1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/PostOrderIterator.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/CodeMetrics.h" 24 #include "llvm/Analysis/GlobalsModRef.h" 25 #include "llvm/Analysis/LoopAccessAnalysis.h" 26 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/Analysis/VectorUtils.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/NoFolder.h" 36 #include "llvm/IR/Type.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/IR/Verifier.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/GraphWriter.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include "llvm/Transforms/Utils/LoopUtils.h" 45 #include "llvm/Transforms/Vectorize.h" 46 #include <algorithm> 47 #include <memory> 48 49 using namespace llvm; 50 using namespace slpvectorizer; 51 52 #define SV_NAME "slp-vectorizer" 53 #define DEBUG_TYPE "SLP" 54 55 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 56 57 static cl::opt<int> 58 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 59 cl::desc("Only vectorize if you gain more than this " 60 "number ")); 61 62 static cl::opt<bool> 63 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 64 cl::desc("Attempt to vectorize horizontal reductions")); 65 66 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 67 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 68 cl::desc( 69 "Attempt to vectorize horizontal reductions feeding into a store")); 70 71 static cl::opt<int> 72 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 73 cl::desc("Attempt to vectorize for this register size in bits")); 74 75 /// Limits the size of scheduling regions in a block. 76 /// It avoid long compile times for _very_ large blocks where vector 77 /// instructions are spread over a wide range. 78 /// This limit is way higher than needed by real-world functions. 79 static cl::opt<int> 80 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 81 cl::desc("Limit the size of the SLP scheduling region per block")); 82 83 static cl::opt<int> MinVectorRegSizeOption( 84 "slp-min-reg-size", cl::init(128), cl::Hidden, 85 cl::desc("Attempt to vectorize for this register size in bits")); 86 87 static cl::opt<unsigned> RecursionMaxDepth( 88 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 89 cl::desc("Limit the recursion depth when building a vectorizable tree")); 90 91 static cl::opt<unsigned> MinTreeSize( 92 "slp-min-tree-size", cl::init(3), cl::Hidden, 93 cl::desc("Only vectorize small trees if they are fully vectorizable")); 94 95 static cl::opt<bool> 96 ViewSLPTree("view-slp-tree", cl::Hidden, 97 cl::desc("Display the SLP trees with Graphviz")); 98 99 // Limit the number of alias checks. The limit is chosen so that 100 // it has no negative effect on the llvm benchmarks. 101 static const unsigned AliasedCheckLimit = 10; 102 103 // Another limit for the alias checks: The maximum distance between load/store 104 // instructions where alias checks are done. 105 // This limit is useful for very large basic blocks. 106 static const unsigned MaxMemDepDistance = 160; 107 108 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 109 /// regions to be handled. 110 static const int MinScheduleRegionSize = 16; 111 112 /// \brief Predicate for the element types that the SLP vectorizer supports. 113 /// 114 /// The most important thing to filter here are types which are invalid in LLVM 115 /// vectors. We also filter target specific types which have absolutely no 116 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 117 /// avoids spending time checking the cost model and realizing that they will 118 /// be inevitably scalarized. 119 static bool isValidElementType(Type *Ty) { 120 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 121 !Ty->isPPC_FP128Ty(); 122 } 123 124 /// \returns true if all of the instructions in \p VL are in the same block or 125 /// false otherwise. 126 static bool allSameBlock(ArrayRef<Value *> VL) { 127 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 128 if (!I0) 129 return false; 130 BasicBlock *BB = I0->getParent(); 131 for (int i = 1, e = VL.size(); i < e; i++) { 132 Instruction *I = dyn_cast<Instruction>(VL[i]); 133 if (!I) 134 return false; 135 136 if (BB != I->getParent()) 137 return false; 138 } 139 return true; 140 } 141 142 /// \returns True if all of the values in \p VL are constants. 143 static bool allConstant(ArrayRef<Value *> VL) { 144 for (Value *i : VL) 145 if (!isa<Constant>(i)) 146 return false; 147 return true; 148 } 149 150 /// \returns True if all of the values in \p VL are identical. 151 static bool isSplat(ArrayRef<Value *> VL) { 152 for (unsigned i = 1, e = VL.size(); i < e; ++i) 153 if (VL[i] != VL[0]) 154 return false; 155 return true; 156 } 157 158 ///\returns Opcode that can be clubbed with \p Op to create an alternate 159 /// sequence which can later be merged as a ShuffleVector instruction. 160 static unsigned getAltOpcode(unsigned Op) { 161 switch (Op) { 162 case Instruction::FAdd: 163 return Instruction::FSub; 164 case Instruction::FSub: 165 return Instruction::FAdd; 166 case Instruction::Add: 167 return Instruction::Sub; 168 case Instruction::Sub: 169 return Instruction::Add; 170 default: 171 return 0; 172 } 173 } 174 175 ///\returns bool representing if Opcode \p Op can be part 176 /// of an alternate sequence which can later be merged as 177 /// a ShuffleVector instruction. 178 static bool canCombineAsAltInst(unsigned Op) { 179 return Op == Instruction::FAdd || Op == Instruction::FSub || 180 Op == Instruction::Sub || Op == Instruction::Add; 181 } 182 183 /// \returns ShuffleVector instruction if instructions in \p VL have 184 /// alternate fadd,fsub / fsub,fadd/add,sub/sub,add sequence. 185 /// (i.e. e.g. opcodes of fadd,fsub,fadd,fsub...) 186 static unsigned isAltInst(ArrayRef<Value *> VL) { 187 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 188 unsigned Opcode = I0->getOpcode(); 189 unsigned AltOpcode = getAltOpcode(Opcode); 190 for (int i = 1, e = VL.size(); i < e; i++) { 191 Instruction *I = dyn_cast<Instruction>(VL[i]); 192 if (!I || I->getOpcode() != ((i & 1) ? AltOpcode : Opcode)) 193 return 0; 194 } 195 return Instruction::ShuffleVector; 196 } 197 198 /// \returns The opcode if all of the Instructions in \p VL have the same 199 /// opcode, or zero. 200 static unsigned getSameOpcode(ArrayRef<Value *> VL) { 201 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 202 if (!I0) 203 return 0; 204 unsigned Opcode = I0->getOpcode(); 205 for (int i = 1, e = VL.size(); i < e; i++) { 206 Instruction *I = dyn_cast<Instruction>(VL[i]); 207 if (!I || Opcode != I->getOpcode()) { 208 if (canCombineAsAltInst(Opcode) && i == 1) 209 return isAltInst(VL); 210 return 0; 211 } 212 } 213 return Opcode; 214 } 215 216 /// \returns true if all of the values in \p VL have the same type or false 217 /// otherwise. 218 static bool allSameType(ArrayRef<Value *> VL) { 219 Type *Ty = VL[0]->getType(); 220 for (int i = 1, e = VL.size(); i < e; i++) 221 if (VL[i]->getType() != Ty) 222 return false; 223 224 return true; 225 } 226 227 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 228 static bool matchExtractIndex(Instruction *E, unsigned Idx, unsigned Opcode) { 229 assert(Opcode == Instruction::ExtractElement || 230 Opcode == Instruction::ExtractValue); 231 if (Opcode == Instruction::ExtractElement) { 232 ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 233 return CI && CI->getZExtValue() == Idx; 234 } else { 235 ExtractValueInst *EI = cast<ExtractValueInst>(E); 236 return EI->getNumIndices() == 1 && *EI->idx_begin() == Idx; 237 } 238 } 239 240 /// \returns True if in-tree use also needs extract. This refers to 241 /// possible scalar operand in vectorized instruction. 242 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 243 TargetLibraryInfo *TLI) { 244 245 unsigned Opcode = UserInst->getOpcode(); 246 switch (Opcode) { 247 case Instruction::Load: { 248 LoadInst *LI = cast<LoadInst>(UserInst); 249 return (LI->getPointerOperand() == Scalar); 250 } 251 case Instruction::Store: { 252 StoreInst *SI = cast<StoreInst>(UserInst); 253 return (SI->getPointerOperand() == Scalar); 254 } 255 case Instruction::Call: { 256 CallInst *CI = cast<CallInst>(UserInst); 257 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 258 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 259 return (CI->getArgOperand(1) == Scalar); 260 } 261 } 262 default: 263 return false; 264 } 265 } 266 267 /// \returns the AA location that is being access by the instruction. 268 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 269 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 270 return MemoryLocation::get(SI); 271 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 272 return MemoryLocation::get(LI); 273 return MemoryLocation(); 274 } 275 276 /// \returns True if the instruction is not a volatile or atomic load/store. 277 static bool isSimple(Instruction *I) { 278 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 279 return LI->isSimple(); 280 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 281 return SI->isSimple(); 282 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 283 return !MI->isVolatile(); 284 return true; 285 } 286 287 namespace llvm { 288 namespace slpvectorizer { 289 /// Bottom Up SLP Vectorizer. 290 class BoUpSLP { 291 public: 292 typedef SmallVector<Value *, 8> ValueList; 293 typedef SmallVector<Instruction *, 16> InstrList; 294 typedef SmallPtrSet<Value *, 16> ValueSet; 295 typedef SmallVector<StoreInst *, 8> StoreList; 296 typedef MapVector<Value *, SmallVector<Instruction *, 2>> 297 ExtraValueToDebugLocsMap; 298 299 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 300 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 301 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 302 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 303 : NumLoadsWantToKeepOrder(0), NumLoadsWantToChangeOrder(0), F(Func), 304 SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), DB(DB), 305 DL(DL), ORE(ORE), Builder(Se->getContext()) { 306 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 307 // Use the vector register size specified by the target unless overridden 308 // by a command-line option. 309 // TODO: It would be better to limit the vectorization factor based on 310 // data type rather than just register size. For example, x86 AVX has 311 // 256-bit registers, but it does not support integer operations 312 // at that width (that requires AVX2). 313 if (MaxVectorRegSizeOption.getNumOccurrences()) 314 MaxVecRegSize = MaxVectorRegSizeOption; 315 else 316 MaxVecRegSize = TTI->getRegisterBitWidth(true); 317 318 MinVecRegSize = MinVectorRegSizeOption; 319 } 320 321 /// \brief Vectorize the tree that starts with the elements in \p VL. 322 /// Returns the vectorized root. 323 Value *vectorizeTree(); 324 /// Vectorize the tree but with the list of externally used values \p 325 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 326 /// generated extractvalue instructions. 327 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 328 329 /// \returns the cost incurred by unwanted spills and fills, caused by 330 /// holding live values over call sites. 331 int getSpillCost(); 332 333 /// \returns the vectorization cost of the subtree that starts at \p VL. 334 /// A negative number means that this is profitable. 335 int getTreeCost(); 336 337 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 338 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 339 void buildTree(ArrayRef<Value *> Roots, 340 ArrayRef<Value *> UserIgnoreLst = None); 341 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 342 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 343 /// into account (anf updating it, if required) list of externally used 344 /// values stored in \p ExternallyUsedValues. 345 void buildTree(ArrayRef<Value *> Roots, 346 ExtraValueToDebugLocsMap &ExternallyUsedValues, 347 ArrayRef<Value *> UserIgnoreLst = None); 348 349 /// Clear the internal data structures that are created by 'buildTree'. 350 void deleteTree() { 351 VectorizableTree.clear(); 352 ScalarToTreeEntry.clear(); 353 MustGather.clear(); 354 ExternalUses.clear(); 355 NumLoadsWantToKeepOrder = 0; 356 NumLoadsWantToChangeOrder = 0; 357 for (auto &Iter : BlocksSchedules) { 358 BlockScheduling *BS = Iter.second.get(); 359 BS->clear(); 360 } 361 MinBWs.clear(); 362 } 363 364 unsigned getTreeSize() const { return VectorizableTree.size(); } 365 366 /// \brief Perform LICM and CSE on the newly generated gather sequences. 367 void optimizeGatherSequence(); 368 369 /// \returns true if it is beneficial to reverse the vector order. 370 bool shouldReorder() const { 371 return NumLoadsWantToChangeOrder > NumLoadsWantToKeepOrder; 372 } 373 374 /// \return The vector element size in bits to use when vectorizing the 375 /// expression tree ending at \p V. If V is a store, the size is the width of 376 /// the stored value. Otherwise, the size is the width of the largest loaded 377 /// value reaching V. This method is used by the vectorizer to calculate 378 /// vectorization factors. 379 unsigned getVectorElementSize(Value *V); 380 381 /// Compute the minimum type sizes required to represent the entries in a 382 /// vectorizable tree. 383 void computeMinimumValueSizes(); 384 385 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 386 unsigned getMaxVecRegSize() const { 387 return MaxVecRegSize; 388 } 389 390 // \returns minimum vector register size as set by cl::opt. 391 unsigned getMinVecRegSize() const { 392 return MinVecRegSize; 393 } 394 395 /// \brief Check if ArrayType or StructType is isomorphic to some VectorType. 396 /// 397 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 398 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 399 400 /// \returns True if the VectorizableTree is both tiny and not fully 401 /// vectorizable. We do not vectorize such trees. 402 bool isTreeTinyAndNotFullyVectorizable(); 403 404 OptimizationRemarkEmitter *getORE() { return ORE; } 405 406 private: 407 struct TreeEntry; 408 409 /// \returns the cost of the vectorizable entry. 410 int getEntryCost(TreeEntry *E); 411 412 /// This is the recursive part of buildTree. 413 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, int); 414 415 /// \returns True if the ExtractElement/ExtractValue instructions in VL can 416 /// be vectorized to use the original vector (or aggregate "bitcast" to a vector). 417 bool canReuseExtract(ArrayRef<Value *> VL, unsigned Opcode) const; 418 419 /// Vectorize a single entry in the tree. 420 Value *vectorizeTree(TreeEntry *E); 421 422 /// Vectorize a single entry in the tree, starting in \p VL. 423 Value *vectorizeTree(ArrayRef<Value *> VL); 424 425 /// \returns the pointer to the vectorized value if \p VL is already 426 /// vectorized, or NULL. They may happen in cycles. 427 Value *alreadyVectorized(ArrayRef<Value *> VL) const; 428 429 /// \returns the scalarization cost for this type. Scalarization in this 430 /// context means the creation of vectors from a group of scalars. 431 int getGatherCost(Type *Ty); 432 433 /// \returns the scalarization cost for this list of values. Assuming that 434 /// this subtree gets vectorized, we may need to extract the values from the 435 /// roots. This method calculates the cost of extracting the values. 436 int getGatherCost(ArrayRef<Value *> VL); 437 438 /// \brief Set the Builder insert point to one after the last instruction in 439 /// the bundle 440 void setInsertPointAfterBundle(ArrayRef<Value *> VL); 441 442 /// \returns a vector from a collection of scalars in \p VL. 443 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 444 445 /// \returns whether the VectorizableTree is fully vectorizable and will 446 /// be beneficial even the tree height is tiny. 447 bool isFullyVectorizableTinyTree(); 448 449 /// \reorder commutative operands in alt shuffle if they result in 450 /// vectorized code. 451 void reorderAltShuffleOperands(ArrayRef<Value *> VL, 452 SmallVectorImpl<Value *> &Left, 453 SmallVectorImpl<Value *> &Right); 454 /// \reorder commutative operands to get better probability of 455 /// generating vectorized code. 456 void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 457 SmallVectorImpl<Value *> &Left, 458 SmallVectorImpl<Value *> &Right); 459 struct TreeEntry { 460 TreeEntry(std::vector<TreeEntry> &Container) 461 : Scalars(), VectorizedValue(nullptr), NeedToGather(0), 462 Container(Container) {} 463 464 /// \returns true if the scalars in VL are equal to this entry. 465 bool isSame(ArrayRef<Value *> VL) const { 466 assert(VL.size() == Scalars.size() && "Invalid size"); 467 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 468 } 469 470 /// A vector of scalars. 471 ValueList Scalars; 472 473 /// The Scalars are vectorized into this value. It is initialized to Null. 474 Value *VectorizedValue; 475 476 /// Do we need to gather this sequence ? 477 bool NeedToGather; 478 479 /// Points back to the VectorizableTree. 480 /// 481 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 482 /// to be a pointer and needs to be able to initialize the child iterator. 483 /// Thus we need a reference back to the container to translate the indices 484 /// to entries. 485 std::vector<TreeEntry> &Container; 486 487 /// The TreeEntry index containing the user of this entry. We can actually 488 /// have multiple users so the data structure is not truly a tree. 489 SmallVector<int, 1> UserTreeIndices; 490 }; 491 492 /// Create a new VectorizableTree entry. 493 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized, 494 int &UserTreeIdx) { 495 VectorizableTree.emplace_back(VectorizableTree); 496 int idx = VectorizableTree.size() - 1; 497 TreeEntry *Last = &VectorizableTree[idx]; 498 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 499 Last->NeedToGather = !Vectorized; 500 if (Vectorized) { 501 for (int i = 0, e = VL.size(); i != e; ++i) { 502 assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!"); 503 ScalarToTreeEntry[VL[i]] = idx; 504 } 505 } else { 506 MustGather.insert(VL.begin(), VL.end()); 507 } 508 509 if (UserTreeIdx >= 0) 510 Last->UserTreeIndices.push_back(UserTreeIdx); 511 UserTreeIdx = idx; 512 return Last; 513 } 514 515 /// -- Vectorization State -- 516 /// Holds all of the tree entries. 517 std::vector<TreeEntry> VectorizableTree; 518 519 /// Maps a specific scalar to its tree entry. 520 SmallDenseMap<Value*, int> ScalarToTreeEntry; 521 522 /// A list of scalars that we found that we need to keep as scalars. 523 ValueSet MustGather; 524 525 /// This POD struct describes one external user in the vectorized tree. 526 struct ExternalUser { 527 ExternalUser (Value *S, llvm::User *U, int L) : 528 Scalar(S), User(U), Lane(L){} 529 // Which scalar in our function. 530 Value *Scalar; 531 // Which user that uses the scalar. 532 llvm::User *User; 533 // Which lane does the scalar belong to. 534 int Lane; 535 }; 536 typedef SmallVector<ExternalUser, 16> UserList; 537 538 /// Checks if two instructions may access the same memory. 539 /// 540 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 541 /// is invariant in the calling loop. 542 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 543 Instruction *Inst2) { 544 545 // First check if the result is already in the cache. 546 AliasCacheKey key = std::make_pair(Inst1, Inst2); 547 Optional<bool> &result = AliasCache[key]; 548 if (result.hasValue()) { 549 return result.getValue(); 550 } 551 MemoryLocation Loc2 = getLocation(Inst2, AA); 552 bool aliased = true; 553 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 554 // Do the alias check. 555 aliased = AA->alias(Loc1, Loc2); 556 } 557 // Store the result in the cache. 558 result = aliased; 559 return aliased; 560 } 561 562 typedef std::pair<Instruction *, Instruction *> AliasCacheKey; 563 564 /// Cache for alias results. 565 /// TODO: consider moving this to the AliasAnalysis itself. 566 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 567 568 /// Removes an instruction from its block and eventually deletes it. 569 /// It's like Instruction::eraseFromParent() except that the actual deletion 570 /// is delayed until BoUpSLP is destructed. 571 /// This is required to ensure that there are no incorrect collisions in the 572 /// AliasCache, which can happen if a new instruction is allocated at the 573 /// same address as a previously deleted instruction. 574 void eraseInstruction(Instruction *I) { 575 I->removeFromParent(); 576 I->dropAllReferences(); 577 DeletedInstructions.push_back(std::unique_ptr<Instruction>(I)); 578 } 579 580 /// Temporary store for deleted instructions. Instructions will be deleted 581 /// eventually when the BoUpSLP is destructed. 582 SmallVector<std::unique_ptr<Instruction>, 8> DeletedInstructions; 583 584 /// A list of values that need to extracted out of the tree. 585 /// This list holds pairs of (Internal Scalar : External User). External User 586 /// can be nullptr, it means that this Internal Scalar will be used later, 587 /// after vectorization. 588 UserList ExternalUses; 589 590 /// Values used only by @llvm.assume calls. 591 SmallPtrSet<const Value *, 32> EphValues; 592 593 /// Holds all of the instructions that we gathered. 594 SetVector<Instruction *> GatherSeq; 595 /// A list of blocks that we are going to CSE. 596 SetVector<BasicBlock *> CSEBlocks; 597 598 /// Contains all scheduling relevant data for an instruction. 599 /// A ScheduleData either represents a single instruction or a member of an 600 /// instruction bundle (= a group of instructions which is combined into a 601 /// vector instruction). 602 struct ScheduleData { 603 604 // The initial value for the dependency counters. It means that the 605 // dependencies are not calculated yet. 606 enum { InvalidDeps = -1 }; 607 608 ScheduleData() 609 : Inst(nullptr), FirstInBundle(nullptr), NextInBundle(nullptr), 610 NextLoadStore(nullptr), SchedulingRegionID(0), SchedulingPriority(0), 611 Dependencies(InvalidDeps), UnscheduledDeps(InvalidDeps), 612 UnscheduledDepsInBundle(InvalidDeps), IsScheduled(false) {} 613 614 void init(int BlockSchedulingRegionID) { 615 FirstInBundle = this; 616 NextInBundle = nullptr; 617 NextLoadStore = nullptr; 618 IsScheduled = false; 619 SchedulingRegionID = BlockSchedulingRegionID; 620 UnscheduledDepsInBundle = UnscheduledDeps; 621 clearDependencies(); 622 } 623 624 /// Returns true if the dependency information has been calculated. 625 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 626 627 /// Returns true for single instructions and for bundle representatives 628 /// (= the head of a bundle). 629 bool isSchedulingEntity() const { return FirstInBundle == this; } 630 631 /// Returns true if it represents an instruction bundle and not only a 632 /// single instruction. 633 bool isPartOfBundle() const { 634 return NextInBundle != nullptr || FirstInBundle != this; 635 } 636 637 /// Returns true if it is ready for scheduling, i.e. it has no more 638 /// unscheduled depending instructions/bundles. 639 bool isReady() const { 640 assert(isSchedulingEntity() && 641 "can't consider non-scheduling entity for ready list"); 642 return UnscheduledDepsInBundle == 0 && !IsScheduled; 643 } 644 645 /// Modifies the number of unscheduled dependencies, also updating it for 646 /// the whole bundle. 647 int incrementUnscheduledDeps(int Incr) { 648 UnscheduledDeps += Incr; 649 return FirstInBundle->UnscheduledDepsInBundle += Incr; 650 } 651 652 /// Sets the number of unscheduled dependencies to the number of 653 /// dependencies. 654 void resetUnscheduledDeps() { 655 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 656 } 657 658 /// Clears all dependency information. 659 void clearDependencies() { 660 Dependencies = InvalidDeps; 661 resetUnscheduledDeps(); 662 MemoryDependencies.clear(); 663 } 664 665 void dump(raw_ostream &os) const { 666 if (!isSchedulingEntity()) { 667 os << "/ " << *Inst; 668 } else if (NextInBundle) { 669 os << '[' << *Inst; 670 ScheduleData *SD = NextInBundle; 671 while (SD) { 672 os << ';' << *SD->Inst; 673 SD = SD->NextInBundle; 674 } 675 os << ']'; 676 } else { 677 os << *Inst; 678 } 679 } 680 681 Instruction *Inst; 682 683 /// Points to the head in an instruction bundle (and always to this for 684 /// single instructions). 685 ScheduleData *FirstInBundle; 686 687 /// Single linked list of all instructions in a bundle. Null if it is a 688 /// single instruction. 689 ScheduleData *NextInBundle; 690 691 /// Single linked list of all memory instructions (e.g. load, store, call) 692 /// in the block - until the end of the scheduling region. 693 ScheduleData *NextLoadStore; 694 695 /// The dependent memory instructions. 696 /// This list is derived on demand in calculateDependencies(). 697 SmallVector<ScheduleData *, 4> MemoryDependencies; 698 699 /// This ScheduleData is in the current scheduling region if this matches 700 /// the current SchedulingRegionID of BlockScheduling. 701 int SchedulingRegionID; 702 703 /// Used for getting a "good" final ordering of instructions. 704 int SchedulingPriority; 705 706 /// The number of dependencies. Constitutes of the number of users of the 707 /// instruction plus the number of dependent memory instructions (if any). 708 /// This value is calculated on demand. 709 /// If InvalidDeps, the number of dependencies is not calculated yet. 710 /// 711 int Dependencies; 712 713 /// The number of dependencies minus the number of dependencies of scheduled 714 /// instructions. As soon as this is zero, the instruction/bundle gets ready 715 /// for scheduling. 716 /// Note that this is negative as long as Dependencies is not calculated. 717 int UnscheduledDeps; 718 719 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 720 /// single instructions. 721 int UnscheduledDepsInBundle; 722 723 /// True if this instruction is scheduled (or considered as scheduled in the 724 /// dry-run). 725 bool IsScheduled; 726 }; 727 728 #ifndef NDEBUG 729 friend inline raw_ostream &operator<<(raw_ostream &os, 730 const BoUpSLP::ScheduleData &SD) { 731 SD.dump(os); 732 return os; 733 } 734 #endif 735 friend struct GraphTraits<BoUpSLP *>; 736 friend struct DOTGraphTraits<BoUpSLP *>; 737 738 /// Contains all scheduling data for a basic block. 739 /// 740 struct BlockScheduling { 741 742 BlockScheduling(BasicBlock *BB) 743 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize), 744 ScheduleStart(nullptr), ScheduleEnd(nullptr), 745 FirstLoadStoreInRegion(nullptr), LastLoadStoreInRegion(nullptr), 746 ScheduleRegionSize(0), 747 ScheduleRegionSizeLimit(ScheduleRegionSizeBudget), 748 // Make sure that the initial SchedulingRegionID is greater than the 749 // initial SchedulingRegionID in ScheduleData (which is 0). 750 SchedulingRegionID(1) {} 751 752 void clear() { 753 ReadyInsts.clear(); 754 ScheduleStart = nullptr; 755 ScheduleEnd = nullptr; 756 FirstLoadStoreInRegion = nullptr; 757 LastLoadStoreInRegion = nullptr; 758 759 // Reduce the maximum schedule region size by the size of the 760 // previous scheduling run. 761 ScheduleRegionSizeLimit -= ScheduleRegionSize; 762 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 763 ScheduleRegionSizeLimit = MinScheduleRegionSize; 764 ScheduleRegionSize = 0; 765 766 // Make a new scheduling region, i.e. all existing ScheduleData is not 767 // in the new region yet. 768 ++SchedulingRegionID; 769 } 770 771 ScheduleData *getScheduleData(Value *V) { 772 ScheduleData *SD = ScheduleDataMap[V]; 773 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 774 return SD; 775 return nullptr; 776 } 777 778 bool isInSchedulingRegion(ScheduleData *SD) { 779 return SD->SchedulingRegionID == SchedulingRegionID; 780 } 781 782 /// Marks an instruction as scheduled and puts all dependent ready 783 /// instructions into the ready-list. 784 template <typename ReadyListType> 785 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 786 SD->IsScheduled = true; 787 DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 788 789 ScheduleData *BundleMember = SD; 790 while (BundleMember) { 791 // Handle the def-use chain dependencies. 792 for (Use &U : BundleMember->Inst->operands()) { 793 ScheduleData *OpDef = getScheduleData(U.get()); 794 if (OpDef && OpDef->hasValidDependencies() && 795 OpDef->incrementUnscheduledDeps(-1) == 0) { 796 // There are no more unscheduled dependencies after decrementing, 797 // so we can put the dependent instruction into the ready list. 798 ScheduleData *DepBundle = OpDef->FirstInBundle; 799 assert(!DepBundle->IsScheduled && 800 "already scheduled bundle gets ready"); 801 ReadyList.insert(DepBundle); 802 DEBUG(dbgs() << "SLP: gets ready (def): " << *DepBundle << "\n"); 803 } 804 } 805 // Handle the memory dependencies. 806 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 807 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 808 // There are no more unscheduled dependencies after decrementing, 809 // so we can put the dependent instruction into the ready list. 810 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 811 assert(!DepBundle->IsScheduled && 812 "already scheduled bundle gets ready"); 813 ReadyList.insert(DepBundle); 814 DEBUG(dbgs() << "SLP: gets ready (mem): " << *DepBundle << "\n"); 815 } 816 } 817 BundleMember = BundleMember->NextInBundle; 818 } 819 } 820 821 /// Put all instructions into the ReadyList which are ready for scheduling. 822 template <typename ReadyListType> 823 void initialFillReadyList(ReadyListType &ReadyList) { 824 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 825 ScheduleData *SD = getScheduleData(I); 826 if (SD->isSchedulingEntity() && SD->isReady()) { 827 ReadyList.insert(SD); 828 DEBUG(dbgs() << "SLP: initially in ready list: " << *I << "\n"); 829 } 830 } 831 } 832 833 /// Checks if a bundle of instructions can be scheduled, i.e. has no 834 /// cyclic dependencies. This is only a dry-run, no instructions are 835 /// actually moved at this stage. 836 bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP); 837 838 /// Un-bundles a group of instructions. 839 void cancelScheduling(ArrayRef<Value *> VL); 840 841 /// Extends the scheduling region so that V is inside the region. 842 /// \returns true if the region size is within the limit. 843 bool extendSchedulingRegion(Value *V); 844 845 /// Initialize the ScheduleData structures for new instructions in the 846 /// scheduling region. 847 void initScheduleData(Instruction *FromI, Instruction *ToI, 848 ScheduleData *PrevLoadStore, 849 ScheduleData *NextLoadStore); 850 851 /// Updates the dependency information of a bundle and of all instructions/ 852 /// bundles which depend on the original bundle. 853 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 854 BoUpSLP *SLP); 855 856 /// Sets all instruction in the scheduling region to un-scheduled. 857 void resetSchedule(); 858 859 BasicBlock *BB; 860 861 /// Simple memory allocation for ScheduleData. 862 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 863 864 /// The size of a ScheduleData array in ScheduleDataChunks. 865 int ChunkSize; 866 867 /// The allocator position in the current chunk, which is the last entry 868 /// of ScheduleDataChunks. 869 int ChunkPos; 870 871 /// Attaches ScheduleData to Instruction. 872 /// Note that the mapping survives during all vectorization iterations, i.e. 873 /// ScheduleData structures are recycled. 874 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 875 876 struct ReadyList : SmallVector<ScheduleData *, 8> { 877 void insert(ScheduleData *SD) { push_back(SD); } 878 }; 879 880 /// The ready-list for scheduling (only used for the dry-run). 881 ReadyList ReadyInsts; 882 883 /// The first instruction of the scheduling region. 884 Instruction *ScheduleStart; 885 886 /// The first instruction _after_ the scheduling region. 887 Instruction *ScheduleEnd; 888 889 /// The first memory accessing instruction in the scheduling region 890 /// (can be null). 891 ScheduleData *FirstLoadStoreInRegion; 892 893 /// The last memory accessing instruction in the scheduling region 894 /// (can be null). 895 ScheduleData *LastLoadStoreInRegion; 896 897 /// The current size of the scheduling region. 898 int ScheduleRegionSize; 899 900 /// The maximum size allowed for the scheduling region. 901 int ScheduleRegionSizeLimit; 902 903 /// The ID of the scheduling region. For a new vectorization iteration this 904 /// is incremented which "removes" all ScheduleData from the region. 905 int SchedulingRegionID; 906 }; 907 908 /// Attaches the BlockScheduling structures to basic blocks. 909 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 910 911 /// Performs the "real" scheduling. Done before vectorization is actually 912 /// performed in a basic block. 913 void scheduleBlock(BlockScheduling *BS); 914 915 /// List of users to ignore during scheduling and that don't need extracting. 916 ArrayRef<Value *> UserIgnoreList; 917 918 // Number of load bundles that contain consecutive loads. 919 int NumLoadsWantToKeepOrder; 920 921 // Number of load bundles that contain consecutive loads in reversed order. 922 int NumLoadsWantToChangeOrder; 923 924 // Analysis and block reference. 925 Function *F; 926 ScalarEvolution *SE; 927 TargetTransformInfo *TTI; 928 TargetLibraryInfo *TLI; 929 AliasAnalysis *AA; 930 LoopInfo *LI; 931 DominatorTree *DT; 932 AssumptionCache *AC; 933 DemandedBits *DB; 934 const DataLayout *DL; 935 OptimizationRemarkEmitter *ORE; 936 937 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 938 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 939 /// Instruction builder to construct the vectorized tree. 940 IRBuilder<> Builder; 941 942 /// A map of scalar integer values to the smallest bit width with which they 943 /// can legally be represented. The values map to (width, signed) pairs, 944 /// where "width" indicates the minimum bit width and "signed" is True if the 945 /// value must be signed-extended, rather than zero-extended, back to its 946 /// original width. 947 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 948 }; 949 } // end namespace slpvectorizer 950 951 template <> struct GraphTraits<BoUpSLP *> { 952 typedef BoUpSLP::TreeEntry TreeEntry; 953 954 /// NodeRef has to be a pointer per the GraphWriter. 955 typedef TreeEntry *NodeRef; 956 957 /// \brief Add the VectorizableTree to the index iterator to be able to return 958 /// TreeEntry pointers. 959 struct ChildIteratorType 960 : public iterator_adaptor_base<ChildIteratorType, 961 SmallVector<int, 1>::iterator> { 962 963 std::vector<TreeEntry> &VectorizableTree; 964 965 ChildIteratorType(SmallVector<int, 1>::iterator W, 966 std::vector<TreeEntry> &VT) 967 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 968 969 NodeRef operator*() { return &VectorizableTree[*I]; } 970 }; 971 972 static NodeRef getEntryNode(BoUpSLP &R) { return &R.VectorizableTree[0]; } 973 974 static ChildIteratorType child_begin(NodeRef N) { 975 return {N->UserTreeIndices.begin(), N->Container}; 976 } 977 static ChildIteratorType child_end(NodeRef N) { 978 return {N->UserTreeIndices.end(), N->Container}; 979 } 980 981 /// For the node iterator we just need to turn the TreeEntry iterator into a 982 /// TreeEntry* iterator so that it dereferences to NodeRef. 983 typedef pointer_iterator<std::vector<TreeEntry>::iterator> nodes_iterator; 984 985 static nodes_iterator nodes_begin(BoUpSLP *R) { 986 return nodes_iterator(R->VectorizableTree.begin()); 987 } 988 static nodes_iterator nodes_end(BoUpSLP *R) { 989 return nodes_iterator(R->VectorizableTree.end()); 990 } 991 992 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 993 }; 994 995 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 996 typedef BoUpSLP::TreeEntry TreeEntry; 997 998 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 999 1000 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 1001 std::string Str; 1002 raw_string_ostream OS(Str); 1003 if (isSplat(Entry->Scalars)) { 1004 OS << "<splat> " << *Entry->Scalars[0]; 1005 return Str; 1006 } 1007 for (auto V : Entry->Scalars) { 1008 OS << *V; 1009 if (std::any_of( 1010 R->ExternalUses.begin(), R->ExternalUses.end(), 1011 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; })) 1012 OS << " <extract>"; 1013 OS << "\n"; 1014 } 1015 return Str; 1016 } 1017 1018 static std::string getNodeAttributes(const TreeEntry *Entry, 1019 const BoUpSLP *) { 1020 if (Entry->NeedToGather) 1021 return "color=red"; 1022 return ""; 1023 } 1024 }; 1025 1026 } // end namespace llvm 1027 1028 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1029 ArrayRef<Value *> UserIgnoreLst) { 1030 ExtraValueToDebugLocsMap ExternallyUsedValues; 1031 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 1032 } 1033 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1034 ExtraValueToDebugLocsMap &ExternallyUsedValues, 1035 ArrayRef<Value *> UserIgnoreLst) { 1036 deleteTree(); 1037 UserIgnoreList = UserIgnoreLst; 1038 if (!allSameType(Roots)) 1039 return; 1040 buildTree_rec(Roots, 0, -1); 1041 1042 // Collect the values that we need to extract from the tree. 1043 for (TreeEntry &EIdx : VectorizableTree) { 1044 TreeEntry *Entry = &EIdx; 1045 1046 // For each lane: 1047 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 1048 Value *Scalar = Entry->Scalars[Lane]; 1049 1050 // No need to handle users of gathered values. 1051 if (Entry->NeedToGather) 1052 continue; 1053 1054 // Check if the scalar is externally used as an extra arg. 1055 auto ExtI = ExternallyUsedValues.find(Scalar); 1056 if (ExtI != ExternallyUsedValues.end()) { 1057 DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " << 1058 Lane << " from " << *Scalar << ".\n"); 1059 ExternalUses.emplace_back(Scalar, nullptr, Lane); 1060 continue; 1061 } 1062 for (User *U : Scalar->users()) { 1063 DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 1064 1065 Instruction *UserInst = dyn_cast<Instruction>(U); 1066 if (!UserInst) 1067 continue; 1068 1069 // Skip in-tree scalars that become vectors 1070 if (ScalarToTreeEntry.count(U)) { 1071 int Idx = ScalarToTreeEntry[U]; 1072 TreeEntry *UseEntry = &VectorizableTree[Idx]; 1073 Value *UseScalar = UseEntry->Scalars[0]; 1074 // Some in-tree scalars will remain as scalar in vectorized 1075 // instructions. If that is the case, the one in Lane 0 will 1076 // be used. 1077 if (UseScalar != U || 1078 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 1079 DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 1080 << ".\n"); 1081 assert(!VectorizableTree[Idx].NeedToGather && "Bad state"); 1082 continue; 1083 } 1084 } 1085 1086 // Ignore users in the user ignore list. 1087 if (is_contained(UserIgnoreList, UserInst)) 1088 continue; 1089 1090 DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " << 1091 Lane << " from " << *Scalar << ".\n"); 1092 ExternalUses.push_back(ExternalUser(Scalar, U, Lane)); 1093 } 1094 } 1095 } 1096 } 1097 1098 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 1099 int UserTreeIdx) { 1100 bool isAltShuffle = false; 1101 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 1102 1103 if (Depth == RecursionMaxDepth) { 1104 DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 1105 newTreeEntry(VL, false, UserTreeIdx); 1106 return; 1107 } 1108 1109 // Don't handle vectors. 1110 if (VL[0]->getType()->isVectorTy()) { 1111 DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 1112 newTreeEntry(VL, false, UserTreeIdx); 1113 return; 1114 } 1115 1116 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1117 if (SI->getValueOperand()->getType()->isVectorTy()) { 1118 DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 1119 newTreeEntry(VL, false, UserTreeIdx); 1120 return; 1121 } 1122 unsigned Opcode = getSameOpcode(VL); 1123 1124 // Check that this shuffle vector refers to the alternate 1125 // sequence of opcodes. 1126 if (Opcode == Instruction::ShuffleVector) { 1127 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 1128 unsigned Op = I0->getOpcode(); 1129 if (Op != Instruction::ShuffleVector) 1130 isAltShuffle = true; 1131 } 1132 1133 // If all of the operands are identical or constant we have a simple solution. 1134 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !Opcode) { 1135 DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 1136 newTreeEntry(VL, false, UserTreeIdx); 1137 return; 1138 } 1139 1140 // We now know that this is a vector of instructions of the same type from 1141 // the same block. 1142 1143 // Don't vectorize ephemeral values. 1144 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1145 if (EphValues.count(VL[i])) { 1146 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1147 ") is ephemeral.\n"); 1148 newTreeEntry(VL, false, UserTreeIdx); 1149 return; 1150 } 1151 } 1152 1153 // Check if this is a duplicate of another entry. 1154 if (ScalarToTreeEntry.count(VL[0])) { 1155 int Idx = ScalarToTreeEntry[VL[0]]; 1156 TreeEntry *E = &VectorizableTree[Idx]; 1157 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1158 DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n"); 1159 if (E->Scalars[i] != VL[i]) { 1160 DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 1161 newTreeEntry(VL, false, UserTreeIdx); 1162 return; 1163 } 1164 } 1165 // Record the reuse of the tree node. FIXME, currently this is only used to 1166 // properly draw the graph rather than for the actual vectorization. 1167 E->UserTreeIndices.push_back(UserTreeIdx); 1168 DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n"); 1169 return; 1170 } 1171 1172 // Check that none of the instructions in the bundle are already in the tree. 1173 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1174 if (ScalarToTreeEntry.count(VL[i])) { 1175 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1176 ") is already in tree.\n"); 1177 newTreeEntry(VL, false, UserTreeIdx); 1178 return; 1179 } 1180 } 1181 1182 // If any of the scalars is marked as a value that needs to stay scalar then 1183 // we need to gather the scalars. 1184 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1185 if (MustGather.count(VL[i])) { 1186 DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 1187 newTreeEntry(VL, false, UserTreeIdx); 1188 return; 1189 } 1190 } 1191 1192 // Check that all of the users of the scalars that we want to vectorize are 1193 // schedulable. 1194 Instruction *VL0 = cast<Instruction>(VL[0]); 1195 BasicBlock *BB = cast<Instruction>(VL0)->getParent(); 1196 1197 if (!DT->isReachableFromEntry(BB)) { 1198 // Don't go into unreachable blocks. They may contain instructions with 1199 // dependency cycles which confuse the final scheduling. 1200 DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 1201 newTreeEntry(VL, false, UserTreeIdx); 1202 return; 1203 } 1204 1205 // Check that every instructions appears once in this bundle. 1206 for (unsigned i = 0, e = VL.size(); i < e; ++i) 1207 for (unsigned j = i+1; j < e; ++j) 1208 if (VL[i] == VL[j]) { 1209 DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 1210 newTreeEntry(VL, false, UserTreeIdx); 1211 return; 1212 } 1213 1214 auto &BSRef = BlocksSchedules[BB]; 1215 if (!BSRef) { 1216 BSRef = llvm::make_unique<BlockScheduling>(BB); 1217 } 1218 BlockScheduling &BS = *BSRef.get(); 1219 1220 if (!BS.tryScheduleBundle(VL, this)) { 1221 DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 1222 assert((!BS.getScheduleData(VL[0]) || 1223 !BS.getScheduleData(VL[0])->isPartOfBundle()) && 1224 "tryScheduleBundle should cancelScheduling on failure"); 1225 newTreeEntry(VL, false, UserTreeIdx); 1226 return; 1227 } 1228 DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 1229 1230 switch (Opcode) { 1231 case Instruction::PHI: { 1232 PHINode *PH = dyn_cast<PHINode>(VL0); 1233 1234 // Check for terminator values (e.g. invoke). 1235 for (unsigned j = 0; j < VL.size(); ++j) 1236 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1237 TerminatorInst *Term = dyn_cast<TerminatorInst>( 1238 cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i))); 1239 if (Term) { 1240 DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n"); 1241 BS.cancelScheduling(VL); 1242 newTreeEntry(VL, false, UserTreeIdx); 1243 return; 1244 } 1245 } 1246 1247 newTreeEntry(VL, true, UserTreeIdx); 1248 DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 1249 1250 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1251 ValueList Operands; 1252 // Prepare the operand vector. 1253 for (Value *j : VL) 1254 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( 1255 PH->getIncomingBlock(i))); 1256 1257 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1258 } 1259 return; 1260 } 1261 case Instruction::ExtractValue: 1262 case Instruction::ExtractElement: { 1263 bool Reuse = canReuseExtract(VL, Opcode); 1264 if (Reuse) { 1265 DEBUG(dbgs() << "SLP: Reusing extract sequence.\n"); 1266 } else { 1267 BS.cancelScheduling(VL); 1268 } 1269 newTreeEntry(VL, Reuse, UserTreeIdx); 1270 return; 1271 } 1272 case Instruction::Load: { 1273 // Check that a vectorized load would load the same memory as a scalar 1274 // load. 1275 // For example we don't want vectorize loads that are smaller than 8 bit. 1276 // Even though we have a packed struct {<i2, i2, i2, i2>} LLVM treats 1277 // loading/storing it as an i8 struct. If we vectorize loads/stores from 1278 // such a struct we read/write packed bits disagreeing with the 1279 // unvectorized version. 1280 Type *ScalarTy = VL[0]->getType(); 1281 1282 if (DL->getTypeSizeInBits(ScalarTy) != 1283 DL->getTypeAllocSizeInBits(ScalarTy)) { 1284 BS.cancelScheduling(VL); 1285 newTreeEntry(VL, false, UserTreeIdx); 1286 DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 1287 return; 1288 } 1289 1290 // Make sure all loads in the bundle are simple - we can't vectorize 1291 // atomic or volatile loads. 1292 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { 1293 LoadInst *L = cast<LoadInst>(VL[i]); 1294 if (!L->isSimple()) { 1295 BS.cancelScheduling(VL); 1296 newTreeEntry(VL, false, UserTreeIdx); 1297 DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 1298 return; 1299 } 1300 } 1301 1302 // Check if the loads are consecutive, reversed, or neither. 1303 // TODO: What we really want is to sort the loads, but for now, check 1304 // the two likely directions. 1305 bool Consecutive = true; 1306 bool ReverseConsecutive = true; 1307 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { 1308 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1309 Consecutive = false; 1310 break; 1311 } else { 1312 ReverseConsecutive = false; 1313 } 1314 } 1315 1316 if (Consecutive) { 1317 ++NumLoadsWantToKeepOrder; 1318 newTreeEntry(VL, true, UserTreeIdx); 1319 DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 1320 return; 1321 } 1322 1323 // If none of the load pairs were consecutive when checked in order, 1324 // check the reverse order. 1325 if (ReverseConsecutive) 1326 for (unsigned i = VL.size() - 1; i > 0; --i) 1327 if (!isConsecutiveAccess(VL[i], VL[i - 1], *DL, *SE)) { 1328 ReverseConsecutive = false; 1329 break; 1330 } 1331 1332 BS.cancelScheduling(VL); 1333 newTreeEntry(VL, false, UserTreeIdx); 1334 1335 if (ReverseConsecutive) { 1336 ++NumLoadsWantToChangeOrder; 1337 DEBUG(dbgs() << "SLP: Gathering reversed loads.\n"); 1338 } else { 1339 DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 1340 } 1341 return; 1342 } 1343 case Instruction::ZExt: 1344 case Instruction::SExt: 1345 case Instruction::FPToUI: 1346 case Instruction::FPToSI: 1347 case Instruction::FPExt: 1348 case Instruction::PtrToInt: 1349 case Instruction::IntToPtr: 1350 case Instruction::SIToFP: 1351 case Instruction::UIToFP: 1352 case Instruction::Trunc: 1353 case Instruction::FPTrunc: 1354 case Instruction::BitCast: { 1355 Type *SrcTy = VL0->getOperand(0)->getType(); 1356 for (unsigned i = 0; i < VL.size(); ++i) { 1357 Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType(); 1358 if (Ty != SrcTy || !isValidElementType(Ty)) { 1359 BS.cancelScheduling(VL); 1360 newTreeEntry(VL, false, UserTreeIdx); 1361 DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n"); 1362 return; 1363 } 1364 } 1365 newTreeEntry(VL, true, UserTreeIdx); 1366 DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 1367 1368 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1369 ValueList Operands; 1370 // Prepare the operand vector. 1371 for (Value *j : VL) 1372 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1373 1374 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1375 } 1376 return; 1377 } 1378 case Instruction::ICmp: 1379 case Instruction::FCmp: { 1380 // Check that all of the compares have the same predicate. 1381 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 1382 Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType(); 1383 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1384 CmpInst *Cmp = cast<CmpInst>(VL[i]); 1385 if (Cmp->getPredicate() != P0 || 1386 Cmp->getOperand(0)->getType() != ComparedTy) { 1387 BS.cancelScheduling(VL); 1388 newTreeEntry(VL, false, UserTreeIdx); 1389 DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n"); 1390 return; 1391 } 1392 } 1393 1394 newTreeEntry(VL, true, UserTreeIdx); 1395 DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 1396 1397 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1398 ValueList Operands; 1399 // Prepare the operand vector. 1400 for (Value *j : VL) 1401 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1402 1403 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1404 } 1405 return; 1406 } 1407 case Instruction::Select: 1408 case Instruction::Add: 1409 case Instruction::FAdd: 1410 case Instruction::Sub: 1411 case Instruction::FSub: 1412 case Instruction::Mul: 1413 case Instruction::FMul: 1414 case Instruction::UDiv: 1415 case Instruction::SDiv: 1416 case Instruction::FDiv: 1417 case Instruction::URem: 1418 case Instruction::SRem: 1419 case Instruction::FRem: 1420 case Instruction::Shl: 1421 case Instruction::LShr: 1422 case Instruction::AShr: 1423 case Instruction::And: 1424 case Instruction::Or: 1425 case Instruction::Xor: { 1426 newTreeEntry(VL, true, UserTreeIdx); 1427 DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); 1428 1429 // Sort operands of the instructions so that each side is more likely to 1430 // have the same opcode. 1431 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 1432 ValueList Left, Right; 1433 reorderInputsAccordingToOpcode(VL, Left, Right); 1434 buildTree_rec(Left, Depth + 1, UserTreeIdx); 1435 buildTree_rec(Right, Depth + 1, UserTreeIdx); 1436 return; 1437 } 1438 1439 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1440 ValueList Operands; 1441 // Prepare the operand vector. 1442 for (Value *j : VL) 1443 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1444 1445 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1446 } 1447 return; 1448 } 1449 case Instruction::GetElementPtr: { 1450 // We don't combine GEPs with complicated (nested) indexing. 1451 for (unsigned j = 0; j < VL.size(); ++j) { 1452 if (cast<Instruction>(VL[j])->getNumOperands() != 2) { 1453 DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 1454 BS.cancelScheduling(VL); 1455 newTreeEntry(VL, false, UserTreeIdx); 1456 return; 1457 } 1458 } 1459 1460 // We can't combine several GEPs into one vector if they operate on 1461 // different types. 1462 Type *Ty0 = cast<Instruction>(VL0)->getOperand(0)->getType(); 1463 for (unsigned j = 0; j < VL.size(); ++j) { 1464 Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType(); 1465 if (Ty0 != CurTy) { 1466 DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n"); 1467 BS.cancelScheduling(VL); 1468 newTreeEntry(VL, false, UserTreeIdx); 1469 return; 1470 } 1471 } 1472 1473 // We don't combine GEPs with non-constant indexes. 1474 for (unsigned j = 0; j < VL.size(); ++j) { 1475 auto Op = cast<Instruction>(VL[j])->getOperand(1); 1476 if (!isa<ConstantInt>(Op)) { 1477 DEBUG( 1478 dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 1479 BS.cancelScheduling(VL); 1480 newTreeEntry(VL, false, UserTreeIdx); 1481 return; 1482 } 1483 } 1484 1485 newTreeEntry(VL, true, UserTreeIdx); 1486 DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 1487 for (unsigned i = 0, e = 2; i < e; ++i) { 1488 ValueList Operands; 1489 // Prepare the operand vector. 1490 for (Value *j : VL) 1491 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1492 1493 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1494 } 1495 return; 1496 } 1497 case Instruction::Store: { 1498 // Check if the stores are consecutive or of we need to swizzle them. 1499 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 1500 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1501 BS.cancelScheduling(VL); 1502 newTreeEntry(VL, false, UserTreeIdx); 1503 DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 1504 return; 1505 } 1506 1507 newTreeEntry(VL, true, UserTreeIdx); 1508 DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 1509 1510 ValueList Operands; 1511 for (Value *j : VL) 1512 Operands.push_back(cast<Instruction>(j)->getOperand(0)); 1513 1514 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1515 return; 1516 } 1517 case Instruction::Call: { 1518 // Check if the calls are all to the same vectorizable intrinsic. 1519 CallInst *CI = cast<CallInst>(VL[0]); 1520 // Check if this is an Intrinsic call or something that can be 1521 // represented by an intrinsic call 1522 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 1523 if (!isTriviallyVectorizable(ID)) { 1524 BS.cancelScheduling(VL); 1525 newTreeEntry(VL, false, UserTreeIdx); 1526 DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 1527 return; 1528 } 1529 Function *Int = CI->getCalledFunction(); 1530 Value *A1I = nullptr; 1531 if (hasVectorInstrinsicScalarOpd(ID, 1)) 1532 A1I = CI->getArgOperand(1); 1533 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 1534 CallInst *CI2 = dyn_cast<CallInst>(VL[i]); 1535 if (!CI2 || CI2->getCalledFunction() != Int || 1536 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 1537 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 1538 BS.cancelScheduling(VL); 1539 newTreeEntry(VL, false, UserTreeIdx); 1540 DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] 1541 << "\n"); 1542 return; 1543 } 1544 // ctlz,cttz and powi are special intrinsics whose second argument 1545 // should be same in order for them to be vectorized. 1546 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 1547 Value *A1J = CI2->getArgOperand(1); 1548 if (A1I != A1J) { 1549 BS.cancelScheduling(VL); 1550 newTreeEntry(VL, false, UserTreeIdx); 1551 DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 1552 << " argument "<< A1I<<"!=" << A1J 1553 << "\n"); 1554 return; 1555 } 1556 } 1557 // Verify that the bundle operands are identical between the two calls. 1558 if (CI->hasOperandBundles() && 1559 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 1560 CI->op_begin() + CI->getBundleOperandsEndIndex(), 1561 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 1562 BS.cancelScheduling(VL); 1563 newTreeEntry(VL, false, UserTreeIdx); 1564 DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" << *CI << "!=" 1565 << *VL[i] << '\n'); 1566 return; 1567 } 1568 } 1569 1570 newTreeEntry(VL, true, UserTreeIdx); 1571 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 1572 ValueList Operands; 1573 // Prepare the operand vector. 1574 for (Value *j : VL) { 1575 CallInst *CI2 = dyn_cast<CallInst>(j); 1576 Operands.push_back(CI2->getArgOperand(i)); 1577 } 1578 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1579 } 1580 return; 1581 } 1582 case Instruction::ShuffleVector: { 1583 // If this is not an alternate sequence of opcode like add-sub 1584 // then do not vectorize this instruction. 1585 if (!isAltShuffle) { 1586 BS.cancelScheduling(VL); 1587 newTreeEntry(VL, false, UserTreeIdx); 1588 DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 1589 return; 1590 } 1591 newTreeEntry(VL, true, UserTreeIdx); 1592 DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 1593 1594 // Reorder operands if reordering would enable vectorization. 1595 if (isa<BinaryOperator>(VL0)) { 1596 ValueList Left, Right; 1597 reorderAltShuffleOperands(VL, Left, Right); 1598 buildTree_rec(Left, Depth + 1, UserTreeIdx); 1599 buildTree_rec(Right, Depth + 1, UserTreeIdx); 1600 return; 1601 } 1602 1603 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1604 ValueList Operands; 1605 // Prepare the operand vector. 1606 for (Value *j : VL) 1607 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1608 1609 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1610 } 1611 return; 1612 } 1613 default: 1614 BS.cancelScheduling(VL); 1615 newTreeEntry(VL, false, UserTreeIdx); 1616 DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 1617 return; 1618 } 1619 } 1620 1621 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 1622 unsigned N; 1623 Type *EltTy; 1624 auto *ST = dyn_cast<StructType>(T); 1625 if (ST) { 1626 N = ST->getNumElements(); 1627 EltTy = *ST->element_begin(); 1628 } else { 1629 N = cast<ArrayType>(T)->getNumElements(); 1630 EltTy = cast<ArrayType>(T)->getElementType(); 1631 } 1632 if (!isValidElementType(EltTy)) 1633 return 0; 1634 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); 1635 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 1636 return 0; 1637 if (ST) { 1638 // Check that struct is homogeneous. 1639 for (const auto *Ty : ST->elements()) 1640 if (Ty != EltTy) 1641 return 0; 1642 } 1643 return N; 1644 } 1645 1646 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, unsigned Opcode) const { 1647 assert(Opcode == Instruction::ExtractElement || 1648 Opcode == Instruction::ExtractValue); 1649 assert(Opcode == getSameOpcode(VL) && "Invalid opcode"); 1650 // Check if all of the extracts come from the same vector and from the 1651 // correct offset. 1652 Value *VL0 = VL[0]; 1653 Instruction *E0 = cast<Instruction>(VL0); 1654 Value *Vec = E0->getOperand(0); 1655 1656 // We have to extract from a vector/aggregate with the same number of elements. 1657 unsigned NElts; 1658 if (Opcode == Instruction::ExtractValue) { 1659 const DataLayout &DL = E0->getModule()->getDataLayout(); 1660 NElts = canMapToVector(Vec->getType(), DL); 1661 if (!NElts) 1662 return false; 1663 // Check if load can be rewritten as load of vector. 1664 LoadInst *LI = dyn_cast<LoadInst>(Vec); 1665 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 1666 return false; 1667 } else { 1668 NElts = Vec->getType()->getVectorNumElements(); 1669 } 1670 1671 if (NElts != VL.size()) 1672 return false; 1673 1674 // Check that all of the indices extract from the correct offset. 1675 if (!matchExtractIndex(E0, 0, Opcode)) 1676 return false; 1677 1678 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1679 Instruction *E = cast<Instruction>(VL[i]); 1680 if (!matchExtractIndex(E, i, Opcode)) 1681 return false; 1682 if (E->getOperand(0) != Vec) 1683 return false; 1684 } 1685 1686 return true; 1687 } 1688 1689 int BoUpSLP::getEntryCost(TreeEntry *E) { 1690 ArrayRef<Value*> VL = E->Scalars; 1691 1692 Type *ScalarTy = VL[0]->getType(); 1693 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1694 ScalarTy = SI->getValueOperand()->getType(); 1695 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 1696 ScalarTy = CI->getOperand(0)->getType(); 1697 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1698 1699 // If we have computed a smaller type for the expression, update VecTy so 1700 // that the costs will be accurate. 1701 if (MinBWs.count(VL[0])) 1702 VecTy = VectorType::get( 1703 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 1704 1705 if (E->NeedToGather) { 1706 if (allConstant(VL)) 1707 return 0; 1708 if (isSplat(VL)) { 1709 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 1710 } 1711 return getGatherCost(E->Scalars); 1712 } 1713 unsigned Opcode = getSameOpcode(VL); 1714 assert(Opcode && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 1715 Instruction *VL0 = cast<Instruction>(VL[0]); 1716 switch (Opcode) { 1717 case Instruction::PHI: { 1718 return 0; 1719 } 1720 case Instruction::ExtractValue: 1721 case Instruction::ExtractElement: { 1722 if (canReuseExtract(VL, Opcode)) { 1723 int DeadCost = 0; 1724 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 1725 Instruction *E = cast<Instruction>(VL[i]); 1726 // If all users are going to be vectorized, instruction can be 1727 // considered as dead. 1728 // The same, if have only one user, it will be vectorized for sure. 1729 if (E->hasOneUse() || 1730 std::all_of(E->user_begin(), E->user_end(), [this](User *U) { 1731 return ScalarToTreeEntry.count(U) > 0; 1732 })) 1733 // Take credit for instruction that will become dead. 1734 DeadCost += 1735 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 1736 } 1737 return -DeadCost; 1738 } 1739 return getGatherCost(VecTy); 1740 } 1741 case Instruction::ZExt: 1742 case Instruction::SExt: 1743 case Instruction::FPToUI: 1744 case Instruction::FPToSI: 1745 case Instruction::FPExt: 1746 case Instruction::PtrToInt: 1747 case Instruction::IntToPtr: 1748 case Instruction::SIToFP: 1749 case Instruction::UIToFP: 1750 case Instruction::Trunc: 1751 case Instruction::FPTrunc: 1752 case Instruction::BitCast: { 1753 Type *SrcTy = VL0->getOperand(0)->getType(); 1754 1755 // Calculate the cost of this instruction. 1756 int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(), 1757 VL0->getType(), SrcTy, VL0); 1758 1759 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 1760 int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy, VL0); 1761 return VecCost - ScalarCost; 1762 } 1763 case Instruction::FCmp: 1764 case Instruction::ICmp: 1765 case Instruction::Select: { 1766 // Calculate the cost of this instruction. 1767 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 1768 int ScalarCost = VecTy->getNumElements() * 1769 TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty(), VL0); 1770 int VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy, VL0); 1771 return VecCost - ScalarCost; 1772 } 1773 case Instruction::Add: 1774 case Instruction::FAdd: 1775 case Instruction::Sub: 1776 case Instruction::FSub: 1777 case Instruction::Mul: 1778 case Instruction::FMul: 1779 case Instruction::UDiv: 1780 case Instruction::SDiv: 1781 case Instruction::FDiv: 1782 case Instruction::URem: 1783 case Instruction::SRem: 1784 case Instruction::FRem: 1785 case Instruction::Shl: 1786 case Instruction::LShr: 1787 case Instruction::AShr: 1788 case Instruction::And: 1789 case Instruction::Or: 1790 case Instruction::Xor: { 1791 // Certain instructions can be cheaper to vectorize if they have a 1792 // constant second vector operand. 1793 TargetTransformInfo::OperandValueKind Op1VK = 1794 TargetTransformInfo::OK_AnyValue; 1795 TargetTransformInfo::OperandValueKind Op2VK = 1796 TargetTransformInfo::OK_UniformConstantValue; 1797 TargetTransformInfo::OperandValueProperties Op1VP = 1798 TargetTransformInfo::OP_None; 1799 TargetTransformInfo::OperandValueProperties Op2VP = 1800 TargetTransformInfo::OP_None; 1801 1802 // If all operands are exactly the same ConstantInt then set the 1803 // operand kind to OK_UniformConstantValue. 1804 // If instead not all operands are constants, then set the operand kind 1805 // to OK_AnyValue. If all operands are constants but not the same, 1806 // then set the operand kind to OK_NonUniformConstantValue. 1807 ConstantInt *CInt = nullptr; 1808 for (unsigned i = 0; i < VL.size(); ++i) { 1809 const Instruction *I = cast<Instruction>(VL[i]); 1810 if (!isa<ConstantInt>(I->getOperand(1))) { 1811 Op2VK = TargetTransformInfo::OK_AnyValue; 1812 break; 1813 } 1814 if (i == 0) { 1815 CInt = cast<ConstantInt>(I->getOperand(1)); 1816 continue; 1817 } 1818 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && 1819 CInt != cast<ConstantInt>(I->getOperand(1))) 1820 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 1821 } 1822 // FIXME: Currently cost of model modification for division by power of 1823 // 2 is handled for X86 and AArch64. Add support for other targets. 1824 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt && 1825 CInt->getValue().isPowerOf2()) 1826 Op2VP = TargetTransformInfo::OP_PowerOf2; 1827 1828 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 1829 int ScalarCost = 1830 VecTy->getNumElements() * 1831 TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, Op2VK, Op1VP, 1832 Op2VP, Operands); 1833 int VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK, 1834 Op1VP, Op2VP, Operands); 1835 return VecCost - ScalarCost; 1836 } 1837 case Instruction::GetElementPtr: { 1838 TargetTransformInfo::OperandValueKind Op1VK = 1839 TargetTransformInfo::OK_AnyValue; 1840 TargetTransformInfo::OperandValueKind Op2VK = 1841 TargetTransformInfo::OK_UniformConstantValue; 1842 1843 int ScalarCost = 1844 VecTy->getNumElements() * 1845 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 1846 int VecCost = 1847 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 1848 1849 return VecCost - ScalarCost; 1850 } 1851 case Instruction::Load: { 1852 // Cost of wide load - cost of scalar loads. 1853 unsigned alignment = dyn_cast<LoadInst>(VL0)->getAlignment(); 1854 int ScalarLdCost = VecTy->getNumElements() * 1855 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0); 1856 int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, 1857 VecTy, alignment, 0, VL0); 1858 return VecLdCost - ScalarLdCost; 1859 } 1860 case Instruction::Store: { 1861 // We know that we can merge the stores. Calculate the cost. 1862 unsigned alignment = dyn_cast<StoreInst>(VL0)->getAlignment(); 1863 int ScalarStCost = VecTy->getNumElements() * 1864 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0, VL0); 1865 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, 1866 VecTy, alignment, 0, VL0); 1867 return VecStCost - ScalarStCost; 1868 } 1869 case Instruction::Call: { 1870 CallInst *CI = cast<CallInst>(VL0); 1871 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 1872 1873 // Calculate the cost of the scalar and vector calls. 1874 SmallVector<Type*, 4> ScalarTys; 1875 for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) 1876 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 1877 1878 FastMathFlags FMF; 1879 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 1880 FMF = FPMO->getFastMathFlags(); 1881 1882 int ScalarCallCost = VecTy->getNumElements() * 1883 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 1884 1885 SmallVector<Value *, 4> Args(CI->arg_operands()); 1886 int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF, 1887 VecTy->getNumElements()); 1888 1889 DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost 1890 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 1891 << " for " << *CI << "\n"); 1892 1893 return VecCallCost - ScalarCallCost; 1894 } 1895 case Instruction::ShuffleVector: { 1896 TargetTransformInfo::OperandValueKind Op1VK = 1897 TargetTransformInfo::OK_AnyValue; 1898 TargetTransformInfo::OperandValueKind Op2VK = 1899 TargetTransformInfo::OK_AnyValue; 1900 int ScalarCost = 0; 1901 int VecCost = 0; 1902 for (Value *i : VL) { 1903 Instruction *I = cast<Instruction>(i); 1904 if (!I) 1905 break; 1906 ScalarCost += 1907 TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK); 1908 } 1909 // VecCost is equal to sum of the cost of creating 2 vectors 1910 // and the cost of creating shuffle. 1911 Instruction *I0 = cast<Instruction>(VL[0]); 1912 VecCost = 1913 TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK); 1914 Instruction *I1 = cast<Instruction>(VL[1]); 1915 VecCost += 1916 TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK); 1917 VecCost += 1918 TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0); 1919 return VecCost - ScalarCost; 1920 } 1921 default: 1922 llvm_unreachable("Unknown instruction"); 1923 } 1924 } 1925 1926 bool BoUpSLP::isFullyVectorizableTinyTree() { 1927 DEBUG(dbgs() << "SLP: Check whether the tree with height " << 1928 VectorizableTree.size() << " is fully vectorizable .\n"); 1929 1930 // We only handle trees of heights 1 and 2. 1931 if (VectorizableTree.size() == 1 && !VectorizableTree[0].NeedToGather) 1932 return true; 1933 1934 if (VectorizableTree.size() != 2) 1935 return false; 1936 1937 // Handle splat and all-constants stores. 1938 if (!VectorizableTree[0].NeedToGather && 1939 (allConstant(VectorizableTree[1].Scalars) || 1940 isSplat(VectorizableTree[1].Scalars))) 1941 return true; 1942 1943 // Gathering cost would be too much for tiny trees. 1944 if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather) 1945 return false; 1946 1947 return true; 1948 } 1949 1950 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() { 1951 1952 // We can vectorize the tree if its size is greater than or equal to the 1953 // minimum size specified by the MinTreeSize command line option. 1954 if (VectorizableTree.size() >= MinTreeSize) 1955 return false; 1956 1957 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 1958 // can vectorize it if we can prove it fully vectorizable. 1959 if (isFullyVectorizableTinyTree()) 1960 return false; 1961 1962 assert(VectorizableTree.empty() 1963 ? ExternalUses.empty() 1964 : true && "We shouldn't have any external users"); 1965 1966 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 1967 // vectorizable. 1968 return true; 1969 } 1970 1971 int BoUpSLP::getSpillCost() { 1972 // Walk from the bottom of the tree to the top, tracking which values are 1973 // live. When we see a call instruction that is not part of our tree, 1974 // query TTI to see if there is a cost to keeping values live over it 1975 // (for example, if spills and fills are required). 1976 unsigned BundleWidth = VectorizableTree.front().Scalars.size(); 1977 int Cost = 0; 1978 1979 SmallPtrSet<Instruction*, 4> LiveValues; 1980 Instruction *PrevInst = nullptr; 1981 1982 for (const auto &N : VectorizableTree) { 1983 Instruction *Inst = dyn_cast<Instruction>(N.Scalars[0]); 1984 if (!Inst) 1985 continue; 1986 1987 if (!PrevInst) { 1988 PrevInst = Inst; 1989 continue; 1990 } 1991 1992 // Update LiveValues. 1993 LiveValues.erase(PrevInst); 1994 for (auto &J : PrevInst->operands()) { 1995 if (isa<Instruction>(&*J) && ScalarToTreeEntry.count(&*J)) 1996 LiveValues.insert(cast<Instruction>(&*J)); 1997 } 1998 1999 DEBUG( 2000 dbgs() << "SLP: #LV: " << LiveValues.size(); 2001 for (auto *X : LiveValues) 2002 dbgs() << " " << X->getName(); 2003 dbgs() << ", Looking at "; 2004 Inst->dump(); 2005 ); 2006 2007 // Now find the sequence of instructions between PrevInst and Inst. 2008 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 2009 PrevInstIt = 2010 PrevInst->getIterator().getReverse(); 2011 while (InstIt != PrevInstIt) { 2012 if (PrevInstIt == PrevInst->getParent()->rend()) { 2013 PrevInstIt = Inst->getParent()->rbegin(); 2014 continue; 2015 } 2016 2017 if (isa<CallInst>(&*PrevInstIt) && &*PrevInstIt != PrevInst) { 2018 SmallVector<Type*, 4> V; 2019 for (auto *II : LiveValues) 2020 V.push_back(VectorType::get(II->getType(), BundleWidth)); 2021 Cost += TTI->getCostOfKeepingLiveOverCall(V); 2022 } 2023 2024 ++PrevInstIt; 2025 } 2026 2027 PrevInst = Inst; 2028 } 2029 2030 return Cost; 2031 } 2032 2033 int BoUpSLP::getTreeCost() { 2034 int Cost = 0; 2035 DEBUG(dbgs() << "SLP: Calculating cost for tree of size " << 2036 VectorizableTree.size() << ".\n"); 2037 2038 unsigned BundleWidth = VectorizableTree[0].Scalars.size(); 2039 2040 for (TreeEntry &TE : VectorizableTree) { 2041 int C = getEntryCost(&TE); 2042 DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with " 2043 << *TE.Scalars[0] << ".\n"); 2044 Cost += C; 2045 } 2046 2047 SmallSet<Value *, 16> ExtractCostCalculated; 2048 int ExtractCost = 0; 2049 for (ExternalUser &EU : ExternalUses) { 2050 // We only add extract cost once for the same scalar. 2051 if (!ExtractCostCalculated.insert(EU.Scalar).second) 2052 continue; 2053 2054 // Uses by ephemeral values are free (because the ephemeral value will be 2055 // removed prior to code generation, and so the extraction will be 2056 // removed as well). 2057 if (EphValues.count(EU.User)) 2058 continue; 2059 2060 // If we plan to rewrite the tree in a smaller type, we will need to sign 2061 // extend the extracted value back to the original type. Here, we account 2062 // for the extract and the added cost of the sign extend if needed. 2063 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); 2064 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 2065 if (MinBWs.count(ScalarRoot)) { 2066 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 2067 auto Extend = 2068 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 2069 VecTy = VectorType::get(MinTy, BundleWidth); 2070 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 2071 VecTy, EU.Lane); 2072 } else { 2073 ExtractCost += 2074 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 2075 } 2076 } 2077 2078 int SpillCost = getSpillCost(); 2079 Cost += SpillCost + ExtractCost; 2080 2081 std::string Str; 2082 { 2083 raw_string_ostream OS(Str); 2084 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 2085 << "SLP: Extract Cost = " << ExtractCost << ".\n" 2086 << "SLP: Total Cost = " << Cost << ".\n"; 2087 } 2088 DEBUG(dbgs() << Str); 2089 2090 if (ViewSLPTree) 2091 ViewGraph(this, "SLP" + F->getName(), false, Str); 2092 2093 return Cost; 2094 } 2095 2096 int BoUpSLP::getGatherCost(Type *Ty) { 2097 int Cost = 0; 2098 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 2099 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 2100 return Cost; 2101 } 2102 2103 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) { 2104 // Find the type of the operands in VL. 2105 Type *ScalarTy = VL[0]->getType(); 2106 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2107 ScalarTy = SI->getValueOperand()->getType(); 2108 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2109 // Find the cost of inserting/extracting values from the vector. 2110 return getGatherCost(VecTy); 2111 } 2112 2113 // Reorder commutative operations in alternate shuffle if the resulting vectors 2114 // are consecutive loads. This would allow us to vectorize the tree. 2115 // If we have something like- 2116 // load a[0] - load b[0] 2117 // load b[1] + load a[1] 2118 // load a[2] - load b[2] 2119 // load a[3] + load b[3] 2120 // Reordering the second load b[1] load a[1] would allow us to vectorize this 2121 // code. 2122 void BoUpSLP::reorderAltShuffleOperands(ArrayRef<Value *> VL, 2123 SmallVectorImpl<Value *> &Left, 2124 SmallVectorImpl<Value *> &Right) { 2125 // Push left and right operands of binary operation into Left and Right 2126 for (Value *i : VL) { 2127 Left.push_back(cast<Instruction>(i)->getOperand(0)); 2128 Right.push_back(cast<Instruction>(i)->getOperand(1)); 2129 } 2130 2131 // Reorder if we have a commutative operation and consecutive access 2132 // are on either side of the alternate instructions. 2133 for (unsigned j = 0; j < VL.size() - 1; ++j) { 2134 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2135 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2136 Instruction *VL1 = cast<Instruction>(VL[j]); 2137 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 2138 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 2139 std::swap(Left[j], Right[j]); 2140 continue; 2141 } else if (VL2->isCommutative() && 2142 isConsecutiveAccess(L, L1, *DL, *SE)) { 2143 std::swap(Left[j + 1], Right[j + 1]); 2144 continue; 2145 } 2146 // else unchanged 2147 } 2148 } 2149 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2150 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2151 Instruction *VL1 = cast<Instruction>(VL[j]); 2152 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 2153 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 2154 std::swap(Left[j], Right[j]); 2155 continue; 2156 } else if (VL2->isCommutative() && 2157 isConsecutiveAccess(L, L1, *DL, *SE)) { 2158 std::swap(Left[j + 1], Right[j + 1]); 2159 continue; 2160 } 2161 // else unchanged 2162 } 2163 } 2164 } 2165 } 2166 2167 // Return true if I should be commuted before adding it's left and right 2168 // operands to the arrays Left and Right. 2169 // 2170 // The vectorizer is trying to either have all elements one side being 2171 // instruction with the same opcode to enable further vectorization, or having 2172 // a splat to lower the vectorizing cost. 2173 static bool shouldReorderOperands(int i, Instruction &I, 2174 SmallVectorImpl<Value *> &Left, 2175 SmallVectorImpl<Value *> &Right, 2176 bool AllSameOpcodeLeft, 2177 bool AllSameOpcodeRight, bool SplatLeft, 2178 bool SplatRight) { 2179 Value *VLeft = I.getOperand(0); 2180 Value *VRight = I.getOperand(1); 2181 // If we have "SplatRight", try to see if commuting is needed to preserve it. 2182 if (SplatRight) { 2183 if (VRight == Right[i - 1]) 2184 // Preserve SplatRight 2185 return false; 2186 if (VLeft == Right[i - 1]) { 2187 // Commuting would preserve SplatRight, but we don't want to break 2188 // SplatLeft either, i.e. preserve the original order if possible. 2189 // (FIXME: why do we care?) 2190 if (SplatLeft && VLeft == Left[i - 1]) 2191 return false; 2192 return true; 2193 } 2194 } 2195 // Symmetrically handle Right side. 2196 if (SplatLeft) { 2197 if (VLeft == Left[i - 1]) 2198 // Preserve SplatLeft 2199 return false; 2200 if (VRight == Left[i - 1]) 2201 return true; 2202 } 2203 2204 Instruction *ILeft = dyn_cast<Instruction>(VLeft); 2205 Instruction *IRight = dyn_cast<Instruction>(VRight); 2206 2207 // If we have "AllSameOpcodeRight", try to see if the left operands preserves 2208 // it and not the right, in this case we want to commute. 2209 if (AllSameOpcodeRight) { 2210 unsigned RightPrevOpcode = cast<Instruction>(Right[i - 1])->getOpcode(); 2211 if (IRight && RightPrevOpcode == IRight->getOpcode()) 2212 // Do not commute, a match on the right preserves AllSameOpcodeRight 2213 return false; 2214 if (ILeft && RightPrevOpcode == ILeft->getOpcode()) { 2215 // We have a match and may want to commute, but first check if there is 2216 // not also a match on the existing operands on the Left to preserve 2217 // AllSameOpcodeLeft, i.e. preserve the original order if possible. 2218 // (FIXME: why do we care?) 2219 if (AllSameOpcodeLeft && ILeft && 2220 cast<Instruction>(Left[i - 1])->getOpcode() == ILeft->getOpcode()) 2221 return false; 2222 return true; 2223 } 2224 } 2225 // Symmetrically handle Left side. 2226 if (AllSameOpcodeLeft) { 2227 unsigned LeftPrevOpcode = cast<Instruction>(Left[i - 1])->getOpcode(); 2228 if (ILeft && LeftPrevOpcode == ILeft->getOpcode()) 2229 return false; 2230 if (IRight && LeftPrevOpcode == IRight->getOpcode()) 2231 return true; 2232 } 2233 return false; 2234 } 2235 2236 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 2237 SmallVectorImpl<Value *> &Left, 2238 SmallVectorImpl<Value *> &Right) { 2239 2240 if (VL.size()) { 2241 // Peel the first iteration out of the loop since there's nothing 2242 // interesting to do anyway and it simplifies the checks in the loop. 2243 auto VLeft = cast<Instruction>(VL[0])->getOperand(0); 2244 auto VRight = cast<Instruction>(VL[0])->getOperand(1); 2245 if (!isa<Instruction>(VRight) && isa<Instruction>(VLeft)) 2246 // Favor having instruction to the right. FIXME: why? 2247 std::swap(VLeft, VRight); 2248 Left.push_back(VLeft); 2249 Right.push_back(VRight); 2250 } 2251 2252 // Keep track if we have instructions with all the same opcode on one side. 2253 bool AllSameOpcodeLeft = isa<Instruction>(Left[0]); 2254 bool AllSameOpcodeRight = isa<Instruction>(Right[0]); 2255 // Keep track if we have one side with all the same value (broadcast). 2256 bool SplatLeft = true; 2257 bool SplatRight = true; 2258 2259 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 2260 Instruction *I = cast<Instruction>(VL[i]); 2261 assert(I->isCommutative() && "Can only process commutative instruction"); 2262 // Commute to favor either a splat or maximizing having the same opcodes on 2263 // one side. 2264 if (shouldReorderOperands(i, *I, Left, Right, AllSameOpcodeLeft, 2265 AllSameOpcodeRight, SplatLeft, SplatRight)) { 2266 Left.push_back(I->getOperand(1)); 2267 Right.push_back(I->getOperand(0)); 2268 } else { 2269 Left.push_back(I->getOperand(0)); 2270 Right.push_back(I->getOperand(1)); 2271 } 2272 // Update Splat* and AllSameOpcode* after the insertion. 2273 SplatRight = SplatRight && (Right[i - 1] == Right[i]); 2274 SplatLeft = SplatLeft && (Left[i - 1] == Left[i]); 2275 AllSameOpcodeLeft = AllSameOpcodeLeft && isa<Instruction>(Left[i]) && 2276 (cast<Instruction>(Left[i - 1])->getOpcode() == 2277 cast<Instruction>(Left[i])->getOpcode()); 2278 AllSameOpcodeRight = AllSameOpcodeRight && isa<Instruction>(Right[i]) && 2279 (cast<Instruction>(Right[i - 1])->getOpcode() == 2280 cast<Instruction>(Right[i])->getOpcode()); 2281 } 2282 2283 // If one operand end up being broadcast, return this operand order. 2284 if (SplatRight || SplatLeft) 2285 return; 2286 2287 // Finally check if we can get longer vectorizable chain by reordering 2288 // without breaking the good operand order detected above. 2289 // E.g. If we have something like- 2290 // load a[0] load b[0] 2291 // load b[1] load a[1] 2292 // load a[2] load b[2] 2293 // load a[3] load b[3] 2294 // Reordering the second load b[1] load a[1] would allow us to vectorize 2295 // this code and we still retain AllSameOpcode property. 2296 // FIXME: This load reordering might break AllSameOpcode in some rare cases 2297 // such as- 2298 // add a[0],c[0] load b[0] 2299 // add a[1],c[2] load b[1] 2300 // b[2] load b[2] 2301 // add a[3],c[3] load b[3] 2302 for (unsigned j = 0; j < VL.size() - 1; ++j) { 2303 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2304 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2305 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2306 std::swap(Left[j + 1], Right[j + 1]); 2307 continue; 2308 } 2309 } 2310 } 2311 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2312 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2313 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2314 std::swap(Left[j + 1], Right[j + 1]); 2315 continue; 2316 } 2317 } 2318 } 2319 // else unchanged 2320 } 2321 } 2322 2323 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) { 2324 2325 // Get the basic block this bundle is in. All instructions in the bundle 2326 // should be in this block. 2327 auto *Front = cast<Instruction>(VL.front()); 2328 auto *BB = Front->getParent(); 2329 assert(all_of(make_range(VL.begin(), VL.end()), [&](Value *V) -> bool { 2330 return cast<Instruction>(V)->getParent() == BB; 2331 })); 2332 2333 // The last instruction in the bundle in program order. 2334 Instruction *LastInst = nullptr; 2335 2336 // Find the last instruction. The common case should be that BB has been 2337 // scheduled, and the last instruction is VL.back(). So we start with 2338 // VL.back() and iterate over schedule data until we reach the end of the 2339 // bundle. The end of the bundle is marked by null ScheduleData. 2340 if (BlocksSchedules.count(BB)) { 2341 auto *Bundle = BlocksSchedules[BB]->getScheduleData(VL.back()); 2342 if (Bundle && Bundle->isPartOfBundle()) 2343 for (; Bundle; Bundle = Bundle->NextInBundle) 2344 LastInst = Bundle->Inst; 2345 } 2346 2347 // LastInst can still be null at this point if there's either not an entry 2348 // for BB in BlocksSchedules or there's no ScheduleData available for 2349 // VL.back(). This can be the case if buildTree_rec aborts for various 2350 // reasons (e.g., the maximum recursion depth is reached, the maximum region 2351 // size is reached, etc.). ScheduleData is initialized in the scheduling 2352 // "dry-run". 2353 // 2354 // If this happens, we can still find the last instruction by brute force. We 2355 // iterate forwards from Front (inclusive) until we either see all 2356 // instructions in the bundle or reach the end of the block. If Front is the 2357 // last instruction in program order, LastInst will be set to Front, and we 2358 // will visit all the remaining instructions in the block. 2359 // 2360 // One of the reasons we exit early from buildTree_rec is to place an upper 2361 // bound on compile-time. Thus, taking an additional compile-time hit here is 2362 // not ideal. However, this should be exceedingly rare since it requires that 2363 // we both exit early from buildTree_rec and that the bundle be out-of-order 2364 // (causing us to iterate all the way to the end of the block). 2365 if (!LastInst) { 2366 SmallPtrSet<Value *, 16> Bundle(VL.begin(), VL.end()); 2367 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 2368 if (Bundle.erase(&I)) 2369 LastInst = &I; 2370 if (Bundle.empty()) 2371 break; 2372 } 2373 } 2374 2375 // Set the insertion point after the last instruction in the bundle. Set the 2376 // debug location to Front. 2377 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 2378 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 2379 } 2380 2381 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 2382 Value *Vec = UndefValue::get(Ty); 2383 // Generate the 'InsertElement' instruction. 2384 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 2385 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 2386 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { 2387 GatherSeq.insert(Insrt); 2388 CSEBlocks.insert(Insrt->getParent()); 2389 2390 // Add to our 'need-to-extract' list. 2391 if (ScalarToTreeEntry.count(VL[i])) { 2392 int Idx = ScalarToTreeEntry[VL[i]]; 2393 TreeEntry *E = &VectorizableTree[Idx]; 2394 // Find which lane we need to extract. 2395 int FoundLane = -1; 2396 for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) { 2397 // Is this the lane of the scalar that we are looking for ? 2398 if (E->Scalars[Lane] == VL[i]) { 2399 FoundLane = Lane; 2400 break; 2401 } 2402 } 2403 assert(FoundLane >= 0 && "Could not find the correct lane"); 2404 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 2405 } 2406 } 2407 } 2408 2409 return Vec; 2410 } 2411 2412 Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) const { 2413 SmallDenseMap<Value*, int>::const_iterator Entry 2414 = ScalarToTreeEntry.find(VL[0]); 2415 if (Entry != ScalarToTreeEntry.end()) { 2416 int Idx = Entry->second; 2417 const TreeEntry *En = &VectorizableTree[Idx]; 2418 if (En->isSame(VL) && En->VectorizedValue) 2419 return En->VectorizedValue; 2420 } 2421 return nullptr; 2422 } 2423 2424 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 2425 if (ScalarToTreeEntry.count(VL[0])) { 2426 int Idx = ScalarToTreeEntry[VL[0]]; 2427 TreeEntry *E = &VectorizableTree[Idx]; 2428 if (E->isSame(VL)) 2429 return vectorizeTree(E); 2430 } 2431 2432 Type *ScalarTy = VL[0]->getType(); 2433 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2434 ScalarTy = SI->getValueOperand()->getType(); 2435 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2436 2437 return Gather(VL, VecTy); 2438 } 2439 2440 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 2441 IRBuilder<>::InsertPointGuard Guard(Builder); 2442 2443 if (E->VectorizedValue) { 2444 DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 2445 return E->VectorizedValue; 2446 } 2447 2448 Instruction *VL0 = cast<Instruction>(E->Scalars[0]); 2449 Type *ScalarTy = VL0->getType(); 2450 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 2451 ScalarTy = SI->getValueOperand()->getType(); 2452 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 2453 2454 if (E->NeedToGather) { 2455 setInsertPointAfterBundle(E->Scalars); 2456 auto *V = Gather(E->Scalars, VecTy); 2457 E->VectorizedValue = V; 2458 return V; 2459 } 2460 2461 unsigned Opcode = getSameOpcode(E->Scalars); 2462 2463 switch (Opcode) { 2464 case Instruction::PHI: { 2465 PHINode *PH = dyn_cast<PHINode>(VL0); 2466 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 2467 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 2468 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 2469 E->VectorizedValue = NewPhi; 2470 2471 // PHINodes may have multiple entries from the same block. We want to 2472 // visit every block once. 2473 SmallSet<BasicBlock*, 4> VisitedBBs; 2474 2475 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2476 ValueList Operands; 2477 BasicBlock *IBB = PH->getIncomingBlock(i); 2478 2479 if (!VisitedBBs.insert(IBB).second) { 2480 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 2481 continue; 2482 } 2483 2484 // Prepare the operand vector. 2485 for (Value *V : E->Scalars) 2486 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB)); 2487 2488 Builder.SetInsertPoint(IBB->getTerminator()); 2489 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 2490 Value *Vec = vectorizeTree(Operands); 2491 NewPhi->addIncoming(Vec, IBB); 2492 } 2493 2494 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 2495 "Invalid number of incoming values"); 2496 return NewPhi; 2497 } 2498 2499 case Instruction::ExtractElement: { 2500 if (canReuseExtract(E->Scalars, Instruction::ExtractElement)) { 2501 Value *V = VL0->getOperand(0); 2502 E->VectorizedValue = V; 2503 return V; 2504 } 2505 setInsertPointAfterBundle(E->Scalars); 2506 auto *V = Gather(E->Scalars, VecTy); 2507 E->VectorizedValue = V; 2508 return V; 2509 } 2510 case Instruction::ExtractValue: { 2511 if (canReuseExtract(E->Scalars, Instruction::ExtractValue)) { 2512 LoadInst *LI = cast<LoadInst>(VL0->getOperand(0)); 2513 Builder.SetInsertPoint(LI); 2514 PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 2515 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 2516 LoadInst *V = Builder.CreateAlignedLoad(Ptr, LI->getAlignment()); 2517 E->VectorizedValue = V; 2518 return propagateMetadata(V, E->Scalars); 2519 } 2520 setInsertPointAfterBundle(E->Scalars); 2521 auto *V = Gather(E->Scalars, VecTy); 2522 E->VectorizedValue = V; 2523 return V; 2524 } 2525 case Instruction::ZExt: 2526 case Instruction::SExt: 2527 case Instruction::FPToUI: 2528 case Instruction::FPToSI: 2529 case Instruction::FPExt: 2530 case Instruction::PtrToInt: 2531 case Instruction::IntToPtr: 2532 case Instruction::SIToFP: 2533 case Instruction::UIToFP: 2534 case Instruction::Trunc: 2535 case Instruction::FPTrunc: 2536 case Instruction::BitCast: { 2537 ValueList INVL; 2538 for (Value *V : E->Scalars) 2539 INVL.push_back(cast<Instruction>(V)->getOperand(0)); 2540 2541 setInsertPointAfterBundle(E->Scalars); 2542 2543 Value *InVec = vectorizeTree(INVL); 2544 2545 if (Value *V = alreadyVectorized(E->Scalars)) 2546 return V; 2547 2548 CastInst *CI = dyn_cast<CastInst>(VL0); 2549 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 2550 E->VectorizedValue = V; 2551 ++NumVectorInstructions; 2552 return V; 2553 } 2554 case Instruction::FCmp: 2555 case Instruction::ICmp: { 2556 ValueList LHSV, RHSV; 2557 for (Value *V : E->Scalars) { 2558 LHSV.push_back(cast<Instruction>(V)->getOperand(0)); 2559 RHSV.push_back(cast<Instruction>(V)->getOperand(1)); 2560 } 2561 2562 setInsertPointAfterBundle(E->Scalars); 2563 2564 Value *L = vectorizeTree(LHSV); 2565 Value *R = vectorizeTree(RHSV); 2566 2567 if (Value *V = alreadyVectorized(E->Scalars)) 2568 return V; 2569 2570 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2571 Value *V; 2572 if (Opcode == Instruction::FCmp) 2573 V = Builder.CreateFCmp(P0, L, R); 2574 else 2575 V = Builder.CreateICmp(P0, L, R); 2576 2577 E->VectorizedValue = V; 2578 propagateIRFlags(E->VectorizedValue, E->Scalars); 2579 ++NumVectorInstructions; 2580 return V; 2581 } 2582 case Instruction::Select: { 2583 ValueList TrueVec, FalseVec, CondVec; 2584 for (Value *V : E->Scalars) { 2585 CondVec.push_back(cast<Instruction>(V)->getOperand(0)); 2586 TrueVec.push_back(cast<Instruction>(V)->getOperand(1)); 2587 FalseVec.push_back(cast<Instruction>(V)->getOperand(2)); 2588 } 2589 2590 setInsertPointAfterBundle(E->Scalars); 2591 2592 Value *Cond = vectorizeTree(CondVec); 2593 Value *True = vectorizeTree(TrueVec); 2594 Value *False = vectorizeTree(FalseVec); 2595 2596 if (Value *V = alreadyVectorized(E->Scalars)) 2597 return V; 2598 2599 Value *V = Builder.CreateSelect(Cond, True, False); 2600 E->VectorizedValue = V; 2601 ++NumVectorInstructions; 2602 return V; 2603 } 2604 case Instruction::Add: 2605 case Instruction::FAdd: 2606 case Instruction::Sub: 2607 case Instruction::FSub: 2608 case Instruction::Mul: 2609 case Instruction::FMul: 2610 case Instruction::UDiv: 2611 case Instruction::SDiv: 2612 case Instruction::FDiv: 2613 case Instruction::URem: 2614 case Instruction::SRem: 2615 case Instruction::FRem: 2616 case Instruction::Shl: 2617 case Instruction::LShr: 2618 case Instruction::AShr: 2619 case Instruction::And: 2620 case Instruction::Or: 2621 case Instruction::Xor: { 2622 ValueList LHSVL, RHSVL; 2623 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) 2624 reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL); 2625 else 2626 for (Value *V : E->Scalars) { 2627 LHSVL.push_back(cast<Instruction>(V)->getOperand(0)); 2628 RHSVL.push_back(cast<Instruction>(V)->getOperand(1)); 2629 } 2630 2631 setInsertPointAfterBundle(E->Scalars); 2632 2633 Value *LHS = vectorizeTree(LHSVL); 2634 Value *RHS = vectorizeTree(RHSVL); 2635 2636 if (Value *V = alreadyVectorized(E->Scalars)) 2637 return V; 2638 2639 BinaryOperator *BinOp = cast<BinaryOperator>(VL0); 2640 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS); 2641 E->VectorizedValue = V; 2642 propagateIRFlags(E->VectorizedValue, E->Scalars); 2643 ++NumVectorInstructions; 2644 2645 if (Instruction *I = dyn_cast<Instruction>(V)) 2646 return propagateMetadata(I, E->Scalars); 2647 2648 return V; 2649 } 2650 case Instruction::Load: { 2651 // Loads are inserted at the head of the tree because we don't want to 2652 // sink them all the way down past store instructions. 2653 setInsertPointAfterBundle(E->Scalars); 2654 2655 LoadInst *LI = cast<LoadInst>(VL0); 2656 Type *ScalarLoadTy = LI->getType(); 2657 unsigned AS = LI->getPointerAddressSpace(); 2658 2659 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 2660 VecTy->getPointerTo(AS)); 2661 2662 // The pointer operand uses an in-tree scalar so we add the new BitCast to 2663 // ExternalUses list to make sure that an extract will be generated in the 2664 // future. 2665 if (ScalarToTreeEntry.count(LI->getPointerOperand())) 2666 ExternalUses.push_back( 2667 ExternalUser(LI->getPointerOperand(), cast<User>(VecPtr), 0)); 2668 2669 unsigned Alignment = LI->getAlignment(); 2670 LI = Builder.CreateLoad(VecPtr); 2671 if (!Alignment) { 2672 Alignment = DL->getABITypeAlignment(ScalarLoadTy); 2673 } 2674 LI->setAlignment(Alignment); 2675 E->VectorizedValue = LI; 2676 ++NumVectorInstructions; 2677 return propagateMetadata(LI, E->Scalars); 2678 } 2679 case Instruction::Store: { 2680 StoreInst *SI = cast<StoreInst>(VL0); 2681 unsigned Alignment = SI->getAlignment(); 2682 unsigned AS = SI->getPointerAddressSpace(); 2683 2684 ValueList ValueOp; 2685 for (Value *V : E->Scalars) 2686 ValueOp.push_back(cast<StoreInst>(V)->getValueOperand()); 2687 2688 setInsertPointAfterBundle(E->Scalars); 2689 2690 Value *VecValue = vectorizeTree(ValueOp); 2691 Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(), 2692 VecTy->getPointerTo(AS)); 2693 StoreInst *S = Builder.CreateStore(VecValue, VecPtr); 2694 2695 // The pointer operand uses an in-tree scalar so we add the new BitCast to 2696 // ExternalUses list to make sure that an extract will be generated in the 2697 // future. 2698 if (ScalarToTreeEntry.count(SI->getPointerOperand())) 2699 ExternalUses.push_back( 2700 ExternalUser(SI->getPointerOperand(), cast<User>(VecPtr), 0)); 2701 2702 if (!Alignment) { 2703 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); 2704 } 2705 S->setAlignment(Alignment); 2706 E->VectorizedValue = S; 2707 ++NumVectorInstructions; 2708 return propagateMetadata(S, E->Scalars); 2709 } 2710 case Instruction::GetElementPtr: { 2711 setInsertPointAfterBundle(E->Scalars); 2712 2713 ValueList Op0VL; 2714 for (Value *V : E->Scalars) 2715 Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0)); 2716 2717 Value *Op0 = vectorizeTree(Op0VL); 2718 2719 std::vector<Value *> OpVecs; 2720 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 2721 ++j) { 2722 ValueList OpVL; 2723 for (Value *V : E->Scalars) 2724 OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j)); 2725 2726 Value *OpVec = vectorizeTree(OpVL); 2727 OpVecs.push_back(OpVec); 2728 } 2729 2730 Value *V = Builder.CreateGEP( 2731 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 2732 E->VectorizedValue = V; 2733 ++NumVectorInstructions; 2734 2735 if (Instruction *I = dyn_cast<Instruction>(V)) 2736 return propagateMetadata(I, E->Scalars); 2737 2738 return V; 2739 } 2740 case Instruction::Call: { 2741 CallInst *CI = cast<CallInst>(VL0); 2742 setInsertPointAfterBundle(E->Scalars); 2743 Function *FI; 2744 Intrinsic::ID IID = Intrinsic::not_intrinsic; 2745 Value *ScalarArg = nullptr; 2746 if (CI && (FI = CI->getCalledFunction())) { 2747 IID = FI->getIntrinsicID(); 2748 } 2749 std::vector<Value *> OpVecs; 2750 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 2751 ValueList OpVL; 2752 // ctlz,cttz and powi are special intrinsics whose second argument is 2753 // a scalar. This argument should not be vectorized. 2754 if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) { 2755 CallInst *CEI = cast<CallInst>(E->Scalars[0]); 2756 ScalarArg = CEI->getArgOperand(j); 2757 OpVecs.push_back(CEI->getArgOperand(j)); 2758 continue; 2759 } 2760 for (Value *V : E->Scalars) { 2761 CallInst *CEI = cast<CallInst>(V); 2762 OpVL.push_back(CEI->getArgOperand(j)); 2763 } 2764 2765 Value *OpVec = vectorizeTree(OpVL); 2766 DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 2767 OpVecs.push_back(OpVec); 2768 } 2769 2770 Module *M = F->getParent(); 2771 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2772 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 2773 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 2774 SmallVector<OperandBundleDef, 1> OpBundles; 2775 CI->getOperandBundlesAsDefs(OpBundles); 2776 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 2777 2778 // The scalar argument uses an in-tree scalar so we add the new vectorized 2779 // call to ExternalUses list to make sure that an extract will be 2780 // generated in the future. 2781 if (ScalarArg && ScalarToTreeEntry.count(ScalarArg)) 2782 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 2783 2784 E->VectorizedValue = V; 2785 propagateIRFlags(E->VectorizedValue, E->Scalars); 2786 ++NumVectorInstructions; 2787 return V; 2788 } 2789 case Instruction::ShuffleVector: { 2790 ValueList LHSVL, RHSVL; 2791 assert(isa<BinaryOperator>(VL0) && "Invalid Shuffle Vector Operand"); 2792 reorderAltShuffleOperands(E->Scalars, LHSVL, RHSVL); 2793 setInsertPointAfterBundle(E->Scalars); 2794 2795 Value *LHS = vectorizeTree(LHSVL); 2796 Value *RHS = vectorizeTree(RHSVL); 2797 2798 if (Value *V = alreadyVectorized(E->Scalars)) 2799 return V; 2800 2801 // Create a vector of LHS op1 RHS 2802 BinaryOperator *BinOp0 = cast<BinaryOperator>(VL0); 2803 Value *V0 = Builder.CreateBinOp(BinOp0->getOpcode(), LHS, RHS); 2804 2805 // Create a vector of LHS op2 RHS 2806 Instruction *VL1 = cast<Instruction>(E->Scalars[1]); 2807 BinaryOperator *BinOp1 = cast<BinaryOperator>(VL1); 2808 Value *V1 = Builder.CreateBinOp(BinOp1->getOpcode(), LHS, RHS); 2809 2810 // Create shuffle to take alternate operations from the vector. 2811 // Also, gather up odd and even scalar ops to propagate IR flags to 2812 // each vector operation. 2813 ValueList OddScalars, EvenScalars; 2814 unsigned e = E->Scalars.size(); 2815 SmallVector<Constant *, 8> Mask(e); 2816 for (unsigned i = 0; i < e; ++i) { 2817 if (i & 1) { 2818 Mask[i] = Builder.getInt32(e + i); 2819 OddScalars.push_back(E->Scalars[i]); 2820 } else { 2821 Mask[i] = Builder.getInt32(i); 2822 EvenScalars.push_back(E->Scalars[i]); 2823 } 2824 } 2825 2826 Value *ShuffleMask = ConstantVector::get(Mask); 2827 propagateIRFlags(V0, EvenScalars); 2828 propagateIRFlags(V1, OddScalars); 2829 2830 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 2831 E->VectorizedValue = V; 2832 ++NumVectorInstructions; 2833 if (Instruction *I = dyn_cast<Instruction>(V)) 2834 return propagateMetadata(I, E->Scalars); 2835 2836 return V; 2837 } 2838 default: 2839 llvm_unreachable("unknown inst"); 2840 } 2841 return nullptr; 2842 } 2843 2844 Value *BoUpSLP::vectorizeTree() { 2845 ExtraValueToDebugLocsMap ExternallyUsedValues; 2846 return vectorizeTree(ExternallyUsedValues); 2847 } 2848 2849 Value * 2850 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 2851 2852 // All blocks must be scheduled before any instructions are inserted. 2853 for (auto &BSIter : BlocksSchedules) { 2854 scheduleBlock(BSIter.second.get()); 2855 } 2856 2857 Builder.SetInsertPoint(&F->getEntryBlock().front()); 2858 auto *VectorRoot = vectorizeTree(&VectorizableTree[0]); 2859 2860 // If the vectorized tree can be rewritten in a smaller type, we truncate the 2861 // vectorized root. InstCombine will then rewrite the entire expression. We 2862 // sign extend the extracted values below. 2863 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 2864 if (MinBWs.count(ScalarRoot)) { 2865 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 2866 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 2867 auto BundleWidth = VectorizableTree[0].Scalars.size(); 2868 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 2869 auto *VecTy = VectorType::get(MinTy, BundleWidth); 2870 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 2871 VectorizableTree[0].VectorizedValue = Trunc; 2872 } 2873 2874 DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n"); 2875 2876 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 2877 // specified by ScalarType. 2878 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 2879 if (!MinBWs.count(ScalarRoot)) 2880 return Ex; 2881 if (MinBWs[ScalarRoot].second) 2882 return Builder.CreateSExt(Ex, ScalarType); 2883 return Builder.CreateZExt(Ex, ScalarType); 2884 }; 2885 2886 // Extract all of the elements with the external uses. 2887 for (const auto &ExternalUse : ExternalUses) { 2888 Value *Scalar = ExternalUse.Scalar; 2889 llvm::User *User = ExternalUse.User; 2890 2891 // Skip users that we already RAUW. This happens when one instruction 2892 // has multiple uses of the same value. 2893 if (User && !is_contained(Scalar->users(), User)) 2894 continue; 2895 assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar"); 2896 2897 int Idx = ScalarToTreeEntry[Scalar]; 2898 TreeEntry *E = &VectorizableTree[Idx]; 2899 assert(!E->NeedToGather && "Extracting from a gather list"); 2900 2901 Value *Vec = E->VectorizedValue; 2902 assert(Vec && "Can't find vectorizable value"); 2903 2904 Value *Lane = Builder.getInt32(ExternalUse.Lane); 2905 // If User == nullptr, the Scalar is used as extra arg. Generate 2906 // ExtractElement instruction and update the record for this scalar in 2907 // ExternallyUsedValues. 2908 if (!User) { 2909 assert(ExternallyUsedValues.count(Scalar) && 2910 "Scalar with nullptr as an external user must be registered in " 2911 "ExternallyUsedValues map"); 2912 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 2913 Builder.SetInsertPoint(VecI->getParent(), 2914 std::next(VecI->getIterator())); 2915 } else { 2916 Builder.SetInsertPoint(&F->getEntryBlock().front()); 2917 } 2918 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2919 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 2920 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 2921 auto &Locs = ExternallyUsedValues[Scalar]; 2922 ExternallyUsedValues.insert({Ex, Locs}); 2923 ExternallyUsedValues.erase(Scalar); 2924 continue; 2925 } 2926 2927 // Generate extracts for out-of-tree users. 2928 // Find the insertion point for the extractelement lane. 2929 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 2930 if (PHINode *PH = dyn_cast<PHINode>(User)) { 2931 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 2932 if (PH->getIncomingValue(i) == Scalar) { 2933 TerminatorInst *IncomingTerminator = 2934 PH->getIncomingBlock(i)->getTerminator(); 2935 if (isa<CatchSwitchInst>(IncomingTerminator)) { 2936 Builder.SetInsertPoint(VecI->getParent(), 2937 std::next(VecI->getIterator())); 2938 } else { 2939 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 2940 } 2941 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2942 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 2943 CSEBlocks.insert(PH->getIncomingBlock(i)); 2944 PH->setOperand(i, Ex); 2945 } 2946 } 2947 } else { 2948 Builder.SetInsertPoint(cast<Instruction>(User)); 2949 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2950 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 2951 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 2952 User->replaceUsesOfWith(Scalar, Ex); 2953 } 2954 } else { 2955 Builder.SetInsertPoint(&F->getEntryBlock().front()); 2956 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2957 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 2958 CSEBlocks.insert(&F->getEntryBlock()); 2959 User->replaceUsesOfWith(Scalar, Ex); 2960 } 2961 2962 DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 2963 } 2964 2965 // For each vectorized value: 2966 for (TreeEntry &EIdx : VectorizableTree) { 2967 TreeEntry *Entry = &EIdx; 2968 2969 // For each lane: 2970 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2971 Value *Scalar = Entry->Scalars[Lane]; 2972 // No need to handle users of gathered values. 2973 if (Entry->NeedToGather) 2974 continue; 2975 2976 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 2977 2978 Type *Ty = Scalar->getType(); 2979 if (!Ty->isVoidTy()) { 2980 #ifndef NDEBUG 2981 for (User *U : Scalar->users()) { 2982 DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 2983 2984 assert((ScalarToTreeEntry.count(U) || 2985 // It is legal to replace users in the ignorelist by undef. 2986 is_contained(UserIgnoreList, U)) && 2987 "Replacing out-of-tree value with undef"); 2988 } 2989 #endif 2990 Value *Undef = UndefValue::get(Ty); 2991 Scalar->replaceAllUsesWith(Undef); 2992 } 2993 DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 2994 eraseInstruction(cast<Instruction>(Scalar)); 2995 } 2996 } 2997 2998 Builder.ClearInsertionPoint(); 2999 3000 return VectorizableTree[0].VectorizedValue; 3001 } 3002 3003 void BoUpSLP::optimizeGatherSequence() { 3004 DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 3005 << " gather sequences instructions.\n"); 3006 // LICM InsertElementInst sequences. 3007 for (Instruction *it : GatherSeq) { 3008 InsertElementInst *Insert = dyn_cast<InsertElementInst>(it); 3009 3010 if (!Insert) 3011 continue; 3012 3013 // Check if this block is inside a loop. 3014 Loop *L = LI->getLoopFor(Insert->getParent()); 3015 if (!L) 3016 continue; 3017 3018 // Check if it has a preheader. 3019 BasicBlock *PreHeader = L->getLoopPreheader(); 3020 if (!PreHeader) 3021 continue; 3022 3023 // If the vector or the element that we insert into it are 3024 // instructions that are defined in this basic block then we can't 3025 // hoist this instruction. 3026 Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0)); 3027 Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1)); 3028 if (CurrVec && L->contains(CurrVec)) 3029 continue; 3030 if (NewElem && L->contains(NewElem)) 3031 continue; 3032 3033 // We can hoist this instruction. Move it to the pre-header. 3034 Insert->moveBefore(PreHeader->getTerminator()); 3035 } 3036 3037 // Make a list of all reachable blocks in our CSE queue. 3038 SmallVector<const DomTreeNode *, 8> CSEWorkList; 3039 CSEWorkList.reserve(CSEBlocks.size()); 3040 for (BasicBlock *BB : CSEBlocks) 3041 if (DomTreeNode *N = DT->getNode(BB)) { 3042 assert(DT->isReachableFromEntry(N)); 3043 CSEWorkList.push_back(N); 3044 } 3045 3046 // Sort blocks by domination. This ensures we visit a block after all blocks 3047 // dominating it are visited. 3048 std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(), 3049 [this](const DomTreeNode *A, const DomTreeNode *B) { 3050 return DT->properlyDominates(A, B); 3051 }); 3052 3053 // Perform O(N^2) search over the gather sequences and merge identical 3054 // instructions. TODO: We can further optimize this scan if we split the 3055 // instructions into different buckets based on the insert lane. 3056 SmallVector<Instruction *, 16> Visited; 3057 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 3058 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 3059 "Worklist not sorted properly!"); 3060 BasicBlock *BB = (*I)->getBlock(); 3061 // For all instructions in blocks containing gather sequences: 3062 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 3063 Instruction *In = &*it++; 3064 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 3065 continue; 3066 3067 // Check if we can replace this instruction with any of the 3068 // visited instructions. 3069 for (Instruction *v : Visited) { 3070 if (In->isIdenticalTo(v) && 3071 DT->dominates(v->getParent(), In->getParent())) { 3072 In->replaceAllUsesWith(v); 3073 eraseInstruction(In); 3074 In = nullptr; 3075 break; 3076 } 3077 } 3078 if (In) { 3079 assert(!is_contained(Visited, In)); 3080 Visited.push_back(In); 3081 } 3082 } 3083 } 3084 CSEBlocks.clear(); 3085 GatherSeq.clear(); 3086 } 3087 3088 // Groups the instructions to a bundle (which is then a single scheduling entity) 3089 // and schedules instructions until the bundle gets ready. 3090 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, 3091 BoUpSLP *SLP) { 3092 if (isa<PHINode>(VL[0])) 3093 return true; 3094 3095 // Initialize the instruction bundle. 3096 Instruction *OldScheduleEnd = ScheduleEnd; 3097 ScheduleData *PrevInBundle = nullptr; 3098 ScheduleData *Bundle = nullptr; 3099 bool ReSchedule = false; 3100 DEBUG(dbgs() << "SLP: bundle: " << *VL[0] << "\n"); 3101 3102 // Make sure that the scheduling region contains all 3103 // instructions of the bundle. 3104 for (Value *V : VL) { 3105 if (!extendSchedulingRegion(V)) 3106 return false; 3107 } 3108 3109 for (Value *V : VL) { 3110 ScheduleData *BundleMember = getScheduleData(V); 3111 assert(BundleMember && 3112 "no ScheduleData for bundle member (maybe not in same basic block)"); 3113 if (BundleMember->IsScheduled) { 3114 // A bundle member was scheduled as single instruction before and now 3115 // needs to be scheduled as part of the bundle. We just get rid of the 3116 // existing schedule. 3117 DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 3118 << " was already scheduled\n"); 3119 ReSchedule = true; 3120 } 3121 assert(BundleMember->isSchedulingEntity() && 3122 "bundle member already part of other bundle"); 3123 if (PrevInBundle) { 3124 PrevInBundle->NextInBundle = BundleMember; 3125 } else { 3126 Bundle = BundleMember; 3127 } 3128 BundleMember->UnscheduledDepsInBundle = 0; 3129 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 3130 3131 // Group the instructions to a bundle. 3132 BundleMember->FirstInBundle = Bundle; 3133 PrevInBundle = BundleMember; 3134 } 3135 if (ScheduleEnd != OldScheduleEnd) { 3136 // The scheduling region got new instructions at the lower end (or it is a 3137 // new region for the first bundle). This makes it necessary to 3138 // recalculate all dependencies. 3139 // It is seldom that this needs to be done a second time after adding the 3140 // initial bundle to the region. 3141 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3142 ScheduleData *SD = getScheduleData(I); 3143 SD->clearDependencies(); 3144 } 3145 ReSchedule = true; 3146 } 3147 if (ReSchedule) { 3148 resetSchedule(); 3149 initialFillReadyList(ReadyInsts); 3150 } 3151 3152 DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 3153 << BB->getName() << "\n"); 3154 3155 calculateDependencies(Bundle, true, SLP); 3156 3157 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 3158 // means that there are no cyclic dependencies and we can schedule it. 3159 // Note that's important that we don't "schedule" the bundle yet (see 3160 // cancelScheduling). 3161 while (!Bundle->isReady() && !ReadyInsts.empty()) { 3162 3163 ScheduleData *pickedSD = ReadyInsts.back(); 3164 ReadyInsts.pop_back(); 3165 3166 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 3167 schedule(pickedSD, ReadyInsts); 3168 } 3169 } 3170 if (!Bundle->isReady()) { 3171 cancelScheduling(VL); 3172 return false; 3173 } 3174 return true; 3175 } 3176 3177 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL) { 3178 if (isa<PHINode>(VL[0])) 3179 return; 3180 3181 ScheduleData *Bundle = getScheduleData(VL[0]); 3182 DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 3183 assert(!Bundle->IsScheduled && 3184 "Can't cancel bundle which is already scheduled"); 3185 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 3186 "tried to unbundle something which is not a bundle"); 3187 3188 // Un-bundle: make single instructions out of the bundle. 3189 ScheduleData *BundleMember = Bundle; 3190 while (BundleMember) { 3191 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 3192 BundleMember->FirstInBundle = BundleMember; 3193 ScheduleData *Next = BundleMember->NextInBundle; 3194 BundleMember->NextInBundle = nullptr; 3195 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 3196 if (BundleMember->UnscheduledDepsInBundle == 0) { 3197 ReadyInsts.insert(BundleMember); 3198 } 3199 BundleMember = Next; 3200 } 3201 } 3202 3203 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V) { 3204 if (getScheduleData(V)) 3205 return true; 3206 Instruction *I = dyn_cast<Instruction>(V); 3207 assert(I && "bundle member must be an instruction"); 3208 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 3209 if (!ScheduleStart) { 3210 // It's the first instruction in the new region. 3211 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 3212 ScheduleStart = I; 3213 ScheduleEnd = I->getNextNode(); 3214 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 3215 DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 3216 return true; 3217 } 3218 // Search up and down at the same time, because we don't know if the new 3219 // instruction is above or below the existing scheduling region. 3220 BasicBlock::reverse_iterator UpIter = 3221 ++ScheduleStart->getIterator().getReverse(); 3222 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 3223 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 3224 BasicBlock::iterator LowerEnd = BB->end(); 3225 for (;;) { 3226 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 3227 DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 3228 return false; 3229 } 3230 3231 if (UpIter != UpperEnd) { 3232 if (&*UpIter == I) { 3233 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 3234 ScheduleStart = I; 3235 DEBUG(dbgs() << "SLP: extend schedule region start to " << *I << "\n"); 3236 return true; 3237 } 3238 UpIter++; 3239 } 3240 if (DownIter != LowerEnd) { 3241 if (&*DownIter == I) { 3242 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 3243 nullptr); 3244 ScheduleEnd = I->getNextNode(); 3245 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 3246 DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 3247 return true; 3248 } 3249 DownIter++; 3250 } 3251 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 3252 "instruction not found in block"); 3253 } 3254 return true; 3255 } 3256 3257 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 3258 Instruction *ToI, 3259 ScheduleData *PrevLoadStore, 3260 ScheduleData *NextLoadStore) { 3261 ScheduleData *CurrentLoadStore = PrevLoadStore; 3262 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 3263 ScheduleData *SD = ScheduleDataMap[I]; 3264 if (!SD) { 3265 // Allocate a new ScheduleData for the instruction. 3266 if (ChunkPos >= ChunkSize) { 3267 ScheduleDataChunks.push_back( 3268 llvm::make_unique<ScheduleData[]>(ChunkSize)); 3269 ChunkPos = 0; 3270 } 3271 SD = &(ScheduleDataChunks.back()[ChunkPos++]); 3272 ScheduleDataMap[I] = SD; 3273 SD->Inst = I; 3274 } 3275 assert(!isInSchedulingRegion(SD) && 3276 "new ScheduleData already in scheduling region"); 3277 SD->init(SchedulingRegionID); 3278 3279 if (I->mayReadOrWriteMemory()) { 3280 // Update the linked list of memory accessing instructions. 3281 if (CurrentLoadStore) { 3282 CurrentLoadStore->NextLoadStore = SD; 3283 } else { 3284 FirstLoadStoreInRegion = SD; 3285 } 3286 CurrentLoadStore = SD; 3287 } 3288 } 3289 if (NextLoadStore) { 3290 if (CurrentLoadStore) 3291 CurrentLoadStore->NextLoadStore = NextLoadStore; 3292 } else { 3293 LastLoadStoreInRegion = CurrentLoadStore; 3294 } 3295 } 3296 3297 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 3298 bool InsertInReadyList, 3299 BoUpSLP *SLP) { 3300 assert(SD->isSchedulingEntity()); 3301 3302 SmallVector<ScheduleData *, 10> WorkList; 3303 WorkList.push_back(SD); 3304 3305 while (!WorkList.empty()) { 3306 ScheduleData *SD = WorkList.back(); 3307 WorkList.pop_back(); 3308 3309 ScheduleData *BundleMember = SD; 3310 while (BundleMember) { 3311 assert(isInSchedulingRegion(BundleMember)); 3312 if (!BundleMember->hasValidDependencies()) { 3313 3314 DEBUG(dbgs() << "SLP: update deps of " << *BundleMember << "\n"); 3315 BundleMember->Dependencies = 0; 3316 BundleMember->resetUnscheduledDeps(); 3317 3318 // Handle def-use chain dependencies. 3319 for (User *U : BundleMember->Inst->users()) { 3320 if (isa<Instruction>(U)) { 3321 ScheduleData *UseSD = getScheduleData(U); 3322 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 3323 BundleMember->Dependencies++; 3324 ScheduleData *DestBundle = UseSD->FirstInBundle; 3325 if (!DestBundle->IsScheduled) { 3326 BundleMember->incrementUnscheduledDeps(1); 3327 } 3328 if (!DestBundle->hasValidDependencies()) { 3329 WorkList.push_back(DestBundle); 3330 } 3331 } 3332 } else { 3333 // I'm not sure if this can ever happen. But we need to be safe. 3334 // This lets the instruction/bundle never be scheduled and 3335 // eventually disable vectorization. 3336 BundleMember->Dependencies++; 3337 BundleMember->incrementUnscheduledDeps(1); 3338 } 3339 } 3340 3341 // Handle the memory dependencies. 3342 ScheduleData *DepDest = BundleMember->NextLoadStore; 3343 if (DepDest) { 3344 Instruction *SrcInst = BundleMember->Inst; 3345 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 3346 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 3347 unsigned numAliased = 0; 3348 unsigned DistToSrc = 1; 3349 3350 while (DepDest) { 3351 assert(isInSchedulingRegion(DepDest)); 3352 3353 // We have two limits to reduce the complexity: 3354 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 3355 // SLP->isAliased (which is the expensive part in this loop). 3356 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 3357 // the whole loop (even if the loop is fast, it's quadratic). 3358 // It's important for the loop break condition (see below) to 3359 // check this limit even between two read-only instructions. 3360 if (DistToSrc >= MaxMemDepDistance || 3361 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 3362 (numAliased >= AliasedCheckLimit || 3363 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 3364 3365 // We increment the counter only if the locations are aliased 3366 // (instead of counting all alias checks). This gives a better 3367 // balance between reduced runtime and accurate dependencies. 3368 numAliased++; 3369 3370 DepDest->MemoryDependencies.push_back(BundleMember); 3371 BundleMember->Dependencies++; 3372 ScheduleData *DestBundle = DepDest->FirstInBundle; 3373 if (!DestBundle->IsScheduled) { 3374 BundleMember->incrementUnscheduledDeps(1); 3375 } 3376 if (!DestBundle->hasValidDependencies()) { 3377 WorkList.push_back(DestBundle); 3378 } 3379 } 3380 DepDest = DepDest->NextLoadStore; 3381 3382 // Example, explaining the loop break condition: Let's assume our 3383 // starting instruction is i0 and MaxMemDepDistance = 3. 3384 // 3385 // +--------v--v--v 3386 // i0,i1,i2,i3,i4,i5,i6,i7,i8 3387 // +--------^--^--^ 3388 // 3389 // MaxMemDepDistance let us stop alias-checking at i3 and we add 3390 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 3391 // Previously we already added dependencies from i3 to i6,i7,i8 3392 // (because of MaxMemDepDistance). As we added a dependency from 3393 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 3394 // and we can abort this loop at i6. 3395 if (DistToSrc >= 2 * MaxMemDepDistance) 3396 break; 3397 DistToSrc++; 3398 } 3399 } 3400 } 3401 BundleMember = BundleMember->NextInBundle; 3402 } 3403 if (InsertInReadyList && SD->isReady()) { 3404 ReadyInsts.push_back(SD); 3405 DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst << "\n"); 3406 } 3407 } 3408 } 3409 3410 void BoUpSLP::BlockScheduling::resetSchedule() { 3411 assert(ScheduleStart && 3412 "tried to reset schedule on block which has not been scheduled"); 3413 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3414 ScheduleData *SD = getScheduleData(I); 3415 assert(isInSchedulingRegion(SD)); 3416 SD->IsScheduled = false; 3417 SD->resetUnscheduledDeps(); 3418 } 3419 ReadyInsts.clear(); 3420 } 3421 3422 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 3423 3424 if (!BS->ScheduleStart) 3425 return; 3426 3427 DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 3428 3429 BS->resetSchedule(); 3430 3431 // For the real scheduling we use a more sophisticated ready-list: it is 3432 // sorted by the original instruction location. This lets the final schedule 3433 // be as close as possible to the original instruction order. 3434 struct ScheduleDataCompare { 3435 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 3436 return SD2->SchedulingPriority < SD1->SchedulingPriority; 3437 } 3438 }; 3439 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 3440 3441 // Ensure that all dependency data is updated and fill the ready-list with 3442 // initial instructions. 3443 int Idx = 0; 3444 int NumToSchedule = 0; 3445 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 3446 I = I->getNextNode()) { 3447 ScheduleData *SD = BS->getScheduleData(I); 3448 assert( 3449 SD->isPartOfBundle() == (ScalarToTreeEntry.count(SD->Inst) != 0) && 3450 "scheduler and vectorizer have different opinion on what is a bundle"); 3451 SD->FirstInBundle->SchedulingPriority = Idx++; 3452 if (SD->isSchedulingEntity()) { 3453 BS->calculateDependencies(SD, false, this); 3454 NumToSchedule++; 3455 } 3456 } 3457 BS->initialFillReadyList(ReadyInsts); 3458 3459 Instruction *LastScheduledInst = BS->ScheduleEnd; 3460 3461 // Do the "real" scheduling. 3462 while (!ReadyInsts.empty()) { 3463 ScheduleData *picked = *ReadyInsts.begin(); 3464 ReadyInsts.erase(ReadyInsts.begin()); 3465 3466 // Move the scheduled instruction(s) to their dedicated places, if not 3467 // there yet. 3468 ScheduleData *BundleMember = picked; 3469 while (BundleMember) { 3470 Instruction *pickedInst = BundleMember->Inst; 3471 if (LastScheduledInst->getNextNode() != pickedInst) { 3472 BS->BB->getInstList().remove(pickedInst); 3473 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 3474 pickedInst); 3475 } 3476 LastScheduledInst = pickedInst; 3477 BundleMember = BundleMember->NextInBundle; 3478 } 3479 3480 BS->schedule(picked, ReadyInsts); 3481 NumToSchedule--; 3482 } 3483 assert(NumToSchedule == 0 && "could not schedule all instructions"); 3484 3485 // Avoid duplicate scheduling of the block. 3486 BS->ScheduleStart = nullptr; 3487 } 3488 3489 unsigned BoUpSLP::getVectorElementSize(Value *V) { 3490 // If V is a store, just return the width of the stored value without 3491 // traversing the expression tree. This is the common case. 3492 if (auto *Store = dyn_cast<StoreInst>(V)) 3493 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 3494 3495 // If V is not a store, we can traverse the expression tree to find loads 3496 // that feed it. The type of the loaded value may indicate a more suitable 3497 // width than V's type. We want to base the vector element size on the width 3498 // of memory operations where possible. 3499 SmallVector<Instruction *, 16> Worklist; 3500 SmallPtrSet<Instruction *, 16> Visited; 3501 if (auto *I = dyn_cast<Instruction>(V)) 3502 Worklist.push_back(I); 3503 3504 // Traverse the expression tree in bottom-up order looking for loads. If we 3505 // encounter an instruciton we don't yet handle, we give up. 3506 auto MaxWidth = 0u; 3507 auto FoundUnknownInst = false; 3508 while (!Worklist.empty() && !FoundUnknownInst) { 3509 auto *I = Worklist.pop_back_val(); 3510 Visited.insert(I); 3511 3512 // We should only be looking at scalar instructions here. If the current 3513 // instruction has a vector type, give up. 3514 auto *Ty = I->getType(); 3515 if (isa<VectorType>(Ty)) 3516 FoundUnknownInst = true; 3517 3518 // If the current instruction is a load, update MaxWidth to reflect the 3519 // width of the loaded value. 3520 else if (isa<LoadInst>(I)) 3521 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 3522 3523 // Otherwise, we need to visit the operands of the instruction. We only 3524 // handle the interesting cases from buildTree here. If an operand is an 3525 // instruction we haven't yet visited, we add it to the worklist. 3526 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 3527 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 3528 for (Use &U : I->operands()) 3529 if (auto *J = dyn_cast<Instruction>(U.get())) 3530 if (!Visited.count(J)) 3531 Worklist.push_back(J); 3532 } 3533 3534 // If we don't yet handle the instruction, give up. 3535 else 3536 FoundUnknownInst = true; 3537 } 3538 3539 // If we didn't encounter a memory access in the expression tree, or if we 3540 // gave up for some reason, just return the width of V. 3541 if (!MaxWidth || FoundUnknownInst) 3542 return DL->getTypeSizeInBits(V->getType()); 3543 3544 // Otherwise, return the maximum width we found. 3545 return MaxWidth; 3546 } 3547 3548 // Determine if a value V in a vectorizable expression Expr can be demoted to a 3549 // smaller type with a truncation. We collect the values that will be demoted 3550 // in ToDemote and additional roots that require investigating in Roots. 3551 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 3552 SmallVectorImpl<Value *> &ToDemote, 3553 SmallVectorImpl<Value *> &Roots) { 3554 3555 // We can always demote constants. 3556 if (isa<Constant>(V)) { 3557 ToDemote.push_back(V); 3558 return true; 3559 } 3560 3561 // If the value is not an instruction in the expression with only one use, it 3562 // cannot be demoted. 3563 auto *I = dyn_cast<Instruction>(V); 3564 if (!I || !I->hasOneUse() || !Expr.count(I)) 3565 return false; 3566 3567 switch (I->getOpcode()) { 3568 3569 // We can always demote truncations and extensions. Since truncations can 3570 // seed additional demotion, we save the truncated value. 3571 case Instruction::Trunc: 3572 Roots.push_back(I->getOperand(0)); 3573 case Instruction::ZExt: 3574 case Instruction::SExt: 3575 break; 3576 3577 // We can demote certain binary operations if we can demote both of their 3578 // operands. 3579 case Instruction::Add: 3580 case Instruction::Sub: 3581 case Instruction::Mul: 3582 case Instruction::And: 3583 case Instruction::Or: 3584 case Instruction::Xor: 3585 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 3586 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 3587 return false; 3588 break; 3589 3590 // We can demote selects if we can demote their true and false values. 3591 case Instruction::Select: { 3592 SelectInst *SI = cast<SelectInst>(I); 3593 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 3594 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 3595 return false; 3596 break; 3597 } 3598 3599 // We can demote phis if we can demote all their incoming operands. Note that 3600 // we don't need to worry about cycles since we ensure single use above. 3601 case Instruction::PHI: { 3602 PHINode *PN = cast<PHINode>(I); 3603 for (Value *IncValue : PN->incoming_values()) 3604 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 3605 return false; 3606 break; 3607 } 3608 3609 // Otherwise, conservatively give up. 3610 default: 3611 return false; 3612 } 3613 3614 // Record the value that we can demote. 3615 ToDemote.push_back(V); 3616 return true; 3617 } 3618 3619 void BoUpSLP::computeMinimumValueSizes() { 3620 // If there are no external uses, the expression tree must be rooted by a 3621 // store. We can't demote in-memory values, so there is nothing to do here. 3622 if (ExternalUses.empty()) 3623 return; 3624 3625 // We only attempt to truncate integer expressions. 3626 auto &TreeRoot = VectorizableTree[0].Scalars; 3627 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 3628 if (!TreeRootIT) 3629 return; 3630 3631 // If the expression is not rooted by a store, these roots should have 3632 // external uses. We will rely on InstCombine to rewrite the expression in 3633 // the narrower type. However, InstCombine only rewrites single-use values. 3634 // This means that if a tree entry other than a root is used externally, it 3635 // must have multiple uses and InstCombine will not rewrite it. The code 3636 // below ensures that only the roots are used externally. 3637 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 3638 for (auto &EU : ExternalUses) 3639 if (!Expr.erase(EU.Scalar)) 3640 return; 3641 if (!Expr.empty()) 3642 return; 3643 3644 // Collect the scalar values of the vectorizable expression. We will use this 3645 // context to determine which values can be demoted. If we see a truncation, 3646 // we mark it as seeding another demotion. 3647 for (auto &Entry : VectorizableTree) 3648 Expr.insert(Entry.Scalars.begin(), Entry.Scalars.end()); 3649 3650 // Ensure the roots of the vectorizable tree don't form a cycle. They must 3651 // have a single external user that is not in the vectorizable tree. 3652 for (auto *Root : TreeRoot) 3653 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 3654 return; 3655 3656 // Conservatively determine if we can actually truncate the roots of the 3657 // expression. Collect the values that can be demoted in ToDemote and 3658 // additional roots that require investigating in Roots. 3659 SmallVector<Value *, 32> ToDemote; 3660 SmallVector<Value *, 4> Roots; 3661 for (auto *Root : TreeRoot) 3662 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 3663 return; 3664 3665 // The maximum bit width required to represent all the values that can be 3666 // demoted without loss of precision. It would be safe to truncate the roots 3667 // of the expression to this width. 3668 auto MaxBitWidth = 8u; 3669 3670 // We first check if all the bits of the roots are demanded. If they're not, 3671 // we can truncate the roots to this narrower type. 3672 for (auto *Root : TreeRoot) { 3673 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 3674 MaxBitWidth = std::max<unsigned>( 3675 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 3676 } 3677 3678 // True if the roots can be zero-extended back to their original type, rather 3679 // than sign-extended. We know that if the leading bits are not demanded, we 3680 // can safely zero-extend. So we initialize IsKnownPositive to True. 3681 bool IsKnownPositive = true; 3682 3683 // If all the bits of the roots are demanded, we can try a little harder to 3684 // compute a narrower type. This can happen, for example, if the roots are 3685 // getelementptr indices. InstCombine promotes these indices to the pointer 3686 // width. Thus, all their bits are technically demanded even though the 3687 // address computation might be vectorized in a smaller type. 3688 // 3689 // We start by looking at each entry that can be demoted. We compute the 3690 // maximum bit width required to store the scalar by using ValueTracking to 3691 // compute the number of high-order bits we can truncate. 3692 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType())) { 3693 MaxBitWidth = 8u; 3694 3695 // Determine if the sign bit of all the roots is known to be zero. If not, 3696 // IsKnownPositive is set to False. 3697 IsKnownPositive = all_of(TreeRoot, [&](Value *R) { 3698 bool KnownZero = false; 3699 bool KnownOne = false; 3700 ComputeSignBit(R, KnownZero, KnownOne, *DL); 3701 return KnownZero; 3702 }); 3703 3704 // Determine the maximum number of bits required to store the scalar 3705 // values. 3706 for (auto *Scalar : ToDemote) { 3707 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, 0, DT); 3708 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 3709 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 3710 } 3711 3712 // If we can't prove that the sign bit is zero, we must add one to the 3713 // maximum bit width to account for the unknown sign bit. This preserves 3714 // the existing sign bit so we can safely sign-extend the root back to the 3715 // original type. Otherwise, if we know the sign bit is zero, we will 3716 // zero-extend the root instead. 3717 // 3718 // FIXME: This is somewhat suboptimal, as there will be cases where adding 3719 // one to the maximum bit width will yield a larger-than-necessary 3720 // type. In general, we need to add an extra bit only if we can't 3721 // prove that the upper bit of the original type is equal to the 3722 // upper bit of the proposed smaller type. If these two bits are the 3723 // same (either zero or one) we know that sign-extending from the 3724 // smaller type will result in the same value. Here, since we can't 3725 // yet prove this, we are just making the proposed smaller type 3726 // larger to ensure correctness. 3727 if (!IsKnownPositive) 3728 ++MaxBitWidth; 3729 } 3730 3731 // Round MaxBitWidth up to the next power-of-two. 3732 if (!isPowerOf2_64(MaxBitWidth)) 3733 MaxBitWidth = NextPowerOf2(MaxBitWidth); 3734 3735 // If the maximum bit width we compute is less than the with of the roots' 3736 // type, we can proceed with the narrowing. Otherwise, do nothing. 3737 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 3738 return; 3739 3740 // If we can truncate the root, we must collect additional values that might 3741 // be demoted as a result. That is, those seeded by truncations we will 3742 // modify. 3743 while (!Roots.empty()) 3744 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 3745 3746 // Finally, map the values we can demote to the maximum bit with we computed. 3747 for (auto *Scalar : ToDemote) 3748 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 3749 } 3750 3751 namespace { 3752 /// The SLPVectorizer Pass. 3753 struct SLPVectorizer : public FunctionPass { 3754 SLPVectorizerPass Impl; 3755 3756 /// Pass identification, replacement for typeid 3757 static char ID; 3758 3759 explicit SLPVectorizer() : FunctionPass(ID) { 3760 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 3761 } 3762 3763 3764 bool doInitialization(Module &M) override { 3765 return false; 3766 } 3767 3768 bool runOnFunction(Function &F) override { 3769 if (skipFunction(F)) 3770 return false; 3771 3772 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 3773 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 3774 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 3775 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 3776 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3777 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 3778 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3779 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 3780 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 3781 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 3782 3783 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 3784 } 3785 3786 void getAnalysisUsage(AnalysisUsage &AU) const override { 3787 FunctionPass::getAnalysisUsage(AU); 3788 AU.addRequired<AssumptionCacheTracker>(); 3789 AU.addRequired<ScalarEvolutionWrapperPass>(); 3790 AU.addRequired<AAResultsWrapperPass>(); 3791 AU.addRequired<TargetTransformInfoWrapperPass>(); 3792 AU.addRequired<LoopInfoWrapperPass>(); 3793 AU.addRequired<DominatorTreeWrapperPass>(); 3794 AU.addRequired<DemandedBitsWrapperPass>(); 3795 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 3796 AU.addPreserved<LoopInfoWrapperPass>(); 3797 AU.addPreserved<DominatorTreeWrapperPass>(); 3798 AU.addPreserved<AAResultsWrapperPass>(); 3799 AU.addPreserved<GlobalsAAWrapperPass>(); 3800 AU.setPreservesCFG(); 3801 } 3802 }; 3803 } // end anonymous namespace 3804 3805 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 3806 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 3807 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 3808 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 3809 auto *AA = &AM.getResult<AAManager>(F); 3810 auto *LI = &AM.getResult<LoopAnalysis>(F); 3811 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 3812 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 3813 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 3814 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 3815 3816 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 3817 if (!Changed) 3818 return PreservedAnalyses::all(); 3819 3820 PreservedAnalyses PA; 3821 PA.preserveSet<CFGAnalyses>(); 3822 PA.preserve<AAManager>(); 3823 PA.preserve<GlobalsAA>(); 3824 return PA; 3825 } 3826 3827 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 3828 TargetTransformInfo *TTI_, 3829 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 3830 LoopInfo *LI_, DominatorTree *DT_, 3831 AssumptionCache *AC_, DemandedBits *DB_, 3832 OptimizationRemarkEmitter *ORE_) { 3833 SE = SE_; 3834 TTI = TTI_; 3835 TLI = TLI_; 3836 AA = AA_; 3837 LI = LI_; 3838 DT = DT_; 3839 AC = AC_; 3840 DB = DB_; 3841 DL = &F.getParent()->getDataLayout(); 3842 3843 Stores.clear(); 3844 GEPs.clear(); 3845 bool Changed = false; 3846 3847 // If the target claims to have no vector registers don't attempt 3848 // vectorization. 3849 if (!TTI->getNumberOfRegisters(true)) 3850 return false; 3851 3852 // Don't vectorize when the attribute NoImplicitFloat is used. 3853 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 3854 return false; 3855 3856 DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 3857 3858 // Use the bottom up slp vectorizer to construct chains that start with 3859 // store instructions. 3860 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 3861 3862 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 3863 // delete instructions. 3864 3865 // Scan the blocks in the function in post order. 3866 for (auto BB : post_order(&F.getEntryBlock())) { 3867 collectSeedInstructions(BB); 3868 3869 // Vectorize trees that end at stores. 3870 if (!Stores.empty()) { 3871 DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 3872 << " underlying objects.\n"); 3873 Changed |= vectorizeStoreChains(R); 3874 } 3875 3876 // Vectorize trees that end at reductions. 3877 Changed |= vectorizeChainsInBlock(BB, R); 3878 3879 // Vectorize the index computations of getelementptr instructions. This 3880 // is primarily intended to catch gather-like idioms ending at 3881 // non-consecutive loads. 3882 if (!GEPs.empty()) { 3883 DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 3884 << " underlying objects.\n"); 3885 Changed |= vectorizeGEPIndices(BB, R); 3886 } 3887 } 3888 3889 if (Changed) { 3890 R.optimizeGatherSequence(); 3891 DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 3892 DEBUG(verifyFunction(F)); 3893 } 3894 return Changed; 3895 } 3896 3897 /// \brief Check that the Values in the slice in VL array are still existent in 3898 /// the WeakTrackingVH array. 3899 /// Vectorization of part of the VL array may cause later values in the VL array 3900 /// to become invalid. We track when this has happened in the WeakTrackingVH 3901 /// array. 3902 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, 3903 ArrayRef<WeakTrackingVH> VH, unsigned SliceBegin, 3904 unsigned SliceSize) { 3905 VL = VL.slice(SliceBegin, SliceSize); 3906 VH = VH.slice(SliceBegin, SliceSize); 3907 return !std::equal(VL.begin(), VL.end(), VH.begin()); 3908 } 3909 3910 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 3911 unsigned VecRegSize) { 3912 unsigned ChainLen = Chain.size(); 3913 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 3914 << "\n"); 3915 unsigned Sz = R.getVectorElementSize(Chain[0]); 3916 unsigned VF = VecRegSize / Sz; 3917 3918 if (!isPowerOf2_32(Sz) || VF < 2) 3919 return false; 3920 3921 // Keep track of values that were deleted by vectorizing in the loop below. 3922 SmallVector<WeakTrackingVH, 8> TrackValues(Chain.begin(), Chain.end()); 3923 3924 bool Changed = false; 3925 // Look for profitable vectorizable trees at all offsets, starting at zero. 3926 for (unsigned i = 0, e = ChainLen; i < e; ++i) { 3927 if (i + VF > e) 3928 break; 3929 3930 // Check that a previous iteration of this loop did not delete the Value. 3931 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) 3932 continue; 3933 3934 DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 3935 << "\n"); 3936 ArrayRef<Value *> Operands = Chain.slice(i, VF); 3937 3938 R.buildTree(Operands); 3939 if (R.isTreeTinyAndNotFullyVectorizable()) 3940 continue; 3941 3942 R.computeMinimumValueSizes(); 3943 3944 int Cost = R.getTreeCost(); 3945 3946 DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n"); 3947 if (Cost < -SLPCostThreshold) { 3948 DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 3949 using namespace ore; 3950 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 3951 cast<StoreInst>(Chain[i])) 3952 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 3953 << " and with tree size " 3954 << NV("TreeSize", R.getTreeSize())); 3955 3956 R.vectorizeTree(); 3957 3958 // Move to the next bundle. 3959 i += VF - 1; 3960 Changed = true; 3961 } 3962 } 3963 3964 return Changed; 3965 } 3966 3967 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 3968 BoUpSLP &R) { 3969 SetVector<StoreInst *> Heads, Tails; 3970 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 3971 3972 // We may run into multiple chains that merge into a single chain. We mark the 3973 // stores that we vectorized so that we don't visit the same store twice. 3974 BoUpSLP::ValueSet VectorizedStores; 3975 bool Changed = false; 3976 3977 // Do a quadratic search on all of the given stores and find 3978 // all of the pairs of stores that follow each other. 3979 SmallVector<unsigned, 16> IndexQueue; 3980 for (unsigned i = 0, e = Stores.size(); i < e; ++i) { 3981 IndexQueue.clear(); 3982 // If a store has multiple consecutive store candidates, search Stores 3983 // array according to the sequence: from i+1 to e, then from i-1 to 0. 3984 // This is because usually pairing with immediate succeeding or preceding 3985 // candidate create the best chance to find slp vectorization opportunity. 3986 unsigned j = 0; 3987 for (j = i + 1; j < e; ++j) 3988 IndexQueue.push_back(j); 3989 for (j = i; j > 0; --j) 3990 IndexQueue.push_back(j - 1); 3991 3992 for (auto &k : IndexQueue) { 3993 if (isConsecutiveAccess(Stores[i], Stores[k], *DL, *SE)) { 3994 Tails.insert(Stores[k]); 3995 Heads.insert(Stores[i]); 3996 ConsecutiveChain[Stores[i]] = Stores[k]; 3997 break; 3998 } 3999 } 4000 } 4001 4002 // For stores that start but don't end a link in the chain: 4003 for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end(); 4004 it != e; ++it) { 4005 if (Tails.count(*it)) 4006 continue; 4007 4008 // We found a store instr that starts a chain. Now follow the chain and try 4009 // to vectorize it. 4010 BoUpSLP::ValueList Operands; 4011 StoreInst *I = *it; 4012 // Collect the chain into a list. 4013 while (Tails.count(I) || Heads.count(I)) { 4014 if (VectorizedStores.count(I)) 4015 break; 4016 Operands.push_back(I); 4017 // Move to the next value in the chain. 4018 I = ConsecutiveChain[I]; 4019 } 4020 4021 // FIXME: Is division-by-2 the correct step? Should we assert that the 4022 // register size is a power-of-2? 4023 for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize(); 4024 Size /= 2) { 4025 if (vectorizeStoreChain(Operands, R, Size)) { 4026 // Mark the vectorized stores so that we don't vectorize them again. 4027 VectorizedStores.insert(Operands.begin(), Operands.end()); 4028 Changed = true; 4029 break; 4030 } 4031 } 4032 } 4033 4034 return Changed; 4035 } 4036 4037 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 4038 4039 // Initialize the collections. We will make a single pass over the block. 4040 Stores.clear(); 4041 GEPs.clear(); 4042 4043 // Visit the store and getelementptr instructions in BB and organize them in 4044 // Stores and GEPs according to the underlying objects of their pointer 4045 // operands. 4046 for (Instruction &I : *BB) { 4047 4048 // Ignore store instructions that are volatile or have a pointer operand 4049 // that doesn't point to a scalar type. 4050 if (auto *SI = dyn_cast<StoreInst>(&I)) { 4051 if (!SI->isSimple()) 4052 continue; 4053 if (!isValidElementType(SI->getValueOperand()->getType())) 4054 continue; 4055 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); 4056 } 4057 4058 // Ignore getelementptr instructions that have more than one index, a 4059 // constant index, or a pointer operand that doesn't point to a scalar 4060 // type. 4061 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 4062 auto Idx = GEP->idx_begin()->get(); 4063 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 4064 continue; 4065 if (!isValidElementType(Idx->getType())) 4066 continue; 4067 if (GEP->getType()->isVectorTy()) 4068 continue; 4069 GEPs[GetUnderlyingObject(GEP->getPointerOperand(), *DL)].push_back(GEP); 4070 } 4071 } 4072 } 4073 4074 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 4075 if (!A || !B) 4076 return false; 4077 Value *VL[] = { A, B }; 4078 return tryToVectorizeList(VL, R, None, true); 4079 } 4080 4081 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 4082 ArrayRef<Value *> BuildVector, 4083 bool AllowReorder) { 4084 if (VL.size() < 2) 4085 return false; 4086 4087 DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " << VL.size() 4088 << ".\n"); 4089 4090 // Check that all of the parts are scalar instructions of the same type. 4091 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 4092 if (!I0) 4093 return false; 4094 4095 unsigned Opcode0 = I0->getOpcode(); 4096 4097 unsigned Sz = R.getVectorElementSize(I0); 4098 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 4099 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 4100 if (MaxVF < 2) 4101 return false; 4102 4103 for (Value *V : VL) { 4104 Type *Ty = V->getType(); 4105 if (!isValidElementType(Ty)) 4106 return false; 4107 Instruction *Inst = dyn_cast<Instruction>(V); 4108 if (!Inst || Inst->getOpcode() != Opcode0) 4109 return false; 4110 } 4111 4112 bool Changed = false; 4113 4114 // Keep track of values that were deleted by vectorizing in the loop below. 4115 SmallVector<WeakTrackingVH, 8> TrackValues(VL.begin(), VL.end()); 4116 4117 unsigned NextInst = 0, MaxInst = VL.size(); 4118 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; 4119 VF /= 2) { 4120 // No actual vectorization should happen, if number of parts is the same as 4121 // provided vectorization factor (i.e. the scalar type is used for vector 4122 // code during codegen). 4123 auto *VecTy = VectorType::get(VL[0]->getType(), VF); 4124 if (TTI->getNumberOfParts(VecTy) == VF) 4125 continue; 4126 for (unsigned I = NextInst; I < MaxInst; ++I) { 4127 unsigned OpsWidth = 0; 4128 4129 if (I + VF > MaxInst) 4130 OpsWidth = MaxInst - I; 4131 else 4132 OpsWidth = VF; 4133 4134 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 4135 break; 4136 4137 // Check that a previous iteration of this loop did not delete the Value. 4138 if (hasValueBeenRAUWed(VL, TrackValues, I, OpsWidth)) 4139 continue; 4140 4141 DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 4142 << "\n"); 4143 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 4144 4145 ArrayRef<Value *> BuildVectorSlice; 4146 if (!BuildVector.empty()) 4147 BuildVectorSlice = BuildVector.slice(I, OpsWidth); 4148 4149 R.buildTree(Ops, BuildVectorSlice); 4150 // TODO: check if we can allow reordering for more cases. 4151 if (AllowReorder && R.shouldReorder()) { 4152 // Conceptually, there is nothing actually preventing us from trying to 4153 // reorder a larger list. In fact, we do exactly this when vectorizing 4154 // reductions. However, at this point, we only expect to get here when 4155 // there are exactly two operations. 4156 assert(Ops.size() == 2); 4157 assert(BuildVectorSlice.empty()); 4158 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 4159 R.buildTree(ReorderedOps, None); 4160 } 4161 if (R.isTreeTinyAndNotFullyVectorizable()) 4162 continue; 4163 4164 R.computeMinimumValueSizes(); 4165 int Cost = R.getTreeCost(); 4166 4167 if (Cost < -SLPCostThreshold) { 4168 DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 4169 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 4170 cast<Instruction>(Ops[0])) 4171 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 4172 << " and with tree size " 4173 << ore::NV("TreeSize", R.getTreeSize())); 4174 4175 Value *VectorizedRoot = R.vectorizeTree(); 4176 4177 // Reconstruct the build vector by extracting the vectorized root. This 4178 // way we handle the case where some elements of the vector are 4179 // undefined. 4180 // (return (inserelt <4 xi32> (insertelt undef (opd0) 0) (opd1) 2)) 4181 if (!BuildVectorSlice.empty()) { 4182 // The insert point is the last build vector instruction. The 4183 // vectorized root will precede it. This guarantees that we get an 4184 // instruction. The vectorized tree could have been constant folded. 4185 Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back()); 4186 unsigned VecIdx = 0; 4187 for (auto &V : BuildVectorSlice) { 4188 IRBuilder<NoFolder> Builder(InsertAfter->getParent(), 4189 ++BasicBlock::iterator(InsertAfter)); 4190 Instruction *I = cast<Instruction>(V); 4191 assert(isa<InsertElementInst>(I) || isa<InsertValueInst>(I)); 4192 Instruction *Extract = 4193 cast<Instruction>(Builder.CreateExtractElement( 4194 VectorizedRoot, Builder.getInt32(VecIdx++))); 4195 I->setOperand(1, Extract); 4196 I->removeFromParent(); 4197 I->insertAfter(Extract); 4198 InsertAfter = I; 4199 } 4200 } 4201 // Move to the next bundle. 4202 I += VF - 1; 4203 NextInst = I + 1; 4204 Changed = true; 4205 } 4206 } 4207 } 4208 4209 return Changed; 4210 } 4211 4212 bool SLPVectorizerPass::tryToVectorize(BinaryOperator *V, BoUpSLP &R) { 4213 if (!V) 4214 return false; 4215 4216 Value *P = V->getParent(); 4217 4218 // Vectorize in current basic block only. 4219 auto *Op0 = dyn_cast<Instruction>(V->getOperand(0)); 4220 auto *Op1 = dyn_cast<Instruction>(V->getOperand(1)); 4221 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 4222 return false; 4223 4224 // Try to vectorize V. 4225 if (tryToVectorizePair(Op0, Op1, R)) 4226 return true; 4227 4228 auto *A = dyn_cast<BinaryOperator>(Op0); 4229 auto *B = dyn_cast<BinaryOperator>(Op1); 4230 // Try to skip B. 4231 if (B && B->hasOneUse()) { 4232 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 4233 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 4234 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 4235 return true; 4236 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 4237 return true; 4238 } 4239 4240 // Try to skip A. 4241 if (A && A->hasOneUse()) { 4242 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 4243 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 4244 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 4245 return true; 4246 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 4247 return true; 4248 } 4249 return false; 4250 } 4251 4252 /// \brief Generate a shuffle mask to be used in a reduction tree. 4253 /// 4254 /// \param VecLen The length of the vector to be reduced. 4255 /// \param NumEltsToRdx The number of elements that should be reduced in the 4256 /// vector. 4257 /// \param IsPairwise Whether the reduction is a pairwise or splitting 4258 /// reduction. A pairwise reduction will generate a mask of 4259 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 4260 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 4261 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 4262 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 4263 bool IsPairwise, bool IsLeft, 4264 IRBuilder<> &Builder) { 4265 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 4266 4267 SmallVector<Constant *, 32> ShuffleMask( 4268 VecLen, UndefValue::get(Builder.getInt32Ty())); 4269 4270 if (IsPairwise) 4271 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 4272 for (unsigned i = 0; i != NumEltsToRdx; ++i) 4273 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 4274 else 4275 // Move the upper half of the vector to the lower half. 4276 for (unsigned i = 0; i != NumEltsToRdx; ++i) 4277 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 4278 4279 return ConstantVector::get(ShuffleMask); 4280 } 4281 4282 namespace { 4283 /// Model horizontal reductions. 4284 /// 4285 /// A horizontal reduction is a tree of reduction operations (currently add and 4286 /// fadd) that has operations that can be put into a vector as its leaf. 4287 /// For example, this tree: 4288 /// 4289 /// mul mul mul mul 4290 /// \ / \ / 4291 /// + + 4292 /// \ / 4293 /// + 4294 /// This tree has "mul" as its reduced values and "+" as its reduction 4295 /// operations. A reduction might be feeding into a store or a binary operation 4296 /// feeding a phi. 4297 /// ... 4298 /// \ / 4299 /// + 4300 /// | 4301 /// phi += 4302 /// 4303 /// Or: 4304 /// ... 4305 /// \ / 4306 /// + 4307 /// | 4308 /// *p = 4309 /// 4310 class HorizontalReduction { 4311 SmallVector<Value *, 16> ReductionOps; 4312 SmallVector<Value *, 32> ReducedVals; 4313 // Use map vector to make stable output. 4314 MapVector<Instruction *, Value *> ExtraArgs; 4315 4316 BinaryOperator *ReductionRoot = nullptr; 4317 4318 /// The opcode of the reduction. 4319 Instruction::BinaryOps ReductionOpcode = Instruction::BinaryOpsEnd; 4320 /// The opcode of the values we perform a reduction on. 4321 unsigned ReducedValueOpcode = 0; 4322 /// Should we model this reduction as a pairwise reduction tree or a tree that 4323 /// splits the vector in halves and adds those halves. 4324 bool IsPairwiseReduction = false; 4325 4326 /// Checks if the ParentStackElem.first should be marked as a reduction 4327 /// operation with an extra argument or as extra argument itself. 4328 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 4329 Value *ExtraArg) { 4330 if (ExtraArgs.count(ParentStackElem.first)) { 4331 ExtraArgs[ParentStackElem.first] = nullptr; 4332 // We ran into something like: 4333 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 4334 // The whole ParentStackElem.first should be considered as an extra value 4335 // in this case. 4336 // Do not perform analysis of remaining operands of ParentStackElem.first 4337 // instruction, this whole instruction is an extra argument. 4338 ParentStackElem.second = ParentStackElem.first->getNumOperands(); 4339 } else { 4340 // We ran into something like: 4341 // ParentStackElem.first += ... + ExtraArg + ... 4342 ExtraArgs[ParentStackElem.first] = ExtraArg; 4343 } 4344 } 4345 4346 public: 4347 HorizontalReduction() = default; 4348 4349 /// \brief Try to find a reduction tree. 4350 bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B) { 4351 assert((!Phi || is_contained(Phi->operands(), B)) && 4352 "Thi phi needs to use the binary operator"); 4353 4354 // We could have a initial reductions that is not an add. 4355 // r *= v1 + v2 + v3 + v4 4356 // In such a case start looking for a tree rooted in the first '+'. 4357 if (Phi) { 4358 if (B->getOperand(0) == Phi) { 4359 Phi = nullptr; 4360 B = dyn_cast<BinaryOperator>(B->getOperand(1)); 4361 } else if (B->getOperand(1) == Phi) { 4362 Phi = nullptr; 4363 B = dyn_cast<BinaryOperator>(B->getOperand(0)); 4364 } 4365 } 4366 4367 if (!B) 4368 return false; 4369 4370 Type *Ty = B->getType(); 4371 if (!isValidElementType(Ty)) 4372 return false; 4373 4374 ReductionOpcode = B->getOpcode(); 4375 ReducedValueOpcode = 0; 4376 ReductionRoot = B; 4377 4378 // We currently only support adds. 4379 if ((ReductionOpcode != Instruction::Add && 4380 ReductionOpcode != Instruction::FAdd) || 4381 !B->isAssociative()) 4382 return false; 4383 4384 // Post order traverse the reduction tree starting at B. We only handle true 4385 // trees containing only binary operators or selects. 4386 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 4387 Stack.push_back(std::make_pair(B, 0)); 4388 while (!Stack.empty()) { 4389 Instruction *TreeN = Stack.back().first; 4390 unsigned EdgeToVist = Stack.back().second++; 4391 bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode; 4392 4393 // Postorder vist. 4394 if (EdgeToVist == 2 || IsReducedValue) { 4395 if (IsReducedValue) 4396 ReducedVals.push_back(TreeN); 4397 else { 4398 auto I = ExtraArgs.find(TreeN); 4399 if (I != ExtraArgs.end() && !I->second) { 4400 // Check if TreeN is an extra argument of its parent operation. 4401 if (Stack.size() <= 1) { 4402 // TreeN can't be an extra argument as it is a root reduction 4403 // operation. 4404 return false; 4405 } 4406 // Yes, TreeN is an extra argument, do not add it to a list of 4407 // reduction operations. 4408 // Stack[Stack.size() - 2] always points to the parent operation. 4409 markExtraArg(Stack[Stack.size() - 2], TreeN); 4410 ExtraArgs.erase(TreeN); 4411 } else 4412 ReductionOps.push_back(TreeN); 4413 } 4414 // Retract. 4415 Stack.pop_back(); 4416 continue; 4417 } 4418 4419 // Visit left or right. 4420 Value *NextV = TreeN->getOperand(EdgeToVist); 4421 if (NextV != Phi) { 4422 auto *I = dyn_cast<Instruction>(NextV); 4423 // Continue analysis if the next operand is a reduction operation or 4424 // (possibly) a reduced value. If the reduced value opcode is not set, 4425 // the first met operation != reduction operation is considered as the 4426 // reduced value class. 4427 if (I && (!ReducedValueOpcode || I->getOpcode() == ReducedValueOpcode || 4428 I->getOpcode() == ReductionOpcode)) { 4429 // Only handle trees in the current basic block. 4430 if (I->getParent() != B->getParent()) { 4431 // I is an extra argument for TreeN (its parent operation). 4432 markExtraArg(Stack.back(), I); 4433 continue; 4434 } 4435 4436 // Each tree node needs to have one user except for the ultimate 4437 // reduction. 4438 if (!I->hasOneUse() && I != B) { 4439 // I is an extra argument for TreeN (its parent operation). 4440 markExtraArg(Stack.back(), I); 4441 continue; 4442 } 4443 4444 if (I->getOpcode() == ReductionOpcode) { 4445 // We need to be able to reassociate the reduction operations. 4446 if (!I->isAssociative()) { 4447 // I is an extra argument for TreeN (its parent operation). 4448 markExtraArg(Stack.back(), I); 4449 continue; 4450 } 4451 } else if (ReducedValueOpcode && 4452 ReducedValueOpcode != I->getOpcode()) { 4453 // Make sure that the opcodes of the operations that we are going to 4454 // reduce match. 4455 // I is an extra argument for TreeN (its parent operation). 4456 markExtraArg(Stack.back(), I); 4457 continue; 4458 } else if (!ReducedValueOpcode) 4459 ReducedValueOpcode = I->getOpcode(); 4460 4461 Stack.push_back(std::make_pair(I, 0)); 4462 continue; 4463 } 4464 } 4465 // NextV is an extra argument for TreeN (its parent operation). 4466 markExtraArg(Stack.back(), NextV); 4467 } 4468 return true; 4469 } 4470 4471 /// \brief Attempt to vectorize the tree found by 4472 /// matchAssociativeReduction. 4473 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 4474 if (ReducedVals.empty()) 4475 return false; 4476 4477 // If there is a sufficient number of reduction values, reduce 4478 // to a nearby power-of-2. Can safely generate oversized 4479 // vectors and rely on the backend to split them to legal sizes. 4480 unsigned NumReducedVals = ReducedVals.size(); 4481 if (NumReducedVals < 4) 4482 return false; 4483 4484 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 4485 4486 Value *VectorizedTree = nullptr; 4487 IRBuilder<> Builder(ReductionRoot); 4488 FastMathFlags Unsafe; 4489 Unsafe.setUnsafeAlgebra(); 4490 Builder.setFastMathFlags(Unsafe); 4491 unsigned i = 0; 4492 4493 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 4494 // The same extra argument may be used several time, so log each attempt 4495 // to use it. 4496 for (auto &Pair : ExtraArgs) 4497 ExternallyUsedValues[Pair.second].push_back(Pair.first); 4498 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 4499 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth); 4500 V.buildTree(VL, ExternallyUsedValues, ReductionOps); 4501 if (V.shouldReorder()) { 4502 SmallVector<Value *, 8> Reversed(VL.rbegin(), VL.rend()); 4503 V.buildTree(Reversed, ExternallyUsedValues, ReductionOps); 4504 } 4505 if (V.isTreeTinyAndNotFullyVectorizable()) 4506 break; 4507 4508 V.computeMinimumValueSizes(); 4509 4510 // Estimate cost. 4511 int Cost = 4512 V.getTreeCost() + getReductionCost(TTI, ReducedVals[i], ReduxWidth); 4513 if (Cost >= -SLPCostThreshold) 4514 break; 4515 4516 DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost 4517 << ". (HorRdx)\n"); 4518 auto *I0 = cast<Instruction>(VL[0]); 4519 V.getORE()->emit( 4520 OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", I0) 4521 << "Vectorized horizontal reduction with cost " 4522 << ore::NV("Cost", Cost) << " and with tree size " 4523 << ore::NV("TreeSize", V.getTreeSize())); 4524 4525 // Vectorize a tree. 4526 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 4527 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 4528 4529 // Emit a reduction. 4530 Value *ReducedSubTree = 4531 emitReduction(VectorizedRoot, Builder, ReduxWidth, ReductionOps, TTI); 4532 if (VectorizedTree) { 4533 Builder.SetCurrentDebugLocation(Loc); 4534 VectorizedTree = Builder.CreateBinOp(ReductionOpcode, VectorizedTree, 4535 ReducedSubTree, "bin.rdx"); 4536 propagateIRFlags(VectorizedTree, ReductionOps); 4537 } else 4538 VectorizedTree = ReducedSubTree; 4539 i += ReduxWidth; 4540 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 4541 } 4542 4543 if (VectorizedTree) { 4544 // Finish the reduction. 4545 for (; i < NumReducedVals; ++i) { 4546 auto *I = cast<Instruction>(ReducedVals[i]); 4547 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 4548 VectorizedTree = 4549 Builder.CreateBinOp(ReductionOpcode, VectorizedTree, I); 4550 propagateIRFlags(VectorizedTree, ReductionOps); 4551 } 4552 for (auto &Pair : ExternallyUsedValues) { 4553 assert(!Pair.second.empty() && 4554 "At least one DebugLoc must be inserted"); 4555 // Add each externally used value to the final reduction. 4556 for (auto *I : Pair.second) { 4557 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 4558 VectorizedTree = Builder.CreateBinOp(ReductionOpcode, VectorizedTree, 4559 Pair.first, "bin.extra"); 4560 propagateIRFlags(VectorizedTree, I); 4561 } 4562 } 4563 // Update users. 4564 ReductionRoot->replaceAllUsesWith(VectorizedTree); 4565 } 4566 return VectorizedTree != nullptr; 4567 } 4568 4569 unsigned numReductionValues() const { 4570 return ReducedVals.size(); 4571 } 4572 4573 private: 4574 /// \brief Calculate the cost of a reduction. 4575 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 4576 unsigned ReduxWidth) { 4577 Type *ScalarTy = FirstReducedVal->getType(); 4578 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 4579 4580 int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true); 4581 int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false); 4582 4583 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 4584 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 4585 4586 int ScalarReduxCost = 4587 (ReduxWidth - 1) * 4588 TTI->getArithmeticInstrCost(ReductionOpcode, ScalarTy); 4589 4590 DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 4591 << " for reduction that starts with " << *FirstReducedVal 4592 << " (It is a " 4593 << (IsPairwiseReduction ? "pairwise" : "splitting") 4594 << " reduction)\n"); 4595 4596 return VecReduxCost - ScalarReduxCost; 4597 } 4598 4599 /// \brief Emit a horizontal reduction of the vectorized value. 4600 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 4601 unsigned ReduxWidth, ArrayRef<Value *> RedOps, 4602 const TargetTransformInfo *TTI) { 4603 assert(VectorizedValue && "Need to have a vectorized tree node"); 4604 assert(isPowerOf2_32(ReduxWidth) && 4605 "We only handle power-of-two reductions for now"); 4606 4607 if (!IsPairwiseReduction) 4608 return createSimpleTargetReduction( 4609 Builder, TTI, ReductionOpcode, VectorizedValue, 4610 TargetTransformInfo::ReductionFlags(), RedOps); 4611 4612 Value *TmpVec = VectorizedValue; 4613 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 4614 Value *LeftMask = 4615 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 4616 Value *RightMask = 4617 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 4618 4619 Value *LeftShuf = Builder.CreateShuffleVector( 4620 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 4621 Value *RightShuf = Builder.CreateShuffleVector( 4622 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 4623 "rdx.shuf.r"); 4624 TmpVec = 4625 Builder.CreateBinOp(ReductionOpcode, LeftShuf, RightShuf, "bin.rdx"); 4626 propagateIRFlags(TmpVec, RedOps); 4627 } 4628 4629 // The result is in the first element of the vector. 4630 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 4631 } 4632 }; 4633 } // end anonymous namespace 4634 4635 /// \brief Recognize construction of vectors like 4636 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 4637 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 4638 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 4639 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 4640 /// 4641 /// Returns true if it matches 4642 /// 4643 static bool findBuildVector(InsertElementInst *FirstInsertElem, 4644 SmallVectorImpl<Value *> &BuildVector, 4645 SmallVectorImpl<Value *> &BuildVectorOpds) { 4646 if (!isa<UndefValue>(FirstInsertElem->getOperand(0))) 4647 return false; 4648 4649 InsertElementInst *IE = FirstInsertElem; 4650 while (true) { 4651 BuildVector.push_back(IE); 4652 BuildVectorOpds.push_back(IE->getOperand(1)); 4653 4654 if (IE->use_empty()) 4655 return false; 4656 4657 InsertElementInst *NextUse = dyn_cast<InsertElementInst>(IE->user_back()); 4658 if (!NextUse) 4659 return true; 4660 4661 // If this isn't the final use, make sure the next insertelement is the only 4662 // use. It's OK if the final constructed vector is used multiple times 4663 if (!IE->hasOneUse()) 4664 return false; 4665 4666 IE = NextUse; 4667 } 4668 4669 return false; 4670 } 4671 4672 /// \brief Like findBuildVector, but looks backwards for construction of aggregate. 4673 /// 4674 /// \return true if it matches. 4675 static bool findBuildAggregate(InsertValueInst *IV, 4676 SmallVectorImpl<Value *> &BuildVector, 4677 SmallVectorImpl<Value *> &BuildVectorOpds) { 4678 Value *V; 4679 do { 4680 BuildVector.push_back(IV); 4681 BuildVectorOpds.push_back(IV->getInsertedValueOperand()); 4682 V = IV->getAggregateOperand(); 4683 if (isa<UndefValue>(V)) 4684 break; 4685 IV = dyn_cast<InsertValueInst>(V); 4686 if (!IV || !IV->hasOneUse()) 4687 return false; 4688 } while (true); 4689 std::reverse(BuildVector.begin(), BuildVector.end()); 4690 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 4691 return true; 4692 } 4693 4694 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 4695 return V->getType() < V2->getType(); 4696 } 4697 4698 /// \brief Try and get a reduction value from a phi node. 4699 /// 4700 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 4701 /// if they come from either \p ParentBB or a containing loop latch. 4702 /// 4703 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 4704 /// if not possible. 4705 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 4706 BasicBlock *ParentBB, LoopInfo *LI) { 4707 // There are situations where the reduction value is not dominated by the 4708 // reduction phi. Vectorizing such cases has been reported to cause 4709 // miscompiles. See PR25787. 4710 auto DominatedReduxValue = [&](Value *R) { 4711 return ( 4712 dyn_cast<Instruction>(R) && 4713 DT->dominates(P->getParent(), dyn_cast<Instruction>(R)->getParent())); 4714 }; 4715 4716 Value *Rdx = nullptr; 4717 4718 // Return the incoming value if it comes from the same BB as the phi node. 4719 if (P->getIncomingBlock(0) == ParentBB) { 4720 Rdx = P->getIncomingValue(0); 4721 } else if (P->getIncomingBlock(1) == ParentBB) { 4722 Rdx = P->getIncomingValue(1); 4723 } 4724 4725 if (Rdx && DominatedReduxValue(Rdx)) 4726 return Rdx; 4727 4728 // Otherwise, check whether we have a loop latch to look at. 4729 Loop *BBL = LI->getLoopFor(ParentBB); 4730 if (!BBL) 4731 return nullptr; 4732 BasicBlock *BBLatch = BBL->getLoopLatch(); 4733 if (!BBLatch) 4734 return nullptr; 4735 4736 // There is a loop latch, return the incoming value if it comes from 4737 // that. This reduction pattern occasionally turns up. 4738 if (P->getIncomingBlock(0) == BBLatch) { 4739 Rdx = P->getIncomingValue(0); 4740 } else if (P->getIncomingBlock(1) == BBLatch) { 4741 Rdx = P->getIncomingValue(1); 4742 } 4743 4744 if (Rdx && DominatedReduxValue(Rdx)) 4745 return Rdx; 4746 4747 return nullptr; 4748 } 4749 4750 namespace { 4751 /// Tracks instructons and its children. 4752 class WeakTrackingVHWithLevel final : public CallbackVH { 4753 /// Operand index of the instruction currently beeing analized. 4754 unsigned Level = 0; 4755 /// Is this the instruction that should be vectorized, or are we now 4756 /// processing children (i.e. operands of this instruction) for potential 4757 /// vectorization? 4758 bool IsInitial = true; 4759 4760 public: 4761 explicit WeakTrackingVHWithLevel() = default; 4762 WeakTrackingVHWithLevel(Value *V) : CallbackVH(V){}; 4763 /// Restart children analysis each time it is repaced by the new instruction. 4764 void allUsesReplacedWith(Value *New) override { 4765 setValPtr(New); 4766 Level = 0; 4767 IsInitial = true; 4768 } 4769 /// Check if the instruction was not deleted during vectorization. 4770 bool isValid() const { return !getValPtr(); } 4771 /// Is the istruction itself must be vectorized? 4772 bool isInitial() const { return IsInitial; } 4773 /// Try to vectorize children. 4774 void clearInitial() { IsInitial = false; } 4775 /// Are all children processed already? 4776 bool isFinal() const { 4777 assert(getValPtr() && 4778 (isa<Instruction>(getValPtr()) && 4779 cast<Instruction>(getValPtr())->getNumOperands() >= Level)); 4780 return getValPtr() && 4781 cast<Instruction>(getValPtr())->getNumOperands() == Level; 4782 } 4783 /// Get next child operation. 4784 Value *nextOperand() { 4785 assert(getValPtr() && isa<Instruction>(getValPtr()) && 4786 cast<Instruction>(getValPtr())->getNumOperands() > Level); 4787 return cast<Instruction>(getValPtr())->getOperand(Level++); 4788 } 4789 virtual ~WeakTrackingVHWithLevel() = default; 4790 }; 4791 } // namespace 4792 4793 /// \brief Attempt to reduce a horizontal reduction. 4794 /// If it is legal to match a horizontal reduction feeding 4795 /// the phi node P with reduction operators Root in a basic block BB, then check 4796 /// if it can be done. 4797 /// \returns true if a horizontal reduction was matched and reduced. 4798 /// \returns false if a horizontal reduction was not matched. 4799 static bool canBeVectorized( 4800 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 4801 TargetTransformInfo *TTI, 4802 const function_ref<bool(BinaryOperator *, BoUpSLP &)> Vectorize) { 4803 if (!ShouldVectorizeHor) 4804 return false; 4805 4806 if (!Root) 4807 return false; 4808 4809 if (Root->getParent() != BB) 4810 return false; 4811 SmallVector<WeakTrackingVHWithLevel, 8> Stack(1, Root); 4812 SmallSet<Value *, 8> VisitedInstrs; 4813 bool Res = false; 4814 while (!Stack.empty()) { 4815 Value *V = Stack.back(); 4816 if (!V) { 4817 Stack.pop_back(); 4818 continue; 4819 } 4820 auto *Inst = dyn_cast<Instruction>(V); 4821 if (!Inst || isa<PHINode>(Inst)) { 4822 Stack.pop_back(); 4823 continue; 4824 } 4825 if (Stack.back().isInitial()) { 4826 Stack.back().clearInitial(); 4827 if (auto *BI = dyn_cast<BinaryOperator>(Inst)) { 4828 HorizontalReduction HorRdx; 4829 if (HorRdx.matchAssociativeReduction(P, BI)) { 4830 if (HorRdx.tryToReduce(R, TTI)) { 4831 Res = true; 4832 P = nullptr; 4833 continue; 4834 } 4835 } 4836 if (P) { 4837 Inst = dyn_cast<Instruction>(BI->getOperand(0)); 4838 if (Inst == P) 4839 Inst = dyn_cast<Instruction>(BI->getOperand(1)); 4840 if (!Inst) { 4841 P = nullptr; 4842 continue; 4843 } 4844 } 4845 } 4846 P = nullptr; 4847 if (Vectorize(dyn_cast<BinaryOperator>(Inst), R)) { 4848 Res = true; 4849 continue; 4850 } 4851 } 4852 if (Stack.back().isFinal()) { 4853 Stack.pop_back(); 4854 continue; 4855 } 4856 4857 if (auto *NextV = dyn_cast<Instruction>(Stack.back().nextOperand())) 4858 if (NextV->getParent() == BB && VisitedInstrs.insert(NextV).second && 4859 Stack.size() < RecursionMaxDepth) 4860 Stack.push_back(NextV); 4861 } 4862 return Res; 4863 } 4864 4865 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 4866 BasicBlock *BB, BoUpSLP &R, 4867 TargetTransformInfo *TTI) { 4868 if (!V) 4869 return false; 4870 auto *I = dyn_cast<Instruction>(V); 4871 if (!I) 4872 return false; 4873 4874 if (!isa<BinaryOperator>(I)) 4875 P = nullptr; 4876 // Try to match and vectorize a horizontal reduction. 4877 return canBeVectorized(P, I, BB, R, TTI, 4878 [this](BinaryOperator *BI, BoUpSLP &R) -> bool { 4879 return tryToVectorize(BI, R); 4880 }); 4881 } 4882 4883 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 4884 bool Changed = false; 4885 SmallVector<Value *, 4> Incoming; 4886 SmallSet<Value *, 16> VisitedInstrs; 4887 4888 bool HaveVectorizedPhiNodes = true; 4889 while (HaveVectorizedPhiNodes) { 4890 HaveVectorizedPhiNodes = false; 4891 4892 // Collect the incoming values from the PHIs. 4893 Incoming.clear(); 4894 for (Instruction &I : *BB) { 4895 PHINode *P = dyn_cast<PHINode>(&I); 4896 if (!P) 4897 break; 4898 4899 if (!VisitedInstrs.count(P)) 4900 Incoming.push_back(P); 4901 } 4902 4903 // Sort by type. 4904 std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc); 4905 4906 // Try to vectorize elements base on their type. 4907 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 4908 E = Incoming.end(); 4909 IncIt != E;) { 4910 4911 // Look for the next elements with the same type. 4912 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 4913 while (SameTypeIt != E && 4914 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 4915 VisitedInstrs.insert(*SameTypeIt); 4916 ++SameTypeIt; 4917 } 4918 4919 // Try to vectorize them. 4920 unsigned NumElts = (SameTypeIt - IncIt); 4921 DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n"); 4922 // The order in which the phi nodes appear in the program does not matter. 4923 // So allow tryToVectorizeList to reorder them if it is beneficial. This 4924 // is done when there are exactly two elements since tryToVectorizeList 4925 // asserts that there are only two values when AllowReorder is true. 4926 bool AllowReorder = NumElts == 2; 4927 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, 4928 None, AllowReorder)) { 4929 // Success start over because instructions might have been changed. 4930 HaveVectorizedPhiNodes = true; 4931 Changed = true; 4932 break; 4933 } 4934 4935 // Start over at the next instruction of a different type (or the end). 4936 IncIt = SameTypeIt; 4937 } 4938 } 4939 4940 VisitedInstrs.clear(); 4941 4942 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) { 4943 // We may go through BB multiple times so skip the one we have checked. 4944 if (!VisitedInstrs.insert(&*it).second) 4945 continue; 4946 4947 if (isa<DbgInfoIntrinsic>(it)) 4948 continue; 4949 4950 // Try to vectorize reductions that use PHINodes. 4951 if (PHINode *P = dyn_cast<PHINode>(it)) { 4952 // Check that the PHI is a reduction PHI. 4953 if (P->getNumIncomingValues() != 2) 4954 return Changed; 4955 4956 // Try to match and vectorize a horizontal reduction. 4957 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 4958 TTI)) { 4959 Changed = true; 4960 it = BB->begin(); 4961 e = BB->end(); 4962 continue; 4963 } 4964 continue; 4965 } 4966 4967 if (ShouldStartVectorizeHorAtStore) { 4968 if (StoreInst *SI = dyn_cast<StoreInst>(it)) { 4969 // Try to match and vectorize a horizontal reduction. 4970 if (vectorizeRootInstruction(nullptr, SI->getValueOperand(), BB, R, 4971 TTI)) { 4972 Changed = true; 4973 it = BB->begin(); 4974 e = BB->end(); 4975 continue; 4976 } 4977 } 4978 } 4979 4980 // Try to vectorize horizontal reductions feeding into a return. 4981 if (ReturnInst *RI = dyn_cast<ReturnInst>(it)) { 4982 if (RI->getNumOperands() != 0) { 4983 // Try to match and vectorize a horizontal reduction. 4984 if (vectorizeRootInstruction(nullptr, RI->getOperand(0), BB, R, TTI)) { 4985 Changed = true; 4986 it = BB->begin(); 4987 e = BB->end(); 4988 continue; 4989 } 4990 } 4991 } 4992 4993 // Try to vectorize trees that start at compare instructions. 4994 if (CmpInst *CI = dyn_cast<CmpInst>(it)) { 4995 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) { 4996 Changed = true; 4997 // We would like to start over since some instructions are deleted 4998 // and the iterator may become invalid value. 4999 it = BB->begin(); 5000 e = BB->end(); 5001 continue; 5002 } 5003 5004 for (int I = 0; I < 2; ++I) { 5005 if (vectorizeRootInstruction(nullptr, CI->getOperand(I), BB, R, TTI)) { 5006 Changed = true; 5007 // We would like to start over since some instructions are deleted 5008 // and the iterator may become invalid value. 5009 it = BB->begin(); 5010 e = BB->end(); 5011 break; 5012 } 5013 } 5014 continue; 5015 } 5016 5017 // Try to vectorize trees that start at insertelement instructions. 5018 if (InsertElementInst *FirstInsertElem = dyn_cast<InsertElementInst>(it)) { 5019 SmallVector<Value *, 16> BuildVector; 5020 SmallVector<Value *, 16> BuildVectorOpds; 5021 if (!findBuildVector(FirstInsertElem, BuildVector, BuildVectorOpds)) 5022 continue; 5023 5024 // Vectorize starting with the build vector operands ignoring the 5025 // BuildVector instructions for the purpose of scheduling and user 5026 // extraction. 5027 if (tryToVectorizeList(BuildVectorOpds, R, BuildVector)) { 5028 Changed = true; 5029 it = BB->begin(); 5030 e = BB->end(); 5031 } 5032 5033 continue; 5034 } 5035 5036 // Try to vectorize trees that start at insertvalue instructions feeding into 5037 // a store. 5038 if (StoreInst *SI = dyn_cast<StoreInst>(it)) { 5039 if (InsertValueInst *LastInsertValue = dyn_cast<InsertValueInst>(SI->getValueOperand())) { 5040 const DataLayout &DL = BB->getModule()->getDataLayout(); 5041 if (R.canMapToVector(SI->getValueOperand()->getType(), DL)) { 5042 SmallVector<Value *, 16> BuildVector; 5043 SmallVector<Value *, 16> BuildVectorOpds; 5044 if (!findBuildAggregate(LastInsertValue, BuildVector, BuildVectorOpds)) 5045 continue; 5046 5047 DEBUG(dbgs() << "SLP: store of array mappable to vector: " << *SI << "\n"); 5048 if (tryToVectorizeList(BuildVectorOpds, R, BuildVector, false)) { 5049 Changed = true; 5050 it = BB->begin(); 5051 e = BB->end(); 5052 } 5053 continue; 5054 } 5055 } 5056 } 5057 } 5058 5059 return Changed; 5060 } 5061 5062 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 5063 auto Changed = false; 5064 for (auto &Entry : GEPs) { 5065 5066 // If the getelementptr list has fewer than two elements, there's nothing 5067 // to do. 5068 if (Entry.second.size() < 2) 5069 continue; 5070 5071 DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 5072 << Entry.second.size() << ".\n"); 5073 5074 // We process the getelementptr list in chunks of 16 (like we do for 5075 // stores) to minimize compile-time. 5076 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) { 5077 auto Len = std::min<unsigned>(BE - BI, 16); 5078 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 5079 5080 // Initialize a set a candidate getelementptrs. Note that we use a 5081 // SetVector here to preserve program order. If the index computations 5082 // are vectorizable and begin with loads, we want to minimize the chance 5083 // of having to reorder them later. 5084 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 5085 5086 // Some of the candidates may have already been vectorized after we 5087 // initially collected them. If so, the WeakTrackingVHs will have 5088 // nullified the 5089 // values, so remove them from the set of candidates. 5090 Candidates.remove(nullptr); 5091 5092 // Remove from the set of candidates all pairs of getelementptrs with 5093 // constant differences. Such getelementptrs are likely not good 5094 // candidates for vectorization in a bottom-up phase since one can be 5095 // computed from the other. We also ensure all candidate getelementptr 5096 // indices are unique. 5097 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 5098 auto *GEPI = cast<GetElementPtrInst>(GEPList[I]); 5099 if (!Candidates.count(GEPI)) 5100 continue; 5101 auto *SCEVI = SE->getSCEV(GEPList[I]); 5102 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 5103 auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]); 5104 auto *SCEVJ = SE->getSCEV(GEPList[J]); 5105 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 5106 Candidates.remove(GEPList[I]); 5107 Candidates.remove(GEPList[J]); 5108 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 5109 Candidates.remove(GEPList[J]); 5110 } 5111 } 5112 } 5113 5114 // We break out of the above computation as soon as we know there are 5115 // fewer than two candidates remaining. 5116 if (Candidates.size() < 2) 5117 continue; 5118 5119 // Add the single, non-constant index of each candidate to the bundle. We 5120 // ensured the indices met these constraints when we originally collected 5121 // the getelementptrs. 5122 SmallVector<Value *, 16> Bundle(Candidates.size()); 5123 auto BundleIndex = 0u; 5124 for (auto *V : Candidates) { 5125 auto *GEP = cast<GetElementPtrInst>(V); 5126 auto *GEPIdx = GEP->idx_begin()->get(); 5127 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 5128 Bundle[BundleIndex++] = GEPIdx; 5129 } 5130 5131 // Try and vectorize the indices. We are currently only interested in 5132 // gather-like cases of the form: 5133 // 5134 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 5135 // 5136 // where the loads of "a", the loads of "b", and the subtractions can be 5137 // performed in parallel. It's likely that detecting this pattern in a 5138 // bottom-up phase will be simpler and less costly than building a 5139 // full-blown top-down phase beginning at the consecutive loads. 5140 Changed |= tryToVectorizeList(Bundle, R); 5141 } 5142 } 5143 return Changed; 5144 } 5145 5146 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 5147 bool Changed = false; 5148 // Attempt to sort and vectorize each of the store-groups. 5149 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 5150 ++it) { 5151 if (it->second.size() < 2) 5152 continue; 5153 5154 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 5155 << it->second.size() << ".\n"); 5156 5157 // Process the stores in chunks of 16. 5158 // TODO: The limit of 16 inhibits greater vectorization factors. 5159 // For example, AVX2 supports v32i8. Increasing this limit, however, 5160 // may cause a significant compile-time increase. 5161 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) { 5162 unsigned Len = std::min<unsigned>(CE - CI, 16); 5163 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R); 5164 } 5165 } 5166 return Changed; 5167 } 5168 5169 char SLPVectorizer::ID = 0; 5170 static const char lv_name[] = "SLP Vectorizer"; 5171 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 5172 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 5173 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5174 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 5175 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 5176 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5177 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 5178 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 5179 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 5180 5181 namespace llvm { 5182 Pass *createSLPVectorizerPass() { return new SLPVectorizer(); } 5183 } 5184