 return None; 5654 } 5655 5656 InstructionCost 5657 BoUpSLP::getGatherCost(FixedVectorType *Ty, 5658 const DenseSet<unsigned> &ShuffledIndices, 5659 bool NeedToShuffle) const { 5660 unsigned NumElts = Ty->getNumElements(); 5661 APInt DemandedElts = APInt::getZero(NumElts); 5662 for (unsigned I = 0; I < NumElts; ++I) 5663 if (!ShuffledIndices.count(I)) 5664 DemandedElts.setBit(I); 5665 InstructionCost Cost = 5666 TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true, 5667 /*Extract*/ false); 5668 if (NeedToShuffle) 5669 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 5670 return Cost; 5671 } 5672 5673 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 5674 // Find the type of the operands in VL. 5675 Type *ScalarTy = VL[0]->getType(); 5676 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 5677 ScalarTy = SI->getValueOperand()->getType(); 5678 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 5679 bool DuplicateNonConst = false; 5680 // Find the cost of inserting/extracting values from the vector. 5681 // Check if the same elements are inserted several times and count them as 5682 // shuffle candidates. 5683 DenseSet<unsigned> ShuffledElements; 5684 DenseSet<Value *> UniqueElements; 5685 // Iterate in reverse order to consider insert elements with the high cost. 5686 for (unsigned I = VL.size(); I > 0; --I) { 5687 unsigned Idx = I - 1; 5688 // No need to shuffle duplicates for constants. 5689 if (isConstant(VL[Idx])) { 5690 ShuffledElements.insert(Idx); 5691 continue; 5692 } 5693 if (!UniqueElements.insert(VL[Idx]).second) { 5694 DuplicateNonConst = true; 5695 ShuffledElements.insert(Idx); 5696 } 5697 } 5698 return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst); 5699 } 5700 5701 // Perform operand reordering on the instructions in VL and return the reordered 5702 // operands in Left and Right. 5703 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 5704 SmallVectorImpl<Value *> &Left, 5705 SmallVectorImpl<Value *> &Right, 5706 const DataLayout &DL, 5707 ScalarEvolution &SE, 5708 const BoUpSLP &R) { 5709 if (VL.empty()) 5710 return; 5711 VLOperands Ops(VL, DL, SE, R); 5712 // Reorder the operands in place. 5713 Ops.reorder(); 5714 Left = Ops.getVL(0); 5715 Right = Ops.getVL(1); 5716 } 5717 5718 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 5719 // Get the basic block this bundle is in. All instructions in the bundle 5720 // should be in this block. 5721 auto *Front = E->getMainOp(); 5722 auto *BB = Front->getParent(); 5723 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 5724 auto *I = cast<Instruction>(V); 5725 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 5726 })); 5727 5728 // The last instruction in the bundle in program order. 5729 Instruction *LastInst = nullptr; 5730 5731 // Find the last instruction. The common case should be that BB has been 5732 // scheduled, and the last instruction is VL.back(). So we start with 5733 // VL.back() and iterate over schedule data until we reach the end of the 5734 // bundle. The end of the bundle is marked by null ScheduleData. 5735 if (BlocksSchedules.count(BB)) { 5736 auto *Bundle = 5737 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 5738 if (Bundle && Bundle->isPartOfBundle()) 5739 for (; Bundle; Bundle = Bundle->NextInBundle) 5740 if (Bundle->OpValue == Bundle->Inst) 5741 LastInst = Bundle->Inst; 5742 } 5743 5744 // LastInst can still be null at this point if there's either not an entry 5745 // for BB in BlocksSchedules or there's no ScheduleData available for 5746 // VL.back(). This can be the case if buildTree_rec aborts for various 5747 // reasons (e.g., the maximum recursion depth is reached, the maximum region 5748 // size is reached, etc.). ScheduleData is initialized in the scheduling 5749 // "dry-run". 5750 // 5751 // If this happens, we can still find the last instruction by brute force. We 5752 // iterate forwards from Front (inclusive) until we either see all 5753 // instructions in the bundle or reach the end of the block. If Front is the 5754 // last instruction in program order, LastInst will be set to Front, and we 5755 // will visit all the remaining instructions in the block. 5756 // 5757 // One of the reasons we exit early from buildTree_rec is to place an upper 5758 // bound on compile-time. Thus, taking an additional compile-time hit here is 5759 // not ideal. However, this should be exceedingly rare since it requires that 5760 // we both exit early from buildTree_rec and that the bundle be out-of-order 5761 // (causing us to iterate all the way to the end of the block). 5762 if (!LastInst) { 5763 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 5764 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 5765 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 5766 LastInst = &I; 5767 if (Bundle.empty()) 5768 break; 5769 } 5770 } 5771 assert(LastInst && "Failed to find last instruction in bundle"); 5772 5773 // Set the insertion point after the last instruction in the bundle. Set the 5774 // debug location to Front. 5775 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 5776 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 5777 } 5778 5779 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 5780 // List of instructions/lanes from current block and/or the blocks which are 5781 // part of the current loop. These instructions will be inserted at the end to 5782 // make it possible to optimize loops and hoist invariant instructions out of 5783 // the loops body with better chances for success. 5784 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 5785 SmallSet<int, 4> PostponedIndices; 5786 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 5787 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 5788 SmallPtrSet<BasicBlock *, 4> Visited; 5789 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 5790 InsertBB = InsertBB->getSinglePredecessor(); 5791 return InsertBB && InsertBB == InstBB; 5792 }; 5793 for (int I = 0, E = VL.size(); I < E; ++I) { 5794 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 5795 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 5796 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 5797 PostponedIndices.insert(I).second) 5798 PostponedInsts.emplace_back(Inst, I); 5799 } 5800 5801 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 5802 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 5803 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 5804 if (!InsElt) 5805 return Vec; 5806 GatherShuffleSeq.insert(InsElt); 5807 CSEBlocks.insert(InsElt->getParent()); 5808 // Add to our 'need-to-extract' list. 5809 if (TreeEntry *Entry = getTreeEntry(V)) { 5810 // Find which lane we need to extract. 5811 unsigned FoundLane = Entry->findLaneForValue(V); 5812 ExternalUses.emplace_back(V, InsElt, FoundLane); 5813 } 5814 return Vec; 5815 }; 5816 Value *Val0 = 5817 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 5818 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 5819 Value *Vec = PoisonValue::get(VecTy); 5820 SmallVector<int> NonConsts; 5821 // Insert constant values at first. 5822 for (int I = 0, E = VL.size(); I < E; ++I) { 5823 if (PostponedIndices.contains(I)) 5824 continue; 5825 if (!isConstant(VL[I])) { 5826 NonConsts.push_back(I); 5827 continue; 5828 } 5829 Vec = CreateInsertElement(Vec, VL[I], I); 5830 } 5831 // Insert non-constant values. 5832 for (int I : NonConsts) 5833 Vec = CreateInsertElement(Vec, VL[I], I); 5834 // Append instructions, which are/may be part of the loop, in the end to make 5835 // it possible to hoist non-loop-based instructions. 5836 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 5837 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 5838 5839 return Vec; 5840 } 5841 5842 namespace { 5843 /// Merges shuffle masks and emits final shuffle instruction, if required. 5844 class ShuffleInstructionBuilder { 5845 IRBuilderBase &Builder; 5846 const unsigned VF = 0; 5847 bool IsFinalized = false; 5848 SmallVector<int, 4> Mask; 5849 5850 public: 5851 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF) 5852 : Builder(Builder), VF(VF) {} 5853 5854 /// Adds a mask, inverting it before applying. 5855 void addInversedMask(ArrayRef<unsigned> SubMask) { 5856 if (SubMask.empty()) 5857 return; 5858 SmallVector<int, 4> NewMask; 5859 inversePermutation(SubMask, NewMask); 5860 addMask(NewMask); 5861 } 5862 5863 /// Functions adds masks, merging them into single one. 5864 void addMask(ArrayRef<unsigned> SubMask) { 5865 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 5866 addMask(NewMask); 5867 } 5868 5869 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 5870 5871 Value *finalize(Value *V) { 5872 IsFinalized = true; 5873 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 5874 if (VF == ValueVF && Mask.empty()) 5875 return V; 5876 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 5877 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 5878 addMask(NormalizedMask); 5879 5880 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 5881 return V; 5882 return Builder.CreateShuffleVector(V, Mask, "shuffle"); 5883 } 5884 5885 ~ShuffleInstructionBuilder() { 5886 assert((IsFinalized || Mask.empty()) && 5887 "Shuffle construction must be finalized."); 5888 } 5889 }; 5890 } // namespace 5891 5892 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 5893 unsigned VF = VL.size(); 5894 InstructionsState S = getSameOpcode(VL); 5895 if (S.getOpcode()) { 5896 if (TreeEntry *E = getTreeEntry(S.OpValue)) 5897 if (E->isSame(VL)) { 5898 Value *V = vectorizeTree(E); 5899 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 5900 if (!E->ReuseShuffleIndices.empty()) { 5901 // Reshuffle to get only unique values. 5902 // If some of the scalars are duplicated in the vectorization tree 5903 // entry, we do not vectorize them but instead generate a mask for 5904 // the reuses. But if there are several users of the same entry, 5905 // they may have different vectorization factors. This is especially 5906 // important for PHI nodes. In this case, we need to adapt the 5907 // resulting instruction for the user vectorization factor and have 5908 // to reshuffle it again to take only unique elements of the vector. 5909 // Without this code the function incorrectly returns reduced vector 5910 // instruction with the same elements, not with the unique ones. 5911 5912 // block: 5913 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 5914 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> 5915 // ... (use %2) 5916 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} 5917 // br %block 5918 SmallVector<int> UniqueIdxs(VF, UndefMaskElem); 5919 SmallSet<int, 4> UsedIdxs; 5920 int Pos = 0; 5921 int Sz = VL.size(); 5922 for (int Idx : E->ReuseShuffleIndices) { 5923 if (Idx != Sz && Idx != UndefMaskElem && 5924 UsedIdxs.insert(Idx).second) 5925 UniqueIdxs[Idx] = Pos; 5926 ++Pos; 5927 } 5928 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 5929 "less than original vector size."); 5930 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 5931 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 5932 } else { 5933 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 5934 "Expected vectorization factor less " 5935 "than original vector size."); 5936 SmallVector<int> UniformMask(VF, 0); 5937 std::iota(UniformMask.begin(), UniformMask.end(), 0); 5938 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 5939 } 5940 } 5941 return V; 5942 } 5943 } 5944 5945 // Check that every instruction appears once in this bundle. 5946 SmallVector<int> ReuseShuffleIndicies; 5947 SmallVector<Value *> UniqueValues; 5948 if (VL.size() > 2) { 5949 DenseMap<Value *, unsigned> UniquePositions; 5950 unsigned NumValues = 5951 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 5952 return !isa<UndefValue>(V); 5953 }).base()); 5954 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 5955 int UniqueVals = 0; 5956 for (Value *V : VL.drop_back(VL.size() - VF)) { 5957 if (isa<UndefValue>(V)) { 5958 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 5959 continue; 5960 } 5961 if (isConstant(V)) { 5962 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 5963 UniqueValues.emplace_back(V); 5964 continue; 5965 } 5966 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 5967 ReuseShuffleIndicies.emplace_back(Res.first->second); 5968 if (Res.second) { 5969 UniqueValues.emplace_back(V); 5970 ++UniqueVals; 5971 } 5972 } 5973 if (UniqueVals == 1 && UniqueValues.size() == 1) { 5974 // Emit pure splat vector. 5975 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 5976 UndefMaskElem); 5977 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 5978 ReuseShuffleIndicies.clear(); 5979 UniqueValues.clear(); 5980 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 5981 } 5982 UniqueValues.append(VF - UniqueValues.size(), 5983 PoisonValue::get(VL[0]->getType())); 5984 VL = UniqueValues; 5985 } 5986 5987 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF); 5988 Value *Vec = gather(VL); 5989 if (!ReuseShuffleIndicies.empty()) { 5990 ShuffleBuilder.addMask(ReuseShuffleIndicies); 5991 Vec = ShuffleBuilder.finalize(Vec); 5992 if (auto *I = dyn_cast<Instruction>(Vec)) { 5993 GatherShuffleSeq.insert(I); 5994 CSEBlocks.insert(I->getParent()); 5995 } 5996 } 5997 return Vec; 5998 } 5999 6000 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 6001 IRBuilder<>::InsertPointGuard Guard(Builder); 6002 6003 if (E->VectorizedValue) { 6004 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 6005 return E->VectorizedValue; 6006 } 6007 6008 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 6009 unsigned VF = E->getVectorFactor(); 6010 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF); 6011 if (E->State == TreeEntry::NeedToGather) { 6012 if (E->getMainOp()) 6013 setInsertPointAfterBundle(E); 6014 Value *Vec; 6015 SmallVector<int> Mask; 6016 SmallVector<const TreeEntry *> Entries; 6017 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 6018 isGatherShuffledEntry(E, Mask, Entries); 6019 if (Shuffle.hasValue()) { 6020 assert((Entries.size() == 1 || Entries.size() == 2) && 6021 "Expected shuffle of 1 or 2 entries."); 6022 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 6023 Entries.back()->VectorizedValue, Mask); 6024 } else { 6025 Vec = gather(E->Scalars); 6026 } 6027 if (NeedToShuffleReuses) { 6028 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6029 Vec = ShuffleBuilder.finalize(Vec); 6030 if (auto *I = dyn_cast<Instruction>(Vec)) { 6031 GatherShuffleSeq.insert(I); 6032 CSEBlocks.insert(I->getParent()); 6033 } 6034 } 6035 E->VectorizedValue = Vec; 6036 return Vec; 6037 } 6038 6039 assert((E->State == TreeEntry::Vectorize || 6040 E->State == TreeEntry::ScatterVectorize) && 6041 "Unhandled state"); 6042 unsigned ShuffleOrOp = 6043 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 6044 Instruction *VL0 = E->getMainOp(); 6045 Type *ScalarTy = VL0->getType(); 6046 if (auto *Store = dyn_cast<StoreInst>(VL0)) 6047 ScalarTy = Store->getValueOperand()->getType(); 6048 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 6049 ScalarTy = IE->getOperand(1)->getType(); 6050 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 6051 switch (ShuffleOrOp) { 6052 case Instruction::PHI: { 6053 assert( 6054 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 6055 "PHI reordering is free."); 6056 auto *PH = cast<PHINode>(VL0); 6057 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 6058 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6059 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 6060 Value *V = NewPhi; 6061 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6062 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6063 V = ShuffleBuilder.finalize(V); 6064 6065 E->VectorizedValue = V; 6066 6067 // PHINodes may have multiple entries from the same block. We want to 6068 // visit every block once. 6069 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 6070 6071 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 6072 ValueList Operands; 6073 BasicBlock *IBB = PH->getIncomingBlock(i); 6074 6075 if (!VisitedBBs.insert(IBB).second) { 6076 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 6077 continue; 6078 } 6079 6080 Builder.SetInsertPoint(IBB->getTerminator()); 6081 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6082 Value *Vec = vectorizeTree(E->getOperand(i)); 6083 NewPhi->addIncoming(Vec, IBB); 6084 } 6085 6086 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 6087 "Invalid number of incoming values"); 6088 return V; 6089 } 6090 6091 case Instruction::ExtractElement: { 6092 Value *V = E->getSingleOperand(0); 6093 Builder.SetInsertPoint(VL0); 6094 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6095 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6096 V = ShuffleBuilder.finalize(V); 6097 E->VectorizedValue = V; 6098 return V; 6099 } 6100 case Instruction::ExtractValue: { 6101 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 6102 Builder.SetInsertPoint(LI); 6103 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 6104 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 6105 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 6106 Value *NewV = propagateMetadata(V, E->Scalars); 6107 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6108 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6109 NewV = ShuffleBuilder.finalize(NewV); 6110 E->VectorizedValue = NewV; 6111 return NewV; 6112 } 6113 case Instruction::InsertElement: { 6114 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 6115 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 6116 Value *V = vectorizeTree(E->getOperand(1)); 6117 6118 // Create InsertVector shuffle if necessary 6119 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 6120 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 6121 })); 6122 const unsigned NumElts = 6123 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 6124 const unsigned NumScalars = E->Scalars.size(); 6125 6126 unsigned Offset = *getInsertIndex(VL0, 0); 6127 assert(Offset < NumElts && "Failed to find vector index offset"); 6128 6129 // Create shuffle to resize vector 6130 SmallVector<int> Mask; 6131 if (!E->ReorderIndices.empty()) { 6132 inversePermutation(E->ReorderIndices, Mask); 6133 Mask.append(NumElts - NumScalars, UndefMaskElem); 6134 } else { 6135 Mask.assign(NumElts, UndefMaskElem); 6136 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 6137 } 6138 // Create InsertVector shuffle if necessary 6139 bool IsIdentity = true; 6140 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 6141 Mask.swap(PrevMask); 6142 for (unsigned I = 0; I < NumScalars; ++I) { 6143 Value *Scalar = E->Scalars[PrevMask[I]]; 6144 Optional<int> InsertIdx = getInsertIndex(Scalar, 0); 6145 if (!InsertIdx || *InsertIdx == UndefMaskElem) 6146 continue; 6147 IsIdentity &= *InsertIdx - Offset == I; 6148 Mask[*InsertIdx - Offset] = I; 6149 } 6150 if (!IsIdentity || NumElts != NumScalars) 6151 V = Builder.CreateShuffleVector(V, Mask); 6152 6153 if ((!IsIdentity || Offset != 0 || 6154 !isa<UndefValue>(FirstInsert->getOperand(0))) && 6155 NumElts != NumScalars) { 6156 SmallVector<int> InsertMask(NumElts); 6157 std::iota(InsertMask.begin(), InsertMask.end(), 0); 6158 for (unsigned I = 0; I < NumElts; I++) { 6159 if (Mask[I] != UndefMaskElem) 6160 InsertMask[Offset + I] = NumElts + I; 6161 } 6162 6163 V = Builder.CreateShuffleVector( 6164 FirstInsert->getOperand(0), V, InsertMask, 6165 cast<Instruction>(E->Scalars.back())->getName()); 6166 } 6167 6168 ++NumVectorInstructions; 6169 E->VectorizedValue = V; 6170 return V; 6171 } 6172 case Instruction::ZExt: 6173 case Instruction::SExt: 6174 case Instruction::FPToUI: 6175 case Instruction::FPToSI: 6176 case Instruction::FPExt: 6177 case Instruction::PtrToInt: 6178 case Instruction::IntToPtr: 6179 case Instruction::SIToFP: 6180 case Instruction::UIToFP: 6181 case Instruction::Trunc: 6182 case Instruction::FPTrunc: 6183 case Instruction::BitCast: { 6184 setInsertPointAfterBundle(E); 6185 6186 Value *InVec = vectorizeTree(E->getOperand(0)); 6187 6188 if (E->VectorizedValue) { 6189 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6190 return E->VectorizedValue; 6191 } 6192 6193 auto *CI = cast<CastInst>(VL0); 6194 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 6195 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6196 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6197 V = ShuffleBuilder.finalize(V); 6198 6199 E->VectorizedValue = V; 6200 ++NumVectorInstructions; 6201 return V; 6202 } 6203 case Instruction::FCmp: 6204 case Instruction::ICmp: { 6205 setInsertPointAfterBundle(E); 6206 6207 Value *L = vectorizeTree(E->getOperand(0)); 6208 Value *R = vectorizeTree(E->getOperand(1)); 6209 6210 if (E->VectorizedValue) { 6211 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6212 return E->VectorizedValue; 6213 } 6214 6215 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 6216 Value *V = Builder.CreateCmp(P0, L, R); 6217 propagateIRFlags(V, E->Scalars, VL0); 6218 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6219 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6220 V = ShuffleBuilder.finalize(V); 6221 6222 E->VectorizedValue = V; 6223 ++NumVectorInstructions; 6224 return V; 6225 } 6226 case Instruction::Select: { 6227 setInsertPointAfterBundle(E); 6228 6229 Value *Cond = vectorizeTree(E->getOperand(0)); 6230 Value *True = vectorizeTree(E->getOperand(1)); 6231 Value *False = vectorizeTree(E->getOperand(2)); 6232 6233 if (E->VectorizedValue) { 6234 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6235 return E->VectorizedValue; 6236 } 6237 6238 Value *V = Builder.CreateSelect(Cond, True, False); 6239 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6240 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6241 V = ShuffleBuilder.finalize(V); 6242 6243 E->VectorizedValue = V; 6244 ++NumVectorInstructions; 6245 return V; 6246 } 6247 case Instruction::FNeg: { 6248 setInsertPointAfterBundle(E); 6249 6250 Value *Op = vectorizeTree(E->getOperand(0)); 6251 6252 if (E->VectorizedValue) { 6253 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6254 return E->VectorizedValue; 6255 } 6256 6257 Value *V = Builder.CreateUnOp( 6258 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 6259 propagateIRFlags(V, E->Scalars, VL0); 6260 if (auto *I = dyn_cast<Instruction>(V)) 6261 V = propagateMetadata(I, E->Scalars); 6262 6263 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6264 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6265 V = ShuffleBuilder.finalize(V); 6266 6267 E->VectorizedValue = V; 6268 ++NumVectorInstructions; 6269 6270 return V; 6271 } 6272 case Instruction::Add: 6273 case Instruction::FAdd: 6274 case Instruction::Sub: 6275 case Instruction::FSub: 6276 case Instruction::Mul: 6277 case Instruction::FMul: 6278 case Instruction::UDiv: 6279 case Instruction::SDiv: 6280 case Instruction::FDiv: 6281 case Instruction::URem: 6282 case Instruction::SRem: 6283 case Instruction::FRem: 6284 case Instruction::Shl: 6285 case Instruction::LShr: 6286 case Instruction::AShr: 6287 case Instruction::And: 6288 case Instruction::Or: 6289 case Instruction::Xor: { 6290 setInsertPointAfterBundle(E); 6291 6292 Value *LHS = vectorizeTree(E->getOperand(0)); 6293 Value *RHS = vectorizeTree(E->getOperand(1)); 6294 6295 if (E->VectorizedValue) { 6296 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6297 return E->VectorizedValue; 6298 } 6299 6300 Value *V = Builder.CreateBinOp( 6301 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 6302 RHS); 6303 propagateIRFlags(V, E->Scalars, VL0); 6304 if (auto *I = dyn_cast<Instruction>(V)) 6305 V = propagateMetadata(I, E->Scalars); 6306 6307 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6308 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6309 V = ShuffleBuilder.finalize(V); 6310 6311 E->VectorizedValue = V; 6312 ++NumVectorInstructions; 6313 6314 return V; 6315 } 6316 case Instruction::Load: { 6317 // Loads are inserted at the head of the tree because we don't want to 6318 // sink them all the way down past store instructions. 6319 setInsertPointAfterBundle(E); 6320 6321 LoadInst *LI = cast<LoadInst>(VL0); 6322 Instruction *NewLI; 6323 unsigned AS = LI->getPointerAddressSpace(); 6324 Value *PO = LI->getPointerOperand(); 6325 if (E->State == TreeEntry::Vectorize) { 6326 6327 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 6328 6329 // The pointer operand uses an in-tree scalar so we add the new BitCast 6330 // to ExternalUses list to make sure that an extract will be generated 6331 // in the future. 6332 if (TreeEntry *Entry = getTreeEntry(PO)) { 6333 // Find which lane we need to extract. 6334 unsigned FoundLane = Entry->findLaneForValue(PO); 6335 ExternalUses.emplace_back(PO, cast<User>(VecPtr), FoundLane); 6336 } 6337 6338 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 6339 } else { 6340 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 6341 Value *VecPtr = vectorizeTree(E->getOperand(0)); 6342 // Use the minimum alignment of the gathered loads. 6343 Align CommonAlignment = LI->getAlign(); 6344 for (Value *V : E->Scalars) 6345 CommonAlignment = 6346 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 6347 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 6348 } 6349 Value *V = propagateMetadata(NewLI, E->Scalars); 6350 6351 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6352 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6353 V = ShuffleBuilder.finalize(V); 6354 E->VectorizedValue = V; 6355 ++NumVectorInstructions; 6356 return V; 6357 } 6358 case Instruction::Store: { 6359 auto *SI = cast<StoreInst>(VL0); 6360 unsigned AS = SI->getPointerAddressSpace(); 6361 6362 setInsertPointAfterBundle(E); 6363 6364 Value *VecValue = vectorizeTree(E->getOperand(0)); 6365 ShuffleBuilder.addMask(E->ReorderIndices); 6366 VecValue = ShuffleBuilder.finalize(VecValue); 6367 6368 Value *ScalarPtr = SI->getPointerOperand(); 6369 Value *VecPtr = Builder.CreateBitCast( 6370 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 6371 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 6372 SI->getAlign()); 6373 6374 // The pointer operand uses an in-tree scalar, so add the new BitCast to 6375 // ExternalUses to make sure that an extract will be generated in the 6376 // future. 6377 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 6378 // Find which lane we need to extract. 6379 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 6380 ExternalUses.push_back( 6381 ExternalUser(ScalarPtr, cast<User>(VecPtr), FoundLane)); 6382 } 6383 6384 Value *V = propagateMetadata(ST, E->Scalars); 6385 6386 E->VectorizedValue = V; 6387 ++NumVectorInstructions; 6388 return V; 6389 } 6390 case Instruction::GetElementPtr: { 6391 auto *GEP0 = cast<GetElementPtrInst>(VL0); 6392 setInsertPointAfterBundle(E); 6393 6394 Value *Op0 = vectorizeTree(E->getOperand(0)); 6395 6396 SmallVector<Value *> OpVecs; 6397 for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) { 6398 Value *OpVec = vectorizeTree(E->getOperand(J)); 6399 OpVecs.push_back(OpVec); 6400 } 6401 6402 Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs); 6403 if (Instruction *I = dyn_cast<Instruction>(V)) 6404 V = propagateMetadata(I, E->Scalars); 6405 6406 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6407 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6408 V = ShuffleBuilder.finalize(V); 6409 6410 E->VectorizedValue = V; 6411 ++NumVectorInstructions; 6412 6413 return V; 6414 } 6415 case Instruction::Call: { 6416 CallInst *CI = cast<CallInst>(VL0); 6417 setInsertPointAfterBundle(E); 6418 6419 Intrinsic::ID IID = Intrinsic::not_intrinsic; 6420 if (Function *FI = CI->getCalledFunction()) 6421 IID = FI->getIntrinsicID(); 6422 6423 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6424 6425 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 6426 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 6427 VecCallCosts.first <= VecCallCosts.second; 6428 6429 Value *ScalarArg = nullptr; 6430 std::vector<Value *> OpVecs; 6431 SmallVector<Type *, 2> TysForDecl = 6432 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 6433 for (int j = 0, e = CI->arg_size(); j < e; ++j) { 6434 ValueList OpVL; 6435 // Some intrinsics have scalar arguments. This argument should not be 6436 // vectorized. 6437 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 6438 CallInst *CEI = cast<CallInst>(VL0); 6439 ScalarArg = CEI->getArgOperand(j); 6440 OpVecs.push_back(CEI->getArgOperand(j)); 6441 if (hasVectorInstrinsicOverloadedScalarOpd(IID, j)) 6442 TysForDecl.push_back(ScalarArg->getType()); 6443 continue; 6444 } 6445 6446 Value *OpVec = vectorizeTree(E->getOperand(j)); 6447 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 6448 OpVecs.push_back(OpVec); 6449 } 6450 6451 Function *CF; 6452 if (!UseIntrinsic) { 6453 VFShape Shape = 6454 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 6455 VecTy->getNumElements())), 6456 false /*HasGlobalPred*/); 6457 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 6458 } else { 6459 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 6460 } 6461 6462 SmallVector<OperandBundleDef, 1> OpBundles; 6463 CI->getOperandBundlesAsDefs(OpBundles); 6464 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 6465 6466 // The scalar argument uses an in-tree scalar so we add the new vectorized 6467 // call to ExternalUses list to make sure that an extract will be 6468 // generated in the future. 6469 if (ScalarArg) { 6470 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 6471 // Find which lane we need to extract. 6472 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 6473 ExternalUses.push_back( 6474 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 6475 } 6476 } 6477 6478 propagateIRFlags(V, E->Scalars, VL0); 6479 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6480 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6481 V = ShuffleBuilder.finalize(V); 6482 6483 E->VectorizedValue = V; 6484 ++NumVectorInstructions; 6485 return V; 6486 } 6487 case Instruction::ShuffleVector: { 6488 assert(E->isAltShuffle() && 6489 ((Instruction::isBinaryOp(E->getOpcode()) && 6490 Instruction::isBinaryOp(E->getAltOpcode())) || 6491 (Instruction::isCast(E->getOpcode()) && 6492 Instruction::isCast(E->getAltOpcode()))) && 6493 "Invalid Shuffle Vector Operand"); 6494 6495 Value *LHS = nullptr, *RHS = nullptr; 6496 if (Instruction::isBinaryOp(E->getOpcode())) { 6497 setInsertPointAfterBundle(E); 6498 LHS = vectorizeTree(E->getOperand(0)); 6499 RHS = vectorizeTree(E->getOperand(1)); 6500 } else { 6501 setInsertPointAfterBundle(E); 6502 LHS = vectorizeTree(E->getOperand(0)); 6503 } 6504 6505 if (E->VectorizedValue) { 6506 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6507 return E->VectorizedValue; 6508 } 6509 6510 Value *V0, *V1; 6511 if (Instruction::isBinaryOp(E->getOpcode())) { 6512 V0 = Builder.CreateBinOp( 6513 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 6514 V1 = Builder.CreateBinOp( 6515 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 6516 } else { 6517 V0 = Builder.CreateCast( 6518 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 6519 V1 = Builder.CreateCast( 6520 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 6521 } 6522 // Add V0 and V1 to later analysis to try to find and remove matching 6523 // instruction, if any. 6524 for (Value *V : {V0, V1}) { 6525 if (auto *I = dyn_cast<Instruction>(V)) { 6526 GatherShuffleSeq.insert(I); 6527 CSEBlocks.insert(I->getParent()); 6528 } 6529 } 6530 6531 // Create shuffle to take alternate operations from the vector. 6532 // Also, gather up main and alt scalar ops to propagate IR flags to 6533 // each vector operation. 6534 ValueList OpScalars, AltScalars; 6535 SmallVector<int> Mask; 6536 buildSuffleEntryMask( 6537 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 6538 [E](Instruction *I) { 6539 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 6540 return I->getOpcode() == E->getAltOpcode(); 6541 }, 6542 Mask, &OpScalars, &AltScalars); 6543 6544 propagateIRFlags(V0, OpScalars); 6545 propagateIRFlags(V1, AltScalars); 6546 6547 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 6548 if (Instruction *I = dyn_cast<Instruction>(V)) 6549 V = propagateMetadata(I, E->Scalars); 6550 V = ShuffleBuilder.finalize(V); 6551 6552 E->VectorizedValue = V; 6553 ++NumVectorInstructions; 6554 6555 return V; 6556 } 6557 default: 6558 llvm_unreachable("unknown inst"); 6559 } 6560 return nullptr; 6561 } 6562 6563 Value *BoUpSLP::vectorizeTree() { 6564 ExtraValueToDebugLocsMap ExternallyUsedValues; 6565 return vectorizeTree(ExternallyUsedValues); 6566 } 6567 6568 Value * 6569 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 6570 // All blocks must be scheduled before any instructions are inserted. 6571 for (auto &BSIter : BlocksSchedules) { 6572 scheduleBlock(BSIter.second.get()); 6573 } 6574 6575 Builder.SetInsertPoint(&F->getEntryBlock().front()); 6576 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 6577 6578 // If the vectorized tree can be rewritten in a smaller type, we truncate the 6579 // vectorized root. InstCombine will then rewrite the entire expression. We 6580 // sign extend the extracted values below. 6581 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 6582 if (MinBWs.count(ScalarRoot)) { 6583 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 6584 // If current instr is a phi and not the last phi, insert it after the 6585 // last phi node. 6586 if (isa<PHINode>(I)) 6587 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 6588 else 6589 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 6590 } 6591 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 6592 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 6593 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 6594 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 6595 VectorizableTree[0]->VectorizedValue = Trunc; 6596 } 6597 6598 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 6599 << " values .\n"); 6600 6601 // Extract all of the elements with the external uses. 6602 for (const auto &ExternalUse : ExternalUses) { 6603 Value *Scalar = ExternalUse.Scalar; 6604 llvm::User *User = ExternalUse.User; 6605 6606 // Skip users that we already RAUW. This happens when one instruction 6607 // has multiple uses of the same value. 6608 if (User && !is_contained(Scalar->users(), User)) 6609 continue; 6610 TreeEntry *E = getTreeEntry(Scalar); 6611 assert(E && "Invalid scalar"); 6612 assert(E->State != TreeEntry::NeedToGather && 6613 "Extracting from a gather list"); 6614 6615 Value *Vec = E->VectorizedValue; 6616 assert(Vec && "Can't find vectorizable value"); 6617 6618 Value *Lane = Builder.getInt32(ExternalUse.Lane); 6619 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 6620 if (Scalar->getType() != Vec->getType()) { 6621 Value *Ex; 6622 // "Reuse" the existing extract to improve final codegen. 6623 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 6624 Ex = Builder.CreateExtractElement(ES->getOperand(0), 6625 ES->getOperand(1)); 6626 } else { 6627 Ex = Builder.CreateExtractElement(Vec, Lane); 6628 } 6629 // If necessary, sign-extend or zero-extend ScalarRoot 6630 // to the larger type. 6631 if (!MinBWs.count(ScalarRoot)) 6632 return Ex; 6633 if (MinBWs[ScalarRoot].second) 6634 return Builder.CreateSExt(Ex, Scalar->getType()); 6635 return Builder.CreateZExt(Ex, Scalar->getType()); 6636 } 6637 assert(isa<FixedVectorType>(Scalar->getType()) && 6638 isa<InsertElementInst>(Scalar) && 6639 "In-tree scalar of vector type is not insertelement?"); 6640 return Vec; 6641 }; 6642 // If User == nullptr, the Scalar is used as extra arg. Generate 6643 // ExtractElement instruction and update the record for this scalar in 6644 // ExternallyUsedValues. 6645 if (!User) { 6646 assert(ExternallyUsedValues.count(Scalar) && 6647 "Scalar with nullptr as an external user must be registered in " 6648 "ExternallyUsedValues map"); 6649 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 6650 Builder.SetInsertPoint(VecI->getParent(), 6651 std::next(VecI->getIterator())); 6652 } else { 6653 Builder.SetInsertPoint(&F->getEntryBlock().front()); 6654 } 6655 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6656 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 6657 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 6658 auto It = ExternallyUsedValues.find(Scalar); 6659 assert(It != ExternallyUsedValues.end() && 6660 "Externally used scalar is not found in ExternallyUsedValues"); 6661 NewInstLocs.append(It->second); 6662 ExternallyUsedValues.erase(Scalar); 6663 // Required to update internally referenced instructions. 6664 Scalar->replaceAllUsesWith(NewInst); 6665 continue; 6666 } 6667 6668 // Generate extracts for out-of-tree users. 6669 // Find the insertion point for the extractelement lane. 6670 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 6671 if (PHINode *PH = dyn_cast<PHINode>(User)) { 6672 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 6673 if (PH->getIncomingValue(i) == Scalar) { 6674 Instruction *IncomingTerminator = 6675 PH->getIncomingBlock(i)->getTerminator(); 6676 if (isa<CatchSwitchInst>(IncomingTerminator)) { 6677 Builder.SetInsertPoint(VecI->getParent(), 6678 std::next(VecI->getIterator())); 6679 } else { 6680 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 6681 } 6682 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6683 CSEBlocks.insert(PH->getIncomingBlock(i)); 6684 PH->setOperand(i, NewInst); 6685 } 6686 } 6687 } else { 6688 Builder.SetInsertPoint(cast<Instruction>(User)); 6689 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6690 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 6691 User->replaceUsesOfWith(Scalar, NewInst); 6692 } 6693 } else { 6694 Builder.SetInsertPoint(&F->getEntryBlock().front()); 6695 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6696 CSEBlocks.insert(&F->getEntryBlock()); 6697 User->replaceUsesOfWith(Scalar, NewInst); 6698 } 6699 6700 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 6701 } 6702 6703 // For each vectorized value: 6704 for (auto &TEPtr : VectorizableTree) { 6705 TreeEntry *Entry = TEPtr.get(); 6706 6707 // No need to handle users of gathered values. 6708 if (Entry->State == TreeEntry::NeedToGather) 6709 continue; 6710 6711 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 6712 6713 // For each lane: 6714 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 6715 Value *Scalar = Entry->Scalars[Lane]; 6716 6717 #ifndef NDEBUG 6718 Type *Ty = Scalar->getType(); 6719 if (!Ty->isVoidTy()) { 6720 for (User *U : Scalar->users()) { 6721 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 6722 6723 // It is legal to delete users in the ignorelist. 6724 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) || 6725 (isa_and_nonnull<Instruction>(U) && 6726 isDeleted(cast<Instruction>(U)))) && 6727 "Deleting out-of-tree value"); 6728 } 6729 } 6730 #endif 6731 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 6732 eraseInstruction(cast<Instruction>(Scalar)); 6733 } 6734 } 6735 6736 Builder.ClearInsertionPoint(); 6737 InstrElementSize.clear(); 6738 6739 return VectorizableTree[0]->VectorizedValue; 6740 } 6741 6742 void BoUpSLP::optimizeGatherSequence() { 6743 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size() 6744 << " gather sequences instructions.\n"); 6745 // LICM InsertElementInst sequences. 6746 for (Instruction *I : GatherShuffleSeq) { 6747 if (isDeleted(I)) 6748 continue; 6749 6750 // Check if this block is inside a loop. 6751 Loop *L = LI->getLoopFor(I->getParent()); 6752 if (!L) 6753 continue; 6754 6755 // Check if it has a preheader. 6756 BasicBlock *PreHeader = L->getLoopPreheader(); 6757 if (!PreHeader) 6758 continue; 6759 6760 // If the vector or the element that we insert into it are 6761 // instructions that are defined in this basic block then we can't 6762 // hoist this instruction. 6763 if (any_of(I->operands(), [L](Value *V) { 6764 auto *OpI = dyn_cast<Instruction>(V); 6765 return OpI && L->contains(OpI); 6766 })) 6767 continue; 6768 6769 // We can hoist this instruction. Move it to the pre-header. 6770 I->moveBefore(PreHeader->getTerminator()); 6771 } 6772 6773 // Make a list of all reachable blocks in our CSE queue. 6774 SmallVector<const DomTreeNode *, 8> CSEWorkList; 6775 CSEWorkList.reserve(CSEBlocks.size()); 6776 for (BasicBlock *BB : CSEBlocks) 6777 if (DomTreeNode *N = DT->getNode(BB)) { 6778 assert(DT->isReachableFromEntry(N)); 6779 CSEWorkList.push_back(N); 6780 } 6781 6782 // Sort blocks by domination. This ensures we visit a block after all blocks 6783 // dominating it are visited. 6784 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 6785 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 6786 "Different nodes should have different DFS numbers"); 6787 return A->getDFSNumIn() < B->getDFSNumIn(); 6788 }); 6789 6790 // Perform O(N^2) search over the gather sequences and merge identical 6791 // instructions. TODO: We can further optimize this scan if we split the 6792 // instructions into different buckets based on the insert lane. 6793 SmallVector<Instruction *, 16> Visited; 6794 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 6795 assert(*I && 6796 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 6797 "Worklist not sorted properly!"); 6798 BasicBlock *BB = (*I)->getBlock(); 6799 // For all instructions in blocks containing gather sequences: 6800 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 6801 if (isDeleted(&In)) 6802 continue; 6803 if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) && 6804 !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In)) 6805 continue; 6806 6807 // Check if we can replace this instruction with any of the 6808 // visited instructions. 6809 bool Replaced = false; 6810 for (Instruction *v : Visited) { 6811 if (In.isIdenticalTo(v) && 6812 DT->dominates(v->getParent(), In.getParent())) { 6813 In.replaceAllUsesWith(v); 6814 eraseInstruction(&In); 6815 Replaced = true; 6816 break; 6817 } 6818 } 6819 if (!Replaced) { 6820 assert(!is_contained(Visited, &In)); 6821 Visited.push_back(&In); 6822 } 6823 } 6824 } 6825 CSEBlocks.clear(); 6826 GatherShuffleSeq.clear(); 6827 } 6828 6829 // Groups the instructions to a bundle (which is then a single scheduling entity) 6830 // and schedules instructions until the bundle gets ready. 6831 Optional<BoUpSLP::ScheduleData *> 6832 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 6833 const InstructionsState &S) { 6834 // No need to schedule PHIs, insertelement, extractelement and extractvalue 6835 // instructions. 6836 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue)) 6837 return nullptr; 6838 6839 // Initialize the instruction bundle. 6840 Instruction *OldScheduleEnd = ScheduleEnd; 6841 ScheduleData *PrevInBundle = nullptr; 6842 ScheduleData *Bundle = nullptr; 6843 bool ReSchedule = false; 6844 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 6845 6846 auto &&TryScheduleBundle = [this, OldScheduleEnd, SLP](bool ReSchedule, 6847 ScheduleData *Bundle) { 6848 // The scheduling region got new instructions at the lower end (or it is a 6849 // new region for the first bundle). This makes it necessary to 6850 // recalculate all dependencies. 6851 // It is seldom that this needs to be done a second time after adding the 6852 // initial bundle to the region. 6853 if (ScheduleEnd != OldScheduleEnd) { 6854 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 6855 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 6856 ReSchedule = true; 6857 } 6858 if (ReSchedule) { 6859 resetSchedule(); 6860 initialFillReadyList(ReadyInsts); 6861 } 6862 if (Bundle) { 6863 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 6864 << " in block " << BB->getName() << "\n"); 6865 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 6866 } 6867 6868 // Now try to schedule the new bundle or (if no bundle) just calculate 6869 // dependencies. As soon as the bundle is "ready" it means that there are no 6870 // cyclic dependencies and we can schedule it. Note that's important that we 6871 // don't "schedule" the bundle yet (see cancelScheduling). 6872 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 6873 !ReadyInsts.empty()) { 6874 ScheduleData *Picked = ReadyInsts.pop_back_val(); 6875 if (Picked->isSchedulingEntity() && Picked->isReady()) 6876 schedule(Picked, ReadyInsts); 6877 } 6878 }; 6879 6880 // Make sure that the scheduling region contains all 6881 // instructions of the bundle. 6882 for (Value *V : VL) { 6883 if (!extendSchedulingRegion(V, S)) { 6884 // If the scheduling region got new instructions at the lower end (or it 6885 // is a new region for the first bundle). This makes it necessary to 6886 // recalculate all dependencies. 6887 // Otherwise the compiler may crash trying to incorrectly calculate 6888 // dependencies and emit instruction in the wrong order at the actual 6889 // scheduling. 6890 TryScheduleBundle(/*ReSchedule=*/false, nullptr); 6891 return None; 6892 } 6893 } 6894 6895 for (Value *V : VL) { 6896 ScheduleData *BundleMember = getScheduleData(V); 6897 assert(BundleMember && 6898 "no ScheduleData for bundle member (maybe not in same basic block)"); 6899 if (BundleMember->IsScheduled) { 6900 // A bundle member was scheduled as single instruction before and now 6901 // needs to be scheduled as part of the bundle. We just get rid of the 6902 // existing schedule. 6903 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 6904 << " was already scheduled\n"); 6905 ReSchedule = true; 6906 } 6907 assert(BundleMember->isSchedulingEntity() && 6908 "bundle member already part of other bundle"); 6909 if (PrevInBundle) { 6910 PrevInBundle->NextInBundle = BundleMember; 6911 } else { 6912 Bundle = BundleMember; 6913 } 6914 BundleMember->UnscheduledDepsInBundle = 0; 6915 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 6916 6917 // Group the instructions to a bundle. 6918 BundleMember->FirstInBundle = Bundle; 6919 PrevInBundle = BundleMember; 6920 } 6921 assert(Bundle && "Failed to find schedule bundle"); 6922 TryScheduleBundle(ReSchedule, Bundle); 6923 if (!Bundle->isReady()) { 6924 cancelScheduling(VL, S.OpValue); 6925 return None; 6926 } 6927 return Bundle; 6928 } 6929 6930 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 6931 Value *OpValue) { 6932 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue)) 6933 return; 6934 6935 ScheduleData *Bundle = getScheduleData(OpValue); 6936 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 6937 assert(!Bundle->IsScheduled && 6938 "Can't cancel bundle which is already scheduled"); 6939 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 6940 "tried to unbundle something which is not a bundle"); 6941 6942 // Un-bundle: make single instructions out of the bundle. 6943 ScheduleData *BundleMember = Bundle; 6944 while (BundleMember) { 6945 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 6946 BundleMember->FirstInBundle = BundleMember; 6947 ScheduleData *Next = BundleMember->NextInBundle; 6948 BundleMember->NextInBundle = nullptr; 6949 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 6950 if (BundleMember->UnscheduledDepsInBundle == 0) { 6951 ReadyInsts.insert(BundleMember); 6952 } 6953 BundleMember = Next; 6954 } 6955 } 6956 6957 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 6958 // Allocate a new ScheduleData for the instruction. 6959 if (ChunkPos >= ChunkSize) { 6960 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 6961 ChunkPos = 0; 6962 } 6963 return &(ScheduleDataChunks.back()[ChunkPos++]); 6964 } 6965 6966 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 6967 const InstructionsState &S) { 6968 if (getScheduleData(V, isOneOf(S, V))) 6969 return true; 6970 Instruction *I = dyn_cast<Instruction>(V); 6971 assert(I && "bundle member must be an instruction"); 6972 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 6973 "phi nodes/insertelements/extractelements/extractvalues don't need to " 6974 "be scheduled"); 6975 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 6976 ScheduleData *ISD = getScheduleData(I); 6977 if (!ISD) 6978 return false; 6979 assert(isInSchedulingRegion(ISD) && 6980 "ScheduleData not in scheduling region"); 6981 ScheduleData *SD = allocateScheduleDataChunks(); 6982 SD->Inst = I; 6983 SD->init(SchedulingRegionID, S.OpValue); 6984 ExtraScheduleDataMap[I][S.OpValue] = SD; 6985 return true; 6986 }; 6987 if (CheckSheduleForI(I)) 6988 return true; 6989 if (!ScheduleStart) { 6990 // It's the first instruction in the new region. 6991 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 6992 ScheduleStart = I; 6993 ScheduleEnd = I->getNextNode(); 6994 if (isOneOf(S, I) != I) 6995 CheckSheduleForI(I); 6996 assert(ScheduleEnd && "tried to vectorize a terminator?"); 6997 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 6998 return true; 6999 } 7000 // Search up and down at the same time, because we don't know if the new 7001 // instruction is above or below the existing scheduling region. 7002 BasicBlock::reverse_iterator UpIter = 7003 ++ScheduleStart->getIterator().getReverse(); 7004 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 7005 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 7006 BasicBlock::iterator LowerEnd = BB->end(); 7007 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 7008 &*DownIter != I) { 7009 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 7010 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 7011 return false; 7012 } 7013 7014 ++UpIter; 7015 ++DownIter; 7016 } 7017 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 7018 assert(I->getParent() == ScheduleStart->getParent() && 7019 "Instruction is in wrong basic block."); 7020 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 7021 ScheduleStart = I; 7022 if (isOneOf(S, I) != I) 7023 CheckSheduleForI(I); 7024 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 7025 << "\n"); 7026 return true; 7027 } 7028 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 7029 "Expected to reach top of the basic block or instruction down the " 7030 "lower end."); 7031 assert(I->getParent() == ScheduleEnd->getParent() && 7032 "Instruction is in wrong basic block."); 7033 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 7034 nullptr); 7035 ScheduleEnd = I->getNextNode(); 7036 if (isOneOf(S, I) != I) 7037 CheckSheduleForI(I); 7038 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7039 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 7040 return true; 7041 } 7042 7043 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 7044 Instruction *ToI, 7045 ScheduleData *PrevLoadStore, 7046 ScheduleData *NextLoadStore) { 7047 ScheduleData *CurrentLoadStore = PrevLoadStore; 7048 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 7049 ScheduleData *SD = ScheduleDataMap[I]; 7050 if (!SD) { 7051 SD = allocateScheduleDataChunks(); 7052 ScheduleDataMap[I] = SD; 7053 SD->Inst = I; 7054 } 7055 assert(!isInSchedulingRegion(SD) && 7056 "new ScheduleData already in scheduling region"); 7057 SD->init(SchedulingRegionID, I); 7058 7059 if (I->mayReadOrWriteMemory() && 7060 (!isa<IntrinsicInst>(I) || 7061 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 7062 cast<IntrinsicInst>(I)->getIntrinsicID() != 7063 Intrinsic::pseudoprobe))) { 7064 // Update the linked list of memory accessing instructions. 7065 if (CurrentLoadStore) { 7066 CurrentLoadStore->NextLoadStore = SD; 7067 } else { 7068 FirstLoadStoreInRegion = SD; 7069 } 7070 CurrentLoadStore = SD; 7071 } 7072 } 7073 if (NextLoadStore) { 7074 if (CurrentLoadStore) 7075 CurrentLoadStore->NextLoadStore = NextLoadStore; 7076 } else { 7077 LastLoadStoreInRegion = CurrentLoadStore; 7078 } 7079 } 7080 7081 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 7082 bool InsertInReadyList, 7083 BoUpSLP *SLP) { 7084 assert(SD->isSchedulingEntity()); 7085 7086 SmallVector<ScheduleData *, 10> WorkList; 7087 WorkList.push_back(SD); 7088 7089 while (!WorkList.empty()) { 7090 ScheduleData *SD = WorkList.pop_back_val(); 7091 7092 ScheduleData *BundleMember = SD; 7093 while (BundleMember) { 7094 assert(isInSchedulingRegion(BundleMember)); 7095 if (!BundleMember->hasValidDependencies()) { 7096 7097 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 7098 << "\n"); 7099 BundleMember->Dependencies = 0; 7100 BundleMember->resetUnscheduledDeps(); 7101 7102 // Handle def-use chain dependencies. 7103 if (BundleMember->OpValue != BundleMember->Inst) { 7104 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 7105 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 7106 BundleMember->Dependencies++; 7107 ScheduleData *DestBundle = UseSD->FirstInBundle; 7108 if (!DestBundle->IsScheduled) 7109 BundleMember->incrementUnscheduledDeps(1); 7110 if (!DestBundle->hasValidDependencies()) 7111 WorkList.push_back(DestBundle); 7112 } 7113 } else { 7114 for (User *U : BundleMember->Inst->users()) { 7115 if (isa<Instruction>(U)) { 7116 ScheduleData *UseSD = getScheduleData(U); 7117 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 7118 BundleMember->Dependencies++; 7119 ScheduleData *DestBundle = UseSD->FirstInBundle; 7120 if (!DestBundle->IsScheduled) 7121 BundleMember->incrementUnscheduledDeps(1); 7122 if (!DestBundle->hasValidDependencies()) 7123 WorkList.push_back(DestBundle); 7124 } 7125 } else { 7126 // I'm not sure if this can ever happen. But we need to be safe. 7127 // This lets the instruction/bundle never be scheduled and 7128 // eventually disable vectorization. 7129 BundleMember->Dependencies++; 7130 BundleMember->incrementUnscheduledDeps(1); 7131 } 7132 } 7133 } 7134 7135 // Handle the memory dependencies. 7136 ScheduleData *DepDest = BundleMember->NextLoadStore; 7137 if (DepDest) { 7138 Instruction *SrcInst = BundleMember->Inst; 7139 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 7140 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 7141 unsigned numAliased = 0; 7142 unsigned DistToSrc = 1; 7143 7144 while (DepDest) { 7145 assert(isInSchedulingRegion(DepDest)); 7146 7147 // We have two limits to reduce the complexity: 7148 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 7149 // SLP->isAliased (which is the expensive part in this loop). 7150 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 7151 // the whole loop (even if the loop is fast, it's quadratic). 7152 // It's important for the loop break condition (see below) to 7153 // check this limit even between two read-only instructions. 7154 if (DistToSrc >= MaxMemDepDistance || 7155 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 7156 (numAliased >= AliasedCheckLimit || 7157 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 7158 7159 // We increment the counter only if the locations are aliased 7160 // (instead of counting all alias checks). This gives a better 7161 // balance between reduced runtime and accurate dependencies. 7162 numAliased++; 7163 7164 DepDest->MemoryDependencies.push_back(BundleMember); 7165 BundleMember->Dependencies++; 7166 ScheduleData *DestBundle = DepDest->FirstInBundle; 7167 if (!DestBundle->IsScheduled) { 7168 BundleMember->incrementUnscheduledDeps(1); 7169 } 7170 if (!DestBundle->hasValidDependencies()) { 7171 WorkList.push_back(DestBundle); 7172 } 7173 } 7174 DepDest = DepDest->NextLoadStore; 7175 7176 // Example, explaining the loop break condition: Let's assume our 7177 // starting instruction is i0 and MaxMemDepDistance = 3. 7178 // 7179 // +--------v--v--v 7180 // i0,i1,i2,i3,i4,i5,i6,i7,i8 7181 // +--------^--^--^ 7182 // 7183 // MaxMemDepDistance let us stop alias-checking at i3 and we add 7184 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 7185 // Previously we already added dependencies from i3 to i6,i7,i8 7186 // (because of MaxMemDepDistance). As we added a dependency from 7187 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 7188 // and we can abort this loop at i6. 7189 if (DistToSrc >= 2 * MaxMemDepDistance) 7190 break; 7191 DistToSrc++; 7192 } 7193 } 7194 } 7195 BundleMember = BundleMember->NextInBundle; 7196 } 7197 if (InsertInReadyList && SD->isReady()) { 7198 ReadyInsts.push_back(SD); 7199 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 7200 << "\n"); 7201 } 7202 } 7203 } 7204 7205 void BoUpSLP::BlockScheduling::resetSchedule() { 7206 assert(ScheduleStart && 7207 "tried to reset schedule on block which has not been scheduled"); 7208 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 7209 doForAllOpcodes(I, [&](ScheduleData *SD) { 7210 assert(isInSchedulingRegion(SD) && 7211 "ScheduleData not in scheduling region"); 7212 SD->IsScheduled = false; 7213 SD->resetUnscheduledDeps(); 7214 }); 7215 } 7216 ReadyInsts.clear(); 7217 } 7218 7219 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 7220 if (!BS->ScheduleStart) 7221 return; 7222 7223 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 7224 7225 BS->resetSchedule(); 7226 7227 // For the real scheduling we use a more sophisticated ready-list: it is 7228 // sorted by the original instruction location. This lets the final schedule 7229 // be as close as possible to the original instruction order. 7230 struct ScheduleDataCompare { 7231 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 7232 return SD2->SchedulingPriority < SD1->SchedulingPriority; 7233 } 7234 }; 7235 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 7236 7237 // Ensure that all dependency data is updated and fill the ready-list with 7238 // initial instructions. 7239 int Idx = 0; 7240 int NumToSchedule = 0; 7241 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 7242 I = I->getNextNode()) { 7243 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 7244 assert((isVectorLikeInstWithConstOps(SD->Inst) || 7245 SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr)) && 7246 "scheduler and vectorizer bundle mismatch"); 7247 SD->FirstInBundle->SchedulingPriority = Idx++; 7248 if (SD->isSchedulingEntity()) { 7249 BS->calculateDependencies(SD, false, this); 7250 NumToSchedule++; 7251 } 7252 }); 7253 } 7254 BS->initialFillReadyList(ReadyInsts); 7255 7256 Instruction *LastScheduledInst = BS->ScheduleEnd; 7257 7258 // Do the "real" scheduling. 7259 while (!ReadyInsts.empty()) { 7260 ScheduleData *picked = *ReadyInsts.begin(); 7261 ReadyInsts.erase(ReadyInsts.begin()); 7262 7263 // Move the scheduled instruction(s) to their dedicated places, if not 7264 // there yet. 7265 ScheduleData *BundleMember = picked; 7266 while (BundleMember) { 7267 Instruction *pickedInst = BundleMember->Inst; 7268 if (pickedInst->getNextNode() != LastScheduledInst) { 7269 BS->BB->getInstList().remove(pickedInst); 7270 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 7271 pickedInst); 7272 } 7273 LastScheduledInst = pickedInst; 7274 BundleMember = BundleMember->NextInBundle; 7275 } 7276 7277 BS->schedule(picked, ReadyInsts); 7278 NumToSchedule--; 7279 } 7280 assert(NumToSchedule == 0 && "could not schedule all instructions"); 7281 7282 // Avoid duplicate scheduling of the block. 7283 BS->ScheduleStart = nullptr; 7284 } 7285 7286 unsigned BoUpSLP::getVectorElementSize(Value *V) { 7287 // If V is a store, just return the width of the stored value (or value 7288 // truncated just before storing) without traversing the expression tree. 7289 // This is the common case. 7290 if (auto *Store = dyn_cast<StoreInst>(V)) { 7291 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 7292 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 7293 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 7294 } 7295 7296 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 7297 return getVectorElementSize(IEI->getOperand(1)); 7298 7299 auto E = InstrElementSize.find(V); 7300 if (E != InstrElementSize.end()) 7301 return E->second; 7302 7303 // If V is not a store, we can traverse the expression tree to find loads 7304 // that feed it. The type of the loaded value may indicate a more suitable 7305 // width than V's type. We want to base the vector element size on the width 7306 // of memory operations where possible. 7307 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 7308 SmallPtrSet<Instruction *, 16> Visited; 7309 if (auto *I = dyn_cast<Instruction>(V)) { 7310 Worklist.emplace_back(I, I->getParent()); 7311 Visited.insert(I); 7312 } 7313 7314 // Traverse the expression tree in bottom-up order looking for loads. If we 7315 // encounter an instruction we don't yet handle, we give up. 7316 auto Width = 0u; 7317 while (!Worklist.empty()) { 7318 Instruction *I; 7319 BasicBlock *Parent; 7320 std::tie(I, Parent) = Worklist.pop_back_val(); 7321 7322 // We should only be looking at scalar instructions here. If the current 7323 // instruction has a vector type, skip. 7324 auto *Ty = I->getType(); 7325 if (isa<VectorType>(Ty)) 7326 continue; 7327 7328 // If the current instruction is a load, update MaxWidth to reflect the 7329 // width of the loaded value. 7330 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 7331 isa<ExtractValueInst>(I)) 7332 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 7333 7334 // Otherwise, we need to visit the operands of the instruction. We only 7335 // handle the interesting cases from buildTree here. If an operand is an 7336 // instruction we haven't yet visited and from the same basic block as the 7337 // user or the use is a PHI node, we add it to the worklist. 7338 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 7339 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 7340 isa<UnaryOperator>(I)) { 7341 for (Use &U : I->operands()) 7342 if (auto *J = dyn_cast<Instruction>(U.get())) 7343 if (Visited.insert(J).second && 7344 (isa<PHINode>(I) || J->getParent() == Parent)) 7345 Worklist.emplace_back(J, J->getParent()); 7346 } else { 7347 break; 7348 } 7349 } 7350 7351 // If we didn't encounter a memory access in the expression tree, or if we 7352 // gave up for some reason, just return the width of V. Otherwise, return the 7353 // maximum width we found. 7354 if (!Width) { 7355 if (auto *CI = dyn_cast<CmpInst>(V)) 7356 V = CI->getOperand(0); 7357 Width = DL->getTypeSizeInBits(V->getType()); 7358 } 7359 7360 for (Instruction *I : Visited) 7361 InstrElementSize[I] = Width; 7362 7363 return Width; 7364 } 7365 7366 // Determine if a value V in a vectorizable expression Expr can be demoted to a 7367 // smaller type with a truncation. We collect the values that will be demoted 7368 // in ToDemote and additional roots that require investigating in Roots. 7369 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 7370 SmallVectorImpl<Value *> &ToDemote, 7371 SmallVectorImpl<Value *> &Roots) { 7372 // We can always demote constants. 7373 if (isa<Constant>(V)) { 7374 ToDemote.push_back(V); 7375 return true; 7376 } 7377 7378 // If the value is not an instruction in the expression with only one use, it 7379 // cannot be demoted. 7380 auto *I = dyn_cast<Instruction>(V); 7381 if (!I || !I->hasOneUse() || !Expr.count(I)) 7382 return false; 7383 7384 switch (I->getOpcode()) { 7385 7386 // We can always demote truncations and extensions. Since truncations can 7387 // seed additional demotion, we save the truncated value. 7388 case Instruction::Trunc: 7389 Roots.push_back(I->getOperand(0)); 7390 break; 7391 case Instruction::ZExt: 7392 case Instruction::SExt: 7393 if (isa<ExtractElementInst>(I->getOperand(0)) || 7394 isa<InsertElementInst>(I->getOperand(0))) 7395 return false; 7396 break; 7397 7398 // We can demote certain binary operations if we can demote both of their 7399 // operands. 7400 case Instruction::Add: 7401 case Instruction::Sub: 7402 case Instruction::Mul: 7403 case Instruction::And: 7404 case Instruction::Or: 7405 case Instruction::Xor: 7406 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 7407 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 7408 return false; 7409 break; 7410 7411 // We can demote selects if we can demote their true and false values. 7412 case Instruction::Select: { 7413 SelectInst *SI = cast<SelectInst>(I); 7414 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 7415 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 7416 return false; 7417 break; 7418 } 7419 7420 // We can demote phis if we can demote all their incoming operands. Note that 7421 // we don't need to worry about cycles since we ensure single use above. 7422 case Instruction::PHI: { 7423 PHINode *PN = cast<PHINode>(I); 7424 for (Value *IncValue : PN->incoming_values()) 7425 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 7426 return false; 7427 break; 7428 } 7429 7430 // Otherwise, conservatively give up. 7431 default: 7432 return false; 7433 } 7434 7435 // Record the value that we can demote. 7436 ToDemote.push_back(V); 7437 return true; 7438 } 7439 7440 void BoUpSLP::computeMinimumValueSizes() { 7441 // If there are no external uses, the expression tree must be rooted by a 7442 // store. We can't demote in-memory values, so there is nothing to do here. 7443 if (ExternalUses.empty()) 7444 return; 7445 7446 // We only attempt to truncate integer expressions. 7447 auto &TreeRoot = VectorizableTree[0]->Scalars; 7448 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 7449 if (!TreeRootIT) 7450 return; 7451 7452 // If the expression is not rooted by a store, these roots should have 7453 // external uses. We will rely on InstCombine to rewrite the expression in 7454 // the narrower type. However, InstCombine only rewrites single-use values. 7455 // This means that if a tree entry other than a root is used externally, it 7456 // must have multiple uses and InstCombine will not rewrite it. The code 7457 // below ensures that only the roots are used externally. 7458 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 7459 for (auto &EU : ExternalUses) 7460 if (!Expr.erase(EU.Scalar)) 7461 return; 7462 if (!Expr.empty()) 7463 return; 7464 7465 // Collect the scalar values of the vectorizable expression. We will use this 7466 // context to determine which values can be demoted. If we see a truncation, 7467 // we mark it as seeding another demotion. 7468 for (auto &EntryPtr : VectorizableTree) 7469 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 7470 7471 // Ensure the roots of the vectorizable tree don't form a cycle. They must 7472 // have a single external user that is not in the vectorizable tree. 7473 for (auto *Root : TreeRoot) 7474 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 7475 return; 7476 7477 // Conservatively determine if we can actually truncate the roots of the 7478 // expression. Collect the values that can be demoted in ToDemote and 7479 // additional roots that require investigating in Roots. 7480 SmallVector<Value *, 32> ToDemote; 7481 SmallVector<Value *, 4> Roots; 7482 for (auto *Root : TreeRoot) 7483 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 7484 return; 7485 7486 // The maximum bit width required to represent all the values that can be 7487 // demoted without loss of precision. It would be safe to truncate the roots 7488 // of the expression to this width. 7489 auto MaxBitWidth = 8u; 7490 7491 // We first check if all the bits of the roots are demanded. If they're not, 7492 // we can truncate the roots to this narrower type. 7493 for (auto *Root : TreeRoot) { 7494 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 7495 MaxBitWidth = std::max<unsigned>( 7496 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 7497 } 7498 7499 // True if the roots can be zero-extended back to their original type, rather 7500 // than sign-extended. We know that if the leading bits are not demanded, we 7501 // can safely zero-extend. So we initialize IsKnownPositive to True. 7502 bool IsKnownPositive = true; 7503 7504 // If all the bits of the roots are demanded, we can try a little harder to 7505 // compute a narrower type. This can happen, for example, if the roots are 7506 // getelementptr indices. InstCombine promotes these indices to the pointer 7507 // width. Thus, all their bits are technically demanded even though the 7508 // address computation might be vectorized in a smaller type. 7509 // 7510 // We start by looking at each entry that can be demoted. We compute the 7511 // maximum bit width required to store the scalar by using ValueTracking to 7512 // compute the number of high-order bits we can truncate. 7513 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 7514 llvm::all_of(TreeRoot, [](Value *R) { 7515 assert(R->hasOneUse() && "Root should have only one use!"); 7516 return isa<GetElementPtrInst>(R->user_back()); 7517 })) { 7518 MaxBitWidth = 8u; 7519 7520 // Determine if the sign bit of all the roots is known to be zero. If not, 7521 // IsKnownPositive is set to False. 7522 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 7523 KnownBits Known = computeKnownBits(R, *DL); 7524 return Known.isNonNegative(); 7525 }); 7526 7527 // Determine the maximum number of bits required to store the scalar 7528 // values. 7529 for (auto *Scalar : ToDemote) { 7530 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 7531 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 7532 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 7533 } 7534 7535 // If we can't prove that the sign bit is zero, we must add one to the 7536 // maximum bit width to account for the unknown sign bit. This preserves 7537 // the existing sign bit so we can safely sign-extend the root back to the 7538 // original type. Otherwise, if we know the sign bit is zero, we will 7539 // zero-extend the root instead. 7540 // 7541 // FIXME: This is somewhat suboptimal, as there will be cases where adding 7542 // one to the maximum bit width will yield a larger-than-necessary 7543 // type. In general, we need to add an extra bit only if we can't 7544 // prove that the upper bit of the original type is equal to the 7545 // upper bit of the proposed smaller type. If these two bits are the 7546 // same (either zero or one) we know that sign-extending from the 7547 // smaller type will result in the same value. Here, since we can't 7548 // yet prove this, we are just making the proposed smaller type 7549 // larger to ensure correctness. 7550 if (!IsKnownPositive) 7551 ++MaxBitWidth; 7552 } 7553 7554 // Round MaxBitWidth up to the next power-of-two. 7555 if (!isPowerOf2_64(MaxBitWidth)) 7556 MaxBitWidth = NextPowerOf2(MaxBitWidth); 7557 7558 // If the maximum bit width we compute is less than the with of the roots' 7559 // type, we can proceed with the narrowing. Otherwise, do nothing. 7560 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 7561 return; 7562 7563 // If we can truncate the root, we must collect additional values that might 7564 // be demoted as a result. That is, those seeded by truncations we will 7565 // modify. 7566 while (!Roots.empty()) 7567 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 7568 7569 // Finally, map the values we can demote to the maximum bit with we computed. 7570 for (auto *Scalar : ToDemote) 7571 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 7572 } 7573 7574 namespace { 7575 7576 /// The SLPVectorizer Pass. 7577 struct SLPVectorizer : public FunctionPass { 7578 SLPVectorizerPass Impl; 7579 7580 /// Pass identification, replacement for typeid 7581 static char ID; 7582 7583 explicit SLPVectorizer() : FunctionPass(ID) { 7584 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 7585 } 7586 7587 bool doInitialization(Module &M) override { return false; } 7588 7589 bool runOnFunction(Function &F) override { 7590 if (skipFunction(F)) 7591 return false; 7592 7593 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 7594 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 7595 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 7596 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 7597 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 7598 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 7599 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 7600 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 7601 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 7602 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 7603 7604 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 7605 } 7606 7607 void getAnalysisUsage(AnalysisUsage &AU) const override { 7608 FunctionPass::getAnalysisUsage(AU); 7609 AU.addRequired<AssumptionCacheTracker>(); 7610 AU.addRequired<ScalarEvolutionWrapperPass>(); 7611 AU.addRequired<AAResultsWrapperPass>(); 7612 AU.addRequired<TargetTransformInfoWrapperPass>(); 7613 AU.addRequired<LoopInfoWrapperPass>(); 7614 AU.addRequired<DominatorTreeWrapperPass>(); 7615 AU.addRequired<DemandedBitsWrapperPass>(); 7616 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 7617 AU.addRequired<InjectTLIMappingsLegacy>(); 7618 AU.addPreserved<LoopInfoWrapperPass>(); 7619 AU.addPreserved<DominatorTreeWrapperPass>(); 7620 AU.addPreserved<AAResultsWrapperPass>(); 7621 AU.addPreserved<GlobalsAAWrapperPass>(); 7622 AU.setPreservesCFG(); 7623 } 7624 }; 7625 7626 } // end anonymous namespace 7627 7628 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 7629 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 7630 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 7631 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 7632 auto *AA = &AM.getResult<AAManager>(F); 7633 auto *LI = &AM.getResult<LoopAnalysis>(F); 7634 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 7635 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 7636 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 7637 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 7638 7639 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 7640 if (!Changed) 7641 return PreservedAnalyses::all(); 7642 7643 PreservedAnalyses PA; 7644 PA.preserveSet<CFGAnalyses>(); 7645 return PA; 7646 } 7647 7648 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 7649 TargetTransformInfo *TTI_, 7650 TargetLibraryInfo *TLI_, AAResults *AA_, 7651 LoopInfo *LI_, DominatorTree *DT_, 7652 AssumptionCache *AC_, DemandedBits *DB_, 7653 OptimizationRemarkEmitter *ORE_) { 7654 if (!RunSLPVectorization) 7655 return false; 7656 SE = SE_; 7657 TTI = TTI_; 7658 TLI = TLI_; 7659 AA = AA_; 7660 LI = LI_; 7661 DT = DT_; 7662 AC = AC_; 7663 DB = DB_; 7664 DL = &F.getParent()->getDataLayout(); 7665 7666 Stores.clear(); 7667 GEPs.clear(); 7668 bool Changed = false; 7669 7670 // If the target claims to have no vector registers don't attempt 7671 // vectorization. 7672 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) 7673 return false; 7674 7675 // Don't vectorize when the attribute NoImplicitFloat is used. 7676 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 7677 return false; 7678 7679 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 7680 7681 // Use the bottom up slp vectorizer to construct chains that start with 7682 // store instructions. 7683 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 7684 7685 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 7686 // delete instructions. 7687 7688 // Update DFS numbers now so that we can use them for ordering. 7689 DT->updateDFSNumbers(); 7690 7691 // Scan the blocks in the function in post order. 7692 for (auto BB : post_order(&F.getEntryBlock())) { 7693 collectSeedInstructions(BB); 7694 7695 // Vectorize trees that end at stores. 7696 if (!Stores.empty()) { 7697 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 7698 << " underlying objects.\n"); 7699 Changed |= vectorizeStoreChains(R); 7700 } 7701 7702 // Vectorize trees that end at reductions. 7703 Changed |= vectorizeChainsInBlock(BB, R); 7704 7705 // Vectorize the index computations of getelementptr instructions. This 7706 // is primarily intended to catch gather-like idioms ending at 7707 // non-consecutive loads. 7708 if (!GEPs.empty()) { 7709 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 7710 << " underlying objects.\n"); 7711 Changed |= vectorizeGEPIndices(BB, R); 7712 } 7713 } 7714 7715 if (Changed) { 7716 R.optimizeGatherSequence(); 7717 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 7718 } 7719 return Changed; 7720 } 7721 7722 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 7723 unsigned Idx) { 7724 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 7725 << "\n"); 7726 const unsigned Sz = R.getVectorElementSize(Chain[0]); 7727 const unsigned MinVF = R.getMinVecRegSize() / Sz; 7728 unsigned VF = Chain.size(); 7729 7730 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 7731 return false; 7732 7733 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 7734 << "\n"); 7735 7736 R.buildTree(Chain); 7737 if (R.isTreeTinyAndNotFullyVectorizable()) 7738 return false; 7739 if (R.isLoadCombineCandidate()) 7740 return false; 7741 R.reorderTopToBottom(); 7742 R.reorderBottomToTop(); 7743 R.buildExternalUses(); 7744 7745 R.computeMinimumValueSizes(); 7746 7747 InstructionCost Cost = R.getTreeCost(); 7748 7749 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 7750 if (Cost < -SLPCostThreshold) { 7751 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 7752 7753 using namespace ore; 7754 7755 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 7756 cast<StoreInst>(Chain[0])) 7757 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 7758 << " and with tree size " 7759 << NV("TreeSize", R.getTreeSize())); 7760 7761 R.vectorizeTree(); 7762 return true; 7763 } 7764 7765 return false; 7766 } 7767 7768 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 7769 BoUpSLP &R) { 7770 // We may run into multiple chains that merge into a single chain. We mark the 7771 // stores that we vectorized so that we don't visit the same store twice. 7772 BoUpSLP::ValueSet VectorizedStores; 7773 bool Changed = false; 7774 7775 int E = Stores.size(); 7776 SmallBitVector Tails(E, false); 7777 int MaxIter = MaxStoreLookup.getValue(); 7778 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 7779 E, std::make_pair(E, INT_MAX)); 7780 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 7781 int IterCnt; 7782 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 7783 &CheckedPairs, 7784 &ConsecutiveChain](int K, int Idx) { 7785 if (IterCnt >= MaxIter) 7786 return true; 7787 if (CheckedPairs[Idx].test(K)) 7788 return ConsecutiveChain[K].second == 1 && 7789 ConsecutiveChain[K].first == Idx; 7790 ++IterCnt; 7791 CheckedPairs[Idx].set(K); 7792 CheckedPairs[K].set(Idx); 7793 Optional<int> Diff = getPointersDiff( 7794 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 7795 Stores[Idx]->getValueOperand()->getType(), 7796 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 7797 if (!Diff || *Diff == 0) 7798 return false; 7799 int Val = *Diff; 7800 if (Val < 0) { 7801 if (ConsecutiveChain[Idx].second > -Val) { 7802 Tails.set(K); 7803 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 7804 } 7805 return false; 7806 } 7807 if (ConsecutiveChain[K].second <= Val) 7808 return false; 7809 7810 Tails.set(Idx); 7811 ConsecutiveChain[K] = std::make_pair(Idx, Val); 7812 return Val == 1; 7813 }; 7814 // Do a quadratic search on all of the given stores in reverse order and find 7815 // all of the pairs of stores that follow each other. 7816 for (int Idx = E - 1; Idx >= 0; --Idx) { 7817 // If a store has multiple consecutive store candidates, search according 7818 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 7819 // This is because usually pairing with immediate succeeding or preceding 7820 // candidate create the best chance to find slp vectorization opportunity. 7821 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 7822 IterCnt = 0; 7823 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 7824 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 7825 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 7826 break; 7827 } 7828 7829 // Tracks if we tried to vectorize stores starting from the given tail 7830 // already. 7831 SmallBitVector TriedTails(E, false); 7832 // For stores that start but don't end a link in the chain: 7833 for (int Cnt = E; Cnt > 0; --Cnt) { 7834 int I = Cnt - 1; 7835 if (ConsecutiveChain[I].first == E || Tails.test(I)) 7836 continue; 7837 // We found a store instr that starts a chain. Now follow the chain and try 7838 // to vectorize it. 7839 BoUpSLP::ValueList Operands; 7840 // Collect the chain into a list. 7841 while (I != E && !VectorizedStores.count(Stores[I])) { 7842 Operands.push_back(Stores[I]); 7843 Tails.set(I); 7844 if (ConsecutiveChain[I].second != 1) { 7845 // Mark the new end in the chain and go back, if required. It might be 7846 // required if the original stores come in reversed order, for example. 7847 if (ConsecutiveChain[I].first != E && 7848 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 7849 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 7850 TriedTails.set(I); 7851 Tails.reset(ConsecutiveChain[I].first); 7852 if (Cnt < ConsecutiveChain[I].first + 2) 7853 Cnt = ConsecutiveChain[I].first + 2; 7854 } 7855 break; 7856 } 7857 // Move to the next value in the chain. 7858 I = ConsecutiveChain[I].first; 7859 } 7860 assert(!Operands.empty() && "Expected non-empty list of stores."); 7861 7862 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 7863 unsigned EltSize = R.getVectorElementSize(Operands[0]); 7864 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 7865 7866 unsigned MinVF = R.getMinVF(EltSize); 7867 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 7868 MaxElts); 7869 7870 // FIXME: Is division-by-2 the correct step? Should we assert that the 7871 // register size is a power-of-2? 7872 unsigned StartIdx = 0; 7873 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 7874 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 7875 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 7876 if (!VectorizedStores.count(Slice.front()) && 7877 !VectorizedStores.count(Slice.back()) && 7878 vectorizeStoreChain(Slice, R, Cnt)) { 7879 // Mark the vectorized stores so that we don't vectorize them again. 7880 VectorizedStores.insert(Slice.begin(), Slice.end()); 7881 Changed = true; 7882 // If we vectorized initial block, no need to try to vectorize it 7883 // again. 7884 if (Cnt == StartIdx) 7885 StartIdx += Size; 7886 Cnt += Size; 7887 continue; 7888 } 7889 ++Cnt; 7890 } 7891 // Check if the whole array was vectorized already - exit. 7892 if (StartIdx >= Operands.size()) 7893 break; 7894 } 7895 } 7896 7897 return Changed; 7898 } 7899 7900 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 7901 // Initialize the collections. We will make a single pass over the block. 7902 Stores.clear(); 7903 GEPs.clear(); 7904 7905 // Visit the store and getelementptr instructions in BB and organize them in 7906 // Stores and GEPs according to the underlying objects of their pointer 7907 // operands. 7908 for (Instruction &I : *BB) { 7909 // Ignore store instructions that are volatile or have a pointer operand 7910 // that doesn't point to a scalar type. 7911 if (auto *SI = dyn_cast<StoreInst>(&I)) { 7912 if (!SI->isSimple()) 7913 continue; 7914 if (!isValidElementType(SI->getValueOperand()->getType())) 7915 continue; 7916 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 7917 } 7918 7919 // Ignore getelementptr instructions that have more than one index, a 7920 // constant index, or a pointer operand that doesn't point to a scalar 7921 // type. 7922 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 7923 auto Idx = GEP->idx_begin()->get(); 7924 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 7925 continue; 7926 if (!isValidElementType(Idx->getType())) 7927 continue; 7928 if (GEP->getType()->isVectorTy()) 7929 continue; 7930 GEPs[GEP->getPointerOperand()].push_back(GEP); 7931 } 7932 } 7933 } 7934 7935 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 7936 if (!A || !B) 7937 return false; 7938 Value *VL[] = {A, B}; 7939 return tryToVectorizeList(VL, R); 7940 } 7941 7942 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 7943 bool LimitForRegisterSize) { 7944 if (VL.size() < 2) 7945 return false; 7946 7947 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 7948 << VL.size() << ".\n"); 7949 7950 // Check that all of the parts are instructions of the same type, 7951 // we permit an alternate opcode via InstructionsState. 7952 InstructionsState S = getSameOpcode(VL); 7953 if (!S.getOpcode()) 7954 return false; 7955 7956 Instruction *I0 = cast<Instruction>(S.OpValue); 7957 // Make sure invalid types (including vector type) are rejected before 7958 // determining vectorization factor for scalar instructions. 7959 for (Value *V : VL) { 7960 Type *Ty = V->getType(); 7961 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 7962 // NOTE: the following will give user internal llvm type name, which may 7963 // not be useful. 7964 R.getORE()->emit([&]() { 7965 std::string type_str; 7966 llvm::raw_string_ostream rso(type_str); 7967 Ty->print(rso); 7968 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 7969 << "Cannot SLP vectorize list: type " 7970 << rso.str() + " is unsupported by vectorizer"; 7971 }); 7972 return false; 7973 } 7974 } 7975 7976 unsigned Sz = R.getVectorElementSize(I0); 7977 unsigned MinVF = R.getMinVF(Sz); 7978 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 7979 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 7980 if (MaxVF < 2) { 7981 R.getORE()->emit([&]() { 7982 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 7983 << "Cannot SLP vectorize list: vectorization factor " 7984 << "less than 2 is not supported"; 7985 }); 7986 return false; 7987 } 7988 7989 bool Changed = false; 7990 bool CandidateFound = false; 7991 InstructionCost MinCost = SLPCostThreshold.getValue(); 7992 Type *ScalarTy = VL[0]->getType(); 7993 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 7994 ScalarTy = IE->getOperand(1)->getType(); 7995 7996 unsigned NextInst = 0, MaxInst = VL.size(); 7997 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 7998 // No actual vectorization should happen, if number of parts is the same as 7999 // provided vectorization factor (i.e. the scalar type is used for vector 8000 // code during codegen). 8001 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 8002 if (TTI->getNumberOfParts(VecTy) == VF) 8003 continue; 8004 for (unsigned I = NextInst; I < MaxInst; ++I) { 8005 unsigned OpsWidth = 0; 8006 8007 if (I + VF > MaxInst) 8008 OpsWidth = MaxInst - I; 8009 else 8010 OpsWidth = VF; 8011 8012 if (!isPowerOf2_32(OpsWidth)) 8013 continue; 8014 8015 if ((LimitForRegisterSize && OpsWidth < MaxVF) || 8016 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 8017 break; 8018 8019 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 8020 // Check that a previous iteration of this loop did not delete the Value. 8021 if (llvm::any_of(Ops, [&R](Value *V) { 8022 auto *I = dyn_cast<Instruction>(V); 8023 return I && R.isDeleted(I); 8024 })) 8025 continue; 8026 8027 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 8028 << "\n"); 8029 8030 R.buildTree(Ops); 8031 if (R.isTreeTinyAndNotFullyVectorizable()) 8032 continue; 8033 R.reorderTopToBottom(); 8034 R.reorderBottomToTop(); 8035 R.buildExternalUses(); 8036 8037 R.computeMinimumValueSizes(); 8038 InstructionCost Cost = R.getTreeCost(); 8039 CandidateFound = true; 8040 MinCost = std::min(MinCost, Cost); 8041 8042 if (Cost < -SLPCostThreshold) { 8043 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 8044 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 8045 cast<Instruction>(Ops[0])) 8046 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 8047 << " and with tree size " 8048 << ore::NV("TreeSize", R.getTreeSize())); 8049 8050 R.vectorizeTree(); 8051 // Move to the next bundle. 8052 I += VF - 1; 8053 NextInst = I + 1; 8054 Changed = true; 8055 } 8056 } 8057 } 8058 8059 if (!Changed && CandidateFound) { 8060 R.getORE()->emit([&]() { 8061 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 8062 << "List vectorization was possible but not beneficial with cost " 8063 << ore::NV("Cost", MinCost) << " >= " 8064 << ore::NV("Treshold", -SLPCostThreshold); 8065 }); 8066 } else if (!Changed) { 8067 R.getORE()->emit([&]() { 8068 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 8069 << "Cannot SLP vectorize list: vectorization was impossible" 8070 << " with available vectorization factors"; 8071 }); 8072 } 8073 return Changed; 8074 } 8075 8076 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 8077 if (!I) 8078 return false; 8079 8080 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 8081 return false; 8082 8083 Value *P = I->getParent(); 8084 8085 // Vectorize in current basic block only. 8086 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 8087 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 8088 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 8089 return false; 8090 8091 // Try to vectorize V. 8092 if (tryToVectorizePair(Op0, Op1, R)) 8093 return true; 8094 8095 auto *A = dyn_cast<BinaryOperator>(Op0); 8096 auto *B = dyn_cast<BinaryOperator>(Op1); 8097 // Try to skip B. 8098 if (B && B->hasOneUse()) { 8099 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 8100 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 8101 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 8102 return true; 8103 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 8104 return true; 8105 } 8106 8107 // Try to skip A. 8108 if (A && A->hasOneUse()) { 8109 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 8110 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 8111 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 8112 return true; 8113 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 8114 return true; 8115 } 8116 return false; 8117 } 8118 8119 namespace { 8120 8121 /// Model horizontal reductions. 8122 /// 8123 /// A horizontal reduction is a tree of reduction instructions that has values 8124 /// that can be put into a vector as its leaves. For example: 8125 /// 8126 /// mul mul mul mul 8127 /// \ / \ / 8128 /// + + 8129 /// \ / 8130 /// + 8131 /// This tree has "mul" as its leaf values and "+" as its reduction 8132 /// instructions. A reduction can feed into a store or a binary operation 8133 /// feeding a phi. 8134 /// ... 8135 /// \ / 8136 /// + 8137 /// | 8138 /// phi += 8139 /// 8140 /// Or: 8141 /// ... 8142 /// \ / 8143 /// + 8144 /// | 8145 /// *p = 8146 /// 8147 class HorizontalReduction { 8148 using ReductionOpsType = SmallVector<Value *, 16>; 8149 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 8150 ReductionOpsListType ReductionOps; 8151 SmallVector<Value *, 32> ReducedVals; 8152 // Use map vector to make stable output. 8153 MapVector<Instruction *, Value *> ExtraArgs; 8154 WeakTrackingVH ReductionRoot; 8155 /// The type of reduction operation. 8156 RecurKind RdxKind; 8157 8158 const unsigned INVALID_OPERAND_INDEX = std::numeric_limits<unsigned>::max(); 8159 8160 static bool isCmpSelMinMax(Instruction *I) { 8161 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 8162 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 8163 } 8164 8165 // And/or are potentially poison-safe logical patterns like: 8166 // select x, y, false 8167 // select x, true, y 8168 static bool isBoolLogicOp(Instruction *I) { 8169 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 8170 match(I, m_LogicalOr(m_Value(), m_Value())); 8171 } 8172 8173 /// Checks if instruction is associative and can be vectorized. 8174 static bool isVectorizable(RecurKind Kind, Instruction *I) { 8175 if (Kind == RecurKind::None) 8176 return false; 8177 8178 // Integer ops that map to select instructions or intrinsics are fine. 8179 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 8180 isBoolLogicOp(I)) 8181 return true; 8182 8183 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 8184 // FP min/max are associative except for NaN and -0.0. We do not 8185 // have to rule out -0.0 here because the intrinsic semantics do not 8186 // specify a fixed result for it. 8187 return I->getFastMathFlags().noNaNs(); 8188 } 8189 8190 return I->isAssociative(); 8191 } 8192 8193 static Value *getRdxOperand(Instruction *I, unsigned Index) { 8194 // Poison-safe 'or' takes the form: select X, true, Y 8195 // To make that work with the normal operand processing, we skip the 8196 // true value operand. 8197 // TODO: Change the code and data structures to handle this without a hack. 8198 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 8199 return I->getOperand(2); 8200 return I->getOperand(Index); 8201 } 8202 8203 /// Checks if the ParentStackElem.first should be marked as a reduction 8204 /// operation with an extra argument or as extra argument itself. 8205 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 8206 Value *ExtraArg) { 8207 if (ExtraArgs.count(ParentStackElem.first)) { 8208 ExtraArgs[ParentStackElem.first] = nullptr; 8209 // We ran into something like: 8210 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 8211 // The whole ParentStackElem.first should be considered as an extra value 8212 // in this case. 8213 // Do not perform analysis of remaining operands of ParentStackElem.first 8214 // instruction, this whole instruction is an extra argument. 8215 ParentStackElem.second = INVALID_OPERAND_INDEX; 8216 } else { 8217 // We ran into something like: 8218 // ParentStackElem.first += ... + ExtraArg + ... 8219 ExtraArgs[ParentStackElem.first] = ExtraArg; 8220 } 8221 } 8222 8223 /// Creates reduction operation with the current opcode. 8224 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 8225 Value *RHS, const Twine &Name, bool UseSelect) { 8226 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 8227 switch (Kind) { 8228 case RecurKind::Or: 8229 if (UseSelect && 8230 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 8231 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); 8232 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8233 Name); 8234 case RecurKind::And: 8235 if (UseSelect && 8236 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 8237 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); 8238 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8239 Name); 8240 case RecurKind::Add: 8241 case RecurKind::Mul: 8242 case RecurKind::Xor: 8243 case RecurKind::FAdd: 8244 case RecurKind::FMul: 8245 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8246 Name); 8247 case RecurKind::FMax: 8248 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 8249 case RecurKind::FMin: 8250 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 8251 case RecurKind::SMax: 8252 if (UseSelect) { 8253 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 8254 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8255 } 8256 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 8257 case RecurKind::SMin: 8258 if (UseSelect) { 8259 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 8260 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8261 } 8262 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 8263 case RecurKind::UMax: 8264 if (UseSelect) { 8265 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 8266 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8267 } 8268 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 8269 case RecurKind::UMin: 8270 if (UseSelect) { 8271 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 8272 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8273 } 8274 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 8275 default: 8276 llvm_unreachable("Unknown reduction operation."); 8277 } 8278 } 8279 8280 /// Creates reduction operation with the current opcode with the IR flags 8281 /// from \p ReductionOps. 8282 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 8283 Value *RHS, const Twine &Name, 8284 const ReductionOpsListType &ReductionOps) { 8285 bool UseSelect = ReductionOps.size() == 2 || 8286 // Logical or/and. 8287 (ReductionOps.size() == 1 && 8288 isa<SelectInst>(ReductionOps.front().front())); 8289 assert((!UseSelect || ReductionOps.size() != 2 || 8290 isa<SelectInst>(ReductionOps[1][0])) && 8291 "Expected cmp + select pairs for reduction"); 8292 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 8293 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 8294 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 8295 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 8296 propagateIRFlags(Op, ReductionOps[1]); 8297 return Op; 8298 } 8299 } 8300 propagateIRFlags(Op, ReductionOps[0]); 8301 return Op; 8302 } 8303 8304 /// Creates reduction operation with the current opcode with the IR flags 8305 /// from \p I. 8306 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 8307 Value *RHS, const Twine &Name, Instruction *I) { 8308 auto *SelI = dyn_cast<SelectInst>(I); 8309 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 8310 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 8311 if (auto *Sel = dyn_cast<SelectInst>(Op)) 8312 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 8313 } 8314 propagateIRFlags(Op, I); 8315 return Op; 8316 } 8317 8318 static RecurKind getRdxKind(Instruction *I) { 8319 assert(I && "Expected instruction for reduction matching"); 8320 TargetTransformInfo::ReductionFlags RdxFlags; 8321 if (match(I, m_Add(m_Value(), m_Value()))) 8322 return RecurKind::Add; 8323 if (match(I, m_Mul(m_Value(), m_Value()))) 8324 return RecurKind::Mul; 8325 if (match(I, m_And(m_Value(), m_Value())) || 8326 match(I, m_LogicalAnd(m_Value(), m_Value()))) 8327 return RecurKind::And; 8328 if (match(I, m_Or(m_Value(), m_Value())) || 8329 match(I, m_LogicalOr(m_Value(), m_Value()))) 8330 return RecurKind::Or; 8331 if (match(I, m_Xor(m_Value(), m_Value()))) 8332 return RecurKind::Xor; 8333 if (match(I, m_FAdd(m_Value(), m_Value()))) 8334 return RecurKind::FAdd; 8335 if (match(I, m_FMul(m_Value(), m_Value()))) 8336 return RecurKind::FMul; 8337 8338 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 8339 return RecurKind::FMax; 8340 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 8341 return RecurKind::FMin; 8342 8343 // This matches either cmp+select or intrinsics. SLP is expected to handle 8344 // either form. 8345 // TODO: If we are canonicalizing to intrinsics, we can remove several 8346 // special-case paths that deal with selects. 8347 if (match(I, m_SMax(m_Value(), m_Value()))) 8348 return RecurKind::SMax; 8349 if (match(I, m_SMin(m_Value(), m_Value()))) 8350 return RecurKind::SMin; 8351 if (match(I, m_UMax(m_Value(), m_Value()))) 8352 return RecurKind::UMax; 8353 if (match(I, m_UMin(m_Value(), m_Value()))) 8354 return RecurKind::UMin; 8355 8356 if (auto *Select = dyn_cast<SelectInst>(I)) { 8357 // Try harder: look for min/max pattern based on instructions producing 8358 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 8359 // During the intermediate stages of SLP, it's very common to have 8360 // pattern like this (since optimizeGatherSequence is run only once 8361 // at the end): 8362 // %1 = extractelement <2 x i32> %a, i32 0 8363 // %2 = extractelement <2 x i32> %a, i32 1 8364 // %cond = icmp sgt i32 %1, %2 8365 // %3 = extractelement <2 x i32> %a, i32 0 8366 // %4 = extractelement <2 x i32> %a, i32 1 8367 // %select = select i1 %cond, i32 %3, i32 %4 8368 CmpInst::Predicate Pred; 8369 Instruction *L1; 8370 Instruction *L2; 8371 8372 Value *LHS = Select->getTrueValue(); 8373 Value *RHS = Select->getFalseValue(); 8374 Value *Cond = Select->getCondition(); 8375 8376 // TODO: Support inverse predicates. 8377 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 8378 if (!isa<ExtractElementInst>(RHS) || 8379 !L2->isIdenticalTo(cast<Instruction>(RHS))) 8380 return RecurKind::None; 8381 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 8382 if (!isa<ExtractElementInst>(LHS) || 8383 !L1->isIdenticalTo(cast<Instruction>(LHS))) 8384 return RecurKind::None; 8385 } else { 8386 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 8387 return RecurKind::None; 8388 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 8389 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 8390 !L2->isIdenticalTo(cast<Instruction>(RHS))) 8391 return RecurKind::None; 8392 } 8393 8394 TargetTransformInfo::ReductionFlags RdxFlags; 8395 switch (Pred) { 8396 default: 8397 return RecurKind::None; 8398 case CmpInst::ICMP_SGT: 8399 case CmpInst::ICMP_SGE: 8400 return RecurKind::SMax; 8401 case CmpInst::ICMP_SLT: 8402 case CmpInst::ICMP_SLE: 8403 return RecurKind::SMin; 8404 case CmpInst::ICMP_UGT: 8405 case CmpInst::ICMP_UGE: 8406 return RecurKind::UMax; 8407 case CmpInst::ICMP_ULT: 8408 case CmpInst::ICMP_ULE: 8409 return RecurKind::UMin; 8410 } 8411 } 8412 return RecurKind::None; 8413 } 8414 8415 /// Get the index of the first operand. 8416 static unsigned getFirstOperandIndex(Instruction *I) { 8417 return isCmpSelMinMax(I) ? 1 : 0; 8418 } 8419 8420 /// Total number of operands in the reduction operation. 8421 static unsigned getNumberOfOperands(Instruction *I) { 8422 return isCmpSelMinMax(I) ? 3 : 2; 8423 } 8424 8425 /// Checks if the instruction is in basic block \p BB. 8426 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 8427 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 8428 if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) { 8429 auto *Sel = cast<SelectInst>(I); 8430 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); 8431 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; 8432 } 8433 return I->getParent() == BB; 8434 } 8435 8436 /// Expected number of uses for reduction operations/reduced values. 8437 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 8438 if (IsCmpSelMinMax) { 8439 // SelectInst must be used twice while the condition op must have single 8440 // use only. 8441 if (auto *Sel = dyn_cast<SelectInst>(I)) 8442 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 8443 return I->hasNUses(2); 8444 } 8445 8446 // Arithmetic reduction operation must be used once only. 8447 return I->hasOneUse(); 8448 } 8449 8450 /// Initializes the list of reduction operations. 8451 void initReductionOps(Instruction *I) { 8452 if (isCmpSelMinMax(I)) 8453 ReductionOps.assign(2, ReductionOpsType()); 8454 else 8455 ReductionOps.assign(1, ReductionOpsType()); 8456 } 8457 8458 /// Add all reduction operations for the reduction instruction \p I. 8459 void addReductionOps(Instruction *I) { 8460 if (isCmpSelMinMax(I)) { 8461 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 8462 ReductionOps[1].emplace_back(I); 8463 } else { 8464 ReductionOps[0].emplace_back(I); 8465 } 8466 } 8467 8468 static Value *getLHS(RecurKind Kind, Instruction *I) { 8469 if (Kind == RecurKind::None) 8470 return nullptr; 8471 return I->getOperand(getFirstOperandIndex(I)); 8472 } 8473 static Value *getRHS(RecurKind Kind, Instruction *I) { 8474 if (Kind == RecurKind::None) 8475 return nullptr; 8476 return I->getOperand(getFirstOperandIndex(I) + 1); 8477 } 8478 8479 public: 8480 HorizontalReduction() = default; 8481 8482 /// Try to find a reduction tree. 8483 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst) { 8484 assert((!Phi || is_contained(Phi->operands(), Inst)) && 8485 "Phi needs to use the binary operator"); 8486 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 8487 isa<IntrinsicInst>(Inst)) && 8488 "Expected binop, select, or intrinsic for reduction matching"); 8489 RdxKind = getRdxKind(Inst); 8490 8491 // We could have a initial reductions that is not an add. 8492 // r *= v1 + v2 + v3 + v4 8493 // In such a case start looking for a tree rooted in the first '+'. 8494 if (Phi) { 8495 if (getLHS(RdxKind, Inst) == Phi) { 8496 Phi = nullptr; 8497 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 8498 if (!Inst) 8499 return false; 8500 RdxKind = getRdxKind(Inst); 8501 } else if (getRHS(RdxKind, Inst) == Phi) { 8502 Phi = nullptr; 8503 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 8504 if (!Inst) 8505 return false; 8506 RdxKind = getRdxKind(Inst); 8507 } 8508 } 8509 8510 if (!isVectorizable(RdxKind, Inst)) 8511 return false; 8512 8513 // Analyze "regular" integer/FP types for reductions - no target-specific 8514 // types or pointers. 8515 Type *Ty = Inst->getType(); 8516 if (!isValidElementType(Ty) || Ty->isPointerTy()) 8517 return false; 8518 8519 // Though the ultimate reduction may have multiple uses, its condition must 8520 // have only single use. 8521 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 8522 if (!Sel->getCondition()->hasOneUse()) 8523 return false; 8524 8525 ReductionRoot = Inst; 8526 8527 // The opcode for leaf values that we perform a reduction on. 8528 // For example: load(x) + load(y) + load(z) + fptoui(w) 8529 // The leaf opcode for 'w' does not match, so we don't include it as a 8530 // potential candidate for the reduction. 8531 unsigned LeafOpcode = 0; 8532 8533 // Post-order traverse the reduction tree starting at Inst. We only handle 8534 // true trees containing binary operators or selects. 8535 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 8536 Stack.push_back(std::make_pair(Inst, getFirstOperandIndex(Inst))); 8537 initReductionOps(Inst); 8538 while (!Stack.empty()) { 8539 Instruction *TreeN = Stack.back().first; 8540 unsigned EdgeToVisit = Stack.back().second++; 8541 const RecurKind TreeRdxKind = getRdxKind(TreeN); 8542 bool IsReducedValue = TreeRdxKind != RdxKind; 8543 8544 // Postorder visit. 8545 if (IsReducedValue || EdgeToVisit >= getNumberOfOperands(TreeN)) { 8546 if (IsReducedValue) 8547 ReducedVals.push_back(TreeN); 8548 else { 8549 auto ExtraArgsIter = ExtraArgs.find(TreeN); 8550 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) { 8551 // Check if TreeN is an extra argument of its parent operation. 8552 if (Stack.size() <= 1) { 8553 // TreeN can't be an extra argument as it is a root reduction 8554 // operation. 8555 return false; 8556 } 8557 // Yes, TreeN is an extra argument, do not add it to a list of 8558 // reduction operations. 8559 // Stack[Stack.size() - 2] always points to the parent operation. 8560 markExtraArg(Stack[Stack.size() - 2], TreeN); 8561 ExtraArgs.erase(TreeN); 8562 } else 8563 addReductionOps(TreeN); 8564 } 8565 // Retract. 8566 Stack.pop_back(); 8567 continue; 8568 } 8569 8570 // Visit operands. 8571 Value *EdgeVal = getRdxOperand(TreeN, EdgeToVisit); 8572 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 8573 if (!EdgeInst) { 8574 // Edge value is not a reduction instruction or a leaf instruction. 8575 // (It may be a constant, function argument, or something else.) 8576 markExtraArg(Stack.back(), EdgeVal); 8577 continue; 8578 } 8579 RecurKind EdgeRdxKind = getRdxKind(EdgeInst); 8580 // Continue analysis if the next operand is a reduction operation or 8581 // (possibly) a leaf value. If the leaf value opcode is not set, 8582 // the first met operation != reduction operation is considered as the 8583 // leaf opcode. 8584 // Only handle trees in the current basic block. 8585 // Each tree node needs to have minimal number of users except for the 8586 // ultimate reduction. 8587 const bool IsRdxInst = EdgeRdxKind == RdxKind; 8588 if (EdgeInst != Phi && EdgeInst != Inst && 8589 hasSameParent(EdgeInst, Inst->getParent()) && 8590 hasRequiredNumberOfUses(isCmpSelMinMax(Inst), EdgeInst) && 8591 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) { 8592 if (IsRdxInst) { 8593 // We need to be able to reassociate the reduction operations. 8594 if (!isVectorizable(EdgeRdxKind, EdgeInst)) { 8595 // I is an extra argument for TreeN (its parent operation). 8596 markExtraArg(Stack.back(), EdgeInst); 8597 continue; 8598 } 8599 } else if (!LeafOpcode) { 8600 LeafOpcode = EdgeInst->getOpcode(); 8601 } 8602 Stack.push_back( 8603 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst))); 8604 continue; 8605 } 8606 // I is an extra argument for TreeN (its parent operation). 8607 markExtraArg(Stack.back(), EdgeInst); 8608 } 8609 return true; 8610 } 8611 8612 /// Attempt to vectorize the tree found by matchAssociativeReduction. 8613 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 8614 // If there are a sufficient number of reduction values, reduce 8615 // to a nearby power-of-2. We can safely generate oversized 8616 // vectors and rely on the backend to split them to legal sizes. 8617 unsigned NumReducedVals = ReducedVals.size(); 8618 if (NumReducedVals < 4) 8619 return nullptr; 8620 8621 // Intersect the fast-math-flags from all reduction operations. 8622 FastMathFlags RdxFMF; 8623 RdxFMF.set(); 8624 for (ReductionOpsType &RdxOp : ReductionOps) { 8625 for (Value *RdxVal : RdxOp) { 8626 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 8627 RdxFMF &= FPMO->getFastMathFlags(); 8628 } 8629 } 8630 8631 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 8632 Builder.setFastMathFlags(RdxFMF); 8633 8634 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 8635 // The same extra argument may be used several times, so log each attempt 8636 // to use it. 8637 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 8638 assert(Pair.first && "DebugLoc must be set."); 8639 ExternallyUsedValues[Pair.second].push_back(Pair.first); 8640 } 8641 8642 // The compare instruction of a min/max is the insertion point for new 8643 // instructions and may be replaced with a new compare instruction. 8644 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 8645 assert(isa<SelectInst>(RdxRootInst) && 8646 "Expected min/max reduction to have select root instruction"); 8647 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 8648 assert(isa<Instruction>(ScalarCond) && 8649 "Expected min/max reduction to have compare condition"); 8650 return cast<Instruction>(ScalarCond); 8651 }; 8652 8653 // The reduction root is used as the insertion point for new instructions, 8654 // so set it as externally used to prevent it from being deleted. 8655 ExternallyUsedValues[ReductionRoot]; 8656 SmallVector<Value *, 16> IgnoreList; 8657 for (ReductionOpsType &RdxOp : ReductionOps) 8658 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 8659 8660 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 8661 if (NumReducedVals > ReduxWidth) { 8662 // In the loop below, we are building a tree based on a window of 8663 // 'ReduxWidth' values. 8664 // If the operands of those values have common traits (compare predicate, 8665 // constant operand, etc), then we want to group those together to 8666 // minimize the cost of the reduction. 8667 8668 // TODO: This should be extended to count common operands for 8669 // compares and binops. 8670 8671 // Step 1: Count the number of times each compare predicate occurs. 8672 SmallDenseMap<unsigned, unsigned> PredCountMap; 8673 for (Value *RdxVal : ReducedVals) { 8674 CmpInst::Predicate Pred; 8675 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 8676 ++PredCountMap[Pred]; 8677 } 8678 // Step 2: Sort the values so the most common predicates come first. 8679 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 8680 CmpInst::Predicate PredA, PredB; 8681 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 8682 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 8683 return PredCountMap[PredA] > PredCountMap[PredB]; 8684 } 8685 return false; 8686 }); 8687 } 8688 8689 Value *VectorizedTree = nullptr; 8690 unsigned i = 0; 8691 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 8692 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 8693 V.buildTree(VL, IgnoreList); 8694 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) 8695 break; 8696 if (V.isLoadCombineReductionCandidate(RdxKind)) 8697 break; 8698 V.reorderTopToBottom(); 8699 V.reorderBottomToTop(/*IgnoreReorder=*/true); 8700 V.buildExternalUses(ExternallyUsedValues); 8701 8702 // For a poison-safe boolean logic reduction, do not replace select 8703 // instructions with logic ops. All reduced values will be frozen (see 8704 // below) to prevent leaking poison. 8705 if (isa<SelectInst>(ReductionRoot) && 8706 isBoolLogicOp(cast<Instruction>(ReductionRoot)) && 8707 NumReducedVals != ReduxWidth) 8708 break; 8709 8710 V.computeMinimumValueSizes(); 8711 8712 // Estimate cost. 8713 InstructionCost TreeCost = 8714 V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth)); 8715 InstructionCost ReductionCost = 8716 getReductionCost(TTI, ReducedVals[i], ReduxWidth, RdxFMF); 8717 InstructionCost Cost = TreeCost + ReductionCost; 8718 if (!Cost.isValid()) { 8719 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 8720 return nullptr; 8721 } 8722 if (Cost >= -SLPCostThreshold) { 8723 V.getORE()->emit([&]() { 8724 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 8725 cast<Instruction>(VL[0])) 8726 << "Vectorizing horizontal reduction is possible" 8727 << "but not beneficial with cost " << ore::NV("Cost", Cost) 8728 << " and threshold " 8729 << ore::NV("Threshold", -SLPCostThreshold); 8730 }); 8731 break; 8732 } 8733 8734 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 8735 << Cost << ". (HorRdx)\n"); 8736 V.getORE()->emit([&]() { 8737 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 8738 cast<Instruction>(VL[0])) 8739 << "Vectorized horizontal reduction with cost " 8740 << ore::NV("Cost", Cost) << " and with tree size " 8741 << ore::NV("TreeSize", V.getTreeSize()); 8742 }); 8743 8744 // Vectorize a tree. 8745 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 8746 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 8747 8748 // Emit a reduction. If the root is a select (min/max idiom), the insert 8749 // point is the compare condition of that select. 8750 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 8751 if (isCmpSelMinMax(RdxRootInst)) 8752 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 8753 else 8754 Builder.SetInsertPoint(RdxRootInst); 8755 8756 // To prevent poison from leaking across what used to be sequential, safe, 8757 // scalar boolean logic operations, the reduction operand must be frozen. 8758 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 8759 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 8760 8761 Value *ReducedSubTree = 8762 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 8763 8764 if (!VectorizedTree) { 8765 // Initialize the final value in the reduction. 8766 VectorizedTree = ReducedSubTree; 8767 } else { 8768 // Update the final value in the reduction. 8769 Builder.SetCurrentDebugLocation(Loc); 8770 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 8771 ReducedSubTree, "op.rdx", ReductionOps); 8772 } 8773 i += ReduxWidth; 8774 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 8775 } 8776 8777 if (VectorizedTree) { 8778 // Finish the reduction. 8779 for (; i < NumReducedVals; ++i) { 8780 auto *I = cast<Instruction>(ReducedVals[i]); 8781 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 8782 VectorizedTree = 8783 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 8784 } 8785 for (auto &Pair : ExternallyUsedValues) { 8786 // Add each externally used value to the final reduction. 8787 for (auto *I : Pair.second) { 8788 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 8789 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 8790 Pair.first, "op.extra", I); 8791 } 8792 } 8793 8794 ReductionRoot->replaceAllUsesWith(VectorizedTree); 8795 8796 // Mark all scalar reduction ops for deletion, they are replaced by the 8797 // vector reductions. 8798 V.eraseInstructions(IgnoreList); 8799 } 8800 return VectorizedTree; 8801 } 8802 8803 unsigned numReductionValues() const { return ReducedVals.size(); } 8804 8805 private: 8806 /// Calculate the cost of a reduction. 8807 InstructionCost getReductionCost(TargetTransformInfo *TTI, 8808 Value *FirstReducedVal, unsigned ReduxWidth, 8809 FastMathFlags FMF) { 8810 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 8811 Type *ScalarTy = FirstReducedVal->getType(); 8812 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 8813 InstructionCost VectorCost, ScalarCost; 8814 switch (RdxKind) { 8815 case RecurKind::Add: 8816 case RecurKind::Mul: 8817 case RecurKind::Or: 8818 case RecurKind::And: 8819 case RecurKind::Xor: 8820 case RecurKind::FAdd: 8821 case RecurKind::FMul: { 8822 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 8823 VectorCost = 8824 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 8825 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 8826 break; 8827 } 8828 case RecurKind::FMax: 8829 case RecurKind::FMin: { 8830 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 8831 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 8832 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 8833 /*unsigned=*/false, CostKind); 8834 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 8835 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, 8836 SclCondTy, RdxPred, CostKind) + 8837 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 8838 SclCondTy, RdxPred, CostKind); 8839 break; 8840 } 8841 case RecurKind::SMax: 8842 case RecurKind::SMin: 8843 case RecurKind::UMax: 8844 case RecurKind::UMin: { 8845 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 8846 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 8847 bool IsUnsigned = 8848 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 8849 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned, 8850 CostKind); 8851 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 8852 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, 8853 SclCondTy, RdxPred, CostKind) + 8854 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 8855 SclCondTy, RdxPred, CostKind); 8856 break; 8857 } 8858 default: 8859 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 8860 } 8861 8862 // Scalar cost is repeated for N-1 elements. 8863 ScalarCost *= (ReduxWidth - 1); 8864 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 8865 << " for reduction that starts with " << *FirstReducedVal 8866 << " (It is a splitting reduction)\n"); 8867 return VectorCost - ScalarCost; 8868 } 8869 8870 /// Emit a horizontal reduction of the vectorized value. 8871 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 8872 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 8873 assert(VectorizedValue && "Need to have a vectorized tree node"); 8874 assert(isPowerOf2_32(ReduxWidth) && 8875 "We only handle power-of-two reductions for now"); 8876 assert(RdxKind != RecurKind::FMulAdd && 8877 "A call to the llvm.fmuladd intrinsic is not handled yet"); 8878 8879 ++NumVectorInstructions; 8880 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind, 8881 ReductionOps.back()); 8882 } 8883 }; 8884 8885 } // end anonymous namespace 8886 8887 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 8888 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 8889 return cast<FixedVectorType>(IE->getType())->getNumElements(); 8890 8891 unsigned AggregateSize = 1; 8892 auto *IV = cast<InsertValueInst>(InsertInst); 8893 Type *CurrentType = IV->getType(); 8894 do { 8895 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 8896 for (auto *Elt : ST->elements()) 8897 if (Elt != ST->getElementType(0)) // check homogeneity 8898 return None; 8899 AggregateSize *= ST->getNumElements(); 8900 CurrentType = ST->getElementType(0); 8901 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 8902 AggregateSize *= AT->getNumElements(); 8903 CurrentType = AT->getElementType(); 8904 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 8905 AggregateSize *= VT->getNumElements(); 8906 return AggregateSize; 8907 } else if (CurrentType->isSingleValueType()) { 8908 return AggregateSize; 8909 } else { 8910 return None; 8911 } 8912 } while (true); 8913 } 8914 8915 static bool findBuildAggregate_rec(Instruction *LastInsertInst, 8916 TargetTransformInfo *TTI, 8917 SmallVectorImpl<Value *> &BuildVectorOpds, 8918 SmallVectorImpl<Value *> &InsertElts, 8919 unsigned OperandOffset) { 8920 do { 8921 Value *InsertedOperand = LastInsertInst->getOperand(1); 8922 Optional<int> OperandIndex = getInsertIndex(LastInsertInst, OperandOffset); 8923 if (!OperandIndex) 8924 return false; 8925 if (isa<InsertElementInst>(InsertedOperand) || 8926 isa<InsertValueInst>(InsertedOperand)) { 8927 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 8928 BuildVectorOpds, InsertElts, *OperandIndex)) 8929 return false; 8930 } else { 8931 BuildVectorOpds[*OperandIndex] = InsertedOperand; 8932 InsertElts[*OperandIndex] = LastInsertInst; 8933 } 8934 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 8935 } while (LastInsertInst != nullptr && 8936 (isa<InsertValueInst>(LastInsertInst) || 8937 isa<InsertElementInst>(LastInsertInst)) && 8938 LastInsertInst->hasOneUse()); 8939 return true; 8940 } 8941 8942 /// Recognize construction of vectors like 8943 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 8944 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 8945 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 8946 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 8947 /// starting from the last insertelement or insertvalue instruction. 8948 /// 8949 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 8950 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 8951 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 8952 /// 8953 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 8954 /// 8955 /// \return true if it matches. 8956 static bool findBuildAggregate(Instruction *LastInsertInst, 8957 TargetTransformInfo *TTI, 8958 SmallVectorImpl<Value *> &BuildVectorOpds, 8959 SmallVectorImpl<Value *> &InsertElts) { 8960 8961 assert((isa<InsertElementInst>(LastInsertInst) || 8962 isa<InsertValueInst>(LastInsertInst)) && 8963 "Expected insertelement or insertvalue instruction!"); 8964 8965 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 8966 "Expected empty result vectors!"); 8967 8968 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 8969 if (!AggregateSize) 8970 return false; 8971 BuildVectorOpds.resize(*AggregateSize); 8972 InsertElts.resize(*AggregateSize); 8973 8974 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 8975 0)) { 8976 llvm::erase_value(BuildVectorOpds, nullptr); 8977 llvm::erase_value(InsertElts, nullptr); 8978 if (BuildVectorOpds.size() >= 2) 8979 return true; 8980 } 8981 8982 return false; 8983 } 8984 8985 /// Try and get a reduction value from a phi node. 8986 /// 8987 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 8988 /// if they come from either \p ParentBB or a containing loop latch. 8989 /// 8990 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 8991 /// if not possible. 8992 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 8993 BasicBlock *ParentBB, LoopInfo *LI) { 8994 // There are situations where the reduction value is not dominated by the 8995 // reduction phi. Vectorizing such cases has been reported to cause 8996 // miscompiles. See PR25787. 8997 auto DominatedReduxValue = [&](Value *R) { 8998 return isa<Instruction>(R) && 8999 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 9000 }; 9001 9002 Value *Rdx = nullptr; 9003 9004 // Return the incoming value if it comes from the same BB as the phi node. 9005 if (P->getIncomingBlock(0) == ParentBB) { 9006 Rdx = P->getIncomingValue(0); 9007 } else if (P->getIncomingBlock(1) == ParentBB) { 9008 Rdx = P->getIncomingValue(1); 9009 } 9010 9011 if (Rdx && DominatedReduxValue(Rdx)) 9012 return Rdx; 9013 9014 // Otherwise, check whether we have a loop latch to look at. 9015 Loop *BBL = LI->getLoopFor(ParentBB); 9016 if (!BBL) 9017 return nullptr; 9018 BasicBlock *BBLatch = BBL->getLoopLatch(); 9019 if (!BBLatch) 9020 return nullptr; 9021 9022 // There is a loop latch, return the incoming value if it comes from 9023 // that. This reduction pattern occasionally turns up. 9024 if (P->getIncomingBlock(0) == BBLatch) { 9025 Rdx = P->getIncomingValue(0); 9026 } else if (P->getIncomingBlock(1) == BBLatch) { 9027 Rdx = P->getIncomingValue(1); 9028 } 9029 9030 if (Rdx && DominatedReduxValue(Rdx)) 9031 return Rdx; 9032 9033 return nullptr; 9034 } 9035 9036 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 9037 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 9038 return true; 9039 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 9040 return true; 9041 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 9042 return true; 9043 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 9044 return true; 9045 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 9046 return true; 9047 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 9048 return true; 9049 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 9050 return true; 9051 return false; 9052 } 9053 9054 /// Attempt to reduce a horizontal reduction. 9055 /// If it is legal to match a horizontal reduction feeding the phi node \a P 9056 /// with reduction operators \a Root (or one of its operands) in a basic block 9057 /// \a BB, then check if it can be done. If horizontal reduction is not found 9058 /// and root instruction is a binary operation, vectorization of the operands is 9059 /// attempted. 9060 /// \returns true if a horizontal reduction was matched and reduced or operands 9061 /// of one of the binary instruction were vectorized. 9062 /// \returns false if a horizontal reduction was not matched (or not possible) 9063 /// or no vectorization of any binary operation feeding \a Root instruction was 9064 /// performed. 9065 static bool tryToVectorizeHorReductionOrInstOperands( 9066 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 9067 TargetTransformInfo *TTI, 9068 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 9069 if (!ShouldVectorizeHor) 9070 return false; 9071 9072 if (!Root) 9073 return false; 9074 9075 if (Root->getParent() != BB || isa<PHINode>(Root)) 9076 return false; 9077 // Start analysis starting from Root instruction. If horizontal reduction is 9078 // found, try to vectorize it. If it is not a horizontal reduction or 9079 // vectorization is not possible or not effective, and currently analyzed 9080 // instruction is a binary operation, try to vectorize the operands, using 9081 // pre-order DFS traversal order. If the operands were not vectorized, repeat 9082 // the same procedure considering each operand as a possible root of the 9083 // horizontal reduction. 9084 // Interrupt the process if the Root instruction itself was vectorized or all 9085 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 9086 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 9087 // CmpInsts so we can skip extra attempts in 9088 // tryToVectorizeHorReductionOrInstOperands and save compile time. 9089 std::queue<std::pair<Instruction *, unsigned>> Stack; 9090 Stack.emplace(Root, 0); 9091 SmallPtrSet<Value *, 8> VisitedInstrs; 9092 SmallVector<WeakTrackingVH> PostponedInsts; 9093 bool Res = false; 9094 auto &&TryToReduce = [TTI, &P, &R](Instruction *Inst, Value *&B0, 9095 Value *&B1) -> Value * { 9096 bool IsBinop = matchRdxBop(Inst, B0, B1); 9097 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 9098 if (IsBinop || IsSelect) { 9099 HorizontalReduction HorRdx; 9100 if (HorRdx.matchAssociativeReduction(P, Inst)) 9101 return HorRdx.tryToReduce(R, TTI); 9102 } 9103 return nullptr; 9104 }; 9105 while (!Stack.empty()) { 9106 Instruction *Inst; 9107 unsigned Level; 9108 std::tie(Inst, Level) = Stack.front(); 9109 Stack.pop(); 9110 // Do not try to analyze instruction that has already been vectorized. 9111 // This may happen when we vectorize instruction operands on a previous 9112 // iteration while stack was populated before that happened. 9113 if (R.isDeleted(Inst)) 9114 continue; 9115 Value *B0 = nullptr, *B1 = nullptr; 9116 if (Value *V = TryToReduce(Inst, B0, B1)) { 9117 Res = true; 9118 // Set P to nullptr to avoid re-analysis of phi node in 9119 // matchAssociativeReduction function unless this is the root node. 9120 P = nullptr; 9121 if (auto *I = dyn_cast<Instruction>(V)) { 9122 // Try to find another reduction. 9123 Stack.emplace(I, Level); 9124 continue; 9125 } 9126 } else { 9127 bool IsBinop = B0 && B1; 9128 if (P && IsBinop) { 9129 Inst = dyn_cast<Instruction>(B0); 9130 if (Inst == P) 9131 Inst = dyn_cast<Instruction>(B1); 9132 if (!Inst) { 9133 // Set P to nullptr to avoid re-analysis of phi node in 9134 // matchAssociativeReduction function unless this is the root node. 9135 P = nullptr; 9136 continue; 9137 } 9138 } 9139 // Set P to nullptr to avoid re-analysis of phi node in 9140 // matchAssociativeReduction function unless this is the root node. 9141 P = nullptr; 9142 // Do not try to vectorize CmpInst operands, this is done separately. 9143 // Final attempt for binop args vectorization should happen after the loop 9144 // to try to find reductions. 9145 if (!isa<CmpInst>(Inst)) 9146 PostponedInsts.push_back(Inst); 9147 } 9148 9149 // Try to vectorize operands. 9150 // Continue analysis for the instruction from the same basic block only to 9151 // save compile time. 9152 if (++Level < RecursionMaxDepth) 9153 for (auto *Op : Inst->operand_values()) 9154 if (VisitedInstrs.insert(Op).second) 9155 if (auto *I = dyn_cast<Instruction>(Op)) 9156 // Do not try to vectorize CmpInst operands, this is done 9157 // separately. 9158 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 9159 I->getParent() == BB) 9160 Stack.emplace(I, Level); 9161 } 9162 // Try to vectorized binops where reductions were not found. 9163 for (Value *V : PostponedInsts) 9164 if (auto *Inst = dyn_cast<Instruction>(V)) 9165 if (!R.isDeleted(Inst)) 9166 Res |= Vectorize(Inst, R); 9167 return Res; 9168 } 9169 9170 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 9171 BasicBlock *BB, BoUpSLP &R, 9172 TargetTransformInfo *TTI) { 9173 auto *I = dyn_cast_or_null<Instruction>(V); 9174 if (!I) 9175 return false; 9176 9177 if (!isa<BinaryOperator>(I)) 9178 P = nullptr; 9179 // Try to match and vectorize a horizontal reduction. 9180 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 9181 return tryToVectorize(I, R); 9182 }; 9183 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 9184 ExtraVectorization); 9185 } 9186 9187 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 9188 BasicBlock *BB, BoUpSLP &R) { 9189 const DataLayout &DL = BB->getModule()->getDataLayout(); 9190 if (!R.canMapToVector(IVI->getType(), DL)) 9191 return false; 9192 9193 SmallVector<Value *, 16> BuildVectorOpds; 9194 SmallVector<Value *, 16> BuildVectorInsts; 9195 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 9196 return false; 9197 9198 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 9199 // Aggregate value is unlikely to be processed in vector register, we need to 9200 // extract scalars into scalar registers, so NeedExtraction is set true. 9201 return tryToVectorizeList(BuildVectorOpds, R); 9202 } 9203 9204 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 9205 BasicBlock *BB, BoUpSLP &R) { 9206 SmallVector<Value *, 16> BuildVectorInsts; 9207 SmallVector<Value *, 16> BuildVectorOpds; 9208 SmallVector<int> Mask; 9209 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 9210 (llvm::all_of( 9211 BuildVectorOpds, 9212 [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) && 9213 isFixedVectorShuffle(BuildVectorOpds, Mask))) 9214 return false; 9215 9216 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 9217 return tryToVectorizeList(BuildVectorInsts, R); 9218 } 9219 9220 template <typename T> 9221 static bool 9222 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, 9223 function_ref<unsigned(T *)> Limit, 9224 function_ref<bool(T *, T *)> Comparator, 9225 function_ref<bool(T *, T *)> AreCompatible, 9226 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorize, 9227 bool LimitForRegisterSize) { 9228 bool Changed = false; 9229 // Sort by type, parent, operands. 9230 stable_sort(Incoming, Comparator); 9231 9232 // Try to vectorize elements base on their type. 9233 SmallVector<T *> Candidates; 9234 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { 9235 // Look for the next elements with the same type, parent and operand 9236 // kinds. 9237 auto *SameTypeIt = IncIt; 9238 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) 9239 ++SameTypeIt; 9240 9241 // Try to vectorize them. 9242 unsigned NumElts = (SameTypeIt - IncIt); 9243 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" 9244 << NumElts << ")\n"); 9245 // The vectorization is a 3-state attempt: 9246 // 1. Try to vectorize instructions with the same/alternate opcodes with the 9247 // size of maximal register at first. 9248 // 2. Try to vectorize remaining instructions with the same type, if 9249 // possible. This may result in the better vectorization results rather than 9250 // if we try just to vectorize instructions with the same/alternate opcodes. 9251 // 3. Final attempt to try to vectorize all instructions with the 9252 // same/alternate ops only, this may result in some extra final 9253 // vectorization. 9254 if (NumElts > 1 && 9255 TryToVectorize(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) { 9256 // Success start over because instructions might have been changed. 9257 Changed = true; 9258 } else if (NumElts < Limit(*IncIt) && 9259 (Candidates.empty() || 9260 Candidates.front()->getType() == (*IncIt)->getType())) { 9261 Candidates.append(IncIt, std::next(IncIt, NumElts)); 9262 } 9263 // Final attempt to vectorize instructions with the same types. 9264 if (Candidates.size() > 1 && 9265 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { 9266 if (TryToVectorize(Candidates, /*LimitForRegisterSize=*/false)) { 9267 // Success start over because instructions might have been changed. 9268 Changed = true; 9269 } else if (LimitForRegisterSize) { 9270 // Try to vectorize using small vectors. 9271 for (auto *It = Candidates.begin(), *End = Candidates.end(); 9272 It != End;) { 9273 auto *SameTypeIt = It; 9274 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) 9275 ++SameTypeIt; 9276 unsigned NumElts = (SameTypeIt - It); 9277 if (NumElts > 1 && TryToVectorize(makeArrayRef(It, NumElts), 9278 /*LimitForRegisterSize=*/false)) 9279 Changed = true; 9280 It = SameTypeIt; 9281 } 9282 } 9283 Candidates.clear(); 9284 } 9285 9286 // Start over at the next instruction of a different type (or the end). 9287 IncIt = SameTypeIt; 9288 } 9289 return Changed; 9290 } 9291 9292 bool SLPVectorizerPass::vectorizeSimpleInstructions( 9293 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 9294 bool AtTerminator) { 9295 bool OpsChanged = false; 9296 SmallVector<Instruction *, 4> PostponedCmps; 9297 for (auto *I : reverse(Instructions)) { 9298 if (R.isDeleted(I)) 9299 continue; 9300 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 9301 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 9302 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 9303 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 9304 else if (isa<CmpInst>(I)) 9305 PostponedCmps.push_back(I); 9306 } 9307 if (AtTerminator) { 9308 // Try to find reductions first. 9309 for (Instruction *I : PostponedCmps) { 9310 if (R.isDeleted(I)) 9311 continue; 9312 for (Value *Op : I->operands()) 9313 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 9314 } 9315 // Try to vectorize operands as vector bundles. 9316 for (Instruction *I : PostponedCmps) { 9317 if (R.isDeleted(I)) 9318 continue; 9319 OpsChanged |= tryToVectorize(I, R); 9320 } 9321 Instructions.clear(); 9322 } else { 9323 // Insert in reverse order since the PostponedCmps vector was filled in 9324 // reverse order. 9325 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 9326 } 9327 return OpsChanged; 9328 } 9329 9330 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 9331 bool Changed = false; 9332 SmallVector<Value *, 4> Incoming; 9333 SmallPtrSet<Value *, 16> VisitedInstrs; 9334 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 9335 // node. Allows better to identify the chains that can be vectorized in the 9336 // better way. 9337 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 9338 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { 9339 assert(isValidElementType(V1->getType()) && 9340 isValidElementType(V2->getType()) && 9341 "Expected vectorizable types only."); 9342 // It is fine to compare type IDs here, since we expect only vectorizable 9343 // types, like ints, floats and pointers, we don't care about other type. 9344 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 9345 return true; 9346 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 9347 return false; 9348 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 9349 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 9350 if (Opcodes1.size() < Opcodes2.size()) 9351 return true; 9352 if (Opcodes1.size() > Opcodes2.size()) 9353 return false; 9354 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 9355 // Undefs are compatible with any other value. 9356 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 9357 continue; 9358 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 9359 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 9360 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 9361 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 9362 if (!NodeI1) 9363 return NodeI2 != nullptr; 9364 if (!NodeI2) 9365 return false; 9366 assert((NodeI1 == NodeI2) == 9367 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 9368 "Different nodes should have different DFS numbers"); 9369 if (NodeI1 != NodeI2) 9370 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 9371 InstructionsState S = getSameOpcode({I1, I2}); 9372 if (S.getOpcode()) 9373 continue; 9374 return I1->getOpcode() < I2->getOpcode(); 9375 } 9376 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 9377 continue; 9378 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 9379 return true; 9380 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 9381 return false; 9382 } 9383 return false; 9384 }; 9385 auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 9386 if (V1 == V2) 9387 return true; 9388 if (V1->getType() != V2->getType()) 9389 return false; 9390 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 9391 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 9392 if (Opcodes1.size() != Opcodes2.size()) 9393 return false; 9394 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 9395 // Undefs are compatible with any other value. 9396 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 9397 continue; 9398 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 9399 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 9400 if (I1->getParent() != I2->getParent()) 9401 return false; 9402 InstructionsState S = getSameOpcode({I1, I2}); 9403 if (S.getOpcode()) 9404 continue; 9405 return false; 9406 } 9407 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 9408 continue; 9409 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 9410 return false; 9411 } 9412 return true; 9413 }; 9414 auto Limit = [&R](Value *V) { 9415 unsigned EltSize = R.getVectorElementSize(V); 9416 return std::max(2U, R.getMaxVecRegSize() / EltSize); 9417 }; 9418 9419 bool HaveVectorizedPhiNodes = false; 9420 do { 9421 // Collect the incoming values from the PHIs. 9422 Incoming.clear(); 9423 for (Instruction &I : *BB) { 9424 PHINode *P = dyn_cast<PHINode>(&I); 9425 if (!P) 9426 break; 9427 9428 // No need to analyze deleted, vectorized and non-vectorizable 9429 // instructions. 9430 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 9431 isValidElementType(P->getType())) 9432 Incoming.push_back(P); 9433 } 9434 9435 // Find the corresponding non-phi nodes for better matching when trying to 9436 // build the tree. 9437 for (Value *V : Incoming) { 9438 SmallVectorImpl<Value *> &Opcodes = 9439 PHIToOpcodes.try_emplace(V).first->getSecond(); 9440 if (!Opcodes.empty()) 9441 continue; 9442 SmallVector<Value *, 4> Nodes(1, V); 9443 SmallPtrSet<Value *, 4> Visited; 9444 while (!Nodes.empty()) { 9445 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 9446 if (!Visited.insert(PHI).second) 9447 continue; 9448 for (Value *V : PHI->incoming_values()) { 9449 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 9450 Nodes.push_back(PHI1); 9451 continue; 9452 } 9453 Opcodes.emplace_back(V); 9454 } 9455 } 9456 } 9457 9458 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( 9459 Incoming, Limit, PHICompare, AreCompatiblePHIs, 9460 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 9461 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 9462 }, 9463 /*LimitForRegisterSize=*/true); 9464 Changed |= HaveVectorizedPhiNodes; 9465 VisitedInstrs.insert(Incoming.begin(), Incoming.end()); 9466 } while (HaveVectorizedPhiNodes); 9467 9468 VisitedInstrs.clear(); 9469 9470 SmallVector<Instruction *, 8> PostProcessInstructions; 9471 SmallDenseSet<Instruction *, 4> KeyNodes; 9472 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 9473 // Skip instructions with scalable type. The num of elements is unknown at 9474 // compile-time for scalable type. 9475 if (isa<ScalableVectorType>(it->getType())) 9476 continue; 9477 9478 // Skip instructions marked for the deletion. 9479 if (R.isDeleted(&*it)) 9480 continue; 9481 // We may go through BB multiple times so skip the one we have checked. 9482 if (!VisitedInstrs.insert(&*it).second) { 9483 if (it->use_empty() && KeyNodes.contains(&*it) && 9484 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 9485 it->isTerminator())) { 9486 // We would like to start over since some instructions are deleted 9487 // and the iterator may become invalid value. 9488 Changed = true; 9489 it = BB->begin(); 9490 e = BB->end(); 9491 } 9492 continue; 9493 } 9494 9495 if (isa<DbgInfoIntrinsic>(it)) 9496 continue; 9497 9498 // Try to vectorize reductions that use PHINodes. 9499 if (PHINode *P = dyn_cast<PHINode>(it)) { 9500 // Check that the PHI is a reduction PHI. 9501 if (P->getNumIncomingValues() == 2) { 9502 // Try to match and vectorize a horizontal reduction. 9503 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 9504 TTI)) { 9505 Changed = true; 9506 it = BB->begin(); 9507 e = BB->end(); 9508 continue; 9509 } 9510 } 9511 // Try to vectorize the incoming values of the PHI, to catch reductions 9512 // that feed into PHIs. 9513 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 9514 // Skip if the incoming block is the current BB for now. Also, bypass 9515 // unreachable IR for efficiency and to avoid crashing. 9516 // TODO: Collect the skipped incoming values and try to vectorize them 9517 // after processing BB. 9518 if (BB == P->getIncomingBlock(I) || 9519 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 9520 continue; 9521 9522 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 9523 P->getIncomingBlock(I), R, TTI); 9524 } 9525 continue; 9526 } 9527 9528 // Ran into an instruction without users, like terminator, or function call 9529 // with ignored return value, store. Ignore unused instructions (basing on 9530 // instruction type, except for CallInst and InvokeInst). 9531 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 9532 isa<InvokeInst>(it))) { 9533 KeyNodes.insert(&*it); 9534 bool OpsChanged = false; 9535 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 9536 for (auto *V : it->operand_values()) { 9537 // Try to match and vectorize a horizontal reduction. 9538 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 9539 } 9540 } 9541 // Start vectorization of post-process list of instructions from the 9542 // top-tree instructions to try to vectorize as many instructions as 9543 // possible. 9544 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 9545 it->isTerminator()); 9546 if (OpsChanged) { 9547 // We would like to start over since some instructions are deleted 9548 // and the iterator may become invalid value. 9549 Changed = true; 9550 it = BB->begin(); 9551 e = BB->end(); 9552 continue; 9553 } 9554 } 9555 9556 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 9557 isa<InsertValueInst>(it)) 9558 PostProcessInstructions.push_back(&*it); 9559 } 9560 9561 return Changed; 9562 } 9563 9564 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 9565 auto Changed = false; 9566 for (auto &Entry : GEPs) { 9567 // If the getelementptr list has fewer than two elements, there's nothing 9568 // to do. 9569 if (Entry.second.size() < 2) 9570 continue; 9571 9572 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 9573 << Entry.second.size() << ".\n"); 9574 9575 // Process the GEP list in chunks suitable for the target's supported 9576 // vector size. If a vector register can't hold 1 element, we are done. We 9577 // are trying to vectorize the index computations, so the maximum number of 9578 // elements is based on the size of the index expression, rather than the 9579 // size of the GEP itself (the target's pointer size). 9580 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 9581 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 9582 if (MaxVecRegSize < EltSize) 9583 continue; 9584 9585 unsigned MaxElts = MaxVecRegSize / EltSize; 9586 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 9587 auto Len = std::min<unsigned>(BE - BI, MaxElts); 9588 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 9589 9590 // Initialize a set a candidate getelementptrs. Note that we use a 9591 // SetVector here to preserve program order. If the index computations 9592 // are vectorizable and begin with loads, we want to minimize the chance 9593 // of having to reorder them later. 9594 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 9595 9596 // Some of the candidates may have already been vectorized after we 9597 // initially collected them. If so, they are marked as deleted, so remove 9598 // them from the set of candidates. 9599 Candidates.remove_if( 9600 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 9601 9602 // Remove from the set of candidates all pairs of getelementptrs with 9603 // constant differences. Such getelementptrs are likely not good 9604 // candidates for vectorization in a bottom-up phase since one can be 9605 // computed from the other. We also ensure all candidate getelementptr 9606 // indices are unique. 9607 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 9608 auto *GEPI = GEPList[I]; 9609 if (!Candidates.count(GEPI)) 9610 continue; 9611 auto *SCEVI = SE->getSCEV(GEPList[I]); 9612 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 9613 auto *GEPJ = GEPList[J]; 9614 auto *SCEVJ = SE->getSCEV(GEPList[J]); 9615 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 9616 Candidates.remove(GEPI); 9617 Candidates.remove(GEPJ); 9618 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 9619 Candidates.remove(GEPJ); 9620 } 9621 } 9622 } 9623 9624 // We break out of the above computation as soon as we know there are 9625 // fewer than two candidates remaining. 9626 if (Candidates.size() < 2) 9627 continue; 9628 9629 // Add the single, non-constant index of each candidate to the bundle. We 9630 // ensured the indices met these constraints when we originally collected 9631 // the getelementptrs. 9632 SmallVector<Value *, 16> Bundle(Candidates.size()); 9633 auto BundleIndex = 0u; 9634 for (auto *V : Candidates) { 9635 auto *GEP = cast<GetElementPtrInst>(V); 9636 auto *GEPIdx = GEP->idx_begin()->get(); 9637 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 9638 Bundle[BundleIndex++] = GEPIdx; 9639 } 9640 9641 // Try and vectorize the indices. We are currently only interested in 9642 // gather-like cases of the form: 9643 // 9644 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 9645 // 9646 // where the loads of "a", the loads of "b", and the subtractions can be 9647 // performed in parallel. It's likely that detecting this pattern in a 9648 // bottom-up phase will be simpler and less costly than building a 9649 // full-blown top-down phase beginning at the consecutive loads. 9650 Changed |= tryToVectorizeList(Bundle, R); 9651 } 9652 } 9653 return Changed; 9654 } 9655 9656 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 9657 bool Changed = false; 9658 // Sort by type, base pointers and values operand. Value operands must be 9659 // compatible (have the same opcode, same parent), otherwise it is 9660 // definitely not profitable to try to vectorize them. 9661 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 9662 if (V->getPointerOperandType()->getTypeID() < 9663 V2->getPointerOperandType()->getTypeID()) 9664 return true; 9665 if (V->getPointerOperandType()->getTypeID() > 9666 V2->getPointerOperandType()->getTypeID()) 9667 return false; 9668 // UndefValues are compatible with all other values. 9669 if (isa<UndefValue>(V->getValueOperand()) || 9670 isa<UndefValue>(V2->getValueOperand())) 9671 return false; 9672 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 9673 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 9674 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 9675 DT->getNode(I1->getParent()); 9676 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 9677 DT->getNode(I2->getParent()); 9678 assert(NodeI1 && "Should only process reachable instructions"); 9679 assert(NodeI1 && "Should only process reachable instructions"); 9680 assert((NodeI1 == NodeI2) == 9681 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 9682 "Different nodes should have different DFS numbers"); 9683 if (NodeI1 != NodeI2) 9684 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 9685 InstructionsState S = getSameOpcode({I1, I2}); 9686 if (S.getOpcode()) 9687 return false; 9688 return I1->getOpcode() < I2->getOpcode(); 9689 } 9690 if (isa<Constant>(V->getValueOperand()) && 9691 isa<Constant>(V2->getValueOperand())) 9692 return false; 9693 return V->getValueOperand()->getValueID() < 9694 V2->getValueOperand()->getValueID(); 9695 }; 9696 9697 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 9698 if (V1 == V2) 9699 return true; 9700 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 9701 return false; 9702 // Undefs are compatible with any other value. 9703 if (isa<UndefValue>(V1->getValueOperand()) || 9704 isa<UndefValue>(V2->getValueOperand())) 9705 return true; 9706 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 9707 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 9708 if (I1->getParent() != I2->getParent()) 9709 return false; 9710 InstructionsState S = getSameOpcode({I1, I2}); 9711 return S.getOpcode() > 0; 9712 } 9713 if (isa<Constant>(V1->getValueOperand()) && 9714 isa<Constant>(V2->getValueOperand())) 9715 return true; 9716 return V1->getValueOperand()->getValueID() == 9717 V2->getValueOperand()->getValueID(); 9718 }; 9719 auto Limit = [&R, this](StoreInst *SI) { 9720 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 9721 return R.getMinVF(EltSize); 9722 }; 9723 9724 // Attempt to sort and vectorize each of the store-groups. 9725 for (auto &Pair : Stores) { 9726 if (Pair.second.size() < 2) 9727 continue; 9728 9729 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 9730 << Pair.second.size() << ".\n"); 9731 9732 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) 9733 continue; 9734 9735 Changed |= tryToVectorizeSequence<StoreInst>( 9736 Pair.second, Limit, StoreSorter, AreCompatibleStores, 9737 [this, &R](ArrayRef<StoreInst *> Candidates, bool) { 9738 return vectorizeStores(Candidates, R); 9739 }, 9740 /*LimitForRegisterSize=*/false); 9741 } 9742 return Changed; 9743 } 9744 9745 char SLPVectorizer::ID = 0; 9746 9747 static const char lv_name[] = "SLP Vectorizer"; 9748 9749 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 9750 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 9751 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 9752 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 9753 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 9754 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 9755 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 9756 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 9757 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 9758 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 9759 9760 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 9761