1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive
10 // stores that can be put together into vector-stores. Next, it attempts to
11 // construct vectorizable tree using the use-def chains. If a profitable tree
12 // was found, the SLP vectorizer performs vectorization on the tree.
13 //
14 // The pass is inspired by the work described in the paper:
15 //  "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/DenseSet.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/PostOrderIterator.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SetOperations.h"
26 #include "llvm/ADT/SetVector.h"
27 #include "llvm/ADT/SmallBitVector.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/SmallSet.h"
30 #include "llvm/ADT/SmallString.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/ADT/iterator.h"
33 #include "llvm/ADT/iterator_range.h"
34 #include "llvm/Analysis/AliasAnalysis.h"
35 #include "llvm/Analysis/AssumptionCache.h"
36 #include "llvm/Analysis/CodeMetrics.h"
37 #include "llvm/Analysis/DemandedBits.h"
38 #include "llvm/Analysis/GlobalsModRef.h"
39 #include "llvm/Analysis/IVDescriptors.h"
40 #include "llvm/Analysis/LoopAccessAnalysis.h"
41 #include "llvm/Analysis/LoopInfo.h"
42 #include "llvm/Analysis/MemoryLocation.h"
43 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
44 #include "llvm/Analysis/ScalarEvolution.h"
45 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
46 #include "llvm/Analysis/TargetLibraryInfo.h"
47 #include "llvm/Analysis/TargetTransformInfo.h"
48 #include "llvm/Analysis/ValueTracking.h"
49 #include "llvm/Analysis/VectorUtils.h"
50 #include "llvm/IR/Attributes.h"
51 #include "llvm/IR/BasicBlock.h"
52 #include "llvm/IR/Constant.h"
53 #include "llvm/IR/Constants.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/DebugLoc.h"
56 #include "llvm/IR/DerivedTypes.h"
57 #include "llvm/IR/Dominators.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/IRBuilder.h"
60 #include "llvm/IR/InstrTypes.h"
61 #include "llvm/IR/Instruction.h"
62 #include "llvm/IR/Instructions.h"
63 #include "llvm/IR/IntrinsicInst.h"
64 #include "llvm/IR/Intrinsics.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/NoFolder.h"
67 #include "llvm/IR/Operator.h"
68 #include "llvm/IR/PatternMatch.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/IR/Use.h"
71 #include "llvm/IR/User.h"
72 #include "llvm/IR/Value.h"
73 #include "llvm/IR/ValueHandle.h"
74 #include "llvm/IR/Verifier.h"
75 #include "llvm/InitializePasses.h"
76 #include "llvm/Pass.h"
77 #include "llvm/Support/Casting.h"
78 #include "llvm/Support/CommandLine.h"
79 #include "llvm/Support/Compiler.h"
80 #include "llvm/Support/DOTGraphTraits.h"
81 #include "llvm/Support/Debug.h"
82 #include "llvm/Support/ErrorHandling.h"
83 #include "llvm/Support/GraphWriter.h"
84 #include "llvm/Support/InstructionCost.h"
85 #include "llvm/Support/KnownBits.h"
86 #include "llvm/Support/MathExtras.h"
87 #include "llvm/Support/raw_ostream.h"
88 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
89 #include "llvm/Transforms/Utils/LoopUtils.h"
90 #include "llvm/Transforms/Vectorize.h"
91 #include <algorithm>
92 #include <cassert>
93 #include <cstdint>
94 #include <iterator>
95 #include <memory>
96 #include <set>
97 #include <string>
98 #include <tuple>
99 #include <utility>
100 #include <vector>
101 
102 using namespace llvm;
103 using namespace llvm::PatternMatch;
104 using namespace slpvectorizer;
105 
106 #define SV_NAME "slp-vectorizer"
107 #define DEBUG_TYPE "SLP"
108 
109 STATISTIC(NumVectorInstructions, "Number of vector instructions generated");
110 
111 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden,
112                                   cl::desc("Run the SLP vectorization passes"));
113 
114 static cl::opt<int>
115     SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
116                      cl::desc("Only vectorize if you gain more than this "
117                               "number "));
118 
119 static cl::opt<bool>
120 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
121                    cl::desc("Attempt to vectorize horizontal reductions"));
122 
123 static cl::opt<bool> ShouldStartVectorizeHorAtStore(
124     "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
125     cl::desc(
126         "Attempt to vectorize horizontal reductions feeding into a store"));
127 
128 static cl::opt<int>
129 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
130     cl::desc("Attempt to vectorize for this register size in bits"));
131 
132 static cl::opt<unsigned>
133 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden,
134     cl::desc("Maximum SLP vectorization factor (0=unlimited)"));
135 
136 static cl::opt<int>
137 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden,
138     cl::desc("Maximum depth of the lookup for consecutive stores."));
139 
140 /// Limits the size of scheduling regions in a block.
141 /// It avoid long compile times for _very_ large blocks where vector
142 /// instructions are spread over a wide range.
143 /// This limit is way higher than needed by real-world functions.
144 static cl::opt<int>
145 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
146     cl::desc("Limit the size of the SLP scheduling region per block"));
147 
148 static cl::opt<int> MinVectorRegSizeOption(
149     "slp-min-reg-size", cl::init(128), cl::Hidden,
150     cl::desc("Attempt to vectorize for this register size in bits"));
151 
152 static cl::opt<unsigned> RecursionMaxDepth(
153     "slp-recursion-max-depth", cl::init(12), cl::Hidden,
154     cl::desc("Limit the recursion depth when building a vectorizable tree"));
155 
156 static cl::opt<unsigned> MinTreeSize(
157     "slp-min-tree-size", cl::init(3), cl::Hidden,
158     cl::desc("Only vectorize small trees if they are fully vectorizable"));
159 
160 // The maximum depth that the look-ahead score heuristic will explore.
161 // The higher this value, the higher the compilation time overhead.
162 static cl::opt<int> LookAheadMaxDepth(
163     "slp-max-look-ahead-depth", cl::init(2), cl::Hidden,
164     cl::desc("The maximum look-ahead depth for operand reordering scores"));
165 
166 // The Look-ahead heuristic goes through the users of the bundle to calculate
167 // the users cost in getExternalUsesCost(). To avoid compilation time increase
168 // we limit the number of users visited to this value.
169 static cl::opt<unsigned> LookAheadUsersBudget(
170     "slp-look-ahead-users-budget", cl::init(2), cl::Hidden,
171     cl::desc("The maximum number of users to visit while visiting the "
172              "predecessors. This prevents compilation time increase."));
173 
174 static cl::opt<bool>
175     ViewSLPTree("view-slp-tree", cl::Hidden,
176                 cl::desc("Display the SLP trees with Graphviz"));
177 
178 // Limit the number of alias checks. The limit is chosen so that
179 // it has no negative effect on the llvm benchmarks.
180 static const unsigned AliasedCheckLimit = 10;
181 
182 // Another limit for the alias checks: The maximum distance between load/store
183 // instructions where alias checks are done.
184 // This limit is useful for very large basic blocks.
185 static const unsigned MaxMemDepDistance = 160;
186 
187 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
188 /// regions to be handled.
189 static const int MinScheduleRegionSize = 16;
190 
191 /// Predicate for the element types that the SLP vectorizer supports.
192 ///
193 /// The most important thing to filter here are types which are invalid in LLVM
194 /// vectors. We also filter target specific types which have absolutely no
195 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
196 /// avoids spending time checking the cost model and realizing that they will
197 /// be inevitably scalarized.
198 static bool isValidElementType(Type *Ty) {
199   return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
200          !Ty->isPPC_FP128Ty();
201 }
202 
203 /// \returns true if all of the instructions in \p VL are in the same block or
204 /// false otherwise.
205 static bool allSameBlock(ArrayRef<Value *> VL) {
206   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
207   if (!I0)
208     return false;
209   BasicBlock *BB = I0->getParent();
210   for (int I = 1, E = VL.size(); I < E; I++) {
211     auto *II = dyn_cast<Instruction>(VL[I]);
212     if (!II)
213       return false;
214 
215     if (BB != II->getParent())
216       return false;
217   }
218   return true;
219 }
220 
221 /// \returns True if the value is a constant (but not globals/constant
222 /// expressions).
223 static bool isConstant(Value *V) {
224   return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V);
225 }
226 
227 /// \returns True if all of the values in \p VL are constants (but not
228 /// globals/constant expressions).
229 static bool allConstant(ArrayRef<Value *> VL) {
230   // Constant expressions and globals can't be vectorized like normal integer/FP
231   // constants.
232   return all_of(VL, isConstant);
233 }
234 
235 /// \returns True if all of the values in \p VL are identical.
236 static bool isSplat(ArrayRef<Value *> VL) {
237   for (unsigned i = 1, e = VL.size(); i < e; ++i)
238     if (VL[i] != VL[0])
239       return false;
240   return true;
241 }
242 
243 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator.
244 static bool isCommutative(Instruction *I) {
245   if (auto *Cmp = dyn_cast<CmpInst>(I))
246     return Cmp->isCommutative();
247   if (auto *BO = dyn_cast<BinaryOperator>(I))
248     return BO->isCommutative();
249   // TODO: This should check for generic Instruction::isCommutative(), but
250   //       we need to confirm that the caller code correctly handles Intrinsics
251   //       for example (does not have 2 operands).
252   return false;
253 }
254 
255 /// Checks if the vector of instructions can be represented as a shuffle, like:
256 /// %x0 = extractelement <4 x i8> %x, i32 0
257 /// %x3 = extractelement <4 x i8> %x, i32 3
258 /// %y1 = extractelement <4 x i8> %y, i32 1
259 /// %y2 = extractelement <4 x i8> %y, i32 2
260 /// %x0x0 = mul i8 %x0, %x0
261 /// %x3x3 = mul i8 %x3, %x3
262 /// %y1y1 = mul i8 %y1, %y1
263 /// %y2y2 = mul i8 %y2, %y2
264 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0
265 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1
266 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2
267 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3
268 /// ret <4 x i8> %ins4
269 /// can be transformed into:
270 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5,
271 ///                                                         i32 6>
272 /// %2 = mul <4 x i8> %1, %1
273 /// ret <4 x i8> %2
274 /// We convert this initially to something like:
275 /// %x0 = extractelement <4 x i8> %x, i32 0
276 /// %x3 = extractelement <4 x i8> %x, i32 3
277 /// %y1 = extractelement <4 x i8> %y, i32 1
278 /// %y2 = extractelement <4 x i8> %y, i32 2
279 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0
280 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1
281 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2
282 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3
283 /// %5 = mul <4 x i8> %4, %4
284 /// %6 = extractelement <4 x i8> %5, i32 0
285 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0
286 /// %7 = extractelement <4 x i8> %5, i32 1
287 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1
288 /// %8 = extractelement <4 x i8> %5, i32 2
289 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2
290 /// %9 = extractelement <4 x i8> %5, i32 3
291 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3
292 /// ret <4 x i8> %ins4
293 /// InstCombiner transforms this into a shuffle and vector mul
294 /// Mask will return the Shuffle Mask equivalent to the extracted elements.
295 /// TODO: Can we split off and reuse the shuffle mask detection from
296 /// TargetTransformInfo::getInstructionThroughput?
297 static Optional<TargetTransformInfo::ShuffleKind>
298 isShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) {
299   auto *EI0 = cast<ExtractElementInst>(VL[0]);
300   unsigned Size =
301       cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements();
302   Value *Vec1 = nullptr;
303   Value *Vec2 = nullptr;
304   enum ShuffleMode { Unknown, Select, Permute };
305   ShuffleMode CommonShuffleMode = Unknown;
306   for (unsigned I = 0, E = VL.size(); I < E; ++I) {
307     auto *EI = cast<ExtractElementInst>(VL[I]);
308     auto *Vec = EI->getVectorOperand();
309     // All vector operands must have the same number of vector elements.
310     if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size)
311       return None;
312     auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand());
313     if (!Idx)
314       return None;
315     // Undefined behavior if Idx is negative or >= Size.
316     if (Idx->getValue().uge(Size)) {
317       Mask.push_back(UndefMaskElem);
318       continue;
319     }
320     unsigned IntIdx = Idx->getValue().getZExtValue();
321     Mask.push_back(IntIdx);
322     // We can extractelement from undef or poison vector.
323     if (isa<UndefValue>(Vec))
324       continue;
325     // For correct shuffling we have to have at most 2 different vector operands
326     // in all extractelement instructions.
327     if (!Vec1 || Vec1 == Vec)
328       Vec1 = Vec;
329     else if (!Vec2 || Vec2 == Vec)
330       Vec2 = Vec;
331     else
332       return None;
333     if (CommonShuffleMode == Permute)
334       continue;
335     // If the extract index is not the same as the operation number, it is a
336     // permutation.
337     if (IntIdx != I) {
338       CommonShuffleMode = Permute;
339       continue;
340     }
341     CommonShuffleMode = Select;
342   }
343   // If we're not crossing lanes in different vectors, consider it as blending.
344   if (CommonShuffleMode == Select && Vec2)
345     return TargetTransformInfo::SK_Select;
346   // If Vec2 was never used, we have a permutation of a single vector, otherwise
347   // we have permutation of 2 vectors.
348   return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc
349               : TargetTransformInfo::SK_PermuteSingleSrc;
350 }
351 
352 namespace {
353 
354 /// Main data required for vectorization of instructions.
355 struct InstructionsState {
356   /// The very first instruction in the list with the main opcode.
357   Value *OpValue = nullptr;
358 
359   /// The main/alternate instruction.
360   Instruction *MainOp = nullptr;
361   Instruction *AltOp = nullptr;
362 
363   /// The main/alternate opcodes for the list of instructions.
364   unsigned getOpcode() const {
365     return MainOp ? MainOp->getOpcode() : 0;
366   }
367 
368   unsigned getAltOpcode() const {
369     return AltOp ? AltOp->getOpcode() : 0;
370   }
371 
372   /// Some of the instructions in the list have alternate opcodes.
373   bool isAltShuffle() const { return getOpcode() != getAltOpcode(); }
374 
375   bool isOpcodeOrAlt(Instruction *I) const {
376     unsigned CheckedOpcode = I->getOpcode();
377     return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode;
378   }
379 
380   InstructionsState() = delete;
381   InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp)
382       : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {}
383 };
384 
385 } // end anonymous namespace
386 
387 /// Chooses the correct key for scheduling data. If \p Op has the same (or
388 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p
389 /// OpValue.
390 static Value *isOneOf(const InstructionsState &S, Value *Op) {
391   auto *I = dyn_cast<Instruction>(Op);
392   if (I && S.isOpcodeOrAlt(I))
393     return Op;
394   return S.OpValue;
395 }
396 
397 /// \returns true if \p Opcode is allowed as part of of the main/alternate
398 /// instruction for SLP vectorization.
399 ///
400 /// Example of unsupported opcode is SDIV that can potentially cause UB if the
401 /// "shuffled out" lane would result in division by zero.
402 static bool isValidForAlternation(unsigned Opcode) {
403   if (Instruction::isIntDivRem(Opcode))
404     return false;
405 
406   return true;
407 }
408 
409 /// \returns analysis of the Instructions in \p VL described in
410 /// InstructionsState, the Opcode that we suppose the whole list
411 /// could be vectorized even if its structure is diverse.
412 static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
413                                        unsigned BaseIndex = 0) {
414   // Make sure these are all Instructions.
415   if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); }))
416     return InstructionsState(VL[BaseIndex], nullptr, nullptr);
417 
418   bool IsCastOp = isa<CastInst>(VL[BaseIndex]);
419   bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]);
420   unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode();
421   unsigned AltOpcode = Opcode;
422   unsigned AltIndex = BaseIndex;
423 
424   // Check for one alternate opcode from another BinaryOperator.
425   // TODO - generalize to support all operators (types, calls etc.).
426   for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) {
427     unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode();
428     if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) {
429       if (InstOpcode == Opcode || InstOpcode == AltOpcode)
430         continue;
431       if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) &&
432           isValidForAlternation(Opcode)) {
433         AltOpcode = InstOpcode;
434         AltIndex = Cnt;
435         continue;
436       }
437     } else if (IsCastOp && isa<CastInst>(VL[Cnt])) {
438       Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType();
439       Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType();
440       if (Ty0 == Ty1) {
441         if (InstOpcode == Opcode || InstOpcode == AltOpcode)
442           continue;
443         if (Opcode == AltOpcode) {
444           assert(isValidForAlternation(Opcode) &&
445                  isValidForAlternation(InstOpcode) &&
446                  "Cast isn't safe for alternation, logic needs to be updated!");
447           AltOpcode = InstOpcode;
448           AltIndex = Cnt;
449           continue;
450         }
451       }
452     } else if (InstOpcode == Opcode || InstOpcode == AltOpcode)
453       continue;
454     return InstructionsState(VL[BaseIndex], nullptr, nullptr);
455   }
456 
457   return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]),
458                            cast<Instruction>(VL[AltIndex]));
459 }
460 
461 /// \returns true if all of the values in \p VL have the same type or false
462 /// otherwise.
463 static bool allSameType(ArrayRef<Value *> VL) {
464   Type *Ty = VL[0]->getType();
465   for (int i = 1, e = VL.size(); i < e; i++)
466     if (VL[i]->getType() != Ty)
467       return false;
468 
469   return true;
470 }
471 
472 /// \returns True if Extract{Value,Element} instruction extracts element Idx.
473 static Optional<unsigned> getExtractIndex(Instruction *E) {
474   unsigned Opcode = E->getOpcode();
475   assert((Opcode == Instruction::ExtractElement ||
476           Opcode == Instruction::ExtractValue) &&
477          "Expected extractelement or extractvalue instruction.");
478   if (Opcode == Instruction::ExtractElement) {
479     auto *CI = dyn_cast<ConstantInt>(E->getOperand(1));
480     if (!CI)
481       return None;
482     return CI->getZExtValue();
483   }
484   ExtractValueInst *EI = cast<ExtractValueInst>(E);
485   if (EI->getNumIndices() != 1)
486     return None;
487   return *EI->idx_begin();
488 }
489 
490 /// \returns True if in-tree use also needs extract. This refers to
491 /// possible scalar operand in vectorized instruction.
492 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
493                                     TargetLibraryInfo *TLI) {
494   unsigned Opcode = UserInst->getOpcode();
495   switch (Opcode) {
496   case Instruction::Load: {
497     LoadInst *LI = cast<LoadInst>(UserInst);
498     return (LI->getPointerOperand() == Scalar);
499   }
500   case Instruction::Store: {
501     StoreInst *SI = cast<StoreInst>(UserInst);
502     return (SI->getPointerOperand() == Scalar);
503   }
504   case Instruction::Call: {
505     CallInst *CI = cast<CallInst>(UserInst);
506     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
507     for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
508       if (hasVectorInstrinsicScalarOpd(ID, i))
509         return (CI->getArgOperand(i) == Scalar);
510     }
511     LLVM_FALLTHROUGH;
512   }
513   default:
514     return false;
515   }
516 }
517 
518 /// \returns the AA location that is being access by the instruction.
519 static MemoryLocation getLocation(Instruction *I, AAResults *AA) {
520   if (StoreInst *SI = dyn_cast<StoreInst>(I))
521     return MemoryLocation::get(SI);
522   if (LoadInst *LI = dyn_cast<LoadInst>(I))
523     return MemoryLocation::get(LI);
524   return MemoryLocation();
525 }
526 
527 /// \returns True if the instruction is not a volatile or atomic load/store.
528 static bool isSimple(Instruction *I) {
529   if (LoadInst *LI = dyn_cast<LoadInst>(I))
530     return LI->isSimple();
531   if (StoreInst *SI = dyn_cast<StoreInst>(I))
532     return SI->isSimple();
533   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
534     return !MI->isVolatile();
535   return true;
536 }
537 
538 namespace llvm {
539 
540 static void inversePermutation(ArrayRef<unsigned> Indices,
541                                SmallVectorImpl<int> &Mask) {
542   Mask.clear();
543   const unsigned E = Indices.size();
544   Mask.resize(E, E + 1);
545   for (unsigned I = 0; I < E; ++I)
546     Mask[Indices[I]] = I;
547 }
548 
549 /// \returns inserting index of InsertElement or InsertValue instruction,
550 /// using Offset as base offset for index.
551 static Optional<int> getInsertIndex(Value *InsertInst, unsigned Offset) {
552   int Index = Offset;
553   if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) {
554     if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) {
555       auto *VT = cast<FixedVectorType>(IE->getType());
556       if (CI->getValue().uge(VT->getNumElements()))
557         return UndefMaskElem;
558       Index *= VT->getNumElements();
559       Index += CI->getZExtValue();
560       return Index;
561     }
562     if (isa<UndefValue>(IE->getOperand(2)))
563       return UndefMaskElem;
564     return None;
565   }
566 
567   auto *IV = cast<InsertValueInst>(InsertInst);
568   Type *CurrentType = IV->getType();
569   for (unsigned I : IV->indices()) {
570     if (auto *ST = dyn_cast<StructType>(CurrentType)) {
571       Index *= ST->getNumElements();
572       CurrentType = ST->getElementType(I);
573     } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) {
574       Index *= AT->getNumElements();
575       CurrentType = AT->getElementType();
576     } else {
577       return None;
578     }
579     Index += I;
580   }
581   return Index;
582 }
583 
584 namespace slpvectorizer {
585 
586 /// Bottom Up SLP Vectorizer.
587 class BoUpSLP {
588   struct TreeEntry;
589   struct ScheduleData;
590 
591 public:
592   using ValueList = SmallVector<Value *, 8>;
593   using InstrList = SmallVector<Instruction *, 16>;
594   using ValueSet = SmallPtrSet<Value *, 16>;
595   using StoreList = SmallVector<StoreInst *, 8>;
596   using ExtraValueToDebugLocsMap =
597       MapVector<Value *, SmallVector<Instruction *, 2>>;
598   using OrdersType = SmallVector<unsigned, 4>;
599 
600   BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
601           TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li,
602           DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB,
603           const DataLayout *DL, OptimizationRemarkEmitter *ORE)
604       : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC),
605         DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) {
606     CodeMetrics::collectEphemeralValues(F, AC, EphValues);
607     // Use the vector register size specified by the target unless overridden
608     // by a command-line option.
609     // TODO: It would be better to limit the vectorization factor based on
610     //       data type rather than just register size. For example, x86 AVX has
611     //       256-bit registers, but it does not support integer operations
612     //       at that width (that requires AVX2).
613     if (MaxVectorRegSizeOption.getNumOccurrences())
614       MaxVecRegSize = MaxVectorRegSizeOption;
615     else
616       MaxVecRegSize =
617           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
618               .getFixedSize();
619 
620     if (MinVectorRegSizeOption.getNumOccurrences())
621       MinVecRegSize = MinVectorRegSizeOption;
622     else
623       MinVecRegSize = TTI->getMinVectorRegisterBitWidth();
624   }
625 
626   /// Vectorize the tree that starts with the elements in \p VL.
627   /// Returns the vectorized root.
628   Value *vectorizeTree();
629 
630   /// Vectorize the tree but with the list of externally used values \p
631   /// ExternallyUsedValues. Values in this MapVector can be replaced but the
632   /// generated extractvalue instructions.
633   Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues);
634 
635   /// \returns the cost incurred by unwanted spills and fills, caused by
636   /// holding live values over call sites.
637   InstructionCost getSpillCost() const;
638 
639   /// \returns the vectorization cost of the subtree that starts at \p VL.
640   /// A negative number means that this is profitable.
641   InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None);
642 
643   /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
644   /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
645   void buildTree(ArrayRef<Value *> Roots,
646                  ArrayRef<Value *> UserIgnoreLst = None);
647 
648   /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
649   /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking
650   /// into account (and updating it, if required) list of externally used
651   /// values stored in \p ExternallyUsedValues.
652   void buildTree(ArrayRef<Value *> Roots,
653                  ExtraValueToDebugLocsMap &ExternallyUsedValues,
654                  ArrayRef<Value *> UserIgnoreLst = None);
655 
656   /// Clear the internal data structures that are created by 'buildTree'.
657   void deleteTree() {
658     VectorizableTree.clear();
659     ScalarToTreeEntry.clear();
660     MustGather.clear();
661     ExternalUses.clear();
662     NumOpsWantToKeepOrder.clear();
663     NumOpsWantToKeepOriginalOrder = 0;
664     for (auto &Iter : BlocksSchedules) {
665       BlockScheduling *BS = Iter.second.get();
666       BS->clear();
667     }
668     MinBWs.clear();
669     InstrElementSize.clear();
670   }
671 
672   unsigned getTreeSize() const { return VectorizableTree.size(); }
673 
674   /// Perform LICM and CSE on the newly generated gather sequences.
675   void optimizeGatherSequence();
676 
677   /// \returns The best order of instructions for vectorization.
678   Optional<ArrayRef<unsigned>> bestOrder() const {
679     assert(llvm::all_of(
680                NumOpsWantToKeepOrder,
681                [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) {
682                  return D.getFirst().size() ==
683                         VectorizableTree[0]->Scalars.size();
684                }) &&
685            "All orders must have the same size as number of instructions in "
686            "tree node.");
687     auto I = std::max_element(
688         NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(),
689         [](const decltype(NumOpsWantToKeepOrder)::value_type &D1,
690            const decltype(NumOpsWantToKeepOrder)::value_type &D2) {
691           return D1.second < D2.second;
692         });
693     if (I == NumOpsWantToKeepOrder.end() ||
694         I->getSecond() <= NumOpsWantToKeepOriginalOrder)
695       return None;
696 
697     return makeArrayRef(I->getFirst());
698   }
699 
700   /// Builds the correct order for root instructions.
701   /// If some leaves have the same instructions to be vectorized, we may
702   /// incorrectly evaluate the best order for the root node (it is built for the
703   /// vector of instructions without repeated instructions and, thus, has less
704   /// elements than the root node). This function builds the correct order for
705   /// the root node.
706   /// For example, if the root node is \<a+b, a+c, a+d, f+e\>, then the leaves
707   /// are \<a, a, a, f\> and \<b, c, d, e\>. When we try to vectorize the first
708   /// leaf, it will be shrink to \<a, b\>. If instructions in this leaf should
709   /// be reordered, the best order will be \<1, 0\>. We need to extend this
710   /// order for the root node. For the root node this order should look like
711   /// \<3, 0, 1, 2\>. This function extends the order for the reused
712   /// instructions.
713   void findRootOrder(OrdersType &Order) {
714     // If the leaf has the same number of instructions to vectorize as the root
715     // - order must be set already.
716     unsigned RootSize = VectorizableTree[0]->Scalars.size();
717     if (Order.size() == RootSize)
718       return;
719     SmallVector<unsigned, 4> RealOrder(Order.size());
720     std::swap(Order, RealOrder);
721     SmallVector<int, 4> Mask;
722     inversePermutation(RealOrder, Mask);
723     Order.assign(Mask.begin(), Mask.end());
724     // The leaf has less number of instructions - need to find the true order of
725     // the root.
726     // Scan the nodes starting from the leaf back to the root.
727     const TreeEntry *PNode = VectorizableTree.back().get();
728     SmallVector<const TreeEntry *, 4> Nodes(1, PNode);
729     SmallPtrSet<const TreeEntry *, 4> Visited;
730     while (!Nodes.empty() && Order.size() != RootSize) {
731       const TreeEntry *PNode = Nodes.pop_back_val();
732       if (!Visited.insert(PNode).second)
733         continue;
734       const TreeEntry &Node = *PNode;
735       for (const EdgeInfo &EI : Node.UserTreeIndices)
736         if (EI.UserTE)
737           Nodes.push_back(EI.UserTE);
738       if (Node.ReuseShuffleIndices.empty())
739         continue;
740       // Build the order for the parent node.
741       OrdersType NewOrder(Node.ReuseShuffleIndices.size(), RootSize);
742       SmallVector<unsigned, 4> OrderCounter(Order.size(), 0);
743       // The algorithm of the order extension is:
744       // 1. Calculate the number of the same instructions for the order.
745       // 2. Calculate the index of the new order: total number of instructions
746       // with order less than the order of the current instruction + reuse
747       // number of the current instruction.
748       // 3. The new order is just the index of the instruction in the original
749       // vector of the instructions.
750       for (unsigned I : Node.ReuseShuffleIndices)
751         ++OrderCounter[Order[I]];
752       SmallVector<unsigned, 4> CurrentCounter(Order.size(), 0);
753       for (unsigned I = 0, E = Node.ReuseShuffleIndices.size(); I < E; ++I) {
754         unsigned ReusedIdx = Node.ReuseShuffleIndices[I];
755         unsigned OrderIdx = Order[ReusedIdx];
756         unsigned NewIdx = 0;
757         for (unsigned J = 0; J < OrderIdx; ++J)
758           NewIdx += OrderCounter[J];
759         NewIdx += CurrentCounter[OrderIdx];
760         ++CurrentCounter[OrderIdx];
761         assert(NewOrder[NewIdx] == RootSize &&
762                "The order index should not be written already.");
763         NewOrder[NewIdx] = I;
764       }
765       std::swap(Order, NewOrder);
766     }
767     assert(Order.size() == RootSize &&
768            "Root node is expected or the size of the order must be the same as "
769            "the number of elements in the root node.");
770     assert(llvm::all_of(Order,
771                         [RootSize](unsigned Val) { return Val != RootSize; }) &&
772            "All indices must be initialized");
773   }
774 
775   /// \return The vector element size in bits to use when vectorizing the
776   /// expression tree ending at \p V. If V is a store, the size is the width of
777   /// the stored value. Otherwise, the size is the width of the largest loaded
778   /// value reaching V. This method is used by the vectorizer to calculate
779   /// vectorization factors.
780   unsigned getVectorElementSize(Value *V);
781 
782   /// Compute the minimum type sizes required to represent the entries in a
783   /// vectorizable tree.
784   void computeMinimumValueSizes();
785 
786   // \returns maximum vector register size as set by TTI or overridden by cl::opt.
787   unsigned getMaxVecRegSize() const {
788     return MaxVecRegSize;
789   }
790 
791   // \returns minimum vector register size as set by cl::opt.
792   unsigned getMinVecRegSize() const {
793     return MinVecRegSize;
794   }
795 
796   unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const {
797     unsigned MaxVF = MaxVFOption.getNumOccurrences() ?
798       MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode);
799     return MaxVF ? MaxVF : UINT_MAX;
800   }
801 
802   /// Check if homogeneous aggregate is isomorphic to some VectorType.
803   /// Accepts homogeneous multidimensional aggregate of scalars/vectors like
804   /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> },
805   /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on.
806   ///
807   /// \returns number of elements in vector if isomorphism exists, 0 otherwise.
808   unsigned canMapToVector(Type *T, const DataLayout &DL) const;
809 
810   /// \returns True if the VectorizableTree is both tiny and not fully
811   /// vectorizable. We do not vectorize such trees.
812   bool isTreeTinyAndNotFullyVectorizable() const;
813 
814   /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values
815   /// can be load combined in the backend. Load combining may not be allowed in
816   /// the IR optimizer, so we do not want to alter the pattern. For example,
817   /// partially transforming a scalar bswap() pattern into vector code is
818   /// effectively impossible for the backend to undo.
819   /// TODO: If load combining is allowed in the IR optimizer, this analysis
820   ///       may not be necessary.
821   bool isLoadCombineReductionCandidate(RecurKind RdxKind) const;
822 
823   /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values
824   /// can be load combined in the backend. Load combining may not be allowed in
825   /// the IR optimizer, so we do not want to alter the pattern. For example,
826   /// partially transforming a scalar bswap() pattern into vector code is
827   /// effectively impossible for the backend to undo.
828   /// TODO: If load combining is allowed in the IR optimizer, this analysis
829   ///       may not be necessary.
830   bool isLoadCombineCandidate() const;
831 
832   OptimizationRemarkEmitter *getORE() { return ORE; }
833 
834   /// This structure holds any data we need about the edges being traversed
835   /// during buildTree_rec(). We keep track of:
836   /// (i) the user TreeEntry index, and
837   /// (ii) the index of the edge.
838   struct EdgeInfo {
839     EdgeInfo() = default;
840     EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx)
841         : UserTE(UserTE), EdgeIdx(EdgeIdx) {}
842     /// The user TreeEntry.
843     TreeEntry *UserTE = nullptr;
844     /// The operand index of the use.
845     unsigned EdgeIdx = UINT_MAX;
846 #ifndef NDEBUG
847     friend inline raw_ostream &operator<<(raw_ostream &OS,
848                                           const BoUpSLP::EdgeInfo &EI) {
849       EI.dump(OS);
850       return OS;
851     }
852     /// Debug print.
853     void dump(raw_ostream &OS) const {
854       OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null")
855          << " EdgeIdx:" << EdgeIdx << "}";
856     }
857     LLVM_DUMP_METHOD void dump() const { dump(dbgs()); }
858 #endif
859   };
860 
861   /// A helper data structure to hold the operands of a vector of instructions.
862   /// This supports a fixed vector length for all operand vectors.
863   class VLOperands {
864     /// For each operand we need (i) the value, and (ii) the opcode that it
865     /// would be attached to if the expression was in a left-linearized form.
866     /// This is required to avoid illegal operand reordering.
867     /// For example:
868     /// \verbatim
869     ///                         0 Op1
870     ///                         |/
871     /// Op1 Op2   Linearized    + Op2
872     ///   \ /     ---------->   |/
873     ///    -                    -
874     ///
875     /// Op1 - Op2            (0 + Op1) - Op2
876     /// \endverbatim
877     ///
878     /// Value Op1 is attached to a '+' operation, and Op2 to a '-'.
879     ///
880     /// Another way to think of this is to track all the operations across the
881     /// path from the operand all the way to the root of the tree and to
882     /// calculate the operation that corresponds to this path. For example, the
883     /// path from Op2 to the root crosses the RHS of the '-', therefore the
884     /// corresponding operation is a '-' (which matches the one in the
885     /// linearized tree, as shown above).
886     ///
887     /// For lack of a better term, we refer to this operation as Accumulated
888     /// Path Operation (APO).
889     struct OperandData {
890       OperandData() = default;
891       OperandData(Value *V, bool APO, bool IsUsed)
892           : V(V), APO(APO), IsUsed(IsUsed) {}
893       /// The operand value.
894       Value *V = nullptr;
895       /// TreeEntries only allow a single opcode, or an alternate sequence of
896       /// them (e.g, +, -). Therefore, we can safely use a boolean value for the
897       /// APO. It is set to 'true' if 'V' is attached to an inverse operation
898       /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise
899       /// (e.g., Add/Mul)
900       bool APO = false;
901       /// Helper data for the reordering function.
902       bool IsUsed = false;
903     };
904 
905     /// During operand reordering, we are trying to select the operand at lane
906     /// that matches best with the operand at the neighboring lane. Our
907     /// selection is based on the type of value we are looking for. For example,
908     /// if the neighboring lane has a load, we need to look for a load that is
909     /// accessing a consecutive address. These strategies are summarized in the
910     /// 'ReorderingMode' enumerator.
911     enum class ReorderingMode {
912       Load,     ///< Matching loads to consecutive memory addresses
913       Opcode,   ///< Matching instructions based on opcode (same or alternate)
914       Constant, ///< Matching constants
915       Splat,    ///< Matching the same instruction multiple times (broadcast)
916       Failed,   ///< We failed to create a vectorizable group
917     };
918 
919     using OperandDataVec = SmallVector<OperandData, 2>;
920 
921     /// A vector of operand vectors.
922     SmallVector<OperandDataVec, 4> OpsVec;
923 
924     const DataLayout &DL;
925     ScalarEvolution &SE;
926     const BoUpSLP &R;
927 
928     /// \returns the operand data at \p OpIdx and \p Lane.
929     OperandData &getData(unsigned OpIdx, unsigned Lane) {
930       return OpsVec[OpIdx][Lane];
931     }
932 
933     /// \returns the operand data at \p OpIdx and \p Lane. Const version.
934     const OperandData &getData(unsigned OpIdx, unsigned Lane) const {
935       return OpsVec[OpIdx][Lane];
936     }
937 
938     /// Clears the used flag for all entries.
939     void clearUsed() {
940       for (unsigned OpIdx = 0, NumOperands = getNumOperands();
941            OpIdx != NumOperands; ++OpIdx)
942         for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
943              ++Lane)
944           OpsVec[OpIdx][Lane].IsUsed = false;
945     }
946 
947     /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2.
948     void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) {
949       std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]);
950     }
951 
952     // The hard-coded scores listed here are not very important. When computing
953     // the scores of matching one sub-tree with another, we are basically
954     // counting the number of values that are matching. So even if all scores
955     // are set to 1, we would still get a decent matching result.
956     // However, sometimes we have to break ties. For example we may have to
957     // choose between matching loads vs matching opcodes. This is what these
958     // scores are helping us with: they provide the order of preference.
959 
960     /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]).
961     static const int ScoreConsecutiveLoads = 3;
962     /// ExtractElementInst from same vector and consecutive indexes.
963     static const int ScoreConsecutiveExtracts = 3;
964     /// Constants.
965     static const int ScoreConstants = 2;
966     /// Instructions with the same opcode.
967     static const int ScoreSameOpcode = 2;
968     /// Instructions with alt opcodes (e.g, add + sub).
969     static const int ScoreAltOpcodes = 1;
970     /// Identical instructions (a.k.a. splat or broadcast).
971     static const int ScoreSplat = 1;
972     /// Matching with an undef is preferable to failing.
973     static const int ScoreUndef = 1;
974     /// Score for failing to find a decent match.
975     static const int ScoreFail = 0;
976     /// User exteranl to the vectorized code.
977     static const int ExternalUseCost = 1;
978     /// The user is internal but in a different lane.
979     static const int UserInDiffLaneCost = ExternalUseCost;
980 
981     /// \returns the score of placing \p V1 and \p V2 in consecutive lanes.
982     static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL,
983                                ScalarEvolution &SE) {
984       auto *LI1 = dyn_cast<LoadInst>(V1);
985       auto *LI2 = dyn_cast<LoadInst>(V2);
986       if (LI1 && LI2) {
987         if (LI1->getParent() != LI2->getParent())
988           return VLOperands::ScoreFail;
989 
990         Optional<int> Dist =
991             getPointersDiff(LI1->getPointerOperand(), LI2->getPointerOperand(),
992                             DL, SE, /*StrictCheck=*/true);
993         return (Dist && *Dist == 1) ? VLOperands::ScoreConsecutiveLoads
994                                     : VLOperands::ScoreFail;
995       }
996 
997       auto *C1 = dyn_cast<Constant>(V1);
998       auto *C2 = dyn_cast<Constant>(V2);
999       if (C1 && C2)
1000         return VLOperands::ScoreConstants;
1001 
1002       // Extracts from consecutive indexes of the same vector better score as
1003       // the extracts could be optimized away.
1004       Value *EV;
1005       ConstantInt *Ex1Idx, *Ex2Idx;
1006       if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) &&
1007           match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) &&
1008           Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue())
1009         return VLOperands::ScoreConsecutiveExtracts;
1010 
1011       auto *I1 = dyn_cast<Instruction>(V1);
1012       auto *I2 = dyn_cast<Instruction>(V2);
1013       if (I1 && I2) {
1014         if (I1 == I2)
1015           return VLOperands::ScoreSplat;
1016         InstructionsState S = getSameOpcode({I1, I2});
1017         // Note: Only consider instructions with <= 2 operands to avoid
1018         // complexity explosion.
1019         if (S.getOpcode() && S.MainOp->getNumOperands() <= 2)
1020           return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes
1021                                   : VLOperands::ScoreSameOpcode;
1022       }
1023 
1024       if (isa<UndefValue>(V2))
1025         return VLOperands::ScoreUndef;
1026 
1027       return VLOperands::ScoreFail;
1028     }
1029 
1030     /// Holds the values and their lane that are taking part in the look-ahead
1031     /// score calculation. This is used in the external uses cost calculation.
1032     SmallDenseMap<Value *, int> InLookAheadValues;
1033 
1034     /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are
1035     /// either external to the vectorized code, or require shuffling.
1036     int getExternalUsesCost(const std::pair<Value *, int> &LHS,
1037                             const std::pair<Value *, int> &RHS) {
1038       int Cost = 0;
1039       std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}};
1040       for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) {
1041         Value *V = Values[Idx].first;
1042         if (isa<Constant>(V)) {
1043           // Since this is a function pass, it doesn't make semantic sense to
1044           // walk the users of a subclass of Constant. The users could be in
1045           // another function, or even another module that happens to be in
1046           // the same LLVMContext.
1047           continue;
1048         }
1049 
1050         // Calculate the absolute lane, using the minimum relative lane of LHS
1051         // and RHS as base and Idx as the offset.
1052         int Ln = std::min(LHS.second, RHS.second) + Idx;
1053         assert(Ln >= 0 && "Bad lane calculation");
1054         unsigned UsersBudget = LookAheadUsersBudget;
1055         for (User *U : V->users()) {
1056           if (const TreeEntry *UserTE = R.getTreeEntry(U)) {
1057             // The user is in the VectorizableTree. Check if we need to insert.
1058             auto It = llvm::find(UserTE->Scalars, U);
1059             assert(It != UserTE->Scalars.end() && "U is in UserTE");
1060             int UserLn = std::distance(UserTE->Scalars.begin(), It);
1061             assert(UserLn >= 0 && "Bad lane");
1062             if (UserLn != Ln)
1063               Cost += UserInDiffLaneCost;
1064           } else {
1065             // Check if the user is in the look-ahead code.
1066             auto It2 = InLookAheadValues.find(U);
1067             if (It2 != InLookAheadValues.end()) {
1068               // The user is in the look-ahead code. Check the lane.
1069               if (It2->second != Ln)
1070                 Cost += UserInDiffLaneCost;
1071             } else {
1072               // The user is neither in SLP tree nor in the look-ahead code.
1073               Cost += ExternalUseCost;
1074             }
1075           }
1076           // Limit the number of visited uses to cap compilation time.
1077           if (--UsersBudget == 0)
1078             break;
1079         }
1080       }
1081       return Cost;
1082     }
1083 
1084     /// Go through the operands of \p LHS and \p RHS recursively until \p
1085     /// MaxLevel, and return the cummulative score. For example:
1086     /// \verbatim
1087     ///  A[0]  B[0]  A[1]  B[1]  C[0] D[0]  B[1] A[1]
1088     ///     \ /         \ /         \ /        \ /
1089     ///      +           +           +          +
1090     ///     G1          G2          G3         G4
1091     /// \endverbatim
1092     /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at
1093     /// each level recursively, accumulating the score. It starts from matching
1094     /// the additions at level 0, then moves on to the loads (level 1). The
1095     /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and
1096     /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while
1097     /// {A[0],C[0]} has a score of VLOperands::ScoreFail.
1098     /// Please note that the order of the operands does not matter, as we
1099     /// evaluate the score of all profitable combinations of operands. In
1100     /// other words the score of G1 and G4 is the same as G1 and G2. This
1101     /// heuristic is based on ideas described in:
1102     ///   Look-ahead SLP: Auto-vectorization in the presence of commutative
1103     ///   operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha,
1104     ///   Luís F. W. Góes
1105     int getScoreAtLevelRec(const std::pair<Value *, int> &LHS,
1106                            const std::pair<Value *, int> &RHS, int CurrLevel,
1107                            int MaxLevel) {
1108 
1109       Value *V1 = LHS.first;
1110       Value *V2 = RHS.first;
1111       // Get the shallow score of V1 and V2.
1112       int ShallowScoreAtThisLevel =
1113           std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) -
1114                                        getExternalUsesCost(LHS, RHS));
1115       int Lane1 = LHS.second;
1116       int Lane2 = RHS.second;
1117 
1118       // If reached MaxLevel,
1119       //  or if V1 and V2 are not instructions,
1120       //  or if they are SPLAT,
1121       //  or if they are not consecutive, early return the current cost.
1122       auto *I1 = dyn_cast<Instruction>(V1);
1123       auto *I2 = dyn_cast<Instruction>(V2);
1124       if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 ||
1125           ShallowScoreAtThisLevel == VLOperands::ScoreFail ||
1126           (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel))
1127         return ShallowScoreAtThisLevel;
1128       assert(I1 && I2 && "Should have early exited.");
1129 
1130       // Keep track of in-tree values for determining the external-use cost.
1131       InLookAheadValues[V1] = Lane1;
1132       InLookAheadValues[V2] = Lane2;
1133 
1134       // Contains the I2 operand indexes that got matched with I1 operands.
1135       SmallSet<unsigned, 4> Op2Used;
1136 
1137       // Recursion towards the operands of I1 and I2. We are trying all possbile
1138       // operand pairs, and keeping track of the best score.
1139       for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands();
1140            OpIdx1 != NumOperands1; ++OpIdx1) {
1141         // Try to pair op1I with the best operand of I2.
1142         int MaxTmpScore = 0;
1143         unsigned MaxOpIdx2 = 0;
1144         bool FoundBest = false;
1145         // If I2 is commutative try all combinations.
1146         unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1;
1147         unsigned ToIdx = isCommutative(I2)
1148                              ? I2->getNumOperands()
1149                              : std::min(I2->getNumOperands(), OpIdx1 + 1);
1150         assert(FromIdx <= ToIdx && "Bad index");
1151         for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) {
1152           // Skip operands already paired with OpIdx1.
1153           if (Op2Used.count(OpIdx2))
1154             continue;
1155           // Recursively calculate the cost at each level
1156           int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1},
1157                                             {I2->getOperand(OpIdx2), Lane2},
1158                                             CurrLevel + 1, MaxLevel);
1159           // Look for the best score.
1160           if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) {
1161             MaxTmpScore = TmpScore;
1162             MaxOpIdx2 = OpIdx2;
1163             FoundBest = true;
1164           }
1165         }
1166         if (FoundBest) {
1167           // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it.
1168           Op2Used.insert(MaxOpIdx2);
1169           ShallowScoreAtThisLevel += MaxTmpScore;
1170         }
1171       }
1172       return ShallowScoreAtThisLevel;
1173     }
1174 
1175     /// \Returns the look-ahead score, which tells us how much the sub-trees
1176     /// rooted at \p LHS and \p RHS match, the more they match the higher the
1177     /// score. This helps break ties in an informed way when we cannot decide on
1178     /// the order of the operands by just considering the immediate
1179     /// predecessors.
1180     int getLookAheadScore(const std::pair<Value *, int> &LHS,
1181                           const std::pair<Value *, int> &RHS) {
1182       InLookAheadValues.clear();
1183       return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth);
1184     }
1185 
1186     // Search all operands in Ops[*][Lane] for the one that matches best
1187     // Ops[OpIdx][LastLane] and return its opreand index.
1188     // If no good match can be found, return None.
1189     Optional<unsigned>
1190     getBestOperand(unsigned OpIdx, int Lane, int LastLane,
1191                    ArrayRef<ReorderingMode> ReorderingModes) {
1192       unsigned NumOperands = getNumOperands();
1193 
1194       // The operand of the previous lane at OpIdx.
1195       Value *OpLastLane = getData(OpIdx, LastLane).V;
1196 
1197       // Our strategy mode for OpIdx.
1198       ReorderingMode RMode = ReorderingModes[OpIdx];
1199 
1200       // The linearized opcode of the operand at OpIdx, Lane.
1201       bool OpIdxAPO = getData(OpIdx, Lane).APO;
1202 
1203       // The best operand index and its score.
1204       // Sometimes we have more than one option (e.g., Opcode and Undefs), so we
1205       // are using the score to differentiate between the two.
1206       struct BestOpData {
1207         Optional<unsigned> Idx = None;
1208         unsigned Score = 0;
1209       } BestOp;
1210 
1211       // Iterate through all unused operands and look for the best.
1212       for (unsigned Idx = 0; Idx != NumOperands; ++Idx) {
1213         // Get the operand at Idx and Lane.
1214         OperandData &OpData = getData(Idx, Lane);
1215         Value *Op = OpData.V;
1216         bool OpAPO = OpData.APO;
1217 
1218         // Skip already selected operands.
1219         if (OpData.IsUsed)
1220           continue;
1221 
1222         // Skip if we are trying to move the operand to a position with a
1223         // different opcode in the linearized tree form. This would break the
1224         // semantics.
1225         if (OpAPO != OpIdxAPO)
1226           continue;
1227 
1228         // Look for an operand that matches the current mode.
1229         switch (RMode) {
1230         case ReorderingMode::Load:
1231         case ReorderingMode::Constant:
1232         case ReorderingMode::Opcode: {
1233           bool LeftToRight = Lane > LastLane;
1234           Value *OpLeft = (LeftToRight) ? OpLastLane : Op;
1235           Value *OpRight = (LeftToRight) ? Op : OpLastLane;
1236           unsigned Score =
1237               getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane});
1238           if (Score > BestOp.Score) {
1239             BestOp.Idx = Idx;
1240             BestOp.Score = Score;
1241           }
1242           break;
1243         }
1244         case ReorderingMode::Splat:
1245           if (Op == OpLastLane)
1246             BestOp.Idx = Idx;
1247           break;
1248         case ReorderingMode::Failed:
1249           return None;
1250         }
1251       }
1252 
1253       if (BestOp.Idx) {
1254         getData(BestOp.Idx.getValue(), Lane).IsUsed = true;
1255         return BestOp.Idx;
1256       }
1257       // If we could not find a good match return None.
1258       return None;
1259     }
1260 
1261     /// Helper for reorderOperandVecs. \Returns the lane that we should start
1262     /// reordering from. This is the one which has the least number of operands
1263     /// that can freely move about.
1264     unsigned getBestLaneToStartReordering() const {
1265       unsigned BestLane = 0;
1266       unsigned Min = UINT_MAX;
1267       for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
1268            ++Lane) {
1269         unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane);
1270         if (NumFreeOps < Min) {
1271           Min = NumFreeOps;
1272           BestLane = Lane;
1273         }
1274       }
1275       return BestLane;
1276     }
1277 
1278     /// \Returns the maximum number of operands that are allowed to be reordered
1279     /// for \p Lane. This is used as a heuristic for selecting the first lane to
1280     /// start operand reordering.
1281     unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const {
1282       unsigned CntTrue = 0;
1283       unsigned NumOperands = getNumOperands();
1284       // Operands with the same APO can be reordered. We therefore need to count
1285       // how many of them we have for each APO, like this: Cnt[APO] = x.
1286       // Since we only have two APOs, namely true and false, we can avoid using
1287       // a map. Instead we can simply count the number of operands that
1288       // correspond to one of them (in this case the 'true' APO), and calculate
1289       // the other by subtracting it from the total number of operands.
1290       for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx)
1291         if (getData(OpIdx, Lane).APO)
1292           ++CntTrue;
1293       unsigned CntFalse = NumOperands - CntTrue;
1294       return std::max(CntTrue, CntFalse);
1295     }
1296 
1297     /// Go through the instructions in VL and append their operands.
1298     void appendOperandsOfVL(ArrayRef<Value *> VL) {
1299       assert(!VL.empty() && "Bad VL");
1300       assert((empty() || VL.size() == getNumLanes()) &&
1301              "Expected same number of lanes");
1302       assert(isa<Instruction>(VL[0]) && "Expected instruction");
1303       unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands();
1304       OpsVec.resize(NumOperands);
1305       unsigned NumLanes = VL.size();
1306       for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1307         OpsVec[OpIdx].resize(NumLanes);
1308         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1309           assert(isa<Instruction>(VL[Lane]) && "Expected instruction");
1310           // Our tree has just 3 nodes: the root and two operands.
1311           // It is therefore trivial to get the APO. We only need to check the
1312           // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or
1313           // RHS operand. The LHS operand of both add and sub is never attached
1314           // to an inversese operation in the linearized form, therefore its APO
1315           // is false. The RHS is true only if VL[Lane] is an inverse operation.
1316 
1317           // Since operand reordering is performed on groups of commutative
1318           // operations or alternating sequences (e.g., +, -), we can safely
1319           // tell the inverse operations by checking commutativity.
1320           bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane]));
1321           bool APO = (OpIdx == 0) ? false : IsInverseOperation;
1322           OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx),
1323                                  APO, false};
1324         }
1325       }
1326     }
1327 
1328     /// \returns the number of operands.
1329     unsigned getNumOperands() const { return OpsVec.size(); }
1330 
1331     /// \returns the number of lanes.
1332     unsigned getNumLanes() const { return OpsVec[0].size(); }
1333 
1334     /// \returns the operand value at \p OpIdx and \p Lane.
1335     Value *getValue(unsigned OpIdx, unsigned Lane) const {
1336       return getData(OpIdx, Lane).V;
1337     }
1338 
1339     /// \returns true if the data structure is empty.
1340     bool empty() const { return OpsVec.empty(); }
1341 
1342     /// Clears the data.
1343     void clear() { OpsVec.clear(); }
1344 
1345     /// \Returns true if there are enough operands identical to \p Op to fill
1346     /// the whole vector.
1347     /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow.
1348     bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) {
1349       bool OpAPO = getData(OpIdx, Lane).APO;
1350       for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) {
1351         if (Ln == Lane)
1352           continue;
1353         // This is set to true if we found a candidate for broadcast at Lane.
1354         bool FoundCandidate = false;
1355         for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) {
1356           OperandData &Data = getData(OpI, Ln);
1357           if (Data.APO != OpAPO || Data.IsUsed)
1358             continue;
1359           if (Data.V == Op) {
1360             FoundCandidate = true;
1361             Data.IsUsed = true;
1362             break;
1363           }
1364         }
1365         if (!FoundCandidate)
1366           return false;
1367       }
1368       return true;
1369     }
1370 
1371   public:
1372     /// Initialize with all the operands of the instruction vector \p RootVL.
1373     VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL,
1374                ScalarEvolution &SE, const BoUpSLP &R)
1375         : DL(DL), SE(SE), R(R) {
1376       // Append all the operands of RootVL.
1377       appendOperandsOfVL(RootVL);
1378     }
1379 
1380     /// \Returns a value vector with the operands across all lanes for the
1381     /// opearnd at \p OpIdx.
1382     ValueList getVL(unsigned OpIdx) const {
1383       ValueList OpVL(OpsVec[OpIdx].size());
1384       assert(OpsVec[OpIdx].size() == getNumLanes() &&
1385              "Expected same num of lanes across all operands");
1386       for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane)
1387         OpVL[Lane] = OpsVec[OpIdx][Lane].V;
1388       return OpVL;
1389     }
1390 
1391     // Performs operand reordering for 2 or more operands.
1392     // The original operands are in OrigOps[OpIdx][Lane].
1393     // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'.
1394     void reorder() {
1395       unsigned NumOperands = getNumOperands();
1396       unsigned NumLanes = getNumLanes();
1397       // Each operand has its own mode. We are using this mode to help us select
1398       // the instructions for each lane, so that they match best with the ones
1399       // we have selected so far.
1400       SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands);
1401 
1402       // This is a greedy single-pass algorithm. We are going over each lane
1403       // once and deciding on the best order right away with no back-tracking.
1404       // However, in order to increase its effectiveness, we start with the lane
1405       // that has operands that can move the least. For example, given the
1406       // following lanes:
1407       //  Lane 0 : A[0] = B[0] + C[0]   // Visited 3rd
1408       //  Lane 1 : A[1] = C[1] - B[1]   // Visited 1st
1409       //  Lane 2 : A[2] = B[2] + C[2]   // Visited 2nd
1410       //  Lane 3 : A[3] = C[3] - B[3]   // Visited 4th
1411       // we will start at Lane 1, since the operands of the subtraction cannot
1412       // be reordered. Then we will visit the rest of the lanes in a circular
1413       // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3.
1414 
1415       // Find the first lane that we will start our search from.
1416       unsigned FirstLane = getBestLaneToStartReordering();
1417 
1418       // Initialize the modes.
1419       for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1420         Value *OpLane0 = getValue(OpIdx, FirstLane);
1421         // Keep track if we have instructions with all the same opcode on one
1422         // side.
1423         if (isa<LoadInst>(OpLane0))
1424           ReorderingModes[OpIdx] = ReorderingMode::Load;
1425         else if (isa<Instruction>(OpLane0)) {
1426           // Check if OpLane0 should be broadcast.
1427           if (shouldBroadcast(OpLane0, OpIdx, FirstLane))
1428             ReorderingModes[OpIdx] = ReorderingMode::Splat;
1429           else
1430             ReorderingModes[OpIdx] = ReorderingMode::Opcode;
1431         }
1432         else if (isa<Constant>(OpLane0))
1433           ReorderingModes[OpIdx] = ReorderingMode::Constant;
1434         else if (isa<Argument>(OpLane0))
1435           // Our best hope is a Splat. It may save some cost in some cases.
1436           ReorderingModes[OpIdx] = ReorderingMode::Splat;
1437         else
1438           // NOTE: This should be unreachable.
1439           ReorderingModes[OpIdx] = ReorderingMode::Failed;
1440       }
1441 
1442       // If the initial strategy fails for any of the operand indexes, then we
1443       // perform reordering again in a second pass. This helps avoid assigning
1444       // high priority to the failed strategy, and should improve reordering for
1445       // the non-failed operand indexes.
1446       for (int Pass = 0; Pass != 2; ++Pass) {
1447         // Skip the second pass if the first pass did not fail.
1448         bool StrategyFailed = false;
1449         // Mark all operand data as free to use.
1450         clearUsed();
1451         // We keep the original operand order for the FirstLane, so reorder the
1452         // rest of the lanes. We are visiting the nodes in a circular fashion,
1453         // using FirstLane as the center point and increasing the radius
1454         // distance.
1455         for (unsigned Distance = 1; Distance != NumLanes; ++Distance) {
1456           // Visit the lane on the right and then the lane on the left.
1457           for (int Direction : {+1, -1}) {
1458             int Lane = FirstLane + Direction * Distance;
1459             if (Lane < 0 || Lane >= (int)NumLanes)
1460               continue;
1461             int LastLane = Lane - Direction;
1462             assert(LastLane >= 0 && LastLane < (int)NumLanes &&
1463                    "Out of bounds");
1464             // Look for a good match for each operand.
1465             for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1466               // Search for the operand that matches SortedOps[OpIdx][Lane-1].
1467               Optional<unsigned> BestIdx =
1468                   getBestOperand(OpIdx, Lane, LastLane, ReorderingModes);
1469               // By not selecting a value, we allow the operands that follow to
1470               // select a better matching value. We will get a non-null value in
1471               // the next run of getBestOperand().
1472               if (BestIdx) {
1473                 // Swap the current operand with the one returned by
1474                 // getBestOperand().
1475                 swap(OpIdx, BestIdx.getValue(), Lane);
1476               } else {
1477                 // We failed to find a best operand, set mode to 'Failed'.
1478                 ReorderingModes[OpIdx] = ReorderingMode::Failed;
1479                 // Enable the second pass.
1480                 StrategyFailed = true;
1481               }
1482             }
1483           }
1484         }
1485         // Skip second pass if the strategy did not fail.
1486         if (!StrategyFailed)
1487           break;
1488       }
1489     }
1490 
1491 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1492     LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) {
1493       switch (RMode) {
1494       case ReorderingMode::Load:
1495         return "Load";
1496       case ReorderingMode::Opcode:
1497         return "Opcode";
1498       case ReorderingMode::Constant:
1499         return "Constant";
1500       case ReorderingMode::Splat:
1501         return "Splat";
1502       case ReorderingMode::Failed:
1503         return "Failed";
1504       }
1505       llvm_unreachable("Unimplemented Reordering Type");
1506     }
1507 
1508     LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode,
1509                                                    raw_ostream &OS) {
1510       return OS << getModeStr(RMode);
1511     }
1512 
1513     /// Debug print.
1514     LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) {
1515       printMode(RMode, dbgs());
1516     }
1517 
1518     friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) {
1519       return printMode(RMode, OS);
1520     }
1521 
1522     LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const {
1523       const unsigned Indent = 2;
1524       unsigned Cnt = 0;
1525       for (const OperandDataVec &OpDataVec : OpsVec) {
1526         OS << "Operand " << Cnt++ << "\n";
1527         for (const OperandData &OpData : OpDataVec) {
1528           OS.indent(Indent) << "{";
1529           if (Value *V = OpData.V)
1530             OS << *V;
1531           else
1532             OS << "null";
1533           OS << ", APO:" << OpData.APO << "}\n";
1534         }
1535         OS << "\n";
1536       }
1537       return OS;
1538     }
1539 
1540     /// Debug print.
1541     LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
1542 #endif
1543   };
1544 
1545   /// Checks if the instruction is marked for deletion.
1546   bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); }
1547 
1548   /// Marks values operands for later deletion by replacing them with Undefs.
1549   void eraseInstructions(ArrayRef<Value *> AV);
1550 
1551   ~BoUpSLP();
1552 
1553 private:
1554   /// Checks if all users of \p I are the part of the vectorization tree.
1555   bool areAllUsersVectorized(Instruction *I,
1556                              ArrayRef<Value *> VectorizedVals) const;
1557 
1558   /// \returns the cost of the vectorizable entry.
1559   InstructionCost getEntryCost(const TreeEntry *E,
1560                                ArrayRef<Value *> VectorizedVals);
1561 
1562   /// This is the recursive part of buildTree.
1563   void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth,
1564                      const EdgeInfo &EI);
1565 
1566   /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can
1567   /// be vectorized to use the original vector (or aggregate "bitcast" to a
1568   /// vector) and sets \p CurrentOrder to the identity permutation; otherwise
1569   /// returns false, setting \p CurrentOrder to either an empty vector or a
1570   /// non-identity permutation that allows to reuse extract instructions.
1571   bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
1572                        SmallVectorImpl<unsigned> &CurrentOrder) const;
1573 
1574   /// Vectorize a single entry in the tree.
1575   Value *vectorizeTree(TreeEntry *E);
1576 
1577   /// Vectorize a single entry in the tree, starting in \p VL.
1578   Value *vectorizeTree(ArrayRef<Value *> VL);
1579 
1580   /// \returns the scalarization cost for this type. Scalarization in this
1581   /// context means the creation of vectors from a group of scalars.
1582   InstructionCost
1583   getGatherCost(FixedVectorType *Ty,
1584                 const DenseSet<unsigned> &ShuffledIndices) const;
1585 
1586   /// Checks if the gathered \p VL can be represented as shuffle(s) of previous
1587   /// tree entries.
1588   /// \returns ShuffleKind, if gathered values can be represented as shuffles of
1589   /// previous tree entries. \p Mask is filled with the shuffle mask.
1590   Optional<TargetTransformInfo::ShuffleKind>
1591   isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask,
1592                         SmallVectorImpl<const TreeEntry *> &Entries);
1593 
1594   /// \returns the scalarization cost for this list of values. Assuming that
1595   /// this subtree gets vectorized, we may need to extract the values from the
1596   /// roots. This method calculates the cost of extracting the values.
1597   InstructionCost getGatherCost(ArrayRef<Value *> VL) const;
1598 
1599   /// Set the Builder insert point to one after the last instruction in
1600   /// the bundle
1601   void setInsertPointAfterBundle(const TreeEntry *E);
1602 
1603   /// \returns a vector from a collection of scalars in \p VL.
1604   Value *gather(ArrayRef<Value *> VL);
1605 
1606   /// \returns whether the VectorizableTree is fully vectorizable and will
1607   /// be beneficial even the tree height is tiny.
1608   bool isFullyVectorizableTinyTree() const;
1609 
1610   /// Reorder commutative or alt operands to get better probability of
1611   /// generating vectorized code.
1612   static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
1613                                              SmallVectorImpl<Value *> &Left,
1614                                              SmallVectorImpl<Value *> &Right,
1615                                              const DataLayout &DL,
1616                                              ScalarEvolution &SE,
1617                                              const BoUpSLP &R);
1618   struct TreeEntry {
1619     using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>;
1620     TreeEntry(VecTreeTy &Container) : Container(Container) {}
1621 
1622     /// \returns true if the scalars in VL are equal to this entry.
1623     bool isSame(ArrayRef<Value *> VL) const {
1624       if (VL.size() == Scalars.size())
1625         return std::equal(VL.begin(), VL.end(), Scalars.begin());
1626       return VL.size() == ReuseShuffleIndices.size() &&
1627              std::equal(
1628                  VL.begin(), VL.end(), ReuseShuffleIndices.begin(),
1629                  [this](Value *V, int Idx) { return V == Scalars[Idx]; });
1630     }
1631 
1632     /// A vector of scalars.
1633     ValueList Scalars;
1634 
1635     /// The Scalars are vectorized into this value. It is initialized to Null.
1636     Value *VectorizedValue = nullptr;
1637 
1638     /// Do we need to gather this sequence or vectorize it
1639     /// (either with vector instruction or with scatter/gather
1640     /// intrinsics for store/load)?
1641     enum EntryState { Vectorize, ScatterVectorize, NeedToGather };
1642     EntryState State;
1643 
1644     /// Does this sequence require some shuffling?
1645     SmallVector<int, 4> ReuseShuffleIndices;
1646 
1647     /// Does this entry require reordering?
1648     SmallVector<unsigned, 4> ReorderIndices;
1649 
1650     /// Points back to the VectorizableTree.
1651     ///
1652     /// Only used for Graphviz right now.  Unfortunately GraphTrait::NodeRef has
1653     /// to be a pointer and needs to be able to initialize the child iterator.
1654     /// Thus we need a reference back to the container to translate the indices
1655     /// to entries.
1656     VecTreeTy &Container;
1657 
1658     /// The TreeEntry index containing the user of this entry.  We can actually
1659     /// have multiple users so the data structure is not truly a tree.
1660     SmallVector<EdgeInfo, 1> UserTreeIndices;
1661 
1662     /// The index of this treeEntry in VectorizableTree.
1663     int Idx = -1;
1664 
1665   private:
1666     /// The operands of each instruction in each lane Operands[op_index][lane].
1667     /// Note: This helps avoid the replication of the code that performs the
1668     /// reordering of operands during buildTree_rec() and vectorizeTree().
1669     SmallVector<ValueList, 2> Operands;
1670 
1671     /// The main/alternate instruction.
1672     Instruction *MainOp = nullptr;
1673     Instruction *AltOp = nullptr;
1674 
1675   public:
1676     /// Set this bundle's \p OpIdx'th operand to \p OpVL.
1677     void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) {
1678       if (Operands.size() < OpIdx + 1)
1679         Operands.resize(OpIdx + 1);
1680       assert(Operands[OpIdx].empty() && "Already resized?");
1681       Operands[OpIdx].resize(Scalars.size());
1682       for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane)
1683         Operands[OpIdx][Lane] = OpVL[Lane];
1684     }
1685 
1686     /// Set the operands of this bundle in their original order.
1687     void setOperandsInOrder() {
1688       assert(Operands.empty() && "Already initialized?");
1689       auto *I0 = cast<Instruction>(Scalars[0]);
1690       Operands.resize(I0->getNumOperands());
1691       unsigned NumLanes = Scalars.size();
1692       for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands();
1693            OpIdx != NumOperands; ++OpIdx) {
1694         Operands[OpIdx].resize(NumLanes);
1695         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1696           auto *I = cast<Instruction>(Scalars[Lane]);
1697           assert(I->getNumOperands() == NumOperands &&
1698                  "Expected same number of operands");
1699           Operands[OpIdx][Lane] = I->getOperand(OpIdx);
1700         }
1701       }
1702     }
1703 
1704     /// \returns the \p OpIdx operand of this TreeEntry.
1705     ValueList &getOperand(unsigned OpIdx) {
1706       assert(OpIdx < Operands.size() && "Off bounds");
1707       return Operands[OpIdx];
1708     }
1709 
1710     /// \returns the number of operands.
1711     unsigned getNumOperands() const { return Operands.size(); }
1712 
1713     /// \return the single \p OpIdx operand.
1714     Value *getSingleOperand(unsigned OpIdx) const {
1715       assert(OpIdx < Operands.size() && "Off bounds");
1716       assert(!Operands[OpIdx].empty() && "No operand available");
1717       return Operands[OpIdx][0];
1718     }
1719 
1720     /// Some of the instructions in the list have alternate opcodes.
1721     bool isAltShuffle() const {
1722       return getOpcode() != getAltOpcode();
1723     }
1724 
1725     bool isOpcodeOrAlt(Instruction *I) const {
1726       unsigned CheckedOpcode = I->getOpcode();
1727       return (getOpcode() == CheckedOpcode ||
1728               getAltOpcode() == CheckedOpcode);
1729     }
1730 
1731     /// Chooses the correct key for scheduling data. If \p Op has the same (or
1732     /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is
1733     /// \p OpValue.
1734     Value *isOneOf(Value *Op) const {
1735       auto *I = dyn_cast<Instruction>(Op);
1736       if (I && isOpcodeOrAlt(I))
1737         return Op;
1738       return MainOp;
1739     }
1740 
1741     void setOperations(const InstructionsState &S) {
1742       MainOp = S.MainOp;
1743       AltOp = S.AltOp;
1744     }
1745 
1746     Instruction *getMainOp() const {
1747       return MainOp;
1748     }
1749 
1750     Instruction *getAltOp() const {
1751       return AltOp;
1752     }
1753 
1754     /// The main/alternate opcodes for the list of instructions.
1755     unsigned getOpcode() const {
1756       return MainOp ? MainOp->getOpcode() : 0;
1757     }
1758 
1759     unsigned getAltOpcode() const {
1760       return AltOp ? AltOp->getOpcode() : 0;
1761     }
1762 
1763     /// Update operations state of this entry if reorder occurred.
1764     bool updateStateIfReorder() {
1765       if (ReorderIndices.empty())
1766         return false;
1767       InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front());
1768       setOperations(S);
1769       return true;
1770     }
1771 
1772 #ifndef NDEBUG
1773     /// Debug printer.
1774     LLVM_DUMP_METHOD void dump() const {
1775       dbgs() << Idx << ".\n";
1776       for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) {
1777         dbgs() << "Operand " << OpI << ":\n";
1778         for (const Value *V : Operands[OpI])
1779           dbgs().indent(2) << *V << "\n";
1780       }
1781       dbgs() << "Scalars: \n";
1782       for (Value *V : Scalars)
1783         dbgs().indent(2) << *V << "\n";
1784       dbgs() << "State: ";
1785       switch (State) {
1786       case Vectorize:
1787         dbgs() << "Vectorize\n";
1788         break;
1789       case ScatterVectorize:
1790         dbgs() << "ScatterVectorize\n";
1791         break;
1792       case NeedToGather:
1793         dbgs() << "NeedToGather\n";
1794         break;
1795       }
1796       dbgs() << "MainOp: ";
1797       if (MainOp)
1798         dbgs() << *MainOp << "\n";
1799       else
1800         dbgs() << "NULL\n";
1801       dbgs() << "AltOp: ";
1802       if (AltOp)
1803         dbgs() << *AltOp << "\n";
1804       else
1805         dbgs() << "NULL\n";
1806       dbgs() << "VectorizedValue: ";
1807       if (VectorizedValue)
1808         dbgs() << *VectorizedValue << "\n";
1809       else
1810         dbgs() << "NULL\n";
1811       dbgs() << "ReuseShuffleIndices: ";
1812       if (ReuseShuffleIndices.empty())
1813         dbgs() << "Empty";
1814       else
1815         for (unsigned ReuseIdx : ReuseShuffleIndices)
1816           dbgs() << ReuseIdx << ", ";
1817       dbgs() << "\n";
1818       dbgs() << "ReorderIndices: ";
1819       for (unsigned ReorderIdx : ReorderIndices)
1820         dbgs() << ReorderIdx << ", ";
1821       dbgs() << "\n";
1822       dbgs() << "UserTreeIndices: ";
1823       for (const auto &EInfo : UserTreeIndices)
1824         dbgs() << EInfo << ", ";
1825       dbgs() << "\n";
1826     }
1827 #endif
1828   };
1829 
1830 #ifndef NDEBUG
1831   void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost,
1832                      InstructionCost VecCost,
1833                      InstructionCost ScalarCost) const {
1834     dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump();
1835     dbgs() << "SLP: Costs:\n";
1836     dbgs() << "SLP:     ReuseShuffleCost = " << ReuseShuffleCost << "\n";
1837     dbgs() << "SLP:     VectorCost = " << VecCost << "\n";
1838     dbgs() << "SLP:     ScalarCost = " << ScalarCost << "\n";
1839     dbgs() << "SLP:     ReuseShuffleCost + VecCost - ScalarCost = " <<
1840                ReuseShuffleCost + VecCost - ScalarCost << "\n";
1841   }
1842 #endif
1843 
1844   /// Create a new VectorizableTree entry.
1845   TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle,
1846                           const InstructionsState &S,
1847                           const EdgeInfo &UserTreeIdx,
1848                           ArrayRef<unsigned> ReuseShuffleIndices = None,
1849                           ArrayRef<unsigned> ReorderIndices = None) {
1850     TreeEntry::EntryState EntryState =
1851         Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather;
1852     return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx,
1853                         ReuseShuffleIndices, ReorderIndices);
1854   }
1855 
1856   TreeEntry *newTreeEntry(ArrayRef<Value *> VL,
1857                           TreeEntry::EntryState EntryState,
1858                           Optional<ScheduleData *> Bundle,
1859                           const InstructionsState &S,
1860                           const EdgeInfo &UserTreeIdx,
1861                           ArrayRef<unsigned> ReuseShuffleIndices = None,
1862                           ArrayRef<unsigned> ReorderIndices = None) {
1863     assert(((!Bundle && EntryState == TreeEntry::NeedToGather) ||
1864             (Bundle && EntryState != TreeEntry::NeedToGather)) &&
1865            "Need to vectorize gather entry?");
1866     VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree));
1867     TreeEntry *Last = VectorizableTree.back().get();
1868     Last->Idx = VectorizableTree.size() - 1;
1869     Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
1870     Last->State = EntryState;
1871     Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(),
1872                                      ReuseShuffleIndices.end());
1873     Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end());
1874     Last->setOperations(S);
1875     if (Last->State != TreeEntry::NeedToGather) {
1876       for (Value *V : VL) {
1877         assert(!getTreeEntry(V) && "Scalar already in tree!");
1878         ScalarToTreeEntry[V] = Last;
1879       }
1880       // Update the scheduler bundle to point to this TreeEntry.
1881       unsigned Lane = 0;
1882       for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember;
1883            BundleMember = BundleMember->NextInBundle) {
1884         BundleMember->TE = Last;
1885         BundleMember->Lane = Lane;
1886         ++Lane;
1887       }
1888       assert((!Bundle.getValue() || Lane == VL.size()) &&
1889              "Bundle and VL out of sync");
1890     } else {
1891       MustGather.insert(VL.begin(), VL.end());
1892     }
1893 
1894     if (UserTreeIdx.UserTE)
1895       Last->UserTreeIndices.push_back(UserTreeIdx);
1896 
1897     return Last;
1898   }
1899 
1900   /// -- Vectorization State --
1901   /// Holds all of the tree entries.
1902   TreeEntry::VecTreeTy VectorizableTree;
1903 
1904 #ifndef NDEBUG
1905   /// Debug printer.
1906   LLVM_DUMP_METHOD void dumpVectorizableTree() const {
1907     for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) {
1908       VectorizableTree[Id]->dump();
1909       dbgs() << "\n";
1910     }
1911   }
1912 #endif
1913 
1914   TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); }
1915 
1916   const TreeEntry *getTreeEntry(Value *V) const {
1917     return ScalarToTreeEntry.lookup(V);
1918   }
1919 
1920   /// Maps a specific scalar to its tree entry.
1921   SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry;
1922 
1923   /// Maps a value to the proposed vectorizable size.
1924   SmallDenseMap<Value *, unsigned> InstrElementSize;
1925 
1926   /// A list of scalars that we found that we need to keep as scalars.
1927   ValueSet MustGather;
1928 
1929   /// This POD struct describes one external user in the vectorized tree.
1930   struct ExternalUser {
1931     ExternalUser(Value *S, llvm::User *U, int L)
1932         : Scalar(S), User(U), Lane(L) {}
1933 
1934     // Which scalar in our function.
1935     Value *Scalar;
1936 
1937     // Which user that uses the scalar.
1938     llvm::User *User;
1939 
1940     // Which lane does the scalar belong to.
1941     int Lane;
1942   };
1943   using UserList = SmallVector<ExternalUser, 16>;
1944 
1945   /// Checks if two instructions may access the same memory.
1946   ///
1947   /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
1948   /// is invariant in the calling loop.
1949   bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
1950                  Instruction *Inst2) {
1951     // First check if the result is already in the cache.
1952     AliasCacheKey key = std::make_pair(Inst1, Inst2);
1953     Optional<bool> &result = AliasCache[key];
1954     if (result.hasValue()) {
1955       return result.getValue();
1956     }
1957     MemoryLocation Loc2 = getLocation(Inst2, AA);
1958     bool aliased = true;
1959     if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) {
1960       // Do the alias check.
1961       aliased = !AA->isNoAlias(Loc1, Loc2);
1962     }
1963     // Store the result in the cache.
1964     result = aliased;
1965     return aliased;
1966   }
1967 
1968   using AliasCacheKey = std::pair<Instruction *, Instruction *>;
1969 
1970   /// Cache for alias results.
1971   /// TODO: consider moving this to the AliasAnalysis itself.
1972   DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
1973 
1974   /// Removes an instruction from its block and eventually deletes it.
1975   /// It's like Instruction::eraseFromParent() except that the actual deletion
1976   /// is delayed until BoUpSLP is destructed.
1977   /// This is required to ensure that there are no incorrect collisions in the
1978   /// AliasCache, which can happen if a new instruction is allocated at the
1979   /// same address as a previously deleted instruction.
1980   void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) {
1981     auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first;
1982     It->getSecond() = It->getSecond() && ReplaceOpsWithUndef;
1983   }
1984 
1985   /// Temporary store for deleted instructions. Instructions will be deleted
1986   /// eventually when the BoUpSLP is destructed.
1987   DenseMap<Instruction *, bool> DeletedInstructions;
1988 
1989   /// A list of values that need to extracted out of the tree.
1990   /// This list holds pairs of (Internal Scalar : External User). External User
1991   /// can be nullptr, it means that this Internal Scalar will be used later,
1992   /// after vectorization.
1993   UserList ExternalUses;
1994 
1995   /// Values used only by @llvm.assume calls.
1996   SmallPtrSet<const Value *, 32> EphValues;
1997 
1998   /// Holds all of the instructions that we gathered.
1999   SetVector<Instruction *> GatherSeq;
2000 
2001   /// A list of blocks that we are going to CSE.
2002   SetVector<BasicBlock *> CSEBlocks;
2003 
2004   /// Contains all scheduling relevant data for an instruction.
2005   /// A ScheduleData either represents a single instruction or a member of an
2006   /// instruction bundle (= a group of instructions which is combined into a
2007   /// vector instruction).
2008   struct ScheduleData {
2009     // The initial value for the dependency counters. It means that the
2010     // dependencies are not calculated yet.
2011     enum { InvalidDeps = -1 };
2012 
2013     ScheduleData() = default;
2014 
2015     void init(int BlockSchedulingRegionID, Value *OpVal) {
2016       FirstInBundle = this;
2017       NextInBundle = nullptr;
2018       NextLoadStore = nullptr;
2019       IsScheduled = false;
2020       SchedulingRegionID = BlockSchedulingRegionID;
2021       UnscheduledDepsInBundle = UnscheduledDeps;
2022       clearDependencies();
2023       OpValue = OpVal;
2024       TE = nullptr;
2025       Lane = -1;
2026     }
2027 
2028     /// Returns true if the dependency information has been calculated.
2029     bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
2030 
2031     /// Returns true for single instructions and for bundle representatives
2032     /// (= the head of a bundle).
2033     bool isSchedulingEntity() const { return FirstInBundle == this; }
2034 
2035     /// Returns true if it represents an instruction bundle and not only a
2036     /// single instruction.
2037     bool isPartOfBundle() const {
2038       return NextInBundle != nullptr || FirstInBundle != this;
2039     }
2040 
2041     /// Returns true if it is ready for scheduling, i.e. it has no more
2042     /// unscheduled depending instructions/bundles.
2043     bool isReady() const {
2044       assert(isSchedulingEntity() &&
2045              "can't consider non-scheduling entity for ready list");
2046       return UnscheduledDepsInBundle == 0 && !IsScheduled;
2047     }
2048 
2049     /// Modifies the number of unscheduled dependencies, also updating it for
2050     /// the whole bundle.
2051     int incrementUnscheduledDeps(int Incr) {
2052       UnscheduledDeps += Incr;
2053       return FirstInBundle->UnscheduledDepsInBundle += Incr;
2054     }
2055 
2056     /// Sets the number of unscheduled dependencies to the number of
2057     /// dependencies.
2058     void resetUnscheduledDeps() {
2059       incrementUnscheduledDeps(Dependencies - UnscheduledDeps);
2060     }
2061 
2062     /// Clears all dependency information.
2063     void clearDependencies() {
2064       Dependencies = InvalidDeps;
2065       resetUnscheduledDeps();
2066       MemoryDependencies.clear();
2067     }
2068 
2069     void dump(raw_ostream &os) const {
2070       if (!isSchedulingEntity()) {
2071         os << "/ " << *Inst;
2072       } else if (NextInBundle) {
2073         os << '[' << *Inst;
2074         ScheduleData *SD = NextInBundle;
2075         while (SD) {
2076           os << ';' << *SD->Inst;
2077           SD = SD->NextInBundle;
2078         }
2079         os << ']';
2080       } else {
2081         os << *Inst;
2082       }
2083     }
2084 
2085     Instruction *Inst = nullptr;
2086 
2087     /// Points to the head in an instruction bundle (and always to this for
2088     /// single instructions).
2089     ScheduleData *FirstInBundle = nullptr;
2090 
2091     /// Single linked list of all instructions in a bundle. Null if it is a
2092     /// single instruction.
2093     ScheduleData *NextInBundle = nullptr;
2094 
2095     /// Single linked list of all memory instructions (e.g. load, store, call)
2096     /// in the block - until the end of the scheduling region.
2097     ScheduleData *NextLoadStore = nullptr;
2098 
2099     /// The dependent memory instructions.
2100     /// This list is derived on demand in calculateDependencies().
2101     SmallVector<ScheduleData *, 4> MemoryDependencies;
2102 
2103     /// This ScheduleData is in the current scheduling region if this matches
2104     /// the current SchedulingRegionID of BlockScheduling.
2105     int SchedulingRegionID = 0;
2106 
2107     /// Used for getting a "good" final ordering of instructions.
2108     int SchedulingPriority = 0;
2109 
2110     /// The number of dependencies. Constitutes of the number of users of the
2111     /// instruction plus the number of dependent memory instructions (if any).
2112     /// This value is calculated on demand.
2113     /// If InvalidDeps, the number of dependencies is not calculated yet.
2114     int Dependencies = InvalidDeps;
2115 
2116     /// The number of dependencies minus the number of dependencies of scheduled
2117     /// instructions. As soon as this is zero, the instruction/bundle gets ready
2118     /// for scheduling.
2119     /// Note that this is negative as long as Dependencies is not calculated.
2120     int UnscheduledDeps = InvalidDeps;
2121 
2122     /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for
2123     /// single instructions.
2124     int UnscheduledDepsInBundle = InvalidDeps;
2125 
2126     /// True if this instruction is scheduled (or considered as scheduled in the
2127     /// dry-run).
2128     bool IsScheduled = false;
2129 
2130     /// Opcode of the current instruction in the schedule data.
2131     Value *OpValue = nullptr;
2132 
2133     /// The TreeEntry that this instruction corresponds to.
2134     TreeEntry *TE = nullptr;
2135 
2136     /// The lane of this node in the TreeEntry.
2137     int Lane = -1;
2138   };
2139 
2140 #ifndef NDEBUG
2141   friend inline raw_ostream &operator<<(raw_ostream &os,
2142                                         const BoUpSLP::ScheduleData &SD) {
2143     SD.dump(os);
2144     return os;
2145   }
2146 #endif
2147 
2148   friend struct GraphTraits<BoUpSLP *>;
2149   friend struct DOTGraphTraits<BoUpSLP *>;
2150 
2151   /// Contains all scheduling data for a basic block.
2152   struct BlockScheduling {
2153     BlockScheduling(BasicBlock *BB)
2154         : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {}
2155 
2156     void clear() {
2157       ReadyInsts.clear();
2158       ScheduleStart = nullptr;
2159       ScheduleEnd = nullptr;
2160       FirstLoadStoreInRegion = nullptr;
2161       LastLoadStoreInRegion = nullptr;
2162 
2163       // Reduce the maximum schedule region size by the size of the
2164       // previous scheduling run.
2165       ScheduleRegionSizeLimit -= ScheduleRegionSize;
2166       if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
2167         ScheduleRegionSizeLimit = MinScheduleRegionSize;
2168       ScheduleRegionSize = 0;
2169 
2170       // Make a new scheduling region, i.e. all existing ScheduleData is not
2171       // in the new region yet.
2172       ++SchedulingRegionID;
2173     }
2174 
2175     ScheduleData *getScheduleData(Value *V) {
2176       ScheduleData *SD = ScheduleDataMap[V];
2177       if (SD && SD->SchedulingRegionID == SchedulingRegionID)
2178         return SD;
2179       return nullptr;
2180     }
2181 
2182     ScheduleData *getScheduleData(Value *V, Value *Key) {
2183       if (V == Key)
2184         return getScheduleData(V);
2185       auto I = ExtraScheduleDataMap.find(V);
2186       if (I != ExtraScheduleDataMap.end()) {
2187         ScheduleData *SD = I->second[Key];
2188         if (SD && SD->SchedulingRegionID == SchedulingRegionID)
2189           return SD;
2190       }
2191       return nullptr;
2192     }
2193 
2194     bool isInSchedulingRegion(ScheduleData *SD) const {
2195       return SD->SchedulingRegionID == SchedulingRegionID;
2196     }
2197 
2198     /// Marks an instruction as scheduled and puts all dependent ready
2199     /// instructions into the ready-list.
2200     template <typename ReadyListType>
2201     void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
2202       SD->IsScheduled = true;
2203       LLVM_DEBUG(dbgs() << "SLP:   schedule " << *SD << "\n");
2204 
2205       ScheduleData *BundleMember = SD;
2206       while (BundleMember) {
2207         if (BundleMember->Inst != BundleMember->OpValue) {
2208           BundleMember = BundleMember->NextInBundle;
2209           continue;
2210         }
2211         // Handle the def-use chain dependencies.
2212 
2213         // Decrement the unscheduled counter and insert to ready list if ready.
2214         auto &&DecrUnsched = [this, &ReadyList](Instruction *I) {
2215           doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) {
2216             if (OpDef && OpDef->hasValidDependencies() &&
2217                 OpDef->incrementUnscheduledDeps(-1) == 0) {
2218               // There are no more unscheduled dependencies after
2219               // decrementing, so we can put the dependent instruction
2220               // into the ready list.
2221               ScheduleData *DepBundle = OpDef->FirstInBundle;
2222               assert(!DepBundle->IsScheduled &&
2223                      "already scheduled bundle gets ready");
2224               ReadyList.insert(DepBundle);
2225               LLVM_DEBUG(dbgs()
2226                          << "SLP:    gets ready (def): " << *DepBundle << "\n");
2227             }
2228           });
2229         };
2230 
2231         // If BundleMember is a vector bundle, its operands may have been
2232         // reordered duiring buildTree(). We therefore need to get its operands
2233         // through the TreeEntry.
2234         if (TreeEntry *TE = BundleMember->TE) {
2235           int Lane = BundleMember->Lane;
2236           assert(Lane >= 0 && "Lane not set");
2237 
2238           // Since vectorization tree is being built recursively this assertion
2239           // ensures that the tree entry has all operands set before reaching
2240           // this code. Couple of exceptions known at the moment are extracts
2241           // where their second (immediate) operand is not added. Since
2242           // immediates do not affect scheduler behavior this is considered
2243           // okay.
2244           auto *In = TE->getMainOp();
2245           assert(In &&
2246                  (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) ||
2247                   isa<InsertElementInst>(In) ||
2248                   In->getNumOperands() == TE->getNumOperands()) &&
2249                  "Missed TreeEntry operands?");
2250           (void)In; // fake use to avoid build failure when assertions disabled
2251 
2252           for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands();
2253                OpIdx != NumOperands; ++OpIdx)
2254             if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane]))
2255               DecrUnsched(I);
2256         } else {
2257           // If BundleMember is a stand-alone instruction, no operand reordering
2258           // has taken place, so we directly access its operands.
2259           for (Use &U : BundleMember->Inst->operands())
2260             if (auto *I = dyn_cast<Instruction>(U.get()))
2261               DecrUnsched(I);
2262         }
2263         // Handle the memory dependencies.
2264         for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
2265           if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
2266             // There are no more unscheduled dependencies after decrementing,
2267             // so we can put the dependent instruction into the ready list.
2268             ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
2269             assert(!DepBundle->IsScheduled &&
2270                    "already scheduled bundle gets ready");
2271             ReadyList.insert(DepBundle);
2272             LLVM_DEBUG(dbgs()
2273                        << "SLP:    gets ready (mem): " << *DepBundle << "\n");
2274           }
2275         }
2276         BundleMember = BundleMember->NextInBundle;
2277       }
2278     }
2279 
2280     void doForAllOpcodes(Value *V,
2281                          function_ref<void(ScheduleData *SD)> Action) {
2282       if (ScheduleData *SD = getScheduleData(V))
2283         Action(SD);
2284       auto I = ExtraScheduleDataMap.find(V);
2285       if (I != ExtraScheduleDataMap.end())
2286         for (auto &P : I->second)
2287           if (P.second->SchedulingRegionID == SchedulingRegionID)
2288             Action(P.second);
2289     }
2290 
2291     /// Put all instructions into the ReadyList which are ready for scheduling.
2292     template <typename ReadyListType>
2293     void initialFillReadyList(ReadyListType &ReadyList) {
2294       for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
2295         doForAllOpcodes(I, [&](ScheduleData *SD) {
2296           if (SD->isSchedulingEntity() && SD->isReady()) {
2297             ReadyList.insert(SD);
2298             LLVM_DEBUG(dbgs()
2299                        << "SLP:    initially in ready list: " << *I << "\n");
2300           }
2301         });
2302       }
2303     }
2304 
2305     /// Checks if a bundle of instructions can be scheduled, i.e. has no
2306     /// cyclic dependencies. This is only a dry-run, no instructions are
2307     /// actually moved at this stage.
2308     /// \returns the scheduling bundle. The returned Optional value is non-None
2309     /// if \p VL is allowed to be scheduled.
2310     Optional<ScheduleData *>
2311     tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
2312                       const InstructionsState &S);
2313 
2314     /// Un-bundles a group of instructions.
2315     void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue);
2316 
2317     /// Allocates schedule data chunk.
2318     ScheduleData *allocateScheduleDataChunks();
2319 
2320     /// Extends the scheduling region so that V is inside the region.
2321     /// \returns true if the region size is within the limit.
2322     bool extendSchedulingRegion(Value *V, const InstructionsState &S);
2323 
2324     /// Initialize the ScheduleData structures for new instructions in the
2325     /// scheduling region.
2326     void initScheduleData(Instruction *FromI, Instruction *ToI,
2327                           ScheduleData *PrevLoadStore,
2328                           ScheduleData *NextLoadStore);
2329 
2330     /// Updates the dependency information of a bundle and of all instructions/
2331     /// bundles which depend on the original bundle.
2332     void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
2333                                BoUpSLP *SLP);
2334 
2335     /// Sets all instruction in the scheduling region to un-scheduled.
2336     void resetSchedule();
2337 
2338     BasicBlock *BB;
2339 
2340     /// Simple memory allocation for ScheduleData.
2341     std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
2342 
2343     /// The size of a ScheduleData array in ScheduleDataChunks.
2344     int ChunkSize;
2345 
2346     /// The allocator position in the current chunk, which is the last entry
2347     /// of ScheduleDataChunks.
2348     int ChunkPos;
2349 
2350     /// Attaches ScheduleData to Instruction.
2351     /// Note that the mapping survives during all vectorization iterations, i.e.
2352     /// ScheduleData structures are recycled.
2353     DenseMap<Value *, ScheduleData *> ScheduleDataMap;
2354 
2355     /// Attaches ScheduleData to Instruction with the leading key.
2356     DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>>
2357         ExtraScheduleDataMap;
2358 
2359     struct ReadyList : SmallVector<ScheduleData *, 8> {
2360       void insert(ScheduleData *SD) { push_back(SD); }
2361     };
2362 
2363     /// The ready-list for scheduling (only used for the dry-run).
2364     ReadyList ReadyInsts;
2365 
2366     /// The first instruction of the scheduling region.
2367     Instruction *ScheduleStart = nullptr;
2368 
2369     /// The first instruction _after_ the scheduling region.
2370     Instruction *ScheduleEnd = nullptr;
2371 
2372     /// The first memory accessing instruction in the scheduling region
2373     /// (can be null).
2374     ScheduleData *FirstLoadStoreInRegion = nullptr;
2375 
2376     /// The last memory accessing instruction in the scheduling region
2377     /// (can be null).
2378     ScheduleData *LastLoadStoreInRegion = nullptr;
2379 
2380     /// The current size of the scheduling region.
2381     int ScheduleRegionSize = 0;
2382 
2383     /// The maximum size allowed for the scheduling region.
2384     int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget;
2385 
2386     /// The ID of the scheduling region. For a new vectorization iteration this
2387     /// is incremented which "removes" all ScheduleData from the region.
2388     // Make sure that the initial SchedulingRegionID is greater than the
2389     // initial SchedulingRegionID in ScheduleData (which is 0).
2390     int SchedulingRegionID = 1;
2391   };
2392 
2393   /// Attaches the BlockScheduling structures to basic blocks.
2394   MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
2395 
2396   /// Performs the "real" scheduling. Done before vectorization is actually
2397   /// performed in a basic block.
2398   void scheduleBlock(BlockScheduling *BS);
2399 
2400   /// List of users to ignore during scheduling and that don't need extracting.
2401   ArrayRef<Value *> UserIgnoreList;
2402 
2403   /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of
2404   /// sorted SmallVectors of unsigned.
2405   struct OrdersTypeDenseMapInfo {
2406     static OrdersType getEmptyKey() {
2407       OrdersType V;
2408       V.push_back(~1U);
2409       return V;
2410     }
2411 
2412     static OrdersType getTombstoneKey() {
2413       OrdersType V;
2414       V.push_back(~2U);
2415       return V;
2416     }
2417 
2418     static unsigned getHashValue(const OrdersType &V) {
2419       return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
2420     }
2421 
2422     static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) {
2423       return LHS == RHS;
2424     }
2425   };
2426 
2427   /// Contains orders of operations along with the number of bundles that have
2428   /// operations in this order. It stores only those orders that require
2429   /// reordering, if reordering is not required it is counted using \a
2430   /// NumOpsWantToKeepOriginalOrder.
2431   DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder;
2432   /// Number of bundles that do not require reordering.
2433   unsigned NumOpsWantToKeepOriginalOrder = 0;
2434 
2435   // Analysis and block reference.
2436   Function *F;
2437   ScalarEvolution *SE;
2438   TargetTransformInfo *TTI;
2439   TargetLibraryInfo *TLI;
2440   AAResults *AA;
2441   LoopInfo *LI;
2442   DominatorTree *DT;
2443   AssumptionCache *AC;
2444   DemandedBits *DB;
2445   const DataLayout *DL;
2446   OptimizationRemarkEmitter *ORE;
2447 
2448   unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
2449   unsigned MinVecRegSize; // Set by cl::opt (default: 128).
2450 
2451   /// Instruction builder to construct the vectorized tree.
2452   IRBuilder<> Builder;
2453 
2454   /// A map of scalar integer values to the smallest bit width with which they
2455   /// can legally be represented. The values map to (width, signed) pairs,
2456   /// where "width" indicates the minimum bit width and "signed" is True if the
2457   /// value must be signed-extended, rather than zero-extended, back to its
2458   /// original width.
2459   MapVector<Value *, std::pair<uint64_t, bool>> MinBWs;
2460 };
2461 
2462 } // end namespace slpvectorizer
2463 
2464 template <> struct GraphTraits<BoUpSLP *> {
2465   using TreeEntry = BoUpSLP::TreeEntry;
2466 
2467   /// NodeRef has to be a pointer per the GraphWriter.
2468   using NodeRef = TreeEntry *;
2469 
2470   using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy;
2471 
2472   /// Add the VectorizableTree to the index iterator to be able to return
2473   /// TreeEntry pointers.
2474   struct ChildIteratorType
2475       : public iterator_adaptor_base<
2476             ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> {
2477     ContainerTy &VectorizableTree;
2478 
2479     ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W,
2480                       ContainerTy &VT)
2481         : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {}
2482 
2483     NodeRef operator*() { return I->UserTE; }
2484   };
2485 
2486   static NodeRef getEntryNode(BoUpSLP &R) {
2487     return R.VectorizableTree[0].get();
2488   }
2489 
2490   static ChildIteratorType child_begin(NodeRef N) {
2491     return {N->UserTreeIndices.begin(), N->Container};
2492   }
2493 
2494   static ChildIteratorType child_end(NodeRef N) {
2495     return {N->UserTreeIndices.end(), N->Container};
2496   }
2497 
2498   /// For the node iterator we just need to turn the TreeEntry iterator into a
2499   /// TreeEntry* iterator so that it dereferences to NodeRef.
2500   class nodes_iterator {
2501     using ItTy = ContainerTy::iterator;
2502     ItTy It;
2503 
2504   public:
2505     nodes_iterator(const ItTy &It2) : It(It2) {}
2506     NodeRef operator*() { return It->get(); }
2507     nodes_iterator operator++() {
2508       ++It;
2509       return *this;
2510     }
2511     bool operator!=(const nodes_iterator &N2) const { return N2.It != It; }
2512   };
2513 
2514   static nodes_iterator nodes_begin(BoUpSLP *R) {
2515     return nodes_iterator(R->VectorizableTree.begin());
2516   }
2517 
2518   static nodes_iterator nodes_end(BoUpSLP *R) {
2519     return nodes_iterator(R->VectorizableTree.end());
2520   }
2521 
2522   static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); }
2523 };
2524 
2525 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits {
2526   using TreeEntry = BoUpSLP::TreeEntry;
2527 
2528   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
2529 
2530   std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) {
2531     std::string Str;
2532     raw_string_ostream OS(Str);
2533     if (isSplat(Entry->Scalars)) {
2534       OS << "<splat> " << *Entry->Scalars[0];
2535       return Str;
2536     }
2537     for (auto V : Entry->Scalars) {
2538       OS << *V;
2539       if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) {
2540             return EU.Scalar == V;
2541           }))
2542         OS << " <extract>";
2543       OS << "\n";
2544     }
2545     return Str;
2546   }
2547 
2548   static std::string getNodeAttributes(const TreeEntry *Entry,
2549                                        const BoUpSLP *) {
2550     if (Entry->State == TreeEntry::NeedToGather)
2551       return "color=red";
2552     return "";
2553   }
2554 };
2555 
2556 } // end namespace llvm
2557 
2558 BoUpSLP::~BoUpSLP() {
2559   for (const auto &Pair : DeletedInstructions) {
2560     // Replace operands of ignored instructions with Undefs in case if they were
2561     // marked for deletion.
2562     if (Pair.getSecond()) {
2563       Value *Undef = UndefValue::get(Pair.getFirst()->getType());
2564       Pair.getFirst()->replaceAllUsesWith(Undef);
2565     }
2566     Pair.getFirst()->dropAllReferences();
2567   }
2568   for (const auto &Pair : DeletedInstructions) {
2569     assert(Pair.getFirst()->use_empty() &&
2570            "trying to erase instruction with users.");
2571     Pair.getFirst()->eraseFromParent();
2572   }
2573 #ifdef EXPENSIVE_CHECKS
2574   // If we could guarantee that this call is not extremely slow, we could
2575   // remove the ifdef limitation (see PR47712).
2576   assert(!verifyFunction(*F, &dbgs()));
2577 #endif
2578 }
2579 
2580 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) {
2581   for (auto *V : AV) {
2582     if (auto *I = dyn_cast<Instruction>(V))
2583       eraseInstruction(I, /*ReplaceOpsWithUndef=*/true);
2584   };
2585 }
2586 
2587 void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
2588                         ArrayRef<Value *> UserIgnoreLst) {
2589   ExtraValueToDebugLocsMap ExternallyUsedValues;
2590   buildTree(Roots, ExternallyUsedValues, UserIgnoreLst);
2591 }
2592 
2593 static int findLaneForValue(ArrayRef<Value *> Scalars,
2594                             ArrayRef<int> ReuseShuffleIndices, Value *V) {
2595   unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V));
2596   assert(FoundLane < Scalars.size() && "Couldn't find extract lane");
2597   if (!ReuseShuffleIndices.empty()) {
2598     FoundLane = std::distance(ReuseShuffleIndices.begin(),
2599                               find(ReuseShuffleIndices, FoundLane));
2600   }
2601   return FoundLane;
2602 }
2603 
2604 void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
2605                         ExtraValueToDebugLocsMap &ExternallyUsedValues,
2606                         ArrayRef<Value *> UserIgnoreLst) {
2607   deleteTree();
2608   UserIgnoreList = UserIgnoreLst;
2609   if (!allSameType(Roots))
2610     return;
2611   buildTree_rec(Roots, 0, EdgeInfo());
2612 
2613   // Collect the values that we need to extract from the tree.
2614   for (auto &TEPtr : VectorizableTree) {
2615     TreeEntry *Entry = TEPtr.get();
2616 
2617     // No need to handle users of gathered values.
2618     if (Entry->State == TreeEntry::NeedToGather)
2619       continue;
2620 
2621     // For each lane:
2622     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
2623       Value *Scalar = Entry->Scalars[Lane];
2624       int FoundLane =
2625           findLaneForValue(Entry->Scalars, Entry->ReuseShuffleIndices, Scalar);
2626 
2627       // Check if the scalar is externally used as an extra arg.
2628       auto ExtI = ExternallyUsedValues.find(Scalar);
2629       if (ExtI != ExternallyUsedValues.end()) {
2630         LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane "
2631                           << Lane << " from " << *Scalar << ".\n");
2632         ExternalUses.emplace_back(Scalar, nullptr, FoundLane);
2633       }
2634       for (User *U : Scalar->users()) {
2635         LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
2636 
2637         Instruction *UserInst = dyn_cast<Instruction>(U);
2638         if (!UserInst)
2639           continue;
2640 
2641         // Skip in-tree scalars that become vectors
2642         if (TreeEntry *UseEntry = getTreeEntry(U)) {
2643           Value *UseScalar = UseEntry->Scalars[0];
2644           // Some in-tree scalars will remain as scalar in vectorized
2645           // instructions. If that is the case, the one in Lane 0 will
2646           // be used.
2647           if (UseScalar != U ||
2648               UseEntry->State == TreeEntry::ScatterVectorize ||
2649               !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
2650             LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
2651                               << ".\n");
2652             assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state");
2653             continue;
2654           }
2655         }
2656 
2657         // Ignore users in the user ignore list.
2658         if (is_contained(UserIgnoreList, UserInst))
2659           continue;
2660 
2661         LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane "
2662                           << Lane << " from " << *Scalar << ".\n");
2663         ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane));
2664       }
2665     }
2666   }
2667 }
2668 
2669 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth,
2670                             const EdgeInfo &UserTreeIdx) {
2671   assert((allConstant(VL) || allSameType(VL)) && "Invalid types!");
2672 
2673   InstructionsState S = getSameOpcode(VL);
2674   if (Depth == RecursionMaxDepth) {
2675     LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
2676     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2677     return;
2678   }
2679 
2680   // Don't handle vectors.
2681   if (S.OpValue->getType()->isVectorTy() &&
2682       !isa<InsertElementInst>(S.OpValue)) {
2683     LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
2684     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2685     return;
2686   }
2687 
2688   if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
2689     if (SI->getValueOperand()->getType()->isVectorTy()) {
2690       LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
2691       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2692       return;
2693     }
2694 
2695   // If all of the operands are identical or constant we have a simple solution.
2696   if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) {
2697     LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
2698     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2699     return;
2700   }
2701 
2702   // We now know that this is a vector of instructions of the same type from
2703   // the same block.
2704 
2705   // Don't vectorize ephemeral values.
2706   for (Value *V : VL) {
2707     if (EphValues.count(V)) {
2708       LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
2709                         << ") is ephemeral.\n");
2710       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2711       return;
2712     }
2713   }
2714 
2715   // Check if this is a duplicate of another entry.
2716   if (TreeEntry *E = getTreeEntry(S.OpValue)) {
2717     LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n");
2718     if (!E->isSame(VL)) {
2719       LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
2720       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2721       return;
2722     }
2723     // Record the reuse of the tree node.  FIXME, currently this is only used to
2724     // properly draw the graph rather than for the actual vectorization.
2725     E->UserTreeIndices.push_back(UserTreeIdx);
2726     LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue
2727                       << ".\n");
2728     return;
2729   }
2730 
2731   // Check that none of the instructions in the bundle are already in the tree.
2732   for (Value *V : VL) {
2733     auto *I = dyn_cast<Instruction>(V);
2734     if (!I)
2735       continue;
2736     if (getTreeEntry(I)) {
2737       LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
2738                         << ") is already in tree.\n");
2739       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2740       return;
2741     }
2742   }
2743 
2744   // If any of the scalars is marked as a value that needs to stay scalar, then
2745   // we need to gather the scalars.
2746   // The reduction nodes (stored in UserIgnoreList) also should stay scalar.
2747   for (Value *V : VL) {
2748     if (MustGather.count(V) || is_contained(UserIgnoreList, V)) {
2749       LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
2750       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2751       return;
2752     }
2753   }
2754 
2755   // Check that all of the users of the scalars that we want to vectorize are
2756   // schedulable.
2757   auto *VL0 = cast<Instruction>(S.OpValue);
2758   BasicBlock *BB = VL0->getParent();
2759 
2760   if (!DT->isReachableFromEntry(BB)) {
2761     // Don't go into unreachable blocks. They may contain instructions with
2762     // dependency cycles which confuse the final scheduling.
2763     LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
2764     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2765     return;
2766   }
2767 
2768   // Check that every instruction appears once in this bundle.
2769   SmallVector<unsigned, 4> ReuseShuffleIndicies;
2770   SmallVector<Value *, 4> UniqueValues;
2771   DenseMap<Value *, unsigned> UniquePositions;
2772   for (Value *V : VL) {
2773     auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
2774     ReuseShuffleIndicies.emplace_back(Res.first->second);
2775     if (Res.second)
2776       UniqueValues.emplace_back(V);
2777   }
2778   size_t NumUniqueScalarValues = UniqueValues.size();
2779   if (NumUniqueScalarValues == VL.size()) {
2780     ReuseShuffleIndicies.clear();
2781   } else {
2782     LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n");
2783     if (NumUniqueScalarValues <= 1 ||
2784         !llvm::isPowerOf2_32(NumUniqueScalarValues)) {
2785       LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
2786       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2787       return;
2788     }
2789     VL = UniqueValues;
2790   }
2791 
2792   auto &BSRef = BlocksSchedules[BB];
2793   if (!BSRef)
2794     BSRef = std::make_unique<BlockScheduling>(BB);
2795 
2796   BlockScheduling &BS = *BSRef.get();
2797 
2798   Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S);
2799   if (!Bundle) {
2800     LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
2801     assert((!BS.getScheduleData(VL0) ||
2802             !BS.getScheduleData(VL0)->isPartOfBundle()) &&
2803            "tryScheduleBundle should cancelScheduling on failure");
2804     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2805                  ReuseShuffleIndicies);
2806     return;
2807   }
2808   LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
2809 
2810   unsigned ShuffleOrOp = S.isAltShuffle() ?
2811                 (unsigned) Instruction::ShuffleVector : S.getOpcode();
2812   switch (ShuffleOrOp) {
2813     case Instruction::PHI: {
2814       auto *PH = cast<PHINode>(VL0);
2815 
2816       // Check for terminator values (e.g. invoke).
2817       for (Value *V : VL)
2818         for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) {
2819           Instruction *Term = dyn_cast<Instruction>(
2820               cast<PHINode>(V)->getIncomingValueForBlock(
2821                   PH->getIncomingBlock(I)));
2822           if (Term && Term->isTerminator()) {
2823             LLVM_DEBUG(dbgs()
2824                        << "SLP: Need to swizzle PHINodes (terminator use).\n");
2825             BS.cancelScheduling(VL, VL0);
2826             newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2827                          ReuseShuffleIndicies);
2828             return;
2829           }
2830         }
2831 
2832       TreeEntry *TE =
2833           newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies);
2834       LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
2835 
2836       // Keeps the reordered operands to avoid code duplication.
2837       SmallVector<ValueList, 2> OperandsVec;
2838       for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) {
2839         if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) {
2840           ValueList Operands(VL.size(), PoisonValue::get(PH->getType()));
2841           TE->setOperand(I, Operands);
2842           OperandsVec.push_back(Operands);
2843           continue;
2844         }
2845         ValueList Operands;
2846         // Prepare the operand vector.
2847         for (Value *V : VL)
2848           Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(
2849               PH->getIncomingBlock(I)));
2850         TE->setOperand(I, Operands);
2851         OperandsVec.push_back(Operands);
2852       }
2853       for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx)
2854         buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx});
2855       return;
2856     }
2857     case Instruction::ExtractValue:
2858     case Instruction::ExtractElement: {
2859       OrdersType CurrentOrder;
2860       bool Reuse = canReuseExtract(VL, VL0, CurrentOrder);
2861       if (Reuse) {
2862         LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n");
2863         ++NumOpsWantToKeepOriginalOrder;
2864         newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2865                      ReuseShuffleIndicies);
2866         // This is a special case, as it does not gather, but at the same time
2867         // we are not extending buildTree_rec() towards the operands.
2868         ValueList Op0;
2869         Op0.assign(VL.size(), VL0->getOperand(0));
2870         VectorizableTree.back()->setOperand(0, Op0);
2871         return;
2872       }
2873       if (!CurrentOrder.empty()) {
2874         LLVM_DEBUG({
2875           dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
2876                     "with order";
2877           for (unsigned Idx : CurrentOrder)
2878             dbgs() << " " << Idx;
2879           dbgs() << "\n";
2880         });
2881         // Insert new order with initial value 0, if it does not exist,
2882         // otherwise return the iterator to the existing one.
2883         newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2884                      ReuseShuffleIndicies, CurrentOrder);
2885         findRootOrder(CurrentOrder);
2886         ++NumOpsWantToKeepOrder[CurrentOrder];
2887         // This is a special case, as it does not gather, but at the same time
2888         // we are not extending buildTree_rec() towards the operands.
2889         ValueList Op0;
2890         Op0.assign(VL.size(), VL0->getOperand(0));
2891         VectorizableTree.back()->setOperand(0, Op0);
2892         return;
2893       }
2894       LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n");
2895       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2896                    ReuseShuffleIndicies);
2897       BS.cancelScheduling(VL, VL0);
2898       return;
2899     }
2900     case Instruction::InsertElement: {
2901       assert(ReuseShuffleIndicies.empty() && "All inserts should be unique");
2902 
2903       // Check that we have a buildvector and not a shuffle of 2 or more
2904       // different vectors.
2905       ValueSet SourceVectors;
2906       for (Value *V : VL)
2907         SourceVectors.insert(cast<Instruction>(V)->getOperand(0));
2908 
2909       if (count_if(VL, [&SourceVectors](Value *V) {
2910             return !SourceVectors.contains(V);
2911           }) >= 2) {
2912         // Found 2nd source vector - cancel.
2913         LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with "
2914                              "different source vectors.\n");
2915         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2916                      ReuseShuffleIndicies);
2917         BS.cancelScheduling(VL, VL0);
2918         return;
2919       }
2920 
2921       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx);
2922       LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n");
2923 
2924       constexpr int NumOps = 2;
2925       ValueList VectorOperands[NumOps];
2926       for (int I = 0; I < NumOps; ++I) {
2927         for (Value *V : VL)
2928           VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I));
2929 
2930         TE->setOperand(I, VectorOperands[I]);
2931       }
2932       buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, 0});
2933       return;
2934     }
2935     case Instruction::Load: {
2936       // Check that a vectorized load would load the same memory as a scalar
2937       // load. For example, we don't want to vectorize loads that are smaller
2938       // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
2939       // treats loading/storing it as an i8 struct. If we vectorize loads/stores
2940       // from such a struct, we read/write packed bits disagreeing with the
2941       // unvectorized version.
2942       Type *ScalarTy = VL0->getType();
2943 
2944       if (DL->getTypeSizeInBits(ScalarTy) !=
2945           DL->getTypeAllocSizeInBits(ScalarTy)) {
2946         BS.cancelScheduling(VL, VL0);
2947         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2948                      ReuseShuffleIndicies);
2949         LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n");
2950         return;
2951       }
2952 
2953       // Make sure all loads in the bundle are simple - we can't vectorize
2954       // atomic or volatile loads.
2955       SmallVector<Value *, 4> PointerOps(VL.size());
2956       auto POIter = PointerOps.begin();
2957       for (Value *V : VL) {
2958         auto *L = cast<LoadInst>(V);
2959         if (!L->isSimple()) {
2960           BS.cancelScheduling(VL, VL0);
2961           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2962                        ReuseShuffleIndicies);
2963           LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
2964           return;
2965         }
2966         *POIter = L->getPointerOperand();
2967         ++POIter;
2968       }
2969 
2970       OrdersType CurrentOrder;
2971       // Check the order of pointer operands.
2972       if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) {
2973         Value *Ptr0;
2974         Value *PtrN;
2975         if (CurrentOrder.empty()) {
2976           Ptr0 = PointerOps.front();
2977           PtrN = PointerOps.back();
2978         } else {
2979           Ptr0 = PointerOps[CurrentOrder.front()];
2980           PtrN = PointerOps[CurrentOrder.back()];
2981         }
2982         Optional<int> Diff = getPointersDiff(Ptr0, PtrN, *DL, *SE);
2983         // Check that the sorted loads are consecutive.
2984         if (static_cast<unsigned>(*Diff) == VL.size() - 1) {
2985           if (CurrentOrder.empty()) {
2986             // Original loads are consecutive and does not require reordering.
2987             ++NumOpsWantToKeepOriginalOrder;
2988             TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
2989                                          UserTreeIdx, ReuseShuffleIndicies);
2990             TE->setOperandsInOrder();
2991             LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n");
2992           } else {
2993             // Need to reorder.
2994             TreeEntry *TE =
2995                 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2996                              ReuseShuffleIndicies, CurrentOrder);
2997             TE->setOperandsInOrder();
2998             LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n");
2999             findRootOrder(CurrentOrder);
3000             ++NumOpsWantToKeepOrder[CurrentOrder];
3001           }
3002           return;
3003         }
3004         // Vectorizing non-consecutive loads with `llvm.masked.gather`.
3005         TreeEntry *TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S,
3006                                      UserTreeIdx, ReuseShuffleIndicies);
3007         TE->setOperandsInOrder();
3008         buildTree_rec(PointerOps, Depth + 1, {TE, 0});
3009         LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n");
3010         return;
3011       }
3012 
3013       LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
3014       BS.cancelScheduling(VL, VL0);
3015       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3016                    ReuseShuffleIndicies);
3017       return;
3018     }
3019     case Instruction::ZExt:
3020     case Instruction::SExt:
3021     case Instruction::FPToUI:
3022     case Instruction::FPToSI:
3023     case Instruction::FPExt:
3024     case Instruction::PtrToInt:
3025     case Instruction::IntToPtr:
3026     case Instruction::SIToFP:
3027     case Instruction::UIToFP:
3028     case Instruction::Trunc:
3029     case Instruction::FPTrunc:
3030     case Instruction::BitCast: {
3031       Type *SrcTy = VL0->getOperand(0)->getType();
3032       for (Value *V : VL) {
3033         Type *Ty = cast<Instruction>(V)->getOperand(0)->getType();
3034         if (Ty != SrcTy || !isValidElementType(Ty)) {
3035           BS.cancelScheduling(VL, VL0);
3036           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3037                        ReuseShuffleIndicies);
3038           LLVM_DEBUG(dbgs()
3039                      << "SLP: Gathering casts with different src types.\n");
3040           return;
3041         }
3042       }
3043       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3044                                    ReuseShuffleIndicies);
3045       LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n");
3046 
3047       TE->setOperandsInOrder();
3048       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
3049         ValueList Operands;
3050         // Prepare the operand vector.
3051         for (Value *V : VL)
3052           Operands.push_back(cast<Instruction>(V)->getOperand(i));
3053 
3054         buildTree_rec(Operands, Depth + 1, {TE, i});
3055       }
3056       return;
3057     }
3058     case Instruction::ICmp:
3059     case Instruction::FCmp: {
3060       // Check that all of the compares have the same predicate.
3061       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
3062       CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0);
3063       Type *ComparedTy = VL0->getOperand(0)->getType();
3064       for (Value *V : VL) {
3065         CmpInst *Cmp = cast<CmpInst>(V);
3066         if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) ||
3067             Cmp->getOperand(0)->getType() != ComparedTy) {
3068           BS.cancelScheduling(VL, VL0);
3069           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3070                        ReuseShuffleIndicies);
3071           LLVM_DEBUG(dbgs()
3072                      << "SLP: Gathering cmp with different predicate.\n");
3073           return;
3074         }
3075       }
3076 
3077       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3078                                    ReuseShuffleIndicies);
3079       LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n");
3080 
3081       ValueList Left, Right;
3082       if (cast<CmpInst>(VL0)->isCommutative()) {
3083         // Commutative predicate - collect + sort operands of the instructions
3084         // so that each side is more likely to have the same opcode.
3085         assert(P0 == SwapP0 && "Commutative Predicate mismatch");
3086         reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
3087       } else {
3088         // Collect operands - commute if it uses the swapped predicate.
3089         for (Value *V : VL) {
3090           auto *Cmp = cast<CmpInst>(V);
3091           Value *LHS = Cmp->getOperand(0);
3092           Value *RHS = Cmp->getOperand(1);
3093           if (Cmp->getPredicate() != P0)
3094             std::swap(LHS, RHS);
3095           Left.push_back(LHS);
3096           Right.push_back(RHS);
3097         }
3098       }
3099       TE->setOperand(0, Left);
3100       TE->setOperand(1, Right);
3101       buildTree_rec(Left, Depth + 1, {TE, 0});
3102       buildTree_rec(Right, Depth + 1, {TE, 1});
3103       return;
3104     }
3105     case Instruction::Select:
3106     case Instruction::FNeg:
3107     case Instruction::Add:
3108     case Instruction::FAdd:
3109     case Instruction::Sub:
3110     case Instruction::FSub:
3111     case Instruction::Mul:
3112     case Instruction::FMul:
3113     case Instruction::UDiv:
3114     case Instruction::SDiv:
3115     case Instruction::FDiv:
3116     case Instruction::URem:
3117     case Instruction::SRem:
3118     case Instruction::FRem:
3119     case Instruction::Shl:
3120     case Instruction::LShr:
3121     case Instruction::AShr:
3122     case Instruction::And:
3123     case Instruction::Or:
3124     case Instruction::Xor: {
3125       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3126                                    ReuseShuffleIndicies);
3127       LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n");
3128 
3129       // Sort operands of the instructions so that each side is more likely to
3130       // have the same opcode.
3131       if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
3132         ValueList Left, Right;
3133         reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
3134         TE->setOperand(0, Left);
3135         TE->setOperand(1, Right);
3136         buildTree_rec(Left, Depth + 1, {TE, 0});
3137         buildTree_rec(Right, Depth + 1, {TE, 1});
3138         return;
3139       }
3140 
3141       TE->setOperandsInOrder();
3142       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
3143         ValueList Operands;
3144         // Prepare the operand vector.
3145         for (Value *V : VL)
3146           Operands.push_back(cast<Instruction>(V)->getOperand(i));
3147 
3148         buildTree_rec(Operands, Depth + 1, {TE, i});
3149       }
3150       return;
3151     }
3152     case Instruction::GetElementPtr: {
3153       // We don't combine GEPs with complicated (nested) indexing.
3154       for (Value *V : VL) {
3155         if (cast<Instruction>(V)->getNumOperands() != 2) {
3156           LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
3157           BS.cancelScheduling(VL, VL0);
3158           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3159                        ReuseShuffleIndicies);
3160           return;
3161         }
3162       }
3163 
3164       // We can't combine several GEPs into one vector if they operate on
3165       // different types.
3166       Type *Ty0 = VL0->getOperand(0)->getType();
3167       for (Value *V : VL) {
3168         Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType();
3169         if (Ty0 != CurTy) {
3170           LLVM_DEBUG(dbgs()
3171                      << "SLP: not-vectorizable GEP (different types).\n");
3172           BS.cancelScheduling(VL, VL0);
3173           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3174                        ReuseShuffleIndicies);
3175           return;
3176         }
3177       }
3178 
3179       // We don't combine GEPs with non-constant indexes.
3180       Type *Ty1 = VL0->getOperand(1)->getType();
3181       for (Value *V : VL) {
3182         auto Op = cast<Instruction>(V)->getOperand(1);
3183         if (!isa<ConstantInt>(Op) ||
3184             (Op->getType() != Ty1 &&
3185              Op->getType()->getScalarSizeInBits() >
3186                  DL->getIndexSizeInBits(
3187                      V->getType()->getPointerAddressSpace()))) {
3188           LLVM_DEBUG(dbgs()
3189                      << "SLP: not-vectorizable GEP (non-constant indexes).\n");
3190           BS.cancelScheduling(VL, VL0);
3191           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3192                        ReuseShuffleIndicies);
3193           return;
3194         }
3195       }
3196 
3197       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3198                                    ReuseShuffleIndicies);
3199       LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
3200       TE->setOperandsInOrder();
3201       for (unsigned i = 0, e = 2; i < e; ++i) {
3202         ValueList Operands;
3203         // Prepare the operand vector.
3204         for (Value *V : VL)
3205           Operands.push_back(cast<Instruction>(V)->getOperand(i));
3206 
3207         buildTree_rec(Operands, Depth + 1, {TE, i});
3208       }
3209       return;
3210     }
3211     case Instruction::Store: {
3212       // Check if the stores are consecutive or if we need to swizzle them.
3213       llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType();
3214       // Avoid types that are padded when being allocated as scalars, while
3215       // being packed together in a vector (such as i1).
3216       if (DL->getTypeSizeInBits(ScalarTy) !=
3217           DL->getTypeAllocSizeInBits(ScalarTy)) {
3218         BS.cancelScheduling(VL, VL0);
3219         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3220                      ReuseShuffleIndicies);
3221         LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n");
3222         return;
3223       }
3224       // Make sure all stores in the bundle are simple - we can't vectorize
3225       // atomic or volatile stores.
3226       SmallVector<Value *, 4> PointerOps(VL.size());
3227       ValueList Operands(VL.size());
3228       auto POIter = PointerOps.begin();
3229       auto OIter = Operands.begin();
3230       for (Value *V : VL) {
3231         auto *SI = cast<StoreInst>(V);
3232         if (!SI->isSimple()) {
3233           BS.cancelScheduling(VL, VL0);
3234           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3235                        ReuseShuffleIndicies);
3236           LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n");
3237           return;
3238         }
3239         *POIter = SI->getPointerOperand();
3240         *OIter = SI->getValueOperand();
3241         ++POIter;
3242         ++OIter;
3243       }
3244 
3245       OrdersType CurrentOrder;
3246       // Check the order of pointer operands.
3247       if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) {
3248         Value *Ptr0;
3249         Value *PtrN;
3250         if (CurrentOrder.empty()) {
3251           Ptr0 = PointerOps.front();
3252           PtrN = PointerOps.back();
3253         } else {
3254           Ptr0 = PointerOps[CurrentOrder.front()];
3255           PtrN = PointerOps[CurrentOrder.back()];
3256         }
3257         Optional<int> Dist = getPointersDiff(Ptr0, PtrN, *DL, *SE);
3258         // Check that the sorted pointer operands are consecutive.
3259         if (static_cast<unsigned>(*Dist) == VL.size() - 1) {
3260           if (CurrentOrder.empty()) {
3261             // Original stores are consecutive and does not require reordering.
3262             ++NumOpsWantToKeepOriginalOrder;
3263             TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
3264                                          UserTreeIdx, ReuseShuffleIndicies);
3265             TE->setOperandsInOrder();
3266             buildTree_rec(Operands, Depth + 1, {TE, 0});
3267             LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n");
3268           } else {
3269             TreeEntry *TE =
3270                 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3271                              ReuseShuffleIndicies, CurrentOrder);
3272             TE->setOperandsInOrder();
3273             buildTree_rec(Operands, Depth + 1, {TE, 0});
3274             LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n");
3275             findRootOrder(CurrentOrder);
3276             ++NumOpsWantToKeepOrder[CurrentOrder];
3277           }
3278           return;
3279         }
3280       }
3281 
3282       BS.cancelScheduling(VL, VL0);
3283       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3284                    ReuseShuffleIndicies);
3285       LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
3286       return;
3287     }
3288     case Instruction::Call: {
3289       // Check if the calls are all to the same vectorizable intrinsic or
3290       // library function.
3291       CallInst *CI = cast<CallInst>(VL0);
3292       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3293 
3294       VFShape Shape = VFShape::get(
3295           *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())),
3296           false /*HasGlobalPred*/);
3297       Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3298 
3299       if (!VecFunc && !isTriviallyVectorizable(ID)) {
3300         BS.cancelScheduling(VL, VL0);
3301         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3302                      ReuseShuffleIndicies);
3303         LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
3304         return;
3305       }
3306       Function *F = CI->getCalledFunction();
3307       unsigned NumArgs = CI->getNumArgOperands();
3308       SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr);
3309       for (unsigned j = 0; j != NumArgs; ++j)
3310         if (hasVectorInstrinsicScalarOpd(ID, j))
3311           ScalarArgs[j] = CI->getArgOperand(j);
3312       for (Value *V : VL) {
3313         CallInst *CI2 = dyn_cast<CallInst>(V);
3314         if (!CI2 || CI2->getCalledFunction() != F ||
3315             getVectorIntrinsicIDForCall(CI2, TLI) != ID ||
3316             (VecFunc &&
3317              VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) ||
3318             !CI->hasIdenticalOperandBundleSchema(*CI2)) {
3319           BS.cancelScheduling(VL, VL0);
3320           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3321                        ReuseShuffleIndicies);
3322           LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V
3323                             << "\n");
3324           return;
3325         }
3326         // Some intrinsics have scalar arguments and should be same in order for
3327         // them to be vectorized.
3328         for (unsigned j = 0; j != NumArgs; ++j) {
3329           if (hasVectorInstrinsicScalarOpd(ID, j)) {
3330             Value *A1J = CI2->getArgOperand(j);
3331             if (ScalarArgs[j] != A1J) {
3332               BS.cancelScheduling(VL, VL0);
3333               newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3334                            ReuseShuffleIndicies);
3335               LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
3336                                 << " argument " << ScalarArgs[j] << "!=" << A1J
3337                                 << "\n");
3338               return;
3339             }
3340           }
3341         }
3342         // Verify that the bundle operands are identical between the two calls.
3343         if (CI->hasOperandBundles() &&
3344             !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(),
3345                         CI->op_begin() + CI->getBundleOperandsEndIndex(),
3346                         CI2->op_begin() + CI2->getBundleOperandsStartIndex())) {
3347           BS.cancelScheduling(VL, VL0);
3348           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3349                        ReuseShuffleIndicies);
3350           LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:"
3351                             << *CI << "!=" << *V << '\n');
3352           return;
3353         }
3354       }
3355 
3356       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3357                                    ReuseShuffleIndicies);
3358       TE->setOperandsInOrder();
3359       for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
3360         ValueList Operands;
3361         // Prepare the operand vector.
3362         for (Value *V : VL) {
3363           auto *CI2 = cast<CallInst>(V);
3364           Operands.push_back(CI2->getArgOperand(i));
3365         }
3366         buildTree_rec(Operands, Depth + 1, {TE, i});
3367       }
3368       return;
3369     }
3370     case Instruction::ShuffleVector: {
3371       // If this is not an alternate sequence of opcode like add-sub
3372       // then do not vectorize this instruction.
3373       if (!S.isAltShuffle()) {
3374         BS.cancelScheduling(VL, VL0);
3375         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3376                      ReuseShuffleIndicies);
3377         LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
3378         return;
3379       }
3380       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3381                                    ReuseShuffleIndicies);
3382       LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
3383 
3384       // Reorder operands if reordering would enable vectorization.
3385       if (isa<BinaryOperator>(VL0)) {
3386         ValueList Left, Right;
3387         reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
3388         TE->setOperand(0, Left);
3389         TE->setOperand(1, Right);
3390         buildTree_rec(Left, Depth + 1, {TE, 0});
3391         buildTree_rec(Right, Depth + 1, {TE, 1});
3392         return;
3393       }
3394 
3395       TE->setOperandsInOrder();
3396       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
3397         ValueList Operands;
3398         // Prepare the operand vector.
3399         for (Value *V : VL)
3400           Operands.push_back(cast<Instruction>(V)->getOperand(i));
3401 
3402         buildTree_rec(Operands, Depth + 1, {TE, i});
3403       }
3404       return;
3405     }
3406     default:
3407       BS.cancelScheduling(VL, VL0);
3408       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3409                    ReuseShuffleIndicies);
3410       LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
3411       return;
3412   }
3413 }
3414 
3415 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const {
3416   unsigned N = 1;
3417   Type *EltTy = T;
3418 
3419   while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) ||
3420          isa<VectorType>(EltTy)) {
3421     if (auto *ST = dyn_cast<StructType>(EltTy)) {
3422       // Check that struct is homogeneous.
3423       for (const auto *Ty : ST->elements())
3424         if (Ty != *ST->element_begin())
3425           return 0;
3426       N *= ST->getNumElements();
3427       EltTy = *ST->element_begin();
3428     } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) {
3429       N *= AT->getNumElements();
3430       EltTy = AT->getElementType();
3431     } else {
3432       auto *VT = cast<FixedVectorType>(EltTy);
3433       N *= VT->getNumElements();
3434       EltTy = VT->getElementType();
3435     }
3436   }
3437 
3438   if (!isValidElementType(EltTy))
3439     return 0;
3440   uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N));
3441   if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T))
3442     return 0;
3443   return N;
3444 }
3445 
3446 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
3447                               SmallVectorImpl<unsigned> &CurrentOrder) const {
3448   Instruction *E0 = cast<Instruction>(OpValue);
3449   assert(E0->getOpcode() == Instruction::ExtractElement ||
3450          E0->getOpcode() == Instruction::ExtractValue);
3451   assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode");
3452   // Check if all of the extracts come from the same vector and from the
3453   // correct offset.
3454   Value *Vec = E0->getOperand(0);
3455 
3456   CurrentOrder.clear();
3457 
3458   // We have to extract from a vector/aggregate with the same number of elements.
3459   unsigned NElts;
3460   if (E0->getOpcode() == Instruction::ExtractValue) {
3461     const DataLayout &DL = E0->getModule()->getDataLayout();
3462     NElts = canMapToVector(Vec->getType(), DL);
3463     if (!NElts)
3464       return false;
3465     // Check if load can be rewritten as load of vector.
3466     LoadInst *LI = dyn_cast<LoadInst>(Vec);
3467     if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size()))
3468       return false;
3469   } else {
3470     NElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
3471   }
3472 
3473   if (NElts != VL.size())
3474     return false;
3475 
3476   // Check that all of the indices extract from the correct offset.
3477   bool ShouldKeepOrder = true;
3478   unsigned E = VL.size();
3479   // Assign to all items the initial value E + 1 so we can check if the extract
3480   // instruction index was used already.
3481   // Also, later we can check that all the indices are used and we have a
3482   // consecutive access in the extract instructions, by checking that no
3483   // element of CurrentOrder still has value E + 1.
3484   CurrentOrder.assign(E, E + 1);
3485   unsigned I = 0;
3486   for (; I < E; ++I) {
3487     auto *Inst = cast<Instruction>(VL[I]);
3488     if (Inst->getOperand(0) != Vec)
3489       break;
3490     Optional<unsigned> Idx = getExtractIndex(Inst);
3491     if (!Idx)
3492       break;
3493     const unsigned ExtIdx = *Idx;
3494     if (ExtIdx != I) {
3495       if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1)
3496         break;
3497       ShouldKeepOrder = false;
3498       CurrentOrder[ExtIdx] = I;
3499     } else {
3500       if (CurrentOrder[I] != E + 1)
3501         break;
3502       CurrentOrder[I] = I;
3503     }
3504   }
3505   if (I < E) {
3506     CurrentOrder.clear();
3507     return false;
3508   }
3509 
3510   return ShouldKeepOrder;
3511 }
3512 
3513 bool BoUpSLP::areAllUsersVectorized(Instruction *I,
3514                                     ArrayRef<Value *> VectorizedVals) const {
3515   return (I->hasOneUse() && is_contained(VectorizedVals, I)) ||
3516          llvm::all_of(I->users(), [this](User *U) {
3517            return ScalarToTreeEntry.count(U) > 0;
3518          });
3519 }
3520 
3521 static std::pair<InstructionCost, InstructionCost>
3522 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy,
3523                    TargetTransformInfo *TTI, TargetLibraryInfo *TLI) {
3524   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3525 
3526   // Calculate the cost of the scalar and vector calls.
3527   SmallVector<Type *, 4> VecTys;
3528   for (Use &Arg : CI->args())
3529     VecTys.push_back(
3530         FixedVectorType::get(Arg->getType(), VecTy->getNumElements()));
3531   FastMathFlags FMF;
3532   if (auto *FPCI = dyn_cast<FPMathOperator>(CI))
3533     FMF = FPCI->getFastMathFlags();
3534   SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end());
3535   IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF,
3536                                     dyn_cast<IntrinsicInst>(CI));
3537   auto IntrinsicCost =
3538     TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput);
3539 
3540   auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>(
3541                                      VecTy->getNumElements())),
3542                             false /*HasGlobalPred*/);
3543   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3544   auto LibCost = IntrinsicCost;
3545   if (!CI->isNoBuiltin() && VecFunc) {
3546     // Calculate the cost of the vector library call.
3547     // If the corresponding vector call is cheaper, return its cost.
3548     LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys,
3549                                     TTI::TCK_RecipThroughput);
3550   }
3551   return {IntrinsicCost, LibCost};
3552 }
3553 
3554 /// Compute the cost of creating a vector of type \p VecTy containing the
3555 /// extracted values from \p VL.
3556 static InstructionCost
3557 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy,
3558                    TargetTransformInfo::ShuffleKind ShuffleKind,
3559                    ArrayRef<int> Mask, TargetTransformInfo &TTI) {
3560   unsigned NumOfParts = TTI.getNumberOfParts(VecTy);
3561 
3562   if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts ||
3563       VecTy->getNumElements() < NumOfParts)
3564     return TTI.getShuffleCost(ShuffleKind, VecTy, Mask);
3565 
3566   bool AllConsecutive = true;
3567   unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts;
3568   unsigned Idx = -1;
3569   InstructionCost Cost = 0;
3570 
3571   // Process extracts in blocks of EltsPerVector to check if the source vector
3572   // operand can be re-used directly. If not, add the cost of creating a shuffle
3573   // to extract the values into a vector register.
3574   for (auto *V : VL) {
3575     ++Idx;
3576 
3577     // Reached the start of a new vector registers.
3578     if (Idx % EltsPerVector == 0) {
3579       AllConsecutive = true;
3580       continue;
3581     }
3582 
3583     // Check all extracts for a vector register on the target directly
3584     // extract values in order.
3585     unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V));
3586     unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1]));
3587     AllConsecutive &= PrevIdx + 1 == CurrentIdx &&
3588                       CurrentIdx % EltsPerVector == Idx % EltsPerVector;
3589 
3590     if (AllConsecutive)
3591       continue;
3592 
3593     // Skip all indices, except for the last index per vector block.
3594     if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size())
3595       continue;
3596 
3597     // If we have a series of extracts which are not consecutive and hence
3598     // cannot re-use the source vector register directly, compute the shuffle
3599     // cost to extract the a vector with EltsPerVector elements.
3600     Cost += TTI.getShuffleCost(
3601         TargetTransformInfo::SK_PermuteSingleSrc,
3602         FixedVectorType::get(VecTy->getElementType(), EltsPerVector));
3603   }
3604   return Cost;
3605 }
3606 
3607 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E,
3608                                       ArrayRef<Value *> VectorizedVals) {
3609   ArrayRef<Value*> VL = E->Scalars;
3610 
3611   Type *ScalarTy = VL[0]->getType();
3612   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
3613     ScalarTy = SI->getValueOperand()->getType();
3614   else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0]))
3615     ScalarTy = CI->getOperand(0)->getType();
3616   else if (auto *IE = dyn_cast<InsertElementInst>(VL[0]))
3617     ScalarTy = IE->getOperand(1)->getType();
3618   auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
3619   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
3620 
3621   // If we have computed a smaller type for the expression, update VecTy so
3622   // that the costs will be accurate.
3623   if (MinBWs.count(VL[0]))
3624     VecTy = FixedVectorType::get(
3625         IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size());
3626 
3627   unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size();
3628   bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
3629   InstructionCost ReuseShuffleCost = 0;
3630   if (NeedToShuffleReuses) {
3631     ReuseShuffleCost =
3632         TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy,
3633                             E->ReuseShuffleIndices);
3634   }
3635   // FIXME: it tries to fix a problem with MSVC buildbots.
3636   TargetTransformInfo &TTIRef = *TTI;
3637   auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy,
3638                                VectorizedVals](InstructionCost &Cost,
3639                                                bool IsGather) {
3640     DenseMap<Value *, int> ExtractVectorsTys;
3641     for (auto *V : VL) {
3642       // If all users of instruction are going to be vectorized and this
3643       // instruction itself is not going to be vectorized, consider this
3644       // instruction as dead and remove its cost from the final cost of the
3645       // vectorized tree.
3646       if (!areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) ||
3647           (IsGather && ScalarToTreeEntry.count(V)))
3648         continue;
3649       auto *EE = cast<ExtractElementInst>(V);
3650       unsigned Idx = *getExtractIndex(EE);
3651       if (TTIRef.getNumberOfParts(VecTy) !=
3652           TTIRef.getNumberOfParts(EE->getVectorOperandType())) {
3653         auto It =
3654             ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first;
3655         It->getSecond() = std::min<int>(It->second, Idx);
3656       }
3657       // Take credit for instruction that will become dead.
3658       if (EE->hasOneUse()) {
3659         Instruction *Ext = EE->user_back();
3660         if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
3661             all_of(Ext->users(),
3662                    [](User *U) { return isa<GetElementPtrInst>(U); })) {
3663           // Use getExtractWithExtendCost() to calculate the cost of
3664           // extractelement/ext pair.
3665           Cost -=
3666               TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(),
3667                                               EE->getVectorOperandType(), Idx);
3668           // Add back the cost of s|zext which is subtracted separately.
3669           Cost += TTIRef.getCastInstrCost(
3670               Ext->getOpcode(), Ext->getType(), EE->getType(),
3671               TTI::getCastContextHint(Ext), CostKind, Ext);
3672           continue;
3673         }
3674       }
3675       Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement,
3676                                         EE->getVectorOperandType(), Idx);
3677     }
3678     // Add a cost for subvector extracts/inserts if required.
3679     for (const auto &Data : ExtractVectorsTys) {
3680       auto *EEVTy = cast<FixedVectorType>(Data.first->getType());
3681       unsigned NumElts = VecTy->getNumElements();
3682       if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) {
3683         unsigned Idx = (Data.second / NumElts) * NumElts;
3684         unsigned EENumElts = EEVTy->getNumElements();
3685         if (Idx + NumElts <= EENumElts) {
3686           Cost +=
3687               TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
3688                                     EEVTy, None, Idx, VecTy);
3689         } else {
3690           // Need to round up the subvector type vectorization factor to avoid a
3691           // crash in cost model functions. Make SubVT so that Idx + VF of SubVT
3692           // <= EENumElts.
3693           auto *SubVT =
3694               FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx);
3695           Cost +=
3696               TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
3697                                     EEVTy, None, Idx, SubVT);
3698         }
3699       } else {
3700         Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector,
3701                                       VecTy, None, 0, EEVTy);
3702       }
3703     }
3704   };
3705   if (E->State == TreeEntry::NeedToGather) {
3706     if (allConstant(VL))
3707       return 0;
3708     if (isa<InsertElementInst>(VL[0]))
3709       return InstructionCost::getInvalid();
3710     SmallVector<int> Mask;
3711     SmallVector<const TreeEntry *> Entries;
3712     Optional<TargetTransformInfo::ShuffleKind> Shuffle =
3713         isGatherShuffledEntry(E, Mask, Entries);
3714     if (Shuffle.hasValue()) {
3715       InstructionCost GatherCost = 0;
3716       if (ShuffleVectorInst::isIdentityMask(Mask)) {
3717         // Perfect match in the graph, will reuse the previously vectorized
3718         // node. Cost is 0.
3719         LLVM_DEBUG(
3720             dbgs()
3721             << "SLP: perfect diamond match for gather bundle that starts with "
3722             << *VL.front() << ".\n");
3723       } else {
3724         LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size()
3725                           << " entries for bundle that starts with "
3726                           << *VL.front() << ".\n");
3727         // Detected that instead of gather we can emit a shuffle of single/two
3728         // previously vectorized nodes. Add the cost of the permutation rather
3729         // than gather.
3730         GatherCost = TTI->getShuffleCost(*Shuffle, VecTy, Mask);
3731       }
3732       return ReuseShuffleCost + GatherCost;
3733     }
3734     if (isSplat(VL)) {
3735       // Found the broadcasting of the single scalar, calculate the cost as the
3736       // broadcast.
3737       return ReuseShuffleCost +
3738              TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, None,
3739                                  0);
3740     }
3741     if (E->getOpcode() == Instruction::ExtractElement && allSameType(VL) &&
3742         allSameBlock(VL)) {
3743       // Check that gather of extractelements can be represented as just a
3744       // shuffle of a single/two vectors the scalars are extracted from.
3745       SmallVector<int> Mask;
3746       Optional<TargetTransformInfo::ShuffleKind> ShuffleKind =
3747           isShuffle(VL, Mask);
3748       if (ShuffleKind.hasValue()) {
3749         // Found the bunch of extractelement instructions that must be gathered
3750         // into a vector and can be represented as a permutation elements in a
3751         // single input vector or of 2 input vectors.
3752         InstructionCost Cost =
3753             computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI);
3754         AdjustExtractsCost(Cost, /*IsGather=*/true);
3755         return ReuseShuffleCost + Cost;
3756       }
3757     }
3758     return ReuseShuffleCost + getGatherCost(VL);
3759   }
3760   assert((E->State == TreeEntry::Vectorize ||
3761           E->State == TreeEntry::ScatterVectorize) &&
3762          "Unhandled state");
3763   assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL");
3764   Instruction *VL0 = E->getMainOp();
3765   unsigned ShuffleOrOp =
3766       E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
3767   switch (ShuffleOrOp) {
3768     case Instruction::PHI:
3769       return 0;
3770 
3771     case Instruction::ExtractValue:
3772     case Instruction::ExtractElement: {
3773       // The common cost of removal ExtractElement/ExtractValue instructions +
3774       // the cost of shuffles, if required to resuffle the original vector.
3775       InstructionCost CommonCost = 0;
3776       if (NeedToShuffleReuses) {
3777         unsigned Idx = 0;
3778         for (unsigned I : E->ReuseShuffleIndices) {
3779           if (ShuffleOrOp == Instruction::ExtractElement) {
3780             auto *EE = cast<ExtractElementInst>(VL[I]);
3781             ReuseShuffleCost -= TTI->getVectorInstrCost(
3782                 Instruction::ExtractElement, EE->getVectorOperandType(),
3783                 *getExtractIndex(EE));
3784           } else {
3785             ReuseShuffleCost -= TTI->getVectorInstrCost(
3786                 Instruction::ExtractElement, VecTy, Idx);
3787             ++Idx;
3788           }
3789         }
3790         Idx = ReuseShuffleNumbers;
3791         for (Value *V : VL) {
3792           if (ShuffleOrOp == Instruction::ExtractElement) {
3793             auto *EE = cast<ExtractElementInst>(V);
3794             ReuseShuffleCost += TTI->getVectorInstrCost(
3795                 Instruction::ExtractElement, EE->getVectorOperandType(),
3796                 *getExtractIndex(EE));
3797           } else {
3798             --Idx;
3799             ReuseShuffleCost += TTI->getVectorInstrCost(
3800                 Instruction::ExtractElement, VecTy, Idx);
3801           }
3802         }
3803         CommonCost = ReuseShuffleCost;
3804       } else if (!E->ReorderIndices.empty()) {
3805         SmallVector<int> NewMask;
3806         inversePermutation(E->ReorderIndices, NewMask);
3807         CommonCost = TTI->getShuffleCost(
3808             TargetTransformInfo::SK_PermuteSingleSrc, VecTy, NewMask);
3809       }
3810       if (ShuffleOrOp == Instruction::ExtractValue) {
3811         for (unsigned I = 0, E = VL.size(); I < E; ++I) {
3812           auto *EI = cast<Instruction>(VL[I]);
3813           // Take credit for instruction that will become dead.
3814           if (EI->hasOneUse()) {
3815             Instruction *Ext = EI->user_back();
3816             if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
3817                 all_of(Ext->users(),
3818                        [](User *U) { return isa<GetElementPtrInst>(U); })) {
3819               // Use getExtractWithExtendCost() to calculate the cost of
3820               // extractelement/ext pair.
3821               CommonCost -= TTI->getExtractWithExtendCost(
3822                   Ext->getOpcode(), Ext->getType(), VecTy, I);
3823               // Add back the cost of s|zext which is subtracted separately.
3824               CommonCost += TTI->getCastInstrCost(
3825                   Ext->getOpcode(), Ext->getType(), EI->getType(),
3826                   TTI::getCastContextHint(Ext), CostKind, Ext);
3827               continue;
3828             }
3829           }
3830           CommonCost -=
3831               TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I);
3832         }
3833       } else {
3834         AdjustExtractsCost(CommonCost, /*IsGather=*/false);
3835       }
3836       return CommonCost;
3837     }
3838     case Instruction::InsertElement: {
3839       auto *SrcVecTy = cast<FixedVectorType>(VL0->getType());
3840 
3841       unsigned const NumElts = SrcVecTy->getNumElements();
3842       unsigned const NumScalars = VL.size();
3843       APInt DemandedElts = APInt::getNullValue(NumElts);
3844       // TODO: Add support for Instruction::InsertValue.
3845       unsigned Offset = UINT_MAX;
3846       bool IsIdentity = true;
3847       SmallVector<int> ShuffleMask(NumElts, UndefMaskElem);
3848       for (unsigned I = 0; I < NumScalars; ++I) {
3849         Optional<int> InsertIdx = getInsertIndex(VL[I], 0);
3850         if (!InsertIdx || *InsertIdx == UndefMaskElem)
3851           continue;
3852         unsigned Idx = *InsertIdx;
3853         DemandedElts.setBit(Idx);
3854         if (Idx < Offset) {
3855           Offset = Idx;
3856           IsIdentity &= I == 0;
3857         } else {
3858           assert(Idx >= Offset && "Failed to find vector index offset");
3859           IsIdentity &= Idx - Offset == I;
3860         }
3861         ShuffleMask[Idx] = I;
3862       }
3863       assert(Offset < NumElts && "Failed to find vector index offset");
3864 
3865       InstructionCost Cost = 0;
3866       Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts,
3867                                             /*Insert*/ true, /*Extract*/ false);
3868 
3869       if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0)
3870         Cost += TTI->getShuffleCost(
3871             TargetTransformInfo::SK_InsertSubvector, SrcVecTy, /*Mask*/ None,
3872             Offset,
3873             FixedVectorType::get(SrcVecTy->getElementType(), NumScalars));
3874       else if (!IsIdentity)
3875         Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy,
3876                                     ShuffleMask);
3877 
3878       return Cost;
3879     }
3880     case Instruction::ZExt:
3881     case Instruction::SExt:
3882     case Instruction::FPToUI:
3883     case Instruction::FPToSI:
3884     case Instruction::FPExt:
3885     case Instruction::PtrToInt:
3886     case Instruction::IntToPtr:
3887     case Instruction::SIToFP:
3888     case Instruction::UIToFP:
3889     case Instruction::Trunc:
3890     case Instruction::FPTrunc:
3891     case Instruction::BitCast: {
3892       Type *SrcTy = VL0->getOperand(0)->getType();
3893       InstructionCost ScalarEltCost =
3894           TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy,
3895                                 TTI::getCastContextHint(VL0), CostKind, VL0);
3896       if (NeedToShuffleReuses) {
3897         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3898       }
3899 
3900       // Calculate the cost of this instruction.
3901       InstructionCost ScalarCost = VL.size() * ScalarEltCost;
3902 
3903       auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size());
3904       InstructionCost VecCost = 0;
3905       // Check if the values are candidates to demote.
3906       if (!MinBWs.count(VL0) || VecTy != SrcVecTy) {
3907         VecCost =
3908             ReuseShuffleCost +
3909             TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy,
3910                                   TTI::getCastContextHint(VL0), CostKind, VL0);
3911       }
3912       LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost));
3913       return VecCost - ScalarCost;
3914     }
3915     case Instruction::FCmp:
3916     case Instruction::ICmp:
3917     case Instruction::Select: {
3918       // Calculate the cost of this instruction.
3919       InstructionCost ScalarEltCost =
3920           TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(),
3921                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0);
3922       if (NeedToShuffleReuses) {
3923         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3924       }
3925       auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size());
3926       InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
3927 
3928       // Check if all entries in VL are either compares or selects with compares
3929       // as condition that have the same predicates.
3930       CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE;
3931       bool First = true;
3932       for (auto *V : VL) {
3933         CmpInst::Predicate CurrentPred;
3934         auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value());
3935         if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) &&
3936              !match(V, MatchCmp)) ||
3937             (!First && VecPred != CurrentPred)) {
3938           VecPred = CmpInst::BAD_ICMP_PREDICATE;
3939           break;
3940         }
3941         First = false;
3942         VecPred = CurrentPred;
3943       }
3944 
3945       InstructionCost VecCost = TTI->getCmpSelInstrCost(
3946           E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0);
3947       // Check if it is possible and profitable to use min/max for selects in
3948       // VL.
3949       //
3950       auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL);
3951       if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) {
3952         IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy,
3953                                           {VecTy, VecTy});
3954         InstructionCost IntrinsicCost =
3955             TTI->getIntrinsicInstrCost(CostAttrs, CostKind);
3956         // If the selects are the only uses of the compares, they will be dead
3957         // and we can adjust the cost by removing their cost.
3958         if (IntrinsicAndUse.second)
3959           IntrinsicCost -=
3960               TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy,
3961                                       CmpInst::BAD_ICMP_PREDICATE, CostKind);
3962         VecCost = std::min(VecCost, IntrinsicCost);
3963       }
3964       LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost));
3965       return ReuseShuffleCost + VecCost - ScalarCost;
3966     }
3967     case Instruction::FNeg:
3968     case Instruction::Add:
3969     case Instruction::FAdd:
3970     case Instruction::Sub:
3971     case Instruction::FSub:
3972     case Instruction::Mul:
3973     case Instruction::FMul:
3974     case Instruction::UDiv:
3975     case Instruction::SDiv:
3976     case Instruction::FDiv:
3977     case Instruction::URem:
3978     case Instruction::SRem:
3979     case Instruction::FRem:
3980     case Instruction::Shl:
3981     case Instruction::LShr:
3982     case Instruction::AShr:
3983     case Instruction::And:
3984     case Instruction::Or:
3985     case Instruction::Xor: {
3986       // Certain instructions can be cheaper to vectorize if they have a
3987       // constant second vector operand.
3988       TargetTransformInfo::OperandValueKind Op1VK =
3989           TargetTransformInfo::OK_AnyValue;
3990       TargetTransformInfo::OperandValueKind Op2VK =
3991           TargetTransformInfo::OK_UniformConstantValue;
3992       TargetTransformInfo::OperandValueProperties Op1VP =
3993           TargetTransformInfo::OP_None;
3994       TargetTransformInfo::OperandValueProperties Op2VP =
3995           TargetTransformInfo::OP_PowerOf2;
3996 
3997       // If all operands are exactly the same ConstantInt then set the
3998       // operand kind to OK_UniformConstantValue.
3999       // If instead not all operands are constants, then set the operand kind
4000       // to OK_AnyValue. If all operands are constants but not the same,
4001       // then set the operand kind to OK_NonUniformConstantValue.
4002       ConstantInt *CInt0 = nullptr;
4003       for (unsigned i = 0, e = VL.size(); i < e; ++i) {
4004         const Instruction *I = cast<Instruction>(VL[i]);
4005         unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0;
4006         ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx));
4007         if (!CInt) {
4008           Op2VK = TargetTransformInfo::OK_AnyValue;
4009           Op2VP = TargetTransformInfo::OP_None;
4010           break;
4011         }
4012         if (Op2VP == TargetTransformInfo::OP_PowerOf2 &&
4013             !CInt->getValue().isPowerOf2())
4014           Op2VP = TargetTransformInfo::OP_None;
4015         if (i == 0) {
4016           CInt0 = CInt;
4017           continue;
4018         }
4019         if (CInt0 != CInt)
4020           Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
4021       }
4022 
4023       SmallVector<const Value *, 4> Operands(VL0->operand_values());
4024       InstructionCost ScalarEltCost =
4025           TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK,
4026                                       Op2VK, Op1VP, Op2VP, Operands, VL0);
4027       if (NeedToShuffleReuses) {
4028         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
4029       }
4030       InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
4031       InstructionCost VecCost =
4032           TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK,
4033                                       Op2VK, Op1VP, Op2VP, Operands, VL0);
4034       LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost));
4035       return ReuseShuffleCost + VecCost - ScalarCost;
4036     }
4037     case Instruction::GetElementPtr: {
4038       TargetTransformInfo::OperandValueKind Op1VK =
4039           TargetTransformInfo::OK_AnyValue;
4040       TargetTransformInfo::OperandValueKind Op2VK =
4041           TargetTransformInfo::OK_UniformConstantValue;
4042 
4043       InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost(
4044           Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK);
4045       if (NeedToShuffleReuses) {
4046         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
4047       }
4048       InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
4049       InstructionCost VecCost = TTI->getArithmeticInstrCost(
4050           Instruction::Add, VecTy, CostKind, Op1VK, Op2VK);
4051       LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost));
4052       return ReuseShuffleCost + VecCost - ScalarCost;
4053     }
4054     case Instruction::Load: {
4055       // Cost of wide load - cost of scalar loads.
4056       Align alignment = cast<LoadInst>(VL0)->getAlign();
4057       InstructionCost ScalarEltCost = TTI->getMemoryOpCost(
4058           Instruction::Load, ScalarTy, alignment, 0, CostKind, VL0);
4059       if (NeedToShuffleReuses) {
4060         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
4061       }
4062       InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost;
4063       InstructionCost VecLdCost;
4064       if (E->State == TreeEntry::Vectorize) {
4065         VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0,
4066                                          CostKind, VL0);
4067       } else {
4068         assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState");
4069         VecLdCost = TTI->getGatherScatterOpCost(
4070             Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(),
4071             /*VariableMask=*/false, alignment, CostKind, VL0);
4072       }
4073       if (!NeedToShuffleReuses && !E->ReorderIndices.empty()) {
4074         SmallVector<int> NewMask;
4075         inversePermutation(E->ReorderIndices, NewMask);
4076         VecLdCost += TTI->getShuffleCost(
4077             TargetTransformInfo::SK_PermuteSingleSrc, VecTy, NewMask);
4078       }
4079       LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecLdCost, ScalarLdCost));
4080       return ReuseShuffleCost + VecLdCost - ScalarLdCost;
4081     }
4082     case Instruction::Store: {
4083       // We know that we can merge the stores. Calculate the cost.
4084       bool IsReorder = !E->ReorderIndices.empty();
4085       auto *SI =
4086           cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0);
4087       Align Alignment = SI->getAlign();
4088       InstructionCost ScalarEltCost = TTI->getMemoryOpCost(
4089           Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0);
4090       InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost;
4091       InstructionCost VecStCost = TTI->getMemoryOpCost(
4092           Instruction::Store, VecTy, Alignment, 0, CostKind, VL0);
4093       if (IsReorder) {
4094         SmallVector<int> NewMask;
4095         inversePermutation(E->ReorderIndices, NewMask);
4096         VecStCost += TTI->getShuffleCost(
4097             TargetTransformInfo::SK_PermuteSingleSrc, VecTy, NewMask);
4098       }
4099       LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecStCost, ScalarStCost));
4100       return VecStCost - ScalarStCost;
4101     }
4102     case Instruction::Call: {
4103       CallInst *CI = cast<CallInst>(VL0);
4104       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4105 
4106       // Calculate the cost of the scalar and vector calls.
4107       IntrinsicCostAttributes CostAttrs(ID, *CI, 1);
4108       InstructionCost ScalarEltCost =
4109           TTI->getIntrinsicInstrCost(CostAttrs, CostKind);
4110       if (NeedToShuffleReuses) {
4111         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
4112       }
4113       InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost;
4114 
4115       auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
4116       InstructionCost VecCallCost =
4117           std::min(VecCallCosts.first, VecCallCosts.second);
4118 
4119       LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost
4120                         << " (" << VecCallCost << "-" << ScalarCallCost << ")"
4121                         << " for " << *CI << "\n");
4122 
4123       return ReuseShuffleCost + VecCallCost - ScalarCallCost;
4124     }
4125     case Instruction::ShuffleVector: {
4126       assert(E->isAltShuffle() &&
4127              ((Instruction::isBinaryOp(E->getOpcode()) &&
4128                Instruction::isBinaryOp(E->getAltOpcode())) ||
4129               (Instruction::isCast(E->getOpcode()) &&
4130                Instruction::isCast(E->getAltOpcode()))) &&
4131              "Invalid Shuffle Vector Operand");
4132       InstructionCost ScalarCost = 0;
4133       if (NeedToShuffleReuses) {
4134         for (unsigned Idx : E->ReuseShuffleIndices) {
4135           Instruction *I = cast<Instruction>(VL[Idx]);
4136           ReuseShuffleCost -= TTI->getInstructionCost(I, CostKind);
4137         }
4138         for (Value *V : VL) {
4139           Instruction *I = cast<Instruction>(V);
4140           ReuseShuffleCost += TTI->getInstructionCost(I, CostKind);
4141         }
4142       }
4143       for (Value *V : VL) {
4144         Instruction *I = cast<Instruction>(V);
4145         assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode");
4146         ScalarCost += TTI->getInstructionCost(I, CostKind);
4147       }
4148       // VecCost is equal to sum of the cost of creating 2 vectors
4149       // and the cost of creating shuffle.
4150       InstructionCost VecCost = 0;
4151       if (Instruction::isBinaryOp(E->getOpcode())) {
4152         VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind);
4153         VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy,
4154                                                CostKind);
4155       } else {
4156         Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType();
4157         Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType();
4158         auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size());
4159         auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size());
4160         VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty,
4161                                         TTI::CastContextHint::None, CostKind);
4162         VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty,
4163                                          TTI::CastContextHint::None, CostKind);
4164       }
4165 
4166       SmallVector<int> Mask(E->Scalars.size());
4167       for (unsigned I = 0, End = E->Scalars.size(); I < End; ++I) {
4168         auto *OpInst = cast<Instruction>(E->Scalars[I]);
4169         assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode");
4170         Mask[I] = I + (OpInst->getOpcode() == E->getAltOpcode() ? End : 0);
4171       }
4172       VecCost +=
4173           TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, Mask, 0);
4174       LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost));
4175       return ReuseShuffleCost + VecCost - ScalarCost;
4176     }
4177     default:
4178       llvm_unreachable("Unknown instruction");
4179   }
4180 }
4181 
4182 bool BoUpSLP::isFullyVectorizableTinyTree() const {
4183   LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height "
4184                     << VectorizableTree.size() << " is fully vectorizable .\n");
4185 
4186   // We only handle trees of heights 1 and 2.
4187   if (VectorizableTree.size() == 1 &&
4188       VectorizableTree[0]->State == TreeEntry::Vectorize)
4189     return true;
4190 
4191   if (VectorizableTree.size() != 2)
4192     return false;
4193 
4194   // Handle splat and all-constants stores. Also try to vectorize tiny trees
4195   // with the second gather nodes if they have less scalar operands rather than
4196   // the initial tree element (may be profitable to shuffle the second gather)
4197   // or they are extractelements, which form shuffle.
4198   SmallVector<int> Mask;
4199   if (VectorizableTree[0]->State == TreeEntry::Vectorize &&
4200       (allConstant(VectorizableTree[1]->Scalars) ||
4201        isSplat(VectorizableTree[1]->Scalars) ||
4202        (VectorizableTree[1]->State == TreeEntry::NeedToGather &&
4203         VectorizableTree[1]->Scalars.size() <
4204             VectorizableTree[0]->Scalars.size()) ||
4205        (VectorizableTree[1]->State == TreeEntry::NeedToGather &&
4206         VectorizableTree[1]->getOpcode() == Instruction::ExtractElement &&
4207         isShuffle(VectorizableTree[1]->Scalars, Mask))))
4208     return true;
4209 
4210   // Gathering cost would be too much for tiny trees.
4211   if (VectorizableTree[0]->State == TreeEntry::NeedToGather ||
4212       VectorizableTree[1]->State == TreeEntry::NeedToGather)
4213     return false;
4214 
4215   return true;
4216 }
4217 
4218 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts,
4219                                        TargetTransformInfo *TTI,
4220                                        bool MustMatchOrInst) {
4221   // Look past the root to find a source value. Arbitrarily follow the
4222   // path through operand 0 of any 'or'. Also, peek through optional
4223   // shift-left-by-multiple-of-8-bits.
4224   Value *ZextLoad = Root;
4225   const APInt *ShAmtC;
4226   bool FoundOr = false;
4227   while (!isa<ConstantExpr>(ZextLoad) &&
4228          (match(ZextLoad, m_Or(m_Value(), m_Value())) ||
4229           (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) &&
4230            ShAmtC->urem(8) == 0))) {
4231     auto *BinOp = cast<BinaryOperator>(ZextLoad);
4232     ZextLoad = BinOp->getOperand(0);
4233     if (BinOp->getOpcode() == Instruction::Or)
4234       FoundOr = true;
4235   }
4236   // Check if the input is an extended load of the required or/shift expression.
4237   Value *LoadPtr;
4238   if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root ||
4239       !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr)))))
4240     return false;
4241 
4242   // Require that the total load bit width is a legal integer type.
4243   // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target.
4244   // But <16 x i8> --> i128 is not, so the backend probably can't reduce it.
4245   Type *SrcTy = LoadPtr->getType()->getPointerElementType();
4246   unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts;
4247   if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth)))
4248     return false;
4249 
4250   // Everything matched - assume that we can fold the whole sequence using
4251   // load combining.
4252   LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at "
4253              << *(cast<Instruction>(Root)) << "\n");
4254 
4255   return true;
4256 }
4257 
4258 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const {
4259   if (RdxKind != RecurKind::Or)
4260     return false;
4261 
4262   unsigned NumElts = VectorizableTree[0]->Scalars.size();
4263   Value *FirstReduced = VectorizableTree[0]->Scalars[0];
4264   return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI,
4265                                     /* MatchOr */ false);
4266 }
4267 
4268 bool BoUpSLP::isLoadCombineCandidate() const {
4269   // Peek through a final sequence of stores and check if all operations are
4270   // likely to be load-combined.
4271   unsigned NumElts = VectorizableTree[0]->Scalars.size();
4272   for (Value *Scalar : VectorizableTree[0]->Scalars) {
4273     Value *X;
4274     if (!match(Scalar, m_Store(m_Value(X), m_Value())) ||
4275         !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true))
4276       return false;
4277   }
4278   return true;
4279 }
4280 
4281 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const {
4282   // No need to vectorize inserts of gathered values.
4283   if (VectorizableTree.size() == 2 &&
4284       isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) &&
4285       VectorizableTree[1]->State == TreeEntry::NeedToGather)
4286     return true;
4287 
4288   // We can vectorize the tree if its size is greater than or equal to the
4289   // minimum size specified by the MinTreeSize command line option.
4290   if (VectorizableTree.size() >= MinTreeSize)
4291     return false;
4292 
4293   // If we have a tiny tree (a tree whose size is less than MinTreeSize), we
4294   // can vectorize it if we can prove it fully vectorizable.
4295   if (isFullyVectorizableTinyTree())
4296     return false;
4297 
4298   assert(VectorizableTree.empty()
4299              ? ExternalUses.empty()
4300              : true && "We shouldn't have any external users");
4301 
4302   // Otherwise, we can't vectorize the tree. It is both tiny and not fully
4303   // vectorizable.
4304   return true;
4305 }
4306 
4307 InstructionCost BoUpSLP::getSpillCost() const {
4308   // Walk from the bottom of the tree to the top, tracking which values are
4309   // live. When we see a call instruction that is not part of our tree,
4310   // query TTI to see if there is a cost to keeping values live over it
4311   // (for example, if spills and fills are required).
4312   unsigned BundleWidth = VectorizableTree.front()->Scalars.size();
4313   InstructionCost Cost = 0;
4314 
4315   SmallPtrSet<Instruction*, 4> LiveValues;
4316   Instruction *PrevInst = nullptr;
4317 
4318   // The entries in VectorizableTree are not necessarily ordered by their
4319   // position in basic blocks. Collect them and order them by dominance so later
4320   // instructions are guaranteed to be visited first. For instructions in
4321   // different basic blocks, we only scan to the beginning of the block, so
4322   // their order does not matter, as long as all instructions in a basic block
4323   // are grouped together. Using dominance ensures a deterministic order.
4324   SmallVector<Instruction *, 16> OrderedScalars;
4325   for (const auto &TEPtr : VectorizableTree) {
4326     Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]);
4327     if (!Inst)
4328       continue;
4329     OrderedScalars.push_back(Inst);
4330   }
4331   llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) {
4332     auto *NodeA = DT->getNode(A->getParent());
4333     auto *NodeB = DT->getNode(B->getParent());
4334     assert(NodeA && "Should only process reachable instructions");
4335     assert(NodeB && "Should only process reachable instructions");
4336     assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) &&
4337            "Different nodes should have different DFS numbers");
4338     if (NodeA != NodeB)
4339       return NodeA->getDFSNumIn() < NodeB->getDFSNumIn();
4340     return B->comesBefore(A);
4341   });
4342 
4343   for (Instruction *Inst : OrderedScalars) {
4344     if (!PrevInst) {
4345       PrevInst = Inst;
4346       continue;
4347     }
4348 
4349     // Update LiveValues.
4350     LiveValues.erase(PrevInst);
4351     for (auto &J : PrevInst->operands()) {
4352       if (isa<Instruction>(&*J) && getTreeEntry(&*J))
4353         LiveValues.insert(cast<Instruction>(&*J));
4354     }
4355 
4356     LLVM_DEBUG({
4357       dbgs() << "SLP: #LV: " << LiveValues.size();
4358       for (auto *X : LiveValues)
4359         dbgs() << " " << X->getName();
4360       dbgs() << ", Looking at ";
4361       Inst->dump();
4362     });
4363 
4364     // Now find the sequence of instructions between PrevInst and Inst.
4365     unsigned NumCalls = 0;
4366     BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(),
4367                                  PrevInstIt =
4368                                      PrevInst->getIterator().getReverse();
4369     while (InstIt != PrevInstIt) {
4370       if (PrevInstIt == PrevInst->getParent()->rend()) {
4371         PrevInstIt = Inst->getParent()->rbegin();
4372         continue;
4373       }
4374 
4375       // Debug information does not impact spill cost.
4376       if ((isa<CallInst>(&*PrevInstIt) &&
4377            !isa<DbgInfoIntrinsic>(&*PrevInstIt)) &&
4378           &*PrevInstIt != PrevInst)
4379         NumCalls++;
4380 
4381       ++PrevInstIt;
4382     }
4383 
4384     if (NumCalls) {
4385       SmallVector<Type*, 4> V;
4386       for (auto *II : LiveValues) {
4387         auto *ScalarTy = II->getType();
4388         if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy))
4389           ScalarTy = VectorTy->getElementType();
4390         V.push_back(FixedVectorType::get(ScalarTy, BundleWidth));
4391       }
4392       Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V);
4393     }
4394 
4395     PrevInst = Inst;
4396   }
4397 
4398   return Cost;
4399 }
4400 
4401 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) {
4402   InstructionCost Cost = 0;
4403   LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size "
4404                     << VectorizableTree.size() << ".\n");
4405 
4406   unsigned BundleWidth = VectorizableTree[0]->Scalars.size();
4407 
4408   for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) {
4409     TreeEntry &TE = *VectorizableTree[I].get();
4410 
4411     InstructionCost C = getEntryCost(&TE, VectorizedVals);
4412     Cost += C;
4413     LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
4414                       << " for bundle that starts with " << *TE.Scalars[0]
4415                       << ".\n"
4416                       << "SLP: Current total cost = " << Cost << "\n");
4417   }
4418 
4419   SmallPtrSet<Value *, 16> ExtractCostCalculated;
4420   InstructionCost ExtractCost = 0;
4421   SmallBitVector IsIdentity;
4422   SmallVector<unsigned> VF;
4423   SmallVector<SmallVector<int>> ShuffleMask;
4424   SmallVector<Value *> FirstUsers;
4425   SmallVector<APInt> DemandedElts;
4426   for (ExternalUser &EU : ExternalUses) {
4427     // We only add extract cost once for the same scalar.
4428     if (!ExtractCostCalculated.insert(EU.Scalar).second)
4429       continue;
4430 
4431     // Uses by ephemeral values are free (because the ephemeral value will be
4432     // removed prior to code generation, and so the extraction will be
4433     // removed as well).
4434     if (EphValues.count(EU.User))
4435       continue;
4436 
4437     // No extract cost for vector "scalar"
4438     if (isa<FixedVectorType>(EU.Scalar->getType()))
4439       continue;
4440 
4441     // Already counted the cost for external uses when tried to adjust the cost
4442     // for extractelements, no need to add it again.
4443     if (isa<ExtractElementInst>(EU.Scalar))
4444       continue;
4445 
4446     // If found user is an insertelement, do not calculate extract cost but try
4447     // to detect it as a final shuffled/identity match.
4448     if (EU.User && isa<InsertElementInst>(EU.User)) {
4449       if (auto *FTy = dyn_cast<FixedVectorType>(EU.User->getType())) {
4450         Optional<int> InsertIdx = getInsertIndex(EU.User, 0);
4451         if (!InsertIdx || *InsertIdx == UndefMaskElem)
4452           continue;
4453         Value *VU = EU.User;
4454         auto *It = find_if(FirstUsers, [VU](Value *V) {
4455           // Checks if 2 insertelements are from the same buildvector.
4456           if (VU->getType() != V->getType())
4457             return false;
4458           auto *IE1 = cast<InsertElementInst>(VU);
4459           auto *IE2 = cast<InsertElementInst>(V);
4460           // Go though of insertelement instructions trying to find either VU as
4461           // the original vector for IE2 or V as the original vector for IE1.
4462           do {
4463             if (IE1 == VU || IE2 == V)
4464               return true;
4465             if (IE1)
4466               IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0));
4467             if (IE2)
4468               IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0));
4469           } while (IE1 || IE2);
4470           return false;
4471         });
4472         int VecId = -1;
4473         if (It == FirstUsers.end()) {
4474           VF.push_back(FTy->getNumElements());
4475           ShuffleMask.emplace_back(VF.back(), UndefMaskElem);
4476           FirstUsers.push_back(EU.User);
4477           DemandedElts.push_back(APInt::getNullValue(VF.back()));
4478           IsIdentity.push_back(true);
4479           VecId = FirstUsers.size() - 1;
4480         } else {
4481           VecId = std::distance(FirstUsers.begin(), It);
4482         }
4483         int Idx = *InsertIdx;
4484         ShuffleMask[VecId][Idx] = EU.Lane;
4485         IsIdentity.set(IsIdentity.test(VecId) &
4486                        (EU.Lane == Idx || EU.Lane == UndefMaskElem));
4487         DemandedElts[VecId].setBit(Idx);
4488       }
4489     }
4490 
4491     // If we plan to rewrite the tree in a smaller type, we will need to sign
4492     // extend the extracted value back to the original type. Here, we account
4493     // for the extract and the added cost of the sign extend if needed.
4494     auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth);
4495     auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
4496     if (MinBWs.count(ScalarRoot)) {
4497       auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
4498       auto Extend =
4499           MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt;
4500       VecTy = FixedVectorType::get(MinTy, BundleWidth);
4501       ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(),
4502                                                    VecTy, EU.Lane);
4503     } else {
4504       ExtractCost +=
4505           TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane);
4506     }
4507   }
4508 
4509   InstructionCost SpillCost = getSpillCost();
4510   Cost += SpillCost + ExtractCost;
4511   for (int I = 0, E = FirstUsers.size(); I < E; ++I) {
4512     if (!IsIdentity.test(I)) {
4513       InstructionCost C = TTI->getShuffleCost(
4514           TTI::SK_PermuteSingleSrc,
4515           cast<FixedVectorType>(FirstUsers[I]->getType()), ShuffleMask[I]);
4516       LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
4517                         << " for final shuffle of insertelement external users "
4518                         << *VectorizableTree.front()->Scalars.front() << ".\n"
4519                         << "SLP: Current total cost = " << Cost << "\n");
4520       Cost += C;
4521     }
4522     unsigned VF = ShuffleMask[I].size();
4523     for (int &Mask : ShuffleMask[I])
4524       Mask = (Mask == UndefMaskElem ? 0 : VF) + Mask;
4525     InstructionCost C = TTI->getShuffleCost(
4526         TTI::SK_PermuteTwoSrc, cast<FixedVectorType>(FirstUsers[I]->getType()),
4527         ShuffleMask[I]);
4528     LLVM_DEBUG(
4529         dbgs()
4530         << "SLP: Adding cost " << C
4531         << " for final shuffle of vector node and external insertelement users "
4532         << *VectorizableTree.front()->Scalars.front() << ".\n"
4533         << "SLP: Current total cost = " << Cost << "\n");
4534     Cost += C;
4535     InstructionCost InsertCost = TTI->getScalarizationOverhead(
4536         cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I],
4537         /*Insert*/ true,
4538         /*Extract*/ false);
4539     Cost -= InsertCost;
4540     LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost
4541                       << " for insertelements gather.\n"
4542                       << "SLP: Current total cost = " << Cost << "\n");
4543   }
4544 
4545 #ifndef NDEBUG
4546   SmallString<256> Str;
4547   {
4548     raw_svector_ostream OS(Str);
4549     OS << "SLP: Spill Cost = " << SpillCost << ".\n"
4550        << "SLP: Extract Cost = " << ExtractCost << ".\n"
4551        << "SLP: Total Cost = " << Cost << ".\n";
4552   }
4553   LLVM_DEBUG(dbgs() << Str);
4554   if (ViewSLPTree)
4555     ViewGraph(this, "SLP" + F->getName(), false, Str);
4556 #endif
4557 
4558   return Cost;
4559 }
4560 
4561 Optional<TargetTransformInfo::ShuffleKind>
4562 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask,
4563                                SmallVectorImpl<const TreeEntry *> &Entries) {
4564   // TODO: currently checking only for Scalars in the tree entry, need to count
4565   // reused elements too for better cost estimation.
4566   Mask.assign(TE->Scalars.size(), UndefMaskElem);
4567   Entries.clear();
4568   // Build a lists of values to tree entries.
4569   DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs;
4570   for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) {
4571     if (EntryPtr.get() == TE)
4572       break;
4573     if (EntryPtr->State != TreeEntry::NeedToGather)
4574       continue;
4575     for (Value *V : EntryPtr->Scalars)
4576       ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get());
4577   }
4578   // Find all tree entries used by the gathered values. If no common entries
4579   // found - not a shuffle.
4580   // Here we build a set of tree nodes for each gathered value and trying to
4581   // find the intersection between these sets. If we have at least one common
4582   // tree node for each gathered value - we have just a permutation of the
4583   // single vector. If we have 2 different sets, we're in situation where we
4584   // have a permutation of 2 input vectors.
4585   SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs;
4586   DenseMap<Value *, int> UsedValuesEntry;
4587   for (Value *V : TE->Scalars) {
4588     if (isa<UndefValue>(V))
4589       continue;
4590     // Build a list of tree entries where V is used.
4591     SmallPtrSet<const TreeEntry *, 4> VToTEs;
4592     auto It = ValueToTEs.find(V);
4593     if (It != ValueToTEs.end())
4594       VToTEs = It->second;
4595     if (const TreeEntry *VTE = getTreeEntry(V))
4596       VToTEs.insert(VTE);
4597     if (VToTEs.empty())
4598       return None;
4599     if (UsedTEs.empty()) {
4600       // The first iteration, just insert the list of nodes to vector.
4601       UsedTEs.push_back(VToTEs);
4602     } else {
4603       // Need to check if there are any previously used tree nodes which use V.
4604       // If there are no such nodes, consider that we have another one input
4605       // vector.
4606       SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs);
4607       unsigned Idx = 0;
4608       for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) {
4609         // Do we have a non-empty intersection of previously listed tree entries
4610         // and tree entries using current V?
4611         set_intersect(VToTEs, Set);
4612         if (!VToTEs.empty()) {
4613           // Yes, write the new subset and continue analysis for the next
4614           // scalar.
4615           Set.swap(VToTEs);
4616           break;
4617         }
4618         VToTEs = SavedVToTEs;
4619         ++Idx;
4620       }
4621       // No non-empty intersection found - need to add a second set of possible
4622       // source vectors.
4623       if (Idx == UsedTEs.size()) {
4624         // If the number of input vectors is greater than 2 - not a permutation,
4625         // fallback to the regular gather.
4626         if (UsedTEs.size() == 2)
4627           return None;
4628         UsedTEs.push_back(SavedVToTEs);
4629         Idx = UsedTEs.size() - 1;
4630       }
4631       UsedValuesEntry.try_emplace(V, Idx);
4632     }
4633   }
4634 
4635   unsigned VF = 0;
4636   if (UsedTEs.size() == 1) {
4637     // Try to find the perfect match in another gather node at first.
4638     auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) {
4639       return EntryPtr->isSame(TE->Scalars);
4640     });
4641     if (It != UsedTEs.front().end()) {
4642       Entries.push_back(*It);
4643       std::iota(Mask.begin(), Mask.end(), 0);
4644       return TargetTransformInfo::SK_PermuteSingleSrc;
4645     }
4646     // No perfect match, just shuffle, so choose the first tree node.
4647     Entries.push_back(*UsedTEs.front().begin());
4648   } else {
4649     // Try to find nodes with the same vector factor.
4650     assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries.");
4651     // FIXME: Shall be replaced by GetVF function once non-power-2 patch is
4652     // landed.
4653     auto &&GetVF = [](const TreeEntry *TE) {
4654       if (!TE->ReuseShuffleIndices.empty())
4655         return TE->ReuseShuffleIndices.size();
4656       return TE->Scalars.size();
4657     };
4658     DenseMap<int, const TreeEntry *> VFToTE;
4659     for (const TreeEntry *TE : UsedTEs.front())
4660       VFToTE.try_emplace(GetVF(TE), TE);
4661     for (const TreeEntry *TE : UsedTEs.back()) {
4662       auto It = VFToTE.find(GetVF(TE));
4663       if (It != VFToTE.end()) {
4664         VF = It->first;
4665         Entries.push_back(It->second);
4666         Entries.push_back(TE);
4667         break;
4668       }
4669     }
4670     // No 2 source vectors with the same vector factor - give up and do regular
4671     // gather.
4672     if (Entries.empty())
4673       return None;
4674   }
4675 
4676   // Build a shuffle mask for better cost estimation and vector emission.
4677   for (int I = 0, E = TE->Scalars.size(); I < E; ++I) {
4678     Value *V = TE->Scalars[I];
4679     if (isa<UndefValue>(V))
4680       continue;
4681     unsigned Idx = UsedValuesEntry.lookup(V);
4682     const TreeEntry *VTE = Entries[Idx];
4683     int FoundLane = findLaneForValue(VTE->Scalars, VTE->ReuseShuffleIndices, V);
4684     Mask[I] = Idx * VF + FoundLane;
4685     // Extra check required by isSingleSourceMaskImpl function (called by
4686     // ShuffleVectorInst::isSingleSourceMask).
4687     if (Mask[I] >= 2 * E)
4688       return None;
4689   }
4690   switch (Entries.size()) {
4691   case 1:
4692     return TargetTransformInfo::SK_PermuteSingleSrc;
4693   case 2:
4694     return TargetTransformInfo::SK_PermuteTwoSrc;
4695   default:
4696     break;
4697   }
4698   return None;
4699 }
4700 
4701 InstructionCost
4702 BoUpSLP::getGatherCost(FixedVectorType *Ty,
4703                        const DenseSet<unsigned> &ShuffledIndices) const {
4704   unsigned NumElts = Ty->getNumElements();
4705   APInt DemandedElts = APInt::getNullValue(NumElts);
4706   for (unsigned I = 0; I < NumElts; ++I)
4707     if (!ShuffledIndices.count(I))
4708       DemandedElts.setBit(I);
4709   InstructionCost Cost =
4710       TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true,
4711                                     /*Extract*/ false);
4712   if (!ShuffledIndices.empty())
4713     Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty);
4714   return Cost;
4715 }
4716 
4717 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const {
4718   // Find the type of the operands in VL.
4719   Type *ScalarTy = VL[0]->getType();
4720   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
4721     ScalarTy = SI->getValueOperand()->getType();
4722   auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
4723   // Find the cost of inserting/extracting values from the vector.
4724   // Check if the same elements are inserted several times and count them as
4725   // shuffle candidates.
4726   DenseSet<unsigned> ShuffledElements;
4727   DenseSet<Value *> UniqueElements;
4728   // Iterate in reverse order to consider insert elements with the high cost.
4729   for (unsigned I = VL.size(); I > 0; --I) {
4730     unsigned Idx = I - 1;
4731     if (isConstant(VL[Idx]))
4732       continue;
4733     if (!UniqueElements.insert(VL[Idx]).second)
4734       ShuffledElements.insert(Idx);
4735   }
4736   return getGatherCost(VecTy, ShuffledElements);
4737 }
4738 
4739 // Perform operand reordering on the instructions in VL and return the reordered
4740 // operands in Left and Right.
4741 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
4742                                              SmallVectorImpl<Value *> &Left,
4743                                              SmallVectorImpl<Value *> &Right,
4744                                              const DataLayout &DL,
4745                                              ScalarEvolution &SE,
4746                                              const BoUpSLP &R) {
4747   if (VL.empty())
4748     return;
4749   VLOperands Ops(VL, DL, SE, R);
4750   // Reorder the operands in place.
4751   Ops.reorder();
4752   Left = Ops.getVL(0);
4753   Right = Ops.getVL(1);
4754 }
4755 
4756 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) {
4757   // Get the basic block this bundle is in. All instructions in the bundle
4758   // should be in this block.
4759   auto *Front = E->getMainOp();
4760   auto *BB = Front->getParent();
4761   assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool {
4762     auto *I = cast<Instruction>(V);
4763     return !E->isOpcodeOrAlt(I) || I->getParent() == BB;
4764   }));
4765 
4766   // The last instruction in the bundle in program order.
4767   Instruction *LastInst = nullptr;
4768 
4769   // Find the last instruction. The common case should be that BB has been
4770   // scheduled, and the last instruction is VL.back(). So we start with
4771   // VL.back() and iterate over schedule data until we reach the end of the
4772   // bundle. The end of the bundle is marked by null ScheduleData.
4773   if (BlocksSchedules.count(BB)) {
4774     auto *Bundle =
4775         BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back()));
4776     if (Bundle && Bundle->isPartOfBundle())
4777       for (; Bundle; Bundle = Bundle->NextInBundle)
4778         if (Bundle->OpValue == Bundle->Inst)
4779           LastInst = Bundle->Inst;
4780   }
4781 
4782   // LastInst can still be null at this point if there's either not an entry
4783   // for BB in BlocksSchedules or there's no ScheduleData available for
4784   // VL.back(). This can be the case if buildTree_rec aborts for various
4785   // reasons (e.g., the maximum recursion depth is reached, the maximum region
4786   // size is reached, etc.). ScheduleData is initialized in the scheduling
4787   // "dry-run".
4788   //
4789   // If this happens, we can still find the last instruction by brute force. We
4790   // iterate forwards from Front (inclusive) until we either see all
4791   // instructions in the bundle or reach the end of the block. If Front is the
4792   // last instruction in program order, LastInst will be set to Front, and we
4793   // will visit all the remaining instructions in the block.
4794   //
4795   // One of the reasons we exit early from buildTree_rec is to place an upper
4796   // bound on compile-time. Thus, taking an additional compile-time hit here is
4797   // not ideal. However, this should be exceedingly rare since it requires that
4798   // we both exit early from buildTree_rec and that the bundle be out-of-order
4799   // (causing us to iterate all the way to the end of the block).
4800   if (!LastInst) {
4801     SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end());
4802     for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) {
4803       if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I))
4804         LastInst = &I;
4805       if (Bundle.empty())
4806         break;
4807     }
4808   }
4809   assert(LastInst && "Failed to find last instruction in bundle");
4810 
4811   // Set the insertion point after the last instruction in the bundle. Set the
4812   // debug location to Front.
4813   Builder.SetInsertPoint(BB, ++LastInst->getIterator());
4814   Builder.SetCurrentDebugLocation(Front->getDebugLoc());
4815 }
4816 
4817 Value *BoUpSLP::gather(ArrayRef<Value *> VL) {
4818   // List of instructions/lanes from current block and/or the blocks which are
4819   // part of the current loop. These instructions will be inserted at the end to
4820   // make it possible to optimize loops and hoist invariant instructions out of
4821   // the loops body with better chances for success.
4822   SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts;
4823   SmallSet<int, 4> PostponedIndices;
4824   Loop *L = LI->getLoopFor(Builder.GetInsertBlock());
4825   auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) {
4826     SmallPtrSet<BasicBlock *, 4> Visited;
4827     while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second)
4828       InsertBB = InsertBB->getSinglePredecessor();
4829     return InsertBB && InsertBB == InstBB;
4830   };
4831   for (int I = 0, E = VL.size(); I < E; ++I) {
4832     if (auto *Inst = dyn_cast<Instruction>(VL[I]))
4833       if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) ||
4834            getTreeEntry(Inst) || (L && (L->contains(Inst)))) &&
4835           PostponedIndices.insert(I).second)
4836         PostponedInsts.emplace_back(Inst, I);
4837   }
4838 
4839   auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) {
4840     // No need to insert undefs elements - exit.
4841     if (isa<UndefValue>(V))
4842       return Vec;
4843     Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos));
4844     auto *InsElt = dyn_cast<InsertElementInst>(Vec);
4845     if (!InsElt)
4846       return Vec;
4847     GatherSeq.insert(InsElt);
4848     CSEBlocks.insert(InsElt->getParent());
4849     // Add to our 'need-to-extract' list.
4850     if (TreeEntry *Entry = getTreeEntry(V)) {
4851       // Find which lane we need to extract.
4852       unsigned FoundLane =
4853           std::distance(Entry->Scalars.begin(), find(Entry->Scalars, V));
4854       assert(FoundLane < Entry->Scalars.size() && "Couldn't find extract lane");
4855       if (!Entry->ReuseShuffleIndices.empty()) {
4856         FoundLane = std::distance(Entry->ReuseShuffleIndices.begin(),
4857                                   find(Entry->ReuseShuffleIndices, FoundLane));
4858       }
4859       ExternalUses.emplace_back(V, InsElt, FoundLane);
4860     }
4861     return Vec;
4862   };
4863   Value *Val0 =
4864       isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0];
4865   FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size());
4866   Value *Vec = PoisonValue::get(VecTy);
4867   for (int I = 0, E = VL.size(); I < E; ++I) {
4868     if (PostponedIndices.contains(I))
4869       continue;
4870     Vec = CreateInsertElement(Vec, VL[I], I);
4871   }
4872   // Append instructions, which are/may be part of the loop, in the end to make
4873   // it possible to hoist non-loop-based instructions.
4874   for (const std::pair<Value *, unsigned> &Pair : PostponedInsts)
4875     Vec = CreateInsertElement(Vec, Pair.first, Pair.second);
4876 
4877   return Vec;
4878 }
4879 
4880 namespace {
4881 /// Merges shuffle masks and emits final shuffle instruction, if required.
4882 class ShuffleInstructionBuilder {
4883   IRBuilderBase &Builder;
4884   const unsigned VF = 0;
4885   bool IsFinalized = false;
4886   SmallVector<int, 4> Mask;
4887 
4888 public:
4889   ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF)
4890       : Builder(Builder), VF(VF) {}
4891 
4892   /// Adds a mask, inverting it before applying.
4893   void addInversedMask(ArrayRef<unsigned> SubMask) {
4894     if (SubMask.empty())
4895       return;
4896     SmallVector<int, 4> NewMask;
4897     inversePermutation(SubMask, NewMask);
4898     addMask(NewMask);
4899   }
4900 
4901   /// Functions adds masks, merging them into  single one.
4902   void addMask(ArrayRef<unsigned> SubMask) {
4903     SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end());
4904     addMask(NewMask);
4905   }
4906 
4907   void addMask(ArrayRef<int> SubMask) {
4908     if (SubMask.empty())
4909       return;
4910     if (Mask.empty()) {
4911       Mask.append(SubMask.begin(), SubMask.end());
4912       return;
4913     }
4914     SmallVector<int, 4> NewMask(SubMask.size(), SubMask.size());
4915     int TermValue = std::min(Mask.size(), SubMask.size());
4916     for (int I = 0, E = SubMask.size(); I < E; ++I) {
4917       if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem ||
4918           Mask[SubMask[I]] >= TermValue) {
4919         NewMask[I] = UndefMaskElem;
4920         continue;
4921       }
4922       NewMask[I] = Mask[SubMask[I]];
4923     }
4924     Mask.swap(NewMask);
4925   }
4926 
4927   Value *finalize(Value *V) {
4928     IsFinalized = true;
4929     unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements();
4930     if (VF == ValueVF && Mask.empty())
4931       return V;
4932     SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem);
4933     std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0);
4934     addMask(NormalizedMask);
4935 
4936     if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask))
4937       return V;
4938     return Builder.CreateShuffleVector(V, Mask, "shuffle");
4939   }
4940 
4941   ~ShuffleInstructionBuilder() {
4942     assert((IsFinalized || Mask.empty()) &&
4943            "Shuffle construction must be finalized.");
4944   }
4945 };
4946 } // namespace
4947 
4948 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
4949   unsigned VF = VL.size();
4950   InstructionsState S = getSameOpcode(VL);
4951   if (S.getOpcode()) {
4952     if (TreeEntry *E = getTreeEntry(S.OpValue))
4953       if (E->isSame(VL)) {
4954         Value *V = vectorizeTree(E);
4955         if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) {
4956           if (!E->ReuseShuffleIndices.empty()) {
4957             // Reshuffle to get only unique values.
4958             // If some of the scalars are duplicated in the vectorization tree
4959             // entry, we do not vectorize them but instead generate a mask for
4960             // the reuses. But if there are several users of the same entry,
4961             // they may have different vectorization factors. This is especially
4962             // important for PHI nodes. In this case, we need to adapt the
4963             // resulting instruction for the user vectorization factor and have
4964             // to reshuffle it again to take only unique elements of the vector.
4965             // Without this code the function incorrectly returns reduced vector
4966             // instruction with the same elements, not with the unique ones.
4967 
4968             // block:
4969             // %phi = phi <2 x > { .., %entry} {%shuffle, %block}
4970             // %2 = shuffle <2 x > %phi, %poison, <4 x > <0, 0, 1, 1>
4971             // ... (use %2)
4972             // %shuffle = shuffle <2 x> %2, poison, <2 x> {0, 2}
4973             // br %block
4974             SmallVector<int> UniqueIdxs;
4975             SmallSet<int, 4> UsedIdxs;
4976             int Pos = 0;
4977             int Sz = VL.size();
4978             for (int Idx : E->ReuseShuffleIndices) {
4979               if (Idx != Sz && UsedIdxs.insert(Idx).second)
4980                 UniqueIdxs.emplace_back(Pos);
4981               ++Pos;
4982             }
4983             assert(VF >= UsedIdxs.size() && "Expected vectorization factor "
4984                                             "less than original vector size.");
4985             UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem);
4986             V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle");
4987           } else {
4988             assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() &&
4989                    "Expected vectorization factor less "
4990                    "than original vector size.");
4991             SmallVector<int> UniformMask(VF, 0);
4992             std::iota(UniformMask.begin(), UniformMask.end(), 0);
4993             V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle");
4994           }
4995         }
4996         return V;
4997       }
4998   }
4999 
5000   // Check that every instruction appears once in this bundle.
5001   SmallVector<int> ReuseShuffleIndicies;
5002   SmallVector<Value *> UniqueValues;
5003   if (VL.size() > 2) {
5004     DenseMap<Value *, unsigned> UniquePositions;
5005     unsigned NumValues =
5006         std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) {
5007                                     return !isa<UndefValue>(V);
5008                                   }).base());
5009     VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues));
5010     int UniqueVals = 0;
5011     bool HasUndefs = false;
5012     for (Value *V : VL.drop_back(VL.size() - VF)) {
5013       if (isa<UndefValue>(V)) {
5014         ReuseShuffleIndicies.emplace_back(UndefMaskElem);
5015         HasUndefs = true;
5016         continue;
5017       }
5018       if (isConstant(V)) {
5019         ReuseShuffleIndicies.emplace_back(UniqueValues.size());
5020         UniqueValues.emplace_back(V);
5021         continue;
5022       }
5023       auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
5024       ReuseShuffleIndicies.emplace_back(Res.first->second);
5025       if (Res.second) {
5026         UniqueValues.emplace_back(V);
5027         ++UniqueVals;
5028       }
5029     }
5030     if (HasUndefs && UniqueVals == 1 && UniqueValues.size() == 1) {
5031       // Emit pure splat vector.
5032       // FIXME: why it is not identified as an identity.
5033       unsigned NumUndefs = count(ReuseShuffleIndicies, UndefMaskElem);
5034       if (NumUndefs == ReuseShuffleIndicies.size() - 1)
5035         ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(),
5036                                     UndefMaskElem);
5037       else
5038         ReuseShuffleIndicies.assign(VF, 0);
5039     } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) {
5040       ReuseShuffleIndicies.clear();
5041       UniqueValues.clear();
5042       UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues));
5043     }
5044     UniqueValues.append(VF - UniqueValues.size(),
5045                         UndefValue::get(VL[0]->getType()));
5046     VL = UniqueValues;
5047   }
5048 
5049   ShuffleInstructionBuilder ShuffleBuilder(Builder, VF);
5050   Value *Vec = gather(VL);
5051   if (!ReuseShuffleIndicies.empty()) {
5052     ShuffleBuilder.addMask(ReuseShuffleIndicies);
5053     Vec = ShuffleBuilder.finalize(Vec);
5054     if (auto *I = dyn_cast<Instruction>(Vec)) {
5055       GatherSeq.insert(I);
5056       CSEBlocks.insert(I->getParent());
5057     }
5058   }
5059   return Vec;
5060 }
5061 
5062 Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
5063   IRBuilder<>::InsertPointGuard Guard(Builder);
5064 
5065   if (E->VectorizedValue) {
5066     LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
5067     return E->VectorizedValue;
5068   }
5069 
5070   bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
5071   unsigned VF = E->Scalars.size();
5072   if (NeedToShuffleReuses)
5073     VF = E->ReuseShuffleIndices.size();
5074   ShuffleInstructionBuilder ShuffleBuilder(Builder, VF);
5075   if (E->State == TreeEntry::NeedToGather) {
5076     setInsertPointAfterBundle(E);
5077     Value *Vec;
5078     SmallVector<int> Mask;
5079     SmallVector<const TreeEntry *> Entries;
5080     Optional<TargetTransformInfo::ShuffleKind> Shuffle =
5081         isGatherShuffledEntry(E, Mask, Entries);
5082     if (Shuffle.hasValue()) {
5083       assert((Entries.size() == 1 || Entries.size() == 2) &&
5084              "Expected shuffle of 1 or 2 entries.");
5085       Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue,
5086                                         Entries.back()->VectorizedValue, Mask);
5087     } else {
5088       Vec = gather(E->Scalars);
5089     }
5090     if (NeedToShuffleReuses) {
5091       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5092       Vec = ShuffleBuilder.finalize(Vec);
5093       if (auto *I = dyn_cast<Instruction>(Vec)) {
5094         GatherSeq.insert(I);
5095         CSEBlocks.insert(I->getParent());
5096       }
5097     }
5098     E->VectorizedValue = Vec;
5099     return Vec;
5100   }
5101 
5102   assert((E->State == TreeEntry::Vectorize ||
5103           E->State == TreeEntry::ScatterVectorize) &&
5104          "Unhandled state");
5105   unsigned ShuffleOrOp =
5106       E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
5107   Instruction *VL0 = E->getMainOp();
5108   Type *ScalarTy = VL0->getType();
5109   if (auto *Store = dyn_cast<StoreInst>(VL0))
5110     ScalarTy = Store->getValueOperand()->getType();
5111   else if (auto *IE = dyn_cast<InsertElementInst>(VL0))
5112     ScalarTy = IE->getOperand(1)->getType();
5113   auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size());
5114   switch (ShuffleOrOp) {
5115     case Instruction::PHI: {
5116       auto *PH = cast<PHINode>(VL0);
5117       Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
5118       Builder.SetCurrentDebugLocation(PH->getDebugLoc());
5119       PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
5120       Value *V = NewPhi;
5121       if (NeedToShuffleReuses)
5122         V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle");
5123 
5124       E->VectorizedValue = V;
5125 
5126       // PHINodes may have multiple entries from the same block. We want to
5127       // visit every block once.
5128       SmallPtrSet<BasicBlock*, 4> VisitedBBs;
5129 
5130       for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
5131         ValueList Operands;
5132         BasicBlock *IBB = PH->getIncomingBlock(i);
5133 
5134         if (!VisitedBBs.insert(IBB).second) {
5135           NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
5136           continue;
5137         }
5138 
5139         Builder.SetInsertPoint(IBB->getTerminator());
5140         Builder.SetCurrentDebugLocation(PH->getDebugLoc());
5141         Value *Vec = vectorizeTree(E->getOperand(i));
5142         NewPhi->addIncoming(Vec, IBB);
5143       }
5144 
5145       assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
5146              "Invalid number of incoming values");
5147       return V;
5148     }
5149 
5150     case Instruction::ExtractElement: {
5151       Value *V = E->getSingleOperand(0);
5152       Builder.SetInsertPoint(VL0);
5153       ShuffleBuilder.addInversedMask(E->ReorderIndices);
5154       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5155       V = ShuffleBuilder.finalize(V);
5156       E->VectorizedValue = V;
5157       return V;
5158     }
5159     case Instruction::ExtractValue: {
5160       auto *LI = cast<LoadInst>(E->getSingleOperand(0));
5161       Builder.SetInsertPoint(LI);
5162       auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace());
5163       Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy);
5164       LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign());
5165       Value *NewV = propagateMetadata(V, E->Scalars);
5166       ShuffleBuilder.addInversedMask(E->ReorderIndices);
5167       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5168       NewV = ShuffleBuilder.finalize(NewV);
5169       E->VectorizedValue = NewV;
5170       return NewV;
5171     }
5172     case Instruction::InsertElement: {
5173       Builder.SetInsertPoint(VL0);
5174       Value *V = vectorizeTree(E->getOperand(1));
5175 
5176       const unsigned NumElts =
5177           cast<FixedVectorType>(VL0->getType())->getNumElements();
5178       const unsigned NumScalars = E->Scalars.size();
5179 
5180       // Create InsertVector shuffle if necessary
5181       Instruction *FirstInsert = nullptr;
5182       bool IsIdentity = true;
5183       unsigned Offset = UINT_MAX;
5184       for (unsigned I = 0; I < NumScalars; ++I) {
5185         Value *Scalar = E->Scalars[I];
5186         if (!FirstInsert &&
5187             !is_contained(E->Scalars, cast<Instruction>(Scalar)->getOperand(0)))
5188           FirstInsert = cast<Instruction>(Scalar);
5189         Optional<int> InsertIdx = getInsertIndex(Scalar, 0);
5190         if (!InsertIdx || *InsertIdx == UndefMaskElem)
5191           continue;
5192         unsigned Idx = *InsertIdx;
5193         if (Idx < Offset) {
5194           Offset = Idx;
5195           IsIdentity &= I == 0;
5196         } else {
5197           assert(Idx >= Offset && "Failed to find vector index offset");
5198           IsIdentity &= Idx - Offset == I;
5199         }
5200       }
5201       assert(Offset < NumElts && "Failed to find vector index offset");
5202 
5203       // Create shuffle to resize vector
5204       SmallVector<int> Mask(NumElts, UndefMaskElem);
5205       if (!IsIdentity) {
5206         for (unsigned I = 0; I < NumScalars; ++I) {
5207           Value *Scalar = E->Scalars[I];
5208           Optional<int> InsertIdx = getInsertIndex(Scalar, 0);
5209           if (!InsertIdx || *InsertIdx == UndefMaskElem)
5210             continue;
5211           Mask[*InsertIdx - Offset] = I;
5212         }
5213       } else {
5214         std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0);
5215       }
5216       if (!IsIdentity || NumElts != NumScalars)
5217         V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), Mask);
5218 
5219       if (NumElts != NumScalars) {
5220         SmallVector<int> InsertMask(NumElts);
5221         std::iota(InsertMask.begin(), InsertMask.end(), 0);
5222         for (unsigned I = 0; I < NumElts; I++) {
5223           if (Mask[I] != UndefMaskElem)
5224             InsertMask[Offset + I] = NumElts + I;
5225         }
5226 
5227         V = Builder.CreateShuffleVector(
5228             FirstInsert->getOperand(0), V, InsertMask,
5229             cast<Instruction>(E->Scalars.back())->getName());
5230       }
5231 
5232       ++NumVectorInstructions;
5233       E->VectorizedValue = V;
5234       return V;
5235     }
5236     case Instruction::ZExt:
5237     case Instruction::SExt:
5238     case Instruction::FPToUI:
5239     case Instruction::FPToSI:
5240     case Instruction::FPExt:
5241     case Instruction::PtrToInt:
5242     case Instruction::IntToPtr:
5243     case Instruction::SIToFP:
5244     case Instruction::UIToFP:
5245     case Instruction::Trunc:
5246     case Instruction::FPTrunc:
5247     case Instruction::BitCast: {
5248       setInsertPointAfterBundle(E);
5249 
5250       Value *InVec = vectorizeTree(E->getOperand(0));
5251 
5252       if (E->VectorizedValue) {
5253         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
5254         return E->VectorizedValue;
5255       }
5256 
5257       auto *CI = cast<CastInst>(VL0);
5258       Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
5259       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5260       V = ShuffleBuilder.finalize(V);
5261 
5262       E->VectorizedValue = V;
5263       ++NumVectorInstructions;
5264       return V;
5265     }
5266     case Instruction::FCmp:
5267     case Instruction::ICmp: {
5268       setInsertPointAfterBundle(E);
5269 
5270       Value *L = vectorizeTree(E->getOperand(0));
5271       Value *R = vectorizeTree(E->getOperand(1));
5272 
5273       if (E->VectorizedValue) {
5274         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
5275         return E->VectorizedValue;
5276       }
5277 
5278       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
5279       Value *V = Builder.CreateCmp(P0, L, R);
5280       propagateIRFlags(V, E->Scalars, VL0);
5281       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5282       V = ShuffleBuilder.finalize(V);
5283 
5284       E->VectorizedValue = V;
5285       ++NumVectorInstructions;
5286       return V;
5287     }
5288     case Instruction::Select: {
5289       setInsertPointAfterBundle(E);
5290 
5291       Value *Cond = vectorizeTree(E->getOperand(0));
5292       Value *True = vectorizeTree(E->getOperand(1));
5293       Value *False = vectorizeTree(E->getOperand(2));
5294 
5295       if (E->VectorizedValue) {
5296         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
5297         return E->VectorizedValue;
5298       }
5299 
5300       Value *V = Builder.CreateSelect(Cond, True, False);
5301       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5302       V = ShuffleBuilder.finalize(V);
5303 
5304       E->VectorizedValue = V;
5305       ++NumVectorInstructions;
5306       return V;
5307     }
5308     case Instruction::FNeg: {
5309       setInsertPointAfterBundle(E);
5310 
5311       Value *Op = vectorizeTree(E->getOperand(0));
5312 
5313       if (E->VectorizedValue) {
5314         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
5315         return E->VectorizedValue;
5316       }
5317 
5318       Value *V = Builder.CreateUnOp(
5319           static_cast<Instruction::UnaryOps>(E->getOpcode()), Op);
5320       propagateIRFlags(V, E->Scalars, VL0);
5321       if (auto *I = dyn_cast<Instruction>(V))
5322         V = propagateMetadata(I, E->Scalars);
5323 
5324       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5325       V = ShuffleBuilder.finalize(V);
5326 
5327       E->VectorizedValue = V;
5328       ++NumVectorInstructions;
5329 
5330       return V;
5331     }
5332     case Instruction::Add:
5333     case Instruction::FAdd:
5334     case Instruction::Sub:
5335     case Instruction::FSub:
5336     case Instruction::Mul:
5337     case Instruction::FMul:
5338     case Instruction::UDiv:
5339     case Instruction::SDiv:
5340     case Instruction::FDiv:
5341     case Instruction::URem:
5342     case Instruction::SRem:
5343     case Instruction::FRem:
5344     case Instruction::Shl:
5345     case Instruction::LShr:
5346     case Instruction::AShr:
5347     case Instruction::And:
5348     case Instruction::Or:
5349     case Instruction::Xor: {
5350       setInsertPointAfterBundle(E);
5351 
5352       Value *LHS = vectorizeTree(E->getOperand(0));
5353       Value *RHS = vectorizeTree(E->getOperand(1));
5354 
5355       if (E->VectorizedValue) {
5356         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
5357         return E->VectorizedValue;
5358       }
5359 
5360       Value *V = Builder.CreateBinOp(
5361           static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS,
5362           RHS);
5363       propagateIRFlags(V, E->Scalars, VL0);
5364       if (auto *I = dyn_cast<Instruction>(V))
5365         V = propagateMetadata(I, E->Scalars);
5366 
5367       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5368       V = ShuffleBuilder.finalize(V);
5369 
5370       E->VectorizedValue = V;
5371       ++NumVectorInstructions;
5372 
5373       return V;
5374     }
5375     case Instruction::Load: {
5376       // Loads are inserted at the head of the tree because we don't want to
5377       // sink them all the way down past store instructions.
5378       bool IsReorder = E->updateStateIfReorder();
5379       if (IsReorder)
5380         VL0 = E->getMainOp();
5381       setInsertPointAfterBundle(E);
5382 
5383       LoadInst *LI = cast<LoadInst>(VL0);
5384       Instruction *NewLI;
5385       unsigned AS = LI->getPointerAddressSpace();
5386       Value *PO = LI->getPointerOperand();
5387       if (E->State == TreeEntry::Vectorize) {
5388 
5389         Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS));
5390 
5391         // The pointer operand uses an in-tree scalar so we add the new BitCast
5392         // to ExternalUses list to make sure that an extract will be generated
5393         // in the future.
5394         if (getTreeEntry(PO))
5395           ExternalUses.emplace_back(PO, cast<User>(VecPtr), 0);
5396 
5397         NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign());
5398       } else {
5399         assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state");
5400         Value *VecPtr = vectorizeTree(E->getOperand(0));
5401         // Use the minimum alignment of the gathered loads.
5402         Align CommonAlignment = LI->getAlign();
5403         for (Value *V : E->Scalars)
5404           CommonAlignment =
5405               commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign());
5406         NewLI = Builder.CreateMaskedGather(VecPtr, CommonAlignment);
5407       }
5408       Value *V = propagateMetadata(NewLI, E->Scalars);
5409 
5410       ShuffleBuilder.addInversedMask(E->ReorderIndices);
5411       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5412       V = ShuffleBuilder.finalize(V);
5413       E->VectorizedValue = V;
5414       ++NumVectorInstructions;
5415       return V;
5416     }
5417     case Instruction::Store: {
5418       bool IsReorder = !E->ReorderIndices.empty();
5419       auto *SI = cast<StoreInst>(
5420           IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0);
5421       unsigned AS = SI->getPointerAddressSpace();
5422 
5423       setInsertPointAfterBundle(E);
5424 
5425       Value *VecValue = vectorizeTree(E->getOperand(0));
5426       ShuffleBuilder.addMask(E->ReorderIndices);
5427       VecValue = ShuffleBuilder.finalize(VecValue);
5428 
5429       Value *ScalarPtr = SI->getPointerOperand();
5430       Value *VecPtr = Builder.CreateBitCast(
5431           ScalarPtr, VecValue->getType()->getPointerTo(AS));
5432       StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr,
5433                                                  SI->getAlign());
5434 
5435       // The pointer operand uses an in-tree scalar, so add the new BitCast to
5436       // ExternalUses to make sure that an extract will be generated in the
5437       // future.
5438       if (getTreeEntry(ScalarPtr))
5439         ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0));
5440 
5441       Value *V = propagateMetadata(ST, E->Scalars);
5442 
5443       E->VectorizedValue = V;
5444       ++NumVectorInstructions;
5445       return V;
5446     }
5447     case Instruction::GetElementPtr: {
5448       setInsertPointAfterBundle(E);
5449 
5450       Value *Op0 = vectorizeTree(E->getOperand(0));
5451 
5452       std::vector<Value *> OpVecs;
5453       for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e;
5454            ++j) {
5455         ValueList &VL = E->getOperand(j);
5456         // Need to cast all elements to the same type before vectorization to
5457         // avoid crash.
5458         Type *VL0Ty = VL0->getOperand(j)->getType();
5459         Type *Ty = llvm::all_of(
5460                        VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); })
5461                        ? VL0Ty
5462                        : DL->getIndexType(cast<GetElementPtrInst>(VL0)
5463                                               ->getPointerOperandType()
5464                                               ->getScalarType());
5465         for (Value *&V : VL) {
5466           auto *CI = cast<ConstantInt>(V);
5467           V = ConstantExpr::getIntegerCast(CI, Ty,
5468                                            CI->getValue().isSignBitSet());
5469         }
5470         Value *OpVec = vectorizeTree(VL);
5471         OpVecs.push_back(OpVec);
5472       }
5473 
5474       Value *V = Builder.CreateGEP(
5475           cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs);
5476       if (Instruction *I = dyn_cast<Instruction>(V))
5477         V = propagateMetadata(I, E->Scalars);
5478 
5479       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5480       V = ShuffleBuilder.finalize(V);
5481 
5482       E->VectorizedValue = V;
5483       ++NumVectorInstructions;
5484 
5485       return V;
5486     }
5487     case Instruction::Call: {
5488       CallInst *CI = cast<CallInst>(VL0);
5489       setInsertPointAfterBundle(E);
5490 
5491       Intrinsic::ID IID  = Intrinsic::not_intrinsic;
5492       if (Function *FI = CI->getCalledFunction())
5493         IID = FI->getIntrinsicID();
5494 
5495       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
5496 
5497       auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
5498       bool UseIntrinsic = ID != Intrinsic::not_intrinsic &&
5499                           VecCallCosts.first <= VecCallCosts.second;
5500 
5501       Value *ScalarArg = nullptr;
5502       std::vector<Value *> OpVecs;
5503       for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) {
5504         ValueList OpVL;
5505         // Some intrinsics have scalar arguments. This argument should not be
5506         // vectorized.
5507         if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) {
5508           CallInst *CEI = cast<CallInst>(VL0);
5509           ScalarArg = CEI->getArgOperand(j);
5510           OpVecs.push_back(CEI->getArgOperand(j));
5511           continue;
5512         }
5513 
5514         Value *OpVec = vectorizeTree(E->getOperand(j));
5515         LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
5516         OpVecs.push_back(OpVec);
5517       }
5518 
5519       Function *CF;
5520       if (!UseIntrinsic) {
5521         VFShape Shape =
5522             VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>(
5523                                   VecTy->getNumElements())),
5524                          false /*HasGlobalPred*/);
5525         CF = VFDatabase(*CI).getVectorizedFunction(Shape);
5526       } else {
5527         Type *Tys[] = {FixedVectorType::get(CI->getType(), E->Scalars.size())};
5528         CF = Intrinsic::getDeclaration(F->getParent(), ID, Tys);
5529       }
5530 
5531       SmallVector<OperandBundleDef, 1> OpBundles;
5532       CI->getOperandBundlesAsDefs(OpBundles);
5533       Value *V = Builder.CreateCall(CF, OpVecs, OpBundles);
5534 
5535       // The scalar argument uses an in-tree scalar so we add the new vectorized
5536       // call to ExternalUses list to make sure that an extract will be
5537       // generated in the future.
5538       if (ScalarArg && getTreeEntry(ScalarArg))
5539         ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0));
5540 
5541       propagateIRFlags(V, E->Scalars, VL0);
5542       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5543       V = ShuffleBuilder.finalize(V);
5544 
5545       E->VectorizedValue = V;
5546       ++NumVectorInstructions;
5547       return V;
5548     }
5549     case Instruction::ShuffleVector: {
5550       assert(E->isAltShuffle() &&
5551              ((Instruction::isBinaryOp(E->getOpcode()) &&
5552                Instruction::isBinaryOp(E->getAltOpcode())) ||
5553               (Instruction::isCast(E->getOpcode()) &&
5554                Instruction::isCast(E->getAltOpcode()))) &&
5555              "Invalid Shuffle Vector Operand");
5556 
5557       Value *LHS = nullptr, *RHS = nullptr;
5558       if (Instruction::isBinaryOp(E->getOpcode())) {
5559         setInsertPointAfterBundle(E);
5560         LHS = vectorizeTree(E->getOperand(0));
5561         RHS = vectorizeTree(E->getOperand(1));
5562       } else {
5563         setInsertPointAfterBundle(E);
5564         LHS = vectorizeTree(E->getOperand(0));
5565       }
5566 
5567       if (E->VectorizedValue) {
5568         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
5569         return E->VectorizedValue;
5570       }
5571 
5572       Value *V0, *V1;
5573       if (Instruction::isBinaryOp(E->getOpcode())) {
5574         V0 = Builder.CreateBinOp(
5575             static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS);
5576         V1 = Builder.CreateBinOp(
5577             static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS);
5578       } else {
5579         V0 = Builder.CreateCast(
5580             static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy);
5581         V1 = Builder.CreateCast(
5582             static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy);
5583       }
5584 
5585       // Create shuffle to take alternate operations from the vector.
5586       // Also, gather up main and alt scalar ops to propagate IR flags to
5587       // each vector operation.
5588       ValueList OpScalars, AltScalars;
5589       unsigned e = E->Scalars.size();
5590       SmallVector<int, 8> Mask(e);
5591       for (unsigned i = 0; i < e; ++i) {
5592         auto *OpInst = cast<Instruction>(E->Scalars[i]);
5593         assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode");
5594         if (OpInst->getOpcode() == E->getAltOpcode()) {
5595           Mask[i] = e + i;
5596           AltScalars.push_back(E->Scalars[i]);
5597         } else {
5598           Mask[i] = i;
5599           OpScalars.push_back(E->Scalars[i]);
5600         }
5601       }
5602 
5603       propagateIRFlags(V0, OpScalars);
5604       propagateIRFlags(V1, AltScalars);
5605 
5606       Value *V = Builder.CreateShuffleVector(V0, V1, Mask);
5607       if (Instruction *I = dyn_cast<Instruction>(V))
5608         V = propagateMetadata(I, E->Scalars);
5609       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5610       V = ShuffleBuilder.finalize(V);
5611 
5612       E->VectorizedValue = V;
5613       ++NumVectorInstructions;
5614 
5615       return V;
5616     }
5617     default:
5618     llvm_unreachable("unknown inst");
5619   }
5620   return nullptr;
5621 }
5622 
5623 Value *BoUpSLP::vectorizeTree() {
5624   ExtraValueToDebugLocsMap ExternallyUsedValues;
5625   return vectorizeTree(ExternallyUsedValues);
5626 }
5627 
5628 Value *
5629 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) {
5630   // All blocks must be scheduled before any instructions are inserted.
5631   for (auto &BSIter : BlocksSchedules) {
5632     scheduleBlock(BSIter.second.get());
5633   }
5634 
5635   Builder.SetInsertPoint(&F->getEntryBlock().front());
5636   auto *VectorRoot = vectorizeTree(VectorizableTree[0].get());
5637 
5638   // If the vectorized tree can be rewritten in a smaller type, we truncate the
5639   // vectorized root. InstCombine will then rewrite the entire expression. We
5640   // sign extend the extracted values below.
5641   auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
5642   if (MinBWs.count(ScalarRoot)) {
5643     if (auto *I = dyn_cast<Instruction>(VectorRoot)) {
5644       // If current instr is a phi and not the last phi, insert it after the
5645       // last phi node.
5646       if (isa<PHINode>(I))
5647         Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt());
5648       else
5649         Builder.SetInsertPoint(&*++BasicBlock::iterator(I));
5650     }
5651     auto BundleWidth = VectorizableTree[0]->Scalars.size();
5652     auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
5653     auto *VecTy = FixedVectorType::get(MinTy, BundleWidth);
5654     auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy);
5655     VectorizableTree[0]->VectorizedValue = Trunc;
5656   }
5657 
5658   LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size()
5659                     << " values .\n");
5660 
5661   // Extract all of the elements with the external uses.
5662   for (const auto &ExternalUse : ExternalUses) {
5663     Value *Scalar = ExternalUse.Scalar;
5664     llvm::User *User = ExternalUse.User;
5665 
5666     // Skip users that we already RAUW. This happens when one instruction
5667     // has multiple uses of the same value.
5668     if (User && !is_contained(Scalar->users(), User))
5669       continue;
5670     TreeEntry *E = getTreeEntry(Scalar);
5671     assert(E && "Invalid scalar");
5672     assert(E->State != TreeEntry::NeedToGather &&
5673            "Extracting from a gather list");
5674 
5675     Value *Vec = E->VectorizedValue;
5676     assert(Vec && "Can't find vectorizable value");
5677 
5678     Value *Lane = Builder.getInt32(ExternalUse.Lane);
5679     auto ExtractAndExtendIfNeeded = [&](Value *Vec) {
5680       if (Scalar->getType() != Vec->getType()) {
5681         Value *Ex;
5682         // "Reuse" the existing extract to improve final codegen.
5683         if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) {
5684           Ex = Builder.CreateExtractElement(ES->getOperand(0),
5685                                             ES->getOperand(1));
5686         } else {
5687           Ex = Builder.CreateExtractElement(Vec, Lane);
5688         }
5689         // If necessary, sign-extend or zero-extend ScalarRoot
5690         // to the larger type.
5691         if (!MinBWs.count(ScalarRoot))
5692           return Ex;
5693         if (MinBWs[ScalarRoot].second)
5694           return Builder.CreateSExt(Ex, Scalar->getType());
5695         return Builder.CreateZExt(Ex, Scalar->getType());
5696       }
5697       assert(isa<FixedVectorType>(Scalar->getType()) &&
5698              isa<InsertElementInst>(Scalar) &&
5699              "In-tree scalar of vector type is not insertelement?");
5700       return Vec;
5701     };
5702     // If User == nullptr, the Scalar is used as extra arg. Generate
5703     // ExtractElement instruction and update the record for this scalar in
5704     // ExternallyUsedValues.
5705     if (!User) {
5706       assert(ExternallyUsedValues.count(Scalar) &&
5707              "Scalar with nullptr as an external user must be registered in "
5708              "ExternallyUsedValues map");
5709       if (auto *VecI = dyn_cast<Instruction>(Vec)) {
5710         Builder.SetInsertPoint(VecI->getParent(),
5711                                std::next(VecI->getIterator()));
5712       } else {
5713         Builder.SetInsertPoint(&F->getEntryBlock().front());
5714       }
5715       Value *NewInst = ExtractAndExtendIfNeeded(Vec);
5716       CSEBlocks.insert(cast<Instruction>(Scalar)->getParent());
5717       auto &Locs = ExternallyUsedValues[Scalar];
5718       ExternallyUsedValues.insert({NewInst, Locs});
5719       ExternallyUsedValues.erase(Scalar);
5720       // Required to update internally referenced instructions.
5721       Scalar->replaceAllUsesWith(NewInst);
5722       continue;
5723     }
5724 
5725     // Generate extracts for out-of-tree users.
5726     // Find the insertion point for the extractelement lane.
5727     if (auto *VecI = dyn_cast<Instruction>(Vec)) {
5728       if (PHINode *PH = dyn_cast<PHINode>(User)) {
5729         for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
5730           if (PH->getIncomingValue(i) == Scalar) {
5731             Instruction *IncomingTerminator =
5732                 PH->getIncomingBlock(i)->getTerminator();
5733             if (isa<CatchSwitchInst>(IncomingTerminator)) {
5734               Builder.SetInsertPoint(VecI->getParent(),
5735                                      std::next(VecI->getIterator()));
5736             } else {
5737               Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
5738             }
5739             Value *NewInst = ExtractAndExtendIfNeeded(Vec);
5740             CSEBlocks.insert(PH->getIncomingBlock(i));
5741             PH->setOperand(i, NewInst);
5742           }
5743         }
5744       } else {
5745         Builder.SetInsertPoint(cast<Instruction>(User));
5746         Value *NewInst = ExtractAndExtendIfNeeded(Vec);
5747         CSEBlocks.insert(cast<Instruction>(User)->getParent());
5748         User->replaceUsesOfWith(Scalar, NewInst);
5749       }
5750     } else {
5751       Builder.SetInsertPoint(&F->getEntryBlock().front());
5752       Value *NewInst = ExtractAndExtendIfNeeded(Vec);
5753       CSEBlocks.insert(&F->getEntryBlock());
5754       User->replaceUsesOfWith(Scalar, NewInst);
5755     }
5756 
5757     LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
5758   }
5759 
5760   // For each vectorized value:
5761   for (auto &TEPtr : VectorizableTree) {
5762     TreeEntry *Entry = TEPtr.get();
5763 
5764     // No need to handle users of gathered values.
5765     if (Entry->State == TreeEntry::NeedToGather)
5766       continue;
5767 
5768     assert(Entry->VectorizedValue && "Can't find vectorizable value");
5769 
5770     // For each lane:
5771     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
5772       Value *Scalar = Entry->Scalars[Lane];
5773 
5774 #ifndef NDEBUG
5775       Type *Ty = Scalar->getType();
5776       if (!Ty->isVoidTy()) {
5777         for (User *U : Scalar->users()) {
5778           LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
5779 
5780           // It is legal to delete users in the ignorelist.
5781           assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) &&
5782                  "Deleting out-of-tree value");
5783         }
5784       }
5785 #endif
5786       LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
5787       eraseInstruction(cast<Instruction>(Scalar));
5788     }
5789   }
5790 
5791   Builder.ClearInsertionPoint();
5792   InstrElementSize.clear();
5793 
5794   return VectorizableTree[0]->VectorizedValue;
5795 }
5796 
5797 void BoUpSLP::optimizeGatherSequence() {
5798   LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
5799                     << " gather sequences instructions.\n");
5800   // LICM InsertElementInst sequences.
5801   for (Instruction *I : GatherSeq) {
5802     if (isDeleted(I))
5803       continue;
5804 
5805     // Check if this block is inside a loop.
5806     Loop *L = LI->getLoopFor(I->getParent());
5807     if (!L)
5808       continue;
5809 
5810     // Check if it has a preheader.
5811     BasicBlock *PreHeader = L->getLoopPreheader();
5812     if (!PreHeader)
5813       continue;
5814 
5815     // If the vector or the element that we insert into it are
5816     // instructions that are defined in this basic block then we can't
5817     // hoist this instruction.
5818     auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
5819     auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
5820     if (Op0 && L->contains(Op0))
5821       continue;
5822     if (Op1 && L->contains(Op1))
5823       continue;
5824 
5825     // We can hoist this instruction. Move it to the pre-header.
5826     I->moveBefore(PreHeader->getTerminator());
5827   }
5828 
5829   // Make a list of all reachable blocks in our CSE queue.
5830   SmallVector<const DomTreeNode *, 8> CSEWorkList;
5831   CSEWorkList.reserve(CSEBlocks.size());
5832   for (BasicBlock *BB : CSEBlocks)
5833     if (DomTreeNode *N = DT->getNode(BB)) {
5834       assert(DT->isReachableFromEntry(N));
5835       CSEWorkList.push_back(N);
5836     }
5837 
5838   // Sort blocks by domination. This ensures we visit a block after all blocks
5839   // dominating it are visited.
5840   llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) {
5841     assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) &&
5842            "Different nodes should have different DFS numbers");
5843     return A->getDFSNumIn() < B->getDFSNumIn();
5844   });
5845 
5846   // Perform O(N^2) search over the gather sequences and merge identical
5847   // instructions. TODO: We can further optimize this scan if we split the
5848   // instructions into different buckets based on the insert lane.
5849   SmallVector<Instruction *, 16> Visited;
5850   for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
5851     assert(*I &&
5852            (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
5853            "Worklist not sorted properly!");
5854     BasicBlock *BB = (*I)->getBlock();
5855     // For all instructions in blocks containing gather sequences:
5856     for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
5857       Instruction *In = &*it++;
5858       if (isDeleted(In))
5859         continue;
5860       if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
5861         continue;
5862 
5863       // Check if we can replace this instruction with any of the
5864       // visited instructions.
5865       for (Instruction *v : Visited) {
5866         if (In->isIdenticalTo(v) &&
5867             DT->dominates(v->getParent(), In->getParent())) {
5868           In->replaceAllUsesWith(v);
5869           eraseInstruction(In);
5870           In = nullptr;
5871           break;
5872         }
5873       }
5874       if (In) {
5875         assert(!is_contained(Visited, In));
5876         Visited.push_back(In);
5877       }
5878     }
5879   }
5880   CSEBlocks.clear();
5881   GatherSeq.clear();
5882 }
5883 
5884 // Groups the instructions to a bundle (which is then a single scheduling entity)
5885 // and schedules instructions until the bundle gets ready.
5886 Optional<BoUpSLP::ScheduleData *>
5887 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
5888                                             const InstructionsState &S) {
5889   if (isa<PHINode>(S.OpValue))
5890     return nullptr;
5891 
5892   // Initialize the instruction bundle.
5893   Instruction *OldScheduleEnd = ScheduleEnd;
5894   ScheduleData *PrevInBundle = nullptr;
5895   ScheduleData *Bundle = nullptr;
5896   bool ReSchedule = false;
5897   LLVM_DEBUG(dbgs() << "SLP:  bundle: " << *S.OpValue << "\n");
5898 
5899   auto &&TryScheduleBundle = [this, OldScheduleEnd, SLP](bool ReSchedule,
5900                                                          ScheduleData *Bundle) {
5901     // The scheduling region got new instructions at the lower end (or it is a
5902     // new region for the first bundle). This makes it necessary to
5903     // recalculate all dependencies.
5904     // It is seldom that this needs to be done a second time after adding the
5905     // initial bundle to the region.
5906     if (ScheduleEnd != OldScheduleEnd) {
5907       for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode())
5908         doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); });
5909       ReSchedule = true;
5910     }
5911     if (ReSchedule) {
5912       resetSchedule();
5913       initialFillReadyList(ReadyInsts);
5914     }
5915     if (Bundle) {
5916       LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle
5917                         << " in block " << BB->getName() << "\n");
5918       calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP);
5919     }
5920 
5921     // Now try to schedule the new bundle or (if no bundle) just calculate
5922     // dependencies. As soon as the bundle is "ready" it means that there are no
5923     // cyclic dependencies and we can schedule it. Note that's important that we
5924     // don't "schedule" the bundle yet (see cancelScheduling).
5925     while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) &&
5926            !ReadyInsts.empty()) {
5927       ScheduleData *Picked = ReadyInsts.pop_back_val();
5928       if (Picked->isSchedulingEntity() && Picked->isReady())
5929         schedule(Picked, ReadyInsts);
5930     }
5931   };
5932 
5933   // Make sure that the scheduling region contains all
5934   // instructions of the bundle.
5935   for (Value *V : VL) {
5936     if (!extendSchedulingRegion(V, S)) {
5937       // If the scheduling region got new instructions at the lower end (or it
5938       // is a new region for the first bundle). This makes it necessary to
5939       // recalculate all dependencies.
5940       // Otherwise the compiler may crash trying to incorrectly calculate
5941       // dependencies and emit instruction in the wrong order at the actual
5942       // scheduling.
5943       TryScheduleBundle(/*ReSchedule=*/false, nullptr);
5944       return None;
5945     }
5946   }
5947 
5948   for (Value *V : VL) {
5949     ScheduleData *BundleMember = getScheduleData(V);
5950     assert(BundleMember &&
5951            "no ScheduleData for bundle member (maybe not in same basic block)");
5952     if (BundleMember->IsScheduled) {
5953       // A bundle member was scheduled as single instruction before and now
5954       // needs to be scheduled as part of the bundle. We just get rid of the
5955       // existing schedule.
5956       LLVM_DEBUG(dbgs() << "SLP:  reset schedule because " << *BundleMember
5957                         << " was already scheduled\n");
5958       ReSchedule = true;
5959     }
5960     assert(BundleMember->isSchedulingEntity() &&
5961            "bundle member already part of other bundle");
5962     if (PrevInBundle) {
5963       PrevInBundle->NextInBundle = BundleMember;
5964     } else {
5965       Bundle = BundleMember;
5966     }
5967     BundleMember->UnscheduledDepsInBundle = 0;
5968     Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps;
5969 
5970     // Group the instructions to a bundle.
5971     BundleMember->FirstInBundle = Bundle;
5972     PrevInBundle = BundleMember;
5973   }
5974   assert(Bundle && "Failed to find schedule bundle");
5975   TryScheduleBundle(ReSchedule, Bundle);
5976   if (!Bundle->isReady()) {
5977     cancelScheduling(VL, S.OpValue);
5978     return None;
5979   }
5980   return Bundle;
5981 }
5982 
5983 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL,
5984                                                 Value *OpValue) {
5985   if (isa<PHINode>(OpValue))
5986     return;
5987 
5988   ScheduleData *Bundle = getScheduleData(OpValue);
5989   LLVM_DEBUG(dbgs() << "SLP:  cancel scheduling of " << *Bundle << "\n");
5990   assert(!Bundle->IsScheduled &&
5991          "Can't cancel bundle which is already scheduled");
5992   assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&
5993          "tried to unbundle something which is not a bundle");
5994 
5995   // Un-bundle: make single instructions out of the bundle.
5996   ScheduleData *BundleMember = Bundle;
5997   while (BundleMember) {
5998     assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
5999     BundleMember->FirstInBundle = BundleMember;
6000     ScheduleData *Next = BundleMember->NextInBundle;
6001     BundleMember->NextInBundle = nullptr;
6002     BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps;
6003     if (BundleMember->UnscheduledDepsInBundle == 0) {
6004       ReadyInsts.insert(BundleMember);
6005     }
6006     BundleMember = Next;
6007   }
6008 }
6009 
6010 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() {
6011   // Allocate a new ScheduleData for the instruction.
6012   if (ChunkPos >= ChunkSize) {
6013     ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize));
6014     ChunkPos = 0;
6015   }
6016   return &(ScheduleDataChunks.back()[ChunkPos++]);
6017 }
6018 
6019 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V,
6020                                                       const InstructionsState &S) {
6021   if (getScheduleData(V, isOneOf(S, V)))
6022     return true;
6023   Instruction *I = dyn_cast<Instruction>(V);
6024   assert(I && "bundle member must be an instruction");
6025   assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled");
6026   auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool {
6027     ScheduleData *ISD = getScheduleData(I);
6028     if (!ISD)
6029       return false;
6030     assert(isInSchedulingRegion(ISD) &&
6031            "ScheduleData not in scheduling region");
6032     ScheduleData *SD = allocateScheduleDataChunks();
6033     SD->Inst = I;
6034     SD->init(SchedulingRegionID, S.OpValue);
6035     ExtraScheduleDataMap[I][S.OpValue] = SD;
6036     return true;
6037   };
6038   if (CheckSheduleForI(I))
6039     return true;
6040   if (!ScheduleStart) {
6041     // It's the first instruction in the new region.
6042     initScheduleData(I, I->getNextNode(), nullptr, nullptr);
6043     ScheduleStart = I;
6044     ScheduleEnd = I->getNextNode();
6045     if (isOneOf(S, I) != I)
6046       CheckSheduleForI(I);
6047     assert(ScheduleEnd && "tried to vectorize a terminator?");
6048     LLVM_DEBUG(dbgs() << "SLP:  initialize schedule region to " << *I << "\n");
6049     return true;
6050   }
6051   // Search up and down at the same time, because we don't know if the new
6052   // instruction is above or below the existing scheduling region.
6053   BasicBlock::reverse_iterator UpIter =
6054       ++ScheduleStart->getIterator().getReverse();
6055   BasicBlock::reverse_iterator UpperEnd = BB->rend();
6056   BasicBlock::iterator DownIter = ScheduleEnd->getIterator();
6057   BasicBlock::iterator LowerEnd = BB->end();
6058   while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I &&
6059          &*DownIter != I) {
6060     if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
6061       LLVM_DEBUG(dbgs() << "SLP:  exceeded schedule region size limit\n");
6062       return false;
6063     }
6064 
6065     ++UpIter;
6066     ++DownIter;
6067   }
6068   if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) {
6069     assert(I->getParent() == ScheduleStart->getParent() &&
6070            "Instruction is in wrong basic block.");
6071     initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
6072     ScheduleStart = I;
6073     if (isOneOf(S, I) != I)
6074       CheckSheduleForI(I);
6075     LLVM_DEBUG(dbgs() << "SLP:  extend schedule region start to " << *I
6076                       << "\n");
6077     return true;
6078   }
6079   assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) &&
6080          "Expected to reach top of the basic block or instruction down the "
6081          "lower end.");
6082   assert(I->getParent() == ScheduleEnd->getParent() &&
6083          "Instruction is in wrong basic block.");
6084   initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
6085                    nullptr);
6086   ScheduleEnd = I->getNextNode();
6087   if (isOneOf(S, I) != I)
6088     CheckSheduleForI(I);
6089   assert(ScheduleEnd && "tried to vectorize a terminator?");
6090   LLVM_DEBUG(dbgs() << "SLP:  extend schedule region end to " << *I << "\n");
6091   return true;
6092 }
6093 
6094 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
6095                                                 Instruction *ToI,
6096                                                 ScheduleData *PrevLoadStore,
6097                                                 ScheduleData *NextLoadStore) {
6098   ScheduleData *CurrentLoadStore = PrevLoadStore;
6099   for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
6100     ScheduleData *SD = ScheduleDataMap[I];
6101     if (!SD) {
6102       SD = allocateScheduleDataChunks();
6103       ScheduleDataMap[I] = SD;
6104       SD->Inst = I;
6105     }
6106     assert(!isInSchedulingRegion(SD) &&
6107            "new ScheduleData already in scheduling region");
6108     SD->init(SchedulingRegionID, I);
6109 
6110     if (I->mayReadOrWriteMemory() &&
6111         (!isa<IntrinsicInst>(I) ||
6112          (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect &&
6113           cast<IntrinsicInst>(I)->getIntrinsicID() !=
6114               Intrinsic::pseudoprobe))) {
6115       // Update the linked list of memory accessing instructions.
6116       if (CurrentLoadStore) {
6117         CurrentLoadStore->NextLoadStore = SD;
6118       } else {
6119         FirstLoadStoreInRegion = SD;
6120       }
6121       CurrentLoadStore = SD;
6122     }
6123   }
6124   if (NextLoadStore) {
6125     if (CurrentLoadStore)
6126       CurrentLoadStore->NextLoadStore = NextLoadStore;
6127   } else {
6128     LastLoadStoreInRegion = CurrentLoadStore;
6129   }
6130 }
6131 
6132 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
6133                                                      bool InsertInReadyList,
6134                                                      BoUpSLP *SLP) {
6135   assert(SD->isSchedulingEntity());
6136 
6137   SmallVector<ScheduleData *, 10> WorkList;
6138   WorkList.push_back(SD);
6139 
6140   while (!WorkList.empty()) {
6141     ScheduleData *SD = WorkList.pop_back_val();
6142 
6143     ScheduleData *BundleMember = SD;
6144     while (BundleMember) {
6145       assert(isInSchedulingRegion(BundleMember));
6146       if (!BundleMember->hasValidDependencies()) {
6147 
6148         LLVM_DEBUG(dbgs() << "SLP:       update deps of " << *BundleMember
6149                           << "\n");
6150         BundleMember->Dependencies = 0;
6151         BundleMember->resetUnscheduledDeps();
6152 
6153         // Handle def-use chain dependencies.
6154         if (BundleMember->OpValue != BundleMember->Inst) {
6155           ScheduleData *UseSD = getScheduleData(BundleMember->Inst);
6156           if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
6157             BundleMember->Dependencies++;
6158             ScheduleData *DestBundle = UseSD->FirstInBundle;
6159             if (!DestBundle->IsScheduled)
6160               BundleMember->incrementUnscheduledDeps(1);
6161             if (!DestBundle->hasValidDependencies())
6162               WorkList.push_back(DestBundle);
6163           }
6164         } else {
6165           for (User *U : BundleMember->Inst->users()) {
6166             if (isa<Instruction>(U)) {
6167               ScheduleData *UseSD = getScheduleData(U);
6168               if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle) &&
6169                   // Ignore inner deps for insertelement
6170                   !(UseSD->FirstInBundle == SD &&
6171                     isa<InsertElementInst>(BundleMember->Inst))) {
6172                 BundleMember->Dependencies++;
6173                 ScheduleData *DestBundle = UseSD->FirstInBundle;
6174                 if (!DestBundle->IsScheduled)
6175                   BundleMember->incrementUnscheduledDeps(1);
6176                 if (!DestBundle->hasValidDependencies())
6177                   WorkList.push_back(DestBundle);
6178               }
6179             } else {
6180               // I'm not sure if this can ever happen. But we need to be safe.
6181               // This lets the instruction/bundle never be scheduled and
6182               // eventually disable vectorization.
6183               BundleMember->Dependencies++;
6184               BundleMember->incrementUnscheduledDeps(1);
6185             }
6186           }
6187         }
6188 
6189         // Handle the memory dependencies.
6190         ScheduleData *DepDest = BundleMember->NextLoadStore;
6191         if (DepDest) {
6192           Instruction *SrcInst = BundleMember->Inst;
6193           MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA);
6194           bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
6195           unsigned numAliased = 0;
6196           unsigned DistToSrc = 1;
6197 
6198           while (DepDest) {
6199             assert(isInSchedulingRegion(DepDest));
6200 
6201             // We have two limits to reduce the complexity:
6202             // 1) AliasedCheckLimit: It's a small limit to reduce calls to
6203             //    SLP->isAliased (which is the expensive part in this loop).
6204             // 2) MaxMemDepDistance: It's for very large blocks and it aborts
6205             //    the whole loop (even if the loop is fast, it's quadratic).
6206             //    It's important for the loop break condition (see below) to
6207             //    check this limit even between two read-only instructions.
6208             if (DistToSrc >= MaxMemDepDistance ||
6209                     ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
6210                      (numAliased >= AliasedCheckLimit ||
6211                       SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
6212 
6213               // We increment the counter only if the locations are aliased
6214               // (instead of counting all alias checks). This gives a better
6215               // balance between reduced runtime and accurate dependencies.
6216               numAliased++;
6217 
6218               DepDest->MemoryDependencies.push_back(BundleMember);
6219               BundleMember->Dependencies++;
6220               ScheduleData *DestBundle = DepDest->FirstInBundle;
6221               if (!DestBundle->IsScheduled) {
6222                 BundleMember->incrementUnscheduledDeps(1);
6223               }
6224               if (!DestBundle->hasValidDependencies()) {
6225                 WorkList.push_back(DestBundle);
6226               }
6227             }
6228             DepDest = DepDest->NextLoadStore;
6229 
6230             // Example, explaining the loop break condition: Let's assume our
6231             // starting instruction is i0 and MaxMemDepDistance = 3.
6232             //
6233             //                      +--------v--v--v
6234             //             i0,i1,i2,i3,i4,i5,i6,i7,i8
6235             //             +--------^--^--^
6236             //
6237             // MaxMemDepDistance let us stop alias-checking at i3 and we add
6238             // dependencies from i0 to i3,i4,.. (even if they are not aliased).
6239             // Previously we already added dependencies from i3 to i6,i7,i8
6240             // (because of MaxMemDepDistance). As we added a dependency from
6241             // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
6242             // and we can abort this loop at i6.
6243             if (DistToSrc >= 2 * MaxMemDepDistance)
6244               break;
6245             DistToSrc++;
6246           }
6247         }
6248       }
6249       BundleMember = BundleMember->NextInBundle;
6250     }
6251     if (InsertInReadyList && SD->isReady()) {
6252       ReadyInsts.push_back(SD);
6253       LLVM_DEBUG(dbgs() << "SLP:     gets ready on update: " << *SD->Inst
6254                         << "\n");
6255     }
6256   }
6257 }
6258 
6259 void BoUpSLP::BlockScheduling::resetSchedule() {
6260   assert(ScheduleStart &&
6261          "tried to reset schedule on block which has not been scheduled");
6262   for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
6263     doForAllOpcodes(I, [&](ScheduleData *SD) {
6264       assert(isInSchedulingRegion(SD) &&
6265              "ScheduleData not in scheduling region");
6266       SD->IsScheduled = false;
6267       SD->resetUnscheduledDeps();
6268     });
6269   }
6270   ReadyInsts.clear();
6271 }
6272 
6273 void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
6274   if (!BS->ScheduleStart)
6275     return;
6276 
6277   LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n");
6278 
6279   BS->resetSchedule();
6280 
6281   // For the real scheduling we use a more sophisticated ready-list: it is
6282   // sorted by the original instruction location. This lets the final schedule
6283   // be as  close as possible to the original instruction order.
6284   struct ScheduleDataCompare {
6285     bool operator()(ScheduleData *SD1, ScheduleData *SD2) const {
6286       return SD2->SchedulingPriority < SD1->SchedulingPriority;
6287     }
6288   };
6289   std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
6290 
6291   // Ensure that all dependency data is updated and fill the ready-list with
6292   // initial instructions.
6293   int Idx = 0;
6294   int NumToSchedule = 0;
6295   for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
6296        I = I->getNextNode()) {
6297     BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) {
6298       assert(SD->isPartOfBundle() ==
6299                  (getTreeEntry(SD->Inst) != nullptr) &&
6300              "scheduler and vectorizer bundle mismatch");
6301       SD->FirstInBundle->SchedulingPriority = Idx++;
6302       if (SD->isSchedulingEntity()) {
6303         BS->calculateDependencies(SD, false, this);
6304         NumToSchedule++;
6305       }
6306     });
6307   }
6308   BS->initialFillReadyList(ReadyInsts);
6309 
6310   Instruction *LastScheduledInst = BS->ScheduleEnd;
6311 
6312   // Do the "real" scheduling.
6313   while (!ReadyInsts.empty()) {
6314     ScheduleData *picked = *ReadyInsts.begin();
6315     ReadyInsts.erase(ReadyInsts.begin());
6316 
6317     // Move the scheduled instruction(s) to their dedicated places, if not
6318     // there yet.
6319     ScheduleData *BundleMember = picked;
6320     while (BundleMember) {
6321       Instruction *pickedInst = BundleMember->Inst;
6322       if (LastScheduledInst->getNextNode() != pickedInst) {
6323         BS->BB->getInstList().remove(pickedInst);
6324         BS->BB->getInstList().insert(LastScheduledInst->getIterator(),
6325                                      pickedInst);
6326       }
6327       LastScheduledInst = pickedInst;
6328       BundleMember = BundleMember->NextInBundle;
6329     }
6330 
6331     BS->schedule(picked, ReadyInsts);
6332     NumToSchedule--;
6333   }
6334   assert(NumToSchedule == 0 && "could not schedule all instructions");
6335 
6336   // Avoid duplicate scheduling of the block.
6337   BS->ScheduleStart = nullptr;
6338 }
6339 
6340 unsigned BoUpSLP::getVectorElementSize(Value *V) {
6341   // If V is a store, just return the width of the stored value (or value
6342   // truncated just before storing) without traversing the expression tree.
6343   // This is the common case.
6344   if (auto *Store = dyn_cast<StoreInst>(V)) {
6345     if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand()))
6346       return DL->getTypeSizeInBits(Trunc->getSrcTy());
6347     return DL->getTypeSizeInBits(Store->getValueOperand()->getType());
6348   }
6349 
6350   if (auto *IEI = dyn_cast<InsertElementInst>(V))
6351     return getVectorElementSize(IEI->getOperand(1));
6352 
6353   auto E = InstrElementSize.find(V);
6354   if (E != InstrElementSize.end())
6355     return E->second;
6356 
6357   // If V is not a store, we can traverse the expression tree to find loads
6358   // that feed it. The type of the loaded value may indicate a more suitable
6359   // width than V's type. We want to base the vector element size on the width
6360   // of memory operations where possible.
6361   SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist;
6362   SmallPtrSet<Instruction *, 16> Visited;
6363   if (auto *I = dyn_cast<Instruction>(V)) {
6364     Worklist.emplace_back(I, I->getParent());
6365     Visited.insert(I);
6366   }
6367 
6368   // Traverse the expression tree in bottom-up order looking for loads. If we
6369   // encounter an instruction we don't yet handle, we give up.
6370   auto Width = 0u;
6371   while (!Worklist.empty()) {
6372     Instruction *I;
6373     BasicBlock *Parent;
6374     std::tie(I, Parent) = Worklist.pop_back_val();
6375 
6376     // We should only be looking at scalar instructions here. If the current
6377     // instruction has a vector type, skip.
6378     auto *Ty = I->getType();
6379     if (isa<VectorType>(Ty))
6380       continue;
6381 
6382     // If the current instruction is a load, update MaxWidth to reflect the
6383     // width of the loaded value.
6384     if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) ||
6385         isa<ExtractValueInst>(I))
6386       Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty));
6387 
6388     // Otherwise, we need to visit the operands of the instruction. We only
6389     // handle the interesting cases from buildTree here. If an operand is an
6390     // instruction we haven't yet visited and from the same basic block as the
6391     // user or the use is a PHI node, we add it to the worklist.
6392     else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
6393              isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) ||
6394              isa<UnaryOperator>(I)) {
6395       for (Use &U : I->operands())
6396         if (auto *J = dyn_cast<Instruction>(U.get()))
6397           if (Visited.insert(J).second &&
6398               (isa<PHINode>(I) || J->getParent() == Parent))
6399             Worklist.emplace_back(J, J->getParent());
6400     } else {
6401       break;
6402     }
6403   }
6404 
6405   // If we didn't encounter a memory access in the expression tree, or if we
6406   // gave up for some reason, just return the width of V. Otherwise, return the
6407   // maximum width we found.
6408   if (!Width) {
6409     if (auto *CI = dyn_cast<CmpInst>(V))
6410       V = CI->getOperand(0);
6411     Width = DL->getTypeSizeInBits(V->getType());
6412   }
6413 
6414   for (Instruction *I : Visited)
6415     InstrElementSize[I] = Width;
6416 
6417   return Width;
6418 }
6419 
6420 // Determine if a value V in a vectorizable expression Expr can be demoted to a
6421 // smaller type with a truncation. We collect the values that will be demoted
6422 // in ToDemote and additional roots that require investigating in Roots.
6423 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr,
6424                                   SmallVectorImpl<Value *> &ToDemote,
6425                                   SmallVectorImpl<Value *> &Roots) {
6426   // We can always demote constants.
6427   if (isa<Constant>(V)) {
6428     ToDemote.push_back(V);
6429     return true;
6430   }
6431 
6432   // If the value is not an instruction in the expression with only one use, it
6433   // cannot be demoted.
6434   auto *I = dyn_cast<Instruction>(V);
6435   if (!I || !I->hasOneUse() || !Expr.count(I))
6436     return false;
6437 
6438   switch (I->getOpcode()) {
6439 
6440   // We can always demote truncations and extensions. Since truncations can
6441   // seed additional demotion, we save the truncated value.
6442   case Instruction::Trunc:
6443     Roots.push_back(I->getOperand(0));
6444     break;
6445   case Instruction::ZExt:
6446   case Instruction::SExt:
6447     if (isa<ExtractElementInst>(I->getOperand(0)) ||
6448         isa<InsertElementInst>(I->getOperand(0)))
6449       return false;
6450     break;
6451 
6452   // We can demote certain binary operations if we can demote both of their
6453   // operands.
6454   case Instruction::Add:
6455   case Instruction::Sub:
6456   case Instruction::Mul:
6457   case Instruction::And:
6458   case Instruction::Or:
6459   case Instruction::Xor:
6460     if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) ||
6461         !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots))
6462       return false;
6463     break;
6464 
6465   // We can demote selects if we can demote their true and false values.
6466   case Instruction::Select: {
6467     SelectInst *SI = cast<SelectInst>(I);
6468     if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) ||
6469         !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots))
6470       return false;
6471     break;
6472   }
6473 
6474   // We can demote phis if we can demote all their incoming operands. Note that
6475   // we don't need to worry about cycles since we ensure single use above.
6476   case Instruction::PHI: {
6477     PHINode *PN = cast<PHINode>(I);
6478     for (Value *IncValue : PN->incoming_values())
6479       if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots))
6480         return false;
6481     break;
6482   }
6483 
6484   // Otherwise, conservatively give up.
6485   default:
6486     return false;
6487   }
6488 
6489   // Record the value that we can demote.
6490   ToDemote.push_back(V);
6491   return true;
6492 }
6493 
6494 void BoUpSLP::computeMinimumValueSizes() {
6495   // If there are no external uses, the expression tree must be rooted by a
6496   // store. We can't demote in-memory values, so there is nothing to do here.
6497   if (ExternalUses.empty())
6498     return;
6499 
6500   // We only attempt to truncate integer expressions.
6501   auto &TreeRoot = VectorizableTree[0]->Scalars;
6502   auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType());
6503   if (!TreeRootIT)
6504     return;
6505 
6506   // If the expression is not rooted by a store, these roots should have
6507   // external uses. We will rely on InstCombine to rewrite the expression in
6508   // the narrower type. However, InstCombine only rewrites single-use values.
6509   // This means that if a tree entry other than a root is used externally, it
6510   // must have multiple uses and InstCombine will not rewrite it. The code
6511   // below ensures that only the roots are used externally.
6512   SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end());
6513   for (auto &EU : ExternalUses)
6514     if (!Expr.erase(EU.Scalar))
6515       return;
6516   if (!Expr.empty())
6517     return;
6518 
6519   // Collect the scalar values of the vectorizable expression. We will use this
6520   // context to determine which values can be demoted. If we see a truncation,
6521   // we mark it as seeding another demotion.
6522   for (auto &EntryPtr : VectorizableTree)
6523     Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end());
6524 
6525   // Ensure the roots of the vectorizable tree don't form a cycle. They must
6526   // have a single external user that is not in the vectorizable tree.
6527   for (auto *Root : TreeRoot)
6528     if (!Root->hasOneUse() || Expr.count(*Root->user_begin()))
6529       return;
6530 
6531   // Conservatively determine if we can actually truncate the roots of the
6532   // expression. Collect the values that can be demoted in ToDemote and
6533   // additional roots that require investigating in Roots.
6534   SmallVector<Value *, 32> ToDemote;
6535   SmallVector<Value *, 4> Roots;
6536   for (auto *Root : TreeRoot)
6537     if (!collectValuesToDemote(Root, Expr, ToDemote, Roots))
6538       return;
6539 
6540   // The maximum bit width required to represent all the values that can be
6541   // demoted without loss of precision. It would be safe to truncate the roots
6542   // of the expression to this width.
6543   auto MaxBitWidth = 8u;
6544 
6545   // We first check if all the bits of the roots are demanded. If they're not,
6546   // we can truncate the roots to this narrower type.
6547   for (auto *Root : TreeRoot) {
6548     auto Mask = DB->getDemandedBits(cast<Instruction>(Root));
6549     MaxBitWidth = std::max<unsigned>(
6550         Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth);
6551   }
6552 
6553   // True if the roots can be zero-extended back to their original type, rather
6554   // than sign-extended. We know that if the leading bits are not demanded, we
6555   // can safely zero-extend. So we initialize IsKnownPositive to True.
6556   bool IsKnownPositive = true;
6557 
6558   // If all the bits of the roots are demanded, we can try a little harder to
6559   // compute a narrower type. This can happen, for example, if the roots are
6560   // getelementptr indices. InstCombine promotes these indices to the pointer
6561   // width. Thus, all their bits are technically demanded even though the
6562   // address computation might be vectorized in a smaller type.
6563   //
6564   // We start by looking at each entry that can be demoted. We compute the
6565   // maximum bit width required to store the scalar by using ValueTracking to
6566   // compute the number of high-order bits we can truncate.
6567   if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) &&
6568       llvm::all_of(TreeRoot, [](Value *R) {
6569         assert(R->hasOneUse() && "Root should have only one use!");
6570         return isa<GetElementPtrInst>(R->user_back());
6571       })) {
6572     MaxBitWidth = 8u;
6573 
6574     // Determine if the sign bit of all the roots is known to be zero. If not,
6575     // IsKnownPositive is set to False.
6576     IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) {
6577       KnownBits Known = computeKnownBits(R, *DL);
6578       return Known.isNonNegative();
6579     });
6580 
6581     // Determine the maximum number of bits required to store the scalar
6582     // values.
6583     for (auto *Scalar : ToDemote) {
6584       auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT);
6585       auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType());
6586       MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth);
6587     }
6588 
6589     // If we can't prove that the sign bit is zero, we must add one to the
6590     // maximum bit width to account for the unknown sign bit. This preserves
6591     // the existing sign bit so we can safely sign-extend the root back to the
6592     // original type. Otherwise, if we know the sign bit is zero, we will
6593     // zero-extend the root instead.
6594     //
6595     // FIXME: This is somewhat suboptimal, as there will be cases where adding
6596     //        one to the maximum bit width will yield a larger-than-necessary
6597     //        type. In general, we need to add an extra bit only if we can't
6598     //        prove that the upper bit of the original type is equal to the
6599     //        upper bit of the proposed smaller type. If these two bits are the
6600     //        same (either zero or one) we know that sign-extending from the
6601     //        smaller type will result in the same value. Here, since we can't
6602     //        yet prove this, we are just making the proposed smaller type
6603     //        larger to ensure correctness.
6604     if (!IsKnownPositive)
6605       ++MaxBitWidth;
6606   }
6607 
6608   // Round MaxBitWidth up to the next power-of-two.
6609   if (!isPowerOf2_64(MaxBitWidth))
6610     MaxBitWidth = NextPowerOf2(MaxBitWidth);
6611 
6612   // If the maximum bit width we compute is less than the with of the roots'
6613   // type, we can proceed with the narrowing. Otherwise, do nothing.
6614   if (MaxBitWidth >= TreeRootIT->getBitWidth())
6615     return;
6616 
6617   // If we can truncate the root, we must collect additional values that might
6618   // be demoted as a result. That is, those seeded by truncations we will
6619   // modify.
6620   while (!Roots.empty())
6621     collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots);
6622 
6623   // Finally, map the values we can demote to the maximum bit with we computed.
6624   for (auto *Scalar : ToDemote)
6625     MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive);
6626 }
6627 
6628 namespace {
6629 
6630 /// The SLPVectorizer Pass.
6631 struct SLPVectorizer : public FunctionPass {
6632   SLPVectorizerPass Impl;
6633 
6634   /// Pass identification, replacement for typeid
6635   static char ID;
6636 
6637   explicit SLPVectorizer() : FunctionPass(ID) {
6638     initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
6639   }
6640 
6641   bool doInitialization(Module &M) override {
6642     return false;
6643   }
6644 
6645   bool runOnFunction(Function &F) override {
6646     if (skipFunction(F))
6647       return false;
6648 
6649     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
6650     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
6651     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
6652     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
6653     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
6654     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
6655     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
6656     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
6657     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
6658     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
6659 
6660     return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
6661   }
6662 
6663   void getAnalysisUsage(AnalysisUsage &AU) const override {
6664     FunctionPass::getAnalysisUsage(AU);
6665     AU.addRequired<AssumptionCacheTracker>();
6666     AU.addRequired<ScalarEvolutionWrapperPass>();
6667     AU.addRequired<AAResultsWrapperPass>();
6668     AU.addRequired<TargetTransformInfoWrapperPass>();
6669     AU.addRequired<LoopInfoWrapperPass>();
6670     AU.addRequired<DominatorTreeWrapperPass>();
6671     AU.addRequired<DemandedBitsWrapperPass>();
6672     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
6673     AU.addRequired<InjectTLIMappingsLegacy>();
6674     AU.addPreserved<LoopInfoWrapperPass>();
6675     AU.addPreserved<DominatorTreeWrapperPass>();
6676     AU.addPreserved<AAResultsWrapperPass>();
6677     AU.addPreserved<GlobalsAAWrapperPass>();
6678     AU.setPreservesCFG();
6679   }
6680 };
6681 
6682 } // end anonymous namespace
6683 
6684 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
6685   auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
6686   auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
6687   auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
6688   auto *AA = &AM.getResult<AAManager>(F);
6689   auto *LI = &AM.getResult<LoopAnalysis>(F);
6690   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
6691   auto *AC = &AM.getResult<AssumptionAnalysis>(F);
6692   auto *DB = &AM.getResult<DemandedBitsAnalysis>(F);
6693   auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
6694 
6695   bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
6696   if (!Changed)
6697     return PreservedAnalyses::all();
6698 
6699   PreservedAnalyses PA;
6700   PA.preserveSet<CFGAnalyses>();
6701   return PA;
6702 }
6703 
6704 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_,
6705                                 TargetTransformInfo *TTI_,
6706                                 TargetLibraryInfo *TLI_, AAResults *AA_,
6707                                 LoopInfo *LI_, DominatorTree *DT_,
6708                                 AssumptionCache *AC_, DemandedBits *DB_,
6709                                 OptimizationRemarkEmitter *ORE_) {
6710   if (!RunSLPVectorization)
6711     return false;
6712   SE = SE_;
6713   TTI = TTI_;
6714   TLI = TLI_;
6715   AA = AA_;
6716   LI = LI_;
6717   DT = DT_;
6718   AC = AC_;
6719   DB = DB_;
6720   DL = &F.getParent()->getDataLayout();
6721 
6722   Stores.clear();
6723   GEPs.clear();
6724   bool Changed = false;
6725 
6726   // If the target claims to have no vector registers don't attempt
6727   // vectorization.
6728   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)))
6729     return false;
6730 
6731   // Don't vectorize when the attribute NoImplicitFloat is used.
6732   if (F.hasFnAttribute(Attribute::NoImplicitFloat))
6733     return false;
6734 
6735   LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
6736 
6737   // Use the bottom up slp vectorizer to construct chains that start with
6738   // store instructions.
6739   BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_);
6740 
6741   // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
6742   // delete instructions.
6743 
6744   // Update DFS numbers now so that we can use them for ordering.
6745   DT->updateDFSNumbers();
6746 
6747   // Scan the blocks in the function in post order.
6748   for (auto BB : post_order(&F.getEntryBlock())) {
6749     collectSeedInstructions(BB);
6750 
6751     // Vectorize trees that end at stores.
6752     if (!Stores.empty()) {
6753       LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size()
6754                         << " underlying objects.\n");
6755       Changed |= vectorizeStoreChains(R);
6756     }
6757 
6758     // Vectorize trees that end at reductions.
6759     Changed |= vectorizeChainsInBlock(BB, R);
6760 
6761     // Vectorize the index computations of getelementptr instructions. This
6762     // is primarily intended to catch gather-like idioms ending at
6763     // non-consecutive loads.
6764     if (!GEPs.empty()) {
6765       LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size()
6766                         << " underlying objects.\n");
6767       Changed |= vectorizeGEPIndices(BB, R);
6768     }
6769   }
6770 
6771   if (Changed) {
6772     R.optimizeGatherSequence();
6773     LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
6774   }
6775   return Changed;
6776 }
6777 
6778 /// Order may have elements assigned special value (size) which is out of
6779 /// bounds. Such indices only appear on places which correspond to undef values
6780 /// (see canReuseExtract for details) and used in order to avoid undef values
6781 /// have effect on operands ordering.
6782 /// The first loop below simply finds all unused indices and then the next loop
6783 /// nest assigns these indices for undef values positions.
6784 /// As an example below Order has two undef positions and they have assigned
6785 /// values 3 and 7 respectively:
6786 /// before:  6 9 5 4 9 2 1 0
6787 /// after:   6 3 5 4 7 2 1 0
6788 /// \returns Fixed ordering.
6789 static BoUpSLP::OrdersType fixupOrderingIndices(ArrayRef<unsigned> Order) {
6790   BoUpSLP::OrdersType NewOrder(Order.begin(), Order.end());
6791   const unsigned Sz = NewOrder.size();
6792   SmallBitVector UsedIndices(Sz);
6793   SmallVector<int> MaskedIndices;
6794   for (int I = 0, E = NewOrder.size(); I < E; ++I) {
6795     if (NewOrder[I] < Sz)
6796       UsedIndices.set(NewOrder[I]);
6797     else
6798       MaskedIndices.push_back(I);
6799   }
6800   if (MaskedIndices.empty())
6801     return NewOrder;
6802   SmallVector<int> AvailableIndices(MaskedIndices.size());
6803   unsigned Cnt = 0;
6804   int Idx = UsedIndices.find_first();
6805   do {
6806     AvailableIndices[Cnt] = Idx;
6807     Idx = UsedIndices.find_next(Idx);
6808     ++Cnt;
6809   } while (Idx > 0);
6810   assert(Cnt == MaskedIndices.size() && "Non-synced masked/available indices.");
6811   for (int I = 0, E = MaskedIndices.size(); I < E; ++I)
6812     NewOrder[MaskedIndices[I]] = AvailableIndices[I];
6813   return NewOrder;
6814 }
6815 
6816 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R,
6817                                             unsigned Idx) {
6818   LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size()
6819                     << "\n");
6820   const unsigned Sz = R.getVectorElementSize(Chain[0]);
6821   const unsigned MinVF = R.getMinVecRegSize() / Sz;
6822   unsigned VF = Chain.size();
6823 
6824   if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF)
6825     return false;
6826 
6827   LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx
6828                     << "\n");
6829 
6830   R.buildTree(Chain);
6831   Optional<ArrayRef<unsigned>> Order = R.bestOrder();
6832   // TODO: Handle orders of size less than number of elements in the vector.
6833   if (Order && Order->size() == Chain.size()) {
6834     // TODO: reorder tree nodes without tree rebuilding.
6835     SmallVector<Value *, 4> ReorderedOps(Chain.size());
6836     transform(fixupOrderingIndices(*Order), ReorderedOps.begin(),
6837               [Chain](const unsigned Idx) { return Chain[Idx]; });
6838     R.buildTree(ReorderedOps);
6839   }
6840   if (R.isTreeTinyAndNotFullyVectorizable())
6841     return false;
6842   if (R.isLoadCombineCandidate())
6843     return false;
6844 
6845   R.computeMinimumValueSizes();
6846 
6847   InstructionCost Cost = R.getTreeCost();
6848 
6849   LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n");
6850   if (Cost < -SLPCostThreshold) {
6851     LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n");
6852 
6853     using namespace ore;
6854 
6855     R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized",
6856                                         cast<StoreInst>(Chain[0]))
6857                      << "Stores SLP vectorized with cost " << NV("Cost", Cost)
6858                      << " and with tree size "
6859                      << NV("TreeSize", R.getTreeSize()));
6860 
6861     R.vectorizeTree();
6862     return true;
6863   }
6864 
6865   return false;
6866 }
6867 
6868 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores,
6869                                         BoUpSLP &R) {
6870   // We may run into multiple chains that merge into a single chain. We mark the
6871   // stores that we vectorized so that we don't visit the same store twice.
6872   BoUpSLP::ValueSet VectorizedStores;
6873   bool Changed = false;
6874 
6875   int E = Stores.size();
6876   SmallBitVector Tails(E, false);
6877   int MaxIter = MaxStoreLookup.getValue();
6878   SmallVector<std::pair<int, int>, 16> ConsecutiveChain(
6879       E, std::make_pair(E, INT_MAX));
6880   SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false));
6881   int IterCnt;
6882   auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter,
6883                                   &CheckedPairs,
6884                                   &ConsecutiveChain](int K, int Idx) {
6885     if (IterCnt >= MaxIter)
6886       return true;
6887     if (CheckedPairs[Idx].test(K))
6888       return ConsecutiveChain[K].second == 1 &&
6889              ConsecutiveChain[K].first == Idx;
6890     ++IterCnt;
6891     CheckedPairs[Idx].set(K);
6892     CheckedPairs[K].set(Idx);
6893     Optional<int> Diff = getPointersDiff(Stores[K]->getPointerOperand(),
6894                                          Stores[Idx]->getPointerOperand(), *DL,
6895                                          *SE, /*StrictCheck=*/true);
6896     if (!Diff || *Diff == 0)
6897       return false;
6898     int Val = *Diff;
6899     if (Val < 0) {
6900       if (ConsecutiveChain[Idx].second > -Val) {
6901         Tails.set(K);
6902         ConsecutiveChain[Idx] = std::make_pair(K, -Val);
6903       }
6904       return false;
6905     }
6906     if (ConsecutiveChain[K].second <= Val)
6907       return false;
6908 
6909     Tails.set(Idx);
6910     ConsecutiveChain[K] = std::make_pair(Idx, Val);
6911     return Val == 1;
6912   };
6913   // Do a quadratic search on all of the given stores in reverse order and find
6914   // all of the pairs of stores that follow each other.
6915   for (int Idx = E - 1; Idx >= 0; --Idx) {
6916     // If a store has multiple consecutive store candidates, search according
6917     // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ...
6918     // This is because usually pairing with immediate succeeding or preceding
6919     // candidate create the best chance to find slp vectorization opportunity.
6920     const int MaxLookDepth = std::max(E - Idx, Idx + 1);
6921     IterCnt = 0;
6922     for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset)
6923       if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) ||
6924           (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx)))
6925         break;
6926   }
6927 
6928   // Tracks if we tried to vectorize stores starting from the given tail
6929   // already.
6930   SmallBitVector TriedTails(E, false);
6931   // For stores that start but don't end a link in the chain:
6932   for (int Cnt = E; Cnt > 0; --Cnt) {
6933     int I = Cnt - 1;
6934     if (ConsecutiveChain[I].first == E || Tails.test(I))
6935       continue;
6936     // We found a store instr that starts a chain. Now follow the chain and try
6937     // to vectorize it.
6938     BoUpSLP::ValueList Operands;
6939     // Collect the chain into a list.
6940     while (I != E && !VectorizedStores.count(Stores[I])) {
6941       Operands.push_back(Stores[I]);
6942       Tails.set(I);
6943       if (ConsecutiveChain[I].second != 1) {
6944         // Mark the new end in the chain and go back, if required. It might be
6945         // required if the original stores come in reversed order, for example.
6946         if (ConsecutiveChain[I].first != E &&
6947             Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) &&
6948             !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) {
6949           TriedTails.set(I);
6950           Tails.reset(ConsecutiveChain[I].first);
6951           if (Cnt < ConsecutiveChain[I].first + 2)
6952             Cnt = ConsecutiveChain[I].first + 2;
6953         }
6954         break;
6955       }
6956       // Move to the next value in the chain.
6957       I = ConsecutiveChain[I].first;
6958     }
6959     assert(!Operands.empty() && "Expected non-empty list of stores.");
6960 
6961     unsigned MaxVecRegSize = R.getMaxVecRegSize();
6962     unsigned EltSize = R.getVectorElementSize(Operands[0]);
6963     unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize);
6964 
6965     unsigned MinVF = std::max(2U, R.getMinVecRegSize() / EltSize);
6966     unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store),
6967                               MaxElts);
6968 
6969     // FIXME: Is division-by-2 the correct step? Should we assert that the
6970     // register size is a power-of-2?
6971     unsigned StartIdx = 0;
6972     for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) {
6973       for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) {
6974         ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size);
6975         if (!VectorizedStores.count(Slice.front()) &&
6976             !VectorizedStores.count(Slice.back()) &&
6977             vectorizeStoreChain(Slice, R, Cnt)) {
6978           // Mark the vectorized stores so that we don't vectorize them again.
6979           VectorizedStores.insert(Slice.begin(), Slice.end());
6980           Changed = true;
6981           // If we vectorized initial block, no need to try to vectorize it
6982           // again.
6983           if (Cnt == StartIdx)
6984             StartIdx += Size;
6985           Cnt += Size;
6986           continue;
6987         }
6988         ++Cnt;
6989       }
6990       // Check if the whole array was vectorized already - exit.
6991       if (StartIdx >= Operands.size())
6992         break;
6993     }
6994   }
6995 
6996   return Changed;
6997 }
6998 
6999 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) {
7000   // Initialize the collections. We will make a single pass over the block.
7001   Stores.clear();
7002   GEPs.clear();
7003 
7004   // Visit the store and getelementptr instructions in BB and organize them in
7005   // Stores and GEPs according to the underlying objects of their pointer
7006   // operands.
7007   for (Instruction &I : *BB) {
7008     // Ignore store instructions that are volatile or have a pointer operand
7009     // that doesn't point to a scalar type.
7010     if (auto *SI = dyn_cast<StoreInst>(&I)) {
7011       if (!SI->isSimple())
7012         continue;
7013       if (!isValidElementType(SI->getValueOperand()->getType()))
7014         continue;
7015       Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI);
7016     }
7017 
7018     // Ignore getelementptr instructions that have more than one index, a
7019     // constant index, or a pointer operand that doesn't point to a scalar
7020     // type.
7021     else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
7022       auto Idx = GEP->idx_begin()->get();
7023       if (GEP->getNumIndices() > 1 || isa<Constant>(Idx))
7024         continue;
7025       if (!isValidElementType(Idx->getType()))
7026         continue;
7027       if (GEP->getType()->isVectorTy())
7028         continue;
7029       GEPs[GEP->getPointerOperand()].push_back(GEP);
7030     }
7031   }
7032 }
7033 
7034 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
7035   if (!A || !B)
7036     return false;
7037   Value *VL[] = {A, B};
7038   return tryToVectorizeList(VL, R, /*AllowReorder=*/true);
7039 }
7040 
7041 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
7042                                            bool AllowReorder) {
7043   if (VL.size() < 2)
7044     return false;
7045 
7046   LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = "
7047                     << VL.size() << ".\n");
7048 
7049   // Check that all of the parts are instructions of the same type,
7050   // we permit an alternate opcode via InstructionsState.
7051   InstructionsState S = getSameOpcode(VL);
7052   if (!S.getOpcode())
7053     return false;
7054 
7055   Instruction *I0 = cast<Instruction>(S.OpValue);
7056   // Make sure invalid types (including vector type) are rejected before
7057   // determining vectorization factor for scalar instructions.
7058   for (Value *V : VL) {
7059     Type *Ty = V->getType();
7060     if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) {
7061       // NOTE: the following will give user internal llvm type name, which may
7062       // not be useful.
7063       R.getORE()->emit([&]() {
7064         std::string type_str;
7065         llvm::raw_string_ostream rso(type_str);
7066         Ty->print(rso);
7067         return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0)
7068                << "Cannot SLP vectorize list: type "
7069                << rso.str() + " is unsupported by vectorizer";
7070       });
7071       return false;
7072     }
7073   }
7074 
7075   unsigned Sz = R.getVectorElementSize(I0);
7076   unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz);
7077   unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF);
7078   MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF);
7079   if (MaxVF < 2) {
7080     R.getORE()->emit([&]() {
7081       return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0)
7082              << "Cannot SLP vectorize list: vectorization factor "
7083              << "less than 2 is not supported";
7084     });
7085     return false;
7086   }
7087 
7088   bool Changed = false;
7089   bool CandidateFound = false;
7090   InstructionCost MinCost = SLPCostThreshold.getValue();
7091   Type *ScalarTy = VL[0]->getType();
7092   if (auto *IE = dyn_cast<InsertElementInst>(VL[0]))
7093     ScalarTy = IE->getOperand(1)->getType();
7094 
7095   unsigned NextInst = 0, MaxInst = VL.size();
7096   for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) {
7097     // No actual vectorization should happen, if number of parts is the same as
7098     // provided vectorization factor (i.e. the scalar type is used for vector
7099     // code during codegen).
7100     auto *VecTy = FixedVectorType::get(ScalarTy, VF);
7101     if (TTI->getNumberOfParts(VecTy) == VF)
7102       continue;
7103     for (unsigned I = NextInst; I < MaxInst; ++I) {
7104       unsigned OpsWidth = 0;
7105 
7106       if (I + VF > MaxInst)
7107         OpsWidth = MaxInst - I;
7108       else
7109         OpsWidth = VF;
7110 
7111       if (!isPowerOf2_32(OpsWidth))
7112         continue;
7113 
7114       if ((VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2))
7115         break;
7116 
7117       ArrayRef<Value *> Ops = VL.slice(I, OpsWidth);
7118       // Check that a previous iteration of this loop did not delete the Value.
7119       if (llvm::any_of(Ops, [&R](Value *V) {
7120             auto *I = dyn_cast<Instruction>(V);
7121             return I && R.isDeleted(I);
7122           }))
7123         continue;
7124 
7125       LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
7126                         << "\n");
7127 
7128       R.buildTree(Ops);
7129       if (AllowReorder) {
7130         Optional<ArrayRef<unsigned>> Order = R.bestOrder();
7131         if (Order) {
7132           // TODO: reorder tree nodes without tree rebuilding.
7133           SmallVector<Value *, 4> ReorderedOps(Ops.size());
7134           transform(fixupOrderingIndices(*Order), ReorderedOps.begin(),
7135                     [Ops](const unsigned Idx) { return Ops[Idx]; });
7136           R.buildTree(ReorderedOps);
7137         }
7138       }
7139       if (R.isTreeTinyAndNotFullyVectorizable())
7140         continue;
7141 
7142       R.computeMinimumValueSizes();
7143       InstructionCost Cost = R.getTreeCost();
7144       CandidateFound = true;
7145       MinCost = std::min(MinCost, Cost);
7146 
7147       if (Cost < -SLPCostThreshold) {
7148         LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
7149         R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList",
7150                                                     cast<Instruction>(Ops[0]))
7151                                  << "SLP vectorized with cost " << ore::NV("Cost", Cost)
7152                                  << " and with tree size "
7153                                  << ore::NV("TreeSize", R.getTreeSize()));
7154 
7155         R.vectorizeTree();
7156         // Move to the next bundle.
7157         I += VF - 1;
7158         NextInst = I + 1;
7159         Changed = true;
7160       }
7161     }
7162   }
7163 
7164   if (!Changed && CandidateFound) {
7165     R.getORE()->emit([&]() {
7166       return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0)
7167              << "List vectorization was possible but not beneficial with cost "
7168              << ore::NV("Cost", MinCost) << " >= "
7169              << ore::NV("Treshold", -SLPCostThreshold);
7170     });
7171   } else if (!Changed) {
7172     R.getORE()->emit([&]() {
7173       return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0)
7174              << "Cannot SLP vectorize list: vectorization was impossible"
7175              << " with available vectorization factors";
7176     });
7177   }
7178   return Changed;
7179 }
7180 
7181 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) {
7182   if (!I)
7183     return false;
7184 
7185   if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I))
7186     return false;
7187 
7188   Value *P = I->getParent();
7189 
7190   // Vectorize in current basic block only.
7191   auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
7192   auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
7193   if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P)
7194     return false;
7195 
7196   // Try to vectorize V.
7197   if (tryToVectorizePair(Op0, Op1, R))
7198     return true;
7199 
7200   auto *A = dyn_cast<BinaryOperator>(Op0);
7201   auto *B = dyn_cast<BinaryOperator>(Op1);
7202   // Try to skip B.
7203   if (B && B->hasOneUse()) {
7204     auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
7205     auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
7206     if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R))
7207       return true;
7208     if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R))
7209       return true;
7210   }
7211 
7212   // Try to skip A.
7213   if (A && A->hasOneUse()) {
7214     auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
7215     auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
7216     if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R))
7217       return true;
7218     if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R))
7219       return true;
7220   }
7221   return false;
7222 }
7223 
7224 namespace {
7225 
7226 /// Model horizontal reductions.
7227 ///
7228 /// A horizontal reduction is a tree of reduction instructions that has values
7229 /// that can be put into a vector as its leaves. For example:
7230 ///
7231 /// mul mul mul mul
7232 ///  \  /    \  /
7233 ///   +       +
7234 ///    \     /
7235 ///       +
7236 /// This tree has "mul" as its leaf values and "+" as its reduction
7237 /// instructions. A reduction can feed into a store or a binary operation
7238 /// feeding a phi.
7239 ///    ...
7240 ///    \  /
7241 ///     +
7242 ///     |
7243 ///  phi +=
7244 ///
7245 ///  Or:
7246 ///    ...
7247 ///    \  /
7248 ///     +
7249 ///     |
7250 ///   *p =
7251 ///
7252 class HorizontalReduction {
7253   using ReductionOpsType = SmallVector<Value *, 16>;
7254   using ReductionOpsListType = SmallVector<ReductionOpsType, 2>;
7255   ReductionOpsListType ReductionOps;
7256   SmallVector<Value *, 32> ReducedVals;
7257   // Use map vector to make stable output.
7258   MapVector<Instruction *, Value *> ExtraArgs;
7259   WeakTrackingVH ReductionRoot;
7260   /// The type of reduction operation.
7261   RecurKind RdxKind;
7262 
7263   /// Checks if instruction is associative and can be vectorized.
7264   static bool isVectorizable(RecurKind Kind, Instruction *I) {
7265     if (Kind == RecurKind::None)
7266       return false;
7267     if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind))
7268       return true;
7269 
7270     if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) {
7271       // FP min/max are associative except for NaN and -0.0. We do not
7272       // have to rule out -0.0 here because the intrinsic semantics do not
7273       // specify a fixed result for it.
7274       return I->getFastMathFlags().noNaNs();
7275     }
7276 
7277     return I->isAssociative();
7278   }
7279 
7280   /// Checks if the ParentStackElem.first should be marked as a reduction
7281   /// operation with an extra argument or as extra argument itself.
7282   void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem,
7283                     Value *ExtraArg) {
7284     if (ExtraArgs.count(ParentStackElem.first)) {
7285       ExtraArgs[ParentStackElem.first] = nullptr;
7286       // We ran into something like:
7287       // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg.
7288       // The whole ParentStackElem.first should be considered as an extra value
7289       // in this case.
7290       // Do not perform analysis of remaining operands of ParentStackElem.first
7291       // instruction, this whole instruction is an extra argument.
7292       ParentStackElem.second = getNumberOfOperands(ParentStackElem.first);
7293     } else {
7294       // We ran into something like:
7295       // ParentStackElem.first += ... + ExtraArg + ...
7296       ExtraArgs[ParentStackElem.first] = ExtraArg;
7297     }
7298   }
7299 
7300   /// Creates reduction operation with the current opcode.
7301   static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS,
7302                          Value *RHS, const Twine &Name, bool UseSelect) {
7303     unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind);
7304     switch (Kind) {
7305     case RecurKind::Add:
7306     case RecurKind::Mul:
7307     case RecurKind::Or:
7308     case RecurKind::And:
7309     case RecurKind::Xor:
7310     case RecurKind::FAdd:
7311     case RecurKind::FMul:
7312       return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS,
7313                                  Name);
7314     case RecurKind::FMax:
7315       return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS);
7316     case RecurKind::FMin:
7317       return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS);
7318     case RecurKind::SMax:
7319       if (UseSelect) {
7320         Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name);
7321         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
7322       }
7323       return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS);
7324     case RecurKind::SMin:
7325       if (UseSelect) {
7326         Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name);
7327         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
7328       }
7329       return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS);
7330     case RecurKind::UMax:
7331       if (UseSelect) {
7332         Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name);
7333         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
7334       }
7335       return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS);
7336     case RecurKind::UMin:
7337       if (UseSelect) {
7338         Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name);
7339         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
7340       }
7341       return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS);
7342     default:
7343       llvm_unreachable("Unknown reduction operation.");
7344     }
7345   }
7346 
7347   /// Creates reduction operation with the current opcode with the IR flags
7348   /// from \p ReductionOps.
7349   static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS,
7350                          Value *RHS, const Twine &Name,
7351                          const ReductionOpsListType &ReductionOps) {
7352     bool UseSelect = ReductionOps.size() == 2;
7353     assert((!UseSelect || isa<SelectInst>(ReductionOps[1][0])) &&
7354            "Expected cmp + select pairs for reduction");
7355     Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect);
7356     if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) {
7357       if (auto *Sel = dyn_cast<SelectInst>(Op)) {
7358         propagateIRFlags(Sel->getCondition(), ReductionOps[0]);
7359         propagateIRFlags(Op, ReductionOps[1]);
7360         return Op;
7361       }
7362     }
7363     propagateIRFlags(Op, ReductionOps[0]);
7364     return Op;
7365   }
7366 
7367   /// Creates reduction operation with the current opcode with the IR flags
7368   /// from \p I.
7369   static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS,
7370                          Value *RHS, const Twine &Name, Instruction *I) {
7371     auto *SelI = dyn_cast<SelectInst>(I);
7372     Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr);
7373     if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) {
7374       if (auto *Sel = dyn_cast<SelectInst>(Op))
7375         propagateIRFlags(Sel->getCondition(), SelI->getCondition());
7376     }
7377     propagateIRFlags(Op, I);
7378     return Op;
7379   }
7380 
7381   static RecurKind getRdxKind(Instruction *I) {
7382     assert(I && "Expected instruction for reduction matching");
7383     TargetTransformInfo::ReductionFlags RdxFlags;
7384     if (match(I, m_Add(m_Value(), m_Value())))
7385       return RecurKind::Add;
7386     if (match(I, m_Mul(m_Value(), m_Value())))
7387       return RecurKind::Mul;
7388     if (match(I, m_And(m_Value(), m_Value())))
7389       return RecurKind::And;
7390     if (match(I, m_Or(m_Value(), m_Value())))
7391       return RecurKind::Or;
7392     if (match(I, m_Xor(m_Value(), m_Value())))
7393       return RecurKind::Xor;
7394     if (match(I, m_FAdd(m_Value(), m_Value())))
7395       return RecurKind::FAdd;
7396     if (match(I, m_FMul(m_Value(), m_Value())))
7397       return RecurKind::FMul;
7398 
7399     if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value())))
7400       return RecurKind::FMax;
7401     if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value())))
7402       return RecurKind::FMin;
7403 
7404     // This matches either cmp+select or intrinsics. SLP is expected to handle
7405     // either form.
7406     // TODO: If we are canonicalizing to intrinsics, we can remove several
7407     //       special-case paths that deal with selects.
7408     if (match(I, m_SMax(m_Value(), m_Value())))
7409       return RecurKind::SMax;
7410     if (match(I, m_SMin(m_Value(), m_Value())))
7411       return RecurKind::SMin;
7412     if (match(I, m_UMax(m_Value(), m_Value())))
7413       return RecurKind::UMax;
7414     if (match(I, m_UMin(m_Value(), m_Value())))
7415       return RecurKind::UMin;
7416 
7417     if (auto *Select = dyn_cast<SelectInst>(I)) {
7418       // Try harder: look for min/max pattern based on instructions producing
7419       // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2).
7420       // During the intermediate stages of SLP, it's very common to have
7421       // pattern like this (since optimizeGatherSequence is run only once
7422       // at the end):
7423       // %1 = extractelement <2 x i32> %a, i32 0
7424       // %2 = extractelement <2 x i32> %a, i32 1
7425       // %cond = icmp sgt i32 %1, %2
7426       // %3 = extractelement <2 x i32> %a, i32 0
7427       // %4 = extractelement <2 x i32> %a, i32 1
7428       // %select = select i1 %cond, i32 %3, i32 %4
7429       CmpInst::Predicate Pred;
7430       Instruction *L1;
7431       Instruction *L2;
7432 
7433       Value *LHS = Select->getTrueValue();
7434       Value *RHS = Select->getFalseValue();
7435       Value *Cond = Select->getCondition();
7436 
7437       // TODO: Support inverse predicates.
7438       if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) {
7439         if (!isa<ExtractElementInst>(RHS) ||
7440             !L2->isIdenticalTo(cast<Instruction>(RHS)))
7441           return RecurKind::None;
7442       } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) {
7443         if (!isa<ExtractElementInst>(LHS) ||
7444             !L1->isIdenticalTo(cast<Instruction>(LHS)))
7445           return RecurKind::None;
7446       } else {
7447         if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS))
7448           return RecurKind::None;
7449         if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) ||
7450             !L1->isIdenticalTo(cast<Instruction>(LHS)) ||
7451             !L2->isIdenticalTo(cast<Instruction>(RHS)))
7452           return RecurKind::None;
7453       }
7454 
7455       TargetTransformInfo::ReductionFlags RdxFlags;
7456       switch (Pred) {
7457       default:
7458         return RecurKind::None;
7459       case CmpInst::ICMP_SGT:
7460       case CmpInst::ICMP_SGE:
7461         return RecurKind::SMax;
7462       case CmpInst::ICMP_SLT:
7463       case CmpInst::ICMP_SLE:
7464         return RecurKind::SMin;
7465       case CmpInst::ICMP_UGT:
7466       case CmpInst::ICMP_UGE:
7467         return RecurKind::UMax;
7468       case CmpInst::ICMP_ULT:
7469       case CmpInst::ICMP_ULE:
7470         return RecurKind::UMin;
7471       }
7472     }
7473     return RecurKind::None;
7474   }
7475 
7476   /// Get the index of the first operand.
7477   static unsigned getFirstOperandIndex(Instruction *I) {
7478     return isa<SelectInst>(I) ? 1 : 0;
7479   }
7480 
7481   /// Total number of operands in the reduction operation.
7482   static unsigned getNumberOfOperands(Instruction *I) {
7483     return isa<SelectInst>(I) ? 3 : 2;
7484   }
7485 
7486   /// Checks if the instruction is in basic block \p BB.
7487   /// For a min/max reduction check that both compare and select are in \p BB.
7488   static bool hasSameParent(Instruction *I, BasicBlock *BB, bool IsRedOp) {
7489     auto *Sel = dyn_cast<SelectInst>(I);
7490     if (IsRedOp && Sel) {
7491       auto *Cmp = cast<Instruction>(Sel->getCondition());
7492       return Sel->getParent() == BB && Cmp->getParent() == BB;
7493     }
7494     return I->getParent() == BB;
7495   }
7496 
7497   /// Expected number of uses for reduction operations/reduced values.
7498   static bool hasRequiredNumberOfUses(bool MatchCmpSel, Instruction *I) {
7499     // SelectInst must be used twice while the condition op must have single
7500     // use only.
7501     if (MatchCmpSel) {
7502       if (auto *Sel = dyn_cast<SelectInst>(I))
7503         return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse();
7504       return I->hasNUses(2);
7505     }
7506 
7507     // Arithmetic reduction operation must be used once only.
7508     return I->hasOneUse();
7509   }
7510 
7511   /// Initializes the list of reduction operations.
7512   void initReductionOps(Instruction *I) {
7513     if (isa<SelectInst>(I))
7514       ReductionOps.assign(2, ReductionOpsType());
7515     else
7516       ReductionOps.assign(1, ReductionOpsType());
7517   }
7518 
7519   /// Add all reduction operations for the reduction instruction \p I.
7520   void addReductionOps(Instruction *I) {
7521     if (auto *Sel = dyn_cast<SelectInst>(I)) {
7522       ReductionOps[0].emplace_back(Sel->getCondition());
7523       ReductionOps[1].emplace_back(Sel);
7524     } else {
7525       ReductionOps[0].emplace_back(I);
7526     }
7527   }
7528 
7529   static Value *getLHS(RecurKind Kind, Instruction *I) {
7530     if (Kind == RecurKind::None)
7531       return nullptr;
7532     return I->getOperand(getFirstOperandIndex(I));
7533   }
7534   static Value *getRHS(RecurKind Kind, Instruction *I) {
7535     if (Kind == RecurKind::None)
7536       return nullptr;
7537     return I->getOperand(getFirstOperandIndex(I) + 1);
7538   }
7539 
7540 public:
7541   HorizontalReduction() = default;
7542 
7543   /// Try to find a reduction tree.
7544   bool matchAssociativeReduction(PHINode *Phi, Instruction *B) {
7545     assert((!Phi || is_contained(Phi->operands(), B)) &&
7546            "Phi needs to use the binary operator");
7547 
7548     RdxKind = getRdxKind(B);
7549 
7550     // We could have a initial reductions that is not an add.
7551     //  r *= v1 + v2 + v3 + v4
7552     // In such a case start looking for a tree rooted in the first '+'.
7553     if (Phi) {
7554       if (getLHS(RdxKind, B) == Phi) {
7555         Phi = nullptr;
7556         B = dyn_cast<Instruction>(getRHS(RdxKind, B));
7557         if (!B)
7558           return false;
7559         RdxKind = getRdxKind(B);
7560       } else if (getRHS(RdxKind, B) == Phi) {
7561         Phi = nullptr;
7562         B = dyn_cast<Instruction>(getLHS(RdxKind, B));
7563         if (!B)
7564           return false;
7565         RdxKind = getRdxKind(B);
7566       }
7567     }
7568 
7569     if (!isVectorizable(RdxKind, B))
7570       return false;
7571 
7572     // Analyze "regular" integer/FP types for reductions - no target-specific
7573     // types or pointers.
7574     Type *Ty = B->getType();
7575     if (!isValidElementType(Ty) || Ty->isPointerTy())
7576       return false;
7577 
7578     // Though the ultimate reduction may have multiple uses, its condition must
7579     // have only single use.
7580     if (auto *SI = dyn_cast<SelectInst>(B))
7581       if (!SI->getCondition()->hasOneUse())
7582         return false;
7583 
7584     ReductionRoot = B;
7585 
7586     // The opcode for leaf values that we perform a reduction on.
7587     // For example: load(x) + load(y) + load(z) + fptoui(w)
7588     // The leaf opcode for 'w' does not match, so we don't include it as a
7589     // potential candidate for the reduction.
7590     unsigned LeafOpcode = 0;
7591 
7592     // Post order traverse the reduction tree starting at B. We only handle true
7593     // trees containing only binary operators.
7594     SmallVector<std::pair<Instruction *, unsigned>, 32> Stack;
7595     Stack.push_back(std::make_pair(B, getFirstOperandIndex(B)));
7596     initReductionOps(B);
7597     while (!Stack.empty()) {
7598       Instruction *TreeN = Stack.back().first;
7599       unsigned EdgeToVisit = Stack.back().second++;
7600       const RecurKind TreeRdxKind = getRdxKind(TreeN);
7601       bool IsReducedValue = TreeRdxKind != RdxKind;
7602 
7603       // Postorder visit.
7604       if (IsReducedValue || EdgeToVisit == getNumberOfOperands(TreeN)) {
7605         if (IsReducedValue)
7606           ReducedVals.push_back(TreeN);
7607         else {
7608           auto ExtraArgsIter = ExtraArgs.find(TreeN);
7609           if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) {
7610             // Check if TreeN is an extra argument of its parent operation.
7611             if (Stack.size() <= 1) {
7612               // TreeN can't be an extra argument as it is a root reduction
7613               // operation.
7614               return false;
7615             }
7616             // Yes, TreeN is an extra argument, do not add it to a list of
7617             // reduction operations.
7618             // Stack[Stack.size() - 2] always points to the parent operation.
7619             markExtraArg(Stack[Stack.size() - 2], TreeN);
7620             ExtraArgs.erase(TreeN);
7621           } else
7622             addReductionOps(TreeN);
7623         }
7624         // Retract.
7625         Stack.pop_back();
7626         continue;
7627       }
7628 
7629       // Visit left or right.
7630       Value *EdgeVal = TreeN->getOperand(EdgeToVisit);
7631       auto *EdgeInst = dyn_cast<Instruction>(EdgeVal);
7632       if (!EdgeInst) {
7633         // Edge value is not a reduction instruction or a leaf instruction.
7634         // (It may be a constant, function argument, or something else.)
7635         markExtraArg(Stack.back(), EdgeVal);
7636         continue;
7637       }
7638       RecurKind EdgeRdxKind = getRdxKind(EdgeInst);
7639       // Continue analysis if the next operand is a reduction operation or
7640       // (possibly) a leaf value. If the leaf value opcode is not set,
7641       // the first met operation != reduction operation is considered as the
7642       // leaf opcode.
7643       // Only handle trees in the current basic block.
7644       // Each tree node needs to have minimal number of users except for the
7645       // ultimate reduction.
7646       const bool IsRdxInst = EdgeRdxKind == RdxKind;
7647       if (EdgeInst != Phi && EdgeInst != B &&
7648           hasSameParent(EdgeInst, B->getParent(), IsRdxInst) &&
7649           hasRequiredNumberOfUses(isa<SelectInst>(B), EdgeInst) &&
7650           (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) {
7651         if (IsRdxInst) {
7652           // We need to be able to reassociate the reduction operations.
7653           if (!isVectorizable(EdgeRdxKind, EdgeInst)) {
7654             // I is an extra argument for TreeN (its parent operation).
7655             markExtraArg(Stack.back(), EdgeInst);
7656             continue;
7657           }
7658         } else if (!LeafOpcode) {
7659           LeafOpcode = EdgeInst->getOpcode();
7660         }
7661         Stack.push_back(
7662             std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst)));
7663         continue;
7664       }
7665       // I is an extra argument for TreeN (its parent operation).
7666       markExtraArg(Stack.back(), EdgeInst);
7667     }
7668     return true;
7669   }
7670 
7671   /// Attempt to vectorize the tree found by matchAssociativeReduction.
7672   bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
7673     // If there are a sufficient number of reduction values, reduce
7674     // to a nearby power-of-2. We can safely generate oversized
7675     // vectors and rely on the backend to split them to legal sizes.
7676     unsigned NumReducedVals = ReducedVals.size();
7677     if (NumReducedVals < 4)
7678       return false;
7679 
7680     // Intersect the fast-math-flags from all reduction operations.
7681     FastMathFlags RdxFMF;
7682     RdxFMF.set();
7683     for (ReductionOpsType &RdxOp : ReductionOps) {
7684       for (Value *RdxVal : RdxOp) {
7685         if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal))
7686           RdxFMF &= FPMO->getFastMathFlags();
7687       }
7688     }
7689 
7690     IRBuilder<> Builder(cast<Instruction>(ReductionRoot));
7691     Builder.setFastMathFlags(RdxFMF);
7692 
7693     BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues;
7694     // The same extra argument may be used several times, so log each attempt
7695     // to use it.
7696     for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) {
7697       assert(Pair.first && "DebugLoc must be set.");
7698       ExternallyUsedValues[Pair.second].push_back(Pair.first);
7699     }
7700 
7701     // The compare instruction of a min/max is the insertion point for new
7702     // instructions and may be replaced with a new compare instruction.
7703     auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) {
7704       assert(isa<SelectInst>(RdxRootInst) &&
7705              "Expected min/max reduction to have select root instruction");
7706       Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition();
7707       assert(isa<Instruction>(ScalarCond) &&
7708              "Expected min/max reduction to have compare condition");
7709       return cast<Instruction>(ScalarCond);
7710     };
7711 
7712     // The reduction root is used as the insertion point for new instructions,
7713     // so set it as externally used to prevent it from being deleted.
7714     ExternallyUsedValues[ReductionRoot];
7715     SmallVector<Value *, 16> IgnoreList;
7716     for (ReductionOpsType &RdxOp : ReductionOps)
7717       IgnoreList.append(RdxOp.begin(), RdxOp.end());
7718 
7719     unsigned ReduxWidth = PowerOf2Floor(NumReducedVals);
7720     if (NumReducedVals > ReduxWidth) {
7721       // In the loop below, we are building a tree based on a window of
7722       // 'ReduxWidth' values.
7723       // If the operands of those values have common traits (compare predicate,
7724       // constant operand, etc), then we want to group those together to
7725       // minimize the cost of the reduction.
7726 
7727       // TODO: This should be extended to count common operands for
7728       //       compares and binops.
7729 
7730       // Step 1: Count the number of times each compare predicate occurs.
7731       SmallDenseMap<unsigned, unsigned> PredCountMap;
7732       for (Value *RdxVal : ReducedVals) {
7733         CmpInst::Predicate Pred;
7734         if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value())))
7735           ++PredCountMap[Pred];
7736       }
7737       // Step 2: Sort the values so the most common predicates come first.
7738       stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) {
7739         CmpInst::Predicate PredA, PredB;
7740         if (match(A, m_Cmp(PredA, m_Value(), m_Value())) &&
7741             match(B, m_Cmp(PredB, m_Value(), m_Value()))) {
7742           return PredCountMap[PredA] > PredCountMap[PredB];
7743         }
7744         return false;
7745       });
7746     }
7747 
7748     Value *VectorizedTree = nullptr;
7749     unsigned i = 0;
7750     while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) {
7751       ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth);
7752       V.buildTree(VL, ExternallyUsedValues, IgnoreList);
7753       Optional<ArrayRef<unsigned>> Order = V.bestOrder();
7754       if (Order) {
7755         assert(Order->size() == VL.size() &&
7756                "Order size must be the same as number of vectorized "
7757                "instructions.");
7758         // TODO: reorder tree nodes without tree rebuilding.
7759         SmallVector<Value *, 4> ReorderedOps(VL.size());
7760         transform(fixupOrderingIndices(*Order), ReorderedOps.begin(),
7761                   [VL](const unsigned Idx) { return VL[Idx]; });
7762         V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList);
7763       }
7764       if (V.isTreeTinyAndNotFullyVectorizable())
7765         break;
7766       if (V.isLoadCombineReductionCandidate(RdxKind))
7767         break;
7768 
7769       V.computeMinimumValueSizes();
7770 
7771       // Estimate cost.
7772       InstructionCost TreeCost =
7773           V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth));
7774       InstructionCost ReductionCost =
7775           getReductionCost(TTI, ReducedVals[i], ReduxWidth);
7776       InstructionCost Cost = TreeCost + ReductionCost;
7777       if (!Cost.isValid()) {
7778         LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n");
7779         return false;
7780       }
7781       if (Cost >= -SLPCostThreshold) {
7782         V.getORE()->emit([&]() {
7783           return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial",
7784                                           cast<Instruction>(VL[0]))
7785                  << "Vectorizing horizontal reduction is possible"
7786                  << "but not beneficial with cost " << ore::NV("Cost", Cost)
7787                  << " and threshold "
7788                  << ore::NV("Threshold", -SLPCostThreshold);
7789         });
7790         break;
7791       }
7792 
7793       LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
7794                         << Cost << ". (HorRdx)\n");
7795       V.getORE()->emit([&]() {
7796         return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction",
7797                                   cast<Instruction>(VL[0]))
7798                << "Vectorized horizontal reduction with cost "
7799                << ore::NV("Cost", Cost) << " and with tree size "
7800                << ore::NV("TreeSize", V.getTreeSize());
7801       });
7802 
7803       // Vectorize a tree.
7804       DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
7805       Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues);
7806 
7807       // Emit a reduction. If the root is a select (min/max idiom), the insert
7808       // point is the compare condition of that select.
7809       Instruction *RdxRootInst = cast<Instruction>(ReductionRoot);
7810       if (isa<SelectInst>(RdxRootInst))
7811         Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst));
7812       else
7813         Builder.SetInsertPoint(RdxRootInst);
7814 
7815       Value *ReducedSubTree =
7816           emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI);
7817 
7818       if (!VectorizedTree) {
7819         // Initialize the final value in the reduction.
7820         VectorizedTree = ReducedSubTree;
7821       } else {
7822         // Update the final value in the reduction.
7823         Builder.SetCurrentDebugLocation(Loc);
7824         VectorizedTree = createOp(Builder, RdxKind, VectorizedTree,
7825                                   ReducedSubTree, "op.rdx", ReductionOps);
7826       }
7827       i += ReduxWidth;
7828       ReduxWidth = PowerOf2Floor(NumReducedVals - i);
7829     }
7830 
7831     if (VectorizedTree) {
7832       // Finish the reduction.
7833       for (; i < NumReducedVals; ++i) {
7834         auto *I = cast<Instruction>(ReducedVals[i]);
7835         Builder.SetCurrentDebugLocation(I->getDebugLoc());
7836         VectorizedTree =
7837             createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps);
7838       }
7839       for (auto &Pair : ExternallyUsedValues) {
7840         // Add each externally used value to the final reduction.
7841         for (auto *I : Pair.second) {
7842           Builder.SetCurrentDebugLocation(I->getDebugLoc());
7843           VectorizedTree = createOp(Builder, RdxKind, VectorizedTree,
7844                                     Pair.first, "op.extra", I);
7845         }
7846       }
7847 
7848       ReductionRoot->replaceAllUsesWith(VectorizedTree);
7849 
7850       // Mark all scalar reduction ops for deletion, they are replaced by the
7851       // vector reductions.
7852       V.eraseInstructions(IgnoreList);
7853     }
7854     return VectorizedTree != nullptr;
7855   }
7856 
7857   unsigned numReductionValues() const { return ReducedVals.size(); }
7858 
7859 private:
7860   /// Calculate the cost of a reduction.
7861   InstructionCost getReductionCost(TargetTransformInfo *TTI,
7862                                    Value *FirstReducedVal,
7863                                    unsigned ReduxWidth) {
7864     Type *ScalarTy = FirstReducedVal->getType();
7865     FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth);
7866     InstructionCost VectorCost, ScalarCost;
7867     switch (RdxKind) {
7868     case RecurKind::Add:
7869     case RecurKind::Mul:
7870     case RecurKind::Or:
7871     case RecurKind::And:
7872     case RecurKind::Xor:
7873     case RecurKind::FAdd:
7874     case RecurKind::FMul: {
7875       unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind);
7876       VectorCost = TTI->getArithmeticReductionCost(RdxOpcode, VectorTy,
7877                                                    /*IsPairwiseForm=*/false);
7878       ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy);
7879       break;
7880     }
7881     case RecurKind::FMax:
7882     case RecurKind::FMin: {
7883       auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy));
7884       VectorCost =
7885           TTI->getMinMaxReductionCost(VectorTy, VecCondTy,
7886                                       /*pairwise=*/false, /*unsigned=*/false);
7887       ScalarCost =
7888           TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy) +
7889           TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
7890                                   CmpInst::makeCmpResultType(ScalarTy));
7891       break;
7892     }
7893     case RecurKind::SMax:
7894     case RecurKind::SMin:
7895     case RecurKind::UMax:
7896     case RecurKind::UMin: {
7897       auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy));
7898       bool IsUnsigned =
7899           RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin;
7900       VectorCost =
7901           TTI->getMinMaxReductionCost(VectorTy, VecCondTy,
7902                                       /*IsPairwiseForm=*/false, IsUnsigned);
7903       ScalarCost =
7904           TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy) +
7905           TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
7906                                   CmpInst::makeCmpResultType(ScalarTy));
7907       break;
7908     }
7909     default:
7910       llvm_unreachable("Expected arithmetic or min/max reduction operation");
7911     }
7912 
7913     // Scalar cost is repeated for N-1 elements.
7914     ScalarCost *= (ReduxWidth - 1);
7915     LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost
7916                       << " for reduction that starts with " << *FirstReducedVal
7917                       << " (It is a splitting reduction)\n");
7918     return VectorCost - ScalarCost;
7919   }
7920 
7921   /// Emit a horizontal reduction of the vectorized value.
7922   Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder,
7923                        unsigned ReduxWidth, const TargetTransformInfo *TTI) {
7924     assert(VectorizedValue && "Need to have a vectorized tree node");
7925     assert(isPowerOf2_32(ReduxWidth) &&
7926            "We only handle power-of-two reductions for now");
7927 
7928     return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind,
7929                                        ReductionOps.back());
7930   }
7931 };
7932 
7933 } // end anonymous namespace
7934 
7935 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) {
7936   if (auto *IE = dyn_cast<InsertElementInst>(InsertInst))
7937     return cast<FixedVectorType>(IE->getType())->getNumElements();
7938 
7939   unsigned AggregateSize = 1;
7940   auto *IV = cast<InsertValueInst>(InsertInst);
7941   Type *CurrentType = IV->getType();
7942   do {
7943     if (auto *ST = dyn_cast<StructType>(CurrentType)) {
7944       for (auto *Elt : ST->elements())
7945         if (Elt != ST->getElementType(0)) // check homogeneity
7946           return None;
7947       AggregateSize *= ST->getNumElements();
7948       CurrentType = ST->getElementType(0);
7949     } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) {
7950       AggregateSize *= AT->getNumElements();
7951       CurrentType = AT->getElementType();
7952     } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) {
7953       AggregateSize *= VT->getNumElements();
7954       return AggregateSize;
7955     } else if (CurrentType->isSingleValueType()) {
7956       return AggregateSize;
7957     } else {
7958       return None;
7959     }
7960   } while (true);
7961 }
7962 
7963 static bool findBuildAggregate_rec(Instruction *LastInsertInst,
7964                                    TargetTransformInfo *TTI,
7965                                    SmallVectorImpl<Value *> &BuildVectorOpds,
7966                                    SmallVectorImpl<Value *> &InsertElts,
7967                                    unsigned OperandOffset) {
7968   do {
7969     Value *InsertedOperand = LastInsertInst->getOperand(1);
7970     Optional<int> OperandIndex = getInsertIndex(LastInsertInst, OperandOffset);
7971     if (!OperandIndex)
7972       return false;
7973     if (isa<InsertElementInst>(InsertedOperand) ||
7974         isa<InsertValueInst>(InsertedOperand)) {
7975       if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI,
7976                                   BuildVectorOpds, InsertElts, *OperandIndex))
7977         return false;
7978     } else {
7979       BuildVectorOpds[*OperandIndex] = InsertedOperand;
7980       InsertElts[*OperandIndex] = LastInsertInst;
7981     }
7982     LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0));
7983   } while (LastInsertInst != nullptr &&
7984            (isa<InsertValueInst>(LastInsertInst) ||
7985             isa<InsertElementInst>(LastInsertInst)) &&
7986            LastInsertInst->hasOneUse());
7987   return true;
7988 }
7989 
7990 /// Recognize construction of vectors like
7991 ///  %ra = insertelement <4 x float> poison, float %s0, i32 0
7992 ///  %rb = insertelement <4 x float> %ra, float %s1, i32 1
7993 ///  %rc = insertelement <4 x float> %rb, float %s2, i32 2
7994 ///  %rd = insertelement <4 x float> %rc, float %s3, i32 3
7995 ///  starting from the last insertelement or insertvalue instruction.
7996 ///
7997 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>},
7998 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on.
7999 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples.
8000 ///
8001 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type.
8002 ///
8003 /// \return true if it matches.
8004 static bool findBuildAggregate(Instruction *LastInsertInst,
8005                                TargetTransformInfo *TTI,
8006                                SmallVectorImpl<Value *> &BuildVectorOpds,
8007                                SmallVectorImpl<Value *> &InsertElts) {
8008 
8009   assert((isa<InsertElementInst>(LastInsertInst) ||
8010           isa<InsertValueInst>(LastInsertInst)) &&
8011          "Expected insertelement or insertvalue instruction!");
8012 
8013   assert((BuildVectorOpds.empty() && InsertElts.empty()) &&
8014          "Expected empty result vectors!");
8015 
8016   Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst);
8017   if (!AggregateSize)
8018     return false;
8019   BuildVectorOpds.resize(*AggregateSize);
8020   InsertElts.resize(*AggregateSize);
8021 
8022   if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts,
8023                              0)) {
8024     llvm::erase_value(BuildVectorOpds, nullptr);
8025     llvm::erase_value(InsertElts, nullptr);
8026     if (BuildVectorOpds.size() >= 2)
8027       return true;
8028   }
8029 
8030   return false;
8031 }
8032 
8033 static bool PhiTypeSorterFunc(Value *V, Value *V2) {
8034   return V->getType() < V2->getType();
8035 }
8036 
8037 /// Try and get a reduction value from a phi node.
8038 ///
8039 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions
8040 /// if they come from either \p ParentBB or a containing loop latch.
8041 ///
8042 /// \returns A candidate reduction value if possible, or \code nullptr \endcode
8043 /// if not possible.
8044 static Value *getReductionValue(const DominatorTree *DT, PHINode *P,
8045                                 BasicBlock *ParentBB, LoopInfo *LI) {
8046   // There are situations where the reduction value is not dominated by the
8047   // reduction phi. Vectorizing such cases has been reported to cause
8048   // miscompiles. See PR25787.
8049   auto DominatedReduxValue = [&](Value *R) {
8050     return isa<Instruction>(R) &&
8051            DT->dominates(P->getParent(), cast<Instruction>(R)->getParent());
8052   };
8053 
8054   Value *Rdx = nullptr;
8055 
8056   // Return the incoming value if it comes from the same BB as the phi node.
8057   if (P->getIncomingBlock(0) == ParentBB) {
8058     Rdx = P->getIncomingValue(0);
8059   } else if (P->getIncomingBlock(1) == ParentBB) {
8060     Rdx = P->getIncomingValue(1);
8061   }
8062 
8063   if (Rdx && DominatedReduxValue(Rdx))
8064     return Rdx;
8065 
8066   // Otherwise, check whether we have a loop latch to look at.
8067   Loop *BBL = LI->getLoopFor(ParentBB);
8068   if (!BBL)
8069     return nullptr;
8070   BasicBlock *BBLatch = BBL->getLoopLatch();
8071   if (!BBLatch)
8072     return nullptr;
8073 
8074   // There is a loop latch, return the incoming value if it comes from
8075   // that. This reduction pattern occasionally turns up.
8076   if (P->getIncomingBlock(0) == BBLatch) {
8077     Rdx = P->getIncomingValue(0);
8078   } else if (P->getIncomingBlock(1) == BBLatch) {
8079     Rdx = P->getIncomingValue(1);
8080   }
8081 
8082   if (Rdx && DominatedReduxValue(Rdx))
8083     return Rdx;
8084 
8085   return nullptr;
8086 }
8087 
8088 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) {
8089   if (match(I, m_BinOp(m_Value(V0), m_Value(V1))))
8090     return true;
8091   if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1))))
8092     return true;
8093   if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1))))
8094     return true;
8095   if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1))))
8096     return true;
8097   if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1))))
8098     return true;
8099   if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1))))
8100     return true;
8101   if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1))))
8102     return true;
8103   return false;
8104 }
8105 
8106 /// Attempt to reduce a horizontal reduction.
8107 /// If it is legal to match a horizontal reduction feeding the phi node \a P
8108 /// with reduction operators \a Root (or one of its operands) in a basic block
8109 /// \a BB, then check if it can be done. If horizontal reduction is not found
8110 /// and root instruction is a binary operation, vectorization of the operands is
8111 /// attempted.
8112 /// \returns true if a horizontal reduction was matched and reduced or operands
8113 /// of one of the binary instruction were vectorized.
8114 /// \returns false if a horizontal reduction was not matched (or not possible)
8115 /// or no vectorization of any binary operation feeding \a Root instruction was
8116 /// performed.
8117 static bool tryToVectorizeHorReductionOrInstOperands(
8118     PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R,
8119     TargetTransformInfo *TTI,
8120     const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) {
8121   if (!ShouldVectorizeHor)
8122     return false;
8123 
8124   if (!Root)
8125     return false;
8126 
8127   if (Root->getParent() != BB || isa<PHINode>(Root))
8128     return false;
8129   // Start analysis starting from Root instruction. If horizontal reduction is
8130   // found, try to vectorize it. If it is not a horizontal reduction or
8131   // vectorization is not possible or not effective, and currently analyzed
8132   // instruction is a binary operation, try to vectorize the operands, using
8133   // pre-order DFS traversal order. If the operands were not vectorized, repeat
8134   // the same procedure considering each operand as a possible root of the
8135   // horizontal reduction.
8136   // Interrupt the process if the Root instruction itself was vectorized or all
8137   // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized.
8138   // Skip the analysis of CmpInsts.Compiler implements postanalysis of the
8139   // CmpInsts so we can skip extra attempts in
8140   // tryToVectorizeHorReductionOrInstOperands and save compile time.
8141   SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0});
8142   SmallPtrSet<Value *, 8> VisitedInstrs;
8143   bool Res = false;
8144   while (!Stack.empty()) {
8145     Instruction *Inst;
8146     unsigned Level;
8147     std::tie(Inst, Level) = Stack.pop_back_val();
8148     Value *B0, *B1;
8149     bool IsBinop = matchRdxBop(Inst, B0, B1);
8150     bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value()));
8151     if (IsBinop || IsSelect) {
8152       HorizontalReduction HorRdx;
8153       if (HorRdx.matchAssociativeReduction(P, Inst)) {
8154         if (HorRdx.tryToReduce(R, TTI)) {
8155           Res = true;
8156           // Set P to nullptr to avoid re-analysis of phi node in
8157           // matchAssociativeReduction function unless this is the root node.
8158           P = nullptr;
8159           continue;
8160         }
8161       }
8162       if (P && IsBinop) {
8163         Inst = dyn_cast<Instruction>(B0);
8164         if (Inst == P)
8165           Inst = dyn_cast<Instruction>(B1);
8166         if (!Inst) {
8167           // Set P to nullptr to avoid re-analysis of phi node in
8168           // matchAssociativeReduction function unless this is the root node.
8169           P = nullptr;
8170           continue;
8171         }
8172       }
8173     }
8174     // Set P to nullptr to avoid re-analysis of phi node in
8175     // matchAssociativeReduction function unless this is the root node.
8176     P = nullptr;
8177     // Do not try to vectorize CmpInst operands, this is done separately.
8178     if (!isa<CmpInst>(Inst) && Vectorize(Inst, R)) {
8179       Res = true;
8180       continue;
8181     }
8182 
8183     // Try to vectorize operands.
8184     // Continue analysis for the instruction from the same basic block only to
8185     // save compile time.
8186     if (++Level < RecursionMaxDepth)
8187       for (auto *Op : Inst->operand_values())
8188         if (VisitedInstrs.insert(Op).second)
8189           if (auto *I = dyn_cast<Instruction>(Op))
8190             // Do not try to vectorize CmpInst operands,  this is done
8191             // separately.
8192             if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) &&
8193                 I->getParent() == BB)
8194               Stack.emplace_back(I, Level);
8195   }
8196   return Res;
8197 }
8198 
8199 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V,
8200                                                  BasicBlock *BB, BoUpSLP &R,
8201                                                  TargetTransformInfo *TTI) {
8202   auto *I = dyn_cast_or_null<Instruction>(V);
8203   if (!I)
8204     return false;
8205 
8206   if (!isa<BinaryOperator>(I))
8207     P = nullptr;
8208   // Try to match and vectorize a horizontal reduction.
8209   auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool {
8210     return tryToVectorize(I, R);
8211   };
8212   return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI,
8213                                                   ExtraVectorization);
8214 }
8215 
8216 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI,
8217                                                  BasicBlock *BB, BoUpSLP &R) {
8218   const DataLayout &DL = BB->getModule()->getDataLayout();
8219   if (!R.canMapToVector(IVI->getType(), DL))
8220     return false;
8221 
8222   SmallVector<Value *, 16> BuildVectorOpds;
8223   SmallVector<Value *, 16> BuildVectorInsts;
8224   if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts))
8225     return false;
8226 
8227   LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n");
8228   // Aggregate value is unlikely to be processed in vector register, we need to
8229   // extract scalars into scalar registers, so NeedExtraction is set true.
8230   return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false);
8231 }
8232 
8233 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI,
8234                                                    BasicBlock *BB, BoUpSLP &R) {
8235   SmallVector<Value *, 16> BuildVectorInsts;
8236   SmallVector<Value *, 16> BuildVectorOpds;
8237   SmallVector<int> Mask;
8238   if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) ||
8239       (llvm::all_of(BuildVectorOpds,
8240                     [](Value *V) { return isa<ExtractElementInst>(V); }) &&
8241        isShuffle(BuildVectorOpds, Mask)))
8242     return false;
8243 
8244   LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n");
8245   return tryToVectorizeList(BuildVectorInsts, R, /*AllowReorder=*/false);
8246 }
8247 
8248 bool SLPVectorizerPass::vectorizeSimpleInstructions(
8249     SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R,
8250     bool AtTerminator) {
8251   bool OpsChanged = false;
8252   SmallVector<Instruction *, 4> PostponedCmps;
8253   for (auto *I : reverse(Instructions)) {
8254     if (R.isDeleted(I))
8255       continue;
8256     if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I))
8257       OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R);
8258     else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I))
8259       OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R);
8260     else if (isa<CmpInst>(I))
8261       PostponedCmps.push_back(I);
8262   }
8263   if (AtTerminator) {
8264     // Try to find reductions first.
8265     for (Instruction *I : PostponedCmps) {
8266       if (R.isDeleted(I))
8267         continue;
8268       for (Value *Op : I->operands())
8269         OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI);
8270     }
8271     // Try to vectorize operands as vector bundles.
8272     for (Instruction *I : PostponedCmps) {
8273       if (R.isDeleted(I))
8274         continue;
8275       OpsChanged |= tryToVectorize(I, R);
8276     }
8277     Instructions.clear();
8278   } else {
8279     // Insert in reverse order since the PostponedCmps vector was filled in
8280     // reverse order.
8281     Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend());
8282   }
8283   return OpsChanged;
8284 }
8285 
8286 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
8287   bool Changed = false;
8288   SmallVector<Value *, 4> Incoming;
8289   SmallPtrSet<Value *, 16> VisitedInstrs;
8290 
8291   bool HaveVectorizedPhiNodes = true;
8292   while (HaveVectorizedPhiNodes) {
8293     HaveVectorizedPhiNodes = false;
8294 
8295     // Collect the incoming values from the PHIs.
8296     Incoming.clear();
8297     for (Instruction &I : *BB) {
8298       PHINode *P = dyn_cast<PHINode>(&I);
8299       if (!P)
8300         break;
8301 
8302       if (!VisitedInstrs.count(P) && !R.isDeleted(P))
8303         Incoming.push_back(P);
8304     }
8305 
8306     // Sort by type.
8307     llvm::stable_sort(Incoming, PhiTypeSorterFunc);
8308 
8309     // Try to vectorize elements base on their type.
8310     for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
8311                                            E = Incoming.end();
8312          IncIt != E;) {
8313 
8314       // Look for the next elements with the same type.
8315       SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
8316       while (SameTypeIt != E &&
8317              (*SameTypeIt)->getType() == (*IncIt)->getType()) {
8318         VisitedInstrs.insert(*SameTypeIt);
8319         ++SameTypeIt;
8320       }
8321 
8322       // Try to vectorize them.
8323       unsigned NumElts = (SameTypeIt - IncIt);
8324       LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs ("
8325                         << NumElts << ")\n");
8326       // The order in which the phi nodes appear in the program does not matter.
8327       // So allow tryToVectorizeList to reorder them if it is beneficial. This
8328       // is done when there are exactly two elements since tryToVectorizeList
8329       // asserts that there are only two values when AllowReorder is true.
8330       if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R,
8331                                             /*AllowReorder=*/true)) {
8332         // Success start over because instructions might have been changed.
8333         HaveVectorizedPhiNodes = true;
8334         Changed = true;
8335         break;
8336       }
8337 
8338       // Start over at the next instruction of a different type (or the end).
8339       IncIt = SameTypeIt;
8340     }
8341   }
8342 
8343   VisitedInstrs.clear();
8344 
8345   SmallVector<Instruction *, 8> PostProcessInstructions;
8346   SmallDenseSet<Instruction *, 4> KeyNodes;
8347   for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
8348     // Skip instructions with scalable type. The num of elements is unknown at
8349     // compile-time for scalable type.
8350     if (isa<ScalableVectorType>(it->getType()))
8351       continue;
8352 
8353     // Skip instructions marked for the deletion.
8354     if (R.isDeleted(&*it))
8355       continue;
8356     // We may go through BB multiple times so skip the one we have checked.
8357     if (!VisitedInstrs.insert(&*it).second) {
8358       if (it->use_empty() && KeyNodes.contains(&*it) &&
8359           vectorizeSimpleInstructions(PostProcessInstructions, BB, R,
8360                                       it->isTerminator())) {
8361         // We would like to start over since some instructions are deleted
8362         // and the iterator may become invalid value.
8363         Changed = true;
8364         it = BB->begin();
8365         e = BB->end();
8366       }
8367       continue;
8368     }
8369 
8370     if (isa<DbgInfoIntrinsic>(it))
8371       continue;
8372 
8373     // Try to vectorize reductions that use PHINodes.
8374     if (PHINode *P = dyn_cast<PHINode>(it)) {
8375       // Check that the PHI is a reduction PHI.
8376       if (P->getNumIncomingValues() == 2) {
8377         // Try to match and vectorize a horizontal reduction.
8378         if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R,
8379                                      TTI)) {
8380           Changed = true;
8381           it = BB->begin();
8382           e = BB->end();
8383           continue;
8384         }
8385       }
8386       // Try to vectorize the incoming values of the PHI, to catch reductions
8387       // that feed into PHIs.
8388       for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) {
8389         // Skip if the incoming block is the current BB for now. Also, bypass
8390         // unreachable IR for efficiency and to avoid crashing.
8391         // TODO: Collect the skipped incoming values and try to vectorize them
8392         // after processing BB.
8393         if (BB == P->getIncomingBlock(I) ||
8394             !DT->isReachableFromEntry(P->getIncomingBlock(I)))
8395           continue;
8396 
8397         Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I),
8398                                             P->getIncomingBlock(I), R, TTI);
8399       }
8400       continue;
8401     }
8402 
8403     // Ran into an instruction without users, like terminator, or function call
8404     // with ignored return value, store. Ignore unused instructions (basing on
8405     // instruction type, except for CallInst and InvokeInst).
8406     if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) ||
8407                             isa<InvokeInst>(it))) {
8408       KeyNodes.insert(&*it);
8409       bool OpsChanged = false;
8410       if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) {
8411         for (auto *V : it->operand_values()) {
8412           // Try to match and vectorize a horizontal reduction.
8413           OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI);
8414         }
8415       }
8416       // Start vectorization of post-process list of instructions from the
8417       // top-tree instructions to try to vectorize as many instructions as
8418       // possible.
8419       OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R,
8420                                                 it->isTerminator());
8421       if (OpsChanged) {
8422         // We would like to start over since some instructions are deleted
8423         // and the iterator may become invalid value.
8424         Changed = true;
8425         it = BB->begin();
8426         e = BB->end();
8427         continue;
8428       }
8429     }
8430 
8431     if (isa<InsertElementInst>(it) || isa<CmpInst>(it) ||
8432         isa<InsertValueInst>(it))
8433       PostProcessInstructions.push_back(&*it);
8434   }
8435 
8436   return Changed;
8437 }
8438 
8439 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) {
8440   auto Changed = false;
8441   for (auto &Entry : GEPs) {
8442     // If the getelementptr list has fewer than two elements, there's nothing
8443     // to do.
8444     if (Entry.second.size() < 2)
8445       continue;
8446 
8447     LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length "
8448                       << Entry.second.size() << ".\n");
8449 
8450     // Process the GEP list in chunks suitable for the target's supported
8451     // vector size. If a vector register can't hold 1 element, we are done. We
8452     // are trying to vectorize the index computations, so the maximum number of
8453     // elements is based on the size of the index expression, rather than the
8454     // size of the GEP itself (the target's pointer size).
8455     unsigned MaxVecRegSize = R.getMaxVecRegSize();
8456     unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin());
8457     if (MaxVecRegSize < EltSize)
8458       continue;
8459 
8460     unsigned MaxElts = MaxVecRegSize / EltSize;
8461     for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) {
8462       auto Len = std::min<unsigned>(BE - BI, MaxElts);
8463       ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len);
8464 
8465       // Initialize a set a candidate getelementptrs. Note that we use a
8466       // SetVector here to preserve program order. If the index computations
8467       // are vectorizable and begin with loads, we want to minimize the chance
8468       // of having to reorder them later.
8469       SetVector<Value *> Candidates(GEPList.begin(), GEPList.end());
8470 
8471       // Some of the candidates may have already been vectorized after we
8472       // initially collected them. If so, they are marked as deleted, so remove
8473       // them from the set of candidates.
8474       Candidates.remove_if(
8475           [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); });
8476 
8477       // Remove from the set of candidates all pairs of getelementptrs with
8478       // constant differences. Such getelementptrs are likely not good
8479       // candidates for vectorization in a bottom-up phase since one can be
8480       // computed from the other. We also ensure all candidate getelementptr
8481       // indices are unique.
8482       for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) {
8483         auto *GEPI = GEPList[I];
8484         if (!Candidates.count(GEPI))
8485           continue;
8486         auto *SCEVI = SE->getSCEV(GEPList[I]);
8487         for (int J = I + 1; J < E && Candidates.size() > 1; ++J) {
8488           auto *GEPJ = GEPList[J];
8489           auto *SCEVJ = SE->getSCEV(GEPList[J]);
8490           if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) {
8491             Candidates.remove(GEPI);
8492             Candidates.remove(GEPJ);
8493           } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) {
8494             Candidates.remove(GEPJ);
8495           }
8496         }
8497       }
8498 
8499       // We break out of the above computation as soon as we know there are
8500       // fewer than two candidates remaining.
8501       if (Candidates.size() < 2)
8502         continue;
8503 
8504       // Add the single, non-constant index of each candidate to the bundle. We
8505       // ensured the indices met these constraints when we originally collected
8506       // the getelementptrs.
8507       SmallVector<Value *, 16> Bundle(Candidates.size());
8508       auto BundleIndex = 0u;
8509       for (auto *V : Candidates) {
8510         auto *GEP = cast<GetElementPtrInst>(V);
8511         auto *GEPIdx = GEP->idx_begin()->get();
8512         assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx));
8513         Bundle[BundleIndex++] = GEPIdx;
8514       }
8515 
8516       // Try and vectorize the indices. We are currently only interested in
8517       // gather-like cases of the form:
8518       //
8519       // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ...
8520       //
8521       // where the loads of "a", the loads of "b", and the subtractions can be
8522       // performed in parallel. It's likely that detecting this pattern in a
8523       // bottom-up phase will be simpler and less costly than building a
8524       // full-blown top-down phase beginning at the consecutive loads.
8525       Changed |= tryToVectorizeList(Bundle, R);
8526     }
8527   }
8528   return Changed;
8529 }
8530 
8531 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) {
8532   bool Changed = false;
8533   // Attempt to sort and vectorize each of the store-groups.
8534   for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e;
8535        ++it) {
8536     if (it->second.size() < 2)
8537       continue;
8538 
8539     LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
8540                       << it->second.size() << ".\n");
8541 
8542     Changed |= vectorizeStores(it->second, R);
8543   }
8544   return Changed;
8545 }
8546 
8547 char SLPVectorizer::ID = 0;
8548 
8549 static const char lv_name[] = "SLP Vectorizer";
8550 
8551 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
8552 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
8553 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
8554 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
8555 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
8556 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
8557 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
8558 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
8559 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
8560 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
8561 
8562 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); }
8563