1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 45 #include "llvm/Analysis/ScalarEvolution.h" 46 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/Analysis/VectorUtils.h" 51 #include "llvm/IR/Attributes.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DebugLoc.h" 57 #include "llvm/IR/DerivedTypes.h" 58 #include "llvm/IR/Dominators.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/IRBuilder.h" 61 #include "llvm/IR/InstrTypes.h" 62 #include "llvm/IR/Instruction.h" 63 #include "llvm/IR/Instructions.h" 64 #include "llvm/IR/IntrinsicInst.h" 65 #include "llvm/IR/Intrinsics.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/NoFolder.h" 68 #include "llvm/IR/Operator.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/Verifier.h" 76 #include "llvm/InitializePasses.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/DOTGraphTraits.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/GraphWriter.h" 85 #include "llvm/Support/InstructionCost.h" 86 #include "llvm/Support/KnownBits.h" 87 #include "llvm/Support/MathExtras.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 90 #include "llvm/Transforms/Utils/LoopUtils.h" 91 #include "llvm/Transforms/Vectorize.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <memory> 97 #include <set> 98 #include <string> 99 #include <tuple> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 using namespace slpvectorizer; 106 107 #define SV_NAME "slp-vectorizer" 108 #define DEBUG_TYPE "SLP" 109 110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 111 112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 113 cl::desc("Run the SLP vectorization passes")); 114 115 static cl::opt<int> 116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 117 cl::desc("Only vectorize if you gain more than this " 118 "number ")); 119 120 static cl::opt<bool> 121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 122 cl::desc("Attempt to vectorize horizontal reductions")); 123 124 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 126 cl::desc( 127 "Attempt to vectorize horizontal reductions feeding into a store")); 128 129 static cl::opt<int> 130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 131 cl::desc("Attempt to vectorize for this register size in bits")); 132 133 static cl::opt<unsigned> 134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 135 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 136 137 static cl::opt<int> 138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 139 cl::desc("Maximum depth of the lookup for consecutive stores.")); 140 141 /// Limits the size of scheduling regions in a block. 142 /// It avoid long compile times for _very_ large blocks where vector 143 /// instructions are spread over a wide range. 144 /// This limit is way higher than needed by real-world functions. 145 static cl::opt<int> 146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 147 cl::desc("Limit the size of the SLP scheduling region per block")); 148 149 static cl::opt<int> MinVectorRegSizeOption( 150 "slp-min-reg-size", cl::init(128), cl::Hidden, 151 cl::desc("Attempt to vectorize for this register size in bits")); 152 153 static cl::opt<unsigned> RecursionMaxDepth( 154 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 155 cl::desc("Limit the recursion depth when building a vectorizable tree")); 156 157 static cl::opt<unsigned> MinTreeSize( 158 "slp-min-tree-size", cl::init(3), cl::Hidden, 159 cl::desc("Only vectorize small trees if they are fully vectorizable")); 160 161 // The maximum depth that the look-ahead score heuristic will explore. 162 // The higher this value, the higher the compilation time overhead. 163 static cl::opt<int> LookAheadMaxDepth( 164 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 165 cl::desc("The maximum look-ahead depth for operand reordering scores")); 166 167 // The Look-ahead heuristic goes through the users of the bundle to calculate 168 // the users cost in getExternalUsesCost(). To avoid compilation time increase 169 // we limit the number of users visited to this value. 170 static cl::opt<unsigned> LookAheadUsersBudget( 171 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, 172 cl::desc("The maximum number of users to visit while visiting the " 173 "predecessors. This prevents compilation time increase.")); 174 175 static cl::opt<bool> 176 ViewSLPTree("view-slp-tree", cl::Hidden, 177 cl::desc("Display the SLP trees with Graphviz")); 178 179 // Limit the number of alias checks. The limit is chosen so that 180 // it has no negative effect on the llvm benchmarks. 181 static const unsigned AliasedCheckLimit = 10; 182 183 // Another limit for the alias checks: The maximum distance between load/store 184 // instructions where alias checks are done. 185 // This limit is useful for very large basic blocks. 186 static const unsigned MaxMemDepDistance = 160; 187 188 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 189 /// regions to be handled. 190 static const int MinScheduleRegionSize = 16; 191 192 /// Predicate for the element types that the SLP vectorizer supports. 193 /// 194 /// The most important thing to filter here are types which are invalid in LLVM 195 /// vectors. We also filter target specific types which have absolutely no 196 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 197 /// avoids spending time checking the cost model and realizing that they will 198 /// be inevitably scalarized. 199 static bool isValidElementType(Type *Ty) { 200 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 201 !Ty->isPPC_FP128Ty(); 202 } 203 204 /// \returns True if the value is a constant (but not globals/constant 205 /// expressions). 206 static bool isConstant(Value *V) { 207 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 208 } 209 210 /// Checks if \p V is one of vector-like instructions, i.e. undef, 211 /// insertelement/extractelement with constant indices for fixed vector type or 212 /// extractvalue instruction. 213 static bool isVectorLikeInstWithConstOps(Value *V) { 214 if (!isa<InsertElementInst, ExtractElementInst>(V) && 215 !isa<ExtractValueInst, UndefValue>(V)) 216 return false; 217 auto *I = dyn_cast<Instruction>(V); 218 if (!I || isa<ExtractValueInst>(I)) 219 return true; 220 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 221 return false; 222 if (isa<ExtractElementInst>(I)) 223 return isConstant(I->getOperand(1)); 224 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 225 return isConstant(I->getOperand(2)); 226 } 227 228 /// \returns true if all of the instructions in \p VL are in the same block or 229 /// false otherwise. 230 static bool allSameBlock(ArrayRef<Value *> VL) { 231 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 232 if (!I0) 233 return false; 234 if (all_of(VL, isVectorLikeInstWithConstOps)) 235 return true; 236 237 BasicBlock *BB = I0->getParent(); 238 for (int I = 1, E = VL.size(); I < E; I++) { 239 auto *II = dyn_cast<Instruction>(VL[I]); 240 if (!II) 241 return false; 242 243 if (BB != II->getParent()) 244 return false; 245 } 246 return true; 247 } 248 249 /// \returns True if all of the values in \p VL are constants (but not 250 /// globals/constant expressions). 251 static bool allConstant(ArrayRef<Value *> VL) { 252 // Constant expressions and globals can't be vectorized like normal integer/FP 253 // constants. 254 return all_of(VL, isConstant); 255 } 256 257 /// \returns True if all of the values in \p VL are identical or some of them 258 /// are UndefValue. 259 static bool isSplat(ArrayRef<Value *> VL) { 260 Value *FirstNonUndef = nullptr; 261 for (Value *V : VL) { 262 if (isa<UndefValue>(V)) 263 continue; 264 if (!FirstNonUndef) { 265 FirstNonUndef = V; 266 continue; 267 } 268 if (V != FirstNonUndef) 269 return false; 270 } 271 return FirstNonUndef != nullptr; 272 } 273 274 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 275 static bool isCommutative(Instruction *I) { 276 if (auto *Cmp = dyn_cast<CmpInst>(I)) 277 return Cmp->isCommutative(); 278 if (auto *BO = dyn_cast<BinaryOperator>(I)) 279 return BO->isCommutative(); 280 // TODO: This should check for generic Instruction::isCommutative(), but 281 // we need to confirm that the caller code correctly handles Intrinsics 282 // for example (does not have 2 operands). 283 return false; 284 } 285 286 /// Checks if the given value is actually an undefined constant vector. 287 static bool isUndefVector(const Value *V) { 288 if (isa<UndefValue>(V)) 289 return true; 290 auto *C = dyn_cast<Constant>(V); 291 if (!C) 292 return false; 293 if (!C->containsUndefOrPoisonElement()) 294 return false; 295 auto *VecTy = dyn_cast<FixedVectorType>(C->getType()); 296 if (!VecTy) 297 return false; 298 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { 299 if (Constant *Elem = C->getAggregateElement(I)) 300 if (!isa<UndefValue>(Elem)) 301 return false; 302 } 303 return true; 304 } 305 306 /// Checks if the vector of instructions can be represented as a shuffle, like: 307 /// %x0 = extractelement <4 x i8> %x, i32 0 308 /// %x3 = extractelement <4 x i8> %x, i32 3 309 /// %y1 = extractelement <4 x i8> %y, i32 1 310 /// %y2 = extractelement <4 x i8> %y, i32 2 311 /// %x0x0 = mul i8 %x0, %x0 312 /// %x3x3 = mul i8 %x3, %x3 313 /// %y1y1 = mul i8 %y1, %y1 314 /// %y2y2 = mul i8 %y2, %y2 315 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 316 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 317 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 318 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 319 /// ret <4 x i8> %ins4 320 /// can be transformed into: 321 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 322 /// i32 6> 323 /// %2 = mul <4 x i8> %1, %1 324 /// ret <4 x i8> %2 325 /// We convert this initially to something like: 326 /// %x0 = extractelement <4 x i8> %x, i32 0 327 /// %x3 = extractelement <4 x i8> %x, i32 3 328 /// %y1 = extractelement <4 x i8> %y, i32 1 329 /// %y2 = extractelement <4 x i8> %y, i32 2 330 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 331 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 332 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 333 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 334 /// %5 = mul <4 x i8> %4, %4 335 /// %6 = extractelement <4 x i8> %5, i32 0 336 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 337 /// %7 = extractelement <4 x i8> %5, i32 1 338 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 339 /// %8 = extractelement <4 x i8> %5, i32 2 340 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 341 /// %9 = extractelement <4 x i8> %5, i32 3 342 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 343 /// ret <4 x i8> %ins4 344 /// InstCombiner transforms this into a shuffle and vector mul 345 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 346 /// TODO: Can we split off and reuse the shuffle mask detection from 347 /// TargetTransformInfo::getInstructionThroughput? 348 static Optional<TargetTransformInfo::ShuffleKind> 349 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 350 const auto *It = 351 find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); }); 352 if (It == VL.end()) 353 return None; 354 auto *EI0 = cast<ExtractElementInst>(*It); 355 if (isa<ScalableVectorType>(EI0->getVectorOperandType())) 356 return None; 357 unsigned Size = 358 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 359 Value *Vec1 = nullptr; 360 Value *Vec2 = nullptr; 361 enum ShuffleMode { Unknown, Select, Permute }; 362 ShuffleMode CommonShuffleMode = Unknown; 363 Mask.assign(VL.size(), UndefMaskElem); 364 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 365 // Undef can be represented as an undef element in a vector. 366 if (isa<UndefValue>(VL[I])) 367 continue; 368 auto *EI = cast<ExtractElementInst>(VL[I]); 369 if (isa<ScalableVectorType>(EI->getVectorOperandType())) 370 return None; 371 auto *Vec = EI->getVectorOperand(); 372 // We can extractelement from undef or poison vector. 373 if (isUndefVector(Vec)) 374 continue; 375 // All vector operands must have the same number of vector elements. 376 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 377 return None; 378 if (isa<UndefValue>(EI->getIndexOperand())) 379 continue; 380 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 381 if (!Idx) 382 return None; 383 // Undefined behavior if Idx is negative or >= Size. 384 if (Idx->getValue().uge(Size)) 385 continue; 386 unsigned IntIdx = Idx->getValue().getZExtValue(); 387 Mask[I] = IntIdx; 388 // For correct shuffling we have to have at most 2 different vector operands 389 // in all extractelement instructions. 390 if (!Vec1 || Vec1 == Vec) { 391 Vec1 = Vec; 392 } else if (!Vec2 || Vec2 == Vec) { 393 Vec2 = Vec; 394 Mask[I] += Size; 395 } else { 396 return None; 397 } 398 if (CommonShuffleMode == Permute) 399 continue; 400 // If the extract index is not the same as the operation number, it is a 401 // permutation. 402 if (IntIdx != I) { 403 CommonShuffleMode = Permute; 404 continue; 405 } 406 CommonShuffleMode = Select; 407 } 408 // If we're not crossing lanes in different vectors, consider it as blending. 409 if (CommonShuffleMode == Select && Vec2) 410 return TargetTransformInfo::SK_Select; 411 // If Vec2 was never used, we have a permutation of a single vector, otherwise 412 // we have permutation of 2 vectors. 413 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 414 : TargetTransformInfo::SK_PermuteSingleSrc; 415 } 416 417 namespace { 418 419 /// Main data required for vectorization of instructions. 420 struct InstructionsState { 421 /// The very first instruction in the list with the main opcode. 422 Value *OpValue = nullptr; 423 424 /// The main/alternate instruction. 425 Instruction *MainOp = nullptr; 426 Instruction *AltOp = nullptr; 427 428 /// The main/alternate opcodes for the list of instructions. 429 unsigned getOpcode() const { 430 return MainOp ? MainOp->getOpcode() : 0; 431 } 432 433 unsigned getAltOpcode() const { 434 return AltOp ? AltOp->getOpcode() : 0; 435 } 436 437 /// Some of the instructions in the list have alternate opcodes. 438 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 439 440 bool isOpcodeOrAlt(Instruction *I) const { 441 unsigned CheckedOpcode = I->getOpcode(); 442 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 443 } 444 445 InstructionsState() = delete; 446 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 447 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 448 }; 449 450 } // end anonymous namespace 451 452 /// Chooses the correct key for scheduling data. If \p Op has the same (or 453 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 454 /// OpValue. 455 static Value *isOneOf(const InstructionsState &S, Value *Op) { 456 auto *I = dyn_cast<Instruction>(Op); 457 if (I && S.isOpcodeOrAlt(I)) 458 return Op; 459 return S.OpValue; 460 } 461 462 /// \returns true if \p Opcode is allowed as part of of the main/alternate 463 /// instruction for SLP vectorization. 464 /// 465 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 466 /// "shuffled out" lane would result in division by zero. 467 static bool isValidForAlternation(unsigned Opcode) { 468 if (Instruction::isIntDivRem(Opcode)) 469 return false; 470 471 return true; 472 } 473 474 /// \returns analysis of the Instructions in \p VL described in 475 /// InstructionsState, the Opcode that we suppose the whole list 476 /// could be vectorized even if its structure is diverse. 477 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 478 unsigned BaseIndex = 0) { 479 // Make sure these are all Instructions. 480 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 481 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 482 483 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 484 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 485 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 486 unsigned AltOpcode = Opcode; 487 unsigned AltIndex = BaseIndex; 488 489 // Check for one alternate opcode from another BinaryOperator. 490 // TODO - generalize to support all operators (types, calls etc.). 491 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 492 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 493 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 494 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 495 continue; 496 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 497 isValidForAlternation(Opcode)) { 498 AltOpcode = InstOpcode; 499 AltIndex = Cnt; 500 continue; 501 } 502 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 503 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 504 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 505 if (Ty0 == Ty1) { 506 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 507 continue; 508 if (Opcode == AltOpcode) { 509 assert(isValidForAlternation(Opcode) && 510 isValidForAlternation(InstOpcode) && 511 "Cast isn't safe for alternation, logic needs to be updated!"); 512 AltOpcode = InstOpcode; 513 AltIndex = Cnt; 514 continue; 515 } 516 } 517 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 518 continue; 519 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 520 } 521 522 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 523 cast<Instruction>(VL[AltIndex])); 524 } 525 526 /// \returns true if all of the values in \p VL have the same type or false 527 /// otherwise. 528 static bool allSameType(ArrayRef<Value *> VL) { 529 Type *Ty = VL[0]->getType(); 530 for (int i = 1, e = VL.size(); i < e; i++) 531 if (VL[i]->getType() != Ty) 532 return false; 533 534 return true; 535 } 536 537 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 538 static Optional<unsigned> getExtractIndex(Instruction *E) { 539 unsigned Opcode = E->getOpcode(); 540 assert((Opcode == Instruction::ExtractElement || 541 Opcode == Instruction::ExtractValue) && 542 "Expected extractelement or extractvalue instruction."); 543 if (Opcode == Instruction::ExtractElement) { 544 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 545 if (!CI) 546 return None; 547 return CI->getZExtValue(); 548 } 549 ExtractValueInst *EI = cast<ExtractValueInst>(E); 550 if (EI->getNumIndices() != 1) 551 return None; 552 return *EI->idx_begin(); 553 } 554 555 /// \returns True if in-tree use also needs extract. This refers to 556 /// possible scalar operand in vectorized instruction. 557 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 558 TargetLibraryInfo *TLI) { 559 unsigned Opcode = UserInst->getOpcode(); 560 switch (Opcode) { 561 case Instruction::Load: { 562 LoadInst *LI = cast<LoadInst>(UserInst); 563 return (LI->getPointerOperand() == Scalar); 564 } 565 case Instruction::Store: { 566 StoreInst *SI = cast<StoreInst>(UserInst); 567 return (SI->getPointerOperand() == Scalar); 568 } 569 case Instruction::Call: { 570 CallInst *CI = cast<CallInst>(UserInst); 571 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 572 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 573 if (hasVectorInstrinsicScalarOpd(ID, i)) 574 return (CI->getArgOperand(i) == Scalar); 575 } 576 LLVM_FALLTHROUGH; 577 } 578 default: 579 return false; 580 } 581 } 582 583 /// \returns the AA location that is being access by the instruction. 584 static MemoryLocation getLocation(Instruction *I, AAResults *AA) { 585 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 586 return MemoryLocation::get(SI); 587 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 588 return MemoryLocation::get(LI); 589 return MemoryLocation(); 590 } 591 592 /// \returns True if the instruction is not a volatile or atomic load/store. 593 static bool isSimple(Instruction *I) { 594 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 595 return LI->isSimple(); 596 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 597 return SI->isSimple(); 598 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 599 return !MI->isVolatile(); 600 return true; 601 } 602 603 /// Shuffles \p Mask in accordance with the given \p SubMask. 604 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 605 if (SubMask.empty()) 606 return; 607 if (Mask.empty()) { 608 Mask.append(SubMask.begin(), SubMask.end()); 609 return; 610 } 611 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 612 int TermValue = std::min(Mask.size(), SubMask.size()); 613 for (int I = 0, E = SubMask.size(); I < E; ++I) { 614 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 615 Mask[SubMask[I]] >= TermValue) 616 continue; 617 NewMask[I] = Mask[SubMask[I]]; 618 } 619 Mask.swap(NewMask); 620 } 621 622 /// Order may have elements assigned special value (size) which is out of 623 /// bounds. Such indices only appear on places which correspond to undef values 624 /// (see canReuseExtract for details) and used in order to avoid undef values 625 /// have effect on operands ordering. 626 /// The first loop below simply finds all unused indices and then the next loop 627 /// nest assigns these indices for undef values positions. 628 /// As an example below Order has two undef positions and they have assigned 629 /// values 3 and 7 respectively: 630 /// before: 6 9 5 4 9 2 1 0 631 /// after: 6 3 5 4 7 2 1 0 632 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 633 const unsigned Sz = Order.size(); 634 SmallBitVector UnusedIndices(Sz, /*t=*/true); 635 SmallBitVector MaskedIndices(Sz); 636 for (unsigned I = 0; I < Sz; ++I) { 637 if (Order[I] < Sz) 638 UnusedIndices.reset(Order[I]); 639 else 640 MaskedIndices.set(I); 641 } 642 if (MaskedIndices.none()) 643 return; 644 assert(UnusedIndices.count() == MaskedIndices.count() && 645 "Non-synced masked/available indices."); 646 int Idx = UnusedIndices.find_first(); 647 int MIdx = MaskedIndices.find_first(); 648 while (MIdx >= 0) { 649 assert(Idx >= 0 && "Indices must be synced."); 650 Order[MIdx] = Idx; 651 Idx = UnusedIndices.find_next(Idx); 652 MIdx = MaskedIndices.find_next(MIdx); 653 } 654 } 655 656 namespace llvm { 657 658 static void inversePermutation(ArrayRef<unsigned> Indices, 659 SmallVectorImpl<int> &Mask) { 660 Mask.clear(); 661 const unsigned E = Indices.size(); 662 Mask.resize(E, UndefMaskElem); 663 for (unsigned I = 0; I < E; ++I) 664 Mask[Indices[I]] = I; 665 } 666 667 /// \returns inserting index of InsertElement or InsertValue instruction, 668 /// using Offset as base offset for index. 669 static Optional<int> getInsertIndex(Value *InsertInst, unsigned Offset) { 670 int Index = Offset; 671 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 672 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 673 auto *VT = cast<FixedVectorType>(IE->getType()); 674 if (CI->getValue().uge(VT->getNumElements())) 675 return UndefMaskElem; 676 Index *= VT->getNumElements(); 677 Index += CI->getZExtValue(); 678 return Index; 679 } 680 if (isa<UndefValue>(IE->getOperand(2))) 681 return UndefMaskElem; 682 return None; 683 } 684 685 auto *IV = cast<InsertValueInst>(InsertInst); 686 Type *CurrentType = IV->getType(); 687 for (unsigned I : IV->indices()) { 688 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 689 Index *= ST->getNumElements(); 690 CurrentType = ST->getElementType(I); 691 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 692 Index *= AT->getNumElements(); 693 CurrentType = AT->getElementType(); 694 } else { 695 return None; 696 } 697 Index += I; 698 } 699 return Index; 700 } 701 702 /// Reorders the list of scalars in accordance with the given \p Order and then 703 /// the \p Mask. \p Order - is the original order of the scalars, need to 704 /// reorder scalars into an unordered state at first according to the given 705 /// order. Then the ordered scalars are shuffled once again in accordance with 706 /// the provided mask. 707 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 708 ArrayRef<int> Mask) { 709 assert(!Mask.empty() && "Expected non-empty mask."); 710 SmallVector<Value *> Prev(Scalars.size(), 711 UndefValue::get(Scalars.front()->getType())); 712 Prev.swap(Scalars); 713 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 714 if (Mask[I] != UndefMaskElem) 715 Scalars[Mask[I]] = Prev[I]; 716 } 717 718 namespace slpvectorizer { 719 720 /// Bottom Up SLP Vectorizer. 721 class BoUpSLP { 722 struct TreeEntry; 723 struct ScheduleData; 724 725 public: 726 using ValueList = SmallVector<Value *, 8>; 727 using InstrList = SmallVector<Instruction *, 16>; 728 using ValueSet = SmallPtrSet<Value *, 16>; 729 using StoreList = SmallVector<StoreInst *, 8>; 730 using ExtraValueToDebugLocsMap = 731 MapVector<Value *, SmallVector<Instruction *, 2>>; 732 using OrdersType = SmallVector<unsigned, 4>; 733 734 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 735 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 736 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 737 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 738 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 739 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 740 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 741 // Use the vector register size specified by the target unless overridden 742 // by a command-line option. 743 // TODO: It would be better to limit the vectorization factor based on 744 // data type rather than just register size. For example, x86 AVX has 745 // 256-bit registers, but it does not support integer operations 746 // at that width (that requires AVX2). 747 if (MaxVectorRegSizeOption.getNumOccurrences()) 748 MaxVecRegSize = MaxVectorRegSizeOption; 749 else 750 MaxVecRegSize = 751 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 752 .getFixedSize(); 753 754 if (MinVectorRegSizeOption.getNumOccurrences()) 755 MinVecRegSize = MinVectorRegSizeOption; 756 else 757 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 758 } 759 760 /// Vectorize the tree that starts with the elements in \p VL. 761 /// Returns the vectorized root. 762 Value *vectorizeTree(); 763 764 /// Vectorize the tree but with the list of externally used values \p 765 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 766 /// generated extractvalue instructions. 767 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 768 769 /// \returns the cost incurred by unwanted spills and fills, caused by 770 /// holding live values over call sites. 771 InstructionCost getSpillCost() const; 772 773 /// \returns the vectorization cost of the subtree that starts at \p VL. 774 /// A negative number means that this is profitable. 775 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 776 777 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 778 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 779 void buildTree(ArrayRef<Value *> Roots, 780 ArrayRef<Value *> UserIgnoreLst = None); 781 782 /// Builds external uses of the vectorized scalars, i.e. the list of 783 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 784 /// ExternallyUsedValues contains additional list of external uses to handle 785 /// vectorization of reductions. 786 void 787 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 788 789 /// Clear the internal data structures that are created by 'buildTree'. 790 void deleteTree() { 791 VectorizableTree.clear(); 792 ScalarToTreeEntry.clear(); 793 MustGather.clear(); 794 ExternalUses.clear(); 795 for (auto &Iter : BlocksSchedules) { 796 BlockScheduling *BS = Iter.second.get(); 797 BS->clear(); 798 } 799 MinBWs.clear(); 800 InstrElementSize.clear(); 801 } 802 803 unsigned getTreeSize() const { return VectorizableTree.size(); } 804 805 /// Perform LICM and CSE on the newly generated gather sequences. 806 void optimizeGatherSequence(); 807 808 /// Checks if the specified gather tree entry \p TE can be represented as a 809 /// shuffled vector entry + (possibly) permutation with other gathers. It 810 /// implements the checks only for possibly ordered scalars (Loads, 811 /// ExtractElement, ExtractValue), which can be part of the graph. 812 Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); 813 814 /// Gets reordering data for the given tree entry. If the entry is vectorized 815 /// - just return ReorderIndices, otherwise check if the scalars can be 816 /// reordered and return the most optimal order. 817 /// \param TopToBottom If true, include the order of vectorized stores and 818 /// insertelement nodes, otherwise skip them. 819 Optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom); 820 821 /// Reorders the current graph to the most profitable order starting from the 822 /// root node to the leaf nodes. The best order is chosen only from the nodes 823 /// of the same size (vectorization factor). Smaller nodes are considered 824 /// parts of subgraph with smaller VF and they are reordered independently. We 825 /// can make it because we still need to extend smaller nodes to the wider VF 826 /// and we can merge reordering shuffles with the widening shuffles. 827 void reorderTopToBottom(); 828 829 /// Reorders the current graph to the most profitable order starting from 830 /// leaves to the root. It allows to rotate small subgraphs and reduce the 831 /// number of reshuffles if the leaf nodes use the same order. In this case we 832 /// can merge the orders and just shuffle user node instead of shuffling its 833 /// operands. Plus, even the leaf nodes have different orders, it allows to 834 /// sink reordering in the graph closer to the root node and merge it later 835 /// during analysis. 836 void reorderBottomToTop(bool IgnoreReorder = false); 837 838 /// \return The vector element size in bits to use when vectorizing the 839 /// expression tree ending at \p V. If V is a store, the size is the width of 840 /// the stored value. Otherwise, the size is the width of the largest loaded 841 /// value reaching V. This method is used by the vectorizer to calculate 842 /// vectorization factors. 843 unsigned getVectorElementSize(Value *V); 844 845 /// Compute the minimum type sizes required to represent the entries in a 846 /// vectorizable tree. 847 void computeMinimumValueSizes(); 848 849 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 850 unsigned getMaxVecRegSize() const { 851 return MaxVecRegSize; 852 } 853 854 // \returns minimum vector register size as set by cl::opt. 855 unsigned getMinVecRegSize() const { 856 return MinVecRegSize; 857 } 858 859 unsigned getMinVF(unsigned Sz) const { 860 return std::max(2U, getMinVecRegSize() / Sz); 861 } 862 863 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 864 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 865 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 866 return MaxVF ? MaxVF : UINT_MAX; 867 } 868 869 /// Check if homogeneous aggregate is isomorphic to some VectorType. 870 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 871 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 872 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 873 /// 874 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 875 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 876 877 /// \returns True if the VectorizableTree is both tiny and not fully 878 /// vectorizable. We do not vectorize such trees. 879 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; 880 881 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 882 /// can be load combined in the backend. Load combining may not be allowed in 883 /// the IR optimizer, so we do not want to alter the pattern. For example, 884 /// partially transforming a scalar bswap() pattern into vector code is 885 /// effectively impossible for the backend to undo. 886 /// TODO: If load combining is allowed in the IR optimizer, this analysis 887 /// may not be necessary. 888 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 889 890 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 891 /// can be load combined in the backend. Load combining may not be allowed in 892 /// the IR optimizer, so we do not want to alter the pattern. For example, 893 /// partially transforming a scalar bswap() pattern into vector code is 894 /// effectively impossible for the backend to undo. 895 /// TODO: If load combining is allowed in the IR optimizer, this analysis 896 /// may not be necessary. 897 bool isLoadCombineCandidate() const; 898 899 OptimizationRemarkEmitter *getORE() { return ORE; } 900 901 /// This structure holds any data we need about the edges being traversed 902 /// during buildTree_rec(). We keep track of: 903 /// (i) the user TreeEntry index, and 904 /// (ii) the index of the edge. 905 struct EdgeInfo { 906 EdgeInfo() = default; 907 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 908 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 909 /// The user TreeEntry. 910 TreeEntry *UserTE = nullptr; 911 /// The operand index of the use. 912 unsigned EdgeIdx = UINT_MAX; 913 #ifndef NDEBUG 914 friend inline raw_ostream &operator<<(raw_ostream &OS, 915 const BoUpSLP::EdgeInfo &EI) { 916 EI.dump(OS); 917 return OS; 918 } 919 /// Debug print. 920 void dump(raw_ostream &OS) const { 921 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 922 << " EdgeIdx:" << EdgeIdx << "}"; 923 } 924 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 925 #endif 926 }; 927 928 /// A helper data structure to hold the operands of a vector of instructions. 929 /// This supports a fixed vector length for all operand vectors. 930 class VLOperands { 931 /// For each operand we need (i) the value, and (ii) the opcode that it 932 /// would be attached to if the expression was in a left-linearized form. 933 /// This is required to avoid illegal operand reordering. 934 /// For example: 935 /// \verbatim 936 /// 0 Op1 937 /// |/ 938 /// Op1 Op2 Linearized + Op2 939 /// \ / ----------> |/ 940 /// - - 941 /// 942 /// Op1 - Op2 (0 + Op1) - Op2 943 /// \endverbatim 944 /// 945 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 946 /// 947 /// Another way to think of this is to track all the operations across the 948 /// path from the operand all the way to the root of the tree and to 949 /// calculate the operation that corresponds to this path. For example, the 950 /// path from Op2 to the root crosses the RHS of the '-', therefore the 951 /// corresponding operation is a '-' (which matches the one in the 952 /// linearized tree, as shown above). 953 /// 954 /// For lack of a better term, we refer to this operation as Accumulated 955 /// Path Operation (APO). 956 struct OperandData { 957 OperandData() = default; 958 OperandData(Value *V, bool APO, bool IsUsed) 959 : V(V), APO(APO), IsUsed(IsUsed) {} 960 /// The operand value. 961 Value *V = nullptr; 962 /// TreeEntries only allow a single opcode, or an alternate sequence of 963 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 964 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 965 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 966 /// (e.g., Add/Mul) 967 bool APO = false; 968 /// Helper data for the reordering function. 969 bool IsUsed = false; 970 }; 971 972 /// During operand reordering, we are trying to select the operand at lane 973 /// that matches best with the operand at the neighboring lane. Our 974 /// selection is based on the type of value we are looking for. For example, 975 /// if the neighboring lane has a load, we need to look for a load that is 976 /// accessing a consecutive address. These strategies are summarized in the 977 /// 'ReorderingMode' enumerator. 978 enum class ReorderingMode { 979 Load, ///< Matching loads to consecutive memory addresses 980 Opcode, ///< Matching instructions based on opcode (same or alternate) 981 Constant, ///< Matching constants 982 Splat, ///< Matching the same instruction multiple times (broadcast) 983 Failed, ///< We failed to create a vectorizable group 984 }; 985 986 using OperandDataVec = SmallVector<OperandData, 2>; 987 988 /// A vector of operand vectors. 989 SmallVector<OperandDataVec, 4> OpsVec; 990 991 const DataLayout &DL; 992 ScalarEvolution &SE; 993 const BoUpSLP &R; 994 995 /// \returns the operand data at \p OpIdx and \p Lane. 996 OperandData &getData(unsigned OpIdx, unsigned Lane) { 997 return OpsVec[OpIdx][Lane]; 998 } 999 1000 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 1001 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 1002 return OpsVec[OpIdx][Lane]; 1003 } 1004 1005 /// Clears the used flag for all entries. 1006 void clearUsed() { 1007 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 1008 OpIdx != NumOperands; ++OpIdx) 1009 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1010 ++Lane) 1011 OpsVec[OpIdx][Lane].IsUsed = false; 1012 } 1013 1014 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 1015 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 1016 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 1017 } 1018 1019 // The hard-coded scores listed here are not very important, though it shall 1020 // be higher for better matches to improve the resulting cost. When 1021 // computing the scores of matching one sub-tree with another, we are 1022 // basically counting the number of values that are matching. So even if all 1023 // scores are set to 1, we would still get a decent matching result. 1024 // However, sometimes we have to break ties. For example we may have to 1025 // choose between matching loads vs matching opcodes. This is what these 1026 // scores are helping us with: they provide the order of preference. Also, 1027 // this is important if the scalar is externally used or used in another 1028 // tree entry node in the different lane. 1029 1030 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 1031 static const int ScoreConsecutiveLoads = 4; 1032 /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]). 1033 static const int ScoreReversedLoads = 3; 1034 /// ExtractElementInst from same vector and consecutive indexes. 1035 static const int ScoreConsecutiveExtracts = 4; 1036 /// ExtractElementInst from same vector and reversed indices. 1037 static const int ScoreReversedExtracts = 3; 1038 /// Constants. 1039 static const int ScoreConstants = 2; 1040 /// Instructions with the same opcode. 1041 static const int ScoreSameOpcode = 2; 1042 /// Instructions with alt opcodes (e.g, add + sub). 1043 static const int ScoreAltOpcodes = 1; 1044 /// Identical instructions (a.k.a. splat or broadcast). 1045 static const int ScoreSplat = 1; 1046 /// Matching with an undef is preferable to failing. 1047 static const int ScoreUndef = 1; 1048 /// Score for failing to find a decent match. 1049 static const int ScoreFail = 0; 1050 /// User exteranl to the vectorized code. 1051 static const int ExternalUseCost = 1; 1052 /// The user is internal but in a different lane. 1053 static const int UserInDiffLaneCost = ExternalUseCost; 1054 1055 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 1056 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 1057 ScalarEvolution &SE, int NumLanes) { 1058 if (V1 == V2) 1059 return VLOperands::ScoreSplat; 1060 1061 auto *LI1 = dyn_cast<LoadInst>(V1); 1062 auto *LI2 = dyn_cast<LoadInst>(V2); 1063 if (LI1 && LI2) { 1064 if (LI1->getParent() != LI2->getParent()) 1065 return VLOperands::ScoreFail; 1066 1067 Optional<int> Dist = getPointersDiff( 1068 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1069 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1070 if (!Dist) 1071 return VLOperands::ScoreFail; 1072 // The distance is too large - still may be profitable to use masked 1073 // loads/gathers. 1074 if (std::abs(*Dist) > NumLanes / 2) 1075 return VLOperands::ScoreAltOpcodes; 1076 // This still will detect consecutive loads, but we might have "holes" 1077 // in some cases. It is ok for non-power-2 vectorization and may produce 1078 // better results. It should not affect current vectorization. 1079 return (*Dist > 0) ? VLOperands::ScoreConsecutiveLoads 1080 : VLOperands::ScoreReversedLoads; 1081 } 1082 1083 auto *C1 = dyn_cast<Constant>(V1); 1084 auto *C2 = dyn_cast<Constant>(V2); 1085 if (C1 && C2) 1086 return VLOperands::ScoreConstants; 1087 1088 // Extracts from consecutive indexes of the same vector better score as 1089 // the extracts could be optimized away. 1090 Value *EV1; 1091 ConstantInt *Ex1Idx; 1092 if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) { 1093 // Undefs are always profitable for extractelements. 1094 if (isa<UndefValue>(V2)) 1095 return VLOperands::ScoreConsecutiveExtracts; 1096 Value *EV2 = nullptr; 1097 ConstantInt *Ex2Idx = nullptr; 1098 if (match(V2, 1099 m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx), 1100 m_Undef())))) { 1101 // Undefs are always profitable for extractelements. 1102 if (!Ex2Idx) 1103 return VLOperands::ScoreConsecutiveExtracts; 1104 if (isUndefVector(EV2) && EV2->getType() == EV1->getType()) 1105 return VLOperands::ScoreConsecutiveExtracts; 1106 if (EV2 == EV1) { 1107 int Idx1 = Ex1Idx->getZExtValue(); 1108 int Idx2 = Ex2Idx->getZExtValue(); 1109 int Dist = Idx2 - Idx1; 1110 // The distance is too large - still may be profitable to use 1111 // shuffles. 1112 if (std::abs(Dist) > NumLanes / 2) 1113 return VLOperands::ScoreAltOpcodes; 1114 return (Dist > 0) ? VLOperands::ScoreConsecutiveExtracts 1115 : VLOperands::ScoreReversedExtracts; 1116 } 1117 } 1118 } 1119 1120 auto *I1 = dyn_cast<Instruction>(V1); 1121 auto *I2 = dyn_cast<Instruction>(V2); 1122 if (I1 && I2) { 1123 if (I1->getParent() != I2->getParent()) 1124 return VLOperands::ScoreFail; 1125 InstructionsState S = getSameOpcode({I1, I2}); 1126 // Note: Only consider instructions with <= 2 operands to avoid 1127 // complexity explosion. 1128 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) 1129 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 1130 : VLOperands::ScoreSameOpcode; 1131 } 1132 1133 if (isa<UndefValue>(V2)) 1134 return VLOperands::ScoreUndef; 1135 1136 return VLOperands::ScoreFail; 1137 } 1138 1139 /// Holds the values and their lanes that are taking part in the look-ahead 1140 /// score calculation. This is used in the external uses cost calculation. 1141 /// Need to hold all the lanes in case of splat/broadcast at least to 1142 /// correctly check for the use in the different lane. 1143 SmallDenseMap<Value *, SmallSet<int, 4>> InLookAheadValues; 1144 1145 /// \returns the additional cost due to uses of \p LHS and \p RHS that are 1146 /// either external to the vectorized code, or require shuffling. 1147 int getExternalUsesCost(const std::pair<Value *, int> &LHS, 1148 const std::pair<Value *, int> &RHS) { 1149 int Cost = 0; 1150 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}}; 1151 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { 1152 Value *V = Values[Idx].first; 1153 if (isa<Constant>(V)) { 1154 // Since this is a function pass, it doesn't make semantic sense to 1155 // walk the users of a subclass of Constant. The users could be in 1156 // another function, or even another module that happens to be in 1157 // the same LLVMContext. 1158 continue; 1159 } 1160 1161 // Calculate the absolute lane, using the minimum relative lane of LHS 1162 // and RHS as base and Idx as the offset. 1163 int Ln = std::min(LHS.second, RHS.second) + Idx; 1164 assert(Ln >= 0 && "Bad lane calculation"); 1165 unsigned UsersBudget = LookAheadUsersBudget; 1166 for (User *U : V->users()) { 1167 if (const TreeEntry *UserTE = R.getTreeEntry(U)) { 1168 // The user is in the VectorizableTree. Check if we need to insert. 1169 int UserLn = UserTE->findLaneForValue(U); 1170 assert(UserLn >= 0 && "Bad lane"); 1171 // If the values are different, check just the line of the current 1172 // value. If the values are the same, need to add UserInDiffLaneCost 1173 // only if UserLn does not match both line numbers. 1174 if ((LHS.first != RHS.first && UserLn != Ln) || 1175 (LHS.first == RHS.first && UserLn != LHS.second && 1176 UserLn != RHS.second)) { 1177 Cost += UserInDiffLaneCost; 1178 break; 1179 } 1180 } else { 1181 // Check if the user is in the look-ahead code. 1182 auto It2 = InLookAheadValues.find(U); 1183 if (It2 != InLookAheadValues.end()) { 1184 // The user is in the look-ahead code. Check the lane. 1185 if (!It2->getSecond().contains(Ln)) { 1186 Cost += UserInDiffLaneCost; 1187 break; 1188 } 1189 } else { 1190 // The user is neither in SLP tree nor in the look-ahead code. 1191 Cost += ExternalUseCost; 1192 break; 1193 } 1194 } 1195 // Limit the number of visited uses to cap compilation time. 1196 if (--UsersBudget == 0) 1197 break; 1198 } 1199 } 1200 return Cost; 1201 } 1202 1203 /// Go through the operands of \p LHS and \p RHS recursively until \p 1204 /// MaxLevel, and return the cummulative score. For example: 1205 /// \verbatim 1206 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1207 /// \ / \ / \ / \ / 1208 /// + + + + 1209 /// G1 G2 G3 G4 1210 /// \endverbatim 1211 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1212 /// each level recursively, accumulating the score. It starts from matching 1213 /// the additions at level 0, then moves on to the loads (level 1). The 1214 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1215 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1216 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1217 /// Please note that the order of the operands does not matter, as we 1218 /// evaluate the score of all profitable combinations of operands. In 1219 /// other words the score of G1 and G4 is the same as G1 and G2. This 1220 /// heuristic is based on ideas described in: 1221 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1222 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1223 /// Luís F. W. Góes 1224 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS, 1225 const std::pair<Value *, int> &RHS, int CurrLevel, 1226 int MaxLevel) { 1227 1228 Value *V1 = LHS.first; 1229 Value *V2 = RHS.first; 1230 // Get the shallow score of V1 and V2. 1231 int ShallowScoreAtThisLevel = std::max( 1232 (int)ScoreFail, getShallowScore(V1, V2, DL, SE, getNumLanes()) - 1233 getExternalUsesCost(LHS, RHS)); 1234 int Lane1 = LHS.second; 1235 int Lane2 = RHS.second; 1236 1237 // If reached MaxLevel, 1238 // or if V1 and V2 are not instructions, 1239 // or if they are SPLAT, 1240 // or if they are not consecutive, 1241 // or if profitable to vectorize loads or extractelements, early return 1242 // the current cost. 1243 auto *I1 = dyn_cast<Instruction>(V1); 1244 auto *I2 = dyn_cast<Instruction>(V2); 1245 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1246 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1247 (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) || 1248 (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) && 1249 ShallowScoreAtThisLevel)) 1250 return ShallowScoreAtThisLevel; 1251 assert(I1 && I2 && "Should have early exited."); 1252 1253 // Keep track of in-tree values for determining the external-use cost. 1254 InLookAheadValues[V1].insert(Lane1); 1255 InLookAheadValues[V2].insert(Lane2); 1256 1257 // Contains the I2 operand indexes that got matched with I1 operands. 1258 SmallSet<unsigned, 4> Op2Used; 1259 1260 // Recursion towards the operands of I1 and I2. We are trying all possible 1261 // operand pairs, and keeping track of the best score. 1262 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1263 OpIdx1 != NumOperands1; ++OpIdx1) { 1264 // Try to pair op1I with the best operand of I2. 1265 int MaxTmpScore = 0; 1266 unsigned MaxOpIdx2 = 0; 1267 bool FoundBest = false; 1268 // If I2 is commutative try all combinations. 1269 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1270 unsigned ToIdx = isCommutative(I2) 1271 ? I2->getNumOperands() 1272 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1273 assert(FromIdx <= ToIdx && "Bad index"); 1274 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1275 // Skip operands already paired with OpIdx1. 1276 if (Op2Used.count(OpIdx2)) 1277 continue; 1278 // Recursively calculate the cost at each level 1279 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, 1280 {I2->getOperand(OpIdx2), Lane2}, 1281 CurrLevel + 1, MaxLevel); 1282 // Look for the best score. 1283 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1284 MaxTmpScore = TmpScore; 1285 MaxOpIdx2 = OpIdx2; 1286 FoundBest = true; 1287 } 1288 } 1289 if (FoundBest) { 1290 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1291 Op2Used.insert(MaxOpIdx2); 1292 ShallowScoreAtThisLevel += MaxTmpScore; 1293 } 1294 } 1295 return ShallowScoreAtThisLevel; 1296 } 1297 1298 /// \Returns the look-ahead score, which tells us how much the sub-trees 1299 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1300 /// score. This helps break ties in an informed way when we cannot decide on 1301 /// the order of the operands by just considering the immediate 1302 /// predecessors. 1303 int getLookAheadScore(const std::pair<Value *, int> &LHS, 1304 const std::pair<Value *, int> &RHS) { 1305 InLookAheadValues.clear(); 1306 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); 1307 } 1308 1309 // Search all operands in Ops[*][Lane] for the one that matches best 1310 // Ops[OpIdx][LastLane] and return its opreand index. 1311 // If no good match can be found, return None. 1312 Optional<unsigned> 1313 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1314 ArrayRef<ReorderingMode> ReorderingModes) { 1315 unsigned NumOperands = getNumOperands(); 1316 1317 // The operand of the previous lane at OpIdx. 1318 Value *OpLastLane = getData(OpIdx, LastLane).V; 1319 1320 // Our strategy mode for OpIdx. 1321 ReorderingMode RMode = ReorderingModes[OpIdx]; 1322 1323 // The linearized opcode of the operand at OpIdx, Lane. 1324 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1325 1326 // The best operand index and its score. 1327 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1328 // are using the score to differentiate between the two. 1329 struct BestOpData { 1330 Optional<unsigned> Idx = None; 1331 unsigned Score = 0; 1332 } BestOp; 1333 1334 // Iterate through all unused operands and look for the best. 1335 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1336 // Get the operand at Idx and Lane. 1337 OperandData &OpData = getData(Idx, Lane); 1338 Value *Op = OpData.V; 1339 bool OpAPO = OpData.APO; 1340 1341 // Skip already selected operands. 1342 if (OpData.IsUsed) 1343 continue; 1344 1345 // Skip if we are trying to move the operand to a position with a 1346 // different opcode in the linearized tree form. This would break the 1347 // semantics. 1348 if (OpAPO != OpIdxAPO) 1349 continue; 1350 1351 // Look for an operand that matches the current mode. 1352 switch (RMode) { 1353 case ReorderingMode::Load: 1354 case ReorderingMode::Constant: 1355 case ReorderingMode::Opcode: { 1356 bool LeftToRight = Lane > LastLane; 1357 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1358 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1359 unsigned Score = 1360 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); 1361 if (Score > BestOp.Score) { 1362 BestOp.Idx = Idx; 1363 BestOp.Score = Score; 1364 } 1365 break; 1366 } 1367 case ReorderingMode::Splat: 1368 if (Op == OpLastLane) 1369 BestOp.Idx = Idx; 1370 break; 1371 case ReorderingMode::Failed: 1372 return None; 1373 } 1374 } 1375 1376 if (BestOp.Idx) { 1377 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 1378 return BestOp.Idx; 1379 } 1380 // If we could not find a good match return None. 1381 return None; 1382 } 1383 1384 /// Helper for reorderOperandVecs. 1385 /// \returns the lane that we should start reordering from. This is the one 1386 /// which has the least number of operands that can freely move about or 1387 /// less profitable because it already has the most optimal set of operands. 1388 unsigned getBestLaneToStartReordering() const { 1389 unsigned Min = UINT_MAX; 1390 unsigned SameOpNumber = 0; 1391 // std::pair<unsigned, unsigned> is used to implement a simple voting 1392 // algorithm and choose the lane with the least number of operands that 1393 // can freely move about or less profitable because it already has the 1394 // most optimal set of operands. The first unsigned is a counter for 1395 // voting, the second unsigned is the counter of lanes with instructions 1396 // with same/alternate opcodes and same parent basic block. 1397 MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap; 1398 // Try to be closer to the original results, if we have multiple lanes 1399 // with same cost. If 2 lanes have the same cost, use the one with the 1400 // lowest index. 1401 for (int I = getNumLanes(); I > 0; --I) { 1402 unsigned Lane = I - 1; 1403 OperandsOrderData NumFreeOpsHash = 1404 getMaxNumOperandsThatCanBeReordered(Lane); 1405 // Compare the number of operands that can move and choose the one with 1406 // the least number. 1407 if (NumFreeOpsHash.NumOfAPOs < Min) { 1408 Min = NumFreeOpsHash.NumOfAPOs; 1409 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1410 HashMap.clear(); 1411 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1412 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1413 NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) { 1414 // Select the most optimal lane in terms of number of operands that 1415 // should be moved around. 1416 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1417 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1418 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1419 NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) { 1420 ++HashMap[NumFreeOpsHash.Hash].first; 1421 } 1422 } 1423 // Select the lane with the minimum counter. 1424 unsigned BestLane = 0; 1425 unsigned CntMin = UINT_MAX; 1426 for (const auto &Data : reverse(HashMap)) { 1427 if (Data.second.first < CntMin) { 1428 CntMin = Data.second.first; 1429 BestLane = Data.second.second; 1430 } 1431 } 1432 return BestLane; 1433 } 1434 1435 /// Data structure that helps to reorder operands. 1436 struct OperandsOrderData { 1437 /// The best number of operands with the same APOs, which can be 1438 /// reordered. 1439 unsigned NumOfAPOs = UINT_MAX; 1440 /// Number of operands with the same/alternate instruction opcode and 1441 /// parent. 1442 unsigned NumOpsWithSameOpcodeParent = 0; 1443 /// Hash for the actual operands ordering. 1444 /// Used to count operands, actually their position id and opcode 1445 /// value. It is used in the voting mechanism to find the lane with the 1446 /// least number of operands that can freely move about or less profitable 1447 /// because it already has the most optimal set of operands. Can be 1448 /// replaced with SmallVector<unsigned> instead but hash code is faster 1449 /// and requires less memory. 1450 unsigned Hash = 0; 1451 }; 1452 /// \returns the maximum number of operands that are allowed to be reordered 1453 /// for \p Lane and the number of compatible instructions(with the same 1454 /// parent/opcode). This is used as a heuristic for selecting the first lane 1455 /// to start operand reordering. 1456 OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1457 unsigned CntTrue = 0; 1458 unsigned NumOperands = getNumOperands(); 1459 // Operands with the same APO can be reordered. We therefore need to count 1460 // how many of them we have for each APO, like this: Cnt[APO] = x. 1461 // Since we only have two APOs, namely true and false, we can avoid using 1462 // a map. Instead we can simply count the number of operands that 1463 // correspond to one of them (in this case the 'true' APO), and calculate 1464 // the other by subtracting it from the total number of operands. 1465 // Operands with the same instruction opcode and parent are more 1466 // profitable since we don't need to move them in many cases, with a high 1467 // probability such lane already can be vectorized effectively. 1468 bool AllUndefs = true; 1469 unsigned NumOpsWithSameOpcodeParent = 0; 1470 Instruction *OpcodeI = nullptr; 1471 BasicBlock *Parent = nullptr; 1472 unsigned Hash = 0; 1473 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1474 const OperandData &OpData = getData(OpIdx, Lane); 1475 if (OpData.APO) 1476 ++CntTrue; 1477 // Use Boyer-Moore majority voting for finding the majority opcode and 1478 // the number of times it occurs. 1479 if (auto *I = dyn_cast<Instruction>(OpData.V)) { 1480 if (!OpcodeI || !getSameOpcode({OpcodeI, I}).getOpcode() || 1481 I->getParent() != Parent) { 1482 if (NumOpsWithSameOpcodeParent == 0) { 1483 NumOpsWithSameOpcodeParent = 1; 1484 OpcodeI = I; 1485 Parent = I->getParent(); 1486 } else { 1487 --NumOpsWithSameOpcodeParent; 1488 } 1489 } else { 1490 ++NumOpsWithSameOpcodeParent; 1491 } 1492 } 1493 Hash = hash_combine( 1494 Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1))); 1495 AllUndefs = AllUndefs && isa<UndefValue>(OpData.V); 1496 } 1497 if (AllUndefs) 1498 return {}; 1499 OperandsOrderData Data; 1500 Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue); 1501 Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent; 1502 Data.Hash = Hash; 1503 return Data; 1504 } 1505 1506 /// Go through the instructions in VL and append their operands. 1507 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1508 assert(!VL.empty() && "Bad VL"); 1509 assert((empty() || VL.size() == getNumLanes()) && 1510 "Expected same number of lanes"); 1511 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1512 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1513 OpsVec.resize(NumOperands); 1514 unsigned NumLanes = VL.size(); 1515 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1516 OpsVec[OpIdx].resize(NumLanes); 1517 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1518 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1519 // Our tree has just 3 nodes: the root and two operands. 1520 // It is therefore trivial to get the APO. We only need to check the 1521 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1522 // RHS operand. The LHS operand of both add and sub is never attached 1523 // to an inversese operation in the linearized form, therefore its APO 1524 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1525 1526 // Since operand reordering is performed on groups of commutative 1527 // operations or alternating sequences (e.g., +, -), we can safely 1528 // tell the inverse operations by checking commutativity. 1529 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1530 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1531 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1532 APO, false}; 1533 } 1534 } 1535 } 1536 1537 /// \returns the number of operands. 1538 unsigned getNumOperands() const { return OpsVec.size(); } 1539 1540 /// \returns the number of lanes. 1541 unsigned getNumLanes() const { return OpsVec[0].size(); } 1542 1543 /// \returns the operand value at \p OpIdx and \p Lane. 1544 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1545 return getData(OpIdx, Lane).V; 1546 } 1547 1548 /// \returns true if the data structure is empty. 1549 bool empty() const { return OpsVec.empty(); } 1550 1551 /// Clears the data. 1552 void clear() { OpsVec.clear(); } 1553 1554 /// \Returns true if there are enough operands identical to \p Op to fill 1555 /// the whole vector. 1556 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1557 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1558 bool OpAPO = getData(OpIdx, Lane).APO; 1559 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1560 if (Ln == Lane) 1561 continue; 1562 // This is set to true if we found a candidate for broadcast at Lane. 1563 bool FoundCandidate = false; 1564 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1565 OperandData &Data = getData(OpI, Ln); 1566 if (Data.APO != OpAPO || Data.IsUsed) 1567 continue; 1568 if (Data.V == Op) { 1569 FoundCandidate = true; 1570 Data.IsUsed = true; 1571 break; 1572 } 1573 } 1574 if (!FoundCandidate) 1575 return false; 1576 } 1577 return true; 1578 } 1579 1580 public: 1581 /// Initialize with all the operands of the instruction vector \p RootVL. 1582 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1583 ScalarEvolution &SE, const BoUpSLP &R) 1584 : DL(DL), SE(SE), R(R) { 1585 // Append all the operands of RootVL. 1586 appendOperandsOfVL(RootVL); 1587 } 1588 1589 /// \Returns a value vector with the operands across all lanes for the 1590 /// opearnd at \p OpIdx. 1591 ValueList getVL(unsigned OpIdx) const { 1592 ValueList OpVL(OpsVec[OpIdx].size()); 1593 assert(OpsVec[OpIdx].size() == getNumLanes() && 1594 "Expected same num of lanes across all operands"); 1595 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1596 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1597 return OpVL; 1598 } 1599 1600 // Performs operand reordering for 2 or more operands. 1601 // The original operands are in OrigOps[OpIdx][Lane]. 1602 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1603 void reorder() { 1604 unsigned NumOperands = getNumOperands(); 1605 unsigned NumLanes = getNumLanes(); 1606 // Each operand has its own mode. We are using this mode to help us select 1607 // the instructions for each lane, so that they match best with the ones 1608 // we have selected so far. 1609 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1610 1611 // This is a greedy single-pass algorithm. We are going over each lane 1612 // once and deciding on the best order right away with no back-tracking. 1613 // However, in order to increase its effectiveness, we start with the lane 1614 // that has operands that can move the least. For example, given the 1615 // following lanes: 1616 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1617 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1618 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1619 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1620 // we will start at Lane 1, since the operands of the subtraction cannot 1621 // be reordered. Then we will visit the rest of the lanes in a circular 1622 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1623 1624 // Find the first lane that we will start our search from. 1625 unsigned FirstLane = getBestLaneToStartReordering(); 1626 1627 // Initialize the modes. 1628 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1629 Value *OpLane0 = getValue(OpIdx, FirstLane); 1630 // Keep track if we have instructions with all the same opcode on one 1631 // side. 1632 if (isa<LoadInst>(OpLane0)) 1633 ReorderingModes[OpIdx] = ReorderingMode::Load; 1634 else if (isa<Instruction>(OpLane0)) { 1635 // Check if OpLane0 should be broadcast. 1636 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1637 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1638 else 1639 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1640 } 1641 else if (isa<Constant>(OpLane0)) 1642 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1643 else if (isa<Argument>(OpLane0)) 1644 // Our best hope is a Splat. It may save some cost in some cases. 1645 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1646 else 1647 // NOTE: This should be unreachable. 1648 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1649 } 1650 1651 // Check that we don't have same operands. No need to reorder if operands 1652 // are just perfect diamond or shuffled diamond match. Do not do it only 1653 // for possible broadcasts or non-power of 2 number of scalars (just for 1654 // now). 1655 auto &&SkipReordering = [this]() { 1656 SmallPtrSet<Value *, 4> UniqueValues; 1657 ArrayRef<OperandData> Op0 = OpsVec.front(); 1658 for (const OperandData &Data : Op0) 1659 UniqueValues.insert(Data.V); 1660 for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) { 1661 if (any_of(Op, [&UniqueValues](const OperandData &Data) { 1662 return !UniqueValues.contains(Data.V); 1663 })) 1664 return false; 1665 } 1666 // TODO: Check if we can remove a check for non-power-2 number of 1667 // scalars after full support of non-power-2 vectorization. 1668 return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size()); 1669 }; 1670 1671 // If the initial strategy fails for any of the operand indexes, then we 1672 // perform reordering again in a second pass. This helps avoid assigning 1673 // high priority to the failed strategy, and should improve reordering for 1674 // the non-failed operand indexes. 1675 for (int Pass = 0; Pass != 2; ++Pass) { 1676 // Check if no need to reorder operands since they're are perfect or 1677 // shuffled diamond match. 1678 // Need to to do it to avoid extra external use cost counting for 1679 // shuffled matches, which may cause regressions. 1680 if (SkipReordering()) 1681 break; 1682 // Skip the second pass if the first pass did not fail. 1683 bool StrategyFailed = false; 1684 // Mark all operand data as free to use. 1685 clearUsed(); 1686 // We keep the original operand order for the FirstLane, so reorder the 1687 // rest of the lanes. We are visiting the nodes in a circular fashion, 1688 // using FirstLane as the center point and increasing the radius 1689 // distance. 1690 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1691 // Visit the lane on the right and then the lane on the left. 1692 for (int Direction : {+1, -1}) { 1693 int Lane = FirstLane + Direction * Distance; 1694 if (Lane < 0 || Lane >= (int)NumLanes) 1695 continue; 1696 int LastLane = Lane - Direction; 1697 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1698 "Out of bounds"); 1699 // Look for a good match for each operand. 1700 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1701 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1702 Optional<unsigned> BestIdx = 1703 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1704 // By not selecting a value, we allow the operands that follow to 1705 // select a better matching value. We will get a non-null value in 1706 // the next run of getBestOperand(). 1707 if (BestIdx) { 1708 // Swap the current operand with the one returned by 1709 // getBestOperand(). 1710 swap(OpIdx, BestIdx.getValue(), Lane); 1711 } else { 1712 // We failed to find a best operand, set mode to 'Failed'. 1713 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1714 // Enable the second pass. 1715 StrategyFailed = true; 1716 } 1717 } 1718 } 1719 } 1720 // Skip second pass if the strategy did not fail. 1721 if (!StrategyFailed) 1722 break; 1723 } 1724 } 1725 1726 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1727 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1728 switch (RMode) { 1729 case ReorderingMode::Load: 1730 return "Load"; 1731 case ReorderingMode::Opcode: 1732 return "Opcode"; 1733 case ReorderingMode::Constant: 1734 return "Constant"; 1735 case ReorderingMode::Splat: 1736 return "Splat"; 1737 case ReorderingMode::Failed: 1738 return "Failed"; 1739 } 1740 llvm_unreachable("Unimplemented Reordering Type"); 1741 } 1742 1743 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1744 raw_ostream &OS) { 1745 return OS << getModeStr(RMode); 1746 } 1747 1748 /// Debug print. 1749 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1750 printMode(RMode, dbgs()); 1751 } 1752 1753 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1754 return printMode(RMode, OS); 1755 } 1756 1757 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1758 const unsigned Indent = 2; 1759 unsigned Cnt = 0; 1760 for (const OperandDataVec &OpDataVec : OpsVec) { 1761 OS << "Operand " << Cnt++ << "\n"; 1762 for (const OperandData &OpData : OpDataVec) { 1763 OS.indent(Indent) << "{"; 1764 if (Value *V = OpData.V) 1765 OS << *V; 1766 else 1767 OS << "null"; 1768 OS << ", APO:" << OpData.APO << "}\n"; 1769 } 1770 OS << "\n"; 1771 } 1772 return OS; 1773 } 1774 1775 /// Debug print. 1776 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1777 #endif 1778 }; 1779 1780 /// Checks if the instruction is marked for deletion. 1781 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1782 1783 /// Marks values operands for later deletion by replacing them with Undefs. 1784 void eraseInstructions(ArrayRef<Value *> AV); 1785 1786 ~BoUpSLP(); 1787 1788 private: 1789 /// Checks if all users of \p I are the part of the vectorization tree. 1790 bool areAllUsersVectorized(Instruction *I, 1791 ArrayRef<Value *> VectorizedVals) const; 1792 1793 /// \returns the cost of the vectorizable entry. 1794 InstructionCost getEntryCost(const TreeEntry *E, 1795 ArrayRef<Value *> VectorizedVals); 1796 1797 /// This is the recursive part of buildTree. 1798 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1799 const EdgeInfo &EI); 1800 1801 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1802 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1803 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1804 /// returns false, setting \p CurrentOrder to either an empty vector or a 1805 /// non-identity permutation that allows to reuse extract instructions. 1806 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1807 SmallVectorImpl<unsigned> &CurrentOrder) const; 1808 1809 /// Vectorize a single entry in the tree. 1810 Value *vectorizeTree(TreeEntry *E); 1811 1812 /// Vectorize a single entry in the tree, starting in \p VL. 1813 Value *vectorizeTree(ArrayRef<Value *> VL); 1814 1815 /// \returns the scalarization cost for this type. Scalarization in this 1816 /// context means the creation of vectors from a group of scalars. If \p 1817 /// NeedToShuffle is true, need to add a cost of reshuffling some of the 1818 /// vector elements. 1819 InstructionCost getGatherCost(FixedVectorType *Ty, 1820 const DenseSet<unsigned> &ShuffledIndices, 1821 bool NeedToShuffle) const; 1822 1823 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 1824 /// tree entries. 1825 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 1826 /// previous tree entries. \p Mask is filled with the shuffle mask. 1827 Optional<TargetTransformInfo::ShuffleKind> 1828 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 1829 SmallVectorImpl<const TreeEntry *> &Entries); 1830 1831 /// \returns the scalarization cost for this list of values. Assuming that 1832 /// this subtree gets vectorized, we may need to extract the values from the 1833 /// roots. This method calculates the cost of extracting the values. 1834 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 1835 1836 /// Set the Builder insert point to one after the last instruction in 1837 /// the bundle 1838 void setInsertPointAfterBundle(const TreeEntry *E); 1839 1840 /// \returns a vector from a collection of scalars in \p VL. 1841 Value *gather(ArrayRef<Value *> VL); 1842 1843 /// \returns whether the VectorizableTree is fully vectorizable and will 1844 /// be beneficial even the tree height is tiny. 1845 bool isFullyVectorizableTinyTree(bool ForReduction) const; 1846 1847 /// Reorder commutative or alt operands to get better probability of 1848 /// generating vectorized code. 1849 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1850 SmallVectorImpl<Value *> &Left, 1851 SmallVectorImpl<Value *> &Right, 1852 const DataLayout &DL, 1853 ScalarEvolution &SE, 1854 const BoUpSLP &R); 1855 struct TreeEntry { 1856 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1857 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1858 1859 /// \returns true if the scalars in VL are equal to this entry. 1860 bool isSame(ArrayRef<Value *> VL) const { 1861 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 1862 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 1863 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1864 return VL.size() == Mask.size() && 1865 std::equal(VL.begin(), VL.end(), Mask.begin(), 1866 [Scalars](Value *V, int Idx) { 1867 return (isa<UndefValue>(V) && 1868 Idx == UndefMaskElem) || 1869 (Idx != UndefMaskElem && V == Scalars[Idx]); 1870 }); 1871 }; 1872 if (!ReorderIndices.empty()) { 1873 // TODO: implement matching if the nodes are just reordered, still can 1874 // treat the vector as the same if the list of scalars matches VL 1875 // directly, without reordering. 1876 SmallVector<int> Mask; 1877 inversePermutation(ReorderIndices, Mask); 1878 if (VL.size() == Scalars.size()) 1879 return IsSame(Scalars, Mask); 1880 if (VL.size() == ReuseShuffleIndices.size()) { 1881 ::addMask(Mask, ReuseShuffleIndices); 1882 return IsSame(Scalars, Mask); 1883 } 1884 return false; 1885 } 1886 return IsSame(Scalars, ReuseShuffleIndices); 1887 } 1888 1889 /// \returns true if current entry has same operands as \p TE. 1890 bool hasEqualOperands(const TreeEntry &TE) const { 1891 if (TE.getNumOperands() != getNumOperands()) 1892 return false; 1893 SmallBitVector Used(getNumOperands()); 1894 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 1895 unsigned PrevCount = Used.count(); 1896 for (unsigned K = 0; K < E; ++K) { 1897 if (Used.test(K)) 1898 continue; 1899 if (getOperand(K) == TE.getOperand(I)) { 1900 Used.set(K); 1901 break; 1902 } 1903 } 1904 // Check if we actually found the matching operand. 1905 if (PrevCount == Used.count()) 1906 return false; 1907 } 1908 return true; 1909 } 1910 1911 /// \return Final vectorization factor for the node. Defined by the total 1912 /// number of vectorized scalars, including those, used several times in the 1913 /// entry and counted in the \a ReuseShuffleIndices, if any. 1914 unsigned getVectorFactor() const { 1915 if (!ReuseShuffleIndices.empty()) 1916 return ReuseShuffleIndices.size(); 1917 return Scalars.size(); 1918 }; 1919 1920 /// A vector of scalars. 1921 ValueList Scalars; 1922 1923 /// The Scalars are vectorized into this value. It is initialized to Null. 1924 Value *VectorizedValue = nullptr; 1925 1926 /// Do we need to gather this sequence or vectorize it 1927 /// (either with vector instruction or with scatter/gather 1928 /// intrinsics for store/load)? 1929 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 1930 EntryState State; 1931 1932 /// Does this sequence require some shuffling? 1933 SmallVector<int, 4> ReuseShuffleIndices; 1934 1935 /// Does this entry require reordering? 1936 SmallVector<unsigned, 4> ReorderIndices; 1937 1938 /// Points back to the VectorizableTree. 1939 /// 1940 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1941 /// to be a pointer and needs to be able to initialize the child iterator. 1942 /// Thus we need a reference back to the container to translate the indices 1943 /// to entries. 1944 VecTreeTy &Container; 1945 1946 /// The TreeEntry index containing the user of this entry. We can actually 1947 /// have multiple users so the data structure is not truly a tree. 1948 SmallVector<EdgeInfo, 1> UserTreeIndices; 1949 1950 /// The index of this treeEntry in VectorizableTree. 1951 int Idx = -1; 1952 1953 private: 1954 /// The operands of each instruction in each lane Operands[op_index][lane]. 1955 /// Note: This helps avoid the replication of the code that performs the 1956 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1957 SmallVector<ValueList, 2> Operands; 1958 1959 /// The main/alternate instruction. 1960 Instruction *MainOp = nullptr; 1961 Instruction *AltOp = nullptr; 1962 1963 public: 1964 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1965 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1966 if (Operands.size() < OpIdx + 1) 1967 Operands.resize(OpIdx + 1); 1968 assert(Operands[OpIdx].empty() && "Already resized?"); 1969 Operands[OpIdx].resize(Scalars.size()); 1970 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1971 Operands[OpIdx][Lane] = OpVL[Lane]; 1972 } 1973 1974 /// Set the operands of this bundle in their original order. 1975 void setOperandsInOrder() { 1976 assert(Operands.empty() && "Already initialized?"); 1977 auto *I0 = cast<Instruction>(Scalars[0]); 1978 Operands.resize(I0->getNumOperands()); 1979 unsigned NumLanes = Scalars.size(); 1980 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1981 OpIdx != NumOperands; ++OpIdx) { 1982 Operands[OpIdx].resize(NumLanes); 1983 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1984 auto *I = cast<Instruction>(Scalars[Lane]); 1985 assert(I->getNumOperands() == NumOperands && 1986 "Expected same number of operands"); 1987 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1988 } 1989 } 1990 } 1991 1992 /// Reorders operands of the node to the given mask \p Mask. 1993 void reorderOperands(ArrayRef<int> Mask) { 1994 for (ValueList &Operand : Operands) 1995 reorderScalars(Operand, Mask); 1996 } 1997 1998 /// \returns the \p OpIdx operand of this TreeEntry. 1999 ValueList &getOperand(unsigned OpIdx) { 2000 assert(OpIdx < Operands.size() && "Off bounds"); 2001 return Operands[OpIdx]; 2002 } 2003 2004 /// \returns the \p OpIdx operand of this TreeEntry. 2005 ArrayRef<Value *> getOperand(unsigned OpIdx) const { 2006 assert(OpIdx < Operands.size() && "Off bounds"); 2007 return Operands[OpIdx]; 2008 } 2009 2010 /// \returns the number of operands. 2011 unsigned getNumOperands() const { return Operands.size(); } 2012 2013 /// \return the single \p OpIdx operand. 2014 Value *getSingleOperand(unsigned OpIdx) const { 2015 assert(OpIdx < Operands.size() && "Off bounds"); 2016 assert(!Operands[OpIdx].empty() && "No operand available"); 2017 return Operands[OpIdx][0]; 2018 } 2019 2020 /// Some of the instructions in the list have alternate opcodes. 2021 bool isAltShuffle() const { 2022 return getOpcode() != getAltOpcode(); 2023 } 2024 2025 bool isOpcodeOrAlt(Instruction *I) const { 2026 unsigned CheckedOpcode = I->getOpcode(); 2027 return (getOpcode() == CheckedOpcode || 2028 getAltOpcode() == CheckedOpcode); 2029 } 2030 2031 /// Chooses the correct key for scheduling data. If \p Op has the same (or 2032 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 2033 /// \p OpValue. 2034 Value *isOneOf(Value *Op) const { 2035 auto *I = dyn_cast<Instruction>(Op); 2036 if (I && isOpcodeOrAlt(I)) 2037 return Op; 2038 return MainOp; 2039 } 2040 2041 void setOperations(const InstructionsState &S) { 2042 MainOp = S.MainOp; 2043 AltOp = S.AltOp; 2044 } 2045 2046 Instruction *getMainOp() const { 2047 return MainOp; 2048 } 2049 2050 Instruction *getAltOp() const { 2051 return AltOp; 2052 } 2053 2054 /// The main/alternate opcodes for the list of instructions. 2055 unsigned getOpcode() const { 2056 return MainOp ? MainOp->getOpcode() : 0; 2057 } 2058 2059 unsigned getAltOpcode() const { 2060 return AltOp ? AltOp->getOpcode() : 0; 2061 } 2062 2063 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 2064 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 2065 int findLaneForValue(Value *V) const { 2066 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 2067 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2068 if (!ReorderIndices.empty()) 2069 FoundLane = ReorderIndices[FoundLane]; 2070 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2071 if (!ReuseShuffleIndices.empty()) { 2072 FoundLane = std::distance(ReuseShuffleIndices.begin(), 2073 find(ReuseShuffleIndices, FoundLane)); 2074 } 2075 return FoundLane; 2076 } 2077 2078 #ifndef NDEBUG 2079 /// Debug printer. 2080 LLVM_DUMP_METHOD void dump() const { 2081 dbgs() << Idx << ".\n"; 2082 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 2083 dbgs() << "Operand " << OpI << ":\n"; 2084 for (const Value *V : Operands[OpI]) 2085 dbgs().indent(2) << *V << "\n"; 2086 } 2087 dbgs() << "Scalars: \n"; 2088 for (Value *V : Scalars) 2089 dbgs().indent(2) << *V << "\n"; 2090 dbgs() << "State: "; 2091 switch (State) { 2092 case Vectorize: 2093 dbgs() << "Vectorize\n"; 2094 break; 2095 case ScatterVectorize: 2096 dbgs() << "ScatterVectorize\n"; 2097 break; 2098 case NeedToGather: 2099 dbgs() << "NeedToGather\n"; 2100 break; 2101 } 2102 dbgs() << "MainOp: "; 2103 if (MainOp) 2104 dbgs() << *MainOp << "\n"; 2105 else 2106 dbgs() << "NULL\n"; 2107 dbgs() << "AltOp: "; 2108 if (AltOp) 2109 dbgs() << *AltOp << "\n"; 2110 else 2111 dbgs() << "NULL\n"; 2112 dbgs() << "VectorizedValue: "; 2113 if (VectorizedValue) 2114 dbgs() << *VectorizedValue << "\n"; 2115 else 2116 dbgs() << "NULL\n"; 2117 dbgs() << "ReuseShuffleIndices: "; 2118 if (ReuseShuffleIndices.empty()) 2119 dbgs() << "Empty"; 2120 else 2121 for (unsigned ReuseIdx : ReuseShuffleIndices) 2122 dbgs() << ReuseIdx << ", "; 2123 dbgs() << "\n"; 2124 dbgs() << "ReorderIndices: "; 2125 for (unsigned ReorderIdx : ReorderIndices) 2126 dbgs() << ReorderIdx << ", "; 2127 dbgs() << "\n"; 2128 dbgs() << "UserTreeIndices: "; 2129 for (const auto &EInfo : UserTreeIndices) 2130 dbgs() << EInfo << ", "; 2131 dbgs() << "\n"; 2132 } 2133 #endif 2134 }; 2135 2136 #ifndef NDEBUG 2137 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 2138 InstructionCost VecCost, 2139 InstructionCost ScalarCost) const { 2140 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 2141 dbgs() << "SLP: Costs:\n"; 2142 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 2143 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 2144 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 2145 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 2146 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 2147 } 2148 #endif 2149 2150 /// Create a new VectorizableTree entry. 2151 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 2152 const InstructionsState &S, 2153 const EdgeInfo &UserTreeIdx, 2154 ArrayRef<int> ReuseShuffleIndices = None, 2155 ArrayRef<unsigned> ReorderIndices = None) { 2156 TreeEntry::EntryState EntryState = 2157 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 2158 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 2159 ReuseShuffleIndices, ReorderIndices); 2160 } 2161 2162 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 2163 TreeEntry::EntryState EntryState, 2164 Optional<ScheduleData *> Bundle, 2165 const InstructionsState &S, 2166 const EdgeInfo &UserTreeIdx, 2167 ArrayRef<int> ReuseShuffleIndices = None, 2168 ArrayRef<unsigned> ReorderIndices = None) { 2169 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 2170 (Bundle && EntryState != TreeEntry::NeedToGather)) && 2171 "Need to vectorize gather entry?"); 2172 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 2173 TreeEntry *Last = VectorizableTree.back().get(); 2174 Last->Idx = VectorizableTree.size() - 1; 2175 Last->State = EntryState; 2176 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 2177 ReuseShuffleIndices.end()); 2178 if (ReorderIndices.empty()) { 2179 Last->Scalars.assign(VL.begin(), VL.end()); 2180 Last->setOperations(S); 2181 } else { 2182 // Reorder scalars and build final mask. 2183 Last->Scalars.assign(VL.size(), nullptr); 2184 transform(ReorderIndices, Last->Scalars.begin(), 2185 [VL](unsigned Idx) -> Value * { 2186 if (Idx >= VL.size()) 2187 return UndefValue::get(VL.front()->getType()); 2188 return VL[Idx]; 2189 }); 2190 InstructionsState S = getSameOpcode(Last->Scalars); 2191 Last->setOperations(S); 2192 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 2193 } 2194 if (Last->State != TreeEntry::NeedToGather) { 2195 for (Value *V : VL) { 2196 assert(!getTreeEntry(V) && "Scalar already in tree!"); 2197 ScalarToTreeEntry[V] = Last; 2198 } 2199 // Update the scheduler bundle to point to this TreeEntry. 2200 unsigned Lane = 0; 2201 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 2202 BundleMember = BundleMember->NextInBundle) { 2203 BundleMember->TE = Last; 2204 BundleMember->Lane = Lane; 2205 ++Lane; 2206 } 2207 assert((!Bundle.getValue() || Lane == VL.size()) && 2208 "Bundle and VL out of sync"); 2209 } else { 2210 MustGather.insert(VL.begin(), VL.end()); 2211 } 2212 2213 if (UserTreeIdx.UserTE) 2214 Last->UserTreeIndices.push_back(UserTreeIdx); 2215 2216 return Last; 2217 } 2218 2219 /// -- Vectorization State -- 2220 /// Holds all of the tree entries. 2221 TreeEntry::VecTreeTy VectorizableTree; 2222 2223 #ifndef NDEBUG 2224 /// Debug printer. 2225 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 2226 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 2227 VectorizableTree[Id]->dump(); 2228 dbgs() << "\n"; 2229 } 2230 } 2231 #endif 2232 2233 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 2234 2235 const TreeEntry *getTreeEntry(Value *V) const { 2236 return ScalarToTreeEntry.lookup(V); 2237 } 2238 2239 /// Maps a specific scalar to its tree entry. 2240 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 2241 2242 /// Maps a value to the proposed vectorizable size. 2243 SmallDenseMap<Value *, unsigned> InstrElementSize; 2244 2245 /// A list of scalars that we found that we need to keep as scalars. 2246 ValueSet MustGather; 2247 2248 /// This POD struct describes one external user in the vectorized tree. 2249 struct ExternalUser { 2250 ExternalUser(Value *S, llvm::User *U, int L) 2251 : Scalar(S), User(U), Lane(L) {} 2252 2253 // Which scalar in our function. 2254 Value *Scalar; 2255 2256 // Which user that uses the scalar. 2257 llvm::User *User; 2258 2259 // Which lane does the scalar belong to. 2260 int Lane; 2261 }; 2262 using UserList = SmallVector<ExternalUser, 16>; 2263 2264 /// Checks if two instructions may access the same memory. 2265 /// 2266 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2267 /// is invariant in the calling loop. 2268 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2269 Instruction *Inst2) { 2270 // First check if the result is already in the cache. 2271 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2272 Optional<bool> &result = AliasCache[key]; 2273 if (result.hasValue()) { 2274 return result.getValue(); 2275 } 2276 bool aliased = true; 2277 if (Loc1.Ptr && isSimple(Inst1)) 2278 aliased = isModOrRefSet(AA->getModRefInfo(Inst2, Loc1)); 2279 // Store the result in the cache. 2280 result = aliased; 2281 return aliased; 2282 } 2283 2284 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2285 2286 /// Cache for alias results. 2287 /// TODO: consider moving this to the AliasAnalysis itself. 2288 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2289 2290 /// Removes an instruction from its block and eventually deletes it. 2291 /// It's like Instruction::eraseFromParent() except that the actual deletion 2292 /// is delayed until BoUpSLP is destructed. 2293 /// This is required to ensure that there are no incorrect collisions in the 2294 /// AliasCache, which can happen if a new instruction is allocated at the 2295 /// same address as a previously deleted instruction. 2296 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 2297 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 2298 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 2299 } 2300 2301 /// Temporary store for deleted instructions. Instructions will be deleted 2302 /// eventually when the BoUpSLP is destructed. 2303 DenseMap<Instruction *, bool> DeletedInstructions; 2304 2305 /// A list of values that need to extracted out of the tree. 2306 /// This list holds pairs of (Internal Scalar : External User). External User 2307 /// can be nullptr, it means that this Internal Scalar will be used later, 2308 /// after vectorization. 2309 UserList ExternalUses; 2310 2311 /// Values used only by @llvm.assume calls. 2312 SmallPtrSet<const Value *, 32> EphValues; 2313 2314 /// Holds all of the instructions that we gathered. 2315 SetVector<Instruction *> GatherShuffleSeq; 2316 2317 /// A list of blocks that we are going to CSE. 2318 SetVector<BasicBlock *> CSEBlocks; 2319 2320 /// Contains all scheduling relevant data for an instruction. 2321 /// A ScheduleData either represents a single instruction or a member of an 2322 /// instruction bundle (= a group of instructions which is combined into a 2323 /// vector instruction). 2324 struct ScheduleData { 2325 // The initial value for the dependency counters. It means that the 2326 // dependencies are not calculated yet. 2327 enum { InvalidDeps = -1 }; 2328 2329 ScheduleData() = default; 2330 2331 void init(int BlockSchedulingRegionID, Value *OpVal) { 2332 FirstInBundle = this; 2333 NextInBundle = nullptr; 2334 NextLoadStore = nullptr; 2335 IsScheduled = false; 2336 SchedulingRegionID = BlockSchedulingRegionID; 2337 UnscheduledDepsInBundle = UnscheduledDeps; 2338 clearDependencies(); 2339 OpValue = OpVal; 2340 TE = nullptr; 2341 Lane = -1; 2342 } 2343 2344 /// Returns true if the dependency information has been calculated. 2345 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2346 2347 /// Returns true for single instructions and for bundle representatives 2348 /// (= the head of a bundle). 2349 bool isSchedulingEntity() const { return FirstInBundle == this; } 2350 2351 /// Returns true if it represents an instruction bundle and not only a 2352 /// single instruction. 2353 bool isPartOfBundle() const { 2354 return NextInBundle != nullptr || FirstInBundle != this; 2355 } 2356 2357 /// Returns true if it is ready for scheduling, i.e. it has no more 2358 /// unscheduled depending instructions/bundles. 2359 bool isReady() const { 2360 assert(isSchedulingEntity() && 2361 "can't consider non-scheduling entity for ready list"); 2362 return UnscheduledDepsInBundle == 0 && !IsScheduled; 2363 } 2364 2365 /// Modifies the number of unscheduled dependencies, also updating it for 2366 /// the whole bundle. 2367 int incrementUnscheduledDeps(int Incr) { 2368 UnscheduledDeps += Incr; 2369 return FirstInBundle->UnscheduledDepsInBundle += Incr; 2370 } 2371 2372 /// Sets the number of unscheduled dependencies to the number of 2373 /// dependencies. 2374 void resetUnscheduledDeps() { 2375 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 2376 } 2377 2378 /// Clears all dependency information. 2379 void clearDependencies() { 2380 Dependencies = InvalidDeps; 2381 resetUnscheduledDeps(); 2382 MemoryDependencies.clear(); 2383 } 2384 2385 void dump(raw_ostream &os) const { 2386 if (!isSchedulingEntity()) { 2387 os << "/ " << *Inst; 2388 } else if (NextInBundle) { 2389 os << '[' << *Inst; 2390 ScheduleData *SD = NextInBundle; 2391 while (SD) { 2392 os << ';' << *SD->Inst; 2393 SD = SD->NextInBundle; 2394 } 2395 os << ']'; 2396 } else { 2397 os << *Inst; 2398 } 2399 } 2400 2401 Instruction *Inst = nullptr; 2402 2403 /// Points to the head in an instruction bundle (and always to this for 2404 /// single instructions). 2405 ScheduleData *FirstInBundle = nullptr; 2406 2407 /// Single linked list of all instructions in a bundle. Null if it is a 2408 /// single instruction. 2409 ScheduleData *NextInBundle = nullptr; 2410 2411 /// Single linked list of all memory instructions (e.g. load, store, call) 2412 /// in the block - until the end of the scheduling region. 2413 ScheduleData *NextLoadStore = nullptr; 2414 2415 /// The dependent memory instructions. 2416 /// This list is derived on demand in calculateDependencies(). 2417 SmallVector<ScheduleData *, 4> MemoryDependencies; 2418 2419 /// This ScheduleData is in the current scheduling region if this matches 2420 /// the current SchedulingRegionID of BlockScheduling. 2421 int SchedulingRegionID = 0; 2422 2423 /// Used for getting a "good" final ordering of instructions. 2424 int SchedulingPriority = 0; 2425 2426 /// The number of dependencies. Constitutes of the number of users of the 2427 /// instruction plus the number of dependent memory instructions (if any). 2428 /// This value is calculated on demand. 2429 /// If InvalidDeps, the number of dependencies is not calculated yet. 2430 int Dependencies = InvalidDeps; 2431 2432 /// The number of dependencies minus the number of dependencies of scheduled 2433 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2434 /// for scheduling. 2435 /// Note that this is negative as long as Dependencies is not calculated. 2436 int UnscheduledDeps = InvalidDeps; 2437 2438 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 2439 /// single instructions. 2440 int UnscheduledDepsInBundle = InvalidDeps; 2441 2442 /// True if this instruction is scheduled (or considered as scheduled in the 2443 /// dry-run). 2444 bool IsScheduled = false; 2445 2446 /// Opcode of the current instruction in the schedule data. 2447 Value *OpValue = nullptr; 2448 2449 /// The TreeEntry that this instruction corresponds to. 2450 TreeEntry *TE = nullptr; 2451 2452 /// The lane of this node in the TreeEntry. 2453 int Lane = -1; 2454 }; 2455 2456 #ifndef NDEBUG 2457 friend inline raw_ostream &operator<<(raw_ostream &os, 2458 const BoUpSLP::ScheduleData &SD) { 2459 SD.dump(os); 2460 return os; 2461 } 2462 #endif 2463 2464 friend struct GraphTraits<BoUpSLP *>; 2465 friend struct DOTGraphTraits<BoUpSLP *>; 2466 2467 /// Contains all scheduling data for a basic block. 2468 struct BlockScheduling { 2469 BlockScheduling(BasicBlock *BB) 2470 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2471 2472 void clear() { 2473 ReadyInsts.clear(); 2474 ScheduleStart = nullptr; 2475 ScheduleEnd = nullptr; 2476 FirstLoadStoreInRegion = nullptr; 2477 LastLoadStoreInRegion = nullptr; 2478 2479 // Reduce the maximum schedule region size by the size of the 2480 // previous scheduling run. 2481 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2482 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2483 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2484 ScheduleRegionSize = 0; 2485 2486 // Make a new scheduling region, i.e. all existing ScheduleData is not 2487 // in the new region yet. 2488 ++SchedulingRegionID; 2489 } 2490 2491 ScheduleData *getScheduleData(Value *V) { 2492 ScheduleData *SD = ScheduleDataMap[V]; 2493 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2494 return SD; 2495 return nullptr; 2496 } 2497 2498 ScheduleData *getScheduleData(Value *V, Value *Key) { 2499 if (V == Key) 2500 return getScheduleData(V); 2501 auto I = ExtraScheduleDataMap.find(V); 2502 if (I != ExtraScheduleDataMap.end()) { 2503 ScheduleData *SD = I->second[Key]; 2504 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2505 return SD; 2506 } 2507 return nullptr; 2508 } 2509 2510 bool isInSchedulingRegion(ScheduleData *SD) const { 2511 return SD->SchedulingRegionID == SchedulingRegionID; 2512 } 2513 2514 /// Marks an instruction as scheduled and puts all dependent ready 2515 /// instructions into the ready-list. 2516 template <typename ReadyListType> 2517 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2518 SD->IsScheduled = true; 2519 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2520 2521 ScheduleData *BundleMember = SD; 2522 while (BundleMember) { 2523 if (BundleMember->Inst != BundleMember->OpValue) { 2524 BundleMember = BundleMember->NextInBundle; 2525 continue; 2526 } 2527 // Handle the def-use chain dependencies. 2528 2529 // Decrement the unscheduled counter and insert to ready list if ready. 2530 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2531 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2532 if (OpDef && OpDef->hasValidDependencies() && 2533 OpDef->incrementUnscheduledDeps(-1) == 0) { 2534 // There are no more unscheduled dependencies after 2535 // decrementing, so we can put the dependent instruction 2536 // into the ready list. 2537 ScheduleData *DepBundle = OpDef->FirstInBundle; 2538 assert(!DepBundle->IsScheduled && 2539 "already scheduled bundle gets ready"); 2540 ReadyList.insert(DepBundle); 2541 LLVM_DEBUG(dbgs() 2542 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2543 } 2544 }); 2545 }; 2546 2547 // If BundleMember is a vector bundle, its operands may have been 2548 // reordered duiring buildTree(). We therefore need to get its operands 2549 // through the TreeEntry. 2550 if (TreeEntry *TE = BundleMember->TE) { 2551 int Lane = BundleMember->Lane; 2552 assert(Lane >= 0 && "Lane not set"); 2553 2554 // Since vectorization tree is being built recursively this assertion 2555 // ensures that the tree entry has all operands set before reaching 2556 // this code. Couple of exceptions known at the moment are extracts 2557 // where their second (immediate) operand is not added. Since 2558 // immediates do not affect scheduler behavior this is considered 2559 // okay. 2560 auto *In = TE->getMainOp(); 2561 assert(In && 2562 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2563 In->getNumOperands() == TE->getNumOperands()) && 2564 "Missed TreeEntry operands?"); 2565 (void)In; // fake use to avoid build failure when assertions disabled 2566 2567 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2568 OpIdx != NumOperands; ++OpIdx) 2569 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2570 DecrUnsched(I); 2571 } else { 2572 // If BundleMember is a stand-alone instruction, no operand reordering 2573 // has taken place, so we directly access its operands. 2574 for (Use &U : BundleMember->Inst->operands()) 2575 if (auto *I = dyn_cast<Instruction>(U.get())) 2576 DecrUnsched(I); 2577 } 2578 // Handle the memory dependencies. 2579 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2580 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2581 // There are no more unscheduled dependencies after decrementing, 2582 // so we can put the dependent instruction into the ready list. 2583 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2584 assert(!DepBundle->IsScheduled && 2585 "already scheduled bundle gets ready"); 2586 ReadyList.insert(DepBundle); 2587 LLVM_DEBUG(dbgs() 2588 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2589 } 2590 } 2591 BundleMember = BundleMember->NextInBundle; 2592 } 2593 } 2594 2595 void doForAllOpcodes(Value *V, 2596 function_ref<void(ScheduleData *SD)> Action) { 2597 if (ScheduleData *SD = getScheduleData(V)) 2598 Action(SD); 2599 auto I = ExtraScheduleDataMap.find(V); 2600 if (I != ExtraScheduleDataMap.end()) 2601 for (auto &P : I->second) 2602 if (P.second->SchedulingRegionID == SchedulingRegionID) 2603 Action(P.second); 2604 } 2605 2606 /// Put all instructions into the ReadyList which are ready for scheduling. 2607 template <typename ReadyListType> 2608 void initialFillReadyList(ReadyListType &ReadyList) { 2609 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2610 doForAllOpcodes(I, [&](ScheduleData *SD) { 2611 if (SD->isSchedulingEntity() && SD->isReady()) { 2612 ReadyList.insert(SD); 2613 LLVM_DEBUG(dbgs() 2614 << "SLP: initially in ready list: " << *I << "\n"); 2615 } 2616 }); 2617 } 2618 } 2619 2620 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2621 /// cyclic dependencies. This is only a dry-run, no instructions are 2622 /// actually moved at this stage. 2623 /// \returns the scheduling bundle. The returned Optional value is non-None 2624 /// if \p VL is allowed to be scheduled. 2625 Optional<ScheduleData *> 2626 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2627 const InstructionsState &S); 2628 2629 /// Un-bundles a group of instructions. 2630 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2631 2632 /// Allocates schedule data chunk. 2633 ScheduleData *allocateScheduleDataChunks(); 2634 2635 /// Extends the scheduling region so that V is inside the region. 2636 /// \returns true if the region size is within the limit. 2637 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2638 2639 /// Initialize the ScheduleData structures for new instructions in the 2640 /// scheduling region. 2641 void initScheduleData(Instruction *FromI, Instruction *ToI, 2642 ScheduleData *PrevLoadStore, 2643 ScheduleData *NextLoadStore); 2644 2645 /// Updates the dependency information of a bundle and of all instructions/ 2646 /// bundles which depend on the original bundle. 2647 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2648 BoUpSLP *SLP); 2649 2650 /// Sets all instruction in the scheduling region to un-scheduled. 2651 void resetSchedule(); 2652 2653 BasicBlock *BB; 2654 2655 /// Simple memory allocation for ScheduleData. 2656 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2657 2658 /// The size of a ScheduleData array in ScheduleDataChunks. 2659 int ChunkSize; 2660 2661 /// The allocator position in the current chunk, which is the last entry 2662 /// of ScheduleDataChunks. 2663 int ChunkPos; 2664 2665 /// Attaches ScheduleData to Instruction. 2666 /// Note that the mapping survives during all vectorization iterations, i.e. 2667 /// ScheduleData structures are recycled. 2668 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2669 2670 /// Attaches ScheduleData to Instruction with the leading key. 2671 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2672 ExtraScheduleDataMap; 2673 2674 struct ReadyList : SmallVector<ScheduleData *, 8> { 2675 void insert(ScheduleData *SD) { push_back(SD); } 2676 }; 2677 2678 /// The ready-list for scheduling (only used for the dry-run). 2679 ReadyList ReadyInsts; 2680 2681 /// The first instruction of the scheduling region. 2682 Instruction *ScheduleStart = nullptr; 2683 2684 /// The first instruction _after_ the scheduling region. 2685 Instruction *ScheduleEnd = nullptr; 2686 2687 /// The first memory accessing instruction in the scheduling region 2688 /// (can be null). 2689 ScheduleData *FirstLoadStoreInRegion = nullptr; 2690 2691 /// The last memory accessing instruction in the scheduling region 2692 /// (can be null). 2693 ScheduleData *LastLoadStoreInRegion = nullptr; 2694 2695 /// The current size of the scheduling region. 2696 int ScheduleRegionSize = 0; 2697 2698 /// The maximum size allowed for the scheduling region. 2699 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2700 2701 /// The ID of the scheduling region. For a new vectorization iteration this 2702 /// is incremented which "removes" all ScheduleData from the region. 2703 // Make sure that the initial SchedulingRegionID is greater than the 2704 // initial SchedulingRegionID in ScheduleData (which is 0). 2705 int SchedulingRegionID = 1; 2706 }; 2707 2708 /// Attaches the BlockScheduling structures to basic blocks. 2709 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2710 2711 /// Performs the "real" scheduling. Done before vectorization is actually 2712 /// performed in a basic block. 2713 void scheduleBlock(BlockScheduling *BS); 2714 2715 /// List of users to ignore during scheduling and that don't need extracting. 2716 ArrayRef<Value *> UserIgnoreList; 2717 2718 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2719 /// sorted SmallVectors of unsigned. 2720 struct OrdersTypeDenseMapInfo { 2721 static OrdersType getEmptyKey() { 2722 OrdersType V; 2723 V.push_back(~1U); 2724 return V; 2725 } 2726 2727 static OrdersType getTombstoneKey() { 2728 OrdersType V; 2729 V.push_back(~2U); 2730 return V; 2731 } 2732 2733 static unsigned getHashValue(const OrdersType &V) { 2734 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2735 } 2736 2737 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2738 return LHS == RHS; 2739 } 2740 }; 2741 2742 // Analysis and block reference. 2743 Function *F; 2744 ScalarEvolution *SE; 2745 TargetTransformInfo *TTI; 2746 TargetLibraryInfo *TLI; 2747 AAResults *AA; 2748 LoopInfo *LI; 2749 DominatorTree *DT; 2750 AssumptionCache *AC; 2751 DemandedBits *DB; 2752 const DataLayout *DL; 2753 OptimizationRemarkEmitter *ORE; 2754 2755 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2756 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2757 2758 /// Instruction builder to construct the vectorized tree. 2759 IRBuilder<> Builder; 2760 2761 /// A map of scalar integer values to the smallest bit width with which they 2762 /// can legally be represented. The values map to (width, signed) pairs, 2763 /// where "width" indicates the minimum bit width and "signed" is True if the 2764 /// value must be signed-extended, rather than zero-extended, back to its 2765 /// original width. 2766 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2767 }; 2768 2769 } // end namespace slpvectorizer 2770 2771 template <> struct GraphTraits<BoUpSLP *> { 2772 using TreeEntry = BoUpSLP::TreeEntry; 2773 2774 /// NodeRef has to be a pointer per the GraphWriter. 2775 using NodeRef = TreeEntry *; 2776 2777 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2778 2779 /// Add the VectorizableTree to the index iterator to be able to return 2780 /// TreeEntry pointers. 2781 struct ChildIteratorType 2782 : public iterator_adaptor_base< 2783 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2784 ContainerTy &VectorizableTree; 2785 2786 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2787 ContainerTy &VT) 2788 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2789 2790 NodeRef operator*() { return I->UserTE; } 2791 }; 2792 2793 static NodeRef getEntryNode(BoUpSLP &R) { 2794 return R.VectorizableTree[0].get(); 2795 } 2796 2797 static ChildIteratorType child_begin(NodeRef N) { 2798 return {N->UserTreeIndices.begin(), N->Container}; 2799 } 2800 2801 static ChildIteratorType child_end(NodeRef N) { 2802 return {N->UserTreeIndices.end(), N->Container}; 2803 } 2804 2805 /// For the node iterator we just need to turn the TreeEntry iterator into a 2806 /// TreeEntry* iterator so that it dereferences to NodeRef. 2807 class nodes_iterator { 2808 using ItTy = ContainerTy::iterator; 2809 ItTy It; 2810 2811 public: 2812 nodes_iterator(const ItTy &It2) : It(It2) {} 2813 NodeRef operator*() { return It->get(); } 2814 nodes_iterator operator++() { 2815 ++It; 2816 return *this; 2817 } 2818 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2819 }; 2820 2821 static nodes_iterator nodes_begin(BoUpSLP *R) { 2822 return nodes_iterator(R->VectorizableTree.begin()); 2823 } 2824 2825 static nodes_iterator nodes_end(BoUpSLP *R) { 2826 return nodes_iterator(R->VectorizableTree.end()); 2827 } 2828 2829 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2830 }; 2831 2832 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2833 using TreeEntry = BoUpSLP::TreeEntry; 2834 2835 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2836 2837 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2838 std::string Str; 2839 raw_string_ostream OS(Str); 2840 if (isSplat(Entry->Scalars)) 2841 OS << "<splat> "; 2842 for (auto V : Entry->Scalars) { 2843 OS << *V; 2844 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 2845 return EU.Scalar == V; 2846 })) 2847 OS << " <extract>"; 2848 OS << "\n"; 2849 } 2850 return Str; 2851 } 2852 2853 static std::string getNodeAttributes(const TreeEntry *Entry, 2854 const BoUpSLP *) { 2855 if (Entry->State == TreeEntry::NeedToGather) 2856 return "color=red"; 2857 return ""; 2858 } 2859 }; 2860 2861 } // end namespace llvm 2862 2863 BoUpSLP::~BoUpSLP() { 2864 for (const auto &Pair : DeletedInstructions) { 2865 // Replace operands of ignored instructions with Undefs in case if they were 2866 // marked for deletion. 2867 if (Pair.getSecond()) { 2868 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2869 Pair.getFirst()->replaceAllUsesWith(Undef); 2870 } 2871 Pair.getFirst()->dropAllReferences(); 2872 } 2873 for (const auto &Pair : DeletedInstructions) { 2874 assert(Pair.getFirst()->use_empty() && 2875 "trying to erase instruction with users."); 2876 Pair.getFirst()->eraseFromParent(); 2877 } 2878 #ifdef EXPENSIVE_CHECKS 2879 // If we could guarantee that this call is not extremely slow, we could 2880 // remove the ifdef limitation (see PR47712). 2881 assert(!verifyFunction(*F, &dbgs())); 2882 #endif 2883 } 2884 2885 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2886 for (auto *V : AV) { 2887 if (auto *I = dyn_cast<Instruction>(V)) 2888 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 2889 }; 2890 } 2891 2892 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 2893 /// contains original mask for the scalars reused in the node. Procedure 2894 /// transform this mask in accordance with the given \p Mask. 2895 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 2896 assert(!Mask.empty() && Reuses.size() == Mask.size() && 2897 "Expected non-empty mask."); 2898 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 2899 Prev.swap(Reuses); 2900 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 2901 if (Mask[I] != UndefMaskElem) 2902 Reuses[Mask[I]] = Prev[I]; 2903 } 2904 2905 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 2906 /// the original order of the scalars. Procedure transforms the provided order 2907 /// in accordance with the given \p Mask. If the resulting \p Order is just an 2908 /// identity order, \p Order is cleared. 2909 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 2910 assert(!Mask.empty() && "Expected non-empty mask."); 2911 SmallVector<int> MaskOrder; 2912 if (Order.empty()) { 2913 MaskOrder.resize(Mask.size()); 2914 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 2915 } else { 2916 inversePermutation(Order, MaskOrder); 2917 } 2918 reorderReuses(MaskOrder, Mask); 2919 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 2920 Order.clear(); 2921 return; 2922 } 2923 Order.assign(Mask.size(), Mask.size()); 2924 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 2925 if (MaskOrder[I] != UndefMaskElem) 2926 Order[MaskOrder[I]] = I; 2927 fixupOrderingIndices(Order); 2928 } 2929 2930 Optional<BoUpSLP::OrdersType> 2931 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { 2932 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 2933 unsigned NumScalars = TE.Scalars.size(); 2934 OrdersType CurrentOrder(NumScalars, NumScalars); 2935 SmallVector<int> Positions; 2936 SmallBitVector UsedPositions(NumScalars); 2937 const TreeEntry *STE = nullptr; 2938 // Try to find all gathered scalars that are gets vectorized in other 2939 // vectorize node. Here we can have only one single tree vector node to 2940 // correctly identify order of the gathered scalars. 2941 for (unsigned I = 0; I < NumScalars; ++I) { 2942 Value *V = TE.Scalars[I]; 2943 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) 2944 continue; 2945 if (const auto *LocalSTE = getTreeEntry(V)) { 2946 if (!STE) 2947 STE = LocalSTE; 2948 else if (STE != LocalSTE) 2949 // Take the order only from the single vector node. 2950 return None; 2951 unsigned Lane = 2952 std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); 2953 if (Lane >= NumScalars) 2954 return None; 2955 if (CurrentOrder[Lane] != NumScalars) { 2956 if (Lane != I) 2957 continue; 2958 UsedPositions.reset(CurrentOrder[Lane]); 2959 } 2960 // The partial identity (where only some elements of the gather node are 2961 // in the identity order) is good. 2962 CurrentOrder[Lane] = I; 2963 UsedPositions.set(I); 2964 } 2965 } 2966 // Need to keep the order if we have a vector entry and at least 2 scalars or 2967 // the vectorized entry has just 2 scalars. 2968 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { 2969 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { 2970 for (unsigned I = 0; I < NumScalars; ++I) 2971 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) 2972 return false; 2973 return true; 2974 }; 2975 if (IsIdentityOrder(CurrentOrder)) { 2976 CurrentOrder.clear(); 2977 return CurrentOrder; 2978 } 2979 auto *It = CurrentOrder.begin(); 2980 for (unsigned I = 0; I < NumScalars;) { 2981 if (UsedPositions.test(I)) { 2982 ++I; 2983 continue; 2984 } 2985 if (*It == NumScalars) { 2986 *It = I; 2987 ++I; 2988 } 2989 ++It; 2990 } 2991 return CurrentOrder; 2992 } 2993 return None; 2994 } 2995 2996 Optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE, 2997 bool TopToBottom) { 2998 // No need to reorder if need to shuffle reuses, still need to shuffle the 2999 // node. 3000 if (!TE.ReuseShuffleIndices.empty()) 3001 return None; 3002 if (TE.State == TreeEntry::Vectorize && 3003 (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) || 3004 (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) && 3005 !TE.isAltShuffle()) 3006 return TE.ReorderIndices; 3007 if (TE.State == TreeEntry::NeedToGather) { 3008 // TODO: add analysis of other gather nodes with extractelement 3009 // instructions and other values/instructions, not only undefs. 3010 if (((TE.getOpcode() == Instruction::ExtractElement && 3011 !TE.isAltShuffle()) || 3012 (all_of(TE.Scalars, 3013 [](Value *V) { 3014 return isa<UndefValue, ExtractElementInst>(V); 3015 }) && 3016 any_of(TE.Scalars, 3017 [](Value *V) { return isa<ExtractElementInst>(V); }))) && 3018 all_of(TE.Scalars, 3019 [](Value *V) { 3020 auto *EE = dyn_cast<ExtractElementInst>(V); 3021 return !EE || isa<FixedVectorType>(EE->getVectorOperandType()); 3022 }) && 3023 allSameType(TE.Scalars)) { 3024 // Check that gather of extractelements can be represented as 3025 // just a shuffle of a single vector. 3026 OrdersType CurrentOrder; 3027 bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder); 3028 if (Reuse || !CurrentOrder.empty()) { 3029 if (!CurrentOrder.empty()) 3030 fixupOrderingIndices(CurrentOrder); 3031 return CurrentOrder; 3032 } 3033 } 3034 if (Optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE)) 3035 return CurrentOrder; 3036 } 3037 return None; 3038 } 3039 3040 void BoUpSLP::reorderTopToBottom() { 3041 // Maps VF to the graph nodes. 3042 DenseMap<unsigned, SmallPtrSet<TreeEntry *, 4>> VFToOrderedEntries; 3043 // ExtractElement gather nodes which can be vectorized and need to handle 3044 // their ordering. 3045 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3046 // Find all reorderable nodes with the given VF. 3047 // Currently the are vectorized stores,loads,extracts + some gathering of 3048 // extracts. 3049 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders]( 3050 const std::unique_ptr<TreeEntry> &TE) { 3051 if (Optional<OrdersType> CurrentOrder = 3052 getReorderingData(*TE.get(), /*TopToBottom=*/true)) { 3053 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 3054 if (TE->State != TreeEntry::Vectorize) 3055 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3056 } 3057 }); 3058 3059 // Reorder the graph nodes according to their vectorization factor. 3060 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 3061 VF /= 2) { 3062 auto It = VFToOrderedEntries.find(VF); 3063 if (It == VFToOrderedEntries.end()) 3064 continue; 3065 // Try to find the most profitable order. We just are looking for the most 3066 // used order and reorder scalar elements in the nodes according to this 3067 // mostly used order. 3068 const SmallPtrSetImpl<TreeEntry *> &OrderedEntries = It->getSecond(); 3069 // All operands are reordered and used only in this node - propagate the 3070 // most used order to the user node. 3071 MapVector<OrdersType, unsigned, 3072 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3073 OrdersUses; 3074 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3075 for (const TreeEntry *OpTE : OrderedEntries) { 3076 // No need to reorder this nodes, still need to extend and to use shuffle, 3077 // just need to merge reordering shuffle and the reuse shuffle. 3078 if (!OpTE->ReuseShuffleIndices.empty()) 3079 continue; 3080 // Count number of orders uses. 3081 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3082 if (OpTE->State == TreeEntry::NeedToGather) 3083 return GathersToOrders.find(OpTE)->second; 3084 return OpTE->ReorderIndices; 3085 }(); 3086 // Stores actually store the mask, not the order, need to invert. 3087 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3088 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3089 SmallVector<int> Mask; 3090 inversePermutation(Order, Mask); 3091 unsigned E = Order.size(); 3092 OrdersType CurrentOrder(E, E); 3093 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3094 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3095 }); 3096 fixupOrderingIndices(CurrentOrder); 3097 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3098 } else { 3099 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3100 } 3101 } 3102 // Set order of the user node. 3103 if (OrdersUses.empty()) 3104 continue; 3105 // Choose the most used order. 3106 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3107 unsigned Cnt = OrdersUses.front().second; 3108 for (const auto &Pair : drop_begin(OrdersUses)) { 3109 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3110 BestOrder = Pair.first; 3111 Cnt = Pair.second; 3112 } 3113 } 3114 // Set order of the user node. 3115 if (BestOrder.empty()) 3116 continue; 3117 SmallVector<int> Mask; 3118 inversePermutation(BestOrder, Mask); 3119 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3120 unsigned E = BestOrder.size(); 3121 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3122 return I < E ? static_cast<int>(I) : UndefMaskElem; 3123 }); 3124 // Do an actual reordering, if profitable. 3125 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 3126 // Just do the reordering for the nodes with the given VF. 3127 if (TE->Scalars.size() != VF) { 3128 if (TE->ReuseShuffleIndices.size() == VF) { 3129 // Need to reorder the reuses masks of the operands with smaller VF to 3130 // be able to find the match between the graph nodes and scalar 3131 // operands of the given node during vectorization/cost estimation. 3132 assert(all_of(TE->UserTreeIndices, 3133 [VF, &TE](const EdgeInfo &EI) { 3134 return EI.UserTE->Scalars.size() == VF || 3135 EI.UserTE->Scalars.size() == 3136 TE->Scalars.size(); 3137 }) && 3138 "All users must be of VF size."); 3139 // Update ordering of the operands with the smaller VF than the given 3140 // one. 3141 reorderReuses(TE->ReuseShuffleIndices, Mask); 3142 } 3143 continue; 3144 } 3145 if (TE->State == TreeEntry::Vectorize && 3146 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 3147 InsertElementInst>(TE->getMainOp()) && 3148 !TE->isAltShuffle()) { 3149 // Build correct orders for extract{element,value}, loads and 3150 // stores. 3151 reorderOrder(TE->ReorderIndices, Mask); 3152 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 3153 TE->reorderOperands(Mask); 3154 } else { 3155 // Reorder the node and its operands. 3156 TE->reorderOperands(Mask); 3157 assert(TE->ReorderIndices.empty() && 3158 "Expected empty reorder sequence."); 3159 reorderScalars(TE->Scalars, Mask); 3160 } 3161 if (!TE->ReuseShuffleIndices.empty()) { 3162 // Apply reversed order to keep the original ordering of the reused 3163 // elements to avoid extra reorder indices shuffling. 3164 OrdersType CurrentOrder; 3165 reorderOrder(CurrentOrder, MaskOrder); 3166 SmallVector<int> NewReuses; 3167 inversePermutation(CurrentOrder, NewReuses); 3168 addMask(NewReuses, TE->ReuseShuffleIndices); 3169 TE->ReuseShuffleIndices.swap(NewReuses); 3170 } 3171 } 3172 } 3173 } 3174 3175 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { 3176 SetVector<TreeEntry *> OrderedEntries; 3177 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3178 // Find all reorderable leaf nodes with the given VF. 3179 // Currently the are vectorized loads,extracts without alternate operands + 3180 // some gathering of extracts. 3181 SmallVector<TreeEntry *> NonVectorized; 3182 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 3183 &NonVectorized]( 3184 const std::unique_ptr<TreeEntry> &TE) { 3185 if (TE->State != TreeEntry::Vectorize) 3186 NonVectorized.push_back(TE.get()); 3187 if (Optional<OrdersType> CurrentOrder = 3188 getReorderingData(*TE.get(), /*TopToBottom=*/false)) { 3189 OrderedEntries.insert(TE.get()); 3190 if (TE->State != TreeEntry::Vectorize) 3191 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3192 } 3193 }); 3194 3195 // Checks if the operands of the users are reordarable and have only single 3196 // use. 3197 auto &&CheckOperands = 3198 [this, &NonVectorized](const auto &Data, 3199 SmallVectorImpl<TreeEntry *> &GatherOps) { 3200 for (unsigned I = 0, E = Data.first->getNumOperands(); I < E; ++I) { 3201 if (any_of(Data.second, 3202 [I](const std::pair<unsigned, TreeEntry *> &OpData) { 3203 return OpData.first == I && 3204 OpData.second->State == TreeEntry::Vectorize; 3205 })) 3206 continue; 3207 ArrayRef<Value *> VL = Data.first->getOperand(I); 3208 const TreeEntry *TE = nullptr; 3209 const auto *It = find_if(VL, [this, &TE](Value *V) { 3210 TE = getTreeEntry(V); 3211 return TE; 3212 }); 3213 if (It != VL.end() && TE->isSame(VL)) 3214 return false; 3215 TreeEntry *Gather = nullptr; 3216 if (count_if(NonVectorized, [VL, &Gather](TreeEntry *TE) { 3217 assert(TE->State != TreeEntry::Vectorize && 3218 "Only non-vectorized nodes are expected."); 3219 if (TE->isSame(VL)) { 3220 Gather = TE; 3221 return true; 3222 } 3223 return false; 3224 }) > 1) 3225 return false; 3226 if (Gather) 3227 GatherOps.push_back(Gather); 3228 } 3229 return true; 3230 }; 3231 // 1. Propagate order to the graph nodes, which use only reordered nodes. 3232 // I.e., if the node has operands, that are reordered, try to make at least 3233 // one operand order in the natural order and reorder others + reorder the 3234 // user node itself. 3235 SmallPtrSet<const TreeEntry *, 4> Visited; 3236 while (!OrderedEntries.empty()) { 3237 // 1. Filter out only reordered nodes. 3238 // 2. If the entry has multiple uses - skip it and jump to the next node. 3239 MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 3240 SmallVector<TreeEntry *> Filtered; 3241 for (TreeEntry *TE : OrderedEntries) { 3242 if (!(TE->State == TreeEntry::Vectorize || 3243 (TE->State == TreeEntry::NeedToGather && 3244 GathersToOrders.count(TE))) || 3245 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3246 !all_of(drop_begin(TE->UserTreeIndices), 3247 [TE](const EdgeInfo &EI) { 3248 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 3249 }) || 3250 !Visited.insert(TE).second) { 3251 Filtered.push_back(TE); 3252 continue; 3253 } 3254 // Build a map between user nodes and their operands order to speedup 3255 // search. The graph currently does not provide this dependency directly. 3256 for (EdgeInfo &EI : TE->UserTreeIndices) { 3257 TreeEntry *UserTE = EI.UserTE; 3258 auto It = Users.find(UserTE); 3259 if (It == Users.end()) 3260 It = Users.insert({UserTE, {}}).first; 3261 It->second.emplace_back(EI.EdgeIdx, TE); 3262 } 3263 } 3264 // Erase filtered entries. 3265 for_each(Filtered, 3266 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 3267 for (const auto &Data : Users) { 3268 // Check that operands are used only in the User node. 3269 SmallVector<TreeEntry *> GatherOps; 3270 if (!CheckOperands(Data, GatherOps)) { 3271 for_each(Data.second, 3272 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3273 OrderedEntries.remove(Op.second); 3274 }); 3275 continue; 3276 } 3277 // All operands are reordered and used only in this node - propagate the 3278 // most used order to the user node. 3279 MapVector<OrdersType, unsigned, 3280 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3281 OrdersUses; 3282 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3283 for (const auto &Op : Data.second) { 3284 TreeEntry *OpTE = Op.second; 3285 if (!OpTE->ReuseShuffleIndices.empty() || 3286 (IgnoreReorder && OpTE == VectorizableTree.front().get())) 3287 continue; 3288 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3289 if (OpTE->State == TreeEntry::NeedToGather) 3290 return GathersToOrders.find(OpTE)->second; 3291 return OpTE->ReorderIndices; 3292 }(); 3293 // Stores actually store the mask, not the order, need to invert. 3294 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3295 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3296 SmallVector<int> Mask; 3297 inversePermutation(Order, Mask); 3298 unsigned E = Order.size(); 3299 OrdersType CurrentOrder(E, E); 3300 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3301 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3302 }); 3303 fixupOrderingIndices(CurrentOrder); 3304 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3305 } else { 3306 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3307 } 3308 if (VisitedOps.insert(OpTE).second) 3309 OrdersUses.insert(std::make_pair(OrdersType(), 0)).first->second += 3310 OpTE->UserTreeIndices.size(); 3311 assert(OrdersUses[{}] > 0 && "Counter cannot be less than 0."); 3312 --OrdersUses[{}]; 3313 } 3314 // If no orders - skip current nodes and jump to the next one, if any. 3315 if (OrdersUses.empty()) { 3316 for_each(Data.second, 3317 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3318 OrderedEntries.remove(Op.second); 3319 }); 3320 continue; 3321 } 3322 // Choose the best order. 3323 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3324 unsigned Cnt = OrdersUses.front().second; 3325 for (const auto &Pair : drop_begin(OrdersUses)) { 3326 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3327 BestOrder = Pair.first; 3328 Cnt = Pair.second; 3329 } 3330 } 3331 // Set order of the user node (reordering of operands and user nodes). 3332 if (BestOrder.empty()) { 3333 for_each(Data.second, 3334 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3335 OrderedEntries.remove(Op.second); 3336 }); 3337 continue; 3338 } 3339 // Erase operands from OrderedEntries list and adjust their orders. 3340 VisitedOps.clear(); 3341 SmallVector<int> Mask; 3342 inversePermutation(BestOrder, Mask); 3343 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3344 unsigned E = BestOrder.size(); 3345 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3346 return I < E ? static_cast<int>(I) : UndefMaskElem; 3347 }); 3348 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 3349 TreeEntry *TE = Op.second; 3350 OrderedEntries.remove(TE); 3351 if (!VisitedOps.insert(TE).second) 3352 continue; 3353 if (!TE->ReuseShuffleIndices.empty() && TE->ReorderIndices.empty()) { 3354 // Just reorder reuses indices. 3355 reorderReuses(TE->ReuseShuffleIndices, Mask); 3356 continue; 3357 } 3358 // Gathers are processed separately. 3359 if (TE->State != TreeEntry::Vectorize) 3360 continue; 3361 assert((BestOrder.size() == TE->ReorderIndices.size() || 3362 TE->ReorderIndices.empty()) && 3363 "Non-matching sizes of user/operand entries."); 3364 reorderOrder(TE->ReorderIndices, Mask); 3365 } 3366 // For gathers just need to reorder its scalars. 3367 for (TreeEntry *Gather : GatherOps) { 3368 assert(Gather->ReorderIndices.empty() && 3369 "Unexpected reordering of gathers."); 3370 if (!Gather->ReuseShuffleIndices.empty()) { 3371 // Just reorder reuses indices. 3372 reorderReuses(Gather->ReuseShuffleIndices, Mask); 3373 continue; 3374 } 3375 reorderScalars(Gather->Scalars, Mask); 3376 OrderedEntries.remove(Gather); 3377 } 3378 // Reorder operands of the user node and set the ordering for the user 3379 // node itself. 3380 if (Data.first->State != TreeEntry::Vectorize || 3381 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 3382 Data.first->getMainOp()) || 3383 Data.first->isAltShuffle()) 3384 Data.first->reorderOperands(Mask); 3385 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 3386 Data.first->isAltShuffle()) { 3387 reorderScalars(Data.first->Scalars, Mask); 3388 reorderOrder(Data.first->ReorderIndices, MaskOrder); 3389 if (Data.first->ReuseShuffleIndices.empty() && 3390 !Data.first->ReorderIndices.empty() && 3391 !Data.first->isAltShuffle()) { 3392 // Insert user node to the list to try to sink reordering deeper in 3393 // the graph. 3394 OrderedEntries.insert(Data.first); 3395 } 3396 } else { 3397 reorderOrder(Data.first->ReorderIndices, Mask); 3398 } 3399 } 3400 } 3401 // If the reordering is unnecessary, just remove the reorder. 3402 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && 3403 VectorizableTree.front()->ReuseShuffleIndices.empty()) 3404 VectorizableTree.front()->ReorderIndices.clear(); 3405 } 3406 3407 void BoUpSLP::buildExternalUses( 3408 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3409 // Collect the values that we need to extract from the tree. 3410 for (auto &TEPtr : VectorizableTree) { 3411 TreeEntry *Entry = TEPtr.get(); 3412 3413 // No need to handle users of gathered values. 3414 if (Entry->State == TreeEntry::NeedToGather) 3415 continue; 3416 3417 // For each lane: 3418 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3419 Value *Scalar = Entry->Scalars[Lane]; 3420 int FoundLane = Entry->findLaneForValue(Scalar); 3421 3422 // Check if the scalar is externally used as an extra arg. 3423 auto ExtI = ExternallyUsedValues.find(Scalar); 3424 if (ExtI != ExternallyUsedValues.end()) { 3425 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 3426 << Lane << " from " << *Scalar << ".\n"); 3427 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 3428 } 3429 for (User *U : Scalar->users()) { 3430 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 3431 3432 Instruction *UserInst = dyn_cast<Instruction>(U); 3433 if (!UserInst) 3434 continue; 3435 3436 if (isDeleted(UserInst)) 3437 continue; 3438 3439 // Skip in-tree scalars that become vectors 3440 if (TreeEntry *UseEntry = getTreeEntry(U)) { 3441 Value *UseScalar = UseEntry->Scalars[0]; 3442 // Some in-tree scalars will remain as scalar in vectorized 3443 // instructions. If that is the case, the one in Lane 0 will 3444 // be used. 3445 if (UseScalar != U || 3446 UseEntry->State == TreeEntry::ScatterVectorize || 3447 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 3448 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 3449 << ".\n"); 3450 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 3451 continue; 3452 } 3453 } 3454 3455 // Ignore users in the user ignore list. 3456 if (is_contained(UserIgnoreList, UserInst)) 3457 continue; 3458 3459 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 3460 << Lane << " from " << *Scalar << ".\n"); 3461 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 3462 } 3463 } 3464 } 3465 } 3466 3467 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 3468 ArrayRef<Value *> UserIgnoreLst) { 3469 deleteTree(); 3470 UserIgnoreList = UserIgnoreLst; 3471 if (!allSameType(Roots)) 3472 return; 3473 buildTree_rec(Roots, 0, EdgeInfo()); 3474 } 3475 3476 namespace { 3477 /// Tracks the state we can represent the loads in the given sequence. 3478 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 3479 } // anonymous namespace 3480 3481 /// Checks if the given array of loads can be represented as a vectorized, 3482 /// scatter or just simple gather. 3483 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 3484 const TargetTransformInfo &TTI, 3485 const DataLayout &DL, ScalarEvolution &SE, 3486 SmallVectorImpl<unsigned> &Order, 3487 SmallVectorImpl<Value *> &PointerOps) { 3488 // Check that a vectorized load would load the same memory as a scalar 3489 // load. For example, we don't want to vectorize loads that are smaller 3490 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3491 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3492 // from such a struct, we read/write packed bits disagreeing with the 3493 // unvectorized version. 3494 Type *ScalarTy = VL0->getType(); 3495 3496 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 3497 return LoadsState::Gather; 3498 3499 // Make sure all loads in the bundle are simple - we can't vectorize 3500 // atomic or volatile loads. 3501 PointerOps.clear(); 3502 PointerOps.resize(VL.size()); 3503 auto *POIter = PointerOps.begin(); 3504 for (Value *V : VL) { 3505 auto *L = cast<LoadInst>(V); 3506 if (!L->isSimple()) 3507 return LoadsState::Gather; 3508 *POIter = L->getPointerOperand(); 3509 ++POIter; 3510 } 3511 3512 Order.clear(); 3513 // Check the order of pointer operands. 3514 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 3515 Value *Ptr0; 3516 Value *PtrN; 3517 if (Order.empty()) { 3518 Ptr0 = PointerOps.front(); 3519 PtrN = PointerOps.back(); 3520 } else { 3521 Ptr0 = PointerOps[Order.front()]; 3522 PtrN = PointerOps[Order.back()]; 3523 } 3524 Optional<int> Diff = 3525 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 3526 // Check that the sorted loads are consecutive. 3527 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 3528 return LoadsState::Vectorize; 3529 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 3530 for (Value *V : VL) 3531 CommonAlignment = 3532 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 3533 if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()), 3534 CommonAlignment)) 3535 return LoadsState::ScatterVectorize; 3536 } 3537 3538 return LoadsState::Gather; 3539 } 3540 3541 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 3542 const EdgeInfo &UserTreeIdx) { 3543 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 3544 3545 SmallVector<int> ReuseShuffleIndicies; 3546 SmallVector<Value *> UniqueValues; 3547 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, 3548 &UserTreeIdx, 3549 this](const InstructionsState &S) { 3550 // Check that every instruction appears once in this bundle. 3551 DenseMap<Value *, unsigned> UniquePositions; 3552 for (Value *V : VL) { 3553 if (isConstant(V)) { 3554 ReuseShuffleIndicies.emplace_back( 3555 isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size()); 3556 UniqueValues.emplace_back(V); 3557 continue; 3558 } 3559 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3560 ReuseShuffleIndicies.emplace_back(Res.first->second); 3561 if (Res.second) 3562 UniqueValues.emplace_back(V); 3563 } 3564 size_t NumUniqueScalarValues = UniqueValues.size(); 3565 if (NumUniqueScalarValues == VL.size()) { 3566 ReuseShuffleIndicies.clear(); 3567 } else { 3568 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 3569 if (NumUniqueScalarValues <= 1 || 3570 (NumUniqueScalarValues == 2 && 3571 any_of(UniqueValues, UndefValue::classof)) || 3572 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 3573 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 3574 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3575 return false; 3576 } 3577 VL = UniqueValues; 3578 } 3579 return true; 3580 }; 3581 3582 InstructionsState S = getSameOpcode(VL); 3583 if (Depth == RecursionMaxDepth) { 3584 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 3585 if (TryToFindDuplicates(S)) 3586 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3587 ReuseShuffleIndicies); 3588 return; 3589 } 3590 3591 // Don't handle scalable vectors 3592 if (S.getOpcode() == Instruction::ExtractElement && 3593 isa<ScalableVectorType>( 3594 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 3595 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 3596 if (TryToFindDuplicates(S)) 3597 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3598 ReuseShuffleIndicies); 3599 return; 3600 } 3601 3602 // Don't handle vectors. 3603 if (S.OpValue->getType()->isVectorTy() && 3604 !isa<InsertElementInst>(S.OpValue)) { 3605 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 3606 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3607 return; 3608 } 3609 3610 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 3611 if (SI->getValueOperand()->getType()->isVectorTy()) { 3612 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 3613 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3614 return; 3615 } 3616 3617 // If all of the operands are identical or constant we have a simple solution. 3618 // If we deal with insert/extract instructions, they all must have constant 3619 // indices, otherwise we should gather them, not try to vectorize. 3620 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() || 3621 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) && 3622 !all_of(VL, isVectorLikeInstWithConstOps))) { 3623 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 3624 if (TryToFindDuplicates(S)) 3625 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3626 ReuseShuffleIndicies); 3627 return; 3628 } 3629 3630 // We now know that this is a vector of instructions of the same type from 3631 // the same block. 3632 3633 // Don't vectorize ephemeral values. 3634 for (Value *V : VL) { 3635 if (EphValues.count(V)) { 3636 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3637 << ") is ephemeral.\n"); 3638 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3639 return; 3640 } 3641 } 3642 3643 // Check if this is a duplicate of another entry. 3644 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 3645 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 3646 if (!E->isSame(VL)) { 3647 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 3648 if (TryToFindDuplicates(S)) 3649 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3650 ReuseShuffleIndicies); 3651 return; 3652 } 3653 // Record the reuse of the tree node. FIXME, currently this is only used to 3654 // properly draw the graph rather than for the actual vectorization. 3655 E->UserTreeIndices.push_back(UserTreeIdx); 3656 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 3657 << ".\n"); 3658 return; 3659 } 3660 3661 // Check that none of the instructions in the bundle are already in the tree. 3662 for (Value *V : VL) { 3663 auto *I = dyn_cast<Instruction>(V); 3664 if (!I) 3665 continue; 3666 if (getTreeEntry(I)) { 3667 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3668 << ") is already in tree.\n"); 3669 if (TryToFindDuplicates(S)) 3670 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3671 ReuseShuffleIndicies); 3672 return; 3673 } 3674 } 3675 3676 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 3677 for (Value *V : VL) { 3678 if (is_contained(UserIgnoreList, V)) { 3679 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 3680 if (TryToFindDuplicates(S)) 3681 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3682 ReuseShuffleIndicies); 3683 return; 3684 } 3685 } 3686 3687 // Check that all of the users of the scalars that we want to vectorize are 3688 // schedulable. 3689 auto *VL0 = cast<Instruction>(S.OpValue); 3690 BasicBlock *BB = VL0->getParent(); 3691 3692 if (!DT->isReachableFromEntry(BB)) { 3693 // Don't go into unreachable blocks. They may contain instructions with 3694 // dependency cycles which confuse the final scheduling. 3695 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 3696 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3697 return; 3698 } 3699 3700 // Check that every instruction appears once in this bundle. 3701 if (!TryToFindDuplicates(S)) 3702 return; 3703 3704 auto &BSRef = BlocksSchedules[BB]; 3705 if (!BSRef) 3706 BSRef = std::make_unique<BlockScheduling>(BB); 3707 3708 BlockScheduling &BS = *BSRef.get(); 3709 3710 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 3711 if (!Bundle) { 3712 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 3713 assert((!BS.getScheduleData(VL0) || 3714 !BS.getScheduleData(VL0)->isPartOfBundle()) && 3715 "tryScheduleBundle should cancelScheduling on failure"); 3716 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3717 ReuseShuffleIndicies); 3718 return; 3719 } 3720 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 3721 3722 unsigned ShuffleOrOp = S.isAltShuffle() ? 3723 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 3724 switch (ShuffleOrOp) { 3725 case Instruction::PHI: { 3726 auto *PH = cast<PHINode>(VL0); 3727 3728 // Check for terminator values (e.g. invoke). 3729 for (Value *V : VL) 3730 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 3731 Instruction *Term = dyn_cast<Instruction>( 3732 cast<PHINode>(V)->getIncomingValueForBlock( 3733 PH->getIncomingBlock(I))); 3734 if (Term && Term->isTerminator()) { 3735 LLVM_DEBUG(dbgs() 3736 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 3737 BS.cancelScheduling(VL, VL0); 3738 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3739 ReuseShuffleIndicies); 3740 return; 3741 } 3742 } 3743 3744 TreeEntry *TE = 3745 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 3746 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 3747 3748 // Keeps the reordered operands to avoid code duplication. 3749 SmallVector<ValueList, 2> OperandsVec; 3750 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 3751 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 3752 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 3753 TE->setOperand(I, Operands); 3754 OperandsVec.push_back(Operands); 3755 continue; 3756 } 3757 ValueList Operands; 3758 // Prepare the operand vector. 3759 for (Value *V : VL) 3760 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 3761 PH->getIncomingBlock(I))); 3762 TE->setOperand(I, Operands); 3763 OperandsVec.push_back(Operands); 3764 } 3765 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 3766 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 3767 return; 3768 } 3769 case Instruction::ExtractValue: 3770 case Instruction::ExtractElement: { 3771 OrdersType CurrentOrder; 3772 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 3773 if (Reuse) { 3774 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 3775 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3776 ReuseShuffleIndicies); 3777 // This is a special case, as it does not gather, but at the same time 3778 // we are not extending buildTree_rec() towards the operands. 3779 ValueList Op0; 3780 Op0.assign(VL.size(), VL0->getOperand(0)); 3781 VectorizableTree.back()->setOperand(0, Op0); 3782 return; 3783 } 3784 if (!CurrentOrder.empty()) { 3785 LLVM_DEBUG({ 3786 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 3787 "with order"; 3788 for (unsigned Idx : CurrentOrder) 3789 dbgs() << " " << Idx; 3790 dbgs() << "\n"; 3791 }); 3792 fixupOrderingIndices(CurrentOrder); 3793 // Insert new order with initial value 0, if it does not exist, 3794 // otherwise return the iterator to the existing one. 3795 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3796 ReuseShuffleIndicies, CurrentOrder); 3797 // This is a special case, as it does not gather, but at the same time 3798 // we are not extending buildTree_rec() towards the operands. 3799 ValueList Op0; 3800 Op0.assign(VL.size(), VL0->getOperand(0)); 3801 VectorizableTree.back()->setOperand(0, Op0); 3802 return; 3803 } 3804 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 3805 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3806 ReuseShuffleIndicies); 3807 BS.cancelScheduling(VL, VL0); 3808 return; 3809 } 3810 case Instruction::InsertElement: { 3811 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 3812 3813 // Check that we have a buildvector and not a shuffle of 2 or more 3814 // different vectors. 3815 ValueSet SourceVectors; 3816 int MinIdx = std::numeric_limits<int>::max(); 3817 for (Value *V : VL) { 3818 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 3819 Optional<int> Idx = *getInsertIndex(V, 0); 3820 if (!Idx || *Idx == UndefMaskElem) 3821 continue; 3822 MinIdx = std::min(MinIdx, *Idx); 3823 } 3824 3825 if (count_if(VL, [&SourceVectors](Value *V) { 3826 return !SourceVectors.contains(V); 3827 }) >= 2) { 3828 // Found 2nd source vector - cancel. 3829 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 3830 "different source vectors.\n"); 3831 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3832 BS.cancelScheduling(VL, VL0); 3833 return; 3834 } 3835 3836 auto OrdCompare = [](const std::pair<int, int> &P1, 3837 const std::pair<int, int> &P2) { 3838 return P1.first > P2.first; 3839 }; 3840 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 3841 decltype(OrdCompare)> 3842 Indices(OrdCompare); 3843 for (int I = 0, E = VL.size(); I < E; ++I) { 3844 Optional<int> Idx = *getInsertIndex(VL[I], 0); 3845 if (!Idx || *Idx == UndefMaskElem) 3846 continue; 3847 Indices.emplace(*Idx, I); 3848 } 3849 OrdersType CurrentOrder(VL.size(), VL.size()); 3850 bool IsIdentity = true; 3851 for (int I = 0, E = VL.size(); I < E; ++I) { 3852 CurrentOrder[Indices.top().second] = I; 3853 IsIdentity &= Indices.top().second == I; 3854 Indices.pop(); 3855 } 3856 if (IsIdentity) 3857 CurrentOrder.clear(); 3858 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3859 None, CurrentOrder); 3860 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 3861 3862 constexpr int NumOps = 2; 3863 ValueList VectorOperands[NumOps]; 3864 for (int I = 0; I < NumOps; ++I) { 3865 for (Value *V : VL) 3866 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 3867 3868 TE->setOperand(I, VectorOperands[I]); 3869 } 3870 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 3871 return; 3872 } 3873 case Instruction::Load: { 3874 // Check that a vectorized load would load the same memory as a scalar 3875 // load. For example, we don't want to vectorize loads that are smaller 3876 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3877 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3878 // from such a struct, we read/write packed bits disagreeing with the 3879 // unvectorized version. 3880 SmallVector<Value *> PointerOps; 3881 OrdersType CurrentOrder; 3882 TreeEntry *TE = nullptr; 3883 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 3884 PointerOps)) { 3885 case LoadsState::Vectorize: 3886 if (CurrentOrder.empty()) { 3887 // Original loads are consecutive and does not require reordering. 3888 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3889 ReuseShuffleIndicies); 3890 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 3891 } else { 3892 fixupOrderingIndices(CurrentOrder); 3893 // Need to reorder. 3894 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3895 ReuseShuffleIndicies, CurrentOrder); 3896 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 3897 } 3898 TE->setOperandsInOrder(); 3899 break; 3900 case LoadsState::ScatterVectorize: 3901 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 3902 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 3903 UserTreeIdx, ReuseShuffleIndicies); 3904 TE->setOperandsInOrder(); 3905 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 3906 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 3907 break; 3908 case LoadsState::Gather: 3909 BS.cancelScheduling(VL, VL0); 3910 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3911 ReuseShuffleIndicies); 3912 #ifndef NDEBUG 3913 Type *ScalarTy = VL0->getType(); 3914 if (DL->getTypeSizeInBits(ScalarTy) != 3915 DL->getTypeAllocSizeInBits(ScalarTy)) 3916 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 3917 else if (any_of(VL, [](Value *V) { 3918 return !cast<LoadInst>(V)->isSimple(); 3919 })) 3920 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 3921 else 3922 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 3923 #endif // NDEBUG 3924 break; 3925 } 3926 return; 3927 } 3928 case Instruction::ZExt: 3929 case Instruction::SExt: 3930 case Instruction::FPToUI: 3931 case Instruction::FPToSI: 3932 case Instruction::FPExt: 3933 case Instruction::PtrToInt: 3934 case Instruction::IntToPtr: 3935 case Instruction::SIToFP: 3936 case Instruction::UIToFP: 3937 case Instruction::Trunc: 3938 case Instruction::FPTrunc: 3939 case Instruction::BitCast: { 3940 Type *SrcTy = VL0->getOperand(0)->getType(); 3941 for (Value *V : VL) { 3942 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 3943 if (Ty != SrcTy || !isValidElementType(Ty)) { 3944 BS.cancelScheduling(VL, VL0); 3945 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3946 ReuseShuffleIndicies); 3947 LLVM_DEBUG(dbgs() 3948 << "SLP: Gathering casts with different src types.\n"); 3949 return; 3950 } 3951 } 3952 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3953 ReuseShuffleIndicies); 3954 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 3955 3956 TE->setOperandsInOrder(); 3957 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3958 ValueList Operands; 3959 // Prepare the operand vector. 3960 for (Value *V : VL) 3961 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3962 3963 buildTree_rec(Operands, Depth + 1, {TE, i}); 3964 } 3965 return; 3966 } 3967 case Instruction::ICmp: 3968 case Instruction::FCmp: { 3969 // Check that all of the compares have the same predicate. 3970 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 3971 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 3972 Type *ComparedTy = VL0->getOperand(0)->getType(); 3973 for (Value *V : VL) { 3974 CmpInst *Cmp = cast<CmpInst>(V); 3975 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 3976 Cmp->getOperand(0)->getType() != ComparedTy) { 3977 BS.cancelScheduling(VL, VL0); 3978 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3979 ReuseShuffleIndicies); 3980 LLVM_DEBUG(dbgs() 3981 << "SLP: Gathering cmp with different predicate.\n"); 3982 return; 3983 } 3984 } 3985 3986 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3987 ReuseShuffleIndicies); 3988 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 3989 3990 ValueList Left, Right; 3991 if (cast<CmpInst>(VL0)->isCommutative()) { 3992 // Commutative predicate - collect + sort operands of the instructions 3993 // so that each side is more likely to have the same opcode. 3994 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 3995 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3996 } else { 3997 // Collect operands - commute if it uses the swapped predicate. 3998 for (Value *V : VL) { 3999 auto *Cmp = cast<CmpInst>(V); 4000 Value *LHS = Cmp->getOperand(0); 4001 Value *RHS = Cmp->getOperand(1); 4002 if (Cmp->getPredicate() != P0) 4003 std::swap(LHS, RHS); 4004 Left.push_back(LHS); 4005 Right.push_back(RHS); 4006 } 4007 } 4008 TE->setOperand(0, Left); 4009 TE->setOperand(1, Right); 4010 buildTree_rec(Left, Depth + 1, {TE, 0}); 4011 buildTree_rec(Right, Depth + 1, {TE, 1}); 4012 return; 4013 } 4014 case Instruction::Select: 4015 case Instruction::FNeg: 4016 case Instruction::Add: 4017 case Instruction::FAdd: 4018 case Instruction::Sub: 4019 case Instruction::FSub: 4020 case Instruction::Mul: 4021 case Instruction::FMul: 4022 case Instruction::UDiv: 4023 case Instruction::SDiv: 4024 case Instruction::FDiv: 4025 case Instruction::URem: 4026 case Instruction::SRem: 4027 case Instruction::FRem: 4028 case Instruction::Shl: 4029 case Instruction::LShr: 4030 case Instruction::AShr: 4031 case Instruction::And: 4032 case Instruction::Or: 4033 case Instruction::Xor: { 4034 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4035 ReuseShuffleIndicies); 4036 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 4037 4038 // Sort operands of the instructions so that each side is more likely to 4039 // have the same opcode. 4040 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 4041 ValueList Left, Right; 4042 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4043 TE->setOperand(0, Left); 4044 TE->setOperand(1, Right); 4045 buildTree_rec(Left, Depth + 1, {TE, 0}); 4046 buildTree_rec(Right, Depth + 1, {TE, 1}); 4047 return; 4048 } 4049 4050 TE->setOperandsInOrder(); 4051 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4052 ValueList Operands; 4053 // Prepare the operand vector. 4054 for (Value *V : VL) 4055 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4056 4057 buildTree_rec(Operands, Depth + 1, {TE, i}); 4058 } 4059 return; 4060 } 4061 case Instruction::GetElementPtr: { 4062 // We don't combine GEPs with complicated (nested) indexing. 4063 for (Value *V : VL) { 4064 if (cast<Instruction>(V)->getNumOperands() != 2) { 4065 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 4066 BS.cancelScheduling(VL, VL0); 4067 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4068 ReuseShuffleIndicies); 4069 return; 4070 } 4071 } 4072 4073 // We can't combine several GEPs into one vector if they operate on 4074 // different types. 4075 Type *Ty0 = VL0->getOperand(0)->getType(); 4076 for (Value *V : VL) { 4077 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 4078 if (Ty0 != CurTy) { 4079 LLVM_DEBUG(dbgs() 4080 << "SLP: not-vectorizable GEP (different types).\n"); 4081 BS.cancelScheduling(VL, VL0); 4082 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4083 ReuseShuffleIndicies); 4084 return; 4085 } 4086 } 4087 4088 // We don't combine GEPs with non-constant indexes. 4089 Type *Ty1 = VL0->getOperand(1)->getType(); 4090 for (Value *V : VL) { 4091 auto Op = cast<Instruction>(V)->getOperand(1); 4092 if (!isa<ConstantInt>(Op) || 4093 (Op->getType() != Ty1 && 4094 Op->getType()->getScalarSizeInBits() > 4095 DL->getIndexSizeInBits( 4096 V->getType()->getPointerAddressSpace()))) { 4097 LLVM_DEBUG(dbgs() 4098 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 4099 BS.cancelScheduling(VL, VL0); 4100 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4101 ReuseShuffleIndicies); 4102 return; 4103 } 4104 } 4105 4106 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4107 ReuseShuffleIndicies); 4108 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 4109 SmallVector<ValueList, 2> Operands(2); 4110 // Prepare the operand vector for pointer operands. 4111 for (Value *V : VL) 4112 Operands.front().push_back( 4113 cast<GetElementPtrInst>(V)->getPointerOperand()); 4114 TE->setOperand(0, Operands.front()); 4115 // Need to cast all indices to the same type before vectorization to 4116 // avoid crash. 4117 // Required to be able to find correct matches between different gather 4118 // nodes and reuse the vectorized values rather than trying to gather them 4119 // again. 4120 int IndexIdx = 1; 4121 Type *VL0Ty = VL0->getOperand(IndexIdx)->getType(); 4122 Type *Ty = all_of(VL, 4123 [VL0Ty, IndexIdx](Value *V) { 4124 return VL0Ty == cast<GetElementPtrInst>(V) 4125 ->getOperand(IndexIdx) 4126 ->getType(); 4127 }) 4128 ? VL0Ty 4129 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4130 ->getPointerOperandType() 4131 ->getScalarType()); 4132 // Prepare the operand vector. 4133 for (Value *V : VL) { 4134 auto *Op = cast<Instruction>(V)->getOperand(IndexIdx); 4135 auto *CI = cast<ConstantInt>(Op); 4136 Operands.back().push_back(ConstantExpr::getIntegerCast( 4137 CI, Ty, CI->getValue().isSignBitSet())); 4138 } 4139 TE->setOperand(IndexIdx, Operands.back()); 4140 4141 for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I) 4142 buildTree_rec(Operands[I], Depth + 1, {TE, I}); 4143 return; 4144 } 4145 case Instruction::Store: { 4146 // Check if the stores are consecutive or if we need to swizzle them. 4147 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 4148 // Avoid types that are padded when being allocated as scalars, while 4149 // being packed together in a vector (such as i1). 4150 if (DL->getTypeSizeInBits(ScalarTy) != 4151 DL->getTypeAllocSizeInBits(ScalarTy)) { 4152 BS.cancelScheduling(VL, VL0); 4153 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4154 ReuseShuffleIndicies); 4155 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 4156 return; 4157 } 4158 // Make sure all stores in the bundle are simple - we can't vectorize 4159 // atomic or volatile stores. 4160 SmallVector<Value *, 4> PointerOps(VL.size()); 4161 ValueList Operands(VL.size()); 4162 auto POIter = PointerOps.begin(); 4163 auto OIter = Operands.begin(); 4164 for (Value *V : VL) { 4165 auto *SI = cast<StoreInst>(V); 4166 if (!SI->isSimple()) { 4167 BS.cancelScheduling(VL, VL0); 4168 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4169 ReuseShuffleIndicies); 4170 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 4171 return; 4172 } 4173 *POIter = SI->getPointerOperand(); 4174 *OIter = SI->getValueOperand(); 4175 ++POIter; 4176 ++OIter; 4177 } 4178 4179 OrdersType CurrentOrder; 4180 // Check the order of pointer operands. 4181 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 4182 Value *Ptr0; 4183 Value *PtrN; 4184 if (CurrentOrder.empty()) { 4185 Ptr0 = PointerOps.front(); 4186 PtrN = PointerOps.back(); 4187 } else { 4188 Ptr0 = PointerOps[CurrentOrder.front()]; 4189 PtrN = PointerOps[CurrentOrder.back()]; 4190 } 4191 Optional<int> Dist = 4192 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 4193 // Check that the sorted pointer operands are consecutive. 4194 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 4195 if (CurrentOrder.empty()) { 4196 // Original stores are consecutive and does not require reordering. 4197 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 4198 UserTreeIdx, ReuseShuffleIndicies); 4199 TE->setOperandsInOrder(); 4200 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4201 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 4202 } else { 4203 fixupOrderingIndices(CurrentOrder); 4204 TreeEntry *TE = 4205 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4206 ReuseShuffleIndicies, CurrentOrder); 4207 TE->setOperandsInOrder(); 4208 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4209 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 4210 } 4211 return; 4212 } 4213 } 4214 4215 BS.cancelScheduling(VL, VL0); 4216 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4217 ReuseShuffleIndicies); 4218 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 4219 return; 4220 } 4221 case Instruction::Call: { 4222 // Check if the calls are all to the same vectorizable intrinsic or 4223 // library function. 4224 CallInst *CI = cast<CallInst>(VL0); 4225 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4226 4227 VFShape Shape = VFShape::get( 4228 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 4229 false /*HasGlobalPred*/); 4230 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4231 4232 if (!VecFunc && !isTriviallyVectorizable(ID)) { 4233 BS.cancelScheduling(VL, VL0); 4234 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4235 ReuseShuffleIndicies); 4236 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 4237 return; 4238 } 4239 Function *F = CI->getCalledFunction(); 4240 unsigned NumArgs = CI->arg_size(); 4241 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 4242 for (unsigned j = 0; j != NumArgs; ++j) 4243 if (hasVectorInstrinsicScalarOpd(ID, j)) 4244 ScalarArgs[j] = CI->getArgOperand(j); 4245 for (Value *V : VL) { 4246 CallInst *CI2 = dyn_cast<CallInst>(V); 4247 if (!CI2 || CI2->getCalledFunction() != F || 4248 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 4249 (VecFunc && 4250 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 4251 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 4252 BS.cancelScheduling(VL, VL0); 4253 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4254 ReuseShuffleIndicies); 4255 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 4256 << "\n"); 4257 return; 4258 } 4259 // Some intrinsics have scalar arguments and should be same in order for 4260 // them to be vectorized. 4261 for (unsigned j = 0; j != NumArgs; ++j) { 4262 if (hasVectorInstrinsicScalarOpd(ID, j)) { 4263 Value *A1J = CI2->getArgOperand(j); 4264 if (ScalarArgs[j] != A1J) { 4265 BS.cancelScheduling(VL, VL0); 4266 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4267 ReuseShuffleIndicies); 4268 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 4269 << " argument " << ScalarArgs[j] << "!=" << A1J 4270 << "\n"); 4271 return; 4272 } 4273 } 4274 } 4275 // Verify that the bundle operands are identical between the two calls. 4276 if (CI->hasOperandBundles() && 4277 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 4278 CI->op_begin() + CI->getBundleOperandsEndIndex(), 4279 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 4280 BS.cancelScheduling(VL, VL0); 4281 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4282 ReuseShuffleIndicies); 4283 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 4284 << *CI << "!=" << *V << '\n'); 4285 return; 4286 } 4287 } 4288 4289 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4290 ReuseShuffleIndicies); 4291 TE->setOperandsInOrder(); 4292 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 4293 // For scalar operands no need to to create an entry since no need to 4294 // vectorize it. 4295 if (hasVectorInstrinsicScalarOpd(ID, i)) 4296 continue; 4297 ValueList Operands; 4298 // Prepare the operand vector. 4299 for (Value *V : VL) { 4300 auto *CI2 = cast<CallInst>(V); 4301 Operands.push_back(CI2->getArgOperand(i)); 4302 } 4303 buildTree_rec(Operands, Depth + 1, {TE, i}); 4304 } 4305 return; 4306 } 4307 case Instruction::ShuffleVector: { 4308 // If this is not an alternate sequence of opcode like add-sub 4309 // then do not vectorize this instruction. 4310 if (!S.isAltShuffle()) { 4311 BS.cancelScheduling(VL, VL0); 4312 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4313 ReuseShuffleIndicies); 4314 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 4315 return; 4316 } 4317 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4318 ReuseShuffleIndicies); 4319 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 4320 4321 // Reorder operands if reordering would enable vectorization. 4322 if (isa<BinaryOperator>(VL0)) { 4323 ValueList Left, Right; 4324 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4325 TE->setOperand(0, Left); 4326 TE->setOperand(1, Right); 4327 buildTree_rec(Left, Depth + 1, {TE, 0}); 4328 buildTree_rec(Right, Depth + 1, {TE, 1}); 4329 return; 4330 } 4331 4332 TE->setOperandsInOrder(); 4333 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4334 ValueList Operands; 4335 // Prepare the operand vector. 4336 for (Value *V : VL) 4337 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4338 4339 buildTree_rec(Operands, Depth + 1, {TE, i}); 4340 } 4341 return; 4342 } 4343 default: 4344 BS.cancelScheduling(VL, VL0); 4345 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4346 ReuseShuffleIndicies); 4347 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 4348 return; 4349 } 4350 } 4351 4352 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 4353 unsigned N = 1; 4354 Type *EltTy = T; 4355 4356 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 4357 isa<VectorType>(EltTy)) { 4358 if (auto *ST = dyn_cast<StructType>(EltTy)) { 4359 // Check that struct is homogeneous. 4360 for (const auto *Ty : ST->elements()) 4361 if (Ty != *ST->element_begin()) 4362 return 0; 4363 N *= ST->getNumElements(); 4364 EltTy = *ST->element_begin(); 4365 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 4366 N *= AT->getNumElements(); 4367 EltTy = AT->getElementType(); 4368 } else { 4369 auto *VT = cast<FixedVectorType>(EltTy); 4370 N *= VT->getNumElements(); 4371 EltTy = VT->getElementType(); 4372 } 4373 } 4374 4375 if (!isValidElementType(EltTy)) 4376 return 0; 4377 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 4378 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 4379 return 0; 4380 return N; 4381 } 4382 4383 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 4384 SmallVectorImpl<unsigned> &CurrentOrder) const { 4385 const auto *It = find_if(VL, [](Value *V) { 4386 return isa<ExtractElementInst, ExtractValueInst>(V); 4387 }); 4388 assert(It != VL.end() && "Expected at least one extract instruction."); 4389 auto *E0 = cast<Instruction>(*It); 4390 assert(all_of(VL, 4391 [](Value *V) { 4392 return isa<UndefValue, ExtractElementInst, ExtractValueInst>( 4393 V); 4394 }) && 4395 "Invalid opcode"); 4396 // Check if all of the extracts come from the same vector and from the 4397 // correct offset. 4398 Value *Vec = E0->getOperand(0); 4399 4400 CurrentOrder.clear(); 4401 4402 // We have to extract from a vector/aggregate with the same number of elements. 4403 unsigned NElts; 4404 if (E0->getOpcode() == Instruction::ExtractValue) { 4405 const DataLayout &DL = E0->getModule()->getDataLayout(); 4406 NElts = canMapToVector(Vec->getType(), DL); 4407 if (!NElts) 4408 return false; 4409 // Check if load can be rewritten as load of vector. 4410 LoadInst *LI = dyn_cast<LoadInst>(Vec); 4411 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 4412 return false; 4413 } else { 4414 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 4415 } 4416 4417 if (NElts != VL.size()) 4418 return false; 4419 4420 // Check that all of the indices extract from the correct offset. 4421 bool ShouldKeepOrder = true; 4422 unsigned E = VL.size(); 4423 // Assign to all items the initial value E + 1 so we can check if the extract 4424 // instruction index was used already. 4425 // Also, later we can check that all the indices are used and we have a 4426 // consecutive access in the extract instructions, by checking that no 4427 // element of CurrentOrder still has value E + 1. 4428 CurrentOrder.assign(E, E); 4429 unsigned I = 0; 4430 for (; I < E; ++I) { 4431 auto *Inst = dyn_cast<Instruction>(VL[I]); 4432 if (!Inst) 4433 continue; 4434 if (Inst->getOperand(0) != Vec) 4435 break; 4436 if (auto *EE = dyn_cast<ExtractElementInst>(Inst)) 4437 if (isa<UndefValue>(EE->getIndexOperand())) 4438 continue; 4439 Optional<unsigned> Idx = getExtractIndex(Inst); 4440 if (!Idx) 4441 break; 4442 const unsigned ExtIdx = *Idx; 4443 if (ExtIdx != I) { 4444 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E) 4445 break; 4446 ShouldKeepOrder = false; 4447 CurrentOrder[ExtIdx] = I; 4448 } else { 4449 if (CurrentOrder[I] != E) 4450 break; 4451 CurrentOrder[I] = I; 4452 } 4453 } 4454 if (I < E) { 4455 CurrentOrder.clear(); 4456 return false; 4457 } 4458 4459 return ShouldKeepOrder; 4460 } 4461 4462 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 4463 ArrayRef<Value *> VectorizedVals) const { 4464 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 4465 all_of(I->users(), [this](User *U) { 4466 return ScalarToTreeEntry.count(U) > 0 || MustGather.contains(U); 4467 }); 4468 } 4469 4470 static std::pair<InstructionCost, InstructionCost> 4471 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 4472 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 4473 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4474 4475 // Calculate the cost of the scalar and vector calls. 4476 SmallVector<Type *, 4> VecTys; 4477 for (Use &Arg : CI->args()) 4478 VecTys.push_back( 4479 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 4480 FastMathFlags FMF; 4481 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 4482 FMF = FPCI->getFastMathFlags(); 4483 SmallVector<const Value *> Arguments(CI->args()); 4484 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 4485 dyn_cast<IntrinsicInst>(CI)); 4486 auto IntrinsicCost = 4487 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 4488 4489 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4490 VecTy->getNumElements())), 4491 false /*HasGlobalPred*/); 4492 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4493 auto LibCost = IntrinsicCost; 4494 if (!CI->isNoBuiltin() && VecFunc) { 4495 // Calculate the cost of the vector library call. 4496 // If the corresponding vector call is cheaper, return its cost. 4497 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 4498 TTI::TCK_RecipThroughput); 4499 } 4500 return {IntrinsicCost, LibCost}; 4501 } 4502 4503 /// Compute the cost of creating a vector of type \p VecTy containing the 4504 /// extracted values from \p VL. 4505 static InstructionCost 4506 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 4507 TargetTransformInfo::ShuffleKind ShuffleKind, 4508 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 4509 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 4510 4511 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 4512 VecTy->getNumElements() < NumOfParts) 4513 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 4514 4515 bool AllConsecutive = true; 4516 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 4517 unsigned Idx = -1; 4518 InstructionCost Cost = 0; 4519 4520 // Process extracts in blocks of EltsPerVector to check if the source vector 4521 // operand can be re-used directly. If not, add the cost of creating a shuffle 4522 // to extract the values into a vector register. 4523 for (auto *V : VL) { 4524 ++Idx; 4525 4526 // Need to exclude undefs from analysis. 4527 if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem) 4528 continue; 4529 4530 // Reached the start of a new vector registers. 4531 if (Idx % EltsPerVector == 0) { 4532 AllConsecutive = true; 4533 continue; 4534 } 4535 4536 // Check all extracts for a vector register on the target directly 4537 // extract values in order. 4538 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 4539 if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) { 4540 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 4541 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 4542 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 4543 } 4544 4545 if (AllConsecutive) 4546 continue; 4547 4548 // Skip all indices, except for the last index per vector block. 4549 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 4550 continue; 4551 4552 // If we have a series of extracts which are not consecutive and hence 4553 // cannot re-use the source vector register directly, compute the shuffle 4554 // cost to extract the a vector with EltsPerVector elements. 4555 Cost += TTI.getShuffleCost( 4556 TargetTransformInfo::SK_PermuteSingleSrc, 4557 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 4558 } 4559 return Cost; 4560 } 4561 4562 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 4563 /// operations operands. 4564 static void 4565 buildSuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 4566 ArrayRef<int> ReusesIndices, 4567 const function_ref<bool(Instruction *)> IsAltOp, 4568 SmallVectorImpl<int> &Mask, 4569 SmallVectorImpl<Value *> *OpScalars = nullptr, 4570 SmallVectorImpl<Value *> *AltScalars = nullptr) { 4571 unsigned Sz = VL.size(); 4572 Mask.assign(Sz, UndefMaskElem); 4573 SmallVector<int> OrderMask; 4574 if (!ReorderIndices.empty()) 4575 inversePermutation(ReorderIndices, OrderMask); 4576 for (unsigned I = 0; I < Sz; ++I) { 4577 unsigned Idx = I; 4578 if (!ReorderIndices.empty()) 4579 Idx = OrderMask[I]; 4580 auto *OpInst = cast<Instruction>(VL[Idx]); 4581 if (IsAltOp(OpInst)) { 4582 Mask[I] = Sz + Idx; 4583 if (AltScalars) 4584 AltScalars->push_back(OpInst); 4585 } else { 4586 Mask[I] = Idx; 4587 if (OpScalars) 4588 OpScalars->push_back(OpInst); 4589 } 4590 } 4591 if (!ReusesIndices.empty()) { 4592 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 4593 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 4594 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 4595 }); 4596 Mask.swap(NewMask); 4597 } 4598 } 4599 4600 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 4601 ArrayRef<Value *> VectorizedVals) { 4602 ArrayRef<Value*> VL = E->Scalars; 4603 4604 Type *ScalarTy = VL[0]->getType(); 4605 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4606 ScalarTy = SI->getValueOperand()->getType(); 4607 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 4608 ScalarTy = CI->getOperand(0)->getType(); 4609 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 4610 ScalarTy = IE->getOperand(1)->getType(); 4611 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4612 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 4613 4614 // If we have computed a smaller type for the expression, update VecTy so 4615 // that the costs will be accurate. 4616 if (MinBWs.count(VL[0])) 4617 VecTy = FixedVectorType::get( 4618 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 4619 unsigned EntryVF = E->getVectorFactor(); 4620 auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF); 4621 4622 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4623 // FIXME: it tries to fix a problem with MSVC buildbots. 4624 TargetTransformInfo &TTIRef = *TTI; 4625 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 4626 VectorizedVals, E](InstructionCost &Cost) { 4627 DenseMap<Value *, int> ExtractVectorsTys; 4628 SmallPtrSet<Value *, 4> CheckedExtracts; 4629 for (auto *V : VL) { 4630 if (isa<UndefValue>(V)) 4631 continue; 4632 // If all users of instruction are going to be vectorized and this 4633 // instruction itself is not going to be vectorized, consider this 4634 // instruction as dead and remove its cost from the final cost of the 4635 // vectorized tree. 4636 // Also, avoid adjusting the cost for extractelements with multiple uses 4637 // in different graph entries. 4638 const TreeEntry *VE = getTreeEntry(V); 4639 if (!CheckedExtracts.insert(V).second || 4640 !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 4641 (VE && VE != E)) 4642 continue; 4643 auto *EE = cast<ExtractElementInst>(V); 4644 Optional<unsigned> EEIdx = getExtractIndex(EE); 4645 if (!EEIdx) 4646 continue; 4647 unsigned Idx = *EEIdx; 4648 if (TTIRef.getNumberOfParts(VecTy) != 4649 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 4650 auto It = 4651 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 4652 It->getSecond() = std::min<int>(It->second, Idx); 4653 } 4654 // Take credit for instruction that will become dead. 4655 if (EE->hasOneUse()) { 4656 Instruction *Ext = EE->user_back(); 4657 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4658 all_of(Ext->users(), 4659 [](User *U) { return isa<GetElementPtrInst>(U); })) { 4660 // Use getExtractWithExtendCost() to calculate the cost of 4661 // extractelement/ext pair. 4662 Cost -= 4663 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 4664 EE->getVectorOperandType(), Idx); 4665 // Add back the cost of s|zext which is subtracted separately. 4666 Cost += TTIRef.getCastInstrCost( 4667 Ext->getOpcode(), Ext->getType(), EE->getType(), 4668 TTI::getCastContextHint(Ext), CostKind, Ext); 4669 continue; 4670 } 4671 } 4672 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 4673 EE->getVectorOperandType(), Idx); 4674 } 4675 // Add a cost for subvector extracts/inserts if required. 4676 for (const auto &Data : ExtractVectorsTys) { 4677 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 4678 unsigned NumElts = VecTy->getNumElements(); 4679 if (Data.second % NumElts == 0) 4680 continue; 4681 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 4682 unsigned Idx = (Data.second / NumElts) * NumElts; 4683 unsigned EENumElts = EEVTy->getNumElements(); 4684 if (Idx + NumElts <= EENumElts) { 4685 Cost += 4686 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 4687 EEVTy, None, Idx, VecTy); 4688 } else { 4689 // Need to round up the subvector type vectorization factor to avoid a 4690 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 4691 // <= EENumElts. 4692 auto *SubVT = 4693 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 4694 Cost += 4695 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 4696 EEVTy, None, Idx, SubVT); 4697 } 4698 } else { 4699 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 4700 VecTy, None, 0, EEVTy); 4701 } 4702 } 4703 }; 4704 if (E->State == TreeEntry::NeedToGather) { 4705 if (allConstant(VL)) 4706 return 0; 4707 if (isa<InsertElementInst>(VL[0])) 4708 return InstructionCost::getInvalid(); 4709 SmallVector<int> Mask; 4710 SmallVector<const TreeEntry *> Entries; 4711 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 4712 isGatherShuffledEntry(E, Mask, Entries); 4713 if (Shuffle.hasValue()) { 4714 InstructionCost GatherCost = 0; 4715 if (ShuffleVectorInst::isIdentityMask(Mask)) { 4716 // Perfect match in the graph, will reuse the previously vectorized 4717 // node. Cost is 0. 4718 LLVM_DEBUG( 4719 dbgs() 4720 << "SLP: perfect diamond match for gather bundle that starts with " 4721 << *VL.front() << ".\n"); 4722 if (NeedToShuffleReuses) 4723 GatherCost = 4724 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 4725 FinalVecTy, E->ReuseShuffleIndices); 4726 } else { 4727 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 4728 << " entries for bundle that starts with " 4729 << *VL.front() << ".\n"); 4730 // Detected that instead of gather we can emit a shuffle of single/two 4731 // previously vectorized nodes. Add the cost of the permutation rather 4732 // than gather. 4733 ::addMask(Mask, E->ReuseShuffleIndices); 4734 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 4735 } 4736 return GatherCost; 4737 } 4738 if ((E->getOpcode() == Instruction::ExtractElement || 4739 all_of(E->Scalars, 4740 [](Value *V) { 4741 return isa<ExtractElementInst, UndefValue>(V); 4742 })) && 4743 allSameType(VL)) { 4744 // Check that gather of extractelements can be represented as just a 4745 // shuffle of a single/two vectors the scalars are extracted from. 4746 SmallVector<int> Mask; 4747 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 4748 isFixedVectorShuffle(VL, Mask); 4749 if (ShuffleKind.hasValue()) { 4750 // Found the bunch of extractelement instructions that must be gathered 4751 // into a vector and can be represented as a permutation elements in a 4752 // single input vector or of 2 input vectors. 4753 InstructionCost Cost = 4754 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 4755 AdjustExtractsCost(Cost); 4756 if (NeedToShuffleReuses) 4757 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 4758 FinalVecTy, E->ReuseShuffleIndices); 4759 return Cost; 4760 } 4761 } 4762 if (isSplat(VL)) { 4763 // Found the broadcasting of the single scalar, calculate the cost as the 4764 // broadcast. 4765 assert(VecTy == FinalVecTy && 4766 "No reused scalars expected for broadcast."); 4767 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy); 4768 } 4769 InstructionCost ReuseShuffleCost = 0; 4770 if (NeedToShuffleReuses) 4771 ReuseShuffleCost = TTI->getShuffleCost( 4772 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 4773 // Improve gather cost for gather of loads, if we can group some of the 4774 // loads into vector loads. 4775 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 4776 !E->isAltShuffle()) { 4777 BoUpSLP::ValueSet VectorizedLoads; 4778 unsigned StartIdx = 0; 4779 unsigned VF = VL.size() / 2; 4780 unsigned VectorizedCnt = 0; 4781 unsigned ScatterVectorizeCnt = 0; 4782 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 4783 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 4784 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 4785 Cnt += VF) { 4786 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 4787 if (!VectorizedLoads.count(Slice.front()) && 4788 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 4789 SmallVector<Value *> PointerOps; 4790 OrdersType CurrentOrder; 4791 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 4792 *SE, CurrentOrder, PointerOps); 4793 switch (LS) { 4794 case LoadsState::Vectorize: 4795 case LoadsState::ScatterVectorize: 4796 // Mark the vectorized loads so that we don't vectorize them 4797 // again. 4798 if (LS == LoadsState::Vectorize) 4799 ++VectorizedCnt; 4800 else 4801 ++ScatterVectorizeCnt; 4802 VectorizedLoads.insert(Slice.begin(), Slice.end()); 4803 // If we vectorized initial block, no need to try to vectorize it 4804 // again. 4805 if (Cnt == StartIdx) 4806 StartIdx += VF; 4807 break; 4808 case LoadsState::Gather: 4809 break; 4810 } 4811 } 4812 } 4813 // Check if the whole array was vectorized already - exit. 4814 if (StartIdx >= VL.size()) 4815 break; 4816 // Found vectorizable parts - exit. 4817 if (!VectorizedLoads.empty()) 4818 break; 4819 } 4820 if (!VectorizedLoads.empty()) { 4821 InstructionCost GatherCost = 0; 4822 unsigned NumParts = TTI->getNumberOfParts(VecTy); 4823 bool NeedInsertSubvectorAnalysis = 4824 !NumParts || (VL.size() / VF) > NumParts; 4825 // Get the cost for gathered loads. 4826 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 4827 if (VectorizedLoads.contains(VL[I])) 4828 continue; 4829 GatherCost += getGatherCost(VL.slice(I, VF)); 4830 } 4831 // The cost for vectorized loads. 4832 InstructionCost ScalarsCost = 0; 4833 for (Value *V : VectorizedLoads) { 4834 auto *LI = cast<LoadInst>(V); 4835 ScalarsCost += TTI->getMemoryOpCost( 4836 Instruction::Load, LI->getType(), LI->getAlign(), 4837 LI->getPointerAddressSpace(), CostKind, LI); 4838 } 4839 auto *LI = cast<LoadInst>(E->getMainOp()); 4840 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 4841 Align Alignment = LI->getAlign(); 4842 GatherCost += 4843 VectorizedCnt * 4844 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 4845 LI->getPointerAddressSpace(), CostKind, LI); 4846 GatherCost += ScatterVectorizeCnt * 4847 TTI->getGatherScatterOpCost( 4848 Instruction::Load, LoadTy, LI->getPointerOperand(), 4849 /*VariableMask=*/false, Alignment, CostKind, LI); 4850 if (NeedInsertSubvectorAnalysis) { 4851 // Add the cost for the subvectors insert. 4852 for (int I = VF, E = VL.size(); I < E; I += VF) 4853 GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy, 4854 None, I, LoadTy); 4855 } 4856 return ReuseShuffleCost + GatherCost - ScalarsCost; 4857 } 4858 } 4859 return ReuseShuffleCost + getGatherCost(VL); 4860 } 4861 InstructionCost CommonCost = 0; 4862 SmallVector<int> Mask; 4863 if (!E->ReorderIndices.empty()) { 4864 SmallVector<int> NewMask; 4865 if (E->getOpcode() == Instruction::Store) { 4866 // For stores the order is actually a mask. 4867 NewMask.resize(E->ReorderIndices.size()); 4868 copy(E->ReorderIndices, NewMask.begin()); 4869 } else { 4870 inversePermutation(E->ReorderIndices, NewMask); 4871 } 4872 ::addMask(Mask, NewMask); 4873 } 4874 if (NeedToShuffleReuses) 4875 ::addMask(Mask, E->ReuseShuffleIndices); 4876 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 4877 CommonCost = 4878 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 4879 assert((E->State == TreeEntry::Vectorize || 4880 E->State == TreeEntry::ScatterVectorize) && 4881 "Unhandled state"); 4882 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 4883 Instruction *VL0 = E->getMainOp(); 4884 unsigned ShuffleOrOp = 4885 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 4886 switch (ShuffleOrOp) { 4887 case Instruction::PHI: 4888 return 0; 4889 4890 case Instruction::ExtractValue: 4891 case Instruction::ExtractElement: { 4892 // The common cost of removal ExtractElement/ExtractValue instructions + 4893 // the cost of shuffles, if required to resuffle the original vector. 4894 if (NeedToShuffleReuses) { 4895 unsigned Idx = 0; 4896 for (unsigned I : E->ReuseShuffleIndices) { 4897 if (ShuffleOrOp == Instruction::ExtractElement) { 4898 auto *EE = cast<ExtractElementInst>(VL[I]); 4899 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 4900 EE->getVectorOperandType(), 4901 *getExtractIndex(EE)); 4902 } else { 4903 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 4904 VecTy, Idx); 4905 ++Idx; 4906 } 4907 } 4908 Idx = EntryVF; 4909 for (Value *V : VL) { 4910 if (ShuffleOrOp == Instruction::ExtractElement) { 4911 auto *EE = cast<ExtractElementInst>(V); 4912 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 4913 EE->getVectorOperandType(), 4914 *getExtractIndex(EE)); 4915 } else { 4916 --Idx; 4917 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 4918 VecTy, Idx); 4919 } 4920 } 4921 } 4922 if (ShuffleOrOp == Instruction::ExtractValue) { 4923 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 4924 auto *EI = cast<Instruction>(VL[I]); 4925 // Take credit for instruction that will become dead. 4926 if (EI->hasOneUse()) { 4927 Instruction *Ext = EI->user_back(); 4928 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4929 all_of(Ext->users(), 4930 [](User *U) { return isa<GetElementPtrInst>(U); })) { 4931 // Use getExtractWithExtendCost() to calculate the cost of 4932 // extractelement/ext pair. 4933 CommonCost -= TTI->getExtractWithExtendCost( 4934 Ext->getOpcode(), Ext->getType(), VecTy, I); 4935 // Add back the cost of s|zext which is subtracted separately. 4936 CommonCost += TTI->getCastInstrCost( 4937 Ext->getOpcode(), Ext->getType(), EI->getType(), 4938 TTI::getCastContextHint(Ext), CostKind, Ext); 4939 continue; 4940 } 4941 } 4942 CommonCost -= 4943 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 4944 } 4945 } else { 4946 AdjustExtractsCost(CommonCost); 4947 } 4948 return CommonCost; 4949 } 4950 case Instruction::InsertElement: { 4951 assert(E->ReuseShuffleIndices.empty() && 4952 "Unique insertelements only are expected."); 4953 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 4954 4955 unsigned const NumElts = SrcVecTy->getNumElements(); 4956 unsigned const NumScalars = VL.size(); 4957 APInt DemandedElts = APInt::getZero(NumElts); 4958 // TODO: Add support for Instruction::InsertValue. 4959 SmallVector<int> Mask; 4960 if (!E->ReorderIndices.empty()) { 4961 inversePermutation(E->ReorderIndices, Mask); 4962 Mask.append(NumElts - NumScalars, UndefMaskElem); 4963 } else { 4964 Mask.assign(NumElts, UndefMaskElem); 4965 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 4966 } 4967 unsigned Offset = *getInsertIndex(VL0, 0); 4968 bool IsIdentity = true; 4969 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 4970 Mask.swap(PrevMask); 4971 for (unsigned I = 0; I < NumScalars; ++I) { 4972 Optional<int> InsertIdx = getInsertIndex(VL[PrevMask[I]], 0); 4973 if (!InsertIdx || *InsertIdx == UndefMaskElem) 4974 continue; 4975 DemandedElts.setBit(*InsertIdx); 4976 IsIdentity &= *InsertIdx - Offset == I; 4977 Mask[*InsertIdx - Offset] = I; 4978 } 4979 assert(Offset < NumElts && "Failed to find vector index offset"); 4980 4981 InstructionCost Cost = 0; 4982 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 4983 /*Insert*/ true, /*Extract*/ false); 4984 4985 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 4986 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 4987 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 4988 Cost += TTI->getShuffleCost( 4989 TargetTransformInfo::SK_PermuteSingleSrc, 4990 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 4991 } else if (!IsIdentity) { 4992 auto *FirstInsert = 4993 cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 4994 return !is_contained(E->Scalars, 4995 cast<Instruction>(V)->getOperand(0)); 4996 })); 4997 if (isUndefVector(FirstInsert->getOperand(0))) { 4998 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask); 4999 } else { 5000 SmallVector<int> InsertMask(NumElts); 5001 std::iota(InsertMask.begin(), InsertMask.end(), 0); 5002 for (unsigned I = 0; I < NumElts; I++) { 5003 if (Mask[I] != UndefMaskElem) 5004 InsertMask[Offset + I] = NumElts + I; 5005 } 5006 Cost += 5007 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask); 5008 } 5009 } 5010 5011 return Cost; 5012 } 5013 case Instruction::ZExt: 5014 case Instruction::SExt: 5015 case Instruction::FPToUI: 5016 case Instruction::FPToSI: 5017 case Instruction::FPExt: 5018 case Instruction::PtrToInt: 5019 case Instruction::IntToPtr: 5020 case Instruction::SIToFP: 5021 case Instruction::UIToFP: 5022 case Instruction::Trunc: 5023 case Instruction::FPTrunc: 5024 case Instruction::BitCast: { 5025 Type *SrcTy = VL0->getOperand(0)->getType(); 5026 InstructionCost ScalarEltCost = 5027 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 5028 TTI::getCastContextHint(VL0), CostKind, VL0); 5029 if (NeedToShuffleReuses) { 5030 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5031 } 5032 5033 // Calculate the cost of this instruction. 5034 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 5035 5036 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 5037 InstructionCost VecCost = 0; 5038 // Check if the values are candidates to demote. 5039 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 5040 VecCost = CommonCost + TTI->getCastInstrCost( 5041 E->getOpcode(), VecTy, SrcVecTy, 5042 TTI::getCastContextHint(VL0), CostKind, VL0); 5043 } 5044 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5045 return VecCost - ScalarCost; 5046 } 5047 case Instruction::FCmp: 5048 case Instruction::ICmp: 5049 case Instruction::Select: { 5050 // Calculate the cost of this instruction. 5051 InstructionCost ScalarEltCost = 5052 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5053 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 5054 if (NeedToShuffleReuses) { 5055 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5056 } 5057 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 5058 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5059 5060 // Check if all entries in VL are either compares or selects with compares 5061 // as condition that have the same predicates. 5062 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 5063 bool First = true; 5064 for (auto *V : VL) { 5065 CmpInst::Predicate CurrentPred; 5066 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 5067 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 5068 !match(V, MatchCmp)) || 5069 (!First && VecPred != CurrentPred)) { 5070 VecPred = CmpInst::BAD_ICMP_PREDICATE; 5071 break; 5072 } 5073 First = false; 5074 VecPred = CurrentPred; 5075 } 5076 5077 InstructionCost VecCost = TTI->getCmpSelInstrCost( 5078 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 5079 // Check if it is possible and profitable to use min/max for selects in 5080 // VL. 5081 // 5082 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 5083 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 5084 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 5085 {VecTy, VecTy}); 5086 InstructionCost IntrinsicCost = 5087 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5088 // If the selects are the only uses of the compares, they will be dead 5089 // and we can adjust the cost by removing their cost. 5090 if (IntrinsicAndUse.second) 5091 IntrinsicCost -= 5092 TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy, 5093 CmpInst::BAD_ICMP_PREDICATE, CostKind); 5094 VecCost = std::min(VecCost, IntrinsicCost); 5095 } 5096 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5097 return CommonCost + VecCost - ScalarCost; 5098 } 5099 case Instruction::FNeg: 5100 case Instruction::Add: 5101 case Instruction::FAdd: 5102 case Instruction::Sub: 5103 case Instruction::FSub: 5104 case Instruction::Mul: 5105 case Instruction::FMul: 5106 case Instruction::UDiv: 5107 case Instruction::SDiv: 5108 case Instruction::FDiv: 5109 case Instruction::URem: 5110 case Instruction::SRem: 5111 case Instruction::FRem: 5112 case Instruction::Shl: 5113 case Instruction::LShr: 5114 case Instruction::AShr: 5115 case Instruction::And: 5116 case Instruction::Or: 5117 case Instruction::Xor: { 5118 // Certain instructions can be cheaper to vectorize if they have a 5119 // constant second vector operand. 5120 TargetTransformInfo::OperandValueKind Op1VK = 5121 TargetTransformInfo::OK_AnyValue; 5122 TargetTransformInfo::OperandValueKind Op2VK = 5123 TargetTransformInfo::OK_UniformConstantValue; 5124 TargetTransformInfo::OperandValueProperties Op1VP = 5125 TargetTransformInfo::OP_None; 5126 TargetTransformInfo::OperandValueProperties Op2VP = 5127 TargetTransformInfo::OP_PowerOf2; 5128 5129 // If all operands are exactly the same ConstantInt then set the 5130 // operand kind to OK_UniformConstantValue. 5131 // If instead not all operands are constants, then set the operand kind 5132 // to OK_AnyValue. If all operands are constants but not the same, 5133 // then set the operand kind to OK_NonUniformConstantValue. 5134 ConstantInt *CInt0 = nullptr; 5135 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 5136 const Instruction *I = cast<Instruction>(VL[i]); 5137 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 5138 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 5139 if (!CInt) { 5140 Op2VK = TargetTransformInfo::OK_AnyValue; 5141 Op2VP = TargetTransformInfo::OP_None; 5142 break; 5143 } 5144 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 5145 !CInt->getValue().isPowerOf2()) 5146 Op2VP = TargetTransformInfo::OP_None; 5147 if (i == 0) { 5148 CInt0 = CInt; 5149 continue; 5150 } 5151 if (CInt0 != CInt) 5152 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5153 } 5154 5155 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 5156 InstructionCost ScalarEltCost = 5157 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 5158 Op2VK, Op1VP, Op2VP, Operands, VL0); 5159 if (NeedToShuffleReuses) { 5160 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5161 } 5162 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5163 InstructionCost VecCost = 5164 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 5165 Op2VK, Op1VP, Op2VP, Operands, VL0); 5166 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5167 return CommonCost + VecCost - ScalarCost; 5168 } 5169 case Instruction::GetElementPtr: { 5170 TargetTransformInfo::OperandValueKind Op1VK = 5171 TargetTransformInfo::OK_AnyValue; 5172 TargetTransformInfo::OperandValueKind Op2VK = 5173 TargetTransformInfo::OK_UniformConstantValue; 5174 5175 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 5176 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 5177 if (NeedToShuffleReuses) { 5178 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5179 } 5180 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5181 InstructionCost VecCost = TTI->getArithmeticInstrCost( 5182 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 5183 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5184 return CommonCost + VecCost - ScalarCost; 5185 } 5186 case Instruction::Load: { 5187 // Cost of wide load - cost of scalar loads. 5188 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 5189 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5190 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 5191 if (NeedToShuffleReuses) { 5192 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5193 } 5194 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 5195 InstructionCost VecLdCost; 5196 if (E->State == TreeEntry::Vectorize) { 5197 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 5198 CostKind, VL0); 5199 } else { 5200 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 5201 Align CommonAlignment = Alignment; 5202 for (Value *V : VL) 5203 CommonAlignment = 5204 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 5205 VecLdCost = TTI->getGatherScatterOpCost( 5206 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 5207 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 5208 } 5209 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 5210 return CommonCost + VecLdCost - ScalarLdCost; 5211 } 5212 case Instruction::Store: { 5213 // We know that we can merge the stores. Calculate the cost. 5214 bool IsReorder = !E->ReorderIndices.empty(); 5215 auto *SI = 5216 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 5217 Align Alignment = SI->getAlign(); 5218 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5219 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 5220 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 5221 InstructionCost VecStCost = TTI->getMemoryOpCost( 5222 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 5223 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 5224 return CommonCost + VecStCost - ScalarStCost; 5225 } 5226 case Instruction::Call: { 5227 CallInst *CI = cast<CallInst>(VL0); 5228 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5229 5230 // Calculate the cost of the scalar and vector calls. 5231 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 5232 InstructionCost ScalarEltCost = 5233 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5234 if (NeedToShuffleReuses) { 5235 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5236 } 5237 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 5238 5239 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 5240 InstructionCost VecCallCost = 5241 std::min(VecCallCosts.first, VecCallCosts.second); 5242 5243 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 5244 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 5245 << " for " << *CI << "\n"); 5246 5247 return CommonCost + VecCallCost - ScalarCallCost; 5248 } 5249 case Instruction::ShuffleVector: { 5250 assert(E->isAltShuffle() && 5251 ((Instruction::isBinaryOp(E->getOpcode()) && 5252 Instruction::isBinaryOp(E->getAltOpcode())) || 5253 (Instruction::isCast(E->getOpcode()) && 5254 Instruction::isCast(E->getAltOpcode()))) && 5255 "Invalid Shuffle Vector Operand"); 5256 InstructionCost ScalarCost = 0; 5257 if (NeedToShuffleReuses) { 5258 for (unsigned Idx : E->ReuseShuffleIndices) { 5259 Instruction *I = cast<Instruction>(VL[Idx]); 5260 CommonCost -= TTI->getInstructionCost(I, CostKind); 5261 } 5262 for (Value *V : VL) { 5263 Instruction *I = cast<Instruction>(V); 5264 CommonCost += TTI->getInstructionCost(I, CostKind); 5265 } 5266 } 5267 for (Value *V : VL) { 5268 Instruction *I = cast<Instruction>(V); 5269 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5270 ScalarCost += TTI->getInstructionCost(I, CostKind); 5271 } 5272 // VecCost is equal to sum of the cost of creating 2 vectors 5273 // and the cost of creating shuffle. 5274 InstructionCost VecCost = 0; 5275 // Try to find the previous shuffle node with the same operands and same 5276 // main/alternate ops. 5277 auto &&TryFindNodeWithEqualOperands = [this, E]() { 5278 for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 5279 if (TE.get() == E) 5280 break; 5281 if (TE->isAltShuffle() && 5282 ((TE->getOpcode() == E->getOpcode() && 5283 TE->getAltOpcode() == E->getAltOpcode()) || 5284 (TE->getOpcode() == E->getAltOpcode() && 5285 TE->getAltOpcode() == E->getOpcode())) && 5286 TE->hasEqualOperands(*E)) 5287 return true; 5288 } 5289 return false; 5290 }; 5291 if (TryFindNodeWithEqualOperands()) { 5292 LLVM_DEBUG({ 5293 dbgs() << "SLP: diamond match for alternate node found.\n"; 5294 E->dump(); 5295 }); 5296 // No need to add new vector costs here since we're going to reuse 5297 // same main/alternate vector ops, just do different shuffling. 5298 } else if (Instruction::isBinaryOp(E->getOpcode())) { 5299 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 5300 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 5301 CostKind); 5302 } else { 5303 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 5304 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 5305 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 5306 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 5307 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 5308 TTI::CastContextHint::None, CostKind); 5309 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 5310 TTI::CastContextHint::None, CostKind); 5311 } 5312 5313 SmallVector<int> Mask; 5314 buildSuffleEntryMask( 5315 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 5316 [E](Instruction *I) { 5317 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5318 return I->getOpcode() == E->getAltOpcode(); 5319 }, 5320 Mask); 5321 CommonCost = 5322 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy, Mask); 5323 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5324 return CommonCost + VecCost - ScalarCost; 5325 } 5326 default: 5327 llvm_unreachable("Unknown instruction"); 5328 } 5329 } 5330 5331 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { 5332 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 5333 << VectorizableTree.size() << " is fully vectorizable .\n"); 5334 5335 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { 5336 SmallVector<int> Mask; 5337 return TE->State == TreeEntry::NeedToGather && 5338 !any_of(TE->Scalars, 5339 [this](Value *V) { return EphValues.contains(V); }) && 5340 (allConstant(TE->Scalars) || isSplat(TE->Scalars) || 5341 TE->Scalars.size() < Limit || 5342 ((TE->getOpcode() == Instruction::ExtractElement || 5343 all_of(TE->Scalars, 5344 [](Value *V) { 5345 return isa<ExtractElementInst, UndefValue>(V); 5346 })) && 5347 isFixedVectorShuffle(TE->Scalars, Mask)) || 5348 (TE->State == TreeEntry::NeedToGather && 5349 TE->getOpcode() == Instruction::Load && !TE->isAltShuffle())); 5350 }; 5351 5352 // We only handle trees of heights 1 and 2. 5353 if (VectorizableTree.size() == 1 && 5354 (VectorizableTree[0]->State == TreeEntry::Vectorize || 5355 (ForReduction && 5356 AreVectorizableGathers(VectorizableTree[0].get(), 5357 VectorizableTree[0]->Scalars.size()) && 5358 VectorizableTree[0]->getVectorFactor() > 2))) 5359 return true; 5360 5361 if (VectorizableTree.size() != 2) 5362 return false; 5363 5364 // Handle splat and all-constants stores. Also try to vectorize tiny trees 5365 // with the second gather nodes if they have less scalar operands rather than 5366 // the initial tree element (may be profitable to shuffle the second gather) 5367 // or they are extractelements, which form shuffle. 5368 SmallVector<int> Mask; 5369 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 5370 AreVectorizableGathers(VectorizableTree[1].get(), 5371 VectorizableTree[0]->Scalars.size())) 5372 return true; 5373 5374 // Gathering cost would be too much for tiny trees. 5375 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 5376 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 5377 VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) 5378 return false; 5379 5380 return true; 5381 } 5382 5383 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 5384 TargetTransformInfo *TTI, 5385 bool MustMatchOrInst) { 5386 // Look past the root to find a source value. Arbitrarily follow the 5387 // path through operand 0 of any 'or'. Also, peek through optional 5388 // shift-left-by-multiple-of-8-bits. 5389 Value *ZextLoad = Root; 5390 const APInt *ShAmtC; 5391 bool FoundOr = false; 5392 while (!isa<ConstantExpr>(ZextLoad) && 5393 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 5394 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 5395 ShAmtC->urem(8) == 0))) { 5396 auto *BinOp = cast<BinaryOperator>(ZextLoad); 5397 ZextLoad = BinOp->getOperand(0); 5398 if (BinOp->getOpcode() == Instruction::Or) 5399 FoundOr = true; 5400 } 5401 // Check if the input is an extended load of the required or/shift expression. 5402 Value *Load; 5403 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 5404 !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load)) 5405 return false; 5406 5407 // Require that the total load bit width is a legal integer type. 5408 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 5409 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 5410 Type *SrcTy = Load->getType(); 5411 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 5412 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 5413 return false; 5414 5415 // Everything matched - assume that we can fold the whole sequence using 5416 // load combining. 5417 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 5418 << *(cast<Instruction>(Root)) << "\n"); 5419 5420 return true; 5421 } 5422 5423 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 5424 if (RdxKind != RecurKind::Or) 5425 return false; 5426 5427 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5428 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 5429 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 5430 /* MatchOr */ false); 5431 } 5432 5433 bool BoUpSLP::isLoadCombineCandidate() const { 5434 // Peek through a final sequence of stores and check if all operations are 5435 // likely to be load-combined. 5436 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5437 for (Value *Scalar : VectorizableTree[0]->Scalars) { 5438 Value *X; 5439 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 5440 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 5441 return false; 5442 } 5443 return true; 5444 } 5445 5446 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { 5447 // No need to vectorize inserts of gathered values. 5448 if (VectorizableTree.size() == 2 && 5449 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 5450 VectorizableTree[1]->State == TreeEntry::NeedToGather) 5451 return true; 5452 5453 // We can vectorize the tree if its size is greater than or equal to the 5454 // minimum size specified by the MinTreeSize command line option. 5455 if (VectorizableTree.size() >= MinTreeSize) 5456 return false; 5457 5458 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 5459 // can vectorize it if we can prove it fully vectorizable. 5460 if (isFullyVectorizableTinyTree(ForReduction)) 5461 return false; 5462 5463 assert(VectorizableTree.empty() 5464 ? ExternalUses.empty() 5465 : true && "We shouldn't have any external users"); 5466 5467 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 5468 // vectorizable. 5469 return true; 5470 } 5471 5472 InstructionCost BoUpSLP::getSpillCost() const { 5473 // Walk from the bottom of the tree to the top, tracking which values are 5474 // live. When we see a call instruction that is not part of our tree, 5475 // query TTI to see if there is a cost to keeping values live over it 5476 // (for example, if spills and fills are required). 5477 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 5478 InstructionCost Cost = 0; 5479 5480 SmallPtrSet<Instruction*, 4> LiveValues; 5481 Instruction *PrevInst = nullptr; 5482 5483 // The entries in VectorizableTree are not necessarily ordered by their 5484 // position in basic blocks. Collect them and order them by dominance so later 5485 // instructions are guaranteed to be visited first. For instructions in 5486 // different basic blocks, we only scan to the beginning of the block, so 5487 // their order does not matter, as long as all instructions in a basic block 5488 // are grouped together. Using dominance ensures a deterministic order. 5489 SmallVector<Instruction *, 16> OrderedScalars; 5490 for (const auto &TEPtr : VectorizableTree) { 5491 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 5492 if (!Inst) 5493 continue; 5494 OrderedScalars.push_back(Inst); 5495 } 5496 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 5497 auto *NodeA = DT->getNode(A->getParent()); 5498 auto *NodeB = DT->getNode(B->getParent()); 5499 assert(NodeA && "Should only process reachable instructions"); 5500 assert(NodeB && "Should only process reachable instructions"); 5501 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 5502 "Different nodes should have different DFS numbers"); 5503 if (NodeA != NodeB) 5504 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 5505 return B->comesBefore(A); 5506 }); 5507 5508 for (Instruction *Inst : OrderedScalars) { 5509 if (!PrevInst) { 5510 PrevInst = Inst; 5511 continue; 5512 } 5513 5514 // Update LiveValues. 5515 LiveValues.erase(PrevInst); 5516 for (auto &J : PrevInst->operands()) { 5517 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 5518 LiveValues.insert(cast<Instruction>(&*J)); 5519 } 5520 5521 LLVM_DEBUG({ 5522 dbgs() << "SLP: #LV: " << LiveValues.size(); 5523 for (auto *X : LiveValues) 5524 dbgs() << " " << X->getName(); 5525 dbgs() << ", Looking at "; 5526 Inst->dump(); 5527 }); 5528 5529 // Now find the sequence of instructions between PrevInst and Inst. 5530 unsigned NumCalls = 0; 5531 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 5532 PrevInstIt = 5533 PrevInst->getIterator().getReverse(); 5534 while (InstIt != PrevInstIt) { 5535 if (PrevInstIt == PrevInst->getParent()->rend()) { 5536 PrevInstIt = Inst->getParent()->rbegin(); 5537 continue; 5538 } 5539 5540 // Debug information does not impact spill cost. 5541 if ((isa<CallInst>(&*PrevInstIt) && 5542 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 5543 &*PrevInstIt != PrevInst) 5544 NumCalls++; 5545 5546 ++PrevInstIt; 5547 } 5548 5549 if (NumCalls) { 5550 SmallVector<Type*, 4> V; 5551 for (auto *II : LiveValues) { 5552 auto *ScalarTy = II->getType(); 5553 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 5554 ScalarTy = VectorTy->getElementType(); 5555 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 5556 } 5557 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 5558 } 5559 5560 PrevInst = Inst; 5561 } 5562 5563 return Cost; 5564 } 5565 5566 /// Check if two insertelement instructions are from the same buildvector. 5567 static bool areTwoInsertFromSameBuildVector(InsertElementInst *VU, 5568 InsertElementInst *V) { 5569 // Instructions must be from the same basic blocks. 5570 if (VU->getParent() != V->getParent()) 5571 return false; 5572 // Checks if 2 insertelements are from the same buildvector. 5573 if (VU->getType() != V->getType()) 5574 return false; 5575 // Multiple used inserts are separate nodes. 5576 if (!VU->hasOneUse() && !V->hasOneUse()) 5577 return false; 5578 auto *IE1 = VU; 5579 auto *IE2 = V; 5580 // Go through the vector operand of insertelement instructions trying to find 5581 // either VU as the original vector for IE2 or V as the original vector for 5582 // IE1. 5583 do { 5584 if (IE2 == VU || IE1 == V) 5585 return true; 5586 if (IE1) { 5587 if (IE1 != VU && !IE1->hasOneUse()) 5588 IE1 = nullptr; 5589 else 5590 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 5591 } 5592 if (IE2) { 5593 if (IE2 != V && !IE2->hasOneUse()) 5594 IE2 = nullptr; 5595 else 5596 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 5597 } 5598 } while (IE1 || IE2); 5599 return false; 5600 } 5601 5602 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 5603 InstructionCost Cost = 0; 5604 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 5605 << VectorizableTree.size() << ".\n"); 5606 5607 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 5608 5609 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 5610 TreeEntry &TE = *VectorizableTree[I].get(); 5611 5612 InstructionCost C = getEntryCost(&TE, VectorizedVals); 5613 Cost += C; 5614 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5615 << " for bundle that starts with " << *TE.Scalars[0] 5616 << ".\n" 5617 << "SLP: Current total cost = " << Cost << "\n"); 5618 } 5619 5620 SmallPtrSet<Value *, 16> ExtractCostCalculated; 5621 InstructionCost ExtractCost = 0; 5622 SmallVector<unsigned> VF; 5623 SmallVector<SmallVector<int>> ShuffleMask; 5624 SmallVector<Value *> FirstUsers; 5625 SmallVector<APInt> DemandedElts; 5626 for (ExternalUser &EU : ExternalUses) { 5627 // We only add extract cost once for the same scalar. 5628 if (!isa_and_nonnull<InsertElementInst>(EU.User) && 5629 !ExtractCostCalculated.insert(EU.Scalar).second) 5630 continue; 5631 5632 // Uses by ephemeral values are free (because the ephemeral value will be 5633 // removed prior to code generation, and so the extraction will be 5634 // removed as well). 5635 if (EphValues.count(EU.User)) 5636 continue; 5637 5638 // No extract cost for vector "scalar" 5639 if (isa<FixedVectorType>(EU.Scalar->getType())) 5640 continue; 5641 5642 // Already counted the cost for external uses when tried to adjust the cost 5643 // for extractelements, no need to add it again. 5644 if (isa<ExtractElementInst>(EU.Scalar)) 5645 continue; 5646 5647 // If found user is an insertelement, do not calculate extract cost but try 5648 // to detect it as a final shuffled/identity match. 5649 if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) { 5650 if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) { 5651 Optional<int> InsertIdx = getInsertIndex(VU, 0); 5652 if (!InsertIdx || *InsertIdx == UndefMaskElem) 5653 continue; 5654 auto *It = find_if(FirstUsers, [VU](Value *V) { 5655 return areTwoInsertFromSameBuildVector(VU, 5656 cast<InsertElementInst>(V)); 5657 }); 5658 int VecId = -1; 5659 if (It == FirstUsers.end()) { 5660 VF.push_back(FTy->getNumElements()); 5661 ShuffleMask.emplace_back(VF.back(), UndefMaskElem); 5662 // Find the insertvector, vectorized in tree, if any. 5663 Value *Base = VU; 5664 while (isa<InsertElementInst>(Base)) { 5665 // Build the mask for the vectorized insertelement instructions. 5666 if (const TreeEntry *E = getTreeEntry(Base)) { 5667 VU = cast<InsertElementInst>(Base); 5668 do { 5669 int Idx = E->findLaneForValue(Base); 5670 ShuffleMask.back()[Idx] = Idx; 5671 Base = cast<InsertElementInst>(Base)->getOperand(0); 5672 } while (E == getTreeEntry(Base)); 5673 break; 5674 } 5675 Base = cast<InsertElementInst>(Base)->getOperand(0); 5676 } 5677 FirstUsers.push_back(VU); 5678 DemandedElts.push_back(APInt::getZero(VF.back())); 5679 VecId = FirstUsers.size() - 1; 5680 } else { 5681 VecId = std::distance(FirstUsers.begin(), It); 5682 } 5683 int Idx = *InsertIdx; 5684 ShuffleMask[VecId][Idx] = EU.Lane; 5685 DemandedElts[VecId].setBit(Idx); 5686 continue; 5687 } 5688 } 5689 5690 // If we plan to rewrite the tree in a smaller type, we will need to sign 5691 // extend the extracted value back to the original type. Here, we account 5692 // for the extract and the added cost of the sign extend if needed. 5693 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 5694 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 5695 if (MinBWs.count(ScalarRoot)) { 5696 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 5697 auto Extend = 5698 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 5699 VecTy = FixedVectorType::get(MinTy, BundleWidth); 5700 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 5701 VecTy, EU.Lane); 5702 } else { 5703 ExtractCost += 5704 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 5705 } 5706 } 5707 5708 InstructionCost SpillCost = getSpillCost(); 5709 Cost += SpillCost + ExtractCost; 5710 if (FirstUsers.size() == 1) { 5711 int Limit = ShuffleMask.front().size() * 2; 5712 if (all_of(ShuffleMask.front(), [Limit](int Idx) { return Idx < Limit; }) && 5713 !ShuffleVectorInst::isIdentityMask(ShuffleMask.front())) { 5714 InstructionCost C = TTI->getShuffleCost( 5715 TTI::SK_PermuteSingleSrc, 5716 cast<FixedVectorType>(FirstUsers.front()->getType()), 5717 ShuffleMask.front()); 5718 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5719 << " for final shuffle of insertelement external users " 5720 << *VectorizableTree.front()->Scalars.front() << ".\n" 5721 << "SLP: Current total cost = " << Cost << "\n"); 5722 Cost += C; 5723 } 5724 InstructionCost InsertCost = TTI->getScalarizationOverhead( 5725 cast<FixedVectorType>(FirstUsers.front()->getType()), 5726 DemandedElts.front(), /*Insert*/ true, /*Extract*/ false); 5727 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 5728 << " for insertelements gather.\n" 5729 << "SLP: Current total cost = " << Cost << "\n"); 5730 Cost -= InsertCost; 5731 } else if (FirstUsers.size() >= 2) { 5732 unsigned MaxVF = *std::max_element(VF.begin(), VF.end()); 5733 // Combined masks of the first 2 vectors. 5734 SmallVector<int> CombinedMask(MaxVF, UndefMaskElem); 5735 copy(ShuffleMask.front(), CombinedMask.begin()); 5736 APInt CombinedDemandedElts = DemandedElts.front().zextOrSelf(MaxVF); 5737 auto *VecTy = FixedVectorType::get( 5738 cast<VectorType>(FirstUsers.front()->getType())->getElementType(), 5739 MaxVF); 5740 for (int I = 0, E = ShuffleMask[1].size(); I < E; ++I) { 5741 if (ShuffleMask[1][I] != UndefMaskElem) { 5742 CombinedMask[I] = ShuffleMask[1][I] + MaxVF; 5743 CombinedDemandedElts.setBit(I); 5744 } 5745 } 5746 InstructionCost C = 5747 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 5748 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5749 << " for final shuffle of vector node and external " 5750 "insertelement users " 5751 << *VectorizableTree.front()->Scalars.front() << ".\n" 5752 << "SLP: Current total cost = " << Cost << "\n"); 5753 Cost += C; 5754 InstructionCost InsertCost = TTI->getScalarizationOverhead( 5755 VecTy, CombinedDemandedElts, /*Insert*/ true, /*Extract*/ false); 5756 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 5757 << " for insertelements gather.\n" 5758 << "SLP: Current total cost = " << Cost << "\n"); 5759 Cost -= InsertCost; 5760 for (int I = 2, E = FirstUsers.size(); I < E; ++I) { 5761 // Other elements - permutation of 2 vectors (the initial one and the 5762 // next Ith incoming vector). 5763 unsigned VF = ShuffleMask[I].size(); 5764 for (unsigned Idx = 0; Idx < VF; ++Idx) { 5765 int Mask = ShuffleMask[I][Idx]; 5766 if (Mask != UndefMaskElem) 5767 CombinedMask[Idx] = MaxVF + Mask; 5768 else if (CombinedMask[Idx] != UndefMaskElem) 5769 CombinedMask[Idx] = Idx; 5770 } 5771 for (unsigned Idx = VF; Idx < MaxVF; ++Idx) 5772 if (CombinedMask[Idx] != UndefMaskElem) 5773 CombinedMask[Idx] = Idx; 5774 InstructionCost C = 5775 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 5776 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5777 << " for final shuffle of vector node and external " 5778 "insertelement users " 5779 << *VectorizableTree.front()->Scalars.front() << ".\n" 5780 << "SLP: Current total cost = " << Cost << "\n"); 5781 Cost += C; 5782 InstructionCost InsertCost = TTI->getScalarizationOverhead( 5783 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I], 5784 /*Insert*/ true, /*Extract*/ false); 5785 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 5786 << " for insertelements gather.\n" 5787 << "SLP: Current total cost = " << Cost << "\n"); 5788 Cost -= InsertCost; 5789 } 5790 } 5791 5792 #ifndef NDEBUG 5793 SmallString<256> Str; 5794 { 5795 raw_svector_ostream OS(Str); 5796 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 5797 << "SLP: Extract Cost = " << ExtractCost << ".\n" 5798 << "SLP: Total Cost = " << Cost << ".\n"; 5799 } 5800 LLVM_DEBUG(dbgs() << Str); 5801 if (ViewSLPTree) 5802 ViewGraph(this, "SLP" + F->getName(), false, Str); 5803 #endif 5804 5805 return Cost; 5806 } 5807 5808 Optional<TargetTransformInfo::ShuffleKind> 5809 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 5810 SmallVectorImpl<const TreeEntry *> &Entries) { 5811 // TODO: currently checking only for Scalars in the tree entry, need to count 5812 // reused elements too for better cost estimation. 5813 Mask.assign(TE->Scalars.size(), UndefMaskElem); 5814 Entries.clear(); 5815 // Build a lists of values to tree entries. 5816 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 5817 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 5818 if (EntryPtr.get() == TE) 5819 break; 5820 if (EntryPtr->State != TreeEntry::NeedToGather) 5821 continue; 5822 for (Value *V : EntryPtr->Scalars) 5823 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 5824 } 5825 // Find all tree entries used by the gathered values. If no common entries 5826 // found - not a shuffle. 5827 // Here we build a set of tree nodes for each gathered value and trying to 5828 // find the intersection between these sets. If we have at least one common 5829 // tree node for each gathered value - we have just a permutation of the 5830 // single vector. If we have 2 different sets, we're in situation where we 5831 // have a permutation of 2 input vectors. 5832 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 5833 DenseMap<Value *, int> UsedValuesEntry; 5834 for (Value *V : TE->Scalars) { 5835 if (isa<UndefValue>(V)) 5836 continue; 5837 // Build a list of tree entries where V is used. 5838 SmallPtrSet<const TreeEntry *, 4> VToTEs; 5839 auto It = ValueToTEs.find(V); 5840 if (It != ValueToTEs.end()) 5841 VToTEs = It->second; 5842 if (const TreeEntry *VTE = getTreeEntry(V)) 5843 VToTEs.insert(VTE); 5844 if (VToTEs.empty()) 5845 return None; 5846 if (UsedTEs.empty()) { 5847 // The first iteration, just insert the list of nodes to vector. 5848 UsedTEs.push_back(VToTEs); 5849 } else { 5850 // Need to check if there are any previously used tree nodes which use V. 5851 // If there are no such nodes, consider that we have another one input 5852 // vector. 5853 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 5854 unsigned Idx = 0; 5855 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 5856 // Do we have a non-empty intersection of previously listed tree entries 5857 // and tree entries using current V? 5858 set_intersect(VToTEs, Set); 5859 if (!VToTEs.empty()) { 5860 // Yes, write the new subset and continue analysis for the next 5861 // scalar. 5862 Set.swap(VToTEs); 5863 break; 5864 } 5865 VToTEs = SavedVToTEs; 5866 ++Idx; 5867 } 5868 // No non-empty intersection found - need to add a second set of possible 5869 // source vectors. 5870 if (Idx == UsedTEs.size()) { 5871 // If the number of input vectors is greater than 2 - not a permutation, 5872 // fallback to the regular gather. 5873 if (UsedTEs.size() == 2) 5874 return None; 5875 UsedTEs.push_back(SavedVToTEs); 5876 Idx = UsedTEs.size() - 1; 5877 } 5878 UsedValuesEntry.try_emplace(V, Idx); 5879 } 5880 } 5881 5882 unsigned VF = 0; 5883 if (UsedTEs.size() == 1) { 5884 // Try to find the perfect match in another gather node at first. 5885 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 5886 return EntryPtr->isSame(TE->Scalars); 5887 }); 5888 if (It != UsedTEs.front().end()) { 5889 Entries.push_back(*It); 5890 std::iota(Mask.begin(), Mask.end(), 0); 5891 return TargetTransformInfo::SK_PermuteSingleSrc; 5892 } 5893 // No perfect match, just shuffle, so choose the first tree node. 5894 Entries.push_back(*UsedTEs.front().begin()); 5895 } else { 5896 // Try to find nodes with the same vector factor. 5897 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 5898 DenseMap<int, const TreeEntry *> VFToTE; 5899 for (const TreeEntry *TE : UsedTEs.front()) 5900 VFToTE.try_emplace(TE->getVectorFactor(), TE); 5901 for (const TreeEntry *TE : UsedTEs.back()) { 5902 auto It = VFToTE.find(TE->getVectorFactor()); 5903 if (It != VFToTE.end()) { 5904 VF = It->first; 5905 Entries.push_back(It->second); 5906 Entries.push_back(TE); 5907 break; 5908 } 5909 } 5910 // No 2 source vectors with the same vector factor - give up and do regular 5911 // gather. 5912 if (Entries.empty()) 5913 return None; 5914 } 5915 5916 // Build a shuffle mask for better cost estimation and vector emission. 5917 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 5918 Value *V = TE->Scalars[I]; 5919 if (isa<UndefValue>(V)) 5920 continue; 5921 unsigned Idx = UsedValuesEntry.lookup(V); 5922 const TreeEntry *VTE = Entries[Idx]; 5923 int FoundLane = VTE->findLaneForValue(V); 5924 Mask[I] = Idx * VF + FoundLane; 5925 // Extra check required by isSingleSourceMaskImpl function (called by 5926 // ShuffleVectorInst::isSingleSourceMask). 5927 if (Mask[I] >= 2 * E) 5928 return None; 5929 } 5930 switch (Entries.size()) { 5931 case 1: 5932 return TargetTransformInfo::SK_PermuteSingleSrc; 5933 case 2: 5934 return TargetTransformInfo::SK_PermuteTwoSrc; 5935 default: 5936 break; 5937 } 5938 return None; 5939 } 5940 5941 InstructionCost 5942 BoUpSLP::getGatherCost(FixedVectorType *Ty, 5943 const DenseSet<unsigned> &ShuffledIndices, 5944 bool NeedToShuffle) const { 5945 unsigned NumElts = Ty->getNumElements(); 5946 APInt DemandedElts = APInt::getZero(NumElts); 5947 for (unsigned I = 0; I < NumElts; ++I) 5948 if (!ShuffledIndices.count(I)) 5949 DemandedElts.setBit(I); 5950 InstructionCost Cost = 5951 TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true, 5952 /*Extract*/ false); 5953 if (NeedToShuffle) 5954 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 5955 return Cost; 5956 } 5957 5958 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 5959 // Find the type of the operands in VL. 5960 Type *ScalarTy = VL[0]->getType(); 5961 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 5962 ScalarTy = SI->getValueOperand()->getType(); 5963 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 5964 bool DuplicateNonConst = false; 5965 // Find the cost of inserting/extracting values from the vector. 5966 // Check if the same elements are inserted several times and count them as 5967 // shuffle candidates. 5968 DenseSet<unsigned> ShuffledElements; 5969 DenseSet<Value *> UniqueElements; 5970 // Iterate in reverse order to consider insert elements with the high cost. 5971 for (unsigned I = VL.size(); I > 0; --I) { 5972 unsigned Idx = I - 1; 5973 // No need to shuffle duplicates for constants. 5974 if (isConstant(VL[Idx])) { 5975 ShuffledElements.insert(Idx); 5976 continue; 5977 } 5978 if (!UniqueElements.insert(VL[Idx]).second) { 5979 DuplicateNonConst = true; 5980 ShuffledElements.insert(Idx); 5981 } 5982 } 5983 return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst); 5984 } 5985 5986 // Perform operand reordering on the instructions in VL and return the reordered 5987 // operands in Left and Right. 5988 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 5989 SmallVectorImpl<Value *> &Left, 5990 SmallVectorImpl<Value *> &Right, 5991 const DataLayout &DL, 5992 ScalarEvolution &SE, 5993 const BoUpSLP &R) { 5994 if (VL.empty()) 5995 return; 5996 VLOperands Ops(VL, DL, SE, R); 5997 // Reorder the operands in place. 5998 Ops.reorder(); 5999 Left = Ops.getVL(0); 6000 Right = Ops.getVL(1); 6001 } 6002 6003 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 6004 // Get the basic block this bundle is in. All instructions in the bundle 6005 // should be in this block. 6006 auto *Front = E->getMainOp(); 6007 auto *BB = Front->getParent(); 6008 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 6009 auto *I = cast<Instruction>(V); 6010 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 6011 })); 6012 6013 // The last instruction in the bundle in program order. 6014 Instruction *LastInst = nullptr; 6015 6016 // Find the last instruction. The common case should be that BB has been 6017 // scheduled, and the last instruction is VL.back(). So we start with 6018 // VL.back() and iterate over schedule data until we reach the end of the 6019 // bundle. The end of the bundle is marked by null ScheduleData. 6020 if (BlocksSchedules.count(BB)) { 6021 auto *Bundle = 6022 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 6023 if (Bundle && Bundle->isPartOfBundle()) 6024 for (; Bundle; Bundle = Bundle->NextInBundle) 6025 if (Bundle->OpValue == Bundle->Inst) 6026 LastInst = Bundle->Inst; 6027 } 6028 6029 // LastInst can still be null at this point if there's either not an entry 6030 // for BB in BlocksSchedules or there's no ScheduleData available for 6031 // VL.back(). This can be the case if buildTree_rec aborts for various 6032 // reasons (e.g., the maximum recursion depth is reached, the maximum region 6033 // size is reached, etc.). ScheduleData is initialized in the scheduling 6034 // "dry-run". 6035 // 6036 // If this happens, we can still find the last instruction by brute force. We 6037 // iterate forwards from Front (inclusive) until we either see all 6038 // instructions in the bundle or reach the end of the block. If Front is the 6039 // last instruction in program order, LastInst will be set to Front, and we 6040 // will visit all the remaining instructions in the block. 6041 // 6042 // One of the reasons we exit early from buildTree_rec is to place an upper 6043 // bound on compile-time. Thus, taking an additional compile-time hit here is 6044 // not ideal. However, this should be exceedingly rare since it requires that 6045 // we both exit early from buildTree_rec and that the bundle be out-of-order 6046 // (causing us to iterate all the way to the end of the block). 6047 if (!LastInst) { 6048 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 6049 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 6050 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 6051 LastInst = &I; 6052 if (Bundle.empty()) 6053 break; 6054 } 6055 } 6056 assert(LastInst && "Failed to find last instruction in bundle"); 6057 6058 // Set the insertion point after the last instruction in the bundle. Set the 6059 // debug location to Front. 6060 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 6061 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 6062 } 6063 6064 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 6065 // List of instructions/lanes from current block and/or the blocks which are 6066 // part of the current loop. These instructions will be inserted at the end to 6067 // make it possible to optimize loops and hoist invariant instructions out of 6068 // the loops body with better chances for success. 6069 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 6070 SmallSet<int, 4> PostponedIndices; 6071 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 6072 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 6073 SmallPtrSet<BasicBlock *, 4> Visited; 6074 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 6075 InsertBB = InsertBB->getSinglePredecessor(); 6076 return InsertBB && InsertBB == InstBB; 6077 }; 6078 for (int I = 0, E = VL.size(); I < E; ++I) { 6079 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 6080 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 6081 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 6082 PostponedIndices.insert(I).second) 6083 PostponedInsts.emplace_back(Inst, I); 6084 } 6085 6086 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 6087 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 6088 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 6089 if (!InsElt) 6090 return Vec; 6091 GatherShuffleSeq.insert(InsElt); 6092 CSEBlocks.insert(InsElt->getParent()); 6093 // Add to our 'need-to-extract' list. 6094 if (TreeEntry *Entry = getTreeEntry(V)) { 6095 // Find which lane we need to extract. 6096 unsigned FoundLane = Entry->findLaneForValue(V); 6097 ExternalUses.emplace_back(V, InsElt, FoundLane); 6098 } 6099 return Vec; 6100 }; 6101 Value *Val0 = 6102 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 6103 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 6104 Value *Vec = PoisonValue::get(VecTy); 6105 SmallVector<int> NonConsts; 6106 // Insert constant values at first. 6107 for (int I = 0, E = VL.size(); I < E; ++I) { 6108 if (PostponedIndices.contains(I)) 6109 continue; 6110 if (!isConstant(VL[I])) { 6111 NonConsts.push_back(I); 6112 continue; 6113 } 6114 Vec = CreateInsertElement(Vec, VL[I], I); 6115 } 6116 // Insert non-constant values. 6117 for (int I : NonConsts) 6118 Vec = CreateInsertElement(Vec, VL[I], I); 6119 // Append instructions, which are/may be part of the loop, in the end to make 6120 // it possible to hoist non-loop-based instructions. 6121 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 6122 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 6123 6124 return Vec; 6125 } 6126 6127 namespace { 6128 /// Merges shuffle masks and emits final shuffle instruction, if required. 6129 class ShuffleInstructionBuilder { 6130 IRBuilderBase &Builder; 6131 const unsigned VF = 0; 6132 bool IsFinalized = false; 6133 SmallVector<int, 4> Mask; 6134 /// Holds all of the instructions that we gathered. 6135 SetVector<Instruction *> &GatherShuffleSeq; 6136 /// A list of blocks that we are going to CSE. 6137 SetVector<BasicBlock *> &CSEBlocks; 6138 6139 public: 6140 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF, 6141 SetVector<Instruction *> &GatherShuffleSeq, 6142 SetVector<BasicBlock *> &CSEBlocks) 6143 : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq), 6144 CSEBlocks(CSEBlocks) {} 6145 6146 /// Adds a mask, inverting it before applying. 6147 void addInversedMask(ArrayRef<unsigned> SubMask) { 6148 if (SubMask.empty()) 6149 return; 6150 SmallVector<int, 4> NewMask; 6151 inversePermutation(SubMask, NewMask); 6152 addMask(NewMask); 6153 } 6154 6155 /// Functions adds masks, merging them into single one. 6156 void addMask(ArrayRef<unsigned> SubMask) { 6157 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 6158 addMask(NewMask); 6159 } 6160 6161 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 6162 6163 Value *finalize(Value *V) { 6164 IsFinalized = true; 6165 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 6166 if (VF == ValueVF && Mask.empty()) 6167 return V; 6168 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 6169 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 6170 addMask(NormalizedMask); 6171 6172 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 6173 return V; 6174 Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle"); 6175 if (auto *I = dyn_cast<Instruction>(Vec)) { 6176 GatherShuffleSeq.insert(I); 6177 CSEBlocks.insert(I->getParent()); 6178 } 6179 return Vec; 6180 } 6181 6182 ~ShuffleInstructionBuilder() { 6183 assert((IsFinalized || Mask.empty()) && 6184 "Shuffle construction must be finalized."); 6185 } 6186 }; 6187 } // namespace 6188 6189 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 6190 unsigned VF = VL.size(); 6191 InstructionsState S = getSameOpcode(VL); 6192 if (S.getOpcode()) { 6193 if (TreeEntry *E = getTreeEntry(S.OpValue)) 6194 if (E->isSame(VL)) { 6195 Value *V = vectorizeTree(E); 6196 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 6197 if (!E->ReuseShuffleIndices.empty()) { 6198 // Reshuffle to get only unique values. 6199 // If some of the scalars are duplicated in the vectorization tree 6200 // entry, we do not vectorize them but instead generate a mask for 6201 // the reuses. But if there are several users of the same entry, 6202 // they may have different vectorization factors. This is especially 6203 // important for PHI nodes. In this case, we need to adapt the 6204 // resulting instruction for the user vectorization factor and have 6205 // to reshuffle it again to take only unique elements of the vector. 6206 // Without this code the function incorrectly returns reduced vector 6207 // instruction with the same elements, not with the unique ones. 6208 6209 // block: 6210 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 6211 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> 6212 // ... (use %2) 6213 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} 6214 // br %block 6215 SmallVector<int> UniqueIdxs(VF, UndefMaskElem); 6216 SmallSet<int, 4> UsedIdxs; 6217 int Pos = 0; 6218 int Sz = VL.size(); 6219 for (int Idx : E->ReuseShuffleIndices) { 6220 if (Idx != Sz && Idx != UndefMaskElem && 6221 UsedIdxs.insert(Idx).second) 6222 UniqueIdxs[Idx] = Pos; 6223 ++Pos; 6224 } 6225 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 6226 "less than original vector size."); 6227 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 6228 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 6229 } else { 6230 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 6231 "Expected vectorization factor less " 6232 "than original vector size."); 6233 SmallVector<int> UniformMask(VF, 0); 6234 std::iota(UniformMask.begin(), UniformMask.end(), 0); 6235 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 6236 } 6237 if (auto *I = dyn_cast<Instruction>(V)) { 6238 GatherShuffleSeq.insert(I); 6239 CSEBlocks.insert(I->getParent()); 6240 } 6241 } 6242 return V; 6243 } 6244 } 6245 6246 // Check that every instruction appears once in this bundle. 6247 SmallVector<int> ReuseShuffleIndicies; 6248 SmallVector<Value *> UniqueValues; 6249 if (VL.size() > 2) { 6250 DenseMap<Value *, unsigned> UniquePositions; 6251 unsigned NumValues = 6252 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 6253 return !isa<UndefValue>(V); 6254 }).base()); 6255 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 6256 int UniqueVals = 0; 6257 for (Value *V : VL.drop_back(VL.size() - VF)) { 6258 if (isa<UndefValue>(V)) { 6259 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 6260 continue; 6261 } 6262 if (isConstant(V)) { 6263 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 6264 UniqueValues.emplace_back(V); 6265 continue; 6266 } 6267 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 6268 ReuseShuffleIndicies.emplace_back(Res.first->second); 6269 if (Res.second) { 6270 UniqueValues.emplace_back(V); 6271 ++UniqueVals; 6272 } 6273 } 6274 if (UniqueVals == 1 && UniqueValues.size() == 1) { 6275 // Emit pure splat vector. 6276 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 6277 UndefMaskElem); 6278 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 6279 ReuseShuffleIndicies.clear(); 6280 UniqueValues.clear(); 6281 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 6282 } 6283 UniqueValues.append(VF - UniqueValues.size(), 6284 PoisonValue::get(VL[0]->getType())); 6285 VL = UniqueValues; 6286 } 6287 6288 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6289 CSEBlocks); 6290 Value *Vec = gather(VL); 6291 if (!ReuseShuffleIndicies.empty()) { 6292 ShuffleBuilder.addMask(ReuseShuffleIndicies); 6293 Vec = ShuffleBuilder.finalize(Vec); 6294 } 6295 return Vec; 6296 } 6297 6298 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 6299 IRBuilder<>::InsertPointGuard Guard(Builder); 6300 6301 if (E->VectorizedValue) { 6302 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 6303 return E->VectorizedValue; 6304 } 6305 6306 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 6307 unsigned VF = E->getVectorFactor(); 6308 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6309 CSEBlocks); 6310 if (E->State == TreeEntry::NeedToGather) { 6311 if (E->getMainOp()) 6312 setInsertPointAfterBundle(E); 6313 Value *Vec; 6314 SmallVector<int> Mask; 6315 SmallVector<const TreeEntry *> Entries; 6316 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 6317 isGatherShuffledEntry(E, Mask, Entries); 6318 if (Shuffle.hasValue()) { 6319 assert((Entries.size() == 1 || Entries.size() == 2) && 6320 "Expected shuffle of 1 or 2 entries."); 6321 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 6322 Entries.back()->VectorizedValue, Mask); 6323 if (auto *I = dyn_cast<Instruction>(Vec)) { 6324 GatherShuffleSeq.insert(I); 6325 CSEBlocks.insert(I->getParent()); 6326 } 6327 } else { 6328 Vec = gather(E->Scalars); 6329 } 6330 if (NeedToShuffleReuses) { 6331 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6332 Vec = ShuffleBuilder.finalize(Vec); 6333 } 6334 E->VectorizedValue = Vec; 6335 return Vec; 6336 } 6337 6338 assert((E->State == TreeEntry::Vectorize || 6339 E->State == TreeEntry::ScatterVectorize) && 6340 "Unhandled state"); 6341 unsigned ShuffleOrOp = 6342 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 6343 Instruction *VL0 = E->getMainOp(); 6344 Type *ScalarTy = VL0->getType(); 6345 if (auto *Store = dyn_cast<StoreInst>(VL0)) 6346 ScalarTy = Store->getValueOperand()->getType(); 6347 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 6348 ScalarTy = IE->getOperand(1)->getType(); 6349 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 6350 switch (ShuffleOrOp) { 6351 case Instruction::PHI: { 6352 assert( 6353 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 6354 "PHI reordering is free."); 6355 auto *PH = cast<PHINode>(VL0); 6356 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 6357 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6358 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 6359 Value *V = NewPhi; 6360 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6361 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6362 V = ShuffleBuilder.finalize(V); 6363 6364 E->VectorizedValue = V; 6365 6366 // PHINodes may have multiple entries from the same block. We want to 6367 // visit every block once. 6368 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 6369 6370 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 6371 ValueList Operands; 6372 BasicBlock *IBB = PH->getIncomingBlock(i); 6373 6374 if (!VisitedBBs.insert(IBB).second) { 6375 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 6376 continue; 6377 } 6378 6379 Builder.SetInsertPoint(IBB->getTerminator()); 6380 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6381 Value *Vec = vectorizeTree(E->getOperand(i)); 6382 NewPhi->addIncoming(Vec, IBB); 6383 } 6384 6385 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 6386 "Invalid number of incoming values"); 6387 return V; 6388 } 6389 6390 case Instruction::ExtractElement: { 6391 Value *V = E->getSingleOperand(0); 6392 Builder.SetInsertPoint(VL0); 6393 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6394 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6395 V = ShuffleBuilder.finalize(V); 6396 E->VectorizedValue = V; 6397 return V; 6398 } 6399 case Instruction::ExtractValue: { 6400 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 6401 Builder.SetInsertPoint(LI); 6402 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 6403 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 6404 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 6405 Value *NewV = propagateMetadata(V, E->Scalars); 6406 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6407 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6408 NewV = ShuffleBuilder.finalize(NewV); 6409 E->VectorizedValue = NewV; 6410 return NewV; 6411 } 6412 case Instruction::InsertElement: { 6413 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 6414 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 6415 Value *V = vectorizeTree(E->getOperand(1)); 6416 6417 // Create InsertVector shuffle if necessary 6418 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 6419 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 6420 })); 6421 const unsigned NumElts = 6422 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 6423 const unsigned NumScalars = E->Scalars.size(); 6424 6425 unsigned Offset = *getInsertIndex(VL0, 0); 6426 assert(Offset < NumElts && "Failed to find vector index offset"); 6427 6428 // Create shuffle to resize vector 6429 SmallVector<int> Mask; 6430 if (!E->ReorderIndices.empty()) { 6431 inversePermutation(E->ReorderIndices, Mask); 6432 Mask.append(NumElts - NumScalars, UndefMaskElem); 6433 } else { 6434 Mask.assign(NumElts, UndefMaskElem); 6435 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 6436 } 6437 // Create InsertVector shuffle if necessary 6438 bool IsIdentity = true; 6439 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 6440 Mask.swap(PrevMask); 6441 for (unsigned I = 0; I < NumScalars; ++I) { 6442 Value *Scalar = E->Scalars[PrevMask[I]]; 6443 Optional<int> InsertIdx = getInsertIndex(Scalar, 0); 6444 if (!InsertIdx || *InsertIdx == UndefMaskElem) 6445 continue; 6446 IsIdentity &= *InsertIdx - Offset == I; 6447 Mask[*InsertIdx - Offset] = I; 6448 } 6449 if (!IsIdentity || NumElts != NumScalars) { 6450 V = Builder.CreateShuffleVector(V, Mask); 6451 if (auto *I = dyn_cast<Instruction>(V)) { 6452 GatherShuffleSeq.insert(I); 6453 CSEBlocks.insert(I->getParent()); 6454 } 6455 } 6456 6457 if ((!IsIdentity || Offset != 0 || 6458 !isUndefVector(FirstInsert->getOperand(0))) && 6459 NumElts != NumScalars) { 6460 SmallVector<int> InsertMask(NumElts); 6461 std::iota(InsertMask.begin(), InsertMask.end(), 0); 6462 for (unsigned I = 0; I < NumElts; I++) { 6463 if (Mask[I] != UndefMaskElem) 6464 InsertMask[Offset + I] = NumElts + I; 6465 } 6466 6467 V = Builder.CreateShuffleVector( 6468 FirstInsert->getOperand(0), V, InsertMask, 6469 cast<Instruction>(E->Scalars.back())->getName()); 6470 if (auto *I = dyn_cast<Instruction>(V)) { 6471 GatherShuffleSeq.insert(I); 6472 CSEBlocks.insert(I->getParent()); 6473 } 6474 } 6475 6476 ++NumVectorInstructions; 6477 E->VectorizedValue = V; 6478 return V; 6479 } 6480 case Instruction::ZExt: 6481 case Instruction::SExt: 6482 case Instruction::FPToUI: 6483 case Instruction::FPToSI: 6484 case Instruction::FPExt: 6485 case Instruction::PtrToInt: 6486 case Instruction::IntToPtr: 6487 case Instruction::SIToFP: 6488 case Instruction::UIToFP: 6489 case Instruction::Trunc: 6490 case Instruction::FPTrunc: 6491 case Instruction::BitCast: { 6492 setInsertPointAfterBundle(E); 6493 6494 Value *InVec = vectorizeTree(E->getOperand(0)); 6495 6496 if (E->VectorizedValue) { 6497 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6498 return E->VectorizedValue; 6499 } 6500 6501 auto *CI = cast<CastInst>(VL0); 6502 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 6503 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6504 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6505 V = ShuffleBuilder.finalize(V); 6506 6507 E->VectorizedValue = V; 6508 ++NumVectorInstructions; 6509 return V; 6510 } 6511 case Instruction::FCmp: 6512 case Instruction::ICmp: { 6513 setInsertPointAfterBundle(E); 6514 6515 Value *L = vectorizeTree(E->getOperand(0)); 6516 Value *R = vectorizeTree(E->getOperand(1)); 6517 6518 if (E->VectorizedValue) { 6519 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6520 return E->VectorizedValue; 6521 } 6522 6523 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 6524 Value *V = Builder.CreateCmp(P0, L, R); 6525 propagateIRFlags(V, E->Scalars, VL0); 6526 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6527 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6528 V = ShuffleBuilder.finalize(V); 6529 6530 E->VectorizedValue = V; 6531 ++NumVectorInstructions; 6532 return V; 6533 } 6534 case Instruction::Select: { 6535 setInsertPointAfterBundle(E); 6536 6537 Value *Cond = vectorizeTree(E->getOperand(0)); 6538 Value *True = vectorizeTree(E->getOperand(1)); 6539 Value *False = vectorizeTree(E->getOperand(2)); 6540 6541 if (E->VectorizedValue) { 6542 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6543 return E->VectorizedValue; 6544 } 6545 6546 Value *V = Builder.CreateSelect(Cond, True, False); 6547 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6548 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6549 V = ShuffleBuilder.finalize(V); 6550 6551 E->VectorizedValue = V; 6552 ++NumVectorInstructions; 6553 return V; 6554 } 6555 case Instruction::FNeg: { 6556 setInsertPointAfterBundle(E); 6557 6558 Value *Op = vectorizeTree(E->getOperand(0)); 6559 6560 if (E->VectorizedValue) { 6561 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6562 return E->VectorizedValue; 6563 } 6564 6565 Value *V = Builder.CreateUnOp( 6566 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 6567 propagateIRFlags(V, E->Scalars, VL0); 6568 if (auto *I = dyn_cast<Instruction>(V)) 6569 V = propagateMetadata(I, E->Scalars); 6570 6571 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6572 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6573 V = ShuffleBuilder.finalize(V); 6574 6575 E->VectorizedValue = V; 6576 ++NumVectorInstructions; 6577 6578 return V; 6579 } 6580 case Instruction::Add: 6581 case Instruction::FAdd: 6582 case Instruction::Sub: 6583 case Instruction::FSub: 6584 case Instruction::Mul: 6585 case Instruction::FMul: 6586 case Instruction::UDiv: 6587 case Instruction::SDiv: 6588 case Instruction::FDiv: 6589 case Instruction::URem: 6590 case Instruction::SRem: 6591 case Instruction::FRem: 6592 case Instruction::Shl: 6593 case Instruction::LShr: 6594 case Instruction::AShr: 6595 case Instruction::And: 6596 case Instruction::Or: 6597 case Instruction::Xor: { 6598 setInsertPointAfterBundle(E); 6599 6600 Value *LHS = vectorizeTree(E->getOperand(0)); 6601 Value *RHS = vectorizeTree(E->getOperand(1)); 6602 6603 if (E->VectorizedValue) { 6604 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6605 return E->VectorizedValue; 6606 } 6607 6608 Value *V = Builder.CreateBinOp( 6609 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 6610 RHS); 6611 propagateIRFlags(V, E->Scalars, VL0); 6612 if (auto *I = dyn_cast<Instruction>(V)) 6613 V = propagateMetadata(I, E->Scalars); 6614 6615 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6616 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6617 V = ShuffleBuilder.finalize(V); 6618 6619 E->VectorizedValue = V; 6620 ++NumVectorInstructions; 6621 6622 return V; 6623 } 6624 case Instruction::Load: { 6625 // Loads are inserted at the head of the tree because we don't want to 6626 // sink them all the way down past store instructions. 6627 setInsertPointAfterBundle(E); 6628 6629 LoadInst *LI = cast<LoadInst>(VL0); 6630 Instruction *NewLI; 6631 unsigned AS = LI->getPointerAddressSpace(); 6632 Value *PO = LI->getPointerOperand(); 6633 if (E->State == TreeEntry::Vectorize) { 6634 6635 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 6636 6637 // The pointer operand uses an in-tree scalar so we add the new BitCast 6638 // to ExternalUses list to make sure that an extract will be generated 6639 // in the future. 6640 if (TreeEntry *Entry = getTreeEntry(PO)) { 6641 // Find which lane we need to extract. 6642 unsigned FoundLane = Entry->findLaneForValue(PO); 6643 ExternalUses.emplace_back(PO, cast<User>(VecPtr), FoundLane); 6644 } 6645 6646 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 6647 } else { 6648 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 6649 Value *VecPtr = vectorizeTree(E->getOperand(0)); 6650 // Use the minimum alignment of the gathered loads. 6651 Align CommonAlignment = LI->getAlign(); 6652 for (Value *V : E->Scalars) 6653 CommonAlignment = 6654 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 6655 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 6656 } 6657 Value *V = propagateMetadata(NewLI, E->Scalars); 6658 6659 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6660 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6661 V = ShuffleBuilder.finalize(V); 6662 E->VectorizedValue = V; 6663 ++NumVectorInstructions; 6664 return V; 6665 } 6666 case Instruction::Store: { 6667 auto *SI = cast<StoreInst>(VL0); 6668 unsigned AS = SI->getPointerAddressSpace(); 6669 6670 setInsertPointAfterBundle(E); 6671 6672 Value *VecValue = vectorizeTree(E->getOperand(0)); 6673 ShuffleBuilder.addMask(E->ReorderIndices); 6674 VecValue = ShuffleBuilder.finalize(VecValue); 6675 6676 Value *ScalarPtr = SI->getPointerOperand(); 6677 Value *VecPtr = Builder.CreateBitCast( 6678 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 6679 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 6680 SI->getAlign()); 6681 6682 // The pointer operand uses an in-tree scalar, so add the new BitCast to 6683 // ExternalUses to make sure that an extract will be generated in the 6684 // future. 6685 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 6686 // Find which lane we need to extract. 6687 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 6688 ExternalUses.push_back( 6689 ExternalUser(ScalarPtr, cast<User>(VecPtr), FoundLane)); 6690 } 6691 6692 Value *V = propagateMetadata(ST, E->Scalars); 6693 6694 E->VectorizedValue = V; 6695 ++NumVectorInstructions; 6696 return V; 6697 } 6698 case Instruction::GetElementPtr: { 6699 auto *GEP0 = cast<GetElementPtrInst>(VL0); 6700 setInsertPointAfterBundle(E); 6701 6702 Value *Op0 = vectorizeTree(E->getOperand(0)); 6703 6704 SmallVector<Value *> OpVecs; 6705 for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) { 6706 Value *OpVec = vectorizeTree(E->getOperand(J)); 6707 OpVecs.push_back(OpVec); 6708 } 6709 6710 Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs); 6711 if (Instruction *I = dyn_cast<Instruction>(V)) 6712 V = propagateMetadata(I, E->Scalars); 6713 6714 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6715 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6716 V = ShuffleBuilder.finalize(V); 6717 6718 E->VectorizedValue = V; 6719 ++NumVectorInstructions; 6720 6721 return V; 6722 } 6723 case Instruction::Call: { 6724 CallInst *CI = cast<CallInst>(VL0); 6725 setInsertPointAfterBundle(E); 6726 6727 Intrinsic::ID IID = Intrinsic::not_intrinsic; 6728 if (Function *FI = CI->getCalledFunction()) 6729 IID = FI->getIntrinsicID(); 6730 6731 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6732 6733 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 6734 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 6735 VecCallCosts.first <= VecCallCosts.second; 6736 6737 Value *ScalarArg = nullptr; 6738 std::vector<Value *> OpVecs; 6739 SmallVector<Type *, 2> TysForDecl = 6740 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 6741 for (int j = 0, e = CI->arg_size(); j < e; ++j) { 6742 ValueList OpVL; 6743 // Some intrinsics have scalar arguments. This argument should not be 6744 // vectorized. 6745 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 6746 CallInst *CEI = cast<CallInst>(VL0); 6747 ScalarArg = CEI->getArgOperand(j); 6748 OpVecs.push_back(CEI->getArgOperand(j)); 6749 if (hasVectorInstrinsicOverloadedScalarOpd(IID, j)) 6750 TysForDecl.push_back(ScalarArg->getType()); 6751 continue; 6752 } 6753 6754 Value *OpVec = vectorizeTree(E->getOperand(j)); 6755 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 6756 OpVecs.push_back(OpVec); 6757 } 6758 6759 Function *CF; 6760 if (!UseIntrinsic) { 6761 VFShape Shape = 6762 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 6763 VecTy->getNumElements())), 6764 false /*HasGlobalPred*/); 6765 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 6766 } else { 6767 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 6768 } 6769 6770 SmallVector<OperandBundleDef, 1> OpBundles; 6771 CI->getOperandBundlesAsDefs(OpBundles); 6772 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 6773 6774 // The scalar argument uses an in-tree scalar so we add the new vectorized 6775 // call to ExternalUses list to make sure that an extract will be 6776 // generated in the future. 6777 if (ScalarArg) { 6778 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 6779 // Find which lane we need to extract. 6780 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 6781 ExternalUses.push_back( 6782 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 6783 } 6784 } 6785 6786 propagateIRFlags(V, E->Scalars, VL0); 6787 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6788 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6789 V = ShuffleBuilder.finalize(V); 6790 6791 E->VectorizedValue = V; 6792 ++NumVectorInstructions; 6793 return V; 6794 } 6795 case Instruction::ShuffleVector: { 6796 assert(E->isAltShuffle() && 6797 ((Instruction::isBinaryOp(E->getOpcode()) && 6798 Instruction::isBinaryOp(E->getAltOpcode())) || 6799 (Instruction::isCast(E->getOpcode()) && 6800 Instruction::isCast(E->getAltOpcode()))) && 6801 "Invalid Shuffle Vector Operand"); 6802 6803 Value *LHS = nullptr, *RHS = nullptr; 6804 if (Instruction::isBinaryOp(E->getOpcode())) { 6805 setInsertPointAfterBundle(E); 6806 LHS = vectorizeTree(E->getOperand(0)); 6807 RHS = vectorizeTree(E->getOperand(1)); 6808 } else { 6809 setInsertPointAfterBundle(E); 6810 LHS = vectorizeTree(E->getOperand(0)); 6811 } 6812 6813 if (E->VectorizedValue) { 6814 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6815 return E->VectorizedValue; 6816 } 6817 6818 Value *V0, *V1; 6819 if (Instruction::isBinaryOp(E->getOpcode())) { 6820 V0 = Builder.CreateBinOp( 6821 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 6822 V1 = Builder.CreateBinOp( 6823 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 6824 } else { 6825 V0 = Builder.CreateCast( 6826 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 6827 V1 = Builder.CreateCast( 6828 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 6829 } 6830 // Add V0 and V1 to later analysis to try to find and remove matching 6831 // instruction, if any. 6832 for (Value *V : {V0, V1}) { 6833 if (auto *I = dyn_cast<Instruction>(V)) { 6834 GatherShuffleSeq.insert(I); 6835 CSEBlocks.insert(I->getParent()); 6836 } 6837 } 6838 6839 // Create shuffle to take alternate operations from the vector. 6840 // Also, gather up main and alt scalar ops to propagate IR flags to 6841 // each vector operation. 6842 ValueList OpScalars, AltScalars; 6843 SmallVector<int> Mask; 6844 buildSuffleEntryMask( 6845 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 6846 [E](Instruction *I) { 6847 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 6848 return I->getOpcode() == E->getAltOpcode(); 6849 }, 6850 Mask, &OpScalars, &AltScalars); 6851 6852 propagateIRFlags(V0, OpScalars); 6853 propagateIRFlags(V1, AltScalars); 6854 6855 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 6856 if (auto *I = dyn_cast<Instruction>(V)) { 6857 V = propagateMetadata(I, E->Scalars); 6858 GatherShuffleSeq.insert(I); 6859 CSEBlocks.insert(I->getParent()); 6860 } 6861 V = ShuffleBuilder.finalize(V); 6862 6863 E->VectorizedValue = V; 6864 ++NumVectorInstructions; 6865 6866 return V; 6867 } 6868 default: 6869 llvm_unreachable("unknown inst"); 6870 } 6871 return nullptr; 6872 } 6873 6874 Value *BoUpSLP::vectorizeTree() { 6875 ExtraValueToDebugLocsMap ExternallyUsedValues; 6876 return vectorizeTree(ExternallyUsedValues); 6877 } 6878 6879 Value * 6880 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 6881 // All blocks must be scheduled before any instructions are inserted. 6882 for (auto &BSIter : BlocksSchedules) { 6883 scheduleBlock(BSIter.second.get()); 6884 } 6885 6886 Builder.SetInsertPoint(&F->getEntryBlock().front()); 6887 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 6888 6889 // If the vectorized tree can be rewritten in a smaller type, we truncate the 6890 // vectorized root. InstCombine will then rewrite the entire expression. We 6891 // sign extend the extracted values below. 6892 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 6893 if (MinBWs.count(ScalarRoot)) { 6894 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 6895 // If current instr is a phi and not the last phi, insert it after the 6896 // last phi node. 6897 if (isa<PHINode>(I)) 6898 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 6899 else 6900 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 6901 } 6902 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 6903 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 6904 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 6905 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 6906 VectorizableTree[0]->VectorizedValue = Trunc; 6907 } 6908 6909 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 6910 << " values .\n"); 6911 6912 // Extract all of the elements with the external uses. 6913 for (const auto &ExternalUse : ExternalUses) { 6914 Value *Scalar = ExternalUse.Scalar; 6915 llvm::User *User = ExternalUse.User; 6916 6917 // Skip users that we already RAUW. This happens when one instruction 6918 // has multiple uses of the same value. 6919 if (User && !is_contained(Scalar->users(), User)) 6920 continue; 6921 TreeEntry *E = getTreeEntry(Scalar); 6922 assert(E && "Invalid scalar"); 6923 assert(E->State != TreeEntry::NeedToGather && 6924 "Extracting from a gather list"); 6925 6926 Value *Vec = E->VectorizedValue; 6927 assert(Vec && "Can't find vectorizable value"); 6928 6929 Value *Lane = Builder.getInt32(ExternalUse.Lane); 6930 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 6931 if (Scalar->getType() != Vec->getType()) { 6932 Value *Ex; 6933 // "Reuse" the existing extract to improve final codegen. 6934 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 6935 Ex = Builder.CreateExtractElement(ES->getOperand(0), 6936 ES->getOperand(1)); 6937 } else { 6938 Ex = Builder.CreateExtractElement(Vec, Lane); 6939 } 6940 // If necessary, sign-extend or zero-extend ScalarRoot 6941 // to the larger type. 6942 if (!MinBWs.count(ScalarRoot)) 6943 return Ex; 6944 if (MinBWs[ScalarRoot].second) 6945 return Builder.CreateSExt(Ex, Scalar->getType()); 6946 return Builder.CreateZExt(Ex, Scalar->getType()); 6947 } 6948 assert(isa<FixedVectorType>(Scalar->getType()) && 6949 isa<InsertElementInst>(Scalar) && 6950 "In-tree scalar of vector type is not insertelement?"); 6951 return Vec; 6952 }; 6953 // If User == nullptr, the Scalar is used as extra arg. Generate 6954 // ExtractElement instruction and update the record for this scalar in 6955 // ExternallyUsedValues. 6956 if (!User) { 6957 assert(ExternallyUsedValues.count(Scalar) && 6958 "Scalar with nullptr as an external user must be registered in " 6959 "ExternallyUsedValues map"); 6960 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 6961 Builder.SetInsertPoint(VecI->getParent(), 6962 std::next(VecI->getIterator())); 6963 } else { 6964 Builder.SetInsertPoint(&F->getEntryBlock().front()); 6965 } 6966 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6967 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 6968 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 6969 auto It = ExternallyUsedValues.find(Scalar); 6970 assert(It != ExternallyUsedValues.end() && 6971 "Externally used scalar is not found in ExternallyUsedValues"); 6972 NewInstLocs.append(It->second); 6973 ExternallyUsedValues.erase(Scalar); 6974 // Required to update internally referenced instructions. 6975 Scalar->replaceAllUsesWith(NewInst); 6976 continue; 6977 } 6978 6979 // Generate extracts for out-of-tree users. 6980 // Find the insertion point for the extractelement lane. 6981 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 6982 if (PHINode *PH = dyn_cast<PHINode>(User)) { 6983 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 6984 if (PH->getIncomingValue(i) == Scalar) { 6985 Instruction *IncomingTerminator = 6986 PH->getIncomingBlock(i)->getTerminator(); 6987 if (isa<CatchSwitchInst>(IncomingTerminator)) { 6988 Builder.SetInsertPoint(VecI->getParent(), 6989 std::next(VecI->getIterator())); 6990 } else { 6991 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 6992 } 6993 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6994 CSEBlocks.insert(PH->getIncomingBlock(i)); 6995 PH->setOperand(i, NewInst); 6996 } 6997 } 6998 } else { 6999 Builder.SetInsertPoint(cast<Instruction>(User)); 7000 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7001 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 7002 User->replaceUsesOfWith(Scalar, NewInst); 7003 } 7004 } else { 7005 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7006 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7007 CSEBlocks.insert(&F->getEntryBlock()); 7008 User->replaceUsesOfWith(Scalar, NewInst); 7009 } 7010 7011 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 7012 } 7013 7014 // For each vectorized value: 7015 for (auto &TEPtr : VectorizableTree) { 7016 TreeEntry *Entry = TEPtr.get(); 7017 7018 // No need to handle users of gathered values. 7019 if (Entry->State == TreeEntry::NeedToGather) 7020 continue; 7021 7022 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 7023 7024 // For each lane: 7025 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 7026 Value *Scalar = Entry->Scalars[Lane]; 7027 7028 #ifndef NDEBUG 7029 Type *Ty = Scalar->getType(); 7030 if (!Ty->isVoidTy()) { 7031 for (User *U : Scalar->users()) { 7032 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 7033 7034 // It is legal to delete users in the ignorelist. 7035 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) || 7036 (isa_and_nonnull<Instruction>(U) && 7037 isDeleted(cast<Instruction>(U)))) && 7038 "Deleting out-of-tree value"); 7039 } 7040 } 7041 #endif 7042 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 7043 eraseInstruction(cast<Instruction>(Scalar)); 7044 } 7045 } 7046 7047 Builder.ClearInsertionPoint(); 7048 InstrElementSize.clear(); 7049 7050 return VectorizableTree[0]->VectorizedValue; 7051 } 7052 7053 void BoUpSLP::optimizeGatherSequence() { 7054 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size() 7055 << " gather sequences instructions.\n"); 7056 // LICM InsertElementInst sequences. 7057 for (Instruction *I : GatherShuffleSeq) { 7058 if (isDeleted(I)) 7059 continue; 7060 7061 // Check if this block is inside a loop. 7062 Loop *L = LI->getLoopFor(I->getParent()); 7063 if (!L) 7064 continue; 7065 7066 // Check if it has a preheader. 7067 BasicBlock *PreHeader = L->getLoopPreheader(); 7068 if (!PreHeader) 7069 continue; 7070 7071 // If the vector or the element that we insert into it are 7072 // instructions that are defined in this basic block then we can't 7073 // hoist this instruction. 7074 if (any_of(I->operands(), [L](Value *V) { 7075 auto *OpI = dyn_cast<Instruction>(V); 7076 return OpI && L->contains(OpI); 7077 })) 7078 continue; 7079 7080 // We can hoist this instruction. Move it to the pre-header. 7081 I->moveBefore(PreHeader->getTerminator()); 7082 } 7083 7084 // Make a list of all reachable blocks in our CSE queue. 7085 SmallVector<const DomTreeNode *, 8> CSEWorkList; 7086 CSEWorkList.reserve(CSEBlocks.size()); 7087 for (BasicBlock *BB : CSEBlocks) 7088 if (DomTreeNode *N = DT->getNode(BB)) { 7089 assert(DT->isReachableFromEntry(N)); 7090 CSEWorkList.push_back(N); 7091 } 7092 7093 // Sort blocks by domination. This ensures we visit a block after all blocks 7094 // dominating it are visited. 7095 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 7096 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 7097 "Different nodes should have different DFS numbers"); 7098 return A->getDFSNumIn() < B->getDFSNumIn(); 7099 }); 7100 7101 // Less defined shuffles can be replaced by the more defined copies. 7102 // Between two shuffles one is less defined if it has the same vector operands 7103 // and its mask indeces are the same as in the first one or undefs. E.g. 7104 // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0, 7105 // poison, <0, 0, 0, 0>. 7106 auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2, 7107 SmallVectorImpl<int> &NewMask) { 7108 if (I1->getType() != I2->getType()) 7109 return false; 7110 auto *SI1 = dyn_cast<ShuffleVectorInst>(I1); 7111 auto *SI2 = dyn_cast<ShuffleVectorInst>(I2); 7112 if (!SI1 || !SI2) 7113 return I1->isIdenticalTo(I2); 7114 if (SI1->isIdenticalTo(SI2)) 7115 return true; 7116 for (int I = 0, E = SI1->getNumOperands(); I < E; ++I) 7117 if (SI1->getOperand(I) != SI2->getOperand(I)) 7118 return false; 7119 // Check if the second instruction is more defined than the first one. 7120 NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end()); 7121 ArrayRef<int> SM1 = SI1->getShuffleMask(); 7122 // Count trailing undefs in the mask to check the final number of used 7123 // registers. 7124 unsigned LastUndefsCnt = 0; 7125 for (int I = 0, E = NewMask.size(); I < E; ++I) { 7126 if (SM1[I] == UndefMaskElem) 7127 ++LastUndefsCnt; 7128 else 7129 LastUndefsCnt = 0; 7130 if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem && 7131 NewMask[I] != SM1[I]) 7132 return false; 7133 if (NewMask[I] == UndefMaskElem) 7134 NewMask[I] = SM1[I]; 7135 } 7136 // Check if the last undefs actually change the final number of used vector 7137 // registers. 7138 return SM1.size() - LastUndefsCnt > 1 && 7139 TTI->getNumberOfParts(SI1->getType()) == 7140 TTI->getNumberOfParts( 7141 FixedVectorType::get(SI1->getType()->getElementType(), 7142 SM1.size() - LastUndefsCnt)); 7143 }; 7144 // Perform O(N^2) search over the gather/shuffle sequences and merge identical 7145 // instructions. TODO: We can further optimize this scan if we split the 7146 // instructions into different buckets based on the insert lane. 7147 SmallVector<Instruction *, 16> Visited; 7148 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 7149 assert(*I && 7150 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 7151 "Worklist not sorted properly!"); 7152 BasicBlock *BB = (*I)->getBlock(); 7153 // For all instructions in blocks containing gather sequences: 7154 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 7155 if (isDeleted(&In)) 7156 continue; 7157 if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) && 7158 !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In)) 7159 continue; 7160 7161 // Check if we can replace this instruction with any of the 7162 // visited instructions. 7163 bool Replaced = false; 7164 for (Instruction *&V : Visited) { 7165 SmallVector<int> NewMask; 7166 if (IsIdenticalOrLessDefined(&In, V, NewMask) && 7167 DT->dominates(V->getParent(), In.getParent())) { 7168 In.replaceAllUsesWith(V); 7169 eraseInstruction(&In); 7170 if (auto *SI = dyn_cast<ShuffleVectorInst>(V)) 7171 if (!NewMask.empty()) 7172 SI->setShuffleMask(NewMask); 7173 Replaced = true; 7174 break; 7175 } 7176 if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) && 7177 GatherShuffleSeq.contains(V) && 7178 IsIdenticalOrLessDefined(V, &In, NewMask) && 7179 DT->dominates(In.getParent(), V->getParent())) { 7180 In.moveAfter(V); 7181 V->replaceAllUsesWith(&In); 7182 eraseInstruction(V); 7183 if (auto *SI = dyn_cast<ShuffleVectorInst>(&In)) 7184 if (!NewMask.empty()) 7185 SI->setShuffleMask(NewMask); 7186 V = &In; 7187 Replaced = true; 7188 break; 7189 } 7190 } 7191 if (!Replaced) { 7192 assert(!is_contained(Visited, &In)); 7193 Visited.push_back(&In); 7194 } 7195 } 7196 } 7197 CSEBlocks.clear(); 7198 GatherShuffleSeq.clear(); 7199 } 7200 7201 // Groups the instructions to a bundle (which is then a single scheduling entity) 7202 // and schedules instructions until the bundle gets ready. 7203 Optional<BoUpSLP::ScheduleData *> 7204 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 7205 const InstructionsState &S) { 7206 // No need to schedule PHIs, insertelement, extractelement and extractvalue 7207 // instructions. 7208 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue)) 7209 return nullptr; 7210 7211 // Initialize the instruction bundle. 7212 Instruction *OldScheduleEnd = ScheduleEnd; 7213 ScheduleData *PrevInBundle = nullptr; 7214 ScheduleData *Bundle = nullptr; 7215 bool ReSchedule = false; 7216 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 7217 7218 auto &&TryScheduleBundle = [this, OldScheduleEnd, SLP](bool ReSchedule, 7219 ScheduleData *Bundle) { 7220 // The scheduling region got new instructions at the lower end (or it is a 7221 // new region for the first bundle). This makes it necessary to 7222 // recalculate all dependencies. 7223 // It is seldom that this needs to be done a second time after adding the 7224 // initial bundle to the region. 7225 if (ScheduleEnd != OldScheduleEnd) { 7226 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 7227 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 7228 ReSchedule = true; 7229 } 7230 if (ReSchedule) { 7231 resetSchedule(); 7232 initialFillReadyList(ReadyInsts); 7233 } 7234 if (Bundle) { 7235 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 7236 << " in block " << BB->getName() << "\n"); 7237 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 7238 } 7239 7240 // Now try to schedule the new bundle or (if no bundle) just calculate 7241 // dependencies. As soon as the bundle is "ready" it means that there are no 7242 // cyclic dependencies and we can schedule it. Note that's important that we 7243 // don't "schedule" the bundle yet (see cancelScheduling). 7244 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 7245 !ReadyInsts.empty()) { 7246 ScheduleData *Picked = ReadyInsts.pop_back_val(); 7247 if (Picked->isSchedulingEntity() && Picked->isReady()) 7248 schedule(Picked, ReadyInsts); 7249 } 7250 }; 7251 7252 // Make sure that the scheduling region contains all 7253 // instructions of the bundle. 7254 for (Value *V : VL) { 7255 if (!extendSchedulingRegion(V, S)) { 7256 // If the scheduling region got new instructions at the lower end (or it 7257 // is a new region for the first bundle). This makes it necessary to 7258 // recalculate all dependencies. 7259 // Otherwise the compiler may crash trying to incorrectly calculate 7260 // dependencies and emit instruction in the wrong order at the actual 7261 // scheduling. 7262 TryScheduleBundle(/*ReSchedule=*/false, nullptr); 7263 return None; 7264 } 7265 } 7266 7267 for (Value *V : VL) { 7268 ScheduleData *BundleMember = getScheduleData(V); 7269 assert(BundleMember && 7270 "no ScheduleData for bundle member (maybe not in same basic block)"); 7271 if (BundleMember->IsScheduled) { 7272 // A bundle member was scheduled as single instruction before and now 7273 // needs to be scheduled as part of the bundle. We just get rid of the 7274 // existing schedule. 7275 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 7276 << " was already scheduled\n"); 7277 ReSchedule = true; 7278 } 7279 assert(BundleMember->isSchedulingEntity() && 7280 "bundle member already part of other bundle"); 7281 if (PrevInBundle) { 7282 PrevInBundle->NextInBundle = BundleMember; 7283 } else { 7284 Bundle = BundleMember; 7285 } 7286 BundleMember->UnscheduledDepsInBundle = 0; 7287 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 7288 7289 // Group the instructions to a bundle. 7290 BundleMember->FirstInBundle = Bundle; 7291 PrevInBundle = BundleMember; 7292 } 7293 assert(Bundle && "Failed to find schedule bundle"); 7294 TryScheduleBundle(ReSchedule, Bundle); 7295 if (!Bundle->isReady()) { 7296 cancelScheduling(VL, S.OpValue); 7297 return None; 7298 } 7299 return Bundle; 7300 } 7301 7302 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 7303 Value *OpValue) { 7304 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue)) 7305 return; 7306 7307 ScheduleData *Bundle = getScheduleData(OpValue); 7308 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 7309 assert(!Bundle->IsScheduled && 7310 "Can't cancel bundle which is already scheduled"); 7311 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 7312 "tried to unbundle something which is not a bundle"); 7313 7314 // Un-bundle: make single instructions out of the bundle. 7315 ScheduleData *BundleMember = Bundle; 7316 while (BundleMember) { 7317 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 7318 BundleMember->FirstInBundle = BundleMember; 7319 ScheduleData *Next = BundleMember->NextInBundle; 7320 BundleMember->NextInBundle = nullptr; 7321 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 7322 if (BundleMember->UnscheduledDepsInBundle == 0) { 7323 ReadyInsts.insert(BundleMember); 7324 } 7325 BundleMember = Next; 7326 } 7327 } 7328 7329 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 7330 // Allocate a new ScheduleData for the instruction. 7331 if (ChunkPos >= ChunkSize) { 7332 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 7333 ChunkPos = 0; 7334 } 7335 return &(ScheduleDataChunks.back()[ChunkPos++]); 7336 } 7337 7338 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 7339 const InstructionsState &S) { 7340 if (getScheduleData(V, isOneOf(S, V))) 7341 return true; 7342 Instruction *I = dyn_cast<Instruction>(V); 7343 assert(I && "bundle member must be an instruction"); 7344 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 7345 "phi nodes/insertelements/extractelements/extractvalues don't need to " 7346 "be scheduled"); 7347 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 7348 ScheduleData *ISD = getScheduleData(I); 7349 if (!ISD) 7350 return false; 7351 assert(isInSchedulingRegion(ISD) && 7352 "ScheduleData not in scheduling region"); 7353 ScheduleData *SD = allocateScheduleDataChunks(); 7354 SD->Inst = I; 7355 SD->init(SchedulingRegionID, S.OpValue); 7356 ExtraScheduleDataMap[I][S.OpValue] = SD; 7357 return true; 7358 }; 7359 if (CheckSheduleForI(I)) 7360 return true; 7361 if (!ScheduleStart) { 7362 // It's the first instruction in the new region. 7363 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 7364 ScheduleStart = I; 7365 ScheduleEnd = I->getNextNode(); 7366 if (isOneOf(S, I) != I) 7367 CheckSheduleForI(I); 7368 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7369 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 7370 return true; 7371 } 7372 // Search up and down at the same time, because we don't know if the new 7373 // instruction is above or below the existing scheduling region. 7374 BasicBlock::reverse_iterator UpIter = 7375 ++ScheduleStart->getIterator().getReverse(); 7376 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 7377 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 7378 BasicBlock::iterator LowerEnd = BB->end(); 7379 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 7380 &*DownIter != I) { 7381 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 7382 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 7383 return false; 7384 } 7385 7386 ++UpIter; 7387 ++DownIter; 7388 } 7389 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 7390 assert(I->getParent() == ScheduleStart->getParent() && 7391 "Instruction is in wrong basic block."); 7392 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 7393 ScheduleStart = I; 7394 if (isOneOf(S, I) != I) 7395 CheckSheduleForI(I); 7396 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 7397 << "\n"); 7398 return true; 7399 } 7400 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 7401 "Expected to reach top of the basic block or instruction down the " 7402 "lower end."); 7403 assert(I->getParent() == ScheduleEnd->getParent() && 7404 "Instruction is in wrong basic block."); 7405 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 7406 nullptr); 7407 ScheduleEnd = I->getNextNode(); 7408 if (isOneOf(S, I) != I) 7409 CheckSheduleForI(I); 7410 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7411 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 7412 return true; 7413 } 7414 7415 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 7416 Instruction *ToI, 7417 ScheduleData *PrevLoadStore, 7418 ScheduleData *NextLoadStore) { 7419 ScheduleData *CurrentLoadStore = PrevLoadStore; 7420 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 7421 ScheduleData *SD = ScheduleDataMap[I]; 7422 if (!SD) { 7423 SD = allocateScheduleDataChunks(); 7424 ScheduleDataMap[I] = SD; 7425 SD->Inst = I; 7426 } 7427 assert(!isInSchedulingRegion(SD) && 7428 "new ScheduleData already in scheduling region"); 7429 SD->init(SchedulingRegionID, I); 7430 7431 if (I->mayReadOrWriteMemory() && 7432 (!isa<IntrinsicInst>(I) || 7433 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 7434 cast<IntrinsicInst>(I)->getIntrinsicID() != 7435 Intrinsic::pseudoprobe))) { 7436 // Update the linked list of memory accessing instructions. 7437 if (CurrentLoadStore) { 7438 CurrentLoadStore->NextLoadStore = SD; 7439 } else { 7440 FirstLoadStoreInRegion = SD; 7441 } 7442 CurrentLoadStore = SD; 7443 } 7444 } 7445 if (NextLoadStore) { 7446 if (CurrentLoadStore) 7447 CurrentLoadStore->NextLoadStore = NextLoadStore; 7448 } else { 7449 LastLoadStoreInRegion = CurrentLoadStore; 7450 } 7451 } 7452 7453 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 7454 bool InsertInReadyList, 7455 BoUpSLP *SLP) { 7456 assert(SD->isSchedulingEntity()); 7457 7458 SmallVector<ScheduleData *, 10> WorkList; 7459 WorkList.push_back(SD); 7460 7461 while (!WorkList.empty()) { 7462 ScheduleData *SD = WorkList.pop_back_val(); 7463 7464 ScheduleData *BundleMember = SD; 7465 while (BundleMember) { 7466 assert(isInSchedulingRegion(BundleMember)); 7467 if (!BundleMember->hasValidDependencies()) { 7468 7469 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 7470 << "\n"); 7471 BundleMember->Dependencies = 0; 7472 BundleMember->resetUnscheduledDeps(); 7473 7474 // Handle def-use chain dependencies. 7475 if (BundleMember->OpValue != BundleMember->Inst) { 7476 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 7477 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 7478 BundleMember->Dependencies++; 7479 ScheduleData *DestBundle = UseSD->FirstInBundle; 7480 if (!DestBundle->IsScheduled) 7481 BundleMember->incrementUnscheduledDeps(1); 7482 if (!DestBundle->hasValidDependencies()) 7483 WorkList.push_back(DestBundle); 7484 } 7485 } else { 7486 for (User *U : BundleMember->Inst->users()) { 7487 if (isa<Instruction>(U)) { 7488 ScheduleData *UseSD = getScheduleData(U); 7489 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 7490 BundleMember->Dependencies++; 7491 ScheduleData *DestBundle = UseSD->FirstInBundle; 7492 if (!DestBundle->IsScheduled) 7493 BundleMember->incrementUnscheduledDeps(1); 7494 if (!DestBundle->hasValidDependencies()) 7495 WorkList.push_back(DestBundle); 7496 } 7497 } else { 7498 // I'm not sure if this can ever happen. But we need to be safe. 7499 // This lets the instruction/bundle never be scheduled and 7500 // eventually disable vectorization. 7501 BundleMember->Dependencies++; 7502 BundleMember->incrementUnscheduledDeps(1); 7503 } 7504 } 7505 } 7506 7507 // Handle the memory dependencies. 7508 ScheduleData *DepDest = BundleMember->NextLoadStore; 7509 if (DepDest) { 7510 Instruction *SrcInst = BundleMember->Inst; 7511 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 7512 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 7513 unsigned numAliased = 0; 7514 unsigned DistToSrc = 1; 7515 7516 while (DepDest) { 7517 assert(isInSchedulingRegion(DepDest)); 7518 7519 // We have two limits to reduce the complexity: 7520 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 7521 // SLP->isAliased (which is the expensive part in this loop). 7522 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 7523 // the whole loop (even if the loop is fast, it's quadratic). 7524 // It's important for the loop break condition (see below) to 7525 // check this limit even between two read-only instructions. 7526 if (DistToSrc >= MaxMemDepDistance || 7527 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 7528 (numAliased >= AliasedCheckLimit || 7529 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 7530 7531 // We increment the counter only if the locations are aliased 7532 // (instead of counting all alias checks). This gives a better 7533 // balance between reduced runtime and accurate dependencies. 7534 numAliased++; 7535 7536 DepDest->MemoryDependencies.push_back(BundleMember); 7537 BundleMember->Dependencies++; 7538 ScheduleData *DestBundle = DepDest->FirstInBundle; 7539 if (!DestBundle->IsScheduled) { 7540 BundleMember->incrementUnscheduledDeps(1); 7541 } 7542 if (!DestBundle->hasValidDependencies()) { 7543 WorkList.push_back(DestBundle); 7544 } 7545 } 7546 DepDest = DepDest->NextLoadStore; 7547 7548 // Example, explaining the loop break condition: Let's assume our 7549 // starting instruction is i0 and MaxMemDepDistance = 3. 7550 // 7551 // +--------v--v--v 7552 // i0,i1,i2,i3,i4,i5,i6,i7,i8 7553 // +--------^--^--^ 7554 // 7555 // MaxMemDepDistance let us stop alias-checking at i3 and we add 7556 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 7557 // Previously we already added dependencies from i3 to i6,i7,i8 7558 // (because of MaxMemDepDistance). As we added a dependency from 7559 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 7560 // and we can abort this loop at i6. 7561 if (DistToSrc >= 2 * MaxMemDepDistance) 7562 break; 7563 DistToSrc++; 7564 } 7565 } 7566 } 7567 BundleMember = BundleMember->NextInBundle; 7568 } 7569 if (InsertInReadyList && SD->isReady()) { 7570 ReadyInsts.push_back(SD); 7571 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 7572 << "\n"); 7573 } 7574 } 7575 } 7576 7577 void BoUpSLP::BlockScheduling::resetSchedule() { 7578 assert(ScheduleStart && 7579 "tried to reset schedule on block which has not been scheduled"); 7580 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 7581 doForAllOpcodes(I, [&](ScheduleData *SD) { 7582 assert(isInSchedulingRegion(SD) && 7583 "ScheduleData not in scheduling region"); 7584 SD->IsScheduled = false; 7585 SD->resetUnscheduledDeps(); 7586 }); 7587 } 7588 ReadyInsts.clear(); 7589 } 7590 7591 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 7592 if (!BS->ScheduleStart) 7593 return; 7594 7595 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 7596 7597 BS->resetSchedule(); 7598 7599 // For the real scheduling we use a more sophisticated ready-list: it is 7600 // sorted by the original instruction location. This lets the final schedule 7601 // be as close as possible to the original instruction order. 7602 struct ScheduleDataCompare { 7603 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 7604 return SD2->SchedulingPriority < SD1->SchedulingPriority; 7605 } 7606 }; 7607 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 7608 7609 // Ensure that all dependency data is updated and fill the ready-list with 7610 // initial instructions. 7611 int Idx = 0; 7612 int NumToSchedule = 0; 7613 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 7614 I = I->getNextNode()) { 7615 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 7616 assert((isVectorLikeInstWithConstOps(SD->Inst) || 7617 SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr)) && 7618 "scheduler and vectorizer bundle mismatch"); 7619 SD->FirstInBundle->SchedulingPriority = Idx++; 7620 if (SD->isSchedulingEntity()) { 7621 BS->calculateDependencies(SD, false, this); 7622 NumToSchedule++; 7623 } 7624 }); 7625 } 7626 BS->initialFillReadyList(ReadyInsts); 7627 7628 Instruction *LastScheduledInst = BS->ScheduleEnd; 7629 7630 // Do the "real" scheduling. 7631 while (!ReadyInsts.empty()) { 7632 ScheduleData *picked = *ReadyInsts.begin(); 7633 ReadyInsts.erase(ReadyInsts.begin()); 7634 7635 // Move the scheduled instruction(s) to their dedicated places, if not 7636 // there yet. 7637 ScheduleData *BundleMember = picked; 7638 while (BundleMember) { 7639 Instruction *pickedInst = BundleMember->Inst; 7640 if (pickedInst->getNextNode() != LastScheduledInst) { 7641 BS->BB->getInstList().remove(pickedInst); 7642 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 7643 pickedInst); 7644 } 7645 LastScheduledInst = pickedInst; 7646 BundleMember = BundleMember->NextInBundle; 7647 } 7648 7649 BS->schedule(picked, ReadyInsts); 7650 NumToSchedule--; 7651 } 7652 assert(NumToSchedule == 0 && "could not schedule all instructions"); 7653 7654 // Avoid duplicate scheduling of the block. 7655 BS->ScheduleStart = nullptr; 7656 } 7657 7658 unsigned BoUpSLP::getVectorElementSize(Value *V) { 7659 // If V is a store, just return the width of the stored value (or value 7660 // truncated just before storing) without traversing the expression tree. 7661 // This is the common case. 7662 if (auto *Store = dyn_cast<StoreInst>(V)) { 7663 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 7664 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 7665 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 7666 } 7667 7668 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 7669 return getVectorElementSize(IEI->getOperand(1)); 7670 7671 auto E = InstrElementSize.find(V); 7672 if (E != InstrElementSize.end()) 7673 return E->second; 7674 7675 // If V is not a store, we can traverse the expression tree to find loads 7676 // that feed it. The type of the loaded value may indicate a more suitable 7677 // width than V's type. We want to base the vector element size on the width 7678 // of memory operations where possible. 7679 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 7680 SmallPtrSet<Instruction *, 16> Visited; 7681 if (auto *I = dyn_cast<Instruction>(V)) { 7682 Worklist.emplace_back(I, I->getParent()); 7683 Visited.insert(I); 7684 } 7685 7686 // Traverse the expression tree in bottom-up order looking for loads. If we 7687 // encounter an instruction we don't yet handle, we give up. 7688 auto Width = 0u; 7689 while (!Worklist.empty()) { 7690 Instruction *I; 7691 BasicBlock *Parent; 7692 std::tie(I, Parent) = Worklist.pop_back_val(); 7693 7694 // We should only be looking at scalar instructions here. If the current 7695 // instruction has a vector type, skip. 7696 auto *Ty = I->getType(); 7697 if (isa<VectorType>(Ty)) 7698 continue; 7699 7700 // If the current instruction is a load, update MaxWidth to reflect the 7701 // width of the loaded value. 7702 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 7703 isa<ExtractValueInst>(I)) 7704 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 7705 7706 // Otherwise, we need to visit the operands of the instruction. We only 7707 // handle the interesting cases from buildTree here. If an operand is an 7708 // instruction we haven't yet visited and from the same basic block as the 7709 // user or the use is a PHI node, we add it to the worklist. 7710 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 7711 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 7712 isa<UnaryOperator>(I)) { 7713 for (Use &U : I->operands()) 7714 if (auto *J = dyn_cast<Instruction>(U.get())) 7715 if (Visited.insert(J).second && 7716 (isa<PHINode>(I) || J->getParent() == Parent)) 7717 Worklist.emplace_back(J, J->getParent()); 7718 } else { 7719 break; 7720 } 7721 } 7722 7723 // If we didn't encounter a memory access in the expression tree, or if we 7724 // gave up for some reason, just return the width of V. Otherwise, return the 7725 // maximum width we found. 7726 if (!Width) { 7727 if (auto *CI = dyn_cast<CmpInst>(V)) 7728 V = CI->getOperand(0); 7729 Width = DL->getTypeSizeInBits(V->getType()); 7730 } 7731 7732 for (Instruction *I : Visited) 7733 InstrElementSize[I] = Width; 7734 7735 return Width; 7736 } 7737 7738 // Determine if a value V in a vectorizable expression Expr can be demoted to a 7739 // smaller type with a truncation. We collect the values that will be demoted 7740 // in ToDemote and additional roots that require investigating in Roots. 7741 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 7742 SmallVectorImpl<Value *> &ToDemote, 7743 SmallVectorImpl<Value *> &Roots) { 7744 // We can always demote constants. 7745 if (isa<Constant>(V)) { 7746 ToDemote.push_back(V); 7747 return true; 7748 } 7749 7750 // If the value is not an instruction in the expression with only one use, it 7751 // cannot be demoted. 7752 auto *I = dyn_cast<Instruction>(V); 7753 if (!I || !I->hasOneUse() || !Expr.count(I)) 7754 return false; 7755 7756 switch (I->getOpcode()) { 7757 7758 // We can always demote truncations and extensions. Since truncations can 7759 // seed additional demotion, we save the truncated value. 7760 case Instruction::Trunc: 7761 Roots.push_back(I->getOperand(0)); 7762 break; 7763 case Instruction::ZExt: 7764 case Instruction::SExt: 7765 if (isa<ExtractElementInst>(I->getOperand(0)) || 7766 isa<InsertElementInst>(I->getOperand(0))) 7767 return false; 7768 break; 7769 7770 // We can demote certain binary operations if we can demote both of their 7771 // operands. 7772 case Instruction::Add: 7773 case Instruction::Sub: 7774 case Instruction::Mul: 7775 case Instruction::And: 7776 case Instruction::Or: 7777 case Instruction::Xor: 7778 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 7779 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 7780 return false; 7781 break; 7782 7783 // We can demote selects if we can demote their true and false values. 7784 case Instruction::Select: { 7785 SelectInst *SI = cast<SelectInst>(I); 7786 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 7787 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 7788 return false; 7789 break; 7790 } 7791 7792 // We can demote phis if we can demote all their incoming operands. Note that 7793 // we don't need to worry about cycles since we ensure single use above. 7794 case Instruction::PHI: { 7795 PHINode *PN = cast<PHINode>(I); 7796 for (Value *IncValue : PN->incoming_values()) 7797 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 7798 return false; 7799 break; 7800 } 7801 7802 // Otherwise, conservatively give up. 7803 default: 7804 return false; 7805 } 7806 7807 // Record the value that we can demote. 7808 ToDemote.push_back(V); 7809 return true; 7810 } 7811 7812 void BoUpSLP::computeMinimumValueSizes() { 7813 // If there are no external uses, the expression tree must be rooted by a 7814 // store. We can't demote in-memory values, so there is nothing to do here. 7815 if (ExternalUses.empty()) 7816 return; 7817 7818 // We only attempt to truncate integer expressions. 7819 auto &TreeRoot = VectorizableTree[0]->Scalars; 7820 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 7821 if (!TreeRootIT) 7822 return; 7823 7824 // If the expression is not rooted by a store, these roots should have 7825 // external uses. We will rely on InstCombine to rewrite the expression in 7826 // the narrower type. However, InstCombine only rewrites single-use values. 7827 // This means that if a tree entry other than a root is used externally, it 7828 // must have multiple uses and InstCombine will not rewrite it. The code 7829 // below ensures that only the roots are used externally. 7830 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 7831 for (auto &EU : ExternalUses) 7832 if (!Expr.erase(EU.Scalar)) 7833 return; 7834 if (!Expr.empty()) 7835 return; 7836 7837 // Collect the scalar values of the vectorizable expression. We will use this 7838 // context to determine which values can be demoted. If we see a truncation, 7839 // we mark it as seeding another demotion. 7840 for (auto &EntryPtr : VectorizableTree) 7841 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 7842 7843 // Ensure the roots of the vectorizable tree don't form a cycle. They must 7844 // have a single external user that is not in the vectorizable tree. 7845 for (auto *Root : TreeRoot) 7846 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 7847 return; 7848 7849 // Conservatively determine if we can actually truncate the roots of the 7850 // expression. Collect the values that can be demoted in ToDemote and 7851 // additional roots that require investigating in Roots. 7852 SmallVector<Value *, 32> ToDemote; 7853 SmallVector<Value *, 4> Roots; 7854 for (auto *Root : TreeRoot) 7855 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 7856 return; 7857 7858 // The maximum bit width required to represent all the values that can be 7859 // demoted without loss of precision. It would be safe to truncate the roots 7860 // of the expression to this width. 7861 auto MaxBitWidth = 8u; 7862 7863 // We first check if all the bits of the roots are demanded. If they're not, 7864 // we can truncate the roots to this narrower type. 7865 for (auto *Root : TreeRoot) { 7866 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 7867 MaxBitWidth = std::max<unsigned>( 7868 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 7869 } 7870 7871 // True if the roots can be zero-extended back to their original type, rather 7872 // than sign-extended. We know that if the leading bits are not demanded, we 7873 // can safely zero-extend. So we initialize IsKnownPositive to True. 7874 bool IsKnownPositive = true; 7875 7876 // If all the bits of the roots are demanded, we can try a little harder to 7877 // compute a narrower type. This can happen, for example, if the roots are 7878 // getelementptr indices. InstCombine promotes these indices to the pointer 7879 // width. Thus, all their bits are technically demanded even though the 7880 // address computation might be vectorized in a smaller type. 7881 // 7882 // We start by looking at each entry that can be demoted. We compute the 7883 // maximum bit width required to store the scalar by using ValueTracking to 7884 // compute the number of high-order bits we can truncate. 7885 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 7886 llvm::all_of(TreeRoot, [](Value *R) { 7887 assert(R->hasOneUse() && "Root should have only one use!"); 7888 return isa<GetElementPtrInst>(R->user_back()); 7889 })) { 7890 MaxBitWidth = 8u; 7891 7892 // Determine if the sign bit of all the roots is known to be zero. If not, 7893 // IsKnownPositive is set to False. 7894 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 7895 KnownBits Known = computeKnownBits(R, *DL); 7896 return Known.isNonNegative(); 7897 }); 7898 7899 // Determine the maximum number of bits required to store the scalar 7900 // values. 7901 for (auto *Scalar : ToDemote) { 7902 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 7903 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 7904 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 7905 } 7906 7907 // If we can't prove that the sign bit is zero, we must add one to the 7908 // maximum bit width to account for the unknown sign bit. This preserves 7909 // the existing sign bit so we can safely sign-extend the root back to the 7910 // original type. Otherwise, if we know the sign bit is zero, we will 7911 // zero-extend the root instead. 7912 // 7913 // FIXME: This is somewhat suboptimal, as there will be cases where adding 7914 // one to the maximum bit width will yield a larger-than-necessary 7915 // type. In general, we need to add an extra bit only if we can't 7916 // prove that the upper bit of the original type is equal to the 7917 // upper bit of the proposed smaller type. If these two bits are the 7918 // same (either zero or one) we know that sign-extending from the 7919 // smaller type will result in the same value. Here, since we can't 7920 // yet prove this, we are just making the proposed smaller type 7921 // larger to ensure correctness. 7922 if (!IsKnownPositive) 7923 ++MaxBitWidth; 7924 } 7925 7926 // Round MaxBitWidth up to the next power-of-two. 7927 if (!isPowerOf2_64(MaxBitWidth)) 7928 MaxBitWidth = NextPowerOf2(MaxBitWidth); 7929 7930 // If the maximum bit width we compute is less than the with of the roots' 7931 // type, we can proceed with the narrowing. Otherwise, do nothing. 7932 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 7933 return; 7934 7935 // If we can truncate the root, we must collect additional values that might 7936 // be demoted as a result. That is, those seeded by truncations we will 7937 // modify. 7938 while (!Roots.empty()) 7939 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 7940 7941 // Finally, map the values we can demote to the maximum bit with we computed. 7942 for (auto *Scalar : ToDemote) 7943 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 7944 } 7945 7946 namespace { 7947 7948 /// The SLPVectorizer Pass. 7949 struct SLPVectorizer : public FunctionPass { 7950 SLPVectorizerPass Impl; 7951 7952 /// Pass identification, replacement for typeid 7953 static char ID; 7954 7955 explicit SLPVectorizer() : FunctionPass(ID) { 7956 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 7957 } 7958 7959 bool doInitialization(Module &M) override { return false; } 7960 7961 bool runOnFunction(Function &F) override { 7962 if (skipFunction(F)) 7963 return false; 7964 7965 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 7966 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 7967 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 7968 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 7969 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 7970 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 7971 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 7972 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 7973 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 7974 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 7975 7976 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 7977 } 7978 7979 void getAnalysisUsage(AnalysisUsage &AU) const override { 7980 FunctionPass::getAnalysisUsage(AU); 7981 AU.addRequired<AssumptionCacheTracker>(); 7982 AU.addRequired<ScalarEvolutionWrapperPass>(); 7983 AU.addRequired<AAResultsWrapperPass>(); 7984 AU.addRequired<TargetTransformInfoWrapperPass>(); 7985 AU.addRequired<LoopInfoWrapperPass>(); 7986 AU.addRequired<DominatorTreeWrapperPass>(); 7987 AU.addRequired<DemandedBitsWrapperPass>(); 7988 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 7989 AU.addRequired<InjectTLIMappingsLegacy>(); 7990 AU.addPreserved<LoopInfoWrapperPass>(); 7991 AU.addPreserved<DominatorTreeWrapperPass>(); 7992 AU.addPreserved<AAResultsWrapperPass>(); 7993 AU.addPreserved<GlobalsAAWrapperPass>(); 7994 AU.setPreservesCFG(); 7995 } 7996 }; 7997 7998 } // end anonymous namespace 7999 8000 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 8001 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 8002 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 8003 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 8004 auto *AA = &AM.getResult<AAManager>(F); 8005 auto *LI = &AM.getResult<LoopAnalysis>(F); 8006 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 8007 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 8008 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 8009 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8010 8011 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8012 if (!Changed) 8013 return PreservedAnalyses::all(); 8014 8015 PreservedAnalyses PA; 8016 PA.preserveSet<CFGAnalyses>(); 8017 return PA; 8018 } 8019 8020 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 8021 TargetTransformInfo *TTI_, 8022 TargetLibraryInfo *TLI_, AAResults *AA_, 8023 LoopInfo *LI_, DominatorTree *DT_, 8024 AssumptionCache *AC_, DemandedBits *DB_, 8025 OptimizationRemarkEmitter *ORE_) { 8026 if (!RunSLPVectorization) 8027 return false; 8028 SE = SE_; 8029 TTI = TTI_; 8030 TLI = TLI_; 8031 AA = AA_; 8032 LI = LI_; 8033 DT = DT_; 8034 AC = AC_; 8035 DB = DB_; 8036 DL = &F.getParent()->getDataLayout(); 8037 8038 Stores.clear(); 8039 GEPs.clear(); 8040 bool Changed = false; 8041 8042 // If the target claims to have no vector registers don't attempt 8043 // vectorization. 8044 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) 8045 return false; 8046 8047 // Don't vectorize when the attribute NoImplicitFloat is used. 8048 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 8049 return false; 8050 8051 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 8052 8053 // Use the bottom up slp vectorizer to construct chains that start with 8054 // store instructions. 8055 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 8056 8057 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 8058 // delete instructions. 8059 8060 // Update DFS numbers now so that we can use them for ordering. 8061 DT->updateDFSNumbers(); 8062 8063 // Scan the blocks in the function in post order. 8064 for (auto BB : post_order(&F.getEntryBlock())) { 8065 collectSeedInstructions(BB); 8066 8067 // Vectorize trees that end at stores. 8068 if (!Stores.empty()) { 8069 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 8070 << " underlying objects.\n"); 8071 Changed |= vectorizeStoreChains(R); 8072 } 8073 8074 // Vectorize trees that end at reductions. 8075 Changed |= vectorizeChainsInBlock(BB, R); 8076 8077 // Vectorize the index computations of getelementptr instructions. This 8078 // is primarily intended to catch gather-like idioms ending at 8079 // non-consecutive loads. 8080 if (!GEPs.empty()) { 8081 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 8082 << " underlying objects.\n"); 8083 Changed |= vectorizeGEPIndices(BB, R); 8084 } 8085 } 8086 8087 if (Changed) { 8088 R.optimizeGatherSequence(); 8089 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 8090 } 8091 return Changed; 8092 } 8093 8094 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 8095 unsigned Idx) { 8096 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 8097 << "\n"); 8098 const unsigned Sz = R.getVectorElementSize(Chain[0]); 8099 const unsigned MinVF = R.getMinVecRegSize() / Sz; 8100 unsigned VF = Chain.size(); 8101 8102 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 8103 return false; 8104 8105 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 8106 << "\n"); 8107 8108 R.buildTree(Chain); 8109 if (R.isTreeTinyAndNotFullyVectorizable()) 8110 return false; 8111 if (R.isLoadCombineCandidate()) 8112 return false; 8113 R.reorderTopToBottom(); 8114 R.reorderBottomToTop(); 8115 R.buildExternalUses(); 8116 8117 R.computeMinimumValueSizes(); 8118 8119 InstructionCost Cost = R.getTreeCost(); 8120 8121 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 8122 if (Cost < -SLPCostThreshold) { 8123 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 8124 8125 using namespace ore; 8126 8127 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 8128 cast<StoreInst>(Chain[0])) 8129 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 8130 << " and with tree size " 8131 << NV("TreeSize", R.getTreeSize())); 8132 8133 R.vectorizeTree(); 8134 return true; 8135 } 8136 8137 return false; 8138 } 8139 8140 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 8141 BoUpSLP &R) { 8142 // We may run into multiple chains that merge into a single chain. We mark the 8143 // stores that we vectorized so that we don't visit the same store twice. 8144 BoUpSLP::ValueSet VectorizedStores; 8145 bool Changed = false; 8146 8147 int E = Stores.size(); 8148 SmallBitVector Tails(E, false); 8149 int MaxIter = MaxStoreLookup.getValue(); 8150 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 8151 E, std::make_pair(E, INT_MAX)); 8152 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 8153 int IterCnt; 8154 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 8155 &CheckedPairs, 8156 &ConsecutiveChain](int K, int Idx) { 8157 if (IterCnt >= MaxIter) 8158 return true; 8159 if (CheckedPairs[Idx].test(K)) 8160 return ConsecutiveChain[K].second == 1 && 8161 ConsecutiveChain[K].first == Idx; 8162 ++IterCnt; 8163 CheckedPairs[Idx].set(K); 8164 CheckedPairs[K].set(Idx); 8165 Optional<int> Diff = getPointersDiff( 8166 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 8167 Stores[Idx]->getValueOperand()->getType(), 8168 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 8169 if (!Diff || *Diff == 0) 8170 return false; 8171 int Val = *Diff; 8172 if (Val < 0) { 8173 if (ConsecutiveChain[Idx].second > -Val) { 8174 Tails.set(K); 8175 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 8176 } 8177 return false; 8178 } 8179 if (ConsecutiveChain[K].second <= Val) 8180 return false; 8181 8182 Tails.set(Idx); 8183 ConsecutiveChain[K] = std::make_pair(Idx, Val); 8184 return Val == 1; 8185 }; 8186 // Do a quadratic search on all of the given stores in reverse order and find 8187 // all of the pairs of stores that follow each other. 8188 for (int Idx = E - 1; Idx >= 0; --Idx) { 8189 // If a store has multiple consecutive store candidates, search according 8190 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 8191 // This is because usually pairing with immediate succeeding or preceding 8192 // candidate create the best chance to find slp vectorization opportunity. 8193 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 8194 IterCnt = 0; 8195 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 8196 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 8197 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 8198 break; 8199 } 8200 8201 // Tracks if we tried to vectorize stores starting from the given tail 8202 // already. 8203 SmallBitVector TriedTails(E, false); 8204 // For stores that start but don't end a link in the chain: 8205 for (int Cnt = E; Cnt > 0; --Cnt) { 8206 int I = Cnt - 1; 8207 if (ConsecutiveChain[I].first == E || Tails.test(I)) 8208 continue; 8209 // We found a store instr that starts a chain. Now follow the chain and try 8210 // to vectorize it. 8211 BoUpSLP::ValueList Operands; 8212 // Collect the chain into a list. 8213 while (I != E && !VectorizedStores.count(Stores[I])) { 8214 Operands.push_back(Stores[I]); 8215 Tails.set(I); 8216 if (ConsecutiveChain[I].second != 1) { 8217 // Mark the new end in the chain and go back, if required. It might be 8218 // required if the original stores come in reversed order, for example. 8219 if (ConsecutiveChain[I].first != E && 8220 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 8221 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 8222 TriedTails.set(I); 8223 Tails.reset(ConsecutiveChain[I].first); 8224 if (Cnt < ConsecutiveChain[I].first + 2) 8225 Cnt = ConsecutiveChain[I].first + 2; 8226 } 8227 break; 8228 } 8229 // Move to the next value in the chain. 8230 I = ConsecutiveChain[I].first; 8231 } 8232 assert(!Operands.empty() && "Expected non-empty list of stores."); 8233 8234 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 8235 unsigned EltSize = R.getVectorElementSize(Operands[0]); 8236 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 8237 8238 unsigned MinVF = R.getMinVF(EltSize); 8239 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 8240 MaxElts); 8241 8242 // FIXME: Is division-by-2 the correct step? Should we assert that the 8243 // register size is a power-of-2? 8244 unsigned StartIdx = 0; 8245 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 8246 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 8247 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 8248 if (!VectorizedStores.count(Slice.front()) && 8249 !VectorizedStores.count(Slice.back()) && 8250 vectorizeStoreChain(Slice, R, Cnt)) { 8251 // Mark the vectorized stores so that we don't vectorize them again. 8252 VectorizedStores.insert(Slice.begin(), Slice.end()); 8253 Changed = true; 8254 // If we vectorized initial block, no need to try to vectorize it 8255 // again. 8256 if (Cnt == StartIdx) 8257 StartIdx += Size; 8258 Cnt += Size; 8259 continue; 8260 } 8261 ++Cnt; 8262 } 8263 // Check if the whole array was vectorized already - exit. 8264 if (StartIdx >= Operands.size()) 8265 break; 8266 } 8267 } 8268 8269 return Changed; 8270 } 8271 8272 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 8273 // Initialize the collections. We will make a single pass over the block. 8274 Stores.clear(); 8275 GEPs.clear(); 8276 8277 // Visit the store and getelementptr instructions in BB and organize them in 8278 // Stores and GEPs according to the underlying objects of their pointer 8279 // operands. 8280 for (Instruction &I : *BB) { 8281 // Ignore store instructions that are volatile or have a pointer operand 8282 // that doesn't point to a scalar type. 8283 if (auto *SI = dyn_cast<StoreInst>(&I)) { 8284 if (!SI->isSimple()) 8285 continue; 8286 if (!isValidElementType(SI->getValueOperand()->getType())) 8287 continue; 8288 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 8289 } 8290 8291 // Ignore getelementptr instructions that have more than one index, a 8292 // constant index, or a pointer operand that doesn't point to a scalar 8293 // type. 8294 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 8295 auto Idx = GEP->idx_begin()->get(); 8296 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 8297 continue; 8298 if (!isValidElementType(Idx->getType())) 8299 continue; 8300 if (GEP->getType()->isVectorTy()) 8301 continue; 8302 GEPs[GEP->getPointerOperand()].push_back(GEP); 8303 } 8304 } 8305 } 8306 8307 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 8308 if (!A || !B) 8309 return false; 8310 Value *VL[] = {A, B}; 8311 return tryToVectorizeList(VL, R); 8312 } 8313 8314 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 8315 bool LimitForRegisterSize) { 8316 if (VL.size() < 2) 8317 return false; 8318 8319 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 8320 << VL.size() << ".\n"); 8321 8322 // Check that all of the parts are instructions of the same type, 8323 // we permit an alternate opcode via InstructionsState. 8324 InstructionsState S = getSameOpcode(VL); 8325 if (!S.getOpcode()) 8326 return false; 8327 8328 Instruction *I0 = cast<Instruction>(S.OpValue); 8329 // Make sure invalid types (including vector type) are rejected before 8330 // determining vectorization factor for scalar instructions. 8331 for (Value *V : VL) { 8332 Type *Ty = V->getType(); 8333 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 8334 // NOTE: the following will give user internal llvm type name, which may 8335 // not be useful. 8336 R.getORE()->emit([&]() { 8337 std::string type_str; 8338 llvm::raw_string_ostream rso(type_str); 8339 Ty->print(rso); 8340 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 8341 << "Cannot SLP vectorize list: type " 8342 << rso.str() + " is unsupported by vectorizer"; 8343 }); 8344 return false; 8345 } 8346 } 8347 8348 unsigned Sz = R.getVectorElementSize(I0); 8349 unsigned MinVF = R.getMinVF(Sz); 8350 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 8351 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 8352 if (MaxVF < 2) { 8353 R.getORE()->emit([&]() { 8354 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 8355 << "Cannot SLP vectorize list: vectorization factor " 8356 << "less than 2 is not supported"; 8357 }); 8358 return false; 8359 } 8360 8361 bool Changed = false; 8362 bool CandidateFound = false; 8363 InstructionCost MinCost = SLPCostThreshold.getValue(); 8364 Type *ScalarTy = VL[0]->getType(); 8365 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 8366 ScalarTy = IE->getOperand(1)->getType(); 8367 8368 unsigned NextInst = 0, MaxInst = VL.size(); 8369 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 8370 // No actual vectorization should happen, if number of parts is the same as 8371 // provided vectorization factor (i.e. the scalar type is used for vector 8372 // code during codegen). 8373 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 8374 if (TTI->getNumberOfParts(VecTy) == VF) 8375 continue; 8376 for (unsigned I = NextInst; I < MaxInst; ++I) { 8377 unsigned OpsWidth = 0; 8378 8379 if (I + VF > MaxInst) 8380 OpsWidth = MaxInst - I; 8381 else 8382 OpsWidth = VF; 8383 8384 if (!isPowerOf2_32(OpsWidth)) 8385 continue; 8386 8387 if ((LimitForRegisterSize && OpsWidth < MaxVF) || 8388 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 8389 break; 8390 8391 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 8392 // Check that a previous iteration of this loop did not delete the Value. 8393 if (llvm::any_of(Ops, [&R](Value *V) { 8394 auto *I = dyn_cast<Instruction>(V); 8395 return I && R.isDeleted(I); 8396 })) 8397 continue; 8398 8399 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 8400 << "\n"); 8401 8402 R.buildTree(Ops); 8403 if (R.isTreeTinyAndNotFullyVectorizable()) 8404 continue; 8405 R.reorderTopToBottom(); 8406 R.reorderBottomToTop(); 8407 R.buildExternalUses(); 8408 8409 R.computeMinimumValueSizes(); 8410 InstructionCost Cost = R.getTreeCost(); 8411 CandidateFound = true; 8412 MinCost = std::min(MinCost, Cost); 8413 8414 if (Cost < -SLPCostThreshold) { 8415 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 8416 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 8417 cast<Instruction>(Ops[0])) 8418 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 8419 << " and with tree size " 8420 << ore::NV("TreeSize", R.getTreeSize())); 8421 8422 R.vectorizeTree(); 8423 // Move to the next bundle. 8424 I += VF - 1; 8425 NextInst = I + 1; 8426 Changed = true; 8427 } 8428 } 8429 } 8430 8431 if (!Changed && CandidateFound) { 8432 R.getORE()->emit([&]() { 8433 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 8434 << "List vectorization was possible but not beneficial with cost " 8435 << ore::NV("Cost", MinCost) << " >= " 8436 << ore::NV("Treshold", -SLPCostThreshold); 8437 }); 8438 } else if (!Changed) { 8439 R.getORE()->emit([&]() { 8440 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 8441 << "Cannot SLP vectorize list: vectorization was impossible" 8442 << " with available vectorization factors"; 8443 }); 8444 } 8445 return Changed; 8446 } 8447 8448 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 8449 if (!I) 8450 return false; 8451 8452 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 8453 return false; 8454 8455 Value *P = I->getParent(); 8456 8457 // Vectorize in current basic block only. 8458 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 8459 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 8460 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 8461 return false; 8462 8463 // Try to vectorize V. 8464 if (tryToVectorizePair(Op0, Op1, R)) 8465 return true; 8466 8467 auto *A = dyn_cast<BinaryOperator>(Op0); 8468 auto *B = dyn_cast<BinaryOperator>(Op1); 8469 // Try to skip B. 8470 if (B && B->hasOneUse()) { 8471 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 8472 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 8473 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 8474 return true; 8475 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 8476 return true; 8477 } 8478 8479 // Try to skip A. 8480 if (A && A->hasOneUse()) { 8481 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 8482 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 8483 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 8484 return true; 8485 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 8486 return true; 8487 } 8488 return false; 8489 } 8490 8491 namespace { 8492 8493 /// Model horizontal reductions. 8494 /// 8495 /// A horizontal reduction is a tree of reduction instructions that has values 8496 /// that can be put into a vector as its leaves. For example: 8497 /// 8498 /// mul mul mul mul 8499 /// \ / \ / 8500 /// + + 8501 /// \ / 8502 /// + 8503 /// This tree has "mul" as its leaf values and "+" as its reduction 8504 /// instructions. A reduction can feed into a store or a binary operation 8505 /// feeding a phi. 8506 /// ... 8507 /// \ / 8508 /// + 8509 /// | 8510 /// phi += 8511 /// 8512 /// Or: 8513 /// ... 8514 /// \ / 8515 /// + 8516 /// | 8517 /// *p = 8518 /// 8519 class HorizontalReduction { 8520 using ReductionOpsType = SmallVector<Value *, 16>; 8521 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 8522 ReductionOpsListType ReductionOps; 8523 SmallVector<Value *, 32> ReducedVals; 8524 // Use map vector to make stable output. 8525 MapVector<Instruction *, Value *> ExtraArgs; 8526 WeakTrackingVH ReductionRoot; 8527 /// The type of reduction operation. 8528 RecurKind RdxKind; 8529 8530 const unsigned INVALID_OPERAND_INDEX = std::numeric_limits<unsigned>::max(); 8531 8532 static bool isCmpSelMinMax(Instruction *I) { 8533 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 8534 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 8535 } 8536 8537 // And/or are potentially poison-safe logical patterns like: 8538 // select x, y, false 8539 // select x, true, y 8540 static bool isBoolLogicOp(Instruction *I) { 8541 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 8542 match(I, m_LogicalOr(m_Value(), m_Value())); 8543 } 8544 8545 /// Checks if instruction is associative and can be vectorized. 8546 static bool isVectorizable(RecurKind Kind, Instruction *I) { 8547 if (Kind == RecurKind::None) 8548 return false; 8549 8550 // Integer ops that map to select instructions or intrinsics are fine. 8551 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 8552 isBoolLogicOp(I)) 8553 return true; 8554 8555 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 8556 // FP min/max are associative except for NaN and -0.0. We do not 8557 // have to rule out -0.0 here because the intrinsic semantics do not 8558 // specify a fixed result for it. 8559 return I->getFastMathFlags().noNaNs(); 8560 } 8561 8562 return I->isAssociative(); 8563 } 8564 8565 static Value *getRdxOperand(Instruction *I, unsigned Index) { 8566 // Poison-safe 'or' takes the form: select X, true, Y 8567 // To make that work with the normal operand processing, we skip the 8568 // true value operand. 8569 // TODO: Change the code and data structures to handle this without a hack. 8570 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 8571 return I->getOperand(2); 8572 return I->getOperand(Index); 8573 } 8574 8575 /// Checks if the ParentStackElem.first should be marked as a reduction 8576 /// operation with an extra argument or as extra argument itself. 8577 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 8578 Value *ExtraArg) { 8579 if (ExtraArgs.count(ParentStackElem.first)) { 8580 ExtraArgs[ParentStackElem.first] = nullptr; 8581 // We ran into something like: 8582 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 8583 // The whole ParentStackElem.first should be considered as an extra value 8584 // in this case. 8585 // Do not perform analysis of remaining operands of ParentStackElem.first 8586 // instruction, this whole instruction is an extra argument. 8587 ParentStackElem.second = INVALID_OPERAND_INDEX; 8588 } else { 8589 // We ran into something like: 8590 // ParentStackElem.first += ... + ExtraArg + ... 8591 ExtraArgs[ParentStackElem.first] = ExtraArg; 8592 } 8593 } 8594 8595 /// Creates reduction operation with the current opcode. 8596 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 8597 Value *RHS, const Twine &Name, bool UseSelect) { 8598 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 8599 switch (Kind) { 8600 case RecurKind::Or: 8601 if (UseSelect && 8602 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 8603 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); 8604 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8605 Name); 8606 case RecurKind::And: 8607 if (UseSelect && 8608 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 8609 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); 8610 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8611 Name); 8612 case RecurKind::Add: 8613 case RecurKind::Mul: 8614 case RecurKind::Xor: 8615 case RecurKind::FAdd: 8616 case RecurKind::FMul: 8617 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8618 Name); 8619 case RecurKind::FMax: 8620 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 8621 case RecurKind::FMin: 8622 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 8623 case RecurKind::SMax: 8624 if (UseSelect) { 8625 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 8626 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8627 } 8628 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 8629 case RecurKind::SMin: 8630 if (UseSelect) { 8631 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 8632 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8633 } 8634 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 8635 case RecurKind::UMax: 8636 if (UseSelect) { 8637 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 8638 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8639 } 8640 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 8641 case RecurKind::UMin: 8642 if (UseSelect) { 8643 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 8644 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8645 } 8646 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 8647 default: 8648 llvm_unreachable("Unknown reduction operation."); 8649 } 8650 } 8651 8652 /// Creates reduction operation with the current opcode with the IR flags 8653 /// from \p ReductionOps. 8654 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 8655 Value *RHS, const Twine &Name, 8656 const ReductionOpsListType &ReductionOps) { 8657 bool UseSelect = ReductionOps.size() == 2 || 8658 // Logical or/and. 8659 (ReductionOps.size() == 1 && 8660 isa<SelectInst>(ReductionOps.front().front())); 8661 assert((!UseSelect || ReductionOps.size() != 2 || 8662 isa<SelectInst>(ReductionOps[1][0])) && 8663 "Expected cmp + select pairs for reduction"); 8664 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 8665 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 8666 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 8667 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 8668 propagateIRFlags(Op, ReductionOps[1]); 8669 return Op; 8670 } 8671 } 8672 propagateIRFlags(Op, ReductionOps[0]); 8673 return Op; 8674 } 8675 8676 /// Creates reduction operation with the current opcode with the IR flags 8677 /// from \p I. 8678 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 8679 Value *RHS, const Twine &Name, Instruction *I) { 8680 auto *SelI = dyn_cast<SelectInst>(I); 8681 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 8682 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 8683 if (auto *Sel = dyn_cast<SelectInst>(Op)) 8684 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 8685 } 8686 propagateIRFlags(Op, I); 8687 return Op; 8688 } 8689 8690 static RecurKind getRdxKind(Instruction *I) { 8691 assert(I && "Expected instruction for reduction matching"); 8692 TargetTransformInfo::ReductionFlags RdxFlags; 8693 if (match(I, m_Add(m_Value(), m_Value()))) 8694 return RecurKind::Add; 8695 if (match(I, m_Mul(m_Value(), m_Value()))) 8696 return RecurKind::Mul; 8697 if (match(I, m_And(m_Value(), m_Value())) || 8698 match(I, m_LogicalAnd(m_Value(), m_Value()))) 8699 return RecurKind::And; 8700 if (match(I, m_Or(m_Value(), m_Value())) || 8701 match(I, m_LogicalOr(m_Value(), m_Value()))) 8702 return RecurKind::Or; 8703 if (match(I, m_Xor(m_Value(), m_Value()))) 8704 return RecurKind::Xor; 8705 if (match(I, m_FAdd(m_Value(), m_Value()))) 8706 return RecurKind::FAdd; 8707 if (match(I, m_FMul(m_Value(), m_Value()))) 8708 return RecurKind::FMul; 8709 8710 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 8711 return RecurKind::FMax; 8712 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 8713 return RecurKind::FMin; 8714 8715 // This matches either cmp+select or intrinsics. SLP is expected to handle 8716 // either form. 8717 // TODO: If we are canonicalizing to intrinsics, we can remove several 8718 // special-case paths that deal with selects. 8719 if (match(I, m_SMax(m_Value(), m_Value()))) 8720 return RecurKind::SMax; 8721 if (match(I, m_SMin(m_Value(), m_Value()))) 8722 return RecurKind::SMin; 8723 if (match(I, m_UMax(m_Value(), m_Value()))) 8724 return RecurKind::UMax; 8725 if (match(I, m_UMin(m_Value(), m_Value()))) 8726 return RecurKind::UMin; 8727 8728 if (auto *Select = dyn_cast<SelectInst>(I)) { 8729 // Try harder: look for min/max pattern based on instructions producing 8730 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 8731 // During the intermediate stages of SLP, it's very common to have 8732 // pattern like this (since optimizeGatherSequence is run only once 8733 // at the end): 8734 // %1 = extractelement <2 x i32> %a, i32 0 8735 // %2 = extractelement <2 x i32> %a, i32 1 8736 // %cond = icmp sgt i32 %1, %2 8737 // %3 = extractelement <2 x i32> %a, i32 0 8738 // %4 = extractelement <2 x i32> %a, i32 1 8739 // %select = select i1 %cond, i32 %3, i32 %4 8740 CmpInst::Predicate Pred; 8741 Instruction *L1; 8742 Instruction *L2; 8743 8744 Value *LHS = Select->getTrueValue(); 8745 Value *RHS = Select->getFalseValue(); 8746 Value *Cond = Select->getCondition(); 8747 8748 // TODO: Support inverse predicates. 8749 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 8750 if (!isa<ExtractElementInst>(RHS) || 8751 !L2->isIdenticalTo(cast<Instruction>(RHS))) 8752 return RecurKind::None; 8753 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 8754 if (!isa<ExtractElementInst>(LHS) || 8755 !L1->isIdenticalTo(cast<Instruction>(LHS))) 8756 return RecurKind::None; 8757 } else { 8758 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 8759 return RecurKind::None; 8760 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 8761 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 8762 !L2->isIdenticalTo(cast<Instruction>(RHS))) 8763 return RecurKind::None; 8764 } 8765 8766 TargetTransformInfo::ReductionFlags RdxFlags; 8767 switch (Pred) { 8768 default: 8769 return RecurKind::None; 8770 case CmpInst::ICMP_SGT: 8771 case CmpInst::ICMP_SGE: 8772 return RecurKind::SMax; 8773 case CmpInst::ICMP_SLT: 8774 case CmpInst::ICMP_SLE: 8775 return RecurKind::SMin; 8776 case CmpInst::ICMP_UGT: 8777 case CmpInst::ICMP_UGE: 8778 return RecurKind::UMax; 8779 case CmpInst::ICMP_ULT: 8780 case CmpInst::ICMP_ULE: 8781 return RecurKind::UMin; 8782 } 8783 } 8784 return RecurKind::None; 8785 } 8786 8787 /// Get the index of the first operand. 8788 static unsigned getFirstOperandIndex(Instruction *I) { 8789 return isCmpSelMinMax(I) ? 1 : 0; 8790 } 8791 8792 /// Total number of operands in the reduction operation. 8793 static unsigned getNumberOfOperands(Instruction *I) { 8794 return isCmpSelMinMax(I) ? 3 : 2; 8795 } 8796 8797 /// Checks if the instruction is in basic block \p BB. 8798 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 8799 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 8800 if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) { 8801 auto *Sel = cast<SelectInst>(I); 8802 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); 8803 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; 8804 } 8805 return I->getParent() == BB; 8806 } 8807 8808 /// Expected number of uses for reduction operations/reduced values. 8809 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 8810 if (IsCmpSelMinMax) { 8811 // SelectInst must be used twice while the condition op must have single 8812 // use only. 8813 if (auto *Sel = dyn_cast<SelectInst>(I)) 8814 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 8815 return I->hasNUses(2); 8816 } 8817 8818 // Arithmetic reduction operation must be used once only. 8819 return I->hasOneUse(); 8820 } 8821 8822 /// Initializes the list of reduction operations. 8823 void initReductionOps(Instruction *I) { 8824 if (isCmpSelMinMax(I)) 8825 ReductionOps.assign(2, ReductionOpsType()); 8826 else 8827 ReductionOps.assign(1, ReductionOpsType()); 8828 } 8829 8830 /// Add all reduction operations for the reduction instruction \p I. 8831 void addReductionOps(Instruction *I) { 8832 if (isCmpSelMinMax(I)) { 8833 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 8834 ReductionOps[1].emplace_back(I); 8835 } else { 8836 ReductionOps[0].emplace_back(I); 8837 } 8838 } 8839 8840 static Value *getLHS(RecurKind Kind, Instruction *I) { 8841 if (Kind == RecurKind::None) 8842 return nullptr; 8843 return I->getOperand(getFirstOperandIndex(I)); 8844 } 8845 static Value *getRHS(RecurKind Kind, Instruction *I) { 8846 if (Kind == RecurKind::None) 8847 return nullptr; 8848 return I->getOperand(getFirstOperandIndex(I) + 1); 8849 } 8850 8851 public: 8852 HorizontalReduction() = default; 8853 8854 /// Try to find a reduction tree. 8855 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst) { 8856 assert((!Phi || is_contained(Phi->operands(), Inst)) && 8857 "Phi needs to use the binary operator"); 8858 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 8859 isa<IntrinsicInst>(Inst)) && 8860 "Expected binop, select, or intrinsic for reduction matching"); 8861 RdxKind = getRdxKind(Inst); 8862 8863 // We could have a initial reductions that is not an add. 8864 // r *= v1 + v2 + v3 + v4 8865 // In such a case start looking for a tree rooted in the first '+'. 8866 if (Phi) { 8867 if (getLHS(RdxKind, Inst) == Phi) { 8868 Phi = nullptr; 8869 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 8870 if (!Inst) 8871 return false; 8872 RdxKind = getRdxKind(Inst); 8873 } else if (getRHS(RdxKind, Inst) == Phi) { 8874 Phi = nullptr; 8875 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 8876 if (!Inst) 8877 return false; 8878 RdxKind = getRdxKind(Inst); 8879 } 8880 } 8881 8882 if (!isVectorizable(RdxKind, Inst)) 8883 return false; 8884 8885 // Analyze "regular" integer/FP types for reductions - no target-specific 8886 // types or pointers. 8887 Type *Ty = Inst->getType(); 8888 if (!isValidElementType(Ty) || Ty->isPointerTy()) 8889 return false; 8890 8891 // Though the ultimate reduction may have multiple uses, its condition must 8892 // have only single use. 8893 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 8894 if (!Sel->getCondition()->hasOneUse()) 8895 return false; 8896 8897 ReductionRoot = Inst; 8898 8899 // The opcode for leaf values that we perform a reduction on. 8900 // For example: load(x) + load(y) + load(z) + fptoui(w) 8901 // The leaf opcode for 'w' does not match, so we don't include it as a 8902 // potential candidate for the reduction. 8903 unsigned LeafOpcode = 0; 8904 8905 // Post-order traverse the reduction tree starting at Inst. We only handle 8906 // true trees containing binary operators or selects. 8907 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 8908 Stack.push_back(std::make_pair(Inst, getFirstOperandIndex(Inst))); 8909 initReductionOps(Inst); 8910 while (!Stack.empty()) { 8911 Instruction *TreeN = Stack.back().first; 8912 unsigned EdgeToVisit = Stack.back().second++; 8913 const RecurKind TreeRdxKind = getRdxKind(TreeN); 8914 bool IsReducedValue = TreeRdxKind != RdxKind; 8915 8916 // Postorder visit. 8917 if (IsReducedValue || EdgeToVisit >= getNumberOfOperands(TreeN)) { 8918 if (IsReducedValue) 8919 ReducedVals.push_back(TreeN); 8920 else { 8921 auto ExtraArgsIter = ExtraArgs.find(TreeN); 8922 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) { 8923 // Check if TreeN is an extra argument of its parent operation. 8924 if (Stack.size() <= 1) { 8925 // TreeN can't be an extra argument as it is a root reduction 8926 // operation. 8927 return false; 8928 } 8929 // Yes, TreeN is an extra argument, do not add it to a list of 8930 // reduction operations. 8931 // Stack[Stack.size() - 2] always points to the parent operation. 8932 markExtraArg(Stack[Stack.size() - 2], TreeN); 8933 ExtraArgs.erase(TreeN); 8934 } else 8935 addReductionOps(TreeN); 8936 } 8937 // Retract. 8938 Stack.pop_back(); 8939 continue; 8940 } 8941 8942 // Visit operands. 8943 Value *EdgeVal = getRdxOperand(TreeN, EdgeToVisit); 8944 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 8945 if (!EdgeInst) { 8946 // Edge value is not a reduction instruction or a leaf instruction. 8947 // (It may be a constant, function argument, or something else.) 8948 markExtraArg(Stack.back(), EdgeVal); 8949 continue; 8950 } 8951 RecurKind EdgeRdxKind = getRdxKind(EdgeInst); 8952 // Continue analysis if the next operand is a reduction operation or 8953 // (possibly) a leaf value. If the leaf value opcode is not set, 8954 // the first met operation != reduction operation is considered as the 8955 // leaf opcode. 8956 // Only handle trees in the current basic block. 8957 // Each tree node needs to have minimal number of users except for the 8958 // ultimate reduction. 8959 const bool IsRdxInst = EdgeRdxKind == RdxKind; 8960 if (EdgeInst != Phi && EdgeInst != Inst && 8961 hasSameParent(EdgeInst, Inst->getParent()) && 8962 hasRequiredNumberOfUses(isCmpSelMinMax(Inst), EdgeInst) && 8963 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) { 8964 if (IsRdxInst) { 8965 // We need to be able to reassociate the reduction operations. 8966 if (!isVectorizable(EdgeRdxKind, EdgeInst)) { 8967 // I is an extra argument for TreeN (its parent operation). 8968 markExtraArg(Stack.back(), EdgeInst); 8969 continue; 8970 } 8971 } else if (!LeafOpcode) { 8972 LeafOpcode = EdgeInst->getOpcode(); 8973 } 8974 Stack.push_back( 8975 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst))); 8976 continue; 8977 } 8978 // I is an extra argument for TreeN (its parent operation). 8979 markExtraArg(Stack.back(), EdgeInst); 8980 } 8981 return true; 8982 } 8983 8984 /// Attempt to vectorize the tree found by matchAssociativeReduction. 8985 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 8986 // If there are a sufficient number of reduction values, reduce 8987 // to a nearby power-of-2. We can safely generate oversized 8988 // vectors and rely on the backend to split them to legal sizes. 8989 unsigned NumReducedVals = ReducedVals.size(); 8990 if (NumReducedVals < 4) 8991 return nullptr; 8992 8993 // Intersect the fast-math-flags from all reduction operations. 8994 FastMathFlags RdxFMF; 8995 RdxFMF.set(); 8996 for (ReductionOpsType &RdxOp : ReductionOps) { 8997 for (Value *RdxVal : RdxOp) { 8998 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 8999 RdxFMF &= FPMO->getFastMathFlags(); 9000 } 9001 } 9002 9003 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 9004 Builder.setFastMathFlags(RdxFMF); 9005 9006 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 9007 // The same extra argument may be used several times, so log each attempt 9008 // to use it. 9009 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 9010 assert(Pair.first && "DebugLoc must be set."); 9011 ExternallyUsedValues[Pair.second].push_back(Pair.first); 9012 } 9013 9014 // The compare instruction of a min/max is the insertion point for new 9015 // instructions and may be replaced with a new compare instruction. 9016 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 9017 assert(isa<SelectInst>(RdxRootInst) && 9018 "Expected min/max reduction to have select root instruction"); 9019 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 9020 assert(isa<Instruction>(ScalarCond) && 9021 "Expected min/max reduction to have compare condition"); 9022 return cast<Instruction>(ScalarCond); 9023 }; 9024 9025 // The reduction root is used as the insertion point for new instructions, 9026 // so set it as externally used to prevent it from being deleted. 9027 ExternallyUsedValues[ReductionRoot]; 9028 SmallVector<Value *, 16> IgnoreList; 9029 for (ReductionOpsType &RdxOp : ReductionOps) 9030 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 9031 9032 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 9033 if (NumReducedVals > ReduxWidth) { 9034 // In the loop below, we are building a tree based on a window of 9035 // 'ReduxWidth' values. 9036 // If the operands of those values have common traits (compare predicate, 9037 // constant operand, etc), then we want to group those together to 9038 // minimize the cost of the reduction. 9039 9040 // TODO: This should be extended to count common operands for 9041 // compares and binops. 9042 9043 // Step 1: Count the number of times each compare predicate occurs. 9044 SmallDenseMap<unsigned, unsigned> PredCountMap; 9045 for (Value *RdxVal : ReducedVals) { 9046 CmpInst::Predicate Pred; 9047 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 9048 ++PredCountMap[Pred]; 9049 } 9050 // Step 2: Sort the values so the most common predicates come first. 9051 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 9052 CmpInst::Predicate PredA, PredB; 9053 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 9054 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 9055 return PredCountMap[PredA] > PredCountMap[PredB]; 9056 } 9057 return false; 9058 }); 9059 } 9060 9061 Value *VectorizedTree = nullptr; 9062 unsigned i = 0; 9063 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 9064 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 9065 V.buildTree(VL, IgnoreList); 9066 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) 9067 break; 9068 if (V.isLoadCombineReductionCandidate(RdxKind)) 9069 break; 9070 V.reorderTopToBottom(); 9071 V.reorderBottomToTop(/*IgnoreReorder=*/true); 9072 V.buildExternalUses(ExternallyUsedValues); 9073 9074 // For a poison-safe boolean logic reduction, do not replace select 9075 // instructions with logic ops. All reduced values will be frozen (see 9076 // below) to prevent leaking poison. 9077 if (isa<SelectInst>(ReductionRoot) && 9078 isBoolLogicOp(cast<Instruction>(ReductionRoot)) && 9079 NumReducedVals != ReduxWidth) 9080 break; 9081 9082 V.computeMinimumValueSizes(); 9083 9084 // Estimate cost. 9085 InstructionCost TreeCost = 9086 V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth)); 9087 InstructionCost ReductionCost = 9088 getReductionCost(TTI, ReducedVals[i], ReduxWidth, RdxFMF); 9089 InstructionCost Cost = TreeCost + ReductionCost; 9090 if (!Cost.isValid()) { 9091 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 9092 return nullptr; 9093 } 9094 if (Cost >= -SLPCostThreshold) { 9095 V.getORE()->emit([&]() { 9096 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 9097 cast<Instruction>(VL[0])) 9098 << "Vectorizing horizontal reduction is possible" 9099 << "but not beneficial with cost " << ore::NV("Cost", Cost) 9100 << " and threshold " 9101 << ore::NV("Threshold", -SLPCostThreshold); 9102 }); 9103 break; 9104 } 9105 9106 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 9107 << Cost << ". (HorRdx)\n"); 9108 V.getORE()->emit([&]() { 9109 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 9110 cast<Instruction>(VL[0])) 9111 << "Vectorized horizontal reduction with cost " 9112 << ore::NV("Cost", Cost) << " and with tree size " 9113 << ore::NV("TreeSize", V.getTreeSize()); 9114 }); 9115 9116 // Vectorize a tree. 9117 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 9118 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 9119 9120 // Emit a reduction. If the root is a select (min/max idiom), the insert 9121 // point is the compare condition of that select. 9122 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 9123 if (isCmpSelMinMax(RdxRootInst)) 9124 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 9125 else 9126 Builder.SetInsertPoint(RdxRootInst); 9127 9128 // To prevent poison from leaking across what used to be sequential, safe, 9129 // scalar boolean logic operations, the reduction operand must be frozen. 9130 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 9131 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 9132 9133 Value *ReducedSubTree = 9134 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 9135 9136 if (!VectorizedTree) { 9137 // Initialize the final value in the reduction. 9138 VectorizedTree = ReducedSubTree; 9139 } else { 9140 // Update the final value in the reduction. 9141 Builder.SetCurrentDebugLocation(Loc); 9142 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9143 ReducedSubTree, "op.rdx", ReductionOps); 9144 } 9145 i += ReduxWidth; 9146 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 9147 } 9148 9149 if (VectorizedTree) { 9150 // Finish the reduction. 9151 for (; i < NumReducedVals; ++i) { 9152 auto *I = cast<Instruction>(ReducedVals[i]); 9153 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9154 VectorizedTree = 9155 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 9156 } 9157 for (auto &Pair : ExternallyUsedValues) { 9158 // Add each externally used value to the final reduction. 9159 for (auto *I : Pair.second) { 9160 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9161 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9162 Pair.first, "op.extra", I); 9163 } 9164 } 9165 9166 ReductionRoot->replaceAllUsesWith(VectorizedTree); 9167 9168 // Mark all scalar reduction ops for deletion, they are replaced by the 9169 // vector reductions. 9170 V.eraseInstructions(IgnoreList); 9171 } 9172 return VectorizedTree; 9173 } 9174 9175 unsigned numReductionValues() const { return ReducedVals.size(); } 9176 9177 private: 9178 /// Calculate the cost of a reduction. 9179 InstructionCost getReductionCost(TargetTransformInfo *TTI, 9180 Value *FirstReducedVal, unsigned ReduxWidth, 9181 FastMathFlags FMF) { 9182 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 9183 Type *ScalarTy = FirstReducedVal->getType(); 9184 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 9185 InstructionCost VectorCost, ScalarCost; 9186 switch (RdxKind) { 9187 case RecurKind::Add: 9188 case RecurKind::Mul: 9189 case RecurKind::Or: 9190 case RecurKind::And: 9191 case RecurKind::Xor: 9192 case RecurKind::FAdd: 9193 case RecurKind::FMul: { 9194 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 9195 VectorCost = 9196 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 9197 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 9198 break; 9199 } 9200 case RecurKind::FMax: 9201 case RecurKind::FMin: { 9202 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9203 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9204 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 9205 /*unsigned=*/false, CostKind); 9206 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9207 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, 9208 SclCondTy, RdxPred, CostKind) + 9209 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9210 SclCondTy, RdxPred, CostKind); 9211 break; 9212 } 9213 case RecurKind::SMax: 9214 case RecurKind::SMin: 9215 case RecurKind::UMax: 9216 case RecurKind::UMin: { 9217 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9218 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9219 bool IsUnsigned = 9220 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 9221 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned, 9222 CostKind); 9223 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9224 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, 9225 SclCondTy, RdxPred, CostKind) + 9226 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9227 SclCondTy, RdxPred, CostKind); 9228 break; 9229 } 9230 default: 9231 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 9232 } 9233 9234 // Scalar cost is repeated for N-1 elements. 9235 ScalarCost *= (ReduxWidth - 1); 9236 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 9237 << " for reduction that starts with " << *FirstReducedVal 9238 << " (It is a splitting reduction)\n"); 9239 return VectorCost - ScalarCost; 9240 } 9241 9242 /// Emit a horizontal reduction of the vectorized value. 9243 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 9244 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 9245 assert(VectorizedValue && "Need to have a vectorized tree node"); 9246 assert(isPowerOf2_32(ReduxWidth) && 9247 "We only handle power-of-two reductions for now"); 9248 assert(RdxKind != RecurKind::FMulAdd && 9249 "A call to the llvm.fmuladd intrinsic is not handled yet"); 9250 9251 ++NumVectorInstructions; 9252 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind); 9253 } 9254 }; 9255 9256 } // end anonymous namespace 9257 9258 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 9259 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 9260 return cast<FixedVectorType>(IE->getType())->getNumElements(); 9261 9262 unsigned AggregateSize = 1; 9263 auto *IV = cast<InsertValueInst>(InsertInst); 9264 Type *CurrentType = IV->getType(); 9265 do { 9266 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 9267 for (auto *Elt : ST->elements()) 9268 if (Elt != ST->getElementType(0)) // check homogeneity 9269 return None; 9270 AggregateSize *= ST->getNumElements(); 9271 CurrentType = ST->getElementType(0); 9272 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 9273 AggregateSize *= AT->getNumElements(); 9274 CurrentType = AT->getElementType(); 9275 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 9276 AggregateSize *= VT->getNumElements(); 9277 return AggregateSize; 9278 } else if (CurrentType->isSingleValueType()) { 9279 return AggregateSize; 9280 } else { 9281 return None; 9282 } 9283 } while (true); 9284 } 9285 9286 static bool findBuildAggregate_rec(Instruction *LastInsertInst, 9287 TargetTransformInfo *TTI, 9288 SmallVectorImpl<Value *> &BuildVectorOpds, 9289 SmallVectorImpl<Value *> &InsertElts, 9290 unsigned OperandOffset) { 9291 do { 9292 Value *InsertedOperand = LastInsertInst->getOperand(1); 9293 Optional<int> OperandIndex = getInsertIndex(LastInsertInst, OperandOffset); 9294 if (!OperandIndex) 9295 return false; 9296 if (isa<InsertElementInst>(InsertedOperand) || 9297 isa<InsertValueInst>(InsertedOperand)) { 9298 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 9299 BuildVectorOpds, InsertElts, *OperandIndex)) 9300 return false; 9301 } else { 9302 BuildVectorOpds[*OperandIndex] = InsertedOperand; 9303 InsertElts[*OperandIndex] = LastInsertInst; 9304 } 9305 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 9306 } while (LastInsertInst != nullptr && 9307 (isa<InsertValueInst>(LastInsertInst) || 9308 isa<InsertElementInst>(LastInsertInst)) && 9309 LastInsertInst->hasOneUse()); 9310 return true; 9311 } 9312 9313 /// Recognize construction of vectors like 9314 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 9315 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 9316 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 9317 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 9318 /// starting from the last insertelement or insertvalue instruction. 9319 /// 9320 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 9321 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 9322 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 9323 /// 9324 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 9325 /// 9326 /// \return true if it matches. 9327 static bool findBuildAggregate(Instruction *LastInsertInst, 9328 TargetTransformInfo *TTI, 9329 SmallVectorImpl<Value *> &BuildVectorOpds, 9330 SmallVectorImpl<Value *> &InsertElts) { 9331 9332 assert((isa<InsertElementInst>(LastInsertInst) || 9333 isa<InsertValueInst>(LastInsertInst)) && 9334 "Expected insertelement or insertvalue instruction!"); 9335 9336 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 9337 "Expected empty result vectors!"); 9338 9339 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 9340 if (!AggregateSize) 9341 return false; 9342 BuildVectorOpds.resize(*AggregateSize); 9343 InsertElts.resize(*AggregateSize); 9344 9345 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 9346 0)) { 9347 llvm::erase_value(BuildVectorOpds, nullptr); 9348 llvm::erase_value(InsertElts, nullptr); 9349 if (BuildVectorOpds.size() >= 2) 9350 return true; 9351 } 9352 9353 return false; 9354 } 9355 9356 /// Try and get a reduction value from a phi node. 9357 /// 9358 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 9359 /// if they come from either \p ParentBB or a containing loop latch. 9360 /// 9361 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 9362 /// if not possible. 9363 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 9364 BasicBlock *ParentBB, LoopInfo *LI) { 9365 // There are situations where the reduction value is not dominated by the 9366 // reduction phi. Vectorizing such cases has been reported to cause 9367 // miscompiles. See PR25787. 9368 auto DominatedReduxValue = [&](Value *R) { 9369 return isa<Instruction>(R) && 9370 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 9371 }; 9372 9373 Value *Rdx = nullptr; 9374 9375 // Return the incoming value if it comes from the same BB as the phi node. 9376 if (P->getIncomingBlock(0) == ParentBB) { 9377 Rdx = P->getIncomingValue(0); 9378 } else if (P->getIncomingBlock(1) == ParentBB) { 9379 Rdx = P->getIncomingValue(1); 9380 } 9381 9382 if (Rdx && DominatedReduxValue(Rdx)) 9383 return Rdx; 9384 9385 // Otherwise, check whether we have a loop latch to look at. 9386 Loop *BBL = LI->getLoopFor(ParentBB); 9387 if (!BBL) 9388 return nullptr; 9389 BasicBlock *BBLatch = BBL->getLoopLatch(); 9390 if (!BBLatch) 9391 return nullptr; 9392 9393 // There is a loop latch, return the incoming value if it comes from 9394 // that. This reduction pattern occasionally turns up. 9395 if (P->getIncomingBlock(0) == BBLatch) { 9396 Rdx = P->getIncomingValue(0); 9397 } else if (P->getIncomingBlock(1) == BBLatch) { 9398 Rdx = P->getIncomingValue(1); 9399 } 9400 9401 if (Rdx && DominatedReduxValue(Rdx)) 9402 return Rdx; 9403 9404 return nullptr; 9405 } 9406 9407 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 9408 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 9409 return true; 9410 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 9411 return true; 9412 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 9413 return true; 9414 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 9415 return true; 9416 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 9417 return true; 9418 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 9419 return true; 9420 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 9421 return true; 9422 return false; 9423 } 9424 9425 /// Attempt to reduce a horizontal reduction. 9426 /// If it is legal to match a horizontal reduction feeding the phi node \a P 9427 /// with reduction operators \a Root (or one of its operands) in a basic block 9428 /// \a BB, then check if it can be done. If horizontal reduction is not found 9429 /// and root instruction is a binary operation, vectorization of the operands is 9430 /// attempted. 9431 /// \returns true if a horizontal reduction was matched and reduced or operands 9432 /// of one of the binary instruction were vectorized. 9433 /// \returns false if a horizontal reduction was not matched (or not possible) 9434 /// or no vectorization of any binary operation feeding \a Root instruction was 9435 /// performed. 9436 static bool tryToVectorizeHorReductionOrInstOperands( 9437 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 9438 TargetTransformInfo *TTI, 9439 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 9440 if (!ShouldVectorizeHor) 9441 return false; 9442 9443 if (!Root) 9444 return false; 9445 9446 if (Root->getParent() != BB || isa<PHINode>(Root)) 9447 return false; 9448 // Start analysis starting from Root instruction. If horizontal reduction is 9449 // found, try to vectorize it. If it is not a horizontal reduction or 9450 // vectorization is not possible or not effective, and currently analyzed 9451 // instruction is a binary operation, try to vectorize the operands, using 9452 // pre-order DFS traversal order. If the operands were not vectorized, repeat 9453 // the same procedure considering each operand as a possible root of the 9454 // horizontal reduction. 9455 // Interrupt the process if the Root instruction itself was vectorized or all 9456 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 9457 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 9458 // CmpInsts so we can skip extra attempts in 9459 // tryToVectorizeHorReductionOrInstOperands and save compile time. 9460 std::queue<std::pair<Instruction *, unsigned>> Stack; 9461 Stack.emplace(Root, 0); 9462 SmallPtrSet<Value *, 8> VisitedInstrs; 9463 SmallVector<WeakTrackingVH> PostponedInsts; 9464 bool Res = false; 9465 auto &&TryToReduce = [TTI, &P, &R](Instruction *Inst, Value *&B0, 9466 Value *&B1) -> Value * { 9467 bool IsBinop = matchRdxBop(Inst, B0, B1); 9468 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 9469 if (IsBinop || IsSelect) { 9470 HorizontalReduction HorRdx; 9471 if (HorRdx.matchAssociativeReduction(P, Inst)) 9472 return HorRdx.tryToReduce(R, TTI); 9473 } 9474 return nullptr; 9475 }; 9476 while (!Stack.empty()) { 9477 Instruction *Inst; 9478 unsigned Level; 9479 std::tie(Inst, Level) = Stack.front(); 9480 Stack.pop(); 9481 // Do not try to analyze instruction that has already been vectorized. 9482 // This may happen when we vectorize instruction operands on a previous 9483 // iteration while stack was populated before that happened. 9484 if (R.isDeleted(Inst)) 9485 continue; 9486 Value *B0 = nullptr, *B1 = nullptr; 9487 if (Value *V = TryToReduce(Inst, B0, B1)) { 9488 Res = true; 9489 // Set P to nullptr to avoid re-analysis of phi node in 9490 // matchAssociativeReduction function unless this is the root node. 9491 P = nullptr; 9492 if (auto *I = dyn_cast<Instruction>(V)) { 9493 // Try to find another reduction. 9494 Stack.emplace(I, Level); 9495 continue; 9496 } 9497 } else { 9498 bool IsBinop = B0 && B1; 9499 if (P && IsBinop) { 9500 Inst = dyn_cast<Instruction>(B0); 9501 if (Inst == P) 9502 Inst = dyn_cast<Instruction>(B1); 9503 if (!Inst) { 9504 // Set P to nullptr to avoid re-analysis of phi node in 9505 // matchAssociativeReduction function unless this is the root node. 9506 P = nullptr; 9507 continue; 9508 } 9509 } 9510 // Set P to nullptr to avoid re-analysis of phi node in 9511 // matchAssociativeReduction function unless this is the root node. 9512 P = nullptr; 9513 // Do not try to vectorize CmpInst operands, this is done separately. 9514 // Final attempt for binop args vectorization should happen after the loop 9515 // to try to find reductions. 9516 if (!isa<CmpInst>(Inst)) 9517 PostponedInsts.push_back(Inst); 9518 } 9519 9520 // Try to vectorize operands. 9521 // Continue analysis for the instruction from the same basic block only to 9522 // save compile time. 9523 if (++Level < RecursionMaxDepth) 9524 for (auto *Op : Inst->operand_values()) 9525 if (VisitedInstrs.insert(Op).second) 9526 if (auto *I = dyn_cast<Instruction>(Op)) 9527 // Do not try to vectorize CmpInst operands, this is done 9528 // separately. 9529 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 9530 I->getParent() == BB) 9531 Stack.emplace(I, Level); 9532 } 9533 // Try to vectorized binops where reductions were not found. 9534 for (Value *V : PostponedInsts) 9535 if (auto *Inst = dyn_cast<Instruction>(V)) 9536 if (!R.isDeleted(Inst)) 9537 Res |= Vectorize(Inst, R); 9538 return Res; 9539 } 9540 9541 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 9542 BasicBlock *BB, BoUpSLP &R, 9543 TargetTransformInfo *TTI) { 9544 auto *I = dyn_cast_or_null<Instruction>(V); 9545 if (!I) 9546 return false; 9547 9548 if (!isa<BinaryOperator>(I)) 9549 P = nullptr; 9550 // Try to match and vectorize a horizontal reduction. 9551 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 9552 return tryToVectorize(I, R); 9553 }; 9554 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 9555 ExtraVectorization); 9556 } 9557 9558 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 9559 BasicBlock *BB, BoUpSLP &R) { 9560 const DataLayout &DL = BB->getModule()->getDataLayout(); 9561 if (!R.canMapToVector(IVI->getType(), DL)) 9562 return false; 9563 9564 SmallVector<Value *, 16> BuildVectorOpds; 9565 SmallVector<Value *, 16> BuildVectorInsts; 9566 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 9567 return false; 9568 9569 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 9570 // Aggregate value is unlikely to be processed in vector register, we need to 9571 // extract scalars into scalar registers, so NeedExtraction is set true. 9572 return tryToVectorizeList(BuildVectorOpds, R); 9573 } 9574 9575 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 9576 BasicBlock *BB, BoUpSLP &R) { 9577 SmallVector<Value *, 16> BuildVectorInsts; 9578 SmallVector<Value *, 16> BuildVectorOpds; 9579 SmallVector<int> Mask; 9580 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 9581 (llvm::all_of( 9582 BuildVectorOpds, 9583 [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) && 9584 isFixedVectorShuffle(BuildVectorOpds, Mask))) 9585 return false; 9586 9587 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 9588 return tryToVectorizeList(BuildVectorInsts, R); 9589 } 9590 9591 template <typename T> 9592 static bool 9593 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, 9594 function_ref<unsigned(T *)> Limit, 9595 function_ref<bool(T *, T *)> Comparator, 9596 function_ref<bool(T *, T *)> AreCompatible, 9597 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorize, 9598 bool LimitForRegisterSize) { 9599 bool Changed = false; 9600 // Sort by type, parent, operands. 9601 stable_sort(Incoming, Comparator); 9602 9603 // Try to vectorize elements base on their type. 9604 SmallVector<T *> Candidates; 9605 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { 9606 // Look for the next elements with the same type, parent and operand 9607 // kinds. 9608 auto *SameTypeIt = IncIt; 9609 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) 9610 ++SameTypeIt; 9611 9612 // Try to vectorize them. 9613 unsigned NumElts = (SameTypeIt - IncIt); 9614 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" 9615 << NumElts << ")\n"); 9616 // The vectorization is a 3-state attempt: 9617 // 1. Try to vectorize instructions with the same/alternate opcodes with the 9618 // size of maximal register at first. 9619 // 2. Try to vectorize remaining instructions with the same type, if 9620 // possible. This may result in the better vectorization results rather than 9621 // if we try just to vectorize instructions with the same/alternate opcodes. 9622 // 3. Final attempt to try to vectorize all instructions with the 9623 // same/alternate ops only, this may result in some extra final 9624 // vectorization. 9625 if (NumElts > 1 && 9626 TryToVectorize(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) { 9627 // Success start over because instructions might have been changed. 9628 Changed = true; 9629 } else if (NumElts < Limit(*IncIt) && 9630 (Candidates.empty() || 9631 Candidates.front()->getType() == (*IncIt)->getType())) { 9632 Candidates.append(IncIt, std::next(IncIt, NumElts)); 9633 } 9634 // Final attempt to vectorize instructions with the same types. 9635 if (Candidates.size() > 1 && 9636 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { 9637 if (TryToVectorize(Candidates, /*LimitForRegisterSize=*/false)) { 9638 // Success start over because instructions might have been changed. 9639 Changed = true; 9640 } else if (LimitForRegisterSize) { 9641 // Try to vectorize using small vectors. 9642 for (auto *It = Candidates.begin(), *End = Candidates.end(); 9643 It != End;) { 9644 auto *SameTypeIt = It; 9645 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) 9646 ++SameTypeIt; 9647 unsigned NumElts = (SameTypeIt - It); 9648 if (NumElts > 1 && TryToVectorize(makeArrayRef(It, NumElts), 9649 /*LimitForRegisterSize=*/false)) 9650 Changed = true; 9651 It = SameTypeIt; 9652 } 9653 } 9654 Candidates.clear(); 9655 } 9656 9657 // Start over at the next instruction of a different type (or the end). 9658 IncIt = SameTypeIt; 9659 } 9660 return Changed; 9661 } 9662 9663 /// Compare two cmp instructions. If IsCompatibility is true, function returns 9664 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding 9665 /// operands. If IsCompatibility is false, function implements strict weak 9666 /// ordering relation between two cmp instructions, returning true if the first 9667 /// instruction is "less" than the second, i.e. its predicate is less than the 9668 /// predicate of the second or the operands IDs are less than the operands IDs 9669 /// of the second cmp instruction. 9670 template <bool IsCompatibility> 9671 static bool compareCmp(Value *V, Value *V2, 9672 function_ref<bool(Instruction *)> IsDeleted) { 9673 auto *CI1 = cast<CmpInst>(V); 9674 auto *CI2 = cast<CmpInst>(V2); 9675 if (IsDeleted(CI2) || !isValidElementType(CI2->getType())) 9676 return false; 9677 if (CI1->getOperand(0)->getType()->getTypeID() < 9678 CI2->getOperand(0)->getType()->getTypeID()) 9679 return !IsCompatibility; 9680 if (CI1->getOperand(0)->getType()->getTypeID() > 9681 CI2->getOperand(0)->getType()->getTypeID()) 9682 return false; 9683 CmpInst::Predicate Pred1 = CI1->getPredicate(); 9684 CmpInst::Predicate Pred2 = CI2->getPredicate(); 9685 CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1); 9686 CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2); 9687 CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1); 9688 CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2); 9689 if (BasePred1 < BasePred2) 9690 return !IsCompatibility; 9691 if (BasePred1 > BasePred2) 9692 return false; 9693 // Compare operands. 9694 bool LEPreds = Pred1 <= Pred2; 9695 bool GEPreds = Pred1 >= Pred2; 9696 for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) { 9697 auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1); 9698 auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1); 9699 if (Op1->getValueID() < Op2->getValueID()) 9700 return !IsCompatibility; 9701 if (Op1->getValueID() > Op2->getValueID()) 9702 return false; 9703 if (auto *I1 = dyn_cast<Instruction>(Op1)) 9704 if (auto *I2 = dyn_cast<Instruction>(Op2)) { 9705 if (I1->getParent() != I2->getParent()) 9706 return false; 9707 InstructionsState S = getSameOpcode({I1, I2}); 9708 if (S.getOpcode()) 9709 continue; 9710 return false; 9711 } 9712 } 9713 return IsCompatibility; 9714 } 9715 9716 bool SLPVectorizerPass::vectorizeSimpleInstructions( 9717 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 9718 bool AtTerminator) { 9719 bool OpsChanged = false; 9720 SmallVector<Instruction *, 4> PostponedCmps; 9721 for (auto *I : reverse(Instructions)) { 9722 if (R.isDeleted(I)) 9723 continue; 9724 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 9725 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 9726 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 9727 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 9728 else if (isa<CmpInst>(I)) 9729 PostponedCmps.push_back(I); 9730 } 9731 if (AtTerminator) { 9732 // Try to find reductions first. 9733 for (Instruction *I : PostponedCmps) { 9734 if (R.isDeleted(I)) 9735 continue; 9736 for (Value *Op : I->operands()) 9737 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 9738 } 9739 // Try to vectorize operands as vector bundles. 9740 for (Instruction *I : PostponedCmps) { 9741 if (R.isDeleted(I)) 9742 continue; 9743 OpsChanged |= tryToVectorize(I, R); 9744 } 9745 // Try to vectorize list of compares. 9746 // Sort by type, compare predicate, etc. 9747 auto &&CompareSorter = [&R](Value *V, Value *V2) { 9748 return compareCmp<false>(V, V2, 9749 [&R](Instruction *I) { return R.isDeleted(I); }); 9750 }; 9751 9752 auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) { 9753 if (V1 == V2) 9754 return true; 9755 return compareCmp<true>(V1, V2, 9756 [&R](Instruction *I) { return R.isDeleted(I); }); 9757 }; 9758 auto Limit = [&R](Value *V) { 9759 unsigned EltSize = R.getVectorElementSize(V); 9760 return std::max(2U, R.getMaxVecRegSize() / EltSize); 9761 }; 9762 9763 SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end()); 9764 OpsChanged |= tryToVectorizeSequence<Value>( 9765 Vals, Limit, CompareSorter, AreCompatibleCompares, 9766 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 9767 // Exclude possible reductions from other blocks. 9768 bool ArePossiblyReducedInOtherBlock = 9769 any_of(Candidates, [](Value *V) { 9770 return any_of(V->users(), [V](User *U) { 9771 return isa<SelectInst>(U) && 9772 cast<SelectInst>(U)->getParent() != 9773 cast<Instruction>(V)->getParent(); 9774 }); 9775 }); 9776 if (ArePossiblyReducedInOtherBlock) 9777 return false; 9778 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 9779 }, 9780 /*LimitForRegisterSize=*/true); 9781 Instructions.clear(); 9782 } else { 9783 // Insert in reverse order since the PostponedCmps vector was filled in 9784 // reverse order. 9785 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 9786 } 9787 return OpsChanged; 9788 } 9789 9790 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 9791 bool Changed = false; 9792 SmallVector<Value *, 4> Incoming; 9793 SmallPtrSet<Value *, 16> VisitedInstrs; 9794 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 9795 // node. Allows better to identify the chains that can be vectorized in the 9796 // better way. 9797 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 9798 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { 9799 assert(isValidElementType(V1->getType()) && 9800 isValidElementType(V2->getType()) && 9801 "Expected vectorizable types only."); 9802 // It is fine to compare type IDs here, since we expect only vectorizable 9803 // types, like ints, floats and pointers, we don't care about other type. 9804 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 9805 return true; 9806 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 9807 return false; 9808 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 9809 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 9810 if (Opcodes1.size() < Opcodes2.size()) 9811 return true; 9812 if (Opcodes1.size() > Opcodes2.size()) 9813 return false; 9814 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 9815 // Undefs are compatible with any other value. 9816 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 9817 continue; 9818 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 9819 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 9820 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 9821 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 9822 if (!NodeI1) 9823 return NodeI2 != nullptr; 9824 if (!NodeI2) 9825 return false; 9826 assert((NodeI1 == NodeI2) == 9827 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 9828 "Different nodes should have different DFS numbers"); 9829 if (NodeI1 != NodeI2) 9830 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 9831 InstructionsState S = getSameOpcode({I1, I2}); 9832 if (S.getOpcode()) 9833 continue; 9834 return I1->getOpcode() < I2->getOpcode(); 9835 } 9836 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 9837 continue; 9838 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 9839 return true; 9840 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 9841 return false; 9842 } 9843 return false; 9844 }; 9845 auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 9846 if (V1 == V2) 9847 return true; 9848 if (V1->getType() != V2->getType()) 9849 return false; 9850 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 9851 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 9852 if (Opcodes1.size() != Opcodes2.size()) 9853 return false; 9854 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 9855 // Undefs are compatible with any other value. 9856 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 9857 continue; 9858 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 9859 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 9860 if (I1->getParent() != I2->getParent()) 9861 return false; 9862 InstructionsState S = getSameOpcode({I1, I2}); 9863 if (S.getOpcode()) 9864 continue; 9865 return false; 9866 } 9867 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 9868 continue; 9869 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 9870 return false; 9871 } 9872 return true; 9873 }; 9874 auto Limit = [&R](Value *V) { 9875 unsigned EltSize = R.getVectorElementSize(V); 9876 return std::max(2U, R.getMaxVecRegSize() / EltSize); 9877 }; 9878 9879 bool HaveVectorizedPhiNodes = false; 9880 do { 9881 // Collect the incoming values from the PHIs. 9882 Incoming.clear(); 9883 for (Instruction &I : *BB) { 9884 PHINode *P = dyn_cast<PHINode>(&I); 9885 if (!P) 9886 break; 9887 9888 // No need to analyze deleted, vectorized and non-vectorizable 9889 // instructions. 9890 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 9891 isValidElementType(P->getType())) 9892 Incoming.push_back(P); 9893 } 9894 9895 // Find the corresponding non-phi nodes for better matching when trying to 9896 // build the tree. 9897 for (Value *V : Incoming) { 9898 SmallVectorImpl<Value *> &Opcodes = 9899 PHIToOpcodes.try_emplace(V).first->getSecond(); 9900 if (!Opcodes.empty()) 9901 continue; 9902 SmallVector<Value *, 4> Nodes(1, V); 9903 SmallPtrSet<Value *, 4> Visited; 9904 while (!Nodes.empty()) { 9905 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 9906 if (!Visited.insert(PHI).second) 9907 continue; 9908 for (Value *V : PHI->incoming_values()) { 9909 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 9910 Nodes.push_back(PHI1); 9911 continue; 9912 } 9913 Opcodes.emplace_back(V); 9914 } 9915 } 9916 } 9917 9918 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( 9919 Incoming, Limit, PHICompare, AreCompatiblePHIs, 9920 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 9921 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 9922 }, 9923 /*LimitForRegisterSize=*/true); 9924 Changed |= HaveVectorizedPhiNodes; 9925 VisitedInstrs.insert(Incoming.begin(), Incoming.end()); 9926 } while (HaveVectorizedPhiNodes); 9927 9928 VisitedInstrs.clear(); 9929 9930 SmallVector<Instruction *, 8> PostProcessInstructions; 9931 SmallDenseSet<Instruction *, 4> KeyNodes; 9932 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 9933 // Skip instructions with scalable type. The num of elements is unknown at 9934 // compile-time for scalable type. 9935 if (isa<ScalableVectorType>(it->getType())) 9936 continue; 9937 9938 // Skip instructions marked for the deletion. 9939 if (R.isDeleted(&*it)) 9940 continue; 9941 // We may go through BB multiple times so skip the one we have checked. 9942 if (!VisitedInstrs.insert(&*it).second) { 9943 if (it->use_empty() && KeyNodes.contains(&*it) && 9944 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 9945 it->isTerminator())) { 9946 // We would like to start over since some instructions are deleted 9947 // and the iterator may become invalid value. 9948 Changed = true; 9949 it = BB->begin(); 9950 e = BB->end(); 9951 } 9952 continue; 9953 } 9954 9955 if (isa<DbgInfoIntrinsic>(it)) 9956 continue; 9957 9958 // Try to vectorize reductions that use PHINodes. 9959 if (PHINode *P = dyn_cast<PHINode>(it)) { 9960 // Check that the PHI is a reduction PHI. 9961 if (P->getNumIncomingValues() == 2) { 9962 // Try to match and vectorize a horizontal reduction. 9963 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 9964 TTI)) { 9965 Changed = true; 9966 it = BB->begin(); 9967 e = BB->end(); 9968 continue; 9969 } 9970 } 9971 // Try to vectorize the incoming values of the PHI, to catch reductions 9972 // that feed into PHIs. 9973 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 9974 // Skip if the incoming block is the current BB for now. Also, bypass 9975 // unreachable IR for efficiency and to avoid crashing. 9976 // TODO: Collect the skipped incoming values and try to vectorize them 9977 // after processing BB. 9978 if (BB == P->getIncomingBlock(I) || 9979 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 9980 continue; 9981 9982 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 9983 P->getIncomingBlock(I), R, TTI); 9984 } 9985 continue; 9986 } 9987 9988 // Ran into an instruction without users, like terminator, or function call 9989 // with ignored return value, store. Ignore unused instructions (basing on 9990 // instruction type, except for CallInst and InvokeInst). 9991 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 9992 isa<InvokeInst>(it))) { 9993 KeyNodes.insert(&*it); 9994 bool OpsChanged = false; 9995 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 9996 for (auto *V : it->operand_values()) { 9997 // Try to match and vectorize a horizontal reduction. 9998 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 9999 } 10000 } 10001 // Start vectorization of post-process list of instructions from the 10002 // top-tree instructions to try to vectorize as many instructions as 10003 // possible. 10004 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10005 it->isTerminator()); 10006 if (OpsChanged) { 10007 // We would like to start over since some instructions are deleted 10008 // and the iterator may become invalid value. 10009 Changed = true; 10010 it = BB->begin(); 10011 e = BB->end(); 10012 continue; 10013 } 10014 } 10015 10016 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 10017 isa<InsertValueInst>(it)) 10018 PostProcessInstructions.push_back(&*it); 10019 } 10020 10021 return Changed; 10022 } 10023 10024 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 10025 auto Changed = false; 10026 for (auto &Entry : GEPs) { 10027 // If the getelementptr list has fewer than two elements, there's nothing 10028 // to do. 10029 if (Entry.second.size() < 2) 10030 continue; 10031 10032 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 10033 << Entry.second.size() << ".\n"); 10034 10035 // Process the GEP list in chunks suitable for the target's supported 10036 // vector size. If a vector register can't hold 1 element, we are done. We 10037 // are trying to vectorize the index computations, so the maximum number of 10038 // elements is based on the size of the index expression, rather than the 10039 // size of the GEP itself (the target's pointer size). 10040 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 10041 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 10042 if (MaxVecRegSize < EltSize) 10043 continue; 10044 10045 unsigned MaxElts = MaxVecRegSize / EltSize; 10046 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 10047 auto Len = std::min<unsigned>(BE - BI, MaxElts); 10048 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 10049 10050 // Initialize a set a candidate getelementptrs. Note that we use a 10051 // SetVector here to preserve program order. If the index computations 10052 // are vectorizable and begin with loads, we want to minimize the chance 10053 // of having to reorder them later. 10054 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 10055 10056 // Some of the candidates may have already been vectorized after we 10057 // initially collected them. If so, they are marked as deleted, so remove 10058 // them from the set of candidates. 10059 Candidates.remove_if( 10060 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 10061 10062 // Remove from the set of candidates all pairs of getelementptrs with 10063 // constant differences. Such getelementptrs are likely not good 10064 // candidates for vectorization in a bottom-up phase since one can be 10065 // computed from the other. We also ensure all candidate getelementptr 10066 // indices are unique. 10067 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 10068 auto *GEPI = GEPList[I]; 10069 if (!Candidates.count(GEPI)) 10070 continue; 10071 auto *SCEVI = SE->getSCEV(GEPList[I]); 10072 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 10073 auto *GEPJ = GEPList[J]; 10074 auto *SCEVJ = SE->getSCEV(GEPList[J]); 10075 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 10076 Candidates.remove(GEPI); 10077 Candidates.remove(GEPJ); 10078 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 10079 Candidates.remove(GEPJ); 10080 } 10081 } 10082 } 10083 10084 // We break out of the above computation as soon as we know there are 10085 // fewer than two candidates remaining. 10086 if (Candidates.size() < 2) 10087 continue; 10088 10089 // Add the single, non-constant index of each candidate to the bundle. We 10090 // ensured the indices met these constraints when we originally collected 10091 // the getelementptrs. 10092 SmallVector<Value *, 16> Bundle(Candidates.size()); 10093 auto BundleIndex = 0u; 10094 for (auto *V : Candidates) { 10095 auto *GEP = cast<GetElementPtrInst>(V); 10096 auto *GEPIdx = GEP->idx_begin()->get(); 10097 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 10098 Bundle[BundleIndex++] = GEPIdx; 10099 } 10100 10101 // Try and vectorize the indices. We are currently only interested in 10102 // gather-like cases of the form: 10103 // 10104 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 10105 // 10106 // where the loads of "a", the loads of "b", and the subtractions can be 10107 // performed in parallel. It's likely that detecting this pattern in a 10108 // bottom-up phase will be simpler and less costly than building a 10109 // full-blown top-down phase beginning at the consecutive loads. 10110 Changed |= tryToVectorizeList(Bundle, R); 10111 } 10112 } 10113 return Changed; 10114 } 10115 10116 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 10117 bool Changed = false; 10118 // Sort by type, base pointers and values operand. Value operands must be 10119 // compatible (have the same opcode, same parent), otherwise it is 10120 // definitely not profitable to try to vectorize them. 10121 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 10122 if (V->getPointerOperandType()->getTypeID() < 10123 V2->getPointerOperandType()->getTypeID()) 10124 return true; 10125 if (V->getPointerOperandType()->getTypeID() > 10126 V2->getPointerOperandType()->getTypeID()) 10127 return false; 10128 // UndefValues are compatible with all other values. 10129 if (isa<UndefValue>(V->getValueOperand()) || 10130 isa<UndefValue>(V2->getValueOperand())) 10131 return false; 10132 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 10133 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10134 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 10135 DT->getNode(I1->getParent()); 10136 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 10137 DT->getNode(I2->getParent()); 10138 assert(NodeI1 && "Should only process reachable instructions"); 10139 assert(NodeI1 && "Should only process reachable instructions"); 10140 assert((NodeI1 == NodeI2) == 10141 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10142 "Different nodes should have different DFS numbers"); 10143 if (NodeI1 != NodeI2) 10144 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10145 InstructionsState S = getSameOpcode({I1, I2}); 10146 if (S.getOpcode()) 10147 return false; 10148 return I1->getOpcode() < I2->getOpcode(); 10149 } 10150 if (isa<Constant>(V->getValueOperand()) && 10151 isa<Constant>(V2->getValueOperand())) 10152 return false; 10153 return V->getValueOperand()->getValueID() < 10154 V2->getValueOperand()->getValueID(); 10155 }; 10156 10157 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 10158 if (V1 == V2) 10159 return true; 10160 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 10161 return false; 10162 // Undefs are compatible with any other value. 10163 if (isa<UndefValue>(V1->getValueOperand()) || 10164 isa<UndefValue>(V2->getValueOperand())) 10165 return true; 10166 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 10167 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10168 if (I1->getParent() != I2->getParent()) 10169 return false; 10170 InstructionsState S = getSameOpcode({I1, I2}); 10171 return S.getOpcode() > 0; 10172 } 10173 if (isa<Constant>(V1->getValueOperand()) && 10174 isa<Constant>(V2->getValueOperand())) 10175 return true; 10176 return V1->getValueOperand()->getValueID() == 10177 V2->getValueOperand()->getValueID(); 10178 }; 10179 auto Limit = [&R, this](StoreInst *SI) { 10180 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 10181 return R.getMinVF(EltSize); 10182 }; 10183 10184 // Attempt to sort and vectorize each of the store-groups. 10185 for (auto &Pair : Stores) { 10186 if (Pair.second.size() < 2) 10187 continue; 10188 10189 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 10190 << Pair.second.size() << ".\n"); 10191 10192 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) 10193 continue; 10194 10195 Changed |= tryToVectorizeSequence<StoreInst>( 10196 Pair.second, Limit, StoreSorter, AreCompatibleStores, 10197 [this, &R](ArrayRef<StoreInst *> Candidates, bool) { 10198 return vectorizeStores(Candidates, R); 10199 }, 10200 /*LimitForRegisterSize=*/false); 10201 } 10202 return Changed; 10203 } 10204 10205 char SLPVectorizer::ID = 0; 10206 10207 static const char lv_name[] = "SLP Vectorizer"; 10208 10209 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 10210 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 10211 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 10212 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 10213 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 10214 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 10215 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 10216 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 10217 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 10218 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 10219 10220 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 10221