1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 45 #include "llvm/Analysis/ScalarEvolution.h" 46 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/Analysis/VectorUtils.h" 51 #include "llvm/IR/Attributes.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DebugLoc.h" 57 #include "llvm/IR/DerivedTypes.h" 58 #include "llvm/IR/Dominators.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/IRBuilder.h" 61 #include "llvm/IR/InstrTypes.h" 62 #include "llvm/IR/Instruction.h" 63 #include "llvm/IR/Instructions.h" 64 #include "llvm/IR/IntrinsicInst.h" 65 #include "llvm/IR/Intrinsics.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/NoFolder.h" 68 #include "llvm/IR/Operator.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/Verifier.h" 76 #include "llvm/InitializePasses.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/DOTGraphTraits.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/GraphWriter.h" 85 #include "llvm/Support/InstructionCost.h" 86 #include "llvm/Support/KnownBits.h" 87 #include "llvm/Support/MathExtras.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 90 #include "llvm/Transforms/Utils/LoopUtils.h" 91 #include "llvm/Transforms/Vectorize.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <memory> 97 #include <set> 98 #include <string> 99 #include <tuple> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 using namespace slpvectorizer; 106 107 #define SV_NAME "slp-vectorizer" 108 #define DEBUG_TYPE "SLP" 109 110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 111 112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 113 cl::desc("Run the SLP vectorization passes")); 114 115 static cl::opt<int> 116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 117 cl::desc("Only vectorize if you gain more than this " 118 "number ")); 119 120 static cl::opt<bool> 121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 122 cl::desc("Attempt to vectorize horizontal reductions")); 123 124 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 126 cl::desc( 127 "Attempt to vectorize horizontal reductions feeding into a store")); 128 129 static cl::opt<int> 130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 131 cl::desc("Attempt to vectorize for this register size in bits")); 132 133 static cl::opt<unsigned> 134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 135 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 136 137 static cl::opt<int> 138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 139 cl::desc("Maximum depth of the lookup for consecutive stores.")); 140 141 /// Limits the size of scheduling regions in a block. 142 /// It avoid long compile times for _very_ large blocks where vector 143 /// instructions are spread over a wide range. 144 /// This limit is way higher than needed by real-world functions. 145 static cl::opt<int> 146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 147 cl::desc("Limit the size of the SLP scheduling region per block")); 148 149 static cl::opt<int> MinVectorRegSizeOption( 150 "slp-min-reg-size", cl::init(128), cl::Hidden, 151 cl::desc("Attempt to vectorize for this register size in bits")); 152 153 static cl::opt<unsigned> RecursionMaxDepth( 154 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 155 cl::desc("Limit the recursion depth when building a vectorizable tree")); 156 157 static cl::opt<unsigned> MinTreeSize( 158 "slp-min-tree-size", cl::init(3), cl::Hidden, 159 cl::desc("Only vectorize small trees if they are fully vectorizable")); 160 161 // The maximum depth that the look-ahead score heuristic will explore. 162 // The higher this value, the higher the compilation time overhead. 163 static cl::opt<int> LookAheadMaxDepth( 164 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 165 cl::desc("The maximum look-ahead depth for operand reordering scores")); 166 167 static cl::opt<bool> 168 ViewSLPTree("view-slp-tree", cl::Hidden, 169 cl::desc("Display the SLP trees with Graphviz")); 170 171 // Limit the number of alias checks. The limit is chosen so that 172 // it has no negative effect on the llvm benchmarks. 173 static const unsigned AliasedCheckLimit = 10; 174 175 // Another limit for the alias checks: The maximum distance between load/store 176 // instructions where alias checks are done. 177 // This limit is useful for very large basic blocks. 178 static const unsigned MaxMemDepDistance = 160; 179 180 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 181 /// regions to be handled. 182 static const int MinScheduleRegionSize = 16; 183 184 /// Predicate for the element types that the SLP vectorizer supports. 185 /// 186 /// The most important thing to filter here are types which are invalid in LLVM 187 /// vectors. We also filter target specific types which have absolutely no 188 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 189 /// avoids spending time checking the cost model and realizing that they will 190 /// be inevitably scalarized. 191 static bool isValidElementType(Type *Ty) { 192 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 193 !Ty->isPPC_FP128Ty(); 194 } 195 196 /// \returns True if the value is a constant (but not globals/constant 197 /// expressions). 198 static bool isConstant(Value *V) { 199 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 200 } 201 202 /// Checks if \p V is one of vector-like instructions, i.e. undef, 203 /// insertelement/extractelement with constant indices for fixed vector type or 204 /// extractvalue instruction. 205 static bool isVectorLikeInstWithConstOps(Value *V) { 206 if (!isa<InsertElementInst, ExtractElementInst>(V) && 207 !isa<ExtractValueInst, UndefValue>(V)) 208 return false; 209 auto *I = dyn_cast<Instruction>(V); 210 if (!I || isa<ExtractValueInst>(I)) 211 return true; 212 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 213 return false; 214 if (isa<ExtractElementInst>(I)) 215 return isConstant(I->getOperand(1)); 216 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 217 return isConstant(I->getOperand(2)); 218 } 219 220 /// \returns true if all of the instructions in \p VL are in the same block or 221 /// false otherwise. 222 static bool allSameBlock(ArrayRef<Value *> VL) { 223 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 224 if (!I0) 225 return false; 226 if (all_of(VL, isVectorLikeInstWithConstOps)) 227 return true; 228 229 BasicBlock *BB = I0->getParent(); 230 for (int I = 1, E = VL.size(); I < E; I++) { 231 auto *II = dyn_cast<Instruction>(VL[I]); 232 if (!II) 233 return false; 234 235 if (BB != II->getParent()) 236 return false; 237 } 238 return true; 239 } 240 241 /// \returns True if all of the values in \p VL are constants (but not 242 /// globals/constant expressions). 243 static bool allConstant(ArrayRef<Value *> VL) { 244 // Constant expressions and globals can't be vectorized like normal integer/FP 245 // constants. 246 return all_of(VL, isConstant); 247 } 248 249 /// \returns True if all of the values in \p VL are identical or some of them 250 /// are UndefValue. 251 static bool isSplat(ArrayRef<Value *> VL) { 252 Value *FirstNonUndef = nullptr; 253 for (Value *V : VL) { 254 if (isa<UndefValue>(V)) 255 continue; 256 if (!FirstNonUndef) { 257 FirstNonUndef = V; 258 continue; 259 } 260 if (V != FirstNonUndef) 261 return false; 262 } 263 return FirstNonUndef != nullptr; 264 } 265 266 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 267 static bool isCommutative(Instruction *I) { 268 if (auto *Cmp = dyn_cast<CmpInst>(I)) 269 return Cmp->isCommutative(); 270 if (auto *BO = dyn_cast<BinaryOperator>(I)) 271 return BO->isCommutative(); 272 // TODO: This should check for generic Instruction::isCommutative(), but 273 // we need to confirm that the caller code correctly handles Intrinsics 274 // for example (does not have 2 operands). 275 return false; 276 } 277 278 /// Checks if the given value is actually an undefined constant vector. 279 static bool isUndefVector(const Value *V) { 280 if (isa<UndefValue>(V)) 281 return true; 282 auto *C = dyn_cast<Constant>(V); 283 if (!C) 284 return false; 285 if (!C->containsUndefOrPoisonElement()) 286 return false; 287 auto *VecTy = dyn_cast<FixedVectorType>(C->getType()); 288 if (!VecTy) 289 return false; 290 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { 291 if (Constant *Elem = C->getAggregateElement(I)) 292 if (!isa<UndefValue>(Elem)) 293 return false; 294 } 295 return true; 296 } 297 298 /// Checks if the vector of instructions can be represented as a shuffle, like: 299 /// %x0 = extractelement <4 x i8> %x, i32 0 300 /// %x3 = extractelement <4 x i8> %x, i32 3 301 /// %y1 = extractelement <4 x i8> %y, i32 1 302 /// %y2 = extractelement <4 x i8> %y, i32 2 303 /// %x0x0 = mul i8 %x0, %x0 304 /// %x3x3 = mul i8 %x3, %x3 305 /// %y1y1 = mul i8 %y1, %y1 306 /// %y2y2 = mul i8 %y2, %y2 307 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 308 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 309 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 310 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 311 /// ret <4 x i8> %ins4 312 /// can be transformed into: 313 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 314 /// i32 6> 315 /// %2 = mul <4 x i8> %1, %1 316 /// ret <4 x i8> %2 317 /// We convert this initially to something like: 318 /// %x0 = extractelement <4 x i8> %x, i32 0 319 /// %x3 = extractelement <4 x i8> %x, i32 3 320 /// %y1 = extractelement <4 x i8> %y, i32 1 321 /// %y2 = extractelement <4 x i8> %y, i32 2 322 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 323 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 324 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 325 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 326 /// %5 = mul <4 x i8> %4, %4 327 /// %6 = extractelement <4 x i8> %5, i32 0 328 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 329 /// %7 = extractelement <4 x i8> %5, i32 1 330 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 331 /// %8 = extractelement <4 x i8> %5, i32 2 332 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 333 /// %9 = extractelement <4 x i8> %5, i32 3 334 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 335 /// ret <4 x i8> %ins4 336 /// InstCombiner transforms this into a shuffle and vector mul 337 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 338 /// TODO: Can we split off and reuse the shuffle mask detection from 339 /// TargetTransformInfo::getInstructionThroughput? 340 static Optional<TargetTransformInfo::ShuffleKind> 341 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 342 const auto *It = 343 find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); }); 344 if (It == VL.end()) 345 return None; 346 auto *EI0 = cast<ExtractElementInst>(*It); 347 if (isa<ScalableVectorType>(EI0->getVectorOperandType())) 348 return None; 349 unsigned Size = 350 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 351 Value *Vec1 = nullptr; 352 Value *Vec2 = nullptr; 353 enum ShuffleMode { Unknown, Select, Permute }; 354 ShuffleMode CommonShuffleMode = Unknown; 355 Mask.assign(VL.size(), UndefMaskElem); 356 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 357 // Undef can be represented as an undef element in a vector. 358 if (isa<UndefValue>(VL[I])) 359 continue; 360 auto *EI = cast<ExtractElementInst>(VL[I]); 361 if (isa<ScalableVectorType>(EI->getVectorOperandType())) 362 return None; 363 auto *Vec = EI->getVectorOperand(); 364 // We can extractelement from undef or poison vector. 365 if (isUndefVector(Vec)) 366 continue; 367 // All vector operands must have the same number of vector elements. 368 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 369 return None; 370 if (isa<UndefValue>(EI->getIndexOperand())) 371 continue; 372 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 373 if (!Idx) 374 return None; 375 // Undefined behavior if Idx is negative or >= Size. 376 if (Idx->getValue().uge(Size)) 377 continue; 378 unsigned IntIdx = Idx->getValue().getZExtValue(); 379 Mask[I] = IntIdx; 380 // For correct shuffling we have to have at most 2 different vector operands 381 // in all extractelement instructions. 382 if (!Vec1 || Vec1 == Vec) { 383 Vec1 = Vec; 384 } else if (!Vec2 || Vec2 == Vec) { 385 Vec2 = Vec; 386 Mask[I] += Size; 387 } else { 388 return None; 389 } 390 if (CommonShuffleMode == Permute) 391 continue; 392 // If the extract index is not the same as the operation number, it is a 393 // permutation. 394 if (IntIdx != I) { 395 CommonShuffleMode = Permute; 396 continue; 397 } 398 CommonShuffleMode = Select; 399 } 400 // If we're not crossing lanes in different vectors, consider it as blending. 401 if (CommonShuffleMode == Select && Vec2) 402 return TargetTransformInfo::SK_Select; 403 // If Vec2 was never used, we have a permutation of a single vector, otherwise 404 // we have permutation of 2 vectors. 405 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 406 : TargetTransformInfo::SK_PermuteSingleSrc; 407 } 408 409 namespace { 410 411 /// Main data required for vectorization of instructions. 412 struct InstructionsState { 413 /// The very first instruction in the list with the main opcode. 414 Value *OpValue = nullptr; 415 416 /// The main/alternate instruction. 417 Instruction *MainOp = nullptr; 418 Instruction *AltOp = nullptr; 419 420 /// The main/alternate opcodes for the list of instructions. 421 unsigned getOpcode() const { 422 return MainOp ? MainOp->getOpcode() : 0; 423 } 424 425 unsigned getAltOpcode() const { 426 return AltOp ? AltOp->getOpcode() : 0; 427 } 428 429 /// Some of the instructions in the list have alternate opcodes. 430 bool isAltShuffle() const { return AltOp != MainOp; } 431 432 bool isOpcodeOrAlt(Instruction *I) const { 433 unsigned CheckedOpcode = I->getOpcode(); 434 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 435 } 436 437 InstructionsState() = delete; 438 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 439 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 440 }; 441 442 } // end anonymous namespace 443 444 /// Chooses the correct key for scheduling data. If \p Op has the same (or 445 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 446 /// OpValue. 447 static Value *isOneOf(const InstructionsState &S, Value *Op) { 448 auto *I = dyn_cast<Instruction>(Op); 449 if (I && S.isOpcodeOrAlt(I)) 450 return Op; 451 return S.OpValue; 452 } 453 454 /// \returns true if \p Opcode is allowed as part of of the main/alternate 455 /// instruction for SLP vectorization. 456 /// 457 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 458 /// "shuffled out" lane would result in division by zero. 459 static bool isValidForAlternation(unsigned Opcode) { 460 if (Instruction::isIntDivRem(Opcode)) 461 return false; 462 463 return true; 464 } 465 466 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 467 unsigned BaseIndex = 0); 468 469 /// Checks if the provided operands of 2 cmp instructions are compatible, i.e. 470 /// compatible instructions or constants, or just some other regular values. 471 static bool areCompatibleCmpOps(Value *BaseOp0, Value *BaseOp1, Value *Op0, 472 Value *Op1) { 473 return (isConstant(BaseOp0) && isConstant(Op0)) || 474 (isConstant(BaseOp1) && isConstant(Op1)) || 475 (!isa<Instruction>(BaseOp0) && !isa<Instruction>(Op0) && 476 !isa<Instruction>(BaseOp1) && !isa<Instruction>(Op1)) || 477 getSameOpcode({BaseOp0, Op0}).getOpcode() || 478 getSameOpcode({BaseOp1, Op1}).getOpcode(); 479 } 480 481 /// \returns analysis of the Instructions in \p VL described in 482 /// InstructionsState, the Opcode that we suppose the whole list 483 /// could be vectorized even if its structure is diverse. 484 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 485 unsigned BaseIndex) { 486 // Make sure these are all Instructions. 487 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 488 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 489 490 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 491 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 492 bool IsCmpOp = isa<CmpInst>(VL[BaseIndex]); 493 CmpInst::Predicate BasePred = 494 IsCmpOp ? cast<CmpInst>(VL[BaseIndex])->getPredicate() 495 : CmpInst::BAD_ICMP_PREDICATE; 496 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 497 unsigned AltOpcode = Opcode; 498 unsigned AltIndex = BaseIndex; 499 500 // Check for one alternate opcode from another BinaryOperator. 501 // TODO - generalize to support all operators (types, calls etc.). 502 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 503 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 504 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 505 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 506 continue; 507 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 508 isValidForAlternation(Opcode)) { 509 AltOpcode = InstOpcode; 510 AltIndex = Cnt; 511 continue; 512 } 513 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 514 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 515 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 516 if (Ty0 == Ty1) { 517 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 518 continue; 519 if (Opcode == AltOpcode) { 520 assert(isValidForAlternation(Opcode) && 521 isValidForAlternation(InstOpcode) && 522 "Cast isn't safe for alternation, logic needs to be updated!"); 523 AltOpcode = InstOpcode; 524 AltIndex = Cnt; 525 continue; 526 } 527 } 528 } else if (IsCmpOp && isa<CmpInst>(VL[Cnt])) { 529 auto *BaseInst = cast<Instruction>(VL[BaseIndex]); 530 auto *Inst = cast<Instruction>(VL[Cnt]); 531 Type *Ty0 = BaseInst->getOperand(0)->getType(); 532 Type *Ty1 = Inst->getOperand(0)->getType(); 533 if (Ty0 == Ty1) { 534 Value *BaseOp0 = BaseInst->getOperand(0); 535 Value *BaseOp1 = BaseInst->getOperand(1); 536 Value *Op0 = Inst->getOperand(0); 537 Value *Op1 = Inst->getOperand(1); 538 CmpInst::Predicate CurrentPred = 539 cast<CmpInst>(VL[Cnt])->getPredicate(); 540 CmpInst::Predicate SwappedCurrentPred = 541 CmpInst::getSwappedPredicate(CurrentPred); 542 // Check for compatible operands. If the corresponding operands are not 543 // compatible - need to perform alternate vectorization. 544 if (InstOpcode == Opcode) { 545 if (BasePred == CurrentPred && 546 areCompatibleCmpOps(BaseOp0, BaseOp1, Op0, Op1)) 547 continue; 548 if (BasePred == SwappedCurrentPred && 549 areCompatibleCmpOps(BaseOp0, BaseOp1, Op1, Op0)) 550 continue; 551 if (E == 2 && 552 (BasePred == CurrentPred || BasePred == SwappedCurrentPred)) 553 continue; 554 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 555 CmpInst::Predicate AltPred = AltInst->getPredicate(); 556 Value *AltOp0 = AltInst->getOperand(0); 557 Value *AltOp1 = AltInst->getOperand(1); 558 // Check if operands are compatible with alternate operands. 559 if (AltPred == CurrentPred && 560 areCompatibleCmpOps(AltOp0, AltOp1, Op0, Op1)) 561 continue; 562 if (AltPred == SwappedCurrentPred && 563 areCompatibleCmpOps(AltOp0, AltOp1, Op1, Op0)) 564 continue; 565 } 566 if (BaseIndex == AltIndex && BasePred != CurrentPred) { 567 assert(isValidForAlternation(Opcode) && 568 isValidForAlternation(InstOpcode) && 569 "Cast isn't safe for alternation, logic needs to be updated!"); 570 AltIndex = Cnt; 571 continue; 572 } 573 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 574 CmpInst::Predicate AltPred = AltInst->getPredicate(); 575 if (BasePred == CurrentPred || BasePred == SwappedCurrentPred || 576 AltPred == CurrentPred || AltPred == SwappedCurrentPred) 577 continue; 578 } 579 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 580 continue; 581 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 582 } 583 584 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 585 cast<Instruction>(VL[AltIndex])); 586 } 587 588 /// \returns true if all of the values in \p VL have the same type or false 589 /// otherwise. 590 static bool allSameType(ArrayRef<Value *> VL) { 591 Type *Ty = VL[0]->getType(); 592 for (int i = 1, e = VL.size(); i < e; i++) 593 if (VL[i]->getType() != Ty) 594 return false; 595 596 return true; 597 } 598 599 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 600 static Optional<unsigned> getExtractIndex(Instruction *E) { 601 unsigned Opcode = E->getOpcode(); 602 assert((Opcode == Instruction::ExtractElement || 603 Opcode == Instruction::ExtractValue) && 604 "Expected extractelement or extractvalue instruction."); 605 if (Opcode == Instruction::ExtractElement) { 606 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 607 if (!CI) 608 return None; 609 return CI->getZExtValue(); 610 } 611 ExtractValueInst *EI = cast<ExtractValueInst>(E); 612 if (EI->getNumIndices() != 1) 613 return None; 614 return *EI->idx_begin(); 615 } 616 617 /// \returns True if in-tree use also needs extract. This refers to 618 /// possible scalar operand in vectorized instruction. 619 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 620 TargetLibraryInfo *TLI) { 621 unsigned Opcode = UserInst->getOpcode(); 622 switch (Opcode) { 623 case Instruction::Load: { 624 LoadInst *LI = cast<LoadInst>(UserInst); 625 return (LI->getPointerOperand() == Scalar); 626 } 627 case Instruction::Store: { 628 StoreInst *SI = cast<StoreInst>(UserInst); 629 return (SI->getPointerOperand() == Scalar); 630 } 631 case Instruction::Call: { 632 CallInst *CI = cast<CallInst>(UserInst); 633 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 634 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 635 if (hasVectorInstrinsicScalarOpd(ID, i)) 636 return (CI->getArgOperand(i) == Scalar); 637 } 638 LLVM_FALLTHROUGH; 639 } 640 default: 641 return false; 642 } 643 } 644 645 /// \returns the AA location that is being access by the instruction. 646 static MemoryLocation getLocation(Instruction *I) { 647 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 648 return MemoryLocation::get(SI); 649 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 650 return MemoryLocation::get(LI); 651 return MemoryLocation(); 652 } 653 654 /// \returns True if the instruction is not a volatile or atomic load/store. 655 static bool isSimple(Instruction *I) { 656 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 657 return LI->isSimple(); 658 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 659 return SI->isSimple(); 660 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 661 return !MI->isVolatile(); 662 return true; 663 } 664 665 /// Shuffles \p Mask in accordance with the given \p SubMask. 666 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 667 if (SubMask.empty()) 668 return; 669 if (Mask.empty()) { 670 Mask.append(SubMask.begin(), SubMask.end()); 671 return; 672 } 673 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 674 int TermValue = std::min(Mask.size(), SubMask.size()); 675 for (int I = 0, E = SubMask.size(); I < E; ++I) { 676 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 677 Mask[SubMask[I]] >= TermValue) 678 continue; 679 NewMask[I] = Mask[SubMask[I]]; 680 } 681 Mask.swap(NewMask); 682 } 683 684 /// Order may have elements assigned special value (size) which is out of 685 /// bounds. Such indices only appear on places which correspond to undef values 686 /// (see canReuseExtract for details) and used in order to avoid undef values 687 /// have effect on operands ordering. 688 /// The first loop below simply finds all unused indices and then the next loop 689 /// nest assigns these indices for undef values positions. 690 /// As an example below Order has two undef positions and they have assigned 691 /// values 3 and 7 respectively: 692 /// before: 6 9 5 4 9 2 1 0 693 /// after: 6 3 5 4 7 2 1 0 694 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 695 const unsigned Sz = Order.size(); 696 SmallBitVector UnusedIndices(Sz, /*t=*/true); 697 SmallBitVector MaskedIndices(Sz); 698 for (unsigned I = 0; I < Sz; ++I) { 699 if (Order[I] < Sz) 700 UnusedIndices.reset(Order[I]); 701 else 702 MaskedIndices.set(I); 703 } 704 if (MaskedIndices.none()) 705 return; 706 assert(UnusedIndices.count() == MaskedIndices.count() && 707 "Non-synced masked/available indices."); 708 int Idx = UnusedIndices.find_first(); 709 int MIdx = MaskedIndices.find_first(); 710 while (MIdx >= 0) { 711 assert(Idx >= 0 && "Indices must be synced."); 712 Order[MIdx] = Idx; 713 Idx = UnusedIndices.find_next(Idx); 714 MIdx = MaskedIndices.find_next(MIdx); 715 } 716 } 717 718 namespace llvm { 719 720 static void inversePermutation(ArrayRef<unsigned> Indices, 721 SmallVectorImpl<int> &Mask) { 722 Mask.clear(); 723 const unsigned E = Indices.size(); 724 Mask.resize(E, UndefMaskElem); 725 for (unsigned I = 0; I < E; ++I) 726 Mask[Indices[I]] = I; 727 } 728 729 /// \returns inserting index of InsertElement or InsertValue instruction, 730 /// using Offset as base offset for index. 731 static Optional<int> getInsertIndex(Value *InsertInst, unsigned Offset) { 732 int Index = Offset; 733 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 734 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 735 auto *VT = cast<FixedVectorType>(IE->getType()); 736 if (CI->getValue().uge(VT->getNumElements())) 737 return UndefMaskElem; 738 Index *= VT->getNumElements(); 739 Index += CI->getZExtValue(); 740 return Index; 741 } 742 if (isa<UndefValue>(IE->getOperand(2))) 743 return UndefMaskElem; 744 return None; 745 } 746 747 auto *IV = cast<InsertValueInst>(InsertInst); 748 Type *CurrentType = IV->getType(); 749 for (unsigned I : IV->indices()) { 750 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 751 Index *= ST->getNumElements(); 752 CurrentType = ST->getElementType(I); 753 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 754 Index *= AT->getNumElements(); 755 CurrentType = AT->getElementType(); 756 } else { 757 return None; 758 } 759 Index += I; 760 } 761 return Index; 762 } 763 764 /// Reorders the list of scalars in accordance with the given \p Order and then 765 /// the \p Mask. \p Order - is the original order of the scalars, need to 766 /// reorder scalars into an unordered state at first according to the given 767 /// order. Then the ordered scalars are shuffled once again in accordance with 768 /// the provided mask. 769 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 770 ArrayRef<int> Mask) { 771 assert(!Mask.empty() && "Expected non-empty mask."); 772 SmallVector<Value *> Prev(Scalars.size(), 773 UndefValue::get(Scalars.front()->getType())); 774 Prev.swap(Scalars); 775 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 776 if (Mask[I] != UndefMaskElem) 777 Scalars[Mask[I]] = Prev[I]; 778 } 779 780 namespace slpvectorizer { 781 782 /// Bottom Up SLP Vectorizer. 783 class BoUpSLP { 784 struct TreeEntry; 785 struct ScheduleData; 786 787 public: 788 using ValueList = SmallVector<Value *, 8>; 789 using InstrList = SmallVector<Instruction *, 16>; 790 using ValueSet = SmallPtrSet<Value *, 16>; 791 using StoreList = SmallVector<StoreInst *, 8>; 792 using ExtraValueToDebugLocsMap = 793 MapVector<Value *, SmallVector<Instruction *, 2>>; 794 using OrdersType = SmallVector<unsigned, 4>; 795 796 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 797 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 798 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 799 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 800 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 801 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 802 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 803 // Use the vector register size specified by the target unless overridden 804 // by a command-line option. 805 // TODO: It would be better to limit the vectorization factor based on 806 // data type rather than just register size. For example, x86 AVX has 807 // 256-bit registers, but it does not support integer operations 808 // at that width (that requires AVX2). 809 if (MaxVectorRegSizeOption.getNumOccurrences()) 810 MaxVecRegSize = MaxVectorRegSizeOption; 811 else 812 MaxVecRegSize = 813 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 814 .getFixedSize(); 815 816 if (MinVectorRegSizeOption.getNumOccurrences()) 817 MinVecRegSize = MinVectorRegSizeOption; 818 else 819 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 820 } 821 822 /// Vectorize the tree that starts with the elements in \p VL. 823 /// Returns the vectorized root. 824 Value *vectorizeTree(); 825 826 /// Vectorize the tree but with the list of externally used values \p 827 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 828 /// generated extractvalue instructions. 829 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 830 831 /// \returns the cost incurred by unwanted spills and fills, caused by 832 /// holding live values over call sites. 833 InstructionCost getSpillCost() const; 834 835 /// \returns the vectorization cost of the subtree that starts at \p VL. 836 /// A negative number means that this is profitable. 837 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 838 839 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 840 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 841 void buildTree(ArrayRef<Value *> Roots, 842 ArrayRef<Value *> UserIgnoreLst = None); 843 844 /// Builds external uses of the vectorized scalars, i.e. the list of 845 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 846 /// ExternallyUsedValues contains additional list of external uses to handle 847 /// vectorization of reductions. 848 void 849 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 850 851 /// Clear the internal data structures that are created by 'buildTree'. 852 void deleteTree() { 853 VectorizableTree.clear(); 854 ScalarToTreeEntry.clear(); 855 MustGather.clear(); 856 ExternalUses.clear(); 857 for (auto &Iter : BlocksSchedules) { 858 BlockScheduling *BS = Iter.second.get(); 859 BS->clear(); 860 } 861 MinBWs.clear(); 862 InstrElementSize.clear(); 863 } 864 865 unsigned getTreeSize() const { return VectorizableTree.size(); } 866 867 /// Perform LICM and CSE on the newly generated gather sequences. 868 void optimizeGatherSequence(); 869 870 /// Checks if the specified gather tree entry \p TE can be represented as a 871 /// shuffled vector entry + (possibly) permutation with other gathers. It 872 /// implements the checks only for possibly ordered scalars (Loads, 873 /// ExtractElement, ExtractValue), which can be part of the graph. 874 Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); 875 876 /// Gets reordering data for the given tree entry. If the entry is vectorized 877 /// - just return ReorderIndices, otherwise check if the scalars can be 878 /// reordered and return the most optimal order. 879 /// \param TopToBottom If true, include the order of vectorized stores and 880 /// insertelement nodes, otherwise skip them. 881 Optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom); 882 883 /// Reorders the current graph to the most profitable order starting from the 884 /// root node to the leaf nodes. The best order is chosen only from the nodes 885 /// of the same size (vectorization factor). Smaller nodes are considered 886 /// parts of subgraph with smaller VF and they are reordered independently. We 887 /// can make it because we still need to extend smaller nodes to the wider VF 888 /// and we can merge reordering shuffles with the widening shuffles. 889 void reorderTopToBottom(); 890 891 /// Reorders the current graph to the most profitable order starting from 892 /// leaves to the root. It allows to rotate small subgraphs and reduce the 893 /// number of reshuffles if the leaf nodes use the same order. In this case we 894 /// can merge the orders and just shuffle user node instead of shuffling its 895 /// operands. Plus, even the leaf nodes have different orders, it allows to 896 /// sink reordering in the graph closer to the root node and merge it later 897 /// during analysis. 898 void reorderBottomToTop(bool IgnoreReorder = false); 899 900 /// \return The vector element size in bits to use when vectorizing the 901 /// expression tree ending at \p V. If V is a store, the size is the width of 902 /// the stored value. Otherwise, the size is the width of the largest loaded 903 /// value reaching V. This method is used by the vectorizer to calculate 904 /// vectorization factors. 905 unsigned getVectorElementSize(Value *V); 906 907 /// Compute the minimum type sizes required to represent the entries in a 908 /// vectorizable tree. 909 void computeMinimumValueSizes(); 910 911 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 912 unsigned getMaxVecRegSize() const { 913 return MaxVecRegSize; 914 } 915 916 // \returns minimum vector register size as set by cl::opt. 917 unsigned getMinVecRegSize() const { 918 return MinVecRegSize; 919 } 920 921 unsigned getMinVF(unsigned Sz) const { 922 return std::max(2U, getMinVecRegSize() / Sz); 923 } 924 925 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 926 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 927 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 928 return MaxVF ? MaxVF : UINT_MAX; 929 } 930 931 /// Check if homogeneous aggregate is isomorphic to some VectorType. 932 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 933 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 934 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 935 /// 936 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 937 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 938 939 /// \returns True if the VectorizableTree is both tiny and not fully 940 /// vectorizable. We do not vectorize such trees. 941 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; 942 943 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 944 /// can be load combined in the backend. Load combining may not be allowed in 945 /// the IR optimizer, so we do not want to alter the pattern. For example, 946 /// partially transforming a scalar bswap() pattern into vector code is 947 /// effectively impossible for the backend to undo. 948 /// TODO: If load combining is allowed in the IR optimizer, this analysis 949 /// may not be necessary. 950 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 951 952 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 953 /// can be load combined in the backend. Load combining may not be allowed in 954 /// the IR optimizer, so we do not want to alter the pattern. For example, 955 /// partially transforming a scalar bswap() pattern into vector code is 956 /// effectively impossible for the backend to undo. 957 /// TODO: If load combining is allowed in the IR optimizer, this analysis 958 /// may not be necessary. 959 bool isLoadCombineCandidate() const; 960 961 OptimizationRemarkEmitter *getORE() { return ORE; } 962 963 /// This structure holds any data we need about the edges being traversed 964 /// during buildTree_rec(). We keep track of: 965 /// (i) the user TreeEntry index, and 966 /// (ii) the index of the edge. 967 struct EdgeInfo { 968 EdgeInfo() = default; 969 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 970 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 971 /// The user TreeEntry. 972 TreeEntry *UserTE = nullptr; 973 /// The operand index of the use. 974 unsigned EdgeIdx = UINT_MAX; 975 #ifndef NDEBUG 976 friend inline raw_ostream &operator<<(raw_ostream &OS, 977 const BoUpSLP::EdgeInfo &EI) { 978 EI.dump(OS); 979 return OS; 980 } 981 /// Debug print. 982 void dump(raw_ostream &OS) const { 983 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 984 << " EdgeIdx:" << EdgeIdx << "}"; 985 } 986 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 987 #endif 988 }; 989 990 /// A helper data structure to hold the operands of a vector of instructions. 991 /// This supports a fixed vector length for all operand vectors. 992 class VLOperands { 993 /// For each operand we need (i) the value, and (ii) the opcode that it 994 /// would be attached to if the expression was in a left-linearized form. 995 /// This is required to avoid illegal operand reordering. 996 /// For example: 997 /// \verbatim 998 /// 0 Op1 999 /// |/ 1000 /// Op1 Op2 Linearized + Op2 1001 /// \ / ----------> |/ 1002 /// - - 1003 /// 1004 /// Op1 - Op2 (0 + Op1) - Op2 1005 /// \endverbatim 1006 /// 1007 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 1008 /// 1009 /// Another way to think of this is to track all the operations across the 1010 /// path from the operand all the way to the root of the tree and to 1011 /// calculate the operation that corresponds to this path. For example, the 1012 /// path from Op2 to the root crosses the RHS of the '-', therefore the 1013 /// corresponding operation is a '-' (which matches the one in the 1014 /// linearized tree, as shown above). 1015 /// 1016 /// For lack of a better term, we refer to this operation as Accumulated 1017 /// Path Operation (APO). 1018 struct OperandData { 1019 OperandData() = default; 1020 OperandData(Value *V, bool APO, bool IsUsed) 1021 : V(V), APO(APO), IsUsed(IsUsed) {} 1022 /// The operand value. 1023 Value *V = nullptr; 1024 /// TreeEntries only allow a single opcode, or an alternate sequence of 1025 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 1026 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 1027 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 1028 /// (e.g., Add/Mul) 1029 bool APO = false; 1030 /// Helper data for the reordering function. 1031 bool IsUsed = false; 1032 }; 1033 1034 /// During operand reordering, we are trying to select the operand at lane 1035 /// that matches best with the operand at the neighboring lane. Our 1036 /// selection is based on the type of value we are looking for. For example, 1037 /// if the neighboring lane has a load, we need to look for a load that is 1038 /// accessing a consecutive address. These strategies are summarized in the 1039 /// 'ReorderingMode' enumerator. 1040 enum class ReorderingMode { 1041 Load, ///< Matching loads to consecutive memory addresses 1042 Opcode, ///< Matching instructions based on opcode (same or alternate) 1043 Constant, ///< Matching constants 1044 Splat, ///< Matching the same instruction multiple times (broadcast) 1045 Failed, ///< We failed to create a vectorizable group 1046 }; 1047 1048 using OperandDataVec = SmallVector<OperandData, 2>; 1049 1050 /// A vector of operand vectors. 1051 SmallVector<OperandDataVec, 4> OpsVec; 1052 1053 const DataLayout &DL; 1054 ScalarEvolution &SE; 1055 const BoUpSLP &R; 1056 1057 /// \returns the operand data at \p OpIdx and \p Lane. 1058 OperandData &getData(unsigned OpIdx, unsigned Lane) { 1059 return OpsVec[OpIdx][Lane]; 1060 } 1061 1062 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 1063 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 1064 return OpsVec[OpIdx][Lane]; 1065 } 1066 1067 /// Clears the used flag for all entries. 1068 void clearUsed() { 1069 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 1070 OpIdx != NumOperands; ++OpIdx) 1071 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1072 ++Lane) 1073 OpsVec[OpIdx][Lane].IsUsed = false; 1074 } 1075 1076 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 1077 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 1078 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 1079 } 1080 1081 // The hard-coded scores listed here are not very important, though it shall 1082 // be higher for better matches to improve the resulting cost. When 1083 // computing the scores of matching one sub-tree with another, we are 1084 // basically counting the number of values that are matching. So even if all 1085 // scores are set to 1, we would still get a decent matching result. 1086 // However, sometimes we have to break ties. For example we may have to 1087 // choose between matching loads vs matching opcodes. This is what these 1088 // scores are helping us with: they provide the order of preference. Also, 1089 // this is important if the scalar is externally used or used in another 1090 // tree entry node in the different lane. 1091 1092 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 1093 static const int ScoreConsecutiveLoads = 4; 1094 /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]). 1095 static const int ScoreReversedLoads = 3; 1096 /// ExtractElementInst from same vector and consecutive indexes. 1097 static const int ScoreConsecutiveExtracts = 4; 1098 /// ExtractElementInst from same vector and reversed indices. 1099 static const int ScoreReversedExtracts = 3; 1100 /// Constants. 1101 static const int ScoreConstants = 2; 1102 /// Instructions with the same opcode. 1103 static const int ScoreSameOpcode = 2; 1104 /// Instructions with alt opcodes (e.g, add + sub). 1105 static const int ScoreAltOpcodes = 1; 1106 /// Identical instructions (a.k.a. splat or broadcast). 1107 static const int ScoreSplat = 1; 1108 /// Matching with an undef is preferable to failing. 1109 static const int ScoreUndef = 1; 1110 /// Score for failing to find a decent match. 1111 static const int ScoreFail = 0; 1112 /// Score if all users are vectorized. 1113 static const int ScoreAllUserVectorized = 1; 1114 1115 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 1116 /// Also, checks if \p V1 and \p V2 are compatible with instructions in \p 1117 /// MainAltOps. 1118 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 1119 ScalarEvolution &SE, int NumLanes, 1120 ArrayRef<Value *> MainAltOps) { 1121 if (V1 == V2) 1122 return VLOperands::ScoreSplat; 1123 1124 auto *LI1 = dyn_cast<LoadInst>(V1); 1125 auto *LI2 = dyn_cast<LoadInst>(V2); 1126 if (LI1 && LI2) { 1127 if (LI1->getParent() != LI2->getParent()) 1128 return VLOperands::ScoreFail; 1129 1130 Optional<int> Dist = getPointersDiff( 1131 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1132 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1133 if (!Dist || *Dist == 0) 1134 return VLOperands::ScoreFail; 1135 // The distance is too large - still may be profitable to use masked 1136 // loads/gathers. 1137 if (std::abs(*Dist) > NumLanes / 2) 1138 return VLOperands::ScoreAltOpcodes; 1139 // This still will detect consecutive loads, but we might have "holes" 1140 // in some cases. It is ok for non-power-2 vectorization and may produce 1141 // better results. It should not affect current vectorization. 1142 return (*Dist > 0) ? VLOperands::ScoreConsecutiveLoads 1143 : VLOperands::ScoreReversedLoads; 1144 } 1145 1146 auto *C1 = dyn_cast<Constant>(V1); 1147 auto *C2 = dyn_cast<Constant>(V2); 1148 if (C1 && C2) 1149 return VLOperands::ScoreConstants; 1150 1151 // Extracts from consecutive indexes of the same vector better score as 1152 // the extracts could be optimized away. 1153 Value *EV1; 1154 ConstantInt *Ex1Idx; 1155 if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) { 1156 // Undefs are always profitable for extractelements. 1157 if (isa<UndefValue>(V2)) 1158 return VLOperands::ScoreConsecutiveExtracts; 1159 Value *EV2 = nullptr; 1160 ConstantInt *Ex2Idx = nullptr; 1161 if (match(V2, 1162 m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx), 1163 m_Undef())))) { 1164 // Undefs are always profitable for extractelements. 1165 if (!Ex2Idx) 1166 return VLOperands::ScoreConsecutiveExtracts; 1167 if (isUndefVector(EV2) && EV2->getType() == EV1->getType()) 1168 return VLOperands::ScoreConsecutiveExtracts; 1169 if (EV2 == EV1) { 1170 int Idx1 = Ex1Idx->getZExtValue(); 1171 int Idx2 = Ex2Idx->getZExtValue(); 1172 int Dist = Idx2 - Idx1; 1173 // The distance is too large - still may be profitable to use 1174 // shuffles. 1175 if (std::abs(Dist) == 0) 1176 return VLOperands::ScoreSplat; 1177 if (std::abs(Dist) > NumLanes / 2) 1178 return VLOperands::ScoreSameOpcode; 1179 return (Dist > 0) ? VLOperands::ScoreConsecutiveExtracts 1180 : VLOperands::ScoreReversedExtracts; 1181 } 1182 return VLOperands::ScoreAltOpcodes; 1183 } 1184 return VLOperands::ScoreFail; 1185 } 1186 1187 auto *I1 = dyn_cast<Instruction>(V1); 1188 auto *I2 = dyn_cast<Instruction>(V2); 1189 if (I1 && I2) { 1190 if (I1->getParent() != I2->getParent()) 1191 return VLOperands::ScoreFail; 1192 SmallVector<Value *, 4> Ops(MainAltOps.begin(), MainAltOps.end()); 1193 Ops.push_back(I1); 1194 Ops.push_back(I2); 1195 InstructionsState S = getSameOpcode(Ops); 1196 // Note: Only consider instructions with <= 2 operands to avoid 1197 // complexity explosion. 1198 if (S.getOpcode() && 1199 (S.MainOp->getNumOperands() <= 2 || !MainAltOps.empty() || 1200 !S.isAltShuffle()) && 1201 all_of(Ops, [&S](Value *V) { 1202 return cast<Instruction>(V)->getNumOperands() == 1203 S.MainOp->getNumOperands(); 1204 })) 1205 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 1206 : VLOperands::ScoreSameOpcode; 1207 } 1208 1209 if (isa<UndefValue>(V2)) 1210 return VLOperands::ScoreUndef; 1211 1212 return VLOperands::ScoreFail; 1213 } 1214 1215 /// \param Lane lane of the operands under analysis. 1216 /// \param OpIdx operand index in \p Lane lane we're looking the best 1217 /// candidate for. 1218 /// \param Idx operand index of the current candidate value. 1219 /// \returns The additional score due to possible broadcasting of the 1220 /// elements in the lane. It is more profitable to have power-of-2 unique 1221 /// elements in the lane, it will be vectorized with higher probability 1222 /// after removing duplicates. Currently the SLP vectorizer supports only 1223 /// vectorization of the power-of-2 number of unique scalars. 1224 int getSplatScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1225 Value *IdxLaneV = getData(Idx, Lane).V; 1226 if (!isa<Instruction>(IdxLaneV) || IdxLaneV == getData(OpIdx, Lane).V) 1227 return 0; 1228 SmallPtrSet<Value *, 4> Uniques; 1229 for (unsigned Ln = 0, E = getNumLanes(); Ln < E; ++Ln) { 1230 if (Ln == Lane) 1231 continue; 1232 Value *OpIdxLnV = getData(OpIdx, Ln).V; 1233 if (!isa<Instruction>(OpIdxLnV)) 1234 return 0; 1235 Uniques.insert(OpIdxLnV); 1236 } 1237 int UniquesCount = Uniques.size(); 1238 int UniquesCntWithIdxLaneV = 1239 Uniques.contains(IdxLaneV) ? UniquesCount : UniquesCount + 1; 1240 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1241 int UniquesCntWithOpIdxLaneV = 1242 Uniques.contains(OpIdxLaneV) ? UniquesCount : UniquesCount + 1; 1243 if (UniquesCntWithIdxLaneV == UniquesCntWithOpIdxLaneV) 1244 return 0; 1245 return (PowerOf2Ceil(UniquesCntWithOpIdxLaneV) - 1246 UniquesCntWithOpIdxLaneV) - 1247 (PowerOf2Ceil(UniquesCntWithIdxLaneV) - UniquesCntWithIdxLaneV); 1248 } 1249 1250 /// \param Lane lane of the operands under analysis. 1251 /// \param OpIdx operand index in \p Lane lane we're looking the best 1252 /// candidate for. 1253 /// \param Idx operand index of the current candidate value. 1254 /// \returns The additional score for the scalar which users are all 1255 /// vectorized. 1256 int getExternalUseScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1257 Value *IdxLaneV = getData(Idx, Lane).V; 1258 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1259 // Do not care about number of uses for vector-like instructions 1260 // (extractelement/extractvalue with constant indices), they are extracts 1261 // themselves and already externally used. Vectorization of such 1262 // instructions does not add extra extractelement instruction, just may 1263 // remove it. 1264 if (isVectorLikeInstWithConstOps(IdxLaneV) && 1265 isVectorLikeInstWithConstOps(OpIdxLaneV)) 1266 return VLOperands::ScoreAllUserVectorized; 1267 auto *IdxLaneI = dyn_cast<Instruction>(IdxLaneV); 1268 if (!IdxLaneI || !isa<Instruction>(OpIdxLaneV)) 1269 return 0; 1270 return R.areAllUsersVectorized(IdxLaneI, None) 1271 ? VLOperands::ScoreAllUserVectorized 1272 : 0; 1273 } 1274 1275 /// Go through the operands of \p LHS and \p RHS recursively until \p 1276 /// MaxLevel, and return the cummulative score. For example: 1277 /// \verbatim 1278 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1279 /// \ / \ / \ / \ / 1280 /// + + + + 1281 /// G1 G2 G3 G4 1282 /// \endverbatim 1283 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1284 /// each level recursively, accumulating the score. It starts from matching 1285 /// the additions at level 0, then moves on to the loads (level 1). The 1286 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1287 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1288 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1289 /// Please note that the order of the operands does not matter, as we 1290 /// evaluate the score of all profitable combinations of operands. In 1291 /// other words the score of G1 and G4 is the same as G1 and G2. This 1292 /// heuristic is based on ideas described in: 1293 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1294 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1295 /// Luís F. W. Góes 1296 int getScoreAtLevelRec(Value *LHS, Value *RHS, int CurrLevel, int MaxLevel, 1297 ArrayRef<Value *> MainAltOps) { 1298 1299 // Get the shallow score of V1 and V2. 1300 int ShallowScoreAtThisLevel = 1301 getShallowScore(LHS, RHS, DL, SE, getNumLanes(), MainAltOps); 1302 1303 // If reached MaxLevel, 1304 // or if V1 and V2 are not instructions, 1305 // or if they are SPLAT, 1306 // or if they are not consecutive, 1307 // or if profitable to vectorize loads or extractelements, early return 1308 // the current cost. 1309 auto *I1 = dyn_cast<Instruction>(LHS); 1310 auto *I2 = dyn_cast<Instruction>(RHS); 1311 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1312 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1313 (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) || 1314 (I1->getNumOperands() > 2 && I2->getNumOperands() > 2) || 1315 (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) && 1316 ShallowScoreAtThisLevel)) 1317 return ShallowScoreAtThisLevel; 1318 assert(I1 && I2 && "Should have early exited."); 1319 1320 // Contains the I2 operand indexes that got matched with I1 operands. 1321 SmallSet<unsigned, 4> Op2Used; 1322 1323 // Recursion towards the operands of I1 and I2. We are trying all possible 1324 // operand pairs, and keeping track of the best score. 1325 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1326 OpIdx1 != NumOperands1; ++OpIdx1) { 1327 // Try to pair op1I with the best operand of I2. 1328 int MaxTmpScore = 0; 1329 unsigned MaxOpIdx2 = 0; 1330 bool FoundBest = false; 1331 // If I2 is commutative try all combinations. 1332 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1333 unsigned ToIdx = isCommutative(I2) 1334 ? I2->getNumOperands() 1335 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1336 assert(FromIdx <= ToIdx && "Bad index"); 1337 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1338 // Skip operands already paired with OpIdx1. 1339 if (Op2Used.count(OpIdx2)) 1340 continue; 1341 // Recursively calculate the cost at each level 1342 int TmpScore = 1343 getScoreAtLevelRec(I1->getOperand(OpIdx1), I2->getOperand(OpIdx2), 1344 CurrLevel + 1, MaxLevel, None); 1345 // Look for the best score. 1346 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1347 MaxTmpScore = TmpScore; 1348 MaxOpIdx2 = OpIdx2; 1349 FoundBest = true; 1350 } 1351 } 1352 if (FoundBest) { 1353 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1354 Op2Used.insert(MaxOpIdx2); 1355 ShallowScoreAtThisLevel += MaxTmpScore; 1356 } 1357 } 1358 return ShallowScoreAtThisLevel; 1359 } 1360 1361 /// Score scaling factor for fully compatible instructions but with 1362 /// different number of external uses. Allows better selection of the 1363 /// instructions with less external uses. 1364 static const int ScoreScaleFactor = 10; 1365 1366 /// \Returns the look-ahead score, which tells us how much the sub-trees 1367 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1368 /// score. This helps break ties in an informed way when we cannot decide on 1369 /// the order of the operands by just considering the immediate 1370 /// predecessors. 1371 int getLookAheadScore(Value *LHS, Value *RHS, ArrayRef<Value *> MainAltOps, 1372 int Lane, unsigned OpIdx, unsigned Idx, 1373 bool &IsUsed) { 1374 int Score = 1375 getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth, MainAltOps); 1376 if (Score) { 1377 int SplatScore = getSplatScore(Lane, OpIdx, Idx); 1378 if (Score <= -SplatScore) { 1379 // Set the minimum score for splat-like sequence to avoid setting 1380 // failed state. 1381 Score = 1; 1382 } else { 1383 Score += SplatScore; 1384 // Scale score to see the difference between different operands 1385 // and similar operands but all vectorized/not all vectorized 1386 // uses. It does not affect actual selection of the best 1387 // compatible operand in general, just allows to select the 1388 // operand with all vectorized uses. 1389 Score *= ScoreScaleFactor; 1390 Score += getExternalUseScore(Lane, OpIdx, Idx); 1391 IsUsed = true; 1392 } 1393 } 1394 return Score; 1395 } 1396 1397 /// Best defined scores per lanes between the passes. Used to choose the 1398 /// best operand (with the highest score) between the passes. 1399 /// The key - {Operand Index, Lane}. 1400 /// The value - the best score between the passes for the lane and the 1401 /// operand. 1402 SmallDenseMap<std::pair<unsigned, unsigned>, unsigned, 8> 1403 BestScoresPerLanes; 1404 1405 // Search all operands in Ops[*][Lane] for the one that matches best 1406 // Ops[OpIdx][LastLane] and return its opreand index. 1407 // If no good match can be found, return None. 1408 Optional<unsigned> getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1409 ArrayRef<ReorderingMode> ReorderingModes, 1410 ArrayRef<Value *> MainAltOps) { 1411 unsigned NumOperands = getNumOperands(); 1412 1413 // The operand of the previous lane at OpIdx. 1414 Value *OpLastLane = getData(OpIdx, LastLane).V; 1415 1416 // Our strategy mode for OpIdx. 1417 ReorderingMode RMode = ReorderingModes[OpIdx]; 1418 if (RMode == ReorderingMode::Failed) 1419 return None; 1420 1421 // The linearized opcode of the operand at OpIdx, Lane. 1422 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1423 1424 // The best operand index and its score. 1425 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1426 // are using the score to differentiate between the two. 1427 struct BestOpData { 1428 Optional<unsigned> Idx = None; 1429 unsigned Score = 0; 1430 } BestOp; 1431 BestOp.Score = 1432 BestScoresPerLanes.try_emplace(std::make_pair(OpIdx, Lane), 0) 1433 .first->second; 1434 1435 // Track if the operand must be marked as used. If the operand is set to 1436 // Score 1 explicitly (because of non power-of-2 unique scalars, we may 1437 // want to reestimate the operands again on the following iterations). 1438 bool IsUsed = 1439 RMode == ReorderingMode::Splat || RMode == ReorderingMode::Constant; 1440 // Iterate through all unused operands and look for the best. 1441 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1442 // Get the operand at Idx and Lane. 1443 OperandData &OpData = getData(Idx, Lane); 1444 Value *Op = OpData.V; 1445 bool OpAPO = OpData.APO; 1446 1447 // Skip already selected operands. 1448 if (OpData.IsUsed) 1449 continue; 1450 1451 // Skip if we are trying to move the operand to a position with a 1452 // different opcode in the linearized tree form. This would break the 1453 // semantics. 1454 if (OpAPO != OpIdxAPO) 1455 continue; 1456 1457 // Look for an operand that matches the current mode. 1458 switch (RMode) { 1459 case ReorderingMode::Load: 1460 case ReorderingMode::Constant: 1461 case ReorderingMode::Opcode: { 1462 bool LeftToRight = Lane > LastLane; 1463 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1464 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1465 int Score = getLookAheadScore(OpLeft, OpRight, MainAltOps, Lane, 1466 OpIdx, Idx, IsUsed); 1467 if (Score > static_cast<int>(BestOp.Score)) { 1468 BestOp.Idx = Idx; 1469 BestOp.Score = Score; 1470 BestScoresPerLanes[std::make_pair(OpIdx, Lane)] = Score; 1471 } 1472 break; 1473 } 1474 case ReorderingMode::Splat: 1475 if (Op == OpLastLane) 1476 BestOp.Idx = Idx; 1477 break; 1478 case ReorderingMode::Failed: 1479 llvm_unreachable("Not expected Failed reordering mode."); 1480 } 1481 } 1482 1483 if (BestOp.Idx) { 1484 getData(BestOp.Idx.getValue(), Lane).IsUsed = IsUsed; 1485 return BestOp.Idx; 1486 } 1487 // If we could not find a good match return None. 1488 return None; 1489 } 1490 1491 /// Helper for reorderOperandVecs. 1492 /// \returns the lane that we should start reordering from. This is the one 1493 /// which has the least number of operands that can freely move about or 1494 /// less profitable because it already has the most optimal set of operands. 1495 unsigned getBestLaneToStartReordering() const { 1496 unsigned Min = UINT_MAX; 1497 unsigned SameOpNumber = 0; 1498 // std::pair<unsigned, unsigned> is used to implement a simple voting 1499 // algorithm and choose the lane with the least number of operands that 1500 // can freely move about or less profitable because it already has the 1501 // most optimal set of operands. The first unsigned is a counter for 1502 // voting, the second unsigned is the counter of lanes with instructions 1503 // with same/alternate opcodes and same parent basic block. 1504 MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap; 1505 // Try to be closer to the original results, if we have multiple lanes 1506 // with same cost. If 2 lanes have the same cost, use the one with the 1507 // lowest index. 1508 for (int I = getNumLanes(); I > 0; --I) { 1509 unsigned Lane = I - 1; 1510 OperandsOrderData NumFreeOpsHash = 1511 getMaxNumOperandsThatCanBeReordered(Lane); 1512 // Compare the number of operands that can move and choose the one with 1513 // the least number. 1514 if (NumFreeOpsHash.NumOfAPOs < Min) { 1515 Min = NumFreeOpsHash.NumOfAPOs; 1516 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1517 HashMap.clear(); 1518 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1519 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1520 NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) { 1521 // Select the most optimal lane in terms of number of operands that 1522 // should be moved around. 1523 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1524 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1525 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1526 NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) { 1527 auto It = HashMap.find(NumFreeOpsHash.Hash); 1528 if (It == HashMap.end()) 1529 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1530 else 1531 ++It->second.first; 1532 } 1533 } 1534 // Select the lane with the minimum counter. 1535 unsigned BestLane = 0; 1536 unsigned CntMin = UINT_MAX; 1537 for (const auto &Data : reverse(HashMap)) { 1538 if (Data.second.first < CntMin) { 1539 CntMin = Data.second.first; 1540 BestLane = Data.second.second; 1541 } 1542 } 1543 return BestLane; 1544 } 1545 1546 /// Data structure that helps to reorder operands. 1547 struct OperandsOrderData { 1548 /// The best number of operands with the same APOs, which can be 1549 /// reordered. 1550 unsigned NumOfAPOs = UINT_MAX; 1551 /// Number of operands with the same/alternate instruction opcode and 1552 /// parent. 1553 unsigned NumOpsWithSameOpcodeParent = 0; 1554 /// Hash for the actual operands ordering. 1555 /// Used to count operands, actually their position id and opcode 1556 /// value. It is used in the voting mechanism to find the lane with the 1557 /// least number of operands that can freely move about or less profitable 1558 /// because it already has the most optimal set of operands. Can be 1559 /// replaced with SmallVector<unsigned> instead but hash code is faster 1560 /// and requires less memory. 1561 unsigned Hash = 0; 1562 }; 1563 /// \returns the maximum number of operands that are allowed to be reordered 1564 /// for \p Lane and the number of compatible instructions(with the same 1565 /// parent/opcode). This is used as a heuristic for selecting the first lane 1566 /// to start operand reordering. 1567 OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1568 unsigned CntTrue = 0; 1569 unsigned NumOperands = getNumOperands(); 1570 // Operands with the same APO can be reordered. We therefore need to count 1571 // how many of them we have for each APO, like this: Cnt[APO] = x. 1572 // Since we only have two APOs, namely true and false, we can avoid using 1573 // a map. Instead we can simply count the number of operands that 1574 // correspond to one of them (in this case the 'true' APO), and calculate 1575 // the other by subtracting it from the total number of operands. 1576 // Operands with the same instruction opcode and parent are more 1577 // profitable since we don't need to move them in many cases, with a high 1578 // probability such lane already can be vectorized effectively. 1579 bool AllUndefs = true; 1580 unsigned NumOpsWithSameOpcodeParent = 0; 1581 Instruction *OpcodeI = nullptr; 1582 BasicBlock *Parent = nullptr; 1583 unsigned Hash = 0; 1584 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1585 const OperandData &OpData = getData(OpIdx, Lane); 1586 if (OpData.APO) 1587 ++CntTrue; 1588 // Use Boyer-Moore majority voting for finding the majority opcode and 1589 // the number of times it occurs. 1590 if (auto *I = dyn_cast<Instruction>(OpData.V)) { 1591 if (!OpcodeI || !getSameOpcode({OpcodeI, I}).getOpcode() || 1592 I->getParent() != Parent) { 1593 if (NumOpsWithSameOpcodeParent == 0) { 1594 NumOpsWithSameOpcodeParent = 1; 1595 OpcodeI = I; 1596 Parent = I->getParent(); 1597 } else { 1598 --NumOpsWithSameOpcodeParent; 1599 } 1600 } else { 1601 ++NumOpsWithSameOpcodeParent; 1602 } 1603 } 1604 Hash = hash_combine( 1605 Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1))); 1606 AllUndefs = AllUndefs && isa<UndefValue>(OpData.V); 1607 } 1608 if (AllUndefs) 1609 return {}; 1610 OperandsOrderData Data; 1611 Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue); 1612 Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent; 1613 Data.Hash = Hash; 1614 return Data; 1615 } 1616 1617 /// Go through the instructions in VL and append their operands. 1618 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1619 assert(!VL.empty() && "Bad VL"); 1620 assert((empty() || VL.size() == getNumLanes()) && 1621 "Expected same number of lanes"); 1622 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1623 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1624 OpsVec.resize(NumOperands); 1625 unsigned NumLanes = VL.size(); 1626 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1627 OpsVec[OpIdx].resize(NumLanes); 1628 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1629 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1630 // Our tree has just 3 nodes: the root and two operands. 1631 // It is therefore trivial to get the APO. We only need to check the 1632 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1633 // RHS operand. The LHS operand of both add and sub is never attached 1634 // to an inversese operation in the linearized form, therefore its APO 1635 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1636 1637 // Since operand reordering is performed on groups of commutative 1638 // operations or alternating sequences (e.g., +, -), we can safely 1639 // tell the inverse operations by checking commutativity. 1640 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1641 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1642 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1643 APO, false}; 1644 } 1645 } 1646 } 1647 1648 /// \returns the number of operands. 1649 unsigned getNumOperands() const { return OpsVec.size(); } 1650 1651 /// \returns the number of lanes. 1652 unsigned getNumLanes() const { return OpsVec[0].size(); } 1653 1654 /// \returns the operand value at \p OpIdx and \p Lane. 1655 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1656 return getData(OpIdx, Lane).V; 1657 } 1658 1659 /// \returns true if the data structure is empty. 1660 bool empty() const { return OpsVec.empty(); } 1661 1662 /// Clears the data. 1663 void clear() { OpsVec.clear(); } 1664 1665 /// \Returns true if there are enough operands identical to \p Op to fill 1666 /// the whole vector. 1667 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1668 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1669 bool OpAPO = getData(OpIdx, Lane).APO; 1670 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1671 if (Ln == Lane) 1672 continue; 1673 // This is set to true if we found a candidate for broadcast at Lane. 1674 bool FoundCandidate = false; 1675 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1676 OperandData &Data = getData(OpI, Ln); 1677 if (Data.APO != OpAPO || Data.IsUsed) 1678 continue; 1679 if (Data.V == Op) { 1680 FoundCandidate = true; 1681 Data.IsUsed = true; 1682 break; 1683 } 1684 } 1685 if (!FoundCandidate) 1686 return false; 1687 } 1688 return true; 1689 } 1690 1691 public: 1692 /// Initialize with all the operands of the instruction vector \p RootVL. 1693 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1694 ScalarEvolution &SE, const BoUpSLP &R) 1695 : DL(DL), SE(SE), R(R) { 1696 // Append all the operands of RootVL. 1697 appendOperandsOfVL(RootVL); 1698 } 1699 1700 /// \Returns a value vector with the operands across all lanes for the 1701 /// opearnd at \p OpIdx. 1702 ValueList getVL(unsigned OpIdx) const { 1703 ValueList OpVL(OpsVec[OpIdx].size()); 1704 assert(OpsVec[OpIdx].size() == getNumLanes() && 1705 "Expected same num of lanes across all operands"); 1706 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1707 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1708 return OpVL; 1709 } 1710 1711 // Performs operand reordering for 2 or more operands. 1712 // The original operands are in OrigOps[OpIdx][Lane]. 1713 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1714 void reorder() { 1715 unsigned NumOperands = getNumOperands(); 1716 unsigned NumLanes = getNumLanes(); 1717 // Each operand has its own mode. We are using this mode to help us select 1718 // the instructions for each lane, so that they match best with the ones 1719 // we have selected so far. 1720 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1721 1722 // This is a greedy single-pass algorithm. We are going over each lane 1723 // once and deciding on the best order right away with no back-tracking. 1724 // However, in order to increase its effectiveness, we start with the lane 1725 // that has operands that can move the least. For example, given the 1726 // following lanes: 1727 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1728 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1729 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1730 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1731 // we will start at Lane 1, since the operands of the subtraction cannot 1732 // be reordered. Then we will visit the rest of the lanes in a circular 1733 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1734 1735 // Find the first lane that we will start our search from. 1736 unsigned FirstLane = getBestLaneToStartReordering(); 1737 1738 // Initialize the modes. 1739 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1740 Value *OpLane0 = getValue(OpIdx, FirstLane); 1741 // Keep track if we have instructions with all the same opcode on one 1742 // side. 1743 if (isa<LoadInst>(OpLane0)) 1744 ReorderingModes[OpIdx] = ReorderingMode::Load; 1745 else if (isa<Instruction>(OpLane0)) { 1746 // Check if OpLane0 should be broadcast. 1747 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1748 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1749 else 1750 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1751 } 1752 else if (isa<Constant>(OpLane0)) 1753 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1754 else if (isa<Argument>(OpLane0)) 1755 // Our best hope is a Splat. It may save some cost in some cases. 1756 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1757 else 1758 // NOTE: This should be unreachable. 1759 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1760 } 1761 1762 // Check that we don't have same operands. No need to reorder if operands 1763 // are just perfect diamond or shuffled diamond match. Do not do it only 1764 // for possible broadcasts or non-power of 2 number of scalars (just for 1765 // now). 1766 auto &&SkipReordering = [this]() { 1767 SmallPtrSet<Value *, 4> UniqueValues; 1768 ArrayRef<OperandData> Op0 = OpsVec.front(); 1769 for (const OperandData &Data : Op0) 1770 UniqueValues.insert(Data.V); 1771 for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) { 1772 if (any_of(Op, [&UniqueValues](const OperandData &Data) { 1773 return !UniqueValues.contains(Data.V); 1774 })) 1775 return false; 1776 } 1777 // TODO: Check if we can remove a check for non-power-2 number of 1778 // scalars after full support of non-power-2 vectorization. 1779 return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size()); 1780 }; 1781 1782 // If the initial strategy fails for any of the operand indexes, then we 1783 // perform reordering again in a second pass. This helps avoid assigning 1784 // high priority to the failed strategy, and should improve reordering for 1785 // the non-failed operand indexes. 1786 for (int Pass = 0; Pass != 2; ++Pass) { 1787 // Check if no need to reorder operands since they're are perfect or 1788 // shuffled diamond match. 1789 // Need to to do it to avoid extra external use cost counting for 1790 // shuffled matches, which may cause regressions. 1791 if (SkipReordering()) 1792 break; 1793 // Skip the second pass if the first pass did not fail. 1794 bool StrategyFailed = false; 1795 // Mark all operand data as free to use. 1796 clearUsed(); 1797 // We keep the original operand order for the FirstLane, so reorder the 1798 // rest of the lanes. We are visiting the nodes in a circular fashion, 1799 // using FirstLane as the center point and increasing the radius 1800 // distance. 1801 SmallVector<SmallVector<Value *, 2>> MainAltOps(NumOperands); 1802 for (unsigned I = 0; I < NumOperands; ++I) 1803 MainAltOps[I].push_back(getData(I, FirstLane).V); 1804 1805 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1806 // Visit the lane on the right and then the lane on the left. 1807 for (int Direction : {+1, -1}) { 1808 int Lane = FirstLane + Direction * Distance; 1809 if (Lane < 0 || Lane >= (int)NumLanes) 1810 continue; 1811 int LastLane = Lane - Direction; 1812 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1813 "Out of bounds"); 1814 // Look for a good match for each operand. 1815 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1816 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1817 Optional<unsigned> BestIdx = getBestOperand( 1818 OpIdx, Lane, LastLane, ReorderingModes, MainAltOps[OpIdx]); 1819 // By not selecting a value, we allow the operands that follow to 1820 // select a better matching value. We will get a non-null value in 1821 // the next run of getBestOperand(). 1822 if (BestIdx) { 1823 // Swap the current operand with the one returned by 1824 // getBestOperand(). 1825 swap(OpIdx, BestIdx.getValue(), Lane); 1826 } else { 1827 // We failed to find a best operand, set mode to 'Failed'. 1828 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1829 // Enable the second pass. 1830 StrategyFailed = true; 1831 } 1832 // Try to get the alternate opcode and follow it during analysis. 1833 if (MainAltOps[OpIdx].size() != 2) { 1834 OperandData &AltOp = getData(OpIdx, Lane); 1835 InstructionsState OpS = 1836 getSameOpcode({MainAltOps[OpIdx].front(), AltOp.V}); 1837 if (OpS.getOpcode() && OpS.isAltShuffle()) 1838 MainAltOps[OpIdx].push_back(AltOp.V); 1839 } 1840 } 1841 } 1842 } 1843 // Skip second pass if the strategy did not fail. 1844 if (!StrategyFailed) 1845 break; 1846 } 1847 } 1848 1849 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1850 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1851 switch (RMode) { 1852 case ReorderingMode::Load: 1853 return "Load"; 1854 case ReorderingMode::Opcode: 1855 return "Opcode"; 1856 case ReorderingMode::Constant: 1857 return "Constant"; 1858 case ReorderingMode::Splat: 1859 return "Splat"; 1860 case ReorderingMode::Failed: 1861 return "Failed"; 1862 } 1863 llvm_unreachable("Unimplemented Reordering Type"); 1864 } 1865 1866 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1867 raw_ostream &OS) { 1868 return OS << getModeStr(RMode); 1869 } 1870 1871 /// Debug print. 1872 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1873 printMode(RMode, dbgs()); 1874 } 1875 1876 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1877 return printMode(RMode, OS); 1878 } 1879 1880 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1881 const unsigned Indent = 2; 1882 unsigned Cnt = 0; 1883 for (const OperandDataVec &OpDataVec : OpsVec) { 1884 OS << "Operand " << Cnt++ << "\n"; 1885 for (const OperandData &OpData : OpDataVec) { 1886 OS.indent(Indent) << "{"; 1887 if (Value *V = OpData.V) 1888 OS << *V; 1889 else 1890 OS << "null"; 1891 OS << ", APO:" << OpData.APO << "}\n"; 1892 } 1893 OS << "\n"; 1894 } 1895 return OS; 1896 } 1897 1898 /// Debug print. 1899 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1900 #endif 1901 }; 1902 1903 /// Checks if the instruction is marked for deletion. 1904 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1905 1906 /// Marks values operands for later deletion by replacing them with Undefs. 1907 void eraseInstructions(ArrayRef<Value *> AV); 1908 1909 ~BoUpSLP(); 1910 1911 private: 1912 /// Checks if all users of \p I are the part of the vectorization tree. 1913 bool areAllUsersVectorized(Instruction *I, 1914 ArrayRef<Value *> VectorizedVals) const; 1915 1916 /// \returns the cost of the vectorizable entry. 1917 InstructionCost getEntryCost(const TreeEntry *E, 1918 ArrayRef<Value *> VectorizedVals); 1919 1920 /// This is the recursive part of buildTree. 1921 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1922 const EdgeInfo &EI); 1923 1924 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1925 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1926 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1927 /// returns false, setting \p CurrentOrder to either an empty vector or a 1928 /// non-identity permutation that allows to reuse extract instructions. 1929 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1930 SmallVectorImpl<unsigned> &CurrentOrder) const; 1931 1932 /// Vectorize a single entry in the tree. 1933 Value *vectorizeTree(TreeEntry *E); 1934 1935 /// Vectorize a single entry in the tree, starting in \p VL. 1936 Value *vectorizeTree(ArrayRef<Value *> VL); 1937 1938 /// \returns the scalarization cost for this type. Scalarization in this 1939 /// context means the creation of vectors from a group of scalars. If \p 1940 /// NeedToShuffle is true, need to add a cost of reshuffling some of the 1941 /// vector elements. 1942 InstructionCost getGatherCost(FixedVectorType *Ty, 1943 const DenseSet<unsigned> &ShuffledIndices, 1944 bool NeedToShuffle) const; 1945 1946 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 1947 /// tree entries. 1948 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 1949 /// previous tree entries. \p Mask is filled with the shuffle mask. 1950 Optional<TargetTransformInfo::ShuffleKind> 1951 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 1952 SmallVectorImpl<const TreeEntry *> &Entries); 1953 1954 /// \returns the scalarization cost for this list of values. Assuming that 1955 /// this subtree gets vectorized, we may need to extract the values from the 1956 /// roots. This method calculates the cost of extracting the values. 1957 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 1958 1959 /// Set the Builder insert point to one after the last instruction in 1960 /// the bundle 1961 void setInsertPointAfterBundle(const TreeEntry *E); 1962 1963 /// \returns a vector from a collection of scalars in \p VL. 1964 Value *gather(ArrayRef<Value *> VL); 1965 1966 /// \returns whether the VectorizableTree is fully vectorizable and will 1967 /// be beneficial even the tree height is tiny. 1968 bool isFullyVectorizableTinyTree(bool ForReduction) const; 1969 1970 /// Reorder commutative or alt operands to get better probability of 1971 /// generating vectorized code. 1972 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1973 SmallVectorImpl<Value *> &Left, 1974 SmallVectorImpl<Value *> &Right, 1975 const DataLayout &DL, 1976 ScalarEvolution &SE, 1977 const BoUpSLP &R); 1978 struct TreeEntry { 1979 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1980 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1981 1982 /// \returns true if the scalars in VL are equal to this entry. 1983 bool isSame(ArrayRef<Value *> VL) const { 1984 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 1985 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 1986 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1987 return VL.size() == Mask.size() && 1988 std::equal(VL.begin(), VL.end(), Mask.begin(), 1989 [Scalars](Value *V, int Idx) { 1990 return (isa<UndefValue>(V) && 1991 Idx == UndefMaskElem) || 1992 (Idx != UndefMaskElem && V == Scalars[Idx]); 1993 }); 1994 }; 1995 if (!ReorderIndices.empty()) { 1996 // TODO: implement matching if the nodes are just reordered, still can 1997 // treat the vector as the same if the list of scalars matches VL 1998 // directly, without reordering. 1999 SmallVector<int> Mask; 2000 inversePermutation(ReorderIndices, Mask); 2001 if (VL.size() == Scalars.size()) 2002 return IsSame(Scalars, Mask); 2003 if (VL.size() == ReuseShuffleIndices.size()) { 2004 ::addMask(Mask, ReuseShuffleIndices); 2005 return IsSame(Scalars, Mask); 2006 } 2007 return false; 2008 } 2009 return IsSame(Scalars, ReuseShuffleIndices); 2010 } 2011 2012 /// \returns true if current entry has same operands as \p TE. 2013 bool hasEqualOperands(const TreeEntry &TE) const { 2014 if (TE.getNumOperands() != getNumOperands()) 2015 return false; 2016 SmallBitVector Used(getNumOperands()); 2017 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 2018 unsigned PrevCount = Used.count(); 2019 for (unsigned K = 0; K < E; ++K) { 2020 if (Used.test(K)) 2021 continue; 2022 if (getOperand(K) == TE.getOperand(I)) { 2023 Used.set(K); 2024 break; 2025 } 2026 } 2027 // Check if we actually found the matching operand. 2028 if (PrevCount == Used.count()) 2029 return false; 2030 } 2031 return true; 2032 } 2033 2034 /// \return Final vectorization factor for the node. Defined by the total 2035 /// number of vectorized scalars, including those, used several times in the 2036 /// entry and counted in the \a ReuseShuffleIndices, if any. 2037 unsigned getVectorFactor() const { 2038 if (!ReuseShuffleIndices.empty()) 2039 return ReuseShuffleIndices.size(); 2040 return Scalars.size(); 2041 }; 2042 2043 /// A vector of scalars. 2044 ValueList Scalars; 2045 2046 /// The Scalars are vectorized into this value. It is initialized to Null. 2047 Value *VectorizedValue = nullptr; 2048 2049 /// Do we need to gather this sequence or vectorize it 2050 /// (either with vector instruction or with scatter/gather 2051 /// intrinsics for store/load)? 2052 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 2053 EntryState State; 2054 2055 /// Does this sequence require some shuffling? 2056 SmallVector<int, 4> ReuseShuffleIndices; 2057 2058 /// Does this entry require reordering? 2059 SmallVector<unsigned, 4> ReorderIndices; 2060 2061 /// Points back to the VectorizableTree. 2062 /// 2063 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 2064 /// to be a pointer and needs to be able to initialize the child iterator. 2065 /// Thus we need a reference back to the container to translate the indices 2066 /// to entries. 2067 VecTreeTy &Container; 2068 2069 /// The TreeEntry index containing the user of this entry. We can actually 2070 /// have multiple users so the data structure is not truly a tree. 2071 SmallVector<EdgeInfo, 1> UserTreeIndices; 2072 2073 /// The index of this treeEntry in VectorizableTree. 2074 int Idx = -1; 2075 2076 private: 2077 /// The operands of each instruction in each lane Operands[op_index][lane]. 2078 /// Note: This helps avoid the replication of the code that performs the 2079 /// reordering of operands during buildTree_rec() and vectorizeTree(). 2080 SmallVector<ValueList, 2> Operands; 2081 2082 /// The main/alternate instruction. 2083 Instruction *MainOp = nullptr; 2084 Instruction *AltOp = nullptr; 2085 2086 public: 2087 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 2088 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 2089 if (Operands.size() < OpIdx + 1) 2090 Operands.resize(OpIdx + 1); 2091 assert(Operands[OpIdx].empty() && "Already resized?"); 2092 assert(OpVL.size() <= Scalars.size() && 2093 "Number of operands is greater than the number of scalars."); 2094 Operands[OpIdx].resize(OpVL.size()); 2095 copy(OpVL, Operands[OpIdx].begin()); 2096 } 2097 2098 /// Set the operands of this bundle in their original order. 2099 void setOperandsInOrder() { 2100 assert(Operands.empty() && "Already initialized?"); 2101 auto *I0 = cast<Instruction>(Scalars[0]); 2102 Operands.resize(I0->getNumOperands()); 2103 unsigned NumLanes = Scalars.size(); 2104 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 2105 OpIdx != NumOperands; ++OpIdx) { 2106 Operands[OpIdx].resize(NumLanes); 2107 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 2108 auto *I = cast<Instruction>(Scalars[Lane]); 2109 assert(I->getNumOperands() == NumOperands && 2110 "Expected same number of operands"); 2111 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 2112 } 2113 } 2114 } 2115 2116 /// Reorders operands of the node to the given mask \p Mask. 2117 void reorderOperands(ArrayRef<int> Mask) { 2118 for (ValueList &Operand : Operands) 2119 reorderScalars(Operand, Mask); 2120 } 2121 2122 /// \returns the \p OpIdx operand of this TreeEntry. 2123 ValueList &getOperand(unsigned OpIdx) { 2124 assert(OpIdx < Operands.size() && "Off bounds"); 2125 return Operands[OpIdx]; 2126 } 2127 2128 /// \returns the \p OpIdx operand of this TreeEntry. 2129 ArrayRef<Value *> getOperand(unsigned OpIdx) const { 2130 assert(OpIdx < Operands.size() && "Off bounds"); 2131 return Operands[OpIdx]; 2132 } 2133 2134 /// \returns the number of operands. 2135 unsigned getNumOperands() const { return Operands.size(); } 2136 2137 /// \return the single \p OpIdx operand. 2138 Value *getSingleOperand(unsigned OpIdx) const { 2139 assert(OpIdx < Operands.size() && "Off bounds"); 2140 assert(!Operands[OpIdx].empty() && "No operand available"); 2141 return Operands[OpIdx][0]; 2142 } 2143 2144 /// Some of the instructions in the list have alternate opcodes. 2145 bool isAltShuffle() const { return MainOp != AltOp; } 2146 2147 bool isOpcodeOrAlt(Instruction *I) const { 2148 unsigned CheckedOpcode = I->getOpcode(); 2149 return (getOpcode() == CheckedOpcode || 2150 getAltOpcode() == CheckedOpcode); 2151 } 2152 2153 /// Chooses the correct key for scheduling data. If \p Op has the same (or 2154 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 2155 /// \p OpValue. 2156 Value *isOneOf(Value *Op) const { 2157 auto *I = dyn_cast<Instruction>(Op); 2158 if (I && isOpcodeOrAlt(I)) 2159 return Op; 2160 return MainOp; 2161 } 2162 2163 void setOperations(const InstructionsState &S) { 2164 MainOp = S.MainOp; 2165 AltOp = S.AltOp; 2166 } 2167 2168 Instruction *getMainOp() const { 2169 return MainOp; 2170 } 2171 2172 Instruction *getAltOp() const { 2173 return AltOp; 2174 } 2175 2176 /// The main/alternate opcodes for the list of instructions. 2177 unsigned getOpcode() const { 2178 return MainOp ? MainOp->getOpcode() : 0; 2179 } 2180 2181 unsigned getAltOpcode() const { 2182 return AltOp ? AltOp->getOpcode() : 0; 2183 } 2184 2185 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 2186 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 2187 int findLaneForValue(Value *V) const { 2188 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 2189 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2190 if (!ReorderIndices.empty()) 2191 FoundLane = ReorderIndices[FoundLane]; 2192 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2193 if (!ReuseShuffleIndices.empty()) { 2194 FoundLane = std::distance(ReuseShuffleIndices.begin(), 2195 find(ReuseShuffleIndices, FoundLane)); 2196 } 2197 return FoundLane; 2198 } 2199 2200 #ifndef NDEBUG 2201 /// Debug printer. 2202 LLVM_DUMP_METHOD void dump() const { 2203 dbgs() << Idx << ".\n"; 2204 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 2205 dbgs() << "Operand " << OpI << ":\n"; 2206 for (const Value *V : Operands[OpI]) 2207 dbgs().indent(2) << *V << "\n"; 2208 } 2209 dbgs() << "Scalars: \n"; 2210 for (Value *V : Scalars) 2211 dbgs().indent(2) << *V << "\n"; 2212 dbgs() << "State: "; 2213 switch (State) { 2214 case Vectorize: 2215 dbgs() << "Vectorize\n"; 2216 break; 2217 case ScatterVectorize: 2218 dbgs() << "ScatterVectorize\n"; 2219 break; 2220 case NeedToGather: 2221 dbgs() << "NeedToGather\n"; 2222 break; 2223 } 2224 dbgs() << "MainOp: "; 2225 if (MainOp) 2226 dbgs() << *MainOp << "\n"; 2227 else 2228 dbgs() << "NULL\n"; 2229 dbgs() << "AltOp: "; 2230 if (AltOp) 2231 dbgs() << *AltOp << "\n"; 2232 else 2233 dbgs() << "NULL\n"; 2234 dbgs() << "VectorizedValue: "; 2235 if (VectorizedValue) 2236 dbgs() << *VectorizedValue << "\n"; 2237 else 2238 dbgs() << "NULL\n"; 2239 dbgs() << "ReuseShuffleIndices: "; 2240 if (ReuseShuffleIndices.empty()) 2241 dbgs() << "Empty"; 2242 else 2243 for (int ReuseIdx : ReuseShuffleIndices) 2244 dbgs() << ReuseIdx << ", "; 2245 dbgs() << "\n"; 2246 dbgs() << "ReorderIndices: "; 2247 for (unsigned ReorderIdx : ReorderIndices) 2248 dbgs() << ReorderIdx << ", "; 2249 dbgs() << "\n"; 2250 dbgs() << "UserTreeIndices: "; 2251 for (const auto &EInfo : UserTreeIndices) 2252 dbgs() << EInfo << ", "; 2253 dbgs() << "\n"; 2254 } 2255 #endif 2256 }; 2257 2258 #ifndef NDEBUG 2259 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 2260 InstructionCost VecCost, 2261 InstructionCost ScalarCost) const { 2262 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 2263 dbgs() << "SLP: Costs:\n"; 2264 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 2265 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 2266 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 2267 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 2268 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 2269 } 2270 #endif 2271 2272 /// Create a new VectorizableTree entry. 2273 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 2274 const InstructionsState &S, 2275 const EdgeInfo &UserTreeIdx, 2276 ArrayRef<int> ReuseShuffleIndices = None, 2277 ArrayRef<unsigned> ReorderIndices = None) { 2278 TreeEntry::EntryState EntryState = 2279 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 2280 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 2281 ReuseShuffleIndices, ReorderIndices); 2282 } 2283 2284 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 2285 TreeEntry::EntryState EntryState, 2286 Optional<ScheduleData *> Bundle, 2287 const InstructionsState &S, 2288 const EdgeInfo &UserTreeIdx, 2289 ArrayRef<int> ReuseShuffleIndices = None, 2290 ArrayRef<unsigned> ReorderIndices = None) { 2291 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 2292 (Bundle && EntryState != TreeEntry::NeedToGather)) && 2293 "Need to vectorize gather entry?"); 2294 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 2295 TreeEntry *Last = VectorizableTree.back().get(); 2296 Last->Idx = VectorizableTree.size() - 1; 2297 Last->State = EntryState; 2298 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 2299 ReuseShuffleIndices.end()); 2300 if (ReorderIndices.empty()) { 2301 Last->Scalars.assign(VL.begin(), VL.end()); 2302 Last->setOperations(S); 2303 } else { 2304 // Reorder scalars and build final mask. 2305 Last->Scalars.assign(VL.size(), nullptr); 2306 transform(ReorderIndices, Last->Scalars.begin(), 2307 [VL](unsigned Idx) -> Value * { 2308 if (Idx >= VL.size()) 2309 return UndefValue::get(VL.front()->getType()); 2310 return VL[Idx]; 2311 }); 2312 InstructionsState S = getSameOpcode(Last->Scalars); 2313 Last->setOperations(S); 2314 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 2315 } 2316 if (Last->State != TreeEntry::NeedToGather) { 2317 for (Value *V : VL) { 2318 assert(!getTreeEntry(V) && "Scalar already in tree!"); 2319 ScalarToTreeEntry[V] = Last; 2320 } 2321 // Update the scheduler bundle to point to this TreeEntry. 2322 unsigned Lane = 0; 2323 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 2324 BundleMember = BundleMember->NextInBundle) { 2325 BundleMember->TE = Last; 2326 BundleMember->Lane = Lane; 2327 ++Lane; 2328 } 2329 assert((!Bundle.getValue() || Lane == VL.size()) && 2330 "Bundle and VL out of sync"); 2331 } else { 2332 MustGather.insert(VL.begin(), VL.end()); 2333 } 2334 2335 if (UserTreeIdx.UserTE) 2336 Last->UserTreeIndices.push_back(UserTreeIdx); 2337 2338 return Last; 2339 } 2340 2341 /// -- Vectorization State -- 2342 /// Holds all of the tree entries. 2343 TreeEntry::VecTreeTy VectorizableTree; 2344 2345 #ifndef NDEBUG 2346 /// Debug printer. 2347 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 2348 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 2349 VectorizableTree[Id]->dump(); 2350 dbgs() << "\n"; 2351 } 2352 } 2353 #endif 2354 2355 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 2356 2357 const TreeEntry *getTreeEntry(Value *V) const { 2358 return ScalarToTreeEntry.lookup(V); 2359 } 2360 2361 /// Maps a specific scalar to its tree entry. 2362 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 2363 2364 /// Maps a value to the proposed vectorizable size. 2365 SmallDenseMap<Value *, unsigned> InstrElementSize; 2366 2367 /// A list of scalars that we found that we need to keep as scalars. 2368 ValueSet MustGather; 2369 2370 /// This POD struct describes one external user in the vectorized tree. 2371 struct ExternalUser { 2372 ExternalUser(Value *S, llvm::User *U, int L) 2373 : Scalar(S), User(U), Lane(L) {} 2374 2375 // Which scalar in our function. 2376 Value *Scalar; 2377 2378 // Which user that uses the scalar. 2379 llvm::User *User; 2380 2381 // Which lane does the scalar belong to. 2382 int Lane; 2383 }; 2384 using UserList = SmallVector<ExternalUser, 16>; 2385 2386 /// Checks if two instructions may access the same memory. 2387 /// 2388 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2389 /// is invariant in the calling loop. 2390 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2391 Instruction *Inst2) { 2392 // First check if the result is already in the cache. 2393 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2394 Optional<bool> &result = AliasCache[key]; 2395 if (result.hasValue()) { 2396 return result.getValue(); 2397 } 2398 bool aliased = true; 2399 if (Loc1.Ptr && isSimple(Inst1)) 2400 aliased = isModOrRefSet(AA->getModRefInfo(Inst2, Loc1)); 2401 // Store the result in the cache. 2402 result = aliased; 2403 return aliased; 2404 } 2405 2406 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2407 2408 /// Cache for alias results. 2409 /// TODO: consider moving this to the AliasAnalysis itself. 2410 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2411 2412 /// Removes an instruction from its block and eventually deletes it. 2413 /// It's like Instruction::eraseFromParent() except that the actual deletion 2414 /// is delayed until BoUpSLP is destructed. 2415 /// This is required to ensure that there are no incorrect collisions in the 2416 /// AliasCache, which can happen if a new instruction is allocated at the 2417 /// same address as a previously deleted instruction. 2418 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 2419 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 2420 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 2421 } 2422 2423 /// Temporary store for deleted instructions. Instructions will be deleted 2424 /// eventually when the BoUpSLP is destructed. 2425 DenseMap<Instruction *, bool> DeletedInstructions; 2426 2427 /// A list of values that need to extracted out of the tree. 2428 /// This list holds pairs of (Internal Scalar : External User). External User 2429 /// can be nullptr, it means that this Internal Scalar will be used later, 2430 /// after vectorization. 2431 UserList ExternalUses; 2432 2433 /// Values used only by @llvm.assume calls. 2434 SmallPtrSet<const Value *, 32> EphValues; 2435 2436 /// Holds all of the instructions that we gathered. 2437 SetVector<Instruction *> GatherShuffleSeq; 2438 2439 /// A list of blocks that we are going to CSE. 2440 SetVector<BasicBlock *> CSEBlocks; 2441 2442 /// Contains all scheduling relevant data for an instruction. 2443 /// A ScheduleData either represents a single instruction or a member of an 2444 /// instruction bundle (= a group of instructions which is combined into a 2445 /// vector instruction). 2446 struct ScheduleData { 2447 // The initial value for the dependency counters. It means that the 2448 // dependencies are not calculated yet. 2449 enum { InvalidDeps = -1 }; 2450 2451 ScheduleData() = default; 2452 2453 void init(int BlockSchedulingRegionID, Value *OpVal) { 2454 FirstInBundle = this; 2455 NextInBundle = nullptr; 2456 NextLoadStore = nullptr; 2457 IsScheduled = false; 2458 SchedulingRegionID = BlockSchedulingRegionID; 2459 UnscheduledDepsInBundle = UnscheduledDeps; 2460 clearDependencies(); 2461 OpValue = OpVal; 2462 TE = nullptr; 2463 Lane = -1; 2464 } 2465 2466 /// Verify basic self consistency properties 2467 void verify() { 2468 if (hasValidDependencies()) { 2469 assert(UnscheduledDeps <= Dependencies && "invariant"); 2470 assert(UnscheduledDeps <= FirstInBundle->UnscheduledDepsInBundle && 2471 "bundle must have at least as many dependencies as member"); 2472 } 2473 2474 if (IsScheduled) { 2475 assert(isSchedulingEntity() && hasValidDependencies() && 2476 UnscheduledDeps == 0 && 2477 "unexpected scheduled state"); 2478 } 2479 } 2480 2481 /// Returns true if the dependency information has been calculated. 2482 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2483 2484 /// Returns true for single instructions and for bundle representatives 2485 /// (= the head of a bundle). 2486 bool isSchedulingEntity() const { return FirstInBundle == this; } 2487 2488 /// Returns true if it represents an instruction bundle and not only a 2489 /// single instruction. 2490 bool isPartOfBundle() const { 2491 return NextInBundle != nullptr || FirstInBundle != this; 2492 } 2493 2494 /// Returns true if it is ready for scheduling, i.e. it has no more 2495 /// unscheduled depending instructions/bundles. 2496 bool isReady() const { 2497 assert(isSchedulingEntity() && 2498 "can't consider non-scheduling entity for ready list"); 2499 return UnscheduledDepsInBundle == 0 && !IsScheduled; 2500 } 2501 2502 /// Modifies the number of unscheduled dependencies, also updating it for 2503 /// the whole bundle. 2504 int incrementUnscheduledDeps(int Incr) { 2505 UnscheduledDeps += Incr; 2506 return FirstInBundle->UnscheduledDepsInBundle += Incr; 2507 } 2508 2509 /// Sets the number of unscheduled dependencies to the number of 2510 /// dependencies. 2511 void resetUnscheduledDeps() { 2512 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 2513 } 2514 2515 /// Clears all dependency information. 2516 void clearDependencies() { 2517 Dependencies = InvalidDeps; 2518 resetUnscheduledDeps(); 2519 MemoryDependencies.clear(); 2520 } 2521 2522 void dump(raw_ostream &os) const { 2523 if (!isSchedulingEntity()) { 2524 os << "/ " << *Inst; 2525 } else if (NextInBundle) { 2526 os << '[' << *Inst; 2527 ScheduleData *SD = NextInBundle; 2528 while (SD) { 2529 os << ';' << *SD->Inst; 2530 SD = SD->NextInBundle; 2531 } 2532 os << ']'; 2533 } else { 2534 os << *Inst; 2535 } 2536 } 2537 2538 Instruction *Inst = nullptr; 2539 2540 /// Points to the head in an instruction bundle (and always to this for 2541 /// single instructions). 2542 ScheduleData *FirstInBundle = nullptr; 2543 2544 /// Single linked list of all instructions in a bundle. Null if it is a 2545 /// single instruction. 2546 ScheduleData *NextInBundle = nullptr; 2547 2548 /// Single linked list of all memory instructions (e.g. load, store, call) 2549 /// in the block - until the end of the scheduling region. 2550 ScheduleData *NextLoadStore = nullptr; 2551 2552 /// The dependent memory instructions. 2553 /// This list is derived on demand in calculateDependencies(). 2554 SmallVector<ScheduleData *, 4> MemoryDependencies; 2555 2556 /// This ScheduleData is in the current scheduling region if this matches 2557 /// the current SchedulingRegionID of BlockScheduling. 2558 int SchedulingRegionID = 0; 2559 2560 /// Used for getting a "good" final ordering of instructions. 2561 int SchedulingPriority = 0; 2562 2563 /// The number of dependencies. Constitutes of the number of users of the 2564 /// instruction plus the number of dependent memory instructions (if any). 2565 /// This value is calculated on demand. 2566 /// If InvalidDeps, the number of dependencies is not calculated yet. 2567 int Dependencies = InvalidDeps; 2568 2569 /// The number of dependencies minus the number of dependencies of scheduled 2570 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2571 /// for scheduling. 2572 /// Note that this is negative as long as Dependencies is not calculated. 2573 int UnscheduledDeps = InvalidDeps; 2574 2575 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 2576 /// single instructions. 2577 int UnscheduledDepsInBundle = InvalidDeps; 2578 2579 /// True if this instruction is scheduled (or considered as scheduled in the 2580 /// dry-run). 2581 bool IsScheduled = false; 2582 2583 /// Opcode of the current instruction in the schedule data. 2584 Value *OpValue = nullptr; 2585 2586 /// The TreeEntry that this instruction corresponds to. 2587 TreeEntry *TE = nullptr; 2588 2589 /// The lane of this node in the TreeEntry. 2590 int Lane = -1; 2591 }; 2592 2593 #ifndef NDEBUG 2594 friend inline raw_ostream &operator<<(raw_ostream &os, 2595 const BoUpSLP::ScheduleData &SD) { 2596 SD.dump(os); 2597 return os; 2598 } 2599 #endif 2600 2601 friend struct GraphTraits<BoUpSLP *>; 2602 friend struct DOTGraphTraits<BoUpSLP *>; 2603 2604 /// Contains all scheduling data for a basic block. 2605 struct BlockScheduling { 2606 BlockScheduling(BasicBlock *BB) 2607 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2608 2609 void clear() { 2610 ReadyInsts.clear(); 2611 ScheduleStart = nullptr; 2612 ScheduleEnd = nullptr; 2613 FirstLoadStoreInRegion = nullptr; 2614 LastLoadStoreInRegion = nullptr; 2615 2616 // Reduce the maximum schedule region size by the size of the 2617 // previous scheduling run. 2618 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2619 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2620 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2621 ScheduleRegionSize = 0; 2622 2623 // Make a new scheduling region, i.e. all existing ScheduleData is not 2624 // in the new region yet. 2625 ++SchedulingRegionID; 2626 } 2627 2628 ScheduleData *getScheduleData(Value *V) { 2629 ScheduleData *SD = ScheduleDataMap[V]; 2630 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2631 return SD; 2632 return nullptr; 2633 } 2634 2635 ScheduleData *getScheduleData(Value *V, Value *Key) { 2636 if (V == Key) 2637 return getScheduleData(V); 2638 auto I = ExtraScheduleDataMap.find(V); 2639 if (I != ExtraScheduleDataMap.end()) { 2640 ScheduleData *SD = I->second[Key]; 2641 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2642 return SD; 2643 } 2644 return nullptr; 2645 } 2646 2647 bool isInSchedulingRegion(ScheduleData *SD) const { 2648 return SD->SchedulingRegionID == SchedulingRegionID; 2649 } 2650 2651 /// Marks an instruction as scheduled and puts all dependent ready 2652 /// instructions into the ready-list. 2653 template <typename ReadyListType> 2654 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2655 SD->IsScheduled = true; 2656 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2657 2658 for (ScheduleData *BundleMember = SD; BundleMember; 2659 BundleMember = BundleMember->NextInBundle) { 2660 if (BundleMember->Inst != BundleMember->OpValue) 2661 continue; 2662 2663 // Handle the def-use chain dependencies. 2664 2665 // Decrement the unscheduled counter and insert to ready list if ready. 2666 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2667 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2668 if (OpDef && OpDef->hasValidDependencies() && 2669 OpDef->incrementUnscheduledDeps(-1) == 0) { 2670 // There are no more unscheduled dependencies after 2671 // decrementing, so we can put the dependent instruction 2672 // into the ready list. 2673 ScheduleData *DepBundle = OpDef->FirstInBundle; 2674 assert(!DepBundle->IsScheduled && 2675 "already scheduled bundle gets ready"); 2676 ReadyList.insert(DepBundle); 2677 LLVM_DEBUG(dbgs() 2678 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2679 } 2680 }); 2681 }; 2682 2683 // If BundleMember is a vector bundle, its operands may have been 2684 // reordered during buildTree(). We therefore need to get its operands 2685 // through the TreeEntry. 2686 if (TreeEntry *TE = BundleMember->TE) { 2687 int Lane = BundleMember->Lane; 2688 assert(Lane >= 0 && "Lane not set"); 2689 2690 // Since vectorization tree is being built recursively this assertion 2691 // ensures that the tree entry has all operands set before reaching 2692 // this code. Couple of exceptions known at the moment are extracts 2693 // where their second (immediate) operand is not added. Since 2694 // immediates do not affect scheduler behavior this is considered 2695 // okay. 2696 auto *In = TE->getMainOp(); 2697 assert(In && 2698 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2699 In->getNumOperands() == TE->getNumOperands()) && 2700 "Missed TreeEntry operands?"); 2701 (void)In; // fake use to avoid build failure when assertions disabled 2702 2703 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2704 OpIdx != NumOperands; ++OpIdx) 2705 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2706 DecrUnsched(I); 2707 } else { 2708 // If BundleMember is a stand-alone instruction, no operand reordering 2709 // has taken place, so we directly access its operands. 2710 for (Use &U : BundleMember->Inst->operands()) 2711 if (auto *I = dyn_cast<Instruction>(U.get())) 2712 DecrUnsched(I); 2713 } 2714 // Handle the memory dependencies. 2715 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2716 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2717 // There are no more unscheduled dependencies after decrementing, 2718 // so we can put the dependent instruction into the ready list. 2719 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2720 assert(!DepBundle->IsScheduled && 2721 "already scheduled bundle gets ready"); 2722 ReadyList.insert(DepBundle); 2723 LLVM_DEBUG(dbgs() 2724 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2725 } 2726 } 2727 } 2728 } 2729 2730 /// Verify basic self consistency properties of the data structure. 2731 void verify() { 2732 if (!ScheduleStart) 2733 return; 2734 2735 assert(ScheduleStart->getParent() == ScheduleEnd->getParent() && 2736 ScheduleStart->comesBefore(ScheduleEnd) && 2737 "Not a valid scheduling region?"); 2738 2739 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2740 auto *SD = getScheduleData(I); 2741 assert(SD && "primary scheduledata must exist in window"); 2742 assert(isInSchedulingRegion(SD) && 2743 "primary schedule data not in window?"); 2744 doForAllOpcodes(I, [](ScheduleData *SD) { SD->verify(); }); 2745 } 2746 2747 for (auto *SD : ReadyInsts) { 2748 assert(SD->isSchedulingEntity() && SD->isReady() && 2749 "item in ready list not ready?"); 2750 } 2751 } 2752 2753 void doForAllOpcodes(Value *V, 2754 function_ref<void(ScheduleData *SD)> Action) { 2755 if (ScheduleData *SD = getScheduleData(V)) 2756 Action(SD); 2757 auto I = ExtraScheduleDataMap.find(V); 2758 if (I != ExtraScheduleDataMap.end()) 2759 for (auto &P : I->second) 2760 if (P.second->SchedulingRegionID == SchedulingRegionID) 2761 Action(P.second); 2762 } 2763 2764 /// Put all instructions into the ReadyList which are ready for scheduling. 2765 template <typename ReadyListType> 2766 void initialFillReadyList(ReadyListType &ReadyList) { 2767 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2768 doForAllOpcodes(I, [&](ScheduleData *SD) { 2769 if (SD->isSchedulingEntity() && SD->isReady()) { 2770 ReadyList.insert(SD); 2771 LLVM_DEBUG(dbgs() 2772 << "SLP: initially in ready list: " << *SD << "\n"); 2773 } 2774 }); 2775 } 2776 } 2777 2778 /// Build a bundle from the ScheduleData nodes corresponding to the 2779 /// scalar instruction for each lane. 2780 ScheduleData *buildBundle(ArrayRef<Value *> VL); 2781 2782 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2783 /// cyclic dependencies. This is only a dry-run, no instructions are 2784 /// actually moved at this stage. 2785 /// \returns the scheduling bundle. The returned Optional value is non-None 2786 /// if \p VL is allowed to be scheduled. 2787 Optional<ScheduleData *> 2788 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2789 const InstructionsState &S); 2790 2791 /// Un-bundles a group of instructions. 2792 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2793 2794 /// Allocates schedule data chunk. 2795 ScheduleData *allocateScheduleDataChunks(); 2796 2797 /// Extends the scheduling region so that V is inside the region. 2798 /// \returns true if the region size is within the limit. 2799 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2800 2801 /// Initialize the ScheduleData structures for new instructions in the 2802 /// scheduling region. 2803 void initScheduleData(Instruction *FromI, Instruction *ToI, 2804 ScheduleData *PrevLoadStore, 2805 ScheduleData *NextLoadStore); 2806 2807 /// Updates the dependency information of a bundle and of all instructions/ 2808 /// bundles which depend on the original bundle. 2809 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2810 BoUpSLP *SLP); 2811 2812 /// Sets all instruction in the scheduling region to un-scheduled. 2813 void resetSchedule(); 2814 2815 BasicBlock *BB; 2816 2817 /// Simple memory allocation for ScheduleData. 2818 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2819 2820 /// The size of a ScheduleData array in ScheduleDataChunks. 2821 int ChunkSize; 2822 2823 /// The allocator position in the current chunk, which is the last entry 2824 /// of ScheduleDataChunks. 2825 int ChunkPos; 2826 2827 /// Attaches ScheduleData to Instruction. 2828 /// Note that the mapping survives during all vectorization iterations, i.e. 2829 /// ScheduleData structures are recycled. 2830 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2831 2832 /// Attaches ScheduleData to Instruction with the leading key. 2833 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2834 ExtraScheduleDataMap; 2835 2836 /// The ready-list for scheduling (only used for the dry-run). 2837 SetVector<ScheduleData *> ReadyInsts; 2838 2839 /// The first instruction of the scheduling region. 2840 Instruction *ScheduleStart = nullptr; 2841 2842 /// The first instruction _after_ the scheduling region. 2843 Instruction *ScheduleEnd = nullptr; 2844 2845 /// The first memory accessing instruction in the scheduling region 2846 /// (can be null). 2847 ScheduleData *FirstLoadStoreInRegion = nullptr; 2848 2849 /// The last memory accessing instruction in the scheduling region 2850 /// (can be null). 2851 ScheduleData *LastLoadStoreInRegion = nullptr; 2852 2853 /// The current size of the scheduling region. 2854 int ScheduleRegionSize = 0; 2855 2856 /// The maximum size allowed for the scheduling region. 2857 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2858 2859 /// The ID of the scheduling region. For a new vectorization iteration this 2860 /// is incremented which "removes" all ScheduleData from the region. 2861 // Make sure that the initial SchedulingRegionID is greater than the 2862 // initial SchedulingRegionID in ScheduleData (which is 0). 2863 int SchedulingRegionID = 1; 2864 }; 2865 2866 /// Attaches the BlockScheduling structures to basic blocks. 2867 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2868 2869 /// Performs the "real" scheduling. Done before vectorization is actually 2870 /// performed in a basic block. 2871 void scheduleBlock(BlockScheduling *BS); 2872 2873 /// List of users to ignore during scheduling and that don't need extracting. 2874 ArrayRef<Value *> UserIgnoreList; 2875 2876 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2877 /// sorted SmallVectors of unsigned. 2878 struct OrdersTypeDenseMapInfo { 2879 static OrdersType getEmptyKey() { 2880 OrdersType V; 2881 V.push_back(~1U); 2882 return V; 2883 } 2884 2885 static OrdersType getTombstoneKey() { 2886 OrdersType V; 2887 V.push_back(~2U); 2888 return V; 2889 } 2890 2891 static unsigned getHashValue(const OrdersType &V) { 2892 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2893 } 2894 2895 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2896 return LHS == RHS; 2897 } 2898 }; 2899 2900 // Analysis and block reference. 2901 Function *F; 2902 ScalarEvolution *SE; 2903 TargetTransformInfo *TTI; 2904 TargetLibraryInfo *TLI; 2905 AAResults *AA; 2906 LoopInfo *LI; 2907 DominatorTree *DT; 2908 AssumptionCache *AC; 2909 DemandedBits *DB; 2910 const DataLayout *DL; 2911 OptimizationRemarkEmitter *ORE; 2912 2913 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2914 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2915 2916 /// Instruction builder to construct the vectorized tree. 2917 IRBuilder<> Builder; 2918 2919 /// A map of scalar integer values to the smallest bit width with which they 2920 /// can legally be represented. The values map to (width, signed) pairs, 2921 /// where "width" indicates the minimum bit width and "signed" is True if the 2922 /// value must be signed-extended, rather than zero-extended, back to its 2923 /// original width. 2924 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2925 }; 2926 2927 } // end namespace slpvectorizer 2928 2929 template <> struct GraphTraits<BoUpSLP *> { 2930 using TreeEntry = BoUpSLP::TreeEntry; 2931 2932 /// NodeRef has to be a pointer per the GraphWriter. 2933 using NodeRef = TreeEntry *; 2934 2935 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2936 2937 /// Add the VectorizableTree to the index iterator to be able to return 2938 /// TreeEntry pointers. 2939 struct ChildIteratorType 2940 : public iterator_adaptor_base< 2941 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2942 ContainerTy &VectorizableTree; 2943 2944 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2945 ContainerTy &VT) 2946 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2947 2948 NodeRef operator*() { return I->UserTE; } 2949 }; 2950 2951 static NodeRef getEntryNode(BoUpSLP &R) { 2952 return R.VectorizableTree[0].get(); 2953 } 2954 2955 static ChildIteratorType child_begin(NodeRef N) { 2956 return {N->UserTreeIndices.begin(), N->Container}; 2957 } 2958 2959 static ChildIteratorType child_end(NodeRef N) { 2960 return {N->UserTreeIndices.end(), N->Container}; 2961 } 2962 2963 /// For the node iterator we just need to turn the TreeEntry iterator into a 2964 /// TreeEntry* iterator so that it dereferences to NodeRef. 2965 class nodes_iterator { 2966 using ItTy = ContainerTy::iterator; 2967 ItTy It; 2968 2969 public: 2970 nodes_iterator(const ItTy &It2) : It(It2) {} 2971 NodeRef operator*() { return It->get(); } 2972 nodes_iterator operator++() { 2973 ++It; 2974 return *this; 2975 } 2976 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2977 }; 2978 2979 static nodes_iterator nodes_begin(BoUpSLP *R) { 2980 return nodes_iterator(R->VectorizableTree.begin()); 2981 } 2982 2983 static nodes_iterator nodes_end(BoUpSLP *R) { 2984 return nodes_iterator(R->VectorizableTree.end()); 2985 } 2986 2987 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2988 }; 2989 2990 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2991 using TreeEntry = BoUpSLP::TreeEntry; 2992 2993 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2994 2995 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2996 std::string Str; 2997 raw_string_ostream OS(Str); 2998 if (isSplat(Entry->Scalars)) 2999 OS << "<splat> "; 3000 for (auto V : Entry->Scalars) { 3001 OS << *V; 3002 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 3003 return EU.Scalar == V; 3004 })) 3005 OS << " <extract>"; 3006 OS << "\n"; 3007 } 3008 return Str; 3009 } 3010 3011 static std::string getNodeAttributes(const TreeEntry *Entry, 3012 const BoUpSLP *) { 3013 if (Entry->State == TreeEntry::NeedToGather) 3014 return "color=red"; 3015 return ""; 3016 } 3017 }; 3018 3019 } // end namespace llvm 3020 3021 BoUpSLP::~BoUpSLP() { 3022 for (const auto &Pair : DeletedInstructions) { 3023 // Replace operands of ignored instructions with Undefs in case if they were 3024 // marked for deletion. 3025 if (Pair.getSecond()) { 3026 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 3027 Pair.getFirst()->replaceAllUsesWith(Undef); 3028 } 3029 Pair.getFirst()->dropAllReferences(); 3030 } 3031 for (const auto &Pair : DeletedInstructions) { 3032 assert(Pair.getFirst()->use_empty() && 3033 "trying to erase instruction with users."); 3034 Pair.getFirst()->eraseFromParent(); 3035 } 3036 #ifdef EXPENSIVE_CHECKS 3037 // If we could guarantee that this call is not extremely slow, we could 3038 // remove the ifdef limitation (see PR47712). 3039 assert(!verifyFunction(*F, &dbgs())); 3040 #endif 3041 } 3042 3043 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 3044 for (auto *V : AV) { 3045 if (auto *I = dyn_cast<Instruction>(V)) 3046 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 3047 }; 3048 } 3049 3050 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 3051 /// contains original mask for the scalars reused in the node. Procedure 3052 /// transform this mask in accordance with the given \p Mask. 3053 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 3054 assert(!Mask.empty() && Reuses.size() == Mask.size() && 3055 "Expected non-empty mask."); 3056 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 3057 Prev.swap(Reuses); 3058 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 3059 if (Mask[I] != UndefMaskElem) 3060 Reuses[Mask[I]] = Prev[I]; 3061 } 3062 3063 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 3064 /// the original order of the scalars. Procedure transforms the provided order 3065 /// in accordance with the given \p Mask. If the resulting \p Order is just an 3066 /// identity order, \p Order is cleared. 3067 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 3068 assert(!Mask.empty() && "Expected non-empty mask."); 3069 SmallVector<int> MaskOrder; 3070 if (Order.empty()) { 3071 MaskOrder.resize(Mask.size()); 3072 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 3073 } else { 3074 inversePermutation(Order, MaskOrder); 3075 } 3076 reorderReuses(MaskOrder, Mask); 3077 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 3078 Order.clear(); 3079 return; 3080 } 3081 Order.assign(Mask.size(), Mask.size()); 3082 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 3083 if (MaskOrder[I] != UndefMaskElem) 3084 Order[MaskOrder[I]] = I; 3085 fixupOrderingIndices(Order); 3086 } 3087 3088 Optional<BoUpSLP::OrdersType> 3089 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { 3090 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 3091 unsigned NumScalars = TE.Scalars.size(); 3092 OrdersType CurrentOrder(NumScalars, NumScalars); 3093 SmallVector<int> Positions; 3094 SmallBitVector UsedPositions(NumScalars); 3095 const TreeEntry *STE = nullptr; 3096 // Try to find all gathered scalars that are gets vectorized in other 3097 // vectorize node. Here we can have only one single tree vector node to 3098 // correctly identify order of the gathered scalars. 3099 for (unsigned I = 0; I < NumScalars; ++I) { 3100 Value *V = TE.Scalars[I]; 3101 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) 3102 continue; 3103 if (const auto *LocalSTE = getTreeEntry(V)) { 3104 if (!STE) 3105 STE = LocalSTE; 3106 else if (STE != LocalSTE) 3107 // Take the order only from the single vector node. 3108 return None; 3109 unsigned Lane = 3110 std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); 3111 if (Lane >= NumScalars) 3112 return None; 3113 if (CurrentOrder[Lane] != NumScalars) { 3114 if (Lane != I) 3115 continue; 3116 UsedPositions.reset(CurrentOrder[Lane]); 3117 } 3118 // The partial identity (where only some elements of the gather node are 3119 // in the identity order) is good. 3120 CurrentOrder[Lane] = I; 3121 UsedPositions.set(I); 3122 } 3123 } 3124 // Need to keep the order if we have a vector entry and at least 2 scalars or 3125 // the vectorized entry has just 2 scalars. 3126 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { 3127 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { 3128 for (unsigned I = 0; I < NumScalars; ++I) 3129 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) 3130 return false; 3131 return true; 3132 }; 3133 if (IsIdentityOrder(CurrentOrder)) { 3134 CurrentOrder.clear(); 3135 return CurrentOrder; 3136 } 3137 auto *It = CurrentOrder.begin(); 3138 for (unsigned I = 0; I < NumScalars;) { 3139 if (UsedPositions.test(I)) { 3140 ++I; 3141 continue; 3142 } 3143 if (*It == NumScalars) { 3144 *It = I; 3145 ++I; 3146 } 3147 ++It; 3148 } 3149 return CurrentOrder; 3150 } 3151 return None; 3152 } 3153 3154 Optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE, 3155 bool TopToBottom) { 3156 // No need to reorder if need to shuffle reuses, still need to shuffle the 3157 // node. 3158 if (!TE.ReuseShuffleIndices.empty()) 3159 return None; 3160 if (TE.State == TreeEntry::Vectorize && 3161 (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) || 3162 (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) && 3163 !TE.isAltShuffle()) 3164 return TE.ReorderIndices; 3165 if (TE.State == TreeEntry::NeedToGather) { 3166 // TODO: add analysis of other gather nodes with extractelement 3167 // instructions and other values/instructions, not only undefs. 3168 if (((TE.getOpcode() == Instruction::ExtractElement && 3169 !TE.isAltShuffle()) || 3170 (all_of(TE.Scalars, 3171 [](Value *V) { 3172 return isa<UndefValue, ExtractElementInst>(V); 3173 }) && 3174 any_of(TE.Scalars, 3175 [](Value *V) { return isa<ExtractElementInst>(V); }))) && 3176 all_of(TE.Scalars, 3177 [](Value *V) { 3178 auto *EE = dyn_cast<ExtractElementInst>(V); 3179 return !EE || isa<FixedVectorType>(EE->getVectorOperandType()); 3180 }) && 3181 allSameType(TE.Scalars)) { 3182 // Check that gather of extractelements can be represented as 3183 // just a shuffle of a single vector. 3184 OrdersType CurrentOrder; 3185 bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder); 3186 if (Reuse || !CurrentOrder.empty()) { 3187 if (!CurrentOrder.empty()) 3188 fixupOrderingIndices(CurrentOrder); 3189 return CurrentOrder; 3190 } 3191 } 3192 if (Optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE)) 3193 return CurrentOrder; 3194 } 3195 return None; 3196 } 3197 3198 void BoUpSLP::reorderTopToBottom() { 3199 // Maps VF to the graph nodes. 3200 DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries; 3201 // ExtractElement gather nodes which can be vectorized and need to handle 3202 // their ordering. 3203 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3204 // Find all reorderable nodes with the given VF. 3205 // Currently the are vectorized stores,loads,extracts + some gathering of 3206 // extracts. 3207 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders]( 3208 const std::unique_ptr<TreeEntry> &TE) { 3209 if (Optional<OrdersType> CurrentOrder = 3210 getReorderingData(*TE.get(), /*TopToBottom=*/true)) { 3211 // Do not include ordering for nodes used in the alt opcode vectorization, 3212 // better to reorder them during bottom-to-top stage. If follow the order 3213 // here, it causes reordering of the whole graph though actually it is 3214 // profitable just to reorder the subgraph that starts from the alternate 3215 // opcode vectorization node. Such nodes already end-up with the shuffle 3216 // instruction and it is just enough to change this shuffle rather than 3217 // rotate the scalars for the whole graph. 3218 unsigned Cnt = 0; 3219 const TreeEntry *UserTE = TE.get(); 3220 while (UserTE && Cnt < RecursionMaxDepth) { 3221 if (UserTE->UserTreeIndices.size() != 1) 3222 break; 3223 if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) { 3224 return EI.UserTE->State == TreeEntry::Vectorize && 3225 EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0; 3226 })) 3227 return; 3228 if (UserTE->UserTreeIndices.empty()) 3229 UserTE = nullptr; 3230 else 3231 UserTE = UserTE->UserTreeIndices.back().UserTE; 3232 ++Cnt; 3233 } 3234 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 3235 if (TE->State != TreeEntry::Vectorize) 3236 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3237 } 3238 }); 3239 3240 // Reorder the graph nodes according to their vectorization factor. 3241 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 3242 VF /= 2) { 3243 auto It = VFToOrderedEntries.find(VF); 3244 if (It == VFToOrderedEntries.end()) 3245 continue; 3246 // Try to find the most profitable order. We just are looking for the most 3247 // used order and reorder scalar elements in the nodes according to this 3248 // mostly used order. 3249 ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef(); 3250 // All operands are reordered and used only in this node - propagate the 3251 // most used order to the user node. 3252 MapVector<OrdersType, unsigned, 3253 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3254 OrdersUses; 3255 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3256 for (const TreeEntry *OpTE : OrderedEntries) { 3257 // No need to reorder this nodes, still need to extend and to use shuffle, 3258 // just need to merge reordering shuffle and the reuse shuffle. 3259 if (!OpTE->ReuseShuffleIndices.empty()) 3260 continue; 3261 // Count number of orders uses. 3262 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3263 if (OpTE->State == TreeEntry::NeedToGather) 3264 return GathersToOrders.find(OpTE)->second; 3265 return OpTE->ReorderIndices; 3266 }(); 3267 // Stores actually store the mask, not the order, need to invert. 3268 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3269 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3270 SmallVector<int> Mask; 3271 inversePermutation(Order, Mask); 3272 unsigned E = Order.size(); 3273 OrdersType CurrentOrder(E, E); 3274 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3275 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3276 }); 3277 fixupOrderingIndices(CurrentOrder); 3278 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3279 } else { 3280 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3281 } 3282 } 3283 // Set order of the user node. 3284 if (OrdersUses.empty()) 3285 continue; 3286 // Choose the most used order. 3287 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3288 unsigned Cnt = OrdersUses.front().second; 3289 for (const auto &Pair : drop_begin(OrdersUses)) { 3290 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3291 BestOrder = Pair.first; 3292 Cnt = Pair.second; 3293 } 3294 } 3295 // Set order of the user node. 3296 if (BestOrder.empty()) 3297 continue; 3298 SmallVector<int> Mask; 3299 inversePermutation(BestOrder, Mask); 3300 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3301 unsigned E = BestOrder.size(); 3302 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3303 return I < E ? static_cast<int>(I) : UndefMaskElem; 3304 }); 3305 // Do an actual reordering, if profitable. 3306 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 3307 // Just do the reordering for the nodes with the given VF. 3308 if (TE->Scalars.size() != VF) { 3309 if (TE->ReuseShuffleIndices.size() == VF) { 3310 // Need to reorder the reuses masks of the operands with smaller VF to 3311 // be able to find the match between the graph nodes and scalar 3312 // operands of the given node during vectorization/cost estimation. 3313 assert(all_of(TE->UserTreeIndices, 3314 [VF, &TE](const EdgeInfo &EI) { 3315 return EI.UserTE->Scalars.size() == VF || 3316 EI.UserTE->Scalars.size() == 3317 TE->Scalars.size(); 3318 }) && 3319 "All users must be of VF size."); 3320 // Update ordering of the operands with the smaller VF than the given 3321 // one. 3322 reorderReuses(TE->ReuseShuffleIndices, Mask); 3323 } 3324 continue; 3325 } 3326 if (TE->State == TreeEntry::Vectorize && 3327 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 3328 InsertElementInst>(TE->getMainOp()) && 3329 !TE->isAltShuffle()) { 3330 // Build correct orders for extract{element,value}, loads and 3331 // stores. 3332 reorderOrder(TE->ReorderIndices, Mask); 3333 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 3334 TE->reorderOperands(Mask); 3335 } else { 3336 // Reorder the node and its operands. 3337 TE->reorderOperands(Mask); 3338 assert(TE->ReorderIndices.empty() && 3339 "Expected empty reorder sequence."); 3340 reorderScalars(TE->Scalars, Mask); 3341 } 3342 if (!TE->ReuseShuffleIndices.empty()) { 3343 // Apply reversed order to keep the original ordering of the reused 3344 // elements to avoid extra reorder indices shuffling. 3345 OrdersType CurrentOrder; 3346 reorderOrder(CurrentOrder, MaskOrder); 3347 SmallVector<int> NewReuses; 3348 inversePermutation(CurrentOrder, NewReuses); 3349 addMask(NewReuses, TE->ReuseShuffleIndices); 3350 TE->ReuseShuffleIndices.swap(NewReuses); 3351 } 3352 } 3353 } 3354 } 3355 3356 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { 3357 SetVector<TreeEntry *> OrderedEntries; 3358 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3359 // Find all reorderable leaf nodes with the given VF. 3360 // Currently the are vectorized loads,extracts without alternate operands + 3361 // some gathering of extracts. 3362 SmallVector<TreeEntry *> NonVectorized; 3363 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 3364 &NonVectorized]( 3365 const std::unique_ptr<TreeEntry> &TE) { 3366 if (TE->State != TreeEntry::Vectorize) 3367 NonVectorized.push_back(TE.get()); 3368 if (Optional<OrdersType> CurrentOrder = 3369 getReorderingData(*TE.get(), /*TopToBottom=*/false)) { 3370 OrderedEntries.insert(TE.get()); 3371 if (TE->State != TreeEntry::Vectorize) 3372 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3373 } 3374 }); 3375 3376 // Checks if the operands of the users are reordarable and have only single 3377 // use. 3378 auto &&CheckOperands = 3379 [this, &NonVectorized](const auto &Data, 3380 SmallVectorImpl<TreeEntry *> &GatherOps) { 3381 for (unsigned I = 0, E = Data.first->getNumOperands(); I < E; ++I) { 3382 if (any_of(Data.second, 3383 [I](const std::pair<unsigned, TreeEntry *> &OpData) { 3384 return OpData.first == I && 3385 OpData.second->State == TreeEntry::Vectorize; 3386 })) 3387 continue; 3388 ArrayRef<Value *> VL = Data.first->getOperand(I); 3389 const TreeEntry *TE = nullptr; 3390 const auto *It = find_if(VL, [this, &TE](Value *V) { 3391 TE = getTreeEntry(V); 3392 return TE; 3393 }); 3394 if (It != VL.end() && TE->isSame(VL)) 3395 return false; 3396 TreeEntry *Gather = nullptr; 3397 if (count_if(NonVectorized, [VL, &Gather](TreeEntry *TE) { 3398 assert(TE->State != TreeEntry::Vectorize && 3399 "Only non-vectorized nodes are expected."); 3400 if (TE->isSame(VL)) { 3401 Gather = TE; 3402 return true; 3403 } 3404 return false; 3405 }) > 1) 3406 return false; 3407 if (Gather) 3408 GatherOps.push_back(Gather); 3409 } 3410 return true; 3411 }; 3412 // 1. Propagate order to the graph nodes, which use only reordered nodes. 3413 // I.e., if the node has operands, that are reordered, try to make at least 3414 // one operand order in the natural order and reorder others + reorder the 3415 // user node itself. 3416 SmallPtrSet<const TreeEntry *, 4> Visited; 3417 while (!OrderedEntries.empty()) { 3418 // 1. Filter out only reordered nodes. 3419 // 2. If the entry has multiple uses - skip it and jump to the next node. 3420 MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 3421 SmallVector<TreeEntry *> Filtered; 3422 for (TreeEntry *TE : OrderedEntries) { 3423 if (!(TE->State == TreeEntry::Vectorize || 3424 (TE->State == TreeEntry::NeedToGather && 3425 GathersToOrders.count(TE))) || 3426 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3427 !all_of(drop_begin(TE->UserTreeIndices), 3428 [TE](const EdgeInfo &EI) { 3429 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 3430 }) || 3431 !Visited.insert(TE).second) { 3432 Filtered.push_back(TE); 3433 continue; 3434 } 3435 // Build a map between user nodes and their operands order to speedup 3436 // search. The graph currently does not provide this dependency directly. 3437 for (EdgeInfo &EI : TE->UserTreeIndices) { 3438 TreeEntry *UserTE = EI.UserTE; 3439 auto It = Users.find(UserTE); 3440 if (It == Users.end()) 3441 It = Users.insert({UserTE, {}}).first; 3442 It->second.emplace_back(EI.EdgeIdx, TE); 3443 } 3444 } 3445 // Erase filtered entries. 3446 for_each(Filtered, 3447 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 3448 for (const auto &Data : Users) { 3449 // Check that operands are used only in the User node. 3450 SmallVector<TreeEntry *> GatherOps; 3451 if (!CheckOperands(Data, GatherOps)) { 3452 for_each(Data.second, 3453 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3454 OrderedEntries.remove(Op.second); 3455 }); 3456 continue; 3457 } 3458 // All operands are reordered and used only in this node - propagate the 3459 // most used order to the user node. 3460 MapVector<OrdersType, unsigned, 3461 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3462 OrdersUses; 3463 // Do the analysis for each tree entry only once, otherwise the order of 3464 // the same node my be considered several times, though might be not 3465 // profitable. 3466 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3467 for (const auto &Op : Data.second) { 3468 TreeEntry *OpTE = Op.second; 3469 if (!VisitedOps.insert(OpTE).second) 3470 continue; 3471 if (!OpTE->ReuseShuffleIndices.empty() || 3472 (IgnoreReorder && OpTE == VectorizableTree.front().get())) 3473 continue; 3474 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3475 if (OpTE->State == TreeEntry::NeedToGather) 3476 return GathersToOrders.find(OpTE)->second; 3477 return OpTE->ReorderIndices; 3478 }(); 3479 // Stores actually store the mask, not the order, need to invert. 3480 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3481 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3482 SmallVector<int> Mask; 3483 inversePermutation(Order, Mask); 3484 unsigned E = Order.size(); 3485 OrdersType CurrentOrder(E, E); 3486 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3487 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3488 }); 3489 fixupOrderingIndices(CurrentOrder); 3490 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3491 } else { 3492 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3493 } 3494 OrdersUses.insert(std::make_pair(OrdersType(), 0)).first->second += 3495 OpTE->UserTreeIndices.size(); 3496 assert(OrdersUses[{}] > 0 && "Counter cannot be less than 0."); 3497 --OrdersUses[{}]; 3498 } 3499 // If no orders - skip current nodes and jump to the next one, if any. 3500 if (OrdersUses.empty()) { 3501 for_each(Data.second, 3502 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3503 OrderedEntries.remove(Op.second); 3504 }); 3505 continue; 3506 } 3507 // Choose the best order. 3508 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3509 unsigned Cnt = OrdersUses.front().second; 3510 for (const auto &Pair : drop_begin(OrdersUses)) { 3511 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3512 BestOrder = Pair.first; 3513 Cnt = Pair.second; 3514 } 3515 } 3516 // Set order of the user node (reordering of operands and user nodes). 3517 if (BestOrder.empty()) { 3518 for_each(Data.second, 3519 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3520 OrderedEntries.remove(Op.second); 3521 }); 3522 continue; 3523 } 3524 // Erase operands from OrderedEntries list and adjust their orders. 3525 VisitedOps.clear(); 3526 SmallVector<int> Mask; 3527 inversePermutation(BestOrder, Mask); 3528 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3529 unsigned E = BestOrder.size(); 3530 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3531 return I < E ? static_cast<int>(I) : UndefMaskElem; 3532 }); 3533 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 3534 TreeEntry *TE = Op.second; 3535 OrderedEntries.remove(TE); 3536 if (!VisitedOps.insert(TE).second) 3537 continue; 3538 if (!TE->ReuseShuffleIndices.empty() && TE->ReorderIndices.empty()) { 3539 // Just reorder reuses indices. 3540 reorderReuses(TE->ReuseShuffleIndices, Mask); 3541 continue; 3542 } 3543 // Gathers are processed separately. 3544 if (TE->State != TreeEntry::Vectorize) 3545 continue; 3546 assert((BestOrder.size() == TE->ReorderIndices.size() || 3547 TE->ReorderIndices.empty()) && 3548 "Non-matching sizes of user/operand entries."); 3549 reorderOrder(TE->ReorderIndices, Mask); 3550 } 3551 // For gathers just need to reorder its scalars. 3552 for (TreeEntry *Gather : GatherOps) { 3553 assert(Gather->ReorderIndices.empty() && 3554 "Unexpected reordering of gathers."); 3555 if (!Gather->ReuseShuffleIndices.empty()) { 3556 // Just reorder reuses indices. 3557 reorderReuses(Gather->ReuseShuffleIndices, Mask); 3558 continue; 3559 } 3560 reorderScalars(Gather->Scalars, Mask); 3561 OrderedEntries.remove(Gather); 3562 } 3563 // Reorder operands of the user node and set the ordering for the user 3564 // node itself. 3565 if (Data.first->State != TreeEntry::Vectorize || 3566 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 3567 Data.first->getMainOp()) || 3568 Data.first->isAltShuffle()) 3569 Data.first->reorderOperands(Mask); 3570 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 3571 Data.first->isAltShuffle()) { 3572 reorderScalars(Data.first->Scalars, Mask); 3573 reorderOrder(Data.first->ReorderIndices, MaskOrder); 3574 if (Data.first->ReuseShuffleIndices.empty() && 3575 !Data.first->ReorderIndices.empty() && 3576 !Data.first->isAltShuffle()) { 3577 // Insert user node to the list to try to sink reordering deeper in 3578 // the graph. 3579 OrderedEntries.insert(Data.first); 3580 } 3581 } else { 3582 reorderOrder(Data.first->ReorderIndices, Mask); 3583 } 3584 } 3585 } 3586 // If the reordering is unnecessary, just remove the reorder. 3587 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && 3588 VectorizableTree.front()->ReuseShuffleIndices.empty()) 3589 VectorizableTree.front()->ReorderIndices.clear(); 3590 } 3591 3592 void BoUpSLP::buildExternalUses( 3593 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3594 // Collect the values that we need to extract from the tree. 3595 for (auto &TEPtr : VectorizableTree) { 3596 TreeEntry *Entry = TEPtr.get(); 3597 3598 // No need to handle users of gathered values. 3599 if (Entry->State == TreeEntry::NeedToGather) 3600 continue; 3601 3602 // For each lane: 3603 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3604 Value *Scalar = Entry->Scalars[Lane]; 3605 int FoundLane = Entry->findLaneForValue(Scalar); 3606 3607 // Check if the scalar is externally used as an extra arg. 3608 auto ExtI = ExternallyUsedValues.find(Scalar); 3609 if (ExtI != ExternallyUsedValues.end()) { 3610 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 3611 << Lane << " from " << *Scalar << ".\n"); 3612 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 3613 } 3614 for (User *U : Scalar->users()) { 3615 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 3616 3617 Instruction *UserInst = dyn_cast<Instruction>(U); 3618 if (!UserInst) 3619 continue; 3620 3621 if (isDeleted(UserInst)) 3622 continue; 3623 3624 // Skip in-tree scalars that become vectors 3625 if (TreeEntry *UseEntry = getTreeEntry(U)) { 3626 Value *UseScalar = UseEntry->Scalars[0]; 3627 // Some in-tree scalars will remain as scalar in vectorized 3628 // instructions. If that is the case, the one in Lane 0 will 3629 // be used. 3630 if (UseScalar != U || 3631 UseEntry->State == TreeEntry::ScatterVectorize || 3632 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 3633 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 3634 << ".\n"); 3635 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 3636 continue; 3637 } 3638 } 3639 3640 // Ignore users in the user ignore list. 3641 if (is_contained(UserIgnoreList, UserInst)) 3642 continue; 3643 3644 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 3645 << Lane << " from " << *Scalar << ".\n"); 3646 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 3647 } 3648 } 3649 } 3650 } 3651 3652 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 3653 ArrayRef<Value *> UserIgnoreLst) { 3654 deleteTree(); 3655 UserIgnoreList = UserIgnoreLst; 3656 if (!allSameType(Roots)) 3657 return; 3658 buildTree_rec(Roots, 0, EdgeInfo()); 3659 } 3660 3661 namespace { 3662 /// Tracks the state we can represent the loads in the given sequence. 3663 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 3664 } // anonymous namespace 3665 3666 /// Checks if the given array of loads can be represented as a vectorized, 3667 /// scatter or just simple gather. 3668 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 3669 const TargetTransformInfo &TTI, 3670 const DataLayout &DL, ScalarEvolution &SE, 3671 SmallVectorImpl<unsigned> &Order, 3672 SmallVectorImpl<Value *> &PointerOps) { 3673 // Check that a vectorized load would load the same memory as a scalar 3674 // load. For example, we don't want to vectorize loads that are smaller 3675 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3676 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3677 // from such a struct, we read/write packed bits disagreeing with the 3678 // unvectorized version. 3679 Type *ScalarTy = VL0->getType(); 3680 3681 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 3682 return LoadsState::Gather; 3683 3684 // Make sure all loads in the bundle are simple - we can't vectorize 3685 // atomic or volatile loads. 3686 PointerOps.clear(); 3687 PointerOps.resize(VL.size()); 3688 auto *POIter = PointerOps.begin(); 3689 for (Value *V : VL) { 3690 auto *L = cast<LoadInst>(V); 3691 if (!L->isSimple()) 3692 return LoadsState::Gather; 3693 *POIter = L->getPointerOperand(); 3694 ++POIter; 3695 } 3696 3697 Order.clear(); 3698 // Check the order of pointer operands. 3699 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 3700 Value *Ptr0; 3701 Value *PtrN; 3702 if (Order.empty()) { 3703 Ptr0 = PointerOps.front(); 3704 PtrN = PointerOps.back(); 3705 } else { 3706 Ptr0 = PointerOps[Order.front()]; 3707 PtrN = PointerOps[Order.back()]; 3708 } 3709 Optional<int> Diff = 3710 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 3711 // Check that the sorted loads are consecutive. 3712 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 3713 return LoadsState::Vectorize; 3714 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 3715 for (Value *V : VL) 3716 CommonAlignment = 3717 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 3718 if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()), 3719 CommonAlignment)) 3720 return LoadsState::ScatterVectorize; 3721 } 3722 3723 return LoadsState::Gather; 3724 } 3725 3726 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 3727 const EdgeInfo &UserTreeIdx) { 3728 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 3729 3730 SmallVector<int> ReuseShuffleIndicies; 3731 SmallVector<Value *> UniqueValues; 3732 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, 3733 &UserTreeIdx, 3734 this](const InstructionsState &S) { 3735 // Check that every instruction appears once in this bundle. 3736 DenseMap<Value *, unsigned> UniquePositions; 3737 for (Value *V : VL) { 3738 if (isConstant(V)) { 3739 ReuseShuffleIndicies.emplace_back( 3740 isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size()); 3741 UniqueValues.emplace_back(V); 3742 continue; 3743 } 3744 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3745 ReuseShuffleIndicies.emplace_back(Res.first->second); 3746 if (Res.second) 3747 UniqueValues.emplace_back(V); 3748 } 3749 size_t NumUniqueScalarValues = UniqueValues.size(); 3750 if (NumUniqueScalarValues == VL.size()) { 3751 ReuseShuffleIndicies.clear(); 3752 } else { 3753 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 3754 if (NumUniqueScalarValues <= 1 || 3755 (UniquePositions.size() == 1 && all_of(UniqueValues, 3756 [](Value *V) { 3757 return isa<UndefValue>(V) || 3758 !isConstant(V); 3759 })) || 3760 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 3761 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 3762 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3763 return false; 3764 } 3765 VL = UniqueValues; 3766 } 3767 return true; 3768 }; 3769 3770 InstructionsState S = getSameOpcode(VL); 3771 if (Depth == RecursionMaxDepth) { 3772 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 3773 if (TryToFindDuplicates(S)) 3774 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3775 ReuseShuffleIndicies); 3776 return; 3777 } 3778 3779 // Don't handle scalable vectors 3780 if (S.getOpcode() == Instruction::ExtractElement && 3781 isa<ScalableVectorType>( 3782 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 3783 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 3784 if (TryToFindDuplicates(S)) 3785 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3786 ReuseShuffleIndicies); 3787 return; 3788 } 3789 3790 // Don't handle vectors. 3791 if (S.OpValue->getType()->isVectorTy() && 3792 !isa<InsertElementInst>(S.OpValue)) { 3793 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 3794 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3795 return; 3796 } 3797 3798 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 3799 if (SI->getValueOperand()->getType()->isVectorTy()) { 3800 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 3801 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3802 return; 3803 } 3804 3805 // If all of the operands are identical or constant we have a simple solution. 3806 // If we deal with insert/extract instructions, they all must have constant 3807 // indices, otherwise we should gather them, not try to vectorize. 3808 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() || 3809 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) && 3810 !all_of(VL, isVectorLikeInstWithConstOps))) { 3811 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 3812 if (TryToFindDuplicates(S)) 3813 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3814 ReuseShuffleIndicies); 3815 return; 3816 } 3817 3818 // We now know that this is a vector of instructions of the same type from 3819 // the same block. 3820 3821 // Don't vectorize ephemeral values. 3822 for (Value *V : VL) { 3823 if (EphValues.count(V)) { 3824 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3825 << ") is ephemeral.\n"); 3826 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3827 return; 3828 } 3829 } 3830 3831 // Check if this is a duplicate of another entry. 3832 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 3833 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 3834 if (!E->isSame(VL)) { 3835 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 3836 if (TryToFindDuplicates(S)) 3837 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3838 ReuseShuffleIndicies); 3839 return; 3840 } 3841 // Record the reuse of the tree node. FIXME, currently this is only used to 3842 // properly draw the graph rather than for the actual vectorization. 3843 E->UserTreeIndices.push_back(UserTreeIdx); 3844 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 3845 << ".\n"); 3846 return; 3847 } 3848 3849 // Check that none of the instructions in the bundle are already in the tree. 3850 for (Value *V : VL) { 3851 auto *I = dyn_cast<Instruction>(V); 3852 if (!I) 3853 continue; 3854 if (getTreeEntry(I)) { 3855 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3856 << ") is already in tree.\n"); 3857 if (TryToFindDuplicates(S)) 3858 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3859 ReuseShuffleIndicies); 3860 return; 3861 } 3862 } 3863 3864 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 3865 for (Value *V : VL) { 3866 if (is_contained(UserIgnoreList, V)) { 3867 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 3868 if (TryToFindDuplicates(S)) 3869 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3870 ReuseShuffleIndicies); 3871 return; 3872 } 3873 } 3874 3875 // Check that all of the users of the scalars that we want to vectorize are 3876 // schedulable. 3877 auto *VL0 = cast<Instruction>(S.OpValue); 3878 BasicBlock *BB = VL0->getParent(); 3879 3880 if (!DT->isReachableFromEntry(BB)) { 3881 // Don't go into unreachable blocks. They may contain instructions with 3882 // dependency cycles which confuse the final scheduling. 3883 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 3884 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3885 return; 3886 } 3887 3888 // Check that every instruction appears once in this bundle. 3889 if (!TryToFindDuplicates(S)) 3890 return; 3891 3892 auto &BSRef = BlocksSchedules[BB]; 3893 if (!BSRef) 3894 BSRef = std::make_unique<BlockScheduling>(BB); 3895 3896 BlockScheduling &BS = *BSRef.get(); 3897 3898 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 3899 #ifdef EXPENSIVE_CHECKS 3900 // Make sure we didn't break any internal invariants 3901 BS.verify(); 3902 #endif 3903 if (!Bundle) { 3904 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 3905 assert((!BS.getScheduleData(VL0) || 3906 !BS.getScheduleData(VL0)->isPartOfBundle()) && 3907 "tryScheduleBundle should cancelScheduling on failure"); 3908 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3909 ReuseShuffleIndicies); 3910 return; 3911 } 3912 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 3913 3914 unsigned ShuffleOrOp = S.isAltShuffle() ? 3915 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 3916 switch (ShuffleOrOp) { 3917 case Instruction::PHI: { 3918 auto *PH = cast<PHINode>(VL0); 3919 3920 // Check for terminator values (e.g. invoke). 3921 for (Value *V : VL) 3922 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 3923 Instruction *Term = dyn_cast<Instruction>( 3924 cast<PHINode>(V)->getIncomingValueForBlock( 3925 PH->getIncomingBlock(I))); 3926 if (Term && Term->isTerminator()) { 3927 LLVM_DEBUG(dbgs() 3928 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 3929 BS.cancelScheduling(VL, VL0); 3930 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3931 ReuseShuffleIndicies); 3932 return; 3933 } 3934 } 3935 3936 TreeEntry *TE = 3937 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 3938 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 3939 3940 // Keeps the reordered operands to avoid code duplication. 3941 SmallVector<ValueList, 2> OperandsVec; 3942 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 3943 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 3944 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 3945 TE->setOperand(I, Operands); 3946 OperandsVec.push_back(Operands); 3947 continue; 3948 } 3949 ValueList Operands; 3950 // Prepare the operand vector. 3951 for (Value *V : VL) 3952 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 3953 PH->getIncomingBlock(I))); 3954 TE->setOperand(I, Operands); 3955 OperandsVec.push_back(Operands); 3956 } 3957 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 3958 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 3959 return; 3960 } 3961 case Instruction::ExtractValue: 3962 case Instruction::ExtractElement: { 3963 OrdersType CurrentOrder; 3964 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 3965 if (Reuse) { 3966 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 3967 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3968 ReuseShuffleIndicies); 3969 // This is a special case, as it does not gather, but at the same time 3970 // we are not extending buildTree_rec() towards the operands. 3971 ValueList Op0; 3972 Op0.assign(VL.size(), VL0->getOperand(0)); 3973 VectorizableTree.back()->setOperand(0, Op0); 3974 return; 3975 } 3976 if (!CurrentOrder.empty()) { 3977 LLVM_DEBUG({ 3978 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 3979 "with order"; 3980 for (unsigned Idx : CurrentOrder) 3981 dbgs() << " " << Idx; 3982 dbgs() << "\n"; 3983 }); 3984 fixupOrderingIndices(CurrentOrder); 3985 // Insert new order with initial value 0, if it does not exist, 3986 // otherwise return the iterator to the existing one. 3987 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3988 ReuseShuffleIndicies, CurrentOrder); 3989 // This is a special case, as it does not gather, but at the same time 3990 // we are not extending buildTree_rec() towards the operands. 3991 ValueList Op0; 3992 Op0.assign(VL.size(), VL0->getOperand(0)); 3993 VectorizableTree.back()->setOperand(0, Op0); 3994 return; 3995 } 3996 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 3997 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3998 ReuseShuffleIndicies); 3999 BS.cancelScheduling(VL, VL0); 4000 return; 4001 } 4002 case Instruction::InsertElement: { 4003 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 4004 4005 // Check that we have a buildvector and not a shuffle of 2 or more 4006 // different vectors. 4007 ValueSet SourceVectors; 4008 int MinIdx = std::numeric_limits<int>::max(); 4009 for (Value *V : VL) { 4010 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 4011 Optional<int> Idx = *getInsertIndex(V, 0); 4012 if (!Idx || *Idx == UndefMaskElem) 4013 continue; 4014 MinIdx = std::min(MinIdx, *Idx); 4015 } 4016 4017 if (count_if(VL, [&SourceVectors](Value *V) { 4018 return !SourceVectors.contains(V); 4019 }) >= 2) { 4020 // Found 2nd source vector - cancel. 4021 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 4022 "different source vectors.\n"); 4023 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4024 BS.cancelScheduling(VL, VL0); 4025 return; 4026 } 4027 4028 auto OrdCompare = [](const std::pair<int, int> &P1, 4029 const std::pair<int, int> &P2) { 4030 return P1.first > P2.first; 4031 }; 4032 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 4033 decltype(OrdCompare)> 4034 Indices(OrdCompare); 4035 for (int I = 0, E = VL.size(); I < E; ++I) { 4036 Optional<int> Idx = *getInsertIndex(VL[I], 0); 4037 if (!Idx || *Idx == UndefMaskElem) 4038 continue; 4039 Indices.emplace(*Idx, I); 4040 } 4041 OrdersType CurrentOrder(VL.size(), VL.size()); 4042 bool IsIdentity = true; 4043 for (int I = 0, E = VL.size(); I < E; ++I) { 4044 CurrentOrder[Indices.top().second] = I; 4045 IsIdentity &= Indices.top().second == I; 4046 Indices.pop(); 4047 } 4048 if (IsIdentity) 4049 CurrentOrder.clear(); 4050 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4051 None, CurrentOrder); 4052 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 4053 4054 constexpr int NumOps = 2; 4055 ValueList VectorOperands[NumOps]; 4056 for (int I = 0; I < NumOps; ++I) { 4057 for (Value *V : VL) 4058 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 4059 4060 TE->setOperand(I, VectorOperands[I]); 4061 } 4062 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 4063 return; 4064 } 4065 case Instruction::Load: { 4066 // Check that a vectorized load would load the same memory as a scalar 4067 // load. For example, we don't want to vectorize loads that are smaller 4068 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 4069 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 4070 // from such a struct, we read/write packed bits disagreeing with the 4071 // unvectorized version. 4072 SmallVector<Value *> PointerOps; 4073 OrdersType CurrentOrder; 4074 TreeEntry *TE = nullptr; 4075 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 4076 PointerOps)) { 4077 case LoadsState::Vectorize: 4078 if (CurrentOrder.empty()) { 4079 // Original loads are consecutive and does not require reordering. 4080 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4081 ReuseShuffleIndicies); 4082 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 4083 } else { 4084 fixupOrderingIndices(CurrentOrder); 4085 // Need to reorder. 4086 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4087 ReuseShuffleIndicies, CurrentOrder); 4088 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 4089 } 4090 TE->setOperandsInOrder(); 4091 break; 4092 case LoadsState::ScatterVectorize: 4093 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 4094 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 4095 UserTreeIdx, ReuseShuffleIndicies); 4096 TE->setOperandsInOrder(); 4097 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 4098 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 4099 break; 4100 case LoadsState::Gather: 4101 BS.cancelScheduling(VL, VL0); 4102 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4103 ReuseShuffleIndicies); 4104 #ifndef NDEBUG 4105 Type *ScalarTy = VL0->getType(); 4106 if (DL->getTypeSizeInBits(ScalarTy) != 4107 DL->getTypeAllocSizeInBits(ScalarTy)) 4108 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 4109 else if (any_of(VL, [](Value *V) { 4110 return !cast<LoadInst>(V)->isSimple(); 4111 })) 4112 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 4113 else 4114 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 4115 #endif // NDEBUG 4116 break; 4117 } 4118 return; 4119 } 4120 case Instruction::ZExt: 4121 case Instruction::SExt: 4122 case Instruction::FPToUI: 4123 case Instruction::FPToSI: 4124 case Instruction::FPExt: 4125 case Instruction::PtrToInt: 4126 case Instruction::IntToPtr: 4127 case Instruction::SIToFP: 4128 case Instruction::UIToFP: 4129 case Instruction::Trunc: 4130 case Instruction::FPTrunc: 4131 case Instruction::BitCast: { 4132 Type *SrcTy = VL0->getOperand(0)->getType(); 4133 for (Value *V : VL) { 4134 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 4135 if (Ty != SrcTy || !isValidElementType(Ty)) { 4136 BS.cancelScheduling(VL, VL0); 4137 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4138 ReuseShuffleIndicies); 4139 LLVM_DEBUG(dbgs() 4140 << "SLP: Gathering casts with different src types.\n"); 4141 return; 4142 } 4143 } 4144 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4145 ReuseShuffleIndicies); 4146 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 4147 4148 TE->setOperandsInOrder(); 4149 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4150 ValueList Operands; 4151 // Prepare the operand vector. 4152 for (Value *V : VL) 4153 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4154 4155 buildTree_rec(Operands, Depth + 1, {TE, i}); 4156 } 4157 return; 4158 } 4159 case Instruction::ICmp: 4160 case Instruction::FCmp: { 4161 // Check that all of the compares have the same predicate. 4162 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4163 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 4164 Type *ComparedTy = VL0->getOperand(0)->getType(); 4165 for (Value *V : VL) { 4166 CmpInst *Cmp = cast<CmpInst>(V); 4167 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 4168 Cmp->getOperand(0)->getType() != ComparedTy) { 4169 BS.cancelScheduling(VL, VL0); 4170 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4171 ReuseShuffleIndicies); 4172 LLVM_DEBUG(dbgs() 4173 << "SLP: Gathering cmp with different predicate.\n"); 4174 return; 4175 } 4176 } 4177 4178 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4179 ReuseShuffleIndicies); 4180 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 4181 4182 ValueList Left, Right; 4183 if (cast<CmpInst>(VL0)->isCommutative()) { 4184 // Commutative predicate - collect + sort operands of the instructions 4185 // so that each side is more likely to have the same opcode. 4186 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 4187 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4188 } else { 4189 // Collect operands - commute if it uses the swapped predicate. 4190 for (Value *V : VL) { 4191 auto *Cmp = cast<CmpInst>(V); 4192 Value *LHS = Cmp->getOperand(0); 4193 Value *RHS = Cmp->getOperand(1); 4194 if (Cmp->getPredicate() != P0) 4195 std::swap(LHS, RHS); 4196 Left.push_back(LHS); 4197 Right.push_back(RHS); 4198 } 4199 } 4200 TE->setOperand(0, Left); 4201 TE->setOperand(1, Right); 4202 buildTree_rec(Left, Depth + 1, {TE, 0}); 4203 buildTree_rec(Right, Depth + 1, {TE, 1}); 4204 return; 4205 } 4206 case Instruction::Select: 4207 case Instruction::FNeg: 4208 case Instruction::Add: 4209 case Instruction::FAdd: 4210 case Instruction::Sub: 4211 case Instruction::FSub: 4212 case Instruction::Mul: 4213 case Instruction::FMul: 4214 case Instruction::UDiv: 4215 case Instruction::SDiv: 4216 case Instruction::FDiv: 4217 case Instruction::URem: 4218 case Instruction::SRem: 4219 case Instruction::FRem: 4220 case Instruction::Shl: 4221 case Instruction::LShr: 4222 case Instruction::AShr: 4223 case Instruction::And: 4224 case Instruction::Or: 4225 case Instruction::Xor: { 4226 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4227 ReuseShuffleIndicies); 4228 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 4229 4230 // Sort operands of the instructions so that each side is more likely to 4231 // have the same opcode. 4232 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 4233 ValueList Left, Right; 4234 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4235 TE->setOperand(0, Left); 4236 TE->setOperand(1, Right); 4237 buildTree_rec(Left, Depth + 1, {TE, 0}); 4238 buildTree_rec(Right, Depth + 1, {TE, 1}); 4239 return; 4240 } 4241 4242 TE->setOperandsInOrder(); 4243 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4244 ValueList Operands; 4245 // Prepare the operand vector. 4246 for (Value *V : VL) 4247 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4248 4249 buildTree_rec(Operands, Depth + 1, {TE, i}); 4250 } 4251 return; 4252 } 4253 case Instruction::GetElementPtr: { 4254 // We don't combine GEPs with complicated (nested) indexing. 4255 for (Value *V : VL) { 4256 if (cast<Instruction>(V)->getNumOperands() != 2) { 4257 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 4258 BS.cancelScheduling(VL, VL0); 4259 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4260 ReuseShuffleIndicies); 4261 return; 4262 } 4263 } 4264 4265 // We can't combine several GEPs into one vector if they operate on 4266 // different types. 4267 Type *Ty0 = VL0->getOperand(0)->getType(); 4268 for (Value *V : VL) { 4269 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 4270 if (Ty0 != CurTy) { 4271 LLVM_DEBUG(dbgs() 4272 << "SLP: not-vectorizable GEP (different types).\n"); 4273 BS.cancelScheduling(VL, VL0); 4274 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4275 ReuseShuffleIndicies); 4276 return; 4277 } 4278 } 4279 4280 // We don't combine GEPs with non-constant indexes. 4281 Type *Ty1 = VL0->getOperand(1)->getType(); 4282 for (Value *V : VL) { 4283 auto Op = cast<Instruction>(V)->getOperand(1); 4284 if (!isa<ConstantInt>(Op) || 4285 (Op->getType() != Ty1 && 4286 Op->getType()->getScalarSizeInBits() > 4287 DL->getIndexSizeInBits( 4288 V->getType()->getPointerAddressSpace()))) { 4289 LLVM_DEBUG(dbgs() 4290 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 4291 BS.cancelScheduling(VL, VL0); 4292 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4293 ReuseShuffleIndicies); 4294 return; 4295 } 4296 } 4297 4298 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4299 ReuseShuffleIndicies); 4300 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 4301 SmallVector<ValueList, 2> Operands(2); 4302 // Prepare the operand vector for pointer operands. 4303 for (Value *V : VL) 4304 Operands.front().push_back( 4305 cast<GetElementPtrInst>(V)->getPointerOperand()); 4306 TE->setOperand(0, Operands.front()); 4307 // Need to cast all indices to the same type before vectorization to 4308 // avoid crash. 4309 // Required to be able to find correct matches between different gather 4310 // nodes and reuse the vectorized values rather than trying to gather them 4311 // again. 4312 int IndexIdx = 1; 4313 Type *VL0Ty = VL0->getOperand(IndexIdx)->getType(); 4314 Type *Ty = all_of(VL, 4315 [VL0Ty, IndexIdx](Value *V) { 4316 return VL0Ty == cast<GetElementPtrInst>(V) 4317 ->getOperand(IndexIdx) 4318 ->getType(); 4319 }) 4320 ? VL0Ty 4321 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4322 ->getPointerOperandType() 4323 ->getScalarType()); 4324 // Prepare the operand vector. 4325 for (Value *V : VL) { 4326 auto *Op = cast<Instruction>(V)->getOperand(IndexIdx); 4327 auto *CI = cast<ConstantInt>(Op); 4328 Operands.back().push_back(ConstantExpr::getIntegerCast( 4329 CI, Ty, CI->getValue().isSignBitSet())); 4330 } 4331 TE->setOperand(IndexIdx, Operands.back()); 4332 4333 for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I) 4334 buildTree_rec(Operands[I], Depth + 1, {TE, I}); 4335 return; 4336 } 4337 case Instruction::Store: { 4338 // Check if the stores are consecutive or if we need to swizzle them. 4339 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 4340 // Avoid types that are padded when being allocated as scalars, while 4341 // being packed together in a vector (such as i1). 4342 if (DL->getTypeSizeInBits(ScalarTy) != 4343 DL->getTypeAllocSizeInBits(ScalarTy)) { 4344 BS.cancelScheduling(VL, VL0); 4345 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4346 ReuseShuffleIndicies); 4347 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 4348 return; 4349 } 4350 // Make sure all stores in the bundle are simple - we can't vectorize 4351 // atomic or volatile stores. 4352 SmallVector<Value *, 4> PointerOps(VL.size()); 4353 ValueList Operands(VL.size()); 4354 auto POIter = PointerOps.begin(); 4355 auto OIter = Operands.begin(); 4356 for (Value *V : VL) { 4357 auto *SI = cast<StoreInst>(V); 4358 if (!SI->isSimple()) { 4359 BS.cancelScheduling(VL, VL0); 4360 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4361 ReuseShuffleIndicies); 4362 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 4363 return; 4364 } 4365 *POIter = SI->getPointerOperand(); 4366 *OIter = SI->getValueOperand(); 4367 ++POIter; 4368 ++OIter; 4369 } 4370 4371 OrdersType CurrentOrder; 4372 // Check the order of pointer operands. 4373 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 4374 Value *Ptr0; 4375 Value *PtrN; 4376 if (CurrentOrder.empty()) { 4377 Ptr0 = PointerOps.front(); 4378 PtrN = PointerOps.back(); 4379 } else { 4380 Ptr0 = PointerOps[CurrentOrder.front()]; 4381 PtrN = PointerOps[CurrentOrder.back()]; 4382 } 4383 Optional<int> Dist = 4384 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 4385 // Check that the sorted pointer operands are consecutive. 4386 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 4387 if (CurrentOrder.empty()) { 4388 // Original stores are consecutive and does not require reordering. 4389 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 4390 UserTreeIdx, ReuseShuffleIndicies); 4391 TE->setOperandsInOrder(); 4392 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4393 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 4394 } else { 4395 fixupOrderingIndices(CurrentOrder); 4396 TreeEntry *TE = 4397 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4398 ReuseShuffleIndicies, CurrentOrder); 4399 TE->setOperandsInOrder(); 4400 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4401 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 4402 } 4403 return; 4404 } 4405 } 4406 4407 BS.cancelScheduling(VL, VL0); 4408 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4409 ReuseShuffleIndicies); 4410 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 4411 return; 4412 } 4413 case Instruction::Call: { 4414 // Check if the calls are all to the same vectorizable intrinsic or 4415 // library function. 4416 CallInst *CI = cast<CallInst>(VL0); 4417 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4418 4419 VFShape Shape = VFShape::get( 4420 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 4421 false /*HasGlobalPred*/); 4422 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4423 4424 if (!VecFunc && !isTriviallyVectorizable(ID)) { 4425 BS.cancelScheduling(VL, VL0); 4426 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4427 ReuseShuffleIndicies); 4428 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 4429 return; 4430 } 4431 Function *F = CI->getCalledFunction(); 4432 unsigned NumArgs = CI->arg_size(); 4433 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 4434 for (unsigned j = 0; j != NumArgs; ++j) 4435 if (hasVectorInstrinsicScalarOpd(ID, j)) 4436 ScalarArgs[j] = CI->getArgOperand(j); 4437 for (Value *V : VL) { 4438 CallInst *CI2 = dyn_cast<CallInst>(V); 4439 if (!CI2 || CI2->getCalledFunction() != F || 4440 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 4441 (VecFunc && 4442 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 4443 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 4444 BS.cancelScheduling(VL, VL0); 4445 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4446 ReuseShuffleIndicies); 4447 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 4448 << "\n"); 4449 return; 4450 } 4451 // Some intrinsics have scalar arguments and should be same in order for 4452 // them to be vectorized. 4453 for (unsigned j = 0; j != NumArgs; ++j) { 4454 if (hasVectorInstrinsicScalarOpd(ID, j)) { 4455 Value *A1J = CI2->getArgOperand(j); 4456 if (ScalarArgs[j] != A1J) { 4457 BS.cancelScheduling(VL, VL0); 4458 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4459 ReuseShuffleIndicies); 4460 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 4461 << " argument " << ScalarArgs[j] << "!=" << A1J 4462 << "\n"); 4463 return; 4464 } 4465 } 4466 } 4467 // Verify that the bundle operands are identical between the two calls. 4468 if (CI->hasOperandBundles() && 4469 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 4470 CI->op_begin() + CI->getBundleOperandsEndIndex(), 4471 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 4472 BS.cancelScheduling(VL, VL0); 4473 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4474 ReuseShuffleIndicies); 4475 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 4476 << *CI << "!=" << *V << '\n'); 4477 return; 4478 } 4479 } 4480 4481 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4482 ReuseShuffleIndicies); 4483 TE->setOperandsInOrder(); 4484 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 4485 // For scalar operands no need to to create an entry since no need to 4486 // vectorize it. 4487 if (hasVectorInstrinsicScalarOpd(ID, i)) 4488 continue; 4489 ValueList Operands; 4490 // Prepare the operand vector. 4491 for (Value *V : VL) { 4492 auto *CI2 = cast<CallInst>(V); 4493 Operands.push_back(CI2->getArgOperand(i)); 4494 } 4495 buildTree_rec(Operands, Depth + 1, {TE, i}); 4496 } 4497 return; 4498 } 4499 case Instruction::ShuffleVector: { 4500 // If this is not an alternate sequence of opcode like add-sub 4501 // then do not vectorize this instruction. 4502 if (!S.isAltShuffle()) { 4503 BS.cancelScheduling(VL, VL0); 4504 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4505 ReuseShuffleIndicies); 4506 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 4507 return; 4508 } 4509 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4510 ReuseShuffleIndicies); 4511 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 4512 4513 // Reorder operands if reordering would enable vectorization. 4514 auto *CI = dyn_cast<CmpInst>(VL0); 4515 if (isa<BinaryOperator>(VL0) || CI) { 4516 ValueList Left, Right; 4517 if (!CI || all_of(VL, [](Value *V) { 4518 return cast<CmpInst>(V)->isCommutative(); 4519 })) { 4520 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4521 } else { 4522 CmpInst::Predicate P0 = CI->getPredicate(); 4523 CmpInst::Predicate AltP0 = cast<CmpInst>(S.AltOp)->getPredicate(); 4524 assert(P0 != AltP0 && 4525 "Expected different main/alternate predicates."); 4526 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 4527 Value *BaseOp0 = VL0->getOperand(0); 4528 Value *BaseOp1 = VL0->getOperand(1); 4529 // Collect operands - commute if it uses the swapped predicate or 4530 // alternate operation. 4531 for (Value *V : VL) { 4532 auto *Cmp = cast<CmpInst>(V); 4533 Value *LHS = Cmp->getOperand(0); 4534 Value *RHS = Cmp->getOperand(1); 4535 CmpInst::Predicate CurrentPred = Cmp->getPredicate(); 4536 if (P0 == AltP0Swapped) { 4537 if ((P0 == CurrentPred && 4538 !areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)) || 4539 (AltP0 == CurrentPred && 4540 areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS))) 4541 std::swap(LHS, RHS); 4542 } else if (P0 != CurrentPred && AltP0 != CurrentPred) { 4543 std::swap(LHS, RHS); 4544 } 4545 Left.push_back(LHS); 4546 Right.push_back(RHS); 4547 } 4548 } 4549 TE->setOperand(0, Left); 4550 TE->setOperand(1, Right); 4551 buildTree_rec(Left, Depth + 1, {TE, 0}); 4552 buildTree_rec(Right, Depth + 1, {TE, 1}); 4553 return; 4554 } 4555 4556 TE->setOperandsInOrder(); 4557 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4558 ValueList Operands; 4559 // Prepare the operand vector. 4560 for (Value *V : VL) 4561 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4562 4563 buildTree_rec(Operands, Depth + 1, {TE, i}); 4564 } 4565 return; 4566 } 4567 default: 4568 BS.cancelScheduling(VL, VL0); 4569 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4570 ReuseShuffleIndicies); 4571 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 4572 return; 4573 } 4574 } 4575 4576 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 4577 unsigned N = 1; 4578 Type *EltTy = T; 4579 4580 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 4581 isa<VectorType>(EltTy)) { 4582 if (auto *ST = dyn_cast<StructType>(EltTy)) { 4583 // Check that struct is homogeneous. 4584 for (const auto *Ty : ST->elements()) 4585 if (Ty != *ST->element_begin()) 4586 return 0; 4587 N *= ST->getNumElements(); 4588 EltTy = *ST->element_begin(); 4589 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 4590 N *= AT->getNumElements(); 4591 EltTy = AT->getElementType(); 4592 } else { 4593 auto *VT = cast<FixedVectorType>(EltTy); 4594 N *= VT->getNumElements(); 4595 EltTy = VT->getElementType(); 4596 } 4597 } 4598 4599 if (!isValidElementType(EltTy)) 4600 return 0; 4601 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 4602 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 4603 return 0; 4604 return N; 4605 } 4606 4607 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 4608 SmallVectorImpl<unsigned> &CurrentOrder) const { 4609 const auto *It = find_if(VL, [](Value *V) { 4610 return isa<ExtractElementInst, ExtractValueInst>(V); 4611 }); 4612 assert(It != VL.end() && "Expected at least one extract instruction."); 4613 auto *E0 = cast<Instruction>(*It); 4614 assert(all_of(VL, 4615 [](Value *V) { 4616 return isa<UndefValue, ExtractElementInst, ExtractValueInst>( 4617 V); 4618 }) && 4619 "Invalid opcode"); 4620 // Check if all of the extracts come from the same vector and from the 4621 // correct offset. 4622 Value *Vec = E0->getOperand(0); 4623 4624 CurrentOrder.clear(); 4625 4626 // We have to extract from a vector/aggregate with the same number of elements. 4627 unsigned NElts; 4628 if (E0->getOpcode() == Instruction::ExtractValue) { 4629 const DataLayout &DL = E0->getModule()->getDataLayout(); 4630 NElts = canMapToVector(Vec->getType(), DL); 4631 if (!NElts) 4632 return false; 4633 // Check if load can be rewritten as load of vector. 4634 LoadInst *LI = dyn_cast<LoadInst>(Vec); 4635 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 4636 return false; 4637 } else { 4638 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 4639 } 4640 4641 if (NElts != VL.size()) 4642 return false; 4643 4644 // Check that all of the indices extract from the correct offset. 4645 bool ShouldKeepOrder = true; 4646 unsigned E = VL.size(); 4647 // Assign to all items the initial value E + 1 so we can check if the extract 4648 // instruction index was used already. 4649 // Also, later we can check that all the indices are used and we have a 4650 // consecutive access in the extract instructions, by checking that no 4651 // element of CurrentOrder still has value E + 1. 4652 CurrentOrder.assign(E, E); 4653 unsigned I = 0; 4654 for (; I < E; ++I) { 4655 auto *Inst = dyn_cast<Instruction>(VL[I]); 4656 if (!Inst) 4657 continue; 4658 if (Inst->getOperand(0) != Vec) 4659 break; 4660 if (auto *EE = dyn_cast<ExtractElementInst>(Inst)) 4661 if (isa<UndefValue>(EE->getIndexOperand())) 4662 continue; 4663 Optional<unsigned> Idx = getExtractIndex(Inst); 4664 if (!Idx) 4665 break; 4666 const unsigned ExtIdx = *Idx; 4667 if (ExtIdx != I) { 4668 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E) 4669 break; 4670 ShouldKeepOrder = false; 4671 CurrentOrder[ExtIdx] = I; 4672 } else { 4673 if (CurrentOrder[I] != E) 4674 break; 4675 CurrentOrder[I] = I; 4676 } 4677 } 4678 if (I < E) { 4679 CurrentOrder.clear(); 4680 return false; 4681 } 4682 if (ShouldKeepOrder) 4683 CurrentOrder.clear(); 4684 4685 return ShouldKeepOrder; 4686 } 4687 4688 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 4689 ArrayRef<Value *> VectorizedVals) const { 4690 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 4691 all_of(I->users(), [this](User *U) { 4692 return ScalarToTreeEntry.count(U) > 0 || 4693 isVectorLikeInstWithConstOps(U) || 4694 (isa<ExtractElementInst>(U) && MustGather.contains(U)); 4695 }); 4696 } 4697 4698 static std::pair<InstructionCost, InstructionCost> 4699 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 4700 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 4701 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4702 4703 // Calculate the cost of the scalar and vector calls. 4704 SmallVector<Type *, 4> VecTys; 4705 for (Use &Arg : CI->args()) 4706 VecTys.push_back( 4707 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 4708 FastMathFlags FMF; 4709 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 4710 FMF = FPCI->getFastMathFlags(); 4711 SmallVector<const Value *> Arguments(CI->args()); 4712 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 4713 dyn_cast<IntrinsicInst>(CI)); 4714 auto IntrinsicCost = 4715 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 4716 4717 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4718 VecTy->getNumElements())), 4719 false /*HasGlobalPred*/); 4720 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4721 auto LibCost = IntrinsicCost; 4722 if (!CI->isNoBuiltin() && VecFunc) { 4723 // Calculate the cost of the vector library call. 4724 // If the corresponding vector call is cheaper, return its cost. 4725 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 4726 TTI::TCK_RecipThroughput); 4727 } 4728 return {IntrinsicCost, LibCost}; 4729 } 4730 4731 /// Compute the cost of creating a vector of type \p VecTy containing the 4732 /// extracted values from \p VL. 4733 static InstructionCost 4734 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 4735 TargetTransformInfo::ShuffleKind ShuffleKind, 4736 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 4737 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 4738 4739 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 4740 VecTy->getNumElements() < NumOfParts) 4741 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 4742 4743 bool AllConsecutive = true; 4744 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 4745 unsigned Idx = -1; 4746 InstructionCost Cost = 0; 4747 4748 // Process extracts in blocks of EltsPerVector to check if the source vector 4749 // operand can be re-used directly. If not, add the cost of creating a shuffle 4750 // to extract the values into a vector register. 4751 for (auto *V : VL) { 4752 ++Idx; 4753 4754 // Need to exclude undefs from analysis. 4755 if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem) 4756 continue; 4757 4758 // Reached the start of a new vector registers. 4759 if (Idx % EltsPerVector == 0) { 4760 AllConsecutive = true; 4761 continue; 4762 } 4763 4764 // Check all extracts for a vector register on the target directly 4765 // extract values in order. 4766 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 4767 if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) { 4768 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 4769 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 4770 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 4771 } 4772 4773 if (AllConsecutive) 4774 continue; 4775 4776 // Skip all indices, except for the last index per vector block. 4777 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 4778 continue; 4779 4780 // If we have a series of extracts which are not consecutive and hence 4781 // cannot re-use the source vector register directly, compute the shuffle 4782 // cost to extract the a vector with EltsPerVector elements. 4783 Cost += TTI.getShuffleCost( 4784 TargetTransformInfo::SK_PermuteSingleSrc, 4785 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 4786 } 4787 return Cost; 4788 } 4789 4790 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 4791 /// operations operands. 4792 static void 4793 buildSuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 4794 ArrayRef<int> ReusesIndices, 4795 const function_ref<bool(Instruction *)> IsAltOp, 4796 SmallVectorImpl<int> &Mask, 4797 SmallVectorImpl<Value *> *OpScalars = nullptr, 4798 SmallVectorImpl<Value *> *AltScalars = nullptr) { 4799 unsigned Sz = VL.size(); 4800 Mask.assign(Sz, UndefMaskElem); 4801 SmallVector<int> OrderMask; 4802 if (!ReorderIndices.empty()) 4803 inversePermutation(ReorderIndices, OrderMask); 4804 for (unsigned I = 0; I < Sz; ++I) { 4805 unsigned Idx = I; 4806 if (!ReorderIndices.empty()) 4807 Idx = OrderMask[I]; 4808 auto *OpInst = cast<Instruction>(VL[Idx]); 4809 if (IsAltOp(OpInst)) { 4810 Mask[I] = Sz + Idx; 4811 if (AltScalars) 4812 AltScalars->push_back(OpInst); 4813 } else { 4814 Mask[I] = Idx; 4815 if (OpScalars) 4816 OpScalars->push_back(OpInst); 4817 } 4818 } 4819 if (!ReusesIndices.empty()) { 4820 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 4821 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 4822 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 4823 }); 4824 Mask.swap(NewMask); 4825 } 4826 } 4827 4828 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 4829 ArrayRef<Value *> VectorizedVals) { 4830 ArrayRef<Value*> VL = E->Scalars; 4831 4832 Type *ScalarTy = VL[0]->getType(); 4833 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4834 ScalarTy = SI->getValueOperand()->getType(); 4835 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 4836 ScalarTy = CI->getOperand(0)->getType(); 4837 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 4838 ScalarTy = IE->getOperand(1)->getType(); 4839 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4840 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 4841 4842 // If we have computed a smaller type for the expression, update VecTy so 4843 // that the costs will be accurate. 4844 if (MinBWs.count(VL[0])) 4845 VecTy = FixedVectorType::get( 4846 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 4847 unsigned EntryVF = E->getVectorFactor(); 4848 auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF); 4849 4850 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4851 // FIXME: it tries to fix a problem with MSVC buildbots. 4852 TargetTransformInfo &TTIRef = *TTI; 4853 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 4854 VectorizedVals, E](InstructionCost &Cost) { 4855 DenseMap<Value *, int> ExtractVectorsTys; 4856 SmallPtrSet<Value *, 4> CheckedExtracts; 4857 for (auto *V : VL) { 4858 if (isa<UndefValue>(V)) 4859 continue; 4860 // If all users of instruction are going to be vectorized and this 4861 // instruction itself is not going to be vectorized, consider this 4862 // instruction as dead and remove its cost from the final cost of the 4863 // vectorized tree. 4864 // Also, avoid adjusting the cost for extractelements with multiple uses 4865 // in different graph entries. 4866 const TreeEntry *VE = getTreeEntry(V); 4867 if (!CheckedExtracts.insert(V).second || 4868 !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 4869 (VE && VE != E)) 4870 continue; 4871 auto *EE = cast<ExtractElementInst>(V); 4872 Optional<unsigned> EEIdx = getExtractIndex(EE); 4873 if (!EEIdx) 4874 continue; 4875 unsigned Idx = *EEIdx; 4876 if (TTIRef.getNumberOfParts(VecTy) != 4877 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 4878 auto It = 4879 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 4880 It->getSecond() = std::min<int>(It->second, Idx); 4881 } 4882 // Take credit for instruction that will become dead. 4883 if (EE->hasOneUse()) { 4884 Instruction *Ext = EE->user_back(); 4885 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4886 all_of(Ext->users(), 4887 [](User *U) { return isa<GetElementPtrInst>(U); })) { 4888 // Use getExtractWithExtendCost() to calculate the cost of 4889 // extractelement/ext pair. 4890 Cost -= 4891 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 4892 EE->getVectorOperandType(), Idx); 4893 // Add back the cost of s|zext which is subtracted separately. 4894 Cost += TTIRef.getCastInstrCost( 4895 Ext->getOpcode(), Ext->getType(), EE->getType(), 4896 TTI::getCastContextHint(Ext), CostKind, Ext); 4897 continue; 4898 } 4899 } 4900 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 4901 EE->getVectorOperandType(), Idx); 4902 } 4903 // Add a cost for subvector extracts/inserts if required. 4904 for (const auto &Data : ExtractVectorsTys) { 4905 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 4906 unsigned NumElts = VecTy->getNumElements(); 4907 if (Data.second % NumElts == 0) 4908 continue; 4909 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 4910 unsigned Idx = (Data.second / NumElts) * NumElts; 4911 unsigned EENumElts = EEVTy->getNumElements(); 4912 if (Idx + NumElts <= EENumElts) { 4913 Cost += 4914 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 4915 EEVTy, None, Idx, VecTy); 4916 } else { 4917 // Need to round up the subvector type vectorization factor to avoid a 4918 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 4919 // <= EENumElts. 4920 auto *SubVT = 4921 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 4922 Cost += 4923 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 4924 EEVTy, None, Idx, SubVT); 4925 } 4926 } else { 4927 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 4928 VecTy, None, 0, EEVTy); 4929 } 4930 } 4931 }; 4932 if (E->State == TreeEntry::NeedToGather) { 4933 if (allConstant(VL)) 4934 return 0; 4935 if (isa<InsertElementInst>(VL[0])) 4936 return InstructionCost::getInvalid(); 4937 SmallVector<int> Mask; 4938 SmallVector<const TreeEntry *> Entries; 4939 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 4940 isGatherShuffledEntry(E, Mask, Entries); 4941 if (Shuffle.hasValue()) { 4942 InstructionCost GatherCost = 0; 4943 if (ShuffleVectorInst::isIdentityMask(Mask)) { 4944 // Perfect match in the graph, will reuse the previously vectorized 4945 // node. Cost is 0. 4946 LLVM_DEBUG( 4947 dbgs() 4948 << "SLP: perfect diamond match for gather bundle that starts with " 4949 << *VL.front() << ".\n"); 4950 if (NeedToShuffleReuses) 4951 GatherCost = 4952 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 4953 FinalVecTy, E->ReuseShuffleIndices); 4954 } else { 4955 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 4956 << " entries for bundle that starts with " 4957 << *VL.front() << ".\n"); 4958 // Detected that instead of gather we can emit a shuffle of single/two 4959 // previously vectorized nodes. Add the cost of the permutation rather 4960 // than gather. 4961 ::addMask(Mask, E->ReuseShuffleIndices); 4962 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 4963 } 4964 return GatherCost; 4965 } 4966 if ((E->getOpcode() == Instruction::ExtractElement || 4967 all_of(E->Scalars, 4968 [](Value *V) { 4969 return isa<ExtractElementInst, UndefValue>(V); 4970 })) && 4971 allSameType(VL)) { 4972 // Check that gather of extractelements can be represented as just a 4973 // shuffle of a single/two vectors the scalars are extracted from. 4974 SmallVector<int> Mask; 4975 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 4976 isFixedVectorShuffle(VL, Mask); 4977 if (ShuffleKind.hasValue()) { 4978 // Found the bunch of extractelement instructions that must be gathered 4979 // into a vector and can be represented as a permutation elements in a 4980 // single input vector or of 2 input vectors. 4981 InstructionCost Cost = 4982 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 4983 AdjustExtractsCost(Cost); 4984 if (NeedToShuffleReuses) 4985 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 4986 FinalVecTy, E->ReuseShuffleIndices); 4987 return Cost; 4988 } 4989 } 4990 if (isSplat(VL)) { 4991 // Found the broadcasting of the single scalar, calculate the cost as the 4992 // broadcast. 4993 assert(VecTy == FinalVecTy && 4994 "No reused scalars expected for broadcast."); 4995 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy); 4996 } 4997 InstructionCost ReuseShuffleCost = 0; 4998 if (NeedToShuffleReuses) 4999 ReuseShuffleCost = TTI->getShuffleCost( 5000 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 5001 // Improve gather cost for gather of loads, if we can group some of the 5002 // loads into vector loads. 5003 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 5004 !E->isAltShuffle()) { 5005 BoUpSLP::ValueSet VectorizedLoads; 5006 unsigned StartIdx = 0; 5007 unsigned VF = VL.size() / 2; 5008 unsigned VectorizedCnt = 0; 5009 unsigned ScatterVectorizeCnt = 0; 5010 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 5011 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 5012 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 5013 Cnt += VF) { 5014 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 5015 if (!VectorizedLoads.count(Slice.front()) && 5016 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 5017 SmallVector<Value *> PointerOps; 5018 OrdersType CurrentOrder; 5019 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 5020 *SE, CurrentOrder, PointerOps); 5021 switch (LS) { 5022 case LoadsState::Vectorize: 5023 case LoadsState::ScatterVectorize: 5024 // Mark the vectorized loads so that we don't vectorize them 5025 // again. 5026 if (LS == LoadsState::Vectorize) 5027 ++VectorizedCnt; 5028 else 5029 ++ScatterVectorizeCnt; 5030 VectorizedLoads.insert(Slice.begin(), Slice.end()); 5031 // If we vectorized initial block, no need to try to vectorize it 5032 // again. 5033 if (Cnt == StartIdx) 5034 StartIdx += VF; 5035 break; 5036 case LoadsState::Gather: 5037 break; 5038 } 5039 } 5040 } 5041 // Check if the whole array was vectorized already - exit. 5042 if (StartIdx >= VL.size()) 5043 break; 5044 // Found vectorizable parts - exit. 5045 if (!VectorizedLoads.empty()) 5046 break; 5047 } 5048 if (!VectorizedLoads.empty()) { 5049 InstructionCost GatherCost = 0; 5050 unsigned NumParts = TTI->getNumberOfParts(VecTy); 5051 bool NeedInsertSubvectorAnalysis = 5052 !NumParts || (VL.size() / VF) > NumParts; 5053 // Get the cost for gathered loads. 5054 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 5055 if (VectorizedLoads.contains(VL[I])) 5056 continue; 5057 GatherCost += getGatherCost(VL.slice(I, VF)); 5058 } 5059 // The cost for vectorized loads. 5060 InstructionCost ScalarsCost = 0; 5061 for (Value *V : VectorizedLoads) { 5062 auto *LI = cast<LoadInst>(V); 5063 ScalarsCost += TTI->getMemoryOpCost( 5064 Instruction::Load, LI->getType(), LI->getAlign(), 5065 LI->getPointerAddressSpace(), CostKind, LI); 5066 } 5067 auto *LI = cast<LoadInst>(E->getMainOp()); 5068 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 5069 Align Alignment = LI->getAlign(); 5070 GatherCost += 5071 VectorizedCnt * 5072 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 5073 LI->getPointerAddressSpace(), CostKind, LI); 5074 GatherCost += ScatterVectorizeCnt * 5075 TTI->getGatherScatterOpCost( 5076 Instruction::Load, LoadTy, LI->getPointerOperand(), 5077 /*VariableMask=*/false, Alignment, CostKind, LI); 5078 if (NeedInsertSubvectorAnalysis) { 5079 // Add the cost for the subvectors insert. 5080 for (int I = VF, E = VL.size(); I < E; I += VF) 5081 GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy, 5082 None, I, LoadTy); 5083 } 5084 return ReuseShuffleCost + GatherCost - ScalarsCost; 5085 } 5086 } 5087 return ReuseShuffleCost + getGatherCost(VL); 5088 } 5089 InstructionCost CommonCost = 0; 5090 SmallVector<int> Mask; 5091 if (!E->ReorderIndices.empty()) { 5092 SmallVector<int> NewMask; 5093 if (E->getOpcode() == Instruction::Store) { 5094 // For stores the order is actually a mask. 5095 NewMask.resize(E->ReorderIndices.size()); 5096 copy(E->ReorderIndices, NewMask.begin()); 5097 } else { 5098 inversePermutation(E->ReorderIndices, NewMask); 5099 } 5100 ::addMask(Mask, NewMask); 5101 } 5102 if (NeedToShuffleReuses) 5103 ::addMask(Mask, E->ReuseShuffleIndices); 5104 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 5105 CommonCost = 5106 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 5107 assert((E->State == TreeEntry::Vectorize || 5108 E->State == TreeEntry::ScatterVectorize) && 5109 "Unhandled state"); 5110 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 5111 Instruction *VL0 = E->getMainOp(); 5112 unsigned ShuffleOrOp = 5113 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 5114 switch (ShuffleOrOp) { 5115 case Instruction::PHI: 5116 return 0; 5117 5118 case Instruction::ExtractValue: 5119 case Instruction::ExtractElement: { 5120 // The common cost of removal ExtractElement/ExtractValue instructions + 5121 // the cost of shuffles, if required to resuffle the original vector. 5122 if (NeedToShuffleReuses) { 5123 unsigned Idx = 0; 5124 for (unsigned I : E->ReuseShuffleIndices) { 5125 if (ShuffleOrOp == Instruction::ExtractElement) { 5126 auto *EE = cast<ExtractElementInst>(VL[I]); 5127 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5128 EE->getVectorOperandType(), 5129 *getExtractIndex(EE)); 5130 } else { 5131 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5132 VecTy, Idx); 5133 ++Idx; 5134 } 5135 } 5136 Idx = EntryVF; 5137 for (Value *V : VL) { 5138 if (ShuffleOrOp == Instruction::ExtractElement) { 5139 auto *EE = cast<ExtractElementInst>(V); 5140 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5141 EE->getVectorOperandType(), 5142 *getExtractIndex(EE)); 5143 } else { 5144 --Idx; 5145 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5146 VecTy, Idx); 5147 } 5148 } 5149 } 5150 if (ShuffleOrOp == Instruction::ExtractValue) { 5151 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 5152 auto *EI = cast<Instruction>(VL[I]); 5153 // Take credit for instruction that will become dead. 5154 if (EI->hasOneUse()) { 5155 Instruction *Ext = EI->user_back(); 5156 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5157 all_of(Ext->users(), 5158 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5159 // Use getExtractWithExtendCost() to calculate the cost of 5160 // extractelement/ext pair. 5161 CommonCost -= TTI->getExtractWithExtendCost( 5162 Ext->getOpcode(), Ext->getType(), VecTy, I); 5163 // Add back the cost of s|zext which is subtracted separately. 5164 CommonCost += TTI->getCastInstrCost( 5165 Ext->getOpcode(), Ext->getType(), EI->getType(), 5166 TTI::getCastContextHint(Ext), CostKind, Ext); 5167 continue; 5168 } 5169 } 5170 CommonCost -= 5171 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 5172 } 5173 } else { 5174 AdjustExtractsCost(CommonCost); 5175 } 5176 return CommonCost; 5177 } 5178 case Instruction::InsertElement: { 5179 assert(E->ReuseShuffleIndices.empty() && 5180 "Unique insertelements only are expected."); 5181 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 5182 5183 unsigned const NumElts = SrcVecTy->getNumElements(); 5184 unsigned const NumScalars = VL.size(); 5185 APInt DemandedElts = APInt::getZero(NumElts); 5186 // TODO: Add support for Instruction::InsertValue. 5187 SmallVector<int> Mask; 5188 if (!E->ReorderIndices.empty()) { 5189 inversePermutation(E->ReorderIndices, Mask); 5190 Mask.append(NumElts - NumScalars, UndefMaskElem); 5191 } else { 5192 Mask.assign(NumElts, UndefMaskElem); 5193 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 5194 } 5195 unsigned Offset = *getInsertIndex(VL0, 0); 5196 bool IsIdentity = true; 5197 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 5198 Mask.swap(PrevMask); 5199 for (unsigned I = 0; I < NumScalars; ++I) { 5200 Optional<int> InsertIdx = getInsertIndex(VL[PrevMask[I]], 0); 5201 if (!InsertIdx || *InsertIdx == UndefMaskElem) 5202 continue; 5203 DemandedElts.setBit(*InsertIdx); 5204 IsIdentity &= *InsertIdx - Offset == I; 5205 Mask[*InsertIdx - Offset] = I; 5206 } 5207 assert(Offset < NumElts && "Failed to find vector index offset"); 5208 5209 InstructionCost Cost = 0; 5210 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 5211 /*Insert*/ true, /*Extract*/ false); 5212 5213 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 5214 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 5215 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 5216 Cost += TTI->getShuffleCost( 5217 TargetTransformInfo::SK_PermuteSingleSrc, 5218 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 5219 } else if (!IsIdentity) { 5220 auto *FirstInsert = 5221 cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 5222 return !is_contained(E->Scalars, 5223 cast<Instruction>(V)->getOperand(0)); 5224 })); 5225 if (isUndefVector(FirstInsert->getOperand(0))) { 5226 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask); 5227 } else { 5228 SmallVector<int> InsertMask(NumElts); 5229 std::iota(InsertMask.begin(), InsertMask.end(), 0); 5230 for (unsigned I = 0; I < NumElts; I++) { 5231 if (Mask[I] != UndefMaskElem) 5232 InsertMask[Offset + I] = NumElts + I; 5233 } 5234 Cost += 5235 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask); 5236 } 5237 } 5238 5239 return Cost; 5240 } 5241 case Instruction::ZExt: 5242 case Instruction::SExt: 5243 case Instruction::FPToUI: 5244 case Instruction::FPToSI: 5245 case Instruction::FPExt: 5246 case Instruction::PtrToInt: 5247 case Instruction::IntToPtr: 5248 case Instruction::SIToFP: 5249 case Instruction::UIToFP: 5250 case Instruction::Trunc: 5251 case Instruction::FPTrunc: 5252 case Instruction::BitCast: { 5253 Type *SrcTy = VL0->getOperand(0)->getType(); 5254 InstructionCost ScalarEltCost = 5255 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 5256 TTI::getCastContextHint(VL0), CostKind, VL0); 5257 if (NeedToShuffleReuses) { 5258 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5259 } 5260 5261 // Calculate the cost of this instruction. 5262 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 5263 5264 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 5265 InstructionCost VecCost = 0; 5266 // Check if the values are candidates to demote. 5267 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 5268 VecCost = CommonCost + TTI->getCastInstrCost( 5269 E->getOpcode(), VecTy, SrcVecTy, 5270 TTI::getCastContextHint(VL0), CostKind, VL0); 5271 } 5272 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5273 return VecCost - ScalarCost; 5274 } 5275 case Instruction::FCmp: 5276 case Instruction::ICmp: 5277 case Instruction::Select: { 5278 // Calculate the cost of this instruction. 5279 InstructionCost ScalarEltCost = 5280 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5281 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 5282 if (NeedToShuffleReuses) { 5283 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5284 } 5285 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 5286 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5287 5288 // Check if all entries in VL are either compares or selects with compares 5289 // as condition that have the same predicates. 5290 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 5291 bool First = true; 5292 for (auto *V : VL) { 5293 CmpInst::Predicate CurrentPred; 5294 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 5295 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 5296 !match(V, MatchCmp)) || 5297 (!First && VecPred != CurrentPred)) { 5298 VecPred = CmpInst::BAD_ICMP_PREDICATE; 5299 break; 5300 } 5301 First = false; 5302 VecPred = CurrentPred; 5303 } 5304 5305 InstructionCost VecCost = TTI->getCmpSelInstrCost( 5306 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 5307 // Check if it is possible and profitable to use min/max for selects in 5308 // VL. 5309 // 5310 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 5311 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 5312 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 5313 {VecTy, VecTy}); 5314 InstructionCost IntrinsicCost = 5315 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5316 // If the selects are the only uses of the compares, they will be dead 5317 // and we can adjust the cost by removing their cost. 5318 if (IntrinsicAndUse.second) 5319 IntrinsicCost -= 5320 TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy, 5321 CmpInst::BAD_ICMP_PREDICATE, CostKind); 5322 VecCost = std::min(VecCost, IntrinsicCost); 5323 } 5324 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5325 return CommonCost + VecCost - ScalarCost; 5326 } 5327 case Instruction::FNeg: 5328 case Instruction::Add: 5329 case Instruction::FAdd: 5330 case Instruction::Sub: 5331 case Instruction::FSub: 5332 case Instruction::Mul: 5333 case Instruction::FMul: 5334 case Instruction::UDiv: 5335 case Instruction::SDiv: 5336 case Instruction::FDiv: 5337 case Instruction::URem: 5338 case Instruction::SRem: 5339 case Instruction::FRem: 5340 case Instruction::Shl: 5341 case Instruction::LShr: 5342 case Instruction::AShr: 5343 case Instruction::And: 5344 case Instruction::Or: 5345 case Instruction::Xor: { 5346 // Certain instructions can be cheaper to vectorize if they have a 5347 // constant second vector operand. 5348 TargetTransformInfo::OperandValueKind Op1VK = 5349 TargetTransformInfo::OK_AnyValue; 5350 TargetTransformInfo::OperandValueKind Op2VK = 5351 TargetTransformInfo::OK_UniformConstantValue; 5352 TargetTransformInfo::OperandValueProperties Op1VP = 5353 TargetTransformInfo::OP_None; 5354 TargetTransformInfo::OperandValueProperties Op2VP = 5355 TargetTransformInfo::OP_PowerOf2; 5356 5357 // If all operands are exactly the same ConstantInt then set the 5358 // operand kind to OK_UniformConstantValue. 5359 // If instead not all operands are constants, then set the operand kind 5360 // to OK_AnyValue. If all operands are constants but not the same, 5361 // then set the operand kind to OK_NonUniformConstantValue. 5362 ConstantInt *CInt0 = nullptr; 5363 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 5364 const Instruction *I = cast<Instruction>(VL[i]); 5365 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 5366 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 5367 if (!CInt) { 5368 Op2VK = TargetTransformInfo::OK_AnyValue; 5369 Op2VP = TargetTransformInfo::OP_None; 5370 break; 5371 } 5372 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 5373 !CInt->getValue().isPowerOf2()) 5374 Op2VP = TargetTransformInfo::OP_None; 5375 if (i == 0) { 5376 CInt0 = CInt; 5377 continue; 5378 } 5379 if (CInt0 != CInt) 5380 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5381 } 5382 5383 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 5384 InstructionCost ScalarEltCost = 5385 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 5386 Op2VK, Op1VP, Op2VP, Operands, VL0); 5387 if (NeedToShuffleReuses) { 5388 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5389 } 5390 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5391 InstructionCost VecCost = 5392 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 5393 Op2VK, Op1VP, Op2VP, Operands, VL0); 5394 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5395 return CommonCost + VecCost - ScalarCost; 5396 } 5397 case Instruction::GetElementPtr: { 5398 TargetTransformInfo::OperandValueKind Op1VK = 5399 TargetTransformInfo::OK_AnyValue; 5400 TargetTransformInfo::OperandValueKind Op2VK = 5401 TargetTransformInfo::OK_UniformConstantValue; 5402 5403 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 5404 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 5405 if (NeedToShuffleReuses) { 5406 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5407 } 5408 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5409 InstructionCost VecCost = TTI->getArithmeticInstrCost( 5410 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 5411 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5412 return CommonCost + VecCost - ScalarCost; 5413 } 5414 case Instruction::Load: { 5415 // Cost of wide load - cost of scalar loads. 5416 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 5417 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5418 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 5419 if (NeedToShuffleReuses) { 5420 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5421 } 5422 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 5423 InstructionCost VecLdCost; 5424 if (E->State == TreeEntry::Vectorize) { 5425 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 5426 CostKind, VL0); 5427 } else { 5428 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 5429 Align CommonAlignment = Alignment; 5430 for (Value *V : VL) 5431 CommonAlignment = 5432 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 5433 VecLdCost = TTI->getGatherScatterOpCost( 5434 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 5435 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 5436 } 5437 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 5438 return CommonCost + VecLdCost - ScalarLdCost; 5439 } 5440 case Instruction::Store: { 5441 // We know that we can merge the stores. Calculate the cost. 5442 bool IsReorder = !E->ReorderIndices.empty(); 5443 auto *SI = 5444 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 5445 Align Alignment = SI->getAlign(); 5446 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5447 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 5448 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 5449 InstructionCost VecStCost = TTI->getMemoryOpCost( 5450 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 5451 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 5452 return CommonCost + VecStCost - ScalarStCost; 5453 } 5454 case Instruction::Call: { 5455 CallInst *CI = cast<CallInst>(VL0); 5456 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5457 5458 // Calculate the cost of the scalar and vector calls. 5459 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 5460 InstructionCost ScalarEltCost = 5461 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5462 if (NeedToShuffleReuses) { 5463 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5464 } 5465 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 5466 5467 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 5468 InstructionCost VecCallCost = 5469 std::min(VecCallCosts.first, VecCallCosts.second); 5470 5471 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 5472 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 5473 << " for " << *CI << "\n"); 5474 5475 return CommonCost + VecCallCost - ScalarCallCost; 5476 } 5477 case Instruction::ShuffleVector: { 5478 assert(E->isAltShuffle() && 5479 ((Instruction::isBinaryOp(E->getOpcode()) && 5480 Instruction::isBinaryOp(E->getAltOpcode())) || 5481 (Instruction::isCast(E->getOpcode()) && 5482 Instruction::isCast(E->getAltOpcode())) || 5483 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 5484 "Invalid Shuffle Vector Operand"); 5485 InstructionCost ScalarCost = 0; 5486 if (NeedToShuffleReuses) { 5487 for (unsigned Idx : E->ReuseShuffleIndices) { 5488 Instruction *I = cast<Instruction>(VL[Idx]); 5489 CommonCost -= TTI->getInstructionCost(I, CostKind); 5490 } 5491 for (Value *V : VL) { 5492 Instruction *I = cast<Instruction>(V); 5493 CommonCost += TTI->getInstructionCost(I, CostKind); 5494 } 5495 } 5496 for (Value *V : VL) { 5497 Instruction *I = cast<Instruction>(V); 5498 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5499 ScalarCost += TTI->getInstructionCost(I, CostKind); 5500 } 5501 // VecCost is equal to sum of the cost of creating 2 vectors 5502 // and the cost of creating shuffle. 5503 InstructionCost VecCost = 0; 5504 // Try to find the previous shuffle node with the same operands and same 5505 // main/alternate ops. 5506 auto &&TryFindNodeWithEqualOperands = [this, E]() { 5507 for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 5508 if (TE.get() == E) 5509 break; 5510 if (TE->isAltShuffle() && 5511 ((TE->getOpcode() == E->getOpcode() && 5512 TE->getAltOpcode() == E->getAltOpcode()) || 5513 (TE->getOpcode() == E->getAltOpcode() && 5514 TE->getAltOpcode() == E->getOpcode())) && 5515 TE->hasEqualOperands(*E)) 5516 return true; 5517 } 5518 return false; 5519 }; 5520 if (TryFindNodeWithEqualOperands()) { 5521 LLVM_DEBUG({ 5522 dbgs() << "SLP: diamond match for alternate node found.\n"; 5523 E->dump(); 5524 }); 5525 // No need to add new vector costs here since we're going to reuse 5526 // same main/alternate vector ops, just do different shuffling. 5527 } else if (Instruction::isBinaryOp(E->getOpcode())) { 5528 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 5529 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 5530 CostKind); 5531 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 5532 VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 5533 Builder.getInt1Ty(), 5534 CI0->getPredicate(), CostKind, VL0); 5535 VecCost += TTI->getCmpSelInstrCost( 5536 E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5537 cast<CmpInst>(E->getAltOp())->getPredicate(), CostKind, 5538 E->getAltOp()); 5539 } else { 5540 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 5541 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 5542 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 5543 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 5544 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 5545 TTI::CastContextHint::None, CostKind); 5546 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 5547 TTI::CastContextHint::None, CostKind); 5548 } 5549 5550 SmallVector<int> Mask; 5551 buildSuffleEntryMask( 5552 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 5553 [E](Instruction *I) { 5554 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5555 if (auto *CI0 = dyn_cast<CmpInst>(E->getMainOp())) { 5556 auto *AltCI0 = cast<CmpInst>(E->getAltOp()); 5557 auto *CI = cast<CmpInst>(I); 5558 CmpInst::Predicate P0 = CI0->getPredicate(); 5559 CmpInst::Predicate AltP0 = AltCI0->getPredicate(); 5560 assert(P0 != AltP0 && 5561 "Expected different main/alternate predicates."); 5562 CmpInst::Predicate AltP0Swapped = 5563 CmpInst::getSwappedPredicate(AltP0); 5564 CmpInst::Predicate CurrentPred = CI->getPredicate(); 5565 if (P0 == AltP0Swapped) 5566 return (P0 == CurrentPred && 5567 !areCompatibleCmpOps( 5568 CI0->getOperand(0), CI0->getOperand(1), 5569 CI->getOperand(0), CI->getOperand(1))) || 5570 (AltP0 == CurrentPred && 5571 !areCompatibleCmpOps( 5572 CI0->getOperand(0), CI0->getOperand(1), 5573 CI->getOperand(1), CI->getOperand(0))); 5574 return AltP0 == CurrentPred || AltP0Swapped == CurrentPred; 5575 } 5576 return I->getOpcode() == E->getAltOpcode(); 5577 }, 5578 Mask); 5579 CommonCost = 5580 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy, Mask); 5581 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5582 return CommonCost + VecCost - ScalarCost; 5583 } 5584 default: 5585 llvm_unreachable("Unknown instruction"); 5586 } 5587 } 5588 5589 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { 5590 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 5591 << VectorizableTree.size() << " is fully vectorizable .\n"); 5592 5593 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { 5594 SmallVector<int> Mask; 5595 return TE->State == TreeEntry::NeedToGather && 5596 !any_of(TE->Scalars, 5597 [this](Value *V) { return EphValues.contains(V); }) && 5598 (allConstant(TE->Scalars) || isSplat(TE->Scalars) || 5599 TE->Scalars.size() < Limit || 5600 ((TE->getOpcode() == Instruction::ExtractElement || 5601 all_of(TE->Scalars, 5602 [](Value *V) { 5603 return isa<ExtractElementInst, UndefValue>(V); 5604 })) && 5605 isFixedVectorShuffle(TE->Scalars, Mask)) || 5606 (TE->State == TreeEntry::NeedToGather && 5607 TE->getOpcode() == Instruction::Load && !TE->isAltShuffle())); 5608 }; 5609 5610 // We only handle trees of heights 1 and 2. 5611 if (VectorizableTree.size() == 1 && 5612 (VectorizableTree[0]->State == TreeEntry::Vectorize || 5613 (ForReduction && 5614 AreVectorizableGathers(VectorizableTree[0].get(), 5615 VectorizableTree[0]->Scalars.size()) && 5616 VectorizableTree[0]->getVectorFactor() > 2))) 5617 return true; 5618 5619 if (VectorizableTree.size() != 2) 5620 return false; 5621 5622 // Handle splat and all-constants stores. Also try to vectorize tiny trees 5623 // with the second gather nodes if they have less scalar operands rather than 5624 // the initial tree element (may be profitable to shuffle the second gather) 5625 // or they are extractelements, which form shuffle. 5626 SmallVector<int> Mask; 5627 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 5628 AreVectorizableGathers(VectorizableTree[1].get(), 5629 VectorizableTree[0]->Scalars.size())) 5630 return true; 5631 5632 // Gathering cost would be too much for tiny trees. 5633 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 5634 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 5635 VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) 5636 return false; 5637 5638 return true; 5639 } 5640 5641 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 5642 TargetTransformInfo *TTI, 5643 bool MustMatchOrInst) { 5644 // Look past the root to find a source value. Arbitrarily follow the 5645 // path through operand 0 of any 'or'. Also, peek through optional 5646 // shift-left-by-multiple-of-8-bits. 5647 Value *ZextLoad = Root; 5648 const APInt *ShAmtC; 5649 bool FoundOr = false; 5650 while (!isa<ConstantExpr>(ZextLoad) && 5651 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 5652 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 5653 ShAmtC->urem(8) == 0))) { 5654 auto *BinOp = cast<BinaryOperator>(ZextLoad); 5655 ZextLoad = BinOp->getOperand(0); 5656 if (BinOp->getOpcode() == Instruction::Or) 5657 FoundOr = true; 5658 } 5659 // Check if the input is an extended load of the required or/shift expression. 5660 Value *Load; 5661 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 5662 !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load)) 5663 return false; 5664 5665 // Require that the total load bit width is a legal integer type. 5666 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 5667 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 5668 Type *SrcTy = Load->getType(); 5669 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 5670 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 5671 return false; 5672 5673 // Everything matched - assume that we can fold the whole sequence using 5674 // load combining. 5675 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 5676 << *(cast<Instruction>(Root)) << "\n"); 5677 5678 return true; 5679 } 5680 5681 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 5682 if (RdxKind != RecurKind::Or) 5683 return false; 5684 5685 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5686 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 5687 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 5688 /* MatchOr */ false); 5689 } 5690 5691 bool BoUpSLP::isLoadCombineCandidate() const { 5692 // Peek through a final sequence of stores and check if all operations are 5693 // likely to be load-combined. 5694 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5695 for (Value *Scalar : VectorizableTree[0]->Scalars) { 5696 Value *X; 5697 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 5698 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 5699 return false; 5700 } 5701 return true; 5702 } 5703 5704 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { 5705 // No need to vectorize inserts of gathered values. 5706 if (VectorizableTree.size() == 2 && 5707 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 5708 VectorizableTree[1]->State == TreeEntry::NeedToGather) 5709 return true; 5710 5711 // We can vectorize the tree if its size is greater than or equal to the 5712 // minimum size specified by the MinTreeSize command line option. 5713 if (VectorizableTree.size() >= MinTreeSize) 5714 return false; 5715 5716 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 5717 // can vectorize it if we can prove it fully vectorizable. 5718 if (isFullyVectorizableTinyTree(ForReduction)) 5719 return false; 5720 5721 assert(VectorizableTree.empty() 5722 ? ExternalUses.empty() 5723 : true && "We shouldn't have any external users"); 5724 5725 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 5726 // vectorizable. 5727 return true; 5728 } 5729 5730 InstructionCost BoUpSLP::getSpillCost() const { 5731 // Walk from the bottom of the tree to the top, tracking which values are 5732 // live. When we see a call instruction that is not part of our tree, 5733 // query TTI to see if there is a cost to keeping values live over it 5734 // (for example, if spills and fills are required). 5735 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 5736 InstructionCost Cost = 0; 5737 5738 SmallPtrSet<Instruction*, 4> LiveValues; 5739 Instruction *PrevInst = nullptr; 5740 5741 // The entries in VectorizableTree are not necessarily ordered by their 5742 // position in basic blocks. Collect them and order them by dominance so later 5743 // instructions are guaranteed to be visited first. For instructions in 5744 // different basic blocks, we only scan to the beginning of the block, so 5745 // their order does not matter, as long as all instructions in a basic block 5746 // are grouped together. Using dominance ensures a deterministic order. 5747 SmallVector<Instruction *, 16> OrderedScalars; 5748 for (const auto &TEPtr : VectorizableTree) { 5749 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 5750 if (!Inst) 5751 continue; 5752 OrderedScalars.push_back(Inst); 5753 } 5754 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 5755 auto *NodeA = DT->getNode(A->getParent()); 5756 auto *NodeB = DT->getNode(B->getParent()); 5757 assert(NodeA && "Should only process reachable instructions"); 5758 assert(NodeB && "Should only process reachable instructions"); 5759 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 5760 "Different nodes should have different DFS numbers"); 5761 if (NodeA != NodeB) 5762 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 5763 return B->comesBefore(A); 5764 }); 5765 5766 for (Instruction *Inst : OrderedScalars) { 5767 if (!PrevInst) { 5768 PrevInst = Inst; 5769 continue; 5770 } 5771 5772 // Update LiveValues. 5773 LiveValues.erase(PrevInst); 5774 for (auto &J : PrevInst->operands()) { 5775 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 5776 LiveValues.insert(cast<Instruction>(&*J)); 5777 } 5778 5779 LLVM_DEBUG({ 5780 dbgs() << "SLP: #LV: " << LiveValues.size(); 5781 for (auto *X : LiveValues) 5782 dbgs() << " " << X->getName(); 5783 dbgs() << ", Looking at "; 5784 Inst->dump(); 5785 }); 5786 5787 // Now find the sequence of instructions between PrevInst and Inst. 5788 unsigned NumCalls = 0; 5789 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 5790 PrevInstIt = 5791 PrevInst->getIterator().getReverse(); 5792 while (InstIt != PrevInstIt) { 5793 if (PrevInstIt == PrevInst->getParent()->rend()) { 5794 PrevInstIt = Inst->getParent()->rbegin(); 5795 continue; 5796 } 5797 5798 // Debug information does not impact spill cost. 5799 if ((isa<CallInst>(&*PrevInstIt) && 5800 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 5801 &*PrevInstIt != PrevInst) 5802 NumCalls++; 5803 5804 ++PrevInstIt; 5805 } 5806 5807 if (NumCalls) { 5808 SmallVector<Type*, 4> V; 5809 for (auto *II : LiveValues) { 5810 auto *ScalarTy = II->getType(); 5811 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 5812 ScalarTy = VectorTy->getElementType(); 5813 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 5814 } 5815 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 5816 } 5817 5818 PrevInst = Inst; 5819 } 5820 5821 return Cost; 5822 } 5823 5824 /// Check if two insertelement instructions are from the same buildvector. 5825 static bool areTwoInsertFromSameBuildVector(InsertElementInst *VU, 5826 InsertElementInst *V) { 5827 // Instructions must be from the same basic blocks. 5828 if (VU->getParent() != V->getParent()) 5829 return false; 5830 // Checks if 2 insertelements are from the same buildvector. 5831 if (VU->getType() != V->getType()) 5832 return false; 5833 // Multiple used inserts are separate nodes. 5834 if (!VU->hasOneUse() && !V->hasOneUse()) 5835 return false; 5836 auto *IE1 = VU; 5837 auto *IE2 = V; 5838 // Go through the vector operand of insertelement instructions trying to find 5839 // either VU as the original vector for IE2 or V as the original vector for 5840 // IE1. 5841 do { 5842 if (IE2 == VU || IE1 == V) 5843 return true; 5844 if (IE1) { 5845 if (IE1 != VU && !IE1->hasOneUse()) 5846 IE1 = nullptr; 5847 else 5848 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 5849 } 5850 if (IE2) { 5851 if (IE2 != V && !IE2->hasOneUse()) 5852 IE2 = nullptr; 5853 else 5854 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 5855 } 5856 } while (IE1 || IE2); 5857 return false; 5858 } 5859 5860 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 5861 InstructionCost Cost = 0; 5862 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 5863 << VectorizableTree.size() << ".\n"); 5864 5865 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 5866 5867 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 5868 TreeEntry &TE = *VectorizableTree[I].get(); 5869 5870 InstructionCost C = getEntryCost(&TE, VectorizedVals); 5871 Cost += C; 5872 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5873 << " for bundle that starts with " << *TE.Scalars[0] 5874 << ".\n" 5875 << "SLP: Current total cost = " << Cost << "\n"); 5876 } 5877 5878 SmallPtrSet<Value *, 16> ExtractCostCalculated; 5879 InstructionCost ExtractCost = 0; 5880 SmallVector<unsigned> VF; 5881 SmallVector<SmallVector<int>> ShuffleMask; 5882 SmallVector<Value *> FirstUsers; 5883 SmallVector<APInt> DemandedElts; 5884 for (ExternalUser &EU : ExternalUses) { 5885 // We only add extract cost once for the same scalar. 5886 if (!isa_and_nonnull<InsertElementInst>(EU.User) && 5887 !ExtractCostCalculated.insert(EU.Scalar).second) 5888 continue; 5889 5890 // Uses by ephemeral values are free (because the ephemeral value will be 5891 // removed prior to code generation, and so the extraction will be 5892 // removed as well). 5893 if (EphValues.count(EU.User)) 5894 continue; 5895 5896 // No extract cost for vector "scalar" 5897 if (isa<FixedVectorType>(EU.Scalar->getType())) 5898 continue; 5899 5900 // Already counted the cost for external uses when tried to adjust the cost 5901 // for extractelements, no need to add it again. 5902 if (isa<ExtractElementInst>(EU.Scalar)) 5903 continue; 5904 5905 // If found user is an insertelement, do not calculate extract cost but try 5906 // to detect it as a final shuffled/identity match. 5907 if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) { 5908 if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) { 5909 Optional<int> InsertIdx = getInsertIndex(VU, 0); 5910 if (!InsertIdx || *InsertIdx == UndefMaskElem) 5911 continue; 5912 auto *It = find_if(FirstUsers, [VU](Value *V) { 5913 return areTwoInsertFromSameBuildVector(VU, 5914 cast<InsertElementInst>(V)); 5915 }); 5916 int VecId = -1; 5917 if (It == FirstUsers.end()) { 5918 VF.push_back(FTy->getNumElements()); 5919 ShuffleMask.emplace_back(VF.back(), UndefMaskElem); 5920 // Find the insertvector, vectorized in tree, if any. 5921 Value *Base = VU; 5922 while (isa<InsertElementInst>(Base)) { 5923 // Build the mask for the vectorized insertelement instructions. 5924 if (const TreeEntry *E = getTreeEntry(Base)) { 5925 VU = cast<InsertElementInst>(Base); 5926 do { 5927 int Idx = E->findLaneForValue(Base); 5928 ShuffleMask.back()[Idx] = Idx; 5929 Base = cast<InsertElementInst>(Base)->getOperand(0); 5930 } while (E == getTreeEntry(Base)); 5931 break; 5932 } 5933 Base = cast<InsertElementInst>(Base)->getOperand(0); 5934 } 5935 FirstUsers.push_back(VU); 5936 DemandedElts.push_back(APInt::getZero(VF.back())); 5937 VecId = FirstUsers.size() - 1; 5938 } else { 5939 VecId = std::distance(FirstUsers.begin(), It); 5940 } 5941 int Idx = *InsertIdx; 5942 ShuffleMask[VecId][Idx] = EU.Lane; 5943 DemandedElts[VecId].setBit(Idx); 5944 continue; 5945 } 5946 } 5947 5948 // If we plan to rewrite the tree in a smaller type, we will need to sign 5949 // extend the extracted value back to the original type. Here, we account 5950 // for the extract and the added cost of the sign extend if needed. 5951 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 5952 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 5953 if (MinBWs.count(ScalarRoot)) { 5954 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 5955 auto Extend = 5956 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 5957 VecTy = FixedVectorType::get(MinTy, BundleWidth); 5958 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 5959 VecTy, EU.Lane); 5960 } else { 5961 ExtractCost += 5962 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 5963 } 5964 } 5965 5966 InstructionCost SpillCost = getSpillCost(); 5967 Cost += SpillCost + ExtractCost; 5968 if (FirstUsers.size() == 1) { 5969 int Limit = ShuffleMask.front().size() * 2; 5970 if (all_of(ShuffleMask.front(), [Limit](int Idx) { return Idx < Limit; }) && 5971 !ShuffleVectorInst::isIdentityMask(ShuffleMask.front())) { 5972 InstructionCost C = TTI->getShuffleCost( 5973 TTI::SK_PermuteSingleSrc, 5974 cast<FixedVectorType>(FirstUsers.front()->getType()), 5975 ShuffleMask.front()); 5976 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5977 << " for final shuffle of insertelement external users " 5978 << *VectorizableTree.front()->Scalars.front() << ".\n" 5979 << "SLP: Current total cost = " << Cost << "\n"); 5980 Cost += C; 5981 } 5982 InstructionCost InsertCost = TTI->getScalarizationOverhead( 5983 cast<FixedVectorType>(FirstUsers.front()->getType()), 5984 DemandedElts.front(), /*Insert*/ true, /*Extract*/ false); 5985 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 5986 << " for insertelements gather.\n" 5987 << "SLP: Current total cost = " << Cost << "\n"); 5988 Cost -= InsertCost; 5989 } else if (FirstUsers.size() >= 2) { 5990 unsigned MaxVF = *std::max_element(VF.begin(), VF.end()); 5991 // Combined masks of the first 2 vectors. 5992 SmallVector<int> CombinedMask(MaxVF, UndefMaskElem); 5993 copy(ShuffleMask.front(), CombinedMask.begin()); 5994 APInt CombinedDemandedElts = DemandedElts.front().zextOrSelf(MaxVF); 5995 auto *VecTy = FixedVectorType::get( 5996 cast<VectorType>(FirstUsers.front()->getType())->getElementType(), 5997 MaxVF); 5998 for (int I = 0, E = ShuffleMask[1].size(); I < E; ++I) { 5999 if (ShuffleMask[1][I] != UndefMaskElem) { 6000 CombinedMask[I] = ShuffleMask[1][I] + MaxVF; 6001 CombinedDemandedElts.setBit(I); 6002 } 6003 } 6004 InstructionCost C = 6005 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6006 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6007 << " for final shuffle of vector node and external " 6008 "insertelement users " 6009 << *VectorizableTree.front()->Scalars.front() << ".\n" 6010 << "SLP: Current total cost = " << Cost << "\n"); 6011 Cost += C; 6012 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6013 VecTy, CombinedDemandedElts, /*Insert*/ true, /*Extract*/ false); 6014 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6015 << " for insertelements gather.\n" 6016 << "SLP: Current total cost = " << Cost << "\n"); 6017 Cost -= InsertCost; 6018 for (int I = 2, E = FirstUsers.size(); I < E; ++I) { 6019 // Other elements - permutation of 2 vectors (the initial one and the 6020 // next Ith incoming vector). 6021 unsigned VF = ShuffleMask[I].size(); 6022 for (unsigned Idx = 0; Idx < VF; ++Idx) { 6023 int Mask = ShuffleMask[I][Idx]; 6024 if (Mask != UndefMaskElem) 6025 CombinedMask[Idx] = MaxVF + Mask; 6026 else if (CombinedMask[Idx] != UndefMaskElem) 6027 CombinedMask[Idx] = Idx; 6028 } 6029 for (unsigned Idx = VF; Idx < MaxVF; ++Idx) 6030 if (CombinedMask[Idx] != UndefMaskElem) 6031 CombinedMask[Idx] = Idx; 6032 InstructionCost C = 6033 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6034 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6035 << " for final shuffle of vector node and external " 6036 "insertelement users " 6037 << *VectorizableTree.front()->Scalars.front() << ".\n" 6038 << "SLP: Current total cost = " << Cost << "\n"); 6039 Cost += C; 6040 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6041 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I], 6042 /*Insert*/ true, /*Extract*/ false); 6043 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6044 << " for insertelements gather.\n" 6045 << "SLP: Current total cost = " << Cost << "\n"); 6046 Cost -= InsertCost; 6047 } 6048 } 6049 6050 #ifndef NDEBUG 6051 SmallString<256> Str; 6052 { 6053 raw_svector_ostream OS(Str); 6054 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 6055 << "SLP: Extract Cost = " << ExtractCost << ".\n" 6056 << "SLP: Total Cost = " << Cost << ".\n"; 6057 } 6058 LLVM_DEBUG(dbgs() << Str); 6059 if (ViewSLPTree) 6060 ViewGraph(this, "SLP" + F->getName(), false, Str); 6061 #endif 6062 6063 return Cost; 6064 } 6065 6066 Optional<TargetTransformInfo::ShuffleKind> 6067 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 6068 SmallVectorImpl<const TreeEntry *> &Entries) { 6069 // TODO: currently checking only for Scalars in the tree entry, need to count 6070 // reused elements too for better cost estimation. 6071 Mask.assign(TE->Scalars.size(), UndefMaskElem); 6072 Entries.clear(); 6073 // Build a lists of values to tree entries. 6074 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 6075 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 6076 if (EntryPtr.get() == TE) 6077 break; 6078 if (EntryPtr->State != TreeEntry::NeedToGather) 6079 continue; 6080 for (Value *V : EntryPtr->Scalars) 6081 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 6082 } 6083 // Find all tree entries used by the gathered values. If no common entries 6084 // found - not a shuffle. 6085 // Here we build a set of tree nodes for each gathered value and trying to 6086 // find the intersection between these sets. If we have at least one common 6087 // tree node for each gathered value - we have just a permutation of the 6088 // single vector. If we have 2 different sets, we're in situation where we 6089 // have a permutation of 2 input vectors. 6090 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 6091 DenseMap<Value *, int> UsedValuesEntry; 6092 for (Value *V : TE->Scalars) { 6093 if (isa<UndefValue>(V)) 6094 continue; 6095 // Build a list of tree entries where V is used. 6096 SmallPtrSet<const TreeEntry *, 4> VToTEs; 6097 auto It = ValueToTEs.find(V); 6098 if (It != ValueToTEs.end()) 6099 VToTEs = It->second; 6100 if (const TreeEntry *VTE = getTreeEntry(V)) 6101 VToTEs.insert(VTE); 6102 if (VToTEs.empty()) 6103 return None; 6104 if (UsedTEs.empty()) { 6105 // The first iteration, just insert the list of nodes to vector. 6106 UsedTEs.push_back(VToTEs); 6107 } else { 6108 // Need to check if there are any previously used tree nodes which use V. 6109 // If there are no such nodes, consider that we have another one input 6110 // vector. 6111 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 6112 unsigned Idx = 0; 6113 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 6114 // Do we have a non-empty intersection of previously listed tree entries 6115 // and tree entries using current V? 6116 set_intersect(VToTEs, Set); 6117 if (!VToTEs.empty()) { 6118 // Yes, write the new subset and continue analysis for the next 6119 // scalar. 6120 Set.swap(VToTEs); 6121 break; 6122 } 6123 VToTEs = SavedVToTEs; 6124 ++Idx; 6125 } 6126 // No non-empty intersection found - need to add a second set of possible 6127 // source vectors. 6128 if (Idx == UsedTEs.size()) { 6129 // If the number of input vectors is greater than 2 - not a permutation, 6130 // fallback to the regular gather. 6131 if (UsedTEs.size() == 2) 6132 return None; 6133 UsedTEs.push_back(SavedVToTEs); 6134 Idx = UsedTEs.size() - 1; 6135 } 6136 UsedValuesEntry.try_emplace(V, Idx); 6137 } 6138 } 6139 6140 unsigned VF = 0; 6141 if (UsedTEs.size() == 1) { 6142 // Try to find the perfect match in another gather node at first. 6143 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 6144 return EntryPtr->isSame(TE->Scalars); 6145 }); 6146 if (It != UsedTEs.front().end()) { 6147 Entries.push_back(*It); 6148 std::iota(Mask.begin(), Mask.end(), 0); 6149 return TargetTransformInfo::SK_PermuteSingleSrc; 6150 } 6151 // No perfect match, just shuffle, so choose the first tree node. 6152 Entries.push_back(*UsedTEs.front().begin()); 6153 } else { 6154 // Try to find nodes with the same vector factor. 6155 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 6156 DenseMap<int, const TreeEntry *> VFToTE; 6157 for (const TreeEntry *TE : UsedTEs.front()) 6158 VFToTE.try_emplace(TE->getVectorFactor(), TE); 6159 for (const TreeEntry *TE : UsedTEs.back()) { 6160 auto It = VFToTE.find(TE->getVectorFactor()); 6161 if (It != VFToTE.end()) { 6162 VF = It->first; 6163 Entries.push_back(It->second); 6164 Entries.push_back(TE); 6165 break; 6166 } 6167 } 6168 // No 2 source vectors with the same vector factor - give up and do regular 6169 // gather. 6170 if (Entries.empty()) 6171 return None; 6172 } 6173 6174 // Build a shuffle mask for better cost estimation and vector emission. 6175 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 6176 Value *V = TE->Scalars[I]; 6177 if (isa<UndefValue>(V)) 6178 continue; 6179 unsigned Idx = UsedValuesEntry.lookup(V); 6180 const TreeEntry *VTE = Entries[Idx]; 6181 int FoundLane = VTE->findLaneForValue(V); 6182 Mask[I] = Idx * VF + FoundLane; 6183 // Extra check required by isSingleSourceMaskImpl function (called by 6184 // ShuffleVectorInst::isSingleSourceMask). 6185 if (Mask[I] >= 2 * E) 6186 return None; 6187 } 6188 switch (Entries.size()) { 6189 case 1: 6190 return TargetTransformInfo::SK_PermuteSingleSrc; 6191 case 2: 6192 return TargetTransformInfo::SK_PermuteTwoSrc; 6193 default: 6194 break; 6195 } 6196 return None; 6197 } 6198 6199 InstructionCost 6200 BoUpSLP::getGatherCost(FixedVectorType *Ty, 6201 const DenseSet<unsigned> &ShuffledIndices, 6202 bool NeedToShuffle) const { 6203 unsigned NumElts = Ty->getNumElements(); 6204 APInt DemandedElts = APInt::getZero(NumElts); 6205 for (unsigned I = 0; I < NumElts; ++I) 6206 if (!ShuffledIndices.count(I)) 6207 DemandedElts.setBit(I); 6208 InstructionCost Cost = 6209 TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true, 6210 /*Extract*/ false); 6211 if (NeedToShuffle) 6212 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 6213 return Cost; 6214 } 6215 6216 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 6217 // Find the type of the operands in VL. 6218 Type *ScalarTy = VL[0]->getType(); 6219 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 6220 ScalarTy = SI->getValueOperand()->getType(); 6221 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 6222 bool DuplicateNonConst = false; 6223 // Find the cost of inserting/extracting values from the vector. 6224 // Check if the same elements are inserted several times and count them as 6225 // shuffle candidates. 6226 DenseSet<unsigned> ShuffledElements; 6227 DenseSet<Value *> UniqueElements; 6228 // Iterate in reverse order to consider insert elements with the high cost. 6229 for (unsigned I = VL.size(); I > 0; --I) { 6230 unsigned Idx = I - 1; 6231 // No need to shuffle duplicates for constants. 6232 if (isConstant(VL[Idx])) { 6233 ShuffledElements.insert(Idx); 6234 continue; 6235 } 6236 if (!UniqueElements.insert(VL[Idx]).second) { 6237 DuplicateNonConst = true; 6238 ShuffledElements.insert(Idx); 6239 } 6240 } 6241 return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst); 6242 } 6243 6244 // Perform operand reordering on the instructions in VL and return the reordered 6245 // operands in Left and Right. 6246 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 6247 SmallVectorImpl<Value *> &Left, 6248 SmallVectorImpl<Value *> &Right, 6249 const DataLayout &DL, 6250 ScalarEvolution &SE, 6251 const BoUpSLP &R) { 6252 if (VL.empty()) 6253 return; 6254 VLOperands Ops(VL, DL, SE, R); 6255 // Reorder the operands in place. 6256 Ops.reorder(); 6257 Left = Ops.getVL(0); 6258 Right = Ops.getVL(1); 6259 } 6260 6261 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 6262 // Get the basic block this bundle is in. All instructions in the bundle 6263 // should be in this block. 6264 auto *Front = E->getMainOp(); 6265 auto *BB = Front->getParent(); 6266 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 6267 auto *I = cast<Instruction>(V); 6268 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 6269 })); 6270 6271 // The last instruction in the bundle in program order. 6272 Instruction *LastInst = nullptr; 6273 6274 // Find the last instruction. The common case should be that BB has been 6275 // scheduled, and the last instruction is VL.back(). So we start with 6276 // VL.back() and iterate over schedule data until we reach the end of the 6277 // bundle. The end of the bundle is marked by null ScheduleData. 6278 if (BlocksSchedules.count(BB)) { 6279 auto *Bundle = 6280 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 6281 if (Bundle && Bundle->isPartOfBundle()) 6282 for (; Bundle; Bundle = Bundle->NextInBundle) 6283 if (Bundle->OpValue == Bundle->Inst) 6284 LastInst = Bundle->Inst; 6285 } 6286 6287 // LastInst can still be null at this point if there's either not an entry 6288 // for BB in BlocksSchedules or there's no ScheduleData available for 6289 // VL.back(). This can be the case if buildTree_rec aborts for various 6290 // reasons (e.g., the maximum recursion depth is reached, the maximum region 6291 // size is reached, etc.). ScheduleData is initialized in the scheduling 6292 // "dry-run". 6293 // 6294 // If this happens, we can still find the last instruction by brute force. We 6295 // iterate forwards from Front (inclusive) until we either see all 6296 // instructions in the bundle or reach the end of the block. If Front is the 6297 // last instruction in program order, LastInst will be set to Front, and we 6298 // will visit all the remaining instructions in the block. 6299 // 6300 // One of the reasons we exit early from buildTree_rec is to place an upper 6301 // bound on compile-time. Thus, taking an additional compile-time hit here is 6302 // not ideal. However, this should be exceedingly rare since it requires that 6303 // we both exit early from buildTree_rec and that the bundle be out-of-order 6304 // (causing us to iterate all the way to the end of the block). 6305 if (!LastInst) { 6306 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 6307 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 6308 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 6309 LastInst = &I; 6310 if (Bundle.empty()) 6311 break; 6312 } 6313 } 6314 assert(LastInst && "Failed to find last instruction in bundle"); 6315 6316 // Set the insertion point after the last instruction in the bundle. Set the 6317 // debug location to Front. 6318 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 6319 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 6320 } 6321 6322 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 6323 // List of instructions/lanes from current block and/or the blocks which are 6324 // part of the current loop. These instructions will be inserted at the end to 6325 // make it possible to optimize loops and hoist invariant instructions out of 6326 // the loops body with better chances for success. 6327 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 6328 SmallSet<int, 4> PostponedIndices; 6329 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 6330 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 6331 SmallPtrSet<BasicBlock *, 4> Visited; 6332 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 6333 InsertBB = InsertBB->getSinglePredecessor(); 6334 return InsertBB && InsertBB == InstBB; 6335 }; 6336 for (int I = 0, E = VL.size(); I < E; ++I) { 6337 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 6338 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 6339 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 6340 PostponedIndices.insert(I).second) 6341 PostponedInsts.emplace_back(Inst, I); 6342 } 6343 6344 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 6345 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 6346 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 6347 if (!InsElt) 6348 return Vec; 6349 GatherShuffleSeq.insert(InsElt); 6350 CSEBlocks.insert(InsElt->getParent()); 6351 // Add to our 'need-to-extract' list. 6352 if (TreeEntry *Entry = getTreeEntry(V)) { 6353 // Find which lane we need to extract. 6354 unsigned FoundLane = Entry->findLaneForValue(V); 6355 ExternalUses.emplace_back(V, InsElt, FoundLane); 6356 } 6357 return Vec; 6358 }; 6359 Value *Val0 = 6360 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 6361 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 6362 Value *Vec = PoisonValue::get(VecTy); 6363 SmallVector<int> NonConsts; 6364 // Insert constant values at first. 6365 for (int I = 0, E = VL.size(); I < E; ++I) { 6366 if (PostponedIndices.contains(I)) 6367 continue; 6368 if (!isConstant(VL[I])) { 6369 NonConsts.push_back(I); 6370 continue; 6371 } 6372 Vec = CreateInsertElement(Vec, VL[I], I); 6373 } 6374 // Insert non-constant values. 6375 for (int I : NonConsts) 6376 Vec = CreateInsertElement(Vec, VL[I], I); 6377 // Append instructions, which are/may be part of the loop, in the end to make 6378 // it possible to hoist non-loop-based instructions. 6379 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 6380 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 6381 6382 return Vec; 6383 } 6384 6385 namespace { 6386 /// Merges shuffle masks and emits final shuffle instruction, if required. 6387 class ShuffleInstructionBuilder { 6388 IRBuilderBase &Builder; 6389 const unsigned VF = 0; 6390 bool IsFinalized = false; 6391 SmallVector<int, 4> Mask; 6392 /// Holds all of the instructions that we gathered. 6393 SetVector<Instruction *> &GatherShuffleSeq; 6394 /// A list of blocks that we are going to CSE. 6395 SetVector<BasicBlock *> &CSEBlocks; 6396 6397 public: 6398 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF, 6399 SetVector<Instruction *> &GatherShuffleSeq, 6400 SetVector<BasicBlock *> &CSEBlocks) 6401 : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq), 6402 CSEBlocks(CSEBlocks) {} 6403 6404 /// Adds a mask, inverting it before applying. 6405 void addInversedMask(ArrayRef<unsigned> SubMask) { 6406 if (SubMask.empty()) 6407 return; 6408 SmallVector<int, 4> NewMask; 6409 inversePermutation(SubMask, NewMask); 6410 addMask(NewMask); 6411 } 6412 6413 /// Functions adds masks, merging them into single one. 6414 void addMask(ArrayRef<unsigned> SubMask) { 6415 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 6416 addMask(NewMask); 6417 } 6418 6419 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 6420 6421 Value *finalize(Value *V) { 6422 IsFinalized = true; 6423 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 6424 if (VF == ValueVF && Mask.empty()) 6425 return V; 6426 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 6427 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 6428 addMask(NormalizedMask); 6429 6430 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 6431 return V; 6432 Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle"); 6433 if (auto *I = dyn_cast<Instruction>(Vec)) { 6434 GatherShuffleSeq.insert(I); 6435 CSEBlocks.insert(I->getParent()); 6436 } 6437 return Vec; 6438 } 6439 6440 ~ShuffleInstructionBuilder() { 6441 assert((IsFinalized || Mask.empty()) && 6442 "Shuffle construction must be finalized."); 6443 } 6444 }; 6445 } // namespace 6446 6447 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 6448 unsigned VF = VL.size(); 6449 InstructionsState S = getSameOpcode(VL); 6450 if (S.getOpcode()) { 6451 if (TreeEntry *E = getTreeEntry(S.OpValue)) 6452 if (E->isSame(VL)) { 6453 Value *V = vectorizeTree(E); 6454 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 6455 if (!E->ReuseShuffleIndices.empty()) { 6456 // Reshuffle to get only unique values. 6457 // If some of the scalars are duplicated in the vectorization tree 6458 // entry, we do not vectorize them but instead generate a mask for 6459 // the reuses. But if there are several users of the same entry, 6460 // they may have different vectorization factors. This is especially 6461 // important for PHI nodes. In this case, we need to adapt the 6462 // resulting instruction for the user vectorization factor and have 6463 // to reshuffle it again to take only unique elements of the vector. 6464 // Without this code the function incorrectly returns reduced vector 6465 // instruction with the same elements, not with the unique ones. 6466 6467 // block: 6468 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 6469 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> 6470 // ... (use %2) 6471 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} 6472 // br %block 6473 SmallVector<int> UniqueIdxs(VF, UndefMaskElem); 6474 SmallSet<int, 4> UsedIdxs; 6475 int Pos = 0; 6476 int Sz = VL.size(); 6477 for (int Idx : E->ReuseShuffleIndices) { 6478 if (Idx != Sz && Idx != UndefMaskElem && 6479 UsedIdxs.insert(Idx).second) 6480 UniqueIdxs[Idx] = Pos; 6481 ++Pos; 6482 } 6483 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 6484 "less than original vector size."); 6485 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 6486 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 6487 } else { 6488 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 6489 "Expected vectorization factor less " 6490 "than original vector size."); 6491 SmallVector<int> UniformMask(VF, 0); 6492 std::iota(UniformMask.begin(), UniformMask.end(), 0); 6493 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 6494 } 6495 if (auto *I = dyn_cast<Instruction>(V)) { 6496 GatherShuffleSeq.insert(I); 6497 CSEBlocks.insert(I->getParent()); 6498 } 6499 } 6500 return V; 6501 } 6502 } 6503 6504 // Check that every instruction appears once in this bundle. 6505 SmallVector<int> ReuseShuffleIndicies; 6506 SmallVector<Value *> UniqueValues; 6507 if (VL.size() > 2) { 6508 DenseMap<Value *, unsigned> UniquePositions; 6509 unsigned NumValues = 6510 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 6511 return !isa<UndefValue>(V); 6512 }).base()); 6513 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 6514 int UniqueVals = 0; 6515 for (Value *V : VL.drop_back(VL.size() - VF)) { 6516 if (isa<UndefValue>(V)) { 6517 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 6518 continue; 6519 } 6520 if (isConstant(V)) { 6521 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 6522 UniqueValues.emplace_back(V); 6523 continue; 6524 } 6525 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 6526 ReuseShuffleIndicies.emplace_back(Res.first->second); 6527 if (Res.second) { 6528 UniqueValues.emplace_back(V); 6529 ++UniqueVals; 6530 } 6531 } 6532 if (UniqueVals == 1 && UniqueValues.size() == 1) { 6533 // Emit pure splat vector. 6534 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 6535 UndefMaskElem); 6536 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 6537 ReuseShuffleIndicies.clear(); 6538 UniqueValues.clear(); 6539 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 6540 } 6541 UniqueValues.append(VF - UniqueValues.size(), 6542 PoisonValue::get(VL[0]->getType())); 6543 VL = UniqueValues; 6544 } 6545 6546 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6547 CSEBlocks); 6548 Value *Vec = gather(VL); 6549 if (!ReuseShuffleIndicies.empty()) { 6550 ShuffleBuilder.addMask(ReuseShuffleIndicies); 6551 Vec = ShuffleBuilder.finalize(Vec); 6552 } 6553 return Vec; 6554 } 6555 6556 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 6557 IRBuilder<>::InsertPointGuard Guard(Builder); 6558 6559 if (E->VectorizedValue) { 6560 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 6561 return E->VectorizedValue; 6562 } 6563 6564 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 6565 unsigned VF = E->getVectorFactor(); 6566 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6567 CSEBlocks); 6568 if (E->State == TreeEntry::NeedToGather) { 6569 if (E->getMainOp()) 6570 setInsertPointAfterBundle(E); 6571 Value *Vec; 6572 SmallVector<int> Mask; 6573 SmallVector<const TreeEntry *> Entries; 6574 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 6575 isGatherShuffledEntry(E, Mask, Entries); 6576 if (Shuffle.hasValue()) { 6577 assert((Entries.size() == 1 || Entries.size() == 2) && 6578 "Expected shuffle of 1 or 2 entries."); 6579 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 6580 Entries.back()->VectorizedValue, Mask); 6581 if (auto *I = dyn_cast<Instruction>(Vec)) { 6582 GatherShuffleSeq.insert(I); 6583 CSEBlocks.insert(I->getParent()); 6584 } 6585 } else { 6586 Vec = gather(E->Scalars); 6587 } 6588 if (NeedToShuffleReuses) { 6589 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6590 Vec = ShuffleBuilder.finalize(Vec); 6591 } 6592 E->VectorizedValue = Vec; 6593 return Vec; 6594 } 6595 6596 assert((E->State == TreeEntry::Vectorize || 6597 E->State == TreeEntry::ScatterVectorize) && 6598 "Unhandled state"); 6599 unsigned ShuffleOrOp = 6600 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 6601 Instruction *VL0 = E->getMainOp(); 6602 Type *ScalarTy = VL0->getType(); 6603 if (auto *Store = dyn_cast<StoreInst>(VL0)) 6604 ScalarTy = Store->getValueOperand()->getType(); 6605 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 6606 ScalarTy = IE->getOperand(1)->getType(); 6607 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 6608 switch (ShuffleOrOp) { 6609 case Instruction::PHI: { 6610 assert( 6611 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 6612 "PHI reordering is free."); 6613 auto *PH = cast<PHINode>(VL0); 6614 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 6615 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6616 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 6617 Value *V = NewPhi; 6618 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6619 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6620 V = ShuffleBuilder.finalize(V); 6621 6622 E->VectorizedValue = V; 6623 6624 // PHINodes may have multiple entries from the same block. We want to 6625 // visit every block once. 6626 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 6627 6628 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 6629 ValueList Operands; 6630 BasicBlock *IBB = PH->getIncomingBlock(i); 6631 6632 if (!VisitedBBs.insert(IBB).second) { 6633 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 6634 continue; 6635 } 6636 6637 Builder.SetInsertPoint(IBB->getTerminator()); 6638 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6639 Value *Vec = vectorizeTree(E->getOperand(i)); 6640 NewPhi->addIncoming(Vec, IBB); 6641 } 6642 6643 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 6644 "Invalid number of incoming values"); 6645 return V; 6646 } 6647 6648 case Instruction::ExtractElement: { 6649 Value *V = E->getSingleOperand(0); 6650 Builder.SetInsertPoint(VL0); 6651 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6652 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6653 V = ShuffleBuilder.finalize(V); 6654 E->VectorizedValue = V; 6655 return V; 6656 } 6657 case Instruction::ExtractValue: { 6658 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 6659 Builder.SetInsertPoint(LI); 6660 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 6661 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 6662 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 6663 Value *NewV = propagateMetadata(V, E->Scalars); 6664 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6665 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6666 NewV = ShuffleBuilder.finalize(NewV); 6667 E->VectorizedValue = NewV; 6668 return NewV; 6669 } 6670 case Instruction::InsertElement: { 6671 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 6672 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 6673 Value *V = vectorizeTree(E->getOperand(1)); 6674 6675 // Create InsertVector shuffle if necessary 6676 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 6677 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 6678 })); 6679 const unsigned NumElts = 6680 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 6681 const unsigned NumScalars = E->Scalars.size(); 6682 6683 unsigned Offset = *getInsertIndex(VL0, 0); 6684 assert(Offset < NumElts && "Failed to find vector index offset"); 6685 6686 // Create shuffle to resize vector 6687 SmallVector<int> Mask; 6688 if (!E->ReorderIndices.empty()) { 6689 inversePermutation(E->ReorderIndices, Mask); 6690 Mask.append(NumElts - NumScalars, UndefMaskElem); 6691 } else { 6692 Mask.assign(NumElts, UndefMaskElem); 6693 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 6694 } 6695 // Create InsertVector shuffle if necessary 6696 bool IsIdentity = true; 6697 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 6698 Mask.swap(PrevMask); 6699 for (unsigned I = 0; I < NumScalars; ++I) { 6700 Value *Scalar = E->Scalars[PrevMask[I]]; 6701 Optional<int> InsertIdx = getInsertIndex(Scalar, 0); 6702 if (!InsertIdx || *InsertIdx == UndefMaskElem) 6703 continue; 6704 IsIdentity &= *InsertIdx - Offset == I; 6705 Mask[*InsertIdx - Offset] = I; 6706 } 6707 if (!IsIdentity || NumElts != NumScalars) { 6708 V = Builder.CreateShuffleVector(V, Mask); 6709 if (auto *I = dyn_cast<Instruction>(V)) { 6710 GatherShuffleSeq.insert(I); 6711 CSEBlocks.insert(I->getParent()); 6712 } 6713 } 6714 6715 if ((!IsIdentity || Offset != 0 || 6716 !isUndefVector(FirstInsert->getOperand(0))) && 6717 NumElts != NumScalars) { 6718 SmallVector<int> InsertMask(NumElts); 6719 std::iota(InsertMask.begin(), InsertMask.end(), 0); 6720 for (unsigned I = 0; I < NumElts; I++) { 6721 if (Mask[I] != UndefMaskElem) 6722 InsertMask[Offset + I] = NumElts + I; 6723 } 6724 6725 V = Builder.CreateShuffleVector( 6726 FirstInsert->getOperand(0), V, InsertMask, 6727 cast<Instruction>(E->Scalars.back())->getName()); 6728 if (auto *I = dyn_cast<Instruction>(V)) { 6729 GatherShuffleSeq.insert(I); 6730 CSEBlocks.insert(I->getParent()); 6731 } 6732 } 6733 6734 ++NumVectorInstructions; 6735 E->VectorizedValue = V; 6736 return V; 6737 } 6738 case Instruction::ZExt: 6739 case Instruction::SExt: 6740 case Instruction::FPToUI: 6741 case Instruction::FPToSI: 6742 case Instruction::FPExt: 6743 case Instruction::PtrToInt: 6744 case Instruction::IntToPtr: 6745 case Instruction::SIToFP: 6746 case Instruction::UIToFP: 6747 case Instruction::Trunc: 6748 case Instruction::FPTrunc: 6749 case Instruction::BitCast: { 6750 setInsertPointAfterBundle(E); 6751 6752 Value *InVec = vectorizeTree(E->getOperand(0)); 6753 6754 if (E->VectorizedValue) { 6755 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6756 return E->VectorizedValue; 6757 } 6758 6759 auto *CI = cast<CastInst>(VL0); 6760 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 6761 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6762 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6763 V = ShuffleBuilder.finalize(V); 6764 6765 E->VectorizedValue = V; 6766 ++NumVectorInstructions; 6767 return V; 6768 } 6769 case Instruction::FCmp: 6770 case Instruction::ICmp: { 6771 setInsertPointAfterBundle(E); 6772 6773 Value *L = vectorizeTree(E->getOperand(0)); 6774 Value *R = vectorizeTree(E->getOperand(1)); 6775 6776 if (E->VectorizedValue) { 6777 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6778 return E->VectorizedValue; 6779 } 6780 6781 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 6782 Value *V = Builder.CreateCmp(P0, L, R); 6783 propagateIRFlags(V, E->Scalars, VL0); 6784 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6785 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6786 V = ShuffleBuilder.finalize(V); 6787 6788 E->VectorizedValue = V; 6789 ++NumVectorInstructions; 6790 return V; 6791 } 6792 case Instruction::Select: { 6793 setInsertPointAfterBundle(E); 6794 6795 Value *Cond = vectorizeTree(E->getOperand(0)); 6796 Value *True = vectorizeTree(E->getOperand(1)); 6797 Value *False = vectorizeTree(E->getOperand(2)); 6798 6799 if (E->VectorizedValue) { 6800 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6801 return E->VectorizedValue; 6802 } 6803 6804 Value *V = Builder.CreateSelect(Cond, True, False); 6805 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6806 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6807 V = ShuffleBuilder.finalize(V); 6808 6809 E->VectorizedValue = V; 6810 ++NumVectorInstructions; 6811 return V; 6812 } 6813 case Instruction::FNeg: { 6814 setInsertPointAfterBundle(E); 6815 6816 Value *Op = vectorizeTree(E->getOperand(0)); 6817 6818 if (E->VectorizedValue) { 6819 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6820 return E->VectorizedValue; 6821 } 6822 6823 Value *V = Builder.CreateUnOp( 6824 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 6825 propagateIRFlags(V, E->Scalars, VL0); 6826 if (auto *I = dyn_cast<Instruction>(V)) 6827 V = propagateMetadata(I, E->Scalars); 6828 6829 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6830 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6831 V = ShuffleBuilder.finalize(V); 6832 6833 E->VectorizedValue = V; 6834 ++NumVectorInstructions; 6835 6836 return V; 6837 } 6838 case Instruction::Add: 6839 case Instruction::FAdd: 6840 case Instruction::Sub: 6841 case Instruction::FSub: 6842 case Instruction::Mul: 6843 case Instruction::FMul: 6844 case Instruction::UDiv: 6845 case Instruction::SDiv: 6846 case Instruction::FDiv: 6847 case Instruction::URem: 6848 case Instruction::SRem: 6849 case Instruction::FRem: 6850 case Instruction::Shl: 6851 case Instruction::LShr: 6852 case Instruction::AShr: 6853 case Instruction::And: 6854 case Instruction::Or: 6855 case Instruction::Xor: { 6856 setInsertPointAfterBundle(E); 6857 6858 Value *LHS = vectorizeTree(E->getOperand(0)); 6859 Value *RHS = vectorizeTree(E->getOperand(1)); 6860 6861 if (E->VectorizedValue) { 6862 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6863 return E->VectorizedValue; 6864 } 6865 6866 Value *V = Builder.CreateBinOp( 6867 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 6868 RHS); 6869 propagateIRFlags(V, E->Scalars, VL0); 6870 if (auto *I = dyn_cast<Instruction>(V)) 6871 V = propagateMetadata(I, E->Scalars); 6872 6873 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6874 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6875 V = ShuffleBuilder.finalize(V); 6876 6877 E->VectorizedValue = V; 6878 ++NumVectorInstructions; 6879 6880 return V; 6881 } 6882 case Instruction::Load: { 6883 // Loads are inserted at the head of the tree because we don't want to 6884 // sink them all the way down past store instructions. 6885 setInsertPointAfterBundle(E); 6886 6887 LoadInst *LI = cast<LoadInst>(VL0); 6888 Instruction *NewLI; 6889 unsigned AS = LI->getPointerAddressSpace(); 6890 Value *PO = LI->getPointerOperand(); 6891 if (E->State == TreeEntry::Vectorize) { 6892 6893 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 6894 6895 // The pointer operand uses an in-tree scalar so we add the new BitCast 6896 // to ExternalUses list to make sure that an extract will be generated 6897 // in the future. 6898 if (TreeEntry *Entry = getTreeEntry(PO)) { 6899 // Find which lane we need to extract. 6900 unsigned FoundLane = Entry->findLaneForValue(PO); 6901 ExternalUses.emplace_back(PO, cast<User>(VecPtr), FoundLane); 6902 } 6903 6904 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 6905 } else { 6906 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 6907 Value *VecPtr = vectorizeTree(E->getOperand(0)); 6908 // Use the minimum alignment of the gathered loads. 6909 Align CommonAlignment = LI->getAlign(); 6910 for (Value *V : E->Scalars) 6911 CommonAlignment = 6912 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 6913 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 6914 } 6915 Value *V = propagateMetadata(NewLI, E->Scalars); 6916 6917 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6918 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6919 V = ShuffleBuilder.finalize(V); 6920 E->VectorizedValue = V; 6921 ++NumVectorInstructions; 6922 return V; 6923 } 6924 case Instruction::Store: { 6925 auto *SI = cast<StoreInst>(VL0); 6926 unsigned AS = SI->getPointerAddressSpace(); 6927 6928 setInsertPointAfterBundle(E); 6929 6930 Value *VecValue = vectorizeTree(E->getOperand(0)); 6931 ShuffleBuilder.addMask(E->ReorderIndices); 6932 VecValue = ShuffleBuilder.finalize(VecValue); 6933 6934 Value *ScalarPtr = SI->getPointerOperand(); 6935 Value *VecPtr = Builder.CreateBitCast( 6936 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 6937 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 6938 SI->getAlign()); 6939 6940 // The pointer operand uses an in-tree scalar, so add the new BitCast to 6941 // ExternalUses to make sure that an extract will be generated in the 6942 // future. 6943 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 6944 // Find which lane we need to extract. 6945 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 6946 ExternalUses.push_back( 6947 ExternalUser(ScalarPtr, cast<User>(VecPtr), FoundLane)); 6948 } 6949 6950 Value *V = propagateMetadata(ST, E->Scalars); 6951 6952 E->VectorizedValue = V; 6953 ++NumVectorInstructions; 6954 return V; 6955 } 6956 case Instruction::GetElementPtr: { 6957 auto *GEP0 = cast<GetElementPtrInst>(VL0); 6958 setInsertPointAfterBundle(E); 6959 6960 Value *Op0 = vectorizeTree(E->getOperand(0)); 6961 6962 SmallVector<Value *> OpVecs; 6963 for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) { 6964 Value *OpVec = vectorizeTree(E->getOperand(J)); 6965 OpVecs.push_back(OpVec); 6966 } 6967 6968 Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs); 6969 if (Instruction *I = dyn_cast<Instruction>(V)) 6970 V = propagateMetadata(I, E->Scalars); 6971 6972 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6973 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6974 V = ShuffleBuilder.finalize(V); 6975 6976 E->VectorizedValue = V; 6977 ++NumVectorInstructions; 6978 6979 return V; 6980 } 6981 case Instruction::Call: { 6982 CallInst *CI = cast<CallInst>(VL0); 6983 setInsertPointAfterBundle(E); 6984 6985 Intrinsic::ID IID = Intrinsic::not_intrinsic; 6986 if (Function *FI = CI->getCalledFunction()) 6987 IID = FI->getIntrinsicID(); 6988 6989 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6990 6991 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 6992 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 6993 VecCallCosts.first <= VecCallCosts.second; 6994 6995 Value *ScalarArg = nullptr; 6996 std::vector<Value *> OpVecs; 6997 SmallVector<Type *, 2> TysForDecl = 6998 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 6999 for (int j = 0, e = CI->arg_size(); j < e; ++j) { 7000 ValueList OpVL; 7001 // Some intrinsics have scalar arguments. This argument should not be 7002 // vectorized. 7003 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 7004 CallInst *CEI = cast<CallInst>(VL0); 7005 ScalarArg = CEI->getArgOperand(j); 7006 OpVecs.push_back(CEI->getArgOperand(j)); 7007 if (hasVectorInstrinsicOverloadedScalarOpd(IID, j)) 7008 TysForDecl.push_back(ScalarArg->getType()); 7009 continue; 7010 } 7011 7012 Value *OpVec = vectorizeTree(E->getOperand(j)); 7013 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 7014 OpVecs.push_back(OpVec); 7015 } 7016 7017 Function *CF; 7018 if (!UseIntrinsic) { 7019 VFShape Shape = 7020 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 7021 VecTy->getNumElements())), 7022 false /*HasGlobalPred*/); 7023 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 7024 } else { 7025 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 7026 } 7027 7028 SmallVector<OperandBundleDef, 1> OpBundles; 7029 CI->getOperandBundlesAsDefs(OpBundles); 7030 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 7031 7032 // The scalar argument uses an in-tree scalar so we add the new vectorized 7033 // call to ExternalUses list to make sure that an extract will be 7034 // generated in the future. 7035 if (ScalarArg) { 7036 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 7037 // Find which lane we need to extract. 7038 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 7039 ExternalUses.push_back( 7040 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 7041 } 7042 } 7043 7044 propagateIRFlags(V, E->Scalars, VL0); 7045 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7046 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7047 V = ShuffleBuilder.finalize(V); 7048 7049 E->VectorizedValue = V; 7050 ++NumVectorInstructions; 7051 return V; 7052 } 7053 case Instruction::ShuffleVector: { 7054 assert(E->isAltShuffle() && 7055 ((Instruction::isBinaryOp(E->getOpcode()) && 7056 Instruction::isBinaryOp(E->getAltOpcode())) || 7057 (Instruction::isCast(E->getOpcode()) && 7058 Instruction::isCast(E->getAltOpcode())) || 7059 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 7060 "Invalid Shuffle Vector Operand"); 7061 7062 Value *LHS = nullptr, *RHS = nullptr; 7063 if (Instruction::isBinaryOp(E->getOpcode()) || isa<CmpInst>(VL0)) { 7064 setInsertPointAfterBundle(E); 7065 LHS = vectorizeTree(E->getOperand(0)); 7066 RHS = vectorizeTree(E->getOperand(1)); 7067 } else { 7068 setInsertPointAfterBundle(E); 7069 LHS = vectorizeTree(E->getOperand(0)); 7070 } 7071 7072 if (E->VectorizedValue) { 7073 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7074 return E->VectorizedValue; 7075 } 7076 7077 Value *V0, *V1; 7078 if (Instruction::isBinaryOp(E->getOpcode())) { 7079 V0 = Builder.CreateBinOp( 7080 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 7081 V1 = Builder.CreateBinOp( 7082 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 7083 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 7084 V0 = Builder.CreateCmp(CI0->getPredicate(), LHS, RHS); 7085 auto *AltCI = cast<CmpInst>(E->getAltOp()); 7086 CmpInst::Predicate AltPred = AltCI->getPredicate(); 7087 unsigned AltIdx = 7088 std::distance(E->Scalars.begin(), find(E->Scalars, AltCI)); 7089 if (AltCI->getOperand(0) != E->getOperand(0)[AltIdx]) 7090 AltPred = CmpInst::getSwappedPredicate(AltPred); 7091 V1 = Builder.CreateCmp(AltPred, LHS, RHS); 7092 } else { 7093 V0 = Builder.CreateCast( 7094 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 7095 V1 = Builder.CreateCast( 7096 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 7097 } 7098 // Add V0 and V1 to later analysis to try to find and remove matching 7099 // instruction, if any. 7100 for (Value *V : {V0, V1}) { 7101 if (auto *I = dyn_cast<Instruction>(V)) { 7102 GatherShuffleSeq.insert(I); 7103 CSEBlocks.insert(I->getParent()); 7104 } 7105 } 7106 7107 // Create shuffle to take alternate operations from the vector. 7108 // Also, gather up main and alt scalar ops to propagate IR flags to 7109 // each vector operation. 7110 ValueList OpScalars, AltScalars; 7111 SmallVector<int> Mask; 7112 buildSuffleEntryMask( 7113 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 7114 [E](Instruction *I) { 7115 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 7116 if (auto *CI0 = dyn_cast<CmpInst>(E->getMainOp())) { 7117 auto *AltCI0 = cast<CmpInst>(E->getAltOp()); 7118 auto *CI = cast<CmpInst>(I); 7119 CmpInst::Predicate P0 = CI0->getPredicate(); 7120 CmpInst::Predicate AltP0 = AltCI0->getPredicate(); 7121 assert(P0 != AltP0 && 7122 "Expected different main/alternate predicates."); 7123 CmpInst::Predicate AltP0Swapped = 7124 CmpInst::getSwappedPredicate(AltP0); 7125 CmpInst::Predicate CurrentPred = CI->getPredicate(); 7126 if (P0 == AltP0Swapped) 7127 return (P0 == CurrentPred && 7128 !areCompatibleCmpOps( 7129 CI0->getOperand(0), CI0->getOperand(1), 7130 CI->getOperand(0), CI->getOperand(1))) || 7131 (AltP0 == CurrentPred && 7132 !areCompatibleCmpOps( 7133 CI0->getOperand(0), CI0->getOperand(1), 7134 CI->getOperand(1), CI->getOperand(0))); 7135 return AltP0 == CurrentPred || AltP0Swapped == CurrentPred; 7136 } 7137 return I->getOpcode() == E->getAltOpcode(); 7138 }, 7139 Mask, &OpScalars, &AltScalars); 7140 7141 propagateIRFlags(V0, OpScalars); 7142 propagateIRFlags(V1, AltScalars); 7143 7144 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 7145 if (auto *I = dyn_cast<Instruction>(V)) { 7146 V = propagateMetadata(I, E->Scalars); 7147 GatherShuffleSeq.insert(I); 7148 CSEBlocks.insert(I->getParent()); 7149 } 7150 V = ShuffleBuilder.finalize(V); 7151 7152 E->VectorizedValue = V; 7153 ++NumVectorInstructions; 7154 7155 return V; 7156 } 7157 default: 7158 llvm_unreachable("unknown inst"); 7159 } 7160 return nullptr; 7161 } 7162 7163 Value *BoUpSLP::vectorizeTree() { 7164 ExtraValueToDebugLocsMap ExternallyUsedValues; 7165 return vectorizeTree(ExternallyUsedValues); 7166 } 7167 7168 Value * 7169 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 7170 // All blocks must be scheduled before any instructions are inserted. 7171 for (auto &BSIter : BlocksSchedules) { 7172 scheduleBlock(BSIter.second.get()); 7173 } 7174 7175 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7176 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 7177 7178 // If the vectorized tree can be rewritten in a smaller type, we truncate the 7179 // vectorized root. InstCombine will then rewrite the entire expression. We 7180 // sign extend the extracted values below. 7181 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 7182 if (MinBWs.count(ScalarRoot)) { 7183 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 7184 // If current instr is a phi and not the last phi, insert it after the 7185 // last phi node. 7186 if (isa<PHINode>(I)) 7187 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 7188 else 7189 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 7190 } 7191 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 7192 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 7193 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 7194 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 7195 VectorizableTree[0]->VectorizedValue = Trunc; 7196 } 7197 7198 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 7199 << " values .\n"); 7200 7201 // Extract all of the elements with the external uses. 7202 for (const auto &ExternalUse : ExternalUses) { 7203 Value *Scalar = ExternalUse.Scalar; 7204 llvm::User *User = ExternalUse.User; 7205 7206 // Skip users that we already RAUW. This happens when one instruction 7207 // has multiple uses of the same value. 7208 if (User && !is_contained(Scalar->users(), User)) 7209 continue; 7210 TreeEntry *E = getTreeEntry(Scalar); 7211 assert(E && "Invalid scalar"); 7212 assert(E->State != TreeEntry::NeedToGather && 7213 "Extracting from a gather list"); 7214 7215 Value *Vec = E->VectorizedValue; 7216 assert(Vec && "Can't find vectorizable value"); 7217 7218 Value *Lane = Builder.getInt32(ExternalUse.Lane); 7219 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 7220 if (Scalar->getType() != Vec->getType()) { 7221 Value *Ex; 7222 // "Reuse" the existing extract to improve final codegen. 7223 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 7224 Ex = Builder.CreateExtractElement(ES->getOperand(0), 7225 ES->getOperand(1)); 7226 } else { 7227 Ex = Builder.CreateExtractElement(Vec, Lane); 7228 } 7229 // If necessary, sign-extend or zero-extend ScalarRoot 7230 // to the larger type. 7231 if (!MinBWs.count(ScalarRoot)) 7232 return Ex; 7233 if (MinBWs[ScalarRoot].second) 7234 return Builder.CreateSExt(Ex, Scalar->getType()); 7235 return Builder.CreateZExt(Ex, Scalar->getType()); 7236 } 7237 assert(isa<FixedVectorType>(Scalar->getType()) && 7238 isa<InsertElementInst>(Scalar) && 7239 "In-tree scalar of vector type is not insertelement?"); 7240 return Vec; 7241 }; 7242 // If User == nullptr, the Scalar is used as extra arg. Generate 7243 // ExtractElement instruction and update the record for this scalar in 7244 // ExternallyUsedValues. 7245 if (!User) { 7246 assert(ExternallyUsedValues.count(Scalar) && 7247 "Scalar with nullptr as an external user must be registered in " 7248 "ExternallyUsedValues map"); 7249 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7250 Builder.SetInsertPoint(VecI->getParent(), 7251 std::next(VecI->getIterator())); 7252 } else { 7253 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7254 } 7255 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7256 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 7257 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 7258 auto It = ExternallyUsedValues.find(Scalar); 7259 assert(It != ExternallyUsedValues.end() && 7260 "Externally used scalar is not found in ExternallyUsedValues"); 7261 NewInstLocs.append(It->second); 7262 ExternallyUsedValues.erase(Scalar); 7263 // Required to update internally referenced instructions. 7264 Scalar->replaceAllUsesWith(NewInst); 7265 continue; 7266 } 7267 7268 // Generate extracts for out-of-tree users. 7269 // Find the insertion point for the extractelement lane. 7270 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7271 if (PHINode *PH = dyn_cast<PHINode>(User)) { 7272 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 7273 if (PH->getIncomingValue(i) == Scalar) { 7274 Instruction *IncomingTerminator = 7275 PH->getIncomingBlock(i)->getTerminator(); 7276 if (isa<CatchSwitchInst>(IncomingTerminator)) { 7277 Builder.SetInsertPoint(VecI->getParent(), 7278 std::next(VecI->getIterator())); 7279 } else { 7280 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 7281 } 7282 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7283 CSEBlocks.insert(PH->getIncomingBlock(i)); 7284 PH->setOperand(i, NewInst); 7285 } 7286 } 7287 } else { 7288 Builder.SetInsertPoint(cast<Instruction>(User)); 7289 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7290 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 7291 User->replaceUsesOfWith(Scalar, NewInst); 7292 } 7293 } else { 7294 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7295 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7296 CSEBlocks.insert(&F->getEntryBlock()); 7297 User->replaceUsesOfWith(Scalar, NewInst); 7298 } 7299 7300 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 7301 } 7302 7303 // For each vectorized value: 7304 for (auto &TEPtr : VectorizableTree) { 7305 TreeEntry *Entry = TEPtr.get(); 7306 7307 // No need to handle users of gathered values. 7308 if (Entry->State == TreeEntry::NeedToGather) 7309 continue; 7310 7311 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 7312 7313 // For each lane: 7314 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 7315 Value *Scalar = Entry->Scalars[Lane]; 7316 7317 #ifndef NDEBUG 7318 Type *Ty = Scalar->getType(); 7319 if (!Ty->isVoidTy()) { 7320 for (User *U : Scalar->users()) { 7321 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 7322 7323 // It is legal to delete users in the ignorelist. 7324 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) || 7325 (isa_and_nonnull<Instruction>(U) && 7326 isDeleted(cast<Instruction>(U)))) && 7327 "Deleting out-of-tree value"); 7328 } 7329 } 7330 #endif 7331 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 7332 eraseInstruction(cast<Instruction>(Scalar)); 7333 } 7334 } 7335 7336 Builder.ClearInsertionPoint(); 7337 InstrElementSize.clear(); 7338 7339 return VectorizableTree[0]->VectorizedValue; 7340 } 7341 7342 void BoUpSLP::optimizeGatherSequence() { 7343 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size() 7344 << " gather sequences instructions.\n"); 7345 // LICM InsertElementInst sequences. 7346 for (Instruction *I : GatherShuffleSeq) { 7347 if (isDeleted(I)) 7348 continue; 7349 7350 // Check if this block is inside a loop. 7351 Loop *L = LI->getLoopFor(I->getParent()); 7352 if (!L) 7353 continue; 7354 7355 // Check if it has a preheader. 7356 BasicBlock *PreHeader = L->getLoopPreheader(); 7357 if (!PreHeader) 7358 continue; 7359 7360 // If the vector or the element that we insert into it are 7361 // instructions that are defined in this basic block then we can't 7362 // hoist this instruction. 7363 if (any_of(I->operands(), [L](Value *V) { 7364 auto *OpI = dyn_cast<Instruction>(V); 7365 return OpI && L->contains(OpI); 7366 })) 7367 continue; 7368 7369 // We can hoist this instruction. Move it to the pre-header. 7370 I->moveBefore(PreHeader->getTerminator()); 7371 } 7372 7373 // Make a list of all reachable blocks in our CSE queue. 7374 SmallVector<const DomTreeNode *, 8> CSEWorkList; 7375 CSEWorkList.reserve(CSEBlocks.size()); 7376 for (BasicBlock *BB : CSEBlocks) 7377 if (DomTreeNode *N = DT->getNode(BB)) { 7378 assert(DT->isReachableFromEntry(N)); 7379 CSEWorkList.push_back(N); 7380 } 7381 7382 // Sort blocks by domination. This ensures we visit a block after all blocks 7383 // dominating it are visited. 7384 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 7385 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 7386 "Different nodes should have different DFS numbers"); 7387 return A->getDFSNumIn() < B->getDFSNumIn(); 7388 }); 7389 7390 // Less defined shuffles can be replaced by the more defined copies. 7391 // Between two shuffles one is less defined if it has the same vector operands 7392 // and its mask indeces are the same as in the first one or undefs. E.g. 7393 // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0, 7394 // poison, <0, 0, 0, 0>. 7395 auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2, 7396 SmallVectorImpl<int> &NewMask) { 7397 if (I1->getType() != I2->getType()) 7398 return false; 7399 auto *SI1 = dyn_cast<ShuffleVectorInst>(I1); 7400 auto *SI2 = dyn_cast<ShuffleVectorInst>(I2); 7401 if (!SI1 || !SI2) 7402 return I1->isIdenticalTo(I2); 7403 if (SI1->isIdenticalTo(SI2)) 7404 return true; 7405 for (int I = 0, E = SI1->getNumOperands(); I < E; ++I) 7406 if (SI1->getOperand(I) != SI2->getOperand(I)) 7407 return false; 7408 // Check if the second instruction is more defined than the first one. 7409 NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end()); 7410 ArrayRef<int> SM1 = SI1->getShuffleMask(); 7411 // Count trailing undefs in the mask to check the final number of used 7412 // registers. 7413 unsigned LastUndefsCnt = 0; 7414 for (int I = 0, E = NewMask.size(); I < E; ++I) { 7415 if (SM1[I] == UndefMaskElem) 7416 ++LastUndefsCnt; 7417 else 7418 LastUndefsCnt = 0; 7419 if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem && 7420 NewMask[I] != SM1[I]) 7421 return false; 7422 if (NewMask[I] == UndefMaskElem) 7423 NewMask[I] = SM1[I]; 7424 } 7425 // Check if the last undefs actually change the final number of used vector 7426 // registers. 7427 return SM1.size() - LastUndefsCnt > 1 && 7428 TTI->getNumberOfParts(SI1->getType()) == 7429 TTI->getNumberOfParts( 7430 FixedVectorType::get(SI1->getType()->getElementType(), 7431 SM1.size() - LastUndefsCnt)); 7432 }; 7433 // Perform O(N^2) search over the gather/shuffle sequences and merge identical 7434 // instructions. TODO: We can further optimize this scan if we split the 7435 // instructions into different buckets based on the insert lane. 7436 SmallVector<Instruction *, 16> Visited; 7437 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 7438 assert(*I && 7439 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 7440 "Worklist not sorted properly!"); 7441 BasicBlock *BB = (*I)->getBlock(); 7442 // For all instructions in blocks containing gather sequences: 7443 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 7444 if (isDeleted(&In)) 7445 continue; 7446 if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) && 7447 !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In)) 7448 continue; 7449 7450 // Check if we can replace this instruction with any of the 7451 // visited instructions. 7452 bool Replaced = false; 7453 for (Instruction *&V : Visited) { 7454 SmallVector<int> NewMask; 7455 if (IsIdenticalOrLessDefined(&In, V, NewMask) && 7456 DT->dominates(V->getParent(), In.getParent())) { 7457 In.replaceAllUsesWith(V); 7458 eraseInstruction(&In); 7459 if (auto *SI = dyn_cast<ShuffleVectorInst>(V)) 7460 if (!NewMask.empty()) 7461 SI->setShuffleMask(NewMask); 7462 Replaced = true; 7463 break; 7464 } 7465 if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) && 7466 GatherShuffleSeq.contains(V) && 7467 IsIdenticalOrLessDefined(V, &In, NewMask) && 7468 DT->dominates(In.getParent(), V->getParent())) { 7469 In.moveAfter(V); 7470 V->replaceAllUsesWith(&In); 7471 eraseInstruction(V); 7472 if (auto *SI = dyn_cast<ShuffleVectorInst>(&In)) 7473 if (!NewMask.empty()) 7474 SI->setShuffleMask(NewMask); 7475 V = &In; 7476 Replaced = true; 7477 break; 7478 } 7479 } 7480 if (!Replaced) { 7481 assert(!is_contained(Visited, &In)); 7482 Visited.push_back(&In); 7483 } 7484 } 7485 } 7486 CSEBlocks.clear(); 7487 GatherShuffleSeq.clear(); 7488 } 7489 7490 BoUpSLP::ScheduleData * 7491 BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) { 7492 ScheduleData *Bundle = nullptr; 7493 ScheduleData *PrevInBundle = nullptr; 7494 for (Value *V : VL) { 7495 ScheduleData *BundleMember = getScheduleData(V); 7496 assert(BundleMember && 7497 "no ScheduleData for bundle member " 7498 "(maybe not in same basic block)"); 7499 assert(BundleMember->isSchedulingEntity() && 7500 "bundle member already part of other bundle"); 7501 if (PrevInBundle) { 7502 PrevInBundle->NextInBundle = BundleMember; 7503 } else { 7504 Bundle = BundleMember; 7505 } 7506 BundleMember->UnscheduledDepsInBundle = 0; 7507 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 7508 7509 // Group the instructions to a bundle. 7510 BundleMember->FirstInBundle = Bundle; 7511 PrevInBundle = BundleMember; 7512 } 7513 assert(Bundle && "Failed to find schedule bundle"); 7514 return Bundle; 7515 } 7516 7517 // Groups the instructions to a bundle (which is then a single scheduling entity) 7518 // and schedules instructions until the bundle gets ready. 7519 Optional<BoUpSLP::ScheduleData *> 7520 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 7521 const InstructionsState &S) { 7522 // No need to schedule PHIs, insertelement, extractelement and extractvalue 7523 // instructions. 7524 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue)) 7525 return nullptr; 7526 7527 // Initialize the instruction bundle. 7528 Instruction *OldScheduleEnd = ScheduleEnd; 7529 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 7530 7531 auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule, 7532 ScheduleData *Bundle) { 7533 // The scheduling region got new instructions at the lower end (or it is a 7534 // new region for the first bundle). This makes it necessary to 7535 // recalculate all dependencies. 7536 // It is seldom that this needs to be done a second time after adding the 7537 // initial bundle to the region. 7538 if (ScheduleEnd != OldScheduleEnd) { 7539 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 7540 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 7541 ReSchedule = true; 7542 } 7543 if (Bundle) { 7544 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 7545 << " in block " << BB->getName() << "\n"); 7546 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 7547 } 7548 7549 if (ReSchedule) { 7550 resetSchedule(); 7551 initialFillReadyList(ReadyInsts); 7552 } 7553 7554 // Now try to schedule the new bundle or (if no bundle) just calculate 7555 // dependencies. As soon as the bundle is "ready" it means that there are no 7556 // cyclic dependencies and we can schedule it. Note that's important that we 7557 // don't "schedule" the bundle yet (see cancelScheduling). 7558 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 7559 !ReadyInsts.empty()) { 7560 ScheduleData *Picked = ReadyInsts.pop_back_val(); 7561 assert(Picked->isSchedulingEntity() && Picked->isReady() && 7562 "must be ready to schedule"); 7563 schedule(Picked, ReadyInsts); 7564 } 7565 }; 7566 7567 // Make sure that the scheduling region contains all 7568 // instructions of the bundle. 7569 for (Value *V : VL) { 7570 if (!extendSchedulingRegion(V, S)) { 7571 // If the scheduling region got new instructions at the lower end (or it 7572 // is a new region for the first bundle). This makes it necessary to 7573 // recalculate all dependencies. 7574 // Otherwise the compiler may crash trying to incorrectly calculate 7575 // dependencies and emit instruction in the wrong order at the actual 7576 // scheduling. 7577 TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr); 7578 return None; 7579 } 7580 } 7581 7582 bool ReSchedule = false; 7583 for (Value *V : VL) { 7584 ScheduleData *BundleMember = getScheduleData(V); 7585 assert(BundleMember && 7586 "no ScheduleData for bundle member (maybe not in same basic block)"); 7587 7588 // Make sure we don't leave the pieces of the bundle in the ready list when 7589 // whole bundle might not be ready. 7590 ReadyInsts.remove(BundleMember); 7591 7592 if (!BundleMember->IsScheduled) 7593 continue; 7594 // A bundle member was scheduled as single instruction before and now 7595 // needs to be scheduled as part of the bundle. We just get rid of the 7596 // existing schedule. 7597 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 7598 << " was already scheduled\n"); 7599 ReSchedule = true; 7600 } 7601 7602 auto *Bundle = buildBundle(VL); 7603 TryScheduleBundleImpl(ReSchedule, Bundle); 7604 if (!Bundle->isReady()) { 7605 cancelScheduling(VL, S.OpValue); 7606 return None; 7607 } 7608 return Bundle; 7609 } 7610 7611 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 7612 Value *OpValue) { 7613 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue)) 7614 return; 7615 7616 ScheduleData *Bundle = getScheduleData(OpValue); 7617 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 7618 assert(!Bundle->IsScheduled && 7619 "Can't cancel bundle which is already scheduled"); 7620 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 7621 "tried to unbundle something which is not a bundle"); 7622 7623 // Remove the bundle from the ready list. 7624 if (Bundle->isReady()) 7625 ReadyInsts.remove(Bundle); 7626 7627 // Un-bundle: make single instructions out of the bundle. 7628 ScheduleData *BundleMember = Bundle; 7629 while (BundleMember) { 7630 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 7631 BundleMember->FirstInBundle = BundleMember; 7632 ScheduleData *Next = BundleMember->NextInBundle; 7633 BundleMember->NextInBundle = nullptr; 7634 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 7635 if (BundleMember->UnscheduledDepsInBundle == 0) { 7636 ReadyInsts.insert(BundleMember); 7637 } 7638 BundleMember = Next; 7639 } 7640 } 7641 7642 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 7643 // Allocate a new ScheduleData for the instruction. 7644 if (ChunkPos >= ChunkSize) { 7645 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 7646 ChunkPos = 0; 7647 } 7648 return &(ScheduleDataChunks.back()[ChunkPos++]); 7649 } 7650 7651 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 7652 const InstructionsState &S) { 7653 if (getScheduleData(V, isOneOf(S, V))) 7654 return true; 7655 Instruction *I = dyn_cast<Instruction>(V); 7656 assert(I && "bundle member must be an instruction"); 7657 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 7658 "phi nodes/insertelements/extractelements/extractvalues don't need to " 7659 "be scheduled"); 7660 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 7661 ScheduleData *ISD = getScheduleData(I); 7662 if (!ISD) 7663 return false; 7664 assert(isInSchedulingRegion(ISD) && 7665 "ScheduleData not in scheduling region"); 7666 ScheduleData *SD = allocateScheduleDataChunks(); 7667 SD->Inst = I; 7668 SD->init(SchedulingRegionID, S.OpValue); 7669 ExtraScheduleDataMap[I][S.OpValue] = SD; 7670 return true; 7671 }; 7672 if (CheckSheduleForI(I)) 7673 return true; 7674 if (!ScheduleStart) { 7675 // It's the first instruction in the new region. 7676 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 7677 ScheduleStart = I; 7678 ScheduleEnd = I->getNextNode(); 7679 if (isOneOf(S, I) != I) 7680 CheckSheduleForI(I); 7681 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7682 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 7683 return true; 7684 } 7685 // Search up and down at the same time, because we don't know if the new 7686 // instruction is above or below the existing scheduling region. 7687 BasicBlock::reverse_iterator UpIter = 7688 ++ScheduleStart->getIterator().getReverse(); 7689 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 7690 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 7691 BasicBlock::iterator LowerEnd = BB->end(); 7692 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 7693 &*DownIter != I) { 7694 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 7695 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 7696 return false; 7697 } 7698 7699 ++UpIter; 7700 ++DownIter; 7701 } 7702 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 7703 assert(I->getParent() == ScheduleStart->getParent() && 7704 "Instruction is in wrong basic block."); 7705 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 7706 ScheduleStart = I; 7707 if (isOneOf(S, I) != I) 7708 CheckSheduleForI(I); 7709 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 7710 << "\n"); 7711 return true; 7712 } 7713 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 7714 "Expected to reach top of the basic block or instruction down the " 7715 "lower end."); 7716 assert(I->getParent() == ScheduleEnd->getParent() && 7717 "Instruction is in wrong basic block."); 7718 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 7719 nullptr); 7720 ScheduleEnd = I->getNextNode(); 7721 if (isOneOf(S, I) != I) 7722 CheckSheduleForI(I); 7723 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7724 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 7725 return true; 7726 } 7727 7728 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 7729 Instruction *ToI, 7730 ScheduleData *PrevLoadStore, 7731 ScheduleData *NextLoadStore) { 7732 ScheduleData *CurrentLoadStore = PrevLoadStore; 7733 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 7734 ScheduleData *SD = ScheduleDataMap[I]; 7735 if (!SD) { 7736 SD = allocateScheduleDataChunks(); 7737 ScheduleDataMap[I] = SD; 7738 SD->Inst = I; 7739 } 7740 assert(!isInSchedulingRegion(SD) && 7741 "new ScheduleData already in scheduling region"); 7742 SD->init(SchedulingRegionID, I); 7743 7744 if (I->mayReadOrWriteMemory() && 7745 (!isa<IntrinsicInst>(I) || 7746 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 7747 cast<IntrinsicInst>(I)->getIntrinsicID() != 7748 Intrinsic::pseudoprobe))) { 7749 // Update the linked list of memory accessing instructions. 7750 if (CurrentLoadStore) { 7751 CurrentLoadStore->NextLoadStore = SD; 7752 } else { 7753 FirstLoadStoreInRegion = SD; 7754 } 7755 CurrentLoadStore = SD; 7756 } 7757 } 7758 if (NextLoadStore) { 7759 if (CurrentLoadStore) 7760 CurrentLoadStore->NextLoadStore = NextLoadStore; 7761 } else { 7762 LastLoadStoreInRegion = CurrentLoadStore; 7763 } 7764 } 7765 7766 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 7767 bool InsertInReadyList, 7768 BoUpSLP *SLP) { 7769 assert(SD->isSchedulingEntity()); 7770 7771 SmallVector<ScheduleData *, 10> WorkList; 7772 WorkList.push_back(SD); 7773 7774 while (!WorkList.empty()) { 7775 ScheduleData *SD = WorkList.pop_back_val(); 7776 for (ScheduleData *BundleMember = SD; BundleMember; 7777 BundleMember = BundleMember->NextInBundle) { 7778 assert(isInSchedulingRegion(BundleMember)); 7779 if (BundleMember->hasValidDependencies()) 7780 continue; 7781 7782 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 7783 << "\n"); 7784 BundleMember->Dependencies = 0; 7785 BundleMember->resetUnscheduledDeps(); 7786 7787 // Handle def-use chain dependencies. 7788 if (BundleMember->OpValue != BundleMember->Inst) { 7789 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 7790 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 7791 BundleMember->Dependencies++; 7792 ScheduleData *DestBundle = UseSD->FirstInBundle; 7793 if (!DestBundle->IsScheduled) 7794 BundleMember->incrementUnscheduledDeps(1); 7795 if (!DestBundle->hasValidDependencies()) 7796 WorkList.push_back(DestBundle); 7797 } 7798 } else { 7799 for (User *U : BundleMember->Inst->users()) { 7800 assert(isa<Instruction>(U) && 7801 "user of instruction must be instruction"); 7802 ScheduleData *UseSD = getScheduleData(U); 7803 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 7804 BundleMember->Dependencies++; 7805 ScheduleData *DestBundle = UseSD->FirstInBundle; 7806 if (!DestBundle->IsScheduled) 7807 BundleMember->incrementUnscheduledDeps(1); 7808 if (!DestBundle->hasValidDependencies()) 7809 WorkList.push_back(DestBundle); 7810 } 7811 } 7812 } 7813 7814 // Handle the memory dependencies (if any). 7815 ScheduleData *DepDest = BundleMember->NextLoadStore; 7816 if (!DepDest) 7817 continue; 7818 Instruction *SrcInst = BundleMember->Inst; 7819 assert(SrcInst->mayReadOrWriteMemory() && 7820 "NextLoadStore list for non memory effecting bundle?"); 7821 MemoryLocation SrcLoc = getLocation(SrcInst); 7822 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 7823 unsigned numAliased = 0; 7824 unsigned DistToSrc = 1; 7825 7826 for ( ; DepDest; DepDest = DepDest->NextLoadStore) { 7827 assert(isInSchedulingRegion(DepDest)); 7828 7829 // We have two limits to reduce the complexity: 7830 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 7831 // SLP->isAliased (which is the expensive part in this loop). 7832 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 7833 // the whole loop (even if the loop is fast, it's quadratic). 7834 // It's important for the loop break condition (see below) to 7835 // check this limit even between two read-only instructions. 7836 if (DistToSrc >= MaxMemDepDistance || 7837 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 7838 (numAliased >= AliasedCheckLimit || 7839 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 7840 7841 // We increment the counter only if the locations are aliased 7842 // (instead of counting all alias checks). This gives a better 7843 // balance between reduced runtime and accurate dependencies. 7844 numAliased++; 7845 7846 DepDest->MemoryDependencies.push_back(BundleMember); 7847 BundleMember->Dependencies++; 7848 ScheduleData *DestBundle = DepDest->FirstInBundle; 7849 if (!DestBundle->IsScheduled) { 7850 BundleMember->incrementUnscheduledDeps(1); 7851 } 7852 if (!DestBundle->hasValidDependencies()) { 7853 WorkList.push_back(DestBundle); 7854 } 7855 } 7856 7857 // Example, explaining the loop break condition: Let's assume our 7858 // starting instruction is i0 and MaxMemDepDistance = 3. 7859 // 7860 // +--------v--v--v 7861 // i0,i1,i2,i3,i4,i5,i6,i7,i8 7862 // +--------^--^--^ 7863 // 7864 // MaxMemDepDistance let us stop alias-checking at i3 and we add 7865 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 7866 // Previously we already added dependencies from i3 to i6,i7,i8 7867 // (because of MaxMemDepDistance). As we added a dependency from 7868 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 7869 // and we can abort this loop at i6. 7870 if (DistToSrc >= 2 * MaxMemDepDistance) 7871 break; 7872 DistToSrc++; 7873 } 7874 } 7875 if (InsertInReadyList && SD->isReady()) { 7876 ReadyInsts.insert(SD); 7877 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 7878 << "\n"); 7879 } 7880 } 7881 } 7882 7883 void BoUpSLP::BlockScheduling::resetSchedule() { 7884 assert(ScheduleStart && 7885 "tried to reset schedule on block which has not been scheduled"); 7886 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 7887 doForAllOpcodes(I, [&](ScheduleData *SD) { 7888 assert(isInSchedulingRegion(SD) && 7889 "ScheduleData not in scheduling region"); 7890 SD->IsScheduled = false; 7891 SD->resetUnscheduledDeps(); 7892 }); 7893 } 7894 ReadyInsts.clear(); 7895 } 7896 7897 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 7898 if (!BS->ScheduleStart) 7899 return; 7900 7901 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 7902 7903 BS->resetSchedule(); 7904 7905 // For the real scheduling we use a more sophisticated ready-list: it is 7906 // sorted by the original instruction location. This lets the final schedule 7907 // be as close as possible to the original instruction order. 7908 struct ScheduleDataCompare { 7909 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 7910 return SD2->SchedulingPriority < SD1->SchedulingPriority; 7911 } 7912 }; 7913 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 7914 7915 // Ensure that all dependency data is updated and fill the ready-list with 7916 // initial instructions. 7917 int Idx = 0; 7918 int NumToSchedule = 0; 7919 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 7920 I = I->getNextNode()) { 7921 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 7922 assert((isVectorLikeInstWithConstOps(SD->Inst) || 7923 SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr)) && 7924 "scheduler and vectorizer bundle mismatch"); 7925 SD->FirstInBundle->SchedulingPriority = Idx++; 7926 if (SD->isSchedulingEntity()) { 7927 BS->calculateDependencies(SD, false, this); 7928 NumToSchedule++; 7929 } 7930 }); 7931 } 7932 BS->initialFillReadyList(ReadyInsts); 7933 7934 Instruction *LastScheduledInst = BS->ScheduleEnd; 7935 7936 // Do the "real" scheduling. 7937 while (!ReadyInsts.empty()) { 7938 ScheduleData *picked = *ReadyInsts.begin(); 7939 ReadyInsts.erase(ReadyInsts.begin()); 7940 7941 // Move the scheduled instruction(s) to their dedicated places, if not 7942 // there yet. 7943 for (ScheduleData *BundleMember = picked; BundleMember; 7944 BundleMember = BundleMember->NextInBundle) { 7945 Instruction *pickedInst = BundleMember->Inst; 7946 if (pickedInst->getNextNode() != LastScheduledInst) 7947 pickedInst->moveBefore(LastScheduledInst); 7948 LastScheduledInst = pickedInst; 7949 } 7950 7951 BS->schedule(picked, ReadyInsts); 7952 NumToSchedule--; 7953 } 7954 assert(NumToSchedule == 0 && "could not schedule all instructions"); 7955 7956 // Check that we didn't break any of our invariants. 7957 #ifdef EXPENSIVE_CHECKS 7958 BS->verify(); 7959 #endif 7960 7961 // Avoid duplicate scheduling of the block. 7962 BS->ScheduleStart = nullptr; 7963 } 7964 7965 unsigned BoUpSLP::getVectorElementSize(Value *V) { 7966 // If V is a store, just return the width of the stored value (or value 7967 // truncated just before storing) without traversing the expression tree. 7968 // This is the common case. 7969 if (auto *Store = dyn_cast<StoreInst>(V)) { 7970 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 7971 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 7972 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 7973 } 7974 7975 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 7976 return getVectorElementSize(IEI->getOperand(1)); 7977 7978 auto E = InstrElementSize.find(V); 7979 if (E != InstrElementSize.end()) 7980 return E->second; 7981 7982 // If V is not a store, we can traverse the expression tree to find loads 7983 // that feed it. The type of the loaded value may indicate a more suitable 7984 // width than V's type. We want to base the vector element size on the width 7985 // of memory operations where possible. 7986 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 7987 SmallPtrSet<Instruction *, 16> Visited; 7988 if (auto *I = dyn_cast<Instruction>(V)) { 7989 Worklist.emplace_back(I, I->getParent()); 7990 Visited.insert(I); 7991 } 7992 7993 // Traverse the expression tree in bottom-up order looking for loads. If we 7994 // encounter an instruction we don't yet handle, we give up. 7995 auto Width = 0u; 7996 while (!Worklist.empty()) { 7997 Instruction *I; 7998 BasicBlock *Parent; 7999 std::tie(I, Parent) = Worklist.pop_back_val(); 8000 8001 // We should only be looking at scalar instructions here. If the current 8002 // instruction has a vector type, skip. 8003 auto *Ty = I->getType(); 8004 if (isa<VectorType>(Ty)) 8005 continue; 8006 8007 // If the current instruction is a load, update MaxWidth to reflect the 8008 // width of the loaded value. 8009 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 8010 isa<ExtractValueInst>(I)) 8011 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 8012 8013 // Otherwise, we need to visit the operands of the instruction. We only 8014 // handle the interesting cases from buildTree here. If an operand is an 8015 // instruction we haven't yet visited and from the same basic block as the 8016 // user or the use is a PHI node, we add it to the worklist. 8017 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 8018 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 8019 isa<UnaryOperator>(I)) { 8020 for (Use &U : I->operands()) 8021 if (auto *J = dyn_cast<Instruction>(U.get())) 8022 if (Visited.insert(J).second && 8023 (isa<PHINode>(I) || J->getParent() == Parent)) 8024 Worklist.emplace_back(J, J->getParent()); 8025 } else { 8026 break; 8027 } 8028 } 8029 8030 // If we didn't encounter a memory access in the expression tree, or if we 8031 // gave up for some reason, just return the width of V. Otherwise, return the 8032 // maximum width we found. 8033 if (!Width) { 8034 if (auto *CI = dyn_cast<CmpInst>(V)) 8035 V = CI->getOperand(0); 8036 Width = DL->getTypeSizeInBits(V->getType()); 8037 } 8038 8039 for (Instruction *I : Visited) 8040 InstrElementSize[I] = Width; 8041 8042 return Width; 8043 } 8044 8045 // Determine if a value V in a vectorizable expression Expr can be demoted to a 8046 // smaller type with a truncation. We collect the values that will be demoted 8047 // in ToDemote and additional roots that require investigating in Roots. 8048 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 8049 SmallVectorImpl<Value *> &ToDemote, 8050 SmallVectorImpl<Value *> &Roots) { 8051 // We can always demote constants. 8052 if (isa<Constant>(V)) { 8053 ToDemote.push_back(V); 8054 return true; 8055 } 8056 8057 // If the value is not an instruction in the expression with only one use, it 8058 // cannot be demoted. 8059 auto *I = dyn_cast<Instruction>(V); 8060 if (!I || !I->hasOneUse() || !Expr.count(I)) 8061 return false; 8062 8063 switch (I->getOpcode()) { 8064 8065 // We can always demote truncations and extensions. Since truncations can 8066 // seed additional demotion, we save the truncated value. 8067 case Instruction::Trunc: 8068 Roots.push_back(I->getOperand(0)); 8069 break; 8070 case Instruction::ZExt: 8071 case Instruction::SExt: 8072 if (isa<ExtractElementInst>(I->getOperand(0)) || 8073 isa<InsertElementInst>(I->getOperand(0))) 8074 return false; 8075 break; 8076 8077 // We can demote certain binary operations if we can demote both of their 8078 // operands. 8079 case Instruction::Add: 8080 case Instruction::Sub: 8081 case Instruction::Mul: 8082 case Instruction::And: 8083 case Instruction::Or: 8084 case Instruction::Xor: 8085 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 8086 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 8087 return false; 8088 break; 8089 8090 // We can demote selects if we can demote their true and false values. 8091 case Instruction::Select: { 8092 SelectInst *SI = cast<SelectInst>(I); 8093 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 8094 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 8095 return false; 8096 break; 8097 } 8098 8099 // We can demote phis if we can demote all their incoming operands. Note that 8100 // we don't need to worry about cycles since we ensure single use above. 8101 case Instruction::PHI: { 8102 PHINode *PN = cast<PHINode>(I); 8103 for (Value *IncValue : PN->incoming_values()) 8104 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 8105 return false; 8106 break; 8107 } 8108 8109 // Otherwise, conservatively give up. 8110 default: 8111 return false; 8112 } 8113 8114 // Record the value that we can demote. 8115 ToDemote.push_back(V); 8116 return true; 8117 } 8118 8119 void BoUpSLP::computeMinimumValueSizes() { 8120 // If there are no external uses, the expression tree must be rooted by a 8121 // store. We can't demote in-memory values, so there is nothing to do here. 8122 if (ExternalUses.empty()) 8123 return; 8124 8125 // We only attempt to truncate integer expressions. 8126 auto &TreeRoot = VectorizableTree[0]->Scalars; 8127 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 8128 if (!TreeRootIT) 8129 return; 8130 8131 // If the expression is not rooted by a store, these roots should have 8132 // external uses. We will rely on InstCombine to rewrite the expression in 8133 // the narrower type. However, InstCombine only rewrites single-use values. 8134 // This means that if a tree entry other than a root is used externally, it 8135 // must have multiple uses and InstCombine will not rewrite it. The code 8136 // below ensures that only the roots are used externally. 8137 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 8138 for (auto &EU : ExternalUses) 8139 if (!Expr.erase(EU.Scalar)) 8140 return; 8141 if (!Expr.empty()) 8142 return; 8143 8144 // Collect the scalar values of the vectorizable expression. We will use this 8145 // context to determine which values can be demoted. If we see a truncation, 8146 // we mark it as seeding another demotion. 8147 for (auto &EntryPtr : VectorizableTree) 8148 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 8149 8150 // Ensure the roots of the vectorizable tree don't form a cycle. They must 8151 // have a single external user that is not in the vectorizable tree. 8152 for (auto *Root : TreeRoot) 8153 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 8154 return; 8155 8156 // Conservatively determine if we can actually truncate the roots of the 8157 // expression. Collect the values that can be demoted in ToDemote and 8158 // additional roots that require investigating in Roots. 8159 SmallVector<Value *, 32> ToDemote; 8160 SmallVector<Value *, 4> Roots; 8161 for (auto *Root : TreeRoot) 8162 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 8163 return; 8164 8165 // The maximum bit width required to represent all the values that can be 8166 // demoted without loss of precision. It would be safe to truncate the roots 8167 // of the expression to this width. 8168 auto MaxBitWidth = 8u; 8169 8170 // We first check if all the bits of the roots are demanded. If they're not, 8171 // we can truncate the roots to this narrower type. 8172 for (auto *Root : TreeRoot) { 8173 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 8174 MaxBitWidth = std::max<unsigned>( 8175 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 8176 } 8177 8178 // True if the roots can be zero-extended back to their original type, rather 8179 // than sign-extended. We know that if the leading bits are not demanded, we 8180 // can safely zero-extend. So we initialize IsKnownPositive to True. 8181 bool IsKnownPositive = true; 8182 8183 // If all the bits of the roots are demanded, we can try a little harder to 8184 // compute a narrower type. This can happen, for example, if the roots are 8185 // getelementptr indices. InstCombine promotes these indices to the pointer 8186 // width. Thus, all their bits are technically demanded even though the 8187 // address computation might be vectorized in a smaller type. 8188 // 8189 // We start by looking at each entry that can be demoted. We compute the 8190 // maximum bit width required to store the scalar by using ValueTracking to 8191 // compute the number of high-order bits we can truncate. 8192 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 8193 llvm::all_of(TreeRoot, [](Value *R) { 8194 assert(R->hasOneUse() && "Root should have only one use!"); 8195 return isa<GetElementPtrInst>(R->user_back()); 8196 })) { 8197 MaxBitWidth = 8u; 8198 8199 // Determine if the sign bit of all the roots is known to be zero. If not, 8200 // IsKnownPositive is set to False. 8201 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 8202 KnownBits Known = computeKnownBits(R, *DL); 8203 return Known.isNonNegative(); 8204 }); 8205 8206 // Determine the maximum number of bits required to store the scalar 8207 // values. 8208 for (auto *Scalar : ToDemote) { 8209 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 8210 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 8211 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 8212 } 8213 8214 // If we can't prove that the sign bit is zero, we must add one to the 8215 // maximum bit width to account for the unknown sign bit. This preserves 8216 // the existing sign bit so we can safely sign-extend the root back to the 8217 // original type. Otherwise, if we know the sign bit is zero, we will 8218 // zero-extend the root instead. 8219 // 8220 // FIXME: This is somewhat suboptimal, as there will be cases where adding 8221 // one to the maximum bit width will yield a larger-than-necessary 8222 // type. In general, we need to add an extra bit only if we can't 8223 // prove that the upper bit of the original type is equal to the 8224 // upper bit of the proposed smaller type. If these two bits are the 8225 // same (either zero or one) we know that sign-extending from the 8226 // smaller type will result in the same value. Here, since we can't 8227 // yet prove this, we are just making the proposed smaller type 8228 // larger to ensure correctness. 8229 if (!IsKnownPositive) 8230 ++MaxBitWidth; 8231 } 8232 8233 // Round MaxBitWidth up to the next power-of-two. 8234 if (!isPowerOf2_64(MaxBitWidth)) 8235 MaxBitWidth = NextPowerOf2(MaxBitWidth); 8236 8237 // If the maximum bit width we compute is less than the with of the roots' 8238 // type, we can proceed with the narrowing. Otherwise, do nothing. 8239 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 8240 return; 8241 8242 // If we can truncate the root, we must collect additional values that might 8243 // be demoted as a result. That is, those seeded by truncations we will 8244 // modify. 8245 while (!Roots.empty()) 8246 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 8247 8248 // Finally, map the values we can demote to the maximum bit with we computed. 8249 for (auto *Scalar : ToDemote) 8250 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 8251 } 8252 8253 namespace { 8254 8255 /// The SLPVectorizer Pass. 8256 struct SLPVectorizer : public FunctionPass { 8257 SLPVectorizerPass Impl; 8258 8259 /// Pass identification, replacement for typeid 8260 static char ID; 8261 8262 explicit SLPVectorizer() : FunctionPass(ID) { 8263 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 8264 } 8265 8266 bool doInitialization(Module &M) override { return false; } 8267 8268 bool runOnFunction(Function &F) override { 8269 if (skipFunction(F)) 8270 return false; 8271 8272 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 8273 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 8274 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 8275 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 8276 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 8277 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 8278 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 8279 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 8280 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 8281 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 8282 8283 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8284 } 8285 8286 void getAnalysisUsage(AnalysisUsage &AU) const override { 8287 FunctionPass::getAnalysisUsage(AU); 8288 AU.addRequired<AssumptionCacheTracker>(); 8289 AU.addRequired<ScalarEvolutionWrapperPass>(); 8290 AU.addRequired<AAResultsWrapperPass>(); 8291 AU.addRequired<TargetTransformInfoWrapperPass>(); 8292 AU.addRequired<LoopInfoWrapperPass>(); 8293 AU.addRequired<DominatorTreeWrapperPass>(); 8294 AU.addRequired<DemandedBitsWrapperPass>(); 8295 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 8296 AU.addRequired<InjectTLIMappingsLegacy>(); 8297 AU.addPreserved<LoopInfoWrapperPass>(); 8298 AU.addPreserved<DominatorTreeWrapperPass>(); 8299 AU.addPreserved<AAResultsWrapperPass>(); 8300 AU.addPreserved<GlobalsAAWrapperPass>(); 8301 AU.setPreservesCFG(); 8302 } 8303 }; 8304 8305 } // end anonymous namespace 8306 8307 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 8308 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 8309 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 8310 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 8311 auto *AA = &AM.getResult<AAManager>(F); 8312 auto *LI = &AM.getResult<LoopAnalysis>(F); 8313 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 8314 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 8315 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 8316 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8317 8318 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8319 if (!Changed) 8320 return PreservedAnalyses::all(); 8321 8322 PreservedAnalyses PA; 8323 PA.preserveSet<CFGAnalyses>(); 8324 return PA; 8325 } 8326 8327 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 8328 TargetTransformInfo *TTI_, 8329 TargetLibraryInfo *TLI_, AAResults *AA_, 8330 LoopInfo *LI_, DominatorTree *DT_, 8331 AssumptionCache *AC_, DemandedBits *DB_, 8332 OptimizationRemarkEmitter *ORE_) { 8333 if (!RunSLPVectorization) 8334 return false; 8335 SE = SE_; 8336 TTI = TTI_; 8337 TLI = TLI_; 8338 AA = AA_; 8339 LI = LI_; 8340 DT = DT_; 8341 AC = AC_; 8342 DB = DB_; 8343 DL = &F.getParent()->getDataLayout(); 8344 8345 Stores.clear(); 8346 GEPs.clear(); 8347 bool Changed = false; 8348 8349 // If the target claims to have no vector registers don't attempt 8350 // vectorization. 8351 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) { 8352 LLVM_DEBUG( 8353 dbgs() << "SLP: Didn't find any vector registers for target, abort.\n"); 8354 return false; 8355 } 8356 8357 // Don't vectorize when the attribute NoImplicitFloat is used. 8358 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 8359 return false; 8360 8361 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 8362 8363 // Use the bottom up slp vectorizer to construct chains that start with 8364 // store instructions. 8365 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 8366 8367 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 8368 // delete instructions. 8369 8370 // Update DFS numbers now so that we can use them for ordering. 8371 DT->updateDFSNumbers(); 8372 8373 // Scan the blocks in the function in post order. 8374 for (auto BB : post_order(&F.getEntryBlock())) { 8375 collectSeedInstructions(BB); 8376 8377 // Vectorize trees that end at stores. 8378 if (!Stores.empty()) { 8379 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 8380 << " underlying objects.\n"); 8381 Changed |= vectorizeStoreChains(R); 8382 } 8383 8384 // Vectorize trees that end at reductions. 8385 Changed |= vectorizeChainsInBlock(BB, R); 8386 8387 // Vectorize the index computations of getelementptr instructions. This 8388 // is primarily intended to catch gather-like idioms ending at 8389 // non-consecutive loads. 8390 if (!GEPs.empty()) { 8391 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 8392 << " underlying objects.\n"); 8393 Changed |= vectorizeGEPIndices(BB, R); 8394 } 8395 } 8396 8397 if (Changed) { 8398 R.optimizeGatherSequence(); 8399 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 8400 } 8401 return Changed; 8402 } 8403 8404 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 8405 unsigned Idx) { 8406 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 8407 << "\n"); 8408 const unsigned Sz = R.getVectorElementSize(Chain[0]); 8409 const unsigned MinVF = R.getMinVecRegSize() / Sz; 8410 unsigned VF = Chain.size(); 8411 8412 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 8413 return false; 8414 8415 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 8416 << "\n"); 8417 8418 R.buildTree(Chain); 8419 if (R.isTreeTinyAndNotFullyVectorizable()) 8420 return false; 8421 if (R.isLoadCombineCandidate()) 8422 return false; 8423 R.reorderTopToBottom(); 8424 R.reorderBottomToTop(); 8425 R.buildExternalUses(); 8426 8427 R.computeMinimumValueSizes(); 8428 8429 InstructionCost Cost = R.getTreeCost(); 8430 8431 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 8432 if (Cost < -SLPCostThreshold) { 8433 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 8434 8435 using namespace ore; 8436 8437 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 8438 cast<StoreInst>(Chain[0])) 8439 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 8440 << " and with tree size " 8441 << NV("TreeSize", R.getTreeSize())); 8442 8443 R.vectorizeTree(); 8444 return true; 8445 } 8446 8447 return false; 8448 } 8449 8450 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 8451 BoUpSLP &R) { 8452 // We may run into multiple chains that merge into a single chain. We mark the 8453 // stores that we vectorized so that we don't visit the same store twice. 8454 BoUpSLP::ValueSet VectorizedStores; 8455 bool Changed = false; 8456 8457 int E = Stores.size(); 8458 SmallBitVector Tails(E, false); 8459 int MaxIter = MaxStoreLookup.getValue(); 8460 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 8461 E, std::make_pair(E, INT_MAX)); 8462 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 8463 int IterCnt; 8464 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 8465 &CheckedPairs, 8466 &ConsecutiveChain](int K, int Idx) { 8467 if (IterCnt >= MaxIter) 8468 return true; 8469 if (CheckedPairs[Idx].test(K)) 8470 return ConsecutiveChain[K].second == 1 && 8471 ConsecutiveChain[K].first == Idx; 8472 ++IterCnt; 8473 CheckedPairs[Idx].set(K); 8474 CheckedPairs[K].set(Idx); 8475 Optional<int> Diff = getPointersDiff( 8476 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 8477 Stores[Idx]->getValueOperand()->getType(), 8478 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 8479 if (!Diff || *Diff == 0) 8480 return false; 8481 int Val = *Diff; 8482 if (Val < 0) { 8483 if (ConsecutiveChain[Idx].second > -Val) { 8484 Tails.set(K); 8485 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 8486 } 8487 return false; 8488 } 8489 if (ConsecutiveChain[K].second <= Val) 8490 return false; 8491 8492 Tails.set(Idx); 8493 ConsecutiveChain[K] = std::make_pair(Idx, Val); 8494 return Val == 1; 8495 }; 8496 // Do a quadratic search on all of the given stores in reverse order and find 8497 // all of the pairs of stores that follow each other. 8498 for (int Idx = E - 1; Idx >= 0; --Idx) { 8499 // If a store has multiple consecutive store candidates, search according 8500 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 8501 // This is because usually pairing with immediate succeeding or preceding 8502 // candidate create the best chance to find slp vectorization opportunity. 8503 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 8504 IterCnt = 0; 8505 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 8506 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 8507 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 8508 break; 8509 } 8510 8511 // Tracks if we tried to vectorize stores starting from the given tail 8512 // already. 8513 SmallBitVector TriedTails(E, false); 8514 // For stores that start but don't end a link in the chain: 8515 for (int Cnt = E; Cnt > 0; --Cnt) { 8516 int I = Cnt - 1; 8517 if (ConsecutiveChain[I].first == E || Tails.test(I)) 8518 continue; 8519 // We found a store instr that starts a chain. Now follow the chain and try 8520 // to vectorize it. 8521 BoUpSLP::ValueList Operands; 8522 // Collect the chain into a list. 8523 while (I != E && !VectorizedStores.count(Stores[I])) { 8524 Operands.push_back(Stores[I]); 8525 Tails.set(I); 8526 if (ConsecutiveChain[I].second != 1) { 8527 // Mark the new end in the chain and go back, if required. It might be 8528 // required if the original stores come in reversed order, for example. 8529 if (ConsecutiveChain[I].first != E && 8530 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 8531 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 8532 TriedTails.set(I); 8533 Tails.reset(ConsecutiveChain[I].first); 8534 if (Cnt < ConsecutiveChain[I].first + 2) 8535 Cnt = ConsecutiveChain[I].first + 2; 8536 } 8537 break; 8538 } 8539 // Move to the next value in the chain. 8540 I = ConsecutiveChain[I].first; 8541 } 8542 assert(!Operands.empty() && "Expected non-empty list of stores."); 8543 8544 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 8545 unsigned EltSize = R.getVectorElementSize(Operands[0]); 8546 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 8547 8548 unsigned MinVF = R.getMinVF(EltSize); 8549 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 8550 MaxElts); 8551 8552 // FIXME: Is division-by-2 the correct step? Should we assert that the 8553 // register size is a power-of-2? 8554 unsigned StartIdx = 0; 8555 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 8556 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 8557 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 8558 if (!VectorizedStores.count(Slice.front()) && 8559 !VectorizedStores.count(Slice.back()) && 8560 vectorizeStoreChain(Slice, R, Cnt)) { 8561 // Mark the vectorized stores so that we don't vectorize them again. 8562 VectorizedStores.insert(Slice.begin(), Slice.end()); 8563 Changed = true; 8564 // If we vectorized initial block, no need to try to vectorize it 8565 // again. 8566 if (Cnt == StartIdx) 8567 StartIdx += Size; 8568 Cnt += Size; 8569 continue; 8570 } 8571 ++Cnt; 8572 } 8573 // Check if the whole array was vectorized already - exit. 8574 if (StartIdx >= Operands.size()) 8575 break; 8576 } 8577 } 8578 8579 return Changed; 8580 } 8581 8582 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 8583 // Initialize the collections. We will make a single pass over the block. 8584 Stores.clear(); 8585 GEPs.clear(); 8586 8587 // Visit the store and getelementptr instructions in BB and organize them in 8588 // Stores and GEPs according to the underlying objects of their pointer 8589 // operands. 8590 for (Instruction &I : *BB) { 8591 // Ignore store instructions that are volatile or have a pointer operand 8592 // that doesn't point to a scalar type. 8593 if (auto *SI = dyn_cast<StoreInst>(&I)) { 8594 if (!SI->isSimple()) 8595 continue; 8596 if (!isValidElementType(SI->getValueOperand()->getType())) 8597 continue; 8598 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 8599 } 8600 8601 // Ignore getelementptr instructions that have more than one index, a 8602 // constant index, or a pointer operand that doesn't point to a scalar 8603 // type. 8604 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 8605 auto Idx = GEP->idx_begin()->get(); 8606 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 8607 continue; 8608 if (!isValidElementType(Idx->getType())) 8609 continue; 8610 if (GEP->getType()->isVectorTy()) 8611 continue; 8612 GEPs[GEP->getPointerOperand()].push_back(GEP); 8613 } 8614 } 8615 } 8616 8617 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 8618 if (!A || !B) 8619 return false; 8620 Value *VL[] = {A, B}; 8621 return tryToVectorizeList(VL, R); 8622 } 8623 8624 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 8625 bool LimitForRegisterSize) { 8626 if (VL.size() < 2) 8627 return false; 8628 8629 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 8630 << VL.size() << ".\n"); 8631 8632 // Check that all of the parts are instructions of the same type, 8633 // we permit an alternate opcode via InstructionsState. 8634 InstructionsState S = getSameOpcode(VL); 8635 if (!S.getOpcode()) 8636 return false; 8637 8638 Instruction *I0 = cast<Instruction>(S.OpValue); 8639 // Make sure invalid types (including vector type) are rejected before 8640 // determining vectorization factor for scalar instructions. 8641 for (Value *V : VL) { 8642 Type *Ty = V->getType(); 8643 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 8644 // NOTE: the following will give user internal llvm type name, which may 8645 // not be useful. 8646 R.getORE()->emit([&]() { 8647 std::string type_str; 8648 llvm::raw_string_ostream rso(type_str); 8649 Ty->print(rso); 8650 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 8651 << "Cannot SLP vectorize list: type " 8652 << rso.str() + " is unsupported by vectorizer"; 8653 }); 8654 return false; 8655 } 8656 } 8657 8658 unsigned Sz = R.getVectorElementSize(I0); 8659 unsigned MinVF = R.getMinVF(Sz); 8660 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 8661 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 8662 if (MaxVF < 2) { 8663 R.getORE()->emit([&]() { 8664 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 8665 << "Cannot SLP vectorize list: vectorization factor " 8666 << "less than 2 is not supported"; 8667 }); 8668 return false; 8669 } 8670 8671 bool Changed = false; 8672 bool CandidateFound = false; 8673 InstructionCost MinCost = SLPCostThreshold.getValue(); 8674 Type *ScalarTy = VL[0]->getType(); 8675 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 8676 ScalarTy = IE->getOperand(1)->getType(); 8677 8678 unsigned NextInst = 0, MaxInst = VL.size(); 8679 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 8680 // No actual vectorization should happen, if number of parts is the same as 8681 // provided vectorization factor (i.e. the scalar type is used for vector 8682 // code during codegen). 8683 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 8684 if (TTI->getNumberOfParts(VecTy) == VF) 8685 continue; 8686 for (unsigned I = NextInst; I < MaxInst; ++I) { 8687 unsigned OpsWidth = 0; 8688 8689 if (I + VF > MaxInst) 8690 OpsWidth = MaxInst - I; 8691 else 8692 OpsWidth = VF; 8693 8694 if (!isPowerOf2_32(OpsWidth)) 8695 continue; 8696 8697 if ((LimitForRegisterSize && OpsWidth < MaxVF) || 8698 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 8699 break; 8700 8701 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 8702 // Check that a previous iteration of this loop did not delete the Value. 8703 if (llvm::any_of(Ops, [&R](Value *V) { 8704 auto *I = dyn_cast<Instruction>(V); 8705 return I && R.isDeleted(I); 8706 })) 8707 continue; 8708 8709 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 8710 << "\n"); 8711 8712 R.buildTree(Ops); 8713 if (R.isTreeTinyAndNotFullyVectorizable()) 8714 continue; 8715 R.reorderTopToBottom(); 8716 R.reorderBottomToTop(!isa<InsertElementInst>(Ops.front())); 8717 R.buildExternalUses(); 8718 8719 R.computeMinimumValueSizes(); 8720 InstructionCost Cost = R.getTreeCost(); 8721 CandidateFound = true; 8722 MinCost = std::min(MinCost, Cost); 8723 8724 if (Cost < -SLPCostThreshold) { 8725 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 8726 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 8727 cast<Instruction>(Ops[0])) 8728 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 8729 << " and with tree size " 8730 << ore::NV("TreeSize", R.getTreeSize())); 8731 8732 R.vectorizeTree(); 8733 // Move to the next bundle. 8734 I += VF - 1; 8735 NextInst = I + 1; 8736 Changed = true; 8737 } 8738 } 8739 } 8740 8741 if (!Changed && CandidateFound) { 8742 R.getORE()->emit([&]() { 8743 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 8744 << "List vectorization was possible but not beneficial with cost " 8745 << ore::NV("Cost", MinCost) << " >= " 8746 << ore::NV("Treshold", -SLPCostThreshold); 8747 }); 8748 } else if (!Changed) { 8749 R.getORE()->emit([&]() { 8750 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 8751 << "Cannot SLP vectorize list: vectorization was impossible" 8752 << " with available vectorization factors"; 8753 }); 8754 } 8755 return Changed; 8756 } 8757 8758 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 8759 if (!I) 8760 return false; 8761 8762 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 8763 return false; 8764 8765 Value *P = I->getParent(); 8766 8767 // Vectorize in current basic block only. 8768 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 8769 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 8770 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 8771 return false; 8772 8773 // Try to vectorize V. 8774 if (tryToVectorizePair(Op0, Op1, R)) 8775 return true; 8776 8777 auto *A = dyn_cast<BinaryOperator>(Op0); 8778 auto *B = dyn_cast<BinaryOperator>(Op1); 8779 // Try to skip B. 8780 if (B && B->hasOneUse()) { 8781 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 8782 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 8783 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 8784 return true; 8785 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 8786 return true; 8787 } 8788 8789 // Try to skip A. 8790 if (A && A->hasOneUse()) { 8791 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 8792 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 8793 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 8794 return true; 8795 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 8796 return true; 8797 } 8798 return false; 8799 } 8800 8801 namespace { 8802 8803 /// Model horizontal reductions. 8804 /// 8805 /// A horizontal reduction is a tree of reduction instructions that has values 8806 /// that can be put into a vector as its leaves. For example: 8807 /// 8808 /// mul mul mul mul 8809 /// \ / \ / 8810 /// + + 8811 /// \ / 8812 /// + 8813 /// This tree has "mul" as its leaf values and "+" as its reduction 8814 /// instructions. A reduction can feed into a store or a binary operation 8815 /// feeding a phi. 8816 /// ... 8817 /// \ / 8818 /// + 8819 /// | 8820 /// phi += 8821 /// 8822 /// Or: 8823 /// ... 8824 /// \ / 8825 /// + 8826 /// | 8827 /// *p = 8828 /// 8829 class HorizontalReduction { 8830 using ReductionOpsType = SmallVector<Value *, 16>; 8831 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 8832 ReductionOpsListType ReductionOps; 8833 SmallVector<Value *, 32> ReducedVals; 8834 // Use map vector to make stable output. 8835 MapVector<Instruction *, Value *> ExtraArgs; 8836 WeakTrackingVH ReductionRoot; 8837 /// The type of reduction operation. 8838 RecurKind RdxKind; 8839 8840 const unsigned INVALID_OPERAND_INDEX = std::numeric_limits<unsigned>::max(); 8841 8842 static bool isCmpSelMinMax(Instruction *I) { 8843 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 8844 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 8845 } 8846 8847 // And/or are potentially poison-safe logical patterns like: 8848 // select x, y, false 8849 // select x, true, y 8850 static bool isBoolLogicOp(Instruction *I) { 8851 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 8852 match(I, m_LogicalOr(m_Value(), m_Value())); 8853 } 8854 8855 /// Checks if instruction is associative and can be vectorized. 8856 static bool isVectorizable(RecurKind Kind, Instruction *I) { 8857 if (Kind == RecurKind::None) 8858 return false; 8859 8860 // Integer ops that map to select instructions or intrinsics are fine. 8861 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 8862 isBoolLogicOp(I)) 8863 return true; 8864 8865 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 8866 // FP min/max are associative except for NaN and -0.0. We do not 8867 // have to rule out -0.0 here because the intrinsic semantics do not 8868 // specify a fixed result for it. 8869 return I->getFastMathFlags().noNaNs(); 8870 } 8871 8872 return I->isAssociative(); 8873 } 8874 8875 static Value *getRdxOperand(Instruction *I, unsigned Index) { 8876 // Poison-safe 'or' takes the form: select X, true, Y 8877 // To make that work with the normal operand processing, we skip the 8878 // true value operand. 8879 // TODO: Change the code and data structures to handle this without a hack. 8880 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 8881 return I->getOperand(2); 8882 return I->getOperand(Index); 8883 } 8884 8885 /// Checks if the ParentStackElem.first should be marked as a reduction 8886 /// operation with an extra argument or as extra argument itself. 8887 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 8888 Value *ExtraArg) { 8889 if (ExtraArgs.count(ParentStackElem.first)) { 8890 ExtraArgs[ParentStackElem.first] = nullptr; 8891 // We ran into something like: 8892 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 8893 // The whole ParentStackElem.first should be considered as an extra value 8894 // in this case. 8895 // Do not perform analysis of remaining operands of ParentStackElem.first 8896 // instruction, this whole instruction is an extra argument. 8897 ParentStackElem.second = INVALID_OPERAND_INDEX; 8898 } else { 8899 // We ran into something like: 8900 // ParentStackElem.first += ... + ExtraArg + ... 8901 ExtraArgs[ParentStackElem.first] = ExtraArg; 8902 } 8903 } 8904 8905 /// Creates reduction operation with the current opcode. 8906 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 8907 Value *RHS, const Twine &Name, bool UseSelect) { 8908 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 8909 switch (Kind) { 8910 case RecurKind::Or: 8911 if (UseSelect && 8912 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 8913 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); 8914 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8915 Name); 8916 case RecurKind::And: 8917 if (UseSelect && 8918 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 8919 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); 8920 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8921 Name); 8922 case RecurKind::Add: 8923 case RecurKind::Mul: 8924 case RecurKind::Xor: 8925 case RecurKind::FAdd: 8926 case RecurKind::FMul: 8927 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8928 Name); 8929 case RecurKind::FMax: 8930 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 8931 case RecurKind::FMin: 8932 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 8933 case RecurKind::SMax: 8934 if (UseSelect) { 8935 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 8936 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8937 } 8938 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 8939 case RecurKind::SMin: 8940 if (UseSelect) { 8941 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 8942 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8943 } 8944 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 8945 case RecurKind::UMax: 8946 if (UseSelect) { 8947 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 8948 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8949 } 8950 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 8951 case RecurKind::UMin: 8952 if (UseSelect) { 8953 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 8954 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8955 } 8956 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 8957 default: 8958 llvm_unreachable("Unknown reduction operation."); 8959 } 8960 } 8961 8962 /// Creates reduction operation with the current opcode with the IR flags 8963 /// from \p ReductionOps. 8964 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 8965 Value *RHS, const Twine &Name, 8966 const ReductionOpsListType &ReductionOps) { 8967 bool UseSelect = ReductionOps.size() == 2 || 8968 // Logical or/and. 8969 (ReductionOps.size() == 1 && 8970 isa<SelectInst>(ReductionOps.front().front())); 8971 assert((!UseSelect || ReductionOps.size() != 2 || 8972 isa<SelectInst>(ReductionOps[1][0])) && 8973 "Expected cmp + select pairs for reduction"); 8974 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 8975 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 8976 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 8977 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 8978 propagateIRFlags(Op, ReductionOps[1]); 8979 return Op; 8980 } 8981 } 8982 propagateIRFlags(Op, ReductionOps[0]); 8983 return Op; 8984 } 8985 8986 /// Creates reduction operation with the current opcode with the IR flags 8987 /// from \p I. 8988 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 8989 Value *RHS, const Twine &Name, Instruction *I) { 8990 auto *SelI = dyn_cast<SelectInst>(I); 8991 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 8992 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 8993 if (auto *Sel = dyn_cast<SelectInst>(Op)) 8994 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 8995 } 8996 propagateIRFlags(Op, I); 8997 return Op; 8998 } 8999 9000 static RecurKind getRdxKind(Instruction *I) { 9001 assert(I && "Expected instruction for reduction matching"); 9002 if (match(I, m_Add(m_Value(), m_Value()))) 9003 return RecurKind::Add; 9004 if (match(I, m_Mul(m_Value(), m_Value()))) 9005 return RecurKind::Mul; 9006 if (match(I, m_And(m_Value(), m_Value())) || 9007 match(I, m_LogicalAnd(m_Value(), m_Value()))) 9008 return RecurKind::And; 9009 if (match(I, m_Or(m_Value(), m_Value())) || 9010 match(I, m_LogicalOr(m_Value(), m_Value()))) 9011 return RecurKind::Or; 9012 if (match(I, m_Xor(m_Value(), m_Value()))) 9013 return RecurKind::Xor; 9014 if (match(I, m_FAdd(m_Value(), m_Value()))) 9015 return RecurKind::FAdd; 9016 if (match(I, m_FMul(m_Value(), m_Value()))) 9017 return RecurKind::FMul; 9018 9019 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 9020 return RecurKind::FMax; 9021 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 9022 return RecurKind::FMin; 9023 9024 // This matches either cmp+select or intrinsics. SLP is expected to handle 9025 // either form. 9026 // TODO: If we are canonicalizing to intrinsics, we can remove several 9027 // special-case paths that deal with selects. 9028 if (match(I, m_SMax(m_Value(), m_Value()))) 9029 return RecurKind::SMax; 9030 if (match(I, m_SMin(m_Value(), m_Value()))) 9031 return RecurKind::SMin; 9032 if (match(I, m_UMax(m_Value(), m_Value()))) 9033 return RecurKind::UMax; 9034 if (match(I, m_UMin(m_Value(), m_Value()))) 9035 return RecurKind::UMin; 9036 9037 if (auto *Select = dyn_cast<SelectInst>(I)) { 9038 // Try harder: look for min/max pattern based on instructions producing 9039 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 9040 // During the intermediate stages of SLP, it's very common to have 9041 // pattern like this (since optimizeGatherSequence is run only once 9042 // at the end): 9043 // %1 = extractelement <2 x i32> %a, i32 0 9044 // %2 = extractelement <2 x i32> %a, i32 1 9045 // %cond = icmp sgt i32 %1, %2 9046 // %3 = extractelement <2 x i32> %a, i32 0 9047 // %4 = extractelement <2 x i32> %a, i32 1 9048 // %select = select i1 %cond, i32 %3, i32 %4 9049 CmpInst::Predicate Pred; 9050 Instruction *L1; 9051 Instruction *L2; 9052 9053 Value *LHS = Select->getTrueValue(); 9054 Value *RHS = Select->getFalseValue(); 9055 Value *Cond = Select->getCondition(); 9056 9057 // TODO: Support inverse predicates. 9058 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 9059 if (!isa<ExtractElementInst>(RHS) || 9060 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9061 return RecurKind::None; 9062 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 9063 if (!isa<ExtractElementInst>(LHS) || 9064 !L1->isIdenticalTo(cast<Instruction>(LHS))) 9065 return RecurKind::None; 9066 } else { 9067 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 9068 return RecurKind::None; 9069 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 9070 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 9071 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9072 return RecurKind::None; 9073 } 9074 9075 switch (Pred) { 9076 default: 9077 return RecurKind::None; 9078 case CmpInst::ICMP_SGT: 9079 case CmpInst::ICMP_SGE: 9080 return RecurKind::SMax; 9081 case CmpInst::ICMP_SLT: 9082 case CmpInst::ICMP_SLE: 9083 return RecurKind::SMin; 9084 case CmpInst::ICMP_UGT: 9085 case CmpInst::ICMP_UGE: 9086 return RecurKind::UMax; 9087 case CmpInst::ICMP_ULT: 9088 case CmpInst::ICMP_ULE: 9089 return RecurKind::UMin; 9090 } 9091 } 9092 return RecurKind::None; 9093 } 9094 9095 /// Get the index of the first operand. 9096 static unsigned getFirstOperandIndex(Instruction *I) { 9097 return isCmpSelMinMax(I) ? 1 : 0; 9098 } 9099 9100 /// Total number of operands in the reduction operation. 9101 static unsigned getNumberOfOperands(Instruction *I) { 9102 return isCmpSelMinMax(I) ? 3 : 2; 9103 } 9104 9105 /// Checks if the instruction is in basic block \p BB. 9106 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 9107 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 9108 if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) { 9109 auto *Sel = cast<SelectInst>(I); 9110 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); 9111 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; 9112 } 9113 return I->getParent() == BB; 9114 } 9115 9116 /// Expected number of uses for reduction operations/reduced values. 9117 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 9118 if (IsCmpSelMinMax) { 9119 // SelectInst must be used twice while the condition op must have single 9120 // use only. 9121 if (auto *Sel = dyn_cast<SelectInst>(I)) 9122 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 9123 return I->hasNUses(2); 9124 } 9125 9126 // Arithmetic reduction operation must be used once only. 9127 return I->hasOneUse(); 9128 } 9129 9130 /// Initializes the list of reduction operations. 9131 void initReductionOps(Instruction *I) { 9132 if (isCmpSelMinMax(I)) 9133 ReductionOps.assign(2, ReductionOpsType()); 9134 else 9135 ReductionOps.assign(1, ReductionOpsType()); 9136 } 9137 9138 /// Add all reduction operations for the reduction instruction \p I. 9139 void addReductionOps(Instruction *I) { 9140 if (isCmpSelMinMax(I)) { 9141 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 9142 ReductionOps[1].emplace_back(I); 9143 } else { 9144 ReductionOps[0].emplace_back(I); 9145 } 9146 } 9147 9148 static Value *getLHS(RecurKind Kind, Instruction *I) { 9149 if (Kind == RecurKind::None) 9150 return nullptr; 9151 return I->getOperand(getFirstOperandIndex(I)); 9152 } 9153 static Value *getRHS(RecurKind Kind, Instruction *I) { 9154 if (Kind == RecurKind::None) 9155 return nullptr; 9156 return I->getOperand(getFirstOperandIndex(I) + 1); 9157 } 9158 9159 public: 9160 HorizontalReduction() = default; 9161 9162 /// Try to find a reduction tree. 9163 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst) { 9164 assert((!Phi || is_contained(Phi->operands(), Inst)) && 9165 "Phi needs to use the binary operator"); 9166 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 9167 isa<IntrinsicInst>(Inst)) && 9168 "Expected binop, select, or intrinsic for reduction matching"); 9169 RdxKind = getRdxKind(Inst); 9170 9171 // We could have a initial reductions that is not an add. 9172 // r *= v1 + v2 + v3 + v4 9173 // In such a case start looking for a tree rooted in the first '+'. 9174 if (Phi) { 9175 if (getLHS(RdxKind, Inst) == Phi) { 9176 Phi = nullptr; 9177 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 9178 if (!Inst) 9179 return false; 9180 RdxKind = getRdxKind(Inst); 9181 } else if (getRHS(RdxKind, Inst) == Phi) { 9182 Phi = nullptr; 9183 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 9184 if (!Inst) 9185 return false; 9186 RdxKind = getRdxKind(Inst); 9187 } 9188 } 9189 9190 if (!isVectorizable(RdxKind, Inst)) 9191 return false; 9192 9193 // Analyze "regular" integer/FP types for reductions - no target-specific 9194 // types or pointers. 9195 Type *Ty = Inst->getType(); 9196 if (!isValidElementType(Ty) || Ty->isPointerTy()) 9197 return false; 9198 9199 // Though the ultimate reduction may have multiple uses, its condition must 9200 // have only single use. 9201 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 9202 if (!Sel->getCondition()->hasOneUse()) 9203 return false; 9204 9205 ReductionRoot = Inst; 9206 9207 // The opcode for leaf values that we perform a reduction on. 9208 // For example: load(x) + load(y) + load(z) + fptoui(w) 9209 // The leaf opcode for 'w' does not match, so we don't include it as a 9210 // potential candidate for the reduction. 9211 unsigned LeafOpcode = 0; 9212 9213 // Post-order traverse the reduction tree starting at Inst. We only handle 9214 // true trees containing binary operators or selects. 9215 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 9216 Stack.push_back(std::make_pair(Inst, getFirstOperandIndex(Inst))); 9217 initReductionOps(Inst); 9218 while (!Stack.empty()) { 9219 Instruction *TreeN = Stack.back().first; 9220 unsigned EdgeToVisit = Stack.back().second++; 9221 const RecurKind TreeRdxKind = getRdxKind(TreeN); 9222 bool IsReducedValue = TreeRdxKind != RdxKind; 9223 9224 // Postorder visit. 9225 if (IsReducedValue || EdgeToVisit >= getNumberOfOperands(TreeN)) { 9226 if (IsReducedValue) 9227 ReducedVals.push_back(TreeN); 9228 else { 9229 auto ExtraArgsIter = ExtraArgs.find(TreeN); 9230 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) { 9231 // Check if TreeN is an extra argument of its parent operation. 9232 if (Stack.size() <= 1) { 9233 // TreeN can't be an extra argument as it is a root reduction 9234 // operation. 9235 return false; 9236 } 9237 // Yes, TreeN is an extra argument, do not add it to a list of 9238 // reduction operations. 9239 // Stack[Stack.size() - 2] always points to the parent operation. 9240 markExtraArg(Stack[Stack.size() - 2], TreeN); 9241 ExtraArgs.erase(TreeN); 9242 } else 9243 addReductionOps(TreeN); 9244 } 9245 // Retract. 9246 Stack.pop_back(); 9247 continue; 9248 } 9249 9250 // Visit operands. 9251 Value *EdgeVal = getRdxOperand(TreeN, EdgeToVisit); 9252 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 9253 if (!EdgeInst) { 9254 // Edge value is not a reduction instruction or a leaf instruction. 9255 // (It may be a constant, function argument, or something else.) 9256 markExtraArg(Stack.back(), EdgeVal); 9257 continue; 9258 } 9259 RecurKind EdgeRdxKind = getRdxKind(EdgeInst); 9260 // Continue analysis if the next operand is a reduction operation or 9261 // (possibly) a leaf value. If the leaf value opcode is not set, 9262 // the first met operation != reduction operation is considered as the 9263 // leaf opcode. 9264 // Only handle trees in the current basic block. 9265 // Each tree node needs to have minimal number of users except for the 9266 // ultimate reduction. 9267 const bool IsRdxInst = EdgeRdxKind == RdxKind; 9268 if (EdgeInst != Phi && EdgeInst != Inst && 9269 hasSameParent(EdgeInst, Inst->getParent()) && 9270 hasRequiredNumberOfUses(isCmpSelMinMax(Inst), EdgeInst) && 9271 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) { 9272 if (IsRdxInst) { 9273 // We need to be able to reassociate the reduction operations. 9274 if (!isVectorizable(EdgeRdxKind, EdgeInst)) { 9275 // I is an extra argument for TreeN (its parent operation). 9276 markExtraArg(Stack.back(), EdgeInst); 9277 continue; 9278 } 9279 } else if (!LeafOpcode) { 9280 LeafOpcode = EdgeInst->getOpcode(); 9281 } 9282 Stack.push_back( 9283 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst))); 9284 continue; 9285 } 9286 // I is an extra argument for TreeN (its parent operation). 9287 markExtraArg(Stack.back(), EdgeInst); 9288 } 9289 return true; 9290 } 9291 9292 /// Attempt to vectorize the tree found by matchAssociativeReduction. 9293 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 9294 // If there are a sufficient number of reduction values, reduce 9295 // to a nearby power-of-2. We can safely generate oversized 9296 // vectors and rely on the backend to split them to legal sizes. 9297 unsigned NumReducedVals = ReducedVals.size(); 9298 if (NumReducedVals < 4) 9299 return nullptr; 9300 9301 // Intersect the fast-math-flags from all reduction operations. 9302 FastMathFlags RdxFMF; 9303 RdxFMF.set(); 9304 for (ReductionOpsType &RdxOp : ReductionOps) { 9305 for (Value *RdxVal : RdxOp) { 9306 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 9307 RdxFMF &= FPMO->getFastMathFlags(); 9308 } 9309 } 9310 9311 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 9312 Builder.setFastMathFlags(RdxFMF); 9313 9314 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 9315 // The same extra argument may be used several times, so log each attempt 9316 // to use it. 9317 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 9318 assert(Pair.first && "DebugLoc must be set."); 9319 ExternallyUsedValues[Pair.second].push_back(Pair.first); 9320 } 9321 9322 // The compare instruction of a min/max is the insertion point for new 9323 // instructions and may be replaced with a new compare instruction. 9324 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 9325 assert(isa<SelectInst>(RdxRootInst) && 9326 "Expected min/max reduction to have select root instruction"); 9327 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 9328 assert(isa<Instruction>(ScalarCond) && 9329 "Expected min/max reduction to have compare condition"); 9330 return cast<Instruction>(ScalarCond); 9331 }; 9332 9333 // The reduction root is used as the insertion point for new instructions, 9334 // so set it as externally used to prevent it from being deleted. 9335 ExternallyUsedValues[ReductionRoot]; 9336 SmallVector<Value *, 16> IgnoreList; 9337 for (ReductionOpsType &RdxOp : ReductionOps) 9338 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 9339 9340 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 9341 if (NumReducedVals > ReduxWidth) { 9342 // In the loop below, we are building a tree based on a window of 9343 // 'ReduxWidth' values. 9344 // If the operands of those values have common traits (compare predicate, 9345 // constant operand, etc), then we want to group those together to 9346 // minimize the cost of the reduction. 9347 9348 // TODO: This should be extended to count common operands for 9349 // compares and binops. 9350 9351 // Step 1: Count the number of times each compare predicate occurs. 9352 SmallDenseMap<unsigned, unsigned> PredCountMap; 9353 for (Value *RdxVal : ReducedVals) { 9354 CmpInst::Predicate Pred; 9355 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 9356 ++PredCountMap[Pred]; 9357 } 9358 // Step 2: Sort the values so the most common predicates come first. 9359 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 9360 CmpInst::Predicate PredA, PredB; 9361 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 9362 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 9363 return PredCountMap[PredA] > PredCountMap[PredB]; 9364 } 9365 return false; 9366 }); 9367 } 9368 9369 Value *VectorizedTree = nullptr; 9370 unsigned i = 0; 9371 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 9372 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 9373 V.buildTree(VL, IgnoreList); 9374 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) 9375 break; 9376 if (V.isLoadCombineReductionCandidate(RdxKind)) 9377 break; 9378 V.reorderTopToBottom(); 9379 V.reorderBottomToTop(/*IgnoreReorder=*/true); 9380 V.buildExternalUses(ExternallyUsedValues); 9381 9382 // For a poison-safe boolean logic reduction, do not replace select 9383 // instructions with logic ops. All reduced values will be frozen (see 9384 // below) to prevent leaking poison. 9385 if (isa<SelectInst>(ReductionRoot) && 9386 isBoolLogicOp(cast<Instruction>(ReductionRoot)) && 9387 NumReducedVals != ReduxWidth) 9388 break; 9389 9390 V.computeMinimumValueSizes(); 9391 9392 // Estimate cost. 9393 InstructionCost TreeCost = 9394 V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth)); 9395 InstructionCost ReductionCost = 9396 getReductionCost(TTI, ReducedVals[i], ReduxWidth, RdxFMF); 9397 InstructionCost Cost = TreeCost + ReductionCost; 9398 if (!Cost.isValid()) { 9399 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 9400 return nullptr; 9401 } 9402 if (Cost >= -SLPCostThreshold) { 9403 V.getORE()->emit([&]() { 9404 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 9405 cast<Instruction>(VL[0])) 9406 << "Vectorizing horizontal reduction is possible" 9407 << "but not beneficial with cost " << ore::NV("Cost", Cost) 9408 << " and threshold " 9409 << ore::NV("Threshold", -SLPCostThreshold); 9410 }); 9411 break; 9412 } 9413 9414 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 9415 << Cost << ". (HorRdx)\n"); 9416 V.getORE()->emit([&]() { 9417 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 9418 cast<Instruction>(VL[0])) 9419 << "Vectorized horizontal reduction with cost " 9420 << ore::NV("Cost", Cost) << " and with tree size " 9421 << ore::NV("TreeSize", V.getTreeSize()); 9422 }); 9423 9424 // Vectorize a tree. 9425 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 9426 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 9427 9428 // Emit a reduction. If the root is a select (min/max idiom), the insert 9429 // point is the compare condition of that select. 9430 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 9431 if (isCmpSelMinMax(RdxRootInst)) 9432 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 9433 else 9434 Builder.SetInsertPoint(RdxRootInst); 9435 9436 // To prevent poison from leaking across what used to be sequential, safe, 9437 // scalar boolean logic operations, the reduction operand must be frozen. 9438 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 9439 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 9440 9441 Value *ReducedSubTree = 9442 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 9443 9444 if (!VectorizedTree) { 9445 // Initialize the final value in the reduction. 9446 VectorizedTree = ReducedSubTree; 9447 } else { 9448 // Update the final value in the reduction. 9449 Builder.SetCurrentDebugLocation(Loc); 9450 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9451 ReducedSubTree, "op.rdx", ReductionOps); 9452 } 9453 i += ReduxWidth; 9454 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 9455 } 9456 9457 if (VectorizedTree) { 9458 // Finish the reduction. 9459 for (; i < NumReducedVals; ++i) { 9460 auto *I = cast<Instruction>(ReducedVals[i]); 9461 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9462 VectorizedTree = 9463 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 9464 } 9465 for (auto &Pair : ExternallyUsedValues) { 9466 // Add each externally used value to the final reduction. 9467 for (auto *I : Pair.second) { 9468 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9469 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9470 Pair.first, "op.extra", I); 9471 } 9472 } 9473 9474 ReductionRoot->replaceAllUsesWith(VectorizedTree); 9475 9476 // Mark all scalar reduction ops for deletion, they are replaced by the 9477 // vector reductions. 9478 V.eraseInstructions(IgnoreList); 9479 } 9480 return VectorizedTree; 9481 } 9482 9483 unsigned numReductionValues() const { return ReducedVals.size(); } 9484 9485 private: 9486 /// Calculate the cost of a reduction. 9487 InstructionCost getReductionCost(TargetTransformInfo *TTI, 9488 Value *FirstReducedVal, unsigned ReduxWidth, 9489 FastMathFlags FMF) { 9490 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 9491 Type *ScalarTy = FirstReducedVal->getType(); 9492 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 9493 InstructionCost VectorCost, ScalarCost; 9494 switch (RdxKind) { 9495 case RecurKind::Add: 9496 case RecurKind::Mul: 9497 case RecurKind::Or: 9498 case RecurKind::And: 9499 case RecurKind::Xor: 9500 case RecurKind::FAdd: 9501 case RecurKind::FMul: { 9502 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 9503 VectorCost = 9504 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 9505 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 9506 break; 9507 } 9508 case RecurKind::FMax: 9509 case RecurKind::FMin: { 9510 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9511 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9512 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 9513 /*IsUnsigned=*/false, CostKind); 9514 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9515 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, 9516 SclCondTy, RdxPred, CostKind) + 9517 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9518 SclCondTy, RdxPred, CostKind); 9519 break; 9520 } 9521 case RecurKind::SMax: 9522 case RecurKind::SMin: 9523 case RecurKind::UMax: 9524 case RecurKind::UMin: { 9525 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9526 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9527 bool IsUnsigned = 9528 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 9529 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned, 9530 CostKind); 9531 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9532 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, 9533 SclCondTy, RdxPred, CostKind) + 9534 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9535 SclCondTy, RdxPred, CostKind); 9536 break; 9537 } 9538 default: 9539 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 9540 } 9541 9542 // Scalar cost is repeated for N-1 elements. 9543 ScalarCost *= (ReduxWidth - 1); 9544 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 9545 << " for reduction that starts with " << *FirstReducedVal 9546 << " (It is a splitting reduction)\n"); 9547 return VectorCost - ScalarCost; 9548 } 9549 9550 /// Emit a horizontal reduction of the vectorized value. 9551 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 9552 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 9553 assert(VectorizedValue && "Need to have a vectorized tree node"); 9554 assert(isPowerOf2_32(ReduxWidth) && 9555 "We only handle power-of-two reductions for now"); 9556 assert(RdxKind != RecurKind::FMulAdd && 9557 "A call to the llvm.fmuladd intrinsic is not handled yet"); 9558 9559 ++NumVectorInstructions; 9560 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind); 9561 } 9562 }; 9563 9564 } // end anonymous namespace 9565 9566 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 9567 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 9568 return cast<FixedVectorType>(IE->getType())->getNumElements(); 9569 9570 unsigned AggregateSize = 1; 9571 auto *IV = cast<InsertValueInst>(InsertInst); 9572 Type *CurrentType = IV->getType(); 9573 do { 9574 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 9575 for (auto *Elt : ST->elements()) 9576 if (Elt != ST->getElementType(0)) // check homogeneity 9577 return None; 9578 AggregateSize *= ST->getNumElements(); 9579 CurrentType = ST->getElementType(0); 9580 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 9581 AggregateSize *= AT->getNumElements(); 9582 CurrentType = AT->getElementType(); 9583 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 9584 AggregateSize *= VT->getNumElements(); 9585 return AggregateSize; 9586 } else if (CurrentType->isSingleValueType()) { 9587 return AggregateSize; 9588 } else { 9589 return None; 9590 } 9591 } while (true); 9592 } 9593 9594 static bool findBuildAggregate_rec(Instruction *LastInsertInst, 9595 TargetTransformInfo *TTI, 9596 SmallVectorImpl<Value *> &BuildVectorOpds, 9597 SmallVectorImpl<Value *> &InsertElts, 9598 unsigned OperandOffset) { 9599 do { 9600 Value *InsertedOperand = LastInsertInst->getOperand(1); 9601 Optional<int> OperandIndex = getInsertIndex(LastInsertInst, OperandOffset); 9602 if (!OperandIndex) 9603 return false; 9604 if (isa<InsertElementInst>(InsertedOperand) || 9605 isa<InsertValueInst>(InsertedOperand)) { 9606 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 9607 BuildVectorOpds, InsertElts, *OperandIndex)) 9608 return false; 9609 } else { 9610 BuildVectorOpds[*OperandIndex] = InsertedOperand; 9611 InsertElts[*OperandIndex] = LastInsertInst; 9612 } 9613 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 9614 } while (LastInsertInst != nullptr && 9615 (isa<InsertValueInst>(LastInsertInst) || 9616 isa<InsertElementInst>(LastInsertInst)) && 9617 LastInsertInst->hasOneUse()); 9618 return true; 9619 } 9620 9621 /// Recognize construction of vectors like 9622 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 9623 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 9624 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 9625 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 9626 /// starting from the last insertelement or insertvalue instruction. 9627 /// 9628 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 9629 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 9630 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 9631 /// 9632 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 9633 /// 9634 /// \return true if it matches. 9635 static bool findBuildAggregate(Instruction *LastInsertInst, 9636 TargetTransformInfo *TTI, 9637 SmallVectorImpl<Value *> &BuildVectorOpds, 9638 SmallVectorImpl<Value *> &InsertElts) { 9639 9640 assert((isa<InsertElementInst>(LastInsertInst) || 9641 isa<InsertValueInst>(LastInsertInst)) && 9642 "Expected insertelement or insertvalue instruction!"); 9643 9644 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 9645 "Expected empty result vectors!"); 9646 9647 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 9648 if (!AggregateSize) 9649 return false; 9650 BuildVectorOpds.resize(*AggregateSize); 9651 InsertElts.resize(*AggregateSize); 9652 9653 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 9654 0)) { 9655 llvm::erase_value(BuildVectorOpds, nullptr); 9656 llvm::erase_value(InsertElts, nullptr); 9657 if (BuildVectorOpds.size() >= 2) 9658 return true; 9659 } 9660 9661 return false; 9662 } 9663 9664 /// Try and get a reduction value from a phi node. 9665 /// 9666 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 9667 /// if they come from either \p ParentBB or a containing loop latch. 9668 /// 9669 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 9670 /// if not possible. 9671 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 9672 BasicBlock *ParentBB, LoopInfo *LI) { 9673 // There are situations where the reduction value is not dominated by the 9674 // reduction phi. Vectorizing such cases has been reported to cause 9675 // miscompiles. See PR25787. 9676 auto DominatedReduxValue = [&](Value *R) { 9677 return isa<Instruction>(R) && 9678 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 9679 }; 9680 9681 Value *Rdx = nullptr; 9682 9683 // Return the incoming value if it comes from the same BB as the phi node. 9684 if (P->getIncomingBlock(0) == ParentBB) { 9685 Rdx = P->getIncomingValue(0); 9686 } else if (P->getIncomingBlock(1) == ParentBB) { 9687 Rdx = P->getIncomingValue(1); 9688 } 9689 9690 if (Rdx && DominatedReduxValue(Rdx)) 9691 return Rdx; 9692 9693 // Otherwise, check whether we have a loop latch to look at. 9694 Loop *BBL = LI->getLoopFor(ParentBB); 9695 if (!BBL) 9696 return nullptr; 9697 BasicBlock *BBLatch = BBL->getLoopLatch(); 9698 if (!BBLatch) 9699 return nullptr; 9700 9701 // There is a loop latch, return the incoming value if it comes from 9702 // that. This reduction pattern occasionally turns up. 9703 if (P->getIncomingBlock(0) == BBLatch) { 9704 Rdx = P->getIncomingValue(0); 9705 } else if (P->getIncomingBlock(1) == BBLatch) { 9706 Rdx = P->getIncomingValue(1); 9707 } 9708 9709 if (Rdx && DominatedReduxValue(Rdx)) 9710 return Rdx; 9711 9712 return nullptr; 9713 } 9714 9715 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 9716 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 9717 return true; 9718 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 9719 return true; 9720 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 9721 return true; 9722 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 9723 return true; 9724 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 9725 return true; 9726 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 9727 return true; 9728 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 9729 return true; 9730 return false; 9731 } 9732 9733 /// Attempt to reduce a horizontal reduction. 9734 /// If it is legal to match a horizontal reduction feeding the phi node \a P 9735 /// with reduction operators \a Root (or one of its operands) in a basic block 9736 /// \a BB, then check if it can be done. If horizontal reduction is not found 9737 /// and root instruction is a binary operation, vectorization of the operands is 9738 /// attempted. 9739 /// \returns true if a horizontal reduction was matched and reduced or operands 9740 /// of one of the binary instruction were vectorized. 9741 /// \returns false if a horizontal reduction was not matched (or not possible) 9742 /// or no vectorization of any binary operation feeding \a Root instruction was 9743 /// performed. 9744 static bool tryToVectorizeHorReductionOrInstOperands( 9745 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 9746 TargetTransformInfo *TTI, 9747 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 9748 if (!ShouldVectorizeHor) 9749 return false; 9750 9751 if (!Root) 9752 return false; 9753 9754 if (Root->getParent() != BB || isa<PHINode>(Root)) 9755 return false; 9756 // Start analysis starting from Root instruction. If horizontal reduction is 9757 // found, try to vectorize it. If it is not a horizontal reduction or 9758 // vectorization is not possible or not effective, and currently analyzed 9759 // instruction is a binary operation, try to vectorize the operands, using 9760 // pre-order DFS traversal order. If the operands were not vectorized, repeat 9761 // the same procedure considering each operand as a possible root of the 9762 // horizontal reduction. 9763 // Interrupt the process if the Root instruction itself was vectorized or all 9764 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 9765 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 9766 // CmpInsts so we can skip extra attempts in 9767 // tryToVectorizeHorReductionOrInstOperands and save compile time. 9768 std::queue<std::pair<Instruction *, unsigned>> Stack; 9769 Stack.emplace(Root, 0); 9770 SmallPtrSet<Value *, 8> VisitedInstrs; 9771 SmallVector<WeakTrackingVH> PostponedInsts; 9772 bool Res = false; 9773 auto &&TryToReduce = [TTI, &P, &R](Instruction *Inst, Value *&B0, 9774 Value *&B1) -> Value * { 9775 bool IsBinop = matchRdxBop(Inst, B0, B1); 9776 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 9777 if (IsBinop || IsSelect) { 9778 HorizontalReduction HorRdx; 9779 if (HorRdx.matchAssociativeReduction(P, Inst)) 9780 return HorRdx.tryToReduce(R, TTI); 9781 } 9782 return nullptr; 9783 }; 9784 while (!Stack.empty()) { 9785 Instruction *Inst; 9786 unsigned Level; 9787 std::tie(Inst, Level) = Stack.front(); 9788 Stack.pop(); 9789 // Do not try to analyze instruction that has already been vectorized. 9790 // This may happen when we vectorize instruction operands on a previous 9791 // iteration while stack was populated before that happened. 9792 if (R.isDeleted(Inst)) 9793 continue; 9794 Value *B0 = nullptr, *B1 = nullptr; 9795 if (Value *V = TryToReduce(Inst, B0, B1)) { 9796 Res = true; 9797 // Set P to nullptr to avoid re-analysis of phi node in 9798 // matchAssociativeReduction function unless this is the root node. 9799 P = nullptr; 9800 if (auto *I = dyn_cast<Instruction>(V)) { 9801 // Try to find another reduction. 9802 Stack.emplace(I, Level); 9803 continue; 9804 } 9805 } else { 9806 bool IsBinop = B0 && B1; 9807 if (P && IsBinop) { 9808 Inst = dyn_cast<Instruction>(B0); 9809 if (Inst == P) 9810 Inst = dyn_cast<Instruction>(B1); 9811 if (!Inst) { 9812 // Set P to nullptr to avoid re-analysis of phi node in 9813 // matchAssociativeReduction function unless this is the root node. 9814 P = nullptr; 9815 continue; 9816 } 9817 } 9818 // Set P to nullptr to avoid re-analysis of phi node in 9819 // matchAssociativeReduction function unless this is the root node. 9820 P = nullptr; 9821 // Do not try to vectorize CmpInst operands, this is done separately. 9822 // Final attempt for binop args vectorization should happen after the loop 9823 // to try to find reductions. 9824 if (!isa<CmpInst>(Inst)) 9825 PostponedInsts.push_back(Inst); 9826 } 9827 9828 // Try to vectorize operands. 9829 // Continue analysis for the instruction from the same basic block only to 9830 // save compile time. 9831 if (++Level < RecursionMaxDepth) 9832 for (auto *Op : Inst->operand_values()) 9833 if (VisitedInstrs.insert(Op).second) 9834 if (auto *I = dyn_cast<Instruction>(Op)) 9835 // Do not try to vectorize CmpInst operands, this is done 9836 // separately. 9837 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 9838 I->getParent() == BB) 9839 Stack.emplace(I, Level); 9840 } 9841 // Try to vectorized binops where reductions were not found. 9842 for (Value *V : PostponedInsts) 9843 if (auto *Inst = dyn_cast<Instruction>(V)) 9844 if (!R.isDeleted(Inst)) 9845 Res |= Vectorize(Inst, R); 9846 return Res; 9847 } 9848 9849 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 9850 BasicBlock *BB, BoUpSLP &R, 9851 TargetTransformInfo *TTI) { 9852 auto *I = dyn_cast_or_null<Instruction>(V); 9853 if (!I) 9854 return false; 9855 9856 if (!isa<BinaryOperator>(I)) 9857 P = nullptr; 9858 // Try to match and vectorize a horizontal reduction. 9859 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 9860 return tryToVectorize(I, R); 9861 }; 9862 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 9863 ExtraVectorization); 9864 } 9865 9866 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 9867 BasicBlock *BB, BoUpSLP &R) { 9868 const DataLayout &DL = BB->getModule()->getDataLayout(); 9869 if (!R.canMapToVector(IVI->getType(), DL)) 9870 return false; 9871 9872 SmallVector<Value *, 16> BuildVectorOpds; 9873 SmallVector<Value *, 16> BuildVectorInsts; 9874 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 9875 return false; 9876 9877 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 9878 // Aggregate value is unlikely to be processed in vector register. 9879 return tryToVectorizeList(BuildVectorOpds, R); 9880 } 9881 9882 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 9883 BasicBlock *BB, BoUpSLP &R) { 9884 SmallVector<Value *, 16> BuildVectorInsts; 9885 SmallVector<Value *, 16> BuildVectorOpds; 9886 SmallVector<int> Mask; 9887 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 9888 (llvm::all_of( 9889 BuildVectorOpds, 9890 [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) && 9891 isFixedVectorShuffle(BuildVectorOpds, Mask))) 9892 return false; 9893 9894 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 9895 return tryToVectorizeList(BuildVectorInsts, R); 9896 } 9897 9898 template <typename T> 9899 static bool 9900 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, 9901 function_ref<unsigned(T *)> Limit, 9902 function_ref<bool(T *, T *)> Comparator, 9903 function_ref<bool(T *, T *)> AreCompatible, 9904 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper, 9905 bool LimitForRegisterSize) { 9906 bool Changed = false; 9907 // Sort by type, parent, operands. 9908 stable_sort(Incoming, Comparator); 9909 9910 // Try to vectorize elements base on their type. 9911 SmallVector<T *> Candidates; 9912 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { 9913 // Look for the next elements with the same type, parent and operand 9914 // kinds. 9915 auto *SameTypeIt = IncIt; 9916 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) 9917 ++SameTypeIt; 9918 9919 // Try to vectorize them. 9920 unsigned NumElts = (SameTypeIt - IncIt); 9921 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" 9922 << NumElts << ")\n"); 9923 // The vectorization is a 3-state attempt: 9924 // 1. Try to vectorize instructions with the same/alternate opcodes with the 9925 // size of maximal register at first. 9926 // 2. Try to vectorize remaining instructions with the same type, if 9927 // possible. This may result in the better vectorization results rather than 9928 // if we try just to vectorize instructions with the same/alternate opcodes. 9929 // 3. Final attempt to try to vectorize all instructions with the 9930 // same/alternate ops only, this may result in some extra final 9931 // vectorization. 9932 if (NumElts > 1 && 9933 TryToVectorizeHelper(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) { 9934 // Success start over because instructions might have been changed. 9935 Changed = true; 9936 } else if (NumElts < Limit(*IncIt) && 9937 (Candidates.empty() || 9938 Candidates.front()->getType() == (*IncIt)->getType())) { 9939 Candidates.append(IncIt, std::next(IncIt, NumElts)); 9940 } 9941 // Final attempt to vectorize instructions with the same types. 9942 if (Candidates.size() > 1 && 9943 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { 9944 if (TryToVectorizeHelper(Candidates, /*LimitForRegisterSize=*/false)) { 9945 // Success start over because instructions might have been changed. 9946 Changed = true; 9947 } else if (LimitForRegisterSize) { 9948 // Try to vectorize using small vectors. 9949 for (auto *It = Candidates.begin(), *End = Candidates.end(); 9950 It != End;) { 9951 auto *SameTypeIt = It; 9952 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) 9953 ++SameTypeIt; 9954 unsigned NumElts = (SameTypeIt - It); 9955 if (NumElts > 1 && TryToVectorizeHelper(makeArrayRef(It, NumElts), 9956 /*LimitForRegisterSize=*/false)) 9957 Changed = true; 9958 It = SameTypeIt; 9959 } 9960 } 9961 Candidates.clear(); 9962 } 9963 9964 // Start over at the next instruction of a different type (or the end). 9965 IncIt = SameTypeIt; 9966 } 9967 return Changed; 9968 } 9969 9970 /// Compare two cmp instructions. If IsCompatibility is true, function returns 9971 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding 9972 /// operands. If IsCompatibility is false, function implements strict weak 9973 /// ordering relation between two cmp instructions, returning true if the first 9974 /// instruction is "less" than the second, i.e. its predicate is less than the 9975 /// predicate of the second or the operands IDs are less than the operands IDs 9976 /// of the second cmp instruction. 9977 template <bool IsCompatibility> 9978 static bool compareCmp(Value *V, Value *V2, 9979 function_ref<bool(Instruction *)> IsDeleted) { 9980 auto *CI1 = cast<CmpInst>(V); 9981 auto *CI2 = cast<CmpInst>(V2); 9982 if (IsDeleted(CI2) || !isValidElementType(CI2->getType())) 9983 return false; 9984 if (CI1->getOperand(0)->getType()->getTypeID() < 9985 CI2->getOperand(0)->getType()->getTypeID()) 9986 return !IsCompatibility; 9987 if (CI1->getOperand(0)->getType()->getTypeID() > 9988 CI2->getOperand(0)->getType()->getTypeID()) 9989 return false; 9990 CmpInst::Predicate Pred1 = CI1->getPredicate(); 9991 CmpInst::Predicate Pred2 = CI2->getPredicate(); 9992 CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1); 9993 CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2); 9994 CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1); 9995 CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2); 9996 if (BasePred1 < BasePred2) 9997 return !IsCompatibility; 9998 if (BasePred1 > BasePred2) 9999 return false; 10000 // Compare operands. 10001 bool LEPreds = Pred1 <= Pred2; 10002 bool GEPreds = Pred1 >= Pred2; 10003 for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) { 10004 auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1); 10005 auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1); 10006 if (Op1->getValueID() < Op2->getValueID()) 10007 return !IsCompatibility; 10008 if (Op1->getValueID() > Op2->getValueID()) 10009 return false; 10010 if (auto *I1 = dyn_cast<Instruction>(Op1)) 10011 if (auto *I2 = dyn_cast<Instruction>(Op2)) { 10012 if (I1->getParent() != I2->getParent()) 10013 return false; 10014 InstructionsState S = getSameOpcode({I1, I2}); 10015 if (S.getOpcode()) 10016 continue; 10017 return false; 10018 } 10019 } 10020 return IsCompatibility; 10021 } 10022 10023 bool SLPVectorizerPass::vectorizeSimpleInstructions( 10024 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 10025 bool AtTerminator) { 10026 bool OpsChanged = false; 10027 SmallVector<Instruction *, 4> PostponedCmps; 10028 for (auto *I : reverse(Instructions)) { 10029 if (R.isDeleted(I)) 10030 continue; 10031 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 10032 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 10033 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 10034 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 10035 else if (isa<CmpInst>(I)) 10036 PostponedCmps.push_back(I); 10037 } 10038 if (AtTerminator) { 10039 // Try to find reductions first. 10040 for (Instruction *I : PostponedCmps) { 10041 if (R.isDeleted(I)) 10042 continue; 10043 for (Value *Op : I->operands()) 10044 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 10045 } 10046 // Try to vectorize operands as vector bundles. 10047 for (Instruction *I : PostponedCmps) { 10048 if (R.isDeleted(I)) 10049 continue; 10050 OpsChanged |= tryToVectorize(I, R); 10051 } 10052 // Try to vectorize list of compares. 10053 // Sort by type, compare predicate, etc. 10054 auto &&CompareSorter = [&R](Value *V, Value *V2) { 10055 return compareCmp<false>(V, V2, 10056 [&R](Instruction *I) { return R.isDeleted(I); }); 10057 }; 10058 10059 auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) { 10060 if (V1 == V2) 10061 return true; 10062 return compareCmp<true>(V1, V2, 10063 [&R](Instruction *I) { return R.isDeleted(I); }); 10064 }; 10065 auto Limit = [&R](Value *V) { 10066 unsigned EltSize = R.getVectorElementSize(V); 10067 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10068 }; 10069 10070 SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end()); 10071 OpsChanged |= tryToVectorizeSequence<Value>( 10072 Vals, Limit, CompareSorter, AreCompatibleCompares, 10073 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10074 // Exclude possible reductions from other blocks. 10075 bool ArePossiblyReducedInOtherBlock = 10076 any_of(Candidates, [](Value *V) { 10077 return any_of(V->users(), [V](User *U) { 10078 return isa<SelectInst>(U) && 10079 cast<SelectInst>(U)->getParent() != 10080 cast<Instruction>(V)->getParent(); 10081 }); 10082 }); 10083 if (ArePossiblyReducedInOtherBlock) 10084 return false; 10085 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10086 }, 10087 /*LimitForRegisterSize=*/true); 10088 Instructions.clear(); 10089 } else { 10090 // Insert in reverse order since the PostponedCmps vector was filled in 10091 // reverse order. 10092 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 10093 } 10094 return OpsChanged; 10095 } 10096 10097 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 10098 bool Changed = false; 10099 SmallVector<Value *, 4> Incoming; 10100 SmallPtrSet<Value *, 16> VisitedInstrs; 10101 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 10102 // node. Allows better to identify the chains that can be vectorized in the 10103 // better way. 10104 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 10105 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { 10106 assert(isValidElementType(V1->getType()) && 10107 isValidElementType(V2->getType()) && 10108 "Expected vectorizable types only."); 10109 // It is fine to compare type IDs here, since we expect only vectorizable 10110 // types, like ints, floats and pointers, we don't care about other type. 10111 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 10112 return true; 10113 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 10114 return false; 10115 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10116 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10117 if (Opcodes1.size() < Opcodes2.size()) 10118 return true; 10119 if (Opcodes1.size() > Opcodes2.size()) 10120 return false; 10121 Optional<bool> ConstOrder; 10122 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10123 // Undefs are compatible with any other value. 10124 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) { 10125 if (!ConstOrder) 10126 ConstOrder = 10127 !isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]); 10128 continue; 10129 } 10130 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10131 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10132 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 10133 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 10134 if (!NodeI1) 10135 return NodeI2 != nullptr; 10136 if (!NodeI2) 10137 return false; 10138 assert((NodeI1 == NodeI2) == 10139 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10140 "Different nodes should have different DFS numbers"); 10141 if (NodeI1 != NodeI2) 10142 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10143 InstructionsState S = getSameOpcode({I1, I2}); 10144 if (S.getOpcode()) 10145 continue; 10146 return I1->getOpcode() < I2->getOpcode(); 10147 } 10148 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) { 10149 if (!ConstOrder) 10150 ConstOrder = Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID(); 10151 continue; 10152 } 10153 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 10154 return true; 10155 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 10156 return false; 10157 } 10158 return ConstOrder && *ConstOrder; 10159 }; 10160 auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 10161 if (V1 == V2) 10162 return true; 10163 if (V1->getType() != V2->getType()) 10164 return false; 10165 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10166 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10167 if (Opcodes1.size() != Opcodes2.size()) 10168 return false; 10169 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10170 // Undefs are compatible with any other value. 10171 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 10172 continue; 10173 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10174 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10175 if (I1->getParent() != I2->getParent()) 10176 return false; 10177 InstructionsState S = getSameOpcode({I1, I2}); 10178 if (S.getOpcode()) 10179 continue; 10180 return false; 10181 } 10182 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 10183 continue; 10184 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 10185 return false; 10186 } 10187 return true; 10188 }; 10189 auto Limit = [&R](Value *V) { 10190 unsigned EltSize = R.getVectorElementSize(V); 10191 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10192 }; 10193 10194 bool HaveVectorizedPhiNodes = false; 10195 do { 10196 // Collect the incoming values from the PHIs. 10197 Incoming.clear(); 10198 for (Instruction &I : *BB) { 10199 PHINode *P = dyn_cast<PHINode>(&I); 10200 if (!P) 10201 break; 10202 10203 // No need to analyze deleted, vectorized and non-vectorizable 10204 // instructions. 10205 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 10206 isValidElementType(P->getType())) 10207 Incoming.push_back(P); 10208 } 10209 10210 // Find the corresponding non-phi nodes for better matching when trying to 10211 // build the tree. 10212 for (Value *V : Incoming) { 10213 SmallVectorImpl<Value *> &Opcodes = 10214 PHIToOpcodes.try_emplace(V).first->getSecond(); 10215 if (!Opcodes.empty()) 10216 continue; 10217 SmallVector<Value *, 4> Nodes(1, V); 10218 SmallPtrSet<Value *, 4> Visited; 10219 while (!Nodes.empty()) { 10220 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 10221 if (!Visited.insert(PHI).second) 10222 continue; 10223 for (Value *V : PHI->incoming_values()) { 10224 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 10225 Nodes.push_back(PHI1); 10226 continue; 10227 } 10228 Opcodes.emplace_back(V); 10229 } 10230 } 10231 } 10232 10233 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( 10234 Incoming, Limit, PHICompare, AreCompatiblePHIs, 10235 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10236 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10237 }, 10238 /*LimitForRegisterSize=*/true); 10239 Changed |= HaveVectorizedPhiNodes; 10240 VisitedInstrs.insert(Incoming.begin(), Incoming.end()); 10241 } while (HaveVectorizedPhiNodes); 10242 10243 VisitedInstrs.clear(); 10244 10245 SmallVector<Instruction *, 8> PostProcessInstructions; 10246 SmallDenseSet<Instruction *, 4> KeyNodes; 10247 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 10248 // Skip instructions with scalable type. The num of elements is unknown at 10249 // compile-time for scalable type. 10250 if (isa<ScalableVectorType>(it->getType())) 10251 continue; 10252 10253 // Skip instructions marked for the deletion. 10254 if (R.isDeleted(&*it)) 10255 continue; 10256 // We may go through BB multiple times so skip the one we have checked. 10257 if (!VisitedInstrs.insert(&*it).second) { 10258 if (it->use_empty() && KeyNodes.contains(&*it) && 10259 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10260 it->isTerminator())) { 10261 // We would like to start over since some instructions are deleted 10262 // and the iterator may become invalid value. 10263 Changed = true; 10264 it = BB->begin(); 10265 e = BB->end(); 10266 } 10267 continue; 10268 } 10269 10270 if (isa<DbgInfoIntrinsic>(it)) 10271 continue; 10272 10273 // Try to vectorize reductions that use PHINodes. 10274 if (PHINode *P = dyn_cast<PHINode>(it)) { 10275 // Check that the PHI is a reduction PHI. 10276 if (P->getNumIncomingValues() == 2) { 10277 // Try to match and vectorize a horizontal reduction. 10278 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 10279 TTI)) { 10280 Changed = true; 10281 it = BB->begin(); 10282 e = BB->end(); 10283 continue; 10284 } 10285 } 10286 // Try to vectorize the incoming values of the PHI, to catch reductions 10287 // that feed into PHIs. 10288 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 10289 // Skip if the incoming block is the current BB for now. Also, bypass 10290 // unreachable IR for efficiency and to avoid crashing. 10291 // TODO: Collect the skipped incoming values and try to vectorize them 10292 // after processing BB. 10293 if (BB == P->getIncomingBlock(I) || 10294 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 10295 continue; 10296 10297 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 10298 P->getIncomingBlock(I), R, TTI); 10299 } 10300 continue; 10301 } 10302 10303 // Ran into an instruction without users, like terminator, or function call 10304 // with ignored return value, store. Ignore unused instructions (basing on 10305 // instruction type, except for CallInst and InvokeInst). 10306 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 10307 isa<InvokeInst>(it))) { 10308 KeyNodes.insert(&*it); 10309 bool OpsChanged = false; 10310 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 10311 for (auto *V : it->operand_values()) { 10312 // Try to match and vectorize a horizontal reduction. 10313 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 10314 } 10315 } 10316 // Start vectorization of post-process list of instructions from the 10317 // top-tree instructions to try to vectorize as many instructions as 10318 // possible. 10319 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10320 it->isTerminator()); 10321 if (OpsChanged) { 10322 // We would like to start over since some instructions are deleted 10323 // and the iterator may become invalid value. 10324 Changed = true; 10325 it = BB->begin(); 10326 e = BB->end(); 10327 continue; 10328 } 10329 } 10330 10331 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 10332 isa<InsertValueInst>(it)) 10333 PostProcessInstructions.push_back(&*it); 10334 } 10335 10336 return Changed; 10337 } 10338 10339 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 10340 auto Changed = false; 10341 for (auto &Entry : GEPs) { 10342 // If the getelementptr list has fewer than two elements, there's nothing 10343 // to do. 10344 if (Entry.second.size() < 2) 10345 continue; 10346 10347 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 10348 << Entry.second.size() << ".\n"); 10349 10350 // Process the GEP list in chunks suitable for the target's supported 10351 // vector size. If a vector register can't hold 1 element, we are done. We 10352 // are trying to vectorize the index computations, so the maximum number of 10353 // elements is based on the size of the index expression, rather than the 10354 // size of the GEP itself (the target's pointer size). 10355 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 10356 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 10357 if (MaxVecRegSize < EltSize) 10358 continue; 10359 10360 unsigned MaxElts = MaxVecRegSize / EltSize; 10361 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 10362 auto Len = std::min<unsigned>(BE - BI, MaxElts); 10363 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 10364 10365 // Initialize a set a candidate getelementptrs. Note that we use a 10366 // SetVector here to preserve program order. If the index computations 10367 // are vectorizable and begin with loads, we want to minimize the chance 10368 // of having to reorder them later. 10369 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 10370 10371 // Some of the candidates may have already been vectorized after we 10372 // initially collected them. If so, they are marked as deleted, so remove 10373 // them from the set of candidates. 10374 Candidates.remove_if( 10375 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 10376 10377 // Remove from the set of candidates all pairs of getelementptrs with 10378 // constant differences. Such getelementptrs are likely not good 10379 // candidates for vectorization in a bottom-up phase since one can be 10380 // computed from the other. We also ensure all candidate getelementptr 10381 // indices are unique. 10382 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 10383 auto *GEPI = GEPList[I]; 10384 if (!Candidates.count(GEPI)) 10385 continue; 10386 auto *SCEVI = SE->getSCEV(GEPList[I]); 10387 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 10388 auto *GEPJ = GEPList[J]; 10389 auto *SCEVJ = SE->getSCEV(GEPList[J]); 10390 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 10391 Candidates.remove(GEPI); 10392 Candidates.remove(GEPJ); 10393 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 10394 Candidates.remove(GEPJ); 10395 } 10396 } 10397 } 10398 10399 // We break out of the above computation as soon as we know there are 10400 // fewer than two candidates remaining. 10401 if (Candidates.size() < 2) 10402 continue; 10403 10404 // Add the single, non-constant index of each candidate to the bundle. We 10405 // ensured the indices met these constraints when we originally collected 10406 // the getelementptrs. 10407 SmallVector<Value *, 16> Bundle(Candidates.size()); 10408 auto BundleIndex = 0u; 10409 for (auto *V : Candidates) { 10410 auto *GEP = cast<GetElementPtrInst>(V); 10411 auto *GEPIdx = GEP->idx_begin()->get(); 10412 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 10413 Bundle[BundleIndex++] = GEPIdx; 10414 } 10415 10416 // Try and vectorize the indices. We are currently only interested in 10417 // gather-like cases of the form: 10418 // 10419 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 10420 // 10421 // where the loads of "a", the loads of "b", and the subtractions can be 10422 // performed in parallel. It's likely that detecting this pattern in a 10423 // bottom-up phase will be simpler and less costly than building a 10424 // full-blown top-down phase beginning at the consecutive loads. 10425 Changed |= tryToVectorizeList(Bundle, R); 10426 } 10427 } 10428 return Changed; 10429 } 10430 10431 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 10432 bool Changed = false; 10433 // Sort by type, base pointers and values operand. Value operands must be 10434 // compatible (have the same opcode, same parent), otherwise it is 10435 // definitely not profitable to try to vectorize them. 10436 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 10437 if (V->getPointerOperandType()->getTypeID() < 10438 V2->getPointerOperandType()->getTypeID()) 10439 return true; 10440 if (V->getPointerOperandType()->getTypeID() > 10441 V2->getPointerOperandType()->getTypeID()) 10442 return false; 10443 // UndefValues are compatible with all other values. 10444 if (isa<UndefValue>(V->getValueOperand()) || 10445 isa<UndefValue>(V2->getValueOperand())) 10446 return false; 10447 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 10448 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10449 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 10450 DT->getNode(I1->getParent()); 10451 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 10452 DT->getNode(I2->getParent()); 10453 assert(NodeI1 && "Should only process reachable instructions"); 10454 assert(NodeI1 && "Should only process reachable instructions"); 10455 assert((NodeI1 == NodeI2) == 10456 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10457 "Different nodes should have different DFS numbers"); 10458 if (NodeI1 != NodeI2) 10459 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10460 InstructionsState S = getSameOpcode({I1, I2}); 10461 if (S.getOpcode()) 10462 return false; 10463 return I1->getOpcode() < I2->getOpcode(); 10464 } 10465 if (isa<Constant>(V->getValueOperand()) && 10466 isa<Constant>(V2->getValueOperand())) 10467 return false; 10468 return V->getValueOperand()->getValueID() < 10469 V2->getValueOperand()->getValueID(); 10470 }; 10471 10472 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 10473 if (V1 == V2) 10474 return true; 10475 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 10476 return false; 10477 // Undefs are compatible with any other value. 10478 if (isa<UndefValue>(V1->getValueOperand()) || 10479 isa<UndefValue>(V2->getValueOperand())) 10480 return true; 10481 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 10482 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10483 if (I1->getParent() != I2->getParent()) 10484 return false; 10485 InstructionsState S = getSameOpcode({I1, I2}); 10486 return S.getOpcode() > 0; 10487 } 10488 if (isa<Constant>(V1->getValueOperand()) && 10489 isa<Constant>(V2->getValueOperand())) 10490 return true; 10491 return V1->getValueOperand()->getValueID() == 10492 V2->getValueOperand()->getValueID(); 10493 }; 10494 auto Limit = [&R, this](StoreInst *SI) { 10495 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 10496 return R.getMinVF(EltSize); 10497 }; 10498 10499 // Attempt to sort and vectorize each of the store-groups. 10500 for (auto &Pair : Stores) { 10501 if (Pair.second.size() < 2) 10502 continue; 10503 10504 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 10505 << Pair.second.size() << ".\n"); 10506 10507 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) 10508 continue; 10509 10510 Changed |= tryToVectorizeSequence<StoreInst>( 10511 Pair.second, Limit, StoreSorter, AreCompatibleStores, 10512 [this, &R](ArrayRef<StoreInst *> Candidates, bool) { 10513 return vectorizeStores(Candidates, R); 10514 }, 10515 /*LimitForRegisterSize=*/false); 10516 } 10517 return Changed; 10518 } 10519 10520 char SLPVectorizer::ID = 0; 10521 10522 static const char lv_name[] = "SLP Vectorizer"; 10523 10524 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 10525 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 10526 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 10527 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 10528 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 10529 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 10530 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 10531 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 10532 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 10533 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 10534 10535 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 10536