1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive
10 // stores that can be put together into vector-stores. Next, it attempts to
11 // construct vectorizable tree using the use-def chains. If a profitable tree
12 // was found, the SLP vectorizer performs vectorization on the tree.
13 //
14 // The pass is inspired by the work described in the paper:
15 //  "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/DenseSet.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/PostOrderIterator.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SetVector.h"
26 #include "llvm/ADT/SmallBitVector.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/ADT/SmallString.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/ADT/iterator.h"
32 #include "llvm/ADT/iterator_range.h"
33 #include "llvm/Analysis/AliasAnalysis.h"
34 #include "llvm/Analysis/AssumptionCache.h"
35 #include "llvm/Analysis/CodeMetrics.h"
36 #include "llvm/Analysis/DemandedBits.h"
37 #include "llvm/Analysis/GlobalsModRef.h"
38 #include "llvm/Analysis/IVDescriptors.h"
39 #include "llvm/Analysis/LoopAccessAnalysis.h"
40 #include "llvm/Analysis/LoopInfo.h"
41 #include "llvm/Analysis/MemoryLocation.h"
42 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
43 #include "llvm/Analysis/ScalarEvolution.h"
44 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
45 #include "llvm/Analysis/TargetLibraryInfo.h"
46 #include "llvm/Analysis/TargetTransformInfo.h"
47 #include "llvm/Analysis/ValueTracking.h"
48 #include "llvm/Analysis/VectorUtils.h"
49 #include "llvm/IR/Attributes.h"
50 #include "llvm/IR/BasicBlock.h"
51 #include "llvm/IR/Constant.h"
52 #include "llvm/IR/Constants.h"
53 #include "llvm/IR/DataLayout.h"
54 #include "llvm/IR/DebugLoc.h"
55 #include "llvm/IR/DerivedTypes.h"
56 #include "llvm/IR/Dominators.h"
57 #include "llvm/IR/Function.h"
58 #include "llvm/IR/IRBuilder.h"
59 #include "llvm/IR/InstrTypes.h"
60 #include "llvm/IR/Instruction.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/IR/IntrinsicInst.h"
63 #include "llvm/IR/Intrinsics.h"
64 #include "llvm/IR/Module.h"
65 #include "llvm/IR/NoFolder.h"
66 #include "llvm/IR/Operator.h"
67 #include "llvm/IR/PatternMatch.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/Use.h"
70 #include "llvm/IR/User.h"
71 #include "llvm/IR/Value.h"
72 #include "llvm/IR/ValueHandle.h"
73 #include "llvm/IR/Verifier.h"
74 #include "llvm/InitializePasses.h"
75 #include "llvm/Pass.h"
76 #include "llvm/Support/Casting.h"
77 #include "llvm/Support/CommandLine.h"
78 #include "llvm/Support/Compiler.h"
79 #include "llvm/Support/DOTGraphTraits.h"
80 #include "llvm/Support/Debug.h"
81 #include "llvm/Support/ErrorHandling.h"
82 #include "llvm/Support/GraphWriter.h"
83 #include "llvm/Support/InstructionCost.h"
84 #include "llvm/Support/KnownBits.h"
85 #include "llvm/Support/MathExtras.h"
86 #include "llvm/Support/raw_ostream.h"
87 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
88 #include "llvm/Transforms/Utils/LoopUtils.h"
89 #include "llvm/Transforms/Vectorize.h"
90 #include <algorithm>
91 #include <cassert>
92 #include <cstdint>
93 #include <iterator>
94 #include <memory>
95 #include <set>
96 #include <string>
97 #include <tuple>
98 #include <utility>
99 #include <vector>
100 
101 using namespace llvm;
102 using namespace llvm::PatternMatch;
103 using namespace slpvectorizer;
104 
105 #define SV_NAME "slp-vectorizer"
106 #define DEBUG_TYPE "SLP"
107 
108 STATISTIC(NumVectorInstructions, "Number of vector instructions generated");
109 
110 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden,
111                                   cl::desc("Run the SLP vectorization passes"));
112 
113 static cl::opt<int>
114     SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
115                      cl::desc("Only vectorize if you gain more than this "
116                               "number "));
117 
118 static cl::opt<bool>
119 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
120                    cl::desc("Attempt to vectorize horizontal reductions"));
121 
122 static cl::opt<bool> ShouldStartVectorizeHorAtStore(
123     "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
124     cl::desc(
125         "Attempt to vectorize horizontal reductions feeding into a store"));
126 
127 static cl::opt<int>
128 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
129     cl::desc("Attempt to vectorize for this register size in bits"));
130 
131 static cl::opt<unsigned>
132 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden,
133     cl::desc("Maximum SLP vectorization factor (0=unlimited)"));
134 
135 static cl::opt<int>
136 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden,
137     cl::desc("Maximum depth of the lookup for consecutive stores."));
138 
139 /// Limits the size of scheduling regions in a block.
140 /// It avoid long compile times for _very_ large blocks where vector
141 /// instructions are spread over a wide range.
142 /// This limit is way higher than needed by real-world functions.
143 static cl::opt<int>
144 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
145     cl::desc("Limit the size of the SLP scheduling region per block"));
146 
147 static cl::opt<int> MinVectorRegSizeOption(
148     "slp-min-reg-size", cl::init(128), cl::Hidden,
149     cl::desc("Attempt to vectorize for this register size in bits"));
150 
151 static cl::opt<unsigned> RecursionMaxDepth(
152     "slp-recursion-max-depth", cl::init(12), cl::Hidden,
153     cl::desc("Limit the recursion depth when building a vectorizable tree"));
154 
155 static cl::opt<unsigned> MinTreeSize(
156     "slp-min-tree-size", cl::init(3), cl::Hidden,
157     cl::desc("Only vectorize small trees if they are fully vectorizable"));
158 
159 // The maximum depth that the look-ahead score heuristic will explore.
160 // The higher this value, the higher the compilation time overhead.
161 static cl::opt<int> LookAheadMaxDepth(
162     "slp-max-look-ahead-depth", cl::init(2), cl::Hidden,
163     cl::desc("The maximum look-ahead depth for operand reordering scores"));
164 
165 // The Look-ahead heuristic goes through the users of the bundle to calculate
166 // the users cost in getExternalUsesCost(). To avoid compilation time increase
167 // we limit the number of users visited to this value.
168 static cl::opt<unsigned> LookAheadUsersBudget(
169     "slp-look-ahead-users-budget", cl::init(2), cl::Hidden,
170     cl::desc("The maximum number of users to visit while visiting the "
171              "predecessors. This prevents compilation time increase."));
172 
173 static cl::opt<bool>
174     ViewSLPTree("view-slp-tree", cl::Hidden,
175                 cl::desc("Display the SLP trees with Graphviz"));
176 
177 // Limit the number of alias checks. The limit is chosen so that
178 // it has no negative effect on the llvm benchmarks.
179 static const unsigned AliasedCheckLimit = 10;
180 
181 // Another limit for the alias checks: The maximum distance between load/store
182 // instructions where alias checks are done.
183 // This limit is useful for very large basic blocks.
184 static const unsigned MaxMemDepDistance = 160;
185 
186 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
187 /// regions to be handled.
188 static const int MinScheduleRegionSize = 16;
189 
190 /// Predicate for the element types that the SLP vectorizer supports.
191 ///
192 /// The most important thing to filter here are types which are invalid in LLVM
193 /// vectors. We also filter target specific types which have absolutely no
194 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
195 /// avoids spending time checking the cost model and realizing that they will
196 /// be inevitably scalarized.
197 static bool isValidElementType(Type *Ty) {
198   return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
199          !Ty->isPPC_FP128Ty();
200 }
201 
202 /// \returns true if all of the instructions in \p VL are in the same block or
203 /// false otherwise.
204 static bool allSameBlock(ArrayRef<Value *> VL) {
205   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
206   if (!I0)
207     return false;
208   BasicBlock *BB = I0->getParent();
209   for (int I = 1, E = VL.size(); I < E; I++) {
210     auto *II = dyn_cast<Instruction>(VL[I]);
211     if (!II)
212       return false;
213 
214     if (BB != II->getParent())
215       return false;
216   }
217   return true;
218 }
219 
220 /// \returns True if all of the values in \p VL are constants (but not
221 /// globals/constant expressions).
222 static bool allConstant(ArrayRef<Value *> VL) {
223   // Constant expressions and globals can't be vectorized like normal integer/FP
224   // constants.
225   for (Value *i : VL)
226     if (!isa<Constant>(i) || isa<ConstantExpr>(i) || isa<GlobalValue>(i))
227       return false;
228   return true;
229 }
230 
231 /// \returns True if all of the values in \p VL are identical.
232 static bool isSplat(ArrayRef<Value *> VL) {
233   for (unsigned i = 1, e = VL.size(); i < e; ++i)
234     if (VL[i] != VL[0])
235       return false;
236   return true;
237 }
238 
239 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator.
240 static bool isCommutative(Instruction *I) {
241   if (auto *Cmp = dyn_cast<CmpInst>(I))
242     return Cmp->isCommutative();
243   if (auto *BO = dyn_cast<BinaryOperator>(I))
244     return BO->isCommutative();
245   // TODO: This should check for generic Instruction::isCommutative(), but
246   //       we need to confirm that the caller code correctly handles Intrinsics
247   //       for example (does not have 2 operands).
248   return false;
249 }
250 
251 /// Checks if the vector of instructions can be represented as a shuffle, like:
252 /// %x0 = extractelement <4 x i8> %x, i32 0
253 /// %x3 = extractelement <4 x i8> %x, i32 3
254 /// %y1 = extractelement <4 x i8> %y, i32 1
255 /// %y2 = extractelement <4 x i8> %y, i32 2
256 /// %x0x0 = mul i8 %x0, %x0
257 /// %x3x3 = mul i8 %x3, %x3
258 /// %y1y1 = mul i8 %y1, %y1
259 /// %y2y2 = mul i8 %y2, %y2
260 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0
261 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1
262 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2
263 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3
264 /// ret <4 x i8> %ins4
265 /// can be transformed into:
266 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5,
267 ///                                                         i32 6>
268 /// %2 = mul <4 x i8> %1, %1
269 /// ret <4 x i8> %2
270 /// We convert this initially to something like:
271 /// %x0 = extractelement <4 x i8> %x, i32 0
272 /// %x3 = extractelement <4 x i8> %x, i32 3
273 /// %y1 = extractelement <4 x i8> %y, i32 1
274 /// %y2 = extractelement <4 x i8> %y, i32 2
275 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0
276 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1
277 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2
278 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3
279 /// %5 = mul <4 x i8> %4, %4
280 /// %6 = extractelement <4 x i8> %5, i32 0
281 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0
282 /// %7 = extractelement <4 x i8> %5, i32 1
283 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1
284 /// %8 = extractelement <4 x i8> %5, i32 2
285 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2
286 /// %9 = extractelement <4 x i8> %5, i32 3
287 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3
288 /// ret <4 x i8> %ins4
289 /// InstCombiner transforms this into a shuffle and vector mul
290 /// Mask will return the Shuffle Mask equivalent to the extracted elements.
291 /// TODO: Can we split off and reuse the shuffle mask detection from
292 /// TargetTransformInfo::getInstructionThroughput?
293 static Optional<TargetTransformInfo::ShuffleKind>
294 isShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) {
295   auto *EI0 = cast<ExtractElementInst>(VL[0]);
296   unsigned Size =
297       cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements();
298   Value *Vec1 = nullptr;
299   Value *Vec2 = nullptr;
300   enum ShuffleMode { Unknown, Select, Permute };
301   ShuffleMode CommonShuffleMode = Unknown;
302   for (unsigned I = 0, E = VL.size(); I < E; ++I) {
303     auto *EI = cast<ExtractElementInst>(VL[I]);
304     auto *Vec = EI->getVectorOperand();
305     // All vector operands must have the same number of vector elements.
306     if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size)
307       return None;
308     auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand());
309     if (!Idx)
310       return None;
311     // Undefined behavior if Idx is negative or >= Size.
312     if (Idx->getValue().uge(Size)) {
313       Mask.push_back(UndefMaskElem);
314       continue;
315     }
316     unsigned IntIdx = Idx->getValue().getZExtValue();
317     Mask.push_back(IntIdx);
318     // We can extractelement from undef or poison vector.
319     if (isa<UndefValue>(Vec))
320       continue;
321     // For correct shuffling we have to have at most 2 different vector operands
322     // in all extractelement instructions.
323     if (!Vec1 || Vec1 == Vec)
324       Vec1 = Vec;
325     else if (!Vec2 || Vec2 == Vec)
326       Vec2 = Vec;
327     else
328       return None;
329     if (CommonShuffleMode == Permute)
330       continue;
331     // If the extract index is not the same as the operation number, it is a
332     // permutation.
333     if (IntIdx != I) {
334       CommonShuffleMode = Permute;
335       continue;
336     }
337     CommonShuffleMode = Select;
338   }
339   // If we're not crossing lanes in different vectors, consider it as blending.
340   if (CommonShuffleMode == Select && Vec2)
341     return TargetTransformInfo::SK_Select;
342   // If Vec2 was never used, we have a permutation of a single vector, otherwise
343   // we have permutation of 2 vectors.
344   return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc
345               : TargetTransformInfo::SK_PermuteSingleSrc;
346 }
347 
348 namespace {
349 
350 /// Main data required for vectorization of instructions.
351 struct InstructionsState {
352   /// The very first instruction in the list with the main opcode.
353   Value *OpValue = nullptr;
354 
355   /// The main/alternate instruction.
356   Instruction *MainOp = nullptr;
357   Instruction *AltOp = nullptr;
358 
359   /// The main/alternate opcodes for the list of instructions.
360   unsigned getOpcode() const {
361     return MainOp ? MainOp->getOpcode() : 0;
362   }
363 
364   unsigned getAltOpcode() const {
365     return AltOp ? AltOp->getOpcode() : 0;
366   }
367 
368   /// Some of the instructions in the list have alternate opcodes.
369   bool isAltShuffle() const { return getOpcode() != getAltOpcode(); }
370 
371   bool isOpcodeOrAlt(Instruction *I) const {
372     unsigned CheckedOpcode = I->getOpcode();
373     return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode;
374   }
375 
376   InstructionsState() = delete;
377   InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp)
378       : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {}
379 };
380 
381 } // end anonymous namespace
382 
383 /// Chooses the correct key for scheduling data. If \p Op has the same (or
384 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p
385 /// OpValue.
386 static Value *isOneOf(const InstructionsState &S, Value *Op) {
387   auto *I = dyn_cast<Instruction>(Op);
388   if (I && S.isOpcodeOrAlt(I))
389     return Op;
390   return S.OpValue;
391 }
392 
393 /// \returns true if \p Opcode is allowed as part of of the main/alternate
394 /// instruction for SLP vectorization.
395 ///
396 /// Example of unsupported opcode is SDIV that can potentially cause UB if the
397 /// "shuffled out" lane would result in division by zero.
398 static bool isValidForAlternation(unsigned Opcode) {
399   if (Instruction::isIntDivRem(Opcode))
400     return false;
401 
402   return true;
403 }
404 
405 /// \returns analysis of the Instructions in \p VL described in
406 /// InstructionsState, the Opcode that we suppose the whole list
407 /// could be vectorized even if its structure is diverse.
408 static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
409                                        unsigned BaseIndex = 0) {
410   // Make sure these are all Instructions.
411   if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); }))
412     return InstructionsState(VL[BaseIndex], nullptr, nullptr);
413 
414   bool IsCastOp = isa<CastInst>(VL[BaseIndex]);
415   bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]);
416   unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode();
417   unsigned AltOpcode = Opcode;
418   unsigned AltIndex = BaseIndex;
419 
420   // Check for one alternate opcode from another BinaryOperator.
421   // TODO - generalize to support all operators (types, calls etc.).
422   for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) {
423     unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode();
424     if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) {
425       if (InstOpcode == Opcode || InstOpcode == AltOpcode)
426         continue;
427       if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) &&
428           isValidForAlternation(Opcode)) {
429         AltOpcode = InstOpcode;
430         AltIndex = Cnt;
431         continue;
432       }
433     } else if (IsCastOp && isa<CastInst>(VL[Cnt])) {
434       Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType();
435       Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType();
436       if (Ty0 == Ty1) {
437         if (InstOpcode == Opcode || InstOpcode == AltOpcode)
438           continue;
439         if (Opcode == AltOpcode) {
440           assert(isValidForAlternation(Opcode) &&
441                  isValidForAlternation(InstOpcode) &&
442                  "Cast isn't safe for alternation, logic needs to be updated!");
443           AltOpcode = InstOpcode;
444           AltIndex = Cnt;
445           continue;
446         }
447       }
448     } else if (InstOpcode == Opcode || InstOpcode == AltOpcode)
449       continue;
450     return InstructionsState(VL[BaseIndex], nullptr, nullptr);
451   }
452 
453   return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]),
454                            cast<Instruction>(VL[AltIndex]));
455 }
456 
457 /// \returns true if all of the values in \p VL have the same type or false
458 /// otherwise.
459 static bool allSameType(ArrayRef<Value *> VL) {
460   Type *Ty = VL[0]->getType();
461   for (int i = 1, e = VL.size(); i < e; i++)
462     if (VL[i]->getType() != Ty)
463       return false;
464 
465   return true;
466 }
467 
468 /// \returns True if Extract{Value,Element} instruction extracts element Idx.
469 static Optional<unsigned> getExtractIndex(Instruction *E) {
470   unsigned Opcode = E->getOpcode();
471   assert((Opcode == Instruction::ExtractElement ||
472           Opcode == Instruction::ExtractValue) &&
473          "Expected extractelement or extractvalue instruction.");
474   if (Opcode == Instruction::ExtractElement) {
475     auto *CI = dyn_cast<ConstantInt>(E->getOperand(1));
476     if (!CI)
477       return None;
478     return CI->getZExtValue();
479   }
480   ExtractValueInst *EI = cast<ExtractValueInst>(E);
481   if (EI->getNumIndices() != 1)
482     return None;
483   return *EI->idx_begin();
484 }
485 
486 /// \returns True if in-tree use also needs extract. This refers to
487 /// possible scalar operand in vectorized instruction.
488 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
489                                     TargetLibraryInfo *TLI) {
490   unsigned Opcode = UserInst->getOpcode();
491   switch (Opcode) {
492   case Instruction::Load: {
493     LoadInst *LI = cast<LoadInst>(UserInst);
494     return (LI->getPointerOperand() == Scalar);
495   }
496   case Instruction::Store: {
497     StoreInst *SI = cast<StoreInst>(UserInst);
498     return (SI->getPointerOperand() == Scalar);
499   }
500   case Instruction::Call: {
501     CallInst *CI = cast<CallInst>(UserInst);
502     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
503     for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
504       if (hasVectorInstrinsicScalarOpd(ID, i))
505         return (CI->getArgOperand(i) == Scalar);
506     }
507     LLVM_FALLTHROUGH;
508   }
509   default:
510     return false;
511   }
512 }
513 
514 /// \returns the AA location that is being access by the instruction.
515 static MemoryLocation getLocation(Instruction *I, AAResults *AA) {
516   if (StoreInst *SI = dyn_cast<StoreInst>(I))
517     return MemoryLocation::get(SI);
518   if (LoadInst *LI = dyn_cast<LoadInst>(I))
519     return MemoryLocation::get(LI);
520   return MemoryLocation();
521 }
522 
523 /// \returns True if the instruction is not a volatile or atomic load/store.
524 static bool isSimple(Instruction *I) {
525   if (LoadInst *LI = dyn_cast<LoadInst>(I))
526     return LI->isSimple();
527   if (StoreInst *SI = dyn_cast<StoreInst>(I))
528     return SI->isSimple();
529   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
530     return !MI->isVolatile();
531   return true;
532 }
533 
534 namespace llvm {
535 
536 static void inversePermutation(ArrayRef<unsigned> Indices,
537                                SmallVectorImpl<int> &Mask) {
538   Mask.clear();
539   const unsigned E = Indices.size();
540   Mask.resize(E, E + 1);
541   for (unsigned I = 0; I < E; ++I)
542     Mask[Indices[I]] = I;
543 }
544 
545 namespace slpvectorizer {
546 
547 /// Bottom Up SLP Vectorizer.
548 class BoUpSLP {
549   struct TreeEntry;
550   struct ScheduleData;
551 
552 public:
553   using ValueList = SmallVector<Value *, 8>;
554   using InstrList = SmallVector<Instruction *, 16>;
555   using ValueSet = SmallPtrSet<Value *, 16>;
556   using StoreList = SmallVector<StoreInst *, 8>;
557   using ExtraValueToDebugLocsMap =
558       MapVector<Value *, SmallVector<Instruction *, 2>>;
559   using OrdersType = SmallVector<unsigned, 4>;
560 
561   BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
562           TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li,
563           DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB,
564           const DataLayout *DL, OptimizationRemarkEmitter *ORE)
565       : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC),
566         DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) {
567     CodeMetrics::collectEphemeralValues(F, AC, EphValues);
568     // Use the vector register size specified by the target unless overridden
569     // by a command-line option.
570     // TODO: It would be better to limit the vectorization factor based on
571     //       data type rather than just register size. For example, x86 AVX has
572     //       256-bit registers, but it does not support integer operations
573     //       at that width (that requires AVX2).
574     if (MaxVectorRegSizeOption.getNumOccurrences())
575       MaxVecRegSize = MaxVectorRegSizeOption;
576     else
577       MaxVecRegSize =
578           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
579               .getFixedSize();
580 
581     if (MinVectorRegSizeOption.getNumOccurrences())
582       MinVecRegSize = MinVectorRegSizeOption;
583     else
584       MinVecRegSize = TTI->getMinVectorRegisterBitWidth();
585   }
586 
587   /// Vectorize the tree that starts with the elements in \p VL.
588   /// Returns the vectorized root.
589   Value *vectorizeTree();
590 
591   /// Vectorize the tree but with the list of externally used values \p
592   /// ExternallyUsedValues. Values in this MapVector can be replaced but the
593   /// generated extractvalue instructions.
594   Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues);
595 
596   /// \returns the cost incurred by unwanted spills and fills, caused by
597   /// holding live values over call sites.
598   InstructionCost getSpillCost() const;
599 
600   /// \returns the vectorization cost of the subtree that starts at \p VL.
601   /// A negative number means that this is profitable.
602   InstructionCost getTreeCost();
603 
604   /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
605   /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
606   void buildTree(ArrayRef<Value *> Roots,
607                  ArrayRef<Value *> UserIgnoreLst = None);
608 
609   /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
610   /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking
611   /// into account (and updating it, if required) list of externally used
612   /// values stored in \p ExternallyUsedValues.
613   void buildTree(ArrayRef<Value *> Roots,
614                  ExtraValueToDebugLocsMap &ExternallyUsedValues,
615                  ArrayRef<Value *> UserIgnoreLst = None);
616 
617   /// Clear the internal data structures that are created by 'buildTree'.
618   void deleteTree() {
619     VectorizableTree.clear();
620     ScalarToTreeEntry.clear();
621     MustGather.clear();
622     ExternalUses.clear();
623     NumOpsWantToKeepOrder.clear();
624     NumOpsWantToKeepOriginalOrder = 0;
625     for (auto &Iter : BlocksSchedules) {
626       BlockScheduling *BS = Iter.second.get();
627       BS->clear();
628     }
629     MinBWs.clear();
630     InstrElementSize.clear();
631   }
632 
633   unsigned getTreeSize() const { return VectorizableTree.size(); }
634 
635   /// Perform LICM and CSE on the newly generated gather sequences.
636   void optimizeGatherSequence();
637 
638   /// \returns The best order of instructions for vectorization.
639   Optional<ArrayRef<unsigned>> bestOrder() const {
640     assert(llvm::all_of(
641                NumOpsWantToKeepOrder,
642                [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) {
643                  return D.getFirst().size() ==
644                         VectorizableTree[0]->Scalars.size();
645                }) &&
646            "All orders must have the same size as number of instructions in "
647            "tree node.");
648     auto I = std::max_element(
649         NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(),
650         [](const decltype(NumOpsWantToKeepOrder)::value_type &D1,
651            const decltype(NumOpsWantToKeepOrder)::value_type &D2) {
652           return D1.second < D2.second;
653         });
654     if (I == NumOpsWantToKeepOrder.end() ||
655         I->getSecond() <= NumOpsWantToKeepOriginalOrder)
656       return None;
657 
658     return makeArrayRef(I->getFirst());
659   }
660 
661   /// Builds the correct order for root instructions.
662   /// If some leaves have the same instructions to be vectorized, we may
663   /// incorrectly evaluate the best order for the root node (it is built for the
664   /// vector of instructions without repeated instructions and, thus, has less
665   /// elements than the root node). This function builds the correct order for
666   /// the root node.
667   /// For example, if the root node is \<a+b, a+c, a+d, f+e\>, then the leaves
668   /// are \<a, a, a, f\> and \<b, c, d, e\>. When we try to vectorize the first
669   /// leaf, it will be shrink to \<a, b\>. If instructions in this leaf should
670   /// be reordered, the best order will be \<1, 0\>. We need to extend this
671   /// order for the root node. For the root node this order should look like
672   /// \<3, 0, 1, 2\>. This function extends the order for the reused
673   /// instructions.
674   void findRootOrder(OrdersType &Order) {
675     // If the leaf has the same number of instructions to vectorize as the root
676     // - order must be set already.
677     unsigned RootSize = VectorizableTree[0]->Scalars.size();
678     if (Order.size() == RootSize)
679       return;
680     SmallVector<unsigned, 4> RealOrder(Order.size());
681     std::swap(Order, RealOrder);
682     SmallVector<int, 4> Mask;
683     inversePermutation(RealOrder, Mask);
684     Order.assign(Mask.begin(), Mask.end());
685     // The leaf has less number of instructions - need to find the true order of
686     // the root.
687     // Scan the nodes starting from the leaf back to the root.
688     const TreeEntry *PNode = VectorizableTree.back().get();
689     SmallVector<const TreeEntry *, 4> Nodes(1, PNode);
690     SmallPtrSet<const TreeEntry *, 4> Visited;
691     while (!Nodes.empty() && Order.size() != RootSize) {
692       const TreeEntry *PNode = Nodes.pop_back_val();
693       if (!Visited.insert(PNode).second)
694         continue;
695       const TreeEntry &Node = *PNode;
696       for (const EdgeInfo &EI : Node.UserTreeIndices)
697         if (EI.UserTE)
698           Nodes.push_back(EI.UserTE);
699       if (Node.ReuseShuffleIndices.empty())
700         continue;
701       // Build the order for the parent node.
702       OrdersType NewOrder(Node.ReuseShuffleIndices.size(), RootSize);
703       SmallVector<unsigned, 4> OrderCounter(Order.size(), 0);
704       // The algorithm of the order extension is:
705       // 1. Calculate the number of the same instructions for the order.
706       // 2. Calculate the index of the new order: total number of instructions
707       // with order less than the order of the current instruction + reuse
708       // number of the current instruction.
709       // 3. The new order is just the index of the instruction in the original
710       // vector of the instructions.
711       for (unsigned I : Node.ReuseShuffleIndices)
712         ++OrderCounter[Order[I]];
713       SmallVector<unsigned, 4> CurrentCounter(Order.size(), 0);
714       for (unsigned I = 0, E = Node.ReuseShuffleIndices.size(); I < E; ++I) {
715         unsigned ReusedIdx = Node.ReuseShuffleIndices[I];
716         unsigned OrderIdx = Order[ReusedIdx];
717         unsigned NewIdx = 0;
718         for (unsigned J = 0; J < OrderIdx; ++J)
719           NewIdx += OrderCounter[J];
720         NewIdx += CurrentCounter[OrderIdx];
721         ++CurrentCounter[OrderIdx];
722         assert(NewOrder[NewIdx] == RootSize &&
723                "The order index should not be written already.");
724         NewOrder[NewIdx] = I;
725       }
726       std::swap(Order, NewOrder);
727     }
728     assert(Order.size() == RootSize &&
729            "Root node is expected or the size of the order must be the same as "
730            "the number of elements in the root node.");
731     assert(llvm::all_of(Order,
732                         [RootSize](unsigned Val) { return Val != RootSize; }) &&
733            "All indices must be initialized");
734   }
735 
736   /// \return The vector element size in bits to use when vectorizing the
737   /// expression tree ending at \p V. If V is a store, the size is the width of
738   /// the stored value. Otherwise, the size is the width of the largest loaded
739   /// value reaching V. This method is used by the vectorizer to calculate
740   /// vectorization factors.
741   unsigned getVectorElementSize(Value *V);
742 
743   /// Compute the minimum type sizes required to represent the entries in a
744   /// vectorizable tree.
745   void computeMinimumValueSizes();
746 
747   // \returns maximum vector register size as set by TTI or overridden by cl::opt.
748   unsigned getMaxVecRegSize() const {
749     return MaxVecRegSize;
750   }
751 
752   // \returns minimum vector register size as set by cl::opt.
753   unsigned getMinVecRegSize() const {
754     return MinVecRegSize;
755   }
756 
757   unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const {
758     unsigned MaxVF = MaxVFOption.getNumOccurrences() ?
759       MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode);
760     return MaxVF ? MaxVF : UINT_MAX;
761   }
762 
763   /// Check if homogeneous aggregate is isomorphic to some VectorType.
764   /// Accepts homogeneous multidimensional aggregate of scalars/vectors like
765   /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> },
766   /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on.
767   ///
768   /// \returns number of elements in vector if isomorphism exists, 0 otherwise.
769   unsigned canMapToVector(Type *T, const DataLayout &DL) const;
770 
771   /// \returns True if the VectorizableTree is both tiny and not fully
772   /// vectorizable. We do not vectorize such trees.
773   bool isTreeTinyAndNotFullyVectorizable() const;
774 
775   /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values
776   /// can be load combined in the backend. Load combining may not be allowed in
777   /// the IR optimizer, so we do not want to alter the pattern. For example,
778   /// partially transforming a scalar bswap() pattern into vector code is
779   /// effectively impossible for the backend to undo.
780   /// TODO: If load combining is allowed in the IR optimizer, this analysis
781   ///       may not be necessary.
782   bool isLoadCombineReductionCandidate(RecurKind RdxKind) const;
783 
784   /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values
785   /// can be load combined in the backend. Load combining may not be allowed in
786   /// the IR optimizer, so we do not want to alter the pattern. For example,
787   /// partially transforming a scalar bswap() pattern into vector code is
788   /// effectively impossible for the backend to undo.
789   /// TODO: If load combining is allowed in the IR optimizer, this analysis
790   ///       may not be necessary.
791   bool isLoadCombineCandidate() const;
792 
793   OptimizationRemarkEmitter *getORE() { return ORE; }
794 
795   /// This structure holds any data we need about the edges being traversed
796   /// during buildTree_rec(). We keep track of:
797   /// (i) the user TreeEntry index, and
798   /// (ii) the index of the edge.
799   struct EdgeInfo {
800     EdgeInfo() = default;
801     EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx)
802         : UserTE(UserTE), EdgeIdx(EdgeIdx) {}
803     /// The user TreeEntry.
804     TreeEntry *UserTE = nullptr;
805     /// The operand index of the use.
806     unsigned EdgeIdx = UINT_MAX;
807 #ifndef NDEBUG
808     friend inline raw_ostream &operator<<(raw_ostream &OS,
809                                           const BoUpSLP::EdgeInfo &EI) {
810       EI.dump(OS);
811       return OS;
812     }
813     /// Debug print.
814     void dump(raw_ostream &OS) const {
815       OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null")
816          << " EdgeIdx:" << EdgeIdx << "}";
817     }
818     LLVM_DUMP_METHOD void dump() const { dump(dbgs()); }
819 #endif
820   };
821 
822   /// A helper data structure to hold the operands of a vector of instructions.
823   /// This supports a fixed vector length for all operand vectors.
824   class VLOperands {
825     /// For each operand we need (i) the value, and (ii) the opcode that it
826     /// would be attached to if the expression was in a left-linearized form.
827     /// This is required to avoid illegal operand reordering.
828     /// For example:
829     /// \verbatim
830     ///                         0 Op1
831     ///                         |/
832     /// Op1 Op2   Linearized    + Op2
833     ///   \ /     ---------->   |/
834     ///    -                    -
835     ///
836     /// Op1 - Op2            (0 + Op1) - Op2
837     /// \endverbatim
838     ///
839     /// Value Op1 is attached to a '+' operation, and Op2 to a '-'.
840     ///
841     /// Another way to think of this is to track all the operations across the
842     /// path from the operand all the way to the root of the tree and to
843     /// calculate the operation that corresponds to this path. For example, the
844     /// path from Op2 to the root crosses the RHS of the '-', therefore the
845     /// corresponding operation is a '-' (which matches the one in the
846     /// linearized tree, as shown above).
847     ///
848     /// For lack of a better term, we refer to this operation as Accumulated
849     /// Path Operation (APO).
850     struct OperandData {
851       OperandData() = default;
852       OperandData(Value *V, bool APO, bool IsUsed)
853           : V(V), APO(APO), IsUsed(IsUsed) {}
854       /// The operand value.
855       Value *V = nullptr;
856       /// TreeEntries only allow a single opcode, or an alternate sequence of
857       /// them (e.g, +, -). Therefore, we can safely use a boolean value for the
858       /// APO. It is set to 'true' if 'V' is attached to an inverse operation
859       /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise
860       /// (e.g., Add/Mul)
861       bool APO = false;
862       /// Helper data for the reordering function.
863       bool IsUsed = false;
864     };
865 
866     /// During operand reordering, we are trying to select the operand at lane
867     /// that matches best with the operand at the neighboring lane. Our
868     /// selection is based on the type of value we are looking for. For example,
869     /// if the neighboring lane has a load, we need to look for a load that is
870     /// accessing a consecutive address. These strategies are summarized in the
871     /// 'ReorderingMode' enumerator.
872     enum class ReorderingMode {
873       Load,     ///< Matching loads to consecutive memory addresses
874       Opcode,   ///< Matching instructions based on opcode (same or alternate)
875       Constant, ///< Matching constants
876       Splat,    ///< Matching the same instruction multiple times (broadcast)
877       Failed,   ///< We failed to create a vectorizable group
878     };
879 
880     using OperandDataVec = SmallVector<OperandData, 2>;
881 
882     /// A vector of operand vectors.
883     SmallVector<OperandDataVec, 4> OpsVec;
884 
885     const DataLayout &DL;
886     ScalarEvolution &SE;
887     const BoUpSLP &R;
888 
889     /// \returns the operand data at \p OpIdx and \p Lane.
890     OperandData &getData(unsigned OpIdx, unsigned Lane) {
891       return OpsVec[OpIdx][Lane];
892     }
893 
894     /// \returns the operand data at \p OpIdx and \p Lane. Const version.
895     const OperandData &getData(unsigned OpIdx, unsigned Lane) const {
896       return OpsVec[OpIdx][Lane];
897     }
898 
899     /// Clears the used flag for all entries.
900     void clearUsed() {
901       for (unsigned OpIdx = 0, NumOperands = getNumOperands();
902            OpIdx != NumOperands; ++OpIdx)
903         for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
904              ++Lane)
905           OpsVec[OpIdx][Lane].IsUsed = false;
906     }
907 
908     /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2.
909     void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) {
910       std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]);
911     }
912 
913     // The hard-coded scores listed here are not very important. When computing
914     // the scores of matching one sub-tree with another, we are basically
915     // counting the number of values that are matching. So even if all scores
916     // are set to 1, we would still get a decent matching result.
917     // However, sometimes we have to break ties. For example we may have to
918     // choose between matching loads vs matching opcodes. This is what these
919     // scores are helping us with: they provide the order of preference.
920 
921     /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]).
922     static const int ScoreConsecutiveLoads = 3;
923     /// ExtractElementInst from same vector and consecutive indexes.
924     static const int ScoreConsecutiveExtracts = 3;
925     /// Constants.
926     static const int ScoreConstants = 2;
927     /// Instructions with the same opcode.
928     static const int ScoreSameOpcode = 2;
929     /// Instructions with alt opcodes (e.g, add + sub).
930     static const int ScoreAltOpcodes = 1;
931     /// Identical instructions (a.k.a. splat or broadcast).
932     static const int ScoreSplat = 1;
933     /// Matching with an undef is preferable to failing.
934     static const int ScoreUndef = 1;
935     /// Score for failing to find a decent match.
936     static const int ScoreFail = 0;
937     /// User exteranl to the vectorized code.
938     static const int ExternalUseCost = 1;
939     /// The user is internal but in a different lane.
940     static const int UserInDiffLaneCost = ExternalUseCost;
941 
942     /// \returns the score of placing \p V1 and \p V2 in consecutive lanes.
943     static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL,
944                                ScalarEvolution &SE) {
945       auto *LI1 = dyn_cast<LoadInst>(V1);
946       auto *LI2 = dyn_cast<LoadInst>(V2);
947       if (LI1 && LI2) {
948         if (LI1->getParent() != LI2->getParent())
949           return VLOperands::ScoreFail;
950 
951         Optional<int> Dist =
952             getPointersDiff(LI1->getPointerOperand(), LI2->getPointerOperand(),
953                             DL, SE, /*StrictCheck=*/true);
954         return (Dist && *Dist == 1) ? VLOperands::ScoreConsecutiveLoads
955                                     : VLOperands::ScoreFail;
956       }
957 
958       auto *C1 = dyn_cast<Constant>(V1);
959       auto *C2 = dyn_cast<Constant>(V2);
960       if (C1 && C2)
961         return VLOperands::ScoreConstants;
962 
963       // Extracts from consecutive indexes of the same vector better score as
964       // the extracts could be optimized away.
965       Value *EV;
966       ConstantInt *Ex1Idx, *Ex2Idx;
967       if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) &&
968           match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) &&
969           Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue())
970         return VLOperands::ScoreConsecutiveExtracts;
971 
972       auto *I1 = dyn_cast<Instruction>(V1);
973       auto *I2 = dyn_cast<Instruction>(V2);
974       if (I1 && I2) {
975         if (I1 == I2)
976           return VLOperands::ScoreSplat;
977         InstructionsState S = getSameOpcode({I1, I2});
978         // Note: Only consider instructions with <= 2 operands to avoid
979         // complexity explosion.
980         if (S.getOpcode() && S.MainOp->getNumOperands() <= 2)
981           return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes
982                                   : VLOperands::ScoreSameOpcode;
983       }
984 
985       if (isa<UndefValue>(V2))
986         return VLOperands::ScoreUndef;
987 
988       return VLOperands::ScoreFail;
989     }
990 
991     /// Holds the values and their lane that are taking part in the look-ahead
992     /// score calculation. This is used in the external uses cost calculation.
993     SmallDenseMap<Value *, int> InLookAheadValues;
994 
995     /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are
996     /// either external to the vectorized code, or require shuffling.
997     int getExternalUsesCost(const std::pair<Value *, int> &LHS,
998                             const std::pair<Value *, int> &RHS) {
999       int Cost = 0;
1000       std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}};
1001       for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) {
1002         Value *V = Values[Idx].first;
1003         if (isa<Constant>(V)) {
1004           // Since this is a function pass, it doesn't make semantic sense to
1005           // walk the users of a subclass of Constant. The users could be in
1006           // another function, or even another module that happens to be in
1007           // the same LLVMContext.
1008           continue;
1009         }
1010 
1011         // Calculate the absolute lane, using the minimum relative lane of LHS
1012         // and RHS as base and Idx as the offset.
1013         int Ln = std::min(LHS.second, RHS.second) + Idx;
1014         assert(Ln >= 0 && "Bad lane calculation");
1015         unsigned UsersBudget = LookAheadUsersBudget;
1016         for (User *U : V->users()) {
1017           if (const TreeEntry *UserTE = R.getTreeEntry(U)) {
1018             // The user is in the VectorizableTree. Check if we need to insert.
1019             auto It = llvm::find(UserTE->Scalars, U);
1020             assert(It != UserTE->Scalars.end() && "U is in UserTE");
1021             int UserLn = std::distance(UserTE->Scalars.begin(), It);
1022             assert(UserLn >= 0 && "Bad lane");
1023             if (UserLn != Ln)
1024               Cost += UserInDiffLaneCost;
1025           } else {
1026             // Check if the user is in the look-ahead code.
1027             auto It2 = InLookAheadValues.find(U);
1028             if (It2 != InLookAheadValues.end()) {
1029               // The user is in the look-ahead code. Check the lane.
1030               if (It2->second != Ln)
1031                 Cost += UserInDiffLaneCost;
1032             } else {
1033               // The user is neither in SLP tree nor in the look-ahead code.
1034               Cost += ExternalUseCost;
1035             }
1036           }
1037           // Limit the number of visited uses to cap compilation time.
1038           if (--UsersBudget == 0)
1039             break;
1040         }
1041       }
1042       return Cost;
1043     }
1044 
1045     /// Go through the operands of \p LHS and \p RHS recursively until \p
1046     /// MaxLevel, and return the cummulative score. For example:
1047     /// \verbatim
1048     ///  A[0]  B[0]  A[1]  B[1]  C[0] D[0]  B[1] A[1]
1049     ///     \ /         \ /         \ /        \ /
1050     ///      +           +           +          +
1051     ///     G1          G2          G3         G4
1052     /// \endverbatim
1053     /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at
1054     /// each level recursively, accumulating the score. It starts from matching
1055     /// the additions at level 0, then moves on to the loads (level 1). The
1056     /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and
1057     /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while
1058     /// {A[0],C[0]} has a score of VLOperands::ScoreFail.
1059     /// Please note that the order of the operands does not matter, as we
1060     /// evaluate the score of all profitable combinations of operands. In
1061     /// other words the score of G1 and G4 is the same as G1 and G2. This
1062     /// heuristic is based on ideas described in:
1063     ///   Look-ahead SLP: Auto-vectorization in the presence of commutative
1064     ///   operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha,
1065     ///   Luís F. W. Góes
1066     int getScoreAtLevelRec(const std::pair<Value *, int> &LHS,
1067                            const std::pair<Value *, int> &RHS, int CurrLevel,
1068                            int MaxLevel) {
1069 
1070       Value *V1 = LHS.first;
1071       Value *V2 = RHS.first;
1072       // Get the shallow score of V1 and V2.
1073       int ShallowScoreAtThisLevel =
1074           std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) -
1075                                        getExternalUsesCost(LHS, RHS));
1076       int Lane1 = LHS.second;
1077       int Lane2 = RHS.second;
1078 
1079       // If reached MaxLevel,
1080       //  or if V1 and V2 are not instructions,
1081       //  or if they are SPLAT,
1082       //  or if they are not consecutive, early return the current cost.
1083       auto *I1 = dyn_cast<Instruction>(V1);
1084       auto *I2 = dyn_cast<Instruction>(V2);
1085       if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 ||
1086           ShallowScoreAtThisLevel == VLOperands::ScoreFail ||
1087           (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel))
1088         return ShallowScoreAtThisLevel;
1089       assert(I1 && I2 && "Should have early exited.");
1090 
1091       // Keep track of in-tree values for determining the external-use cost.
1092       InLookAheadValues[V1] = Lane1;
1093       InLookAheadValues[V2] = Lane2;
1094 
1095       // Contains the I2 operand indexes that got matched with I1 operands.
1096       SmallSet<unsigned, 4> Op2Used;
1097 
1098       // Recursion towards the operands of I1 and I2. We are trying all possbile
1099       // operand pairs, and keeping track of the best score.
1100       for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands();
1101            OpIdx1 != NumOperands1; ++OpIdx1) {
1102         // Try to pair op1I with the best operand of I2.
1103         int MaxTmpScore = 0;
1104         unsigned MaxOpIdx2 = 0;
1105         bool FoundBest = false;
1106         // If I2 is commutative try all combinations.
1107         unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1;
1108         unsigned ToIdx = isCommutative(I2)
1109                              ? I2->getNumOperands()
1110                              : std::min(I2->getNumOperands(), OpIdx1 + 1);
1111         assert(FromIdx <= ToIdx && "Bad index");
1112         for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) {
1113           // Skip operands already paired with OpIdx1.
1114           if (Op2Used.count(OpIdx2))
1115             continue;
1116           // Recursively calculate the cost at each level
1117           int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1},
1118                                             {I2->getOperand(OpIdx2), Lane2},
1119                                             CurrLevel + 1, MaxLevel);
1120           // Look for the best score.
1121           if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) {
1122             MaxTmpScore = TmpScore;
1123             MaxOpIdx2 = OpIdx2;
1124             FoundBest = true;
1125           }
1126         }
1127         if (FoundBest) {
1128           // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it.
1129           Op2Used.insert(MaxOpIdx2);
1130           ShallowScoreAtThisLevel += MaxTmpScore;
1131         }
1132       }
1133       return ShallowScoreAtThisLevel;
1134     }
1135 
1136     /// \Returns the look-ahead score, which tells us how much the sub-trees
1137     /// rooted at \p LHS and \p RHS match, the more they match the higher the
1138     /// score. This helps break ties in an informed way when we cannot decide on
1139     /// the order of the operands by just considering the immediate
1140     /// predecessors.
1141     int getLookAheadScore(const std::pair<Value *, int> &LHS,
1142                           const std::pair<Value *, int> &RHS) {
1143       InLookAheadValues.clear();
1144       return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth);
1145     }
1146 
1147     // Search all operands in Ops[*][Lane] for the one that matches best
1148     // Ops[OpIdx][LastLane] and return its opreand index.
1149     // If no good match can be found, return None.
1150     Optional<unsigned>
1151     getBestOperand(unsigned OpIdx, int Lane, int LastLane,
1152                    ArrayRef<ReorderingMode> ReorderingModes) {
1153       unsigned NumOperands = getNumOperands();
1154 
1155       // The operand of the previous lane at OpIdx.
1156       Value *OpLastLane = getData(OpIdx, LastLane).V;
1157 
1158       // Our strategy mode for OpIdx.
1159       ReorderingMode RMode = ReorderingModes[OpIdx];
1160 
1161       // The linearized opcode of the operand at OpIdx, Lane.
1162       bool OpIdxAPO = getData(OpIdx, Lane).APO;
1163 
1164       // The best operand index and its score.
1165       // Sometimes we have more than one option (e.g., Opcode and Undefs), so we
1166       // are using the score to differentiate between the two.
1167       struct BestOpData {
1168         Optional<unsigned> Idx = None;
1169         unsigned Score = 0;
1170       } BestOp;
1171 
1172       // Iterate through all unused operands and look for the best.
1173       for (unsigned Idx = 0; Idx != NumOperands; ++Idx) {
1174         // Get the operand at Idx and Lane.
1175         OperandData &OpData = getData(Idx, Lane);
1176         Value *Op = OpData.V;
1177         bool OpAPO = OpData.APO;
1178 
1179         // Skip already selected operands.
1180         if (OpData.IsUsed)
1181           continue;
1182 
1183         // Skip if we are trying to move the operand to a position with a
1184         // different opcode in the linearized tree form. This would break the
1185         // semantics.
1186         if (OpAPO != OpIdxAPO)
1187           continue;
1188 
1189         // Look for an operand that matches the current mode.
1190         switch (RMode) {
1191         case ReorderingMode::Load:
1192         case ReorderingMode::Constant:
1193         case ReorderingMode::Opcode: {
1194           bool LeftToRight = Lane > LastLane;
1195           Value *OpLeft = (LeftToRight) ? OpLastLane : Op;
1196           Value *OpRight = (LeftToRight) ? Op : OpLastLane;
1197           unsigned Score =
1198               getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane});
1199           if (Score > BestOp.Score) {
1200             BestOp.Idx = Idx;
1201             BestOp.Score = Score;
1202           }
1203           break;
1204         }
1205         case ReorderingMode::Splat:
1206           if (Op == OpLastLane)
1207             BestOp.Idx = Idx;
1208           break;
1209         case ReorderingMode::Failed:
1210           return None;
1211         }
1212       }
1213 
1214       if (BestOp.Idx) {
1215         getData(BestOp.Idx.getValue(), Lane).IsUsed = true;
1216         return BestOp.Idx;
1217       }
1218       // If we could not find a good match return None.
1219       return None;
1220     }
1221 
1222     /// Helper for reorderOperandVecs. \Returns the lane that we should start
1223     /// reordering from. This is the one which has the least number of operands
1224     /// that can freely move about.
1225     unsigned getBestLaneToStartReordering() const {
1226       unsigned BestLane = 0;
1227       unsigned Min = UINT_MAX;
1228       for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
1229            ++Lane) {
1230         unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane);
1231         if (NumFreeOps < Min) {
1232           Min = NumFreeOps;
1233           BestLane = Lane;
1234         }
1235       }
1236       return BestLane;
1237     }
1238 
1239     /// \Returns the maximum number of operands that are allowed to be reordered
1240     /// for \p Lane. This is used as a heuristic for selecting the first lane to
1241     /// start operand reordering.
1242     unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const {
1243       unsigned CntTrue = 0;
1244       unsigned NumOperands = getNumOperands();
1245       // Operands with the same APO can be reordered. We therefore need to count
1246       // how many of them we have for each APO, like this: Cnt[APO] = x.
1247       // Since we only have two APOs, namely true and false, we can avoid using
1248       // a map. Instead we can simply count the number of operands that
1249       // correspond to one of them (in this case the 'true' APO), and calculate
1250       // the other by subtracting it from the total number of operands.
1251       for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx)
1252         if (getData(OpIdx, Lane).APO)
1253           ++CntTrue;
1254       unsigned CntFalse = NumOperands - CntTrue;
1255       return std::max(CntTrue, CntFalse);
1256     }
1257 
1258     /// Go through the instructions in VL and append their operands.
1259     void appendOperandsOfVL(ArrayRef<Value *> VL) {
1260       assert(!VL.empty() && "Bad VL");
1261       assert((empty() || VL.size() == getNumLanes()) &&
1262              "Expected same number of lanes");
1263       assert(isa<Instruction>(VL[0]) && "Expected instruction");
1264       unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands();
1265       OpsVec.resize(NumOperands);
1266       unsigned NumLanes = VL.size();
1267       for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1268         OpsVec[OpIdx].resize(NumLanes);
1269         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1270           assert(isa<Instruction>(VL[Lane]) && "Expected instruction");
1271           // Our tree has just 3 nodes: the root and two operands.
1272           // It is therefore trivial to get the APO. We only need to check the
1273           // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or
1274           // RHS operand. The LHS operand of both add and sub is never attached
1275           // to an inversese operation in the linearized form, therefore its APO
1276           // is false. The RHS is true only if VL[Lane] is an inverse operation.
1277 
1278           // Since operand reordering is performed on groups of commutative
1279           // operations or alternating sequences (e.g., +, -), we can safely
1280           // tell the inverse operations by checking commutativity.
1281           bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane]));
1282           bool APO = (OpIdx == 0) ? false : IsInverseOperation;
1283           OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx),
1284                                  APO, false};
1285         }
1286       }
1287     }
1288 
1289     /// \returns the number of operands.
1290     unsigned getNumOperands() const { return OpsVec.size(); }
1291 
1292     /// \returns the number of lanes.
1293     unsigned getNumLanes() const { return OpsVec[0].size(); }
1294 
1295     /// \returns the operand value at \p OpIdx and \p Lane.
1296     Value *getValue(unsigned OpIdx, unsigned Lane) const {
1297       return getData(OpIdx, Lane).V;
1298     }
1299 
1300     /// \returns true if the data structure is empty.
1301     bool empty() const { return OpsVec.empty(); }
1302 
1303     /// Clears the data.
1304     void clear() { OpsVec.clear(); }
1305 
1306     /// \Returns true if there are enough operands identical to \p Op to fill
1307     /// the whole vector.
1308     /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow.
1309     bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) {
1310       bool OpAPO = getData(OpIdx, Lane).APO;
1311       for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) {
1312         if (Ln == Lane)
1313           continue;
1314         // This is set to true if we found a candidate for broadcast at Lane.
1315         bool FoundCandidate = false;
1316         for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) {
1317           OperandData &Data = getData(OpI, Ln);
1318           if (Data.APO != OpAPO || Data.IsUsed)
1319             continue;
1320           if (Data.V == Op) {
1321             FoundCandidate = true;
1322             Data.IsUsed = true;
1323             break;
1324           }
1325         }
1326         if (!FoundCandidate)
1327           return false;
1328       }
1329       return true;
1330     }
1331 
1332   public:
1333     /// Initialize with all the operands of the instruction vector \p RootVL.
1334     VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL,
1335                ScalarEvolution &SE, const BoUpSLP &R)
1336         : DL(DL), SE(SE), R(R) {
1337       // Append all the operands of RootVL.
1338       appendOperandsOfVL(RootVL);
1339     }
1340 
1341     /// \Returns a value vector with the operands across all lanes for the
1342     /// opearnd at \p OpIdx.
1343     ValueList getVL(unsigned OpIdx) const {
1344       ValueList OpVL(OpsVec[OpIdx].size());
1345       assert(OpsVec[OpIdx].size() == getNumLanes() &&
1346              "Expected same num of lanes across all operands");
1347       for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane)
1348         OpVL[Lane] = OpsVec[OpIdx][Lane].V;
1349       return OpVL;
1350     }
1351 
1352     // Performs operand reordering for 2 or more operands.
1353     // The original operands are in OrigOps[OpIdx][Lane].
1354     // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'.
1355     void reorder() {
1356       unsigned NumOperands = getNumOperands();
1357       unsigned NumLanes = getNumLanes();
1358       // Each operand has its own mode. We are using this mode to help us select
1359       // the instructions for each lane, so that they match best with the ones
1360       // we have selected so far.
1361       SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands);
1362 
1363       // This is a greedy single-pass algorithm. We are going over each lane
1364       // once and deciding on the best order right away with no back-tracking.
1365       // However, in order to increase its effectiveness, we start with the lane
1366       // that has operands that can move the least. For example, given the
1367       // following lanes:
1368       //  Lane 0 : A[0] = B[0] + C[0]   // Visited 3rd
1369       //  Lane 1 : A[1] = C[1] - B[1]   // Visited 1st
1370       //  Lane 2 : A[2] = B[2] + C[2]   // Visited 2nd
1371       //  Lane 3 : A[3] = C[3] - B[3]   // Visited 4th
1372       // we will start at Lane 1, since the operands of the subtraction cannot
1373       // be reordered. Then we will visit the rest of the lanes in a circular
1374       // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3.
1375 
1376       // Find the first lane that we will start our search from.
1377       unsigned FirstLane = getBestLaneToStartReordering();
1378 
1379       // Initialize the modes.
1380       for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1381         Value *OpLane0 = getValue(OpIdx, FirstLane);
1382         // Keep track if we have instructions with all the same opcode on one
1383         // side.
1384         if (isa<LoadInst>(OpLane0))
1385           ReorderingModes[OpIdx] = ReorderingMode::Load;
1386         else if (isa<Instruction>(OpLane0)) {
1387           // Check if OpLane0 should be broadcast.
1388           if (shouldBroadcast(OpLane0, OpIdx, FirstLane))
1389             ReorderingModes[OpIdx] = ReorderingMode::Splat;
1390           else
1391             ReorderingModes[OpIdx] = ReorderingMode::Opcode;
1392         }
1393         else if (isa<Constant>(OpLane0))
1394           ReorderingModes[OpIdx] = ReorderingMode::Constant;
1395         else if (isa<Argument>(OpLane0))
1396           // Our best hope is a Splat. It may save some cost in some cases.
1397           ReorderingModes[OpIdx] = ReorderingMode::Splat;
1398         else
1399           // NOTE: This should be unreachable.
1400           ReorderingModes[OpIdx] = ReorderingMode::Failed;
1401       }
1402 
1403       // If the initial strategy fails for any of the operand indexes, then we
1404       // perform reordering again in a second pass. This helps avoid assigning
1405       // high priority to the failed strategy, and should improve reordering for
1406       // the non-failed operand indexes.
1407       for (int Pass = 0; Pass != 2; ++Pass) {
1408         // Skip the second pass if the first pass did not fail.
1409         bool StrategyFailed = false;
1410         // Mark all operand data as free to use.
1411         clearUsed();
1412         // We keep the original operand order for the FirstLane, so reorder the
1413         // rest of the lanes. We are visiting the nodes in a circular fashion,
1414         // using FirstLane as the center point and increasing the radius
1415         // distance.
1416         for (unsigned Distance = 1; Distance != NumLanes; ++Distance) {
1417           // Visit the lane on the right and then the lane on the left.
1418           for (int Direction : {+1, -1}) {
1419             int Lane = FirstLane + Direction * Distance;
1420             if (Lane < 0 || Lane >= (int)NumLanes)
1421               continue;
1422             int LastLane = Lane - Direction;
1423             assert(LastLane >= 0 && LastLane < (int)NumLanes &&
1424                    "Out of bounds");
1425             // Look for a good match for each operand.
1426             for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1427               // Search for the operand that matches SortedOps[OpIdx][Lane-1].
1428               Optional<unsigned> BestIdx =
1429                   getBestOperand(OpIdx, Lane, LastLane, ReorderingModes);
1430               // By not selecting a value, we allow the operands that follow to
1431               // select a better matching value. We will get a non-null value in
1432               // the next run of getBestOperand().
1433               if (BestIdx) {
1434                 // Swap the current operand with the one returned by
1435                 // getBestOperand().
1436                 swap(OpIdx, BestIdx.getValue(), Lane);
1437               } else {
1438                 // We failed to find a best operand, set mode to 'Failed'.
1439                 ReorderingModes[OpIdx] = ReorderingMode::Failed;
1440                 // Enable the second pass.
1441                 StrategyFailed = true;
1442               }
1443             }
1444           }
1445         }
1446         // Skip second pass if the strategy did not fail.
1447         if (!StrategyFailed)
1448           break;
1449       }
1450     }
1451 
1452 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1453     LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) {
1454       switch (RMode) {
1455       case ReorderingMode::Load:
1456         return "Load";
1457       case ReorderingMode::Opcode:
1458         return "Opcode";
1459       case ReorderingMode::Constant:
1460         return "Constant";
1461       case ReorderingMode::Splat:
1462         return "Splat";
1463       case ReorderingMode::Failed:
1464         return "Failed";
1465       }
1466       llvm_unreachable("Unimplemented Reordering Type");
1467     }
1468 
1469     LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode,
1470                                                    raw_ostream &OS) {
1471       return OS << getModeStr(RMode);
1472     }
1473 
1474     /// Debug print.
1475     LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) {
1476       printMode(RMode, dbgs());
1477     }
1478 
1479     friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) {
1480       return printMode(RMode, OS);
1481     }
1482 
1483     LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const {
1484       const unsigned Indent = 2;
1485       unsigned Cnt = 0;
1486       for (const OperandDataVec &OpDataVec : OpsVec) {
1487         OS << "Operand " << Cnt++ << "\n";
1488         for (const OperandData &OpData : OpDataVec) {
1489           OS.indent(Indent) << "{";
1490           if (Value *V = OpData.V)
1491             OS << *V;
1492           else
1493             OS << "null";
1494           OS << ", APO:" << OpData.APO << "}\n";
1495         }
1496         OS << "\n";
1497       }
1498       return OS;
1499     }
1500 
1501     /// Debug print.
1502     LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
1503 #endif
1504   };
1505 
1506   /// Checks if the instruction is marked for deletion.
1507   bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); }
1508 
1509   /// Marks values operands for later deletion by replacing them with Undefs.
1510   void eraseInstructions(ArrayRef<Value *> AV);
1511 
1512   ~BoUpSLP();
1513 
1514 private:
1515   /// Checks if all users of \p I are the part of the vectorization tree.
1516   bool areAllUsersVectorized(Instruction *I) const;
1517 
1518   /// \returns the cost of the vectorizable entry.
1519   InstructionCost getEntryCost(const TreeEntry *E);
1520 
1521   /// This is the recursive part of buildTree.
1522   void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth,
1523                      const EdgeInfo &EI);
1524 
1525   /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can
1526   /// be vectorized to use the original vector (or aggregate "bitcast" to a
1527   /// vector) and sets \p CurrentOrder to the identity permutation; otherwise
1528   /// returns false, setting \p CurrentOrder to either an empty vector or a
1529   /// non-identity permutation that allows to reuse extract instructions.
1530   bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
1531                        SmallVectorImpl<unsigned> &CurrentOrder) const;
1532 
1533   /// Vectorize a single entry in the tree.
1534   Value *vectorizeTree(TreeEntry *E);
1535 
1536   /// Vectorize a single entry in the tree, starting in \p VL.
1537   Value *vectorizeTree(ArrayRef<Value *> VL);
1538 
1539   /// \returns the scalarization cost for this type. Scalarization in this
1540   /// context means the creation of vectors from a group of scalars.
1541   InstructionCost
1542   getGatherCost(FixedVectorType *Ty,
1543                 const DenseSet<unsigned> &ShuffledIndices) const;
1544 
1545   /// Checks if the gathered \p VL can be represented as shuffle(s) of previous
1546   /// tree entries.
1547   /// \returns ShuffleKind, if gathered values can be represented as shuffles of
1548   /// previous tree entries. \p Mask is filled with the shuffle mask.
1549   Optional<TargetTransformInfo::ShuffleKind>
1550   isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask,
1551                         SmallVectorImpl<const TreeEntry *> &Entries);
1552 
1553   /// \returns the scalarization cost for this list of values. Assuming that
1554   /// this subtree gets vectorized, we may need to extract the values from the
1555   /// roots. This method calculates the cost of extracting the values.
1556   InstructionCost getGatherCost(ArrayRef<Value *> VL) const;
1557 
1558   /// Set the Builder insert point to one after the last instruction in
1559   /// the bundle
1560   void setInsertPointAfterBundle(const TreeEntry *E);
1561 
1562   /// \returns a vector from a collection of scalars in \p VL.
1563   Value *gather(ArrayRef<Value *> VL);
1564 
1565   /// \returns whether the VectorizableTree is fully vectorizable and will
1566   /// be beneficial even the tree height is tiny.
1567   bool isFullyVectorizableTinyTree() const;
1568 
1569   /// Reorder commutative or alt operands to get better probability of
1570   /// generating vectorized code.
1571   static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
1572                                              SmallVectorImpl<Value *> &Left,
1573                                              SmallVectorImpl<Value *> &Right,
1574                                              const DataLayout &DL,
1575                                              ScalarEvolution &SE,
1576                                              const BoUpSLP &R);
1577   struct TreeEntry {
1578     using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>;
1579     TreeEntry(VecTreeTy &Container) : Container(Container) {}
1580 
1581     /// \returns true if the scalars in VL are equal to this entry.
1582     bool isSame(ArrayRef<Value *> VL) const {
1583       if (VL.size() == Scalars.size())
1584         return std::equal(VL.begin(), VL.end(), Scalars.begin());
1585       return VL.size() == ReuseShuffleIndices.size() &&
1586              std::equal(
1587                  VL.begin(), VL.end(), ReuseShuffleIndices.begin(),
1588                  [this](Value *V, int Idx) { return V == Scalars[Idx]; });
1589     }
1590 
1591     /// A vector of scalars.
1592     ValueList Scalars;
1593 
1594     /// The Scalars are vectorized into this value. It is initialized to Null.
1595     Value *VectorizedValue = nullptr;
1596 
1597     /// Do we need to gather this sequence or vectorize it
1598     /// (either with vector instruction or with scatter/gather
1599     /// intrinsics for store/load)?
1600     enum EntryState { Vectorize, ScatterVectorize, NeedToGather };
1601     EntryState State;
1602 
1603     /// Does this sequence require some shuffling?
1604     SmallVector<int, 4> ReuseShuffleIndices;
1605 
1606     /// Does this entry require reordering?
1607     SmallVector<unsigned, 4> ReorderIndices;
1608 
1609     /// Points back to the VectorizableTree.
1610     ///
1611     /// Only used for Graphviz right now.  Unfortunately GraphTrait::NodeRef has
1612     /// to be a pointer and needs to be able to initialize the child iterator.
1613     /// Thus we need a reference back to the container to translate the indices
1614     /// to entries.
1615     VecTreeTy &Container;
1616 
1617     /// The TreeEntry index containing the user of this entry.  We can actually
1618     /// have multiple users so the data structure is not truly a tree.
1619     SmallVector<EdgeInfo, 1> UserTreeIndices;
1620 
1621     /// The index of this treeEntry in VectorizableTree.
1622     int Idx = -1;
1623 
1624   private:
1625     /// The operands of each instruction in each lane Operands[op_index][lane].
1626     /// Note: This helps avoid the replication of the code that performs the
1627     /// reordering of operands during buildTree_rec() and vectorizeTree().
1628     SmallVector<ValueList, 2> Operands;
1629 
1630     /// The main/alternate instruction.
1631     Instruction *MainOp = nullptr;
1632     Instruction *AltOp = nullptr;
1633 
1634   public:
1635     /// Set this bundle's \p OpIdx'th operand to \p OpVL.
1636     void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) {
1637       if (Operands.size() < OpIdx + 1)
1638         Operands.resize(OpIdx + 1);
1639       assert(Operands[OpIdx].empty() && "Already resized?");
1640       Operands[OpIdx].resize(Scalars.size());
1641       for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane)
1642         Operands[OpIdx][Lane] = OpVL[Lane];
1643     }
1644 
1645     /// Set the operands of this bundle in their original order.
1646     void setOperandsInOrder() {
1647       assert(Operands.empty() && "Already initialized?");
1648       auto *I0 = cast<Instruction>(Scalars[0]);
1649       Operands.resize(I0->getNumOperands());
1650       unsigned NumLanes = Scalars.size();
1651       for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands();
1652            OpIdx != NumOperands; ++OpIdx) {
1653         Operands[OpIdx].resize(NumLanes);
1654         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1655           auto *I = cast<Instruction>(Scalars[Lane]);
1656           assert(I->getNumOperands() == NumOperands &&
1657                  "Expected same number of operands");
1658           Operands[OpIdx][Lane] = I->getOperand(OpIdx);
1659         }
1660       }
1661     }
1662 
1663     /// \returns the \p OpIdx operand of this TreeEntry.
1664     ValueList &getOperand(unsigned OpIdx) {
1665       assert(OpIdx < Operands.size() && "Off bounds");
1666       return Operands[OpIdx];
1667     }
1668 
1669     /// \returns the number of operands.
1670     unsigned getNumOperands() const { return Operands.size(); }
1671 
1672     /// \return the single \p OpIdx operand.
1673     Value *getSingleOperand(unsigned OpIdx) const {
1674       assert(OpIdx < Operands.size() && "Off bounds");
1675       assert(!Operands[OpIdx].empty() && "No operand available");
1676       return Operands[OpIdx][0];
1677     }
1678 
1679     /// Some of the instructions in the list have alternate opcodes.
1680     bool isAltShuffle() const {
1681       return getOpcode() != getAltOpcode();
1682     }
1683 
1684     bool isOpcodeOrAlt(Instruction *I) const {
1685       unsigned CheckedOpcode = I->getOpcode();
1686       return (getOpcode() == CheckedOpcode ||
1687               getAltOpcode() == CheckedOpcode);
1688     }
1689 
1690     /// Chooses the correct key for scheduling data. If \p Op has the same (or
1691     /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is
1692     /// \p OpValue.
1693     Value *isOneOf(Value *Op) const {
1694       auto *I = dyn_cast<Instruction>(Op);
1695       if (I && isOpcodeOrAlt(I))
1696         return Op;
1697       return MainOp;
1698     }
1699 
1700     void setOperations(const InstructionsState &S) {
1701       MainOp = S.MainOp;
1702       AltOp = S.AltOp;
1703     }
1704 
1705     Instruction *getMainOp() const {
1706       return MainOp;
1707     }
1708 
1709     Instruction *getAltOp() const {
1710       return AltOp;
1711     }
1712 
1713     /// The main/alternate opcodes for the list of instructions.
1714     unsigned getOpcode() const {
1715       return MainOp ? MainOp->getOpcode() : 0;
1716     }
1717 
1718     unsigned getAltOpcode() const {
1719       return AltOp ? AltOp->getOpcode() : 0;
1720     }
1721 
1722     /// Update operations state of this entry if reorder occurred.
1723     bool updateStateIfReorder() {
1724       if (ReorderIndices.empty())
1725         return false;
1726       InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front());
1727       setOperations(S);
1728       return true;
1729     }
1730 
1731 #ifndef NDEBUG
1732     /// Debug printer.
1733     LLVM_DUMP_METHOD void dump() const {
1734       dbgs() << Idx << ".\n";
1735       for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) {
1736         dbgs() << "Operand " << OpI << ":\n";
1737         for (const Value *V : Operands[OpI])
1738           dbgs().indent(2) << *V << "\n";
1739       }
1740       dbgs() << "Scalars: \n";
1741       for (Value *V : Scalars)
1742         dbgs().indent(2) << *V << "\n";
1743       dbgs() << "State: ";
1744       switch (State) {
1745       case Vectorize:
1746         dbgs() << "Vectorize\n";
1747         break;
1748       case ScatterVectorize:
1749         dbgs() << "ScatterVectorize\n";
1750         break;
1751       case NeedToGather:
1752         dbgs() << "NeedToGather\n";
1753         break;
1754       }
1755       dbgs() << "MainOp: ";
1756       if (MainOp)
1757         dbgs() << *MainOp << "\n";
1758       else
1759         dbgs() << "NULL\n";
1760       dbgs() << "AltOp: ";
1761       if (AltOp)
1762         dbgs() << *AltOp << "\n";
1763       else
1764         dbgs() << "NULL\n";
1765       dbgs() << "VectorizedValue: ";
1766       if (VectorizedValue)
1767         dbgs() << *VectorizedValue << "\n";
1768       else
1769         dbgs() << "NULL\n";
1770       dbgs() << "ReuseShuffleIndices: ";
1771       if (ReuseShuffleIndices.empty())
1772         dbgs() << "Empty";
1773       else
1774         for (unsigned ReuseIdx : ReuseShuffleIndices)
1775           dbgs() << ReuseIdx << ", ";
1776       dbgs() << "\n";
1777       dbgs() << "ReorderIndices: ";
1778       for (unsigned ReorderIdx : ReorderIndices)
1779         dbgs() << ReorderIdx << ", ";
1780       dbgs() << "\n";
1781       dbgs() << "UserTreeIndices: ";
1782       for (const auto &EInfo : UserTreeIndices)
1783         dbgs() << EInfo << ", ";
1784       dbgs() << "\n";
1785     }
1786 #endif
1787   };
1788 
1789 #ifndef NDEBUG
1790   void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost,
1791                      InstructionCost VecCost,
1792                      InstructionCost ScalarCost) const {
1793     dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump();
1794     dbgs() << "SLP: Costs:\n";
1795     dbgs() << "SLP:     ReuseShuffleCost = " << ReuseShuffleCost << "\n";
1796     dbgs() << "SLP:     VectorCost = " << VecCost << "\n";
1797     dbgs() << "SLP:     ScalarCost = " << ScalarCost << "\n";
1798     dbgs() << "SLP:     ReuseShuffleCost + VecCost - ScalarCost = " <<
1799                ReuseShuffleCost + VecCost - ScalarCost << "\n";
1800   }
1801 #endif
1802 
1803   /// Create a new VectorizableTree entry.
1804   TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle,
1805                           const InstructionsState &S,
1806                           const EdgeInfo &UserTreeIdx,
1807                           ArrayRef<unsigned> ReuseShuffleIndices = None,
1808                           ArrayRef<unsigned> ReorderIndices = None) {
1809     TreeEntry::EntryState EntryState =
1810         Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather;
1811     return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx,
1812                         ReuseShuffleIndices, ReorderIndices);
1813   }
1814 
1815   TreeEntry *newTreeEntry(ArrayRef<Value *> VL,
1816                           TreeEntry::EntryState EntryState,
1817                           Optional<ScheduleData *> Bundle,
1818                           const InstructionsState &S,
1819                           const EdgeInfo &UserTreeIdx,
1820                           ArrayRef<unsigned> ReuseShuffleIndices = None,
1821                           ArrayRef<unsigned> ReorderIndices = None) {
1822     assert(((!Bundle && EntryState == TreeEntry::NeedToGather) ||
1823             (Bundle && EntryState != TreeEntry::NeedToGather)) &&
1824            "Need to vectorize gather entry?");
1825     VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree));
1826     TreeEntry *Last = VectorizableTree.back().get();
1827     Last->Idx = VectorizableTree.size() - 1;
1828     Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
1829     Last->State = EntryState;
1830     Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(),
1831                                      ReuseShuffleIndices.end());
1832     Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end());
1833     Last->setOperations(S);
1834     if (Last->State != TreeEntry::NeedToGather) {
1835       for (Value *V : VL) {
1836         assert(!getTreeEntry(V) && "Scalar already in tree!");
1837         ScalarToTreeEntry[V] = Last;
1838       }
1839       // Update the scheduler bundle to point to this TreeEntry.
1840       unsigned Lane = 0;
1841       for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember;
1842            BundleMember = BundleMember->NextInBundle) {
1843         BundleMember->TE = Last;
1844         BundleMember->Lane = Lane;
1845         ++Lane;
1846       }
1847       assert((!Bundle.getValue() || Lane == VL.size()) &&
1848              "Bundle and VL out of sync");
1849     } else {
1850       MustGather.insert(VL.begin(), VL.end());
1851     }
1852 
1853     if (UserTreeIdx.UserTE)
1854       Last->UserTreeIndices.push_back(UserTreeIdx);
1855 
1856     return Last;
1857   }
1858 
1859   /// -- Vectorization State --
1860   /// Holds all of the tree entries.
1861   TreeEntry::VecTreeTy VectorizableTree;
1862 
1863 #ifndef NDEBUG
1864   /// Debug printer.
1865   LLVM_DUMP_METHOD void dumpVectorizableTree() const {
1866     for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) {
1867       VectorizableTree[Id]->dump();
1868       dbgs() << "\n";
1869     }
1870   }
1871 #endif
1872 
1873   TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); }
1874 
1875   const TreeEntry *getTreeEntry(Value *V) const {
1876     return ScalarToTreeEntry.lookup(V);
1877   }
1878 
1879   /// Maps a specific scalar to its tree entry.
1880   SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry;
1881 
1882   /// Maps a value to the proposed vectorizable size.
1883   SmallDenseMap<Value *, unsigned> InstrElementSize;
1884 
1885   /// A list of scalars that we found that we need to keep as scalars.
1886   ValueSet MustGather;
1887 
1888   /// This POD struct describes one external user in the vectorized tree.
1889   struct ExternalUser {
1890     ExternalUser(Value *S, llvm::User *U, int L)
1891         : Scalar(S), User(U), Lane(L) {}
1892 
1893     // Which scalar in our function.
1894     Value *Scalar;
1895 
1896     // Which user that uses the scalar.
1897     llvm::User *User;
1898 
1899     // Which lane does the scalar belong to.
1900     int Lane;
1901   };
1902   using UserList = SmallVector<ExternalUser, 16>;
1903 
1904   /// Checks if two instructions may access the same memory.
1905   ///
1906   /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
1907   /// is invariant in the calling loop.
1908   bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
1909                  Instruction *Inst2) {
1910     // First check if the result is already in the cache.
1911     AliasCacheKey key = std::make_pair(Inst1, Inst2);
1912     Optional<bool> &result = AliasCache[key];
1913     if (result.hasValue()) {
1914       return result.getValue();
1915     }
1916     MemoryLocation Loc2 = getLocation(Inst2, AA);
1917     bool aliased = true;
1918     if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) {
1919       // Do the alias check.
1920       aliased = !AA->isNoAlias(Loc1, Loc2);
1921     }
1922     // Store the result in the cache.
1923     result = aliased;
1924     return aliased;
1925   }
1926 
1927   using AliasCacheKey = std::pair<Instruction *, Instruction *>;
1928 
1929   /// Cache for alias results.
1930   /// TODO: consider moving this to the AliasAnalysis itself.
1931   DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
1932 
1933   /// Removes an instruction from its block and eventually deletes it.
1934   /// It's like Instruction::eraseFromParent() except that the actual deletion
1935   /// is delayed until BoUpSLP is destructed.
1936   /// This is required to ensure that there are no incorrect collisions in the
1937   /// AliasCache, which can happen if a new instruction is allocated at the
1938   /// same address as a previously deleted instruction.
1939   void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) {
1940     auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first;
1941     It->getSecond() = It->getSecond() && ReplaceOpsWithUndef;
1942   }
1943 
1944   /// Temporary store for deleted instructions. Instructions will be deleted
1945   /// eventually when the BoUpSLP is destructed.
1946   DenseMap<Instruction *, bool> DeletedInstructions;
1947 
1948   /// A list of values that need to extracted out of the tree.
1949   /// This list holds pairs of (Internal Scalar : External User). External User
1950   /// can be nullptr, it means that this Internal Scalar will be used later,
1951   /// after vectorization.
1952   UserList ExternalUses;
1953 
1954   /// Values used only by @llvm.assume calls.
1955   SmallPtrSet<const Value *, 32> EphValues;
1956 
1957   /// Holds all of the instructions that we gathered.
1958   SetVector<Instruction *> GatherSeq;
1959 
1960   /// A list of blocks that we are going to CSE.
1961   SetVector<BasicBlock *> CSEBlocks;
1962 
1963   /// Contains all scheduling relevant data for an instruction.
1964   /// A ScheduleData either represents a single instruction or a member of an
1965   /// instruction bundle (= a group of instructions which is combined into a
1966   /// vector instruction).
1967   struct ScheduleData {
1968     // The initial value for the dependency counters. It means that the
1969     // dependencies are not calculated yet.
1970     enum { InvalidDeps = -1 };
1971 
1972     ScheduleData() = default;
1973 
1974     void init(int BlockSchedulingRegionID, Value *OpVal) {
1975       FirstInBundle = this;
1976       NextInBundle = nullptr;
1977       NextLoadStore = nullptr;
1978       IsScheduled = false;
1979       SchedulingRegionID = BlockSchedulingRegionID;
1980       UnscheduledDepsInBundle = UnscheduledDeps;
1981       clearDependencies();
1982       OpValue = OpVal;
1983       TE = nullptr;
1984       Lane = -1;
1985     }
1986 
1987     /// Returns true if the dependency information has been calculated.
1988     bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
1989 
1990     /// Returns true for single instructions and for bundle representatives
1991     /// (= the head of a bundle).
1992     bool isSchedulingEntity() const { return FirstInBundle == this; }
1993 
1994     /// Returns true if it represents an instruction bundle and not only a
1995     /// single instruction.
1996     bool isPartOfBundle() const {
1997       return NextInBundle != nullptr || FirstInBundle != this;
1998     }
1999 
2000     /// Returns true if it is ready for scheduling, i.e. it has no more
2001     /// unscheduled depending instructions/bundles.
2002     bool isReady() const {
2003       assert(isSchedulingEntity() &&
2004              "can't consider non-scheduling entity for ready list");
2005       return UnscheduledDepsInBundle == 0 && !IsScheduled;
2006     }
2007 
2008     /// Modifies the number of unscheduled dependencies, also updating it for
2009     /// the whole bundle.
2010     int incrementUnscheduledDeps(int Incr) {
2011       UnscheduledDeps += Incr;
2012       return FirstInBundle->UnscheduledDepsInBundle += Incr;
2013     }
2014 
2015     /// Sets the number of unscheduled dependencies to the number of
2016     /// dependencies.
2017     void resetUnscheduledDeps() {
2018       incrementUnscheduledDeps(Dependencies - UnscheduledDeps);
2019     }
2020 
2021     /// Clears all dependency information.
2022     void clearDependencies() {
2023       Dependencies = InvalidDeps;
2024       resetUnscheduledDeps();
2025       MemoryDependencies.clear();
2026     }
2027 
2028     void dump(raw_ostream &os) const {
2029       if (!isSchedulingEntity()) {
2030         os << "/ " << *Inst;
2031       } else if (NextInBundle) {
2032         os << '[' << *Inst;
2033         ScheduleData *SD = NextInBundle;
2034         while (SD) {
2035           os << ';' << *SD->Inst;
2036           SD = SD->NextInBundle;
2037         }
2038         os << ']';
2039       } else {
2040         os << *Inst;
2041       }
2042     }
2043 
2044     Instruction *Inst = nullptr;
2045 
2046     /// Points to the head in an instruction bundle (and always to this for
2047     /// single instructions).
2048     ScheduleData *FirstInBundle = nullptr;
2049 
2050     /// Single linked list of all instructions in a bundle. Null if it is a
2051     /// single instruction.
2052     ScheduleData *NextInBundle = nullptr;
2053 
2054     /// Single linked list of all memory instructions (e.g. load, store, call)
2055     /// in the block - until the end of the scheduling region.
2056     ScheduleData *NextLoadStore = nullptr;
2057 
2058     /// The dependent memory instructions.
2059     /// This list is derived on demand in calculateDependencies().
2060     SmallVector<ScheduleData *, 4> MemoryDependencies;
2061 
2062     /// This ScheduleData is in the current scheduling region if this matches
2063     /// the current SchedulingRegionID of BlockScheduling.
2064     int SchedulingRegionID = 0;
2065 
2066     /// Used for getting a "good" final ordering of instructions.
2067     int SchedulingPriority = 0;
2068 
2069     /// The number of dependencies. Constitutes of the number of users of the
2070     /// instruction plus the number of dependent memory instructions (if any).
2071     /// This value is calculated on demand.
2072     /// If InvalidDeps, the number of dependencies is not calculated yet.
2073     int Dependencies = InvalidDeps;
2074 
2075     /// The number of dependencies minus the number of dependencies of scheduled
2076     /// instructions. As soon as this is zero, the instruction/bundle gets ready
2077     /// for scheduling.
2078     /// Note that this is negative as long as Dependencies is not calculated.
2079     int UnscheduledDeps = InvalidDeps;
2080 
2081     /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for
2082     /// single instructions.
2083     int UnscheduledDepsInBundle = InvalidDeps;
2084 
2085     /// True if this instruction is scheduled (or considered as scheduled in the
2086     /// dry-run).
2087     bool IsScheduled = false;
2088 
2089     /// Opcode of the current instruction in the schedule data.
2090     Value *OpValue = nullptr;
2091 
2092     /// The TreeEntry that this instruction corresponds to.
2093     TreeEntry *TE = nullptr;
2094 
2095     /// The lane of this node in the TreeEntry.
2096     int Lane = -1;
2097   };
2098 
2099 #ifndef NDEBUG
2100   friend inline raw_ostream &operator<<(raw_ostream &os,
2101                                         const BoUpSLP::ScheduleData &SD) {
2102     SD.dump(os);
2103     return os;
2104   }
2105 #endif
2106 
2107   friend struct GraphTraits<BoUpSLP *>;
2108   friend struct DOTGraphTraits<BoUpSLP *>;
2109 
2110   /// Contains all scheduling data for a basic block.
2111   struct BlockScheduling {
2112     BlockScheduling(BasicBlock *BB)
2113         : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {}
2114 
2115     void clear() {
2116       ReadyInsts.clear();
2117       ScheduleStart = nullptr;
2118       ScheduleEnd = nullptr;
2119       FirstLoadStoreInRegion = nullptr;
2120       LastLoadStoreInRegion = nullptr;
2121 
2122       // Reduce the maximum schedule region size by the size of the
2123       // previous scheduling run.
2124       ScheduleRegionSizeLimit -= ScheduleRegionSize;
2125       if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
2126         ScheduleRegionSizeLimit = MinScheduleRegionSize;
2127       ScheduleRegionSize = 0;
2128 
2129       // Make a new scheduling region, i.e. all existing ScheduleData is not
2130       // in the new region yet.
2131       ++SchedulingRegionID;
2132     }
2133 
2134     ScheduleData *getScheduleData(Value *V) {
2135       ScheduleData *SD = ScheduleDataMap[V];
2136       if (SD && SD->SchedulingRegionID == SchedulingRegionID)
2137         return SD;
2138       return nullptr;
2139     }
2140 
2141     ScheduleData *getScheduleData(Value *V, Value *Key) {
2142       if (V == Key)
2143         return getScheduleData(V);
2144       auto I = ExtraScheduleDataMap.find(V);
2145       if (I != ExtraScheduleDataMap.end()) {
2146         ScheduleData *SD = I->second[Key];
2147         if (SD && SD->SchedulingRegionID == SchedulingRegionID)
2148           return SD;
2149       }
2150       return nullptr;
2151     }
2152 
2153     bool isInSchedulingRegion(ScheduleData *SD) const {
2154       return SD->SchedulingRegionID == SchedulingRegionID;
2155     }
2156 
2157     /// Marks an instruction as scheduled and puts all dependent ready
2158     /// instructions into the ready-list.
2159     template <typename ReadyListType>
2160     void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
2161       SD->IsScheduled = true;
2162       LLVM_DEBUG(dbgs() << "SLP:   schedule " << *SD << "\n");
2163 
2164       ScheduleData *BundleMember = SD;
2165       while (BundleMember) {
2166         if (BundleMember->Inst != BundleMember->OpValue) {
2167           BundleMember = BundleMember->NextInBundle;
2168           continue;
2169         }
2170         // Handle the def-use chain dependencies.
2171 
2172         // Decrement the unscheduled counter and insert to ready list if ready.
2173         auto &&DecrUnsched = [this, &ReadyList](Instruction *I) {
2174           doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) {
2175             if (OpDef && OpDef->hasValidDependencies() &&
2176                 OpDef->incrementUnscheduledDeps(-1) == 0) {
2177               // There are no more unscheduled dependencies after
2178               // decrementing, so we can put the dependent instruction
2179               // into the ready list.
2180               ScheduleData *DepBundle = OpDef->FirstInBundle;
2181               assert(!DepBundle->IsScheduled &&
2182                      "already scheduled bundle gets ready");
2183               ReadyList.insert(DepBundle);
2184               LLVM_DEBUG(dbgs()
2185                          << "SLP:    gets ready (def): " << *DepBundle << "\n");
2186             }
2187           });
2188         };
2189 
2190         // If BundleMember is a vector bundle, its operands may have been
2191         // reordered duiring buildTree(). We therefore need to get its operands
2192         // through the TreeEntry.
2193         if (TreeEntry *TE = BundleMember->TE) {
2194           int Lane = BundleMember->Lane;
2195           assert(Lane >= 0 && "Lane not set");
2196 
2197           // Since vectorization tree is being built recursively this assertion
2198           // ensures that the tree entry has all operands set before reaching
2199           // this code. Couple of exceptions known at the moment are extracts
2200           // where their second (immediate) operand is not added. Since
2201           // immediates do not affect scheduler behavior this is considered
2202           // okay.
2203           auto *In = TE->getMainOp();
2204           assert(In &&
2205                  (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) ||
2206                   In->getNumOperands() == TE->getNumOperands()) &&
2207                  "Missed TreeEntry operands?");
2208           (void)In; // fake use to avoid build failure when assertions disabled
2209 
2210           for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands();
2211                OpIdx != NumOperands; ++OpIdx)
2212             if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane]))
2213               DecrUnsched(I);
2214         } else {
2215           // If BundleMember is a stand-alone instruction, no operand reordering
2216           // has taken place, so we directly access its operands.
2217           for (Use &U : BundleMember->Inst->operands())
2218             if (auto *I = dyn_cast<Instruction>(U.get()))
2219               DecrUnsched(I);
2220         }
2221         // Handle the memory dependencies.
2222         for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
2223           if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
2224             // There are no more unscheduled dependencies after decrementing,
2225             // so we can put the dependent instruction into the ready list.
2226             ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
2227             assert(!DepBundle->IsScheduled &&
2228                    "already scheduled bundle gets ready");
2229             ReadyList.insert(DepBundle);
2230             LLVM_DEBUG(dbgs()
2231                        << "SLP:    gets ready (mem): " << *DepBundle << "\n");
2232           }
2233         }
2234         BundleMember = BundleMember->NextInBundle;
2235       }
2236     }
2237 
2238     void doForAllOpcodes(Value *V,
2239                          function_ref<void(ScheduleData *SD)> Action) {
2240       if (ScheduleData *SD = getScheduleData(V))
2241         Action(SD);
2242       auto I = ExtraScheduleDataMap.find(V);
2243       if (I != ExtraScheduleDataMap.end())
2244         for (auto &P : I->second)
2245           if (P.second->SchedulingRegionID == SchedulingRegionID)
2246             Action(P.second);
2247     }
2248 
2249     /// Put all instructions into the ReadyList which are ready for scheduling.
2250     template <typename ReadyListType>
2251     void initialFillReadyList(ReadyListType &ReadyList) {
2252       for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
2253         doForAllOpcodes(I, [&](ScheduleData *SD) {
2254           if (SD->isSchedulingEntity() && SD->isReady()) {
2255             ReadyList.insert(SD);
2256             LLVM_DEBUG(dbgs()
2257                        << "SLP:    initially in ready list: " << *I << "\n");
2258           }
2259         });
2260       }
2261     }
2262 
2263     /// Checks if a bundle of instructions can be scheduled, i.e. has no
2264     /// cyclic dependencies. This is only a dry-run, no instructions are
2265     /// actually moved at this stage.
2266     /// \returns the scheduling bundle. The returned Optional value is non-None
2267     /// if \p VL is allowed to be scheduled.
2268     Optional<ScheduleData *>
2269     tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
2270                       const InstructionsState &S);
2271 
2272     /// Un-bundles a group of instructions.
2273     void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue);
2274 
2275     /// Allocates schedule data chunk.
2276     ScheduleData *allocateScheduleDataChunks();
2277 
2278     /// Extends the scheduling region so that V is inside the region.
2279     /// \returns true if the region size is within the limit.
2280     bool extendSchedulingRegion(Value *V, const InstructionsState &S);
2281 
2282     /// Initialize the ScheduleData structures for new instructions in the
2283     /// scheduling region.
2284     void initScheduleData(Instruction *FromI, Instruction *ToI,
2285                           ScheduleData *PrevLoadStore,
2286                           ScheduleData *NextLoadStore);
2287 
2288     /// Updates the dependency information of a bundle and of all instructions/
2289     /// bundles which depend on the original bundle.
2290     void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
2291                                BoUpSLP *SLP);
2292 
2293     /// Sets all instruction in the scheduling region to un-scheduled.
2294     void resetSchedule();
2295 
2296     BasicBlock *BB;
2297 
2298     /// Simple memory allocation for ScheduleData.
2299     std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
2300 
2301     /// The size of a ScheduleData array in ScheduleDataChunks.
2302     int ChunkSize;
2303 
2304     /// The allocator position in the current chunk, which is the last entry
2305     /// of ScheduleDataChunks.
2306     int ChunkPos;
2307 
2308     /// Attaches ScheduleData to Instruction.
2309     /// Note that the mapping survives during all vectorization iterations, i.e.
2310     /// ScheduleData structures are recycled.
2311     DenseMap<Value *, ScheduleData *> ScheduleDataMap;
2312 
2313     /// Attaches ScheduleData to Instruction with the leading key.
2314     DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>>
2315         ExtraScheduleDataMap;
2316 
2317     struct ReadyList : SmallVector<ScheduleData *, 8> {
2318       void insert(ScheduleData *SD) { push_back(SD); }
2319     };
2320 
2321     /// The ready-list for scheduling (only used for the dry-run).
2322     ReadyList ReadyInsts;
2323 
2324     /// The first instruction of the scheduling region.
2325     Instruction *ScheduleStart = nullptr;
2326 
2327     /// The first instruction _after_ the scheduling region.
2328     Instruction *ScheduleEnd = nullptr;
2329 
2330     /// The first memory accessing instruction in the scheduling region
2331     /// (can be null).
2332     ScheduleData *FirstLoadStoreInRegion = nullptr;
2333 
2334     /// The last memory accessing instruction in the scheduling region
2335     /// (can be null).
2336     ScheduleData *LastLoadStoreInRegion = nullptr;
2337 
2338     /// The current size of the scheduling region.
2339     int ScheduleRegionSize = 0;
2340 
2341     /// The maximum size allowed for the scheduling region.
2342     int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget;
2343 
2344     /// The ID of the scheduling region. For a new vectorization iteration this
2345     /// is incremented which "removes" all ScheduleData from the region.
2346     // Make sure that the initial SchedulingRegionID is greater than the
2347     // initial SchedulingRegionID in ScheduleData (which is 0).
2348     int SchedulingRegionID = 1;
2349   };
2350 
2351   /// Attaches the BlockScheduling structures to basic blocks.
2352   MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
2353 
2354   /// Performs the "real" scheduling. Done before vectorization is actually
2355   /// performed in a basic block.
2356   void scheduleBlock(BlockScheduling *BS);
2357 
2358   /// List of users to ignore during scheduling and that don't need extracting.
2359   ArrayRef<Value *> UserIgnoreList;
2360 
2361   /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of
2362   /// sorted SmallVectors of unsigned.
2363   struct OrdersTypeDenseMapInfo {
2364     static OrdersType getEmptyKey() {
2365       OrdersType V;
2366       V.push_back(~1U);
2367       return V;
2368     }
2369 
2370     static OrdersType getTombstoneKey() {
2371       OrdersType V;
2372       V.push_back(~2U);
2373       return V;
2374     }
2375 
2376     static unsigned getHashValue(const OrdersType &V) {
2377       return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
2378     }
2379 
2380     static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) {
2381       return LHS == RHS;
2382     }
2383   };
2384 
2385   /// Contains orders of operations along with the number of bundles that have
2386   /// operations in this order. It stores only those orders that require
2387   /// reordering, if reordering is not required it is counted using \a
2388   /// NumOpsWantToKeepOriginalOrder.
2389   DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder;
2390   /// Number of bundles that do not require reordering.
2391   unsigned NumOpsWantToKeepOriginalOrder = 0;
2392 
2393   // Analysis and block reference.
2394   Function *F;
2395   ScalarEvolution *SE;
2396   TargetTransformInfo *TTI;
2397   TargetLibraryInfo *TLI;
2398   AAResults *AA;
2399   LoopInfo *LI;
2400   DominatorTree *DT;
2401   AssumptionCache *AC;
2402   DemandedBits *DB;
2403   const DataLayout *DL;
2404   OptimizationRemarkEmitter *ORE;
2405 
2406   unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
2407   unsigned MinVecRegSize; // Set by cl::opt (default: 128).
2408 
2409   /// Instruction builder to construct the vectorized tree.
2410   IRBuilder<> Builder;
2411 
2412   /// A map of scalar integer values to the smallest bit width with which they
2413   /// can legally be represented. The values map to (width, signed) pairs,
2414   /// where "width" indicates the minimum bit width and "signed" is True if the
2415   /// value must be signed-extended, rather than zero-extended, back to its
2416   /// original width.
2417   MapVector<Value *, std::pair<uint64_t, bool>> MinBWs;
2418 };
2419 
2420 } // end namespace slpvectorizer
2421 
2422 template <> struct GraphTraits<BoUpSLP *> {
2423   using TreeEntry = BoUpSLP::TreeEntry;
2424 
2425   /// NodeRef has to be a pointer per the GraphWriter.
2426   using NodeRef = TreeEntry *;
2427 
2428   using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy;
2429 
2430   /// Add the VectorizableTree to the index iterator to be able to return
2431   /// TreeEntry pointers.
2432   struct ChildIteratorType
2433       : public iterator_adaptor_base<
2434             ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> {
2435     ContainerTy &VectorizableTree;
2436 
2437     ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W,
2438                       ContainerTy &VT)
2439         : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {}
2440 
2441     NodeRef operator*() { return I->UserTE; }
2442   };
2443 
2444   static NodeRef getEntryNode(BoUpSLP &R) {
2445     return R.VectorizableTree[0].get();
2446   }
2447 
2448   static ChildIteratorType child_begin(NodeRef N) {
2449     return {N->UserTreeIndices.begin(), N->Container};
2450   }
2451 
2452   static ChildIteratorType child_end(NodeRef N) {
2453     return {N->UserTreeIndices.end(), N->Container};
2454   }
2455 
2456   /// For the node iterator we just need to turn the TreeEntry iterator into a
2457   /// TreeEntry* iterator so that it dereferences to NodeRef.
2458   class nodes_iterator {
2459     using ItTy = ContainerTy::iterator;
2460     ItTy It;
2461 
2462   public:
2463     nodes_iterator(const ItTy &It2) : It(It2) {}
2464     NodeRef operator*() { return It->get(); }
2465     nodes_iterator operator++() {
2466       ++It;
2467       return *this;
2468     }
2469     bool operator!=(const nodes_iterator &N2) const { return N2.It != It; }
2470   };
2471 
2472   static nodes_iterator nodes_begin(BoUpSLP *R) {
2473     return nodes_iterator(R->VectorizableTree.begin());
2474   }
2475 
2476   static nodes_iterator nodes_end(BoUpSLP *R) {
2477     return nodes_iterator(R->VectorizableTree.end());
2478   }
2479 
2480   static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); }
2481 };
2482 
2483 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits {
2484   using TreeEntry = BoUpSLP::TreeEntry;
2485 
2486   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
2487 
2488   std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) {
2489     std::string Str;
2490     raw_string_ostream OS(Str);
2491     if (isSplat(Entry->Scalars)) {
2492       OS << "<splat> " << *Entry->Scalars[0];
2493       return Str;
2494     }
2495     for (auto V : Entry->Scalars) {
2496       OS << *V;
2497       if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) {
2498             return EU.Scalar == V;
2499           }))
2500         OS << " <extract>";
2501       OS << "\n";
2502     }
2503     return Str;
2504   }
2505 
2506   static std::string getNodeAttributes(const TreeEntry *Entry,
2507                                        const BoUpSLP *) {
2508     if (Entry->State == TreeEntry::NeedToGather)
2509       return "color=red";
2510     return "";
2511   }
2512 };
2513 
2514 } // end namespace llvm
2515 
2516 BoUpSLP::~BoUpSLP() {
2517   for (const auto &Pair : DeletedInstructions) {
2518     // Replace operands of ignored instructions with Undefs in case if they were
2519     // marked for deletion.
2520     if (Pair.getSecond()) {
2521       Value *Undef = UndefValue::get(Pair.getFirst()->getType());
2522       Pair.getFirst()->replaceAllUsesWith(Undef);
2523     }
2524     Pair.getFirst()->dropAllReferences();
2525   }
2526   for (const auto &Pair : DeletedInstructions) {
2527     assert(Pair.getFirst()->use_empty() &&
2528            "trying to erase instruction with users.");
2529     Pair.getFirst()->eraseFromParent();
2530   }
2531 #ifdef EXPENSIVE_CHECKS
2532   // If we could guarantee that this call is not extremely slow, we could
2533   // remove the ifdef limitation (see PR47712).
2534   assert(!verifyFunction(*F, &dbgs()));
2535 #endif
2536 }
2537 
2538 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) {
2539   for (auto *V : AV) {
2540     if (auto *I = dyn_cast<Instruction>(V))
2541       eraseInstruction(I, /*ReplaceOpsWithUndef=*/true);
2542   };
2543 }
2544 
2545 void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
2546                         ArrayRef<Value *> UserIgnoreLst) {
2547   ExtraValueToDebugLocsMap ExternallyUsedValues;
2548   buildTree(Roots, ExternallyUsedValues, UserIgnoreLst);
2549 }
2550 
2551 static int findLaneForValue(ArrayRef<Value *> Scalars,
2552                             ArrayRef<int> ReuseShuffleIndices, Value *V) {
2553   unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V));
2554   assert(FoundLane < Scalars.size() && "Couldn't find extract lane");
2555   if (!ReuseShuffleIndices.empty()) {
2556     FoundLane = std::distance(ReuseShuffleIndices.begin(),
2557                               find(ReuseShuffleIndices, FoundLane));
2558   }
2559   return FoundLane;
2560 }
2561 
2562 void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
2563                         ExtraValueToDebugLocsMap &ExternallyUsedValues,
2564                         ArrayRef<Value *> UserIgnoreLst) {
2565   deleteTree();
2566   UserIgnoreList = UserIgnoreLst;
2567   if (!allSameType(Roots))
2568     return;
2569   buildTree_rec(Roots, 0, EdgeInfo());
2570 
2571   // Collect the values that we need to extract from the tree.
2572   for (auto &TEPtr : VectorizableTree) {
2573     TreeEntry *Entry = TEPtr.get();
2574 
2575     // No need to handle users of gathered values.
2576     if (Entry->State == TreeEntry::NeedToGather)
2577       continue;
2578 
2579     // For each lane:
2580     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
2581       Value *Scalar = Entry->Scalars[Lane];
2582       int FoundLane =
2583           findLaneForValue(Entry->Scalars, Entry->ReuseShuffleIndices, Scalar);
2584 
2585       // Check if the scalar is externally used as an extra arg.
2586       auto ExtI = ExternallyUsedValues.find(Scalar);
2587       if (ExtI != ExternallyUsedValues.end()) {
2588         LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane "
2589                           << Lane << " from " << *Scalar << ".\n");
2590         ExternalUses.emplace_back(Scalar, nullptr, FoundLane);
2591       }
2592       for (User *U : Scalar->users()) {
2593         LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
2594 
2595         Instruction *UserInst = dyn_cast<Instruction>(U);
2596         if (!UserInst)
2597           continue;
2598 
2599         // Skip in-tree scalars that become vectors
2600         if (TreeEntry *UseEntry = getTreeEntry(U)) {
2601           Value *UseScalar = UseEntry->Scalars[0];
2602           // Some in-tree scalars will remain as scalar in vectorized
2603           // instructions. If that is the case, the one in Lane 0 will
2604           // be used.
2605           if (UseScalar != U ||
2606               UseEntry->State == TreeEntry::ScatterVectorize ||
2607               !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
2608             LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
2609                               << ".\n");
2610             assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state");
2611             continue;
2612           }
2613         }
2614 
2615         // Ignore users in the user ignore list.
2616         if (is_contained(UserIgnoreList, UserInst))
2617           continue;
2618 
2619         LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane "
2620                           << Lane << " from " << *Scalar << ".\n");
2621         ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane));
2622       }
2623     }
2624   }
2625 }
2626 
2627 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth,
2628                             const EdgeInfo &UserTreeIdx) {
2629   assert((allConstant(VL) || allSameType(VL)) && "Invalid types!");
2630 
2631   InstructionsState S = getSameOpcode(VL);
2632   if (Depth == RecursionMaxDepth) {
2633     LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
2634     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2635     return;
2636   }
2637 
2638   // Don't handle vectors.
2639   if (S.OpValue->getType()->isVectorTy()) {
2640     LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
2641     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2642     return;
2643   }
2644 
2645   if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
2646     if (SI->getValueOperand()->getType()->isVectorTy()) {
2647       LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
2648       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2649       return;
2650     }
2651 
2652   // If all of the operands are identical or constant we have a simple solution.
2653   if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) {
2654     LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
2655     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2656     return;
2657   }
2658 
2659   // We now know that this is a vector of instructions of the same type from
2660   // the same block.
2661 
2662   // Don't vectorize ephemeral values.
2663   for (Value *V : VL) {
2664     if (EphValues.count(V)) {
2665       LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
2666                         << ") is ephemeral.\n");
2667       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2668       return;
2669     }
2670   }
2671 
2672   // Check if this is a duplicate of another entry.
2673   if (TreeEntry *E = getTreeEntry(S.OpValue)) {
2674     LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n");
2675     if (!E->isSame(VL)) {
2676       LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
2677       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2678       return;
2679     }
2680     // Record the reuse of the tree node.  FIXME, currently this is only used to
2681     // properly draw the graph rather than for the actual vectorization.
2682     E->UserTreeIndices.push_back(UserTreeIdx);
2683     LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue
2684                       << ".\n");
2685     return;
2686   }
2687 
2688   // Check that none of the instructions in the bundle are already in the tree.
2689   for (Value *V : VL) {
2690     auto *I = dyn_cast<Instruction>(V);
2691     if (!I)
2692       continue;
2693     if (getTreeEntry(I)) {
2694       LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
2695                         << ") is already in tree.\n");
2696       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2697       return;
2698     }
2699   }
2700 
2701   // If any of the scalars is marked as a value that needs to stay scalar, then
2702   // we need to gather the scalars.
2703   // The reduction nodes (stored in UserIgnoreList) also should stay scalar.
2704   for (Value *V : VL) {
2705     if (MustGather.count(V) || is_contained(UserIgnoreList, V)) {
2706       LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
2707       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2708       return;
2709     }
2710   }
2711 
2712   // Check that all of the users of the scalars that we want to vectorize are
2713   // schedulable.
2714   auto *VL0 = cast<Instruction>(S.OpValue);
2715   BasicBlock *BB = VL0->getParent();
2716 
2717   if (!DT->isReachableFromEntry(BB)) {
2718     // Don't go into unreachable blocks. They may contain instructions with
2719     // dependency cycles which confuse the final scheduling.
2720     LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
2721     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2722     return;
2723   }
2724 
2725   // Check that every instruction appears once in this bundle.
2726   SmallVector<unsigned, 4> ReuseShuffleIndicies;
2727   SmallVector<Value *, 4> UniqueValues;
2728   DenseMap<Value *, unsigned> UniquePositions;
2729   for (Value *V : VL) {
2730     auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
2731     ReuseShuffleIndicies.emplace_back(Res.first->second);
2732     if (Res.second)
2733       UniqueValues.emplace_back(V);
2734   }
2735   size_t NumUniqueScalarValues = UniqueValues.size();
2736   if (NumUniqueScalarValues == VL.size()) {
2737     ReuseShuffleIndicies.clear();
2738   } else {
2739     LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n");
2740     if (NumUniqueScalarValues <= 1 ||
2741         !llvm::isPowerOf2_32(NumUniqueScalarValues)) {
2742       LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
2743       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2744       return;
2745     }
2746     VL = UniqueValues;
2747   }
2748 
2749   auto &BSRef = BlocksSchedules[BB];
2750   if (!BSRef)
2751     BSRef = std::make_unique<BlockScheduling>(BB);
2752 
2753   BlockScheduling &BS = *BSRef.get();
2754 
2755   Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S);
2756   if (!Bundle) {
2757     LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
2758     assert((!BS.getScheduleData(VL0) ||
2759             !BS.getScheduleData(VL0)->isPartOfBundle()) &&
2760            "tryScheduleBundle should cancelScheduling on failure");
2761     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2762                  ReuseShuffleIndicies);
2763     return;
2764   }
2765   LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
2766 
2767   unsigned ShuffleOrOp = S.isAltShuffle() ?
2768                 (unsigned) Instruction::ShuffleVector : S.getOpcode();
2769   switch (ShuffleOrOp) {
2770     case Instruction::PHI: {
2771       auto *PH = cast<PHINode>(VL0);
2772 
2773       // Check for terminator values (e.g. invoke).
2774       for (Value *V : VL)
2775         for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) {
2776           Instruction *Term = dyn_cast<Instruction>(
2777               cast<PHINode>(V)->getIncomingValueForBlock(
2778                   PH->getIncomingBlock(I)));
2779           if (Term && Term->isTerminator()) {
2780             LLVM_DEBUG(dbgs()
2781                        << "SLP: Need to swizzle PHINodes (terminator use).\n");
2782             BS.cancelScheduling(VL, VL0);
2783             newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2784                          ReuseShuffleIndicies);
2785             return;
2786           }
2787         }
2788 
2789       TreeEntry *TE =
2790           newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies);
2791       LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
2792 
2793       // Keeps the reordered operands to avoid code duplication.
2794       SmallVector<ValueList, 2> OperandsVec;
2795       for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) {
2796         ValueList Operands;
2797         // Prepare the operand vector.
2798         for (Value *V : VL)
2799           Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(
2800               PH->getIncomingBlock(I)));
2801         TE->setOperand(I, Operands);
2802         OperandsVec.push_back(Operands);
2803       }
2804       for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx)
2805         buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx});
2806       return;
2807     }
2808     case Instruction::ExtractValue:
2809     case Instruction::ExtractElement: {
2810       OrdersType CurrentOrder;
2811       bool Reuse = canReuseExtract(VL, VL0, CurrentOrder);
2812       if (Reuse) {
2813         LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n");
2814         ++NumOpsWantToKeepOriginalOrder;
2815         newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2816                      ReuseShuffleIndicies);
2817         // This is a special case, as it does not gather, but at the same time
2818         // we are not extending buildTree_rec() towards the operands.
2819         ValueList Op0;
2820         Op0.assign(VL.size(), VL0->getOperand(0));
2821         VectorizableTree.back()->setOperand(0, Op0);
2822         return;
2823       }
2824       if (!CurrentOrder.empty()) {
2825         LLVM_DEBUG({
2826           dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
2827                     "with order";
2828           for (unsigned Idx : CurrentOrder)
2829             dbgs() << " " << Idx;
2830           dbgs() << "\n";
2831         });
2832         // Insert new order with initial value 0, if it does not exist,
2833         // otherwise return the iterator to the existing one.
2834         newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2835                      ReuseShuffleIndicies, CurrentOrder);
2836         findRootOrder(CurrentOrder);
2837         ++NumOpsWantToKeepOrder[CurrentOrder];
2838         // This is a special case, as it does not gather, but at the same time
2839         // we are not extending buildTree_rec() towards the operands.
2840         ValueList Op0;
2841         Op0.assign(VL.size(), VL0->getOperand(0));
2842         VectorizableTree.back()->setOperand(0, Op0);
2843         return;
2844       }
2845       LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n");
2846       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2847                    ReuseShuffleIndicies);
2848       BS.cancelScheduling(VL, VL0);
2849       return;
2850     }
2851     case Instruction::Load: {
2852       // Check that a vectorized load would load the same memory as a scalar
2853       // load. For example, we don't want to vectorize loads that are smaller
2854       // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
2855       // treats loading/storing it as an i8 struct. If we vectorize loads/stores
2856       // from such a struct, we read/write packed bits disagreeing with the
2857       // unvectorized version.
2858       Type *ScalarTy = VL0->getType();
2859 
2860       if (DL->getTypeSizeInBits(ScalarTy) !=
2861           DL->getTypeAllocSizeInBits(ScalarTy)) {
2862         BS.cancelScheduling(VL, VL0);
2863         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2864                      ReuseShuffleIndicies);
2865         LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n");
2866         return;
2867       }
2868 
2869       // Make sure all loads in the bundle are simple - we can't vectorize
2870       // atomic or volatile loads.
2871       SmallVector<Value *, 4> PointerOps(VL.size());
2872       auto POIter = PointerOps.begin();
2873       for (Value *V : VL) {
2874         auto *L = cast<LoadInst>(V);
2875         if (!L->isSimple()) {
2876           BS.cancelScheduling(VL, VL0);
2877           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2878                        ReuseShuffleIndicies);
2879           LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
2880           return;
2881         }
2882         *POIter = L->getPointerOperand();
2883         ++POIter;
2884       }
2885 
2886       OrdersType CurrentOrder;
2887       // Check the order of pointer operands.
2888       if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) {
2889         Value *Ptr0;
2890         Value *PtrN;
2891         if (CurrentOrder.empty()) {
2892           Ptr0 = PointerOps.front();
2893           PtrN = PointerOps.back();
2894         } else {
2895           Ptr0 = PointerOps[CurrentOrder.front()];
2896           PtrN = PointerOps[CurrentOrder.back()];
2897         }
2898         Optional<int> Diff = getPointersDiff(Ptr0, PtrN, *DL, *SE);
2899         // Check that the sorted loads are consecutive.
2900         if (static_cast<unsigned>(*Diff) == VL.size() - 1) {
2901           if (CurrentOrder.empty()) {
2902             // Original loads are consecutive and does not require reordering.
2903             ++NumOpsWantToKeepOriginalOrder;
2904             TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
2905                                          UserTreeIdx, ReuseShuffleIndicies);
2906             TE->setOperandsInOrder();
2907             LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n");
2908           } else {
2909             // Need to reorder.
2910             TreeEntry *TE =
2911                 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2912                              ReuseShuffleIndicies, CurrentOrder);
2913             TE->setOperandsInOrder();
2914             LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n");
2915             findRootOrder(CurrentOrder);
2916             ++NumOpsWantToKeepOrder[CurrentOrder];
2917           }
2918           return;
2919         }
2920         // Vectorizing non-consecutive loads with `llvm.masked.gather`.
2921         TreeEntry *TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S,
2922                                      UserTreeIdx, ReuseShuffleIndicies);
2923         TE->setOperandsInOrder();
2924         buildTree_rec(PointerOps, Depth + 1, {TE, 0});
2925         LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n");
2926         return;
2927       }
2928 
2929       LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
2930       BS.cancelScheduling(VL, VL0);
2931       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2932                    ReuseShuffleIndicies);
2933       return;
2934     }
2935     case Instruction::ZExt:
2936     case Instruction::SExt:
2937     case Instruction::FPToUI:
2938     case Instruction::FPToSI:
2939     case Instruction::FPExt:
2940     case Instruction::PtrToInt:
2941     case Instruction::IntToPtr:
2942     case Instruction::SIToFP:
2943     case Instruction::UIToFP:
2944     case Instruction::Trunc:
2945     case Instruction::FPTrunc:
2946     case Instruction::BitCast: {
2947       Type *SrcTy = VL0->getOperand(0)->getType();
2948       for (Value *V : VL) {
2949         Type *Ty = cast<Instruction>(V)->getOperand(0)->getType();
2950         if (Ty != SrcTy || !isValidElementType(Ty)) {
2951           BS.cancelScheduling(VL, VL0);
2952           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2953                        ReuseShuffleIndicies);
2954           LLVM_DEBUG(dbgs()
2955                      << "SLP: Gathering casts with different src types.\n");
2956           return;
2957         }
2958       }
2959       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2960                                    ReuseShuffleIndicies);
2961       LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n");
2962 
2963       TE->setOperandsInOrder();
2964       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
2965         ValueList Operands;
2966         // Prepare the operand vector.
2967         for (Value *V : VL)
2968           Operands.push_back(cast<Instruction>(V)->getOperand(i));
2969 
2970         buildTree_rec(Operands, Depth + 1, {TE, i});
2971       }
2972       return;
2973     }
2974     case Instruction::ICmp:
2975     case Instruction::FCmp: {
2976       // Check that all of the compares have the same predicate.
2977       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
2978       CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0);
2979       Type *ComparedTy = VL0->getOperand(0)->getType();
2980       for (Value *V : VL) {
2981         CmpInst *Cmp = cast<CmpInst>(V);
2982         if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) ||
2983             Cmp->getOperand(0)->getType() != ComparedTy) {
2984           BS.cancelScheduling(VL, VL0);
2985           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2986                        ReuseShuffleIndicies);
2987           LLVM_DEBUG(dbgs()
2988                      << "SLP: Gathering cmp with different predicate.\n");
2989           return;
2990         }
2991       }
2992 
2993       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2994                                    ReuseShuffleIndicies);
2995       LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n");
2996 
2997       ValueList Left, Right;
2998       if (cast<CmpInst>(VL0)->isCommutative()) {
2999         // Commutative predicate - collect + sort operands of the instructions
3000         // so that each side is more likely to have the same opcode.
3001         assert(P0 == SwapP0 && "Commutative Predicate mismatch");
3002         reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
3003       } else {
3004         // Collect operands - commute if it uses the swapped predicate.
3005         for (Value *V : VL) {
3006           auto *Cmp = cast<CmpInst>(V);
3007           Value *LHS = Cmp->getOperand(0);
3008           Value *RHS = Cmp->getOperand(1);
3009           if (Cmp->getPredicate() != P0)
3010             std::swap(LHS, RHS);
3011           Left.push_back(LHS);
3012           Right.push_back(RHS);
3013         }
3014       }
3015       TE->setOperand(0, Left);
3016       TE->setOperand(1, Right);
3017       buildTree_rec(Left, Depth + 1, {TE, 0});
3018       buildTree_rec(Right, Depth + 1, {TE, 1});
3019       return;
3020     }
3021     case Instruction::Select:
3022     case Instruction::FNeg:
3023     case Instruction::Add:
3024     case Instruction::FAdd:
3025     case Instruction::Sub:
3026     case Instruction::FSub:
3027     case Instruction::Mul:
3028     case Instruction::FMul:
3029     case Instruction::UDiv:
3030     case Instruction::SDiv:
3031     case Instruction::FDiv:
3032     case Instruction::URem:
3033     case Instruction::SRem:
3034     case Instruction::FRem:
3035     case Instruction::Shl:
3036     case Instruction::LShr:
3037     case Instruction::AShr:
3038     case Instruction::And:
3039     case Instruction::Or:
3040     case Instruction::Xor: {
3041       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3042                                    ReuseShuffleIndicies);
3043       LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n");
3044 
3045       // Sort operands of the instructions so that each side is more likely to
3046       // have the same opcode.
3047       if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
3048         ValueList Left, Right;
3049         reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
3050         TE->setOperand(0, Left);
3051         TE->setOperand(1, Right);
3052         buildTree_rec(Left, Depth + 1, {TE, 0});
3053         buildTree_rec(Right, Depth + 1, {TE, 1});
3054         return;
3055       }
3056 
3057       TE->setOperandsInOrder();
3058       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
3059         ValueList Operands;
3060         // Prepare the operand vector.
3061         for (Value *V : VL)
3062           Operands.push_back(cast<Instruction>(V)->getOperand(i));
3063 
3064         buildTree_rec(Operands, Depth + 1, {TE, i});
3065       }
3066       return;
3067     }
3068     case Instruction::GetElementPtr: {
3069       // We don't combine GEPs with complicated (nested) indexing.
3070       for (Value *V : VL) {
3071         if (cast<Instruction>(V)->getNumOperands() != 2) {
3072           LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
3073           BS.cancelScheduling(VL, VL0);
3074           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3075                        ReuseShuffleIndicies);
3076           return;
3077         }
3078       }
3079 
3080       // We can't combine several GEPs into one vector if they operate on
3081       // different types.
3082       Type *Ty0 = VL0->getOperand(0)->getType();
3083       for (Value *V : VL) {
3084         Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType();
3085         if (Ty0 != CurTy) {
3086           LLVM_DEBUG(dbgs()
3087                      << "SLP: not-vectorizable GEP (different types).\n");
3088           BS.cancelScheduling(VL, VL0);
3089           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3090                        ReuseShuffleIndicies);
3091           return;
3092         }
3093       }
3094 
3095       // We don't combine GEPs with non-constant indexes.
3096       Type *Ty1 = VL0->getOperand(1)->getType();
3097       for (Value *V : VL) {
3098         auto Op = cast<Instruction>(V)->getOperand(1);
3099         if (!isa<ConstantInt>(Op) ||
3100             (Op->getType() != Ty1 &&
3101              Op->getType()->getScalarSizeInBits() >
3102                  DL->getIndexSizeInBits(
3103                      V->getType()->getPointerAddressSpace()))) {
3104           LLVM_DEBUG(dbgs()
3105                      << "SLP: not-vectorizable GEP (non-constant indexes).\n");
3106           BS.cancelScheduling(VL, VL0);
3107           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3108                        ReuseShuffleIndicies);
3109           return;
3110         }
3111       }
3112 
3113       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3114                                    ReuseShuffleIndicies);
3115       LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
3116       TE->setOperandsInOrder();
3117       for (unsigned i = 0, e = 2; i < e; ++i) {
3118         ValueList Operands;
3119         // Prepare the operand vector.
3120         for (Value *V : VL)
3121           Operands.push_back(cast<Instruction>(V)->getOperand(i));
3122 
3123         buildTree_rec(Operands, Depth + 1, {TE, i});
3124       }
3125       return;
3126     }
3127     case Instruction::Store: {
3128       // Check if the stores are consecutive or if we need to swizzle them.
3129       llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType();
3130       // Avoid types that are padded when being allocated as scalars, while
3131       // being packed together in a vector (such as i1).
3132       if (DL->getTypeSizeInBits(ScalarTy) !=
3133           DL->getTypeAllocSizeInBits(ScalarTy)) {
3134         BS.cancelScheduling(VL, VL0);
3135         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3136                      ReuseShuffleIndicies);
3137         LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n");
3138         return;
3139       }
3140       // Make sure all stores in the bundle are simple - we can't vectorize
3141       // atomic or volatile stores.
3142       SmallVector<Value *, 4> PointerOps(VL.size());
3143       ValueList Operands(VL.size());
3144       auto POIter = PointerOps.begin();
3145       auto OIter = Operands.begin();
3146       for (Value *V : VL) {
3147         auto *SI = cast<StoreInst>(V);
3148         if (!SI->isSimple()) {
3149           BS.cancelScheduling(VL, VL0);
3150           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3151                        ReuseShuffleIndicies);
3152           LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n");
3153           return;
3154         }
3155         *POIter = SI->getPointerOperand();
3156         *OIter = SI->getValueOperand();
3157         ++POIter;
3158         ++OIter;
3159       }
3160 
3161       OrdersType CurrentOrder;
3162       // Check the order of pointer operands.
3163       if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) {
3164         Value *Ptr0;
3165         Value *PtrN;
3166         if (CurrentOrder.empty()) {
3167           Ptr0 = PointerOps.front();
3168           PtrN = PointerOps.back();
3169         } else {
3170           Ptr0 = PointerOps[CurrentOrder.front()];
3171           PtrN = PointerOps[CurrentOrder.back()];
3172         }
3173         Optional<int> Dist = getPointersDiff(Ptr0, PtrN, *DL, *SE);
3174         // Check that the sorted pointer operands are consecutive.
3175         if (static_cast<unsigned>(*Dist) == VL.size() - 1) {
3176           if (CurrentOrder.empty()) {
3177             // Original stores are consecutive and does not require reordering.
3178             ++NumOpsWantToKeepOriginalOrder;
3179             TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
3180                                          UserTreeIdx, ReuseShuffleIndicies);
3181             TE->setOperandsInOrder();
3182             buildTree_rec(Operands, Depth + 1, {TE, 0});
3183             LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n");
3184           } else {
3185             TreeEntry *TE =
3186                 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3187                              ReuseShuffleIndicies, CurrentOrder);
3188             TE->setOperandsInOrder();
3189             buildTree_rec(Operands, Depth + 1, {TE, 0});
3190             LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n");
3191             findRootOrder(CurrentOrder);
3192             ++NumOpsWantToKeepOrder[CurrentOrder];
3193           }
3194           return;
3195         }
3196       }
3197 
3198       BS.cancelScheduling(VL, VL0);
3199       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3200                    ReuseShuffleIndicies);
3201       LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
3202       return;
3203     }
3204     case Instruction::Call: {
3205       // Check if the calls are all to the same vectorizable intrinsic or
3206       // library function.
3207       CallInst *CI = cast<CallInst>(VL0);
3208       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3209 
3210       VFShape Shape = VFShape::get(
3211           *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())),
3212           false /*HasGlobalPred*/);
3213       Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3214 
3215       if (!VecFunc && !isTriviallyVectorizable(ID)) {
3216         BS.cancelScheduling(VL, VL0);
3217         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3218                      ReuseShuffleIndicies);
3219         LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
3220         return;
3221       }
3222       Function *F = CI->getCalledFunction();
3223       unsigned NumArgs = CI->getNumArgOperands();
3224       SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr);
3225       for (unsigned j = 0; j != NumArgs; ++j)
3226         if (hasVectorInstrinsicScalarOpd(ID, j))
3227           ScalarArgs[j] = CI->getArgOperand(j);
3228       for (Value *V : VL) {
3229         CallInst *CI2 = dyn_cast<CallInst>(V);
3230         if (!CI2 || CI2->getCalledFunction() != F ||
3231             getVectorIntrinsicIDForCall(CI2, TLI) != ID ||
3232             (VecFunc &&
3233              VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) ||
3234             !CI->hasIdenticalOperandBundleSchema(*CI2)) {
3235           BS.cancelScheduling(VL, VL0);
3236           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3237                        ReuseShuffleIndicies);
3238           LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V
3239                             << "\n");
3240           return;
3241         }
3242         // Some intrinsics have scalar arguments and should be same in order for
3243         // them to be vectorized.
3244         for (unsigned j = 0; j != NumArgs; ++j) {
3245           if (hasVectorInstrinsicScalarOpd(ID, j)) {
3246             Value *A1J = CI2->getArgOperand(j);
3247             if (ScalarArgs[j] != A1J) {
3248               BS.cancelScheduling(VL, VL0);
3249               newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3250                            ReuseShuffleIndicies);
3251               LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
3252                                 << " argument " << ScalarArgs[j] << "!=" << A1J
3253                                 << "\n");
3254               return;
3255             }
3256           }
3257         }
3258         // Verify that the bundle operands are identical between the two calls.
3259         if (CI->hasOperandBundles() &&
3260             !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(),
3261                         CI->op_begin() + CI->getBundleOperandsEndIndex(),
3262                         CI2->op_begin() + CI2->getBundleOperandsStartIndex())) {
3263           BS.cancelScheduling(VL, VL0);
3264           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3265                        ReuseShuffleIndicies);
3266           LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:"
3267                             << *CI << "!=" << *V << '\n');
3268           return;
3269         }
3270       }
3271 
3272       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3273                                    ReuseShuffleIndicies);
3274       TE->setOperandsInOrder();
3275       for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
3276         ValueList Operands;
3277         // Prepare the operand vector.
3278         for (Value *V : VL) {
3279           auto *CI2 = cast<CallInst>(V);
3280           Operands.push_back(CI2->getArgOperand(i));
3281         }
3282         buildTree_rec(Operands, Depth + 1, {TE, i});
3283       }
3284       return;
3285     }
3286     case Instruction::ShuffleVector: {
3287       // If this is not an alternate sequence of opcode like add-sub
3288       // then do not vectorize this instruction.
3289       if (!S.isAltShuffle()) {
3290         BS.cancelScheduling(VL, VL0);
3291         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3292                      ReuseShuffleIndicies);
3293         LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
3294         return;
3295       }
3296       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3297                                    ReuseShuffleIndicies);
3298       LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
3299 
3300       // Reorder operands if reordering would enable vectorization.
3301       if (isa<BinaryOperator>(VL0)) {
3302         ValueList Left, Right;
3303         reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
3304         TE->setOperand(0, Left);
3305         TE->setOperand(1, Right);
3306         buildTree_rec(Left, Depth + 1, {TE, 0});
3307         buildTree_rec(Right, Depth + 1, {TE, 1});
3308         return;
3309       }
3310 
3311       TE->setOperandsInOrder();
3312       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
3313         ValueList Operands;
3314         // Prepare the operand vector.
3315         for (Value *V : VL)
3316           Operands.push_back(cast<Instruction>(V)->getOperand(i));
3317 
3318         buildTree_rec(Operands, Depth + 1, {TE, i});
3319       }
3320       return;
3321     }
3322     default:
3323       BS.cancelScheduling(VL, VL0);
3324       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3325                    ReuseShuffleIndicies);
3326       LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
3327       return;
3328   }
3329 }
3330 
3331 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const {
3332   unsigned N = 1;
3333   Type *EltTy = T;
3334 
3335   while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) ||
3336          isa<VectorType>(EltTy)) {
3337     if (auto *ST = dyn_cast<StructType>(EltTy)) {
3338       // Check that struct is homogeneous.
3339       for (const auto *Ty : ST->elements())
3340         if (Ty != *ST->element_begin())
3341           return 0;
3342       N *= ST->getNumElements();
3343       EltTy = *ST->element_begin();
3344     } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) {
3345       N *= AT->getNumElements();
3346       EltTy = AT->getElementType();
3347     } else {
3348       auto *VT = cast<FixedVectorType>(EltTy);
3349       N *= VT->getNumElements();
3350       EltTy = VT->getElementType();
3351     }
3352   }
3353 
3354   if (!isValidElementType(EltTy))
3355     return 0;
3356   uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N));
3357   if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T))
3358     return 0;
3359   return N;
3360 }
3361 
3362 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
3363                               SmallVectorImpl<unsigned> &CurrentOrder) const {
3364   Instruction *E0 = cast<Instruction>(OpValue);
3365   assert(E0->getOpcode() == Instruction::ExtractElement ||
3366          E0->getOpcode() == Instruction::ExtractValue);
3367   assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode");
3368   // Check if all of the extracts come from the same vector and from the
3369   // correct offset.
3370   Value *Vec = E0->getOperand(0);
3371 
3372   CurrentOrder.clear();
3373 
3374   // We have to extract from a vector/aggregate with the same number of elements.
3375   unsigned NElts;
3376   if (E0->getOpcode() == Instruction::ExtractValue) {
3377     const DataLayout &DL = E0->getModule()->getDataLayout();
3378     NElts = canMapToVector(Vec->getType(), DL);
3379     if (!NElts)
3380       return false;
3381     // Check if load can be rewritten as load of vector.
3382     LoadInst *LI = dyn_cast<LoadInst>(Vec);
3383     if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size()))
3384       return false;
3385   } else {
3386     NElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
3387   }
3388 
3389   if (NElts != VL.size())
3390     return false;
3391 
3392   // Check that all of the indices extract from the correct offset.
3393   bool ShouldKeepOrder = true;
3394   unsigned E = VL.size();
3395   // Assign to all items the initial value E + 1 so we can check if the extract
3396   // instruction index was used already.
3397   // Also, later we can check that all the indices are used and we have a
3398   // consecutive access in the extract instructions, by checking that no
3399   // element of CurrentOrder still has value E + 1.
3400   CurrentOrder.assign(E, E + 1);
3401   unsigned I = 0;
3402   for (; I < E; ++I) {
3403     auto *Inst = cast<Instruction>(VL[I]);
3404     if (Inst->getOperand(0) != Vec)
3405       break;
3406     Optional<unsigned> Idx = getExtractIndex(Inst);
3407     if (!Idx)
3408       break;
3409     const unsigned ExtIdx = *Idx;
3410     if (ExtIdx != I) {
3411       if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1)
3412         break;
3413       ShouldKeepOrder = false;
3414       CurrentOrder[ExtIdx] = I;
3415     } else {
3416       if (CurrentOrder[I] != E + 1)
3417         break;
3418       CurrentOrder[I] = I;
3419     }
3420   }
3421   if (I < E) {
3422     CurrentOrder.clear();
3423     return false;
3424   }
3425 
3426   return ShouldKeepOrder;
3427 }
3428 
3429 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const {
3430   return I->hasOneUse() || llvm::all_of(I->users(), [this](User *U) {
3431            return ScalarToTreeEntry.count(U) > 0;
3432          });
3433 }
3434 
3435 static std::pair<InstructionCost, InstructionCost>
3436 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy,
3437                    TargetTransformInfo *TTI, TargetLibraryInfo *TLI) {
3438   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3439 
3440   // Calculate the cost of the scalar and vector calls.
3441   SmallVector<Type *, 4> VecTys;
3442   for (Use &Arg : CI->args())
3443     VecTys.push_back(
3444         FixedVectorType::get(Arg->getType(), VecTy->getNumElements()));
3445   FastMathFlags FMF;
3446   if (auto *FPCI = dyn_cast<FPMathOperator>(CI))
3447     FMF = FPCI->getFastMathFlags();
3448   SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end());
3449   IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF,
3450                                     dyn_cast<IntrinsicInst>(CI));
3451   auto IntrinsicCost =
3452     TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput);
3453 
3454   auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>(
3455                                      VecTy->getNumElements())),
3456                             false /*HasGlobalPred*/);
3457   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3458   auto LibCost = IntrinsicCost;
3459   if (!CI->isNoBuiltin() && VecFunc) {
3460     // Calculate the cost of the vector library call.
3461     // If the corresponding vector call is cheaper, return its cost.
3462     LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys,
3463                                     TTI::TCK_RecipThroughput);
3464   }
3465   return {IntrinsicCost, LibCost};
3466 }
3467 
3468 /// Compute the cost of creating a vector of type \p VecTy containing the
3469 /// extracted values from \p VL.
3470 static InstructionCost
3471 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy,
3472                    TargetTransformInfo::ShuffleKind ShuffleKind,
3473                    ArrayRef<int> Mask, TargetTransformInfo &TTI) {
3474   unsigned NumOfParts = TTI.getNumberOfParts(VecTy);
3475 
3476   if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts ||
3477       VecTy->getNumElements() < NumOfParts)
3478     return TTI.getShuffleCost(ShuffleKind, VecTy, Mask);
3479 
3480   bool AllConsecutive = true;
3481   unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts;
3482   unsigned Idx = -1;
3483   InstructionCost Cost = 0;
3484 
3485   // Process extracts in blocks of EltsPerVector to check if the source vector
3486   // operand can be re-used directly. If not, add the cost of creating a shuffle
3487   // to extract the values into a vector register.
3488   for (auto *V : VL) {
3489     ++Idx;
3490 
3491     // Reached the start of a new vector registers.
3492     if (Idx % EltsPerVector == 0) {
3493       AllConsecutive = true;
3494       continue;
3495     }
3496 
3497     // Check all extracts for a vector register on the target directly
3498     // extract values in order.
3499     unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V));
3500     unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1]));
3501     AllConsecutive &= PrevIdx + 1 == CurrentIdx &&
3502                       CurrentIdx % EltsPerVector == Idx % EltsPerVector;
3503 
3504     if (AllConsecutive)
3505       continue;
3506 
3507     // Skip all indices, except for the last index per vector block.
3508     if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size())
3509       continue;
3510 
3511     // If we have a series of extracts which are not consecutive and hence
3512     // cannot re-use the source vector register directly, compute the shuffle
3513     // cost to extract the a vector with EltsPerVector elements.
3514     Cost += TTI.getShuffleCost(
3515         TargetTransformInfo::SK_PermuteSingleSrc,
3516         FixedVectorType::get(VecTy->getElementType(), EltsPerVector));
3517   }
3518   return Cost;
3519 }
3520 
3521 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E) {
3522   ArrayRef<Value*> VL = E->Scalars;
3523 
3524   Type *ScalarTy = VL[0]->getType();
3525   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
3526     ScalarTy = SI->getValueOperand()->getType();
3527   else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0]))
3528     ScalarTy = CI->getOperand(0)->getType();
3529   auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
3530   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
3531 
3532   // If we have computed a smaller type for the expression, update VecTy so
3533   // that the costs will be accurate.
3534   if (MinBWs.count(VL[0]))
3535     VecTy = FixedVectorType::get(
3536         IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size());
3537 
3538   unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size();
3539   bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
3540   InstructionCost ReuseShuffleCost = 0;
3541   if (NeedToShuffleReuses) {
3542     ReuseShuffleCost =
3543         TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy,
3544                             E->ReuseShuffleIndices);
3545   }
3546   // FIXME: it tries to fix a problem with MSVC buildbots.
3547   TargetTransformInfo &TTIRef = *TTI;
3548   auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL,
3549                                VecTy](InstructionCost &Cost, bool IsGather) {
3550     DenseMap<Value *, int> ExtractVectorsTys;
3551     for (auto *V : VL) {
3552       // If all users of instruction are going to be vectorized and this
3553       // instruction itself is not going to be vectorized, consider this
3554       // instruction as dead and remove its cost from the final cost of the
3555       // vectorized tree.
3556       if (IsGather && (!areAllUsersVectorized(cast<Instruction>(V)) ||
3557                        ScalarToTreeEntry.count(V)))
3558         continue;
3559       auto *EE = cast<ExtractElementInst>(V);
3560       unsigned Idx = *getExtractIndex(EE);
3561       if (TTIRef.getNumberOfParts(VecTy) !=
3562           TTIRef.getNumberOfParts(EE->getVectorOperandType())) {
3563         auto It =
3564             ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first;
3565         It->getSecond() = std::min<int>(It->second, Idx);
3566       }
3567       // Take credit for instruction that will become dead.
3568       if (EE->hasOneUse()) {
3569         Instruction *Ext = EE->user_back();
3570         if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
3571             all_of(Ext->users(),
3572                    [](User *U) { return isa<GetElementPtrInst>(U); })) {
3573           // Use getExtractWithExtendCost() to calculate the cost of
3574           // extractelement/ext pair.
3575           Cost -=
3576               TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(),
3577                                               EE->getVectorOperandType(), Idx);
3578           // Add back the cost of s|zext which is subtracted separately.
3579           Cost += TTIRef.getCastInstrCost(
3580               Ext->getOpcode(), Ext->getType(), EE->getType(),
3581               TTI::getCastContextHint(Ext), CostKind, Ext);
3582           continue;
3583         }
3584       }
3585       Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement,
3586                                         EE->getVectorOperandType(), Idx);
3587     }
3588     // Add a cost for subvector extracts/inserts if required.
3589     for (const auto &Data : ExtractVectorsTys) {
3590       auto *EEVTy = cast<FixedVectorType>(Data.first->getType());
3591       unsigned NumElts = VecTy->getNumElements();
3592       if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) {
3593         unsigned Idx = (Data.second / NumElts) * NumElts;
3594         unsigned EENumElts = EEVTy->getNumElements();
3595         if (Idx + NumElts <= EENumElts) {
3596           Cost +=
3597               TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
3598                                     EEVTy, None, Idx, VecTy);
3599         } else {
3600           // Need to round up the subvector type vectorization factor to avoid a
3601           // crash in cost model functions. Make SubVT so that Idx + VF of SubVT
3602           // <= EENumElts.
3603           auto *SubVT =
3604               FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx);
3605           Cost +=
3606               TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
3607                                     EEVTy, None, Idx, SubVT);
3608         }
3609       } else {
3610         Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector,
3611                                       VecTy, None, 0, EEVTy);
3612       }
3613     }
3614   };
3615   if (E->State == TreeEntry::NeedToGather) {
3616     if (allConstant(VL))
3617       return 0;
3618     if (isSplat(VL)) {
3619       return ReuseShuffleCost +
3620              TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, None,
3621                                  0);
3622     }
3623     if (E->getOpcode() == Instruction::ExtractElement &&
3624         allSameType(VL) && allSameBlock(VL)) {
3625       SmallVector<int> Mask;
3626       Optional<TargetTransformInfo::ShuffleKind> ShuffleKind =
3627           isShuffle(VL, Mask);
3628       if (ShuffleKind.hasValue()) {
3629         InstructionCost Cost =
3630             computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI);
3631         AdjustExtractsCost(Cost, /*IsGather=*/true);
3632         return ReuseShuffleCost + Cost;
3633       }
3634     }
3635     InstructionCost GatherCost = 0;
3636     SmallVector<int> Mask;
3637     SmallVector<const TreeEntry *> Entries;
3638     Optional<TargetTransformInfo::ShuffleKind> Shuffle =
3639         isGatherShuffledEntry(E, Mask, Entries);
3640     if (Shuffle.hasValue()) {
3641       if (ShuffleVectorInst::isIdentityMask(Mask)) {
3642         LLVM_DEBUG(
3643             dbgs()
3644             << "SLP: perfect diamond match for gather bundle that starts with "
3645             << *VL.front() << ".\n");
3646       } else {
3647         LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size()
3648                           << " entries for bundle that starts with "
3649                           << *VL.front() << ".\n");
3650         GatherCost = TTI->getShuffleCost(*Shuffle, VecTy, Mask);
3651       }
3652     } else {
3653       GatherCost = getGatherCost(VL);
3654     }
3655     return ReuseShuffleCost + GatherCost;
3656   }
3657   assert((E->State == TreeEntry::Vectorize ||
3658           E->State == TreeEntry::ScatterVectorize) &&
3659          "Unhandled state");
3660   assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL");
3661   Instruction *VL0 = E->getMainOp();
3662   unsigned ShuffleOrOp =
3663       E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
3664   switch (ShuffleOrOp) {
3665     case Instruction::PHI:
3666       return 0;
3667 
3668     case Instruction::ExtractValue:
3669     case Instruction::ExtractElement: {
3670       // The common cost of removal ExtractElement/ExtractValue instructions +
3671       // the cost of shuffles, if required to resuffle the original vector.
3672       InstructionCost CommonCost = 0;
3673       if (NeedToShuffleReuses) {
3674         unsigned Idx = 0;
3675         for (unsigned I : E->ReuseShuffleIndices) {
3676           if (ShuffleOrOp == Instruction::ExtractElement) {
3677             auto *EE = cast<ExtractElementInst>(VL[I]);
3678             ReuseShuffleCost -= TTI->getVectorInstrCost(
3679                 Instruction::ExtractElement, EE->getVectorOperandType(),
3680                 *getExtractIndex(EE));
3681           } else {
3682             ReuseShuffleCost -= TTI->getVectorInstrCost(
3683                 Instruction::ExtractElement, VecTy, Idx);
3684             ++Idx;
3685           }
3686         }
3687         Idx = ReuseShuffleNumbers;
3688         for (Value *V : VL) {
3689           if (ShuffleOrOp == Instruction::ExtractElement) {
3690             auto *EE = cast<ExtractElementInst>(V);
3691             ReuseShuffleCost += TTI->getVectorInstrCost(
3692                 Instruction::ExtractElement, EE->getVectorOperandType(),
3693                 *getExtractIndex(EE));
3694           } else {
3695             --Idx;
3696             ReuseShuffleCost += TTI->getVectorInstrCost(
3697                 Instruction::ExtractElement, VecTy, Idx);
3698           }
3699         }
3700         CommonCost = ReuseShuffleCost;
3701       } else if (!E->ReorderIndices.empty()) {
3702         SmallVector<int> NewMask;
3703         inversePermutation(E->ReorderIndices, NewMask);
3704         CommonCost = TTI->getShuffleCost(
3705             TargetTransformInfo::SK_PermuteSingleSrc, VecTy, NewMask);
3706       }
3707       if (ShuffleOrOp == Instruction::ExtractValue) {
3708         for (unsigned I = 0, E = VL.size(); I < E; ++I) {
3709           auto *EI = cast<Instruction>(VL[I]);
3710           // Take credit for instruction that will become dead.
3711           if (EI->hasOneUse()) {
3712             Instruction *Ext = EI->user_back();
3713             if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
3714                 all_of(Ext->users(),
3715                        [](User *U) { return isa<GetElementPtrInst>(U); })) {
3716               // Use getExtractWithExtendCost() to calculate the cost of
3717               // extractelement/ext pair.
3718               CommonCost -= TTI->getExtractWithExtendCost(
3719                   Ext->getOpcode(), Ext->getType(), VecTy, I);
3720               // Add back the cost of s|zext which is subtracted separately.
3721               CommonCost += TTI->getCastInstrCost(
3722                   Ext->getOpcode(), Ext->getType(), EI->getType(),
3723                   TTI::getCastContextHint(Ext), CostKind, Ext);
3724               continue;
3725             }
3726           }
3727           CommonCost -=
3728               TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I);
3729         }
3730       } else {
3731         AdjustExtractsCost(CommonCost, /*IsGather=*/false);
3732       }
3733       return CommonCost;
3734     }
3735     case Instruction::ZExt:
3736     case Instruction::SExt:
3737     case Instruction::FPToUI:
3738     case Instruction::FPToSI:
3739     case Instruction::FPExt:
3740     case Instruction::PtrToInt:
3741     case Instruction::IntToPtr:
3742     case Instruction::SIToFP:
3743     case Instruction::UIToFP:
3744     case Instruction::Trunc:
3745     case Instruction::FPTrunc:
3746     case Instruction::BitCast: {
3747       Type *SrcTy = VL0->getOperand(0)->getType();
3748       InstructionCost ScalarEltCost =
3749           TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy,
3750                                 TTI::getCastContextHint(VL0), CostKind, VL0);
3751       if (NeedToShuffleReuses) {
3752         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3753       }
3754 
3755       // Calculate the cost of this instruction.
3756       InstructionCost ScalarCost = VL.size() * ScalarEltCost;
3757 
3758       auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size());
3759       InstructionCost VecCost = 0;
3760       // Check if the values are candidates to demote.
3761       if (!MinBWs.count(VL0) || VecTy != SrcVecTy) {
3762         VecCost =
3763             ReuseShuffleCost +
3764             TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy,
3765                                   TTI::getCastContextHint(VL0), CostKind, VL0);
3766       }
3767       LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost));
3768       return VecCost - ScalarCost;
3769     }
3770     case Instruction::FCmp:
3771     case Instruction::ICmp:
3772     case Instruction::Select: {
3773       // Calculate the cost of this instruction.
3774       InstructionCost ScalarEltCost =
3775           TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(),
3776                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0);
3777       if (NeedToShuffleReuses) {
3778         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3779       }
3780       auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size());
3781       InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
3782 
3783       // Check if all entries in VL are either compares or selects with compares
3784       // as condition that have the same predicates.
3785       CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE;
3786       bool First = true;
3787       for (auto *V : VL) {
3788         CmpInst::Predicate CurrentPred;
3789         auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value());
3790         if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) &&
3791              !match(V, MatchCmp)) ||
3792             (!First && VecPred != CurrentPred)) {
3793           VecPred = CmpInst::BAD_ICMP_PREDICATE;
3794           break;
3795         }
3796         First = false;
3797         VecPred = CurrentPred;
3798       }
3799 
3800       InstructionCost VecCost = TTI->getCmpSelInstrCost(
3801           E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0);
3802       // Check if it is possible and profitable to use min/max for selects in
3803       // VL.
3804       //
3805       auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL);
3806       if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) {
3807         IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy,
3808                                           {VecTy, VecTy});
3809         InstructionCost IntrinsicCost =
3810             TTI->getIntrinsicInstrCost(CostAttrs, CostKind);
3811         // If the selects are the only uses of the compares, they will be dead
3812         // and we can adjust the cost by removing their cost.
3813         if (IntrinsicAndUse.second)
3814           IntrinsicCost -=
3815               TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy,
3816                                       CmpInst::BAD_ICMP_PREDICATE, CostKind);
3817         VecCost = std::min(VecCost, IntrinsicCost);
3818       }
3819       LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost));
3820       return ReuseShuffleCost + VecCost - ScalarCost;
3821     }
3822     case Instruction::FNeg:
3823     case Instruction::Add:
3824     case Instruction::FAdd:
3825     case Instruction::Sub:
3826     case Instruction::FSub:
3827     case Instruction::Mul:
3828     case Instruction::FMul:
3829     case Instruction::UDiv:
3830     case Instruction::SDiv:
3831     case Instruction::FDiv:
3832     case Instruction::URem:
3833     case Instruction::SRem:
3834     case Instruction::FRem:
3835     case Instruction::Shl:
3836     case Instruction::LShr:
3837     case Instruction::AShr:
3838     case Instruction::And:
3839     case Instruction::Or:
3840     case Instruction::Xor: {
3841       // Certain instructions can be cheaper to vectorize if they have a
3842       // constant second vector operand.
3843       TargetTransformInfo::OperandValueKind Op1VK =
3844           TargetTransformInfo::OK_AnyValue;
3845       TargetTransformInfo::OperandValueKind Op2VK =
3846           TargetTransformInfo::OK_UniformConstantValue;
3847       TargetTransformInfo::OperandValueProperties Op1VP =
3848           TargetTransformInfo::OP_None;
3849       TargetTransformInfo::OperandValueProperties Op2VP =
3850           TargetTransformInfo::OP_PowerOf2;
3851 
3852       // If all operands are exactly the same ConstantInt then set the
3853       // operand kind to OK_UniformConstantValue.
3854       // If instead not all operands are constants, then set the operand kind
3855       // to OK_AnyValue. If all operands are constants but not the same,
3856       // then set the operand kind to OK_NonUniformConstantValue.
3857       ConstantInt *CInt0 = nullptr;
3858       for (unsigned i = 0, e = VL.size(); i < e; ++i) {
3859         const Instruction *I = cast<Instruction>(VL[i]);
3860         unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0;
3861         ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx));
3862         if (!CInt) {
3863           Op2VK = TargetTransformInfo::OK_AnyValue;
3864           Op2VP = TargetTransformInfo::OP_None;
3865           break;
3866         }
3867         if (Op2VP == TargetTransformInfo::OP_PowerOf2 &&
3868             !CInt->getValue().isPowerOf2())
3869           Op2VP = TargetTransformInfo::OP_None;
3870         if (i == 0) {
3871           CInt0 = CInt;
3872           continue;
3873         }
3874         if (CInt0 != CInt)
3875           Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
3876       }
3877 
3878       SmallVector<const Value *, 4> Operands(VL0->operand_values());
3879       InstructionCost ScalarEltCost =
3880           TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK,
3881                                       Op2VK, Op1VP, Op2VP, Operands, VL0);
3882       if (NeedToShuffleReuses) {
3883         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3884       }
3885       InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
3886       InstructionCost VecCost =
3887           TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK,
3888                                       Op2VK, Op1VP, Op2VP, Operands, VL0);
3889       LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost));
3890       return ReuseShuffleCost + VecCost - ScalarCost;
3891     }
3892     case Instruction::GetElementPtr: {
3893       TargetTransformInfo::OperandValueKind Op1VK =
3894           TargetTransformInfo::OK_AnyValue;
3895       TargetTransformInfo::OperandValueKind Op2VK =
3896           TargetTransformInfo::OK_UniformConstantValue;
3897 
3898       InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost(
3899           Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK);
3900       if (NeedToShuffleReuses) {
3901         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3902       }
3903       InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
3904       InstructionCost VecCost = TTI->getArithmeticInstrCost(
3905           Instruction::Add, VecTy, CostKind, Op1VK, Op2VK);
3906       LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost));
3907       return ReuseShuffleCost + VecCost - ScalarCost;
3908     }
3909     case Instruction::Load: {
3910       // Cost of wide load - cost of scalar loads.
3911       Align alignment = cast<LoadInst>(VL0)->getAlign();
3912       InstructionCost ScalarEltCost = TTI->getMemoryOpCost(
3913           Instruction::Load, ScalarTy, alignment, 0, CostKind, VL0);
3914       if (NeedToShuffleReuses) {
3915         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3916       }
3917       InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost;
3918       InstructionCost VecLdCost;
3919       if (E->State == TreeEntry::Vectorize) {
3920         VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0,
3921                                          CostKind, VL0);
3922       } else {
3923         assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState");
3924         VecLdCost = TTI->getGatherScatterOpCost(
3925             Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(),
3926             /*VariableMask=*/false, alignment, CostKind, VL0);
3927       }
3928       if (!NeedToShuffleReuses && !E->ReorderIndices.empty()) {
3929         SmallVector<int> NewMask;
3930         inversePermutation(E->ReorderIndices, NewMask);
3931         VecLdCost += TTI->getShuffleCost(
3932             TargetTransformInfo::SK_PermuteSingleSrc, VecTy, NewMask);
3933       }
3934       LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecLdCost, ScalarLdCost));
3935       return ReuseShuffleCost + VecLdCost - ScalarLdCost;
3936     }
3937     case Instruction::Store: {
3938       // We know that we can merge the stores. Calculate the cost.
3939       bool IsReorder = !E->ReorderIndices.empty();
3940       auto *SI =
3941           cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0);
3942       Align Alignment = SI->getAlign();
3943       InstructionCost ScalarEltCost = TTI->getMemoryOpCost(
3944           Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0);
3945       InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost;
3946       InstructionCost VecStCost = TTI->getMemoryOpCost(
3947           Instruction::Store, VecTy, Alignment, 0, CostKind, VL0);
3948       if (IsReorder) {
3949         SmallVector<int> NewMask;
3950         inversePermutation(E->ReorderIndices, NewMask);
3951         VecStCost += TTI->getShuffleCost(
3952             TargetTransformInfo::SK_PermuteSingleSrc, VecTy, NewMask);
3953       }
3954       LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecStCost, ScalarStCost));
3955       return VecStCost - ScalarStCost;
3956     }
3957     case Instruction::Call: {
3958       CallInst *CI = cast<CallInst>(VL0);
3959       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3960 
3961       // Calculate the cost of the scalar and vector calls.
3962       IntrinsicCostAttributes CostAttrs(ID, *CI, 1);
3963       InstructionCost ScalarEltCost =
3964           TTI->getIntrinsicInstrCost(CostAttrs, CostKind);
3965       if (NeedToShuffleReuses) {
3966         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3967       }
3968       InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost;
3969 
3970       auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
3971       InstructionCost VecCallCost =
3972           std::min(VecCallCosts.first, VecCallCosts.second);
3973 
3974       LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost
3975                         << " (" << VecCallCost << "-" << ScalarCallCost << ")"
3976                         << " for " << *CI << "\n");
3977 
3978       return ReuseShuffleCost + VecCallCost - ScalarCallCost;
3979     }
3980     case Instruction::ShuffleVector: {
3981       assert(E->isAltShuffle() &&
3982              ((Instruction::isBinaryOp(E->getOpcode()) &&
3983                Instruction::isBinaryOp(E->getAltOpcode())) ||
3984               (Instruction::isCast(E->getOpcode()) &&
3985                Instruction::isCast(E->getAltOpcode()))) &&
3986              "Invalid Shuffle Vector Operand");
3987       InstructionCost ScalarCost = 0;
3988       if (NeedToShuffleReuses) {
3989         for (unsigned Idx : E->ReuseShuffleIndices) {
3990           Instruction *I = cast<Instruction>(VL[Idx]);
3991           ReuseShuffleCost -= TTI->getInstructionCost(I, CostKind);
3992         }
3993         for (Value *V : VL) {
3994           Instruction *I = cast<Instruction>(V);
3995           ReuseShuffleCost += TTI->getInstructionCost(I, CostKind);
3996         }
3997       }
3998       for (Value *V : VL) {
3999         Instruction *I = cast<Instruction>(V);
4000         assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode");
4001         ScalarCost += TTI->getInstructionCost(I, CostKind);
4002       }
4003       // VecCost is equal to sum of the cost of creating 2 vectors
4004       // and the cost of creating shuffle.
4005       InstructionCost VecCost = 0;
4006       if (Instruction::isBinaryOp(E->getOpcode())) {
4007         VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind);
4008         VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy,
4009                                                CostKind);
4010       } else {
4011         Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType();
4012         Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType();
4013         auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size());
4014         auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size());
4015         VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty,
4016                                         TTI::CastContextHint::None, CostKind);
4017         VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty,
4018                                          TTI::CastContextHint::None, CostKind);
4019       }
4020 
4021       SmallVector<int> Mask(E->Scalars.size());
4022       for (unsigned I = 0, End = E->Scalars.size(); I < End; ++I) {
4023         auto *OpInst = cast<Instruction>(E->Scalars[I]);
4024         assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode");
4025         Mask[I] = I + (OpInst->getOpcode() == E->getAltOpcode() ? End : 0);
4026       }
4027       VecCost +=
4028           TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, Mask, 0);
4029       LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost));
4030       return ReuseShuffleCost + VecCost - ScalarCost;
4031     }
4032     default:
4033       llvm_unreachable("Unknown instruction");
4034   }
4035 }
4036 
4037 bool BoUpSLP::isFullyVectorizableTinyTree() const {
4038   LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height "
4039                     << VectorizableTree.size() << " is fully vectorizable .\n");
4040 
4041   // We only handle trees of heights 1 and 2.
4042   if (VectorizableTree.size() == 1 &&
4043       VectorizableTree[0]->State == TreeEntry::Vectorize)
4044     return true;
4045 
4046   if (VectorizableTree.size() != 2)
4047     return false;
4048 
4049   // Handle splat and all-constants stores. Also try to vectorize tiny trees
4050   // with the second gather nodes if they have less scalar operands rather than
4051   // the initial tree element (may be profitable to shuffle the second gather).
4052   if (VectorizableTree[0]->State == TreeEntry::Vectorize &&
4053       (allConstant(VectorizableTree[1]->Scalars) ||
4054        isSplat(VectorizableTree[1]->Scalars) ||
4055        (VectorizableTree[1]->State == TreeEntry::NeedToGather &&
4056         VectorizableTree[1]->Scalars.size() <
4057             VectorizableTree[0]->Scalars.size())))
4058     return true;
4059 
4060   // Gathering cost would be too much for tiny trees.
4061   if (VectorizableTree[0]->State == TreeEntry::NeedToGather ||
4062       VectorizableTree[1]->State == TreeEntry::NeedToGather)
4063     return false;
4064 
4065   return true;
4066 }
4067 
4068 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts,
4069                                        TargetTransformInfo *TTI,
4070                                        bool MustMatchOrInst) {
4071   // Look past the root to find a source value. Arbitrarily follow the
4072   // path through operand 0 of any 'or'. Also, peek through optional
4073   // shift-left-by-multiple-of-8-bits.
4074   Value *ZextLoad = Root;
4075   const APInt *ShAmtC;
4076   bool FoundOr = false;
4077   while (!isa<ConstantExpr>(ZextLoad) &&
4078          (match(ZextLoad, m_Or(m_Value(), m_Value())) ||
4079           (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) &&
4080            ShAmtC->urem(8) == 0))) {
4081     auto *BinOp = cast<BinaryOperator>(ZextLoad);
4082     ZextLoad = BinOp->getOperand(0);
4083     if (BinOp->getOpcode() == Instruction::Or)
4084       FoundOr = true;
4085   }
4086   // Check if the input is an extended load of the required or/shift expression.
4087   Value *LoadPtr;
4088   if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root ||
4089       !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr)))))
4090     return false;
4091 
4092   // Require that the total load bit width is a legal integer type.
4093   // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target.
4094   // But <16 x i8> --> i128 is not, so the backend probably can't reduce it.
4095   Type *SrcTy = LoadPtr->getType()->getPointerElementType();
4096   unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts;
4097   if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth)))
4098     return false;
4099 
4100   // Everything matched - assume that we can fold the whole sequence using
4101   // load combining.
4102   LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at "
4103              << *(cast<Instruction>(Root)) << "\n");
4104 
4105   return true;
4106 }
4107 
4108 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const {
4109   if (RdxKind != RecurKind::Or)
4110     return false;
4111 
4112   unsigned NumElts = VectorizableTree[0]->Scalars.size();
4113   Value *FirstReduced = VectorizableTree[0]->Scalars[0];
4114   return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI,
4115                                     /* MatchOr */ false);
4116 }
4117 
4118 bool BoUpSLP::isLoadCombineCandidate() const {
4119   // Peek through a final sequence of stores and check if all operations are
4120   // likely to be load-combined.
4121   unsigned NumElts = VectorizableTree[0]->Scalars.size();
4122   for (Value *Scalar : VectorizableTree[0]->Scalars) {
4123     Value *X;
4124     if (!match(Scalar, m_Store(m_Value(X), m_Value())) ||
4125         !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true))
4126       return false;
4127   }
4128   return true;
4129 }
4130 
4131 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const {
4132   // We can vectorize the tree if its size is greater than or equal to the
4133   // minimum size specified by the MinTreeSize command line option.
4134   if (VectorizableTree.size() >= MinTreeSize)
4135     return false;
4136 
4137   // If we have a tiny tree (a tree whose size is less than MinTreeSize), we
4138   // can vectorize it if we can prove it fully vectorizable.
4139   if (isFullyVectorizableTinyTree())
4140     return false;
4141 
4142   assert(VectorizableTree.empty()
4143              ? ExternalUses.empty()
4144              : true && "We shouldn't have any external users");
4145 
4146   // Otherwise, we can't vectorize the tree. It is both tiny and not fully
4147   // vectorizable.
4148   return true;
4149 }
4150 
4151 InstructionCost BoUpSLP::getSpillCost() const {
4152   // Walk from the bottom of the tree to the top, tracking which values are
4153   // live. When we see a call instruction that is not part of our tree,
4154   // query TTI to see if there is a cost to keeping values live over it
4155   // (for example, if spills and fills are required).
4156   unsigned BundleWidth = VectorizableTree.front()->Scalars.size();
4157   InstructionCost Cost = 0;
4158 
4159   SmallPtrSet<Instruction*, 4> LiveValues;
4160   Instruction *PrevInst = nullptr;
4161 
4162   // The entries in VectorizableTree are not necessarily ordered by their
4163   // position in basic blocks. Collect them and order them by dominance so later
4164   // instructions are guaranteed to be visited first. For instructions in
4165   // different basic blocks, we only scan to the beginning of the block, so
4166   // their order does not matter, as long as all instructions in a basic block
4167   // are grouped together. Using dominance ensures a deterministic order.
4168   SmallVector<Instruction *, 16> OrderedScalars;
4169   for (const auto &TEPtr : VectorizableTree) {
4170     Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]);
4171     if (!Inst)
4172       continue;
4173     OrderedScalars.push_back(Inst);
4174   }
4175   llvm::stable_sort(OrderedScalars, [this](Instruction *A, Instruction *B) {
4176     return DT->dominates(B, A);
4177   });
4178 
4179   for (Instruction *Inst : OrderedScalars) {
4180     if (!PrevInst) {
4181       PrevInst = Inst;
4182       continue;
4183     }
4184 
4185     // Update LiveValues.
4186     LiveValues.erase(PrevInst);
4187     for (auto &J : PrevInst->operands()) {
4188       if (isa<Instruction>(&*J) && getTreeEntry(&*J))
4189         LiveValues.insert(cast<Instruction>(&*J));
4190     }
4191 
4192     LLVM_DEBUG({
4193       dbgs() << "SLP: #LV: " << LiveValues.size();
4194       for (auto *X : LiveValues)
4195         dbgs() << " " << X->getName();
4196       dbgs() << ", Looking at ";
4197       Inst->dump();
4198     });
4199 
4200     // Now find the sequence of instructions between PrevInst and Inst.
4201     unsigned NumCalls = 0;
4202     BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(),
4203                                  PrevInstIt =
4204                                      PrevInst->getIterator().getReverse();
4205     while (InstIt != PrevInstIt) {
4206       if (PrevInstIt == PrevInst->getParent()->rend()) {
4207         PrevInstIt = Inst->getParent()->rbegin();
4208         continue;
4209       }
4210 
4211       // Debug information does not impact spill cost.
4212       if ((isa<CallInst>(&*PrevInstIt) &&
4213            !isa<DbgInfoIntrinsic>(&*PrevInstIt)) &&
4214           &*PrevInstIt != PrevInst)
4215         NumCalls++;
4216 
4217       ++PrevInstIt;
4218     }
4219 
4220     if (NumCalls) {
4221       SmallVector<Type*, 4> V;
4222       for (auto *II : LiveValues)
4223         V.push_back(FixedVectorType::get(II->getType(), BundleWidth));
4224       Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V);
4225     }
4226 
4227     PrevInst = Inst;
4228   }
4229 
4230   return Cost;
4231 }
4232 
4233 InstructionCost BoUpSLP::getTreeCost() {
4234   InstructionCost Cost = 0;
4235   LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size "
4236                     << VectorizableTree.size() << ".\n");
4237 
4238   unsigned BundleWidth = VectorizableTree[0]->Scalars.size();
4239 
4240   for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) {
4241     TreeEntry &TE = *VectorizableTree[I].get();
4242 
4243     InstructionCost C = getEntryCost(&TE);
4244     Cost += C;
4245     LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
4246                       << " for bundle that starts with " << *TE.Scalars[0]
4247                       << ".\n"
4248                       << "SLP: Current total cost = " << Cost << "\n");
4249   }
4250 
4251   SmallPtrSet<Value *, 16> ExtractCostCalculated;
4252   InstructionCost ExtractCost = 0;
4253   for (ExternalUser &EU : ExternalUses) {
4254     // We only add extract cost once for the same scalar.
4255     if (!ExtractCostCalculated.insert(EU.Scalar).second)
4256       continue;
4257 
4258     // Uses by ephemeral values are free (because the ephemeral value will be
4259     // removed prior to code generation, and so the extraction will be
4260     // removed as well).
4261     if (EphValues.count(EU.User))
4262       continue;
4263 
4264     // If we plan to rewrite the tree in a smaller type, we will need to sign
4265     // extend the extracted value back to the original type. Here, we account
4266     // for the extract and the added cost of the sign extend if needed.
4267     auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth);
4268     auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
4269     if (MinBWs.count(ScalarRoot)) {
4270       auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
4271       auto Extend =
4272           MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt;
4273       VecTy = FixedVectorType::get(MinTy, BundleWidth);
4274       ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(),
4275                                                    VecTy, EU.Lane);
4276     } else {
4277       ExtractCost +=
4278           TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane);
4279     }
4280   }
4281 
4282   InstructionCost SpillCost = getSpillCost();
4283   Cost += SpillCost + ExtractCost;
4284 
4285 #ifndef NDEBUG
4286   SmallString<256> Str;
4287   {
4288     raw_svector_ostream OS(Str);
4289     OS << "SLP: Spill Cost = " << SpillCost << ".\n"
4290        << "SLP: Extract Cost = " << ExtractCost << ".\n"
4291        << "SLP: Total Cost = " << Cost << ".\n";
4292   }
4293   LLVM_DEBUG(dbgs() << Str);
4294   if (ViewSLPTree)
4295     ViewGraph(this, "SLP" + F->getName(), false, Str);
4296 #endif
4297 
4298   return Cost;
4299 }
4300 
4301 Optional<TargetTransformInfo::ShuffleKind>
4302 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask,
4303                                SmallVectorImpl<const TreeEntry *> &Entries) {
4304   Mask.assign(TE->Scalars.size(), UndefMaskElem);
4305   Entries.clear();
4306   DenseMap<Value *, const TreeEntry *> UsedValuesEntry;
4307   unsigned VF = 0;
4308   // FIXME: Shall be replaced by GetVF function once non-power-2 patch is
4309   // landed.
4310   auto &&GetVF = [](const TreeEntry *TE) {
4311     if (!TE->ReuseShuffleIndices.empty())
4312       return TE->ReuseShuffleIndices.size();
4313     return TE->Scalars.size();
4314   };
4315   for (int I = 0, E = TE->Scalars.size(); I < E; ++I) {
4316     Value *V = TE->Scalars[I];
4317     if (isa<UndefValue>(V))
4318       continue;
4319     const TreeEntry *VTE = UsedValuesEntry.lookup(V);
4320     if (!VTE) {
4321       if (Entries.size() == 2)
4322         return None;
4323       VTE = getTreeEntry(V);
4324       if (!VTE || find_if(
4325                       VectorizableTree,
4326                       [VTE, TE](const std::unique_ptr<TreeEntry> &EntryPtr) {
4327                         return EntryPtr.get() == VTE || EntryPtr.get() == TE;
4328                       })->get() == TE) {
4329         // Check if it is used in one of the gathered entries.
4330         const auto *It =
4331             find_if(VectorizableTree,
4332                     [V, TE](const std::unique_ptr<TreeEntry> &EntryPtr) {
4333                       return EntryPtr.get() == TE ||
4334                              (EntryPtr->State == TreeEntry::NeedToGather &&
4335                               is_contained(EntryPtr->Scalars, V));
4336                     });
4337         // The vector factor of shuffled entries must be the same.
4338         if (It->get() == TE)
4339           return None;
4340         VTE = It->get();
4341       }
4342       Entries.push_back(VTE);
4343       if (Entries.size() == 1) {
4344         VF = GetVF(VTE);
4345       } else if (VF != GetVF(VTE)) {
4346         assert(Entries.size() == 2 && "Expected shuffle of 1 or 2 entries.");
4347         assert(VF > 0 && "Expected non-zero vector factor.");
4348         return None;
4349       }
4350       for (Value *SV : VTE->Scalars)
4351         UsedValuesEntry.try_emplace(SV, VTE);
4352     }
4353     int FoundLane = findLaneForValue(VTE->Scalars, VTE->ReuseShuffleIndices, V);
4354     Mask[I] = (Entries.front() == VTE ? 0 : VF) + FoundLane;
4355     // Extra check required by isSingleSourceMaskImpl function (called by
4356     // ShuffleVectorInst::isSingleSourceMask).
4357     if (Mask[I] >= 2 * E)
4358       return None;
4359   }
4360   switch (Entries.size()) {
4361   case 1:
4362     return TargetTransformInfo::SK_PermuteSingleSrc;
4363   case 2:
4364     return TargetTransformInfo::SK_PermuteTwoSrc;
4365   default:
4366     break;
4367   }
4368   return None;
4369 }
4370 
4371 InstructionCost
4372 BoUpSLP::getGatherCost(FixedVectorType *Ty,
4373                        const DenseSet<unsigned> &ShuffledIndices) const {
4374   unsigned NumElts = Ty->getNumElements();
4375   APInt DemandedElts = APInt::getNullValue(NumElts);
4376   for (unsigned I = 0; I < NumElts; ++I)
4377     if (!ShuffledIndices.count(I))
4378       DemandedElts.setBit(I);
4379   InstructionCost Cost =
4380       TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true,
4381                                     /*Extract*/ false);
4382   if (!ShuffledIndices.empty())
4383     Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty);
4384   return Cost;
4385 }
4386 
4387 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const {
4388   // Find the type of the operands in VL.
4389   Type *ScalarTy = VL[0]->getType();
4390   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
4391     ScalarTy = SI->getValueOperand()->getType();
4392   auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
4393   // Find the cost of inserting/extracting values from the vector.
4394   // Check if the same elements are inserted several times and count them as
4395   // shuffle candidates.
4396   DenseSet<unsigned> ShuffledElements;
4397   DenseSet<Value *> UniqueElements;
4398   // Iterate in reverse order to consider insert elements with the high cost.
4399   for (unsigned I = VL.size(); I > 0; --I) {
4400     unsigned Idx = I - 1;
4401     if (!UniqueElements.insert(VL[Idx]).second)
4402       ShuffledElements.insert(Idx);
4403   }
4404   return getGatherCost(VecTy, ShuffledElements);
4405 }
4406 
4407 // Perform operand reordering on the instructions in VL and return the reordered
4408 // operands in Left and Right.
4409 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
4410                                              SmallVectorImpl<Value *> &Left,
4411                                              SmallVectorImpl<Value *> &Right,
4412                                              const DataLayout &DL,
4413                                              ScalarEvolution &SE,
4414                                              const BoUpSLP &R) {
4415   if (VL.empty())
4416     return;
4417   VLOperands Ops(VL, DL, SE, R);
4418   // Reorder the operands in place.
4419   Ops.reorder();
4420   Left = Ops.getVL(0);
4421   Right = Ops.getVL(1);
4422 }
4423 
4424 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) {
4425   // Get the basic block this bundle is in. All instructions in the bundle
4426   // should be in this block.
4427   auto *Front = E->getMainOp();
4428   auto *BB = Front->getParent();
4429   assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool {
4430     auto *I = cast<Instruction>(V);
4431     return !E->isOpcodeOrAlt(I) || I->getParent() == BB;
4432   }));
4433 
4434   // The last instruction in the bundle in program order.
4435   Instruction *LastInst = nullptr;
4436 
4437   // Find the last instruction. The common case should be that BB has been
4438   // scheduled, and the last instruction is VL.back(). So we start with
4439   // VL.back() and iterate over schedule data until we reach the end of the
4440   // bundle. The end of the bundle is marked by null ScheduleData.
4441   if (BlocksSchedules.count(BB)) {
4442     auto *Bundle =
4443         BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back()));
4444     if (Bundle && Bundle->isPartOfBundle())
4445       for (; Bundle; Bundle = Bundle->NextInBundle)
4446         if (Bundle->OpValue == Bundle->Inst)
4447           LastInst = Bundle->Inst;
4448   }
4449 
4450   // LastInst can still be null at this point if there's either not an entry
4451   // for BB in BlocksSchedules or there's no ScheduleData available for
4452   // VL.back(). This can be the case if buildTree_rec aborts for various
4453   // reasons (e.g., the maximum recursion depth is reached, the maximum region
4454   // size is reached, etc.). ScheduleData is initialized in the scheduling
4455   // "dry-run".
4456   //
4457   // If this happens, we can still find the last instruction by brute force. We
4458   // iterate forwards from Front (inclusive) until we either see all
4459   // instructions in the bundle or reach the end of the block. If Front is the
4460   // last instruction in program order, LastInst will be set to Front, and we
4461   // will visit all the remaining instructions in the block.
4462   //
4463   // One of the reasons we exit early from buildTree_rec is to place an upper
4464   // bound on compile-time. Thus, taking an additional compile-time hit here is
4465   // not ideal. However, this should be exceedingly rare since it requires that
4466   // we both exit early from buildTree_rec and that the bundle be out-of-order
4467   // (causing us to iterate all the way to the end of the block).
4468   if (!LastInst) {
4469     SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end());
4470     for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) {
4471       if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I))
4472         LastInst = &I;
4473       if (Bundle.empty())
4474         break;
4475     }
4476   }
4477   assert(LastInst && "Failed to find last instruction in bundle");
4478 
4479   // Set the insertion point after the last instruction in the bundle. Set the
4480   // debug location to Front.
4481   Builder.SetInsertPoint(BB, ++LastInst->getIterator());
4482   Builder.SetCurrentDebugLocation(Front->getDebugLoc());
4483 }
4484 
4485 Value *BoUpSLP::gather(ArrayRef<Value *> VL) {
4486   Value *Val0 =
4487       isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0];
4488   FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size());
4489   Value *Vec = PoisonValue::get(VecTy);
4490   unsigned InsIndex = 0;
4491   for (Value *Val : VL) {
4492     Vec = Builder.CreateInsertElement(Vec, Val, Builder.getInt32(InsIndex++));
4493     auto *InsElt = dyn_cast<InsertElementInst>(Vec);
4494     if (!InsElt)
4495       continue;
4496     GatherSeq.insert(InsElt);
4497     CSEBlocks.insert(InsElt->getParent());
4498     // Add to our 'need-to-extract' list.
4499     if (TreeEntry *Entry = getTreeEntry(Val)) {
4500       // Find which lane we need to extract.
4501       int FoundLane =
4502           findLaneForValue(Entry->Scalars, Entry->ReuseShuffleIndices, Val);
4503       ExternalUses.push_back(ExternalUser(Val, InsElt, FoundLane));
4504     }
4505   }
4506 
4507   return Vec;
4508 }
4509 
4510 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
4511   InstructionsState S = getSameOpcode(VL);
4512   if (S.getOpcode()) {
4513     if (TreeEntry *E = getTreeEntry(S.OpValue)) {
4514       if (E->isSame(VL)) {
4515         Value *V = vectorizeTree(E);
4516         if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) {
4517           // Reshuffle to get only unique values.
4518           // If some of the scalars are duplicated in the vectorization tree
4519           // entry, we do not vectorize them but instead generate a mask for the
4520           // reuses. But if there are several users of the same entry, they may
4521           // have different vectorization factors. This is especially important
4522           // for PHI nodes. In this case, we need to adapt the resulting
4523           // instruction for the user vectorization factor and have to reshuffle
4524           // it again to take only unique elements of the vector. Without this
4525           // code the function incorrectly returns reduced vector instruction
4526           // with the same elements, not with the unique ones.
4527           // block:
4528           // %phi = phi <2 x > { .., %entry} {%shuffle, %block}
4529           // %2 = shuffle <2 x > %phi, %poison, <4 x > <0, 0, 1, 1>
4530           // ... (use %2)
4531           // %shuffle = shuffle <2 x> %2, poison, <2 x> {0, 2}
4532           // br %block
4533           SmallVector<int, 4> UniqueIdxs;
4534           SmallSet<int, 4> UsedIdxs;
4535           int Pos = 0;
4536           for (int Idx : E->ReuseShuffleIndices) {
4537             if (UsedIdxs.insert(Idx).second)
4538               UniqueIdxs.emplace_back(Pos);
4539             ++Pos;
4540           }
4541           V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle");
4542         }
4543         return V;
4544       }
4545     }
4546   }
4547 
4548   // Check that every instruction appears once in this bundle.
4549   SmallVector<int, 4> ReuseShuffleIndicies;
4550   SmallVector<Value *, 4> UniqueValues;
4551   if (VL.size() > 2) {
4552     DenseMap<Value *, unsigned> UniquePositions;
4553     for (Value *V : VL) {
4554       auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
4555       ReuseShuffleIndicies.emplace_back(Res.first->second);
4556       if (Res.second || isa<Constant>(V))
4557         UniqueValues.emplace_back(V);
4558     }
4559     // Do not shuffle single element or if number of unique values is not power
4560     // of 2.
4561     if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 ||
4562         !llvm::isPowerOf2_32(UniqueValues.size()))
4563       ReuseShuffleIndicies.clear();
4564     else
4565       VL = UniqueValues;
4566   }
4567 
4568   Value *Vec = gather(VL);
4569   if (!ReuseShuffleIndicies.empty()) {
4570     Vec = Builder.CreateShuffleVector(Vec, ReuseShuffleIndicies, "shuffle");
4571     if (auto *I = dyn_cast<Instruction>(Vec)) {
4572       GatherSeq.insert(I);
4573       CSEBlocks.insert(I->getParent());
4574     }
4575   }
4576   return Vec;
4577 }
4578 
4579 namespace {
4580 /// Merges shuffle masks and emits final shuffle instruction, if required.
4581 class ShuffleInstructionBuilder {
4582   IRBuilderBase &Builder;
4583   bool IsFinalized = false;
4584   SmallVector<int, 4> Mask;
4585 
4586 public:
4587   ShuffleInstructionBuilder(IRBuilderBase &Builder) : Builder(Builder) {}
4588 
4589   /// Adds a mask, inverting it before applying.
4590   void addInversedMask(ArrayRef<unsigned> SubMask) {
4591     if (SubMask.empty())
4592       return;
4593     SmallVector<int, 4> NewMask;
4594     inversePermutation(SubMask, NewMask);
4595     addMask(NewMask);
4596   }
4597 
4598   /// Functions adds masks, merging them into  single one.
4599   void addMask(ArrayRef<unsigned> SubMask) {
4600     SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end());
4601     addMask(NewMask);
4602   }
4603 
4604   void addMask(ArrayRef<int> SubMask) {
4605     if (SubMask.empty())
4606       return;
4607     if (Mask.empty()) {
4608       Mask.append(SubMask.begin(), SubMask.end());
4609       return;
4610     }
4611     SmallVector<int, 4> NewMask(SubMask.size(), SubMask.size());
4612     int TermValue = std::min(Mask.size(), SubMask.size());
4613     for (int I = 0, E = SubMask.size(); I < E; ++I) {
4614       if (SubMask[I] >= TermValue || Mask[SubMask[I]] >= TermValue) {
4615         NewMask[I] = E;
4616         continue;
4617       }
4618       NewMask[I] = Mask[SubMask[I]];
4619     }
4620     Mask.swap(NewMask);
4621   }
4622 
4623   Value *finalize(Value *V) {
4624     IsFinalized = true;
4625     if (Mask.empty())
4626       return V;
4627     return Builder.CreateShuffleVector(V, Mask, "shuffle");
4628   }
4629 
4630   ~ShuffleInstructionBuilder() {
4631     assert((IsFinalized || Mask.empty()) &&
4632            "Shuffle construction must be finalized.");
4633   }
4634 };
4635 } // namespace
4636 
4637 Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
4638   IRBuilder<>::InsertPointGuard Guard(Builder);
4639 
4640   if (E->VectorizedValue) {
4641     LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
4642     return E->VectorizedValue;
4643   }
4644 
4645   ShuffleInstructionBuilder ShuffleBuilder(Builder);
4646   bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
4647   if (E->State == TreeEntry::NeedToGather) {
4648     setInsertPointAfterBundle(E);
4649     Value *Vec;
4650     SmallVector<int> Mask;
4651     SmallVector<const TreeEntry *> Entries;
4652     Optional<TargetTransformInfo::ShuffleKind> Shuffle =
4653         isGatherShuffledEntry(E, Mask, Entries);
4654     if (Shuffle.hasValue()) {
4655       assert((Entries.size() == 1 || Entries.size() == 2) &&
4656              "Expected shuffle of 1 or 2 entries.");
4657       Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue,
4658                                         Entries.back()->VectorizedValue, Mask);
4659     } else {
4660       Vec = gather(E->Scalars);
4661     }
4662     if (NeedToShuffleReuses) {
4663       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
4664       Vec = ShuffleBuilder.finalize(Vec);
4665       if (auto *I = dyn_cast<Instruction>(Vec)) {
4666         GatherSeq.insert(I);
4667         CSEBlocks.insert(I->getParent());
4668       }
4669     }
4670     E->VectorizedValue = Vec;
4671     return Vec;
4672   }
4673 
4674   assert((E->State == TreeEntry::Vectorize ||
4675           E->State == TreeEntry::ScatterVectorize) &&
4676          "Unhandled state");
4677   unsigned ShuffleOrOp =
4678       E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
4679   Instruction *VL0 = E->getMainOp();
4680   Type *ScalarTy = VL0->getType();
4681   if (auto *Store = dyn_cast<StoreInst>(VL0))
4682     ScalarTy = Store->getValueOperand()->getType();
4683   auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size());
4684   switch (ShuffleOrOp) {
4685     case Instruction::PHI: {
4686       auto *PH = cast<PHINode>(VL0);
4687       Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
4688       Builder.SetCurrentDebugLocation(PH->getDebugLoc());
4689       PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
4690       Value *V = NewPhi;
4691       if (NeedToShuffleReuses)
4692         V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle");
4693 
4694       E->VectorizedValue = V;
4695 
4696       // PHINodes may have multiple entries from the same block. We want to
4697       // visit every block once.
4698       SmallPtrSet<BasicBlock*, 4> VisitedBBs;
4699 
4700       for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
4701         ValueList Operands;
4702         BasicBlock *IBB = PH->getIncomingBlock(i);
4703 
4704         if (!VisitedBBs.insert(IBB).second) {
4705           NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
4706           continue;
4707         }
4708 
4709         Builder.SetInsertPoint(IBB->getTerminator());
4710         Builder.SetCurrentDebugLocation(PH->getDebugLoc());
4711         Value *Vec = vectorizeTree(E->getOperand(i));
4712         NewPhi->addIncoming(Vec, IBB);
4713       }
4714 
4715       assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
4716              "Invalid number of incoming values");
4717       return V;
4718     }
4719 
4720     case Instruction::ExtractElement: {
4721       Value *V = E->getSingleOperand(0);
4722       Builder.SetInsertPoint(VL0);
4723       ShuffleBuilder.addInversedMask(E->ReorderIndices);
4724       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
4725       V = ShuffleBuilder.finalize(V);
4726       E->VectorizedValue = V;
4727       return V;
4728     }
4729     case Instruction::ExtractValue: {
4730       auto *LI = cast<LoadInst>(E->getSingleOperand(0));
4731       Builder.SetInsertPoint(LI);
4732       auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace());
4733       Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy);
4734       LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign());
4735       Value *NewV = propagateMetadata(V, E->Scalars);
4736       ShuffleBuilder.addInversedMask(E->ReorderIndices);
4737       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
4738       NewV = ShuffleBuilder.finalize(NewV);
4739       E->VectorizedValue = NewV;
4740       return NewV;
4741     }
4742     case Instruction::ZExt:
4743     case Instruction::SExt:
4744     case Instruction::FPToUI:
4745     case Instruction::FPToSI:
4746     case Instruction::FPExt:
4747     case Instruction::PtrToInt:
4748     case Instruction::IntToPtr:
4749     case Instruction::SIToFP:
4750     case Instruction::UIToFP:
4751     case Instruction::Trunc:
4752     case Instruction::FPTrunc:
4753     case Instruction::BitCast: {
4754       setInsertPointAfterBundle(E);
4755 
4756       Value *InVec = vectorizeTree(E->getOperand(0));
4757 
4758       if (E->VectorizedValue) {
4759         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
4760         return E->VectorizedValue;
4761       }
4762 
4763       auto *CI = cast<CastInst>(VL0);
4764       Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
4765       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
4766       V = ShuffleBuilder.finalize(V);
4767 
4768       E->VectorizedValue = V;
4769       ++NumVectorInstructions;
4770       return V;
4771     }
4772     case Instruction::FCmp:
4773     case Instruction::ICmp: {
4774       setInsertPointAfterBundle(E);
4775 
4776       Value *L = vectorizeTree(E->getOperand(0));
4777       Value *R = vectorizeTree(E->getOperand(1));
4778 
4779       if (E->VectorizedValue) {
4780         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
4781         return E->VectorizedValue;
4782       }
4783 
4784       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
4785       Value *V = Builder.CreateCmp(P0, L, R);
4786       propagateIRFlags(V, E->Scalars, VL0);
4787       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
4788       V = ShuffleBuilder.finalize(V);
4789 
4790       E->VectorizedValue = V;
4791       ++NumVectorInstructions;
4792       return V;
4793     }
4794     case Instruction::Select: {
4795       setInsertPointAfterBundle(E);
4796 
4797       Value *Cond = vectorizeTree(E->getOperand(0));
4798       Value *True = vectorizeTree(E->getOperand(1));
4799       Value *False = vectorizeTree(E->getOperand(2));
4800 
4801       if (E->VectorizedValue) {
4802         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
4803         return E->VectorizedValue;
4804       }
4805 
4806       Value *V = Builder.CreateSelect(Cond, True, False);
4807       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
4808       V = ShuffleBuilder.finalize(V);
4809 
4810       E->VectorizedValue = V;
4811       ++NumVectorInstructions;
4812       return V;
4813     }
4814     case Instruction::FNeg: {
4815       setInsertPointAfterBundle(E);
4816 
4817       Value *Op = vectorizeTree(E->getOperand(0));
4818 
4819       if (E->VectorizedValue) {
4820         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
4821         return E->VectorizedValue;
4822       }
4823 
4824       Value *V = Builder.CreateUnOp(
4825           static_cast<Instruction::UnaryOps>(E->getOpcode()), Op);
4826       propagateIRFlags(V, E->Scalars, VL0);
4827       if (auto *I = dyn_cast<Instruction>(V))
4828         V = propagateMetadata(I, E->Scalars);
4829 
4830       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
4831       V = ShuffleBuilder.finalize(V);
4832 
4833       E->VectorizedValue = V;
4834       ++NumVectorInstructions;
4835 
4836       return V;
4837     }
4838     case Instruction::Add:
4839     case Instruction::FAdd:
4840     case Instruction::Sub:
4841     case Instruction::FSub:
4842     case Instruction::Mul:
4843     case Instruction::FMul:
4844     case Instruction::UDiv:
4845     case Instruction::SDiv:
4846     case Instruction::FDiv:
4847     case Instruction::URem:
4848     case Instruction::SRem:
4849     case Instruction::FRem:
4850     case Instruction::Shl:
4851     case Instruction::LShr:
4852     case Instruction::AShr:
4853     case Instruction::And:
4854     case Instruction::Or:
4855     case Instruction::Xor: {
4856       setInsertPointAfterBundle(E);
4857 
4858       Value *LHS = vectorizeTree(E->getOperand(0));
4859       Value *RHS = vectorizeTree(E->getOperand(1));
4860 
4861       if (E->VectorizedValue) {
4862         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
4863         return E->VectorizedValue;
4864       }
4865 
4866       Value *V = Builder.CreateBinOp(
4867           static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS,
4868           RHS);
4869       propagateIRFlags(V, E->Scalars, VL0);
4870       if (auto *I = dyn_cast<Instruction>(V))
4871         V = propagateMetadata(I, E->Scalars);
4872 
4873       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
4874       V = ShuffleBuilder.finalize(V);
4875 
4876       E->VectorizedValue = V;
4877       ++NumVectorInstructions;
4878 
4879       return V;
4880     }
4881     case Instruction::Load: {
4882       // Loads are inserted at the head of the tree because we don't want to
4883       // sink them all the way down past store instructions.
4884       bool IsReorder = E->updateStateIfReorder();
4885       if (IsReorder)
4886         VL0 = E->getMainOp();
4887       setInsertPointAfterBundle(E);
4888 
4889       LoadInst *LI = cast<LoadInst>(VL0);
4890       Instruction *NewLI;
4891       unsigned AS = LI->getPointerAddressSpace();
4892       Value *PO = LI->getPointerOperand();
4893       if (E->State == TreeEntry::Vectorize) {
4894 
4895         Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS));
4896 
4897         // The pointer operand uses an in-tree scalar so we add the new BitCast
4898         // to ExternalUses list to make sure that an extract will be generated
4899         // in the future.
4900         if (getTreeEntry(PO))
4901           ExternalUses.emplace_back(PO, cast<User>(VecPtr), 0);
4902 
4903         NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign());
4904       } else {
4905         assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state");
4906         Value *VecPtr = vectorizeTree(E->getOperand(0));
4907         // Use the minimum alignment of the gathered loads.
4908         Align CommonAlignment = LI->getAlign();
4909         for (Value *V : E->Scalars)
4910           CommonAlignment =
4911               commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign());
4912         NewLI = Builder.CreateMaskedGather(VecPtr, CommonAlignment);
4913       }
4914       Value *V = propagateMetadata(NewLI, E->Scalars);
4915 
4916       ShuffleBuilder.addInversedMask(E->ReorderIndices);
4917       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
4918       V = ShuffleBuilder.finalize(V);
4919       E->VectorizedValue = V;
4920       ++NumVectorInstructions;
4921       return V;
4922     }
4923     case Instruction::Store: {
4924       bool IsReorder = !E->ReorderIndices.empty();
4925       auto *SI = cast<StoreInst>(
4926           IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0);
4927       unsigned AS = SI->getPointerAddressSpace();
4928 
4929       setInsertPointAfterBundle(E);
4930 
4931       Value *VecValue = vectorizeTree(E->getOperand(0));
4932       ShuffleBuilder.addMask(E->ReorderIndices);
4933       VecValue = ShuffleBuilder.finalize(VecValue);
4934 
4935       Value *ScalarPtr = SI->getPointerOperand();
4936       Value *VecPtr = Builder.CreateBitCast(
4937           ScalarPtr, VecValue->getType()->getPointerTo(AS));
4938       StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr,
4939                                                  SI->getAlign());
4940 
4941       // The pointer operand uses an in-tree scalar, so add the new BitCast to
4942       // ExternalUses to make sure that an extract will be generated in the
4943       // future.
4944       if (getTreeEntry(ScalarPtr))
4945         ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0));
4946 
4947       Value *V = propagateMetadata(ST, E->Scalars);
4948 
4949       E->VectorizedValue = V;
4950       ++NumVectorInstructions;
4951       return V;
4952     }
4953     case Instruction::GetElementPtr: {
4954       setInsertPointAfterBundle(E);
4955 
4956       Value *Op0 = vectorizeTree(E->getOperand(0));
4957 
4958       std::vector<Value *> OpVecs;
4959       for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e;
4960            ++j) {
4961         ValueList &VL = E->getOperand(j);
4962         // Need to cast all elements to the same type before vectorization to
4963         // avoid crash.
4964         Type *VL0Ty = VL0->getOperand(j)->getType();
4965         Type *Ty = llvm::all_of(
4966                        VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); })
4967                        ? VL0Ty
4968                        : DL->getIndexType(cast<GetElementPtrInst>(VL0)
4969                                               ->getPointerOperandType()
4970                                               ->getScalarType());
4971         for (Value *&V : VL) {
4972           auto *CI = cast<ConstantInt>(V);
4973           V = ConstantExpr::getIntegerCast(CI, Ty,
4974                                            CI->getValue().isSignBitSet());
4975         }
4976         Value *OpVec = vectorizeTree(VL);
4977         OpVecs.push_back(OpVec);
4978       }
4979 
4980       Value *V = Builder.CreateGEP(
4981           cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs);
4982       if (Instruction *I = dyn_cast<Instruction>(V))
4983         V = propagateMetadata(I, E->Scalars);
4984 
4985       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
4986       V = ShuffleBuilder.finalize(V);
4987 
4988       E->VectorizedValue = V;
4989       ++NumVectorInstructions;
4990 
4991       return V;
4992     }
4993     case Instruction::Call: {
4994       CallInst *CI = cast<CallInst>(VL0);
4995       setInsertPointAfterBundle(E);
4996 
4997       Intrinsic::ID IID  = Intrinsic::not_intrinsic;
4998       if (Function *FI = CI->getCalledFunction())
4999         IID = FI->getIntrinsicID();
5000 
5001       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
5002 
5003       auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
5004       bool UseIntrinsic = ID != Intrinsic::not_intrinsic &&
5005                           VecCallCosts.first <= VecCallCosts.second;
5006 
5007       Value *ScalarArg = nullptr;
5008       std::vector<Value *> OpVecs;
5009       for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) {
5010         ValueList OpVL;
5011         // Some intrinsics have scalar arguments. This argument should not be
5012         // vectorized.
5013         if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) {
5014           CallInst *CEI = cast<CallInst>(VL0);
5015           ScalarArg = CEI->getArgOperand(j);
5016           OpVecs.push_back(CEI->getArgOperand(j));
5017           continue;
5018         }
5019 
5020         Value *OpVec = vectorizeTree(E->getOperand(j));
5021         LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
5022         OpVecs.push_back(OpVec);
5023       }
5024 
5025       Function *CF;
5026       if (!UseIntrinsic) {
5027         VFShape Shape =
5028             VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>(
5029                                   VecTy->getNumElements())),
5030                          false /*HasGlobalPred*/);
5031         CF = VFDatabase(*CI).getVectorizedFunction(Shape);
5032       } else {
5033         Type *Tys[] = {FixedVectorType::get(CI->getType(), E->Scalars.size())};
5034         CF = Intrinsic::getDeclaration(F->getParent(), ID, Tys);
5035       }
5036 
5037       SmallVector<OperandBundleDef, 1> OpBundles;
5038       CI->getOperandBundlesAsDefs(OpBundles);
5039       Value *V = Builder.CreateCall(CF, OpVecs, OpBundles);
5040 
5041       // The scalar argument uses an in-tree scalar so we add the new vectorized
5042       // call to ExternalUses list to make sure that an extract will be
5043       // generated in the future.
5044       if (ScalarArg && getTreeEntry(ScalarArg))
5045         ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0));
5046 
5047       propagateIRFlags(V, E->Scalars, VL0);
5048       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5049       V = ShuffleBuilder.finalize(V);
5050 
5051       E->VectorizedValue = V;
5052       ++NumVectorInstructions;
5053       return V;
5054     }
5055     case Instruction::ShuffleVector: {
5056       assert(E->isAltShuffle() &&
5057              ((Instruction::isBinaryOp(E->getOpcode()) &&
5058                Instruction::isBinaryOp(E->getAltOpcode())) ||
5059               (Instruction::isCast(E->getOpcode()) &&
5060                Instruction::isCast(E->getAltOpcode()))) &&
5061              "Invalid Shuffle Vector Operand");
5062 
5063       Value *LHS = nullptr, *RHS = nullptr;
5064       if (Instruction::isBinaryOp(E->getOpcode())) {
5065         setInsertPointAfterBundle(E);
5066         LHS = vectorizeTree(E->getOperand(0));
5067         RHS = vectorizeTree(E->getOperand(1));
5068       } else {
5069         setInsertPointAfterBundle(E);
5070         LHS = vectorizeTree(E->getOperand(0));
5071       }
5072 
5073       if (E->VectorizedValue) {
5074         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
5075         return E->VectorizedValue;
5076       }
5077 
5078       Value *V0, *V1;
5079       if (Instruction::isBinaryOp(E->getOpcode())) {
5080         V0 = Builder.CreateBinOp(
5081             static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS);
5082         V1 = Builder.CreateBinOp(
5083             static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS);
5084       } else {
5085         V0 = Builder.CreateCast(
5086             static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy);
5087         V1 = Builder.CreateCast(
5088             static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy);
5089       }
5090 
5091       // Create shuffle to take alternate operations from the vector.
5092       // Also, gather up main and alt scalar ops to propagate IR flags to
5093       // each vector operation.
5094       ValueList OpScalars, AltScalars;
5095       unsigned e = E->Scalars.size();
5096       SmallVector<int, 8> Mask(e);
5097       for (unsigned i = 0; i < e; ++i) {
5098         auto *OpInst = cast<Instruction>(E->Scalars[i]);
5099         assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode");
5100         if (OpInst->getOpcode() == E->getAltOpcode()) {
5101           Mask[i] = e + i;
5102           AltScalars.push_back(E->Scalars[i]);
5103         } else {
5104           Mask[i] = i;
5105           OpScalars.push_back(E->Scalars[i]);
5106         }
5107       }
5108 
5109       propagateIRFlags(V0, OpScalars);
5110       propagateIRFlags(V1, AltScalars);
5111 
5112       Value *V = Builder.CreateShuffleVector(V0, V1, Mask);
5113       if (Instruction *I = dyn_cast<Instruction>(V))
5114         V = propagateMetadata(I, E->Scalars);
5115       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5116       V = ShuffleBuilder.finalize(V);
5117 
5118       E->VectorizedValue = V;
5119       ++NumVectorInstructions;
5120 
5121       return V;
5122     }
5123     default:
5124     llvm_unreachable("unknown inst");
5125   }
5126   return nullptr;
5127 }
5128 
5129 Value *BoUpSLP::vectorizeTree() {
5130   ExtraValueToDebugLocsMap ExternallyUsedValues;
5131   return vectorizeTree(ExternallyUsedValues);
5132 }
5133 
5134 Value *
5135 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) {
5136   // All blocks must be scheduled before any instructions are inserted.
5137   for (auto &BSIter : BlocksSchedules) {
5138     scheduleBlock(BSIter.second.get());
5139   }
5140 
5141   Builder.SetInsertPoint(&F->getEntryBlock().front());
5142   auto *VectorRoot = vectorizeTree(VectorizableTree[0].get());
5143 
5144   // If the vectorized tree can be rewritten in a smaller type, we truncate the
5145   // vectorized root. InstCombine will then rewrite the entire expression. We
5146   // sign extend the extracted values below.
5147   auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
5148   if (MinBWs.count(ScalarRoot)) {
5149     if (auto *I = dyn_cast<Instruction>(VectorRoot)) {
5150       // If current instr is a phi and not the last phi, insert it after the
5151       // last phi node.
5152       if (isa<PHINode>(I))
5153         Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt());
5154       else
5155         Builder.SetInsertPoint(&*++BasicBlock::iterator(I));
5156     }
5157     auto BundleWidth = VectorizableTree[0]->Scalars.size();
5158     auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
5159     auto *VecTy = FixedVectorType::get(MinTy, BundleWidth);
5160     auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy);
5161     VectorizableTree[0]->VectorizedValue = Trunc;
5162   }
5163 
5164   LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size()
5165                     << " values .\n");
5166 
5167   // If necessary, sign-extend or zero-extend ScalarRoot to the larger type
5168   // specified by ScalarType.
5169   auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) {
5170     if (!MinBWs.count(ScalarRoot))
5171       return Ex;
5172     if (MinBWs[ScalarRoot].second)
5173       return Builder.CreateSExt(Ex, ScalarType);
5174     return Builder.CreateZExt(Ex, ScalarType);
5175   };
5176 
5177   // Extract all of the elements with the external uses.
5178   for (const auto &ExternalUse : ExternalUses) {
5179     Value *Scalar = ExternalUse.Scalar;
5180     llvm::User *User = ExternalUse.User;
5181 
5182     // Skip users that we already RAUW. This happens when one instruction
5183     // has multiple uses of the same value.
5184     if (User && !is_contained(Scalar->users(), User))
5185       continue;
5186     TreeEntry *E = getTreeEntry(Scalar);
5187     assert(E && "Invalid scalar");
5188     assert(E->State != TreeEntry::NeedToGather &&
5189            "Extracting from a gather list");
5190 
5191     Value *Vec = E->VectorizedValue;
5192     assert(Vec && "Can't find vectorizable value");
5193 
5194     Value *Lane = Builder.getInt32(ExternalUse.Lane);
5195     // If User == nullptr, the Scalar is used as extra arg. Generate
5196     // ExtractElement instruction and update the record for this scalar in
5197     // ExternallyUsedValues.
5198     if (!User) {
5199       assert(ExternallyUsedValues.count(Scalar) &&
5200              "Scalar with nullptr as an external user must be registered in "
5201              "ExternallyUsedValues map");
5202       if (auto *VecI = dyn_cast<Instruction>(Vec)) {
5203         Builder.SetInsertPoint(VecI->getParent(),
5204                                std::next(VecI->getIterator()));
5205       } else {
5206         Builder.SetInsertPoint(&F->getEntryBlock().front());
5207       }
5208       Value *Ex = Builder.CreateExtractElement(Vec, Lane);
5209       Ex = extend(ScalarRoot, Ex, Scalar->getType());
5210       CSEBlocks.insert(cast<Instruction>(Scalar)->getParent());
5211       auto &Locs = ExternallyUsedValues[Scalar];
5212       ExternallyUsedValues.insert({Ex, Locs});
5213       ExternallyUsedValues.erase(Scalar);
5214       // Required to update internally referenced instructions.
5215       Scalar->replaceAllUsesWith(Ex);
5216       continue;
5217     }
5218 
5219     // Generate extracts for out-of-tree users.
5220     // Find the insertion point for the extractelement lane.
5221     if (auto *VecI = dyn_cast<Instruction>(Vec)) {
5222       if (PHINode *PH = dyn_cast<PHINode>(User)) {
5223         for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
5224           if (PH->getIncomingValue(i) == Scalar) {
5225             Instruction *IncomingTerminator =
5226                 PH->getIncomingBlock(i)->getTerminator();
5227             if (isa<CatchSwitchInst>(IncomingTerminator)) {
5228               Builder.SetInsertPoint(VecI->getParent(),
5229                                      std::next(VecI->getIterator()));
5230             } else {
5231               Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
5232             }
5233             Value *Ex = Builder.CreateExtractElement(Vec, Lane);
5234             Ex = extend(ScalarRoot, Ex, Scalar->getType());
5235             CSEBlocks.insert(PH->getIncomingBlock(i));
5236             PH->setOperand(i, Ex);
5237           }
5238         }
5239       } else {
5240         Builder.SetInsertPoint(cast<Instruction>(User));
5241         Value *Ex = Builder.CreateExtractElement(Vec, Lane);
5242         Ex = extend(ScalarRoot, Ex, Scalar->getType());
5243         CSEBlocks.insert(cast<Instruction>(User)->getParent());
5244         User->replaceUsesOfWith(Scalar, Ex);
5245       }
5246     } else {
5247       Builder.SetInsertPoint(&F->getEntryBlock().front());
5248       Value *Ex = Builder.CreateExtractElement(Vec, Lane);
5249       Ex = extend(ScalarRoot, Ex, Scalar->getType());
5250       CSEBlocks.insert(&F->getEntryBlock());
5251       User->replaceUsesOfWith(Scalar, Ex);
5252     }
5253 
5254     LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
5255   }
5256 
5257   // For each vectorized value:
5258   for (auto &TEPtr : VectorizableTree) {
5259     TreeEntry *Entry = TEPtr.get();
5260 
5261     // No need to handle users of gathered values.
5262     if (Entry->State == TreeEntry::NeedToGather)
5263       continue;
5264 
5265     assert(Entry->VectorizedValue && "Can't find vectorizable value");
5266 
5267     // For each lane:
5268     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
5269       Value *Scalar = Entry->Scalars[Lane];
5270 
5271 #ifndef NDEBUG
5272       Type *Ty = Scalar->getType();
5273       if (!Ty->isVoidTy()) {
5274         for (User *U : Scalar->users()) {
5275           LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
5276 
5277           // It is legal to delete users in the ignorelist.
5278           assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) &&
5279                  "Deleting out-of-tree value");
5280         }
5281       }
5282 #endif
5283       LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
5284       eraseInstruction(cast<Instruction>(Scalar));
5285     }
5286   }
5287 
5288   Builder.ClearInsertionPoint();
5289   InstrElementSize.clear();
5290 
5291   return VectorizableTree[0]->VectorizedValue;
5292 }
5293 
5294 void BoUpSLP::optimizeGatherSequence() {
5295   LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
5296                     << " gather sequences instructions.\n");
5297   // LICM InsertElementInst sequences.
5298   for (Instruction *I : GatherSeq) {
5299     if (isDeleted(I))
5300       continue;
5301 
5302     // Check if this block is inside a loop.
5303     Loop *L = LI->getLoopFor(I->getParent());
5304     if (!L)
5305       continue;
5306 
5307     // Check if it has a preheader.
5308     BasicBlock *PreHeader = L->getLoopPreheader();
5309     if (!PreHeader)
5310       continue;
5311 
5312     // If the vector or the element that we insert into it are
5313     // instructions that are defined in this basic block then we can't
5314     // hoist this instruction.
5315     auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
5316     auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
5317     if (Op0 && L->contains(Op0))
5318       continue;
5319     if (Op1 && L->contains(Op1))
5320       continue;
5321 
5322     // We can hoist this instruction. Move it to the pre-header.
5323     I->moveBefore(PreHeader->getTerminator());
5324   }
5325 
5326   // Make a list of all reachable blocks in our CSE queue.
5327   SmallVector<const DomTreeNode *, 8> CSEWorkList;
5328   CSEWorkList.reserve(CSEBlocks.size());
5329   for (BasicBlock *BB : CSEBlocks)
5330     if (DomTreeNode *N = DT->getNode(BB)) {
5331       assert(DT->isReachableFromEntry(N));
5332       CSEWorkList.push_back(N);
5333     }
5334 
5335   // Sort blocks by domination. This ensures we visit a block after all blocks
5336   // dominating it are visited.
5337   llvm::stable_sort(CSEWorkList,
5338                     [this](const DomTreeNode *A, const DomTreeNode *B) {
5339                       return DT->properlyDominates(A, B);
5340                     });
5341 
5342   // Perform O(N^2) search over the gather sequences and merge identical
5343   // instructions. TODO: We can further optimize this scan if we split the
5344   // instructions into different buckets based on the insert lane.
5345   SmallVector<Instruction *, 16> Visited;
5346   for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
5347     assert(*I &&
5348            (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
5349            "Worklist not sorted properly!");
5350     BasicBlock *BB = (*I)->getBlock();
5351     // For all instructions in blocks containing gather sequences:
5352     for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
5353       Instruction *In = &*it++;
5354       if (isDeleted(In))
5355         continue;
5356       if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
5357         continue;
5358 
5359       // Check if we can replace this instruction with any of the
5360       // visited instructions.
5361       for (Instruction *v : Visited) {
5362         if (In->isIdenticalTo(v) &&
5363             DT->dominates(v->getParent(), In->getParent())) {
5364           In->replaceAllUsesWith(v);
5365           eraseInstruction(In);
5366           In = nullptr;
5367           break;
5368         }
5369       }
5370       if (In) {
5371         assert(!is_contained(Visited, In));
5372         Visited.push_back(In);
5373       }
5374     }
5375   }
5376   CSEBlocks.clear();
5377   GatherSeq.clear();
5378 }
5379 
5380 // Groups the instructions to a bundle (which is then a single scheduling entity)
5381 // and schedules instructions until the bundle gets ready.
5382 Optional<BoUpSLP::ScheduleData *>
5383 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
5384                                             const InstructionsState &S) {
5385   if (isa<PHINode>(S.OpValue))
5386     return nullptr;
5387 
5388   // Initialize the instruction bundle.
5389   Instruction *OldScheduleEnd = ScheduleEnd;
5390   ScheduleData *PrevInBundle = nullptr;
5391   ScheduleData *Bundle = nullptr;
5392   bool ReSchedule = false;
5393   LLVM_DEBUG(dbgs() << "SLP:  bundle: " << *S.OpValue << "\n");
5394 
5395   auto &&TryScheduleBundle = [this, OldScheduleEnd, SLP](bool ReSchedule,
5396                                                          ScheduleData *Bundle) {
5397     // The scheduling region got new instructions at the lower end (or it is a
5398     // new region for the first bundle). This makes it necessary to
5399     // recalculate all dependencies.
5400     // It is seldom that this needs to be done a second time after adding the
5401     // initial bundle to the region.
5402     if (ScheduleEnd != OldScheduleEnd) {
5403       for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode())
5404         doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); });
5405       ReSchedule = true;
5406     }
5407     if (ReSchedule) {
5408       resetSchedule();
5409       initialFillReadyList(ReadyInsts);
5410     }
5411     if (Bundle) {
5412       LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle
5413                         << " in block " << BB->getName() << "\n");
5414       calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP);
5415     }
5416 
5417     // Now try to schedule the new bundle or (if no bundle) just calculate
5418     // dependencies. As soon as the bundle is "ready" it means that there are no
5419     // cyclic dependencies and we can schedule it. Note that's important that we
5420     // don't "schedule" the bundle yet (see cancelScheduling).
5421     while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) &&
5422            !ReadyInsts.empty()) {
5423       ScheduleData *Picked = ReadyInsts.pop_back_val();
5424       if (Picked->isSchedulingEntity() && Picked->isReady())
5425         schedule(Picked, ReadyInsts);
5426     }
5427   };
5428 
5429   // Make sure that the scheduling region contains all
5430   // instructions of the bundle.
5431   for (Value *V : VL) {
5432     if (!extendSchedulingRegion(V, S)) {
5433       // If the scheduling region got new instructions at the lower end (or it
5434       // is a new region for the first bundle). This makes it necessary to
5435       // recalculate all dependencies.
5436       // Otherwise the compiler may crash trying to incorrectly calculate
5437       // dependencies and emit instruction in the wrong order at the actual
5438       // scheduling.
5439       TryScheduleBundle(/*ReSchedule=*/false, nullptr);
5440       return None;
5441     }
5442   }
5443 
5444   for (Value *V : VL) {
5445     ScheduleData *BundleMember = getScheduleData(V);
5446     assert(BundleMember &&
5447            "no ScheduleData for bundle member (maybe not in same basic block)");
5448     if (BundleMember->IsScheduled) {
5449       // A bundle member was scheduled as single instruction before and now
5450       // needs to be scheduled as part of the bundle. We just get rid of the
5451       // existing schedule.
5452       LLVM_DEBUG(dbgs() << "SLP:  reset schedule because " << *BundleMember
5453                         << " was already scheduled\n");
5454       ReSchedule = true;
5455     }
5456     assert(BundleMember->isSchedulingEntity() &&
5457            "bundle member already part of other bundle");
5458     if (PrevInBundle) {
5459       PrevInBundle->NextInBundle = BundleMember;
5460     } else {
5461       Bundle = BundleMember;
5462     }
5463     BundleMember->UnscheduledDepsInBundle = 0;
5464     Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps;
5465 
5466     // Group the instructions to a bundle.
5467     BundleMember->FirstInBundle = Bundle;
5468     PrevInBundle = BundleMember;
5469   }
5470   assert(Bundle && "Failed to find schedule bundle");
5471   TryScheduleBundle(ReSchedule, Bundle);
5472   if (!Bundle->isReady()) {
5473     cancelScheduling(VL, S.OpValue);
5474     return None;
5475   }
5476   return Bundle;
5477 }
5478 
5479 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL,
5480                                                 Value *OpValue) {
5481   if (isa<PHINode>(OpValue))
5482     return;
5483 
5484   ScheduleData *Bundle = getScheduleData(OpValue);
5485   LLVM_DEBUG(dbgs() << "SLP:  cancel scheduling of " << *Bundle << "\n");
5486   assert(!Bundle->IsScheduled &&
5487          "Can't cancel bundle which is already scheduled");
5488   assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&
5489          "tried to unbundle something which is not a bundle");
5490 
5491   // Un-bundle: make single instructions out of the bundle.
5492   ScheduleData *BundleMember = Bundle;
5493   while (BundleMember) {
5494     assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
5495     BundleMember->FirstInBundle = BundleMember;
5496     ScheduleData *Next = BundleMember->NextInBundle;
5497     BundleMember->NextInBundle = nullptr;
5498     BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps;
5499     if (BundleMember->UnscheduledDepsInBundle == 0) {
5500       ReadyInsts.insert(BundleMember);
5501     }
5502     BundleMember = Next;
5503   }
5504 }
5505 
5506 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() {
5507   // Allocate a new ScheduleData for the instruction.
5508   if (ChunkPos >= ChunkSize) {
5509     ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize));
5510     ChunkPos = 0;
5511   }
5512   return &(ScheduleDataChunks.back()[ChunkPos++]);
5513 }
5514 
5515 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V,
5516                                                       const InstructionsState &S) {
5517   if (getScheduleData(V, isOneOf(S, V)))
5518     return true;
5519   Instruction *I = dyn_cast<Instruction>(V);
5520   assert(I && "bundle member must be an instruction");
5521   assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled");
5522   auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool {
5523     ScheduleData *ISD = getScheduleData(I);
5524     if (!ISD)
5525       return false;
5526     assert(isInSchedulingRegion(ISD) &&
5527            "ScheduleData not in scheduling region");
5528     ScheduleData *SD = allocateScheduleDataChunks();
5529     SD->Inst = I;
5530     SD->init(SchedulingRegionID, S.OpValue);
5531     ExtraScheduleDataMap[I][S.OpValue] = SD;
5532     return true;
5533   };
5534   if (CheckSheduleForI(I))
5535     return true;
5536   if (!ScheduleStart) {
5537     // It's the first instruction in the new region.
5538     initScheduleData(I, I->getNextNode(), nullptr, nullptr);
5539     ScheduleStart = I;
5540     ScheduleEnd = I->getNextNode();
5541     if (isOneOf(S, I) != I)
5542       CheckSheduleForI(I);
5543     assert(ScheduleEnd && "tried to vectorize a terminator?");
5544     LLVM_DEBUG(dbgs() << "SLP:  initialize schedule region to " << *I << "\n");
5545     return true;
5546   }
5547   // Search up and down at the same time, because we don't know if the new
5548   // instruction is above or below the existing scheduling region.
5549   BasicBlock::reverse_iterator UpIter =
5550       ++ScheduleStart->getIterator().getReverse();
5551   BasicBlock::reverse_iterator UpperEnd = BB->rend();
5552   BasicBlock::iterator DownIter = ScheduleEnd->getIterator();
5553   BasicBlock::iterator LowerEnd = BB->end();
5554   while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I &&
5555          &*DownIter != I) {
5556     if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
5557       LLVM_DEBUG(dbgs() << "SLP:  exceeded schedule region size limit\n");
5558       return false;
5559     }
5560 
5561     ++UpIter;
5562     ++DownIter;
5563   }
5564   if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) {
5565     assert(I->getParent() == ScheduleStart->getParent() &&
5566            "Instruction is in wrong basic block.");
5567     initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
5568     ScheduleStart = I;
5569     if (isOneOf(S, I) != I)
5570       CheckSheduleForI(I);
5571     LLVM_DEBUG(dbgs() << "SLP:  extend schedule region start to " << *I
5572                       << "\n");
5573     return true;
5574   }
5575   assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) &&
5576          "Expected to reach top of the basic block or instruction down the "
5577          "lower end.");
5578   assert(I->getParent() == ScheduleEnd->getParent() &&
5579          "Instruction is in wrong basic block.");
5580   initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
5581                    nullptr);
5582   ScheduleEnd = I->getNextNode();
5583   if (isOneOf(S, I) != I)
5584     CheckSheduleForI(I);
5585   assert(ScheduleEnd && "tried to vectorize a terminator?");
5586   LLVM_DEBUG(dbgs() << "SLP:  extend schedule region end to " << *I << "\n");
5587   return true;
5588 }
5589 
5590 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
5591                                                 Instruction *ToI,
5592                                                 ScheduleData *PrevLoadStore,
5593                                                 ScheduleData *NextLoadStore) {
5594   ScheduleData *CurrentLoadStore = PrevLoadStore;
5595   for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
5596     ScheduleData *SD = ScheduleDataMap[I];
5597     if (!SD) {
5598       SD = allocateScheduleDataChunks();
5599       ScheduleDataMap[I] = SD;
5600       SD->Inst = I;
5601     }
5602     assert(!isInSchedulingRegion(SD) &&
5603            "new ScheduleData already in scheduling region");
5604     SD->init(SchedulingRegionID, I);
5605 
5606     if (I->mayReadOrWriteMemory() &&
5607         (!isa<IntrinsicInst>(I) ||
5608          (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect &&
5609           cast<IntrinsicInst>(I)->getIntrinsicID() !=
5610               Intrinsic::pseudoprobe))) {
5611       // Update the linked list of memory accessing instructions.
5612       if (CurrentLoadStore) {
5613         CurrentLoadStore->NextLoadStore = SD;
5614       } else {
5615         FirstLoadStoreInRegion = SD;
5616       }
5617       CurrentLoadStore = SD;
5618     }
5619   }
5620   if (NextLoadStore) {
5621     if (CurrentLoadStore)
5622       CurrentLoadStore->NextLoadStore = NextLoadStore;
5623   } else {
5624     LastLoadStoreInRegion = CurrentLoadStore;
5625   }
5626 }
5627 
5628 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
5629                                                      bool InsertInReadyList,
5630                                                      BoUpSLP *SLP) {
5631   assert(SD->isSchedulingEntity());
5632 
5633   SmallVector<ScheduleData *, 10> WorkList;
5634   WorkList.push_back(SD);
5635 
5636   while (!WorkList.empty()) {
5637     ScheduleData *SD = WorkList.pop_back_val();
5638 
5639     ScheduleData *BundleMember = SD;
5640     while (BundleMember) {
5641       assert(isInSchedulingRegion(BundleMember));
5642       if (!BundleMember->hasValidDependencies()) {
5643 
5644         LLVM_DEBUG(dbgs() << "SLP:       update deps of " << *BundleMember
5645                           << "\n");
5646         BundleMember->Dependencies = 0;
5647         BundleMember->resetUnscheduledDeps();
5648 
5649         // Handle def-use chain dependencies.
5650         if (BundleMember->OpValue != BundleMember->Inst) {
5651           ScheduleData *UseSD = getScheduleData(BundleMember->Inst);
5652           if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
5653             BundleMember->Dependencies++;
5654             ScheduleData *DestBundle = UseSD->FirstInBundle;
5655             if (!DestBundle->IsScheduled)
5656               BundleMember->incrementUnscheduledDeps(1);
5657             if (!DestBundle->hasValidDependencies())
5658               WorkList.push_back(DestBundle);
5659           }
5660         } else {
5661           for (User *U : BundleMember->Inst->users()) {
5662             if (isa<Instruction>(U)) {
5663               ScheduleData *UseSD = getScheduleData(U);
5664               if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
5665                 BundleMember->Dependencies++;
5666                 ScheduleData *DestBundle = UseSD->FirstInBundle;
5667                 if (!DestBundle->IsScheduled)
5668                   BundleMember->incrementUnscheduledDeps(1);
5669                 if (!DestBundle->hasValidDependencies())
5670                   WorkList.push_back(DestBundle);
5671               }
5672             } else {
5673               // I'm not sure if this can ever happen. But we need to be safe.
5674               // This lets the instruction/bundle never be scheduled and
5675               // eventually disable vectorization.
5676               BundleMember->Dependencies++;
5677               BundleMember->incrementUnscheduledDeps(1);
5678             }
5679           }
5680         }
5681 
5682         // Handle the memory dependencies.
5683         ScheduleData *DepDest = BundleMember->NextLoadStore;
5684         if (DepDest) {
5685           Instruction *SrcInst = BundleMember->Inst;
5686           MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA);
5687           bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
5688           unsigned numAliased = 0;
5689           unsigned DistToSrc = 1;
5690 
5691           while (DepDest) {
5692             assert(isInSchedulingRegion(DepDest));
5693 
5694             // We have two limits to reduce the complexity:
5695             // 1) AliasedCheckLimit: It's a small limit to reduce calls to
5696             //    SLP->isAliased (which is the expensive part in this loop).
5697             // 2) MaxMemDepDistance: It's for very large blocks and it aborts
5698             //    the whole loop (even if the loop is fast, it's quadratic).
5699             //    It's important for the loop break condition (see below) to
5700             //    check this limit even between two read-only instructions.
5701             if (DistToSrc >= MaxMemDepDistance ||
5702                     ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
5703                      (numAliased >= AliasedCheckLimit ||
5704                       SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
5705 
5706               // We increment the counter only if the locations are aliased
5707               // (instead of counting all alias checks). This gives a better
5708               // balance between reduced runtime and accurate dependencies.
5709               numAliased++;
5710 
5711               DepDest->MemoryDependencies.push_back(BundleMember);
5712               BundleMember->Dependencies++;
5713               ScheduleData *DestBundle = DepDest->FirstInBundle;
5714               if (!DestBundle->IsScheduled) {
5715                 BundleMember->incrementUnscheduledDeps(1);
5716               }
5717               if (!DestBundle->hasValidDependencies()) {
5718                 WorkList.push_back(DestBundle);
5719               }
5720             }
5721             DepDest = DepDest->NextLoadStore;
5722 
5723             // Example, explaining the loop break condition: Let's assume our
5724             // starting instruction is i0 and MaxMemDepDistance = 3.
5725             //
5726             //                      +--------v--v--v
5727             //             i0,i1,i2,i3,i4,i5,i6,i7,i8
5728             //             +--------^--^--^
5729             //
5730             // MaxMemDepDistance let us stop alias-checking at i3 and we add
5731             // dependencies from i0 to i3,i4,.. (even if they are not aliased).
5732             // Previously we already added dependencies from i3 to i6,i7,i8
5733             // (because of MaxMemDepDistance). As we added a dependency from
5734             // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
5735             // and we can abort this loop at i6.
5736             if (DistToSrc >= 2 * MaxMemDepDistance)
5737               break;
5738             DistToSrc++;
5739           }
5740         }
5741       }
5742       BundleMember = BundleMember->NextInBundle;
5743     }
5744     if (InsertInReadyList && SD->isReady()) {
5745       ReadyInsts.push_back(SD);
5746       LLVM_DEBUG(dbgs() << "SLP:     gets ready on update: " << *SD->Inst
5747                         << "\n");
5748     }
5749   }
5750 }
5751 
5752 void BoUpSLP::BlockScheduling::resetSchedule() {
5753   assert(ScheduleStart &&
5754          "tried to reset schedule on block which has not been scheduled");
5755   for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
5756     doForAllOpcodes(I, [&](ScheduleData *SD) {
5757       assert(isInSchedulingRegion(SD) &&
5758              "ScheduleData not in scheduling region");
5759       SD->IsScheduled = false;
5760       SD->resetUnscheduledDeps();
5761     });
5762   }
5763   ReadyInsts.clear();
5764 }
5765 
5766 void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
5767   if (!BS->ScheduleStart)
5768     return;
5769 
5770   LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n");
5771 
5772   BS->resetSchedule();
5773 
5774   // For the real scheduling we use a more sophisticated ready-list: it is
5775   // sorted by the original instruction location. This lets the final schedule
5776   // be as  close as possible to the original instruction order.
5777   struct ScheduleDataCompare {
5778     bool operator()(ScheduleData *SD1, ScheduleData *SD2) const {
5779       return SD2->SchedulingPriority < SD1->SchedulingPriority;
5780     }
5781   };
5782   std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
5783 
5784   // Ensure that all dependency data is updated and fill the ready-list with
5785   // initial instructions.
5786   int Idx = 0;
5787   int NumToSchedule = 0;
5788   for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
5789        I = I->getNextNode()) {
5790     BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) {
5791       assert(SD->isPartOfBundle() ==
5792                  (getTreeEntry(SD->Inst) != nullptr) &&
5793              "scheduler and vectorizer bundle mismatch");
5794       SD->FirstInBundle->SchedulingPriority = Idx++;
5795       if (SD->isSchedulingEntity()) {
5796         BS->calculateDependencies(SD, false, this);
5797         NumToSchedule++;
5798       }
5799     });
5800   }
5801   BS->initialFillReadyList(ReadyInsts);
5802 
5803   Instruction *LastScheduledInst = BS->ScheduleEnd;
5804 
5805   // Do the "real" scheduling.
5806   while (!ReadyInsts.empty()) {
5807     ScheduleData *picked = *ReadyInsts.begin();
5808     ReadyInsts.erase(ReadyInsts.begin());
5809 
5810     // Move the scheduled instruction(s) to their dedicated places, if not
5811     // there yet.
5812     ScheduleData *BundleMember = picked;
5813     while (BundleMember) {
5814       Instruction *pickedInst = BundleMember->Inst;
5815       if (LastScheduledInst->getNextNode() != pickedInst) {
5816         BS->BB->getInstList().remove(pickedInst);
5817         BS->BB->getInstList().insert(LastScheduledInst->getIterator(),
5818                                      pickedInst);
5819       }
5820       LastScheduledInst = pickedInst;
5821       BundleMember = BundleMember->NextInBundle;
5822     }
5823 
5824     BS->schedule(picked, ReadyInsts);
5825     NumToSchedule--;
5826   }
5827   assert(NumToSchedule == 0 && "could not schedule all instructions");
5828 
5829   // Avoid duplicate scheduling of the block.
5830   BS->ScheduleStart = nullptr;
5831 }
5832 
5833 unsigned BoUpSLP::getVectorElementSize(Value *V) {
5834   // If V is a store, just return the width of the stored value (or value
5835   // truncated just before storing) without traversing the expression tree.
5836   // This is the common case.
5837   if (auto *Store = dyn_cast<StoreInst>(V)) {
5838     if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand()))
5839       return DL->getTypeSizeInBits(Trunc->getSrcTy());
5840     return DL->getTypeSizeInBits(Store->getValueOperand()->getType());
5841   }
5842 
5843   auto E = InstrElementSize.find(V);
5844   if (E != InstrElementSize.end())
5845     return E->second;
5846 
5847   // If V is not a store, we can traverse the expression tree to find loads
5848   // that feed it. The type of the loaded value may indicate a more suitable
5849   // width than V's type. We want to base the vector element size on the width
5850   // of memory operations where possible.
5851   SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist;
5852   SmallPtrSet<Instruction *, 16> Visited;
5853   if (auto *I = dyn_cast<Instruction>(V)) {
5854     Worklist.emplace_back(I, I->getParent());
5855     Visited.insert(I);
5856   }
5857 
5858   // Traverse the expression tree in bottom-up order looking for loads. If we
5859   // encounter an instruction we don't yet handle, we give up.
5860   auto Width = 0u;
5861   while (!Worklist.empty()) {
5862     Instruction *I;
5863     BasicBlock *Parent;
5864     std::tie(I, Parent) = Worklist.pop_back_val();
5865 
5866     // We should only be looking at scalar instructions here. If the current
5867     // instruction has a vector type, skip.
5868     auto *Ty = I->getType();
5869     if (isa<VectorType>(Ty))
5870       continue;
5871 
5872     // If the current instruction is a load, update MaxWidth to reflect the
5873     // width of the loaded value.
5874     if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) ||
5875         isa<ExtractValueInst>(I))
5876       Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty));
5877 
5878     // Otherwise, we need to visit the operands of the instruction. We only
5879     // handle the interesting cases from buildTree here. If an operand is an
5880     // instruction we haven't yet visited and from the same basic block as the
5881     // user or the use is a PHI node, we add it to the worklist.
5882     else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
5883              isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) ||
5884              isa<UnaryOperator>(I)) {
5885       for (Use &U : I->operands())
5886         if (auto *J = dyn_cast<Instruction>(U.get()))
5887           if (Visited.insert(J).second &&
5888               (isa<PHINode>(I) || J->getParent() == Parent))
5889             Worklist.emplace_back(J, J->getParent());
5890     } else {
5891       break;
5892     }
5893   }
5894 
5895   // If we didn't encounter a memory access in the expression tree, or if we
5896   // gave up for some reason, just return the width of V. Otherwise, return the
5897   // maximum width we found.
5898   if (!Width) {
5899     if (auto *CI = dyn_cast<CmpInst>(V))
5900       V = CI->getOperand(0);
5901     Width = DL->getTypeSizeInBits(V->getType());
5902   }
5903 
5904   for (Instruction *I : Visited)
5905     InstrElementSize[I] = Width;
5906 
5907   return Width;
5908 }
5909 
5910 // Determine if a value V in a vectorizable expression Expr can be demoted to a
5911 // smaller type with a truncation. We collect the values that will be demoted
5912 // in ToDemote and additional roots that require investigating in Roots.
5913 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr,
5914                                   SmallVectorImpl<Value *> &ToDemote,
5915                                   SmallVectorImpl<Value *> &Roots) {
5916   // We can always demote constants.
5917   if (isa<Constant>(V)) {
5918     ToDemote.push_back(V);
5919     return true;
5920   }
5921 
5922   // If the value is not an instruction in the expression with only one use, it
5923   // cannot be demoted.
5924   auto *I = dyn_cast<Instruction>(V);
5925   if (!I || !I->hasOneUse() || !Expr.count(I))
5926     return false;
5927 
5928   switch (I->getOpcode()) {
5929 
5930   // We can always demote truncations and extensions. Since truncations can
5931   // seed additional demotion, we save the truncated value.
5932   case Instruction::Trunc:
5933     Roots.push_back(I->getOperand(0));
5934     break;
5935   case Instruction::ZExt:
5936   case Instruction::SExt:
5937     break;
5938 
5939   // We can demote certain binary operations if we can demote both of their
5940   // operands.
5941   case Instruction::Add:
5942   case Instruction::Sub:
5943   case Instruction::Mul:
5944   case Instruction::And:
5945   case Instruction::Or:
5946   case Instruction::Xor:
5947     if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) ||
5948         !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots))
5949       return false;
5950     break;
5951 
5952   // We can demote selects if we can demote their true and false values.
5953   case Instruction::Select: {
5954     SelectInst *SI = cast<SelectInst>(I);
5955     if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) ||
5956         !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots))
5957       return false;
5958     break;
5959   }
5960 
5961   // We can demote phis if we can demote all their incoming operands. Note that
5962   // we don't need to worry about cycles since we ensure single use above.
5963   case Instruction::PHI: {
5964     PHINode *PN = cast<PHINode>(I);
5965     for (Value *IncValue : PN->incoming_values())
5966       if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots))
5967         return false;
5968     break;
5969   }
5970 
5971   // Otherwise, conservatively give up.
5972   default:
5973     return false;
5974   }
5975 
5976   // Record the value that we can demote.
5977   ToDemote.push_back(V);
5978   return true;
5979 }
5980 
5981 void BoUpSLP::computeMinimumValueSizes() {
5982   // If there are no external uses, the expression tree must be rooted by a
5983   // store. We can't demote in-memory values, so there is nothing to do here.
5984   if (ExternalUses.empty())
5985     return;
5986 
5987   // We only attempt to truncate integer expressions.
5988   auto &TreeRoot = VectorizableTree[0]->Scalars;
5989   auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType());
5990   if (!TreeRootIT)
5991     return;
5992 
5993   // If the expression is not rooted by a store, these roots should have
5994   // external uses. We will rely on InstCombine to rewrite the expression in
5995   // the narrower type. However, InstCombine only rewrites single-use values.
5996   // This means that if a tree entry other than a root is used externally, it
5997   // must have multiple uses and InstCombine will not rewrite it. The code
5998   // below ensures that only the roots are used externally.
5999   SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end());
6000   for (auto &EU : ExternalUses)
6001     if (!Expr.erase(EU.Scalar))
6002       return;
6003   if (!Expr.empty())
6004     return;
6005 
6006   // Collect the scalar values of the vectorizable expression. We will use this
6007   // context to determine which values can be demoted. If we see a truncation,
6008   // we mark it as seeding another demotion.
6009   for (auto &EntryPtr : VectorizableTree)
6010     Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end());
6011 
6012   // Ensure the roots of the vectorizable tree don't form a cycle. They must
6013   // have a single external user that is not in the vectorizable tree.
6014   for (auto *Root : TreeRoot)
6015     if (!Root->hasOneUse() || Expr.count(*Root->user_begin()))
6016       return;
6017 
6018   // Conservatively determine if we can actually truncate the roots of the
6019   // expression. Collect the values that can be demoted in ToDemote and
6020   // additional roots that require investigating in Roots.
6021   SmallVector<Value *, 32> ToDemote;
6022   SmallVector<Value *, 4> Roots;
6023   for (auto *Root : TreeRoot)
6024     if (!collectValuesToDemote(Root, Expr, ToDemote, Roots))
6025       return;
6026 
6027   // The maximum bit width required to represent all the values that can be
6028   // demoted without loss of precision. It would be safe to truncate the roots
6029   // of the expression to this width.
6030   auto MaxBitWidth = 8u;
6031 
6032   // We first check if all the bits of the roots are demanded. If they're not,
6033   // we can truncate the roots to this narrower type.
6034   for (auto *Root : TreeRoot) {
6035     auto Mask = DB->getDemandedBits(cast<Instruction>(Root));
6036     MaxBitWidth = std::max<unsigned>(
6037         Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth);
6038   }
6039 
6040   // True if the roots can be zero-extended back to their original type, rather
6041   // than sign-extended. We know that if the leading bits are not demanded, we
6042   // can safely zero-extend. So we initialize IsKnownPositive to True.
6043   bool IsKnownPositive = true;
6044 
6045   // If all the bits of the roots are demanded, we can try a little harder to
6046   // compute a narrower type. This can happen, for example, if the roots are
6047   // getelementptr indices. InstCombine promotes these indices to the pointer
6048   // width. Thus, all their bits are technically demanded even though the
6049   // address computation might be vectorized in a smaller type.
6050   //
6051   // We start by looking at each entry that can be demoted. We compute the
6052   // maximum bit width required to store the scalar by using ValueTracking to
6053   // compute the number of high-order bits we can truncate.
6054   if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) &&
6055       llvm::all_of(TreeRoot, [](Value *R) {
6056         assert(R->hasOneUse() && "Root should have only one use!");
6057         return isa<GetElementPtrInst>(R->user_back());
6058       })) {
6059     MaxBitWidth = 8u;
6060 
6061     // Determine if the sign bit of all the roots is known to be zero. If not,
6062     // IsKnownPositive is set to False.
6063     IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) {
6064       KnownBits Known = computeKnownBits(R, *DL);
6065       return Known.isNonNegative();
6066     });
6067 
6068     // Determine the maximum number of bits required to store the scalar
6069     // values.
6070     for (auto *Scalar : ToDemote) {
6071       auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT);
6072       auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType());
6073       MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth);
6074     }
6075 
6076     // If we can't prove that the sign bit is zero, we must add one to the
6077     // maximum bit width to account for the unknown sign bit. This preserves
6078     // the existing sign bit so we can safely sign-extend the root back to the
6079     // original type. Otherwise, if we know the sign bit is zero, we will
6080     // zero-extend the root instead.
6081     //
6082     // FIXME: This is somewhat suboptimal, as there will be cases where adding
6083     //        one to the maximum bit width will yield a larger-than-necessary
6084     //        type. In general, we need to add an extra bit only if we can't
6085     //        prove that the upper bit of the original type is equal to the
6086     //        upper bit of the proposed smaller type. If these two bits are the
6087     //        same (either zero or one) we know that sign-extending from the
6088     //        smaller type will result in the same value. Here, since we can't
6089     //        yet prove this, we are just making the proposed smaller type
6090     //        larger to ensure correctness.
6091     if (!IsKnownPositive)
6092       ++MaxBitWidth;
6093   }
6094 
6095   // Round MaxBitWidth up to the next power-of-two.
6096   if (!isPowerOf2_64(MaxBitWidth))
6097     MaxBitWidth = NextPowerOf2(MaxBitWidth);
6098 
6099   // If the maximum bit width we compute is less than the with of the roots'
6100   // type, we can proceed with the narrowing. Otherwise, do nothing.
6101   if (MaxBitWidth >= TreeRootIT->getBitWidth())
6102     return;
6103 
6104   // If we can truncate the root, we must collect additional values that might
6105   // be demoted as a result. That is, those seeded by truncations we will
6106   // modify.
6107   while (!Roots.empty())
6108     collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots);
6109 
6110   // Finally, map the values we can demote to the maximum bit with we computed.
6111   for (auto *Scalar : ToDemote)
6112     MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive);
6113 }
6114 
6115 namespace {
6116 
6117 /// The SLPVectorizer Pass.
6118 struct SLPVectorizer : public FunctionPass {
6119   SLPVectorizerPass Impl;
6120 
6121   /// Pass identification, replacement for typeid
6122   static char ID;
6123 
6124   explicit SLPVectorizer() : FunctionPass(ID) {
6125     initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
6126   }
6127 
6128   bool doInitialization(Module &M) override {
6129     return false;
6130   }
6131 
6132   bool runOnFunction(Function &F) override {
6133     if (skipFunction(F))
6134       return false;
6135 
6136     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
6137     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
6138     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
6139     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
6140     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
6141     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
6142     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
6143     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
6144     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
6145     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
6146 
6147     return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
6148   }
6149 
6150   void getAnalysisUsage(AnalysisUsage &AU) const override {
6151     FunctionPass::getAnalysisUsage(AU);
6152     AU.addRequired<AssumptionCacheTracker>();
6153     AU.addRequired<ScalarEvolutionWrapperPass>();
6154     AU.addRequired<AAResultsWrapperPass>();
6155     AU.addRequired<TargetTransformInfoWrapperPass>();
6156     AU.addRequired<LoopInfoWrapperPass>();
6157     AU.addRequired<DominatorTreeWrapperPass>();
6158     AU.addRequired<DemandedBitsWrapperPass>();
6159     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
6160     AU.addRequired<InjectTLIMappingsLegacy>();
6161     AU.addPreserved<LoopInfoWrapperPass>();
6162     AU.addPreserved<DominatorTreeWrapperPass>();
6163     AU.addPreserved<AAResultsWrapperPass>();
6164     AU.addPreserved<GlobalsAAWrapperPass>();
6165     AU.setPreservesCFG();
6166   }
6167 };
6168 
6169 } // end anonymous namespace
6170 
6171 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
6172   auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
6173   auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
6174   auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
6175   auto *AA = &AM.getResult<AAManager>(F);
6176   auto *LI = &AM.getResult<LoopAnalysis>(F);
6177   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
6178   auto *AC = &AM.getResult<AssumptionAnalysis>(F);
6179   auto *DB = &AM.getResult<DemandedBitsAnalysis>(F);
6180   auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
6181 
6182   bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
6183   if (!Changed)
6184     return PreservedAnalyses::all();
6185 
6186   PreservedAnalyses PA;
6187   PA.preserveSet<CFGAnalyses>();
6188   PA.preserve<AAManager>();
6189   PA.preserve<GlobalsAA>();
6190   return PA;
6191 }
6192 
6193 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_,
6194                                 TargetTransformInfo *TTI_,
6195                                 TargetLibraryInfo *TLI_, AAResults *AA_,
6196                                 LoopInfo *LI_, DominatorTree *DT_,
6197                                 AssumptionCache *AC_, DemandedBits *DB_,
6198                                 OptimizationRemarkEmitter *ORE_) {
6199   if (!RunSLPVectorization)
6200     return false;
6201   SE = SE_;
6202   TTI = TTI_;
6203   TLI = TLI_;
6204   AA = AA_;
6205   LI = LI_;
6206   DT = DT_;
6207   AC = AC_;
6208   DB = DB_;
6209   DL = &F.getParent()->getDataLayout();
6210 
6211   Stores.clear();
6212   GEPs.clear();
6213   bool Changed = false;
6214 
6215   // If the target claims to have no vector registers don't attempt
6216   // vectorization.
6217   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)))
6218     return false;
6219 
6220   // Don't vectorize when the attribute NoImplicitFloat is used.
6221   if (F.hasFnAttribute(Attribute::NoImplicitFloat))
6222     return false;
6223 
6224   LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
6225 
6226   // Use the bottom up slp vectorizer to construct chains that start with
6227   // store instructions.
6228   BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_);
6229 
6230   // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
6231   // delete instructions.
6232 
6233   // Scan the blocks in the function in post order.
6234   for (auto BB : post_order(&F.getEntryBlock())) {
6235     collectSeedInstructions(BB);
6236 
6237     // Vectorize trees that end at stores.
6238     if (!Stores.empty()) {
6239       LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size()
6240                         << " underlying objects.\n");
6241       Changed |= vectorizeStoreChains(R);
6242     }
6243 
6244     // Vectorize trees that end at reductions.
6245     Changed |= vectorizeChainsInBlock(BB, R);
6246 
6247     // Vectorize the index computations of getelementptr instructions. This
6248     // is primarily intended to catch gather-like idioms ending at
6249     // non-consecutive loads.
6250     if (!GEPs.empty()) {
6251       LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size()
6252                         << " underlying objects.\n");
6253       Changed |= vectorizeGEPIndices(BB, R);
6254     }
6255   }
6256 
6257   if (Changed) {
6258     R.optimizeGatherSequence();
6259     LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
6260   }
6261   return Changed;
6262 }
6263 
6264 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R,
6265                                             unsigned Idx) {
6266   LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size()
6267                     << "\n");
6268   const unsigned Sz = R.getVectorElementSize(Chain[0]);
6269   const unsigned MinVF = R.getMinVecRegSize() / Sz;
6270   unsigned VF = Chain.size();
6271 
6272   if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF)
6273     return false;
6274 
6275   LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx
6276                     << "\n");
6277 
6278   R.buildTree(Chain);
6279   Optional<ArrayRef<unsigned>> Order = R.bestOrder();
6280   // TODO: Handle orders of size less than number of elements in the vector.
6281   if (Order && Order->size() == Chain.size()) {
6282     // TODO: reorder tree nodes without tree rebuilding.
6283     SmallVector<Value *, 4> ReorderedOps(Chain.rbegin(), Chain.rend());
6284     llvm::transform(*Order, ReorderedOps.begin(),
6285                     [Chain](const unsigned Idx) { return Chain[Idx]; });
6286     R.buildTree(ReorderedOps);
6287   }
6288   if (R.isTreeTinyAndNotFullyVectorizable())
6289     return false;
6290   if (R.isLoadCombineCandidate())
6291     return false;
6292 
6293   R.computeMinimumValueSizes();
6294 
6295   InstructionCost Cost = R.getTreeCost();
6296 
6297   LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n");
6298   if (Cost < -SLPCostThreshold) {
6299     LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n");
6300 
6301     using namespace ore;
6302 
6303     R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized",
6304                                         cast<StoreInst>(Chain[0]))
6305                      << "Stores SLP vectorized with cost " << NV("Cost", Cost)
6306                      << " and with tree size "
6307                      << NV("TreeSize", R.getTreeSize()));
6308 
6309     R.vectorizeTree();
6310     return true;
6311   }
6312 
6313   return false;
6314 }
6315 
6316 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores,
6317                                         BoUpSLP &R) {
6318   // We may run into multiple chains that merge into a single chain. We mark the
6319   // stores that we vectorized so that we don't visit the same store twice.
6320   BoUpSLP::ValueSet VectorizedStores;
6321   bool Changed = false;
6322 
6323   int E = Stores.size();
6324   SmallBitVector Tails(E, false);
6325   int MaxIter = MaxStoreLookup.getValue();
6326   SmallVector<std::pair<int, int>, 16> ConsecutiveChain(
6327       E, std::make_pair(E, INT_MAX));
6328   SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false));
6329   int IterCnt;
6330   auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter,
6331                                   &CheckedPairs,
6332                                   &ConsecutiveChain](int K, int Idx) {
6333     if (IterCnt >= MaxIter)
6334       return true;
6335     if (CheckedPairs[Idx].test(K))
6336       return ConsecutiveChain[K].second == 1 &&
6337              ConsecutiveChain[K].first == Idx;
6338     ++IterCnt;
6339     CheckedPairs[Idx].set(K);
6340     CheckedPairs[K].set(Idx);
6341     Optional<int> Diff = getPointersDiff(Stores[K]->getPointerOperand(),
6342                                          Stores[Idx]->getPointerOperand(), *DL,
6343                                          *SE, /*StrictCheck=*/true);
6344     if (!Diff || *Diff == 0)
6345       return false;
6346     int Val = *Diff;
6347     if (Val < 0) {
6348       if (ConsecutiveChain[Idx].second > -Val) {
6349         Tails.set(K);
6350         ConsecutiveChain[Idx] = std::make_pair(K, -Val);
6351       }
6352       return false;
6353     }
6354     if (ConsecutiveChain[K].second <= Val)
6355       return false;
6356 
6357     Tails.set(Idx);
6358     ConsecutiveChain[K] = std::make_pair(Idx, Val);
6359     return Val == 1;
6360   };
6361   // Do a quadratic search on all of the given stores in reverse order and find
6362   // all of the pairs of stores that follow each other.
6363   for (int Idx = E - 1; Idx >= 0; --Idx) {
6364     // If a store has multiple consecutive store candidates, search according
6365     // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ...
6366     // This is because usually pairing with immediate succeeding or preceding
6367     // candidate create the best chance to find slp vectorization opportunity.
6368     const int MaxLookDepth = std::max(E - Idx, Idx + 1);
6369     IterCnt = 0;
6370     for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset)
6371       if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) ||
6372           (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx)))
6373         break;
6374   }
6375 
6376   // Tracks if we tried to vectorize stores starting from the given tail
6377   // already.
6378   SmallBitVector TriedTails(E, false);
6379   // For stores that start but don't end a link in the chain:
6380   for (int Cnt = E; Cnt > 0; --Cnt) {
6381     int I = Cnt - 1;
6382     if (ConsecutiveChain[I].first == E || Tails.test(I))
6383       continue;
6384     // We found a store instr that starts a chain. Now follow the chain and try
6385     // to vectorize it.
6386     BoUpSLP::ValueList Operands;
6387     // Collect the chain into a list.
6388     while (I != E && !VectorizedStores.count(Stores[I])) {
6389       Operands.push_back(Stores[I]);
6390       Tails.set(I);
6391       if (ConsecutiveChain[I].second != 1) {
6392         // Mark the new end in the chain and go back, if required. It might be
6393         // required if the original stores come in reversed order, for example.
6394         if (ConsecutiveChain[I].first != E &&
6395             Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) &&
6396             !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) {
6397           TriedTails.set(I);
6398           Tails.reset(ConsecutiveChain[I].first);
6399           if (Cnt < ConsecutiveChain[I].first + 2)
6400             Cnt = ConsecutiveChain[I].first + 2;
6401         }
6402         break;
6403       }
6404       // Move to the next value in the chain.
6405       I = ConsecutiveChain[I].first;
6406     }
6407     assert(!Operands.empty() && "Expected non-empty list of stores.");
6408 
6409     unsigned MaxVecRegSize = R.getMaxVecRegSize();
6410     unsigned EltSize = R.getVectorElementSize(Operands[0]);
6411     unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize);
6412 
6413     unsigned MinVF = std::max(2U, R.getMinVecRegSize() / EltSize);
6414     unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store),
6415                               MaxElts);
6416 
6417     // FIXME: Is division-by-2 the correct step? Should we assert that the
6418     // register size is a power-of-2?
6419     unsigned StartIdx = 0;
6420     for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) {
6421       for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) {
6422         ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size);
6423         if (!VectorizedStores.count(Slice.front()) &&
6424             !VectorizedStores.count(Slice.back()) &&
6425             vectorizeStoreChain(Slice, R, Cnt)) {
6426           // Mark the vectorized stores so that we don't vectorize them again.
6427           VectorizedStores.insert(Slice.begin(), Slice.end());
6428           Changed = true;
6429           // If we vectorized initial block, no need to try to vectorize it
6430           // again.
6431           if (Cnt == StartIdx)
6432             StartIdx += Size;
6433           Cnt += Size;
6434           continue;
6435         }
6436         ++Cnt;
6437       }
6438       // Check if the whole array was vectorized already - exit.
6439       if (StartIdx >= Operands.size())
6440         break;
6441     }
6442   }
6443 
6444   return Changed;
6445 }
6446 
6447 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) {
6448   // Initialize the collections. We will make a single pass over the block.
6449   Stores.clear();
6450   GEPs.clear();
6451 
6452   // Visit the store and getelementptr instructions in BB and organize them in
6453   // Stores and GEPs according to the underlying objects of their pointer
6454   // operands.
6455   for (Instruction &I : *BB) {
6456     // Ignore store instructions that are volatile or have a pointer operand
6457     // that doesn't point to a scalar type.
6458     if (auto *SI = dyn_cast<StoreInst>(&I)) {
6459       if (!SI->isSimple())
6460         continue;
6461       if (!isValidElementType(SI->getValueOperand()->getType()))
6462         continue;
6463       Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI);
6464     }
6465 
6466     // Ignore getelementptr instructions that have more than one index, a
6467     // constant index, or a pointer operand that doesn't point to a scalar
6468     // type.
6469     else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
6470       auto Idx = GEP->idx_begin()->get();
6471       if (GEP->getNumIndices() > 1 || isa<Constant>(Idx))
6472         continue;
6473       if (!isValidElementType(Idx->getType()))
6474         continue;
6475       if (GEP->getType()->isVectorTy())
6476         continue;
6477       GEPs[GEP->getPointerOperand()].push_back(GEP);
6478     }
6479   }
6480 }
6481 
6482 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
6483   if (!A || !B)
6484     return false;
6485   Value *VL[] = {A, B};
6486   return tryToVectorizeList(VL, R, /*AllowReorder=*/true);
6487 }
6488 
6489 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
6490                                            bool AllowReorder,
6491                                            ArrayRef<Value *> InsertUses) {
6492   if (VL.size() < 2)
6493     return false;
6494 
6495   LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = "
6496                     << VL.size() << ".\n");
6497 
6498   // Check that all of the parts are instructions of the same type,
6499   // we permit an alternate opcode via InstructionsState.
6500   InstructionsState S = getSameOpcode(VL);
6501   if (!S.getOpcode())
6502     return false;
6503 
6504   Instruction *I0 = cast<Instruction>(S.OpValue);
6505   // Make sure invalid types (including vector type) are rejected before
6506   // determining vectorization factor for scalar instructions.
6507   for (Value *V : VL) {
6508     Type *Ty = V->getType();
6509     if (!isValidElementType(Ty)) {
6510       // NOTE: the following will give user internal llvm type name, which may
6511       // not be useful.
6512       R.getORE()->emit([&]() {
6513         std::string type_str;
6514         llvm::raw_string_ostream rso(type_str);
6515         Ty->print(rso);
6516         return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0)
6517                << "Cannot SLP vectorize list: type "
6518                << rso.str() + " is unsupported by vectorizer";
6519       });
6520       return false;
6521     }
6522   }
6523 
6524   unsigned Sz = R.getVectorElementSize(I0);
6525   unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz);
6526   unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF);
6527   MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF);
6528   if (MaxVF < 2) {
6529     R.getORE()->emit([&]() {
6530       return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0)
6531              << "Cannot SLP vectorize list: vectorization factor "
6532              << "less than 2 is not supported";
6533     });
6534     return false;
6535   }
6536 
6537   bool Changed = false;
6538   bool CandidateFound = false;
6539   InstructionCost MinCost = SLPCostThreshold.getValue();
6540 
6541   bool CompensateUseCost =
6542       !InsertUses.empty() && llvm::all_of(InsertUses, [](const Value *V) {
6543         return V && isa<InsertElementInst>(V);
6544       });
6545   assert((!CompensateUseCost || InsertUses.size() == VL.size()) &&
6546          "Each scalar expected to have an associated InsertElement user.");
6547 
6548   unsigned NextInst = 0, MaxInst = VL.size();
6549   for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) {
6550     // No actual vectorization should happen, if number of parts is the same as
6551     // provided vectorization factor (i.e. the scalar type is used for vector
6552     // code during codegen).
6553     auto *VecTy = FixedVectorType::get(VL[0]->getType(), VF);
6554     if (TTI->getNumberOfParts(VecTy) == VF)
6555       continue;
6556     for (unsigned I = NextInst; I < MaxInst; ++I) {
6557       unsigned OpsWidth = 0;
6558 
6559       if (I + VF > MaxInst)
6560         OpsWidth = MaxInst - I;
6561       else
6562         OpsWidth = VF;
6563 
6564       if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
6565         break;
6566 
6567       ArrayRef<Value *> Ops = VL.slice(I, OpsWidth);
6568       // Check that a previous iteration of this loop did not delete the Value.
6569       if (llvm::any_of(Ops, [&R](Value *V) {
6570             auto *I = dyn_cast<Instruction>(V);
6571             return I && R.isDeleted(I);
6572           }))
6573         continue;
6574 
6575       LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
6576                         << "\n");
6577 
6578       R.buildTree(Ops);
6579       Optional<ArrayRef<unsigned>> Order = R.bestOrder();
6580       // TODO: check if we can allow reordering for more cases.
6581       if (AllowReorder && Order) {
6582         // TODO: reorder tree nodes without tree rebuilding.
6583         // Conceptually, there is nothing actually preventing us from trying to
6584         // reorder a larger list. In fact, we do exactly this when vectorizing
6585         // reductions. However, at this point, we only expect to get here when
6586         // there are exactly two operations.
6587         assert(Ops.size() == 2);
6588         Value *ReorderedOps[] = {Ops[1], Ops[0]};
6589         R.buildTree(ReorderedOps, None);
6590       }
6591       if (R.isTreeTinyAndNotFullyVectorizable())
6592         continue;
6593 
6594       R.computeMinimumValueSizes();
6595       InstructionCost Cost = R.getTreeCost();
6596       CandidateFound = true;
6597       if (CompensateUseCost) {
6598         // TODO: Use TTI's getScalarizationOverhead for sequence of inserts
6599         // rather than sum of single inserts as the latter may overestimate
6600         // cost. This work should imply improving cost estimation for extracts
6601         // that added in for external (for vectorization tree) users,i.e. that
6602         // part should also switch to same interface.
6603         // For example, the following case is projected code after SLP:
6604         //  %4 = extractelement <4 x i64> %3, i32 0
6605         //  %v0 = insertelement <4 x i64> poison, i64 %4, i32 0
6606         //  %5 = extractelement <4 x i64> %3, i32 1
6607         //  %v1 = insertelement <4 x i64> %v0, i64 %5, i32 1
6608         //  %6 = extractelement <4 x i64> %3, i32 2
6609         //  %v2 = insertelement <4 x i64> %v1, i64 %6, i32 2
6610         //  %7 = extractelement <4 x i64> %3, i32 3
6611         //  %v3 = insertelement <4 x i64> %v2, i64 %7, i32 3
6612         //
6613         // Extracts here added by SLP in order to feed users (the inserts) of
6614         // original scalars and contribute to "ExtractCost" at cost evaluation.
6615         // The inserts in turn form sequence to build an aggregate that
6616         // detected by findBuildAggregate routine.
6617         // SLP makes an assumption that such sequence will be optimized away
6618         // later (instcombine) so it tries to compensate ExctractCost with
6619         // cost of insert sequence.
6620         // Current per element cost calculation approach is not quite accurate
6621         // and tends to create bias toward favoring vectorization.
6622         // Switching to the TTI interface might help a bit.
6623         // Alternative solution could be pattern-match to detect a no-op or
6624         // shuffle.
6625         InstructionCost UserCost = 0;
6626         for (unsigned Lane = 0; Lane < OpsWidth; Lane++) {
6627           auto *IE = cast<InsertElementInst>(InsertUses[I + Lane]);
6628           if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2)))
6629             UserCost += TTI->getVectorInstrCost(
6630                 Instruction::InsertElement, IE->getType(), CI->getZExtValue());
6631         }
6632         LLVM_DEBUG(dbgs() << "SLP: Compensate cost of users by: " << UserCost
6633                           << ".\n");
6634         Cost -= UserCost;
6635       }
6636 
6637       MinCost = std::min(MinCost, Cost);
6638 
6639       if (Cost < -SLPCostThreshold) {
6640         LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
6641         R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList",
6642                                                     cast<Instruction>(Ops[0]))
6643                                  << "SLP vectorized with cost " << ore::NV("Cost", Cost)
6644                                  << " and with tree size "
6645                                  << ore::NV("TreeSize", R.getTreeSize()));
6646 
6647         R.vectorizeTree();
6648         // Move to the next bundle.
6649         I += VF - 1;
6650         NextInst = I + 1;
6651         Changed = true;
6652       }
6653     }
6654   }
6655 
6656   if (!Changed && CandidateFound) {
6657     R.getORE()->emit([&]() {
6658       return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0)
6659              << "List vectorization was possible but not beneficial with cost "
6660              << ore::NV("Cost", MinCost) << " >= "
6661              << ore::NV("Treshold", -SLPCostThreshold);
6662     });
6663   } else if (!Changed) {
6664     R.getORE()->emit([&]() {
6665       return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0)
6666              << "Cannot SLP vectorize list: vectorization was impossible"
6667              << " with available vectorization factors";
6668     });
6669   }
6670   return Changed;
6671 }
6672 
6673 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) {
6674   if (!I)
6675     return false;
6676 
6677   if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I))
6678     return false;
6679 
6680   Value *P = I->getParent();
6681 
6682   // Vectorize in current basic block only.
6683   auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
6684   auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
6685   if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P)
6686     return false;
6687 
6688   // Try to vectorize V.
6689   if (tryToVectorizePair(Op0, Op1, R))
6690     return true;
6691 
6692   auto *A = dyn_cast<BinaryOperator>(Op0);
6693   auto *B = dyn_cast<BinaryOperator>(Op1);
6694   // Try to skip B.
6695   if (B && B->hasOneUse()) {
6696     auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
6697     auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
6698     if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R))
6699       return true;
6700     if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R))
6701       return true;
6702   }
6703 
6704   // Try to skip A.
6705   if (A && A->hasOneUse()) {
6706     auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
6707     auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
6708     if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R))
6709       return true;
6710     if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R))
6711       return true;
6712   }
6713   return false;
6714 }
6715 
6716 namespace {
6717 
6718 /// Model horizontal reductions.
6719 ///
6720 /// A horizontal reduction is a tree of reduction instructions that has values
6721 /// that can be put into a vector as its leaves. For example:
6722 ///
6723 /// mul mul mul mul
6724 ///  \  /    \  /
6725 ///   +       +
6726 ///    \     /
6727 ///       +
6728 /// This tree has "mul" as its leaf values and "+" as its reduction
6729 /// instructions. A reduction can feed into a store or a binary operation
6730 /// feeding a phi.
6731 ///    ...
6732 ///    \  /
6733 ///     +
6734 ///     |
6735 ///  phi +=
6736 ///
6737 ///  Or:
6738 ///    ...
6739 ///    \  /
6740 ///     +
6741 ///     |
6742 ///   *p =
6743 ///
6744 class HorizontalReduction {
6745   using ReductionOpsType = SmallVector<Value *, 16>;
6746   using ReductionOpsListType = SmallVector<ReductionOpsType, 2>;
6747   ReductionOpsListType ReductionOps;
6748   SmallVector<Value *, 32> ReducedVals;
6749   // Use map vector to make stable output.
6750   MapVector<Instruction *, Value *> ExtraArgs;
6751   WeakTrackingVH ReductionRoot;
6752   /// The type of reduction operation.
6753   RecurKind RdxKind;
6754 
6755   /// Checks if instruction is associative and can be vectorized.
6756   static bool isVectorizable(RecurKind Kind, Instruction *I) {
6757     if (Kind == RecurKind::None)
6758       return false;
6759     if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind))
6760       return true;
6761 
6762     if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) {
6763       // FP min/max are associative except for NaN and -0.0. We do not
6764       // have to rule out -0.0 here because the intrinsic semantics do not
6765       // specify a fixed result for it.
6766       return I->getFastMathFlags().noNaNs();
6767     }
6768 
6769     return I->isAssociative();
6770   }
6771 
6772   /// Checks if the ParentStackElem.first should be marked as a reduction
6773   /// operation with an extra argument or as extra argument itself.
6774   void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem,
6775                     Value *ExtraArg) {
6776     if (ExtraArgs.count(ParentStackElem.first)) {
6777       ExtraArgs[ParentStackElem.first] = nullptr;
6778       // We ran into something like:
6779       // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg.
6780       // The whole ParentStackElem.first should be considered as an extra value
6781       // in this case.
6782       // Do not perform analysis of remaining operands of ParentStackElem.first
6783       // instruction, this whole instruction is an extra argument.
6784       ParentStackElem.second = getNumberOfOperands(ParentStackElem.first);
6785     } else {
6786       // We ran into something like:
6787       // ParentStackElem.first += ... + ExtraArg + ...
6788       ExtraArgs[ParentStackElem.first] = ExtraArg;
6789     }
6790   }
6791 
6792   /// Creates reduction operation with the current opcode.
6793   static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS,
6794                          Value *RHS, const Twine &Name, bool UseSelect) {
6795     unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind);
6796     switch (Kind) {
6797     case RecurKind::Add:
6798     case RecurKind::Mul:
6799     case RecurKind::Or:
6800     case RecurKind::And:
6801     case RecurKind::Xor:
6802     case RecurKind::FAdd:
6803     case RecurKind::FMul:
6804       return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS,
6805                                  Name);
6806     case RecurKind::FMax:
6807       return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS);
6808     case RecurKind::FMin:
6809       return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS);
6810     case RecurKind::SMax:
6811       if (UseSelect) {
6812         Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name);
6813         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
6814       }
6815       return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS);
6816     case RecurKind::SMin:
6817       if (UseSelect) {
6818         Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name);
6819         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
6820       }
6821       return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS);
6822     case RecurKind::UMax:
6823       if (UseSelect) {
6824         Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name);
6825         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
6826       }
6827       return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS);
6828     case RecurKind::UMin:
6829       if (UseSelect) {
6830         Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name);
6831         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
6832       }
6833       return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS);
6834     default:
6835       llvm_unreachable("Unknown reduction operation.");
6836     }
6837   }
6838 
6839   /// Creates reduction operation with the current opcode with the IR flags
6840   /// from \p ReductionOps.
6841   static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS,
6842                          Value *RHS, const Twine &Name,
6843                          const ReductionOpsListType &ReductionOps) {
6844     bool UseSelect = ReductionOps.size() == 2;
6845     assert((!UseSelect || isa<SelectInst>(ReductionOps[1][0])) &&
6846            "Expected cmp + select pairs for reduction");
6847     Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect);
6848     if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) {
6849       if (auto *Sel = dyn_cast<SelectInst>(Op)) {
6850         propagateIRFlags(Sel->getCondition(), ReductionOps[0]);
6851         propagateIRFlags(Op, ReductionOps[1]);
6852         return Op;
6853       }
6854     }
6855     propagateIRFlags(Op, ReductionOps[0]);
6856     return Op;
6857   }
6858 
6859   /// Creates reduction operation with the current opcode with the IR flags
6860   /// from \p I.
6861   static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS,
6862                          Value *RHS, const Twine &Name, Instruction *I) {
6863     auto *SelI = dyn_cast<SelectInst>(I);
6864     Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr);
6865     if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) {
6866       if (auto *Sel = dyn_cast<SelectInst>(Op))
6867         propagateIRFlags(Sel->getCondition(), SelI->getCondition());
6868     }
6869     propagateIRFlags(Op, I);
6870     return Op;
6871   }
6872 
6873   static RecurKind getRdxKind(Instruction *I) {
6874     assert(I && "Expected instruction for reduction matching");
6875     TargetTransformInfo::ReductionFlags RdxFlags;
6876     if (match(I, m_Add(m_Value(), m_Value())))
6877       return RecurKind::Add;
6878     if (match(I, m_Mul(m_Value(), m_Value())))
6879       return RecurKind::Mul;
6880     if (match(I, m_And(m_Value(), m_Value())))
6881       return RecurKind::And;
6882     if (match(I, m_Or(m_Value(), m_Value())))
6883       return RecurKind::Or;
6884     if (match(I, m_Xor(m_Value(), m_Value())))
6885       return RecurKind::Xor;
6886     if (match(I, m_FAdd(m_Value(), m_Value())))
6887       return RecurKind::FAdd;
6888     if (match(I, m_FMul(m_Value(), m_Value())))
6889       return RecurKind::FMul;
6890 
6891     if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value())))
6892       return RecurKind::FMax;
6893     if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value())))
6894       return RecurKind::FMin;
6895 
6896     // This matches either cmp+select or intrinsics. SLP is expected to handle
6897     // either form.
6898     // TODO: If we are canonicalizing to intrinsics, we can remove several
6899     //       special-case paths that deal with selects.
6900     if (match(I, m_SMax(m_Value(), m_Value())))
6901       return RecurKind::SMax;
6902     if (match(I, m_SMin(m_Value(), m_Value())))
6903       return RecurKind::SMin;
6904     if (match(I, m_UMax(m_Value(), m_Value())))
6905       return RecurKind::UMax;
6906     if (match(I, m_UMin(m_Value(), m_Value())))
6907       return RecurKind::UMin;
6908 
6909     if (auto *Select = dyn_cast<SelectInst>(I)) {
6910       // Try harder: look for min/max pattern based on instructions producing
6911       // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2).
6912       // During the intermediate stages of SLP, it's very common to have
6913       // pattern like this (since optimizeGatherSequence is run only once
6914       // at the end):
6915       // %1 = extractelement <2 x i32> %a, i32 0
6916       // %2 = extractelement <2 x i32> %a, i32 1
6917       // %cond = icmp sgt i32 %1, %2
6918       // %3 = extractelement <2 x i32> %a, i32 0
6919       // %4 = extractelement <2 x i32> %a, i32 1
6920       // %select = select i1 %cond, i32 %3, i32 %4
6921       CmpInst::Predicate Pred;
6922       Instruction *L1;
6923       Instruction *L2;
6924 
6925       Value *LHS = Select->getTrueValue();
6926       Value *RHS = Select->getFalseValue();
6927       Value *Cond = Select->getCondition();
6928 
6929       // TODO: Support inverse predicates.
6930       if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) {
6931         if (!isa<ExtractElementInst>(RHS) ||
6932             !L2->isIdenticalTo(cast<Instruction>(RHS)))
6933           return RecurKind::None;
6934       } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) {
6935         if (!isa<ExtractElementInst>(LHS) ||
6936             !L1->isIdenticalTo(cast<Instruction>(LHS)))
6937           return RecurKind::None;
6938       } else {
6939         if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS))
6940           return RecurKind::None;
6941         if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) ||
6942             !L1->isIdenticalTo(cast<Instruction>(LHS)) ||
6943             !L2->isIdenticalTo(cast<Instruction>(RHS)))
6944           return RecurKind::None;
6945       }
6946 
6947       TargetTransformInfo::ReductionFlags RdxFlags;
6948       switch (Pred) {
6949       default:
6950         return RecurKind::None;
6951       case CmpInst::ICMP_SGT:
6952       case CmpInst::ICMP_SGE:
6953         return RecurKind::SMax;
6954       case CmpInst::ICMP_SLT:
6955       case CmpInst::ICMP_SLE:
6956         return RecurKind::SMin;
6957       case CmpInst::ICMP_UGT:
6958       case CmpInst::ICMP_UGE:
6959         return RecurKind::UMax;
6960       case CmpInst::ICMP_ULT:
6961       case CmpInst::ICMP_ULE:
6962         return RecurKind::UMin;
6963       }
6964     }
6965     return RecurKind::None;
6966   }
6967 
6968   /// Get the index of the first operand.
6969   static unsigned getFirstOperandIndex(Instruction *I) {
6970     return isa<SelectInst>(I) ? 1 : 0;
6971   }
6972 
6973   /// Total number of operands in the reduction operation.
6974   static unsigned getNumberOfOperands(Instruction *I) {
6975     return isa<SelectInst>(I) ? 3 : 2;
6976   }
6977 
6978   /// Checks if the instruction is in basic block \p BB.
6979   /// For a min/max reduction check that both compare and select are in \p BB.
6980   static bool hasSameParent(Instruction *I, BasicBlock *BB, bool IsRedOp) {
6981     auto *Sel = dyn_cast<SelectInst>(I);
6982     if (IsRedOp && Sel) {
6983       auto *Cmp = cast<Instruction>(Sel->getCondition());
6984       return Sel->getParent() == BB && Cmp->getParent() == BB;
6985     }
6986     return I->getParent() == BB;
6987   }
6988 
6989   /// Expected number of uses for reduction operations/reduced values.
6990   static bool hasRequiredNumberOfUses(bool MatchCmpSel, Instruction *I) {
6991     // SelectInst must be used twice while the condition op must have single
6992     // use only.
6993     if (MatchCmpSel) {
6994       if (auto *Sel = dyn_cast<SelectInst>(I))
6995         return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse();
6996       return I->hasNUses(2);
6997     }
6998 
6999     // Arithmetic reduction operation must be used once only.
7000     return I->hasOneUse();
7001   }
7002 
7003   /// Initializes the list of reduction operations.
7004   void initReductionOps(Instruction *I) {
7005     if (isa<SelectInst>(I))
7006       ReductionOps.assign(2, ReductionOpsType());
7007     else
7008       ReductionOps.assign(1, ReductionOpsType());
7009   }
7010 
7011   /// Add all reduction operations for the reduction instruction \p I.
7012   void addReductionOps(Instruction *I) {
7013     if (auto *Sel = dyn_cast<SelectInst>(I)) {
7014       ReductionOps[0].emplace_back(Sel->getCondition());
7015       ReductionOps[1].emplace_back(Sel);
7016     } else {
7017       ReductionOps[0].emplace_back(I);
7018     }
7019   }
7020 
7021   static Value *getLHS(RecurKind Kind, Instruction *I) {
7022     if (Kind == RecurKind::None)
7023       return nullptr;
7024     return I->getOperand(getFirstOperandIndex(I));
7025   }
7026   static Value *getRHS(RecurKind Kind, Instruction *I) {
7027     if (Kind == RecurKind::None)
7028       return nullptr;
7029     return I->getOperand(getFirstOperandIndex(I) + 1);
7030   }
7031 
7032 public:
7033   HorizontalReduction() = default;
7034 
7035   /// Try to find a reduction tree.
7036   bool matchAssociativeReduction(PHINode *Phi, Instruction *B) {
7037     assert((!Phi || is_contained(Phi->operands(), B)) &&
7038            "Phi needs to use the binary operator");
7039 
7040     RdxKind = getRdxKind(B);
7041 
7042     // We could have a initial reductions that is not an add.
7043     //  r *= v1 + v2 + v3 + v4
7044     // In such a case start looking for a tree rooted in the first '+'.
7045     if (Phi) {
7046       if (getLHS(RdxKind, B) == Phi) {
7047         Phi = nullptr;
7048         B = dyn_cast<Instruction>(getRHS(RdxKind, B));
7049         if (!B)
7050           return false;
7051         RdxKind = getRdxKind(B);
7052       } else if (getRHS(RdxKind, B) == Phi) {
7053         Phi = nullptr;
7054         B = dyn_cast<Instruction>(getLHS(RdxKind, B));
7055         if (!B)
7056           return false;
7057         RdxKind = getRdxKind(B);
7058       }
7059     }
7060 
7061     if (!isVectorizable(RdxKind, B))
7062       return false;
7063 
7064     // Analyze "regular" integer/FP types for reductions - no target-specific
7065     // types or pointers.
7066     Type *Ty = B->getType();
7067     if (!isValidElementType(Ty) || Ty->isPointerTy())
7068       return false;
7069 
7070     // Though the ultimate reduction may have multiple uses, its condition must
7071     // have only single use.
7072     if (auto *SI = dyn_cast<SelectInst>(B))
7073       if (!SI->getCondition()->hasOneUse())
7074         return false;
7075 
7076     ReductionRoot = B;
7077 
7078     // The opcode for leaf values that we perform a reduction on.
7079     // For example: load(x) + load(y) + load(z) + fptoui(w)
7080     // The leaf opcode for 'w' does not match, so we don't include it as a
7081     // potential candidate for the reduction.
7082     unsigned LeafOpcode = 0;
7083 
7084     // Post order traverse the reduction tree starting at B. We only handle true
7085     // trees containing only binary operators.
7086     SmallVector<std::pair<Instruction *, unsigned>, 32> Stack;
7087     Stack.push_back(std::make_pair(B, getFirstOperandIndex(B)));
7088     initReductionOps(B);
7089     while (!Stack.empty()) {
7090       Instruction *TreeN = Stack.back().first;
7091       unsigned EdgeToVisit = Stack.back().second++;
7092       const RecurKind TreeRdxKind = getRdxKind(TreeN);
7093       bool IsReducedValue = TreeRdxKind != RdxKind;
7094 
7095       // Postorder visit.
7096       if (IsReducedValue || EdgeToVisit == getNumberOfOperands(TreeN)) {
7097         if (IsReducedValue)
7098           ReducedVals.push_back(TreeN);
7099         else {
7100           auto ExtraArgsIter = ExtraArgs.find(TreeN);
7101           if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) {
7102             // Check if TreeN is an extra argument of its parent operation.
7103             if (Stack.size() <= 1) {
7104               // TreeN can't be an extra argument as it is a root reduction
7105               // operation.
7106               return false;
7107             }
7108             // Yes, TreeN is an extra argument, do not add it to a list of
7109             // reduction operations.
7110             // Stack[Stack.size() - 2] always points to the parent operation.
7111             markExtraArg(Stack[Stack.size() - 2], TreeN);
7112             ExtraArgs.erase(TreeN);
7113           } else
7114             addReductionOps(TreeN);
7115         }
7116         // Retract.
7117         Stack.pop_back();
7118         continue;
7119       }
7120 
7121       // Visit left or right.
7122       Value *EdgeVal = TreeN->getOperand(EdgeToVisit);
7123       auto *EdgeInst = dyn_cast<Instruction>(EdgeVal);
7124       if (!EdgeInst) {
7125         // Edge value is not a reduction instruction or a leaf instruction.
7126         // (It may be a constant, function argument, or something else.)
7127         markExtraArg(Stack.back(), EdgeVal);
7128         continue;
7129       }
7130       RecurKind EdgeRdxKind = getRdxKind(EdgeInst);
7131       // Continue analysis if the next operand is a reduction operation or
7132       // (possibly) a leaf value. If the leaf value opcode is not set,
7133       // the first met operation != reduction operation is considered as the
7134       // leaf opcode.
7135       // Only handle trees in the current basic block.
7136       // Each tree node needs to have minimal number of users except for the
7137       // ultimate reduction.
7138       const bool IsRdxInst = EdgeRdxKind == RdxKind;
7139       if (EdgeInst != Phi && EdgeInst != B &&
7140           hasSameParent(EdgeInst, B->getParent(), IsRdxInst) &&
7141           hasRequiredNumberOfUses(isa<SelectInst>(B), EdgeInst) &&
7142           (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) {
7143         if (IsRdxInst) {
7144           // We need to be able to reassociate the reduction operations.
7145           if (!isVectorizable(EdgeRdxKind, EdgeInst)) {
7146             // I is an extra argument for TreeN (its parent operation).
7147             markExtraArg(Stack.back(), EdgeInst);
7148             continue;
7149           }
7150         } else if (!LeafOpcode) {
7151           LeafOpcode = EdgeInst->getOpcode();
7152         }
7153         Stack.push_back(
7154             std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst)));
7155         continue;
7156       }
7157       // I is an extra argument for TreeN (its parent operation).
7158       markExtraArg(Stack.back(), EdgeInst);
7159     }
7160     return true;
7161   }
7162 
7163   /// Attempt to vectorize the tree found by matchAssociativeReduction.
7164   bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
7165     // If there are a sufficient number of reduction values, reduce
7166     // to a nearby power-of-2. We can safely generate oversized
7167     // vectors and rely on the backend to split them to legal sizes.
7168     unsigned NumReducedVals = ReducedVals.size();
7169     if (NumReducedVals < 4)
7170       return false;
7171 
7172     // Intersect the fast-math-flags from all reduction operations.
7173     FastMathFlags RdxFMF;
7174     RdxFMF.set();
7175     for (ReductionOpsType &RdxOp : ReductionOps) {
7176       for (Value *RdxVal : RdxOp) {
7177         if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal))
7178           RdxFMF &= FPMO->getFastMathFlags();
7179       }
7180     }
7181 
7182     IRBuilder<> Builder(cast<Instruction>(ReductionRoot));
7183     Builder.setFastMathFlags(RdxFMF);
7184 
7185     BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues;
7186     // The same extra argument may be used several times, so log each attempt
7187     // to use it.
7188     for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) {
7189       assert(Pair.first && "DebugLoc must be set.");
7190       ExternallyUsedValues[Pair.second].push_back(Pair.first);
7191     }
7192 
7193     // The compare instruction of a min/max is the insertion point for new
7194     // instructions and may be replaced with a new compare instruction.
7195     auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) {
7196       assert(isa<SelectInst>(RdxRootInst) &&
7197              "Expected min/max reduction to have select root instruction");
7198       Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition();
7199       assert(isa<Instruction>(ScalarCond) &&
7200              "Expected min/max reduction to have compare condition");
7201       return cast<Instruction>(ScalarCond);
7202     };
7203 
7204     // The reduction root is used as the insertion point for new instructions,
7205     // so set it as externally used to prevent it from being deleted.
7206     ExternallyUsedValues[ReductionRoot];
7207     SmallVector<Value *, 16> IgnoreList;
7208     for (ReductionOpsType &RdxOp : ReductionOps)
7209       IgnoreList.append(RdxOp.begin(), RdxOp.end());
7210 
7211     unsigned ReduxWidth = PowerOf2Floor(NumReducedVals);
7212     if (NumReducedVals > ReduxWidth) {
7213       // In the loop below, we are building a tree based on a window of
7214       // 'ReduxWidth' values.
7215       // If the operands of those values have common traits (compare predicate,
7216       // constant operand, etc), then we want to group those together to
7217       // minimize the cost of the reduction.
7218 
7219       // TODO: This should be extended to count common operands for
7220       //       compares and binops.
7221 
7222       // Step 1: Count the number of times each compare predicate occurs.
7223       SmallDenseMap<unsigned, unsigned> PredCountMap;
7224       for (Value *RdxVal : ReducedVals) {
7225         CmpInst::Predicate Pred;
7226         if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value())))
7227           ++PredCountMap[Pred];
7228       }
7229       // Step 2: Sort the values so the most common predicates come first.
7230       stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) {
7231         CmpInst::Predicate PredA, PredB;
7232         if (match(A, m_Cmp(PredA, m_Value(), m_Value())) &&
7233             match(B, m_Cmp(PredB, m_Value(), m_Value()))) {
7234           return PredCountMap[PredA] > PredCountMap[PredB];
7235         }
7236         return false;
7237       });
7238     }
7239 
7240     Value *VectorizedTree = nullptr;
7241     unsigned i = 0;
7242     while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) {
7243       ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth);
7244       V.buildTree(VL, ExternallyUsedValues, IgnoreList);
7245       Optional<ArrayRef<unsigned>> Order = V.bestOrder();
7246       if (Order) {
7247         assert(Order->size() == VL.size() &&
7248                "Order size must be the same as number of vectorized "
7249                "instructions.");
7250         // TODO: reorder tree nodes without tree rebuilding.
7251         SmallVector<Value *, 4> ReorderedOps(VL.size());
7252         llvm::transform(*Order, ReorderedOps.begin(),
7253                         [VL](const unsigned Idx) { return VL[Idx]; });
7254         V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList);
7255       }
7256       if (V.isTreeTinyAndNotFullyVectorizable())
7257         break;
7258       if (V.isLoadCombineReductionCandidate(RdxKind))
7259         break;
7260 
7261       V.computeMinimumValueSizes();
7262 
7263       // Estimate cost.
7264       InstructionCost TreeCost = V.getTreeCost();
7265       InstructionCost ReductionCost =
7266           getReductionCost(TTI, ReducedVals[i], ReduxWidth);
7267       InstructionCost Cost = TreeCost + ReductionCost;
7268       if (!Cost.isValid()) {
7269         LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n");
7270         return false;
7271       }
7272       if (Cost >= -SLPCostThreshold) {
7273         V.getORE()->emit([&]() {
7274           return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial",
7275                                           cast<Instruction>(VL[0]))
7276                  << "Vectorizing horizontal reduction is possible"
7277                  << "but not beneficial with cost " << ore::NV("Cost", Cost)
7278                  << " and threshold "
7279                  << ore::NV("Threshold", -SLPCostThreshold);
7280         });
7281         break;
7282       }
7283 
7284       LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
7285                         << Cost << ". (HorRdx)\n");
7286       V.getORE()->emit([&]() {
7287         return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction",
7288                                   cast<Instruction>(VL[0]))
7289                << "Vectorized horizontal reduction with cost "
7290                << ore::NV("Cost", Cost) << " and with tree size "
7291                << ore::NV("TreeSize", V.getTreeSize());
7292       });
7293 
7294       // Vectorize a tree.
7295       DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
7296       Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues);
7297 
7298       // Emit a reduction. If the root is a select (min/max idiom), the insert
7299       // point is the compare condition of that select.
7300       Instruction *RdxRootInst = cast<Instruction>(ReductionRoot);
7301       if (isa<SelectInst>(RdxRootInst))
7302         Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst));
7303       else
7304         Builder.SetInsertPoint(RdxRootInst);
7305 
7306       Value *ReducedSubTree =
7307           emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI);
7308 
7309       if (!VectorizedTree) {
7310         // Initialize the final value in the reduction.
7311         VectorizedTree = ReducedSubTree;
7312       } else {
7313         // Update the final value in the reduction.
7314         Builder.SetCurrentDebugLocation(Loc);
7315         VectorizedTree = createOp(Builder, RdxKind, VectorizedTree,
7316                                   ReducedSubTree, "op.rdx", ReductionOps);
7317       }
7318       i += ReduxWidth;
7319       ReduxWidth = PowerOf2Floor(NumReducedVals - i);
7320     }
7321 
7322     if (VectorizedTree) {
7323       // Finish the reduction.
7324       for (; i < NumReducedVals; ++i) {
7325         auto *I = cast<Instruction>(ReducedVals[i]);
7326         Builder.SetCurrentDebugLocation(I->getDebugLoc());
7327         VectorizedTree =
7328             createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps);
7329       }
7330       for (auto &Pair : ExternallyUsedValues) {
7331         // Add each externally used value to the final reduction.
7332         for (auto *I : Pair.second) {
7333           Builder.SetCurrentDebugLocation(I->getDebugLoc());
7334           VectorizedTree = createOp(Builder, RdxKind, VectorizedTree,
7335                                     Pair.first, "op.extra", I);
7336         }
7337       }
7338 
7339       ReductionRoot->replaceAllUsesWith(VectorizedTree);
7340 
7341       // Mark all scalar reduction ops for deletion, they are replaced by the
7342       // vector reductions.
7343       V.eraseInstructions(IgnoreList);
7344     }
7345     return VectorizedTree != nullptr;
7346   }
7347 
7348   unsigned numReductionValues() const { return ReducedVals.size(); }
7349 
7350 private:
7351   /// Calculate the cost of a reduction.
7352   InstructionCost getReductionCost(TargetTransformInfo *TTI,
7353                                    Value *FirstReducedVal,
7354                                    unsigned ReduxWidth) {
7355     Type *ScalarTy = FirstReducedVal->getType();
7356     FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth);
7357     InstructionCost VectorCost, ScalarCost;
7358     switch (RdxKind) {
7359     case RecurKind::Add:
7360     case RecurKind::Mul:
7361     case RecurKind::Or:
7362     case RecurKind::And:
7363     case RecurKind::Xor:
7364     case RecurKind::FAdd:
7365     case RecurKind::FMul: {
7366       unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind);
7367       VectorCost = TTI->getArithmeticReductionCost(RdxOpcode, VectorTy,
7368                                                    /*IsPairwiseForm=*/false);
7369       ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy);
7370       break;
7371     }
7372     case RecurKind::FMax:
7373     case RecurKind::FMin: {
7374       auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy));
7375       VectorCost =
7376           TTI->getMinMaxReductionCost(VectorTy, VecCondTy,
7377                                       /*pairwise=*/false, /*unsigned=*/false);
7378       ScalarCost =
7379           TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy) +
7380           TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
7381                                   CmpInst::makeCmpResultType(ScalarTy));
7382       break;
7383     }
7384     case RecurKind::SMax:
7385     case RecurKind::SMin:
7386     case RecurKind::UMax:
7387     case RecurKind::UMin: {
7388       auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy));
7389       bool IsUnsigned =
7390           RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin;
7391       VectorCost =
7392           TTI->getMinMaxReductionCost(VectorTy, VecCondTy,
7393                                       /*IsPairwiseForm=*/false, IsUnsigned);
7394       ScalarCost =
7395           TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy) +
7396           TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
7397                                   CmpInst::makeCmpResultType(ScalarTy));
7398       break;
7399     }
7400     default:
7401       llvm_unreachable("Expected arithmetic or min/max reduction operation");
7402     }
7403 
7404     // Scalar cost is repeated for N-1 elements.
7405     ScalarCost *= (ReduxWidth - 1);
7406     LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost
7407                       << " for reduction that starts with " << *FirstReducedVal
7408                       << " (It is a splitting reduction)\n");
7409     return VectorCost - ScalarCost;
7410   }
7411 
7412   /// Emit a horizontal reduction of the vectorized value.
7413   Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder,
7414                        unsigned ReduxWidth, const TargetTransformInfo *TTI) {
7415     assert(VectorizedValue && "Need to have a vectorized tree node");
7416     assert(isPowerOf2_32(ReduxWidth) &&
7417            "We only handle power-of-two reductions for now");
7418 
7419     return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind,
7420                                        ReductionOps.back());
7421   }
7422 };
7423 
7424 } // end anonymous namespace
7425 
7426 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) {
7427   if (auto *IE = dyn_cast<InsertElementInst>(InsertInst))
7428     return cast<FixedVectorType>(IE->getType())->getNumElements();
7429 
7430   unsigned AggregateSize = 1;
7431   auto *IV = cast<InsertValueInst>(InsertInst);
7432   Type *CurrentType = IV->getType();
7433   do {
7434     if (auto *ST = dyn_cast<StructType>(CurrentType)) {
7435       for (auto *Elt : ST->elements())
7436         if (Elt != ST->getElementType(0)) // check homogeneity
7437           return None;
7438       AggregateSize *= ST->getNumElements();
7439       CurrentType = ST->getElementType(0);
7440     } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) {
7441       AggregateSize *= AT->getNumElements();
7442       CurrentType = AT->getElementType();
7443     } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) {
7444       AggregateSize *= VT->getNumElements();
7445       return AggregateSize;
7446     } else if (CurrentType->isSingleValueType()) {
7447       return AggregateSize;
7448     } else {
7449       return None;
7450     }
7451   } while (true);
7452 }
7453 
7454 static Optional<unsigned> getOperandIndex(Instruction *InsertInst,
7455                                           unsigned OperandOffset) {
7456   unsigned OperandIndex = OperandOffset;
7457   if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) {
7458     if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) {
7459       auto *VT = cast<FixedVectorType>(IE->getType());
7460       OperandIndex *= VT->getNumElements();
7461       OperandIndex += CI->getZExtValue();
7462       return OperandIndex;
7463     }
7464     return None;
7465   }
7466 
7467   auto *IV = cast<InsertValueInst>(InsertInst);
7468   Type *CurrentType = IV->getType();
7469   for (unsigned int Index : IV->indices()) {
7470     if (auto *ST = dyn_cast<StructType>(CurrentType)) {
7471       OperandIndex *= ST->getNumElements();
7472       CurrentType = ST->getElementType(Index);
7473     } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) {
7474       OperandIndex *= AT->getNumElements();
7475       CurrentType = AT->getElementType();
7476     } else {
7477       return None;
7478     }
7479     OperandIndex += Index;
7480   }
7481   return OperandIndex;
7482 }
7483 
7484 static bool findBuildAggregate_rec(Instruction *LastInsertInst,
7485                                    TargetTransformInfo *TTI,
7486                                    SmallVectorImpl<Value *> &BuildVectorOpds,
7487                                    SmallVectorImpl<Value *> &InsertElts,
7488                                    unsigned OperandOffset) {
7489   do {
7490     Value *InsertedOperand = LastInsertInst->getOperand(1);
7491     Optional<unsigned> OperandIndex =
7492         getOperandIndex(LastInsertInst, OperandOffset);
7493     if (!OperandIndex)
7494       return false;
7495     if (isa<InsertElementInst>(InsertedOperand) ||
7496         isa<InsertValueInst>(InsertedOperand)) {
7497       if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI,
7498                                   BuildVectorOpds, InsertElts, *OperandIndex))
7499         return false;
7500     } else {
7501       BuildVectorOpds[*OperandIndex] = InsertedOperand;
7502       InsertElts[*OperandIndex] = LastInsertInst;
7503     }
7504     if (isa<UndefValue>(LastInsertInst->getOperand(0)))
7505       return true;
7506     LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0));
7507   } while (LastInsertInst != nullptr &&
7508            (isa<InsertValueInst>(LastInsertInst) ||
7509             isa<InsertElementInst>(LastInsertInst)) &&
7510            LastInsertInst->hasOneUse());
7511   return false;
7512 }
7513 
7514 /// Recognize construction of vectors like
7515 ///  %ra = insertelement <4 x float> poison, float %s0, i32 0
7516 ///  %rb = insertelement <4 x float> %ra, float %s1, i32 1
7517 ///  %rc = insertelement <4 x float> %rb, float %s2, i32 2
7518 ///  %rd = insertelement <4 x float> %rc, float %s3, i32 3
7519 ///  starting from the last insertelement or insertvalue instruction.
7520 ///
7521 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>},
7522 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on.
7523 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples.
7524 ///
7525 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type.
7526 ///
7527 /// \return true if it matches.
7528 static bool findBuildAggregate(Instruction *LastInsertInst,
7529                                TargetTransformInfo *TTI,
7530                                SmallVectorImpl<Value *> &BuildVectorOpds,
7531                                SmallVectorImpl<Value *> &InsertElts) {
7532 
7533   assert((isa<InsertElementInst>(LastInsertInst) ||
7534           isa<InsertValueInst>(LastInsertInst)) &&
7535          "Expected insertelement or insertvalue instruction!");
7536 
7537   assert((BuildVectorOpds.empty() && InsertElts.empty()) &&
7538          "Expected empty result vectors!");
7539 
7540   Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst);
7541   if (!AggregateSize)
7542     return false;
7543   BuildVectorOpds.resize(*AggregateSize);
7544   InsertElts.resize(*AggregateSize);
7545 
7546   if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts,
7547                              0)) {
7548     llvm::erase_value(BuildVectorOpds, nullptr);
7549     llvm::erase_value(InsertElts, nullptr);
7550     if (BuildVectorOpds.size() >= 2)
7551       return true;
7552   }
7553 
7554   return false;
7555 }
7556 
7557 static bool PhiTypeSorterFunc(Value *V, Value *V2) {
7558   return V->getType() < V2->getType();
7559 }
7560 
7561 /// Try and get a reduction value from a phi node.
7562 ///
7563 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions
7564 /// if they come from either \p ParentBB or a containing loop latch.
7565 ///
7566 /// \returns A candidate reduction value if possible, or \code nullptr \endcode
7567 /// if not possible.
7568 static Value *getReductionValue(const DominatorTree *DT, PHINode *P,
7569                                 BasicBlock *ParentBB, LoopInfo *LI) {
7570   // There are situations where the reduction value is not dominated by the
7571   // reduction phi. Vectorizing such cases has been reported to cause
7572   // miscompiles. See PR25787.
7573   auto DominatedReduxValue = [&](Value *R) {
7574     return isa<Instruction>(R) &&
7575            DT->dominates(P->getParent(), cast<Instruction>(R)->getParent());
7576   };
7577 
7578   Value *Rdx = nullptr;
7579 
7580   // Return the incoming value if it comes from the same BB as the phi node.
7581   if (P->getIncomingBlock(0) == ParentBB) {
7582     Rdx = P->getIncomingValue(0);
7583   } else if (P->getIncomingBlock(1) == ParentBB) {
7584     Rdx = P->getIncomingValue(1);
7585   }
7586 
7587   if (Rdx && DominatedReduxValue(Rdx))
7588     return Rdx;
7589 
7590   // Otherwise, check whether we have a loop latch to look at.
7591   Loop *BBL = LI->getLoopFor(ParentBB);
7592   if (!BBL)
7593     return nullptr;
7594   BasicBlock *BBLatch = BBL->getLoopLatch();
7595   if (!BBLatch)
7596     return nullptr;
7597 
7598   // There is a loop latch, return the incoming value if it comes from
7599   // that. This reduction pattern occasionally turns up.
7600   if (P->getIncomingBlock(0) == BBLatch) {
7601     Rdx = P->getIncomingValue(0);
7602   } else if (P->getIncomingBlock(1) == BBLatch) {
7603     Rdx = P->getIncomingValue(1);
7604   }
7605 
7606   if (Rdx && DominatedReduxValue(Rdx))
7607     return Rdx;
7608 
7609   return nullptr;
7610 }
7611 
7612 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) {
7613   if (match(I, m_BinOp(m_Value(V0), m_Value(V1))))
7614     return true;
7615   if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1))))
7616     return true;
7617   if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1))))
7618     return true;
7619   if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1))))
7620     return true;
7621   if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1))))
7622     return true;
7623   if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1))))
7624     return true;
7625   if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1))))
7626     return true;
7627   return false;
7628 }
7629 
7630 /// Attempt to reduce a horizontal reduction.
7631 /// If it is legal to match a horizontal reduction feeding the phi node \a P
7632 /// with reduction operators \a Root (or one of its operands) in a basic block
7633 /// \a BB, then check if it can be done. If horizontal reduction is not found
7634 /// and root instruction is a binary operation, vectorization of the operands is
7635 /// attempted.
7636 /// \returns true if a horizontal reduction was matched and reduced or operands
7637 /// of one of the binary instruction were vectorized.
7638 /// \returns false if a horizontal reduction was not matched (or not possible)
7639 /// or no vectorization of any binary operation feeding \a Root instruction was
7640 /// performed.
7641 static bool tryToVectorizeHorReductionOrInstOperands(
7642     PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R,
7643     TargetTransformInfo *TTI,
7644     const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) {
7645   if (!ShouldVectorizeHor)
7646     return false;
7647 
7648   if (!Root)
7649     return false;
7650 
7651   if (Root->getParent() != BB || isa<PHINode>(Root))
7652     return false;
7653   // Start analysis starting from Root instruction. If horizontal reduction is
7654   // found, try to vectorize it. If it is not a horizontal reduction or
7655   // vectorization is not possible or not effective, and currently analyzed
7656   // instruction is a binary operation, try to vectorize the operands, using
7657   // pre-order DFS traversal order. If the operands were not vectorized, repeat
7658   // the same procedure considering each operand as a possible root of the
7659   // horizontal reduction.
7660   // Interrupt the process if the Root instruction itself was vectorized or all
7661   // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized.
7662   // Skip the analysis of CmpInsts.Compiler implements postanalysis of the
7663   // CmpInsts so we can skip extra attempts in
7664   // tryToVectorizeHorReductionOrInstOperands and save compile time.
7665   SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0});
7666   SmallPtrSet<Value *, 8> VisitedInstrs;
7667   bool Res = false;
7668   while (!Stack.empty()) {
7669     Instruction *Inst;
7670     unsigned Level;
7671     std::tie(Inst, Level) = Stack.pop_back_val();
7672     Value *B0, *B1;
7673     bool IsBinop = matchRdxBop(Inst, B0, B1);
7674     bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value()));
7675     if (IsBinop || IsSelect) {
7676       HorizontalReduction HorRdx;
7677       if (HorRdx.matchAssociativeReduction(P, Inst)) {
7678         if (HorRdx.tryToReduce(R, TTI)) {
7679           Res = true;
7680           // Set P to nullptr to avoid re-analysis of phi node in
7681           // matchAssociativeReduction function unless this is the root node.
7682           P = nullptr;
7683           continue;
7684         }
7685       }
7686       if (P && IsBinop) {
7687         Inst = dyn_cast<Instruction>(B0);
7688         if (Inst == P)
7689           Inst = dyn_cast<Instruction>(B1);
7690         if (!Inst) {
7691           // Set P to nullptr to avoid re-analysis of phi node in
7692           // matchAssociativeReduction function unless this is the root node.
7693           P = nullptr;
7694           continue;
7695         }
7696       }
7697     }
7698     // Set P to nullptr to avoid re-analysis of phi node in
7699     // matchAssociativeReduction function unless this is the root node.
7700     P = nullptr;
7701     // Do not try to vectorize CmpInst operands, this is done separately.
7702     if (!isa<CmpInst>(Inst) && Vectorize(Inst, R)) {
7703       Res = true;
7704       continue;
7705     }
7706 
7707     // Try to vectorize operands.
7708     // Continue analysis for the instruction from the same basic block only to
7709     // save compile time.
7710     if (++Level < RecursionMaxDepth)
7711       for (auto *Op : Inst->operand_values())
7712         if (VisitedInstrs.insert(Op).second)
7713           if (auto *I = dyn_cast<Instruction>(Op))
7714             // Do not try to vectorize CmpInst operands,  this is done
7715             // separately.
7716             if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) &&
7717                 I->getParent() == BB)
7718               Stack.emplace_back(I, Level);
7719   }
7720   return Res;
7721 }
7722 
7723 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V,
7724                                                  BasicBlock *BB, BoUpSLP &R,
7725                                                  TargetTransformInfo *TTI) {
7726   auto *I = dyn_cast_or_null<Instruction>(V);
7727   if (!I)
7728     return false;
7729 
7730   if (!isa<BinaryOperator>(I))
7731     P = nullptr;
7732   // Try to match and vectorize a horizontal reduction.
7733   auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool {
7734     return tryToVectorize(I, R);
7735   };
7736   return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI,
7737                                                   ExtraVectorization);
7738 }
7739 
7740 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI,
7741                                                  BasicBlock *BB, BoUpSLP &R) {
7742   const DataLayout &DL = BB->getModule()->getDataLayout();
7743   if (!R.canMapToVector(IVI->getType(), DL))
7744     return false;
7745 
7746   SmallVector<Value *, 16> BuildVectorOpds;
7747   SmallVector<Value *, 16> BuildVectorInsts;
7748   if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts))
7749     return false;
7750 
7751   LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n");
7752   // Aggregate value is unlikely to be processed in vector register, we need to
7753   // extract scalars into scalar registers, so NeedExtraction is set true.
7754   return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false,
7755                             BuildVectorInsts);
7756 }
7757 
7758 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI,
7759                                                    BasicBlock *BB, BoUpSLP &R) {
7760   SmallVector<Value *, 16> BuildVectorInsts;
7761   SmallVector<Value *, 16> BuildVectorOpds;
7762   SmallVector<int> Mask;
7763   if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) ||
7764       (llvm::all_of(BuildVectorOpds,
7765                     [](Value *V) { return isa<ExtractElementInst>(V); }) &&
7766        isShuffle(BuildVectorOpds, Mask)))
7767     return false;
7768 
7769   // Vectorize starting with the build vector operands ignoring the BuildVector
7770   // instructions for the purpose of scheduling and user extraction.
7771   return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false,
7772                             BuildVectorInsts);
7773 }
7774 
7775 bool SLPVectorizerPass::vectorizeSimpleInstructions(
7776     SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R,
7777     bool AtTerminator) {
7778   bool OpsChanged = false;
7779   SmallVector<Instruction *, 4> PostponedCmps;
7780   for (auto *I : reverse(Instructions)) {
7781     if (R.isDeleted(I))
7782       continue;
7783     if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I))
7784       OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R);
7785     else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I))
7786       OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R);
7787     else if (isa<CmpInst>(I))
7788       PostponedCmps.push_back(I);
7789   }
7790   if (AtTerminator) {
7791     // Try to find reductions first.
7792     for (Instruction *I : PostponedCmps) {
7793       if (R.isDeleted(I))
7794         continue;
7795       for (Value *Op : I->operands())
7796         OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI);
7797     }
7798     // Try to vectorize operands as vector bundles.
7799     for (Instruction *I : PostponedCmps) {
7800       if (R.isDeleted(I))
7801         continue;
7802       OpsChanged |= tryToVectorize(I, R);
7803     }
7804     Instructions.clear();
7805   } else {
7806     // Insert in reverse order since the PostponedCmps vector was filled in
7807     // reverse order.
7808     Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend());
7809   }
7810   return OpsChanged;
7811 }
7812 
7813 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
7814   bool Changed = false;
7815   SmallVector<Value *, 4> Incoming;
7816   SmallPtrSet<Value *, 16> VisitedInstrs;
7817 
7818   bool HaveVectorizedPhiNodes = true;
7819   while (HaveVectorizedPhiNodes) {
7820     HaveVectorizedPhiNodes = false;
7821 
7822     // Collect the incoming values from the PHIs.
7823     Incoming.clear();
7824     for (Instruction &I : *BB) {
7825       PHINode *P = dyn_cast<PHINode>(&I);
7826       if (!P)
7827         break;
7828 
7829       if (!VisitedInstrs.count(P) && !R.isDeleted(P))
7830         Incoming.push_back(P);
7831     }
7832 
7833     // Sort by type.
7834     llvm::stable_sort(Incoming, PhiTypeSorterFunc);
7835 
7836     // Try to vectorize elements base on their type.
7837     for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
7838                                            E = Incoming.end();
7839          IncIt != E;) {
7840 
7841       // Look for the next elements with the same type.
7842       SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
7843       while (SameTypeIt != E &&
7844              (*SameTypeIt)->getType() == (*IncIt)->getType()) {
7845         VisitedInstrs.insert(*SameTypeIt);
7846         ++SameTypeIt;
7847       }
7848 
7849       // Try to vectorize them.
7850       unsigned NumElts = (SameTypeIt - IncIt);
7851       LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs ("
7852                         << NumElts << ")\n");
7853       // The order in which the phi nodes appear in the program does not matter.
7854       // So allow tryToVectorizeList to reorder them if it is beneficial. This
7855       // is done when there are exactly two elements since tryToVectorizeList
7856       // asserts that there are only two values when AllowReorder is true.
7857       bool AllowReorder = NumElts == 2;
7858       if (NumElts > 1 &&
7859           tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, AllowReorder)) {
7860         // Success start over because instructions might have been changed.
7861         HaveVectorizedPhiNodes = true;
7862         Changed = true;
7863         break;
7864       }
7865 
7866       // Start over at the next instruction of a different type (or the end).
7867       IncIt = SameTypeIt;
7868     }
7869   }
7870 
7871   VisitedInstrs.clear();
7872 
7873   SmallVector<Instruction *, 8> PostProcessInstructions;
7874   SmallDenseSet<Instruction *, 4> KeyNodes;
7875   for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
7876     // Skip instructions with scalable type. The num of elements is unknown at
7877     // compile-time for scalable type.
7878     if (isa<ScalableVectorType>(it->getType()))
7879       continue;
7880 
7881     // Skip instructions marked for the deletion.
7882     if (R.isDeleted(&*it))
7883       continue;
7884     // We may go through BB multiple times so skip the one we have checked.
7885     if (!VisitedInstrs.insert(&*it).second) {
7886       if (it->use_empty() && KeyNodes.contains(&*it) &&
7887           vectorizeSimpleInstructions(PostProcessInstructions, BB, R,
7888                                       it->isTerminator())) {
7889         // We would like to start over since some instructions are deleted
7890         // and the iterator may become invalid value.
7891         Changed = true;
7892         it = BB->begin();
7893         e = BB->end();
7894       }
7895       continue;
7896     }
7897 
7898     if (isa<DbgInfoIntrinsic>(it))
7899       continue;
7900 
7901     // Try to vectorize reductions that use PHINodes.
7902     if (PHINode *P = dyn_cast<PHINode>(it)) {
7903       // Check that the PHI is a reduction PHI.
7904       if (P->getNumIncomingValues() == 2) {
7905         // Try to match and vectorize a horizontal reduction.
7906         if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R,
7907                                      TTI)) {
7908           Changed = true;
7909           it = BB->begin();
7910           e = BB->end();
7911           continue;
7912         }
7913       }
7914       // Try to vectorize the incoming values of the PHI, to catch reductions
7915       // that feed into PHIs.
7916       for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) {
7917         // Skip if the incoming block is the current BB for now. Also, bypass
7918         // unreachable IR for efficiency and to avoid crashing.
7919         // TODO: Collect the skipped incoming values and try to vectorize them
7920         // after processing BB.
7921         if (BB == P->getIncomingBlock(I) ||
7922             !DT->isReachableFromEntry(P->getIncomingBlock(I)))
7923           continue;
7924 
7925         Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I),
7926                                             P->getIncomingBlock(I), R, TTI);
7927       }
7928       continue;
7929     }
7930 
7931     // Ran into an instruction without users, like terminator, or function call
7932     // with ignored return value, store. Ignore unused instructions (basing on
7933     // instruction type, except for CallInst and InvokeInst).
7934     if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) ||
7935                             isa<InvokeInst>(it))) {
7936       KeyNodes.insert(&*it);
7937       bool OpsChanged = false;
7938       if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) {
7939         for (auto *V : it->operand_values()) {
7940           // Try to match and vectorize a horizontal reduction.
7941           OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI);
7942         }
7943       }
7944       // Start vectorization of post-process list of instructions from the
7945       // top-tree instructions to try to vectorize as many instructions as
7946       // possible.
7947       OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R,
7948                                                 it->isTerminator());
7949       if (OpsChanged) {
7950         // We would like to start over since some instructions are deleted
7951         // and the iterator may become invalid value.
7952         Changed = true;
7953         it = BB->begin();
7954         e = BB->end();
7955         continue;
7956       }
7957     }
7958 
7959     if (isa<InsertElementInst>(it) || isa<CmpInst>(it) ||
7960         isa<InsertValueInst>(it))
7961       PostProcessInstructions.push_back(&*it);
7962   }
7963 
7964   return Changed;
7965 }
7966 
7967 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) {
7968   auto Changed = false;
7969   for (auto &Entry : GEPs) {
7970     // If the getelementptr list has fewer than two elements, there's nothing
7971     // to do.
7972     if (Entry.second.size() < 2)
7973       continue;
7974 
7975     LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length "
7976                       << Entry.second.size() << ".\n");
7977 
7978     // Process the GEP list in chunks suitable for the target's supported
7979     // vector size. If a vector register can't hold 1 element, we are done. We
7980     // are trying to vectorize the index computations, so the maximum number of
7981     // elements is based on the size of the index expression, rather than the
7982     // size of the GEP itself (the target's pointer size).
7983     unsigned MaxVecRegSize = R.getMaxVecRegSize();
7984     unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin());
7985     if (MaxVecRegSize < EltSize)
7986       continue;
7987 
7988     unsigned MaxElts = MaxVecRegSize / EltSize;
7989     for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) {
7990       auto Len = std::min<unsigned>(BE - BI, MaxElts);
7991       ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len);
7992 
7993       // Initialize a set a candidate getelementptrs. Note that we use a
7994       // SetVector here to preserve program order. If the index computations
7995       // are vectorizable and begin with loads, we want to minimize the chance
7996       // of having to reorder them later.
7997       SetVector<Value *> Candidates(GEPList.begin(), GEPList.end());
7998 
7999       // Some of the candidates may have already been vectorized after we
8000       // initially collected them. If so, they are marked as deleted, so remove
8001       // them from the set of candidates.
8002       Candidates.remove_if(
8003           [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); });
8004 
8005       // Remove from the set of candidates all pairs of getelementptrs with
8006       // constant differences. Such getelementptrs are likely not good
8007       // candidates for vectorization in a bottom-up phase since one can be
8008       // computed from the other. We also ensure all candidate getelementptr
8009       // indices are unique.
8010       for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) {
8011         auto *GEPI = GEPList[I];
8012         if (!Candidates.count(GEPI))
8013           continue;
8014         auto *SCEVI = SE->getSCEV(GEPList[I]);
8015         for (int J = I + 1; J < E && Candidates.size() > 1; ++J) {
8016           auto *GEPJ = GEPList[J];
8017           auto *SCEVJ = SE->getSCEV(GEPList[J]);
8018           if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) {
8019             Candidates.remove(GEPI);
8020             Candidates.remove(GEPJ);
8021           } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) {
8022             Candidates.remove(GEPJ);
8023           }
8024         }
8025       }
8026 
8027       // We break out of the above computation as soon as we know there are
8028       // fewer than two candidates remaining.
8029       if (Candidates.size() < 2)
8030         continue;
8031 
8032       // Add the single, non-constant index of each candidate to the bundle. We
8033       // ensured the indices met these constraints when we originally collected
8034       // the getelementptrs.
8035       SmallVector<Value *, 16> Bundle(Candidates.size());
8036       auto BundleIndex = 0u;
8037       for (auto *V : Candidates) {
8038         auto *GEP = cast<GetElementPtrInst>(V);
8039         auto *GEPIdx = GEP->idx_begin()->get();
8040         assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx));
8041         Bundle[BundleIndex++] = GEPIdx;
8042       }
8043 
8044       // Try and vectorize the indices. We are currently only interested in
8045       // gather-like cases of the form:
8046       //
8047       // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ...
8048       //
8049       // where the loads of "a", the loads of "b", and the subtractions can be
8050       // performed in parallel. It's likely that detecting this pattern in a
8051       // bottom-up phase will be simpler and less costly than building a
8052       // full-blown top-down phase beginning at the consecutive loads.
8053       Changed |= tryToVectorizeList(Bundle, R);
8054     }
8055   }
8056   return Changed;
8057 }
8058 
8059 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) {
8060   bool Changed = false;
8061   // Attempt to sort and vectorize each of the store-groups.
8062   for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e;
8063        ++it) {
8064     if (it->second.size() < 2)
8065       continue;
8066 
8067     LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
8068                       << it->second.size() << ".\n");
8069 
8070     Changed |= vectorizeStores(it->second, R);
8071   }
8072   return Changed;
8073 }
8074 
8075 char SLPVectorizer::ID = 0;
8076 
8077 static const char lv_name[] = "SLP Vectorizer";
8078 
8079 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
8080 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
8081 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
8082 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
8083 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
8084 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
8085 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
8086 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
8087 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
8088 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
8089 
8090 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); }
8091