1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 45 #include "llvm/Analysis/ScalarEvolution.h" 46 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/Analysis/VectorUtils.h" 51 #include "llvm/IR/Attributes.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DerivedTypes.h" 57 #include "llvm/IR/Dominators.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/IRBuilder.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #ifdef EXPENSIVE_CHECKS 74 #include "llvm/IR/Verifier.h" 75 #endif 76 #include "llvm/Pass.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/Compiler.h" 80 #include "llvm/Support/DOTGraphTraits.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/GraphWriter.h" 84 #include "llvm/Support/InstructionCost.h" 85 #include "llvm/Support/KnownBits.h" 86 #include "llvm/Support/MathExtras.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 89 #include "llvm/Transforms/Utils/Local.h" 90 #include "llvm/Transforms/Utils/LoopUtils.h" 91 #include "llvm/Transforms/Vectorize.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <memory> 97 #include <set> 98 #include <string> 99 #include <tuple> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 using namespace slpvectorizer; 106 107 #define SV_NAME "slp-vectorizer" 108 #define DEBUG_TYPE "SLP" 109 110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 111 112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 113 cl::desc("Run the SLP vectorization passes")); 114 115 static cl::opt<int> 116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 117 cl::desc("Only vectorize if you gain more than this " 118 "number ")); 119 120 static cl::opt<bool> 121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 122 cl::desc("Attempt to vectorize horizontal reductions")); 123 124 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 126 cl::desc( 127 "Attempt to vectorize horizontal reductions feeding into a store")); 128 129 static cl::opt<int> 130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 131 cl::desc("Attempt to vectorize for this register size in bits")); 132 133 static cl::opt<unsigned> 134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 135 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 136 137 static cl::opt<int> 138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 139 cl::desc("Maximum depth of the lookup for consecutive stores.")); 140 141 /// Limits the size of scheduling regions in a block. 142 /// It avoid long compile times for _very_ large blocks where vector 143 /// instructions are spread over a wide range. 144 /// This limit is way higher than needed by real-world functions. 145 static cl::opt<int> 146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 147 cl::desc("Limit the size of the SLP scheduling region per block")); 148 149 static cl::opt<int> MinVectorRegSizeOption( 150 "slp-min-reg-size", cl::init(128), cl::Hidden, 151 cl::desc("Attempt to vectorize for this register size in bits")); 152 153 static cl::opt<unsigned> RecursionMaxDepth( 154 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 155 cl::desc("Limit the recursion depth when building a vectorizable tree")); 156 157 static cl::opt<unsigned> MinTreeSize( 158 "slp-min-tree-size", cl::init(3), cl::Hidden, 159 cl::desc("Only vectorize small trees if they are fully vectorizable")); 160 161 // The maximum depth that the look-ahead score heuristic will explore. 162 // The higher this value, the higher the compilation time overhead. 163 static cl::opt<int> LookAheadMaxDepth( 164 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 165 cl::desc("The maximum look-ahead depth for operand reordering scores")); 166 167 static cl::opt<bool> 168 ViewSLPTree("view-slp-tree", cl::Hidden, 169 cl::desc("Display the SLP trees with Graphviz")); 170 171 // Limit the number of alias checks. The limit is chosen so that 172 // it has no negative effect on the llvm benchmarks. 173 static const unsigned AliasedCheckLimit = 10; 174 175 // Another limit for the alias checks: The maximum distance between load/store 176 // instructions where alias checks are done. 177 // This limit is useful for very large basic blocks. 178 static const unsigned MaxMemDepDistance = 160; 179 180 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 181 /// regions to be handled. 182 static const int MinScheduleRegionSize = 16; 183 184 /// Predicate for the element types that the SLP vectorizer supports. 185 /// 186 /// The most important thing to filter here are types which are invalid in LLVM 187 /// vectors. We also filter target specific types which have absolutely no 188 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 189 /// avoids spending time checking the cost model and realizing that they will 190 /// be inevitably scalarized. 191 static bool isValidElementType(Type *Ty) { 192 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 193 !Ty->isPPC_FP128Ty(); 194 } 195 196 /// \returns True if the value is a constant (but not globals/constant 197 /// expressions). 198 static bool isConstant(Value *V) { 199 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 200 } 201 202 /// Checks if \p V is one of vector-like instructions, i.e. undef, 203 /// insertelement/extractelement with constant indices for fixed vector type or 204 /// extractvalue instruction. 205 static bool isVectorLikeInstWithConstOps(Value *V) { 206 if (!isa<InsertElementInst, ExtractElementInst>(V) && 207 !isa<ExtractValueInst, UndefValue>(V)) 208 return false; 209 auto *I = dyn_cast<Instruction>(V); 210 if (!I || isa<ExtractValueInst>(I)) 211 return true; 212 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 213 return false; 214 if (isa<ExtractElementInst>(I)) 215 return isConstant(I->getOperand(1)); 216 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 217 return isConstant(I->getOperand(2)); 218 } 219 220 /// \returns true if all of the instructions in \p VL are in the same block or 221 /// false otherwise. 222 static bool allSameBlock(ArrayRef<Value *> VL) { 223 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 224 if (!I0) 225 return false; 226 if (all_of(VL, isVectorLikeInstWithConstOps)) 227 return true; 228 229 BasicBlock *BB = I0->getParent(); 230 for (int I = 1, E = VL.size(); I < E; I++) { 231 auto *II = dyn_cast<Instruction>(VL[I]); 232 if (!II) 233 return false; 234 235 if (BB != II->getParent()) 236 return false; 237 } 238 return true; 239 } 240 241 /// \returns True if all of the values in \p VL are constants (but not 242 /// globals/constant expressions). 243 static bool allConstant(ArrayRef<Value *> VL) { 244 // Constant expressions and globals can't be vectorized like normal integer/FP 245 // constants. 246 return all_of(VL, isConstant); 247 } 248 249 /// \returns True if all of the values in \p VL are identical or some of them 250 /// are UndefValue. 251 static bool isSplat(ArrayRef<Value *> VL) { 252 Value *FirstNonUndef = nullptr; 253 for (Value *V : VL) { 254 if (isa<UndefValue>(V)) 255 continue; 256 if (!FirstNonUndef) { 257 FirstNonUndef = V; 258 continue; 259 } 260 if (V != FirstNonUndef) 261 return false; 262 } 263 return FirstNonUndef != nullptr; 264 } 265 266 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 267 static bool isCommutative(Instruction *I) { 268 if (auto *Cmp = dyn_cast<CmpInst>(I)) 269 return Cmp->isCommutative(); 270 if (auto *BO = dyn_cast<BinaryOperator>(I)) 271 return BO->isCommutative(); 272 // TODO: This should check for generic Instruction::isCommutative(), but 273 // we need to confirm that the caller code correctly handles Intrinsics 274 // for example (does not have 2 operands). 275 return false; 276 } 277 278 /// Checks if the given value is actually an undefined constant vector. 279 static bool isUndefVector(const Value *V) { 280 if (isa<UndefValue>(V)) 281 return true; 282 auto *C = dyn_cast<Constant>(V); 283 if (!C) 284 return false; 285 if (!C->containsUndefOrPoisonElement()) 286 return false; 287 auto *VecTy = dyn_cast<FixedVectorType>(C->getType()); 288 if (!VecTy) 289 return false; 290 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { 291 if (Constant *Elem = C->getAggregateElement(I)) 292 if (!isa<UndefValue>(Elem)) 293 return false; 294 } 295 return true; 296 } 297 298 /// Checks if the vector of instructions can be represented as a shuffle, like: 299 /// %x0 = extractelement <4 x i8> %x, i32 0 300 /// %x3 = extractelement <4 x i8> %x, i32 3 301 /// %y1 = extractelement <4 x i8> %y, i32 1 302 /// %y2 = extractelement <4 x i8> %y, i32 2 303 /// %x0x0 = mul i8 %x0, %x0 304 /// %x3x3 = mul i8 %x3, %x3 305 /// %y1y1 = mul i8 %y1, %y1 306 /// %y2y2 = mul i8 %y2, %y2 307 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 308 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 309 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 310 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 311 /// ret <4 x i8> %ins4 312 /// can be transformed into: 313 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 314 /// i32 6> 315 /// %2 = mul <4 x i8> %1, %1 316 /// ret <4 x i8> %2 317 /// We convert this initially to something like: 318 /// %x0 = extractelement <4 x i8> %x, i32 0 319 /// %x3 = extractelement <4 x i8> %x, i32 3 320 /// %y1 = extractelement <4 x i8> %y, i32 1 321 /// %y2 = extractelement <4 x i8> %y, i32 2 322 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 323 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 324 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 325 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 326 /// %5 = mul <4 x i8> %4, %4 327 /// %6 = extractelement <4 x i8> %5, i32 0 328 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 329 /// %7 = extractelement <4 x i8> %5, i32 1 330 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 331 /// %8 = extractelement <4 x i8> %5, i32 2 332 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 333 /// %9 = extractelement <4 x i8> %5, i32 3 334 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 335 /// ret <4 x i8> %ins4 336 /// InstCombiner transforms this into a shuffle and vector mul 337 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 338 /// TODO: Can we split off and reuse the shuffle mask detection from 339 /// TargetTransformInfo::getInstructionThroughput? 340 static Optional<TargetTransformInfo::ShuffleKind> 341 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 342 const auto *It = 343 find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); }); 344 if (It == VL.end()) 345 return None; 346 auto *EI0 = cast<ExtractElementInst>(*It); 347 if (isa<ScalableVectorType>(EI0->getVectorOperandType())) 348 return None; 349 unsigned Size = 350 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 351 Value *Vec1 = nullptr; 352 Value *Vec2 = nullptr; 353 enum ShuffleMode { Unknown, Select, Permute }; 354 ShuffleMode CommonShuffleMode = Unknown; 355 Mask.assign(VL.size(), UndefMaskElem); 356 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 357 // Undef can be represented as an undef element in a vector. 358 if (isa<UndefValue>(VL[I])) 359 continue; 360 auto *EI = cast<ExtractElementInst>(VL[I]); 361 if (isa<ScalableVectorType>(EI->getVectorOperandType())) 362 return None; 363 auto *Vec = EI->getVectorOperand(); 364 // We can extractelement from undef or poison vector. 365 if (isUndefVector(Vec)) 366 continue; 367 // All vector operands must have the same number of vector elements. 368 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 369 return None; 370 if (isa<UndefValue>(EI->getIndexOperand())) 371 continue; 372 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 373 if (!Idx) 374 return None; 375 // Undefined behavior if Idx is negative or >= Size. 376 if (Idx->getValue().uge(Size)) 377 continue; 378 unsigned IntIdx = Idx->getValue().getZExtValue(); 379 Mask[I] = IntIdx; 380 // For correct shuffling we have to have at most 2 different vector operands 381 // in all extractelement instructions. 382 if (!Vec1 || Vec1 == Vec) { 383 Vec1 = Vec; 384 } else if (!Vec2 || Vec2 == Vec) { 385 Vec2 = Vec; 386 Mask[I] += Size; 387 } else { 388 return None; 389 } 390 if (CommonShuffleMode == Permute) 391 continue; 392 // If the extract index is not the same as the operation number, it is a 393 // permutation. 394 if (IntIdx != I) { 395 CommonShuffleMode = Permute; 396 continue; 397 } 398 CommonShuffleMode = Select; 399 } 400 // If we're not crossing lanes in different vectors, consider it as blending. 401 if (CommonShuffleMode == Select && Vec2) 402 return TargetTransformInfo::SK_Select; 403 // If Vec2 was never used, we have a permutation of a single vector, otherwise 404 // we have permutation of 2 vectors. 405 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 406 : TargetTransformInfo::SK_PermuteSingleSrc; 407 } 408 409 namespace { 410 411 /// Main data required for vectorization of instructions. 412 struct InstructionsState { 413 /// The very first instruction in the list with the main opcode. 414 Value *OpValue = nullptr; 415 416 /// The main/alternate instruction. 417 Instruction *MainOp = nullptr; 418 Instruction *AltOp = nullptr; 419 420 /// The main/alternate opcodes for the list of instructions. 421 unsigned getOpcode() const { 422 return MainOp ? MainOp->getOpcode() : 0; 423 } 424 425 unsigned getAltOpcode() const { 426 return AltOp ? AltOp->getOpcode() : 0; 427 } 428 429 /// Some of the instructions in the list have alternate opcodes. 430 bool isAltShuffle() const { return AltOp != MainOp; } 431 432 bool isOpcodeOrAlt(Instruction *I) const { 433 unsigned CheckedOpcode = I->getOpcode(); 434 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 435 } 436 437 InstructionsState() = delete; 438 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 439 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 440 }; 441 442 } // end anonymous namespace 443 444 /// Chooses the correct key for scheduling data. If \p Op has the same (or 445 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 446 /// OpValue. 447 static Value *isOneOf(const InstructionsState &S, Value *Op) { 448 auto *I = dyn_cast<Instruction>(Op); 449 if (I && S.isOpcodeOrAlt(I)) 450 return Op; 451 return S.OpValue; 452 } 453 454 /// \returns true if \p Opcode is allowed as part of of the main/alternate 455 /// instruction for SLP vectorization. 456 /// 457 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 458 /// "shuffled out" lane would result in division by zero. 459 static bool isValidForAlternation(unsigned Opcode) { 460 if (Instruction::isIntDivRem(Opcode)) 461 return false; 462 463 return true; 464 } 465 466 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 467 unsigned BaseIndex = 0); 468 469 /// Checks if the provided operands of 2 cmp instructions are compatible, i.e. 470 /// compatible instructions or constants, or just some other regular values. 471 static bool areCompatibleCmpOps(Value *BaseOp0, Value *BaseOp1, Value *Op0, 472 Value *Op1) { 473 return (isConstant(BaseOp0) && isConstant(Op0)) || 474 (isConstant(BaseOp1) && isConstant(Op1)) || 475 (!isa<Instruction>(BaseOp0) && !isa<Instruction>(Op0) && 476 !isa<Instruction>(BaseOp1) && !isa<Instruction>(Op1)) || 477 getSameOpcode({BaseOp0, Op0}).getOpcode() || 478 getSameOpcode({BaseOp1, Op1}).getOpcode(); 479 } 480 481 /// \returns analysis of the Instructions in \p VL described in 482 /// InstructionsState, the Opcode that we suppose the whole list 483 /// could be vectorized even if its structure is diverse. 484 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 485 unsigned BaseIndex) { 486 // Make sure these are all Instructions. 487 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 488 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 489 490 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 491 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 492 bool IsCmpOp = isa<CmpInst>(VL[BaseIndex]); 493 CmpInst::Predicate BasePred = 494 IsCmpOp ? cast<CmpInst>(VL[BaseIndex])->getPredicate() 495 : CmpInst::BAD_ICMP_PREDICATE; 496 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 497 unsigned AltOpcode = Opcode; 498 unsigned AltIndex = BaseIndex; 499 500 // Check for one alternate opcode from another BinaryOperator. 501 // TODO - generalize to support all operators (types, calls etc.). 502 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 503 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 504 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 505 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 506 continue; 507 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 508 isValidForAlternation(Opcode)) { 509 AltOpcode = InstOpcode; 510 AltIndex = Cnt; 511 continue; 512 } 513 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 514 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 515 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 516 if (Ty0 == Ty1) { 517 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 518 continue; 519 if (Opcode == AltOpcode) { 520 assert(isValidForAlternation(Opcode) && 521 isValidForAlternation(InstOpcode) && 522 "Cast isn't safe for alternation, logic needs to be updated!"); 523 AltOpcode = InstOpcode; 524 AltIndex = Cnt; 525 continue; 526 } 527 } 528 } else if (IsCmpOp && isa<CmpInst>(VL[Cnt])) { 529 auto *BaseInst = cast<Instruction>(VL[BaseIndex]); 530 auto *Inst = cast<Instruction>(VL[Cnt]); 531 Type *Ty0 = BaseInst->getOperand(0)->getType(); 532 Type *Ty1 = Inst->getOperand(0)->getType(); 533 if (Ty0 == Ty1) { 534 Value *BaseOp0 = BaseInst->getOperand(0); 535 Value *BaseOp1 = BaseInst->getOperand(1); 536 Value *Op0 = Inst->getOperand(0); 537 Value *Op1 = Inst->getOperand(1); 538 CmpInst::Predicate CurrentPred = 539 cast<CmpInst>(VL[Cnt])->getPredicate(); 540 CmpInst::Predicate SwappedCurrentPred = 541 CmpInst::getSwappedPredicate(CurrentPred); 542 // Check for compatible operands. If the corresponding operands are not 543 // compatible - need to perform alternate vectorization. 544 if (InstOpcode == Opcode) { 545 if (BasePred == CurrentPred && 546 areCompatibleCmpOps(BaseOp0, BaseOp1, Op0, Op1)) 547 continue; 548 if (BasePred == SwappedCurrentPred && 549 areCompatibleCmpOps(BaseOp0, BaseOp1, Op1, Op0)) 550 continue; 551 if (E == 2 && 552 (BasePred == CurrentPred || BasePred == SwappedCurrentPred)) 553 continue; 554 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 555 CmpInst::Predicate AltPred = AltInst->getPredicate(); 556 Value *AltOp0 = AltInst->getOperand(0); 557 Value *AltOp1 = AltInst->getOperand(1); 558 // Check if operands are compatible with alternate operands. 559 if (AltPred == CurrentPred && 560 areCompatibleCmpOps(AltOp0, AltOp1, Op0, Op1)) 561 continue; 562 if (AltPred == SwappedCurrentPred && 563 areCompatibleCmpOps(AltOp0, AltOp1, Op1, Op0)) 564 continue; 565 } 566 if (BaseIndex == AltIndex && BasePred != CurrentPred) { 567 assert(isValidForAlternation(Opcode) && 568 isValidForAlternation(InstOpcode) && 569 "Cast isn't safe for alternation, logic needs to be updated!"); 570 AltIndex = Cnt; 571 continue; 572 } 573 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 574 CmpInst::Predicate AltPred = AltInst->getPredicate(); 575 if (BasePred == CurrentPred || BasePred == SwappedCurrentPred || 576 AltPred == CurrentPred || AltPred == SwappedCurrentPred) 577 continue; 578 } 579 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 580 continue; 581 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 582 } 583 584 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 585 cast<Instruction>(VL[AltIndex])); 586 } 587 588 /// \returns true if all of the values in \p VL have the same type or false 589 /// otherwise. 590 static bool allSameType(ArrayRef<Value *> VL) { 591 Type *Ty = VL[0]->getType(); 592 for (int i = 1, e = VL.size(); i < e; i++) 593 if (VL[i]->getType() != Ty) 594 return false; 595 596 return true; 597 } 598 599 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 600 static Optional<unsigned> getExtractIndex(Instruction *E) { 601 unsigned Opcode = E->getOpcode(); 602 assert((Opcode == Instruction::ExtractElement || 603 Opcode == Instruction::ExtractValue) && 604 "Expected extractelement or extractvalue instruction."); 605 if (Opcode == Instruction::ExtractElement) { 606 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 607 if (!CI) 608 return None; 609 return CI->getZExtValue(); 610 } 611 ExtractValueInst *EI = cast<ExtractValueInst>(E); 612 if (EI->getNumIndices() != 1) 613 return None; 614 return *EI->idx_begin(); 615 } 616 617 /// \returns True if in-tree use also needs extract. This refers to 618 /// possible scalar operand in vectorized instruction. 619 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 620 TargetLibraryInfo *TLI) { 621 unsigned Opcode = UserInst->getOpcode(); 622 switch (Opcode) { 623 case Instruction::Load: { 624 LoadInst *LI = cast<LoadInst>(UserInst); 625 return (LI->getPointerOperand() == Scalar); 626 } 627 case Instruction::Store: { 628 StoreInst *SI = cast<StoreInst>(UserInst); 629 return (SI->getPointerOperand() == Scalar); 630 } 631 case Instruction::Call: { 632 CallInst *CI = cast<CallInst>(UserInst); 633 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 634 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 635 if (hasVectorInstrinsicScalarOpd(ID, i)) 636 return (CI->getArgOperand(i) == Scalar); 637 } 638 LLVM_FALLTHROUGH; 639 } 640 default: 641 return false; 642 } 643 } 644 645 /// \returns the AA location that is being access by the instruction. 646 static MemoryLocation getLocation(Instruction *I) { 647 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 648 return MemoryLocation::get(SI); 649 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 650 return MemoryLocation::get(LI); 651 return MemoryLocation(); 652 } 653 654 /// \returns True if the instruction is not a volatile or atomic load/store. 655 static bool isSimple(Instruction *I) { 656 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 657 return LI->isSimple(); 658 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 659 return SI->isSimple(); 660 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 661 return !MI->isVolatile(); 662 return true; 663 } 664 665 /// Shuffles \p Mask in accordance with the given \p SubMask. 666 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 667 if (SubMask.empty()) 668 return; 669 if (Mask.empty()) { 670 Mask.append(SubMask.begin(), SubMask.end()); 671 return; 672 } 673 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 674 int TermValue = std::min(Mask.size(), SubMask.size()); 675 for (int I = 0, E = SubMask.size(); I < E; ++I) { 676 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 677 Mask[SubMask[I]] >= TermValue) 678 continue; 679 NewMask[I] = Mask[SubMask[I]]; 680 } 681 Mask.swap(NewMask); 682 } 683 684 /// Order may have elements assigned special value (size) which is out of 685 /// bounds. Such indices only appear on places which correspond to undef values 686 /// (see canReuseExtract for details) and used in order to avoid undef values 687 /// have effect on operands ordering. 688 /// The first loop below simply finds all unused indices and then the next loop 689 /// nest assigns these indices for undef values positions. 690 /// As an example below Order has two undef positions and they have assigned 691 /// values 3 and 7 respectively: 692 /// before: 6 9 5 4 9 2 1 0 693 /// after: 6 3 5 4 7 2 1 0 694 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 695 const unsigned Sz = Order.size(); 696 SmallBitVector UnusedIndices(Sz, /*t=*/true); 697 SmallBitVector MaskedIndices(Sz); 698 for (unsigned I = 0; I < Sz; ++I) { 699 if (Order[I] < Sz) 700 UnusedIndices.reset(Order[I]); 701 else 702 MaskedIndices.set(I); 703 } 704 if (MaskedIndices.none()) 705 return; 706 assert(UnusedIndices.count() == MaskedIndices.count() && 707 "Non-synced masked/available indices."); 708 int Idx = UnusedIndices.find_first(); 709 int MIdx = MaskedIndices.find_first(); 710 while (MIdx >= 0) { 711 assert(Idx >= 0 && "Indices must be synced."); 712 Order[MIdx] = Idx; 713 Idx = UnusedIndices.find_next(Idx); 714 MIdx = MaskedIndices.find_next(MIdx); 715 } 716 } 717 718 namespace llvm { 719 720 static void inversePermutation(ArrayRef<unsigned> Indices, 721 SmallVectorImpl<int> &Mask) { 722 Mask.clear(); 723 const unsigned E = Indices.size(); 724 Mask.resize(E, UndefMaskElem); 725 for (unsigned I = 0; I < E; ++I) 726 Mask[Indices[I]] = I; 727 } 728 729 /// \returns inserting index of InsertElement or InsertValue instruction, 730 /// using Offset as base offset for index. 731 static Optional<unsigned> getInsertIndex(Value *InsertInst, 732 unsigned Offset = 0) { 733 int Index = Offset; 734 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 735 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 736 auto *VT = cast<FixedVectorType>(IE->getType()); 737 if (CI->getValue().uge(VT->getNumElements())) 738 return None; 739 Index *= VT->getNumElements(); 740 Index += CI->getZExtValue(); 741 return Index; 742 } 743 return None; 744 } 745 746 auto *IV = cast<InsertValueInst>(InsertInst); 747 Type *CurrentType = IV->getType(); 748 for (unsigned I : IV->indices()) { 749 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 750 Index *= ST->getNumElements(); 751 CurrentType = ST->getElementType(I); 752 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 753 Index *= AT->getNumElements(); 754 CurrentType = AT->getElementType(); 755 } else { 756 return None; 757 } 758 Index += I; 759 } 760 return Index; 761 } 762 763 /// Reorders the list of scalars in accordance with the given \p Mask. 764 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 765 ArrayRef<int> Mask) { 766 assert(!Mask.empty() && "Expected non-empty mask."); 767 SmallVector<Value *> Prev(Scalars.size(), 768 UndefValue::get(Scalars.front()->getType())); 769 Prev.swap(Scalars); 770 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 771 if (Mask[I] != UndefMaskElem) 772 Scalars[Mask[I]] = Prev[I]; 773 } 774 775 /// Checks if the provided value does not require scheduling. It does not 776 /// require scheduling if this is not an instruction or it is an instruction 777 /// that does not read/write memory and all operands are either not instructions 778 /// or phi nodes or instructions from different blocks. 779 static bool areAllOperandsNonInsts(Value *V) { 780 auto *I = dyn_cast<Instruction>(V); 781 if (!I) 782 return true; 783 return !mayHaveNonDefUseDependency(*I) && 784 all_of(I->operands(), [I](Value *V) { 785 auto *IO = dyn_cast<Instruction>(V); 786 if (!IO) 787 return true; 788 return isa<PHINode>(IO) || IO->getParent() != I->getParent(); 789 }); 790 } 791 792 /// Checks if the provided value does not require scheduling. It does not 793 /// require scheduling if this is not an instruction or it is an instruction 794 /// that does not read/write memory and all users are phi nodes or instructions 795 /// from the different blocks. 796 static bool isUsedOutsideBlock(Value *V) { 797 auto *I = dyn_cast<Instruction>(V); 798 if (!I) 799 return true; 800 // Limits the number of uses to save compile time. 801 constexpr int UsesLimit = 8; 802 return !I->mayReadOrWriteMemory() && !I->hasNUsesOrMore(UsesLimit) && 803 all_of(I->users(), [I](User *U) { 804 auto *IU = dyn_cast<Instruction>(U); 805 if (!IU) 806 return true; 807 return IU->getParent() != I->getParent() || isa<PHINode>(IU); 808 }); 809 } 810 811 /// Checks if the specified value does not require scheduling. It does not 812 /// require scheduling if all operands and all users do not need to be scheduled 813 /// in the current basic block. 814 static bool doesNotNeedToBeScheduled(Value *V) { 815 return areAllOperandsNonInsts(V) && isUsedOutsideBlock(V); 816 } 817 818 /// Checks if the specified array of instructions does not require scheduling. 819 /// It is so if all either instructions have operands that do not require 820 /// scheduling or their users do not require scheduling since they are phis or 821 /// in other basic blocks. 822 static bool doesNotNeedToSchedule(ArrayRef<Value *> VL) { 823 return !VL.empty() && 824 (all_of(VL, isUsedOutsideBlock) || all_of(VL, areAllOperandsNonInsts)); 825 } 826 827 namespace slpvectorizer { 828 829 /// Bottom Up SLP Vectorizer. 830 class BoUpSLP { 831 struct TreeEntry; 832 struct ScheduleData; 833 834 public: 835 using ValueList = SmallVector<Value *, 8>; 836 using InstrList = SmallVector<Instruction *, 16>; 837 using ValueSet = SmallPtrSet<Value *, 16>; 838 using StoreList = SmallVector<StoreInst *, 8>; 839 using ExtraValueToDebugLocsMap = 840 MapVector<Value *, SmallVector<Instruction *, 2>>; 841 using OrdersType = SmallVector<unsigned, 4>; 842 843 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 844 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 845 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 846 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 847 : BatchAA(*Aa), F(Func), SE(Se), TTI(Tti), TLI(TLi), LI(Li), 848 DT(Dt), AC(AC), DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 849 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 850 // Use the vector register size specified by the target unless overridden 851 // by a command-line option. 852 // TODO: It would be better to limit the vectorization factor based on 853 // data type rather than just register size. For example, x86 AVX has 854 // 256-bit registers, but it does not support integer operations 855 // at that width (that requires AVX2). 856 if (MaxVectorRegSizeOption.getNumOccurrences()) 857 MaxVecRegSize = MaxVectorRegSizeOption; 858 else 859 MaxVecRegSize = 860 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 861 .getFixedSize(); 862 863 if (MinVectorRegSizeOption.getNumOccurrences()) 864 MinVecRegSize = MinVectorRegSizeOption; 865 else 866 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 867 } 868 869 /// Vectorize the tree that starts with the elements in \p VL. 870 /// Returns the vectorized root. 871 Value *vectorizeTree(); 872 873 /// Vectorize the tree but with the list of externally used values \p 874 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 875 /// generated extractvalue instructions. 876 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 877 878 /// \returns the cost incurred by unwanted spills and fills, caused by 879 /// holding live values over call sites. 880 InstructionCost getSpillCost() const; 881 882 /// \returns the vectorization cost of the subtree that starts at \p VL. 883 /// A negative number means that this is profitable. 884 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 885 886 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 887 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 888 void buildTree(ArrayRef<Value *> Roots, 889 ArrayRef<Value *> UserIgnoreLst = None); 890 891 /// Builds external uses of the vectorized scalars, i.e. the list of 892 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 893 /// ExternallyUsedValues contains additional list of external uses to handle 894 /// vectorization of reductions. 895 void 896 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 897 898 /// Clear the internal data structures that are created by 'buildTree'. 899 void deleteTree() { 900 VectorizableTree.clear(); 901 ScalarToTreeEntry.clear(); 902 MustGather.clear(); 903 ExternalUses.clear(); 904 for (auto &Iter : BlocksSchedules) { 905 BlockScheduling *BS = Iter.second.get(); 906 BS->clear(); 907 } 908 MinBWs.clear(); 909 InstrElementSize.clear(); 910 } 911 912 unsigned getTreeSize() const { return VectorizableTree.size(); } 913 914 /// Perform LICM and CSE on the newly generated gather sequences. 915 void optimizeGatherSequence(); 916 917 /// Checks if the specified gather tree entry \p TE can be represented as a 918 /// shuffled vector entry + (possibly) permutation with other gathers. It 919 /// implements the checks only for possibly ordered scalars (Loads, 920 /// ExtractElement, ExtractValue), which can be part of the graph. 921 Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); 922 923 /// Gets reordering data for the given tree entry. If the entry is vectorized 924 /// - just return ReorderIndices, otherwise check if the scalars can be 925 /// reordered and return the most optimal order. 926 /// \param TopToBottom If true, include the order of vectorized stores and 927 /// insertelement nodes, otherwise skip them. 928 Optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom); 929 930 /// Reorders the current graph to the most profitable order starting from the 931 /// root node to the leaf nodes. The best order is chosen only from the nodes 932 /// of the same size (vectorization factor). Smaller nodes are considered 933 /// parts of subgraph with smaller VF and they are reordered independently. We 934 /// can make it because we still need to extend smaller nodes to the wider VF 935 /// and we can merge reordering shuffles with the widening shuffles. 936 void reorderTopToBottom(); 937 938 /// Reorders the current graph to the most profitable order starting from 939 /// leaves to the root. It allows to rotate small subgraphs and reduce the 940 /// number of reshuffles if the leaf nodes use the same order. In this case we 941 /// can merge the orders and just shuffle user node instead of shuffling its 942 /// operands. Plus, even the leaf nodes have different orders, it allows to 943 /// sink reordering in the graph closer to the root node and merge it later 944 /// during analysis. 945 void reorderBottomToTop(bool IgnoreReorder = false); 946 947 /// \return The vector element size in bits to use when vectorizing the 948 /// expression tree ending at \p V. If V is a store, the size is the width of 949 /// the stored value. Otherwise, the size is the width of the largest loaded 950 /// value reaching V. This method is used by the vectorizer to calculate 951 /// vectorization factors. 952 unsigned getVectorElementSize(Value *V); 953 954 /// Compute the minimum type sizes required to represent the entries in a 955 /// vectorizable tree. 956 void computeMinimumValueSizes(); 957 958 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 959 unsigned getMaxVecRegSize() const { 960 return MaxVecRegSize; 961 } 962 963 // \returns minimum vector register size as set by cl::opt. 964 unsigned getMinVecRegSize() const { 965 return MinVecRegSize; 966 } 967 968 unsigned getMinVF(unsigned Sz) const { 969 return std::max(2U, getMinVecRegSize() / Sz); 970 } 971 972 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 973 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 974 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 975 return MaxVF ? MaxVF : UINT_MAX; 976 } 977 978 /// Check if homogeneous aggregate is isomorphic to some VectorType. 979 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 980 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 981 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 982 /// 983 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 984 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 985 986 /// \returns True if the VectorizableTree is both tiny and not fully 987 /// vectorizable. We do not vectorize such trees. 988 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; 989 990 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 991 /// can be load combined in the backend. Load combining may not be allowed in 992 /// the IR optimizer, so we do not want to alter the pattern. For example, 993 /// partially transforming a scalar bswap() pattern into vector code is 994 /// effectively impossible for the backend to undo. 995 /// TODO: If load combining is allowed in the IR optimizer, this analysis 996 /// may not be necessary. 997 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 998 999 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 1000 /// can be load combined in the backend. Load combining may not be allowed in 1001 /// the IR optimizer, so we do not want to alter the pattern. For example, 1002 /// partially transforming a scalar bswap() pattern into vector code is 1003 /// effectively impossible for the backend to undo. 1004 /// TODO: If load combining is allowed in the IR optimizer, this analysis 1005 /// may not be necessary. 1006 bool isLoadCombineCandidate() const; 1007 1008 OptimizationRemarkEmitter *getORE() { return ORE; } 1009 1010 /// This structure holds any data we need about the edges being traversed 1011 /// during buildTree_rec(). We keep track of: 1012 /// (i) the user TreeEntry index, and 1013 /// (ii) the index of the edge. 1014 struct EdgeInfo { 1015 EdgeInfo() = default; 1016 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 1017 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 1018 /// The user TreeEntry. 1019 TreeEntry *UserTE = nullptr; 1020 /// The operand index of the use. 1021 unsigned EdgeIdx = UINT_MAX; 1022 #ifndef NDEBUG 1023 friend inline raw_ostream &operator<<(raw_ostream &OS, 1024 const BoUpSLP::EdgeInfo &EI) { 1025 EI.dump(OS); 1026 return OS; 1027 } 1028 /// Debug print. 1029 void dump(raw_ostream &OS) const { 1030 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 1031 << " EdgeIdx:" << EdgeIdx << "}"; 1032 } 1033 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 1034 #endif 1035 }; 1036 1037 /// A helper data structure to hold the operands of a vector of instructions. 1038 /// This supports a fixed vector length for all operand vectors. 1039 class VLOperands { 1040 /// For each operand we need (i) the value, and (ii) the opcode that it 1041 /// would be attached to if the expression was in a left-linearized form. 1042 /// This is required to avoid illegal operand reordering. 1043 /// For example: 1044 /// \verbatim 1045 /// 0 Op1 1046 /// |/ 1047 /// Op1 Op2 Linearized + Op2 1048 /// \ / ----------> |/ 1049 /// - - 1050 /// 1051 /// Op1 - Op2 (0 + Op1) - Op2 1052 /// \endverbatim 1053 /// 1054 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 1055 /// 1056 /// Another way to think of this is to track all the operations across the 1057 /// path from the operand all the way to the root of the tree and to 1058 /// calculate the operation that corresponds to this path. For example, the 1059 /// path from Op2 to the root crosses the RHS of the '-', therefore the 1060 /// corresponding operation is a '-' (which matches the one in the 1061 /// linearized tree, as shown above). 1062 /// 1063 /// For lack of a better term, we refer to this operation as Accumulated 1064 /// Path Operation (APO). 1065 struct OperandData { 1066 OperandData() = default; 1067 OperandData(Value *V, bool APO, bool IsUsed) 1068 : V(V), APO(APO), IsUsed(IsUsed) {} 1069 /// The operand value. 1070 Value *V = nullptr; 1071 /// TreeEntries only allow a single opcode, or an alternate sequence of 1072 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 1073 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 1074 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 1075 /// (e.g., Add/Mul) 1076 bool APO = false; 1077 /// Helper data for the reordering function. 1078 bool IsUsed = false; 1079 }; 1080 1081 /// During operand reordering, we are trying to select the operand at lane 1082 /// that matches best with the operand at the neighboring lane. Our 1083 /// selection is based on the type of value we are looking for. For example, 1084 /// if the neighboring lane has a load, we need to look for a load that is 1085 /// accessing a consecutive address. These strategies are summarized in the 1086 /// 'ReorderingMode' enumerator. 1087 enum class ReorderingMode { 1088 Load, ///< Matching loads to consecutive memory addresses 1089 Opcode, ///< Matching instructions based on opcode (same or alternate) 1090 Constant, ///< Matching constants 1091 Splat, ///< Matching the same instruction multiple times (broadcast) 1092 Failed, ///< We failed to create a vectorizable group 1093 }; 1094 1095 using OperandDataVec = SmallVector<OperandData, 2>; 1096 1097 /// A vector of operand vectors. 1098 SmallVector<OperandDataVec, 4> OpsVec; 1099 1100 const DataLayout &DL; 1101 ScalarEvolution &SE; 1102 const BoUpSLP &R; 1103 1104 /// \returns the operand data at \p OpIdx and \p Lane. 1105 OperandData &getData(unsigned OpIdx, unsigned Lane) { 1106 return OpsVec[OpIdx][Lane]; 1107 } 1108 1109 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 1110 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 1111 return OpsVec[OpIdx][Lane]; 1112 } 1113 1114 /// Clears the used flag for all entries. 1115 void clearUsed() { 1116 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 1117 OpIdx != NumOperands; ++OpIdx) 1118 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1119 ++Lane) 1120 OpsVec[OpIdx][Lane].IsUsed = false; 1121 } 1122 1123 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 1124 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 1125 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 1126 } 1127 1128 // The hard-coded scores listed here are not very important, though it shall 1129 // be higher for better matches to improve the resulting cost. When 1130 // computing the scores of matching one sub-tree with another, we are 1131 // basically counting the number of values that are matching. So even if all 1132 // scores are set to 1, we would still get a decent matching result. 1133 // However, sometimes we have to break ties. For example we may have to 1134 // choose between matching loads vs matching opcodes. This is what these 1135 // scores are helping us with: they provide the order of preference. Also, 1136 // this is important if the scalar is externally used or used in another 1137 // tree entry node in the different lane. 1138 1139 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 1140 static const int ScoreConsecutiveLoads = 4; 1141 /// The same load multiple times. This should have a better score than 1142 /// `ScoreSplat` because it in x86 for a 2-lane vector we can represent it 1143 /// with `movddup (%reg), xmm0` which has a throughput of 0.5 versus 0.5 for 1144 /// a vector load and 1.0 for a broadcast. 1145 static const int ScoreSplatLoads = 3; 1146 /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]). 1147 static const int ScoreReversedLoads = 3; 1148 /// ExtractElementInst from same vector and consecutive indexes. 1149 static const int ScoreConsecutiveExtracts = 4; 1150 /// ExtractElementInst from same vector and reversed indices. 1151 static const int ScoreReversedExtracts = 3; 1152 /// Constants. 1153 static const int ScoreConstants = 2; 1154 /// Instructions with the same opcode. 1155 static const int ScoreSameOpcode = 2; 1156 /// Instructions with alt opcodes (e.g, add + sub). 1157 static const int ScoreAltOpcodes = 1; 1158 /// Identical instructions (a.k.a. splat or broadcast). 1159 static const int ScoreSplat = 1; 1160 /// Matching with an undef is preferable to failing. 1161 static const int ScoreUndef = 1; 1162 /// Score for failing to find a decent match. 1163 static const int ScoreFail = 0; 1164 /// Score if all users are vectorized. 1165 static const int ScoreAllUserVectorized = 1; 1166 1167 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 1168 /// Also, checks if \p V1 and \p V2 are compatible with instructions in \p 1169 /// MainAltOps. 1170 int getShallowScore(Value *V1, Value *V2, Instruction *U1, Instruction *U2, 1171 const DataLayout &DL, ScalarEvolution &SE, int NumLanes, 1172 ArrayRef<Value *> MainAltOps) { 1173 if (V1 == V2) { 1174 if (isa<LoadInst>(V1)) { 1175 // Retruns true if the users of V1 and V2 won't need to be extracted. 1176 auto AllUsersAreInternal = [NumLanes, U1, U2, this](Value *V1, 1177 Value *V2) { 1178 // Bail out if we have too many uses to save compilation time. 1179 static constexpr unsigned Limit = 8; 1180 if (V1->hasNUsesOrMore(Limit) || V2->hasNUsesOrMore(Limit)) 1181 return false; 1182 1183 auto AllUsersVectorized = [U1, U2, this](Value *V) { 1184 return llvm::all_of(V->users(), [U1, U2, this](Value *U) { 1185 return U == U1 || U == U2 || R.getTreeEntry(U) != nullptr; 1186 }); 1187 }; 1188 return AllUsersVectorized(V1) && AllUsersVectorized(V2); 1189 }; 1190 // A broadcast of a load can be cheaper on some targets. 1191 if (R.TTI->isLegalBroadcastLoad(V1->getType(), NumLanes) && 1192 ((int)V1->getNumUses() == NumLanes || 1193 AllUsersAreInternal(V1, V2))) 1194 return VLOperands::ScoreSplatLoads; 1195 } 1196 return VLOperands::ScoreSplat; 1197 } 1198 1199 auto *LI1 = dyn_cast<LoadInst>(V1); 1200 auto *LI2 = dyn_cast<LoadInst>(V2); 1201 if (LI1 && LI2) { 1202 if (LI1->getParent() != LI2->getParent()) 1203 return VLOperands::ScoreFail; 1204 1205 Optional<int> Dist = getPointersDiff( 1206 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1207 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1208 if (!Dist || *Dist == 0) 1209 return VLOperands::ScoreFail; 1210 // The distance is too large - still may be profitable to use masked 1211 // loads/gathers. 1212 if (std::abs(*Dist) > NumLanes / 2) 1213 return VLOperands::ScoreAltOpcodes; 1214 // This still will detect consecutive loads, but we might have "holes" 1215 // in some cases. It is ok for non-power-2 vectorization and may produce 1216 // better results. It should not affect current vectorization. 1217 return (*Dist > 0) ? VLOperands::ScoreConsecutiveLoads 1218 : VLOperands::ScoreReversedLoads; 1219 } 1220 1221 auto *C1 = dyn_cast<Constant>(V1); 1222 auto *C2 = dyn_cast<Constant>(V2); 1223 if (C1 && C2) 1224 return VLOperands::ScoreConstants; 1225 1226 // Extracts from consecutive indexes of the same vector better score as 1227 // the extracts could be optimized away. 1228 Value *EV1; 1229 ConstantInt *Ex1Idx; 1230 if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) { 1231 // Undefs are always profitable for extractelements. 1232 if (isa<UndefValue>(V2)) 1233 return VLOperands::ScoreConsecutiveExtracts; 1234 Value *EV2 = nullptr; 1235 ConstantInt *Ex2Idx = nullptr; 1236 if (match(V2, 1237 m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx), 1238 m_Undef())))) { 1239 // Undefs are always profitable for extractelements. 1240 if (!Ex2Idx) 1241 return VLOperands::ScoreConsecutiveExtracts; 1242 if (isUndefVector(EV2) && EV2->getType() == EV1->getType()) 1243 return VLOperands::ScoreConsecutiveExtracts; 1244 if (EV2 == EV1) { 1245 int Idx1 = Ex1Idx->getZExtValue(); 1246 int Idx2 = Ex2Idx->getZExtValue(); 1247 int Dist = Idx2 - Idx1; 1248 // The distance is too large - still may be profitable to use 1249 // shuffles. 1250 if (std::abs(Dist) == 0) 1251 return VLOperands::ScoreSplat; 1252 if (std::abs(Dist) > NumLanes / 2) 1253 return VLOperands::ScoreSameOpcode; 1254 return (Dist > 0) ? VLOperands::ScoreConsecutiveExtracts 1255 : VLOperands::ScoreReversedExtracts; 1256 } 1257 return VLOperands::ScoreAltOpcodes; 1258 } 1259 return VLOperands::ScoreFail; 1260 } 1261 1262 auto *I1 = dyn_cast<Instruction>(V1); 1263 auto *I2 = dyn_cast<Instruction>(V2); 1264 if (I1 && I2) { 1265 if (I1->getParent() != I2->getParent()) 1266 return VLOperands::ScoreFail; 1267 SmallVector<Value *, 4> Ops(MainAltOps.begin(), MainAltOps.end()); 1268 Ops.push_back(I1); 1269 Ops.push_back(I2); 1270 InstructionsState S = getSameOpcode(Ops); 1271 // Note: Only consider instructions with <= 2 operands to avoid 1272 // complexity explosion. 1273 if (S.getOpcode() && 1274 (S.MainOp->getNumOperands() <= 2 || !MainAltOps.empty() || 1275 !S.isAltShuffle()) && 1276 all_of(Ops, [&S](Value *V) { 1277 return cast<Instruction>(V)->getNumOperands() == 1278 S.MainOp->getNumOperands(); 1279 })) 1280 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 1281 : VLOperands::ScoreSameOpcode; 1282 } 1283 1284 if (isa<UndefValue>(V2)) 1285 return VLOperands::ScoreUndef; 1286 1287 return VLOperands::ScoreFail; 1288 } 1289 1290 /// \param Lane lane of the operands under analysis. 1291 /// \param OpIdx operand index in \p Lane lane we're looking the best 1292 /// candidate for. 1293 /// \param Idx operand index of the current candidate value. 1294 /// \returns The additional score due to possible broadcasting of the 1295 /// elements in the lane. It is more profitable to have power-of-2 unique 1296 /// elements in the lane, it will be vectorized with higher probability 1297 /// after removing duplicates. Currently the SLP vectorizer supports only 1298 /// vectorization of the power-of-2 number of unique scalars. 1299 int getSplatScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1300 Value *IdxLaneV = getData(Idx, Lane).V; 1301 if (!isa<Instruction>(IdxLaneV) || IdxLaneV == getData(OpIdx, Lane).V) 1302 return 0; 1303 SmallPtrSet<Value *, 4> Uniques; 1304 for (unsigned Ln = 0, E = getNumLanes(); Ln < E; ++Ln) { 1305 if (Ln == Lane) 1306 continue; 1307 Value *OpIdxLnV = getData(OpIdx, Ln).V; 1308 if (!isa<Instruction>(OpIdxLnV)) 1309 return 0; 1310 Uniques.insert(OpIdxLnV); 1311 } 1312 int UniquesCount = Uniques.size(); 1313 int UniquesCntWithIdxLaneV = 1314 Uniques.contains(IdxLaneV) ? UniquesCount : UniquesCount + 1; 1315 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1316 int UniquesCntWithOpIdxLaneV = 1317 Uniques.contains(OpIdxLaneV) ? UniquesCount : UniquesCount + 1; 1318 if (UniquesCntWithIdxLaneV == UniquesCntWithOpIdxLaneV) 1319 return 0; 1320 return (PowerOf2Ceil(UniquesCntWithOpIdxLaneV) - 1321 UniquesCntWithOpIdxLaneV) - 1322 (PowerOf2Ceil(UniquesCntWithIdxLaneV) - UniquesCntWithIdxLaneV); 1323 } 1324 1325 /// \param Lane lane of the operands under analysis. 1326 /// \param OpIdx operand index in \p Lane lane we're looking the best 1327 /// candidate for. 1328 /// \param Idx operand index of the current candidate value. 1329 /// \returns The additional score for the scalar which users are all 1330 /// vectorized. 1331 int getExternalUseScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1332 Value *IdxLaneV = getData(Idx, Lane).V; 1333 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1334 // Do not care about number of uses for vector-like instructions 1335 // (extractelement/extractvalue with constant indices), they are extracts 1336 // themselves and already externally used. Vectorization of such 1337 // instructions does not add extra extractelement instruction, just may 1338 // remove it. 1339 if (isVectorLikeInstWithConstOps(IdxLaneV) && 1340 isVectorLikeInstWithConstOps(OpIdxLaneV)) 1341 return VLOperands::ScoreAllUserVectorized; 1342 auto *IdxLaneI = dyn_cast<Instruction>(IdxLaneV); 1343 if (!IdxLaneI || !isa<Instruction>(OpIdxLaneV)) 1344 return 0; 1345 return R.areAllUsersVectorized(IdxLaneI, None) 1346 ? VLOperands::ScoreAllUserVectorized 1347 : 0; 1348 } 1349 1350 /// Go through the operands of \p LHS and \p RHS recursively until \p 1351 /// MaxLevel, and return the cummulative score. For example: 1352 /// \verbatim 1353 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1354 /// \ / \ / \ / \ / 1355 /// + + + + 1356 /// G1 G2 G3 G4 1357 /// \endverbatim 1358 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1359 /// each level recursively, accumulating the score. It starts from matching 1360 /// the additions at level 0, then moves on to the loads (level 1). The 1361 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1362 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1363 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1364 /// Please note that the order of the operands does not matter, as we 1365 /// evaluate the score of all profitable combinations of operands. In 1366 /// other words the score of G1 and G4 is the same as G1 and G2. This 1367 /// heuristic is based on ideas described in: 1368 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1369 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1370 /// Luís F. W. Góes 1371 int getScoreAtLevelRec(Value *LHS, Value *RHS, Instruction *U1, 1372 Instruction *U2, int CurrLevel, int MaxLevel, 1373 ArrayRef<Value *> MainAltOps) { 1374 1375 // Get the shallow score of V1 and V2. 1376 int ShallowScoreAtThisLevel = 1377 getShallowScore(LHS, RHS, U1, U2, DL, SE, getNumLanes(), MainAltOps); 1378 1379 // If reached MaxLevel, 1380 // or if V1 and V2 are not instructions, 1381 // or if they are SPLAT, 1382 // or if they are not consecutive, 1383 // or if profitable to vectorize loads or extractelements, early return 1384 // the current cost. 1385 auto *I1 = dyn_cast<Instruction>(LHS); 1386 auto *I2 = dyn_cast<Instruction>(RHS); 1387 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1388 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1389 (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) || 1390 (I1->getNumOperands() > 2 && I2->getNumOperands() > 2) || 1391 (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) && 1392 ShallowScoreAtThisLevel)) 1393 return ShallowScoreAtThisLevel; 1394 assert(I1 && I2 && "Should have early exited."); 1395 1396 // Contains the I2 operand indexes that got matched with I1 operands. 1397 SmallSet<unsigned, 4> Op2Used; 1398 1399 // Recursion towards the operands of I1 and I2. We are trying all possible 1400 // operand pairs, and keeping track of the best score. 1401 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1402 OpIdx1 != NumOperands1; ++OpIdx1) { 1403 // Try to pair op1I with the best operand of I2. 1404 int MaxTmpScore = 0; 1405 unsigned MaxOpIdx2 = 0; 1406 bool FoundBest = false; 1407 // If I2 is commutative try all combinations. 1408 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1409 unsigned ToIdx = isCommutative(I2) 1410 ? I2->getNumOperands() 1411 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1412 assert(FromIdx <= ToIdx && "Bad index"); 1413 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1414 // Skip operands already paired with OpIdx1. 1415 if (Op2Used.count(OpIdx2)) 1416 continue; 1417 // Recursively calculate the cost at each level 1418 int TmpScore = 1419 getScoreAtLevelRec(I1->getOperand(OpIdx1), I2->getOperand(OpIdx2), 1420 I1, I2, CurrLevel + 1, MaxLevel, None); 1421 // Look for the best score. 1422 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1423 MaxTmpScore = TmpScore; 1424 MaxOpIdx2 = OpIdx2; 1425 FoundBest = true; 1426 } 1427 } 1428 if (FoundBest) { 1429 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1430 Op2Used.insert(MaxOpIdx2); 1431 ShallowScoreAtThisLevel += MaxTmpScore; 1432 } 1433 } 1434 return ShallowScoreAtThisLevel; 1435 } 1436 1437 /// Score scaling factor for fully compatible instructions but with 1438 /// different number of external uses. Allows better selection of the 1439 /// instructions with less external uses. 1440 static const int ScoreScaleFactor = 10; 1441 1442 /// \Returns the look-ahead score, which tells us how much the sub-trees 1443 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1444 /// score. This helps break ties in an informed way when we cannot decide on 1445 /// the order of the operands by just considering the immediate 1446 /// predecessors. 1447 int getLookAheadScore(Value *LHS, Value *RHS, ArrayRef<Value *> MainAltOps, 1448 int Lane, unsigned OpIdx, unsigned Idx, 1449 bool &IsUsed) { 1450 // Keep track of the instruction stack as we recurse into the operands 1451 // during the look-ahead score exploration. 1452 int Score = getScoreAtLevelRec(LHS, RHS, /*U1=*/nullptr, /*U2=*/nullptr, 1453 1, LookAheadMaxDepth, MainAltOps); 1454 if (Score) { 1455 int SplatScore = getSplatScore(Lane, OpIdx, Idx); 1456 if (Score <= -SplatScore) { 1457 // Set the minimum score for splat-like sequence to avoid setting 1458 // failed state. 1459 Score = 1; 1460 } else { 1461 Score += SplatScore; 1462 // Scale score to see the difference between different operands 1463 // and similar operands but all vectorized/not all vectorized 1464 // uses. It does not affect actual selection of the best 1465 // compatible operand in general, just allows to select the 1466 // operand with all vectorized uses. 1467 Score *= ScoreScaleFactor; 1468 Score += getExternalUseScore(Lane, OpIdx, Idx); 1469 IsUsed = true; 1470 } 1471 } 1472 return Score; 1473 } 1474 1475 /// Best defined scores per lanes between the passes. Used to choose the 1476 /// best operand (with the highest score) between the passes. 1477 /// The key - {Operand Index, Lane}. 1478 /// The value - the best score between the passes for the lane and the 1479 /// operand. 1480 SmallDenseMap<std::pair<unsigned, unsigned>, unsigned, 8> 1481 BestScoresPerLanes; 1482 1483 // Search all operands in Ops[*][Lane] for the one that matches best 1484 // Ops[OpIdx][LastLane] and return its opreand index. 1485 // If no good match can be found, return None. 1486 Optional<unsigned> getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1487 ArrayRef<ReorderingMode> ReorderingModes, 1488 ArrayRef<Value *> MainAltOps) { 1489 unsigned NumOperands = getNumOperands(); 1490 1491 // The operand of the previous lane at OpIdx. 1492 Value *OpLastLane = getData(OpIdx, LastLane).V; 1493 1494 // Our strategy mode for OpIdx. 1495 ReorderingMode RMode = ReorderingModes[OpIdx]; 1496 if (RMode == ReorderingMode::Failed) 1497 return None; 1498 1499 // The linearized opcode of the operand at OpIdx, Lane. 1500 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1501 1502 // The best operand index and its score. 1503 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1504 // are using the score to differentiate between the two. 1505 struct BestOpData { 1506 Optional<unsigned> Idx = None; 1507 unsigned Score = 0; 1508 } BestOp; 1509 BestOp.Score = 1510 BestScoresPerLanes.try_emplace(std::make_pair(OpIdx, Lane), 0) 1511 .first->second; 1512 1513 // Track if the operand must be marked as used. If the operand is set to 1514 // Score 1 explicitly (because of non power-of-2 unique scalars, we may 1515 // want to reestimate the operands again on the following iterations). 1516 bool IsUsed = 1517 RMode == ReorderingMode::Splat || RMode == ReorderingMode::Constant; 1518 // Iterate through all unused operands and look for the best. 1519 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1520 // Get the operand at Idx and Lane. 1521 OperandData &OpData = getData(Idx, Lane); 1522 Value *Op = OpData.V; 1523 bool OpAPO = OpData.APO; 1524 1525 // Skip already selected operands. 1526 if (OpData.IsUsed) 1527 continue; 1528 1529 // Skip if we are trying to move the operand to a position with a 1530 // different opcode in the linearized tree form. This would break the 1531 // semantics. 1532 if (OpAPO != OpIdxAPO) 1533 continue; 1534 1535 // Look for an operand that matches the current mode. 1536 switch (RMode) { 1537 case ReorderingMode::Load: 1538 case ReorderingMode::Constant: 1539 case ReorderingMode::Opcode: { 1540 bool LeftToRight = Lane > LastLane; 1541 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1542 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1543 int Score = getLookAheadScore(OpLeft, OpRight, MainAltOps, Lane, 1544 OpIdx, Idx, IsUsed); 1545 if (Score > static_cast<int>(BestOp.Score)) { 1546 BestOp.Idx = Idx; 1547 BestOp.Score = Score; 1548 BestScoresPerLanes[std::make_pair(OpIdx, Lane)] = Score; 1549 } 1550 break; 1551 } 1552 case ReorderingMode::Splat: 1553 if (Op == OpLastLane) 1554 BestOp.Idx = Idx; 1555 break; 1556 case ReorderingMode::Failed: 1557 llvm_unreachable("Not expected Failed reordering mode."); 1558 } 1559 } 1560 1561 if (BestOp.Idx) { 1562 getData(BestOp.Idx.getValue(), Lane).IsUsed = IsUsed; 1563 return BestOp.Idx; 1564 } 1565 // If we could not find a good match return None. 1566 return None; 1567 } 1568 1569 /// Helper for reorderOperandVecs. 1570 /// \returns the lane that we should start reordering from. This is the one 1571 /// which has the least number of operands that can freely move about or 1572 /// less profitable because it already has the most optimal set of operands. 1573 unsigned getBestLaneToStartReordering() const { 1574 unsigned Min = UINT_MAX; 1575 unsigned SameOpNumber = 0; 1576 // std::pair<unsigned, unsigned> is used to implement a simple voting 1577 // algorithm and choose the lane with the least number of operands that 1578 // can freely move about or less profitable because it already has the 1579 // most optimal set of operands. The first unsigned is a counter for 1580 // voting, the second unsigned is the counter of lanes with instructions 1581 // with same/alternate opcodes and same parent basic block. 1582 MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap; 1583 // Try to be closer to the original results, if we have multiple lanes 1584 // with same cost. If 2 lanes have the same cost, use the one with the 1585 // lowest index. 1586 for (int I = getNumLanes(); I > 0; --I) { 1587 unsigned Lane = I - 1; 1588 OperandsOrderData NumFreeOpsHash = 1589 getMaxNumOperandsThatCanBeReordered(Lane); 1590 // Compare the number of operands that can move and choose the one with 1591 // the least number. 1592 if (NumFreeOpsHash.NumOfAPOs < Min) { 1593 Min = NumFreeOpsHash.NumOfAPOs; 1594 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1595 HashMap.clear(); 1596 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1597 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1598 NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) { 1599 // Select the most optimal lane in terms of number of operands that 1600 // should be moved around. 1601 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1602 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1603 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1604 NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) { 1605 auto It = HashMap.find(NumFreeOpsHash.Hash); 1606 if (It == HashMap.end()) 1607 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1608 else 1609 ++It->second.first; 1610 } 1611 } 1612 // Select the lane with the minimum counter. 1613 unsigned BestLane = 0; 1614 unsigned CntMin = UINT_MAX; 1615 for (const auto &Data : reverse(HashMap)) { 1616 if (Data.second.first < CntMin) { 1617 CntMin = Data.second.first; 1618 BestLane = Data.second.second; 1619 } 1620 } 1621 return BestLane; 1622 } 1623 1624 /// Data structure that helps to reorder operands. 1625 struct OperandsOrderData { 1626 /// The best number of operands with the same APOs, which can be 1627 /// reordered. 1628 unsigned NumOfAPOs = UINT_MAX; 1629 /// Number of operands with the same/alternate instruction opcode and 1630 /// parent. 1631 unsigned NumOpsWithSameOpcodeParent = 0; 1632 /// Hash for the actual operands ordering. 1633 /// Used to count operands, actually their position id and opcode 1634 /// value. It is used in the voting mechanism to find the lane with the 1635 /// least number of operands that can freely move about or less profitable 1636 /// because it already has the most optimal set of operands. Can be 1637 /// replaced with SmallVector<unsigned> instead but hash code is faster 1638 /// and requires less memory. 1639 unsigned Hash = 0; 1640 }; 1641 /// \returns the maximum number of operands that are allowed to be reordered 1642 /// for \p Lane and the number of compatible instructions(with the same 1643 /// parent/opcode). This is used as a heuristic for selecting the first lane 1644 /// to start operand reordering. 1645 OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1646 unsigned CntTrue = 0; 1647 unsigned NumOperands = getNumOperands(); 1648 // Operands with the same APO can be reordered. We therefore need to count 1649 // how many of them we have for each APO, like this: Cnt[APO] = x. 1650 // Since we only have two APOs, namely true and false, we can avoid using 1651 // a map. Instead we can simply count the number of operands that 1652 // correspond to one of them (in this case the 'true' APO), and calculate 1653 // the other by subtracting it from the total number of operands. 1654 // Operands with the same instruction opcode and parent are more 1655 // profitable since we don't need to move them in many cases, with a high 1656 // probability such lane already can be vectorized effectively. 1657 bool AllUndefs = true; 1658 unsigned NumOpsWithSameOpcodeParent = 0; 1659 Instruction *OpcodeI = nullptr; 1660 BasicBlock *Parent = nullptr; 1661 unsigned Hash = 0; 1662 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1663 const OperandData &OpData = getData(OpIdx, Lane); 1664 if (OpData.APO) 1665 ++CntTrue; 1666 // Use Boyer-Moore majority voting for finding the majority opcode and 1667 // the number of times it occurs. 1668 if (auto *I = dyn_cast<Instruction>(OpData.V)) { 1669 if (!OpcodeI || !getSameOpcode({OpcodeI, I}).getOpcode() || 1670 I->getParent() != Parent) { 1671 if (NumOpsWithSameOpcodeParent == 0) { 1672 NumOpsWithSameOpcodeParent = 1; 1673 OpcodeI = I; 1674 Parent = I->getParent(); 1675 } else { 1676 --NumOpsWithSameOpcodeParent; 1677 } 1678 } else { 1679 ++NumOpsWithSameOpcodeParent; 1680 } 1681 } 1682 Hash = hash_combine( 1683 Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1))); 1684 AllUndefs = AllUndefs && isa<UndefValue>(OpData.V); 1685 } 1686 if (AllUndefs) 1687 return {}; 1688 OperandsOrderData Data; 1689 Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue); 1690 Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent; 1691 Data.Hash = Hash; 1692 return Data; 1693 } 1694 1695 /// Go through the instructions in VL and append their operands. 1696 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1697 assert(!VL.empty() && "Bad VL"); 1698 assert((empty() || VL.size() == getNumLanes()) && 1699 "Expected same number of lanes"); 1700 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1701 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1702 OpsVec.resize(NumOperands); 1703 unsigned NumLanes = VL.size(); 1704 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1705 OpsVec[OpIdx].resize(NumLanes); 1706 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1707 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1708 // Our tree has just 3 nodes: the root and two operands. 1709 // It is therefore trivial to get the APO. We only need to check the 1710 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1711 // RHS operand. The LHS operand of both add and sub is never attached 1712 // to an inversese operation in the linearized form, therefore its APO 1713 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1714 1715 // Since operand reordering is performed on groups of commutative 1716 // operations or alternating sequences (e.g., +, -), we can safely 1717 // tell the inverse operations by checking commutativity. 1718 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1719 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1720 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1721 APO, false}; 1722 } 1723 } 1724 } 1725 1726 /// \returns the number of operands. 1727 unsigned getNumOperands() const { return OpsVec.size(); } 1728 1729 /// \returns the number of lanes. 1730 unsigned getNumLanes() const { return OpsVec[0].size(); } 1731 1732 /// \returns the operand value at \p OpIdx and \p Lane. 1733 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1734 return getData(OpIdx, Lane).V; 1735 } 1736 1737 /// \returns true if the data structure is empty. 1738 bool empty() const { return OpsVec.empty(); } 1739 1740 /// Clears the data. 1741 void clear() { OpsVec.clear(); } 1742 1743 /// \Returns true if there are enough operands identical to \p Op to fill 1744 /// the whole vector. 1745 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1746 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1747 bool OpAPO = getData(OpIdx, Lane).APO; 1748 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1749 if (Ln == Lane) 1750 continue; 1751 // This is set to true if we found a candidate for broadcast at Lane. 1752 bool FoundCandidate = false; 1753 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1754 OperandData &Data = getData(OpI, Ln); 1755 if (Data.APO != OpAPO || Data.IsUsed) 1756 continue; 1757 if (Data.V == Op) { 1758 FoundCandidate = true; 1759 Data.IsUsed = true; 1760 break; 1761 } 1762 } 1763 if (!FoundCandidate) 1764 return false; 1765 } 1766 return true; 1767 } 1768 1769 public: 1770 /// Initialize with all the operands of the instruction vector \p RootVL. 1771 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1772 ScalarEvolution &SE, const BoUpSLP &R) 1773 : DL(DL), SE(SE), R(R) { 1774 // Append all the operands of RootVL. 1775 appendOperandsOfVL(RootVL); 1776 } 1777 1778 /// \Returns a value vector with the operands across all lanes for the 1779 /// opearnd at \p OpIdx. 1780 ValueList getVL(unsigned OpIdx) const { 1781 ValueList OpVL(OpsVec[OpIdx].size()); 1782 assert(OpsVec[OpIdx].size() == getNumLanes() && 1783 "Expected same num of lanes across all operands"); 1784 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1785 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1786 return OpVL; 1787 } 1788 1789 // Performs operand reordering for 2 or more operands. 1790 // The original operands are in OrigOps[OpIdx][Lane]. 1791 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1792 void reorder() { 1793 unsigned NumOperands = getNumOperands(); 1794 unsigned NumLanes = getNumLanes(); 1795 // Each operand has its own mode. We are using this mode to help us select 1796 // the instructions for each lane, so that they match best with the ones 1797 // we have selected so far. 1798 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1799 1800 // This is a greedy single-pass algorithm. We are going over each lane 1801 // once and deciding on the best order right away with no back-tracking. 1802 // However, in order to increase its effectiveness, we start with the lane 1803 // that has operands that can move the least. For example, given the 1804 // following lanes: 1805 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1806 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1807 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1808 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1809 // we will start at Lane 1, since the operands of the subtraction cannot 1810 // be reordered. Then we will visit the rest of the lanes in a circular 1811 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1812 1813 // Find the first lane that we will start our search from. 1814 unsigned FirstLane = getBestLaneToStartReordering(); 1815 1816 // Initialize the modes. 1817 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1818 Value *OpLane0 = getValue(OpIdx, FirstLane); 1819 // Keep track if we have instructions with all the same opcode on one 1820 // side. 1821 if (isa<LoadInst>(OpLane0)) 1822 ReorderingModes[OpIdx] = ReorderingMode::Load; 1823 else if (isa<Instruction>(OpLane0)) { 1824 // Check if OpLane0 should be broadcast. 1825 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1826 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1827 else 1828 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1829 } 1830 else if (isa<Constant>(OpLane0)) 1831 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1832 else if (isa<Argument>(OpLane0)) 1833 // Our best hope is a Splat. It may save some cost in some cases. 1834 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1835 else 1836 // NOTE: This should be unreachable. 1837 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1838 } 1839 1840 // Check that we don't have same operands. No need to reorder if operands 1841 // are just perfect diamond or shuffled diamond match. Do not do it only 1842 // for possible broadcasts or non-power of 2 number of scalars (just for 1843 // now). 1844 auto &&SkipReordering = [this]() { 1845 SmallPtrSet<Value *, 4> UniqueValues; 1846 ArrayRef<OperandData> Op0 = OpsVec.front(); 1847 for (const OperandData &Data : Op0) 1848 UniqueValues.insert(Data.V); 1849 for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) { 1850 if (any_of(Op, [&UniqueValues](const OperandData &Data) { 1851 return !UniqueValues.contains(Data.V); 1852 })) 1853 return false; 1854 } 1855 // TODO: Check if we can remove a check for non-power-2 number of 1856 // scalars after full support of non-power-2 vectorization. 1857 return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size()); 1858 }; 1859 1860 // If the initial strategy fails for any of the operand indexes, then we 1861 // perform reordering again in a second pass. This helps avoid assigning 1862 // high priority to the failed strategy, and should improve reordering for 1863 // the non-failed operand indexes. 1864 for (int Pass = 0; Pass != 2; ++Pass) { 1865 // Check if no need to reorder operands since they're are perfect or 1866 // shuffled diamond match. 1867 // Need to to do it to avoid extra external use cost counting for 1868 // shuffled matches, which may cause regressions. 1869 if (SkipReordering()) 1870 break; 1871 // Skip the second pass if the first pass did not fail. 1872 bool StrategyFailed = false; 1873 // Mark all operand data as free to use. 1874 clearUsed(); 1875 // We keep the original operand order for the FirstLane, so reorder the 1876 // rest of the lanes. We are visiting the nodes in a circular fashion, 1877 // using FirstLane as the center point and increasing the radius 1878 // distance. 1879 SmallVector<SmallVector<Value *, 2>> MainAltOps(NumOperands); 1880 for (unsigned I = 0; I < NumOperands; ++I) 1881 MainAltOps[I].push_back(getData(I, FirstLane).V); 1882 1883 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1884 // Visit the lane on the right and then the lane on the left. 1885 for (int Direction : {+1, -1}) { 1886 int Lane = FirstLane + Direction * Distance; 1887 if (Lane < 0 || Lane >= (int)NumLanes) 1888 continue; 1889 int LastLane = Lane - Direction; 1890 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1891 "Out of bounds"); 1892 // Look for a good match for each operand. 1893 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1894 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1895 Optional<unsigned> BestIdx = getBestOperand( 1896 OpIdx, Lane, LastLane, ReorderingModes, MainAltOps[OpIdx]); 1897 // By not selecting a value, we allow the operands that follow to 1898 // select a better matching value. We will get a non-null value in 1899 // the next run of getBestOperand(). 1900 if (BestIdx) { 1901 // Swap the current operand with the one returned by 1902 // getBestOperand(). 1903 swap(OpIdx, BestIdx.getValue(), Lane); 1904 } else { 1905 // We failed to find a best operand, set mode to 'Failed'. 1906 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1907 // Enable the second pass. 1908 StrategyFailed = true; 1909 } 1910 // Try to get the alternate opcode and follow it during analysis. 1911 if (MainAltOps[OpIdx].size() != 2) { 1912 OperandData &AltOp = getData(OpIdx, Lane); 1913 InstructionsState OpS = 1914 getSameOpcode({MainAltOps[OpIdx].front(), AltOp.V}); 1915 if (OpS.getOpcode() && OpS.isAltShuffle()) 1916 MainAltOps[OpIdx].push_back(AltOp.V); 1917 } 1918 } 1919 } 1920 } 1921 // Skip second pass if the strategy did not fail. 1922 if (!StrategyFailed) 1923 break; 1924 } 1925 } 1926 1927 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1928 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1929 switch (RMode) { 1930 case ReorderingMode::Load: 1931 return "Load"; 1932 case ReorderingMode::Opcode: 1933 return "Opcode"; 1934 case ReorderingMode::Constant: 1935 return "Constant"; 1936 case ReorderingMode::Splat: 1937 return "Splat"; 1938 case ReorderingMode::Failed: 1939 return "Failed"; 1940 } 1941 llvm_unreachable("Unimplemented Reordering Type"); 1942 } 1943 1944 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1945 raw_ostream &OS) { 1946 return OS << getModeStr(RMode); 1947 } 1948 1949 /// Debug print. 1950 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1951 printMode(RMode, dbgs()); 1952 } 1953 1954 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1955 return printMode(RMode, OS); 1956 } 1957 1958 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1959 const unsigned Indent = 2; 1960 unsigned Cnt = 0; 1961 for (const OperandDataVec &OpDataVec : OpsVec) { 1962 OS << "Operand " << Cnt++ << "\n"; 1963 for (const OperandData &OpData : OpDataVec) { 1964 OS.indent(Indent) << "{"; 1965 if (Value *V = OpData.V) 1966 OS << *V; 1967 else 1968 OS << "null"; 1969 OS << ", APO:" << OpData.APO << "}\n"; 1970 } 1971 OS << "\n"; 1972 } 1973 return OS; 1974 } 1975 1976 /// Debug print. 1977 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1978 #endif 1979 }; 1980 1981 /// Checks if the instruction is marked for deletion. 1982 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1983 1984 /// Removes an instruction from its block and eventually deletes it. 1985 /// It's like Instruction::eraseFromParent() except that the actual deletion 1986 /// is delayed until BoUpSLP is destructed. 1987 void eraseInstruction(Instruction *I) { 1988 DeletedInstructions.insert(I); 1989 } 1990 1991 ~BoUpSLP(); 1992 1993 private: 1994 /// Check if the operands on the edges \p Edges of the \p UserTE allows 1995 /// reordering (i.e. the operands can be reordered because they have only one 1996 /// user and reordarable). 1997 /// \param ReorderableGathers List of all gather nodes that require reordering 1998 /// (e.g., gather of extractlements or partially vectorizable loads). 1999 /// \param GatherOps List of gather operand nodes for \p UserTE that require 2000 /// reordering, subset of \p NonVectorized. 2001 bool 2002 canReorderOperands(TreeEntry *UserTE, 2003 SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 2004 ArrayRef<TreeEntry *> ReorderableGathers, 2005 SmallVectorImpl<TreeEntry *> &GatherOps); 2006 2007 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 2008 /// if any. If it is not vectorized (gather node), returns nullptr. 2009 TreeEntry *getVectorizedOperand(TreeEntry *UserTE, unsigned OpIdx) { 2010 ArrayRef<Value *> VL = UserTE->getOperand(OpIdx); 2011 TreeEntry *TE = nullptr; 2012 const auto *It = find_if(VL, [this, &TE](Value *V) { 2013 TE = getTreeEntry(V); 2014 return TE; 2015 }); 2016 if (It != VL.end() && TE->isSame(VL)) 2017 return TE; 2018 return nullptr; 2019 } 2020 2021 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 2022 /// if any. If it is not vectorized (gather node), returns nullptr. 2023 const TreeEntry *getVectorizedOperand(const TreeEntry *UserTE, 2024 unsigned OpIdx) const { 2025 return const_cast<BoUpSLP *>(this)->getVectorizedOperand( 2026 const_cast<TreeEntry *>(UserTE), OpIdx); 2027 } 2028 2029 /// Checks if all users of \p I are the part of the vectorization tree. 2030 bool areAllUsersVectorized(Instruction *I, 2031 ArrayRef<Value *> VectorizedVals) const; 2032 2033 /// \returns the cost of the vectorizable entry. 2034 InstructionCost getEntryCost(const TreeEntry *E, 2035 ArrayRef<Value *> VectorizedVals); 2036 2037 /// This is the recursive part of buildTree. 2038 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 2039 const EdgeInfo &EI); 2040 2041 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 2042 /// be vectorized to use the original vector (or aggregate "bitcast" to a 2043 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 2044 /// returns false, setting \p CurrentOrder to either an empty vector or a 2045 /// non-identity permutation that allows to reuse extract instructions. 2046 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 2047 SmallVectorImpl<unsigned> &CurrentOrder) const; 2048 2049 /// Vectorize a single entry in the tree. 2050 Value *vectorizeTree(TreeEntry *E); 2051 2052 /// Vectorize a single entry in the tree, starting in \p VL. 2053 Value *vectorizeTree(ArrayRef<Value *> VL); 2054 2055 /// Create a new vector from a list of scalar values. Produces a sequence 2056 /// which exploits values reused across lanes, and arranges the inserts 2057 /// for ease of later optimization. 2058 Value *createBuildVector(ArrayRef<Value *> VL); 2059 2060 /// \returns the scalarization cost for this type. Scalarization in this 2061 /// context means the creation of vectors from a group of scalars. If \p 2062 /// NeedToShuffle is true, need to add a cost of reshuffling some of the 2063 /// vector elements. 2064 InstructionCost getGatherCost(FixedVectorType *Ty, 2065 const APInt &ShuffledIndices, 2066 bool NeedToShuffle) const; 2067 2068 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 2069 /// tree entries. 2070 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 2071 /// previous tree entries. \p Mask is filled with the shuffle mask. 2072 Optional<TargetTransformInfo::ShuffleKind> 2073 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 2074 SmallVectorImpl<const TreeEntry *> &Entries); 2075 2076 /// \returns the scalarization cost for this list of values. Assuming that 2077 /// this subtree gets vectorized, we may need to extract the values from the 2078 /// roots. This method calculates the cost of extracting the values. 2079 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 2080 2081 /// Set the Builder insert point to one after the last instruction in 2082 /// the bundle 2083 void setInsertPointAfterBundle(const TreeEntry *E); 2084 2085 /// \returns a vector from a collection of scalars in \p VL. 2086 Value *gather(ArrayRef<Value *> VL); 2087 2088 /// \returns whether the VectorizableTree is fully vectorizable and will 2089 /// be beneficial even the tree height is tiny. 2090 bool isFullyVectorizableTinyTree(bool ForReduction) const; 2091 2092 /// Reorder commutative or alt operands to get better probability of 2093 /// generating vectorized code. 2094 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 2095 SmallVectorImpl<Value *> &Left, 2096 SmallVectorImpl<Value *> &Right, 2097 const DataLayout &DL, 2098 ScalarEvolution &SE, 2099 const BoUpSLP &R); 2100 struct TreeEntry { 2101 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 2102 TreeEntry(VecTreeTy &Container) : Container(Container) {} 2103 2104 /// \returns true if the scalars in VL are equal to this entry. 2105 bool isSame(ArrayRef<Value *> VL) const { 2106 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 2107 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 2108 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 2109 return VL.size() == Mask.size() && 2110 std::equal(VL.begin(), VL.end(), Mask.begin(), 2111 [Scalars](Value *V, int Idx) { 2112 return (isa<UndefValue>(V) && 2113 Idx == UndefMaskElem) || 2114 (Idx != UndefMaskElem && V == Scalars[Idx]); 2115 }); 2116 }; 2117 if (!ReorderIndices.empty()) { 2118 // TODO: implement matching if the nodes are just reordered, still can 2119 // treat the vector as the same if the list of scalars matches VL 2120 // directly, without reordering. 2121 SmallVector<int> Mask; 2122 inversePermutation(ReorderIndices, Mask); 2123 if (VL.size() == Scalars.size()) 2124 return IsSame(Scalars, Mask); 2125 if (VL.size() == ReuseShuffleIndices.size()) { 2126 ::addMask(Mask, ReuseShuffleIndices); 2127 return IsSame(Scalars, Mask); 2128 } 2129 return false; 2130 } 2131 return IsSame(Scalars, ReuseShuffleIndices); 2132 } 2133 2134 /// \returns true if current entry has same operands as \p TE. 2135 bool hasEqualOperands(const TreeEntry &TE) const { 2136 if (TE.getNumOperands() != getNumOperands()) 2137 return false; 2138 SmallBitVector Used(getNumOperands()); 2139 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 2140 unsigned PrevCount = Used.count(); 2141 for (unsigned K = 0; K < E; ++K) { 2142 if (Used.test(K)) 2143 continue; 2144 if (getOperand(K) == TE.getOperand(I)) { 2145 Used.set(K); 2146 break; 2147 } 2148 } 2149 // Check if we actually found the matching operand. 2150 if (PrevCount == Used.count()) 2151 return false; 2152 } 2153 return true; 2154 } 2155 2156 /// \return Final vectorization factor for the node. Defined by the total 2157 /// number of vectorized scalars, including those, used several times in the 2158 /// entry and counted in the \a ReuseShuffleIndices, if any. 2159 unsigned getVectorFactor() const { 2160 if (!ReuseShuffleIndices.empty()) 2161 return ReuseShuffleIndices.size(); 2162 return Scalars.size(); 2163 }; 2164 2165 /// A vector of scalars. 2166 ValueList Scalars; 2167 2168 /// The Scalars are vectorized into this value. It is initialized to Null. 2169 Value *VectorizedValue = nullptr; 2170 2171 /// Do we need to gather this sequence or vectorize it 2172 /// (either with vector instruction or with scatter/gather 2173 /// intrinsics for store/load)? 2174 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 2175 EntryState State; 2176 2177 /// Does this sequence require some shuffling? 2178 SmallVector<int, 4> ReuseShuffleIndices; 2179 2180 /// Does this entry require reordering? 2181 SmallVector<unsigned, 4> ReorderIndices; 2182 2183 /// Points back to the VectorizableTree. 2184 /// 2185 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 2186 /// to be a pointer and needs to be able to initialize the child iterator. 2187 /// Thus we need a reference back to the container to translate the indices 2188 /// to entries. 2189 VecTreeTy &Container; 2190 2191 /// The TreeEntry index containing the user of this entry. We can actually 2192 /// have multiple users so the data structure is not truly a tree. 2193 SmallVector<EdgeInfo, 1> UserTreeIndices; 2194 2195 /// The index of this treeEntry in VectorizableTree. 2196 int Idx = -1; 2197 2198 private: 2199 /// The operands of each instruction in each lane Operands[op_index][lane]. 2200 /// Note: This helps avoid the replication of the code that performs the 2201 /// reordering of operands during buildTree_rec() and vectorizeTree(). 2202 SmallVector<ValueList, 2> Operands; 2203 2204 /// The main/alternate instruction. 2205 Instruction *MainOp = nullptr; 2206 Instruction *AltOp = nullptr; 2207 2208 public: 2209 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 2210 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 2211 if (Operands.size() < OpIdx + 1) 2212 Operands.resize(OpIdx + 1); 2213 assert(Operands[OpIdx].empty() && "Already resized?"); 2214 assert(OpVL.size() <= Scalars.size() && 2215 "Number of operands is greater than the number of scalars."); 2216 Operands[OpIdx].resize(OpVL.size()); 2217 copy(OpVL, Operands[OpIdx].begin()); 2218 } 2219 2220 /// Set the operands of this bundle in their original order. 2221 void setOperandsInOrder() { 2222 assert(Operands.empty() && "Already initialized?"); 2223 auto *I0 = cast<Instruction>(Scalars[0]); 2224 Operands.resize(I0->getNumOperands()); 2225 unsigned NumLanes = Scalars.size(); 2226 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 2227 OpIdx != NumOperands; ++OpIdx) { 2228 Operands[OpIdx].resize(NumLanes); 2229 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 2230 auto *I = cast<Instruction>(Scalars[Lane]); 2231 assert(I->getNumOperands() == NumOperands && 2232 "Expected same number of operands"); 2233 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 2234 } 2235 } 2236 } 2237 2238 /// Reorders operands of the node to the given mask \p Mask. 2239 void reorderOperands(ArrayRef<int> Mask) { 2240 for (ValueList &Operand : Operands) 2241 reorderScalars(Operand, Mask); 2242 } 2243 2244 /// \returns the \p OpIdx operand of this TreeEntry. 2245 ValueList &getOperand(unsigned OpIdx) { 2246 assert(OpIdx < Operands.size() && "Off bounds"); 2247 return Operands[OpIdx]; 2248 } 2249 2250 /// \returns the \p OpIdx operand of this TreeEntry. 2251 ArrayRef<Value *> getOperand(unsigned OpIdx) const { 2252 assert(OpIdx < Operands.size() && "Off bounds"); 2253 return Operands[OpIdx]; 2254 } 2255 2256 /// \returns the number of operands. 2257 unsigned getNumOperands() const { return Operands.size(); } 2258 2259 /// \return the single \p OpIdx operand. 2260 Value *getSingleOperand(unsigned OpIdx) const { 2261 assert(OpIdx < Operands.size() && "Off bounds"); 2262 assert(!Operands[OpIdx].empty() && "No operand available"); 2263 return Operands[OpIdx][0]; 2264 } 2265 2266 /// Some of the instructions in the list have alternate opcodes. 2267 bool isAltShuffle() const { return MainOp != AltOp; } 2268 2269 bool isOpcodeOrAlt(Instruction *I) const { 2270 unsigned CheckedOpcode = I->getOpcode(); 2271 return (getOpcode() == CheckedOpcode || 2272 getAltOpcode() == CheckedOpcode); 2273 } 2274 2275 /// Chooses the correct key for scheduling data. If \p Op has the same (or 2276 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 2277 /// \p OpValue. 2278 Value *isOneOf(Value *Op) const { 2279 auto *I = dyn_cast<Instruction>(Op); 2280 if (I && isOpcodeOrAlt(I)) 2281 return Op; 2282 return MainOp; 2283 } 2284 2285 void setOperations(const InstructionsState &S) { 2286 MainOp = S.MainOp; 2287 AltOp = S.AltOp; 2288 } 2289 2290 Instruction *getMainOp() const { 2291 return MainOp; 2292 } 2293 2294 Instruction *getAltOp() const { 2295 return AltOp; 2296 } 2297 2298 /// The main/alternate opcodes for the list of instructions. 2299 unsigned getOpcode() const { 2300 return MainOp ? MainOp->getOpcode() : 0; 2301 } 2302 2303 unsigned getAltOpcode() const { 2304 return AltOp ? AltOp->getOpcode() : 0; 2305 } 2306 2307 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 2308 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 2309 int findLaneForValue(Value *V) const { 2310 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 2311 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2312 if (!ReorderIndices.empty()) 2313 FoundLane = ReorderIndices[FoundLane]; 2314 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2315 if (!ReuseShuffleIndices.empty()) { 2316 FoundLane = std::distance(ReuseShuffleIndices.begin(), 2317 find(ReuseShuffleIndices, FoundLane)); 2318 } 2319 return FoundLane; 2320 } 2321 2322 #ifndef NDEBUG 2323 /// Debug printer. 2324 LLVM_DUMP_METHOD void dump() const { 2325 dbgs() << Idx << ".\n"; 2326 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 2327 dbgs() << "Operand " << OpI << ":\n"; 2328 for (const Value *V : Operands[OpI]) 2329 dbgs().indent(2) << *V << "\n"; 2330 } 2331 dbgs() << "Scalars: \n"; 2332 for (Value *V : Scalars) 2333 dbgs().indent(2) << *V << "\n"; 2334 dbgs() << "State: "; 2335 switch (State) { 2336 case Vectorize: 2337 dbgs() << "Vectorize\n"; 2338 break; 2339 case ScatterVectorize: 2340 dbgs() << "ScatterVectorize\n"; 2341 break; 2342 case NeedToGather: 2343 dbgs() << "NeedToGather\n"; 2344 break; 2345 } 2346 dbgs() << "MainOp: "; 2347 if (MainOp) 2348 dbgs() << *MainOp << "\n"; 2349 else 2350 dbgs() << "NULL\n"; 2351 dbgs() << "AltOp: "; 2352 if (AltOp) 2353 dbgs() << *AltOp << "\n"; 2354 else 2355 dbgs() << "NULL\n"; 2356 dbgs() << "VectorizedValue: "; 2357 if (VectorizedValue) 2358 dbgs() << *VectorizedValue << "\n"; 2359 else 2360 dbgs() << "NULL\n"; 2361 dbgs() << "ReuseShuffleIndices: "; 2362 if (ReuseShuffleIndices.empty()) 2363 dbgs() << "Empty"; 2364 else 2365 for (int ReuseIdx : ReuseShuffleIndices) 2366 dbgs() << ReuseIdx << ", "; 2367 dbgs() << "\n"; 2368 dbgs() << "ReorderIndices: "; 2369 for (unsigned ReorderIdx : ReorderIndices) 2370 dbgs() << ReorderIdx << ", "; 2371 dbgs() << "\n"; 2372 dbgs() << "UserTreeIndices: "; 2373 for (const auto &EInfo : UserTreeIndices) 2374 dbgs() << EInfo << ", "; 2375 dbgs() << "\n"; 2376 } 2377 #endif 2378 }; 2379 2380 #ifndef NDEBUG 2381 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 2382 InstructionCost VecCost, 2383 InstructionCost ScalarCost) const { 2384 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 2385 dbgs() << "SLP: Costs:\n"; 2386 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 2387 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 2388 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 2389 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 2390 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 2391 } 2392 #endif 2393 2394 /// Create a new VectorizableTree entry. 2395 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 2396 const InstructionsState &S, 2397 const EdgeInfo &UserTreeIdx, 2398 ArrayRef<int> ReuseShuffleIndices = None, 2399 ArrayRef<unsigned> ReorderIndices = None) { 2400 TreeEntry::EntryState EntryState = 2401 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 2402 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 2403 ReuseShuffleIndices, ReorderIndices); 2404 } 2405 2406 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 2407 TreeEntry::EntryState EntryState, 2408 Optional<ScheduleData *> Bundle, 2409 const InstructionsState &S, 2410 const EdgeInfo &UserTreeIdx, 2411 ArrayRef<int> ReuseShuffleIndices = None, 2412 ArrayRef<unsigned> ReorderIndices = None) { 2413 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 2414 (Bundle && EntryState != TreeEntry::NeedToGather)) && 2415 "Need to vectorize gather entry?"); 2416 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 2417 TreeEntry *Last = VectorizableTree.back().get(); 2418 Last->Idx = VectorizableTree.size() - 1; 2419 Last->State = EntryState; 2420 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 2421 ReuseShuffleIndices.end()); 2422 if (ReorderIndices.empty()) { 2423 Last->Scalars.assign(VL.begin(), VL.end()); 2424 Last->setOperations(S); 2425 } else { 2426 // Reorder scalars and build final mask. 2427 Last->Scalars.assign(VL.size(), nullptr); 2428 transform(ReorderIndices, Last->Scalars.begin(), 2429 [VL](unsigned Idx) -> Value * { 2430 if (Idx >= VL.size()) 2431 return UndefValue::get(VL.front()->getType()); 2432 return VL[Idx]; 2433 }); 2434 InstructionsState S = getSameOpcode(Last->Scalars); 2435 Last->setOperations(S); 2436 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 2437 } 2438 if (Last->State != TreeEntry::NeedToGather) { 2439 for (Value *V : VL) { 2440 assert(!getTreeEntry(V) && "Scalar already in tree!"); 2441 ScalarToTreeEntry[V] = Last; 2442 } 2443 // Update the scheduler bundle to point to this TreeEntry. 2444 ScheduleData *BundleMember = Bundle.getValue(); 2445 assert((BundleMember || isa<PHINode>(S.MainOp) || 2446 isVectorLikeInstWithConstOps(S.MainOp) || 2447 doesNotNeedToSchedule(VL)) && 2448 "Bundle and VL out of sync"); 2449 if (BundleMember) { 2450 for (Value *V : VL) { 2451 if (doesNotNeedToBeScheduled(V)) 2452 continue; 2453 assert(BundleMember && "Unexpected end of bundle."); 2454 BundleMember->TE = Last; 2455 BundleMember = BundleMember->NextInBundle; 2456 } 2457 } 2458 assert(!BundleMember && "Bundle and VL out of sync"); 2459 } else { 2460 MustGather.insert(VL.begin(), VL.end()); 2461 } 2462 2463 if (UserTreeIdx.UserTE) 2464 Last->UserTreeIndices.push_back(UserTreeIdx); 2465 2466 return Last; 2467 } 2468 2469 /// -- Vectorization State -- 2470 /// Holds all of the tree entries. 2471 TreeEntry::VecTreeTy VectorizableTree; 2472 2473 #ifndef NDEBUG 2474 /// Debug printer. 2475 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 2476 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 2477 VectorizableTree[Id]->dump(); 2478 dbgs() << "\n"; 2479 } 2480 } 2481 #endif 2482 2483 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 2484 2485 const TreeEntry *getTreeEntry(Value *V) const { 2486 return ScalarToTreeEntry.lookup(V); 2487 } 2488 2489 /// Maps a specific scalar to its tree entry. 2490 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 2491 2492 /// Maps a value to the proposed vectorizable size. 2493 SmallDenseMap<Value *, unsigned> InstrElementSize; 2494 2495 /// A list of scalars that we found that we need to keep as scalars. 2496 ValueSet MustGather; 2497 2498 /// This POD struct describes one external user in the vectorized tree. 2499 struct ExternalUser { 2500 ExternalUser(Value *S, llvm::User *U, int L) 2501 : Scalar(S), User(U), Lane(L) {} 2502 2503 // Which scalar in our function. 2504 Value *Scalar; 2505 2506 // Which user that uses the scalar. 2507 llvm::User *User; 2508 2509 // Which lane does the scalar belong to. 2510 int Lane; 2511 }; 2512 using UserList = SmallVector<ExternalUser, 16>; 2513 2514 /// Checks if two instructions may access the same memory. 2515 /// 2516 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2517 /// is invariant in the calling loop. 2518 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2519 Instruction *Inst2) { 2520 // First check if the result is already in the cache. 2521 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2522 Optional<bool> &result = AliasCache[key]; 2523 if (result.hasValue()) { 2524 return result.getValue(); 2525 } 2526 bool aliased = true; 2527 if (Loc1.Ptr && isSimple(Inst1)) 2528 aliased = isModOrRefSet(BatchAA.getModRefInfo(Inst2, Loc1)); 2529 // Store the result in the cache. 2530 result = aliased; 2531 return aliased; 2532 } 2533 2534 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2535 2536 /// Cache for alias results. 2537 /// TODO: consider moving this to the AliasAnalysis itself. 2538 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2539 2540 // Cache for pointerMayBeCaptured calls inside AA. This is preserved 2541 // globally through SLP because we don't perform any action which 2542 // invalidates capture results. 2543 BatchAAResults BatchAA; 2544 2545 /// Temporary store for deleted instructions. Instructions will be deleted 2546 /// eventually when the BoUpSLP is destructed. The deferral is required to 2547 /// ensure that there are no incorrect collisions in the AliasCache, which 2548 /// can happen if a new instruction is allocated at the same address as a 2549 /// previously deleted instruction. 2550 DenseSet<Instruction *> DeletedInstructions; 2551 2552 /// A list of values that need to extracted out of the tree. 2553 /// This list holds pairs of (Internal Scalar : External User). External User 2554 /// can be nullptr, it means that this Internal Scalar will be used later, 2555 /// after vectorization. 2556 UserList ExternalUses; 2557 2558 /// Values used only by @llvm.assume calls. 2559 SmallPtrSet<const Value *, 32> EphValues; 2560 2561 /// Holds all of the instructions that we gathered. 2562 SetVector<Instruction *> GatherShuffleSeq; 2563 2564 /// A list of blocks that we are going to CSE. 2565 SetVector<BasicBlock *> CSEBlocks; 2566 2567 /// Contains all scheduling relevant data for an instruction. 2568 /// A ScheduleData either represents a single instruction or a member of an 2569 /// instruction bundle (= a group of instructions which is combined into a 2570 /// vector instruction). 2571 struct ScheduleData { 2572 // The initial value for the dependency counters. It means that the 2573 // dependencies are not calculated yet. 2574 enum { InvalidDeps = -1 }; 2575 2576 ScheduleData() = default; 2577 2578 void init(int BlockSchedulingRegionID, Value *OpVal) { 2579 FirstInBundle = this; 2580 NextInBundle = nullptr; 2581 NextLoadStore = nullptr; 2582 IsScheduled = false; 2583 SchedulingRegionID = BlockSchedulingRegionID; 2584 clearDependencies(); 2585 OpValue = OpVal; 2586 TE = nullptr; 2587 } 2588 2589 /// Verify basic self consistency properties 2590 void verify() { 2591 if (hasValidDependencies()) { 2592 assert(UnscheduledDeps <= Dependencies && "invariant"); 2593 } else { 2594 assert(UnscheduledDeps == Dependencies && "invariant"); 2595 } 2596 2597 if (IsScheduled) { 2598 assert(isSchedulingEntity() && 2599 "unexpected scheduled state"); 2600 for (const ScheduleData *BundleMember = this; BundleMember; 2601 BundleMember = BundleMember->NextInBundle) { 2602 assert(BundleMember->hasValidDependencies() && 2603 BundleMember->UnscheduledDeps == 0 && 2604 "unexpected scheduled state"); 2605 assert((BundleMember == this || !BundleMember->IsScheduled) && 2606 "only bundle is marked scheduled"); 2607 } 2608 } 2609 2610 assert(Inst->getParent() == FirstInBundle->Inst->getParent() && 2611 "all bundle members must be in same basic block"); 2612 } 2613 2614 /// Returns true if the dependency information has been calculated. 2615 /// Note that depenendency validity can vary between instructions within 2616 /// a single bundle. 2617 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2618 2619 /// Returns true for single instructions and for bundle representatives 2620 /// (= the head of a bundle). 2621 bool isSchedulingEntity() const { return FirstInBundle == this; } 2622 2623 /// Returns true if it represents an instruction bundle and not only a 2624 /// single instruction. 2625 bool isPartOfBundle() const { 2626 return NextInBundle != nullptr || FirstInBundle != this || TE; 2627 } 2628 2629 /// Returns true if it is ready for scheduling, i.e. it has no more 2630 /// unscheduled depending instructions/bundles. 2631 bool isReady() const { 2632 assert(isSchedulingEntity() && 2633 "can't consider non-scheduling entity for ready list"); 2634 return unscheduledDepsInBundle() == 0 && !IsScheduled; 2635 } 2636 2637 /// Modifies the number of unscheduled dependencies for this instruction, 2638 /// and returns the number of remaining dependencies for the containing 2639 /// bundle. 2640 int incrementUnscheduledDeps(int Incr) { 2641 assert(hasValidDependencies() && 2642 "increment of unscheduled deps would be meaningless"); 2643 UnscheduledDeps += Incr; 2644 return FirstInBundle->unscheduledDepsInBundle(); 2645 } 2646 2647 /// Sets the number of unscheduled dependencies to the number of 2648 /// dependencies. 2649 void resetUnscheduledDeps() { 2650 UnscheduledDeps = Dependencies; 2651 } 2652 2653 /// Clears all dependency information. 2654 void clearDependencies() { 2655 Dependencies = InvalidDeps; 2656 resetUnscheduledDeps(); 2657 MemoryDependencies.clear(); 2658 ControlDependencies.clear(); 2659 } 2660 2661 int unscheduledDepsInBundle() const { 2662 assert(isSchedulingEntity() && "only meaningful on the bundle"); 2663 int Sum = 0; 2664 for (const ScheduleData *BundleMember = this; BundleMember; 2665 BundleMember = BundleMember->NextInBundle) { 2666 if (BundleMember->UnscheduledDeps == InvalidDeps) 2667 return InvalidDeps; 2668 Sum += BundleMember->UnscheduledDeps; 2669 } 2670 return Sum; 2671 } 2672 2673 void dump(raw_ostream &os) const { 2674 if (!isSchedulingEntity()) { 2675 os << "/ " << *Inst; 2676 } else if (NextInBundle) { 2677 os << '[' << *Inst; 2678 ScheduleData *SD = NextInBundle; 2679 while (SD) { 2680 os << ';' << *SD->Inst; 2681 SD = SD->NextInBundle; 2682 } 2683 os << ']'; 2684 } else { 2685 os << *Inst; 2686 } 2687 } 2688 2689 Instruction *Inst = nullptr; 2690 2691 /// Opcode of the current instruction in the schedule data. 2692 Value *OpValue = nullptr; 2693 2694 /// The TreeEntry that this instruction corresponds to. 2695 TreeEntry *TE = nullptr; 2696 2697 /// Points to the head in an instruction bundle (and always to this for 2698 /// single instructions). 2699 ScheduleData *FirstInBundle = nullptr; 2700 2701 /// Single linked list of all instructions in a bundle. Null if it is a 2702 /// single instruction. 2703 ScheduleData *NextInBundle = nullptr; 2704 2705 /// Single linked list of all memory instructions (e.g. load, store, call) 2706 /// in the block - until the end of the scheduling region. 2707 ScheduleData *NextLoadStore = nullptr; 2708 2709 /// The dependent memory instructions. 2710 /// This list is derived on demand in calculateDependencies(). 2711 SmallVector<ScheduleData *, 4> MemoryDependencies; 2712 2713 /// List of instructions which this instruction could be control dependent 2714 /// on. Allowing such nodes to be scheduled below this one could introduce 2715 /// a runtime fault which didn't exist in the original program. 2716 /// ex: this is a load or udiv following a readonly call which inf loops 2717 SmallVector<ScheduleData *, 4> ControlDependencies; 2718 2719 /// This ScheduleData is in the current scheduling region if this matches 2720 /// the current SchedulingRegionID of BlockScheduling. 2721 int SchedulingRegionID = 0; 2722 2723 /// Used for getting a "good" final ordering of instructions. 2724 int SchedulingPriority = 0; 2725 2726 /// The number of dependencies. Constitutes of the number of users of the 2727 /// instruction plus the number of dependent memory instructions (if any). 2728 /// This value is calculated on demand. 2729 /// If InvalidDeps, the number of dependencies is not calculated yet. 2730 int Dependencies = InvalidDeps; 2731 2732 /// The number of dependencies minus the number of dependencies of scheduled 2733 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2734 /// for scheduling. 2735 /// Note that this is negative as long as Dependencies is not calculated. 2736 int UnscheduledDeps = InvalidDeps; 2737 2738 /// True if this instruction is scheduled (or considered as scheduled in the 2739 /// dry-run). 2740 bool IsScheduled = false; 2741 }; 2742 2743 #ifndef NDEBUG 2744 friend inline raw_ostream &operator<<(raw_ostream &os, 2745 const BoUpSLP::ScheduleData &SD) { 2746 SD.dump(os); 2747 return os; 2748 } 2749 #endif 2750 2751 friend struct GraphTraits<BoUpSLP *>; 2752 friend struct DOTGraphTraits<BoUpSLP *>; 2753 2754 /// Contains all scheduling data for a basic block. 2755 /// It does not schedules instructions, which are not memory read/write 2756 /// instructions and their operands are either constants, or arguments, or 2757 /// phis, or instructions from others blocks, or their users are phis or from 2758 /// the other blocks. The resulting vector instructions can be placed at the 2759 /// beginning of the basic block without scheduling (if operands does not need 2760 /// to be scheduled) or at the end of the block (if users are outside of the 2761 /// block). It allows to save some compile time and memory used by the 2762 /// compiler. 2763 /// ScheduleData is assigned for each instruction in between the boundaries of 2764 /// the tree entry, even for those, which are not part of the graph. It is 2765 /// required to correctly follow the dependencies between the instructions and 2766 /// their correct scheduling. The ScheduleData is not allocated for the 2767 /// instructions, which do not require scheduling, like phis, nodes with 2768 /// extractelements/insertelements only or nodes with instructions, with 2769 /// uses/operands outside of the block. 2770 struct BlockScheduling { 2771 BlockScheduling(BasicBlock *BB) 2772 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2773 2774 void clear() { 2775 ReadyInsts.clear(); 2776 ScheduleStart = nullptr; 2777 ScheduleEnd = nullptr; 2778 FirstLoadStoreInRegion = nullptr; 2779 LastLoadStoreInRegion = nullptr; 2780 RegionHasStackSave = false; 2781 2782 // Reduce the maximum schedule region size by the size of the 2783 // previous scheduling run. 2784 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2785 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2786 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2787 ScheduleRegionSize = 0; 2788 2789 // Make a new scheduling region, i.e. all existing ScheduleData is not 2790 // in the new region yet. 2791 ++SchedulingRegionID; 2792 } 2793 2794 ScheduleData *getScheduleData(Instruction *I) { 2795 if (BB != I->getParent()) 2796 // Avoid lookup if can't possibly be in map. 2797 return nullptr; 2798 ScheduleData *SD = ScheduleDataMap.lookup(I); 2799 if (SD && isInSchedulingRegion(SD)) 2800 return SD; 2801 return nullptr; 2802 } 2803 2804 ScheduleData *getScheduleData(Value *V) { 2805 if (auto *I = dyn_cast<Instruction>(V)) 2806 return getScheduleData(I); 2807 return nullptr; 2808 } 2809 2810 ScheduleData *getScheduleData(Value *V, Value *Key) { 2811 if (V == Key) 2812 return getScheduleData(V); 2813 auto I = ExtraScheduleDataMap.find(V); 2814 if (I != ExtraScheduleDataMap.end()) { 2815 ScheduleData *SD = I->second.lookup(Key); 2816 if (SD && isInSchedulingRegion(SD)) 2817 return SD; 2818 } 2819 return nullptr; 2820 } 2821 2822 bool isInSchedulingRegion(ScheduleData *SD) const { 2823 return SD->SchedulingRegionID == SchedulingRegionID; 2824 } 2825 2826 /// Marks an instruction as scheduled and puts all dependent ready 2827 /// instructions into the ready-list. 2828 template <typename ReadyListType> 2829 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2830 SD->IsScheduled = true; 2831 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2832 2833 for (ScheduleData *BundleMember = SD; BundleMember; 2834 BundleMember = BundleMember->NextInBundle) { 2835 if (BundleMember->Inst != BundleMember->OpValue) 2836 continue; 2837 2838 // Handle the def-use chain dependencies. 2839 2840 // Decrement the unscheduled counter and insert to ready list if ready. 2841 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2842 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2843 if (OpDef && OpDef->hasValidDependencies() && 2844 OpDef->incrementUnscheduledDeps(-1) == 0) { 2845 // There are no more unscheduled dependencies after 2846 // decrementing, so we can put the dependent instruction 2847 // into the ready list. 2848 ScheduleData *DepBundle = OpDef->FirstInBundle; 2849 assert(!DepBundle->IsScheduled && 2850 "already scheduled bundle gets ready"); 2851 ReadyList.insert(DepBundle); 2852 LLVM_DEBUG(dbgs() 2853 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2854 } 2855 }); 2856 }; 2857 2858 // If BundleMember is a vector bundle, its operands may have been 2859 // reordered during buildTree(). We therefore need to get its operands 2860 // through the TreeEntry. 2861 if (TreeEntry *TE = BundleMember->TE) { 2862 // Need to search for the lane since the tree entry can be reordered. 2863 int Lane = std::distance(TE->Scalars.begin(), 2864 find(TE->Scalars, BundleMember->Inst)); 2865 assert(Lane >= 0 && "Lane not set"); 2866 2867 // Since vectorization tree is being built recursively this assertion 2868 // ensures that the tree entry has all operands set before reaching 2869 // this code. Couple of exceptions known at the moment are extracts 2870 // where their second (immediate) operand is not added. Since 2871 // immediates do not affect scheduler behavior this is considered 2872 // okay. 2873 auto *In = BundleMember->Inst; 2874 assert(In && 2875 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2876 In->getNumOperands() == TE->getNumOperands()) && 2877 "Missed TreeEntry operands?"); 2878 (void)In; // fake use to avoid build failure when assertions disabled 2879 2880 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2881 OpIdx != NumOperands; ++OpIdx) 2882 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2883 DecrUnsched(I); 2884 } else { 2885 // If BundleMember is a stand-alone instruction, no operand reordering 2886 // has taken place, so we directly access its operands. 2887 for (Use &U : BundleMember->Inst->operands()) 2888 if (auto *I = dyn_cast<Instruction>(U.get())) 2889 DecrUnsched(I); 2890 } 2891 // Handle the memory dependencies. 2892 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2893 if (MemoryDepSD->hasValidDependencies() && 2894 MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2895 // There are no more unscheduled dependencies after decrementing, 2896 // so we can put the dependent instruction into the ready list. 2897 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2898 assert(!DepBundle->IsScheduled && 2899 "already scheduled bundle gets ready"); 2900 ReadyList.insert(DepBundle); 2901 LLVM_DEBUG(dbgs() 2902 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2903 } 2904 } 2905 // Handle the control dependencies. 2906 for (ScheduleData *DepSD : BundleMember->ControlDependencies) { 2907 if (DepSD->incrementUnscheduledDeps(-1) == 0) { 2908 // There are no more unscheduled dependencies after decrementing, 2909 // so we can put the dependent instruction into the ready list. 2910 ScheduleData *DepBundle = DepSD->FirstInBundle; 2911 assert(!DepBundle->IsScheduled && 2912 "already scheduled bundle gets ready"); 2913 ReadyList.insert(DepBundle); 2914 LLVM_DEBUG(dbgs() 2915 << "SLP: gets ready (ctl): " << *DepBundle << "\n"); 2916 } 2917 } 2918 2919 } 2920 } 2921 2922 /// Verify basic self consistency properties of the data structure. 2923 void verify() { 2924 if (!ScheduleStart) 2925 return; 2926 2927 assert(ScheduleStart->getParent() == ScheduleEnd->getParent() && 2928 ScheduleStart->comesBefore(ScheduleEnd) && 2929 "Not a valid scheduling region?"); 2930 2931 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2932 auto *SD = getScheduleData(I); 2933 if (!SD) 2934 continue; 2935 assert(isInSchedulingRegion(SD) && 2936 "primary schedule data not in window?"); 2937 assert(isInSchedulingRegion(SD->FirstInBundle) && 2938 "entire bundle in window!"); 2939 (void)SD; 2940 doForAllOpcodes(I, [](ScheduleData *SD) { SD->verify(); }); 2941 } 2942 2943 for (auto *SD : ReadyInsts) { 2944 assert(SD->isSchedulingEntity() && SD->isReady() && 2945 "item in ready list not ready?"); 2946 (void)SD; 2947 } 2948 } 2949 2950 void doForAllOpcodes(Value *V, 2951 function_ref<void(ScheduleData *SD)> Action) { 2952 if (ScheduleData *SD = getScheduleData(V)) 2953 Action(SD); 2954 auto I = ExtraScheduleDataMap.find(V); 2955 if (I != ExtraScheduleDataMap.end()) 2956 for (auto &P : I->second) 2957 if (isInSchedulingRegion(P.second)) 2958 Action(P.second); 2959 } 2960 2961 /// Put all instructions into the ReadyList which are ready for scheduling. 2962 template <typename ReadyListType> 2963 void initialFillReadyList(ReadyListType &ReadyList) { 2964 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2965 doForAllOpcodes(I, [&](ScheduleData *SD) { 2966 if (SD->isSchedulingEntity() && SD->hasValidDependencies() && 2967 SD->isReady()) { 2968 ReadyList.insert(SD); 2969 LLVM_DEBUG(dbgs() 2970 << "SLP: initially in ready list: " << *SD << "\n"); 2971 } 2972 }); 2973 } 2974 } 2975 2976 /// Build a bundle from the ScheduleData nodes corresponding to the 2977 /// scalar instruction for each lane. 2978 ScheduleData *buildBundle(ArrayRef<Value *> VL); 2979 2980 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2981 /// cyclic dependencies. This is only a dry-run, no instructions are 2982 /// actually moved at this stage. 2983 /// \returns the scheduling bundle. The returned Optional value is non-None 2984 /// if \p VL is allowed to be scheduled. 2985 Optional<ScheduleData *> 2986 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2987 const InstructionsState &S); 2988 2989 /// Un-bundles a group of instructions. 2990 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2991 2992 /// Allocates schedule data chunk. 2993 ScheduleData *allocateScheduleDataChunks(); 2994 2995 /// Extends the scheduling region so that V is inside the region. 2996 /// \returns true if the region size is within the limit. 2997 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2998 2999 /// Initialize the ScheduleData structures for new instructions in the 3000 /// scheduling region. 3001 void initScheduleData(Instruction *FromI, Instruction *ToI, 3002 ScheduleData *PrevLoadStore, 3003 ScheduleData *NextLoadStore); 3004 3005 /// Updates the dependency information of a bundle and of all instructions/ 3006 /// bundles which depend on the original bundle. 3007 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 3008 BoUpSLP *SLP); 3009 3010 /// Sets all instruction in the scheduling region to un-scheduled. 3011 void resetSchedule(); 3012 3013 BasicBlock *BB; 3014 3015 /// Simple memory allocation for ScheduleData. 3016 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 3017 3018 /// The size of a ScheduleData array in ScheduleDataChunks. 3019 int ChunkSize; 3020 3021 /// The allocator position in the current chunk, which is the last entry 3022 /// of ScheduleDataChunks. 3023 int ChunkPos; 3024 3025 /// Attaches ScheduleData to Instruction. 3026 /// Note that the mapping survives during all vectorization iterations, i.e. 3027 /// ScheduleData structures are recycled. 3028 DenseMap<Instruction *, ScheduleData *> ScheduleDataMap; 3029 3030 /// Attaches ScheduleData to Instruction with the leading key. 3031 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 3032 ExtraScheduleDataMap; 3033 3034 /// The ready-list for scheduling (only used for the dry-run). 3035 SetVector<ScheduleData *> ReadyInsts; 3036 3037 /// The first instruction of the scheduling region. 3038 Instruction *ScheduleStart = nullptr; 3039 3040 /// The first instruction _after_ the scheduling region. 3041 Instruction *ScheduleEnd = nullptr; 3042 3043 /// The first memory accessing instruction in the scheduling region 3044 /// (can be null). 3045 ScheduleData *FirstLoadStoreInRegion = nullptr; 3046 3047 /// The last memory accessing instruction in the scheduling region 3048 /// (can be null). 3049 ScheduleData *LastLoadStoreInRegion = nullptr; 3050 3051 /// Is there an llvm.stacksave or llvm.stackrestore in the scheduling 3052 /// region? Used to optimize the dependence calculation for the 3053 /// common case where there isn't. 3054 bool RegionHasStackSave = false; 3055 3056 /// The current size of the scheduling region. 3057 int ScheduleRegionSize = 0; 3058 3059 /// The maximum size allowed for the scheduling region. 3060 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 3061 3062 /// The ID of the scheduling region. For a new vectorization iteration this 3063 /// is incremented which "removes" all ScheduleData from the region. 3064 /// Make sure that the initial SchedulingRegionID is greater than the 3065 /// initial SchedulingRegionID in ScheduleData (which is 0). 3066 int SchedulingRegionID = 1; 3067 }; 3068 3069 /// Attaches the BlockScheduling structures to basic blocks. 3070 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 3071 3072 /// Performs the "real" scheduling. Done before vectorization is actually 3073 /// performed in a basic block. 3074 void scheduleBlock(BlockScheduling *BS); 3075 3076 /// List of users to ignore during scheduling and that don't need extracting. 3077 ArrayRef<Value *> UserIgnoreList; 3078 3079 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 3080 /// sorted SmallVectors of unsigned. 3081 struct OrdersTypeDenseMapInfo { 3082 static OrdersType getEmptyKey() { 3083 OrdersType V; 3084 V.push_back(~1U); 3085 return V; 3086 } 3087 3088 static OrdersType getTombstoneKey() { 3089 OrdersType V; 3090 V.push_back(~2U); 3091 return V; 3092 } 3093 3094 static unsigned getHashValue(const OrdersType &V) { 3095 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 3096 } 3097 3098 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 3099 return LHS == RHS; 3100 } 3101 }; 3102 3103 // Analysis and block reference. 3104 Function *F; 3105 ScalarEvolution *SE; 3106 TargetTransformInfo *TTI; 3107 TargetLibraryInfo *TLI; 3108 LoopInfo *LI; 3109 DominatorTree *DT; 3110 AssumptionCache *AC; 3111 DemandedBits *DB; 3112 const DataLayout *DL; 3113 OptimizationRemarkEmitter *ORE; 3114 3115 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 3116 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 3117 3118 /// Instruction builder to construct the vectorized tree. 3119 IRBuilder<> Builder; 3120 3121 /// A map of scalar integer values to the smallest bit width with which they 3122 /// can legally be represented. The values map to (width, signed) pairs, 3123 /// where "width" indicates the minimum bit width and "signed" is True if the 3124 /// value must be signed-extended, rather than zero-extended, back to its 3125 /// original width. 3126 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 3127 }; 3128 3129 } // end namespace slpvectorizer 3130 3131 template <> struct GraphTraits<BoUpSLP *> { 3132 using TreeEntry = BoUpSLP::TreeEntry; 3133 3134 /// NodeRef has to be a pointer per the GraphWriter. 3135 using NodeRef = TreeEntry *; 3136 3137 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 3138 3139 /// Add the VectorizableTree to the index iterator to be able to return 3140 /// TreeEntry pointers. 3141 struct ChildIteratorType 3142 : public iterator_adaptor_base< 3143 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 3144 ContainerTy &VectorizableTree; 3145 3146 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 3147 ContainerTy &VT) 3148 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 3149 3150 NodeRef operator*() { return I->UserTE; } 3151 }; 3152 3153 static NodeRef getEntryNode(BoUpSLP &R) { 3154 return R.VectorizableTree[0].get(); 3155 } 3156 3157 static ChildIteratorType child_begin(NodeRef N) { 3158 return {N->UserTreeIndices.begin(), N->Container}; 3159 } 3160 3161 static ChildIteratorType child_end(NodeRef N) { 3162 return {N->UserTreeIndices.end(), N->Container}; 3163 } 3164 3165 /// For the node iterator we just need to turn the TreeEntry iterator into a 3166 /// TreeEntry* iterator so that it dereferences to NodeRef. 3167 class nodes_iterator { 3168 using ItTy = ContainerTy::iterator; 3169 ItTy It; 3170 3171 public: 3172 nodes_iterator(const ItTy &It2) : It(It2) {} 3173 NodeRef operator*() { return It->get(); } 3174 nodes_iterator operator++() { 3175 ++It; 3176 return *this; 3177 } 3178 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 3179 }; 3180 3181 static nodes_iterator nodes_begin(BoUpSLP *R) { 3182 return nodes_iterator(R->VectorizableTree.begin()); 3183 } 3184 3185 static nodes_iterator nodes_end(BoUpSLP *R) { 3186 return nodes_iterator(R->VectorizableTree.end()); 3187 } 3188 3189 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 3190 }; 3191 3192 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 3193 using TreeEntry = BoUpSLP::TreeEntry; 3194 3195 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3196 3197 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 3198 std::string Str; 3199 raw_string_ostream OS(Str); 3200 if (isSplat(Entry->Scalars)) 3201 OS << "<splat> "; 3202 for (auto V : Entry->Scalars) { 3203 OS << *V; 3204 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 3205 return EU.Scalar == V; 3206 })) 3207 OS << " <extract>"; 3208 OS << "\n"; 3209 } 3210 return Str; 3211 } 3212 3213 static std::string getNodeAttributes(const TreeEntry *Entry, 3214 const BoUpSLP *) { 3215 if (Entry->State == TreeEntry::NeedToGather) 3216 return "color=red"; 3217 return ""; 3218 } 3219 }; 3220 3221 } // end namespace llvm 3222 3223 BoUpSLP::~BoUpSLP() { 3224 SmallVector<WeakTrackingVH> DeadInsts; 3225 for (auto *I : DeletedInstructions) { 3226 for (Use &U : I->operands()) { 3227 auto *Op = dyn_cast<Instruction>(U.get()); 3228 if (Op && !DeletedInstructions.count(Op) && Op->hasOneUser() && 3229 wouldInstructionBeTriviallyDead(Op, TLI)) 3230 DeadInsts.emplace_back(Op); 3231 } 3232 I->dropAllReferences(); 3233 } 3234 for (auto *I : DeletedInstructions) { 3235 assert(I->use_empty() && 3236 "trying to erase instruction with users."); 3237 I->eraseFromParent(); 3238 } 3239 3240 // Cleanup any dead scalar code feeding the vectorized instructions 3241 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI); 3242 3243 #ifdef EXPENSIVE_CHECKS 3244 // If we could guarantee that this call is not extremely slow, we could 3245 // remove the ifdef limitation (see PR47712). 3246 assert(!verifyFunction(*F, &dbgs())); 3247 #endif 3248 } 3249 3250 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 3251 /// contains original mask for the scalars reused in the node. Procedure 3252 /// transform this mask in accordance with the given \p Mask. 3253 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 3254 assert(!Mask.empty() && Reuses.size() == Mask.size() && 3255 "Expected non-empty mask."); 3256 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 3257 Prev.swap(Reuses); 3258 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 3259 if (Mask[I] != UndefMaskElem) 3260 Reuses[Mask[I]] = Prev[I]; 3261 } 3262 3263 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 3264 /// the original order of the scalars. Procedure transforms the provided order 3265 /// in accordance with the given \p Mask. If the resulting \p Order is just an 3266 /// identity order, \p Order is cleared. 3267 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 3268 assert(!Mask.empty() && "Expected non-empty mask."); 3269 SmallVector<int> MaskOrder; 3270 if (Order.empty()) { 3271 MaskOrder.resize(Mask.size()); 3272 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 3273 } else { 3274 inversePermutation(Order, MaskOrder); 3275 } 3276 reorderReuses(MaskOrder, Mask); 3277 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 3278 Order.clear(); 3279 return; 3280 } 3281 Order.assign(Mask.size(), Mask.size()); 3282 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 3283 if (MaskOrder[I] != UndefMaskElem) 3284 Order[MaskOrder[I]] = I; 3285 fixupOrderingIndices(Order); 3286 } 3287 3288 Optional<BoUpSLP::OrdersType> 3289 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { 3290 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 3291 unsigned NumScalars = TE.Scalars.size(); 3292 OrdersType CurrentOrder(NumScalars, NumScalars); 3293 SmallVector<int> Positions; 3294 SmallBitVector UsedPositions(NumScalars); 3295 const TreeEntry *STE = nullptr; 3296 // Try to find all gathered scalars that are gets vectorized in other 3297 // vectorize node. Here we can have only one single tree vector node to 3298 // correctly identify order of the gathered scalars. 3299 for (unsigned I = 0; I < NumScalars; ++I) { 3300 Value *V = TE.Scalars[I]; 3301 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) 3302 continue; 3303 if (const auto *LocalSTE = getTreeEntry(V)) { 3304 if (!STE) 3305 STE = LocalSTE; 3306 else if (STE != LocalSTE) 3307 // Take the order only from the single vector node. 3308 return None; 3309 unsigned Lane = 3310 std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); 3311 if (Lane >= NumScalars) 3312 return None; 3313 if (CurrentOrder[Lane] != NumScalars) { 3314 if (Lane != I) 3315 continue; 3316 UsedPositions.reset(CurrentOrder[Lane]); 3317 } 3318 // The partial identity (where only some elements of the gather node are 3319 // in the identity order) is good. 3320 CurrentOrder[Lane] = I; 3321 UsedPositions.set(I); 3322 } 3323 } 3324 // Need to keep the order if we have a vector entry and at least 2 scalars or 3325 // the vectorized entry has just 2 scalars. 3326 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { 3327 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { 3328 for (unsigned I = 0; I < NumScalars; ++I) 3329 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) 3330 return false; 3331 return true; 3332 }; 3333 if (IsIdentityOrder(CurrentOrder)) { 3334 CurrentOrder.clear(); 3335 return CurrentOrder; 3336 } 3337 auto *It = CurrentOrder.begin(); 3338 for (unsigned I = 0; I < NumScalars;) { 3339 if (UsedPositions.test(I)) { 3340 ++I; 3341 continue; 3342 } 3343 if (*It == NumScalars) { 3344 *It = I; 3345 ++I; 3346 } 3347 ++It; 3348 } 3349 return CurrentOrder; 3350 } 3351 return None; 3352 } 3353 3354 Optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE, 3355 bool TopToBottom) { 3356 // No need to reorder if need to shuffle reuses, still need to shuffle the 3357 // node. 3358 if (!TE.ReuseShuffleIndices.empty()) 3359 return None; 3360 if (TE.State == TreeEntry::Vectorize && 3361 (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) || 3362 (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) && 3363 !TE.isAltShuffle()) 3364 return TE.ReorderIndices; 3365 if (TE.State == TreeEntry::NeedToGather) { 3366 // TODO: add analysis of other gather nodes with extractelement 3367 // instructions and other values/instructions, not only undefs. 3368 if (((TE.getOpcode() == Instruction::ExtractElement && 3369 !TE.isAltShuffle()) || 3370 (all_of(TE.Scalars, 3371 [](Value *V) { 3372 return isa<UndefValue, ExtractElementInst>(V); 3373 }) && 3374 any_of(TE.Scalars, 3375 [](Value *V) { return isa<ExtractElementInst>(V); }))) && 3376 all_of(TE.Scalars, 3377 [](Value *V) { 3378 auto *EE = dyn_cast<ExtractElementInst>(V); 3379 return !EE || isa<FixedVectorType>(EE->getVectorOperandType()); 3380 }) && 3381 allSameType(TE.Scalars)) { 3382 // Check that gather of extractelements can be represented as 3383 // just a shuffle of a single vector. 3384 OrdersType CurrentOrder; 3385 bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder); 3386 if (Reuse || !CurrentOrder.empty()) { 3387 if (!CurrentOrder.empty()) 3388 fixupOrderingIndices(CurrentOrder); 3389 return CurrentOrder; 3390 } 3391 } 3392 if (Optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE)) 3393 return CurrentOrder; 3394 } 3395 return None; 3396 } 3397 3398 void BoUpSLP::reorderTopToBottom() { 3399 // Maps VF to the graph nodes. 3400 DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries; 3401 // ExtractElement gather nodes which can be vectorized and need to handle 3402 // their ordering. 3403 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3404 // Find all reorderable nodes with the given VF. 3405 // Currently the are vectorized stores,loads,extracts + some gathering of 3406 // extracts. 3407 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders]( 3408 const std::unique_ptr<TreeEntry> &TE) { 3409 if (Optional<OrdersType> CurrentOrder = 3410 getReorderingData(*TE, /*TopToBottom=*/true)) { 3411 // Do not include ordering for nodes used in the alt opcode vectorization, 3412 // better to reorder them during bottom-to-top stage. If follow the order 3413 // here, it causes reordering of the whole graph though actually it is 3414 // profitable just to reorder the subgraph that starts from the alternate 3415 // opcode vectorization node. Such nodes already end-up with the shuffle 3416 // instruction and it is just enough to change this shuffle rather than 3417 // rotate the scalars for the whole graph. 3418 unsigned Cnt = 0; 3419 const TreeEntry *UserTE = TE.get(); 3420 while (UserTE && Cnt < RecursionMaxDepth) { 3421 if (UserTE->UserTreeIndices.size() != 1) 3422 break; 3423 if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) { 3424 return EI.UserTE->State == TreeEntry::Vectorize && 3425 EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0; 3426 })) 3427 return; 3428 if (UserTE->UserTreeIndices.empty()) 3429 UserTE = nullptr; 3430 else 3431 UserTE = UserTE->UserTreeIndices.back().UserTE; 3432 ++Cnt; 3433 } 3434 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 3435 if (TE->State != TreeEntry::Vectorize) 3436 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3437 } 3438 }); 3439 3440 // Reorder the graph nodes according to their vectorization factor. 3441 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 3442 VF /= 2) { 3443 auto It = VFToOrderedEntries.find(VF); 3444 if (It == VFToOrderedEntries.end()) 3445 continue; 3446 // Try to find the most profitable order. We just are looking for the most 3447 // used order and reorder scalar elements in the nodes according to this 3448 // mostly used order. 3449 ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef(); 3450 // All operands are reordered and used only in this node - propagate the 3451 // most used order to the user node. 3452 MapVector<OrdersType, unsigned, 3453 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3454 OrdersUses; 3455 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3456 for (const TreeEntry *OpTE : OrderedEntries) { 3457 // No need to reorder this nodes, still need to extend and to use shuffle, 3458 // just need to merge reordering shuffle and the reuse shuffle. 3459 if (!OpTE->ReuseShuffleIndices.empty()) 3460 continue; 3461 // Count number of orders uses. 3462 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3463 if (OpTE->State == TreeEntry::NeedToGather) 3464 return GathersToOrders.find(OpTE)->second; 3465 return OpTE->ReorderIndices; 3466 }(); 3467 // Stores actually store the mask, not the order, need to invert. 3468 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3469 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3470 SmallVector<int> Mask; 3471 inversePermutation(Order, Mask); 3472 unsigned E = Order.size(); 3473 OrdersType CurrentOrder(E, E); 3474 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3475 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3476 }); 3477 fixupOrderingIndices(CurrentOrder); 3478 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3479 } else { 3480 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3481 } 3482 } 3483 // Set order of the user node. 3484 if (OrdersUses.empty()) 3485 continue; 3486 // Choose the most used order. 3487 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3488 unsigned Cnt = OrdersUses.front().second; 3489 for (const auto &Pair : drop_begin(OrdersUses)) { 3490 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3491 BestOrder = Pair.first; 3492 Cnt = Pair.second; 3493 } 3494 } 3495 // Set order of the user node. 3496 if (BestOrder.empty()) 3497 continue; 3498 SmallVector<int> Mask; 3499 inversePermutation(BestOrder, Mask); 3500 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3501 unsigned E = BestOrder.size(); 3502 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3503 return I < E ? static_cast<int>(I) : UndefMaskElem; 3504 }); 3505 // Do an actual reordering, if profitable. 3506 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 3507 // Just do the reordering for the nodes with the given VF. 3508 if (TE->Scalars.size() != VF) { 3509 if (TE->ReuseShuffleIndices.size() == VF) { 3510 // Need to reorder the reuses masks of the operands with smaller VF to 3511 // be able to find the match between the graph nodes and scalar 3512 // operands of the given node during vectorization/cost estimation. 3513 assert(all_of(TE->UserTreeIndices, 3514 [VF, &TE](const EdgeInfo &EI) { 3515 return EI.UserTE->Scalars.size() == VF || 3516 EI.UserTE->Scalars.size() == 3517 TE->Scalars.size(); 3518 }) && 3519 "All users must be of VF size."); 3520 // Update ordering of the operands with the smaller VF than the given 3521 // one. 3522 reorderReuses(TE->ReuseShuffleIndices, Mask); 3523 } 3524 continue; 3525 } 3526 if (TE->State == TreeEntry::Vectorize && 3527 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 3528 InsertElementInst>(TE->getMainOp()) && 3529 !TE->isAltShuffle()) { 3530 // Build correct orders for extract{element,value}, loads and 3531 // stores. 3532 reorderOrder(TE->ReorderIndices, Mask); 3533 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 3534 TE->reorderOperands(Mask); 3535 } else { 3536 // Reorder the node and its operands. 3537 TE->reorderOperands(Mask); 3538 assert(TE->ReorderIndices.empty() && 3539 "Expected empty reorder sequence."); 3540 reorderScalars(TE->Scalars, Mask); 3541 } 3542 if (!TE->ReuseShuffleIndices.empty()) { 3543 // Apply reversed order to keep the original ordering of the reused 3544 // elements to avoid extra reorder indices shuffling. 3545 OrdersType CurrentOrder; 3546 reorderOrder(CurrentOrder, MaskOrder); 3547 SmallVector<int> NewReuses; 3548 inversePermutation(CurrentOrder, NewReuses); 3549 addMask(NewReuses, TE->ReuseShuffleIndices); 3550 TE->ReuseShuffleIndices.swap(NewReuses); 3551 } 3552 } 3553 } 3554 } 3555 3556 bool BoUpSLP::canReorderOperands( 3557 TreeEntry *UserTE, SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 3558 ArrayRef<TreeEntry *> ReorderableGathers, 3559 SmallVectorImpl<TreeEntry *> &GatherOps) { 3560 for (unsigned I = 0, E = UserTE->getNumOperands(); I < E; ++I) { 3561 if (any_of(Edges, [I](const std::pair<unsigned, TreeEntry *> &OpData) { 3562 return OpData.first == I && 3563 OpData.second->State == TreeEntry::Vectorize; 3564 })) 3565 continue; 3566 if (TreeEntry *TE = getVectorizedOperand(UserTE, I)) { 3567 // Do not reorder if operand node is used by many user nodes. 3568 if (any_of(TE->UserTreeIndices, 3569 [UserTE](const EdgeInfo &EI) { return EI.UserTE != UserTE; })) 3570 return false; 3571 // Add the node to the list of the ordered nodes with the identity 3572 // order. 3573 Edges.emplace_back(I, TE); 3574 continue; 3575 } 3576 ArrayRef<Value *> VL = UserTE->getOperand(I); 3577 TreeEntry *Gather = nullptr; 3578 if (count_if(ReorderableGathers, [VL, &Gather](TreeEntry *TE) { 3579 assert(TE->State != TreeEntry::Vectorize && 3580 "Only non-vectorized nodes are expected."); 3581 if (TE->isSame(VL)) { 3582 Gather = TE; 3583 return true; 3584 } 3585 return false; 3586 }) > 1) 3587 return false; 3588 if (Gather) 3589 GatherOps.push_back(Gather); 3590 } 3591 return true; 3592 } 3593 3594 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { 3595 SetVector<TreeEntry *> OrderedEntries; 3596 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3597 // Find all reorderable leaf nodes with the given VF. 3598 // Currently the are vectorized loads,extracts without alternate operands + 3599 // some gathering of extracts. 3600 SmallVector<TreeEntry *> NonVectorized; 3601 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 3602 &NonVectorized]( 3603 const std::unique_ptr<TreeEntry> &TE) { 3604 if (TE->State != TreeEntry::Vectorize) 3605 NonVectorized.push_back(TE.get()); 3606 if (Optional<OrdersType> CurrentOrder = 3607 getReorderingData(*TE, /*TopToBottom=*/false)) { 3608 OrderedEntries.insert(TE.get()); 3609 if (TE->State != TreeEntry::Vectorize) 3610 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3611 } 3612 }); 3613 3614 // 1. Propagate order to the graph nodes, which use only reordered nodes. 3615 // I.e., if the node has operands, that are reordered, try to make at least 3616 // one operand order in the natural order and reorder others + reorder the 3617 // user node itself. 3618 SmallPtrSet<const TreeEntry *, 4> Visited; 3619 while (!OrderedEntries.empty()) { 3620 // 1. Filter out only reordered nodes. 3621 // 2. If the entry has multiple uses - skip it and jump to the next node. 3622 MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 3623 SmallVector<TreeEntry *> Filtered; 3624 for (TreeEntry *TE : OrderedEntries) { 3625 if (!(TE->State == TreeEntry::Vectorize || 3626 (TE->State == TreeEntry::NeedToGather && 3627 GathersToOrders.count(TE))) || 3628 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3629 !all_of(drop_begin(TE->UserTreeIndices), 3630 [TE](const EdgeInfo &EI) { 3631 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 3632 }) || 3633 !Visited.insert(TE).second) { 3634 Filtered.push_back(TE); 3635 continue; 3636 } 3637 // Build a map between user nodes and their operands order to speedup 3638 // search. The graph currently does not provide this dependency directly. 3639 for (EdgeInfo &EI : TE->UserTreeIndices) { 3640 TreeEntry *UserTE = EI.UserTE; 3641 auto It = Users.find(UserTE); 3642 if (It == Users.end()) 3643 It = Users.insert({UserTE, {}}).first; 3644 It->second.emplace_back(EI.EdgeIdx, TE); 3645 } 3646 } 3647 // Erase filtered entries. 3648 for_each(Filtered, 3649 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 3650 for (auto &Data : Users) { 3651 // Check that operands are used only in the User node. 3652 SmallVector<TreeEntry *> GatherOps; 3653 if (!canReorderOperands(Data.first, Data.second, NonVectorized, 3654 GatherOps)) { 3655 for_each(Data.second, 3656 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3657 OrderedEntries.remove(Op.second); 3658 }); 3659 continue; 3660 } 3661 // All operands are reordered and used only in this node - propagate the 3662 // most used order to the user node. 3663 MapVector<OrdersType, unsigned, 3664 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3665 OrdersUses; 3666 // Do the analysis for each tree entry only once, otherwise the order of 3667 // the same node my be considered several times, though might be not 3668 // profitable. 3669 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3670 SmallPtrSet<const TreeEntry *, 4> VisitedUsers; 3671 for (const auto &Op : Data.second) { 3672 TreeEntry *OpTE = Op.second; 3673 if (!VisitedOps.insert(OpTE).second) 3674 continue; 3675 if (!OpTE->ReuseShuffleIndices.empty() || 3676 (IgnoreReorder && OpTE == VectorizableTree.front().get())) 3677 continue; 3678 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3679 if (OpTE->State == TreeEntry::NeedToGather) 3680 return GathersToOrders.find(OpTE)->second; 3681 return OpTE->ReorderIndices; 3682 }(); 3683 unsigned NumOps = count_if( 3684 Data.second, [OpTE](const std::pair<unsigned, TreeEntry *> &P) { 3685 return P.second == OpTE; 3686 }); 3687 // Stores actually store the mask, not the order, need to invert. 3688 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3689 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3690 SmallVector<int> Mask; 3691 inversePermutation(Order, Mask); 3692 unsigned E = Order.size(); 3693 OrdersType CurrentOrder(E, E); 3694 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3695 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3696 }); 3697 fixupOrderingIndices(CurrentOrder); 3698 OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second += 3699 NumOps; 3700 } else { 3701 OrdersUses.insert(std::make_pair(Order, 0)).first->second += NumOps; 3702 } 3703 auto Res = OrdersUses.insert(std::make_pair(OrdersType(), 0)); 3704 const auto &&AllowsReordering = [IgnoreReorder, &GathersToOrders]( 3705 const TreeEntry *TE) { 3706 if (!TE->ReorderIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3707 (TE->State == TreeEntry::Vectorize && TE->isAltShuffle()) || 3708 (IgnoreReorder && TE->Idx == 0)) 3709 return true; 3710 if (TE->State == TreeEntry::NeedToGather) { 3711 auto It = GathersToOrders.find(TE); 3712 if (It != GathersToOrders.end()) 3713 return !It->second.empty(); 3714 return true; 3715 } 3716 return false; 3717 }; 3718 for (const EdgeInfo &EI : OpTE->UserTreeIndices) { 3719 TreeEntry *UserTE = EI.UserTE; 3720 if (!VisitedUsers.insert(UserTE).second) 3721 continue; 3722 // May reorder user node if it requires reordering, has reused 3723 // scalars, is an alternate op vectorize node or its op nodes require 3724 // reordering. 3725 if (AllowsReordering(UserTE)) 3726 continue; 3727 // Check if users allow reordering. 3728 // Currently look up just 1 level of operands to avoid increase of 3729 // the compile time. 3730 // Profitable to reorder if definitely more operands allow 3731 // reordering rather than those with natural order. 3732 ArrayRef<std::pair<unsigned, TreeEntry *>> Ops = Users[UserTE]; 3733 if (static_cast<unsigned>(count_if( 3734 Ops, [UserTE, &AllowsReordering]( 3735 const std::pair<unsigned, TreeEntry *> &Op) { 3736 return AllowsReordering(Op.second) && 3737 all_of(Op.second->UserTreeIndices, 3738 [UserTE](const EdgeInfo &EI) { 3739 return EI.UserTE == UserTE; 3740 }); 3741 })) <= Ops.size() / 2) 3742 ++Res.first->second; 3743 } 3744 } 3745 // If no orders - skip current nodes and jump to the next one, if any. 3746 if (OrdersUses.empty()) { 3747 for_each(Data.second, 3748 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3749 OrderedEntries.remove(Op.second); 3750 }); 3751 continue; 3752 } 3753 // Choose the best order. 3754 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3755 unsigned Cnt = OrdersUses.front().second; 3756 for (const auto &Pair : drop_begin(OrdersUses)) { 3757 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3758 BestOrder = Pair.first; 3759 Cnt = Pair.second; 3760 } 3761 } 3762 // Set order of the user node (reordering of operands and user nodes). 3763 if (BestOrder.empty()) { 3764 for_each(Data.second, 3765 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3766 OrderedEntries.remove(Op.second); 3767 }); 3768 continue; 3769 } 3770 // Erase operands from OrderedEntries list and adjust their orders. 3771 VisitedOps.clear(); 3772 SmallVector<int> Mask; 3773 inversePermutation(BestOrder, Mask); 3774 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3775 unsigned E = BestOrder.size(); 3776 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3777 return I < E ? static_cast<int>(I) : UndefMaskElem; 3778 }); 3779 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 3780 TreeEntry *TE = Op.second; 3781 OrderedEntries.remove(TE); 3782 if (!VisitedOps.insert(TE).second) 3783 continue; 3784 if (TE->ReuseShuffleIndices.size() == BestOrder.size()) { 3785 // Just reorder reuses indices. 3786 reorderReuses(TE->ReuseShuffleIndices, Mask); 3787 continue; 3788 } 3789 // Gathers are processed separately. 3790 if (TE->State != TreeEntry::Vectorize) 3791 continue; 3792 assert((BestOrder.size() == TE->ReorderIndices.size() || 3793 TE->ReorderIndices.empty()) && 3794 "Non-matching sizes of user/operand entries."); 3795 reorderOrder(TE->ReorderIndices, Mask); 3796 } 3797 // For gathers just need to reorder its scalars. 3798 for (TreeEntry *Gather : GatherOps) { 3799 assert(Gather->ReorderIndices.empty() && 3800 "Unexpected reordering of gathers."); 3801 if (!Gather->ReuseShuffleIndices.empty()) { 3802 // Just reorder reuses indices. 3803 reorderReuses(Gather->ReuseShuffleIndices, Mask); 3804 continue; 3805 } 3806 reorderScalars(Gather->Scalars, Mask); 3807 OrderedEntries.remove(Gather); 3808 } 3809 // Reorder operands of the user node and set the ordering for the user 3810 // node itself. 3811 if (Data.first->State != TreeEntry::Vectorize || 3812 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 3813 Data.first->getMainOp()) || 3814 Data.first->isAltShuffle()) 3815 Data.first->reorderOperands(Mask); 3816 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 3817 Data.first->isAltShuffle()) { 3818 reorderScalars(Data.first->Scalars, Mask); 3819 reorderOrder(Data.first->ReorderIndices, MaskOrder); 3820 if (Data.first->ReuseShuffleIndices.empty() && 3821 !Data.first->ReorderIndices.empty() && 3822 !Data.first->isAltShuffle()) { 3823 // Insert user node to the list to try to sink reordering deeper in 3824 // the graph. 3825 OrderedEntries.insert(Data.first); 3826 } 3827 } else { 3828 reorderOrder(Data.first->ReorderIndices, Mask); 3829 } 3830 } 3831 } 3832 // If the reordering is unnecessary, just remove the reorder. 3833 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && 3834 VectorizableTree.front()->ReuseShuffleIndices.empty()) 3835 VectorizableTree.front()->ReorderIndices.clear(); 3836 } 3837 3838 void BoUpSLP::buildExternalUses( 3839 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3840 // Collect the values that we need to extract from the tree. 3841 for (auto &TEPtr : VectorizableTree) { 3842 TreeEntry *Entry = TEPtr.get(); 3843 3844 // No need to handle users of gathered values. 3845 if (Entry->State == TreeEntry::NeedToGather) 3846 continue; 3847 3848 // For each lane: 3849 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3850 Value *Scalar = Entry->Scalars[Lane]; 3851 int FoundLane = Entry->findLaneForValue(Scalar); 3852 3853 // Check if the scalar is externally used as an extra arg. 3854 auto ExtI = ExternallyUsedValues.find(Scalar); 3855 if (ExtI != ExternallyUsedValues.end()) { 3856 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 3857 << Lane << " from " << *Scalar << ".\n"); 3858 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 3859 } 3860 for (User *U : Scalar->users()) { 3861 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 3862 3863 Instruction *UserInst = dyn_cast<Instruction>(U); 3864 if (!UserInst) 3865 continue; 3866 3867 if (isDeleted(UserInst)) 3868 continue; 3869 3870 // Skip in-tree scalars that become vectors 3871 if (TreeEntry *UseEntry = getTreeEntry(U)) { 3872 Value *UseScalar = UseEntry->Scalars[0]; 3873 // Some in-tree scalars will remain as scalar in vectorized 3874 // instructions. If that is the case, the one in Lane 0 will 3875 // be used. 3876 if (UseScalar != U || 3877 UseEntry->State == TreeEntry::ScatterVectorize || 3878 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 3879 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 3880 << ".\n"); 3881 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 3882 continue; 3883 } 3884 } 3885 3886 // Ignore users in the user ignore list. 3887 if (is_contained(UserIgnoreList, UserInst)) 3888 continue; 3889 3890 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 3891 << Lane << " from " << *Scalar << ".\n"); 3892 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 3893 } 3894 } 3895 } 3896 } 3897 3898 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 3899 ArrayRef<Value *> UserIgnoreLst) { 3900 deleteTree(); 3901 UserIgnoreList = UserIgnoreLst; 3902 if (!allSameType(Roots)) 3903 return; 3904 buildTree_rec(Roots, 0, EdgeInfo()); 3905 } 3906 3907 namespace { 3908 /// Tracks the state we can represent the loads in the given sequence. 3909 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 3910 } // anonymous namespace 3911 3912 /// Checks if the given array of loads can be represented as a vectorized, 3913 /// scatter or just simple gather. 3914 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 3915 const TargetTransformInfo &TTI, 3916 const DataLayout &DL, ScalarEvolution &SE, 3917 SmallVectorImpl<unsigned> &Order, 3918 SmallVectorImpl<Value *> &PointerOps) { 3919 // Check that a vectorized load would load the same memory as a scalar 3920 // load. For example, we don't want to vectorize loads that are smaller 3921 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3922 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3923 // from such a struct, we read/write packed bits disagreeing with the 3924 // unvectorized version. 3925 Type *ScalarTy = VL0->getType(); 3926 3927 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 3928 return LoadsState::Gather; 3929 3930 // Make sure all loads in the bundle are simple - we can't vectorize 3931 // atomic or volatile loads. 3932 PointerOps.clear(); 3933 PointerOps.resize(VL.size()); 3934 auto *POIter = PointerOps.begin(); 3935 for (Value *V : VL) { 3936 auto *L = cast<LoadInst>(V); 3937 if (!L->isSimple()) 3938 return LoadsState::Gather; 3939 *POIter = L->getPointerOperand(); 3940 ++POIter; 3941 } 3942 3943 Order.clear(); 3944 // Check the order of pointer operands. 3945 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 3946 Value *Ptr0; 3947 Value *PtrN; 3948 if (Order.empty()) { 3949 Ptr0 = PointerOps.front(); 3950 PtrN = PointerOps.back(); 3951 } else { 3952 Ptr0 = PointerOps[Order.front()]; 3953 PtrN = PointerOps[Order.back()]; 3954 } 3955 Optional<int> Diff = 3956 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 3957 // Check that the sorted loads are consecutive. 3958 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 3959 return LoadsState::Vectorize; 3960 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 3961 for (Value *V : VL) 3962 CommonAlignment = 3963 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 3964 if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()), 3965 CommonAlignment)) 3966 return LoadsState::ScatterVectorize; 3967 } 3968 3969 return LoadsState::Gather; 3970 } 3971 3972 /// \return true if the specified list of values has only one instruction that 3973 /// requires scheduling, false otherwise. 3974 #ifndef NDEBUG 3975 static bool needToScheduleSingleInstruction(ArrayRef<Value *> VL) { 3976 Value *NeedsScheduling = nullptr; 3977 for (Value *V : VL) { 3978 if (doesNotNeedToBeScheduled(V)) 3979 continue; 3980 if (!NeedsScheduling) { 3981 NeedsScheduling = V; 3982 continue; 3983 } 3984 return false; 3985 } 3986 return NeedsScheduling; 3987 } 3988 #endif 3989 3990 /// Generates key/subkey pair for the given value to provide effective sorting 3991 /// of the values and better detection of the vectorizable values sequences. The 3992 /// keys/subkeys can be used for better sorting of the values themselves (keys) 3993 /// and in values subgroups (subkeys). 3994 static std::pair<size_t, size_t> generateKeySubkey( 3995 Value *V, const TargetLibraryInfo *TLI, 3996 function_ref<hash_code(size_t, LoadInst *)> LoadsSubkeyGenerator, 3997 bool AllowAlternate) { 3998 hash_code Key = hash_value(V->getValueID() + 2); 3999 hash_code SubKey = hash_value(0); 4000 // Sort the loads by the distance between the pointers. 4001 if (auto *LI = dyn_cast<LoadInst>(V)) { 4002 Key = hash_combine(hash_value(LI->getParent()), Key); 4003 if (LI->isSimple()) 4004 SubKey = hash_value(LoadsSubkeyGenerator(Key, LI)); 4005 else 4006 SubKey = hash_value(LI); 4007 } else if (isVectorLikeInstWithConstOps(V)) { 4008 // Sort extracts by the vector operands. 4009 if (isa<ExtractElementInst, UndefValue>(V)) 4010 Key = hash_value(Value::UndefValueVal + 1); 4011 if (auto *EI = dyn_cast<ExtractElementInst>(V)) { 4012 if (!isUndefVector(EI->getVectorOperand()) && 4013 !isa<UndefValue>(EI->getIndexOperand())) 4014 SubKey = hash_value(EI->getVectorOperand()); 4015 } 4016 } else if (auto *I = dyn_cast<Instruction>(V)) { 4017 // Sort other instructions just by the opcodes except for CMPInst. 4018 // For CMP also sort by the predicate kind. 4019 if ((isa<BinaryOperator>(I) || isa<CastInst>(I)) && 4020 isValidForAlternation(I->getOpcode())) { 4021 if (AllowAlternate) 4022 Key = hash_value(isa<BinaryOperator>(I) ? 1 : 0); 4023 else 4024 Key = hash_combine(hash_value(I->getOpcode()), Key); 4025 SubKey = hash_combine( 4026 hash_value(I->getOpcode()), hash_value(I->getType()), 4027 hash_value(isa<BinaryOperator>(I) 4028 ? I->getType() 4029 : cast<CastInst>(I)->getOperand(0)->getType())); 4030 } else if (auto *CI = dyn_cast<CmpInst>(I)) { 4031 CmpInst::Predicate Pred = CI->getPredicate(); 4032 if (CI->isCommutative()) 4033 Pred = std::min(Pred, CmpInst::getInversePredicate(Pred)); 4034 CmpInst::Predicate SwapPred = CmpInst::getSwappedPredicate(Pred); 4035 SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(Pred), 4036 hash_value(SwapPred), 4037 hash_value(CI->getOperand(0)->getType())); 4038 } else if (auto *Call = dyn_cast<CallInst>(I)) { 4039 Intrinsic::ID ID = getVectorIntrinsicIDForCall(Call, TLI); 4040 if (isTriviallyVectorizable(ID)) 4041 SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(ID)); 4042 else if (!VFDatabase(*Call).getMappings(*Call).empty()) 4043 SubKey = hash_combine(hash_value(I->getOpcode()), 4044 hash_value(Call->getCalledFunction())); 4045 else 4046 SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(Call)); 4047 for (const CallBase::BundleOpInfo &Op : Call->bundle_op_infos()) 4048 SubKey = hash_combine(hash_value(Op.Begin), hash_value(Op.End), 4049 hash_value(Op.Tag), SubKey); 4050 } else if (auto *Gep = dyn_cast<GetElementPtrInst>(I)) { 4051 if (Gep->getNumOperands() == 2 && isa<ConstantInt>(Gep->getOperand(1))) 4052 SubKey = hash_value(Gep->getPointerOperand()); 4053 else 4054 SubKey = hash_value(Gep); 4055 } else if (BinaryOperator::isIntDivRem(I->getOpcode()) && 4056 !isa<ConstantInt>(I->getOperand(1))) { 4057 // Do not try to vectorize instructions with potentially high cost. 4058 SubKey = hash_value(I); 4059 } else { 4060 SubKey = hash_value(I->getOpcode()); 4061 } 4062 Key = hash_combine(hash_value(I->getParent()), Key); 4063 } 4064 return std::make_pair(Key, SubKey); 4065 } 4066 4067 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 4068 const EdgeInfo &UserTreeIdx) { 4069 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 4070 4071 SmallVector<int> ReuseShuffleIndicies; 4072 SmallVector<Value *> UniqueValues; 4073 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, 4074 &UserTreeIdx, 4075 this](const InstructionsState &S) { 4076 // Check that every instruction appears once in this bundle. 4077 DenseMap<Value *, unsigned> UniquePositions; 4078 for (Value *V : VL) { 4079 if (isConstant(V)) { 4080 ReuseShuffleIndicies.emplace_back( 4081 isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size()); 4082 UniqueValues.emplace_back(V); 4083 continue; 4084 } 4085 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 4086 ReuseShuffleIndicies.emplace_back(Res.first->second); 4087 if (Res.second) 4088 UniqueValues.emplace_back(V); 4089 } 4090 size_t NumUniqueScalarValues = UniqueValues.size(); 4091 if (NumUniqueScalarValues == VL.size()) { 4092 ReuseShuffleIndicies.clear(); 4093 } else { 4094 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 4095 if (NumUniqueScalarValues <= 1 || 4096 (UniquePositions.size() == 1 && all_of(UniqueValues, 4097 [](Value *V) { 4098 return isa<UndefValue>(V) || 4099 !isConstant(V); 4100 })) || 4101 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 4102 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 4103 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4104 return false; 4105 } 4106 VL = UniqueValues; 4107 } 4108 return true; 4109 }; 4110 4111 InstructionsState S = getSameOpcode(VL); 4112 if (Depth == RecursionMaxDepth) { 4113 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 4114 if (TryToFindDuplicates(S)) 4115 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4116 ReuseShuffleIndicies); 4117 return; 4118 } 4119 4120 // Don't handle scalable vectors 4121 if (S.getOpcode() == Instruction::ExtractElement && 4122 isa<ScalableVectorType>( 4123 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 4124 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 4125 if (TryToFindDuplicates(S)) 4126 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4127 ReuseShuffleIndicies); 4128 return; 4129 } 4130 4131 // Don't handle vectors. 4132 if (S.OpValue->getType()->isVectorTy() && 4133 !isa<InsertElementInst>(S.OpValue)) { 4134 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 4135 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4136 return; 4137 } 4138 4139 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 4140 if (SI->getValueOperand()->getType()->isVectorTy()) { 4141 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 4142 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4143 return; 4144 } 4145 4146 // If all of the operands are identical or constant we have a simple solution. 4147 // If we deal with insert/extract instructions, they all must have constant 4148 // indices, otherwise we should gather them, not try to vectorize. 4149 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() || 4150 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) && 4151 !all_of(VL, isVectorLikeInstWithConstOps))) { 4152 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 4153 if (TryToFindDuplicates(S)) 4154 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4155 ReuseShuffleIndicies); 4156 return; 4157 } 4158 4159 // We now know that this is a vector of instructions of the same type from 4160 // the same block. 4161 4162 // Don't vectorize ephemeral values. 4163 for (Value *V : VL) { 4164 if (EphValues.count(V)) { 4165 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 4166 << ") is ephemeral.\n"); 4167 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4168 return; 4169 } 4170 } 4171 4172 // Check if this is a duplicate of another entry. 4173 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 4174 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 4175 if (!E->isSame(VL)) { 4176 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 4177 if (TryToFindDuplicates(S)) 4178 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4179 ReuseShuffleIndicies); 4180 return; 4181 } 4182 // Record the reuse of the tree node. FIXME, currently this is only used to 4183 // properly draw the graph rather than for the actual vectorization. 4184 E->UserTreeIndices.push_back(UserTreeIdx); 4185 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 4186 << ".\n"); 4187 return; 4188 } 4189 4190 // Check that none of the instructions in the bundle are already in the tree. 4191 for (Value *V : VL) { 4192 auto *I = dyn_cast<Instruction>(V); 4193 if (!I) 4194 continue; 4195 if (getTreeEntry(I)) { 4196 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 4197 << ") is already in tree.\n"); 4198 if (TryToFindDuplicates(S)) 4199 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4200 ReuseShuffleIndicies); 4201 return; 4202 } 4203 } 4204 4205 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 4206 for (Value *V : VL) { 4207 if (is_contained(UserIgnoreList, V)) { 4208 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 4209 if (TryToFindDuplicates(S)) 4210 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4211 ReuseShuffleIndicies); 4212 return; 4213 } 4214 } 4215 4216 // Check that all of the users of the scalars that we want to vectorize are 4217 // schedulable. 4218 auto *VL0 = cast<Instruction>(S.OpValue); 4219 BasicBlock *BB = VL0->getParent(); 4220 4221 if (!DT->isReachableFromEntry(BB)) { 4222 // Don't go into unreachable blocks. They may contain instructions with 4223 // dependency cycles which confuse the final scheduling. 4224 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 4225 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4226 return; 4227 } 4228 4229 // Check that every instruction appears once in this bundle. 4230 if (!TryToFindDuplicates(S)) 4231 return; 4232 4233 auto &BSRef = BlocksSchedules[BB]; 4234 if (!BSRef) 4235 BSRef = std::make_unique<BlockScheduling>(BB); 4236 4237 BlockScheduling &BS = *BSRef; 4238 4239 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 4240 #ifdef EXPENSIVE_CHECKS 4241 // Make sure we didn't break any internal invariants 4242 BS.verify(); 4243 #endif 4244 if (!Bundle) { 4245 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 4246 assert((!BS.getScheduleData(VL0) || 4247 !BS.getScheduleData(VL0)->isPartOfBundle()) && 4248 "tryScheduleBundle should cancelScheduling on failure"); 4249 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4250 ReuseShuffleIndicies); 4251 return; 4252 } 4253 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 4254 4255 unsigned ShuffleOrOp = S.isAltShuffle() ? 4256 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 4257 switch (ShuffleOrOp) { 4258 case Instruction::PHI: { 4259 auto *PH = cast<PHINode>(VL0); 4260 4261 // Check for terminator values (e.g. invoke). 4262 for (Value *V : VL) 4263 for (Value *Incoming : cast<PHINode>(V)->incoming_values()) { 4264 Instruction *Term = dyn_cast<Instruction>(Incoming); 4265 if (Term && Term->isTerminator()) { 4266 LLVM_DEBUG(dbgs() 4267 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 4268 BS.cancelScheduling(VL, VL0); 4269 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4270 ReuseShuffleIndicies); 4271 return; 4272 } 4273 } 4274 4275 TreeEntry *TE = 4276 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 4277 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 4278 4279 // Keeps the reordered operands to avoid code duplication. 4280 SmallVector<ValueList, 2> OperandsVec; 4281 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 4282 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 4283 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 4284 TE->setOperand(I, Operands); 4285 OperandsVec.push_back(Operands); 4286 continue; 4287 } 4288 ValueList Operands; 4289 // Prepare the operand vector. 4290 for (Value *V : VL) 4291 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 4292 PH->getIncomingBlock(I))); 4293 TE->setOperand(I, Operands); 4294 OperandsVec.push_back(Operands); 4295 } 4296 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 4297 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 4298 return; 4299 } 4300 case Instruction::ExtractValue: 4301 case Instruction::ExtractElement: { 4302 OrdersType CurrentOrder; 4303 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 4304 if (Reuse) { 4305 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 4306 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4307 ReuseShuffleIndicies); 4308 // This is a special case, as it does not gather, but at the same time 4309 // we are not extending buildTree_rec() towards the operands. 4310 ValueList Op0; 4311 Op0.assign(VL.size(), VL0->getOperand(0)); 4312 VectorizableTree.back()->setOperand(0, Op0); 4313 return; 4314 } 4315 if (!CurrentOrder.empty()) { 4316 LLVM_DEBUG({ 4317 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 4318 "with order"; 4319 for (unsigned Idx : CurrentOrder) 4320 dbgs() << " " << Idx; 4321 dbgs() << "\n"; 4322 }); 4323 fixupOrderingIndices(CurrentOrder); 4324 // Insert new order with initial value 0, if it does not exist, 4325 // otherwise return the iterator to the existing one. 4326 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4327 ReuseShuffleIndicies, CurrentOrder); 4328 // This is a special case, as it does not gather, but at the same time 4329 // we are not extending buildTree_rec() towards the operands. 4330 ValueList Op0; 4331 Op0.assign(VL.size(), VL0->getOperand(0)); 4332 VectorizableTree.back()->setOperand(0, Op0); 4333 return; 4334 } 4335 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 4336 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4337 ReuseShuffleIndicies); 4338 BS.cancelScheduling(VL, VL0); 4339 return; 4340 } 4341 case Instruction::InsertElement: { 4342 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 4343 4344 // Check that we have a buildvector and not a shuffle of 2 or more 4345 // different vectors. 4346 ValueSet SourceVectors; 4347 for (Value *V : VL) { 4348 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 4349 assert(getInsertIndex(V) != None && "Non-constant or undef index?"); 4350 } 4351 4352 if (count_if(VL, [&SourceVectors](Value *V) { 4353 return !SourceVectors.contains(V); 4354 }) >= 2) { 4355 // Found 2nd source vector - cancel. 4356 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 4357 "different source vectors.\n"); 4358 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4359 BS.cancelScheduling(VL, VL0); 4360 return; 4361 } 4362 4363 auto OrdCompare = [](const std::pair<int, int> &P1, 4364 const std::pair<int, int> &P2) { 4365 return P1.first > P2.first; 4366 }; 4367 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 4368 decltype(OrdCompare)> 4369 Indices(OrdCompare); 4370 for (int I = 0, E = VL.size(); I < E; ++I) { 4371 unsigned Idx = *getInsertIndex(VL[I]); 4372 Indices.emplace(Idx, I); 4373 } 4374 OrdersType CurrentOrder(VL.size(), VL.size()); 4375 bool IsIdentity = true; 4376 for (int I = 0, E = VL.size(); I < E; ++I) { 4377 CurrentOrder[Indices.top().second] = I; 4378 IsIdentity &= Indices.top().second == I; 4379 Indices.pop(); 4380 } 4381 if (IsIdentity) 4382 CurrentOrder.clear(); 4383 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4384 None, CurrentOrder); 4385 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 4386 4387 constexpr int NumOps = 2; 4388 ValueList VectorOperands[NumOps]; 4389 for (int I = 0; I < NumOps; ++I) { 4390 for (Value *V : VL) 4391 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 4392 4393 TE->setOperand(I, VectorOperands[I]); 4394 } 4395 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 4396 return; 4397 } 4398 case Instruction::Load: { 4399 // Check that a vectorized load would load the same memory as a scalar 4400 // load. For example, we don't want to vectorize loads that are smaller 4401 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 4402 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 4403 // from such a struct, we read/write packed bits disagreeing with the 4404 // unvectorized version. 4405 SmallVector<Value *> PointerOps; 4406 OrdersType CurrentOrder; 4407 TreeEntry *TE = nullptr; 4408 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 4409 PointerOps)) { 4410 case LoadsState::Vectorize: 4411 if (CurrentOrder.empty()) { 4412 // Original loads are consecutive and does not require reordering. 4413 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4414 ReuseShuffleIndicies); 4415 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 4416 } else { 4417 fixupOrderingIndices(CurrentOrder); 4418 // Need to reorder. 4419 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4420 ReuseShuffleIndicies, CurrentOrder); 4421 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 4422 } 4423 TE->setOperandsInOrder(); 4424 break; 4425 case LoadsState::ScatterVectorize: 4426 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 4427 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 4428 UserTreeIdx, ReuseShuffleIndicies); 4429 TE->setOperandsInOrder(); 4430 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 4431 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 4432 break; 4433 case LoadsState::Gather: 4434 BS.cancelScheduling(VL, VL0); 4435 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4436 ReuseShuffleIndicies); 4437 #ifndef NDEBUG 4438 Type *ScalarTy = VL0->getType(); 4439 if (DL->getTypeSizeInBits(ScalarTy) != 4440 DL->getTypeAllocSizeInBits(ScalarTy)) 4441 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 4442 else if (any_of(VL, [](Value *V) { 4443 return !cast<LoadInst>(V)->isSimple(); 4444 })) 4445 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 4446 else 4447 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 4448 #endif // NDEBUG 4449 break; 4450 } 4451 return; 4452 } 4453 case Instruction::ZExt: 4454 case Instruction::SExt: 4455 case Instruction::FPToUI: 4456 case Instruction::FPToSI: 4457 case Instruction::FPExt: 4458 case Instruction::PtrToInt: 4459 case Instruction::IntToPtr: 4460 case Instruction::SIToFP: 4461 case Instruction::UIToFP: 4462 case Instruction::Trunc: 4463 case Instruction::FPTrunc: 4464 case Instruction::BitCast: { 4465 Type *SrcTy = VL0->getOperand(0)->getType(); 4466 for (Value *V : VL) { 4467 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 4468 if (Ty != SrcTy || !isValidElementType(Ty)) { 4469 BS.cancelScheduling(VL, VL0); 4470 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4471 ReuseShuffleIndicies); 4472 LLVM_DEBUG(dbgs() 4473 << "SLP: Gathering casts with different src types.\n"); 4474 return; 4475 } 4476 } 4477 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4478 ReuseShuffleIndicies); 4479 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 4480 4481 TE->setOperandsInOrder(); 4482 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4483 ValueList Operands; 4484 // Prepare the operand vector. 4485 for (Value *V : VL) 4486 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4487 4488 buildTree_rec(Operands, Depth + 1, {TE, i}); 4489 } 4490 return; 4491 } 4492 case Instruction::ICmp: 4493 case Instruction::FCmp: { 4494 // Check that all of the compares have the same predicate. 4495 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4496 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 4497 Type *ComparedTy = VL0->getOperand(0)->getType(); 4498 for (Value *V : VL) { 4499 CmpInst *Cmp = cast<CmpInst>(V); 4500 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 4501 Cmp->getOperand(0)->getType() != ComparedTy) { 4502 BS.cancelScheduling(VL, VL0); 4503 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4504 ReuseShuffleIndicies); 4505 LLVM_DEBUG(dbgs() 4506 << "SLP: Gathering cmp with different predicate.\n"); 4507 return; 4508 } 4509 } 4510 4511 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4512 ReuseShuffleIndicies); 4513 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 4514 4515 ValueList Left, Right; 4516 if (cast<CmpInst>(VL0)->isCommutative()) { 4517 // Commutative predicate - collect + sort operands of the instructions 4518 // so that each side is more likely to have the same opcode. 4519 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 4520 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4521 } else { 4522 // Collect operands - commute if it uses the swapped predicate. 4523 for (Value *V : VL) { 4524 auto *Cmp = cast<CmpInst>(V); 4525 Value *LHS = Cmp->getOperand(0); 4526 Value *RHS = Cmp->getOperand(1); 4527 if (Cmp->getPredicate() != P0) 4528 std::swap(LHS, RHS); 4529 Left.push_back(LHS); 4530 Right.push_back(RHS); 4531 } 4532 } 4533 TE->setOperand(0, Left); 4534 TE->setOperand(1, Right); 4535 buildTree_rec(Left, Depth + 1, {TE, 0}); 4536 buildTree_rec(Right, Depth + 1, {TE, 1}); 4537 return; 4538 } 4539 case Instruction::Select: 4540 case Instruction::FNeg: 4541 case Instruction::Add: 4542 case Instruction::FAdd: 4543 case Instruction::Sub: 4544 case Instruction::FSub: 4545 case Instruction::Mul: 4546 case Instruction::FMul: 4547 case Instruction::UDiv: 4548 case Instruction::SDiv: 4549 case Instruction::FDiv: 4550 case Instruction::URem: 4551 case Instruction::SRem: 4552 case Instruction::FRem: 4553 case Instruction::Shl: 4554 case Instruction::LShr: 4555 case Instruction::AShr: 4556 case Instruction::And: 4557 case Instruction::Or: 4558 case Instruction::Xor: { 4559 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4560 ReuseShuffleIndicies); 4561 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 4562 4563 // Sort operands of the instructions so that each side is more likely to 4564 // have the same opcode. 4565 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 4566 ValueList Left, Right; 4567 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4568 TE->setOperand(0, Left); 4569 TE->setOperand(1, Right); 4570 buildTree_rec(Left, Depth + 1, {TE, 0}); 4571 buildTree_rec(Right, Depth + 1, {TE, 1}); 4572 return; 4573 } 4574 4575 TE->setOperandsInOrder(); 4576 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4577 ValueList Operands; 4578 // Prepare the operand vector. 4579 for (Value *V : VL) 4580 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4581 4582 buildTree_rec(Operands, Depth + 1, {TE, i}); 4583 } 4584 return; 4585 } 4586 case Instruction::GetElementPtr: { 4587 // We don't combine GEPs with complicated (nested) indexing. 4588 for (Value *V : VL) { 4589 if (cast<Instruction>(V)->getNumOperands() != 2) { 4590 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 4591 BS.cancelScheduling(VL, VL0); 4592 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4593 ReuseShuffleIndicies); 4594 return; 4595 } 4596 } 4597 4598 // We can't combine several GEPs into one vector if they operate on 4599 // different types. 4600 Type *Ty0 = cast<GEPOperator>(VL0)->getSourceElementType(); 4601 for (Value *V : VL) { 4602 Type *CurTy = cast<GEPOperator>(V)->getSourceElementType(); 4603 if (Ty0 != CurTy) { 4604 LLVM_DEBUG(dbgs() 4605 << "SLP: not-vectorizable GEP (different types).\n"); 4606 BS.cancelScheduling(VL, VL0); 4607 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4608 ReuseShuffleIndicies); 4609 return; 4610 } 4611 } 4612 4613 // We don't combine GEPs with non-constant indexes. 4614 Type *Ty1 = VL0->getOperand(1)->getType(); 4615 for (Value *V : VL) { 4616 auto Op = cast<Instruction>(V)->getOperand(1); 4617 if (!isa<ConstantInt>(Op) || 4618 (Op->getType() != Ty1 && 4619 Op->getType()->getScalarSizeInBits() > 4620 DL->getIndexSizeInBits( 4621 V->getType()->getPointerAddressSpace()))) { 4622 LLVM_DEBUG(dbgs() 4623 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 4624 BS.cancelScheduling(VL, VL0); 4625 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4626 ReuseShuffleIndicies); 4627 return; 4628 } 4629 } 4630 4631 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4632 ReuseShuffleIndicies); 4633 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 4634 SmallVector<ValueList, 2> Operands(2); 4635 // Prepare the operand vector for pointer operands. 4636 for (Value *V : VL) 4637 Operands.front().push_back( 4638 cast<GetElementPtrInst>(V)->getPointerOperand()); 4639 TE->setOperand(0, Operands.front()); 4640 // Need to cast all indices to the same type before vectorization to 4641 // avoid crash. 4642 // Required to be able to find correct matches between different gather 4643 // nodes and reuse the vectorized values rather than trying to gather them 4644 // again. 4645 int IndexIdx = 1; 4646 Type *VL0Ty = VL0->getOperand(IndexIdx)->getType(); 4647 Type *Ty = all_of(VL, 4648 [VL0Ty, IndexIdx](Value *V) { 4649 return VL0Ty == cast<GetElementPtrInst>(V) 4650 ->getOperand(IndexIdx) 4651 ->getType(); 4652 }) 4653 ? VL0Ty 4654 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4655 ->getPointerOperandType() 4656 ->getScalarType()); 4657 // Prepare the operand vector. 4658 for (Value *V : VL) { 4659 auto *Op = cast<Instruction>(V)->getOperand(IndexIdx); 4660 auto *CI = cast<ConstantInt>(Op); 4661 Operands.back().push_back(ConstantExpr::getIntegerCast( 4662 CI, Ty, CI->getValue().isSignBitSet())); 4663 } 4664 TE->setOperand(IndexIdx, Operands.back()); 4665 4666 for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I) 4667 buildTree_rec(Operands[I], Depth + 1, {TE, I}); 4668 return; 4669 } 4670 case Instruction::Store: { 4671 // Check if the stores are consecutive or if we need to swizzle them. 4672 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 4673 // Avoid types that are padded when being allocated as scalars, while 4674 // being packed together in a vector (such as i1). 4675 if (DL->getTypeSizeInBits(ScalarTy) != 4676 DL->getTypeAllocSizeInBits(ScalarTy)) { 4677 BS.cancelScheduling(VL, VL0); 4678 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4679 ReuseShuffleIndicies); 4680 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 4681 return; 4682 } 4683 // Make sure all stores in the bundle are simple - we can't vectorize 4684 // atomic or volatile stores. 4685 SmallVector<Value *, 4> PointerOps(VL.size()); 4686 ValueList Operands(VL.size()); 4687 auto POIter = PointerOps.begin(); 4688 auto OIter = Operands.begin(); 4689 for (Value *V : VL) { 4690 auto *SI = cast<StoreInst>(V); 4691 if (!SI->isSimple()) { 4692 BS.cancelScheduling(VL, VL0); 4693 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4694 ReuseShuffleIndicies); 4695 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 4696 return; 4697 } 4698 *POIter = SI->getPointerOperand(); 4699 *OIter = SI->getValueOperand(); 4700 ++POIter; 4701 ++OIter; 4702 } 4703 4704 OrdersType CurrentOrder; 4705 // Check the order of pointer operands. 4706 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 4707 Value *Ptr0; 4708 Value *PtrN; 4709 if (CurrentOrder.empty()) { 4710 Ptr0 = PointerOps.front(); 4711 PtrN = PointerOps.back(); 4712 } else { 4713 Ptr0 = PointerOps[CurrentOrder.front()]; 4714 PtrN = PointerOps[CurrentOrder.back()]; 4715 } 4716 Optional<int> Dist = 4717 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 4718 // Check that the sorted pointer operands are consecutive. 4719 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 4720 if (CurrentOrder.empty()) { 4721 // Original stores are consecutive and does not require reordering. 4722 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 4723 UserTreeIdx, ReuseShuffleIndicies); 4724 TE->setOperandsInOrder(); 4725 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4726 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 4727 } else { 4728 fixupOrderingIndices(CurrentOrder); 4729 TreeEntry *TE = 4730 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4731 ReuseShuffleIndicies, CurrentOrder); 4732 TE->setOperandsInOrder(); 4733 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4734 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 4735 } 4736 return; 4737 } 4738 } 4739 4740 BS.cancelScheduling(VL, VL0); 4741 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4742 ReuseShuffleIndicies); 4743 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 4744 return; 4745 } 4746 case Instruction::Call: { 4747 // Check if the calls are all to the same vectorizable intrinsic or 4748 // library function. 4749 CallInst *CI = cast<CallInst>(VL0); 4750 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4751 4752 VFShape Shape = VFShape::get( 4753 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 4754 false /*HasGlobalPred*/); 4755 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4756 4757 if (!VecFunc && !isTriviallyVectorizable(ID)) { 4758 BS.cancelScheduling(VL, VL0); 4759 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4760 ReuseShuffleIndicies); 4761 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 4762 return; 4763 } 4764 Function *F = CI->getCalledFunction(); 4765 unsigned NumArgs = CI->arg_size(); 4766 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 4767 for (unsigned j = 0; j != NumArgs; ++j) 4768 if (hasVectorInstrinsicScalarOpd(ID, j)) 4769 ScalarArgs[j] = CI->getArgOperand(j); 4770 for (Value *V : VL) { 4771 CallInst *CI2 = dyn_cast<CallInst>(V); 4772 if (!CI2 || CI2->getCalledFunction() != F || 4773 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 4774 (VecFunc && 4775 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 4776 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 4777 BS.cancelScheduling(VL, VL0); 4778 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4779 ReuseShuffleIndicies); 4780 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 4781 << "\n"); 4782 return; 4783 } 4784 // Some intrinsics have scalar arguments and should be same in order for 4785 // them to be vectorized. 4786 for (unsigned j = 0; j != NumArgs; ++j) { 4787 if (hasVectorInstrinsicScalarOpd(ID, j)) { 4788 Value *A1J = CI2->getArgOperand(j); 4789 if (ScalarArgs[j] != A1J) { 4790 BS.cancelScheduling(VL, VL0); 4791 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4792 ReuseShuffleIndicies); 4793 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 4794 << " argument " << ScalarArgs[j] << "!=" << A1J 4795 << "\n"); 4796 return; 4797 } 4798 } 4799 } 4800 // Verify that the bundle operands are identical between the two calls. 4801 if (CI->hasOperandBundles() && 4802 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 4803 CI->op_begin() + CI->getBundleOperandsEndIndex(), 4804 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 4805 BS.cancelScheduling(VL, VL0); 4806 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4807 ReuseShuffleIndicies); 4808 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 4809 << *CI << "!=" << *V << '\n'); 4810 return; 4811 } 4812 } 4813 4814 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4815 ReuseShuffleIndicies); 4816 TE->setOperandsInOrder(); 4817 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 4818 // For scalar operands no need to to create an entry since no need to 4819 // vectorize it. 4820 if (hasVectorInstrinsicScalarOpd(ID, i)) 4821 continue; 4822 ValueList Operands; 4823 // Prepare the operand vector. 4824 for (Value *V : VL) { 4825 auto *CI2 = cast<CallInst>(V); 4826 Operands.push_back(CI2->getArgOperand(i)); 4827 } 4828 buildTree_rec(Operands, Depth + 1, {TE, i}); 4829 } 4830 return; 4831 } 4832 case Instruction::ShuffleVector: { 4833 // If this is not an alternate sequence of opcode like add-sub 4834 // then do not vectorize this instruction. 4835 if (!S.isAltShuffle()) { 4836 BS.cancelScheduling(VL, VL0); 4837 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4838 ReuseShuffleIndicies); 4839 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 4840 return; 4841 } 4842 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4843 ReuseShuffleIndicies); 4844 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 4845 4846 // Reorder operands if reordering would enable vectorization. 4847 auto *CI = dyn_cast<CmpInst>(VL0); 4848 if (isa<BinaryOperator>(VL0) || CI) { 4849 ValueList Left, Right; 4850 if (!CI || all_of(VL, [](Value *V) { 4851 return cast<CmpInst>(V)->isCommutative(); 4852 })) { 4853 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4854 } else { 4855 CmpInst::Predicate P0 = CI->getPredicate(); 4856 CmpInst::Predicate AltP0 = cast<CmpInst>(S.AltOp)->getPredicate(); 4857 assert(P0 != AltP0 && 4858 "Expected different main/alternate predicates."); 4859 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 4860 Value *BaseOp0 = VL0->getOperand(0); 4861 Value *BaseOp1 = VL0->getOperand(1); 4862 // Collect operands - commute if it uses the swapped predicate or 4863 // alternate operation. 4864 for (Value *V : VL) { 4865 auto *Cmp = cast<CmpInst>(V); 4866 Value *LHS = Cmp->getOperand(0); 4867 Value *RHS = Cmp->getOperand(1); 4868 CmpInst::Predicate CurrentPred = Cmp->getPredicate(); 4869 if (P0 == AltP0Swapped) { 4870 if (CI != Cmp && S.AltOp != Cmp && 4871 ((P0 == CurrentPred && 4872 !areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)) || 4873 (AltP0 == CurrentPred && 4874 areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)))) 4875 std::swap(LHS, RHS); 4876 } else if (P0 != CurrentPred && AltP0 != CurrentPred) { 4877 std::swap(LHS, RHS); 4878 } 4879 Left.push_back(LHS); 4880 Right.push_back(RHS); 4881 } 4882 } 4883 TE->setOperand(0, Left); 4884 TE->setOperand(1, Right); 4885 buildTree_rec(Left, Depth + 1, {TE, 0}); 4886 buildTree_rec(Right, Depth + 1, {TE, 1}); 4887 return; 4888 } 4889 4890 TE->setOperandsInOrder(); 4891 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4892 ValueList Operands; 4893 // Prepare the operand vector. 4894 for (Value *V : VL) 4895 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4896 4897 buildTree_rec(Operands, Depth + 1, {TE, i}); 4898 } 4899 return; 4900 } 4901 default: 4902 BS.cancelScheduling(VL, VL0); 4903 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4904 ReuseShuffleIndicies); 4905 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 4906 return; 4907 } 4908 } 4909 4910 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 4911 unsigned N = 1; 4912 Type *EltTy = T; 4913 4914 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 4915 isa<VectorType>(EltTy)) { 4916 if (auto *ST = dyn_cast<StructType>(EltTy)) { 4917 // Check that struct is homogeneous. 4918 for (const auto *Ty : ST->elements()) 4919 if (Ty != *ST->element_begin()) 4920 return 0; 4921 N *= ST->getNumElements(); 4922 EltTy = *ST->element_begin(); 4923 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 4924 N *= AT->getNumElements(); 4925 EltTy = AT->getElementType(); 4926 } else { 4927 auto *VT = cast<FixedVectorType>(EltTy); 4928 N *= VT->getNumElements(); 4929 EltTy = VT->getElementType(); 4930 } 4931 } 4932 4933 if (!isValidElementType(EltTy)) 4934 return 0; 4935 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 4936 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 4937 return 0; 4938 return N; 4939 } 4940 4941 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 4942 SmallVectorImpl<unsigned> &CurrentOrder) const { 4943 const auto *It = find_if(VL, [](Value *V) { 4944 return isa<ExtractElementInst, ExtractValueInst>(V); 4945 }); 4946 assert(It != VL.end() && "Expected at least one extract instruction."); 4947 auto *E0 = cast<Instruction>(*It); 4948 assert(all_of(VL, 4949 [](Value *V) { 4950 return isa<UndefValue, ExtractElementInst, ExtractValueInst>( 4951 V); 4952 }) && 4953 "Invalid opcode"); 4954 // Check if all of the extracts come from the same vector and from the 4955 // correct offset. 4956 Value *Vec = E0->getOperand(0); 4957 4958 CurrentOrder.clear(); 4959 4960 // We have to extract from a vector/aggregate with the same number of elements. 4961 unsigned NElts; 4962 if (E0->getOpcode() == Instruction::ExtractValue) { 4963 const DataLayout &DL = E0->getModule()->getDataLayout(); 4964 NElts = canMapToVector(Vec->getType(), DL); 4965 if (!NElts) 4966 return false; 4967 // Check if load can be rewritten as load of vector. 4968 LoadInst *LI = dyn_cast<LoadInst>(Vec); 4969 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 4970 return false; 4971 } else { 4972 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 4973 } 4974 4975 if (NElts != VL.size()) 4976 return false; 4977 4978 // Check that all of the indices extract from the correct offset. 4979 bool ShouldKeepOrder = true; 4980 unsigned E = VL.size(); 4981 // Assign to all items the initial value E + 1 so we can check if the extract 4982 // instruction index was used already. 4983 // Also, later we can check that all the indices are used and we have a 4984 // consecutive access in the extract instructions, by checking that no 4985 // element of CurrentOrder still has value E + 1. 4986 CurrentOrder.assign(E, E); 4987 unsigned I = 0; 4988 for (; I < E; ++I) { 4989 auto *Inst = dyn_cast<Instruction>(VL[I]); 4990 if (!Inst) 4991 continue; 4992 if (Inst->getOperand(0) != Vec) 4993 break; 4994 if (auto *EE = dyn_cast<ExtractElementInst>(Inst)) 4995 if (isa<UndefValue>(EE->getIndexOperand())) 4996 continue; 4997 Optional<unsigned> Idx = getExtractIndex(Inst); 4998 if (!Idx) 4999 break; 5000 const unsigned ExtIdx = *Idx; 5001 if (ExtIdx != I) { 5002 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E) 5003 break; 5004 ShouldKeepOrder = false; 5005 CurrentOrder[ExtIdx] = I; 5006 } else { 5007 if (CurrentOrder[I] != E) 5008 break; 5009 CurrentOrder[I] = I; 5010 } 5011 } 5012 if (I < E) { 5013 CurrentOrder.clear(); 5014 return false; 5015 } 5016 if (ShouldKeepOrder) 5017 CurrentOrder.clear(); 5018 5019 return ShouldKeepOrder; 5020 } 5021 5022 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 5023 ArrayRef<Value *> VectorizedVals) const { 5024 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 5025 all_of(I->users(), [this](User *U) { 5026 return ScalarToTreeEntry.count(U) > 0 || 5027 isVectorLikeInstWithConstOps(U) || 5028 (isa<ExtractElementInst>(U) && MustGather.contains(U)); 5029 }); 5030 } 5031 5032 static std::pair<InstructionCost, InstructionCost> 5033 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 5034 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 5035 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5036 5037 // Calculate the cost of the scalar and vector calls. 5038 SmallVector<Type *, 4> VecTys; 5039 for (Use &Arg : CI->args()) 5040 VecTys.push_back( 5041 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 5042 FastMathFlags FMF; 5043 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 5044 FMF = FPCI->getFastMathFlags(); 5045 SmallVector<const Value *> Arguments(CI->args()); 5046 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 5047 dyn_cast<IntrinsicInst>(CI)); 5048 auto IntrinsicCost = 5049 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 5050 5051 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 5052 VecTy->getNumElements())), 5053 false /*HasGlobalPred*/); 5054 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 5055 auto LibCost = IntrinsicCost; 5056 if (!CI->isNoBuiltin() && VecFunc) { 5057 // Calculate the cost of the vector library call. 5058 // If the corresponding vector call is cheaper, return its cost. 5059 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 5060 TTI::TCK_RecipThroughput); 5061 } 5062 return {IntrinsicCost, LibCost}; 5063 } 5064 5065 /// Compute the cost of creating a vector of type \p VecTy containing the 5066 /// extracted values from \p VL. 5067 static InstructionCost 5068 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 5069 TargetTransformInfo::ShuffleKind ShuffleKind, 5070 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 5071 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 5072 5073 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 5074 VecTy->getNumElements() < NumOfParts) 5075 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 5076 5077 bool AllConsecutive = true; 5078 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 5079 unsigned Idx = -1; 5080 InstructionCost Cost = 0; 5081 5082 // Process extracts in blocks of EltsPerVector to check if the source vector 5083 // operand can be re-used directly. If not, add the cost of creating a shuffle 5084 // to extract the values into a vector register. 5085 for (auto *V : VL) { 5086 ++Idx; 5087 5088 // Need to exclude undefs from analysis. 5089 if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem) 5090 continue; 5091 5092 // Reached the start of a new vector registers. 5093 if (Idx % EltsPerVector == 0) { 5094 AllConsecutive = true; 5095 continue; 5096 } 5097 5098 // Check all extracts for a vector register on the target directly 5099 // extract values in order. 5100 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 5101 if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) { 5102 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 5103 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 5104 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 5105 } 5106 5107 if (AllConsecutive) 5108 continue; 5109 5110 // Skip all indices, except for the last index per vector block. 5111 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 5112 continue; 5113 5114 // If we have a series of extracts which are not consecutive and hence 5115 // cannot re-use the source vector register directly, compute the shuffle 5116 // cost to extract the a vector with EltsPerVector elements. 5117 Cost += TTI.getShuffleCost( 5118 TargetTransformInfo::SK_PermuteSingleSrc, 5119 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 5120 } 5121 return Cost; 5122 } 5123 5124 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 5125 /// operations operands. 5126 static void 5127 buildShuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 5128 ArrayRef<int> ReusesIndices, 5129 const function_ref<bool(Instruction *)> IsAltOp, 5130 SmallVectorImpl<int> &Mask, 5131 SmallVectorImpl<Value *> *OpScalars = nullptr, 5132 SmallVectorImpl<Value *> *AltScalars = nullptr) { 5133 unsigned Sz = VL.size(); 5134 Mask.assign(Sz, UndefMaskElem); 5135 SmallVector<int> OrderMask; 5136 if (!ReorderIndices.empty()) 5137 inversePermutation(ReorderIndices, OrderMask); 5138 for (unsigned I = 0; I < Sz; ++I) { 5139 unsigned Idx = I; 5140 if (!ReorderIndices.empty()) 5141 Idx = OrderMask[I]; 5142 auto *OpInst = cast<Instruction>(VL[Idx]); 5143 if (IsAltOp(OpInst)) { 5144 Mask[I] = Sz + Idx; 5145 if (AltScalars) 5146 AltScalars->push_back(OpInst); 5147 } else { 5148 Mask[I] = Idx; 5149 if (OpScalars) 5150 OpScalars->push_back(OpInst); 5151 } 5152 } 5153 if (!ReusesIndices.empty()) { 5154 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 5155 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 5156 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 5157 }); 5158 Mask.swap(NewMask); 5159 } 5160 } 5161 5162 /// Checks if the specified instruction \p I is an alternate operation for the 5163 /// given \p MainOp and \p AltOp instructions. 5164 static bool isAlternateInstruction(const Instruction *I, 5165 const Instruction *MainOp, 5166 const Instruction *AltOp) { 5167 if (auto *CI0 = dyn_cast<CmpInst>(MainOp)) { 5168 auto *AltCI0 = cast<CmpInst>(AltOp); 5169 auto *CI = cast<CmpInst>(I); 5170 CmpInst::Predicate P0 = CI0->getPredicate(); 5171 CmpInst::Predicate AltP0 = AltCI0->getPredicate(); 5172 assert(P0 != AltP0 && "Expected different main/alternate predicates."); 5173 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 5174 CmpInst::Predicate CurrentPred = CI->getPredicate(); 5175 if (P0 == AltP0Swapped) 5176 return I == AltCI0 || 5177 (I != MainOp && 5178 !areCompatibleCmpOps(CI0->getOperand(0), CI0->getOperand(1), 5179 CI->getOperand(0), CI->getOperand(1))); 5180 return AltP0 == CurrentPred || AltP0Swapped == CurrentPred; 5181 } 5182 return I->getOpcode() == AltOp->getOpcode(); 5183 } 5184 5185 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 5186 ArrayRef<Value *> VectorizedVals) { 5187 ArrayRef<Value*> VL = E->Scalars; 5188 5189 Type *ScalarTy = VL[0]->getType(); 5190 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 5191 ScalarTy = SI->getValueOperand()->getType(); 5192 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 5193 ScalarTy = CI->getOperand(0)->getType(); 5194 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 5195 ScalarTy = IE->getOperand(1)->getType(); 5196 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 5197 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 5198 5199 // If we have computed a smaller type for the expression, update VecTy so 5200 // that the costs will be accurate. 5201 if (MinBWs.count(VL[0])) 5202 VecTy = FixedVectorType::get( 5203 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 5204 unsigned EntryVF = E->getVectorFactor(); 5205 auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF); 5206 5207 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 5208 // FIXME: it tries to fix a problem with MSVC buildbots. 5209 TargetTransformInfo &TTIRef = *TTI; 5210 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 5211 VectorizedVals, E](InstructionCost &Cost) { 5212 DenseMap<Value *, int> ExtractVectorsTys; 5213 SmallPtrSet<Value *, 4> CheckedExtracts; 5214 for (auto *V : VL) { 5215 if (isa<UndefValue>(V)) 5216 continue; 5217 // If all users of instruction are going to be vectorized and this 5218 // instruction itself is not going to be vectorized, consider this 5219 // instruction as dead and remove its cost from the final cost of the 5220 // vectorized tree. 5221 // Also, avoid adjusting the cost for extractelements with multiple uses 5222 // in different graph entries. 5223 const TreeEntry *VE = getTreeEntry(V); 5224 if (!CheckedExtracts.insert(V).second || 5225 !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 5226 (VE && VE != E)) 5227 continue; 5228 auto *EE = cast<ExtractElementInst>(V); 5229 Optional<unsigned> EEIdx = getExtractIndex(EE); 5230 if (!EEIdx) 5231 continue; 5232 unsigned Idx = *EEIdx; 5233 if (TTIRef.getNumberOfParts(VecTy) != 5234 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 5235 auto It = 5236 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 5237 It->getSecond() = std::min<int>(It->second, Idx); 5238 } 5239 // Take credit for instruction that will become dead. 5240 if (EE->hasOneUse()) { 5241 Instruction *Ext = EE->user_back(); 5242 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5243 all_of(Ext->users(), 5244 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5245 // Use getExtractWithExtendCost() to calculate the cost of 5246 // extractelement/ext pair. 5247 Cost -= 5248 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 5249 EE->getVectorOperandType(), Idx); 5250 // Add back the cost of s|zext which is subtracted separately. 5251 Cost += TTIRef.getCastInstrCost( 5252 Ext->getOpcode(), Ext->getType(), EE->getType(), 5253 TTI::getCastContextHint(Ext), CostKind, Ext); 5254 continue; 5255 } 5256 } 5257 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 5258 EE->getVectorOperandType(), Idx); 5259 } 5260 // Add a cost for subvector extracts/inserts if required. 5261 for (const auto &Data : ExtractVectorsTys) { 5262 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 5263 unsigned NumElts = VecTy->getNumElements(); 5264 if (Data.second % NumElts == 0) 5265 continue; 5266 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 5267 unsigned Idx = (Data.second / NumElts) * NumElts; 5268 unsigned EENumElts = EEVTy->getNumElements(); 5269 if (Idx + NumElts <= EENumElts) { 5270 Cost += 5271 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5272 EEVTy, None, Idx, VecTy); 5273 } else { 5274 // Need to round up the subvector type vectorization factor to avoid a 5275 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 5276 // <= EENumElts. 5277 auto *SubVT = 5278 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 5279 Cost += 5280 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5281 EEVTy, None, Idx, SubVT); 5282 } 5283 } else { 5284 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 5285 VecTy, None, 0, EEVTy); 5286 } 5287 } 5288 }; 5289 if (E->State == TreeEntry::NeedToGather) { 5290 if (allConstant(VL)) 5291 return 0; 5292 if (isa<InsertElementInst>(VL[0])) 5293 return InstructionCost::getInvalid(); 5294 SmallVector<int> Mask; 5295 SmallVector<const TreeEntry *> Entries; 5296 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 5297 isGatherShuffledEntry(E, Mask, Entries); 5298 if (Shuffle.hasValue()) { 5299 InstructionCost GatherCost = 0; 5300 if (ShuffleVectorInst::isIdentityMask(Mask)) { 5301 // Perfect match in the graph, will reuse the previously vectorized 5302 // node. Cost is 0. 5303 LLVM_DEBUG( 5304 dbgs() 5305 << "SLP: perfect diamond match for gather bundle that starts with " 5306 << *VL.front() << ".\n"); 5307 if (NeedToShuffleReuses) 5308 GatherCost = 5309 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5310 FinalVecTy, E->ReuseShuffleIndices); 5311 } else { 5312 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 5313 << " entries for bundle that starts with " 5314 << *VL.front() << ".\n"); 5315 // Detected that instead of gather we can emit a shuffle of single/two 5316 // previously vectorized nodes. Add the cost of the permutation rather 5317 // than gather. 5318 ::addMask(Mask, E->ReuseShuffleIndices); 5319 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 5320 } 5321 return GatherCost; 5322 } 5323 if ((E->getOpcode() == Instruction::ExtractElement || 5324 all_of(E->Scalars, 5325 [](Value *V) { 5326 return isa<ExtractElementInst, UndefValue>(V); 5327 })) && 5328 allSameType(VL)) { 5329 // Check that gather of extractelements can be represented as just a 5330 // shuffle of a single/two vectors the scalars are extracted from. 5331 SmallVector<int> Mask; 5332 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 5333 isFixedVectorShuffle(VL, Mask); 5334 if (ShuffleKind.hasValue()) { 5335 // Found the bunch of extractelement instructions that must be gathered 5336 // into a vector and can be represented as a permutation elements in a 5337 // single input vector or of 2 input vectors. 5338 InstructionCost Cost = 5339 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 5340 AdjustExtractsCost(Cost); 5341 if (NeedToShuffleReuses) 5342 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5343 FinalVecTy, E->ReuseShuffleIndices); 5344 return Cost; 5345 } 5346 } 5347 if (isSplat(VL)) { 5348 // Found the broadcasting of the single scalar, calculate the cost as the 5349 // broadcast. 5350 assert(VecTy == FinalVecTy && 5351 "No reused scalars expected for broadcast."); 5352 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 5353 /*Mask=*/None, /*Index=*/0, 5354 /*SubTp=*/nullptr, /*Args=*/VL); 5355 } 5356 InstructionCost ReuseShuffleCost = 0; 5357 if (NeedToShuffleReuses) 5358 ReuseShuffleCost = TTI->getShuffleCost( 5359 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 5360 // Improve gather cost for gather of loads, if we can group some of the 5361 // loads into vector loads. 5362 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 5363 !E->isAltShuffle()) { 5364 BoUpSLP::ValueSet VectorizedLoads; 5365 unsigned StartIdx = 0; 5366 unsigned VF = VL.size() / 2; 5367 unsigned VectorizedCnt = 0; 5368 unsigned ScatterVectorizeCnt = 0; 5369 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 5370 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 5371 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 5372 Cnt += VF) { 5373 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 5374 if (!VectorizedLoads.count(Slice.front()) && 5375 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 5376 SmallVector<Value *> PointerOps; 5377 OrdersType CurrentOrder; 5378 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 5379 *SE, CurrentOrder, PointerOps); 5380 switch (LS) { 5381 case LoadsState::Vectorize: 5382 case LoadsState::ScatterVectorize: 5383 // Mark the vectorized loads so that we don't vectorize them 5384 // again. 5385 if (LS == LoadsState::Vectorize) 5386 ++VectorizedCnt; 5387 else 5388 ++ScatterVectorizeCnt; 5389 VectorizedLoads.insert(Slice.begin(), Slice.end()); 5390 // If we vectorized initial block, no need to try to vectorize it 5391 // again. 5392 if (Cnt == StartIdx) 5393 StartIdx += VF; 5394 break; 5395 case LoadsState::Gather: 5396 break; 5397 } 5398 } 5399 } 5400 // Check if the whole array was vectorized already - exit. 5401 if (StartIdx >= VL.size()) 5402 break; 5403 // Found vectorizable parts - exit. 5404 if (!VectorizedLoads.empty()) 5405 break; 5406 } 5407 if (!VectorizedLoads.empty()) { 5408 InstructionCost GatherCost = 0; 5409 unsigned NumParts = TTI->getNumberOfParts(VecTy); 5410 bool NeedInsertSubvectorAnalysis = 5411 !NumParts || (VL.size() / VF) > NumParts; 5412 // Get the cost for gathered loads. 5413 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 5414 if (VectorizedLoads.contains(VL[I])) 5415 continue; 5416 GatherCost += getGatherCost(VL.slice(I, VF)); 5417 } 5418 // The cost for vectorized loads. 5419 InstructionCost ScalarsCost = 0; 5420 for (Value *V : VectorizedLoads) { 5421 auto *LI = cast<LoadInst>(V); 5422 ScalarsCost += TTI->getMemoryOpCost( 5423 Instruction::Load, LI->getType(), LI->getAlign(), 5424 LI->getPointerAddressSpace(), CostKind, LI); 5425 } 5426 auto *LI = cast<LoadInst>(E->getMainOp()); 5427 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 5428 Align Alignment = LI->getAlign(); 5429 GatherCost += 5430 VectorizedCnt * 5431 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 5432 LI->getPointerAddressSpace(), CostKind, LI); 5433 GatherCost += ScatterVectorizeCnt * 5434 TTI->getGatherScatterOpCost( 5435 Instruction::Load, LoadTy, LI->getPointerOperand(), 5436 /*VariableMask=*/false, Alignment, CostKind, LI); 5437 if (NeedInsertSubvectorAnalysis) { 5438 // Add the cost for the subvectors insert. 5439 for (int I = VF, E = VL.size(); I < E; I += VF) 5440 GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy, 5441 None, I, LoadTy); 5442 } 5443 return ReuseShuffleCost + GatherCost - ScalarsCost; 5444 } 5445 } 5446 return ReuseShuffleCost + getGatherCost(VL); 5447 } 5448 InstructionCost CommonCost = 0; 5449 SmallVector<int> Mask; 5450 if (!E->ReorderIndices.empty()) { 5451 SmallVector<int> NewMask; 5452 if (E->getOpcode() == Instruction::Store) { 5453 // For stores the order is actually a mask. 5454 NewMask.resize(E->ReorderIndices.size()); 5455 copy(E->ReorderIndices, NewMask.begin()); 5456 } else { 5457 inversePermutation(E->ReorderIndices, NewMask); 5458 } 5459 ::addMask(Mask, NewMask); 5460 } 5461 if (NeedToShuffleReuses) 5462 ::addMask(Mask, E->ReuseShuffleIndices); 5463 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 5464 CommonCost = 5465 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 5466 assert((E->State == TreeEntry::Vectorize || 5467 E->State == TreeEntry::ScatterVectorize) && 5468 "Unhandled state"); 5469 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 5470 Instruction *VL0 = E->getMainOp(); 5471 unsigned ShuffleOrOp = 5472 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 5473 switch (ShuffleOrOp) { 5474 case Instruction::PHI: 5475 return 0; 5476 5477 case Instruction::ExtractValue: 5478 case Instruction::ExtractElement: { 5479 // The common cost of removal ExtractElement/ExtractValue instructions + 5480 // the cost of shuffles, if required to resuffle the original vector. 5481 if (NeedToShuffleReuses) { 5482 unsigned Idx = 0; 5483 for (unsigned I : E->ReuseShuffleIndices) { 5484 if (ShuffleOrOp == Instruction::ExtractElement) { 5485 auto *EE = cast<ExtractElementInst>(VL[I]); 5486 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5487 EE->getVectorOperandType(), 5488 *getExtractIndex(EE)); 5489 } else { 5490 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5491 VecTy, Idx); 5492 ++Idx; 5493 } 5494 } 5495 Idx = EntryVF; 5496 for (Value *V : VL) { 5497 if (ShuffleOrOp == Instruction::ExtractElement) { 5498 auto *EE = cast<ExtractElementInst>(V); 5499 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5500 EE->getVectorOperandType(), 5501 *getExtractIndex(EE)); 5502 } else { 5503 --Idx; 5504 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5505 VecTy, Idx); 5506 } 5507 } 5508 } 5509 if (ShuffleOrOp == Instruction::ExtractValue) { 5510 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 5511 auto *EI = cast<Instruction>(VL[I]); 5512 // Take credit for instruction that will become dead. 5513 if (EI->hasOneUse()) { 5514 Instruction *Ext = EI->user_back(); 5515 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5516 all_of(Ext->users(), 5517 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5518 // Use getExtractWithExtendCost() to calculate the cost of 5519 // extractelement/ext pair. 5520 CommonCost -= TTI->getExtractWithExtendCost( 5521 Ext->getOpcode(), Ext->getType(), VecTy, I); 5522 // Add back the cost of s|zext which is subtracted separately. 5523 CommonCost += TTI->getCastInstrCost( 5524 Ext->getOpcode(), Ext->getType(), EI->getType(), 5525 TTI::getCastContextHint(Ext), CostKind, Ext); 5526 continue; 5527 } 5528 } 5529 CommonCost -= 5530 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 5531 } 5532 } else { 5533 AdjustExtractsCost(CommonCost); 5534 } 5535 return CommonCost; 5536 } 5537 case Instruction::InsertElement: { 5538 assert(E->ReuseShuffleIndices.empty() && 5539 "Unique insertelements only are expected."); 5540 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 5541 5542 unsigned const NumElts = SrcVecTy->getNumElements(); 5543 unsigned const NumScalars = VL.size(); 5544 APInt DemandedElts = APInt::getZero(NumElts); 5545 // TODO: Add support for Instruction::InsertValue. 5546 SmallVector<int> Mask; 5547 if (!E->ReorderIndices.empty()) { 5548 inversePermutation(E->ReorderIndices, Mask); 5549 Mask.append(NumElts - NumScalars, UndefMaskElem); 5550 } else { 5551 Mask.assign(NumElts, UndefMaskElem); 5552 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 5553 } 5554 unsigned Offset = *getInsertIndex(VL0); 5555 bool IsIdentity = true; 5556 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 5557 Mask.swap(PrevMask); 5558 for (unsigned I = 0; I < NumScalars; ++I) { 5559 unsigned InsertIdx = *getInsertIndex(VL[PrevMask[I]]); 5560 DemandedElts.setBit(InsertIdx); 5561 IsIdentity &= InsertIdx - Offset == I; 5562 Mask[InsertIdx - Offset] = I; 5563 } 5564 assert(Offset < NumElts && "Failed to find vector index offset"); 5565 5566 InstructionCost Cost = 0; 5567 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 5568 /*Insert*/ true, /*Extract*/ false); 5569 5570 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 5571 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 5572 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 5573 Cost += TTI->getShuffleCost( 5574 TargetTransformInfo::SK_PermuteSingleSrc, 5575 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 5576 } else if (!IsIdentity) { 5577 auto *FirstInsert = 5578 cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 5579 return !is_contained(E->Scalars, 5580 cast<Instruction>(V)->getOperand(0)); 5581 })); 5582 if (isUndefVector(FirstInsert->getOperand(0))) { 5583 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask); 5584 } else { 5585 SmallVector<int> InsertMask(NumElts); 5586 std::iota(InsertMask.begin(), InsertMask.end(), 0); 5587 for (unsigned I = 0; I < NumElts; I++) { 5588 if (Mask[I] != UndefMaskElem) 5589 InsertMask[Offset + I] = NumElts + I; 5590 } 5591 Cost += 5592 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask); 5593 } 5594 } 5595 5596 return Cost; 5597 } 5598 case Instruction::ZExt: 5599 case Instruction::SExt: 5600 case Instruction::FPToUI: 5601 case Instruction::FPToSI: 5602 case Instruction::FPExt: 5603 case Instruction::PtrToInt: 5604 case Instruction::IntToPtr: 5605 case Instruction::SIToFP: 5606 case Instruction::UIToFP: 5607 case Instruction::Trunc: 5608 case Instruction::FPTrunc: 5609 case Instruction::BitCast: { 5610 Type *SrcTy = VL0->getOperand(0)->getType(); 5611 InstructionCost ScalarEltCost = 5612 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 5613 TTI::getCastContextHint(VL0), CostKind, VL0); 5614 if (NeedToShuffleReuses) { 5615 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5616 } 5617 5618 // Calculate the cost of this instruction. 5619 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 5620 5621 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 5622 InstructionCost VecCost = 0; 5623 // Check if the values are candidates to demote. 5624 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 5625 VecCost = CommonCost + TTI->getCastInstrCost( 5626 E->getOpcode(), VecTy, SrcVecTy, 5627 TTI::getCastContextHint(VL0), CostKind, VL0); 5628 } 5629 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5630 return VecCost - ScalarCost; 5631 } 5632 case Instruction::FCmp: 5633 case Instruction::ICmp: 5634 case Instruction::Select: { 5635 // Calculate the cost of this instruction. 5636 InstructionCost ScalarEltCost = 5637 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5638 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 5639 if (NeedToShuffleReuses) { 5640 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5641 } 5642 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 5643 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5644 5645 // Check if all entries in VL are either compares or selects with compares 5646 // as condition that have the same predicates. 5647 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 5648 bool First = true; 5649 for (auto *V : VL) { 5650 CmpInst::Predicate CurrentPred; 5651 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 5652 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 5653 !match(V, MatchCmp)) || 5654 (!First && VecPred != CurrentPred)) { 5655 VecPred = CmpInst::BAD_ICMP_PREDICATE; 5656 break; 5657 } 5658 First = false; 5659 VecPred = CurrentPred; 5660 } 5661 5662 InstructionCost VecCost = TTI->getCmpSelInstrCost( 5663 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 5664 // Check if it is possible and profitable to use min/max for selects in 5665 // VL. 5666 // 5667 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 5668 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 5669 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 5670 {VecTy, VecTy}); 5671 InstructionCost IntrinsicCost = 5672 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5673 // If the selects are the only uses of the compares, they will be dead 5674 // and we can adjust the cost by removing their cost. 5675 if (IntrinsicAndUse.second) 5676 IntrinsicCost -= TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, 5677 MaskTy, VecPred, CostKind); 5678 VecCost = std::min(VecCost, IntrinsicCost); 5679 } 5680 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5681 return CommonCost + VecCost - ScalarCost; 5682 } 5683 case Instruction::FNeg: 5684 case Instruction::Add: 5685 case Instruction::FAdd: 5686 case Instruction::Sub: 5687 case Instruction::FSub: 5688 case Instruction::Mul: 5689 case Instruction::FMul: 5690 case Instruction::UDiv: 5691 case Instruction::SDiv: 5692 case Instruction::FDiv: 5693 case Instruction::URem: 5694 case Instruction::SRem: 5695 case Instruction::FRem: 5696 case Instruction::Shl: 5697 case Instruction::LShr: 5698 case Instruction::AShr: 5699 case Instruction::And: 5700 case Instruction::Or: 5701 case Instruction::Xor: { 5702 // Certain instructions can be cheaper to vectorize if they have a 5703 // constant second vector operand. 5704 TargetTransformInfo::OperandValueKind Op1VK = 5705 TargetTransformInfo::OK_AnyValue; 5706 TargetTransformInfo::OperandValueKind Op2VK = 5707 TargetTransformInfo::OK_UniformConstantValue; 5708 TargetTransformInfo::OperandValueProperties Op1VP = 5709 TargetTransformInfo::OP_None; 5710 TargetTransformInfo::OperandValueProperties Op2VP = 5711 TargetTransformInfo::OP_PowerOf2; 5712 5713 // If all operands are exactly the same ConstantInt then set the 5714 // operand kind to OK_UniformConstantValue. 5715 // If instead not all operands are constants, then set the operand kind 5716 // to OK_AnyValue. If all operands are constants but not the same, 5717 // then set the operand kind to OK_NonUniformConstantValue. 5718 ConstantInt *CInt0 = nullptr; 5719 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 5720 const Instruction *I = cast<Instruction>(VL[i]); 5721 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 5722 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 5723 if (!CInt) { 5724 Op2VK = TargetTransformInfo::OK_AnyValue; 5725 Op2VP = TargetTransformInfo::OP_None; 5726 break; 5727 } 5728 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 5729 !CInt->getValue().isPowerOf2()) 5730 Op2VP = TargetTransformInfo::OP_None; 5731 if (i == 0) { 5732 CInt0 = CInt; 5733 continue; 5734 } 5735 if (CInt0 != CInt) 5736 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5737 } 5738 5739 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 5740 InstructionCost ScalarEltCost = 5741 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 5742 Op2VK, Op1VP, Op2VP, Operands, VL0); 5743 if (NeedToShuffleReuses) { 5744 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5745 } 5746 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5747 InstructionCost VecCost = 5748 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 5749 Op2VK, Op1VP, Op2VP, Operands, VL0); 5750 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5751 return CommonCost + VecCost - ScalarCost; 5752 } 5753 case Instruction::GetElementPtr: { 5754 TargetTransformInfo::OperandValueKind Op1VK = 5755 TargetTransformInfo::OK_AnyValue; 5756 TargetTransformInfo::OperandValueKind Op2VK = 5757 TargetTransformInfo::OK_UniformConstantValue; 5758 5759 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 5760 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 5761 if (NeedToShuffleReuses) { 5762 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5763 } 5764 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5765 InstructionCost VecCost = TTI->getArithmeticInstrCost( 5766 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 5767 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5768 return CommonCost + VecCost - ScalarCost; 5769 } 5770 case Instruction::Load: { 5771 // Cost of wide load - cost of scalar loads. 5772 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 5773 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5774 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 5775 if (NeedToShuffleReuses) { 5776 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5777 } 5778 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 5779 InstructionCost VecLdCost; 5780 if (E->State == TreeEntry::Vectorize) { 5781 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 5782 CostKind, VL0); 5783 } else { 5784 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 5785 Align CommonAlignment = Alignment; 5786 for (Value *V : VL) 5787 CommonAlignment = 5788 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 5789 VecLdCost = TTI->getGatherScatterOpCost( 5790 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 5791 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 5792 } 5793 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 5794 return CommonCost + VecLdCost - ScalarLdCost; 5795 } 5796 case Instruction::Store: { 5797 // We know that we can merge the stores. Calculate the cost. 5798 bool IsReorder = !E->ReorderIndices.empty(); 5799 auto *SI = 5800 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 5801 Align Alignment = SI->getAlign(); 5802 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5803 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 5804 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 5805 InstructionCost VecStCost = TTI->getMemoryOpCost( 5806 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 5807 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 5808 return CommonCost + VecStCost - ScalarStCost; 5809 } 5810 case Instruction::Call: { 5811 CallInst *CI = cast<CallInst>(VL0); 5812 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5813 5814 // Calculate the cost of the scalar and vector calls. 5815 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 5816 InstructionCost ScalarEltCost = 5817 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5818 if (NeedToShuffleReuses) { 5819 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5820 } 5821 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 5822 5823 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 5824 InstructionCost VecCallCost = 5825 std::min(VecCallCosts.first, VecCallCosts.second); 5826 5827 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 5828 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 5829 << " for " << *CI << "\n"); 5830 5831 return CommonCost + VecCallCost - ScalarCallCost; 5832 } 5833 case Instruction::ShuffleVector: { 5834 assert(E->isAltShuffle() && 5835 ((Instruction::isBinaryOp(E->getOpcode()) && 5836 Instruction::isBinaryOp(E->getAltOpcode())) || 5837 (Instruction::isCast(E->getOpcode()) && 5838 Instruction::isCast(E->getAltOpcode())) || 5839 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 5840 "Invalid Shuffle Vector Operand"); 5841 InstructionCost ScalarCost = 0; 5842 if (NeedToShuffleReuses) { 5843 for (unsigned Idx : E->ReuseShuffleIndices) { 5844 Instruction *I = cast<Instruction>(VL[Idx]); 5845 CommonCost -= TTI->getInstructionCost(I, CostKind); 5846 } 5847 for (Value *V : VL) { 5848 Instruction *I = cast<Instruction>(V); 5849 CommonCost += TTI->getInstructionCost(I, CostKind); 5850 } 5851 } 5852 for (Value *V : VL) { 5853 Instruction *I = cast<Instruction>(V); 5854 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5855 ScalarCost += TTI->getInstructionCost(I, CostKind); 5856 } 5857 // VecCost is equal to sum of the cost of creating 2 vectors 5858 // and the cost of creating shuffle. 5859 InstructionCost VecCost = 0; 5860 // Try to find the previous shuffle node with the same operands and same 5861 // main/alternate ops. 5862 auto &&TryFindNodeWithEqualOperands = [this, E]() { 5863 for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 5864 if (TE.get() == E) 5865 break; 5866 if (TE->isAltShuffle() && 5867 ((TE->getOpcode() == E->getOpcode() && 5868 TE->getAltOpcode() == E->getAltOpcode()) || 5869 (TE->getOpcode() == E->getAltOpcode() && 5870 TE->getAltOpcode() == E->getOpcode())) && 5871 TE->hasEqualOperands(*E)) 5872 return true; 5873 } 5874 return false; 5875 }; 5876 if (TryFindNodeWithEqualOperands()) { 5877 LLVM_DEBUG({ 5878 dbgs() << "SLP: diamond match for alternate node found.\n"; 5879 E->dump(); 5880 }); 5881 // No need to add new vector costs here since we're going to reuse 5882 // same main/alternate vector ops, just do different shuffling. 5883 } else if (Instruction::isBinaryOp(E->getOpcode())) { 5884 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 5885 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 5886 CostKind); 5887 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 5888 VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 5889 Builder.getInt1Ty(), 5890 CI0->getPredicate(), CostKind, VL0); 5891 VecCost += TTI->getCmpSelInstrCost( 5892 E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5893 cast<CmpInst>(E->getAltOp())->getPredicate(), CostKind, 5894 E->getAltOp()); 5895 } else { 5896 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 5897 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 5898 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 5899 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 5900 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 5901 TTI::CastContextHint::None, CostKind); 5902 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 5903 TTI::CastContextHint::None, CostKind); 5904 } 5905 5906 SmallVector<int> Mask; 5907 buildShuffleEntryMask( 5908 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 5909 [E](Instruction *I) { 5910 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5911 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 5912 }, 5913 Mask); 5914 CommonCost = 5915 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy, Mask); 5916 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5917 return CommonCost + VecCost - ScalarCost; 5918 } 5919 default: 5920 llvm_unreachable("Unknown instruction"); 5921 } 5922 } 5923 5924 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { 5925 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 5926 << VectorizableTree.size() << " is fully vectorizable .\n"); 5927 5928 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { 5929 SmallVector<int> Mask; 5930 return TE->State == TreeEntry::NeedToGather && 5931 !any_of(TE->Scalars, 5932 [this](Value *V) { return EphValues.contains(V); }) && 5933 (allConstant(TE->Scalars) || isSplat(TE->Scalars) || 5934 TE->Scalars.size() < Limit || 5935 ((TE->getOpcode() == Instruction::ExtractElement || 5936 all_of(TE->Scalars, 5937 [](Value *V) { 5938 return isa<ExtractElementInst, UndefValue>(V); 5939 })) && 5940 isFixedVectorShuffle(TE->Scalars, Mask)) || 5941 (TE->State == TreeEntry::NeedToGather && 5942 TE->getOpcode() == Instruction::Load && !TE->isAltShuffle())); 5943 }; 5944 5945 // We only handle trees of heights 1 and 2. 5946 if (VectorizableTree.size() == 1 && 5947 (VectorizableTree[0]->State == TreeEntry::Vectorize || 5948 (ForReduction && 5949 AreVectorizableGathers(VectorizableTree[0].get(), 5950 VectorizableTree[0]->Scalars.size()) && 5951 VectorizableTree[0]->getVectorFactor() > 2))) 5952 return true; 5953 5954 if (VectorizableTree.size() != 2) 5955 return false; 5956 5957 // Handle splat and all-constants stores. Also try to vectorize tiny trees 5958 // with the second gather nodes if they have less scalar operands rather than 5959 // the initial tree element (may be profitable to shuffle the second gather) 5960 // or they are extractelements, which form shuffle. 5961 SmallVector<int> Mask; 5962 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 5963 AreVectorizableGathers(VectorizableTree[1].get(), 5964 VectorizableTree[0]->Scalars.size())) 5965 return true; 5966 5967 // Gathering cost would be too much for tiny trees. 5968 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 5969 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 5970 VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) 5971 return false; 5972 5973 return true; 5974 } 5975 5976 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 5977 TargetTransformInfo *TTI, 5978 bool MustMatchOrInst) { 5979 // Look past the root to find a source value. Arbitrarily follow the 5980 // path through operand 0 of any 'or'. Also, peek through optional 5981 // shift-left-by-multiple-of-8-bits. 5982 Value *ZextLoad = Root; 5983 const APInt *ShAmtC; 5984 bool FoundOr = false; 5985 while (!isa<ConstantExpr>(ZextLoad) && 5986 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 5987 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 5988 ShAmtC->urem(8) == 0))) { 5989 auto *BinOp = cast<BinaryOperator>(ZextLoad); 5990 ZextLoad = BinOp->getOperand(0); 5991 if (BinOp->getOpcode() == Instruction::Or) 5992 FoundOr = true; 5993 } 5994 // Check if the input is an extended load of the required or/shift expression. 5995 Value *Load; 5996 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 5997 !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load)) 5998 return false; 5999 6000 // Require that the total load bit width is a legal integer type. 6001 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 6002 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 6003 Type *SrcTy = Load->getType(); 6004 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 6005 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 6006 return false; 6007 6008 // Everything matched - assume that we can fold the whole sequence using 6009 // load combining. 6010 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 6011 << *(cast<Instruction>(Root)) << "\n"); 6012 6013 return true; 6014 } 6015 6016 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 6017 if (RdxKind != RecurKind::Or) 6018 return false; 6019 6020 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 6021 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 6022 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 6023 /* MatchOr */ false); 6024 } 6025 6026 bool BoUpSLP::isLoadCombineCandidate() const { 6027 // Peek through a final sequence of stores and check if all operations are 6028 // likely to be load-combined. 6029 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 6030 for (Value *Scalar : VectorizableTree[0]->Scalars) { 6031 Value *X; 6032 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 6033 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 6034 return false; 6035 } 6036 return true; 6037 } 6038 6039 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { 6040 // No need to vectorize inserts of gathered values. 6041 if (VectorizableTree.size() == 2 && 6042 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 6043 VectorizableTree[1]->State == TreeEntry::NeedToGather) 6044 return true; 6045 6046 // We can vectorize the tree if its size is greater than or equal to the 6047 // minimum size specified by the MinTreeSize command line option. 6048 if (VectorizableTree.size() >= MinTreeSize) 6049 return false; 6050 6051 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 6052 // can vectorize it if we can prove it fully vectorizable. 6053 if (isFullyVectorizableTinyTree(ForReduction)) 6054 return false; 6055 6056 assert(VectorizableTree.empty() 6057 ? ExternalUses.empty() 6058 : true && "We shouldn't have any external users"); 6059 6060 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 6061 // vectorizable. 6062 return true; 6063 } 6064 6065 InstructionCost BoUpSLP::getSpillCost() const { 6066 // Walk from the bottom of the tree to the top, tracking which values are 6067 // live. When we see a call instruction that is not part of our tree, 6068 // query TTI to see if there is a cost to keeping values live over it 6069 // (for example, if spills and fills are required). 6070 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 6071 InstructionCost Cost = 0; 6072 6073 SmallPtrSet<Instruction*, 4> LiveValues; 6074 Instruction *PrevInst = nullptr; 6075 6076 // The entries in VectorizableTree are not necessarily ordered by their 6077 // position in basic blocks. Collect them and order them by dominance so later 6078 // instructions are guaranteed to be visited first. For instructions in 6079 // different basic blocks, we only scan to the beginning of the block, so 6080 // their order does not matter, as long as all instructions in a basic block 6081 // are grouped together. Using dominance ensures a deterministic order. 6082 SmallVector<Instruction *, 16> OrderedScalars; 6083 for (const auto &TEPtr : VectorizableTree) { 6084 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 6085 if (!Inst) 6086 continue; 6087 OrderedScalars.push_back(Inst); 6088 } 6089 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 6090 auto *NodeA = DT->getNode(A->getParent()); 6091 auto *NodeB = DT->getNode(B->getParent()); 6092 assert(NodeA && "Should only process reachable instructions"); 6093 assert(NodeB && "Should only process reachable instructions"); 6094 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 6095 "Different nodes should have different DFS numbers"); 6096 if (NodeA != NodeB) 6097 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 6098 return B->comesBefore(A); 6099 }); 6100 6101 for (Instruction *Inst : OrderedScalars) { 6102 if (!PrevInst) { 6103 PrevInst = Inst; 6104 continue; 6105 } 6106 6107 // Update LiveValues. 6108 LiveValues.erase(PrevInst); 6109 for (auto &J : PrevInst->operands()) { 6110 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 6111 LiveValues.insert(cast<Instruction>(&*J)); 6112 } 6113 6114 LLVM_DEBUG({ 6115 dbgs() << "SLP: #LV: " << LiveValues.size(); 6116 for (auto *X : LiveValues) 6117 dbgs() << " " << X->getName(); 6118 dbgs() << ", Looking at "; 6119 Inst->dump(); 6120 }); 6121 6122 // Now find the sequence of instructions between PrevInst and Inst. 6123 unsigned NumCalls = 0; 6124 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 6125 PrevInstIt = 6126 PrevInst->getIterator().getReverse(); 6127 while (InstIt != PrevInstIt) { 6128 if (PrevInstIt == PrevInst->getParent()->rend()) { 6129 PrevInstIt = Inst->getParent()->rbegin(); 6130 continue; 6131 } 6132 6133 // Debug information does not impact spill cost. 6134 if ((isa<CallInst>(&*PrevInstIt) && 6135 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 6136 &*PrevInstIt != PrevInst) 6137 NumCalls++; 6138 6139 ++PrevInstIt; 6140 } 6141 6142 if (NumCalls) { 6143 SmallVector<Type*, 4> V; 6144 for (auto *II : LiveValues) { 6145 auto *ScalarTy = II->getType(); 6146 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 6147 ScalarTy = VectorTy->getElementType(); 6148 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 6149 } 6150 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 6151 } 6152 6153 PrevInst = Inst; 6154 } 6155 6156 return Cost; 6157 } 6158 6159 /// Check if two insertelement instructions are from the same buildvector. 6160 static bool areTwoInsertFromSameBuildVector(InsertElementInst *VU, 6161 InsertElementInst *V) { 6162 // Instructions must be from the same basic blocks. 6163 if (VU->getParent() != V->getParent()) 6164 return false; 6165 // Checks if 2 insertelements are from the same buildvector. 6166 if (VU->getType() != V->getType()) 6167 return false; 6168 // Multiple used inserts are separate nodes. 6169 if (!VU->hasOneUse() && !V->hasOneUse()) 6170 return false; 6171 auto *IE1 = VU; 6172 auto *IE2 = V; 6173 // Go through the vector operand of insertelement instructions trying to find 6174 // either VU as the original vector for IE2 or V as the original vector for 6175 // IE1. 6176 do { 6177 if (IE2 == VU || IE1 == V) 6178 return true; 6179 if (IE1) { 6180 if (IE1 != VU && !IE1->hasOneUse()) 6181 IE1 = nullptr; 6182 else 6183 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 6184 } 6185 if (IE2) { 6186 if (IE2 != V && !IE2->hasOneUse()) 6187 IE2 = nullptr; 6188 else 6189 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 6190 } 6191 } while (IE1 || IE2); 6192 return false; 6193 } 6194 6195 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 6196 InstructionCost Cost = 0; 6197 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 6198 << VectorizableTree.size() << ".\n"); 6199 6200 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 6201 6202 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 6203 TreeEntry &TE = *VectorizableTree[I]; 6204 6205 InstructionCost C = getEntryCost(&TE, VectorizedVals); 6206 Cost += C; 6207 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6208 << " for bundle that starts with " << *TE.Scalars[0] 6209 << ".\n" 6210 << "SLP: Current total cost = " << Cost << "\n"); 6211 } 6212 6213 SmallPtrSet<Value *, 16> ExtractCostCalculated; 6214 InstructionCost ExtractCost = 0; 6215 SmallVector<unsigned> VF; 6216 SmallVector<SmallVector<int>> ShuffleMask; 6217 SmallVector<Value *> FirstUsers; 6218 SmallVector<APInt> DemandedElts; 6219 for (ExternalUser &EU : ExternalUses) { 6220 // We only add extract cost once for the same scalar. 6221 if (!isa_and_nonnull<InsertElementInst>(EU.User) && 6222 !ExtractCostCalculated.insert(EU.Scalar).second) 6223 continue; 6224 6225 // Uses by ephemeral values are free (because the ephemeral value will be 6226 // removed prior to code generation, and so the extraction will be 6227 // removed as well). 6228 if (EphValues.count(EU.User)) 6229 continue; 6230 6231 // No extract cost for vector "scalar" 6232 if (isa<FixedVectorType>(EU.Scalar->getType())) 6233 continue; 6234 6235 // Already counted the cost for external uses when tried to adjust the cost 6236 // for extractelements, no need to add it again. 6237 if (isa<ExtractElementInst>(EU.Scalar)) 6238 continue; 6239 6240 // If found user is an insertelement, do not calculate extract cost but try 6241 // to detect it as a final shuffled/identity match. 6242 if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) { 6243 if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) { 6244 Optional<unsigned> InsertIdx = getInsertIndex(VU); 6245 if (InsertIdx) { 6246 auto *It = find_if(FirstUsers, [VU](Value *V) { 6247 return areTwoInsertFromSameBuildVector(VU, 6248 cast<InsertElementInst>(V)); 6249 }); 6250 int VecId = -1; 6251 if (It == FirstUsers.end()) { 6252 VF.push_back(FTy->getNumElements()); 6253 ShuffleMask.emplace_back(VF.back(), UndefMaskElem); 6254 // Find the insertvector, vectorized in tree, if any. 6255 Value *Base = VU; 6256 while (isa<InsertElementInst>(Base)) { 6257 // Build the mask for the vectorized insertelement instructions. 6258 if (const TreeEntry *E = getTreeEntry(Base)) { 6259 VU = cast<InsertElementInst>(Base); 6260 do { 6261 int Idx = E->findLaneForValue(Base); 6262 ShuffleMask.back()[Idx] = Idx; 6263 Base = cast<InsertElementInst>(Base)->getOperand(0); 6264 } while (E == getTreeEntry(Base)); 6265 break; 6266 } 6267 Base = cast<InsertElementInst>(Base)->getOperand(0); 6268 } 6269 FirstUsers.push_back(VU); 6270 DemandedElts.push_back(APInt::getZero(VF.back())); 6271 VecId = FirstUsers.size() - 1; 6272 } else { 6273 VecId = std::distance(FirstUsers.begin(), It); 6274 } 6275 ShuffleMask[VecId][*InsertIdx] = EU.Lane; 6276 DemandedElts[VecId].setBit(*InsertIdx); 6277 continue; 6278 } 6279 } 6280 } 6281 6282 // If we plan to rewrite the tree in a smaller type, we will need to sign 6283 // extend the extracted value back to the original type. Here, we account 6284 // for the extract and the added cost of the sign extend if needed. 6285 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 6286 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 6287 if (MinBWs.count(ScalarRoot)) { 6288 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 6289 auto Extend = 6290 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 6291 VecTy = FixedVectorType::get(MinTy, BundleWidth); 6292 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 6293 VecTy, EU.Lane); 6294 } else { 6295 ExtractCost += 6296 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 6297 } 6298 } 6299 6300 InstructionCost SpillCost = getSpillCost(); 6301 Cost += SpillCost + ExtractCost; 6302 if (FirstUsers.size() == 1) { 6303 int Limit = ShuffleMask.front().size() * 2; 6304 if (all_of(ShuffleMask.front(), [Limit](int Idx) { return Idx < Limit; }) && 6305 !ShuffleVectorInst::isIdentityMask(ShuffleMask.front())) { 6306 InstructionCost C = TTI->getShuffleCost( 6307 TTI::SK_PermuteSingleSrc, 6308 cast<FixedVectorType>(FirstUsers.front()->getType()), 6309 ShuffleMask.front()); 6310 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6311 << " for final shuffle of insertelement external users " 6312 << *VectorizableTree.front()->Scalars.front() << ".\n" 6313 << "SLP: Current total cost = " << Cost << "\n"); 6314 Cost += C; 6315 } 6316 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6317 cast<FixedVectorType>(FirstUsers.front()->getType()), 6318 DemandedElts.front(), /*Insert*/ true, /*Extract*/ false); 6319 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6320 << " for insertelements gather.\n" 6321 << "SLP: Current total cost = " << Cost << "\n"); 6322 Cost -= InsertCost; 6323 } else if (FirstUsers.size() >= 2) { 6324 unsigned MaxVF = *std::max_element(VF.begin(), VF.end()); 6325 // Combined masks of the first 2 vectors. 6326 SmallVector<int> CombinedMask(MaxVF, UndefMaskElem); 6327 copy(ShuffleMask.front(), CombinedMask.begin()); 6328 APInt CombinedDemandedElts = DemandedElts.front().zextOrSelf(MaxVF); 6329 auto *VecTy = FixedVectorType::get( 6330 cast<VectorType>(FirstUsers.front()->getType())->getElementType(), 6331 MaxVF); 6332 for (int I = 0, E = ShuffleMask[1].size(); I < E; ++I) { 6333 if (ShuffleMask[1][I] != UndefMaskElem) { 6334 CombinedMask[I] = ShuffleMask[1][I] + MaxVF; 6335 CombinedDemandedElts.setBit(I); 6336 } 6337 } 6338 InstructionCost C = 6339 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6340 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6341 << " for final shuffle of vector node and external " 6342 "insertelement users " 6343 << *VectorizableTree.front()->Scalars.front() << ".\n" 6344 << "SLP: Current total cost = " << Cost << "\n"); 6345 Cost += C; 6346 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6347 VecTy, CombinedDemandedElts, /*Insert*/ true, /*Extract*/ false); 6348 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6349 << " for insertelements gather.\n" 6350 << "SLP: Current total cost = " << Cost << "\n"); 6351 Cost -= InsertCost; 6352 for (int I = 2, E = FirstUsers.size(); I < E; ++I) { 6353 // Other elements - permutation of 2 vectors (the initial one and the 6354 // next Ith incoming vector). 6355 unsigned VF = ShuffleMask[I].size(); 6356 for (unsigned Idx = 0; Idx < VF; ++Idx) { 6357 int Mask = ShuffleMask[I][Idx]; 6358 if (Mask != UndefMaskElem) 6359 CombinedMask[Idx] = MaxVF + Mask; 6360 else if (CombinedMask[Idx] != UndefMaskElem) 6361 CombinedMask[Idx] = Idx; 6362 } 6363 for (unsigned Idx = VF; Idx < MaxVF; ++Idx) 6364 if (CombinedMask[Idx] != UndefMaskElem) 6365 CombinedMask[Idx] = Idx; 6366 InstructionCost C = 6367 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6368 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6369 << " for final shuffle of vector node and external " 6370 "insertelement users " 6371 << *VectorizableTree.front()->Scalars.front() << ".\n" 6372 << "SLP: Current total cost = " << Cost << "\n"); 6373 Cost += C; 6374 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6375 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I], 6376 /*Insert*/ true, /*Extract*/ false); 6377 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6378 << " for insertelements gather.\n" 6379 << "SLP: Current total cost = " << Cost << "\n"); 6380 Cost -= InsertCost; 6381 } 6382 } 6383 6384 #ifndef NDEBUG 6385 SmallString<256> Str; 6386 { 6387 raw_svector_ostream OS(Str); 6388 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 6389 << "SLP: Extract Cost = " << ExtractCost << ".\n" 6390 << "SLP: Total Cost = " << Cost << ".\n"; 6391 } 6392 LLVM_DEBUG(dbgs() << Str); 6393 if (ViewSLPTree) 6394 ViewGraph(this, "SLP" + F->getName(), false, Str); 6395 #endif 6396 6397 return Cost; 6398 } 6399 6400 Optional<TargetTransformInfo::ShuffleKind> 6401 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 6402 SmallVectorImpl<const TreeEntry *> &Entries) { 6403 // TODO: currently checking only for Scalars in the tree entry, need to count 6404 // reused elements too for better cost estimation. 6405 Mask.assign(TE->Scalars.size(), UndefMaskElem); 6406 Entries.clear(); 6407 // Build a lists of values to tree entries. 6408 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 6409 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 6410 if (EntryPtr.get() == TE) 6411 break; 6412 if (EntryPtr->State != TreeEntry::NeedToGather) 6413 continue; 6414 for (Value *V : EntryPtr->Scalars) 6415 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 6416 } 6417 // Find all tree entries used by the gathered values. If no common entries 6418 // found - not a shuffle. 6419 // Here we build a set of tree nodes for each gathered value and trying to 6420 // find the intersection between these sets. If we have at least one common 6421 // tree node for each gathered value - we have just a permutation of the 6422 // single vector. If we have 2 different sets, we're in situation where we 6423 // have a permutation of 2 input vectors. 6424 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 6425 DenseMap<Value *, int> UsedValuesEntry; 6426 for (Value *V : TE->Scalars) { 6427 if (isa<UndefValue>(V)) 6428 continue; 6429 // Build a list of tree entries where V is used. 6430 SmallPtrSet<const TreeEntry *, 4> VToTEs; 6431 auto It = ValueToTEs.find(V); 6432 if (It != ValueToTEs.end()) 6433 VToTEs = It->second; 6434 if (const TreeEntry *VTE = getTreeEntry(V)) 6435 VToTEs.insert(VTE); 6436 if (VToTEs.empty()) 6437 return None; 6438 if (UsedTEs.empty()) { 6439 // The first iteration, just insert the list of nodes to vector. 6440 UsedTEs.push_back(VToTEs); 6441 } else { 6442 // Need to check if there are any previously used tree nodes which use V. 6443 // If there are no such nodes, consider that we have another one input 6444 // vector. 6445 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 6446 unsigned Idx = 0; 6447 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 6448 // Do we have a non-empty intersection of previously listed tree entries 6449 // and tree entries using current V? 6450 set_intersect(VToTEs, Set); 6451 if (!VToTEs.empty()) { 6452 // Yes, write the new subset and continue analysis for the next 6453 // scalar. 6454 Set.swap(VToTEs); 6455 break; 6456 } 6457 VToTEs = SavedVToTEs; 6458 ++Idx; 6459 } 6460 // No non-empty intersection found - need to add a second set of possible 6461 // source vectors. 6462 if (Idx == UsedTEs.size()) { 6463 // If the number of input vectors is greater than 2 - not a permutation, 6464 // fallback to the regular gather. 6465 if (UsedTEs.size() == 2) 6466 return None; 6467 UsedTEs.push_back(SavedVToTEs); 6468 Idx = UsedTEs.size() - 1; 6469 } 6470 UsedValuesEntry.try_emplace(V, Idx); 6471 } 6472 } 6473 6474 if (UsedTEs.empty()) { 6475 assert(all_of(TE->Scalars, UndefValue::classof) && 6476 "Expected vector of undefs only."); 6477 return None; 6478 } 6479 6480 unsigned VF = 0; 6481 if (UsedTEs.size() == 1) { 6482 // Try to find the perfect match in another gather node at first. 6483 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 6484 return EntryPtr->isSame(TE->Scalars); 6485 }); 6486 if (It != UsedTEs.front().end()) { 6487 Entries.push_back(*It); 6488 std::iota(Mask.begin(), Mask.end(), 0); 6489 return TargetTransformInfo::SK_PermuteSingleSrc; 6490 } 6491 // No perfect match, just shuffle, so choose the first tree node. 6492 Entries.push_back(*UsedTEs.front().begin()); 6493 } else { 6494 // Try to find nodes with the same vector factor. 6495 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 6496 DenseMap<int, const TreeEntry *> VFToTE; 6497 for (const TreeEntry *TE : UsedTEs.front()) 6498 VFToTE.try_emplace(TE->getVectorFactor(), TE); 6499 for (const TreeEntry *TE : UsedTEs.back()) { 6500 auto It = VFToTE.find(TE->getVectorFactor()); 6501 if (It != VFToTE.end()) { 6502 VF = It->first; 6503 Entries.push_back(It->second); 6504 Entries.push_back(TE); 6505 break; 6506 } 6507 } 6508 // No 2 source vectors with the same vector factor - give up and do regular 6509 // gather. 6510 if (Entries.empty()) 6511 return None; 6512 } 6513 6514 // Build a shuffle mask for better cost estimation and vector emission. 6515 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 6516 Value *V = TE->Scalars[I]; 6517 if (isa<UndefValue>(V)) 6518 continue; 6519 unsigned Idx = UsedValuesEntry.lookup(V); 6520 const TreeEntry *VTE = Entries[Idx]; 6521 int FoundLane = VTE->findLaneForValue(V); 6522 Mask[I] = Idx * VF + FoundLane; 6523 // Extra check required by isSingleSourceMaskImpl function (called by 6524 // ShuffleVectorInst::isSingleSourceMask). 6525 if (Mask[I] >= 2 * E) 6526 return None; 6527 } 6528 switch (Entries.size()) { 6529 case 1: 6530 return TargetTransformInfo::SK_PermuteSingleSrc; 6531 case 2: 6532 return TargetTransformInfo::SK_PermuteTwoSrc; 6533 default: 6534 break; 6535 } 6536 return None; 6537 } 6538 6539 InstructionCost BoUpSLP::getGatherCost(FixedVectorType *Ty, 6540 const APInt &ShuffledIndices, 6541 bool NeedToShuffle) const { 6542 InstructionCost Cost = 6543 TTI->getScalarizationOverhead(Ty, ~ShuffledIndices, /*Insert*/ true, 6544 /*Extract*/ false); 6545 if (NeedToShuffle) 6546 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 6547 return Cost; 6548 } 6549 6550 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 6551 // Find the type of the operands in VL. 6552 Type *ScalarTy = VL[0]->getType(); 6553 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 6554 ScalarTy = SI->getValueOperand()->getType(); 6555 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 6556 bool DuplicateNonConst = false; 6557 // Find the cost of inserting/extracting values from the vector. 6558 // Check if the same elements are inserted several times and count them as 6559 // shuffle candidates. 6560 APInt ShuffledElements = APInt::getZero(VL.size()); 6561 DenseSet<Value *> UniqueElements; 6562 // Iterate in reverse order to consider insert elements with the high cost. 6563 for (unsigned I = VL.size(); I > 0; --I) { 6564 unsigned Idx = I - 1; 6565 // No need to shuffle duplicates for constants. 6566 if (isConstant(VL[Idx])) { 6567 ShuffledElements.setBit(Idx); 6568 continue; 6569 } 6570 if (!UniqueElements.insert(VL[Idx]).second) { 6571 DuplicateNonConst = true; 6572 ShuffledElements.setBit(Idx); 6573 } 6574 } 6575 return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst); 6576 } 6577 6578 // Perform operand reordering on the instructions in VL and return the reordered 6579 // operands in Left and Right. 6580 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 6581 SmallVectorImpl<Value *> &Left, 6582 SmallVectorImpl<Value *> &Right, 6583 const DataLayout &DL, 6584 ScalarEvolution &SE, 6585 const BoUpSLP &R) { 6586 if (VL.empty()) 6587 return; 6588 VLOperands Ops(VL, DL, SE, R); 6589 // Reorder the operands in place. 6590 Ops.reorder(); 6591 Left = Ops.getVL(0); 6592 Right = Ops.getVL(1); 6593 } 6594 6595 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 6596 // Get the basic block this bundle is in. All instructions in the bundle 6597 // should be in this block. 6598 auto *Front = E->getMainOp(); 6599 auto *BB = Front->getParent(); 6600 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 6601 auto *I = cast<Instruction>(V); 6602 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 6603 })); 6604 6605 auto &&FindLastInst = [E, Front]() { 6606 Instruction *LastInst = Front; 6607 for (Value *V : E->Scalars) { 6608 auto *I = dyn_cast<Instruction>(V); 6609 if (!I) 6610 continue; 6611 if (LastInst->comesBefore(I)) 6612 LastInst = I; 6613 } 6614 return LastInst; 6615 }; 6616 6617 auto &&FindFirstInst = [E, Front]() { 6618 Instruction *FirstInst = Front; 6619 for (Value *V : E->Scalars) { 6620 auto *I = dyn_cast<Instruction>(V); 6621 if (!I) 6622 continue; 6623 if (I->comesBefore(FirstInst)) 6624 FirstInst = I; 6625 } 6626 return FirstInst; 6627 }; 6628 6629 // Set the insert point to the beginning of the basic block if the entry 6630 // should not be scheduled. 6631 if (E->State != TreeEntry::NeedToGather && 6632 doesNotNeedToSchedule(E->Scalars)) { 6633 BasicBlock::iterator InsertPt; 6634 if (all_of(E->Scalars, isUsedOutsideBlock)) 6635 InsertPt = FindLastInst()->getIterator(); 6636 else 6637 InsertPt = FindFirstInst()->getIterator(); 6638 Builder.SetInsertPoint(BB, InsertPt); 6639 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 6640 return; 6641 } 6642 6643 // The last instruction in the bundle in program order. 6644 Instruction *LastInst = nullptr; 6645 6646 // Find the last instruction. The common case should be that BB has been 6647 // scheduled, and the last instruction is VL.back(). So we start with 6648 // VL.back() and iterate over schedule data until we reach the end of the 6649 // bundle. The end of the bundle is marked by null ScheduleData. 6650 if (BlocksSchedules.count(BB)) { 6651 Value *V = E->isOneOf(E->Scalars.back()); 6652 if (doesNotNeedToBeScheduled(V)) 6653 V = *find_if_not(E->Scalars, doesNotNeedToBeScheduled); 6654 auto *Bundle = BlocksSchedules[BB]->getScheduleData(V); 6655 if (Bundle && Bundle->isPartOfBundle()) 6656 for (; Bundle; Bundle = Bundle->NextInBundle) 6657 if (Bundle->OpValue == Bundle->Inst) 6658 LastInst = Bundle->Inst; 6659 } 6660 6661 // LastInst can still be null at this point if there's either not an entry 6662 // for BB in BlocksSchedules or there's no ScheduleData available for 6663 // VL.back(). This can be the case if buildTree_rec aborts for various 6664 // reasons (e.g., the maximum recursion depth is reached, the maximum region 6665 // size is reached, etc.). ScheduleData is initialized in the scheduling 6666 // "dry-run". 6667 // 6668 // If this happens, we can still find the last instruction by brute force. We 6669 // iterate forwards from Front (inclusive) until we either see all 6670 // instructions in the bundle or reach the end of the block. If Front is the 6671 // last instruction in program order, LastInst will be set to Front, and we 6672 // will visit all the remaining instructions in the block. 6673 // 6674 // One of the reasons we exit early from buildTree_rec is to place an upper 6675 // bound on compile-time. Thus, taking an additional compile-time hit here is 6676 // not ideal. However, this should be exceedingly rare since it requires that 6677 // we both exit early from buildTree_rec and that the bundle be out-of-order 6678 // (causing us to iterate all the way to the end of the block). 6679 if (!LastInst) 6680 LastInst = FindLastInst(); 6681 assert(LastInst && "Failed to find last instruction in bundle"); 6682 6683 // Set the insertion point after the last instruction in the bundle. Set the 6684 // debug location to Front. 6685 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 6686 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 6687 } 6688 6689 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 6690 // List of instructions/lanes from current block and/or the blocks which are 6691 // part of the current loop. These instructions will be inserted at the end to 6692 // make it possible to optimize loops and hoist invariant instructions out of 6693 // the loops body with better chances for success. 6694 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 6695 SmallSet<int, 4> PostponedIndices; 6696 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 6697 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 6698 SmallPtrSet<BasicBlock *, 4> Visited; 6699 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 6700 InsertBB = InsertBB->getSinglePredecessor(); 6701 return InsertBB && InsertBB == InstBB; 6702 }; 6703 for (int I = 0, E = VL.size(); I < E; ++I) { 6704 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 6705 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 6706 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 6707 PostponedIndices.insert(I).second) 6708 PostponedInsts.emplace_back(Inst, I); 6709 } 6710 6711 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 6712 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 6713 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 6714 if (!InsElt) 6715 return Vec; 6716 GatherShuffleSeq.insert(InsElt); 6717 CSEBlocks.insert(InsElt->getParent()); 6718 // Add to our 'need-to-extract' list. 6719 if (TreeEntry *Entry = getTreeEntry(V)) { 6720 // Find which lane we need to extract. 6721 unsigned FoundLane = Entry->findLaneForValue(V); 6722 ExternalUses.emplace_back(V, InsElt, FoundLane); 6723 } 6724 return Vec; 6725 }; 6726 Value *Val0 = 6727 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 6728 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 6729 Value *Vec = PoisonValue::get(VecTy); 6730 SmallVector<int> NonConsts; 6731 // Insert constant values at first. 6732 for (int I = 0, E = VL.size(); I < E; ++I) { 6733 if (PostponedIndices.contains(I)) 6734 continue; 6735 if (!isConstant(VL[I])) { 6736 NonConsts.push_back(I); 6737 continue; 6738 } 6739 Vec = CreateInsertElement(Vec, VL[I], I); 6740 } 6741 // Insert non-constant values. 6742 for (int I : NonConsts) 6743 Vec = CreateInsertElement(Vec, VL[I], I); 6744 // Append instructions, which are/may be part of the loop, in the end to make 6745 // it possible to hoist non-loop-based instructions. 6746 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 6747 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 6748 6749 return Vec; 6750 } 6751 6752 namespace { 6753 /// Merges shuffle masks and emits final shuffle instruction, if required. 6754 class ShuffleInstructionBuilder { 6755 IRBuilderBase &Builder; 6756 const unsigned VF = 0; 6757 bool IsFinalized = false; 6758 SmallVector<int, 4> Mask; 6759 /// Holds all of the instructions that we gathered. 6760 SetVector<Instruction *> &GatherShuffleSeq; 6761 /// A list of blocks that we are going to CSE. 6762 SetVector<BasicBlock *> &CSEBlocks; 6763 6764 public: 6765 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF, 6766 SetVector<Instruction *> &GatherShuffleSeq, 6767 SetVector<BasicBlock *> &CSEBlocks) 6768 : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq), 6769 CSEBlocks(CSEBlocks) {} 6770 6771 /// Adds a mask, inverting it before applying. 6772 void addInversedMask(ArrayRef<unsigned> SubMask) { 6773 if (SubMask.empty()) 6774 return; 6775 SmallVector<int, 4> NewMask; 6776 inversePermutation(SubMask, NewMask); 6777 addMask(NewMask); 6778 } 6779 6780 /// Functions adds masks, merging them into single one. 6781 void addMask(ArrayRef<unsigned> SubMask) { 6782 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 6783 addMask(NewMask); 6784 } 6785 6786 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 6787 6788 Value *finalize(Value *V) { 6789 IsFinalized = true; 6790 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 6791 if (VF == ValueVF && Mask.empty()) 6792 return V; 6793 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 6794 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 6795 addMask(NormalizedMask); 6796 6797 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 6798 return V; 6799 Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle"); 6800 if (auto *I = dyn_cast<Instruction>(Vec)) { 6801 GatherShuffleSeq.insert(I); 6802 CSEBlocks.insert(I->getParent()); 6803 } 6804 return Vec; 6805 } 6806 6807 ~ShuffleInstructionBuilder() { 6808 assert((IsFinalized || Mask.empty()) && 6809 "Shuffle construction must be finalized."); 6810 } 6811 }; 6812 } // namespace 6813 6814 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 6815 const unsigned VF = VL.size(); 6816 InstructionsState S = getSameOpcode(VL); 6817 if (S.getOpcode()) { 6818 if (TreeEntry *E = getTreeEntry(S.OpValue)) 6819 if (E->isSame(VL)) { 6820 Value *V = vectorizeTree(E); 6821 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 6822 if (!E->ReuseShuffleIndices.empty()) { 6823 // Reshuffle to get only unique values. 6824 // If some of the scalars are duplicated in the vectorization tree 6825 // entry, we do not vectorize them but instead generate a mask for 6826 // the reuses. But if there are several users of the same entry, 6827 // they may have different vectorization factors. This is especially 6828 // important for PHI nodes. In this case, we need to adapt the 6829 // resulting instruction for the user vectorization factor and have 6830 // to reshuffle it again to take only unique elements of the vector. 6831 // Without this code the function incorrectly returns reduced vector 6832 // instruction with the same elements, not with the unique ones. 6833 6834 // block: 6835 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 6836 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> 6837 // ... (use %2) 6838 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} 6839 // br %block 6840 SmallVector<int> UniqueIdxs(VF, UndefMaskElem); 6841 SmallSet<int, 4> UsedIdxs; 6842 int Pos = 0; 6843 int Sz = VL.size(); 6844 for (int Idx : E->ReuseShuffleIndices) { 6845 if (Idx != Sz && Idx != UndefMaskElem && 6846 UsedIdxs.insert(Idx).second) 6847 UniqueIdxs[Idx] = Pos; 6848 ++Pos; 6849 } 6850 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 6851 "less than original vector size."); 6852 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 6853 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 6854 } else { 6855 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 6856 "Expected vectorization factor less " 6857 "than original vector size."); 6858 SmallVector<int> UniformMask(VF, 0); 6859 std::iota(UniformMask.begin(), UniformMask.end(), 0); 6860 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 6861 } 6862 if (auto *I = dyn_cast<Instruction>(V)) { 6863 GatherShuffleSeq.insert(I); 6864 CSEBlocks.insert(I->getParent()); 6865 } 6866 } 6867 return V; 6868 } 6869 } 6870 6871 // Can't vectorize this, so simply build a new vector with each lane 6872 // corresponding to the requested value. 6873 return createBuildVector(VL); 6874 } 6875 Value *BoUpSLP::createBuildVector(ArrayRef<Value *> VL) { 6876 unsigned VF = VL.size(); 6877 // Exploit possible reuse of values across lanes. 6878 SmallVector<int> ReuseShuffleIndicies; 6879 SmallVector<Value *> UniqueValues; 6880 if (VL.size() > 2) { 6881 DenseMap<Value *, unsigned> UniquePositions; 6882 unsigned NumValues = 6883 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 6884 return !isa<UndefValue>(V); 6885 }).base()); 6886 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 6887 int UniqueVals = 0; 6888 for (Value *V : VL.drop_back(VL.size() - VF)) { 6889 if (isa<UndefValue>(V)) { 6890 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 6891 continue; 6892 } 6893 if (isConstant(V)) { 6894 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 6895 UniqueValues.emplace_back(V); 6896 continue; 6897 } 6898 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 6899 ReuseShuffleIndicies.emplace_back(Res.first->second); 6900 if (Res.second) { 6901 UniqueValues.emplace_back(V); 6902 ++UniqueVals; 6903 } 6904 } 6905 if (UniqueVals == 1 && UniqueValues.size() == 1) { 6906 // Emit pure splat vector. 6907 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 6908 UndefMaskElem); 6909 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 6910 ReuseShuffleIndicies.clear(); 6911 UniqueValues.clear(); 6912 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 6913 } 6914 UniqueValues.append(VF - UniqueValues.size(), 6915 PoisonValue::get(VL[0]->getType())); 6916 VL = UniqueValues; 6917 } 6918 6919 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6920 CSEBlocks); 6921 Value *Vec = gather(VL); 6922 if (!ReuseShuffleIndicies.empty()) { 6923 ShuffleBuilder.addMask(ReuseShuffleIndicies); 6924 Vec = ShuffleBuilder.finalize(Vec); 6925 } 6926 return Vec; 6927 } 6928 6929 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 6930 IRBuilder<>::InsertPointGuard Guard(Builder); 6931 6932 if (E->VectorizedValue) { 6933 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 6934 return E->VectorizedValue; 6935 } 6936 6937 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 6938 unsigned VF = E->getVectorFactor(); 6939 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6940 CSEBlocks); 6941 if (E->State == TreeEntry::NeedToGather) { 6942 if (E->getMainOp()) 6943 setInsertPointAfterBundle(E); 6944 Value *Vec; 6945 SmallVector<int> Mask; 6946 SmallVector<const TreeEntry *> Entries; 6947 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 6948 isGatherShuffledEntry(E, Mask, Entries); 6949 if (Shuffle.hasValue()) { 6950 assert((Entries.size() == 1 || Entries.size() == 2) && 6951 "Expected shuffle of 1 or 2 entries."); 6952 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 6953 Entries.back()->VectorizedValue, Mask); 6954 if (auto *I = dyn_cast<Instruction>(Vec)) { 6955 GatherShuffleSeq.insert(I); 6956 CSEBlocks.insert(I->getParent()); 6957 } 6958 } else { 6959 Vec = gather(E->Scalars); 6960 } 6961 if (NeedToShuffleReuses) { 6962 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6963 Vec = ShuffleBuilder.finalize(Vec); 6964 } 6965 E->VectorizedValue = Vec; 6966 return Vec; 6967 } 6968 6969 assert((E->State == TreeEntry::Vectorize || 6970 E->State == TreeEntry::ScatterVectorize) && 6971 "Unhandled state"); 6972 unsigned ShuffleOrOp = 6973 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 6974 Instruction *VL0 = E->getMainOp(); 6975 Type *ScalarTy = VL0->getType(); 6976 if (auto *Store = dyn_cast<StoreInst>(VL0)) 6977 ScalarTy = Store->getValueOperand()->getType(); 6978 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 6979 ScalarTy = IE->getOperand(1)->getType(); 6980 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 6981 switch (ShuffleOrOp) { 6982 case Instruction::PHI: { 6983 assert( 6984 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 6985 "PHI reordering is free."); 6986 auto *PH = cast<PHINode>(VL0); 6987 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 6988 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6989 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 6990 Value *V = NewPhi; 6991 6992 // Adjust insertion point once all PHI's have been generated. 6993 Builder.SetInsertPoint(&*PH->getParent()->getFirstInsertionPt()); 6994 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6995 6996 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6997 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6998 V = ShuffleBuilder.finalize(V); 6999 7000 E->VectorizedValue = V; 7001 7002 // PHINodes may have multiple entries from the same block. We want to 7003 // visit every block once. 7004 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 7005 7006 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 7007 ValueList Operands; 7008 BasicBlock *IBB = PH->getIncomingBlock(i); 7009 7010 if (!VisitedBBs.insert(IBB).second) { 7011 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 7012 continue; 7013 } 7014 7015 Builder.SetInsertPoint(IBB->getTerminator()); 7016 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 7017 Value *Vec = vectorizeTree(E->getOperand(i)); 7018 NewPhi->addIncoming(Vec, IBB); 7019 } 7020 7021 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 7022 "Invalid number of incoming values"); 7023 return V; 7024 } 7025 7026 case Instruction::ExtractElement: { 7027 Value *V = E->getSingleOperand(0); 7028 Builder.SetInsertPoint(VL0); 7029 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7030 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7031 V = ShuffleBuilder.finalize(V); 7032 E->VectorizedValue = V; 7033 return V; 7034 } 7035 case Instruction::ExtractValue: { 7036 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 7037 Builder.SetInsertPoint(LI); 7038 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 7039 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 7040 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 7041 Value *NewV = propagateMetadata(V, E->Scalars); 7042 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7043 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7044 NewV = ShuffleBuilder.finalize(NewV); 7045 E->VectorizedValue = NewV; 7046 return NewV; 7047 } 7048 case Instruction::InsertElement: { 7049 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 7050 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 7051 Value *V = vectorizeTree(E->getOperand(1)); 7052 7053 // Create InsertVector shuffle if necessary 7054 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 7055 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 7056 })); 7057 const unsigned NumElts = 7058 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 7059 const unsigned NumScalars = E->Scalars.size(); 7060 7061 unsigned Offset = *getInsertIndex(VL0); 7062 assert(Offset < NumElts && "Failed to find vector index offset"); 7063 7064 // Create shuffle to resize vector 7065 SmallVector<int> Mask; 7066 if (!E->ReorderIndices.empty()) { 7067 inversePermutation(E->ReorderIndices, Mask); 7068 Mask.append(NumElts - NumScalars, UndefMaskElem); 7069 } else { 7070 Mask.assign(NumElts, UndefMaskElem); 7071 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 7072 } 7073 // Create InsertVector shuffle if necessary 7074 bool IsIdentity = true; 7075 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 7076 Mask.swap(PrevMask); 7077 for (unsigned I = 0; I < NumScalars; ++I) { 7078 Value *Scalar = E->Scalars[PrevMask[I]]; 7079 unsigned InsertIdx = *getInsertIndex(Scalar); 7080 IsIdentity &= InsertIdx - Offset == I; 7081 Mask[InsertIdx - Offset] = I; 7082 } 7083 if (!IsIdentity || NumElts != NumScalars) { 7084 V = Builder.CreateShuffleVector(V, Mask); 7085 if (auto *I = dyn_cast<Instruction>(V)) { 7086 GatherShuffleSeq.insert(I); 7087 CSEBlocks.insert(I->getParent()); 7088 } 7089 } 7090 7091 if ((!IsIdentity || Offset != 0 || 7092 !isUndefVector(FirstInsert->getOperand(0))) && 7093 NumElts != NumScalars) { 7094 SmallVector<int> InsertMask(NumElts); 7095 std::iota(InsertMask.begin(), InsertMask.end(), 0); 7096 for (unsigned I = 0; I < NumElts; I++) { 7097 if (Mask[I] != UndefMaskElem) 7098 InsertMask[Offset + I] = NumElts + I; 7099 } 7100 7101 V = Builder.CreateShuffleVector( 7102 FirstInsert->getOperand(0), V, InsertMask, 7103 cast<Instruction>(E->Scalars.back())->getName()); 7104 if (auto *I = dyn_cast<Instruction>(V)) { 7105 GatherShuffleSeq.insert(I); 7106 CSEBlocks.insert(I->getParent()); 7107 } 7108 } 7109 7110 ++NumVectorInstructions; 7111 E->VectorizedValue = V; 7112 return V; 7113 } 7114 case Instruction::ZExt: 7115 case Instruction::SExt: 7116 case Instruction::FPToUI: 7117 case Instruction::FPToSI: 7118 case Instruction::FPExt: 7119 case Instruction::PtrToInt: 7120 case Instruction::IntToPtr: 7121 case Instruction::SIToFP: 7122 case Instruction::UIToFP: 7123 case Instruction::Trunc: 7124 case Instruction::FPTrunc: 7125 case Instruction::BitCast: { 7126 setInsertPointAfterBundle(E); 7127 7128 Value *InVec = vectorizeTree(E->getOperand(0)); 7129 7130 if (E->VectorizedValue) { 7131 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7132 return E->VectorizedValue; 7133 } 7134 7135 auto *CI = cast<CastInst>(VL0); 7136 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 7137 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7138 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7139 V = ShuffleBuilder.finalize(V); 7140 7141 E->VectorizedValue = V; 7142 ++NumVectorInstructions; 7143 return V; 7144 } 7145 case Instruction::FCmp: 7146 case Instruction::ICmp: { 7147 setInsertPointAfterBundle(E); 7148 7149 Value *L = vectorizeTree(E->getOperand(0)); 7150 Value *R = vectorizeTree(E->getOperand(1)); 7151 7152 if (E->VectorizedValue) { 7153 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7154 return E->VectorizedValue; 7155 } 7156 7157 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 7158 Value *V = Builder.CreateCmp(P0, L, R); 7159 propagateIRFlags(V, E->Scalars, VL0); 7160 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7161 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7162 V = ShuffleBuilder.finalize(V); 7163 7164 E->VectorizedValue = V; 7165 ++NumVectorInstructions; 7166 return V; 7167 } 7168 case Instruction::Select: { 7169 setInsertPointAfterBundle(E); 7170 7171 Value *Cond = vectorizeTree(E->getOperand(0)); 7172 Value *True = vectorizeTree(E->getOperand(1)); 7173 Value *False = vectorizeTree(E->getOperand(2)); 7174 7175 if (E->VectorizedValue) { 7176 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7177 return E->VectorizedValue; 7178 } 7179 7180 Value *V = Builder.CreateSelect(Cond, True, False); 7181 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7182 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7183 V = ShuffleBuilder.finalize(V); 7184 7185 E->VectorizedValue = V; 7186 ++NumVectorInstructions; 7187 return V; 7188 } 7189 case Instruction::FNeg: { 7190 setInsertPointAfterBundle(E); 7191 7192 Value *Op = vectorizeTree(E->getOperand(0)); 7193 7194 if (E->VectorizedValue) { 7195 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7196 return E->VectorizedValue; 7197 } 7198 7199 Value *V = Builder.CreateUnOp( 7200 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 7201 propagateIRFlags(V, E->Scalars, VL0); 7202 if (auto *I = dyn_cast<Instruction>(V)) 7203 V = propagateMetadata(I, E->Scalars); 7204 7205 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7206 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7207 V = ShuffleBuilder.finalize(V); 7208 7209 E->VectorizedValue = V; 7210 ++NumVectorInstructions; 7211 7212 return V; 7213 } 7214 case Instruction::Add: 7215 case Instruction::FAdd: 7216 case Instruction::Sub: 7217 case Instruction::FSub: 7218 case Instruction::Mul: 7219 case Instruction::FMul: 7220 case Instruction::UDiv: 7221 case Instruction::SDiv: 7222 case Instruction::FDiv: 7223 case Instruction::URem: 7224 case Instruction::SRem: 7225 case Instruction::FRem: 7226 case Instruction::Shl: 7227 case Instruction::LShr: 7228 case Instruction::AShr: 7229 case Instruction::And: 7230 case Instruction::Or: 7231 case Instruction::Xor: { 7232 setInsertPointAfterBundle(E); 7233 7234 Value *LHS = vectorizeTree(E->getOperand(0)); 7235 Value *RHS = vectorizeTree(E->getOperand(1)); 7236 7237 if (E->VectorizedValue) { 7238 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7239 return E->VectorizedValue; 7240 } 7241 7242 Value *V = Builder.CreateBinOp( 7243 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 7244 RHS); 7245 propagateIRFlags(V, E->Scalars, VL0); 7246 if (auto *I = dyn_cast<Instruction>(V)) 7247 V = propagateMetadata(I, E->Scalars); 7248 7249 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7250 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7251 V = ShuffleBuilder.finalize(V); 7252 7253 E->VectorizedValue = V; 7254 ++NumVectorInstructions; 7255 7256 return V; 7257 } 7258 case Instruction::Load: { 7259 // Loads are inserted at the head of the tree because we don't want to 7260 // sink them all the way down past store instructions. 7261 setInsertPointAfterBundle(E); 7262 7263 LoadInst *LI = cast<LoadInst>(VL0); 7264 Instruction *NewLI; 7265 unsigned AS = LI->getPointerAddressSpace(); 7266 Value *PO = LI->getPointerOperand(); 7267 if (E->State == TreeEntry::Vectorize) { 7268 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 7269 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 7270 7271 // The pointer operand uses an in-tree scalar so we add the new BitCast 7272 // or LoadInst to ExternalUses list to make sure that an extract will 7273 // be generated in the future. 7274 if (TreeEntry *Entry = getTreeEntry(PO)) { 7275 // Find which lane we need to extract. 7276 unsigned FoundLane = Entry->findLaneForValue(PO); 7277 ExternalUses.emplace_back( 7278 PO, PO != VecPtr ? cast<User>(VecPtr) : NewLI, FoundLane); 7279 } 7280 } else { 7281 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 7282 Value *VecPtr = vectorizeTree(E->getOperand(0)); 7283 // Use the minimum alignment of the gathered loads. 7284 Align CommonAlignment = LI->getAlign(); 7285 for (Value *V : E->Scalars) 7286 CommonAlignment = 7287 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 7288 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 7289 } 7290 Value *V = propagateMetadata(NewLI, E->Scalars); 7291 7292 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7293 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7294 V = ShuffleBuilder.finalize(V); 7295 E->VectorizedValue = V; 7296 ++NumVectorInstructions; 7297 return V; 7298 } 7299 case Instruction::Store: { 7300 auto *SI = cast<StoreInst>(VL0); 7301 unsigned AS = SI->getPointerAddressSpace(); 7302 7303 setInsertPointAfterBundle(E); 7304 7305 Value *VecValue = vectorizeTree(E->getOperand(0)); 7306 ShuffleBuilder.addMask(E->ReorderIndices); 7307 VecValue = ShuffleBuilder.finalize(VecValue); 7308 7309 Value *ScalarPtr = SI->getPointerOperand(); 7310 Value *VecPtr = Builder.CreateBitCast( 7311 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 7312 StoreInst *ST = 7313 Builder.CreateAlignedStore(VecValue, VecPtr, SI->getAlign()); 7314 7315 // The pointer operand uses an in-tree scalar, so add the new BitCast or 7316 // StoreInst to ExternalUses to make sure that an extract will be 7317 // generated in the future. 7318 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 7319 // Find which lane we need to extract. 7320 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 7321 ExternalUses.push_back(ExternalUser( 7322 ScalarPtr, ScalarPtr != VecPtr ? cast<User>(VecPtr) : ST, 7323 FoundLane)); 7324 } 7325 7326 Value *V = propagateMetadata(ST, E->Scalars); 7327 7328 E->VectorizedValue = V; 7329 ++NumVectorInstructions; 7330 return V; 7331 } 7332 case Instruction::GetElementPtr: { 7333 auto *GEP0 = cast<GetElementPtrInst>(VL0); 7334 setInsertPointAfterBundle(E); 7335 7336 Value *Op0 = vectorizeTree(E->getOperand(0)); 7337 7338 SmallVector<Value *> OpVecs; 7339 for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) { 7340 Value *OpVec = vectorizeTree(E->getOperand(J)); 7341 OpVecs.push_back(OpVec); 7342 } 7343 7344 Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs); 7345 if (Instruction *I = dyn_cast<Instruction>(V)) 7346 V = propagateMetadata(I, E->Scalars); 7347 7348 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7349 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7350 V = ShuffleBuilder.finalize(V); 7351 7352 E->VectorizedValue = V; 7353 ++NumVectorInstructions; 7354 7355 return V; 7356 } 7357 case Instruction::Call: { 7358 CallInst *CI = cast<CallInst>(VL0); 7359 setInsertPointAfterBundle(E); 7360 7361 Intrinsic::ID IID = Intrinsic::not_intrinsic; 7362 if (Function *FI = CI->getCalledFunction()) 7363 IID = FI->getIntrinsicID(); 7364 7365 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7366 7367 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 7368 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 7369 VecCallCosts.first <= VecCallCosts.second; 7370 7371 Value *ScalarArg = nullptr; 7372 std::vector<Value *> OpVecs; 7373 SmallVector<Type *, 2> TysForDecl = 7374 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 7375 for (int j = 0, e = CI->arg_size(); j < e; ++j) { 7376 ValueList OpVL; 7377 // Some intrinsics have scalar arguments. This argument should not be 7378 // vectorized. 7379 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 7380 CallInst *CEI = cast<CallInst>(VL0); 7381 ScalarArg = CEI->getArgOperand(j); 7382 OpVecs.push_back(CEI->getArgOperand(j)); 7383 if (hasVectorInstrinsicOverloadedScalarOpd(IID, j)) 7384 TysForDecl.push_back(ScalarArg->getType()); 7385 continue; 7386 } 7387 7388 Value *OpVec = vectorizeTree(E->getOperand(j)); 7389 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 7390 OpVecs.push_back(OpVec); 7391 } 7392 7393 Function *CF; 7394 if (!UseIntrinsic) { 7395 VFShape Shape = 7396 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 7397 VecTy->getNumElements())), 7398 false /*HasGlobalPred*/); 7399 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 7400 } else { 7401 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 7402 } 7403 7404 SmallVector<OperandBundleDef, 1> OpBundles; 7405 CI->getOperandBundlesAsDefs(OpBundles); 7406 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 7407 7408 // The scalar argument uses an in-tree scalar so we add the new vectorized 7409 // call to ExternalUses list to make sure that an extract will be 7410 // generated in the future. 7411 if (ScalarArg) { 7412 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 7413 // Find which lane we need to extract. 7414 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 7415 ExternalUses.push_back( 7416 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 7417 } 7418 } 7419 7420 propagateIRFlags(V, E->Scalars, VL0); 7421 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7422 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7423 V = ShuffleBuilder.finalize(V); 7424 7425 E->VectorizedValue = V; 7426 ++NumVectorInstructions; 7427 return V; 7428 } 7429 case Instruction::ShuffleVector: { 7430 assert(E->isAltShuffle() && 7431 ((Instruction::isBinaryOp(E->getOpcode()) && 7432 Instruction::isBinaryOp(E->getAltOpcode())) || 7433 (Instruction::isCast(E->getOpcode()) && 7434 Instruction::isCast(E->getAltOpcode())) || 7435 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 7436 "Invalid Shuffle Vector Operand"); 7437 7438 Value *LHS = nullptr, *RHS = nullptr; 7439 if (Instruction::isBinaryOp(E->getOpcode()) || isa<CmpInst>(VL0)) { 7440 setInsertPointAfterBundle(E); 7441 LHS = vectorizeTree(E->getOperand(0)); 7442 RHS = vectorizeTree(E->getOperand(1)); 7443 } else { 7444 setInsertPointAfterBundle(E); 7445 LHS = vectorizeTree(E->getOperand(0)); 7446 } 7447 7448 if (E->VectorizedValue) { 7449 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7450 return E->VectorizedValue; 7451 } 7452 7453 Value *V0, *V1; 7454 if (Instruction::isBinaryOp(E->getOpcode())) { 7455 V0 = Builder.CreateBinOp( 7456 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 7457 V1 = Builder.CreateBinOp( 7458 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 7459 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 7460 V0 = Builder.CreateCmp(CI0->getPredicate(), LHS, RHS); 7461 auto *AltCI = cast<CmpInst>(E->getAltOp()); 7462 CmpInst::Predicate AltPred = AltCI->getPredicate(); 7463 V1 = Builder.CreateCmp(AltPred, LHS, RHS); 7464 } else { 7465 V0 = Builder.CreateCast( 7466 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 7467 V1 = Builder.CreateCast( 7468 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 7469 } 7470 // Add V0 and V1 to later analysis to try to find and remove matching 7471 // instruction, if any. 7472 for (Value *V : {V0, V1}) { 7473 if (auto *I = dyn_cast<Instruction>(V)) { 7474 GatherShuffleSeq.insert(I); 7475 CSEBlocks.insert(I->getParent()); 7476 } 7477 } 7478 7479 // Create shuffle to take alternate operations from the vector. 7480 // Also, gather up main and alt scalar ops to propagate IR flags to 7481 // each vector operation. 7482 ValueList OpScalars, AltScalars; 7483 SmallVector<int> Mask; 7484 buildShuffleEntryMask( 7485 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 7486 [E](Instruction *I) { 7487 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 7488 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 7489 }, 7490 Mask, &OpScalars, &AltScalars); 7491 7492 propagateIRFlags(V0, OpScalars); 7493 propagateIRFlags(V1, AltScalars); 7494 7495 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 7496 if (auto *I = dyn_cast<Instruction>(V)) { 7497 V = propagateMetadata(I, E->Scalars); 7498 GatherShuffleSeq.insert(I); 7499 CSEBlocks.insert(I->getParent()); 7500 } 7501 V = ShuffleBuilder.finalize(V); 7502 7503 E->VectorizedValue = V; 7504 ++NumVectorInstructions; 7505 7506 return V; 7507 } 7508 default: 7509 llvm_unreachable("unknown inst"); 7510 } 7511 return nullptr; 7512 } 7513 7514 Value *BoUpSLP::vectorizeTree() { 7515 ExtraValueToDebugLocsMap ExternallyUsedValues; 7516 return vectorizeTree(ExternallyUsedValues); 7517 } 7518 7519 Value * 7520 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 7521 // All blocks must be scheduled before any instructions are inserted. 7522 for (auto &BSIter : BlocksSchedules) { 7523 scheduleBlock(BSIter.second.get()); 7524 } 7525 7526 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7527 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 7528 7529 // If the vectorized tree can be rewritten in a smaller type, we truncate the 7530 // vectorized root. InstCombine will then rewrite the entire expression. We 7531 // sign extend the extracted values below. 7532 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 7533 if (MinBWs.count(ScalarRoot)) { 7534 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 7535 // If current instr is a phi and not the last phi, insert it after the 7536 // last phi node. 7537 if (isa<PHINode>(I)) 7538 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 7539 else 7540 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 7541 } 7542 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 7543 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 7544 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 7545 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 7546 VectorizableTree[0]->VectorizedValue = Trunc; 7547 } 7548 7549 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 7550 << " values .\n"); 7551 7552 // Extract all of the elements with the external uses. 7553 for (const auto &ExternalUse : ExternalUses) { 7554 Value *Scalar = ExternalUse.Scalar; 7555 llvm::User *User = ExternalUse.User; 7556 7557 // Skip users that we already RAUW. This happens when one instruction 7558 // has multiple uses of the same value. 7559 if (User && !is_contained(Scalar->users(), User)) 7560 continue; 7561 TreeEntry *E = getTreeEntry(Scalar); 7562 assert(E && "Invalid scalar"); 7563 assert(E->State != TreeEntry::NeedToGather && 7564 "Extracting from a gather list"); 7565 7566 Value *Vec = E->VectorizedValue; 7567 assert(Vec && "Can't find vectorizable value"); 7568 7569 Value *Lane = Builder.getInt32(ExternalUse.Lane); 7570 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 7571 if (Scalar->getType() != Vec->getType()) { 7572 Value *Ex; 7573 // "Reuse" the existing extract to improve final codegen. 7574 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 7575 Ex = Builder.CreateExtractElement(ES->getOperand(0), 7576 ES->getOperand(1)); 7577 } else { 7578 Ex = Builder.CreateExtractElement(Vec, Lane); 7579 } 7580 // If necessary, sign-extend or zero-extend ScalarRoot 7581 // to the larger type. 7582 if (!MinBWs.count(ScalarRoot)) 7583 return Ex; 7584 if (MinBWs[ScalarRoot].second) 7585 return Builder.CreateSExt(Ex, Scalar->getType()); 7586 return Builder.CreateZExt(Ex, Scalar->getType()); 7587 } 7588 assert(isa<FixedVectorType>(Scalar->getType()) && 7589 isa<InsertElementInst>(Scalar) && 7590 "In-tree scalar of vector type is not insertelement?"); 7591 return Vec; 7592 }; 7593 // If User == nullptr, the Scalar is used as extra arg. Generate 7594 // ExtractElement instruction and update the record for this scalar in 7595 // ExternallyUsedValues. 7596 if (!User) { 7597 assert(ExternallyUsedValues.count(Scalar) && 7598 "Scalar with nullptr as an external user must be registered in " 7599 "ExternallyUsedValues map"); 7600 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7601 Builder.SetInsertPoint(VecI->getParent(), 7602 std::next(VecI->getIterator())); 7603 } else { 7604 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7605 } 7606 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7607 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 7608 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 7609 auto It = ExternallyUsedValues.find(Scalar); 7610 assert(It != ExternallyUsedValues.end() && 7611 "Externally used scalar is not found in ExternallyUsedValues"); 7612 NewInstLocs.append(It->second); 7613 ExternallyUsedValues.erase(Scalar); 7614 // Required to update internally referenced instructions. 7615 Scalar->replaceAllUsesWith(NewInst); 7616 continue; 7617 } 7618 7619 // Generate extracts for out-of-tree users. 7620 // Find the insertion point for the extractelement lane. 7621 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7622 if (PHINode *PH = dyn_cast<PHINode>(User)) { 7623 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 7624 if (PH->getIncomingValue(i) == Scalar) { 7625 Instruction *IncomingTerminator = 7626 PH->getIncomingBlock(i)->getTerminator(); 7627 if (isa<CatchSwitchInst>(IncomingTerminator)) { 7628 Builder.SetInsertPoint(VecI->getParent(), 7629 std::next(VecI->getIterator())); 7630 } else { 7631 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 7632 } 7633 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7634 CSEBlocks.insert(PH->getIncomingBlock(i)); 7635 PH->setOperand(i, NewInst); 7636 } 7637 } 7638 } else { 7639 Builder.SetInsertPoint(cast<Instruction>(User)); 7640 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7641 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 7642 User->replaceUsesOfWith(Scalar, NewInst); 7643 } 7644 } else { 7645 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7646 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7647 CSEBlocks.insert(&F->getEntryBlock()); 7648 User->replaceUsesOfWith(Scalar, NewInst); 7649 } 7650 7651 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 7652 } 7653 7654 // For each vectorized value: 7655 for (auto &TEPtr : VectorizableTree) { 7656 TreeEntry *Entry = TEPtr.get(); 7657 7658 // No need to handle users of gathered values. 7659 if (Entry->State == TreeEntry::NeedToGather) 7660 continue; 7661 7662 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 7663 7664 // For each lane: 7665 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 7666 Value *Scalar = Entry->Scalars[Lane]; 7667 7668 #ifndef NDEBUG 7669 Type *Ty = Scalar->getType(); 7670 if (!Ty->isVoidTy()) { 7671 for (User *U : Scalar->users()) { 7672 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 7673 7674 // It is legal to delete users in the ignorelist. 7675 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) || 7676 (isa_and_nonnull<Instruction>(U) && 7677 isDeleted(cast<Instruction>(U)))) && 7678 "Deleting out-of-tree value"); 7679 } 7680 } 7681 #endif 7682 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 7683 eraseInstruction(cast<Instruction>(Scalar)); 7684 } 7685 } 7686 7687 Builder.ClearInsertionPoint(); 7688 InstrElementSize.clear(); 7689 7690 return VectorizableTree[0]->VectorizedValue; 7691 } 7692 7693 void BoUpSLP::optimizeGatherSequence() { 7694 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size() 7695 << " gather sequences instructions.\n"); 7696 // LICM InsertElementInst sequences. 7697 for (Instruction *I : GatherShuffleSeq) { 7698 if (isDeleted(I)) 7699 continue; 7700 7701 // Check if this block is inside a loop. 7702 Loop *L = LI->getLoopFor(I->getParent()); 7703 if (!L) 7704 continue; 7705 7706 // Check if it has a preheader. 7707 BasicBlock *PreHeader = L->getLoopPreheader(); 7708 if (!PreHeader) 7709 continue; 7710 7711 // If the vector or the element that we insert into it are 7712 // instructions that are defined in this basic block then we can't 7713 // hoist this instruction. 7714 if (any_of(I->operands(), [L](Value *V) { 7715 auto *OpI = dyn_cast<Instruction>(V); 7716 return OpI && L->contains(OpI); 7717 })) 7718 continue; 7719 7720 // We can hoist this instruction. Move it to the pre-header. 7721 I->moveBefore(PreHeader->getTerminator()); 7722 } 7723 7724 // Make a list of all reachable blocks in our CSE queue. 7725 SmallVector<const DomTreeNode *, 8> CSEWorkList; 7726 CSEWorkList.reserve(CSEBlocks.size()); 7727 for (BasicBlock *BB : CSEBlocks) 7728 if (DomTreeNode *N = DT->getNode(BB)) { 7729 assert(DT->isReachableFromEntry(N)); 7730 CSEWorkList.push_back(N); 7731 } 7732 7733 // Sort blocks by domination. This ensures we visit a block after all blocks 7734 // dominating it are visited. 7735 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 7736 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 7737 "Different nodes should have different DFS numbers"); 7738 return A->getDFSNumIn() < B->getDFSNumIn(); 7739 }); 7740 7741 // Less defined shuffles can be replaced by the more defined copies. 7742 // Between two shuffles one is less defined if it has the same vector operands 7743 // and its mask indeces are the same as in the first one or undefs. E.g. 7744 // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0, 7745 // poison, <0, 0, 0, 0>. 7746 auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2, 7747 SmallVectorImpl<int> &NewMask) { 7748 if (I1->getType() != I2->getType()) 7749 return false; 7750 auto *SI1 = dyn_cast<ShuffleVectorInst>(I1); 7751 auto *SI2 = dyn_cast<ShuffleVectorInst>(I2); 7752 if (!SI1 || !SI2) 7753 return I1->isIdenticalTo(I2); 7754 if (SI1->isIdenticalTo(SI2)) 7755 return true; 7756 for (int I = 0, E = SI1->getNumOperands(); I < E; ++I) 7757 if (SI1->getOperand(I) != SI2->getOperand(I)) 7758 return false; 7759 // Check if the second instruction is more defined than the first one. 7760 NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end()); 7761 ArrayRef<int> SM1 = SI1->getShuffleMask(); 7762 // Count trailing undefs in the mask to check the final number of used 7763 // registers. 7764 unsigned LastUndefsCnt = 0; 7765 for (int I = 0, E = NewMask.size(); I < E; ++I) { 7766 if (SM1[I] == UndefMaskElem) 7767 ++LastUndefsCnt; 7768 else 7769 LastUndefsCnt = 0; 7770 if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem && 7771 NewMask[I] != SM1[I]) 7772 return false; 7773 if (NewMask[I] == UndefMaskElem) 7774 NewMask[I] = SM1[I]; 7775 } 7776 // Check if the last undefs actually change the final number of used vector 7777 // registers. 7778 return SM1.size() - LastUndefsCnt > 1 && 7779 TTI->getNumberOfParts(SI1->getType()) == 7780 TTI->getNumberOfParts( 7781 FixedVectorType::get(SI1->getType()->getElementType(), 7782 SM1.size() - LastUndefsCnt)); 7783 }; 7784 // Perform O(N^2) search over the gather/shuffle sequences and merge identical 7785 // instructions. TODO: We can further optimize this scan if we split the 7786 // instructions into different buckets based on the insert lane. 7787 SmallVector<Instruction *, 16> Visited; 7788 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 7789 assert(*I && 7790 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 7791 "Worklist not sorted properly!"); 7792 BasicBlock *BB = (*I)->getBlock(); 7793 // For all instructions in blocks containing gather sequences: 7794 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 7795 if (isDeleted(&In)) 7796 continue; 7797 if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) && 7798 !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In)) 7799 continue; 7800 7801 // Check if we can replace this instruction with any of the 7802 // visited instructions. 7803 bool Replaced = false; 7804 for (Instruction *&V : Visited) { 7805 SmallVector<int> NewMask; 7806 if (IsIdenticalOrLessDefined(&In, V, NewMask) && 7807 DT->dominates(V->getParent(), In.getParent())) { 7808 In.replaceAllUsesWith(V); 7809 eraseInstruction(&In); 7810 if (auto *SI = dyn_cast<ShuffleVectorInst>(V)) 7811 if (!NewMask.empty()) 7812 SI->setShuffleMask(NewMask); 7813 Replaced = true; 7814 break; 7815 } 7816 if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) && 7817 GatherShuffleSeq.contains(V) && 7818 IsIdenticalOrLessDefined(V, &In, NewMask) && 7819 DT->dominates(In.getParent(), V->getParent())) { 7820 In.moveAfter(V); 7821 V->replaceAllUsesWith(&In); 7822 eraseInstruction(V); 7823 if (auto *SI = dyn_cast<ShuffleVectorInst>(&In)) 7824 if (!NewMask.empty()) 7825 SI->setShuffleMask(NewMask); 7826 V = &In; 7827 Replaced = true; 7828 break; 7829 } 7830 } 7831 if (!Replaced) { 7832 assert(!is_contained(Visited, &In)); 7833 Visited.push_back(&In); 7834 } 7835 } 7836 } 7837 CSEBlocks.clear(); 7838 GatherShuffleSeq.clear(); 7839 } 7840 7841 BoUpSLP::ScheduleData * 7842 BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) { 7843 ScheduleData *Bundle = nullptr; 7844 ScheduleData *PrevInBundle = nullptr; 7845 for (Value *V : VL) { 7846 if (doesNotNeedToBeScheduled(V)) 7847 continue; 7848 ScheduleData *BundleMember = getScheduleData(V); 7849 assert(BundleMember && 7850 "no ScheduleData for bundle member " 7851 "(maybe not in same basic block)"); 7852 assert(BundleMember->isSchedulingEntity() && 7853 "bundle member already part of other bundle"); 7854 if (PrevInBundle) { 7855 PrevInBundle->NextInBundle = BundleMember; 7856 } else { 7857 Bundle = BundleMember; 7858 } 7859 7860 // Group the instructions to a bundle. 7861 BundleMember->FirstInBundle = Bundle; 7862 PrevInBundle = BundleMember; 7863 } 7864 assert(Bundle && "Failed to find schedule bundle"); 7865 return Bundle; 7866 } 7867 7868 // Groups the instructions to a bundle (which is then a single scheduling entity) 7869 // and schedules instructions until the bundle gets ready. 7870 Optional<BoUpSLP::ScheduleData *> 7871 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 7872 const InstructionsState &S) { 7873 // No need to schedule PHIs, insertelement, extractelement and extractvalue 7874 // instructions. 7875 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue) || 7876 doesNotNeedToSchedule(VL)) 7877 return nullptr; 7878 7879 // Initialize the instruction bundle. 7880 Instruction *OldScheduleEnd = ScheduleEnd; 7881 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 7882 7883 auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule, 7884 ScheduleData *Bundle) { 7885 // The scheduling region got new instructions at the lower end (or it is a 7886 // new region for the first bundle). This makes it necessary to 7887 // recalculate all dependencies. 7888 // It is seldom that this needs to be done a second time after adding the 7889 // initial bundle to the region. 7890 if (ScheduleEnd != OldScheduleEnd) { 7891 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 7892 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 7893 ReSchedule = true; 7894 } 7895 if (Bundle) { 7896 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 7897 << " in block " << BB->getName() << "\n"); 7898 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 7899 } 7900 7901 if (ReSchedule) { 7902 resetSchedule(); 7903 initialFillReadyList(ReadyInsts); 7904 } 7905 7906 // Now try to schedule the new bundle or (if no bundle) just calculate 7907 // dependencies. As soon as the bundle is "ready" it means that there are no 7908 // cyclic dependencies and we can schedule it. Note that's important that we 7909 // don't "schedule" the bundle yet (see cancelScheduling). 7910 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 7911 !ReadyInsts.empty()) { 7912 ScheduleData *Picked = ReadyInsts.pop_back_val(); 7913 assert(Picked->isSchedulingEntity() && Picked->isReady() && 7914 "must be ready to schedule"); 7915 schedule(Picked, ReadyInsts); 7916 } 7917 }; 7918 7919 // Make sure that the scheduling region contains all 7920 // instructions of the bundle. 7921 for (Value *V : VL) { 7922 if (doesNotNeedToBeScheduled(V)) 7923 continue; 7924 if (!extendSchedulingRegion(V, S)) { 7925 // If the scheduling region got new instructions at the lower end (or it 7926 // is a new region for the first bundle). This makes it necessary to 7927 // recalculate all dependencies. 7928 // Otherwise the compiler may crash trying to incorrectly calculate 7929 // dependencies and emit instruction in the wrong order at the actual 7930 // scheduling. 7931 TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr); 7932 return None; 7933 } 7934 } 7935 7936 bool ReSchedule = false; 7937 for (Value *V : VL) { 7938 if (doesNotNeedToBeScheduled(V)) 7939 continue; 7940 ScheduleData *BundleMember = getScheduleData(V); 7941 assert(BundleMember && 7942 "no ScheduleData for bundle member (maybe not in same basic block)"); 7943 7944 // Make sure we don't leave the pieces of the bundle in the ready list when 7945 // whole bundle might not be ready. 7946 ReadyInsts.remove(BundleMember); 7947 7948 if (!BundleMember->IsScheduled) 7949 continue; 7950 // A bundle member was scheduled as single instruction before and now 7951 // needs to be scheduled as part of the bundle. We just get rid of the 7952 // existing schedule. 7953 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 7954 << " was already scheduled\n"); 7955 ReSchedule = true; 7956 } 7957 7958 auto *Bundle = buildBundle(VL); 7959 TryScheduleBundleImpl(ReSchedule, Bundle); 7960 if (!Bundle->isReady()) { 7961 cancelScheduling(VL, S.OpValue); 7962 return None; 7963 } 7964 return Bundle; 7965 } 7966 7967 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 7968 Value *OpValue) { 7969 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue) || 7970 doesNotNeedToSchedule(VL)) 7971 return; 7972 7973 if (doesNotNeedToBeScheduled(OpValue)) 7974 OpValue = *find_if_not(VL, doesNotNeedToBeScheduled); 7975 ScheduleData *Bundle = getScheduleData(OpValue); 7976 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 7977 assert(!Bundle->IsScheduled && 7978 "Can't cancel bundle which is already scheduled"); 7979 assert(Bundle->isSchedulingEntity() && 7980 (Bundle->isPartOfBundle() || needToScheduleSingleInstruction(VL)) && 7981 "tried to unbundle something which is not a bundle"); 7982 7983 // Remove the bundle from the ready list. 7984 if (Bundle->isReady()) 7985 ReadyInsts.remove(Bundle); 7986 7987 // Un-bundle: make single instructions out of the bundle. 7988 ScheduleData *BundleMember = Bundle; 7989 while (BundleMember) { 7990 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 7991 BundleMember->FirstInBundle = BundleMember; 7992 ScheduleData *Next = BundleMember->NextInBundle; 7993 BundleMember->NextInBundle = nullptr; 7994 BundleMember->TE = nullptr; 7995 if (BundleMember->unscheduledDepsInBundle() == 0) { 7996 ReadyInsts.insert(BundleMember); 7997 } 7998 BundleMember = Next; 7999 } 8000 } 8001 8002 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 8003 // Allocate a new ScheduleData for the instruction. 8004 if (ChunkPos >= ChunkSize) { 8005 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 8006 ChunkPos = 0; 8007 } 8008 return &(ScheduleDataChunks.back()[ChunkPos++]); 8009 } 8010 8011 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 8012 const InstructionsState &S) { 8013 if (getScheduleData(V, isOneOf(S, V))) 8014 return true; 8015 Instruction *I = dyn_cast<Instruction>(V); 8016 assert(I && "bundle member must be an instruction"); 8017 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 8018 !doesNotNeedToBeScheduled(I) && 8019 "phi nodes/insertelements/extractelements/extractvalues don't need to " 8020 "be scheduled"); 8021 auto &&CheckScheduleForI = [this, &S](Instruction *I) -> bool { 8022 ScheduleData *ISD = getScheduleData(I); 8023 if (!ISD) 8024 return false; 8025 assert(isInSchedulingRegion(ISD) && 8026 "ScheduleData not in scheduling region"); 8027 ScheduleData *SD = allocateScheduleDataChunks(); 8028 SD->Inst = I; 8029 SD->init(SchedulingRegionID, S.OpValue); 8030 ExtraScheduleDataMap[I][S.OpValue] = SD; 8031 return true; 8032 }; 8033 if (CheckScheduleForI(I)) 8034 return true; 8035 if (!ScheduleStart) { 8036 // It's the first instruction in the new region. 8037 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 8038 ScheduleStart = I; 8039 ScheduleEnd = I->getNextNode(); 8040 if (isOneOf(S, I) != I) 8041 CheckScheduleForI(I); 8042 assert(ScheduleEnd && "tried to vectorize a terminator?"); 8043 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 8044 return true; 8045 } 8046 // Search up and down at the same time, because we don't know if the new 8047 // instruction is above or below the existing scheduling region. 8048 BasicBlock::reverse_iterator UpIter = 8049 ++ScheduleStart->getIterator().getReverse(); 8050 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 8051 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 8052 BasicBlock::iterator LowerEnd = BB->end(); 8053 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 8054 &*DownIter != I) { 8055 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 8056 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 8057 return false; 8058 } 8059 8060 ++UpIter; 8061 ++DownIter; 8062 } 8063 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 8064 assert(I->getParent() == ScheduleStart->getParent() && 8065 "Instruction is in wrong basic block."); 8066 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 8067 ScheduleStart = I; 8068 if (isOneOf(S, I) != I) 8069 CheckScheduleForI(I); 8070 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 8071 << "\n"); 8072 return true; 8073 } 8074 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 8075 "Expected to reach top of the basic block or instruction down the " 8076 "lower end."); 8077 assert(I->getParent() == ScheduleEnd->getParent() && 8078 "Instruction is in wrong basic block."); 8079 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 8080 nullptr); 8081 ScheduleEnd = I->getNextNode(); 8082 if (isOneOf(S, I) != I) 8083 CheckScheduleForI(I); 8084 assert(ScheduleEnd && "tried to vectorize a terminator?"); 8085 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 8086 return true; 8087 } 8088 8089 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 8090 Instruction *ToI, 8091 ScheduleData *PrevLoadStore, 8092 ScheduleData *NextLoadStore) { 8093 ScheduleData *CurrentLoadStore = PrevLoadStore; 8094 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 8095 // No need to allocate data for non-schedulable instructions. 8096 if (doesNotNeedToBeScheduled(I)) 8097 continue; 8098 ScheduleData *SD = ScheduleDataMap.lookup(I); 8099 if (!SD) { 8100 SD = allocateScheduleDataChunks(); 8101 ScheduleDataMap[I] = SD; 8102 SD->Inst = I; 8103 } 8104 assert(!isInSchedulingRegion(SD) && 8105 "new ScheduleData already in scheduling region"); 8106 SD->init(SchedulingRegionID, I); 8107 8108 if (I->mayReadOrWriteMemory() && 8109 (!isa<IntrinsicInst>(I) || 8110 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 8111 cast<IntrinsicInst>(I)->getIntrinsicID() != 8112 Intrinsic::pseudoprobe))) { 8113 // Update the linked list of memory accessing instructions. 8114 if (CurrentLoadStore) { 8115 CurrentLoadStore->NextLoadStore = SD; 8116 } else { 8117 FirstLoadStoreInRegion = SD; 8118 } 8119 CurrentLoadStore = SD; 8120 } 8121 8122 if (match(I, m_Intrinsic<Intrinsic::stacksave>()) || 8123 match(I, m_Intrinsic<Intrinsic::stackrestore>())) 8124 RegionHasStackSave = true; 8125 } 8126 if (NextLoadStore) { 8127 if (CurrentLoadStore) 8128 CurrentLoadStore->NextLoadStore = NextLoadStore; 8129 } else { 8130 LastLoadStoreInRegion = CurrentLoadStore; 8131 } 8132 } 8133 8134 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 8135 bool InsertInReadyList, 8136 BoUpSLP *SLP) { 8137 assert(SD->isSchedulingEntity()); 8138 8139 SmallVector<ScheduleData *, 10> WorkList; 8140 WorkList.push_back(SD); 8141 8142 while (!WorkList.empty()) { 8143 ScheduleData *SD = WorkList.pop_back_val(); 8144 for (ScheduleData *BundleMember = SD; BundleMember; 8145 BundleMember = BundleMember->NextInBundle) { 8146 assert(isInSchedulingRegion(BundleMember)); 8147 if (BundleMember->hasValidDependencies()) 8148 continue; 8149 8150 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 8151 << "\n"); 8152 BundleMember->Dependencies = 0; 8153 BundleMember->resetUnscheduledDeps(); 8154 8155 // Handle def-use chain dependencies. 8156 if (BundleMember->OpValue != BundleMember->Inst) { 8157 if (ScheduleData *UseSD = getScheduleData(BundleMember->Inst)) { 8158 BundleMember->Dependencies++; 8159 ScheduleData *DestBundle = UseSD->FirstInBundle; 8160 if (!DestBundle->IsScheduled) 8161 BundleMember->incrementUnscheduledDeps(1); 8162 if (!DestBundle->hasValidDependencies()) 8163 WorkList.push_back(DestBundle); 8164 } 8165 } else { 8166 for (User *U : BundleMember->Inst->users()) { 8167 if (ScheduleData *UseSD = getScheduleData(cast<Instruction>(U))) { 8168 BundleMember->Dependencies++; 8169 ScheduleData *DestBundle = UseSD->FirstInBundle; 8170 if (!DestBundle->IsScheduled) 8171 BundleMember->incrementUnscheduledDeps(1); 8172 if (!DestBundle->hasValidDependencies()) 8173 WorkList.push_back(DestBundle); 8174 } 8175 } 8176 } 8177 8178 auto makeControlDependent = [&](Instruction *I) { 8179 auto *DepDest = getScheduleData(I); 8180 assert(DepDest && "must be in schedule window"); 8181 DepDest->ControlDependencies.push_back(BundleMember); 8182 BundleMember->Dependencies++; 8183 ScheduleData *DestBundle = DepDest->FirstInBundle; 8184 if (!DestBundle->IsScheduled) 8185 BundleMember->incrementUnscheduledDeps(1); 8186 if (!DestBundle->hasValidDependencies()) 8187 WorkList.push_back(DestBundle); 8188 }; 8189 8190 // Any instruction which isn't safe to speculate at the begining of the 8191 // block is control dependend on any early exit or non-willreturn call 8192 // which proceeds it. 8193 if (!isGuaranteedToTransferExecutionToSuccessor(BundleMember->Inst)) { 8194 for (Instruction *I = BundleMember->Inst->getNextNode(); 8195 I != ScheduleEnd; I = I->getNextNode()) { 8196 if (isSafeToSpeculativelyExecute(I, &*BB->begin())) 8197 continue; 8198 8199 // Add the dependency 8200 makeControlDependent(I); 8201 8202 if (!isGuaranteedToTransferExecutionToSuccessor(I)) 8203 // Everything past here must be control dependent on I. 8204 break; 8205 } 8206 } 8207 8208 if (RegionHasStackSave) { 8209 // If we have an inalloc alloca instruction, it needs to be scheduled 8210 // after any preceeding stacksave. We also need to prevent any alloca 8211 // from reordering above a preceeding stackrestore. 8212 if (match(BundleMember->Inst, m_Intrinsic<Intrinsic::stacksave>()) || 8213 match(BundleMember->Inst, m_Intrinsic<Intrinsic::stackrestore>())) { 8214 for (Instruction *I = BundleMember->Inst->getNextNode(); 8215 I != ScheduleEnd; I = I->getNextNode()) { 8216 if (match(I, m_Intrinsic<Intrinsic::stacksave>()) || 8217 match(I, m_Intrinsic<Intrinsic::stackrestore>())) 8218 // Any allocas past here must be control dependent on I, and I 8219 // must be memory dependend on BundleMember->Inst. 8220 break; 8221 8222 if (!isa<AllocaInst>(I)) 8223 continue; 8224 8225 // Add the dependency 8226 makeControlDependent(I); 8227 } 8228 } 8229 8230 // In addition to the cases handle just above, we need to prevent 8231 // allocas from moving below a stacksave. The stackrestore case 8232 // is currently thought to be conservatism. 8233 if (isa<AllocaInst>(BundleMember->Inst)) { 8234 for (Instruction *I = BundleMember->Inst->getNextNode(); 8235 I != ScheduleEnd; I = I->getNextNode()) { 8236 if (!match(I, m_Intrinsic<Intrinsic::stacksave>()) && 8237 !match(I, m_Intrinsic<Intrinsic::stackrestore>())) 8238 continue; 8239 8240 // Add the dependency 8241 makeControlDependent(I); 8242 break; 8243 } 8244 } 8245 } 8246 8247 // Handle the memory dependencies (if any). 8248 ScheduleData *DepDest = BundleMember->NextLoadStore; 8249 if (!DepDest) 8250 continue; 8251 Instruction *SrcInst = BundleMember->Inst; 8252 assert(SrcInst->mayReadOrWriteMemory() && 8253 "NextLoadStore list for non memory effecting bundle?"); 8254 MemoryLocation SrcLoc = getLocation(SrcInst); 8255 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 8256 unsigned numAliased = 0; 8257 unsigned DistToSrc = 1; 8258 8259 for ( ; DepDest; DepDest = DepDest->NextLoadStore) { 8260 assert(isInSchedulingRegion(DepDest)); 8261 8262 // We have two limits to reduce the complexity: 8263 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 8264 // SLP->isAliased (which is the expensive part in this loop). 8265 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 8266 // the whole loop (even if the loop is fast, it's quadratic). 8267 // It's important for the loop break condition (see below) to 8268 // check this limit even between two read-only instructions. 8269 if (DistToSrc >= MaxMemDepDistance || 8270 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 8271 (numAliased >= AliasedCheckLimit || 8272 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 8273 8274 // We increment the counter only if the locations are aliased 8275 // (instead of counting all alias checks). This gives a better 8276 // balance between reduced runtime and accurate dependencies. 8277 numAliased++; 8278 8279 DepDest->MemoryDependencies.push_back(BundleMember); 8280 BundleMember->Dependencies++; 8281 ScheduleData *DestBundle = DepDest->FirstInBundle; 8282 if (!DestBundle->IsScheduled) { 8283 BundleMember->incrementUnscheduledDeps(1); 8284 } 8285 if (!DestBundle->hasValidDependencies()) { 8286 WorkList.push_back(DestBundle); 8287 } 8288 } 8289 8290 // Example, explaining the loop break condition: Let's assume our 8291 // starting instruction is i0 and MaxMemDepDistance = 3. 8292 // 8293 // +--------v--v--v 8294 // i0,i1,i2,i3,i4,i5,i6,i7,i8 8295 // +--------^--^--^ 8296 // 8297 // MaxMemDepDistance let us stop alias-checking at i3 and we add 8298 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 8299 // Previously we already added dependencies from i3 to i6,i7,i8 8300 // (because of MaxMemDepDistance). As we added a dependency from 8301 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 8302 // and we can abort this loop at i6. 8303 if (DistToSrc >= 2 * MaxMemDepDistance) 8304 break; 8305 DistToSrc++; 8306 } 8307 } 8308 if (InsertInReadyList && SD->isReady()) { 8309 ReadyInsts.insert(SD); 8310 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 8311 << "\n"); 8312 } 8313 } 8314 } 8315 8316 void BoUpSLP::BlockScheduling::resetSchedule() { 8317 assert(ScheduleStart && 8318 "tried to reset schedule on block which has not been scheduled"); 8319 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 8320 doForAllOpcodes(I, [&](ScheduleData *SD) { 8321 assert(isInSchedulingRegion(SD) && 8322 "ScheduleData not in scheduling region"); 8323 SD->IsScheduled = false; 8324 SD->resetUnscheduledDeps(); 8325 }); 8326 } 8327 ReadyInsts.clear(); 8328 } 8329 8330 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 8331 if (!BS->ScheduleStart) 8332 return; 8333 8334 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 8335 8336 // A key point - if we got here, pre-scheduling was able to find a valid 8337 // scheduling of the sub-graph of the scheduling window which consists 8338 // of all vector bundles and their transitive users. As such, we do not 8339 // need to reschedule anything *outside of* that subgraph. 8340 8341 BS->resetSchedule(); 8342 8343 // For the real scheduling we use a more sophisticated ready-list: it is 8344 // sorted by the original instruction location. This lets the final schedule 8345 // be as close as possible to the original instruction order. 8346 // WARNING: If changing this order causes a correctness issue, that means 8347 // there is some missing dependence edge in the schedule data graph. 8348 struct ScheduleDataCompare { 8349 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 8350 return SD2->SchedulingPriority < SD1->SchedulingPriority; 8351 } 8352 }; 8353 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 8354 8355 // Ensure that all dependency data is updated (for nodes in the sub-graph) 8356 // and fill the ready-list with initial instructions. 8357 int Idx = 0; 8358 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 8359 I = I->getNextNode()) { 8360 BS->doForAllOpcodes(I, [this, &Idx, BS](ScheduleData *SD) { 8361 TreeEntry *SDTE = getTreeEntry(SD->Inst); 8362 (void)SDTE; 8363 assert((isVectorLikeInstWithConstOps(SD->Inst) || 8364 SD->isPartOfBundle() == 8365 (SDTE && !doesNotNeedToSchedule(SDTE->Scalars))) && 8366 "scheduler and vectorizer bundle mismatch"); 8367 SD->FirstInBundle->SchedulingPriority = Idx++; 8368 8369 if (SD->isSchedulingEntity() && SD->isPartOfBundle()) 8370 BS->calculateDependencies(SD, false, this); 8371 }); 8372 } 8373 BS->initialFillReadyList(ReadyInsts); 8374 8375 Instruction *LastScheduledInst = BS->ScheduleEnd; 8376 8377 // Do the "real" scheduling. 8378 while (!ReadyInsts.empty()) { 8379 ScheduleData *picked = *ReadyInsts.begin(); 8380 ReadyInsts.erase(ReadyInsts.begin()); 8381 8382 // Move the scheduled instruction(s) to their dedicated places, if not 8383 // there yet. 8384 for (ScheduleData *BundleMember = picked; BundleMember; 8385 BundleMember = BundleMember->NextInBundle) { 8386 Instruction *pickedInst = BundleMember->Inst; 8387 if (pickedInst->getNextNode() != LastScheduledInst) 8388 pickedInst->moveBefore(LastScheduledInst); 8389 LastScheduledInst = pickedInst; 8390 } 8391 8392 BS->schedule(picked, ReadyInsts); 8393 } 8394 8395 // Check that we didn't break any of our invariants. 8396 #ifdef EXPENSIVE_CHECKS 8397 BS->verify(); 8398 #endif 8399 8400 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS) 8401 // Check that all schedulable entities got scheduled 8402 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; I = I->getNextNode()) { 8403 BS->doForAllOpcodes(I, [&](ScheduleData *SD) { 8404 if (SD->isSchedulingEntity() && SD->hasValidDependencies()) { 8405 assert(SD->IsScheduled && "must be scheduled at this point"); 8406 } 8407 }); 8408 } 8409 #endif 8410 8411 // Avoid duplicate scheduling of the block. 8412 BS->ScheduleStart = nullptr; 8413 } 8414 8415 unsigned BoUpSLP::getVectorElementSize(Value *V) { 8416 // If V is a store, just return the width of the stored value (or value 8417 // truncated just before storing) without traversing the expression tree. 8418 // This is the common case. 8419 if (auto *Store = dyn_cast<StoreInst>(V)) { 8420 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 8421 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 8422 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 8423 } 8424 8425 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 8426 return getVectorElementSize(IEI->getOperand(1)); 8427 8428 auto E = InstrElementSize.find(V); 8429 if (E != InstrElementSize.end()) 8430 return E->second; 8431 8432 // If V is not a store, we can traverse the expression tree to find loads 8433 // that feed it. The type of the loaded value may indicate a more suitable 8434 // width than V's type. We want to base the vector element size on the width 8435 // of memory operations where possible. 8436 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 8437 SmallPtrSet<Instruction *, 16> Visited; 8438 if (auto *I = dyn_cast<Instruction>(V)) { 8439 Worklist.emplace_back(I, I->getParent()); 8440 Visited.insert(I); 8441 } 8442 8443 // Traverse the expression tree in bottom-up order looking for loads. If we 8444 // encounter an instruction we don't yet handle, we give up. 8445 auto Width = 0u; 8446 while (!Worklist.empty()) { 8447 Instruction *I; 8448 BasicBlock *Parent; 8449 std::tie(I, Parent) = Worklist.pop_back_val(); 8450 8451 // We should only be looking at scalar instructions here. If the current 8452 // instruction has a vector type, skip. 8453 auto *Ty = I->getType(); 8454 if (isa<VectorType>(Ty)) 8455 continue; 8456 8457 // If the current instruction is a load, update MaxWidth to reflect the 8458 // width of the loaded value. 8459 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 8460 isa<ExtractValueInst>(I)) 8461 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 8462 8463 // Otherwise, we need to visit the operands of the instruction. We only 8464 // handle the interesting cases from buildTree here. If an operand is an 8465 // instruction we haven't yet visited and from the same basic block as the 8466 // user or the use is a PHI node, we add it to the worklist. 8467 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 8468 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 8469 isa<UnaryOperator>(I)) { 8470 for (Use &U : I->operands()) 8471 if (auto *J = dyn_cast<Instruction>(U.get())) 8472 if (Visited.insert(J).second && 8473 (isa<PHINode>(I) || J->getParent() == Parent)) 8474 Worklist.emplace_back(J, J->getParent()); 8475 } else { 8476 break; 8477 } 8478 } 8479 8480 // If we didn't encounter a memory access in the expression tree, or if we 8481 // gave up for some reason, just return the width of V. Otherwise, return the 8482 // maximum width we found. 8483 if (!Width) { 8484 if (auto *CI = dyn_cast<CmpInst>(V)) 8485 V = CI->getOperand(0); 8486 Width = DL->getTypeSizeInBits(V->getType()); 8487 } 8488 8489 for (Instruction *I : Visited) 8490 InstrElementSize[I] = Width; 8491 8492 return Width; 8493 } 8494 8495 // Determine if a value V in a vectorizable expression Expr can be demoted to a 8496 // smaller type with a truncation. We collect the values that will be demoted 8497 // in ToDemote and additional roots that require investigating in Roots. 8498 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 8499 SmallVectorImpl<Value *> &ToDemote, 8500 SmallVectorImpl<Value *> &Roots) { 8501 // We can always demote constants. 8502 if (isa<Constant>(V)) { 8503 ToDemote.push_back(V); 8504 return true; 8505 } 8506 8507 // If the value is not an instruction in the expression with only one use, it 8508 // cannot be demoted. 8509 auto *I = dyn_cast<Instruction>(V); 8510 if (!I || !I->hasOneUse() || !Expr.count(I)) 8511 return false; 8512 8513 switch (I->getOpcode()) { 8514 8515 // We can always demote truncations and extensions. Since truncations can 8516 // seed additional demotion, we save the truncated value. 8517 case Instruction::Trunc: 8518 Roots.push_back(I->getOperand(0)); 8519 break; 8520 case Instruction::ZExt: 8521 case Instruction::SExt: 8522 if (isa<ExtractElementInst>(I->getOperand(0)) || 8523 isa<InsertElementInst>(I->getOperand(0))) 8524 return false; 8525 break; 8526 8527 // We can demote certain binary operations if we can demote both of their 8528 // operands. 8529 case Instruction::Add: 8530 case Instruction::Sub: 8531 case Instruction::Mul: 8532 case Instruction::And: 8533 case Instruction::Or: 8534 case Instruction::Xor: 8535 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 8536 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 8537 return false; 8538 break; 8539 8540 // We can demote selects if we can demote their true and false values. 8541 case Instruction::Select: { 8542 SelectInst *SI = cast<SelectInst>(I); 8543 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 8544 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 8545 return false; 8546 break; 8547 } 8548 8549 // We can demote phis if we can demote all their incoming operands. Note that 8550 // we don't need to worry about cycles since we ensure single use above. 8551 case Instruction::PHI: { 8552 PHINode *PN = cast<PHINode>(I); 8553 for (Value *IncValue : PN->incoming_values()) 8554 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 8555 return false; 8556 break; 8557 } 8558 8559 // Otherwise, conservatively give up. 8560 default: 8561 return false; 8562 } 8563 8564 // Record the value that we can demote. 8565 ToDemote.push_back(V); 8566 return true; 8567 } 8568 8569 void BoUpSLP::computeMinimumValueSizes() { 8570 // If there are no external uses, the expression tree must be rooted by a 8571 // store. We can't demote in-memory values, so there is nothing to do here. 8572 if (ExternalUses.empty()) 8573 return; 8574 8575 // We only attempt to truncate integer expressions. 8576 auto &TreeRoot = VectorizableTree[0]->Scalars; 8577 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 8578 if (!TreeRootIT) 8579 return; 8580 8581 // If the expression is not rooted by a store, these roots should have 8582 // external uses. We will rely on InstCombine to rewrite the expression in 8583 // the narrower type. However, InstCombine only rewrites single-use values. 8584 // This means that if a tree entry other than a root is used externally, it 8585 // must have multiple uses and InstCombine will not rewrite it. The code 8586 // below ensures that only the roots are used externally. 8587 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 8588 for (auto &EU : ExternalUses) 8589 if (!Expr.erase(EU.Scalar)) 8590 return; 8591 if (!Expr.empty()) 8592 return; 8593 8594 // Collect the scalar values of the vectorizable expression. We will use this 8595 // context to determine which values can be demoted. If we see a truncation, 8596 // we mark it as seeding another demotion. 8597 for (auto &EntryPtr : VectorizableTree) 8598 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 8599 8600 // Ensure the roots of the vectorizable tree don't form a cycle. They must 8601 // have a single external user that is not in the vectorizable tree. 8602 for (auto *Root : TreeRoot) 8603 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 8604 return; 8605 8606 // Conservatively determine if we can actually truncate the roots of the 8607 // expression. Collect the values that can be demoted in ToDemote and 8608 // additional roots that require investigating in Roots. 8609 SmallVector<Value *, 32> ToDemote; 8610 SmallVector<Value *, 4> Roots; 8611 for (auto *Root : TreeRoot) 8612 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 8613 return; 8614 8615 // The maximum bit width required to represent all the values that can be 8616 // demoted without loss of precision. It would be safe to truncate the roots 8617 // of the expression to this width. 8618 auto MaxBitWidth = 8u; 8619 8620 // We first check if all the bits of the roots are demanded. If they're not, 8621 // we can truncate the roots to this narrower type. 8622 for (auto *Root : TreeRoot) { 8623 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 8624 MaxBitWidth = std::max<unsigned>( 8625 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 8626 } 8627 8628 // True if the roots can be zero-extended back to their original type, rather 8629 // than sign-extended. We know that if the leading bits are not demanded, we 8630 // can safely zero-extend. So we initialize IsKnownPositive to True. 8631 bool IsKnownPositive = true; 8632 8633 // If all the bits of the roots are demanded, we can try a little harder to 8634 // compute a narrower type. This can happen, for example, if the roots are 8635 // getelementptr indices. InstCombine promotes these indices to the pointer 8636 // width. Thus, all their bits are technically demanded even though the 8637 // address computation might be vectorized in a smaller type. 8638 // 8639 // We start by looking at each entry that can be demoted. We compute the 8640 // maximum bit width required to store the scalar by using ValueTracking to 8641 // compute the number of high-order bits we can truncate. 8642 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 8643 llvm::all_of(TreeRoot, [](Value *R) { 8644 assert(R->hasOneUse() && "Root should have only one use!"); 8645 return isa<GetElementPtrInst>(R->user_back()); 8646 })) { 8647 MaxBitWidth = 8u; 8648 8649 // Determine if the sign bit of all the roots is known to be zero. If not, 8650 // IsKnownPositive is set to False. 8651 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 8652 KnownBits Known = computeKnownBits(R, *DL); 8653 return Known.isNonNegative(); 8654 }); 8655 8656 // Determine the maximum number of bits required to store the scalar 8657 // values. 8658 for (auto *Scalar : ToDemote) { 8659 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 8660 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 8661 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 8662 } 8663 8664 // If we can't prove that the sign bit is zero, we must add one to the 8665 // maximum bit width to account for the unknown sign bit. This preserves 8666 // the existing sign bit so we can safely sign-extend the root back to the 8667 // original type. Otherwise, if we know the sign bit is zero, we will 8668 // zero-extend the root instead. 8669 // 8670 // FIXME: This is somewhat suboptimal, as there will be cases where adding 8671 // one to the maximum bit width will yield a larger-than-necessary 8672 // type. In general, we need to add an extra bit only if we can't 8673 // prove that the upper bit of the original type is equal to the 8674 // upper bit of the proposed smaller type. If these two bits are the 8675 // same (either zero or one) we know that sign-extending from the 8676 // smaller type will result in the same value. Here, since we can't 8677 // yet prove this, we are just making the proposed smaller type 8678 // larger to ensure correctness. 8679 if (!IsKnownPositive) 8680 ++MaxBitWidth; 8681 } 8682 8683 // Round MaxBitWidth up to the next power-of-two. 8684 if (!isPowerOf2_64(MaxBitWidth)) 8685 MaxBitWidth = NextPowerOf2(MaxBitWidth); 8686 8687 // If the maximum bit width we compute is less than the with of the roots' 8688 // type, we can proceed with the narrowing. Otherwise, do nothing. 8689 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 8690 return; 8691 8692 // If we can truncate the root, we must collect additional values that might 8693 // be demoted as a result. That is, those seeded by truncations we will 8694 // modify. 8695 while (!Roots.empty()) 8696 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 8697 8698 // Finally, map the values we can demote to the maximum bit with we computed. 8699 for (auto *Scalar : ToDemote) 8700 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 8701 } 8702 8703 namespace { 8704 8705 /// The SLPVectorizer Pass. 8706 struct SLPVectorizer : public FunctionPass { 8707 SLPVectorizerPass Impl; 8708 8709 /// Pass identification, replacement for typeid 8710 static char ID; 8711 8712 explicit SLPVectorizer() : FunctionPass(ID) { 8713 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 8714 } 8715 8716 bool doInitialization(Module &M) override { return false; } 8717 8718 bool runOnFunction(Function &F) override { 8719 if (skipFunction(F)) 8720 return false; 8721 8722 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 8723 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 8724 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 8725 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 8726 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 8727 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 8728 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 8729 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 8730 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 8731 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 8732 8733 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8734 } 8735 8736 void getAnalysisUsage(AnalysisUsage &AU) const override { 8737 FunctionPass::getAnalysisUsage(AU); 8738 AU.addRequired<AssumptionCacheTracker>(); 8739 AU.addRequired<ScalarEvolutionWrapperPass>(); 8740 AU.addRequired<AAResultsWrapperPass>(); 8741 AU.addRequired<TargetTransformInfoWrapperPass>(); 8742 AU.addRequired<LoopInfoWrapperPass>(); 8743 AU.addRequired<DominatorTreeWrapperPass>(); 8744 AU.addRequired<DemandedBitsWrapperPass>(); 8745 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 8746 AU.addRequired<InjectTLIMappingsLegacy>(); 8747 AU.addPreserved<LoopInfoWrapperPass>(); 8748 AU.addPreserved<DominatorTreeWrapperPass>(); 8749 AU.addPreserved<AAResultsWrapperPass>(); 8750 AU.addPreserved<GlobalsAAWrapperPass>(); 8751 AU.setPreservesCFG(); 8752 } 8753 }; 8754 8755 } // end anonymous namespace 8756 8757 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 8758 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 8759 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 8760 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 8761 auto *AA = &AM.getResult<AAManager>(F); 8762 auto *LI = &AM.getResult<LoopAnalysis>(F); 8763 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 8764 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 8765 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 8766 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8767 8768 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8769 if (!Changed) 8770 return PreservedAnalyses::all(); 8771 8772 PreservedAnalyses PA; 8773 PA.preserveSet<CFGAnalyses>(); 8774 return PA; 8775 } 8776 8777 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 8778 TargetTransformInfo *TTI_, 8779 TargetLibraryInfo *TLI_, AAResults *AA_, 8780 LoopInfo *LI_, DominatorTree *DT_, 8781 AssumptionCache *AC_, DemandedBits *DB_, 8782 OptimizationRemarkEmitter *ORE_) { 8783 if (!RunSLPVectorization) 8784 return false; 8785 SE = SE_; 8786 TTI = TTI_; 8787 TLI = TLI_; 8788 AA = AA_; 8789 LI = LI_; 8790 DT = DT_; 8791 AC = AC_; 8792 DB = DB_; 8793 DL = &F.getParent()->getDataLayout(); 8794 8795 Stores.clear(); 8796 GEPs.clear(); 8797 bool Changed = false; 8798 8799 // If the target claims to have no vector registers don't attempt 8800 // vectorization. 8801 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) { 8802 LLVM_DEBUG( 8803 dbgs() << "SLP: Didn't find any vector registers for target, abort.\n"); 8804 return false; 8805 } 8806 8807 // Don't vectorize when the attribute NoImplicitFloat is used. 8808 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 8809 return false; 8810 8811 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 8812 8813 // Use the bottom up slp vectorizer to construct chains that start with 8814 // store instructions. 8815 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 8816 8817 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 8818 // delete instructions. 8819 8820 // Update DFS numbers now so that we can use them for ordering. 8821 DT->updateDFSNumbers(); 8822 8823 // Scan the blocks in the function in post order. 8824 for (auto BB : post_order(&F.getEntryBlock())) { 8825 collectSeedInstructions(BB); 8826 8827 // Vectorize trees that end at stores. 8828 if (!Stores.empty()) { 8829 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 8830 << " underlying objects.\n"); 8831 Changed |= vectorizeStoreChains(R); 8832 } 8833 8834 // Vectorize trees that end at reductions. 8835 Changed |= vectorizeChainsInBlock(BB, R); 8836 8837 // Vectorize the index computations of getelementptr instructions. This 8838 // is primarily intended to catch gather-like idioms ending at 8839 // non-consecutive loads. 8840 if (!GEPs.empty()) { 8841 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 8842 << " underlying objects.\n"); 8843 Changed |= vectorizeGEPIndices(BB, R); 8844 } 8845 } 8846 8847 if (Changed) { 8848 R.optimizeGatherSequence(); 8849 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 8850 } 8851 return Changed; 8852 } 8853 8854 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 8855 unsigned Idx) { 8856 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 8857 << "\n"); 8858 const unsigned Sz = R.getVectorElementSize(Chain[0]); 8859 const unsigned MinVF = R.getMinVecRegSize() / Sz; 8860 unsigned VF = Chain.size(); 8861 8862 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 8863 return false; 8864 8865 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 8866 << "\n"); 8867 8868 R.buildTree(Chain); 8869 if (R.isTreeTinyAndNotFullyVectorizable()) 8870 return false; 8871 if (R.isLoadCombineCandidate()) 8872 return false; 8873 R.reorderTopToBottom(); 8874 R.reorderBottomToTop(); 8875 R.buildExternalUses(); 8876 8877 R.computeMinimumValueSizes(); 8878 8879 InstructionCost Cost = R.getTreeCost(); 8880 8881 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 8882 if (Cost < -SLPCostThreshold) { 8883 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 8884 8885 using namespace ore; 8886 8887 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 8888 cast<StoreInst>(Chain[0])) 8889 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 8890 << " and with tree size " 8891 << NV("TreeSize", R.getTreeSize())); 8892 8893 R.vectorizeTree(); 8894 return true; 8895 } 8896 8897 return false; 8898 } 8899 8900 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 8901 BoUpSLP &R) { 8902 // We may run into multiple chains that merge into a single chain. We mark the 8903 // stores that we vectorized so that we don't visit the same store twice. 8904 BoUpSLP::ValueSet VectorizedStores; 8905 bool Changed = false; 8906 8907 int E = Stores.size(); 8908 SmallBitVector Tails(E, false); 8909 int MaxIter = MaxStoreLookup.getValue(); 8910 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 8911 E, std::make_pair(E, INT_MAX)); 8912 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 8913 int IterCnt; 8914 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 8915 &CheckedPairs, 8916 &ConsecutiveChain](int K, int Idx) { 8917 if (IterCnt >= MaxIter) 8918 return true; 8919 if (CheckedPairs[Idx].test(K)) 8920 return ConsecutiveChain[K].second == 1 && 8921 ConsecutiveChain[K].first == Idx; 8922 ++IterCnt; 8923 CheckedPairs[Idx].set(K); 8924 CheckedPairs[K].set(Idx); 8925 Optional<int> Diff = getPointersDiff( 8926 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 8927 Stores[Idx]->getValueOperand()->getType(), 8928 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 8929 if (!Diff || *Diff == 0) 8930 return false; 8931 int Val = *Diff; 8932 if (Val < 0) { 8933 if (ConsecutiveChain[Idx].second > -Val) { 8934 Tails.set(K); 8935 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 8936 } 8937 return false; 8938 } 8939 if (ConsecutiveChain[K].second <= Val) 8940 return false; 8941 8942 Tails.set(Idx); 8943 ConsecutiveChain[K] = std::make_pair(Idx, Val); 8944 return Val == 1; 8945 }; 8946 // Do a quadratic search on all of the given stores in reverse order and find 8947 // all of the pairs of stores that follow each other. 8948 for (int Idx = E - 1; Idx >= 0; --Idx) { 8949 // If a store has multiple consecutive store candidates, search according 8950 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 8951 // This is because usually pairing with immediate succeeding or preceding 8952 // candidate create the best chance to find slp vectorization opportunity. 8953 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 8954 IterCnt = 0; 8955 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 8956 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 8957 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 8958 break; 8959 } 8960 8961 // Tracks if we tried to vectorize stores starting from the given tail 8962 // already. 8963 SmallBitVector TriedTails(E, false); 8964 // For stores that start but don't end a link in the chain: 8965 for (int Cnt = E; Cnt > 0; --Cnt) { 8966 int I = Cnt - 1; 8967 if (ConsecutiveChain[I].first == E || Tails.test(I)) 8968 continue; 8969 // We found a store instr that starts a chain. Now follow the chain and try 8970 // to vectorize it. 8971 BoUpSLP::ValueList Operands; 8972 // Collect the chain into a list. 8973 while (I != E && !VectorizedStores.count(Stores[I])) { 8974 Operands.push_back(Stores[I]); 8975 Tails.set(I); 8976 if (ConsecutiveChain[I].second != 1) { 8977 // Mark the new end in the chain and go back, if required. It might be 8978 // required if the original stores come in reversed order, for example. 8979 if (ConsecutiveChain[I].first != E && 8980 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 8981 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 8982 TriedTails.set(I); 8983 Tails.reset(ConsecutiveChain[I].first); 8984 if (Cnt < ConsecutiveChain[I].first + 2) 8985 Cnt = ConsecutiveChain[I].first + 2; 8986 } 8987 break; 8988 } 8989 // Move to the next value in the chain. 8990 I = ConsecutiveChain[I].first; 8991 } 8992 assert(!Operands.empty() && "Expected non-empty list of stores."); 8993 8994 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 8995 unsigned EltSize = R.getVectorElementSize(Operands[0]); 8996 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 8997 8998 unsigned MinVF = R.getMinVF(EltSize); 8999 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 9000 MaxElts); 9001 9002 // FIXME: Is division-by-2 the correct step? Should we assert that the 9003 // register size is a power-of-2? 9004 unsigned StartIdx = 0; 9005 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 9006 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 9007 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 9008 if (!VectorizedStores.count(Slice.front()) && 9009 !VectorizedStores.count(Slice.back()) && 9010 vectorizeStoreChain(Slice, R, Cnt)) { 9011 // Mark the vectorized stores so that we don't vectorize them again. 9012 VectorizedStores.insert(Slice.begin(), Slice.end()); 9013 Changed = true; 9014 // If we vectorized initial block, no need to try to vectorize it 9015 // again. 9016 if (Cnt == StartIdx) 9017 StartIdx += Size; 9018 Cnt += Size; 9019 continue; 9020 } 9021 ++Cnt; 9022 } 9023 // Check if the whole array was vectorized already - exit. 9024 if (StartIdx >= Operands.size()) 9025 break; 9026 } 9027 } 9028 9029 return Changed; 9030 } 9031 9032 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 9033 // Initialize the collections. We will make a single pass over the block. 9034 Stores.clear(); 9035 GEPs.clear(); 9036 9037 // Visit the store and getelementptr instructions in BB and organize them in 9038 // Stores and GEPs according to the underlying objects of their pointer 9039 // operands. 9040 for (Instruction &I : *BB) { 9041 // Ignore store instructions that are volatile or have a pointer operand 9042 // that doesn't point to a scalar type. 9043 if (auto *SI = dyn_cast<StoreInst>(&I)) { 9044 if (!SI->isSimple()) 9045 continue; 9046 if (!isValidElementType(SI->getValueOperand()->getType())) 9047 continue; 9048 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 9049 } 9050 9051 // Ignore getelementptr instructions that have more than one index, a 9052 // constant index, or a pointer operand that doesn't point to a scalar 9053 // type. 9054 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 9055 auto Idx = GEP->idx_begin()->get(); 9056 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 9057 continue; 9058 if (!isValidElementType(Idx->getType())) 9059 continue; 9060 if (GEP->getType()->isVectorTy()) 9061 continue; 9062 GEPs[GEP->getPointerOperand()].push_back(GEP); 9063 } 9064 } 9065 } 9066 9067 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 9068 if (!A || !B) 9069 return false; 9070 if (isa<InsertElementInst>(A) || isa<InsertElementInst>(B)) 9071 return false; 9072 Value *VL[] = {A, B}; 9073 return tryToVectorizeList(VL, R); 9074 } 9075 9076 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 9077 bool LimitForRegisterSize) { 9078 if (VL.size() < 2) 9079 return false; 9080 9081 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 9082 << VL.size() << ".\n"); 9083 9084 // Check that all of the parts are instructions of the same type, 9085 // we permit an alternate opcode via InstructionsState. 9086 InstructionsState S = getSameOpcode(VL); 9087 if (!S.getOpcode()) 9088 return false; 9089 9090 Instruction *I0 = cast<Instruction>(S.OpValue); 9091 // Make sure invalid types (including vector type) are rejected before 9092 // determining vectorization factor for scalar instructions. 9093 for (Value *V : VL) { 9094 Type *Ty = V->getType(); 9095 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 9096 // NOTE: the following will give user internal llvm type name, which may 9097 // not be useful. 9098 R.getORE()->emit([&]() { 9099 std::string type_str; 9100 llvm::raw_string_ostream rso(type_str); 9101 Ty->print(rso); 9102 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 9103 << "Cannot SLP vectorize list: type " 9104 << rso.str() + " is unsupported by vectorizer"; 9105 }); 9106 return false; 9107 } 9108 } 9109 9110 unsigned Sz = R.getVectorElementSize(I0); 9111 unsigned MinVF = R.getMinVF(Sz); 9112 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 9113 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 9114 if (MaxVF < 2) { 9115 R.getORE()->emit([&]() { 9116 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 9117 << "Cannot SLP vectorize list: vectorization factor " 9118 << "less than 2 is not supported"; 9119 }); 9120 return false; 9121 } 9122 9123 bool Changed = false; 9124 bool CandidateFound = false; 9125 InstructionCost MinCost = SLPCostThreshold.getValue(); 9126 Type *ScalarTy = VL[0]->getType(); 9127 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 9128 ScalarTy = IE->getOperand(1)->getType(); 9129 9130 unsigned NextInst = 0, MaxInst = VL.size(); 9131 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 9132 // No actual vectorization should happen, if number of parts is the same as 9133 // provided vectorization factor (i.e. the scalar type is used for vector 9134 // code during codegen). 9135 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 9136 if (TTI->getNumberOfParts(VecTy) == VF) 9137 continue; 9138 for (unsigned I = NextInst; I < MaxInst; ++I) { 9139 unsigned OpsWidth = 0; 9140 9141 if (I + VF > MaxInst) 9142 OpsWidth = MaxInst - I; 9143 else 9144 OpsWidth = VF; 9145 9146 if (!isPowerOf2_32(OpsWidth)) 9147 continue; 9148 9149 if ((LimitForRegisterSize && OpsWidth < MaxVF) || 9150 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 9151 break; 9152 9153 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 9154 // Check that a previous iteration of this loop did not delete the Value. 9155 if (llvm::any_of(Ops, [&R](Value *V) { 9156 auto *I = dyn_cast<Instruction>(V); 9157 return I && R.isDeleted(I); 9158 })) 9159 continue; 9160 9161 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 9162 << "\n"); 9163 9164 R.buildTree(Ops); 9165 if (R.isTreeTinyAndNotFullyVectorizable()) 9166 continue; 9167 R.reorderTopToBottom(); 9168 R.reorderBottomToTop(!isa<InsertElementInst>(Ops.front())); 9169 R.buildExternalUses(); 9170 9171 R.computeMinimumValueSizes(); 9172 InstructionCost Cost = R.getTreeCost(); 9173 CandidateFound = true; 9174 MinCost = std::min(MinCost, Cost); 9175 9176 if (Cost < -SLPCostThreshold) { 9177 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 9178 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 9179 cast<Instruction>(Ops[0])) 9180 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 9181 << " and with tree size " 9182 << ore::NV("TreeSize", R.getTreeSize())); 9183 9184 R.vectorizeTree(); 9185 // Move to the next bundle. 9186 I += VF - 1; 9187 NextInst = I + 1; 9188 Changed = true; 9189 } 9190 } 9191 } 9192 9193 if (!Changed && CandidateFound) { 9194 R.getORE()->emit([&]() { 9195 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 9196 << "List vectorization was possible but not beneficial with cost " 9197 << ore::NV("Cost", MinCost) << " >= " 9198 << ore::NV("Treshold", -SLPCostThreshold); 9199 }); 9200 } else if (!Changed) { 9201 R.getORE()->emit([&]() { 9202 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 9203 << "Cannot SLP vectorize list: vectorization was impossible" 9204 << " with available vectorization factors"; 9205 }); 9206 } 9207 return Changed; 9208 } 9209 9210 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 9211 if (!I) 9212 return false; 9213 9214 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 9215 return false; 9216 9217 Value *P = I->getParent(); 9218 9219 // Vectorize in current basic block only. 9220 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 9221 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 9222 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 9223 return false; 9224 9225 // Try to vectorize V. 9226 if (tryToVectorizePair(Op0, Op1, R)) 9227 return true; 9228 9229 auto *A = dyn_cast<BinaryOperator>(Op0); 9230 auto *B = dyn_cast<BinaryOperator>(Op1); 9231 // Try to skip B. 9232 if (B && B->hasOneUse()) { 9233 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 9234 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 9235 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 9236 return true; 9237 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 9238 return true; 9239 } 9240 9241 // Try to skip A. 9242 if (A && A->hasOneUse()) { 9243 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 9244 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 9245 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 9246 return true; 9247 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 9248 return true; 9249 } 9250 return false; 9251 } 9252 9253 namespace { 9254 9255 /// Model horizontal reductions. 9256 /// 9257 /// A horizontal reduction is a tree of reduction instructions that has values 9258 /// that can be put into a vector as its leaves. For example: 9259 /// 9260 /// mul mul mul mul 9261 /// \ / \ / 9262 /// + + 9263 /// \ / 9264 /// + 9265 /// This tree has "mul" as its leaf values and "+" as its reduction 9266 /// instructions. A reduction can feed into a store or a binary operation 9267 /// feeding a phi. 9268 /// ... 9269 /// \ / 9270 /// + 9271 /// | 9272 /// phi += 9273 /// 9274 /// Or: 9275 /// ... 9276 /// \ / 9277 /// + 9278 /// | 9279 /// *p = 9280 /// 9281 class HorizontalReduction { 9282 using ReductionOpsType = SmallVector<Value *, 16>; 9283 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 9284 ReductionOpsListType ReductionOps; 9285 /// List of possibly reduced values. 9286 SmallVector<SmallVector<Value *>> ReducedVals; 9287 /// Maps reduced value to the corresponding reduction operation. 9288 DenseMap<Value *, Instruction *> ReducedValsToOps; 9289 // Use map vector to make stable output. 9290 MapVector<Instruction *, Value *> ExtraArgs; 9291 WeakTrackingVH ReductionRoot; 9292 /// The type of reduction operation. 9293 RecurKind RdxKind; 9294 9295 static bool isCmpSelMinMax(Instruction *I) { 9296 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 9297 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 9298 } 9299 9300 // And/or are potentially poison-safe logical patterns like: 9301 // select x, y, false 9302 // select x, true, y 9303 static bool isBoolLogicOp(Instruction *I) { 9304 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 9305 match(I, m_LogicalOr(m_Value(), m_Value())); 9306 } 9307 9308 /// Checks if instruction is associative and can be vectorized. 9309 static bool isVectorizable(RecurKind Kind, Instruction *I) { 9310 if (Kind == RecurKind::None) 9311 return false; 9312 9313 // Integer ops that map to select instructions or intrinsics are fine. 9314 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 9315 isBoolLogicOp(I)) 9316 return true; 9317 9318 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 9319 // FP min/max are associative except for NaN and -0.0. We do not 9320 // have to rule out -0.0 here because the intrinsic semantics do not 9321 // specify a fixed result for it. 9322 return I->getFastMathFlags().noNaNs(); 9323 } 9324 9325 return I->isAssociative(); 9326 } 9327 9328 static Value *getRdxOperand(Instruction *I, unsigned Index) { 9329 // Poison-safe 'or' takes the form: select X, true, Y 9330 // To make that work with the normal operand processing, we skip the 9331 // true value operand. 9332 // TODO: Change the code and data structures to handle this without a hack. 9333 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 9334 return I->getOperand(2); 9335 return I->getOperand(Index); 9336 } 9337 9338 /// Creates reduction operation with the current opcode. 9339 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 9340 Value *RHS, const Twine &Name, bool UseSelect) { 9341 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 9342 switch (Kind) { 9343 case RecurKind::Or: 9344 if (UseSelect && 9345 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 9346 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); 9347 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9348 Name); 9349 case RecurKind::And: 9350 if (UseSelect && 9351 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 9352 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); 9353 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9354 Name); 9355 case RecurKind::Add: 9356 case RecurKind::Mul: 9357 case RecurKind::Xor: 9358 case RecurKind::FAdd: 9359 case RecurKind::FMul: 9360 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9361 Name); 9362 case RecurKind::FMax: 9363 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 9364 case RecurKind::FMin: 9365 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 9366 case RecurKind::SMax: 9367 if (UseSelect) { 9368 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 9369 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9370 } 9371 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 9372 case RecurKind::SMin: 9373 if (UseSelect) { 9374 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 9375 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9376 } 9377 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 9378 case RecurKind::UMax: 9379 if (UseSelect) { 9380 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 9381 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9382 } 9383 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 9384 case RecurKind::UMin: 9385 if (UseSelect) { 9386 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 9387 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9388 } 9389 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 9390 default: 9391 llvm_unreachable("Unknown reduction operation."); 9392 } 9393 } 9394 9395 /// Creates reduction operation with the current opcode with the IR flags 9396 /// from \p ReductionOps. 9397 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 9398 Value *RHS, const Twine &Name, 9399 const ReductionOpsListType &ReductionOps) { 9400 bool UseSelect = ReductionOps.size() == 2 || 9401 // Logical or/and. 9402 (ReductionOps.size() == 1 && 9403 isa<SelectInst>(ReductionOps.front().front())); 9404 assert((!UseSelect || ReductionOps.size() != 2 || 9405 isa<SelectInst>(ReductionOps[1][0])) && 9406 "Expected cmp + select pairs for reduction"); 9407 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 9408 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 9409 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 9410 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 9411 propagateIRFlags(Op, ReductionOps[1]); 9412 return Op; 9413 } 9414 } 9415 propagateIRFlags(Op, ReductionOps[0]); 9416 return Op; 9417 } 9418 9419 /// Creates reduction operation with the current opcode with the IR flags 9420 /// from \p I. 9421 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 9422 Value *RHS, const Twine &Name, Value *I) { 9423 auto *SelI = dyn_cast<SelectInst>(I); 9424 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 9425 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 9426 if (auto *Sel = dyn_cast<SelectInst>(Op)) 9427 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 9428 } 9429 propagateIRFlags(Op, I); 9430 return Op; 9431 } 9432 9433 static RecurKind getRdxKind(Value *V) { 9434 auto *I = dyn_cast<Instruction>(V); 9435 if (!I) 9436 return RecurKind::None; 9437 if (match(I, m_Add(m_Value(), m_Value()))) 9438 return RecurKind::Add; 9439 if (match(I, m_Mul(m_Value(), m_Value()))) 9440 return RecurKind::Mul; 9441 if (match(I, m_And(m_Value(), m_Value())) || 9442 match(I, m_LogicalAnd(m_Value(), m_Value()))) 9443 return RecurKind::And; 9444 if (match(I, m_Or(m_Value(), m_Value())) || 9445 match(I, m_LogicalOr(m_Value(), m_Value()))) 9446 return RecurKind::Or; 9447 if (match(I, m_Xor(m_Value(), m_Value()))) 9448 return RecurKind::Xor; 9449 if (match(I, m_FAdd(m_Value(), m_Value()))) 9450 return RecurKind::FAdd; 9451 if (match(I, m_FMul(m_Value(), m_Value()))) 9452 return RecurKind::FMul; 9453 9454 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 9455 return RecurKind::FMax; 9456 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 9457 return RecurKind::FMin; 9458 9459 // This matches either cmp+select or intrinsics. SLP is expected to handle 9460 // either form. 9461 // TODO: If we are canonicalizing to intrinsics, we can remove several 9462 // special-case paths that deal with selects. 9463 if (match(I, m_SMax(m_Value(), m_Value()))) 9464 return RecurKind::SMax; 9465 if (match(I, m_SMin(m_Value(), m_Value()))) 9466 return RecurKind::SMin; 9467 if (match(I, m_UMax(m_Value(), m_Value()))) 9468 return RecurKind::UMax; 9469 if (match(I, m_UMin(m_Value(), m_Value()))) 9470 return RecurKind::UMin; 9471 9472 if (auto *Select = dyn_cast<SelectInst>(I)) { 9473 // Try harder: look for min/max pattern based on instructions producing 9474 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 9475 // During the intermediate stages of SLP, it's very common to have 9476 // pattern like this (since optimizeGatherSequence is run only once 9477 // at the end): 9478 // %1 = extractelement <2 x i32> %a, i32 0 9479 // %2 = extractelement <2 x i32> %a, i32 1 9480 // %cond = icmp sgt i32 %1, %2 9481 // %3 = extractelement <2 x i32> %a, i32 0 9482 // %4 = extractelement <2 x i32> %a, i32 1 9483 // %select = select i1 %cond, i32 %3, i32 %4 9484 CmpInst::Predicate Pred; 9485 Instruction *L1; 9486 Instruction *L2; 9487 9488 Value *LHS = Select->getTrueValue(); 9489 Value *RHS = Select->getFalseValue(); 9490 Value *Cond = Select->getCondition(); 9491 9492 // TODO: Support inverse predicates. 9493 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 9494 if (!isa<ExtractElementInst>(RHS) || 9495 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9496 return RecurKind::None; 9497 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 9498 if (!isa<ExtractElementInst>(LHS) || 9499 !L1->isIdenticalTo(cast<Instruction>(LHS))) 9500 return RecurKind::None; 9501 } else { 9502 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 9503 return RecurKind::None; 9504 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 9505 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 9506 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9507 return RecurKind::None; 9508 } 9509 9510 switch (Pred) { 9511 default: 9512 return RecurKind::None; 9513 case CmpInst::ICMP_SGT: 9514 case CmpInst::ICMP_SGE: 9515 return RecurKind::SMax; 9516 case CmpInst::ICMP_SLT: 9517 case CmpInst::ICMP_SLE: 9518 return RecurKind::SMin; 9519 case CmpInst::ICMP_UGT: 9520 case CmpInst::ICMP_UGE: 9521 return RecurKind::UMax; 9522 case CmpInst::ICMP_ULT: 9523 case CmpInst::ICMP_ULE: 9524 return RecurKind::UMin; 9525 } 9526 } 9527 return RecurKind::None; 9528 } 9529 9530 /// Get the index of the first operand. 9531 static unsigned getFirstOperandIndex(Instruction *I) { 9532 return isCmpSelMinMax(I) ? 1 : 0; 9533 } 9534 9535 /// Total number of operands in the reduction operation. 9536 static unsigned getNumberOfOperands(Instruction *I) { 9537 return isCmpSelMinMax(I) ? 3 : 2; 9538 } 9539 9540 /// Checks if the instruction is in basic block \p BB. 9541 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 9542 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 9543 if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) { 9544 auto *Sel = cast<SelectInst>(I); 9545 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); 9546 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; 9547 } 9548 return I->getParent() == BB; 9549 } 9550 9551 /// Expected number of uses for reduction operations/reduced values. 9552 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 9553 if (IsCmpSelMinMax) { 9554 // SelectInst must be used twice while the condition op must have single 9555 // use only. 9556 if (auto *Sel = dyn_cast<SelectInst>(I)) 9557 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 9558 return I->hasNUses(2); 9559 } 9560 9561 // Arithmetic reduction operation must be used once only. 9562 return I->hasOneUse(); 9563 } 9564 9565 /// Initializes the list of reduction operations. 9566 void initReductionOps(Instruction *I) { 9567 if (isCmpSelMinMax(I)) 9568 ReductionOps.assign(2, ReductionOpsType()); 9569 else 9570 ReductionOps.assign(1, ReductionOpsType()); 9571 } 9572 9573 /// Add all reduction operations for the reduction instruction \p I. 9574 void addReductionOps(Instruction *I) { 9575 if (isCmpSelMinMax(I)) { 9576 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 9577 ReductionOps[1].emplace_back(I); 9578 } else { 9579 ReductionOps[0].emplace_back(I); 9580 } 9581 } 9582 9583 static Value *getLHS(RecurKind Kind, Instruction *I) { 9584 if (Kind == RecurKind::None) 9585 return nullptr; 9586 return I->getOperand(getFirstOperandIndex(I)); 9587 } 9588 static Value *getRHS(RecurKind Kind, Instruction *I) { 9589 if (Kind == RecurKind::None) 9590 return nullptr; 9591 return I->getOperand(getFirstOperandIndex(I) + 1); 9592 } 9593 9594 public: 9595 HorizontalReduction() = default; 9596 9597 /// Try to find a reduction tree. 9598 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst, 9599 ScalarEvolution &SE, const DataLayout &DL, 9600 const TargetLibraryInfo &TLI) { 9601 assert((!Phi || is_contained(Phi->operands(), Inst)) && 9602 "Phi needs to use the binary operator"); 9603 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 9604 isa<IntrinsicInst>(Inst)) && 9605 "Expected binop, select, or intrinsic for reduction matching"); 9606 RdxKind = getRdxKind(Inst); 9607 9608 // We could have a initial reductions that is not an add. 9609 // r *= v1 + v2 + v3 + v4 9610 // In such a case start looking for a tree rooted in the first '+'. 9611 if (Phi) { 9612 if (getLHS(RdxKind, Inst) == Phi) { 9613 Phi = nullptr; 9614 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 9615 if (!Inst) 9616 return false; 9617 RdxKind = getRdxKind(Inst); 9618 } else if (getRHS(RdxKind, Inst) == Phi) { 9619 Phi = nullptr; 9620 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 9621 if (!Inst) 9622 return false; 9623 RdxKind = getRdxKind(Inst); 9624 } 9625 } 9626 9627 if (!isVectorizable(RdxKind, Inst)) 9628 return false; 9629 9630 // Analyze "regular" integer/FP types for reductions - no target-specific 9631 // types or pointers. 9632 Type *Ty = Inst->getType(); 9633 if (!isValidElementType(Ty) || Ty->isPointerTy()) 9634 return false; 9635 9636 // Though the ultimate reduction may have multiple uses, its condition must 9637 // have only single use. 9638 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 9639 if (!Sel->getCondition()->hasOneUse()) 9640 return false; 9641 9642 ReductionRoot = Inst; 9643 9644 // Iterate through all the operands of the possible reduction tree and 9645 // gather all the reduced values, sorting them by their value id. 9646 BasicBlock *BB = Inst->getParent(); 9647 bool IsCmpSelMinMax = isCmpSelMinMax(Inst); 9648 SmallVector<Instruction *> Worklist(1, Inst); 9649 // Checks if the operands of the \p TreeN instruction are also reduction 9650 // operations or should be treated as reduced values or an extra argument, 9651 // which is not part of the reduction. 9652 auto &&CheckOperands = [this, IsCmpSelMinMax, 9653 BB](Instruction *TreeN, 9654 SmallVectorImpl<Value *> &ExtraArgs, 9655 SmallVectorImpl<Value *> &PossibleReducedVals, 9656 SmallVectorImpl<Instruction *> &ReductionOps) { 9657 for (int I = getFirstOperandIndex(TreeN), 9658 End = getNumberOfOperands(TreeN); 9659 I < End; ++I) { 9660 Value *EdgeVal = getRdxOperand(TreeN, I); 9661 ReducedValsToOps.try_emplace(EdgeVal, TreeN); 9662 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 9663 // Edge has wrong parent - mark as an extra argument. 9664 if (EdgeInst && !isVectorLikeInstWithConstOps(EdgeInst) && 9665 !hasSameParent(EdgeInst, BB)) { 9666 ExtraArgs.push_back(EdgeVal); 9667 continue; 9668 } 9669 // If the edge is not an instruction, or it is different from the main 9670 // reduction opcode or has too many uses - possible reduced value. 9671 if (!EdgeInst || getRdxKind(EdgeInst) != RdxKind || 9672 !hasRequiredNumberOfUses(IsCmpSelMinMax, EdgeInst) || 9673 !isVectorizable(getRdxKind(EdgeInst), EdgeInst)) { 9674 PossibleReducedVals.push_back(EdgeVal); 9675 continue; 9676 } 9677 ReductionOps.push_back(EdgeInst); 9678 } 9679 }; 9680 // Try to regroup reduced values so that it gets more profitable to try to 9681 // reduce them. Values are grouped by their value ids, instructions - by 9682 // instruction op id and/or alternate op id, plus do extra analysis for 9683 // loads (grouping them by the distabce between pointers) and cmp 9684 // instructions (grouping them by the predicate). 9685 MapVector<size_t, MapVector<size_t, SmallVector<Value *>>> 9686 PossibleReducedVals; 9687 initReductionOps(Inst); 9688 while (!Worklist.empty()) { 9689 Instruction *TreeN = Worklist.pop_back_val(); 9690 SmallVector<Value *> Args; 9691 SmallVector<Value *> PossibleRedVals; 9692 SmallVector<Instruction *> PossibleReductionOps; 9693 CheckOperands(TreeN, Args, PossibleRedVals, PossibleReductionOps); 9694 // If too many extra args - mark the instruction itself as a reduction 9695 // value, not a reduction operation. 9696 if (Args.size() < 2) { 9697 addReductionOps(TreeN); 9698 // Add extra args. 9699 if (!Args.empty()) { 9700 assert(Args.size() == 1 && "Expected only single argument."); 9701 ExtraArgs[TreeN] = Args.front(); 9702 } 9703 // Add reduction values. The values are sorted for better vectorization 9704 // results. 9705 for (Value *V : PossibleRedVals) { 9706 size_t Key, Idx; 9707 std::tie(Key, Idx) = generateKeySubkey( 9708 V, &TLI, 9709 [&PossibleReducedVals, &DL, &SE](size_t Key, LoadInst *LI) { 9710 for (const auto &LoadData : PossibleReducedVals[Key]) { 9711 auto *RLI = cast<LoadInst>(LoadData.second.front()); 9712 if (getPointersDiff(RLI->getType(), RLI->getPointerOperand(), 9713 LI->getType(), LI->getPointerOperand(), 9714 DL, SE, /*StrictCheck=*/true)) 9715 return hash_value(RLI->getPointerOperand()); 9716 } 9717 return hash_value(LI->getPointerOperand()); 9718 }, 9719 /*AllowAlternate=*/false); 9720 PossibleReducedVals[Key][Idx].push_back(V); 9721 } 9722 Worklist.append(PossibleReductionOps.begin(), 9723 PossibleReductionOps.end()); 9724 } else { 9725 size_t Key, Idx; 9726 std::tie(Key, Idx) = generateKeySubkey( 9727 TreeN, &TLI, 9728 [&PossibleReducedVals, &DL, &SE](size_t Key, LoadInst *LI) { 9729 for (const auto &LoadData : PossibleReducedVals[Key]) { 9730 auto *RLI = cast<LoadInst>(LoadData.second.front()); 9731 if (getPointersDiff(RLI->getType(), RLI->getPointerOperand(), 9732 LI->getType(), LI->getPointerOperand(), DL, 9733 SE, /*StrictCheck=*/true)) 9734 return hash_value(RLI->getPointerOperand()); 9735 } 9736 return hash_value(LI->getPointerOperand()); 9737 }, 9738 /*AllowAlternate=*/false); 9739 PossibleReducedVals[Key][Idx].push_back(TreeN); 9740 } 9741 } 9742 auto PossibleReducedValsVect = PossibleReducedVals.takeVector(); 9743 // Sort values by the total number of values kinds to start the reduction 9744 // from the longest possible reduced values sequences. 9745 for (auto &PossibleReducedVals : PossibleReducedValsVect) { 9746 auto PossibleRedVals = PossibleReducedVals.second.takeVector(); 9747 stable_sort(PossibleRedVals, [](const auto &P1, const auto &P2) { 9748 return P1.second.size() > P2.second.size(); 9749 }); 9750 ReducedVals.emplace_back(); 9751 for (auto &Data : PossibleRedVals) 9752 ReducedVals.back().append(Data.second.rbegin(), Data.second.rend()); 9753 } 9754 // Sort the reduced values by number of same/alternate opcode and/or pointer 9755 // operand. 9756 stable_sort(ReducedVals, [](ArrayRef<Value *> P1, ArrayRef<Value *> P2) { 9757 return P1.size() > P2.size(); 9758 }); 9759 return true; 9760 } 9761 9762 /// Attempt to vectorize the tree found by matchAssociativeReduction. 9763 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 9764 // If there are a sufficient number of reduction values, reduce 9765 // to a nearby power-of-2. We can safely generate oversized 9766 // vectors and rely on the backend to split them to legal sizes. 9767 unsigned NumReducedVals = std::accumulate( 9768 ReducedVals.begin(), ReducedVals.end(), 0, 9769 [](int Num, ArrayRef<Value *> Vals) { return Num + Vals.size(); }); 9770 if (NumReducedVals < 4) 9771 return nullptr; 9772 9773 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 9774 9775 // Track the reduced values in case if they are replaced by extractelement 9776 // because of the vectorization. 9777 DenseMap<Value *, WeakTrackingVH> TrackedVals; 9778 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 9779 // The same extra argument may be used several times, so log each attempt 9780 // to use it. 9781 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 9782 assert(Pair.first && "DebugLoc must be set."); 9783 ExternallyUsedValues[Pair.second].push_back(Pair.first); 9784 TrackedVals.try_emplace(Pair.second, Pair.second); 9785 } 9786 9787 // The compare instruction of a min/max is the insertion point for new 9788 // instructions and may be replaced with a new compare instruction. 9789 auto &&GetCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 9790 assert(isa<SelectInst>(RdxRootInst) && 9791 "Expected min/max reduction to have select root instruction"); 9792 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 9793 assert(isa<Instruction>(ScalarCond) && 9794 "Expected min/max reduction to have compare condition"); 9795 return cast<Instruction>(ScalarCond); 9796 }; 9797 9798 // The reduction root is used as the insertion point for new instructions, 9799 // so set it as externally used to prevent it from being deleted. 9800 ExternallyUsedValues[ReductionRoot]; 9801 SmallVector<Value *> IgnoreList; 9802 for (ReductionOpsType &RdxOps : ReductionOps) 9803 for (Value *RdxOp : RdxOps) { 9804 if (!RdxOp) 9805 continue; 9806 IgnoreList.push_back(RdxOp); 9807 } 9808 9809 // Need to track reduced vals, they may be changed during vectorization of 9810 // subvectors. 9811 for (ArrayRef<Value *> Candidates : ReducedVals) 9812 for (Value *V : Candidates) 9813 TrackedVals.try_emplace(V, V); 9814 9815 DenseMap<Value *, unsigned> VectorizedVals; 9816 Value *VectorizedTree = nullptr; 9817 // Try to vectorize elements based on their type. 9818 for (unsigned I = 0, E = ReducedVals.size(); I < E; ++I) { 9819 ArrayRef<Value *> OrigReducedVals = ReducedVals[I]; 9820 InstructionsState S = getSameOpcode(OrigReducedVals); 9821 SmallVector<Value *> Candidates; 9822 DenseMap<Value *, Value *> TrackedToOrig; 9823 for (unsigned Cnt = 0, Sz = OrigReducedVals.size(); Cnt < Sz; ++Cnt) { 9824 Value *RdxVal = TrackedVals.find(OrigReducedVals[Cnt])->second; 9825 // Check if the reduction value was not overriden by the extractelement 9826 // instruction because of the vectorization and exclude it, if it is not 9827 // compatible with other values. 9828 if (auto *Inst = dyn_cast<Instruction>(RdxVal)) 9829 if (isVectorLikeInstWithConstOps(Inst) && 9830 (!S.getOpcode() || !S.isOpcodeOrAlt(Inst))) 9831 continue; 9832 Candidates.push_back(RdxVal); 9833 TrackedToOrig.try_emplace(RdxVal, OrigReducedVals[Cnt]); 9834 } 9835 bool ShuffledExtracts = false; 9836 // Try to handle shuffled extractelements. 9837 if (S.getOpcode() == Instruction::ExtractElement && !S.isAltShuffle() && 9838 I + 1 < E) { 9839 InstructionsState NextS = getSameOpcode(ReducedVals[I + 1]); 9840 if (NextS.getOpcode() == Instruction::ExtractElement && 9841 !NextS.isAltShuffle()) { 9842 SmallVector<Value *> CommonCandidates(Candidates); 9843 for (Value *RV : ReducedVals[I + 1]) { 9844 Value *RdxVal = TrackedVals.find(RV)->second; 9845 // Check if the reduction value was not overriden by the 9846 // extractelement instruction because of the vectorization and 9847 // exclude it, if it is not compatible with other values. 9848 if (auto *Inst = dyn_cast<Instruction>(RdxVal)) 9849 if (!NextS.getOpcode() || !NextS.isOpcodeOrAlt(Inst)) 9850 continue; 9851 CommonCandidates.push_back(RdxVal); 9852 TrackedToOrig.try_emplace(RdxVal, RV); 9853 } 9854 SmallVector<int> Mask; 9855 if (isFixedVectorShuffle(CommonCandidates, Mask)) { 9856 ++I; 9857 Candidates.swap(CommonCandidates); 9858 ShuffledExtracts = true; 9859 } 9860 } 9861 } 9862 unsigned NumReducedVals = Candidates.size(); 9863 if (NumReducedVals < 4) 9864 continue; 9865 9866 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 9867 unsigned Start = 0; 9868 unsigned Pos = Start; 9869 // Restarts vectorization attempt with lower vector factor. 9870 auto &&AdjustReducedVals = [&Pos, &Start, &ReduxWidth, NumReducedVals]() { 9871 if (ReduxWidth == 4 || Pos >= NumReducedVals - ReduxWidth + 1) { 9872 ++Start; 9873 ReduxWidth = PowerOf2Floor(NumReducedVals - Start) * 2; 9874 } 9875 Pos = Start; 9876 ReduxWidth /= 2; 9877 }; 9878 while (Pos < NumReducedVals - ReduxWidth + 1 && ReduxWidth >= 4) { 9879 ArrayRef<Value *> VL(std::next(Candidates.begin(), Pos), ReduxWidth); 9880 V.buildTree(VL, IgnoreList); 9881 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) { 9882 AdjustReducedVals(); 9883 continue; 9884 } 9885 if (V.isLoadCombineReductionCandidate(RdxKind)) { 9886 AdjustReducedVals(); 9887 continue; 9888 } 9889 V.reorderTopToBottom(); 9890 // No need to reorder the root node at all. 9891 V.reorderBottomToTop(/*IgnoreReorder=*/true); 9892 // Keep extracted other reduction values, if they are used in the 9893 // vectorization trees. 9894 BoUpSLP::ExtraValueToDebugLocsMap LocalExternallyUsedValues( 9895 ExternallyUsedValues); 9896 for (unsigned Cnt = 0, Sz = ReducedVals.size(); Cnt < Sz; ++Cnt) { 9897 if (Cnt == I || (ShuffledExtracts && Cnt == I - 1)) 9898 continue; 9899 for_each(ReducedVals[Cnt], 9900 [&LocalExternallyUsedValues, &TrackedVals](Value *V) { 9901 if (isa<Instruction>(V)) 9902 LocalExternallyUsedValues[TrackedVals[V]]; 9903 }); 9904 } 9905 for (unsigned Cnt = 0; Cnt < NumReducedVals; ++Cnt) { 9906 if (Cnt >= Pos && Cnt < Pos + ReduxWidth) 9907 continue; 9908 if (VectorizedVals.count(Candidates[Cnt])) 9909 continue; 9910 LocalExternallyUsedValues[Candidates[Cnt]]; 9911 } 9912 V.buildExternalUses(LocalExternallyUsedValues); 9913 9914 V.computeMinimumValueSizes(); 9915 9916 // Intersect the fast-math-flags from all reduction operations. 9917 FastMathFlags RdxFMF; 9918 RdxFMF.set(); 9919 for (Value *RdxVal : VL) { 9920 if (auto *FPMO = dyn_cast<FPMathOperator>( 9921 ReducedValsToOps.find(RdxVal)->second)) 9922 RdxFMF &= FPMO->getFastMathFlags(); 9923 } 9924 // Estimate cost. 9925 InstructionCost TreeCost = V.getTreeCost(VL); 9926 InstructionCost ReductionCost = 9927 getReductionCost(TTI, VL[0], ReduxWidth, RdxFMF); 9928 InstructionCost Cost = TreeCost + ReductionCost; 9929 if (!Cost.isValid()) { 9930 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 9931 return nullptr; 9932 } 9933 if (Cost >= -SLPCostThreshold) { 9934 V.getORE()->emit([&]() { 9935 return OptimizationRemarkMissed( 9936 SV_NAME, "HorSLPNotBeneficial", 9937 ReducedValsToOps.find(VL[0])->second) 9938 << "Vectorizing horizontal reduction is possible" 9939 << "but not beneficial with cost " << ore::NV("Cost", Cost) 9940 << " and threshold " 9941 << ore::NV("Threshold", -SLPCostThreshold); 9942 }); 9943 AdjustReducedVals(); 9944 continue; 9945 } 9946 9947 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 9948 << Cost << ". (HorRdx)\n"); 9949 V.getORE()->emit([&]() { 9950 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 9951 ReducedValsToOps.find(VL[0])->second) 9952 << "Vectorized horizontal reduction with cost " 9953 << ore::NV("Cost", Cost) << " and with tree size " 9954 << ore::NV("TreeSize", V.getTreeSize()); 9955 }); 9956 9957 Builder.setFastMathFlags(RdxFMF); 9958 9959 // Vectorize a tree. 9960 Value *VectorizedRoot = V.vectorizeTree(LocalExternallyUsedValues); 9961 9962 // Emit a reduction. If the root is a select (min/max idiom), the insert 9963 // point is the compare condition of that select. 9964 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 9965 if (isCmpSelMinMax(RdxRootInst)) 9966 Builder.SetInsertPoint(GetCmpForMinMaxReduction(RdxRootInst)); 9967 else 9968 Builder.SetInsertPoint(RdxRootInst); 9969 9970 // To prevent poison from leaking across what used to be sequential, 9971 // safe, scalar boolean logic operations, the reduction operand must be 9972 // frozen. 9973 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 9974 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 9975 9976 Value *ReducedSubTree = 9977 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 9978 9979 if (!VectorizedTree) { 9980 // Initialize the final value in the reduction. 9981 VectorizedTree = ReducedSubTree; 9982 } else { 9983 // Update the final value in the reduction. 9984 Builder.SetCurrentDebugLocation( 9985 cast<Instruction>(ReductionOps.front().front())->getDebugLoc()); 9986 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9987 ReducedSubTree, "op.rdx", ReductionOps); 9988 } 9989 // Count vectorized reduced values to exclude them from final reduction. 9990 for (Value *V : VL) 9991 ++VectorizedVals.try_emplace(TrackedToOrig.find(V)->second, 0) 9992 .first->getSecond(); 9993 Pos += ReduxWidth; 9994 Start = Pos; 9995 ReduxWidth = PowerOf2Floor(NumReducedVals - Pos); 9996 } 9997 } 9998 if (VectorizedTree) { 9999 // Finish the reduction. 10000 // Need to add extra arguments and not vectorized possible reduction 10001 // values. 10002 for (unsigned I = 0, E = ReducedVals.size(); I < E; ++I) { 10003 ArrayRef<Value *> Candidates = ReducedVals[I]; 10004 for (Value *RdxVal : Candidates) { 10005 auto It = VectorizedVals.find(RdxVal); 10006 if (It != VectorizedVals.end()) { 10007 --It->getSecond(); 10008 if (It->second == 0) 10009 VectorizedVals.erase(It); 10010 continue; 10011 } 10012 Instruction *RedOp = ReducedValsToOps.find(RdxVal)->second; 10013 Builder.SetCurrentDebugLocation(RedOp->getDebugLoc()); 10014 ReductionOpsListType Ops; 10015 if (auto *Sel = dyn_cast<SelectInst>(RedOp)) 10016 Ops.emplace_back().push_back(Sel->getCondition()); 10017 Ops.emplace_back().push_back(RedOp); 10018 Value *StableRdxVal = RdxVal; 10019 auto TVIt = TrackedVals.find(RdxVal); 10020 if (TVIt != TrackedVals.end()) 10021 StableRdxVal = TVIt->second; 10022 10023 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 10024 StableRdxVal, "op.rdx", RedOp); 10025 } 10026 } 10027 for (auto &Pair : ExternallyUsedValues) { 10028 // Add each externally used value to the final reduction. 10029 for (auto *I : Pair.second) { 10030 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 10031 ReductionOpsListType Ops; 10032 if (auto *Sel = dyn_cast<SelectInst>(I)) 10033 Ops.emplace_back().push_back(Sel->getCondition()); 10034 Ops.emplace_back().push_back(I); 10035 Value *StableRdxVal = Pair.first; 10036 auto TVIt = TrackedVals.find(Pair.first); 10037 if (TVIt != TrackedVals.end()) 10038 StableRdxVal = TVIt->second; 10039 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 10040 StableRdxVal, "op.rdx", Ops); 10041 } 10042 } 10043 10044 ReductionRoot->replaceAllUsesWith(VectorizedTree); 10045 10046 // The original scalar reduction is expected to have no remaining 10047 // uses outside the reduction tree itself. Assert that we got this 10048 // correct, replace internal uses with undef, and mark for eventual 10049 // deletion. 10050 #ifndef NDEBUG 10051 SmallSet<Value *, 4> IgnoreSet; 10052 IgnoreSet.insert(IgnoreList.begin(), IgnoreList.end()); 10053 #endif 10054 for (auto *Ignore : IgnoreList) { 10055 #ifndef NDEBUG 10056 for (auto *U : Ignore->users()) { 10057 assert(IgnoreSet.count(U)); 10058 } 10059 #endif 10060 if (!Ignore->use_empty()) { 10061 Value *Undef = UndefValue::get(Ignore->getType()); 10062 Ignore->replaceAllUsesWith(Undef); 10063 } 10064 V.eraseInstruction(cast<Instruction>(Ignore)); 10065 } 10066 } 10067 return VectorizedTree; 10068 } 10069 10070 unsigned numReductionValues() const { return ReducedVals.size(); } 10071 10072 private: 10073 /// Calculate the cost of a reduction. 10074 InstructionCost getReductionCost(TargetTransformInfo *TTI, 10075 Value *FirstReducedVal, unsigned ReduxWidth, 10076 FastMathFlags FMF) { 10077 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 10078 Type *ScalarTy = FirstReducedVal->getType(); 10079 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 10080 InstructionCost VectorCost, ScalarCost; 10081 switch (RdxKind) { 10082 case RecurKind::Add: 10083 case RecurKind::Mul: 10084 case RecurKind::Or: 10085 case RecurKind::And: 10086 case RecurKind::Xor: 10087 case RecurKind::FAdd: 10088 case RecurKind::FMul: { 10089 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 10090 VectorCost = 10091 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 10092 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 10093 break; 10094 } 10095 case RecurKind::FMax: 10096 case RecurKind::FMin: { 10097 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 10098 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 10099 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 10100 /*IsUnsigned=*/false, CostKind); 10101 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 10102 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, 10103 SclCondTy, RdxPred, CostKind) + 10104 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 10105 SclCondTy, RdxPred, CostKind); 10106 break; 10107 } 10108 case RecurKind::SMax: 10109 case RecurKind::SMin: 10110 case RecurKind::UMax: 10111 case RecurKind::UMin: { 10112 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 10113 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 10114 bool IsUnsigned = 10115 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 10116 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned, 10117 CostKind); 10118 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 10119 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, 10120 SclCondTy, RdxPred, CostKind) + 10121 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 10122 SclCondTy, RdxPred, CostKind); 10123 break; 10124 } 10125 default: 10126 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 10127 } 10128 10129 // Scalar cost is repeated for N-1 elements. 10130 ScalarCost *= (ReduxWidth - 1); 10131 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 10132 << " for reduction that starts with " << *FirstReducedVal 10133 << " (It is a splitting reduction)\n"); 10134 return VectorCost - ScalarCost; 10135 } 10136 10137 /// Emit a horizontal reduction of the vectorized value. 10138 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 10139 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 10140 assert(VectorizedValue && "Need to have a vectorized tree node"); 10141 assert(isPowerOf2_32(ReduxWidth) && 10142 "We only handle power-of-two reductions for now"); 10143 assert(RdxKind != RecurKind::FMulAdd && 10144 "A call to the llvm.fmuladd intrinsic is not handled yet"); 10145 10146 ++NumVectorInstructions; 10147 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind); 10148 } 10149 }; 10150 10151 } // end anonymous namespace 10152 10153 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 10154 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 10155 return cast<FixedVectorType>(IE->getType())->getNumElements(); 10156 10157 unsigned AggregateSize = 1; 10158 auto *IV = cast<InsertValueInst>(InsertInst); 10159 Type *CurrentType = IV->getType(); 10160 do { 10161 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 10162 for (auto *Elt : ST->elements()) 10163 if (Elt != ST->getElementType(0)) // check homogeneity 10164 return None; 10165 AggregateSize *= ST->getNumElements(); 10166 CurrentType = ST->getElementType(0); 10167 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 10168 AggregateSize *= AT->getNumElements(); 10169 CurrentType = AT->getElementType(); 10170 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 10171 AggregateSize *= VT->getNumElements(); 10172 return AggregateSize; 10173 } else if (CurrentType->isSingleValueType()) { 10174 return AggregateSize; 10175 } else { 10176 return None; 10177 } 10178 } while (true); 10179 } 10180 10181 static void findBuildAggregate_rec(Instruction *LastInsertInst, 10182 TargetTransformInfo *TTI, 10183 SmallVectorImpl<Value *> &BuildVectorOpds, 10184 SmallVectorImpl<Value *> &InsertElts, 10185 unsigned OperandOffset) { 10186 do { 10187 Value *InsertedOperand = LastInsertInst->getOperand(1); 10188 Optional<unsigned> OperandIndex = 10189 getInsertIndex(LastInsertInst, OperandOffset); 10190 if (!OperandIndex) 10191 return; 10192 if (isa<InsertElementInst>(InsertedOperand) || 10193 isa<InsertValueInst>(InsertedOperand)) { 10194 findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 10195 BuildVectorOpds, InsertElts, *OperandIndex); 10196 10197 } else { 10198 BuildVectorOpds[*OperandIndex] = InsertedOperand; 10199 InsertElts[*OperandIndex] = LastInsertInst; 10200 } 10201 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 10202 } while (LastInsertInst != nullptr && 10203 (isa<InsertValueInst>(LastInsertInst) || 10204 isa<InsertElementInst>(LastInsertInst)) && 10205 LastInsertInst->hasOneUse()); 10206 } 10207 10208 /// Recognize construction of vectors like 10209 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 10210 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 10211 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 10212 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 10213 /// starting from the last insertelement or insertvalue instruction. 10214 /// 10215 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 10216 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 10217 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 10218 /// 10219 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 10220 /// 10221 /// \return true if it matches. 10222 static bool findBuildAggregate(Instruction *LastInsertInst, 10223 TargetTransformInfo *TTI, 10224 SmallVectorImpl<Value *> &BuildVectorOpds, 10225 SmallVectorImpl<Value *> &InsertElts) { 10226 10227 assert((isa<InsertElementInst>(LastInsertInst) || 10228 isa<InsertValueInst>(LastInsertInst)) && 10229 "Expected insertelement or insertvalue instruction!"); 10230 10231 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 10232 "Expected empty result vectors!"); 10233 10234 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 10235 if (!AggregateSize) 10236 return false; 10237 BuildVectorOpds.resize(*AggregateSize); 10238 InsertElts.resize(*AggregateSize); 10239 10240 findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 0); 10241 llvm::erase_value(BuildVectorOpds, nullptr); 10242 llvm::erase_value(InsertElts, nullptr); 10243 if (BuildVectorOpds.size() >= 2) 10244 return true; 10245 10246 return false; 10247 } 10248 10249 /// Try and get a reduction value from a phi node. 10250 /// 10251 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 10252 /// if they come from either \p ParentBB or a containing loop latch. 10253 /// 10254 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 10255 /// if not possible. 10256 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 10257 BasicBlock *ParentBB, LoopInfo *LI) { 10258 // There are situations where the reduction value is not dominated by the 10259 // reduction phi. Vectorizing such cases has been reported to cause 10260 // miscompiles. See PR25787. 10261 auto DominatedReduxValue = [&](Value *R) { 10262 return isa<Instruction>(R) && 10263 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 10264 }; 10265 10266 Value *Rdx = nullptr; 10267 10268 // Return the incoming value if it comes from the same BB as the phi node. 10269 if (P->getIncomingBlock(0) == ParentBB) { 10270 Rdx = P->getIncomingValue(0); 10271 } else if (P->getIncomingBlock(1) == ParentBB) { 10272 Rdx = P->getIncomingValue(1); 10273 } 10274 10275 if (Rdx && DominatedReduxValue(Rdx)) 10276 return Rdx; 10277 10278 // Otherwise, check whether we have a loop latch to look at. 10279 Loop *BBL = LI->getLoopFor(ParentBB); 10280 if (!BBL) 10281 return nullptr; 10282 BasicBlock *BBLatch = BBL->getLoopLatch(); 10283 if (!BBLatch) 10284 return nullptr; 10285 10286 // There is a loop latch, return the incoming value if it comes from 10287 // that. This reduction pattern occasionally turns up. 10288 if (P->getIncomingBlock(0) == BBLatch) { 10289 Rdx = P->getIncomingValue(0); 10290 } else if (P->getIncomingBlock(1) == BBLatch) { 10291 Rdx = P->getIncomingValue(1); 10292 } 10293 10294 if (Rdx && DominatedReduxValue(Rdx)) 10295 return Rdx; 10296 10297 return nullptr; 10298 } 10299 10300 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 10301 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 10302 return true; 10303 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 10304 return true; 10305 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 10306 return true; 10307 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 10308 return true; 10309 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 10310 return true; 10311 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 10312 return true; 10313 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 10314 return true; 10315 return false; 10316 } 10317 10318 /// Attempt to reduce a horizontal reduction. 10319 /// If it is legal to match a horizontal reduction feeding the phi node \a P 10320 /// with reduction operators \a Root (or one of its operands) in a basic block 10321 /// \a BB, then check if it can be done. If horizontal reduction is not found 10322 /// and root instruction is a binary operation, vectorization of the operands is 10323 /// attempted. 10324 /// \returns true if a horizontal reduction was matched and reduced or operands 10325 /// of one of the binary instruction were vectorized. 10326 /// \returns false if a horizontal reduction was not matched (or not possible) 10327 /// or no vectorization of any binary operation feeding \a Root instruction was 10328 /// performed. 10329 static bool tryToVectorizeHorReductionOrInstOperands( 10330 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 10331 TargetTransformInfo *TTI, ScalarEvolution &SE, const DataLayout &DL, 10332 const TargetLibraryInfo &TLI, 10333 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 10334 if (!ShouldVectorizeHor) 10335 return false; 10336 10337 if (!Root) 10338 return false; 10339 10340 if (Root->getParent() != BB || isa<PHINode>(Root)) 10341 return false; 10342 // Start analysis starting from Root instruction. If horizontal reduction is 10343 // found, try to vectorize it. If it is not a horizontal reduction or 10344 // vectorization is not possible or not effective, and currently analyzed 10345 // instruction is a binary operation, try to vectorize the operands, using 10346 // pre-order DFS traversal order. If the operands were not vectorized, repeat 10347 // the same procedure considering each operand as a possible root of the 10348 // horizontal reduction. 10349 // Interrupt the process if the Root instruction itself was vectorized or all 10350 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 10351 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 10352 // CmpInsts so we can skip extra attempts in 10353 // tryToVectorizeHorReductionOrInstOperands and save compile time. 10354 std::queue<std::pair<Instruction *, unsigned>> Stack; 10355 Stack.emplace(Root, 0); 10356 SmallPtrSet<Value *, 8> VisitedInstrs; 10357 SmallVector<WeakTrackingVH> PostponedInsts; 10358 bool Res = false; 10359 auto &&TryToReduce = [TTI, &SE, &DL, &P, &R, &TLI](Instruction *Inst, 10360 Value *&B0, 10361 Value *&B1) -> Value * { 10362 bool IsBinop = matchRdxBop(Inst, B0, B1); 10363 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 10364 if (IsBinop || IsSelect) { 10365 HorizontalReduction HorRdx; 10366 if (HorRdx.matchAssociativeReduction(P, Inst, SE, DL, TLI)) 10367 return HorRdx.tryToReduce(R, TTI); 10368 } 10369 return nullptr; 10370 }; 10371 while (!Stack.empty()) { 10372 Instruction *Inst; 10373 unsigned Level; 10374 std::tie(Inst, Level) = Stack.front(); 10375 Stack.pop(); 10376 // Do not try to analyze instruction that has already been vectorized. 10377 // This may happen when we vectorize instruction operands on a previous 10378 // iteration while stack was populated before that happened. 10379 if (R.isDeleted(Inst)) 10380 continue; 10381 Value *B0 = nullptr, *B1 = nullptr; 10382 if (Value *V = TryToReduce(Inst, B0, B1)) { 10383 Res = true; 10384 // Set P to nullptr to avoid re-analysis of phi node in 10385 // matchAssociativeReduction function unless this is the root node. 10386 P = nullptr; 10387 if (auto *I = dyn_cast<Instruction>(V)) { 10388 // Try to find another reduction. 10389 Stack.emplace(I, Level); 10390 continue; 10391 } 10392 } else { 10393 bool IsBinop = B0 && B1; 10394 if (P && IsBinop) { 10395 Inst = dyn_cast<Instruction>(B0); 10396 if (Inst == P) 10397 Inst = dyn_cast<Instruction>(B1); 10398 if (!Inst) { 10399 // Set P to nullptr to avoid re-analysis of phi node in 10400 // matchAssociativeReduction function unless this is the root node. 10401 P = nullptr; 10402 continue; 10403 } 10404 } 10405 // Set P to nullptr to avoid re-analysis of phi node in 10406 // matchAssociativeReduction function unless this is the root node. 10407 P = nullptr; 10408 // Do not try to vectorize CmpInst operands, this is done separately. 10409 // Final attempt for binop args vectorization should happen after the loop 10410 // to try to find reductions. 10411 if (!isa<CmpInst>(Inst)) 10412 PostponedInsts.push_back(Inst); 10413 } 10414 10415 // Try to vectorize operands. 10416 // Continue analysis for the instruction from the same basic block only to 10417 // save compile time. 10418 if (++Level < RecursionMaxDepth) 10419 for (auto *Op : Inst->operand_values()) 10420 if (VisitedInstrs.insert(Op).second) 10421 if (auto *I = dyn_cast<Instruction>(Op)) 10422 // Do not try to vectorize CmpInst operands, this is done 10423 // separately. 10424 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 10425 I->getParent() == BB) 10426 Stack.emplace(I, Level); 10427 } 10428 // Try to vectorized binops where reductions were not found. 10429 for (Value *V : PostponedInsts) 10430 if (auto *Inst = dyn_cast<Instruction>(V)) 10431 if (!R.isDeleted(Inst)) 10432 Res |= Vectorize(Inst, R); 10433 return Res; 10434 } 10435 10436 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 10437 BasicBlock *BB, BoUpSLP &R, 10438 TargetTransformInfo *TTI) { 10439 auto *I = dyn_cast_or_null<Instruction>(V); 10440 if (!I) 10441 return false; 10442 10443 if (!isa<BinaryOperator>(I)) 10444 P = nullptr; 10445 // Try to match and vectorize a horizontal reduction. 10446 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 10447 return tryToVectorize(I, R); 10448 }; 10449 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, *SE, *DL, 10450 *TLI, ExtraVectorization); 10451 } 10452 10453 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 10454 BasicBlock *BB, BoUpSLP &R) { 10455 const DataLayout &DL = BB->getModule()->getDataLayout(); 10456 if (!R.canMapToVector(IVI->getType(), DL)) 10457 return false; 10458 10459 SmallVector<Value *, 16> BuildVectorOpds; 10460 SmallVector<Value *, 16> BuildVectorInsts; 10461 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 10462 return false; 10463 10464 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 10465 // Aggregate value is unlikely to be processed in vector register. 10466 return tryToVectorizeList(BuildVectorOpds, R); 10467 } 10468 10469 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 10470 BasicBlock *BB, BoUpSLP &R) { 10471 SmallVector<Value *, 16> BuildVectorInsts; 10472 SmallVector<Value *, 16> BuildVectorOpds; 10473 SmallVector<int> Mask; 10474 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 10475 (llvm::all_of( 10476 BuildVectorOpds, 10477 [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) && 10478 isFixedVectorShuffle(BuildVectorOpds, Mask))) 10479 return false; 10480 10481 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 10482 return tryToVectorizeList(BuildVectorInsts, R); 10483 } 10484 10485 template <typename T> 10486 static bool 10487 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, 10488 function_ref<unsigned(T *)> Limit, 10489 function_ref<bool(T *, T *)> Comparator, 10490 function_ref<bool(T *, T *)> AreCompatible, 10491 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper, 10492 bool LimitForRegisterSize) { 10493 bool Changed = false; 10494 // Sort by type, parent, operands. 10495 stable_sort(Incoming, Comparator); 10496 10497 // Try to vectorize elements base on their type. 10498 SmallVector<T *> Candidates; 10499 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { 10500 // Look for the next elements with the same type, parent and operand 10501 // kinds. 10502 auto *SameTypeIt = IncIt; 10503 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) 10504 ++SameTypeIt; 10505 10506 // Try to vectorize them. 10507 unsigned NumElts = (SameTypeIt - IncIt); 10508 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" 10509 << NumElts << ")\n"); 10510 // The vectorization is a 3-state attempt: 10511 // 1. Try to vectorize instructions with the same/alternate opcodes with the 10512 // size of maximal register at first. 10513 // 2. Try to vectorize remaining instructions with the same type, if 10514 // possible. This may result in the better vectorization results rather than 10515 // if we try just to vectorize instructions with the same/alternate opcodes. 10516 // 3. Final attempt to try to vectorize all instructions with the 10517 // same/alternate ops only, this may result in some extra final 10518 // vectorization. 10519 if (NumElts > 1 && 10520 TryToVectorizeHelper(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) { 10521 // Success start over because instructions might have been changed. 10522 Changed = true; 10523 } else if (NumElts < Limit(*IncIt) && 10524 (Candidates.empty() || 10525 Candidates.front()->getType() == (*IncIt)->getType())) { 10526 Candidates.append(IncIt, std::next(IncIt, NumElts)); 10527 } 10528 // Final attempt to vectorize instructions with the same types. 10529 if (Candidates.size() > 1 && 10530 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { 10531 if (TryToVectorizeHelper(Candidates, /*LimitForRegisterSize=*/false)) { 10532 // Success start over because instructions might have been changed. 10533 Changed = true; 10534 } else if (LimitForRegisterSize) { 10535 // Try to vectorize using small vectors. 10536 for (auto *It = Candidates.begin(), *End = Candidates.end(); 10537 It != End;) { 10538 auto *SameTypeIt = It; 10539 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) 10540 ++SameTypeIt; 10541 unsigned NumElts = (SameTypeIt - It); 10542 if (NumElts > 1 && TryToVectorizeHelper(makeArrayRef(It, NumElts), 10543 /*LimitForRegisterSize=*/false)) 10544 Changed = true; 10545 It = SameTypeIt; 10546 } 10547 } 10548 Candidates.clear(); 10549 } 10550 10551 // Start over at the next instruction of a different type (or the end). 10552 IncIt = SameTypeIt; 10553 } 10554 return Changed; 10555 } 10556 10557 /// Compare two cmp instructions. If IsCompatibility is true, function returns 10558 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding 10559 /// operands. If IsCompatibility is false, function implements strict weak 10560 /// ordering relation between two cmp instructions, returning true if the first 10561 /// instruction is "less" than the second, i.e. its predicate is less than the 10562 /// predicate of the second or the operands IDs are less than the operands IDs 10563 /// of the second cmp instruction. 10564 template <bool IsCompatibility> 10565 static bool compareCmp(Value *V, Value *V2, 10566 function_ref<bool(Instruction *)> IsDeleted) { 10567 auto *CI1 = cast<CmpInst>(V); 10568 auto *CI2 = cast<CmpInst>(V2); 10569 if (IsDeleted(CI2) || !isValidElementType(CI2->getType())) 10570 return false; 10571 if (CI1->getOperand(0)->getType()->getTypeID() < 10572 CI2->getOperand(0)->getType()->getTypeID()) 10573 return !IsCompatibility; 10574 if (CI1->getOperand(0)->getType()->getTypeID() > 10575 CI2->getOperand(0)->getType()->getTypeID()) 10576 return false; 10577 CmpInst::Predicate Pred1 = CI1->getPredicate(); 10578 CmpInst::Predicate Pred2 = CI2->getPredicate(); 10579 CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1); 10580 CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2); 10581 CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1); 10582 CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2); 10583 if (BasePred1 < BasePred2) 10584 return !IsCompatibility; 10585 if (BasePred1 > BasePred2) 10586 return false; 10587 // Compare operands. 10588 bool LEPreds = Pred1 <= Pred2; 10589 bool GEPreds = Pred1 >= Pred2; 10590 for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) { 10591 auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1); 10592 auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1); 10593 if (Op1->getValueID() < Op2->getValueID()) 10594 return !IsCompatibility; 10595 if (Op1->getValueID() > Op2->getValueID()) 10596 return false; 10597 if (auto *I1 = dyn_cast<Instruction>(Op1)) 10598 if (auto *I2 = dyn_cast<Instruction>(Op2)) { 10599 if (I1->getParent() != I2->getParent()) 10600 return false; 10601 InstructionsState S = getSameOpcode({I1, I2}); 10602 if (S.getOpcode()) 10603 continue; 10604 return false; 10605 } 10606 } 10607 return IsCompatibility; 10608 } 10609 10610 bool SLPVectorizerPass::vectorizeSimpleInstructions( 10611 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 10612 bool AtTerminator) { 10613 bool OpsChanged = false; 10614 SmallVector<Instruction *, 4> PostponedCmps; 10615 for (auto *I : reverse(Instructions)) { 10616 if (R.isDeleted(I)) 10617 continue; 10618 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 10619 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 10620 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 10621 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 10622 else if (isa<CmpInst>(I)) 10623 PostponedCmps.push_back(I); 10624 } 10625 if (AtTerminator) { 10626 // Try to find reductions first. 10627 for (Instruction *I : PostponedCmps) { 10628 if (R.isDeleted(I)) 10629 continue; 10630 for (Value *Op : I->operands()) 10631 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 10632 } 10633 // Try to vectorize operands as vector bundles. 10634 for (Instruction *I : PostponedCmps) { 10635 if (R.isDeleted(I)) 10636 continue; 10637 OpsChanged |= tryToVectorize(I, R); 10638 } 10639 // Try to vectorize list of compares. 10640 // Sort by type, compare predicate, etc. 10641 auto &&CompareSorter = [&R](Value *V, Value *V2) { 10642 return compareCmp<false>(V, V2, 10643 [&R](Instruction *I) { return R.isDeleted(I); }); 10644 }; 10645 10646 auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) { 10647 if (V1 == V2) 10648 return true; 10649 return compareCmp<true>(V1, V2, 10650 [&R](Instruction *I) { return R.isDeleted(I); }); 10651 }; 10652 auto Limit = [&R](Value *V) { 10653 unsigned EltSize = R.getVectorElementSize(V); 10654 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10655 }; 10656 10657 SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end()); 10658 OpsChanged |= tryToVectorizeSequence<Value>( 10659 Vals, Limit, CompareSorter, AreCompatibleCompares, 10660 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10661 // Exclude possible reductions from other blocks. 10662 bool ArePossiblyReducedInOtherBlock = 10663 any_of(Candidates, [](Value *V) { 10664 return any_of(V->users(), [V](User *U) { 10665 return isa<SelectInst>(U) && 10666 cast<SelectInst>(U)->getParent() != 10667 cast<Instruction>(V)->getParent(); 10668 }); 10669 }); 10670 if (ArePossiblyReducedInOtherBlock) 10671 return false; 10672 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10673 }, 10674 /*LimitForRegisterSize=*/true); 10675 Instructions.clear(); 10676 } else { 10677 // Insert in reverse order since the PostponedCmps vector was filled in 10678 // reverse order. 10679 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 10680 } 10681 return OpsChanged; 10682 } 10683 10684 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 10685 bool Changed = false; 10686 SmallVector<Value *, 4> Incoming; 10687 SmallPtrSet<Value *, 16> VisitedInstrs; 10688 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 10689 // node. Allows better to identify the chains that can be vectorized in the 10690 // better way. 10691 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 10692 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { 10693 assert(isValidElementType(V1->getType()) && 10694 isValidElementType(V2->getType()) && 10695 "Expected vectorizable types only."); 10696 // It is fine to compare type IDs here, since we expect only vectorizable 10697 // types, like ints, floats and pointers, we don't care about other type. 10698 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 10699 return true; 10700 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 10701 return false; 10702 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10703 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10704 if (Opcodes1.size() < Opcodes2.size()) 10705 return true; 10706 if (Opcodes1.size() > Opcodes2.size()) 10707 return false; 10708 Optional<bool> ConstOrder; 10709 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10710 // Undefs are compatible with any other value. 10711 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) { 10712 if (!ConstOrder) 10713 ConstOrder = 10714 !isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]); 10715 continue; 10716 } 10717 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10718 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10719 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 10720 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 10721 if (!NodeI1) 10722 return NodeI2 != nullptr; 10723 if (!NodeI2) 10724 return false; 10725 assert((NodeI1 == NodeI2) == 10726 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10727 "Different nodes should have different DFS numbers"); 10728 if (NodeI1 != NodeI2) 10729 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10730 InstructionsState S = getSameOpcode({I1, I2}); 10731 if (S.getOpcode()) 10732 continue; 10733 return I1->getOpcode() < I2->getOpcode(); 10734 } 10735 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) { 10736 if (!ConstOrder) 10737 ConstOrder = Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID(); 10738 continue; 10739 } 10740 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 10741 return true; 10742 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 10743 return false; 10744 } 10745 return ConstOrder && *ConstOrder; 10746 }; 10747 auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 10748 if (V1 == V2) 10749 return true; 10750 if (V1->getType() != V2->getType()) 10751 return false; 10752 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10753 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10754 if (Opcodes1.size() != Opcodes2.size()) 10755 return false; 10756 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10757 // Undefs are compatible with any other value. 10758 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 10759 continue; 10760 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10761 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10762 if (I1->getParent() != I2->getParent()) 10763 return false; 10764 InstructionsState S = getSameOpcode({I1, I2}); 10765 if (S.getOpcode()) 10766 continue; 10767 return false; 10768 } 10769 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 10770 continue; 10771 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 10772 return false; 10773 } 10774 return true; 10775 }; 10776 auto Limit = [&R](Value *V) { 10777 unsigned EltSize = R.getVectorElementSize(V); 10778 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10779 }; 10780 10781 bool HaveVectorizedPhiNodes = false; 10782 do { 10783 // Collect the incoming values from the PHIs. 10784 Incoming.clear(); 10785 for (Instruction &I : *BB) { 10786 PHINode *P = dyn_cast<PHINode>(&I); 10787 if (!P) 10788 break; 10789 10790 // No need to analyze deleted, vectorized and non-vectorizable 10791 // instructions. 10792 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 10793 isValidElementType(P->getType())) 10794 Incoming.push_back(P); 10795 } 10796 10797 // Find the corresponding non-phi nodes for better matching when trying to 10798 // build the tree. 10799 for (Value *V : Incoming) { 10800 SmallVectorImpl<Value *> &Opcodes = 10801 PHIToOpcodes.try_emplace(V).first->getSecond(); 10802 if (!Opcodes.empty()) 10803 continue; 10804 SmallVector<Value *, 4> Nodes(1, V); 10805 SmallPtrSet<Value *, 4> Visited; 10806 while (!Nodes.empty()) { 10807 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 10808 if (!Visited.insert(PHI).second) 10809 continue; 10810 for (Value *V : PHI->incoming_values()) { 10811 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 10812 Nodes.push_back(PHI1); 10813 continue; 10814 } 10815 Opcodes.emplace_back(V); 10816 } 10817 } 10818 } 10819 10820 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( 10821 Incoming, Limit, PHICompare, AreCompatiblePHIs, 10822 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10823 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10824 }, 10825 /*LimitForRegisterSize=*/true); 10826 Changed |= HaveVectorizedPhiNodes; 10827 VisitedInstrs.insert(Incoming.begin(), Incoming.end()); 10828 } while (HaveVectorizedPhiNodes); 10829 10830 VisitedInstrs.clear(); 10831 10832 SmallVector<Instruction *, 8> PostProcessInstructions; 10833 SmallDenseSet<Instruction *, 4> KeyNodes; 10834 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 10835 // Skip instructions with scalable type. The num of elements is unknown at 10836 // compile-time for scalable type. 10837 if (isa<ScalableVectorType>(it->getType())) 10838 continue; 10839 10840 // Skip instructions marked for the deletion. 10841 if (R.isDeleted(&*it)) 10842 continue; 10843 // We may go through BB multiple times so skip the one we have checked. 10844 if (!VisitedInstrs.insert(&*it).second) { 10845 if (it->use_empty() && KeyNodes.contains(&*it) && 10846 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10847 it->isTerminator())) { 10848 // We would like to start over since some instructions are deleted 10849 // and the iterator may become invalid value. 10850 Changed = true; 10851 it = BB->begin(); 10852 e = BB->end(); 10853 } 10854 continue; 10855 } 10856 10857 if (isa<DbgInfoIntrinsic>(it)) 10858 continue; 10859 10860 // Try to vectorize reductions that use PHINodes. 10861 if (PHINode *P = dyn_cast<PHINode>(it)) { 10862 // Check that the PHI is a reduction PHI. 10863 if (P->getNumIncomingValues() == 2) { 10864 // Try to match and vectorize a horizontal reduction. 10865 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 10866 TTI)) { 10867 Changed = true; 10868 it = BB->begin(); 10869 e = BB->end(); 10870 continue; 10871 } 10872 } 10873 // Try to vectorize the incoming values of the PHI, to catch reductions 10874 // that feed into PHIs. 10875 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 10876 // Skip if the incoming block is the current BB for now. Also, bypass 10877 // unreachable IR for efficiency and to avoid crashing. 10878 // TODO: Collect the skipped incoming values and try to vectorize them 10879 // after processing BB. 10880 if (BB == P->getIncomingBlock(I) || 10881 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 10882 continue; 10883 10884 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 10885 P->getIncomingBlock(I), R, TTI); 10886 } 10887 continue; 10888 } 10889 10890 // Ran into an instruction without users, like terminator, or function call 10891 // with ignored return value, store. Ignore unused instructions (basing on 10892 // instruction type, except for CallInst and InvokeInst). 10893 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 10894 isa<InvokeInst>(it))) { 10895 KeyNodes.insert(&*it); 10896 bool OpsChanged = false; 10897 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 10898 for (auto *V : it->operand_values()) { 10899 // Try to match and vectorize a horizontal reduction. 10900 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 10901 } 10902 } 10903 // Start vectorization of post-process list of instructions from the 10904 // top-tree instructions to try to vectorize as many instructions as 10905 // possible. 10906 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10907 it->isTerminator()); 10908 if (OpsChanged) { 10909 // We would like to start over since some instructions are deleted 10910 // and the iterator may become invalid value. 10911 Changed = true; 10912 it = BB->begin(); 10913 e = BB->end(); 10914 continue; 10915 } 10916 } 10917 10918 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 10919 isa<InsertValueInst>(it)) 10920 PostProcessInstructions.push_back(&*it); 10921 } 10922 10923 return Changed; 10924 } 10925 10926 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 10927 auto Changed = false; 10928 for (auto &Entry : GEPs) { 10929 // If the getelementptr list has fewer than two elements, there's nothing 10930 // to do. 10931 if (Entry.second.size() < 2) 10932 continue; 10933 10934 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 10935 << Entry.second.size() << ".\n"); 10936 10937 // Process the GEP list in chunks suitable for the target's supported 10938 // vector size. If a vector register can't hold 1 element, we are done. We 10939 // are trying to vectorize the index computations, so the maximum number of 10940 // elements is based on the size of the index expression, rather than the 10941 // size of the GEP itself (the target's pointer size). 10942 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 10943 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 10944 if (MaxVecRegSize < EltSize) 10945 continue; 10946 10947 unsigned MaxElts = MaxVecRegSize / EltSize; 10948 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 10949 auto Len = std::min<unsigned>(BE - BI, MaxElts); 10950 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 10951 10952 // Initialize a set a candidate getelementptrs. Note that we use a 10953 // SetVector here to preserve program order. If the index computations 10954 // are vectorizable and begin with loads, we want to minimize the chance 10955 // of having to reorder them later. 10956 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 10957 10958 // Some of the candidates may have already been vectorized after we 10959 // initially collected them. If so, they are marked as deleted, so remove 10960 // them from the set of candidates. 10961 Candidates.remove_if( 10962 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 10963 10964 // Remove from the set of candidates all pairs of getelementptrs with 10965 // constant differences. Such getelementptrs are likely not good 10966 // candidates for vectorization in a bottom-up phase since one can be 10967 // computed from the other. We also ensure all candidate getelementptr 10968 // indices are unique. 10969 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 10970 auto *GEPI = GEPList[I]; 10971 if (!Candidates.count(GEPI)) 10972 continue; 10973 auto *SCEVI = SE->getSCEV(GEPList[I]); 10974 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 10975 auto *GEPJ = GEPList[J]; 10976 auto *SCEVJ = SE->getSCEV(GEPList[J]); 10977 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 10978 Candidates.remove(GEPI); 10979 Candidates.remove(GEPJ); 10980 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 10981 Candidates.remove(GEPJ); 10982 } 10983 } 10984 } 10985 10986 // We break out of the above computation as soon as we know there are 10987 // fewer than two candidates remaining. 10988 if (Candidates.size() < 2) 10989 continue; 10990 10991 // Add the single, non-constant index of each candidate to the bundle. We 10992 // ensured the indices met these constraints when we originally collected 10993 // the getelementptrs. 10994 SmallVector<Value *, 16> Bundle(Candidates.size()); 10995 auto BundleIndex = 0u; 10996 for (auto *V : Candidates) { 10997 auto *GEP = cast<GetElementPtrInst>(V); 10998 auto *GEPIdx = GEP->idx_begin()->get(); 10999 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 11000 Bundle[BundleIndex++] = GEPIdx; 11001 } 11002 11003 // Try and vectorize the indices. We are currently only interested in 11004 // gather-like cases of the form: 11005 // 11006 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 11007 // 11008 // where the loads of "a", the loads of "b", and the subtractions can be 11009 // performed in parallel. It's likely that detecting this pattern in a 11010 // bottom-up phase will be simpler and less costly than building a 11011 // full-blown top-down phase beginning at the consecutive loads. 11012 Changed |= tryToVectorizeList(Bundle, R); 11013 } 11014 } 11015 return Changed; 11016 } 11017 11018 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 11019 bool Changed = false; 11020 // Sort by type, base pointers and values operand. Value operands must be 11021 // compatible (have the same opcode, same parent), otherwise it is 11022 // definitely not profitable to try to vectorize them. 11023 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 11024 if (V->getPointerOperandType()->getTypeID() < 11025 V2->getPointerOperandType()->getTypeID()) 11026 return true; 11027 if (V->getPointerOperandType()->getTypeID() > 11028 V2->getPointerOperandType()->getTypeID()) 11029 return false; 11030 // UndefValues are compatible with all other values. 11031 if (isa<UndefValue>(V->getValueOperand()) || 11032 isa<UndefValue>(V2->getValueOperand())) 11033 return false; 11034 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 11035 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 11036 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 11037 DT->getNode(I1->getParent()); 11038 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 11039 DT->getNode(I2->getParent()); 11040 assert(NodeI1 && "Should only process reachable instructions"); 11041 assert(NodeI1 && "Should only process reachable instructions"); 11042 assert((NodeI1 == NodeI2) == 11043 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 11044 "Different nodes should have different DFS numbers"); 11045 if (NodeI1 != NodeI2) 11046 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 11047 InstructionsState S = getSameOpcode({I1, I2}); 11048 if (S.getOpcode()) 11049 return false; 11050 return I1->getOpcode() < I2->getOpcode(); 11051 } 11052 if (isa<Constant>(V->getValueOperand()) && 11053 isa<Constant>(V2->getValueOperand())) 11054 return false; 11055 return V->getValueOperand()->getValueID() < 11056 V2->getValueOperand()->getValueID(); 11057 }; 11058 11059 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 11060 if (V1 == V2) 11061 return true; 11062 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 11063 return false; 11064 // Undefs are compatible with any other value. 11065 if (isa<UndefValue>(V1->getValueOperand()) || 11066 isa<UndefValue>(V2->getValueOperand())) 11067 return true; 11068 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 11069 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 11070 if (I1->getParent() != I2->getParent()) 11071 return false; 11072 InstructionsState S = getSameOpcode({I1, I2}); 11073 return S.getOpcode() > 0; 11074 } 11075 if (isa<Constant>(V1->getValueOperand()) && 11076 isa<Constant>(V2->getValueOperand())) 11077 return true; 11078 return V1->getValueOperand()->getValueID() == 11079 V2->getValueOperand()->getValueID(); 11080 }; 11081 auto Limit = [&R, this](StoreInst *SI) { 11082 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 11083 return R.getMinVF(EltSize); 11084 }; 11085 11086 // Attempt to sort and vectorize each of the store-groups. 11087 for (auto &Pair : Stores) { 11088 if (Pair.second.size() < 2) 11089 continue; 11090 11091 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 11092 << Pair.second.size() << ".\n"); 11093 11094 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) 11095 continue; 11096 11097 Changed |= tryToVectorizeSequence<StoreInst>( 11098 Pair.second, Limit, StoreSorter, AreCompatibleStores, 11099 [this, &R](ArrayRef<StoreInst *> Candidates, bool) { 11100 return vectorizeStores(Candidates, R); 11101 }, 11102 /*LimitForRegisterSize=*/false); 11103 } 11104 return Changed; 11105 } 11106 11107 char SLPVectorizer::ID = 0; 11108 11109 static const char lv_name[] = "SLP Vectorizer"; 11110 11111 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 11112 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 11113 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 11114 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 11115 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 11116 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 11117 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 11118 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 11119 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 11120 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 11121 11122 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 11123