1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SetOperations.h" 26 #include "llvm/ADT/SetVector.h" 27 #include "llvm/ADT/SmallBitVector.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/ADT/SmallSet.h" 30 #include "llvm/ADT/SmallString.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/ADT/iterator.h" 33 #include "llvm/ADT/iterator_range.h" 34 #include "llvm/Analysis/AliasAnalysis.h" 35 #include "llvm/Analysis/AssumptionCache.h" 36 #include "llvm/Analysis/CodeMetrics.h" 37 #include "llvm/Analysis/DemandedBits.h" 38 #include "llvm/Analysis/GlobalsModRef.h" 39 #include "llvm/Analysis/IVDescriptors.h" 40 #include "llvm/Analysis/LoopAccessAnalysis.h" 41 #include "llvm/Analysis/LoopInfo.h" 42 #include "llvm/Analysis/MemoryLocation.h" 43 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 44 #include "llvm/Analysis/ScalarEvolution.h" 45 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 46 #include "llvm/Analysis/TargetLibraryInfo.h" 47 #include "llvm/Analysis/TargetTransformInfo.h" 48 #include "llvm/Analysis/ValueTracking.h" 49 #include "llvm/Analysis/VectorUtils.h" 50 #include "llvm/IR/Attributes.h" 51 #include "llvm/IR/BasicBlock.h" 52 #include "llvm/IR/Constant.h" 53 #include "llvm/IR/Constants.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/DebugLoc.h" 56 #include "llvm/IR/DerivedTypes.h" 57 #include "llvm/IR/Dominators.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/IRBuilder.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/NoFolder.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PatternMatch.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/IR/Verifier.h" 75 #include "llvm/InitializePasses.h" 76 #include "llvm/Pass.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/Compiler.h" 80 #include "llvm/Support/DOTGraphTraits.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/GraphWriter.h" 84 #include "llvm/Support/InstructionCost.h" 85 #include "llvm/Support/KnownBits.h" 86 #include "llvm/Support/MathExtras.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 89 #include "llvm/Transforms/Utils/LoopUtils.h" 90 #include "llvm/Transforms/Vectorize.h" 91 #include <algorithm> 92 #include <cassert> 93 #include <cstdint> 94 #include <iterator> 95 #include <memory> 96 #include <set> 97 #include <string> 98 #include <tuple> 99 #include <utility> 100 #include <vector> 101 102 using namespace llvm; 103 using namespace llvm::PatternMatch; 104 using namespace slpvectorizer; 105 106 #define SV_NAME "slp-vectorizer" 107 #define DEBUG_TYPE "SLP" 108 109 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 110 111 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 112 cl::desc("Run the SLP vectorization passes")); 113 114 static cl::opt<int> 115 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 116 cl::desc("Only vectorize if you gain more than this " 117 "number ")); 118 119 static cl::opt<bool> 120 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 121 cl::desc("Attempt to vectorize horizontal reductions")); 122 123 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 124 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 125 cl::desc( 126 "Attempt to vectorize horizontal reductions feeding into a store")); 127 128 static cl::opt<int> 129 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 130 cl::desc("Attempt to vectorize for this register size in bits")); 131 132 static cl::opt<unsigned> 133 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 134 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 135 136 static cl::opt<int> 137 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 138 cl::desc("Maximum depth of the lookup for consecutive stores.")); 139 140 /// Limits the size of scheduling regions in a block. 141 /// It avoid long compile times for _very_ large blocks where vector 142 /// instructions are spread over a wide range. 143 /// This limit is way higher than needed by real-world functions. 144 static cl::opt<int> 145 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 146 cl::desc("Limit the size of the SLP scheduling region per block")); 147 148 static cl::opt<int> MinVectorRegSizeOption( 149 "slp-min-reg-size", cl::init(128), cl::Hidden, 150 cl::desc("Attempt to vectorize for this register size in bits")); 151 152 static cl::opt<unsigned> RecursionMaxDepth( 153 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 154 cl::desc("Limit the recursion depth when building a vectorizable tree")); 155 156 static cl::opt<unsigned> MinTreeSize( 157 "slp-min-tree-size", cl::init(3), cl::Hidden, 158 cl::desc("Only vectorize small trees if they are fully vectorizable")); 159 160 // The maximum depth that the look-ahead score heuristic will explore. 161 // The higher this value, the higher the compilation time overhead. 162 static cl::opt<int> LookAheadMaxDepth( 163 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 164 cl::desc("The maximum look-ahead depth for operand reordering scores")); 165 166 // The Look-ahead heuristic goes through the users of the bundle to calculate 167 // the users cost in getExternalUsesCost(). To avoid compilation time increase 168 // we limit the number of users visited to this value. 169 static cl::opt<unsigned> LookAheadUsersBudget( 170 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, 171 cl::desc("The maximum number of users to visit while visiting the " 172 "predecessors. This prevents compilation time increase.")); 173 174 static cl::opt<bool> 175 ViewSLPTree("view-slp-tree", cl::Hidden, 176 cl::desc("Display the SLP trees with Graphviz")); 177 178 // Limit the number of alias checks. The limit is chosen so that 179 // it has no negative effect on the llvm benchmarks. 180 static const unsigned AliasedCheckLimit = 10; 181 182 // Another limit for the alias checks: The maximum distance between load/store 183 // instructions where alias checks are done. 184 // This limit is useful for very large basic blocks. 185 static const unsigned MaxMemDepDistance = 160; 186 187 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 188 /// regions to be handled. 189 static const int MinScheduleRegionSize = 16; 190 191 /// Predicate for the element types that the SLP vectorizer supports. 192 /// 193 /// The most important thing to filter here are types which are invalid in LLVM 194 /// vectors. We also filter target specific types which have absolutely no 195 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 196 /// avoids spending time checking the cost model and realizing that they will 197 /// be inevitably scalarized. 198 static bool isValidElementType(Type *Ty) { 199 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 200 !Ty->isPPC_FP128Ty(); 201 } 202 203 /// \returns true if all of the instructions in \p VL are in the same block or 204 /// false otherwise. 205 static bool allSameBlock(ArrayRef<Value *> VL) { 206 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 207 if (!I0) 208 return false; 209 BasicBlock *BB = I0->getParent(); 210 for (int I = 1, E = VL.size(); I < E; I++) { 211 auto *II = dyn_cast<Instruction>(VL[I]); 212 if (!II) 213 return false; 214 215 if (BB != II->getParent()) 216 return false; 217 } 218 return true; 219 } 220 221 /// \returns True if the value is a constant (but not globals/constant 222 /// expressions). 223 static bool isConstant(Value *V) { 224 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 225 } 226 227 /// \returns True if all of the values in \p VL are constants (but not 228 /// globals/constant expressions). 229 static bool allConstant(ArrayRef<Value *> VL) { 230 // Constant expressions and globals can't be vectorized like normal integer/FP 231 // constants. 232 return all_of(VL, isConstant); 233 } 234 235 /// \returns True if all of the values in \p VL are identical. 236 static bool isSplat(ArrayRef<Value *> VL) { 237 for (unsigned i = 1, e = VL.size(); i < e; ++i) 238 if (VL[i] != VL[0]) 239 return false; 240 return true; 241 } 242 243 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 244 static bool isCommutative(Instruction *I) { 245 if (auto *Cmp = dyn_cast<CmpInst>(I)) 246 return Cmp->isCommutative(); 247 if (auto *BO = dyn_cast<BinaryOperator>(I)) 248 return BO->isCommutative(); 249 // TODO: This should check for generic Instruction::isCommutative(), but 250 // we need to confirm that the caller code correctly handles Intrinsics 251 // for example (does not have 2 operands). 252 return false; 253 } 254 255 /// Checks if the vector of instructions can be represented as a shuffle, like: 256 /// %x0 = extractelement <4 x i8> %x, i32 0 257 /// %x3 = extractelement <4 x i8> %x, i32 3 258 /// %y1 = extractelement <4 x i8> %y, i32 1 259 /// %y2 = extractelement <4 x i8> %y, i32 2 260 /// %x0x0 = mul i8 %x0, %x0 261 /// %x3x3 = mul i8 %x3, %x3 262 /// %y1y1 = mul i8 %y1, %y1 263 /// %y2y2 = mul i8 %y2, %y2 264 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 265 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 266 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 267 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 268 /// ret <4 x i8> %ins4 269 /// can be transformed into: 270 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 271 /// i32 6> 272 /// %2 = mul <4 x i8> %1, %1 273 /// ret <4 x i8> %2 274 /// We convert this initially to something like: 275 /// %x0 = extractelement <4 x i8> %x, i32 0 276 /// %x3 = extractelement <4 x i8> %x, i32 3 277 /// %y1 = extractelement <4 x i8> %y, i32 1 278 /// %y2 = extractelement <4 x i8> %y, i32 2 279 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 280 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 281 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 282 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 283 /// %5 = mul <4 x i8> %4, %4 284 /// %6 = extractelement <4 x i8> %5, i32 0 285 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 286 /// %7 = extractelement <4 x i8> %5, i32 1 287 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 288 /// %8 = extractelement <4 x i8> %5, i32 2 289 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 290 /// %9 = extractelement <4 x i8> %5, i32 3 291 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 292 /// ret <4 x i8> %ins4 293 /// InstCombiner transforms this into a shuffle and vector mul 294 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 295 /// TODO: Can we split off and reuse the shuffle mask detection from 296 /// TargetTransformInfo::getInstructionThroughput? 297 static Optional<TargetTransformInfo::ShuffleKind> 298 isShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 299 auto *EI0 = cast<ExtractElementInst>(VL[0]); 300 unsigned Size = 301 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 302 Value *Vec1 = nullptr; 303 Value *Vec2 = nullptr; 304 enum ShuffleMode { Unknown, Select, Permute }; 305 ShuffleMode CommonShuffleMode = Unknown; 306 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 307 auto *EI = cast<ExtractElementInst>(VL[I]); 308 auto *Vec = EI->getVectorOperand(); 309 // All vector operands must have the same number of vector elements. 310 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 311 return None; 312 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 313 if (!Idx) 314 return None; 315 // Undefined behavior if Idx is negative or >= Size. 316 if (Idx->getValue().uge(Size)) { 317 Mask.push_back(UndefMaskElem); 318 continue; 319 } 320 unsigned IntIdx = Idx->getValue().getZExtValue(); 321 Mask.push_back(IntIdx); 322 // We can extractelement from undef or poison vector. 323 if (isa<UndefValue>(Vec)) 324 continue; 325 // For correct shuffling we have to have at most 2 different vector operands 326 // in all extractelement instructions. 327 if (!Vec1 || Vec1 == Vec) 328 Vec1 = Vec; 329 else if (!Vec2 || Vec2 == Vec) 330 Vec2 = Vec; 331 else 332 return None; 333 if (CommonShuffleMode == Permute) 334 continue; 335 // If the extract index is not the same as the operation number, it is a 336 // permutation. 337 if (IntIdx != I) { 338 CommonShuffleMode = Permute; 339 continue; 340 } 341 CommonShuffleMode = Select; 342 } 343 // If we're not crossing lanes in different vectors, consider it as blending. 344 if (CommonShuffleMode == Select && Vec2) 345 return TargetTransformInfo::SK_Select; 346 // If Vec2 was never used, we have a permutation of a single vector, otherwise 347 // we have permutation of 2 vectors. 348 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 349 : TargetTransformInfo::SK_PermuteSingleSrc; 350 } 351 352 namespace { 353 354 /// Main data required for vectorization of instructions. 355 struct InstructionsState { 356 /// The very first instruction in the list with the main opcode. 357 Value *OpValue = nullptr; 358 359 /// The main/alternate instruction. 360 Instruction *MainOp = nullptr; 361 Instruction *AltOp = nullptr; 362 363 /// The main/alternate opcodes for the list of instructions. 364 unsigned getOpcode() const { 365 return MainOp ? MainOp->getOpcode() : 0; 366 } 367 368 unsigned getAltOpcode() const { 369 return AltOp ? AltOp->getOpcode() : 0; 370 } 371 372 /// Some of the instructions in the list have alternate opcodes. 373 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 374 375 bool isOpcodeOrAlt(Instruction *I) const { 376 unsigned CheckedOpcode = I->getOpcode(); 377 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 378 } 379 380 InstructionsState() = delete; 381 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 382 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 383 }; 384 385 } // end anonymous namespace 386 387 /// Chooses the correct key for scheduling data. If \p Op has the same (or 388 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 389 /// OpValue. 390 static Value *isOneOf(const InstructionsState &S, Value *Op) { 391 auto *I = dyn_cast<Instruction>(Op); 392 if (I && S.isOpcodeOrAlt(I)) 393 return Op; 394 return S.OpValue; 395 } 396 397 /// \returns true if \p Opcode is allowed as part of of the main/alternate 398 /// instruction for SLP vectorization. 399 /// 400 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 401 /// "shuffled out" lane would result in division by zero. 402 static bool isValidForAlternation(unsigned Opcode) { 403 if (Instruction::isIntDivRem(Opcode)) 404 return false; 405 406 return true; 407 } 408 409 /// \returns analysis of the Instructions in \p VL described in 410 /// InstructionsState, the Opcode that we suppose the whole list 411 /// could be vectorized even if its structure is diverse. 412 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 413 unsigned BaseIndex = 0) { 414 // Make sure these are all Instructions. 415 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 416 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 417 418 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 419 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 420 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 421 unsigned AltOpcode = Opcode; 422 unsigned AltIndex = BaseIndex; 423 424 // Check for one alternate opcode from another BinaryOperator. 425 // TODO - generalize to support all operators (types, calls etc.). 426 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 427 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 428 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 429 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 430 continue; 431 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 432 isValidForAlternation(Opcode)) { 433 AltOpcode = InstOpcode; 434 AltIndex = Cnt; 435 continue; 436 } 437 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 438 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 439 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 440 if (Ty0 == Ty1) { 441 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 442 continue; 443 if (Opcode == AltOpcode) { 444 assert(isValidForAlternation(Opcode) && 445 isValidForAlternation(InstOpcode) && 446 "Cast isn't safe for alternation, logic needs to be updated!"); 447 AltOpcode = InstOpcode; 448 AltIndex = Cnt; 449 continue; 450 } 451 } 452 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 453 continue; 454 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 455 } 456 457 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 458 cast<Instruction>(VL[AltIndex])); 459 } 460 461 /// \returns true if all of the values in \p VL have the same type or false 462 /// otherwise. 463 static bool allSameType(ArrayRef<Value *> VL) { 464 Type *Ty = VL[0]->getType(); 465 for (int i = 1, e = VL.size(); i < e; i++) 466 if (VL[i]->getType() != Ty) 467 return false; 468 469 return true; 470 } 471 472 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 473 static Optional<unsigned> getExtractIndex(Instruction *E) { 474 unsigned Opcode = E->getOpcode(); 475 assert((Opcode == Instruction::ExtractElement || 476 Opcode == Instruction::ExtractValue) && 477 "Expected extractelement or extractvalue instruction."); 478 if (Opcode == Instruction::ExtractElement) { 479 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 480 if (!CI) 481 return None; 482 return CI->getZExtValue(); 483 } 484 ExtractValueInst *EI = cast<ExtractValueInst>(E); 485 if (EI->getNumIndices() != 1) 486 return None; 487 return *EI->idx_begin(); 488 } 489 490 /// \returns True if in-tree use also needs extract. This refers to 491 /// possible scalar operand in vectorized instruction. 492 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 493 TargetLibraryInfo *TLI) { 494 unsigned Opcode = UserInst->getOpcode(); 495 switch (Opcode) { 496 case Instruction::Load: { 497 LoadInst *LI = cast<LoadInst>(UserInst); 498 return (LI->getPointerOperand() == Scalar); 499 } 500 case Instruction::Store: { 501 StoreInst *SI = cast<StoreInst>(UserInst); 502 return (SI->getPointerOperand() == Scalar); 503 } 504 case Instruction::Call: { 505 CallInst *CI = cast<CallInst>(UserInst); 506 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 507 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 508 if (hasVectorInstrinsicScalarOpd(ID, i)) 509 return (CI->getArgOperand(i) == Scalar); 510 } 511 LLVM_FALLTHROUGH; 512 } 513 default: 514 return false; 515 } 516 } 517 518 /// \returns the AA location that is being access by the instruction. 519 static MemoryLocation getLocation(Instruction *I, AAResults *AA) { 520 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 521 return MemoryLocation::get(SI); 522 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 523 return MemoryLocation::get(LI); 524 return MemoryLocation(); 525 } 526 527 /// \returns True if the instruction is not a volatile or atomic load/store. 528 static bool isSimple(Instruction *I) { 529 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 530 return LI->isSimple(); 531 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 532 return SI->isSimple(); 533 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 534 return !MI->isVolatile(); 535 return true; 536 } 537 538 namespace llvm { 539 540 static void inversePermutation(ArrayRef<unsigned> Indices, 541 SmallVectorImpl<int> &Mask) { 542 Mask.clear(); 543 const unsigned E = Indices.size(); 544 Mask.resize(E, E + 1); 545 for (unsigned I = 0; I < E; ++I) 546 Mask[Indices[I]] = I; 547 } 548 549 /// \returns inserting index of InsertElement or InsertValue instruction, 550 /// using Offset as base offset for index. 551 static Optional<int> getInsertIndex(Value *InsertInst, unsigned Offset) { 552 int Index = Offset; 553 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 554 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 555 auto *VT = cast<FixedVectorType>(IE->getType()); 556 if (CI->getValue().uge(VT->getNumElements())) 557 return UndefMaskElem; 558 Index *= VT->getNumElements(); 559 Index += CI->getZExtValue(); 560 return Index; 561 } 562 if (isa<UndefValue>(IE->getOperand(2))) 563 return UndefMaskElem; 564 return None; 565 } 566 567 auto *IV = cast<InsertValueInst>(InsertInst); 568 Type *CurrentType = IV->getType(); 569 for (unsigned I : IV->indices()) { 570 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 571 Index *= ST->getNumElements(); 572 CurrentType = ST->getElementType(I); 573 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 574 Index *= AT->getNumElements(); 575 CurrentType = AT->getElementType(); 576 } else { 577 return None; 578 } 579 Index += I; 580 } 581 return Index; 582 } 583 584 namespace slpvectorizer { 585 586 /// Bottom Up SLP Vectorizer. 587 class BoUpSLP { 588 struct TreeEntry; 589 struct ScheduleData; 590 591 public: 592 using ValueList = SmallVector<Value *, 8>; 593 using InstrList = SmallVector<Instruction *, 16>; 594 using ValueSet = SmallPtrSet<Value *, 16>; 595 using StoreList = SmallVector<StoreInst *, 8>; 596 using ExtraValueToDebugLocsMap = 597 MapVector<Value *, SmallVector<Instruction *, 2>>; 598 using OrdersType = SmallVector<unsigned, 4>; 599 600 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 601 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 602 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 603 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 604 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 605 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 606 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 607 // Use the vector register size specified by the target unless overridden 608 // by a command-line option. 609 // TODO: It would be better to limit the vectorization factor based on 610 // data type rather than just register size. For example, x86 AVX has 611 // 256-bit registers, but it does not support integer operations 612 // at that width (that requires AVX2). 613 if (MaxVectorRegSizeOption.getNumOccurrences()) 614 MaxVecRegSize = MaxVectorRegSizeOption; 615 else 616 MaxVecRegSize = 617 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 618 .getFixedSize(); 619 620 if (MinVectorRegSizeOption.getNumOccurrences()) 621 MinVecRegSize = MinVectorRegSizeOption; 622 else 623 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 624 } 625 626 /// Vectorize the tree that starts with the elements in \p VL. 627 /// Returns the vectorized root. 628 Value *vectorizeTree(); 629 630 /// Vectorize the tree but with the list of externally used values \p 631 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 632 /// generated extractvalue instructions. 633 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 634 635 /// \returns the cost incurred by unwanted spills and fills, caused by 636 /// holding live values over call sites. 637 InstructionCost getSpillCost() const; 638 639 /// \returns the vectorization cost of the subtree that starts at \p VL. 640 /// A negative number means that this is profitable. 641 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 642 643 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 644 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 645 void buildTree(ArrayRef<Value *> Roots, 646 ArrayRef<Value *> UserIgnoreLst = None); 647 648 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 649 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 650 /// into account (and updating it, if required) list of externally used 651 /// values stored in \p ExternallyUsedValues. 652 void buildTree(ArrayRef<Value *> Roots, 653 ExtraValueToDebugLocsMap &ExternallyUsedValues, 654 ArrayRef<Value *> UserIgnoreLst = None); 655 656 /// Clear the internal data structures that are created by 'buildTree'. 657 void deleteTree() { 658 VectorizableTree.clear(); 659 ScalarToTreeEntry.clear(); 660 MustGather.clear(); 661 ExternalUses.clear(); 662 NumOpsWantToKeepOrder.clear(); 663 NumOpsWantToKeepOriginalOrder = 0; 664 for (auto &Iter : BlocksSchedules) { 665 BlockScheduling *BS = Iter.second.get(); 666 BS->clear(); 667 } 668 MinBWs.clear(); 669 InstrElementSize.clear(); 670 } 671 672 unsigned getTreeSize() const { return VectorizableTree.size(); } 673 674 /// Perform LICM and CSE on the newly generated gather sequences. 675 void optimizeGatherSequence(); 676 677 /// \returns The best order of instructions for vectorization. 678 Optional<ArrayRef<unsigned>> bestOrder() const { 679 assert(llvm::all_of( 680 NumOpsWantToKeepOrder, 681 [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { 682 return D.getFirst().size() == 683 VectorizableTree[0]->Scalars.size(); 684 }) && 685 "All orders must have the same size as number of instructions in " 686 "tree node."); 687 auto I = std::max_element( 688 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 689 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 690 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 691 return D1.second < D2.second; 692 }); 693 if (I == NumOpsWantToKeepOrder.end() || 694 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 695 return None; 696 697 return makeArrayRef(I->getFirst()); 698 } 699 700 /// Builds the correct order for root instructions. 701 /// If some leaves have the same instructions to be vectorized, we may 702 /// incorrectly evaluate the best order for the root node (it is built for the 703 /// vector of instructions without repeated instructions and, thus, has less 704 /// elements than the root node). This function builds the correct order for 705 /// the root node. 706 /// For example, if the root node is \<a+b, a+c, a+d, f+e\>, then the leaves 707 /// are \<a, a, a, f\> and \<b, c, d, e\>. When we try to vectorize the first 708 /// leaf, it will be shrink to \<a, b\>. If instructions in this leaf should 709 /// be reordered, the best order will be \<1, 0\>. We need to extend this 710 /// order for the root node. For the root node this order should look like 711 /// \<3, 0, 1, 2\>. This function extends the order for the reused 712 /// instructions. 713 void findRootOrder(OrdersType &Order) { 714 // If the leaf has the same number of instructions to vectorize as the root 715 // - order must be set already. 716 unsigned RootSize = VectorizableTree[0]->Scalars.size(); 717 if (Order.size() == RootSize) 718 return; 719 SmallVector<unsigned, 4> RealOrder(Order.size()); 720 std::swap(Order, RealOrder); 721 SmallVector<int, 4> Mask; 722 inversePermutation(RealOrder, Mask); 723 Order.assign(Mask.begin(), Mask.end()); 724 // The leaf has less number of instructions - need to find the true order of 725 // the root. 726 // Scan the nodes starting from the leaf back to the root. 727 const TreeEntry *PNode = VectorizableTree.back().get(); 728 SmallVector<const TreeEntry *, 4> Nodes(1, PNode); 729 SmallPtrSet<const TreeEntry *, 4> Visited; 730 while (!Nodes.empty() && Order.size() != RootSize) { 731 const TreeEntry *PNode = Nodes.pop_back_val(); 732 if (!Visited.insert(PNode).second) 733 continue; 734 const TreeEntry &Node = *PNode; 735 for (const EdgeInfo &EI : Node.UserTreeIndices) 736 if (EI.UserTE) 737 Nodes.push_back(EI.UserTE); 738 if (Node.ReuseShuffleIndices.empty()) 739 continue; 740 // Build the order for the parent node. 741 OrdersType NewOrder(Node.ReuseShuffleIndices.size(), RootSize); 742 SmallVector<unsigned, 4> OrderCounter(Order.size(), 0); 743 // The algorithm of the order extension is: 744 // 1. Calculate the number of the same instructions for the order. 745 // 2. Calculate the index of the new order: total number of instructions 746 // with order less than the order of the current instruction + reuse 747 // number of the current instruction. 748 // 3. The new order is just the index of the instruction in the original 749 // vector of the instructions. 750 for (unsigned I : Node.ReuseShuffleIndices) 751 ++OrderCounter[Order[I]]; 752 SmallVector<unsigned, 4> CurrentCounter(Order.size(), 0); 753 for (unsigned I = 0, E = Node.ReuseShuffleIndices.size(); I < E; ++I) { 754 unsigned ReusedIdx = Node.ReuseShuffleIndices[I]; 755 unsigned OrderIdx = Order[ReusedIdx]; 756 unsigned NewIdx = 0; 757 for (unsigned J = 0; J < OrderIdx; ++J) 758 NewIdx += OrderCounter[J]; 759 NewIdx += CurrentCounter[OrderIdx]; 760 ++CurrentCounter[OrderIdx]; 761 assert(NewOrder[NewIdx] == RootSize && 762 "The order index should not be written already."); 763 NewOrder[NewIdx] = I; 764 } 765 std::swap(Order, NewOrder); 766 } 767 assert(Order.size() == RootSize && 768 "Root node is expected or the size of the order must be the same as " 769 "the number of elements in the root node."); 770 assert(llvm::all_of(Order, 771 [RootSize](unsigned Val) { return Val != RootSize; }) && 772 "All indices must be initialized"); 773 } 774 775 /// \return The vector element size in bits to use when vectorizing the 776 /// expression tree ending at \p V. If V is a store, the size is the width of 777 /// the stored value. Otherwise, the size is the width of the largest loaded 778 /// value reaching V. This method is used by the vectorizer to calculate 779 /// vectorization factors. 780 unsigned getVectorElementSize(Value *V); 781 782 /// Compute the minimum type sizes required to represent the entries in a 783 /// vectorizable tree. 784 void computeMinimumValueSizes(); 785 786 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 787 unsigned getMaxVecRegSize() const { 788 return MaxVecRegSize; 789 } 790 791 // \returns minimum vector register size as set by cl::opt. 792 unsigned getMinVecRegSize() const { 793 return MinVecRegSize; 794 } 795 796 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 797 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 798 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 799 return MaxVF ? MaxVF : UINT_MAX; 800 } 801 802 /// Check if homogeneous aggregate is isomorphic to some VectorType. 803 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 804 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 805 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 806 /// 807 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 808 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 809 810 /// \returns True if the VectorizableTree is both tiny and not fully 811 /// vectorizable. We do not vectorize such trees. 812 bool isTreeTinyAndNotFullyVectorizable() const; 813 814 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 815 /// can be load combined in the backend. Load combining may not be allowed in 816 /// the IR optimizer, so we do not want to alter the pattern. For example, 817 /// partially transforming a scalar bswap() pattern into vector code is 818 /// effectively impossible for the backend to undo. 819 /// TODO: If load combining is allowed in the IR optimizer, this analysis 820 /// may not be necessary. 821 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 822 823 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 824 /// can be load combined in the backend. Load combining may not be allowed in 825 /// the IR optimizer, so we do not want to alter the pattern. For example, 826 /// partially transforming a scalar bswap() pattern into vector code is 827 /// effectively impossible for the backend to undo. 828 /// TODO: If load combining is allowed in the IR optimizer, this analysis 829 /// may not be necessary. 830 bool isLoadCombineCandidate() const; 831 832 OptimizationRemarkEmitter *getORE() { return ORE; } 833 834 /// This structure holds any data we need about the edges being traversed 835 /// during buildTree_rec(). We keep track of: 836 /// (i) the user TreeEntry index, and 837 /// (ii) the index of the edge. 838 struct EdgeInfo { 839 EdgeInfo() = default; 840 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 841 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 842 /// The user TreeEntry. 843 TreeEntry *UserTE = nullptr; 844 /// The operand index of the use. 845 unsigned EdgeIdx = UINT_MAX; 846 #ifndef NDEBUG 847 friend inline raw_ostream &operator<<(raw_ostream &OS, 848 const BoUpSLP::EdgeInfo &EI) { 849 EI.dump(OS); 850 return OS; 851 } 852 /// Debug print. 853 void dump(raw_ostream &OS) const { 854 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 855 << " EdgeIdx:" << EdgeIdx << "}"; 856 } 857 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 858 #endif 859 }; 860 861 /// A helper data structure to hold the operands of a vector of instructions. 862 /// This supports a fixed vector length for all operand vectors. 863 class VLOperands { 864 /// For each operand we need (i) the value, and (ii) the opcode that it 865 /// would be attached to if the expression was in a left-linearized form. 866 /// This is required to avoid illegal operand reordering. 867 /// For example: 868 /// \verbatim 869 /// 0 Op1 870 /// |/ 871 /// Op1 Op2 Linearized + Op2 872 /// \ / ----------> |/ 873 /// - - 874 /// 875 /// Op1 - Op2 (0 + Op1) - Op2 876 /// \endverbatim 877 /// 878 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 879 /// 880 /// Another way to think of this is to track all the operations across the 881 /// path from the operand all the way to the root of the tree and to 882 /// calculate the operation that corresponds to this path. For example, the 883 /// path from Op2 to the root crosses the RHS of the '-', therefore the 884 /// corresponding operation is a '-' (which matches the one in the 885 /// linearized tree, as shown above). 886 /// 887 /// For lack of a better term, we refer to this operation as Accumulated 888 /// Path Operation (APO). 889 struct OperandData { 890 OperandData() = default; 891 OperandData(Value *V, bool APO, bool IsUsed) 892 : V(V), APO(APO), IsUsed(IsUsed) {} 893 /// The operand value. 894 Value *V = nullptr; 895 /// TreeEntries only allow a single opcode, or an alternate sequence of 896 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 897 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 898 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 899 /// (e.g., Add/Mul) 900 bool APO = false; 901 /// Helper data for the reordering function. 902 bool IsUsed = false; 903 }; 904 905 /// During operand reordering, we are trying to select the operand at lane 906 /// that matches best with the operand at the neighboring lane. Our 907 /// selection is based on the type of value we are looking for. For example, 908 /// if the neighboring lane has a load, we need to look for a load that is 909 /// accessing a consecutive address. These strategies are summarized in the 910 /// 'ReorderingMode' enumerator. 911 enum class ReorderingMode { 912 Load, ///< Matching loads to consecutive memory addresses 913 Opcode, ///< Matching instructions based on opcode (same or alternate) 914 Constant, ///< Matching constants 915 Splat, ///< Matching the same instruction multiple times (broadcast) 916 Failed, ///< We failed to create a vectorizable group 917 }; 918 919 using OperandDataVec = SmallVector<OperandData, 2>; 920 921 /// A vector of operand vectors. 922 SmallVector<OperandDataVec, 4> OpsVec; 923 924 const DataLayout &DL; 925 ScalarEvolution &SE; 926 const BoUpSLP &R; 927 928 /// \returns the operand data at \p OpIdx and \p Lane. 929 OperandData &getData(unsigned OpIdx, unsigned Lane) { 930 return OpsVec[OpIdx][Lane]; 931 } 932 933 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 934 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 935 return OpsVec[OpIdx][Lane]; 936 } 937 938 /// Clears the used flag for all entries. 939 void clearUsed() { 940 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 941 OpIdx != NumOperands; ++OpIdx) 942 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 943 ++Lane) 944 OpsVec[OpIdx][Lane].IsUsed = false; 945 } 946 947 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 948 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 949 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 950 } 951 952 // The hard-coded scores listed here are not very important. When computing 953 // the scores of matching one sub-tree with another, we are basically 954 // counting the number of values that are matching. So even if all scores 955 // are set to 1, we would still get a decent matching result. 956 // However, sometimes we have to break ties. For example we may have to 957 // choose between matching loads vs matching opcodes. This is what these 958 // scores are helping us with: they provide the order of preference. 959 960 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 961 static const int ScoreConsecutiveLoads = 3; 962 /// ExtractElementInst from same vector and consecutive indexes. 963 static const int ScoreConsecutiveExtracts = 3; 964 /// Constants. 965 static const int ScoreConstants = 2; 966 /// Instructions with the same opcode. 967 static const int ScoreSameOpcode = 2; 968 /// Instructions with alt opcodes (e.g, add + sub). 969 static const int ScoreAltOpcodes = 1; 970 /// Identical instructions (a.k.a. splat or broadcast). 971 static const int ScoreSplat = 1; 972 /// Matching with an undef is preferable to failing. 973 static const int ScoreUndef = 1; 974 /// Score for failing to find a decent match. 975 static const int ScoreFail = 0; 976 /// User exteranl to the vectorized code. 977 static const int ExternalUseCost = 1; 978 /// The user is internal but in a different lane. 979 static const int UserInDiffLaneCost = ExternalUseCost; 980 981 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 982 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 983 ScalarEvolution &SE) { 984 auto *LI1 = dyn_cast<LoadInst>(V1); 985 auto *LI2 = dyn_cast<LoadInst>(V2); 986 if (LI1 && LI2) { 987 if (LI1->getParent() != LI2->getParent()) 988 return VLOperands::ScoreFail; 989 990 Optional<int> Dist = 991 getPointersDiff(LI1->getPointerOperand(), LI2->getPointerOperand(), 992 DL, SE, /*StrictCheck=*/true); 993 return (Dist && *Dist == 1) ? VLOperands::ScoreConsecutiveLoads 994 : VLOperands::ScoreFail; 995 } 996 997 auto *C1 = dyn_cast<Constant>(V1); 998 auto *C2 = dyn_cast<Constant>(V2); 999 if (C1 && C2) 1000 return VLOperands::ScoreConstants; 1001 1002 // Extracts from consecutive indexes of the same vector better score as 1003 // the extracts could be optimized away. 1004 Value *EV; 1005 ConstantInt *Ex1Idx, *Ex2Idx; 1006 if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) && 1007 match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) && 1008 Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue()) 1009 return VLOperands::ScoreConsecutiveExtracts; 1010 1011 auto *I1 = dyn_cast<Instruction>(V1); 1012 auto *I2 = dyn_cast<Instruction>(V2); 1013 if (I1 && I2) { 1014 if (I1 == I2) 1015 return VLOperands::ScoreSplat; 1016 InstructionsState S = getSameOpcode({I1, I2}); 1017 // Note: Only consider instructions with <= 2 operands to avoid 1018 // complexity explosion. 1019 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) 1020 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 1021 : VLOperands::ScoreSameOpcode; 1022 } 1023 1024 if (isa<UndefValue>(V2)) 1025 return VLOperands::ScoreUndef; 1026 1027 return VLOperands::ScoreFail; 1028 } 1029 1030 /// Holds the values and their lane that are taking part in the look-ahead 1031 /// score calculation. This is used in the external uses cost calculation. 1032 SmallDenseMap<Value *, int> InLookAheadValues; 1033 1034 /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are 1035 /// either external to the vectorized code, or require shuffling. 1036 int getExternalUsesCost(const std::pair<Value *, int> &LHS, 1037 const std::pair<Value *, int> &RHS) { 1038 int Cost = 0; 1039 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}}; 1040 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { 1041 Value *V = Values[Idx].first; 1042 if (isa<Constant>(V)) { 1043 // Since this is a function pass, it doesn't make semantic sense to 1044 // walk the users of a subclass of Constant. The users could be in 1045 // another function, or even another module that happens to be in 1046 // the same LLVMContext. 1047 continue; 1048 } 1049 1050 // Calculate the absolute lane, using the minimum relative lane of LHS 1051 // and RHS as base and Idx as the offset. 1052 int Ln = std::min(LHS.second, RHS.second) + Idx; 1053 assert(Ln >= 0 && "Bad lane calculation"); 1054 unsigned UsersBudget = LookAheadUsersBudget; 1055 for (User *U : V->users()) { 1056 if (const TreeEntry *UserTE = R.getTreeEntry(U)) { 1057 // The user is in the VectorizableTree. Check if we need to insert. 1058 auto It = llvm::find(UserTE->Scalars, U); 1059 assert(It != UserTE->Scalars.end() && "U is in UserTE"); 1060 int UserLn = std::distance(UserTE->Scalars.begin(), It); 1061 assert(UserLn >= 0 && "Bad lane"); 1062 if (UserLn != Ln) 1063 Cost += UserInDiffLaneCost; 1064 } else { 1065 // Check if the user is in the look-ahead code. 1066 auto It2 = InLookAheadValues.find(U); 1067 if (It2 != InLookAheadValues.end()) { 1068 // The user is in the look-ahead code. Check the lane. 1069 if (It2->second != Ln) 1070 Cost += UserInDiffLaneCost; 1071 } else { 1072 // The user is neither in SLP tree nor in the look-ahead code. 1073 Cost += ExternalUseCost; 1074 } 1075 } 1076 // Limit the number of visited uses to cap compilation time. 1077 if (--UsersBudget == 0) 1078 break; 1079 } 1080 } 1081 return Cost; 1082 } 1083 1084 /// Go through the operands of \p LHS and \p RHS recursively until \p 1085 /// MaxLevel, and return the cummulative score. For example: 1086 /// \verbatim 1087 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1088 /// \ / \ / \ / \ / 1089 /// + + + + 1090 /// G1 G2 G3 G4 1091 /// \endverbatim 1092 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1093 /// each level recursively, accumulating the score. It starts from matching 1094 /// the additions at level 0, then moves on to the loads (level 1). The 1095 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1096 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1097 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1098 /// Please note that the order of the operands does not matter, as we 1099 /// evaluate the score of all profitable combinations of operands. In 1100 /// other words the score of G1 and G4 is the same as G1 and G2. This 1101 /// heuristic is based on ideas described in: 1102 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1103 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1104 /// Luís F. W. Góes 1105 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS, 1106 const std::pair<Value *, int> &RHS, int CurrLevel, 1107 int MaxLevel) { 1108 1109 Value *V1 = LHS.first; 1110 Value *V2 = RHS.first; 1111 // Get the shallow score of V1 and V2. 1112 int ShallowScoreAtThisLevel = 1113 std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) - 1114 getExternalUsesCost(LHS, RHS)); 1115 int Lane1 = LHS.second; 1116 int Lane2 = RHS.second; 1117 1118 // If reached MaxLevel, 1119 // or if V1 and V2 are not instructions, 1120 // or if they are SPLAT, 1121 // or if they are not consecutive, early return the current cost. 1122 auto *I1 = dyn_cast<Instruction>(V1); 1123 auto *I2 = dyn_cast<Instruction>(V2); 1124 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1125 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1126 (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel)) 1127 return ShallowScoreAtThisLevel; 1128 assert(I1 && I2 && "Should have early exited."); 1129 1130 // Keep track of in-tree values for determining the external-use cost. 1131 InLookAheadValues[V1] = Lane1; 1132 InLookAheadValues[V2] = Lane2; 1133 1134 // Contains the I2 operand indexes that got matched with I1 operands. 1135 SmallSet<unsigned, 4> Op2Used; 1136 1137 // Recursion towards the operands of I1 and I2. We are trying all possbile 1138 // operand pairs, and keeping track of the best score. 1139 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1140 OpIdx1 != NumOperands1; ++OpIdx1) { 1141 // Try to pair op1I with the best operand of I2. 1142 int MaxTmpScore = 0; 1143 unsigned MaxOpIdx2 = 0; 1144 bool FoundBest = false; 1145 // If I2 is commutative try all combinations. 1146 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1147 unsigned ToIdx = isCommutative(I2) 1148 ? I2->getNumOperands() 1149 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1150 assert(FromIdx <= ToIdx && "Bad index"); 1151 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1152 // Skip operands already paired with OpIdx1. 1153 if (Op2Used.count(OpIdx2)) 1154 continue; 1155 // Recursively calculate the cost at each level 1156 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, 1157 {I2->getOperand(OpIdx2), Lane2}, 1158 CurrLevel + 1, MaxLevel); 1159 // Look for the best score. 1160 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1161 MaxTmpScore = TmpScore; 1162 MaxOpIdx2 = OpIdx2; 1163 FoundBest = true; 1164 } 1165 } 1166 if (FoundBest) { 1167 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1168 Op2Used.insert(MaxOpIdx2); 1169 ShallowScoreAtThisLevel += MaxTmpScore; 1170 } 1171 } 1172 return ShallowScoreAtThisLevel; 1173 } 1174 1175 /// \Returns the look-ahead score, which tells us how much the sub-trees 1176 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1177 /// score. This helps break ties in an informed way when we cannot decide on 1178 /// the order of the operands by just considering the immediate 1179 /// predecessors. 1180 int getLookAheadScore(const std::pair<Value *, int> &LHS, 1181 const std::pair<Value *, int> &RHS) { 1182 InLookAheadValues.clear(); 1183 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); 1184 } 1185 1186 // Search all operands in Ops[*][Lane] for the one that matches best 1187 // Ops[OpIdx][LastLane] and return its opreand index. 1188 // If no good match can be found, return None. 1189 Optional<unsigned> 1190 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1191 ArrayRef<ReorderingMode> ReorderingModes) { 1192 unsigned NumOperands = getNumOperands(); 1193 1194 // The operand of the previous lane at OpIdx. 1195 Value *OpLastLane = getData(OpIdx, LastLane).V; 1196 1197 // Our strategy mode for OpIdx. 1198 ReorderingMode RMode = ReorderingModes[OpIdx]; 1199 1200 // The linearized opcode of the operand at OpIdx, Lane. 1201 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1202 1203 // The best operand index and its score. 1204 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1205 // are using the score to differentiate between the two. 1206 struct BestOpData { 1207 Optional<unsigned> Idx = None; 1208 unsigned Score = 0; 1209 } BestOp; 1210 1211 // Iterate through all unused operands and look for the best. 1212 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1213 // Get the operand at Idx and Lane. 1214 OperandData &OpData = getData(Idx, Lane); 1215 Value *Op = OpData.V; 1216 bool OpAPO = OpData.APO; 1217 1218 // Skip already selected operands. 1219 if (OpData.IsUsed) 1220 continue; 1221 1222 // Skip if we are trying to move the operand to a position with a 1223 // different opcode in the linearized tree form. This would break the 1224 // semantics. 1225 if (OpAPO != OpIdxAPO) 1226 continue; 1227 1228 // Look for an operand that matches the current mode. 1229 switch (RMode) { 1230 case ReorderingMode::Load: 1231 case ReorderingMode::Constant: 1232 case ReorderingMode::Opcode: { 1233 bool LeftToRight = Lane > LastLane; 1234 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1235 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1236 unsigned Score = 1237 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); 1238 if (Score > BestOp.Score) { 1239 BestOp.Idx = Idx; 1240 BestOp.Score = Score; 1241 } 1242 break; 1243 } 1244 case ReorderingMode::Splat: 1245 if (Op == OpLastLane) 1246 BestOp.Idx = Idx; 1247 break; 1248 case ReorderingMode::Failed: 1249 return None; 1250 } 1251 } 1252 1253 if (BestOp.Idx) { 1254 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 1255 return BestOp.Idx; 1256 } 1257 // If we could not find a good match return None. 1258 return None; 1259 } 1260 1261 /// Helper for reorderOperandVecs. \Returns the lane that we should start 1262 /// reordering from. This is the one which has the least number of operands 1263 /// that can freely move about. 1264 unsigned getBestLaneToStartReordering() const { 1265 unsigned BestLane = 0; 1266 unsigned Min = UINT_MAX; 1267 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1268 ++Lane) { 1269 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 1270 if (NumFreeOps < Min) { 1271 Min = NumFreeOps; 1272 BestLane = Lane; 1273 } 1274 } 1275 return BestLane; 1276 } 1277 1278 /// \Returns the maximum number of operands that are allowed to be reordered 1279 /// for \p Lane. This is used as a heuristic for selecting the first lane to 1280 /// start operand reordering. 1281 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1282 unsigned CntTrue = 0; 1283 unsigned NumOperands = getNumOperands(); 1284 // Operands with the same APO can be reordered. We therefore need to count 1285 // how many of them we have for each APO, like this: Cnt[APO] = x. 1286 // Since we only have two APOs, namely true and false, we can avoid using 1287 // a map. Instead we can simply count the number of operands that 1288 // correspond to one of them (in this case the 'true' APO), and calculate 1289 // the other by subtracting it from the total number of operands. 1290 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 1291 if (getData(OpIdx, Lane).APO) 1292 ++CntTrue; 1293 unsigned CntFalse = NumOperands - CntTrue; 1294 return std::max(CntTrue, CntFalse); 1295 } 1296 1297 /// Go through the instructions in VL and append their operands. 1298 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1299 assert(!VL.empty() && "Bad VL"); 1300 assert((empty() || VL.size() == getNumLanes()) && 1301 "Expected same number of lanes"); 1302 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1303 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1304 OpsVec.resize(NumOperands); 1305 unsigned NumLanes = VL.size(); 1306 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1307 OpsVec[OpIdx].resize(NumLanes); 1308 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1309 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1310 // Our tree has just 3 nodes: the root and two operands. 1311 // It is therefore trivial to get the APO. We only need to check the 1312 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1313 // RHS operand. The LHS operand of both add and sub is never attached 1314 // to an inversese operation in the linearized form, therefore its APO 1315 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1316 1317 // Since operand reordering is performed on groups of commutative 1318 // operations or alternating sequences (e.g., +, -), we can safely 1319 // tell the inverse operations by checking commutativity. 1320 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1321 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1322 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1323 APO, false}; 1324 } 1325 } 1326 } 1327 1328 /// \returns the number of operands. 1329 unsigned getNumOperands() const { return OpsVec.size(); } 1330 1331 /// \returns the number of lanes. 1332 unsigned getNumLanes() const { return OpsVec[0].size(); } 1333 1334 /// \returns the operand value at \p OpIdx and \p Lane. 1335 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1336 return getData(OpIdx, Lane).V; 1337 } 1338 1339 /// \returns true if the data structure is empty. 1340 bool empty() const { return OpsVec.empty(); } 1341 1342 /// Clears the data. 1343 void clear() { OpsVec.clear(); } 1344 1345 /// \Returns true if there are enough operands identical to \p Op to fill 1346 /// the whole vector. 1347 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1348 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1349 bool OpAPO = getData(OpIdx, Lane).APO; 1350 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1351 if (Ln == Lane) 1352 continue; 1353 // This is set to true if we found a candidate for broadcast at Lane. 1354 bool FoundCandidate = false; 1355 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1356 OperandData &Data = getData(OpI, Ln); 1357 if (Data.APO != OpAPO || Data.IsUsed) 1358 continue; 1359 if (Data.V == Op) { 1360 FoundCandidate = true; 1361 Data.IsUsed = true; 1362 break; 1363 } 1364 } 1365 if (!FoundCandidate) 1366 return false; 1367 } 1368 return true; 1369 } 1370 1371 public: 1372 /// Initialize with all the operands of the instruction vector \p RootVL. 1373 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1374 ScalarEvolution &SE, const BoUpSLP &R) 1375 : DL(DL), SE(SE), R(R) { 1376 // Append all the operands of RootVL. 1377 appendOperandsOfVL(RootVL); 1378 } 1379 1380 /// \Returns a value vector with the operands across all lanes for the 1381 /// opearnd at \p OpIdx. 1382 ValueList getVL(unsigned OpIdx) const { 1383 ValueList OpVL(OpsVec[OpIdx].size()); 1384 assert(OpsVec[OpIdx].size() == getNumLanes() && 1385 "Expected same num of lanes across all operands"); 1386 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1387 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1388 return OpVL; 1389 } 1390 1391 // Performs operand reordering for 2 or more operands. 1392 // The original operands are in OrigOps[OpIdx][Lane]. 1393 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1394 void reorder() { 1395 unsigned NumOperands = getNumOperands(); 1396 unsigned NumLanes = getNumLanes(); 1397 // Each operand has its own mode. We are using this mode to help us select 1398 // the instructions for each lane, so that they match best with the ones 1399 // we have selected so far. 1400 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1401 1402 // This is a greedy single-pass algorithm. We are going over each lane 1403 // once and deciding on the best order right away with no back-tracking. 1404 // However, in order to increase its effectiveness, we start with the lane 1405 // that has operands that can move the least. For example, given the 1406 // following lanes: 1407 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1408 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1409 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1410 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1411 // we will start at Lane 1, since the operands of the subtraction cannot 1412 // be reordered. Then we will visit the rest of the lanes in a circular 1413 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1414 1415 // Find the first lane that we will start our search from. 1416 unsigned FirstLane = getBestLaneToStartReordering(); 1417 1418 // Initialize the modes. 1419 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1420 Value *OpLane0 = getValue(OpIdx, FirstLane); 1421 // Keep track if we have instructions with all the same opcode on one 1422 // side. 1423 if (isa<LoadInst>(OpLane0)) 1424 ReorderingModes[OpIdx] = ReorderingMode::Load; 1425 else if (isa<Instruction>(OpLane0)) { 1426 // Check if OpLane0 should be broadcast. 1427 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1428 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1429 else 1430 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1431 } 1432 else if (isa<Constant>(OpLane0)) 1433 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1434 else if (isa<Argument>(OpLane0)) 1435 // Our best hope is a Splat. It may save some cost in some cases. 1436 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1437 else 1438 // NOTE: This should be unreachable. 1439 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1440 } 1441 1442 // If the initial strategy fails for any of the operand indexes, then we 1443 // perform reordering again in a second pass. This helps avoid assigning 1444 // high priority to the failed strategy, and should improve reordering for 1445 // the non-failed operand indexes. 1446 for (int Pass = 0; Pass != 2; ++Pass) { 1447 // Skip the second pass if the first pass did not fail. 1448 bool StrategyFailed = false; 1449 // Mark all operand data as free to use. 1450 clearUsed(); 1451 // We keep the original operand order for the FirstLane, so reorder the 1452 // rest of the lanes. We are visiting the nodes in a circular fashion, 1453 // using FirstLane as the center point and increasing the radius 1454 // distance. 1455 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1456 // Visit the lane on the right and then the lane on the left. 1457 for (int Direction : {+1, -1}) { 1458 int Lane = FirstLane + Direction * Distance; 1459 if (Lane < 0 || Lane >= (int)NumLanes) 1460 continue; 1461 int LastLane = Lane - Direction; 1462 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1463 "Out of bounds"); 1464 // Look for a good match for each operand. 1465 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1466 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1467 Optional<unsigned> BestIdx = 1468 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1469 // By not selecting a value, we allow the operands that follow to 1470 // select a better matching value. We will get a non-null value in 1471 // the next run of getBestOperand(). 1472 if (BestIdx) { 1473 // Swap the current operand with the one returned by 1474 // getBestOperand(). 1475 swap(OpIdx, BestIdx.getValue(), Lane); 1476 } else { 1477 // We failed to find a best operand, set mode to 'Failed'. 1478 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1479 // Enable the second pass. 1480 StrategyFailed = true; 1481 } 1482 } 1483 } 1484 } 1485 // Skip second pass if the strategy did not fail. 1486 if (!StrategyFailed) 1487 break; 1488 } 1489 } 1490 1491 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1492 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1493 switch (RMode) { 1494 case ReorderingMode::Load: 1495 return "Load"; 1496 case ReorderingMode::Opcode: 1497 return "Opcode"; 1498 case ReorderingMode::Constant: 1499 return "Constant"; 1500 case ReorderingMode::Splat: 1501 return "Splat"; 1502 case ReorderingMode::Failed: 1503 return "Failed"; 1504 } 1505 llvm_unreachable("Unimplemented Reordering Type"); 1506 } 1507 1508 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1509 raw_ostream &OS) { 1510 return OS << getModeStr(RMode); 1511 } 1512 1513 /// Debug print. 1514 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1515 printMode(RMode, dbgs()); 1516 } 1517 1518 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1519 return printMode(RMode, OS); 1520 } 1521 1522 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1523 const unsigned Indent = 2; 1524 unsigned Cnt = 0; 1525 for (const OperandDataVec &OpDataVec : OpsVec) { 1526 OS << "Operand " << Cnt++ << "\n"; 1527 for (const OperandData &OpData : OpDataVec) { 1528 OS.indent(Indent) << "{"; 1529 if (Value *V = OpData.V) 1530 OS << *V; 1531 else 1532 OS << "null"; 1533 OS << ", APO:" << OpData.APO << "}\n"; 1534 } 1535 OS << "\n"; 1536 } 1537 return OS; 1538 } 1539 1540 /// Debug print. 1541 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1542 #endif 1543 }; 1544 1545 /// Checks if the instruction is marked for deletion. 1546 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1547 1548 /// Marks values operands for later deletion by replacing them with Undefs. 1549 void eraseInstructions(ArrayRef<Value *> AV); 1550 1551 ~BoUpSLP(); 1552 1553 private: 1554 /// Checks if all users of \p I are the part of the vectorization tree. 1555 bool areAllUsersVectorized(Instruction *I, 1556 ArrayRef<Value *> VectorizedVals) const; 1557 1558 /// \returns the cost of the vectorizable entry. 1559 InstructionCost getEntryCost(const TreeEntry *E, 1560 ArrayRef<Value *> VectorizedVals); 1561 1562 /// This is the recursive part of buildTree. 1563 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1564 const EdgeInfo &EI); 1565 1566 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1567 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1568 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1569 /// returns false, setting \p CurrentOrder to either an empty vector or a 1570 /// non-identity permutation that allows to reuse extract instructions. 1571 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1572 SmallVectorImpl<unsigned> &CurrentOrder) const; 1573 1574 /// Vectorize a single entry in the tree. 1575 Value *vectorizeTree(TreeEntry *E); 1576 1577 /// Vectorize a single entry in the tree, starting in \p VL. 1578 Value *vectorizeTree(ArrayRef<Value *> VL); 1579 1580 /// \returns the scalarization cost for this type. Scalarization in this 1581 /// context means the creation of vectors from a group of scalars. 1582 InstructionCost 1583 getGatherCost(FixedVectorType *Ty, 1584 const DenseSet<unsigned> &ShuffledIndices) const; 1585 1586 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 1587 /// tree entries. 1588 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 1589 /// previous tree entries. \p Mask is filled with the shuffle mask. 1590 Optional<TargetTransformInfo::ShuffleKind> 1591 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 1592 SmallVectorImpl<const TreeEntry *> &Entries); 1593 1594 /// \returns the scalarization cost for this list of values. Assuming that 1595 /// this subtree gets vectorized, we may need to extract the values from the 1596 /// roots. This method calculates the cost of extracting the values. 1597 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 1598 1599 /// Set the Builder insert point to one after the last instruction in 1600 /// the bundle 1601 void setInsertPointAfterBundle(const TreeEntry *E); 1602 1603 /// \returns a vector from a collection of scalars in \p VL. 1604 Value *gather(ArrayRef<Value *> VL); 1605 1606 /// \returns whether the VectorizableTree is fully vectorizable and will 1607 /// be beneficial even the tree height is tiny. 1608 bool isFullyVectorizableTinyTree() const; 1609 1610 /// Reorder commutative or alt operands to get better probability of 1611 /// generating vectorized code. 1612 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1613 SmallVectorImpl<Value *> &Left, 1614 SmallVectorImpl<Value *> &Right, 1615 const DataLayout &DL, 1616 ScalarEvolution &SE, 1617 const BoUpSLP &R); 1618 struct TreeEntry { 1619 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1620 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1621 1622 /// \returns true if the scalars in VL are equal to this entry. 1623 bool isSame(ArrayRef<Value *> VL) const { 1624 if (VL.size() == Scalars.size()) 1625 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1626 return VL.size() == ReuseShuffleIndices.size() && 1627 std::equal( 1628 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 1629 [this](Value *V, int Idx) { return V == Scalars[Idx]; }); 1630 } 1631 1632 /// A vector of scalars. 1633 ValueList Scalars; 1634 1635 /// The Scalars are vectorized into this value. It is initialized to Null. 1636 Value *VectorizedValue = nullptr; 1637 1638 /// Do we need to gather this sequence or vectorize it 1639 /// (either with vector instruction or with scatter/gather 1640 /// intrinsics for store/load)? 1641 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 1642 EntryState State; 1643 1644 /// Does this sequence require some shuffling? 1645 SmallVector<int, 4> ReuseShuffleIndices; 1646 1647 /// Does this entry require reordering? 1648 SmallVector<unsigned, 4> ReorderIndices; 1649 1650 /// Points back to the VectorizableTree. 1651 /// 1652 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1653 /// to be a pointer and needs to be able to initialize the child iterator. 1654 /// Thus we need a reference back to the container to translate the indices 1655 /// to entries. 1656 VecTreeTy &Container; 1657 1658 /// The TreeEntry index containing the user of this entry. We can actually 1659 /// have multiple users so the data structure is not truly a tree. 1660 SmallVector<EdgeInfo, 1> UserTreeIndices; 1661 1662 /// The index of this treeEntry in VectorizableTree. 1663 int Idx = -1; 1664 1665 private: 1666 /// The operands of each instruction in each lane Operands[op_index][lane]. 1667 /// Note: This helps avoid the replication of the code that performs the 1668 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1669 SmallVector<ValueList, 2> Operands; 1670 1671 /// The main/alternate instruction. 1672 Instruction *MainOp = nullptr; 1673 Instruction *AltOp = nullptr; 1674 1675 public: 1676 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1677 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1678 if (Operands.size() < OpIdx + 1) 1679 Operands.resize(OpIdx + 1); 1680 assert(Operands[OpIdx].empty() && "Already resized?"); 1681 Operands[OpIdx].resize(Scalars.size()); 1682 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1683 Operands[OpIdx][Lane] = OpVL[Lane]; 1684 } 1685 1686 /// Set the operands of this bundle in their original order. 1687 void setOperandsInOrder() { 1688 assert(Operands.empty() && "Already initialized?"); 1689 auto *I0 = cast<Instruction>(Scalars[0]); 1690 Operands.resize(I0->getNumOperands()); 1691 unsigned NumLanes = Scalars.size(); 1692 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1693 OpIdx != NumOperands; ++OpIdx) { 1694 Operands[OpIdx].resize(NumLanes); 1695 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1696 auto *I = cast<Instruction>(Scalars[Lane]); 1697 assert(I->getNumOperands() == NumOperands && 1698 "Expected same number of operands"); 1699 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1700 } 1701 } 1702 } 1703 1704 /// \returns the \p OpIdx operand of this TreeEntry. 1705 ValueList &getOperand(unsigned OpIdx) { 1706 assert(OpIdx < Operands.size() && "Off bounds"); 1707 return Operands[OpIdx]; 1708 } 1709 1710 /// \returns the number of operands. 1711 unsigned getNumOperands() const { return Operands.size(); } 1712 1713 /// \return the single \p OpIdx operand. 1714 Value *getSingleOperand(unsigned OpIdx) const { 1715 assert(OpIdx < Operands.size() && "Off bounds"); 1716 assert(!Operands[OpIdx].empty() && "No operand available"); 1717 return Operands[OpIdx][0]; 1718 } 1719 1720 /// Some of the instructions in the list have alternate opcodes. 1721 bool isAltShuffle() const { 1722 return getOpcode() != getAltOpcode(); 1723 } 1724 1725 bool isOpcodeOrAlt(Instruction *I) const { 1726 unsigned CheckedOpcode = I->getOpcode(); 1727 return (getOpcode() == CheckedOpcode || 1728 getAltOpcode() == CheckedOpcode); 1729 } 1730 1731 /// Chooses the correct key for scheduling data. If \p Op has the same (or 1732 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 1733 /// \p OpValue. 1734 Value *isOneOf(Value *Op) const { 1735 auto *I = dyn_cast<Instruction>(Op); 1736 if (I && isOpcodeOrAlt(I)) 1737 return Op; 1738 return MainOp; 1739 } 1740 1741 void setOperations(const InstructionsState &S) { 1742 MainOp = S.MainOp; 1743 AltOp = S.AltOp; 1744 } 1745 1746 Instruction *getMainOp() const { 1747 return MainOp; 1748 } 1749 1750 Instruction *getAltOp() const { 1751 return AltOp; 1752 } 1753 1754 /// The main/alternate opcodes for the list of instructions. 1755 unsigned getOpcode() const { 1756 return MainOp ? MainOp->getOpcode() : 0; 1757 } 1758 1759 unsigned getAltOpcode() const { 1760 return AltOp ? AltOp->getOpcode() : 0; 1761 } 1762 1763 /// Update operations state of this entry if reorder occurred. 1764 bool updateStateIfReorder() { 1765 if (ReorderIndices.empty()) 1766 return false; 1767 InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front()); 1768 setOperations(S); 1769 return true; 1770 } 1771 1772 #ifndef NDEBUG 1773 /// Debug printer. 1774 LLVM_DUMP_METHOD void dump() const { 1775 dbgs() << Idx << ".\n"; 1776 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1777 dbgs() << "Operand " << OpI << ":\n"; 1778 for (const Value *V : Operands[OpI]) 1779 dbgs().indent(2) << *V << "\n"; 1780 } 1781 dbgs() << "Scalars: \n"; 1782 for (Value *V : Scalars) 1783 dbgs().indent(2) << *V << "\n"; 1784 dbgs() << "State: "; 1785 switch (State) { 1786 case Vectorize: 1787 dbgs() << "Vectorize\n"; 1788 break; 1789 case ScatterVectorize: 1790 dbgs() << "ScatterVectorize\n"; 1791 break; 1792 case NeedToGather: 1793 dbgs() << "NeedToGather\n"; 1794 break; 1795 } 1796 dbgs() << "MainOp: "; 1797 if (MainOp) 1798 dbgs() << *MainOp << "\n"; 1799 else 1800 dbgs() << "NULL\n"; 1801 dbgs() << "AltOp: "; 1802 if (AltOp) 1803 dbgs() << *AltOp << "\n"; 1804 else 1805 dbgs() << "NULL\n"; 1806 dbgs() << "VectorizedValue: "; 1807 if (VectorizedValue) 1808 dbgs() << *VectorizedValue << "\n"; 1809 else 1810 dbgs() << "NULL\n"; 1811 dbgs() << "ReuseShuffleIndices: "; 1812 if (ReuseShuffleIndices.empty()) 1813 dbgs() << "Empty"; 1814 else 1815 for (unsigned ReuseIdx : ReuseShuffleIndices) 1816 dbgs() << ReuseIdx << ", "; 1817 dbgs() << "\n"; 1818 dbgs() << "ReorderIndices: "; 1819 for (unsigned ReorderIdx : ReorderIndices) 1820 dbgs() << ReorderIdx << ", "; 1821 dbgs() << "\n"; 1822 dbgs() << "UserTreeIndices: "; 1823 for (const auto &EInfo : UserTreeIndices) 1824 dbgs() << EInfo << ", "; 1825 dbgs() << "\n"; 1826 } 1827 #endif 1828 }; 1829 1830 #ifndef NDEBUG 1831 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 1832 InstructionCost VecCost, 1833 InstructionCost ScalarCost) const { 1834 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 1835 dbgs() << "SLP: Costs:\n"; 1836 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 1837 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 1838 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 1839 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 1840 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 1841 } 1842 #endif 1843 1844 /// Create a new VectorizableTree entry. 1845 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 1846 const InstructionsState &S, 1847 const EdgeInfo &UserTreeIdx, 1848 ArrayRef<unsigned> ReuseShuffleIndices = None, 1849 ArrayRef<unsigned> ReorderIndices = None) { 1850 TreeEntry::EntryState EntryState = 1851 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 1852 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 1853 ReuseShuffleIndices, ReorderIndices); 1854 } 1855 1856 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 1857 TreeEntry::EntryState EntryState, 1858 Optional<ScheduleData *> Bundle, 1859 const InstructionsState &S, 1860 const EdgeInfo &UserTreeIdx, 1861 ArrayRef<unsigned> ReuseShuffleIndices = None, 1862 ArrayRef<unsigned> ReorderIndices = None) { 1863 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 1864 (Bundle && EntryState != TreeEntry::NeedToGather)) && 1865 "Need to vectorize gather entry?"); 1866 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 1867 TreeEntry *Last = VectorizableTree.back().get(); 1868 Last->Idx = VectorizableTree.size() - 1; 1869 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 1870 Last->State = EntryState; 1871 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1872 ReuseShuffleIndices.end()); 1873 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 1874 Last->setOperations(S); 1875 if (Last->State != TreeEntry::NeedToGather) { 1876 for (Value *V : VL) { 1877 assert(!getTreeEntry(V) && "Scalar already in tree!"); 1878 ScalarToTreeEntry[V] = Last; 1879 } 1880 // Update the scheduler bundle to point to this TreeEntry. 1881 unsigned Lane = 0; 1882 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 1883 BundleMember = BundleMember->NextInBundle) { 1884 BundleMember->TE = Last; 1885 BundleMember->Lane = Lane; 1886 ++Lane; 1887 } 1888 assert((!Bundle.getValue() || Lane == VL.size()) && 1889 "Bundle and VL out of sync"); 1890 } else { 1891 MustGather.insert(VL.begin(), VL.end()); 1892 } 1893 1894 if (UserTreeIdx.UserTE) 1895 Last->UserTreeIndices.push_back(UserTreeIdx); 1896 1897 return Last; 1898 } 1899 1900 /// -- Vectorization State -- 1901 /// Holds all of the tree entries. 1902 TreeEntry::VecTreeTy VectorizableTree; 1903 1904 #ifndef NDEBUG 1905 /// Debug printer. 1906 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 1907 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 1908 VectorizableTree[Id]->dump(); 1909 dbgs() << "\n"; 1910 } 1911 } 1912 #endif 1913 1914 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 1915 1916 const TreeEntry *getTreeEntry(Value *V) const { 1917 return ScalarToTreeEntry.lookup(V); 1918 } 1919 1920 /// Maps a specific scalar to its tree entry. 1921 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 1922 1923 /// Maps a value to the proposed vectorizable size. 1924 SmallDenseMap<Value *, unsigned> InstrElementSize; 1925 1926 /// A list of scalars that we found that we need to keep as scalars. 1927 ValueSet MustGather; 1928 1929 /// This POD struct describes one external user in the vectorized tree. 1930 struct ExternalUser { 1931 ExternalUser(Value *S, llvm::User *U, int L) 1932 : Scalar(S), User(U), Lane(L) {} 1933 1934 // Which scalar in our function. 1935 Value *Scalar; 1936 1937 // Which user that uses the scalar. 1938 llvm::User *User; 1939 1940 // Which lane does the scalar belong to. 1941 int Lane; 1942 }; 1943 using UserList = SmallVector<ExternalUser, 16>; 1944 1945 /// Checks if two instructions may access the same memory. 1946 /// 1947 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 1948 /// is invariant in the calling loop. 1949 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 1950 Instruction *Inst2) { 1951 // First check if the result is already in the cache. 1952 AliasCacheKey key = std::make_pair(Inst1, Inst2); 1953 Optional<bool> &result = AliasCache[key]; 1954 if (result.hasValue()) { 1955 return result.getValue(); 1956 } 1957 MemoryLocation Loc2 = getLocation(Inst2, AA); 1958 bool aliased = true; 1959 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 1960 // Do the alias check. 1961 aliased = !AA->isNoAlias(Loc1, Loc2); 1962 } 1963 // Store the result in the cache. 1964 result = aliased; 1965 return aliased; 1966 } 1967 1968 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 1969 1970 /// Cache for alias results. 1971 /// TODO: consider moving this to the AliasAnalysis itself. 1972 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 1973 1974 /// Removes an instruction from its block and eventually deletes it. 1975 /// It's like Instruction::eraseFromParent() except that the actual deletion 1976 /// is delayed until BoUpSLP is destructed. 1977 /// This is required to ensure that there are no incorrect collisions in the 1978 /// AliasCache, which can happen if a new instruction is allocated at the 1979 /// same address as a previously deleted instruction. 1980 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 1981 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 1982 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 1983 } 1984 1985 /// Temporary store for deleted instructions. Instructions will be deleted 1986 /// eventually when the BoUpSLP is destructed. 1987 DenseMap<Instruction *, bool> DeletedInstructions; 1988 1989 /// A list of values that need to extracted out of the tree. 1990 /// This list holds pairs of (Internal Scalar : External User). External User 1991 /// can be nullptr, it means that this Internal Scalar will be used later, 1992 /// after vectorization. 1993 UserList ExternalUses; 1994 1995 /// Values used only by @llvm.assume calls. 1996 SmallPtrSet<const Value *, 32> EphValues; 1997 1998 /// Holds all of the instructions that we gathered. 1999 SetVector<Instruction *> GatherSeq; 2000 2001 /// A list of blocks that we are going to CSE. 2002 SetVector<BasicBlock *> CSEBlocks; 2003 2004 /// Contains all scheduling relevant data for an instruction. 2005 /// A ScheduleData either represents a single instruction or a member of an 2006 /// instruction bundle (= a group of instructions which is combined into a 2007 /// vector instruction). 2008 struct ScheduleData { 2009 // The initial value for the dependency counters. It means that the 2010 // dependencies are not calculated yet. 2011 enum { InvalidDeps = -1 }; 2012 2013 ScheduleData() = default; 2014 2015 void init(int BlockSchedulingRegionID, Value *OpVal) { 2016 FirstInBundle = this; 2017 NextInBundle = nullptr; 2018 NextLoadStore = nullptr; 2019 IsScheduled = false; 2020 SchedulingRegionID = BlockSchedulingRegionID; 2021 UnscheduledDepsInBundle = UnscheduledDeps; 2022 clearDependencies(); 2023 OpValue = OpVal; 2024 TE = nullptr; 2025 Lane = -1; 2026 } 2027 2028 /// Returns true if the dependency information has been calculated. 2029 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2030 2031 /// Returns true for single instructions and for bundle representatives 2032 /// (= the head of a bundle). 2033 bool isSchedulingEntity() const { return FirstInBundle == this; } 2034 2035 /// Returns true if it represents an instruction bundle and not only a 2036 /// single instruction. 2037 bool isPartOfBundle() const { 2038 return NextInBundle != nullptr || FirstInBundle != this; 2039 } 2040 2041 /// Returns true if it is ready for scheduling, i.e. it has no more 2042 /// unscheduled depending instructions/bundles. 2043 bool isReady() const { 2044 assert(isSchedulingEntity() && 2045 "can't consider non-scheduling entity for ready list"); 2046 return UnscheduledDepsInBundle == 0 && !IsScheduled; 2047 } 2048 2049 /// Modifies the number of unscheduled dependencies, also updating it for 2050 /// the whole bundle. 2051 int incrementUnscheduledDeps(int Incr) { 2052 UnscheduledDeps += Incr; 2053 return FirstInBundle->UnscheduledDepsInBundle += Incr; 2054 } 2055 2056 /// Sets the number of unscheduled dependencies to the number of 2057 /// dependencies. 2058 void resetUnscheduledDeps() { 2059 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 2060 } 2061 2062 /// Clears all dependency information. 2063 void clearDependencies() { 2064 Dependencies = InvalidDeps; 2065 resetUnscheduledDeps(); 2066 MemoryDependencies.clear(); 2067 } 2068 2069 void dump(raw_ostream &os) const { 2070 if (!isSchedulingEntity()) { 2071 os << "/ " << *Inst; 2072 } else if (NextInBundle) { 2073 os << '[' << *Inst; 2074 ScheduleData *SD = NextInBundle; 2075 while (SD) { 2076 os << ';' << *SD->Inst; 2077 SD = SD->NextInBundle; 2078 } 2079 os << ']'; 2080 } else { 2081 os << *Inst; 2082 } 2083 } 2084 2085 Instruction *Inst = nullptr; 2086 2087 /// Points to the head in an instruction bundle (and always to this for 2088 /// single instructions). 2089 ScheduleData *FirstInBundle = nullptr; 2090 2091 /// Single linked list of all instructions in a bundle. Null if it is a 2092 /// single instruction. 2093 ScheduleData *NextInBundle = nullptr; 2094 2095 /// Single linked list of all memory instructions (e.g. load, store, call) 2096 /// in the block - until the end of the scheduling region. 2097 ScheduleData *NextLoadStore = nullptr; 2098 2099 /// The dependent memory instructions. 2100 /// This list is derived on demand in calculateDependencies(). 2101 SmallVector<ScheduleData *, 4> MemoryDependencies; 2102 2103 /// This ScheduleData is in the current scheduling region if this matches 2104 /// the current SchedulingRegionID of BlockScheduling. 2105 int SchedulingRegionID = 0; 2106 2107 /// Used for getting a "good" final ordering of instructions. 2108 int SchedulingPriority = 0; 2109 2110 /// The number of dependencies. Constitutes of the number of users of the 2111 /// instruction plus the number of dependent memory instructions (if any). 2112 /// This value is calculated on demand. 2113 /// If InvalidDeps, the number of dependencies is not calculated yet. 2114 int Dependencies = InvalidDeps; 2115 2116 /// The number of dependencies minus the number of dependencies of scheduled 2117 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2118 /// for scheduling. 2119 /// Note that this is negative as long as Dependencies is not calculated. 2120 int UnscheduledDeps = InvalidDeps; 2121 2122 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 2123 /// single instructions. 2124 int UnscheduledDepsInBundle = InvalidDeps; 2125 2126 /// True if this instruction is scheduled (or considered as scheduled in the 2127 /// dry-run). 2128 bool IsScheduled = false; 2129 2130 /// Opcode of the current instruction in the schedule data. 2131 Value *OpValue = nullptr; 2132 2133 /// The TreeEntry that this instruction corresponds to. 2134 TreeEntry *TE = nullptr; 2135 2136 /// The lane of this node in the TreeEntry. 2137 int Lane = -1; 2138 }; 2139 2140 #ifndef NDEBUG 2141 friend inline raw_ostream &operator<<(raw_ostream &os, 2142 const BoUpSLP::ScheduleData &SD) { 2143 SD.dump(os); 2144 return os; 2145 } 2146 #endif 2147 2148 friend struct GraphTraits<BoUpSLP *>; 2149 friend struct DOTGraphTraits<BoUpSLP *>; 2150 2151 /// Contains all scheduling data for a basic block. 2152 struct BlockScheduling { 2153 BlockScheduling(BasicBlock *BB) 2154 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2155 2156 void clear() { 2157 ReadyInsts.clear(); 2158 ScheduleStart = nullptr; 2159 ScheduleEnd = nullptr; 2160 FirstLoadStoreInRegion = nullptr; 2161 LastLoadStoreInRegion = nullptr; 2162 2163 // Reduce the maximum schedule region size by the size of the 2164 // previous scheduling run. 2165 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2166 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2167 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2168 ScheduleRegionSize = 0; 2169 2170 // Make a new scheduling region, i.e. all existing ScheduleData is not 2171 // in the new region yet. 2172 ++SchedulingRegionID; 2173 } 2174 2175 ScheduleData *getScheduleData(Value *V) { 2176 ScheduleData *SD = ScheduleDataMap[V]; 2177 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2178 return SD; 2179 return nullptr; 2180 } 2181 2182 ScheduleData *getScheduleData(Value *V, Value *Key) { 2183 if (V == Key) 2184 return getScheduleData(V); 2185 auto I = ExtraScheduleDataMap.find(V); 2186 if (I != ExtraScheduleDataMap.end()) { 2187 ScheduleData *SD = I->second[Key]; 2188 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2189 return SD; 2190 } 2191 return nullptr; 2192 } 2193 2194 bool isInSchedulingRegion(ScheduleData *SD) const { 2195 return SD->SchedulingRegionID == SchedulingRegionID; 2196 } 2197 2198 /// Marks an instruction as scheduled and puts all dependent ready 2199 /// instructions into the ready-list. 2200 template <typename ReadyListType> 2201 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2202 SD->IsScheduled = true; 2203 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2204 2205 ScheduleData *BundleMember = SD; 2206 while (BundleMember) { 2207 if (BundleMember->Inst != BundleMember->OpValue) { 2208 BundleMember = BundleMember->NextInBundle; 2209 continue; 2210 } 2211 // Handle the def-use chain dependencies. 2212 2213 // Decrement the unscheduled counter and insert to ready list if ready. 2214 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2215 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2216 if (OpDef && OpDef->hasValidDependencies() && 2217 OpDef->incrementUnscheduledDeps(-1) == 0) { 2218 // There are no more unscheduled dependencies after 2219 // decrementing, so we can put the dependent instruction 2220 // into the ready list. 2221 ScheduleData *DepBundle = OpDef->FirstInBundle; 2222 assert(!DepBundle->IsScheduled && 2223 "already scheduled bundle gets ready"); 2224 ReadyList.insert(DepBundle); 2225 LLVM_DEBUG(dbgs() 2226 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2227 } 2228 }); 2229 }; 2230 2231 // If BundleMember is a vector bundle, its operands may have been 2232 // reordered duiring buildTree(). We therefore need to get its operands 2233 // through the TreeEntry. 2234 if (TreeEntry *TE = BundleMember->TE) { 2235 int Lane = BundleMember->Lane; 2236 assert(Lane >= 0 && "Lane not set"); 2237 2238 // Since vectorization tree is being built recursively this assertion 2239 // ensures that the tree entry has all operands set before reaching 2240 // this code. Couple of exceptions known at the moment are extracts 2241 // where their second (immediate) operand is not added. Since 2242 // immediates do not affect scheduler behavior this is considered 2243 // okay. 2244 auto *In = TE->getMainOp(); 2245 assert(In && 2246 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2247 isa<InsertElementInst>(In) || 2248 In->getNumOperands() == TE->getNumOperands()) && 2249 "Missed TreeEntry operands?"); 2250 (void)In; // fake use to avoid build failure when assertions disabled 2251 2252 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2253 OpIdx != NumOperands; ++OpIdx) 2254 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2255 DecrUnsched(I); 2256 } else { 2257 // If BundleMember is a stand-alone instruction, no operand reordering 2258 // has taken place, so we directly access its operands. 2259 for (Use &U : BundleMember->Inst->operands()) 2260 if (auto *I = dyn_cast<Instruction>(U.get())) 2261 DecrUnsched(I); 2262 } 2263 // Handle the memory dependencies. 2264 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2265 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2266 // There are no more unscheduled dependencies after decrementing, 2267 // so we can put the dependent instruction into the ready list. 2268 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2269 assert(!DepBundle->IsScheduled && 2270 "already scheduled bundle gets ready"); 2271 ReadyList.insert(DepBundle); 2272 LLVM_DEBUG(dbgs() 2273 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2274 } 2275 } 2276 BundleMember = BundleMember->NextInBundle; 2277 } 2278 } 2279 2280 void doForAllOpcodes(Value *V, 2281 function_ref<void(ScheduleData *SD)> Action) { 2282 if (ScheduleData *SD = getScheduleData(V)) 2283 Action(SD); 2284 auto I = ExtraScheduleDataMap.find(V); 2285 if (I != ExtraScheduleDataMap.end()) 2286 for (auto &P : I->second) 2287 if (P.second->SchedulingRegionID == SchedulingRegionID) 2288 Action(P.second); 2289 } 2290 2291 /// Put all instructions into the ReadyList which are ready for scheduling. 2292 template <typename ReadyListType> 2293 void initialFillReadyList(ReadyListType &ReadyList) { 2294 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2295 doForAllOpcodes(I, [&](ScheduleData *SD) { 2296 if (SD->isSchedulingEntity() && SD->isReady()) { 2297 ReadyList.insert(SD); 2298 LLVM_DEBUG(dbgs() 2299 << "SLP: initially in ready list: " << *I << "\n"); 2300 } 2301 }); 2302 } 2303 } 2304 2305 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2306 /// cyclic dependencies. This is only a dry-run, no instructions are 2307 /// actually moved at this stage. 2308 /// \returns the scheduling bundle. The returned Optional value is non-None 2309 /// if \p VL is allowed to be scheduled. 2310 Optional<ScheduleData *> 2311 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2312 const InstructionsState &S); 2313 2314 /// Un-bundles a group of instructions. 2315 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2316 2317 /// Allocates schedule data chunk. 2318 ScheduleData *allocateScheduleDataChunks(); 2319 2320 /// Extends the scheduling region so that V is inside the region. 2321 /// \returns true if the region size is within the limit. 2322 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2323 2324 /// Initialize the ScheduleData structures for new instructions in the 2325 /// scheduling region. 2326 void initScheduleData(Instruction *FromI, Instruction *ToI, 2327 ScheduleData *PrevLoadStore, 2328 ScheduleData *NextLoadStore); 2329 2330 /// Updates the dependency information of a bundle and of all instructions/ 2331 /// bundles which depend on the original bundle. 2332 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2333 BoUpSLP *SLP); 2334 2335 /// Sets all instruction in the scheduling region to un-scheduled. 2336 void resetSchedule(); 2337 2338 BasicBlock *BB; 2339 2340 /// Simple memory allocation for ScheduleData. 2341 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2342 2343 /// The size of a ScheduleData array in ScheduleDataChunks. 2344 int ChunkSize; 2345 2346 /// The allocator position in the current chunk, which is the last entry 2347 /// of ScheduleDataChunks. 2348 int ChunkPos; 2349 2350 /// Attaches ScheduleData to Instruction. 2351 /// Note that the mapping survives during all vectorization iterations, i.e. 2352 /// ScheduleData structures are recycled. 2353 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2354 2355 /// Attaches ScheduleData to Instruction with the leading key. 2356 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2357 ExtraScheduleDataMap; 2358 2359 struct ReadyList : SmallVector<ScheduleData *, 8> { 2360 void insert(ScheduleData *SD) { push_back(SD); } 2361 }; 2362 2363 /// The ready-list for scheduling (only used for the dry-run). 2364 ReadyList ReadyInsts; 2365 2366 /// The first instruction of the scheduling region. 2367 Instruction *ScheduleStart = nullptr; 2368 2369 /// The first instruction _after_ the scheduling region. 2370 Instruction *ScheduleEnd = nullptr; 2371 2372 /// The first memory accessing instruction in the scheduling region 2373 /// (can be null). 2374 ScheduleData *FirstLoadStoreInRegion = nullptr; 2375 2376 /// The last memory accessing instruction in the scheduling region 2377 /// (can be null). 2378 ScheduleData *LastLoadStoreInRegion = nullptr; 2379 2380 /// The current size of the scheduling region. 2381 int ScheduleRegionSize = 0; 2382 2383 /// The maximum size allowed for the scheduling region. 2384 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2385 2386 /// The ID of the scheduling region. For a new vectorization iteration this 2387 /// is incremented which "removes" all ScheduleData from the region. 2388 // Make sure that the initial SchedulingRegionID is greater than the 2389 // initial SchedulingRegionID in ScheduleData (which is 0). 2390 int SchedulingRegionID = 1; 2391 }; 2392 2393 /// Attaches the BlockScheduling structures to basic blocks. 2394 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2395 2396 /// Performs the "real" scheduling. Done before vectorization is actually 2397 /// performed in a basic block. 2398 void scheduleBlock(BlockScheduling *BS); 2399 2400 /// List of users to ignore during scheduling and that don't need extracting. 2401 ArrayRef<Value *> UserIgnoreList; 2402 2403 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2404 /// sorted SmallVectors of unsigned. 2405 struct OrdersTypeDenseMapInfo { 2406 static OrdersType getEmptyKey() { 2407 OrdersType V; 2408 V.push_back(~1U); 2409 return V; 2410 } 2411 2412 static OrdersType getTombstoneKey() { 2413 OrdersType V; 2414 V.push_back(~2U); 2415 return V; 2416 } 2417 2418 static unsigned getHashValue(const OrdersType &V) { 2419 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2420 } 2421 2422 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2423 return LHS == RHS; 2424 } 2425 }; 2426 2427 /// Contains orders of operations along with the number of bundles that have 2428 /// operations in this order. It stores only those orders that require 2429 /// reordering, if reordering is not required it is counted using \a 2430 /// NumOpsWantToKeepOriginalOrder. 2431 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 2432 /// Number of bundles that do not require reordering. 2433 unsigned NumOpsWantToKeepOriginalOrder = 0; 2434 2435 // Analysis and block reference. 2436 Function *F; 2437 ScalarEvolution *SE; 2438 TargetTransformInfo *TTI; 2439 TargetLibraryInfo *TLI; 2440 AAResults *AA; 2441 LoopInfo *LI; 2442 DominatorTree *DT; 2443 AssumptionCache *AC; 2444 DemandedBits *DB; 2445 const DataLayout *DL; 2446 OptimizationRemarkEmitter *ORE; 2447 2448 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2449 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2450 2451 /// Instruction builder to construct the vectorized tree. 2452 IRBuilder<> Builder; 2453 2454 /// A map of scalar integer values to the smallest bit width with which they 2455 /// can legally be represented. The values map to (width, signed) pairs, 2456 /// where "width" indicates the minimum bit width and "signed" is True if the 2457 /// value must be signed-extended, rather than zero-extended, back to its 2458 /// original width. 2459 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2460 }; 2461 2462 } // end namespace slpvectorizer 2463 2464 template <> struct GraphTraits<BoUpSLP *> { 2465 using TreeEntry = BoUpSLP::TreeEntry; 2466 2467 /// NodeRef has to be a pointer per the GraphWriter. 2468 using NodeRef = TreeEntry *; 2469 2470 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2471 2472 /// Add the VectorizableTree to the index iterator to be able to return 2473 /// TreeEntry pointers. 2474 struct ChildIteratorType 2475 : public iterator_adaptor_base< 2476 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2477 ContainerTy &VectorizableTree; 2478 2479 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2480 ContainerTy &VT) 2481 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2482 2483 NodeRef operator*() { return I->UserTE; } 2484 }; 2485 2486 static NodeRef getEntryNode(BoUpSLP &R) { 2487 return R.VectorizableTree[0].get(); 2488 } 2489 2490 static ChildIteratorType child_begin(NodeRef N) { 2491 return {N->UserTreeIndices.begin(), N->Container}; 2492 } 2493 2494 static ChildIteratorType child_end(NodeRef N) { 2495 return {N->UserTreeIndices.end(), N->Container}; 2496 } 2497 2498 /// For the node iterator we just need to turn the TreeEntry iterator into a 2499 /// TreeEntry* iterator so that it dereferences to NodeRef. 2500 class nodes_iterator { 2501 using ItTy = ContainerTy::iterator; 2502 ItTy It; 2503 2504 public: 2505 nodes_iterator(const ItTy &It2) : It(It2) {} 2506 NodeRef operator*() { return It->get(); } 2507 nodes_iterator operator++() { 2508 ++It; 2509 return *this; 2510 } 2511 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2512 }; 2513 2514 static nodes_iterator nodes_begin(BoUpSLP *R) { 2515 return nodes_iterator(R->VectorizableTree.begin()); 2516 } 2517 2518 static nodes_iterator nodes_end(BoUpSLP *R) { 2519 return nodes_iterator(R->VectorizableTree.end()); 2520 } 2521 2522 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2523 }; 2524 2525 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2526 using TreeEntry = BoUpSLP::TreeEntry; 2527 2528 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2529 2530 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2531 std::string Str; 2532 raw_string_ostream OS(Str); 2533 if (isSplat(Entry->Scalars)) { 2534 OS << "<splat> " << *Entry->Scalars[0]; 2535 return Str; 2536 } 2537 for (auto V : Entry->Scalars) { 2538 OS << *V; 2539 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 2540 return EU.Scalar == V; 2541 })) 2542 OS << " <extract>"; 2543 OS << "\n"; 2544 } 2545 return Str; 2546 } 2547 2548 static std::string getNodeAttributes(const TreeEntry *Entry, 2549 const BoUpSLP *) { 2550 if (Entry->State == TreeEntry::NeedToGather) 2551 return "color=red"; 2552 return ""; 2553 } 2554 }; 2555 2556 } // end namespace llvm 2557 2558 BoUpSLP::~BoUpSLP() { 2559 for (const auto &Pair : DeletedInstructions) { 2560 // Replace operands of ignored instructions with Undefs in case if they were 2561 // marked for deletion. 2562 if (Pair.getSecond()) { 2563 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2564 Pair.getFirst()->replaceAllUsesWith(Undef); 2565 } 2566 Pair.getFirst()->dropAllReferences(); 2567 } 2568 for (const auto &Pair : DeletedInstructions) { 2569 assert(Pair.getFirst()->use_empty() && 2570 "trying to erase instruction with users."); 2571 Pair.getFirst()->eraseFromParent(); 2572 } 2573 #ifdef EXPENSIVE_CHECKS 2574 // If we could guarantee that this call is not extremely slow, we could 2575 // remove the ifdef limitation (see PR47712). 2576 assert(!verifyFunction(*F, &dbgs())); 2577 #endif 2578 } 2579 2580 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2581 for (auto *V : AV) { 2582 if (auto *I = dyn_cast<Instruction>(V)) 2583 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 2584 }; 2585 } 2586 2587 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2588 ArrayRef<Value *> UserIgnoreLst) { 2589 ExtraValueToDebugLocsMap ExternallyUsedValues; 2590 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 2591 } 2592 2593 static int findLaneForValue(ArrayRef<Value *> Scalars, 2594 ArrayRef<int> ReuseShuffleIndices, Value *V) { 2595 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 2596 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2597 if (!ReuseShuffleIndices.empty()) { 2598 FoundLane = std::distance(ReuseShuffleIndices.begin(), 2599 find(ReuseShuffleIndices, FoundLane)); 2600 } 2601 return FoundLane; 2602 } 2603 2604 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2605 ExtraValueToDebugLocsMap &ExternallyUsedValues, 2606 ArrayRef<Value *> UserIgnoreLst) { 2607 deleteTree(); 2608 UserIgnoreList = UserIgnoreLst; 2609 if (!allSameType(Roots)) 2610 return; 2611 buildTree_rec(Roots, 0, EdgeInfo()); 2612 2613 // Collect the values that we need to extract from the tree. 2614 for (auto &TEPtr : VectorizableTree) { 2615 TreeEntry *Entry = TEPtr.get(); 2616 2617 // No need to handle users of gathered values. 2618 if (Entry->State == TreeEntry::NeedToGather) 2619 continue; 2620 2621 // For each lane: 2622 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2623 Value *Scalar = Entry->Scalars[Lane]; 2624 int FoundLane = 2625 findLaneForValue(Entry->Scalars, Entry->ReuseShuffleIndices, Scalar); 2626 2627 // Check if the scalar is externally used as an extra arg. 2628 auto ExtI = ExternallyUsedValues.find(Scalar); 2629 if (ExtI != ExternallyUsedValues.end()) { 2630 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 2631 << Lane << " from " << *Scalar << ".\n"); 2632 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 2633 } 2634 for (User *U : Scalar->users()) { 2635 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 2636 2637 Instruction *UserInst = dyn_cast<Instruction>(U); 2638 if (!UserInst) 2639 continue; 2640 2641 // Skip in-tree scalars that become vectors 2642 if (TreeEntry *UseEntry = getTreeEntry(U)) { 2643 Value *UseScalar = UseEntry->Scalars[0]; 2644 // Some in-tree scalars will remain as scalar in vectorized 2645 // instructions. If that is the case, the one in Lane 0 will 2646 // be used. 2647 if (UseScalar != U || 2648 UseEntry->State == TreeEntry::ScatterVectorize || 2649 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 2650 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 2651 << ".\n"); 2652 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 2653 continue; 2654 } 2655 } 2656 2657 // Ignore users in the user ignore list. 2658 if (is_contained(UserIgnoreList, UserInst)) 2659 continue; 2660 2661 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 2662 << Lane << " from " << *Scalar << ".\n"); 2663 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 2664 } 2665 } 2666 } 2667 } 2668 2669 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 2670 const EdgeInfo &UserTreeIdx) { 2671 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 2672 2673 InstructionsState S = getSameOpcode(VL); 2674 if (Depth == RecursionMaxDepth) { 2675 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 2676 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2677 return; 2678 } 2679 2680 // Don't handle vectors. 2681 if (S.OpValue->getType()->isVectorTy() && 2682 !isa<InsertElementInst>(S.OpValue)) { 2683 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 2684 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2685 return; 2686 } 2687 2688 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2689 if (SI->getValueOperand()->getType()->isVectorTy()) { 2690 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 2691 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2692 return; 2693 } 2694 2695 // If all of the operands are identical or constant we have a simple solution. 2696 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 2697 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 2698 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2699 return; 2700 } 2701 2702 // We now know that this is a vector of instructions of the same type from 2703 // the same block. 2704 2705 // Don't vectorize ephemeral values. 2706 for (Value *V : VL) { 2707 if (EphValues.count(V)) { 2708 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2709 << ") is ephemeral.\n"); 2710 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2711 return; 2712 } 2713 } 2714 2715 // Check if this is a duplicate of another entry. 2716 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2717 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 2718 if (!E->isSame(VL)) { 2719 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 2720 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2721 return; 2722 } 2723 // Record the reuse of the tree node. FIXME, currently this is only used to 2724 // properly draw the graph rather than for the actual vectorization. 2725 E->UserTreeIndices.push_back(UserTreeIdx); 2726 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 2727 << ".\n"); 2728 return; 2729 } 2730 2731 // Check that none of the instructions in the bundle are already in the tree. 2732 for (Value *V : VL) { 2733 auto *I = dyn_cast<Instruction>(V); 2734 if (!I) 2735 continue; 2736 if (getTreeEntry(I)) { 2737 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2738 << ") is already in tree.\n"); 2739 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2740 return; 2741 } 2742 } 2743 2744 // If any of the scalars is marked as a value that needs to stay scalar, then 2745 // we need to gather the scalars. 2746 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 2747 for (Value *V : VL) { 2748 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) { 2749 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 2750 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2751 return; 2752 } 2753 } 2754 2755 // Check that all of the users of the scalars that we want to vectorize are 2756 // schedulable. 2757 auto *VL0 = cast<Instruction>(S.OpValue); 2758 BasicBlock *BB = VL0->getParent(); 2759 2760 if (!DT->isReachableFromEntry(BB)) { 2761 // Don't go into unreachable blocks. They may contain instructions with 2762 // dependency cycles which confuse the final scheduling. 2763 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 2764 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2765 return; 2766 } 2767 2768 // Check that every instruction appears once in this bundle. 2769 SmallVector<unsigned, 4> ReuseShuffleIndicies; 2770 SmallVector<Value *, 4> UniqueValues; 2771 DenseMap<Value *, unsigned> UniquePositions; 2772 for (Value *V : VL) { 2773 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 2774 ReuseShuffleIndicies.emplace_back(Res.first->second); 2775 if (Res.second) 2776 UniqueValues.emplace_back(V); 2777 } 2778 size_t NumUniqueScalarValues = UniqueValues.size(); 2779 if (NumUniqueScalarValues == VL.size()) { 2780 ReuseShuffleIndicies.clear(); 2781 } else { 2782 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 2783 if (NumUniqueScalarValues <= 1 || 2784 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 2785 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 2786 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2787 return; 2788 } 2789 VL = UniqueValues; 2790 } 2791 2792 auto &BSRef = BlocksSchedules[BB]; 2793 if (!BSRef) 2794 BSRef = std::make_unique<BlockScheduling>(BB); 2795 2796 BlockScheduling &BS = *BSRef.get(); 2797 2798 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 2799 if (!Bundle) { 2800 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 2801 assert((!BS.getScheduleData(VL0) || 2802 !BS.getScheduleData(VL0)->isPartOfBundle()) && 2803 "tryScheduleBundle should cancelScheduling on failure"); 2804 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2805 ReuseShuffleIndicies); 2806 return; 2807 } 2808 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 2809 2810 unsigned ShuffleOrOp = S.isAltShuffle() ? 2811 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2812 switch (ShuffleOrOp) { 2813 case Instruction::PHI: { 2814 auto *PH = cast<PHINode>(VL0); 2815 2816 // Check for terminator values (e.g. invoke). 2817 for (Value *V : VL) 2818 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 2819 Instruction *Term = dyn_cast<Instruction>( 2820 cast<PHINode>(V)->getIncomingValueForBlock( 2821 PH->getIncomingBlock(I))); 2822 if (Term && Term->isTerminator()) { 2823 LLVM_DEBUG(dbgs() 2824 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 2825 BS.cancelScheduling(VL, VL0); 2826 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2827 ReuseShuffleIndicies); 2828 return; 2829 } 2830 } 2831 2832 TreeEntry *TE = 2833 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 2834 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 2835 2836 // Keeps the reordered operands to avoid code duplication. 2837 SmallVector<ValueList, 2> OperandsVec; 2838 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 2839 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 2840 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 2841 TE->setOperand(I, Operands); 2842 OperandsVec.push_back(Operands); 2843 continue; 2844 } 2845 ValueList Operands; 2846 // Prepare the operand vector. 2847 for (Value *V : VL) 2848 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 2849 PH->getIncomingBlock(I))); 2850 TE->setOperand(I, Operands); 2851 OperandsVec.push_back(Operands); 2852 } 2853 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 2854 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 2855 return; 2856 } 2857 case Instruction::ExtractValue: 2858 case Instruction::ExtractElement: { 2859 OrdersType CurrentOrder; 2860 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 2861 if (Reuse) { 2862 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 2863 ++NumOpsWantToKeepOriginalOrder; 2864 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2865 ReuseShuffleIndicies); 2866 // This is a special case, as it does not gather, but at the same time 2867 // we are not extending buildTree_rec() towards the operands. 2868 ValueList Op0; 2869 Op0.assign(VL.size(), VL0->getOperand(0)); 2870 VectorizableTree.back()->setOperand(0, Op0); 2871 return; 2872 } 2873 if (!CurrentOrder.empty()) { 2874 LLVM_DEBUG({ 2875 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 2876 "with order"; 2877 for (unsigned Idx : CurrentOrder) 2878 dbgs() << " " << Idx; 2879 dbgs() << "\n"; 2880 }); 2881 // Insert new order with initial value 0, if it does not exist, 2882 // otherwise return the iterator to the existing one. 2883 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2884 ReuseShuffleIndicies, CurrentOrder); 2885 findRootOrder(CurrentOrder); 2886 ++NumOpsWantToKeepOrder[CurrentOrder]; 2887 // This is a special case, as it does not gather, but at the same time 2888 // we are not extending buildTree_rec() towards the operands. 2889 ValueList Op0; 2890 Op0.assign(VL.size(), VL0->getOperand(0)); 2891 VectorizableTree.back()->setOperand(0, Op0); 2892 return; 2893 } 2894 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 2895 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2896 ReuseShuffleIndicies); 2897 BS.cancelScheduling(VL, VL0); 2898 return; 2899 } 2900 case Instruction::InsertElement: { 2901 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 2902 2903 // Check that we have a buildvector and not a shuffle of 2 or more 2904 // different vectors. 2905 ValueSet SourceVectors; 2906 for (Value *V : VL) 2907 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 2908 2909 if (count_if(VL, [&SourceVectors](Value *V) { 2910 return !SourceVectors.contains(V); 2911 }) >= 2) { 2912 // Found 2nd source vector - cancel. 2913 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 2914 "different source vectors.\n"); 2915 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2916 ReuseShuffleIndicies); 2917 BS.cancelScheduling(VL, VL0); 2918 return; 2919 } 2920 2921 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx); 2922 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 2923 2924 constexpr int NumOps = 2; 2925 ValueList VectorOperands[NumOps]; 2926 for (int I = 0; I < NumOps; ++I) { 2927 for (Value *V : VL) 2928 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 2929 2930 TE->setOperand(I, VectorOperands[I]); 2931 } 2932 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, 0}); 2933 return; 2934 } 2935 case Instruction::Load: { 2936 // Check that a vectorized load would load the same memory as a scalar 2937 // load. For example, we don't want to vectorize loads that are smaller 2938 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 2939 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 2940 // from such a struct, we read/write packed bits disagreeing with the 2941 // unvectorized version. 2942 Type *ScalarTy = VL0->getType(); 2943 2944 if (DL->getTypeSizeInBits(ScalarTy) != 2945 DL->getTypeAllocSizeInBits(ScalarTy)) { 2946 BS.cancelScheduling(VL, VL0); 2947 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2948 ReuseShuffleIndicies); 2949 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 2950 return; 2951 } 2952 2953 // Make sure all loads in the bundle are simple - we can't vectorize 2954 // atomic or volatile loads. 2955 SmallVector<Value *, 4> PointerOps(VL.size()); 2956 auto POIter = PointerOps.begin(); 2957 for (Value *V : VL) { 2958 auto *L = cast<LoadInst>(V); 2959 if (!L->isSimple()) { 2960 BS.cancelScheduling(VL, VL0); 2961 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2962 ReuseShuffleIndicies); 2963 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 2964 return; 2965 } 2966 *POIter = L->getPointerOperand(); 2967 ++POIter; 2968 } 2969 2970 OrdersType CurrentOrder; 2971 // Check the order of pointer operands. 2972 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 2973 Value *Ptr0; 2974 Value *PtrN; 2975 if (CurrentOrder.empty()) { 2976 Ptr0 = PointerOps.front(); 2977 PtrN = PointerOps.back(); 2978 } else { 2979 Ptr0 = PointerOps[CurrentOrder.front()]; 2980 PtrN = PointerOps[CurrentOrder.back()]; 2981 } 2982 Optional<int> Diff = getPointersDiff(Ptr0, PtrN, *DL, *SE); 2983 // Check that the sorted loads are consecutive. 2984 if (static_cast<unsigned>(*Diff) == VL.size() - 1) { 2985 if (CurrentOrder.empty()) { 2986 // Original loads are consecutive and does not require reordering. 2987 ++NumOpsWantToKeepOriginalOrder; 2988 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 2989 UserTreeIdx, ReuseShuffleIndicies); 2990 TE->setOperandsInOrder(); 2991 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 2992 } else { 2993 // Need to reorder. 2994 TreeEntry *TE = 2995 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2996 ReuseShuffleIndicies, CurrentOrder); 2997 TE->setOperandsInOrder(); 2998 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 2999 findRootOrder(CurrentOrder); 3000 ++NumOpsWantToKeepOrder[CurrentOrder]; 3001 } 3002 return; 3003 } 3004 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 3005 TreeEntry *TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 3006 UserTreeIdx, ReuseShuffleIndicies); 3007 TE->setOperandsInOrder(); 3008 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 3009 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 3010 return; 3011 } 3012 3013 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 3014 BS.cancelScheduling(VL, VL0); 3015 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3016 ReuseShuffleIndicies); 3017 return; 3018 } 3019 case Instruction::ZExt: 3020 case Instruction::SExt: 3021 case Instruction::FPToUI: 3022 case Instruction::FPToSI: 3023 case Instruction::FPExt: 3024 case Instruction::PtrToInt: 3025 case Instruction::IntToPtr: 3026 case Instruction::SIToFP: 3027 case Instruction::UIToFP: 3028 case Instruction::Trunc: 3029 case Instruction::FPTrunc: 3030 case Instruction::BitCast: { 3031 Type *SrcTy = VL0->getOperand(0)->getType(); 3032 for (Value *V : VL) { 3033 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 3034 if (Ty != SrcTy || !isValidElementType(Ty)) { 3035 BS.cancelScheduling(VL, VL0); 3036 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3037 ReuseShuffleIndicies); 3038 LLVM_DEBUG(dbgs() 3039 << "SLP: Gathering casts with different src types.\n"); 3040 return; 3041 } 3042 } 3043 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3044 ReuseShuffleIndicies); 3045 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 3046 3047 TE->setOperandsInOrder(); 3048 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3049 ValueList Operands; 3050 // Prepare the operand vector. 3051 for (Value *V : VL) 3052 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3053 3054 buildTree_rec(Operands, Depth + 1, {TE, i}); 3055 } 3056 return; 3057 } 3058 case Instruction::ICmp: 3059 case Instruction::FCmp: { 3060 // Check that all of the compares have the same predicate. 3061 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 3062 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 3063 Type *ComparedTy = VL0->getOperand(0)->getType(); 3064 for (Value *V : VL) { 3065 CmpInst *Cmp = cast<CmpInst>(V); 3066 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 3067 Cmp->getOperand(0)->getType() != ComparedTy) { 3068 BS.cancelScheduling(VL, VL0); 3069 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3070 ReuseShuffleIndicies); 3071 LLVM_DEBUG(dbgs() 3072 << "SLP: Gathering cmp with different predicate.\n"); 3073 return; 3074 } 3075 } 3076 3077 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3078 ReuseShuffleIndicies); 3079 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 3080 3081 ValueList Left, Right; 3082 if (cast<CmpInst>(VL0)->isCommutative()) { 3083 // Commutative predicate - collect + sort operands of the instructions 3084 // so that each side is more likely to have the same opcode. 3085 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 3086 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3087 } else { 3088 // Collect operands - commute if it uses the swapped predicate. 3089 for (Value *V : VL) { 3090 auto *Cmp = cast<CmpInst>(V); 3091 Value *LHS = Cmp->getOperand(0); 3092 Value *RHS = Cmp->getOperand(1); 3093 if (Cmp->getPredicate() != P0) 3094 std::swap(LHS, RHS); 3095 Left.push_back(LHS); 3096 Right.push_back(RHS); 3097 } 3098 } 3099 TE->setOperand(0, Left); 3100 TE->setOperand(1, Right); 3101 buildTree_rec(Left, Depth + 1, {TE, 0}); 3102 buildTree_rec(Right, Depth + 1, {TE, 1}); 3103 return; 3104 } 3105 case Instruction::Select: 3106 case Instruction::FNeg: 3107 case Instruction::Add: 3108 case Instruction::FAdd: 3109 case Instruction::Sub: 3110 case Instruction::FSub: 3111 case Instruction::Mul: 3112 case Instruction::FMul: 3113 case Instruction::UDiv: 3114 case Instruction::SDiv: 3115 case Instruction::FDiv: 3116 case Instruction::URem: 3117 case Instruction::SRem: 3118 case Instruction::FRem: 3119 case Instruction::Shl: 3120 case Instruction::LShr: 3121 case Instruction::AShr: 3122 case Instruction::And: 3123 case Instruction::Or: 3124 case Instruction::Xor: { 3125 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3126 ReuseShuffleIndicies); 3127 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 3128 3129 // Sort operands of the instructions so that each side is more likely to 3130 // have the same opcode. 3131 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 3132 ValueList Left, Right; 3133 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3134 TE->setOperand(0, Left); 3135 TE->setOperand(1, Right); 3136 buildTree_rec(Left, Depth + 1, {TE, 0}); 3137 buildTree_rec(Right, Depth + 1, {TE, 1}); 3138 return; 3139 } 3140 3141 TE->setOperandsInOrder(); 3142 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3143 ValueList Operands; 3144 // Prepare the operand vector. 3145 for (Value *V : VL) 3146 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3147 3148 buildTree_rec(Operands, Depth + 1, {TE, i}); 3149 } 3150 return; 3151 } 3152 case Instruction::GetElementPtr: { 3153 // We don't combine GEPs with complicated (nested) indexing. 3154 for (Value *V : VL) { 3155 if (cast<Instruction>(V)->getNumOperands() != 2) { 3156 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 3157 BS.cancelScheduling(VL, VL0); 3158 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3159 ReuseShuffleIndicies); 3160 return; 3161 } 3162 } 3163 3164 // We can't combine several GEPs into one vector if they operate on 3165 // different types. 3166 Type *Ty0 = VL0->getOperand(0)->getType(); 3167 for (Value *V : VL) { 3168 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 3169 if (Ty0 != CurTy) { 3170 LLVM_DEBUG(dbgs() 3171 << "SLP: not-vectorizable GEP (different types).\n"); 3172 BS.cancelScheduling(VL, VL0); 3173 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3174 ReuseShuffleIndicies); 3175 return; 3176 } 3177 } 3178 3179 // We don't combine GEPs with non-constant indexes. 3180 Type *Ty1 = VL0->getOperand(1)->getType(); 3181 for (Value *V : VL) { 3182 auto Op = cast<Instruction>(V)->getOperand(1); 3183 if (!isa<ConstantInt>(Op) || 3184 (Op->getType() != Ty1 && 3185 Op->getType()->getScalarSizeInBits() > 3186 DL->getIndexSizeInBits( 3187 V->getType()->getPointerAddressSpace()))) { 3188 LLVM_DEBUG(dbgs() 3189 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 3190 BS.cancelScheduling(VL, VL0); 3191 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3192 ReuseShuffleIndicies); 3193 return; 3194 } 3195 } 3196 3197 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3198 ReuseShuffleIndicies); 3199 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 3200 TE->setOperandsInOrder(); 3201 for (unsigned i = 0, e = 2; i < e; ++i) { 3202 ValueList Operands; 3203 // Prepare the operand vector. 3204 for (Value *V : VL) 3205 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3206 3207 buildTree_rec(Operands, Depth + 1, {TE, i}); 3208 } 3209 return; 3210 } 3211 case Instruction::Store: { 3212 // Check if the stores are consecutive or if we need to swizzle them. 3213 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 3214 // Avoid types that are padded when being allocated as scalars, while 3215 // being packed together in a vector (such as i1). 3216 if (DL->getTypeSizeInBits(ScalarTy) != 3217 DL->getTypeAllocSizeInBits(ScalarTy)) { 3218 BS.cancelScheduling(VL, VL0); 3219 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3220 ReuseShuffleIndicies); 3221 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 3222 return; 3223 } 3224 // Make sure all stores in the bundle are simple - we can't vectorize 3225 // atomic or volatile stores. 3226 SmallVector<Value *, 4> PointerOps(VL.size()); 3227 ValueList Operands(VL.size()); 3228 auto POIter = PointerOps.begin(); 3229 auto OIter = Operands.begin(); 3230 for (Value *V : VL) { 3231 auto *SI = cast<StoreInst>(V); 3232 if (!SI->isSimple()) { 3233 BS.cancelScheduling(VL, VL0); 3234 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3235 ReuseShuffleIndicies); 3236 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 3237 return; 3238 } 3239 *POIter = SI->getPointerOperand(); 3240 *OIter = SI->getValueOperand(); 3241 ++POIter; 3242 ++OIter; 3243 } 3244 3245 OrdersType CurrentOrder; 3246 // Check the order of pointer operands. 3247 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 3248 Value *Ptr0; 3249 Value *PtrN; 3250 if (CurrentOrder.empty()) { 3251 Ptr0 = PointerOps.front(); 3252 PtrN = PointerOps.back(); 3253 } else { 3254 Ptr0 = PointerOps[CurrentOrder.front()]; 3255 PtrN = PointerOps[CurrentOrder.back()]; 3256 } 3257 Optional<int> Dist = getPointersDiff(Ptr0, PtrN, *DL, *SE); 3258 // Check that the sorted pointer operands are consecutive. 3259 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 3260 if (CurrentOrder.empty()) { 3261 // Original stores are consecutive and does not require reordering. 3262 ++NumOpsWantToKeepOriginalOrder; 3263 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 3264 UserTreeIdx, ReuseShuffleIndicies); 3265 TE->setOperandsInOrder(); 3266 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3267 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 3268 } else { 3269 TreeEntry *TE = 3270 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3271 ReuseShuffleIndicies, CurrentOrder); 3272 TE->setOperandsInOrder(); 3273 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3274 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 3275 findRootOrder(CurrentOrder); 3276 ++NumOpsWantToKeepOrder[CurrentOrder]; 3277 } 3278 return; 3279 } 3280 } 3281 3282 BS.cancelScheduling(VL, VL0); 3283 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3284 ReuseShuffleIndicies); 3285 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 3286 return; 3287 } 3288 case Instruction::Call: { 3289 // Check if the calls are all to the same vectorizable intrinsic or 3290 // library function. 3291 CallInst *CI = cast<CallInst>(VL0); 3292 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3293 3294 VFShape Shape = VFShape::get( 3295 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 3296 false /*HasGlobalPred*/); 3297 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3298 3299 if (!VecFunc && !isTriviallyVectorizable(ID)) { 3300 BS.cancelScheduling(VL, VL0); 3301 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3302 ReuseShuffleIndicies); 3303 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 3304 return; 3305 } 3306 Function *F = CI->getCalledFunction(); 3307 unsigned NumArgs = CI->getNumArgOperands(); 3308 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 3309 for (unsigned j = 0; j != NumArgs; ++j) 3310 if (hasVectorInstrinsicScalarOpd(ID, j)) 3311 ScalarArgs[j] = CI->getArgOperand(j); 3312 for (Value *V : VL) { 3313 CallInst *CI2 = dyn_cast<CallInst>(V); 3314 if (!CI2 || CI2->getCalledFunction() != F || 3315 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 3316 (VecFunc && 3317 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 3318 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 3319 BS.cancelScheduling(VL, VL0); 3320 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3321 ReuseShuffleIndicies); 3322 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 3323 << "\n"); 3324 return; 3325 } 3326 // Some intrinsics have scalar arguments and should be same in order for 3327 // them to be vectorized. 3328 for (unsigned j = 0; j != NumArgs; ++j) { 3329 if (hasVectorInstrinsicScalarOpd(ID, j)) { 3330 Value *A1J = CI2->getArgOperand(j); 3331 if (ScalarArgs[j] != A1J) { 3332 BS.cancelScheduling(VL, VL0); 3333 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3334 ReuseShuffleIndicies); 3335 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 3336 << " argument " << ScalarArgs[j] << "!=" << A1J 3337 << "\n"); 3338 return; 3339 } 3340 } 3341 } 3342 // Verify that the bundle operands are identical between the two calls. 3343 if (CI->hasOperandBundles() && 3344 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 3345 CI->op_begin() + CI->getBundleOperandsEndIndex(), 3346 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 3347 BS.cancelScheduling(VL, VL0); 3348 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3349 ReuseShuffleIndicies); 3350 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 3351 << *CI << "!=" << *V << '\n'); 3352 return; 3353 } 3354 } 3355 3356 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3357 ReuseShuffleIndicies); 3358 TE->setOperandsInOrder(); 3359 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 3360 ValueList Operands; 3361 // Prepare the operand vector. 3362 for (Value *V : VL) { 3363 auto *CI2 = cast<CallInst>(V); 3364 Operands.push_back(CI2->getArgOperand(i)); 3365 } 3366 buildTree_rec(Operands, Depth + 1, {TE, i}); 3367 } 3368 return; 3369 } 3370 case Instruction::ShuffleVector: { 3371 // If this is not an alternate sequence of opcode like add-sub 3372 // then do not vectorize this instruction. 3373 if (!S.isAltShuffle()) { 3374 BS.cancelScheduling(VL, VL0); 3375 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3376 ReuseShuffleIndicies); 3377 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 3378 return; 3379 } 3380 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3381 ReuseShuffleIndicies); 3382 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 3383 3384 // Reorder operands if reordering would enable vectorization. 3385 if (isa<BinaryOperator>(VL0)) { 3386 ValueList Left, Right; 3387 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3388 TE->setOperand(0, Left); 3389 TE->setOperand(1, Right); 3390 buildTree_rec(Left, Depth + 1, {TE, 0}); 3391 buildTree_rec(Right, Depth + 1, {TE, 1}); 3392 return; 3393 } 3394 3395 TE->setOperandsInOrder(); 3396 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3397 ValueList Operands; 3398 // Prepare the operand vector. 3399 for (Value *V : VL) 3400 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3401 3402 buildTree_rec(Operands, Depth + 1, {TE, i}); 3403 } 3404 return; 3405 } 3406 default: 3407 BS.cancelScheduling(VL, VL0); 3408 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3409 ReuseShuffleIndicies); 3410 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 3411 return; 3412 } 3413 } 3414 3415 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 3416 unsigned N = 1; 3417 Type *EltTy = T; 3418 3419 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 3420 isa<VectorType>(EltTy)) { 3421 if (auto *ST = dyn_cast<StructType>(EltTy)) { 3422 // Check that struct is homogeneous. 3423 for (const auto *Ty : ST->elements()) 3424 if (Ty != *ST->element_begin()) 3425 return 0; 3426 N *= ST->getNumElements(); 3427 EltTy = *ST->element_begin(); 3428 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 3429 N *= AT->getNumElements(); 3430 EltTy = AT->getElementType(); 3431 } else { 3432 auto *VT = cast<FixedVectorType>(EltTy); 3433 N *= VT->getNumElements(); 3434 EltTy = VT->getElementType(); 3435 } 3436 } 3437 3438 if (!isValidElementType(EltTy)) 3439 return 0; 3440 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 3441 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 3442 return 0; 3443 return N; 3444 } 3445 3446 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 3447 SmallVectorImpl<unsigned> &CurrentOrder) const { 3448 Instruction *E0 = cast<Instruction>(OpValue); 3449 assert(E0->getOpcode() == Instruction::ExtractElement || 3450 E0->getOpcode() == Instruction::ExtractValue); 3451 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 3452 // Check if all of the extracts come from the same vector and from the 3453 // correct offset. 3454 Value *Vec = E0->getOperand(0); 3455 3456 CurrentOrder.clear(); 3457 3458 // We have to extract from a vector/aggregate with the same number of elements. 3459 unsigned NElts; 3460 if (E0->getOpcode() == Instruction::ExtractValue) { 3461 const DataLayout &DL = E0->getModule()->getDataLayout(); 3462 NElts = canMapToVector(Vec->getType(), DL); 3463 if (!NElts) 3464 return false; 3465 // Check if load can be rewritten as load of vector. 3466 LoadInst *LI = dyn_cast<LoadInst>(Vec); 3467 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 3468 return false; 3469 } else { 3470 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 3471 } 3472 3473 if (NElts != VL.size()) 3474 return false; 3475 3476 // Check that all of the indices extract from the correct offset. 3477 bool ShouldKeepOrder = true; 3478 unsigned E = VL.size(); 3479 // Assign to all items the initial value E + 1 so we can check if the extract 3480 // instruction index was used already. 3481 // Also, later we can check that all the indices are used and we have a 3482 // consecutive access in the extract instructions, by checking that no 3483 // element of CurrentOrder still has value E + 1. 3484 CurrentOrder.assign(E, E + 1); 3485 unsigned I = 0; 3486 for (; I < E; ++I) { 3487 auto *Inst = cast<Instruction>(VL[I]); 3488 if (Inst->getOperand(0) != Vec) 3489 break; 3490 Optional<unsigned> Idx = getExtractIndex(Inst); 3491 if (!Idx) 3492 break; 3493 const unsigned ExtIdx = *Idx; 3494 if (ExtIdx != I) { 3495 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 3496 break; 3497 ShouldKeepOrder = false; 3498 CurrentOrder[ExtIdx] = I; 3499 } else { 3500 if (CurrentOrder[I] != E + 1) 3501 break; 3502 CurrentOrder[I] = I; 3503 } 3504 } 3505 if (I < E) { 3506 CurrentOrder.clear(); 3507 return false; 3508 } 3509 3510 return ShouldKeepOrder; 3511 } 3512 3513 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 3514 ArrayRef<Value *> VectorizedVals) const { 3515 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 3516 llvm::all_of(I->users(), [this](User *U) { 3517 return ScalarToTreeEntry.count(U) > 0; 3518 }); 3519 } 3520 3521 static std::pair<InstructionCost, InstructionCost> 3522 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 3523 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 3524 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3525 3526 // Calculate the cost of the scalar and vector calls. 3527 SmallVector<Type *, 4> VecTys; 3528 for (Use &Arg : CI->args()) 3529 VecTys.push_back( 3530 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 3531 FastMathFlags FMF; 3532 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 3533 FMF = FPCI->getFastMathFlags(); 3534 SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end()); 3535 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 3536 dyn_cast<IntrinsicInst>(CI)); 3537 auto IntrinsicCost = 3538 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 3539 3540 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 3541 VecTy->getNumElements())), 3542 false /*HasGlobalPred*/); 3543 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3544 auto LibCost = IntrinsicCost; 3545 if (!CI->isNoBuiltin() && VecFunc) { 3546 // Calculate the cost of the vector library call. 3547 // If the corresponding vector call is cheaper, return its cost. 3548 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 3549 TTI::TCK_RecipThroughput); 3550 } 3551 return {IntrinsicCost, LibCost}; 3552 } 3553 3554 /// Compute the cost of creating a vector of type \p VecTy containing the 3555 /// extracted values from \p VL. 3556 static InstructionCost 3557 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 3558 TargetTransformInfo::ShuffleKind ShuffleKind, 3559 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 3560 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 3561 3562 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 3563 VecTy->getNumElements() < NumOfParts) 3564 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 3565 3566 bool AllConsecutive = true; 3567 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 3568 unsigned Idx = -1; 3569 InstructionCost Cost = 0; 3570 3571 // Process extracts in blocks of EltsPerVector to check if the source vector 3572 // operand can be re-used directly. If not, add the cost of creating a shuffle 3573 // to extract the values into a vector register. 3574 for (auto *V : VL) { 3575 ++Idx; 3576 3577 // Reached the start of a new vector registers. 3578 if (Idx % EltsPerVector == 0) { 3579 AllConsecutive = true; 3580 continue; 3581 } 3582 3583 // Check all extracts for a vector register on the target directly 3584 // extract values in order. 3585 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 3586 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 3587 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 3588 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 3589 3590 if (AllConsecutive) 3591 continue; 3592 3593 // Skip all indices, except for the last index per vector block. 3594 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 3595 continue; 3596 3597 // If we have a series of extracts which are not consecutive and hence 3598 // cannot re-use the source vector register directly, compute the shuffle 3599 // cost to extract the a vector with EltsPerVector elements. 3600 Cost += TTI.getShuffleCost( 3601 TargetTransformInfo::SK_PermuteSingleSrc, 3602 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 3603 } 3604 return Cost; 3605 } 3606 3607 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 3608 ArrayRef<Value *> VectorizedVals) { 3609 ArrayRef<Value*> VL = E->Scalars; 3610 3611 Type *ScalarTy = VL[0]->getType(); 3612 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 3613 ScalarTy = SI->getValueOperand()->getType(); 3614 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 3615 ScalarTy = CI->getOperand(0)->getType(); 3616 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 3617 ScalarTy = IE->getOperand(1)->getType(); 3618 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 3619 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 3620 3621 // If we have computed a smaller type for the expression, update VecTy so 3622 // that the costs will be accurate. 3623 if (MinBWs.count(VL[0])) 3624 VecTy = FixedVectorType::get( 3625 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 3626 3627 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 3628 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3629 InstructionCost ReuseShuffleCost = 0; 3630 if (NeedToShuffleReuses) { 3631 ReuseShuffleCost = 3632 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy, 3633 E->ReuseShuffleIndices); 3634 } 3635 // FIXME: it tries to fix a problem with MSVC buildbots. 3636 TargetTransformInfo &TTIRef = *TTI; 3637 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 3638 VectorizedVals](InstructionCost &Cost, 3639 bool IsGather) { 3640 DenseMap<Value *, int> ExtractVectorsTys; 3641 for (auto *V : VL) { 3642 // If all users of instruction are going to be vectorized and this 3643 // instruction itself is not going to be vectorized, consider this 3644 // instruction as dead and remove its cost from the final cost of the 3645 // vectorized tree. 3646 if (!areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 3647 (IsGather && ScalarToTreeEntry.count(V))) 3648 continue; 3649 auto *EE = cast<ExtractElementInst>(V); 3650 unsigned Idx = *getExtractIndex(EE); 3651 if (TTIRef.getNumberOfParts(VecTy) != 3652 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 3653 auto It = 3654 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 3655 It->getSecond() = std::min<int>(It->second, Idx); 3656 } 3657 // Take credit for instruction that will become dead. 3658 if (EE->hasOneUse()) { 3659 Instruction *Ext = EE->user_back(); 3660 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3661 all_of(Ext->users(), 3662 [](User *U) { return isa<GetElementPtrInst>(U); })) { 3663 // Use getExtractWithExtendCost() to calculate the cost of 3664 // extractelement/ext pair. 3665 Cost -= 3666 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 3667 EE->getVectorOperandType(), Idx); 3668 // Add back the cost of s|zext which is subtracted separately. 3669 Cost += TTIRef.getCastInstrCost( 3670 Ext->getOpcode(), Ext->getType(), EE->getType(), 3671 TTI::getCastContextHint(Ext), CostKind, Ext); 3672 continue; 3673 } 3674 } 3675 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 3676 EE->getVectorOperandType(), Idx); 3677 } 3678 // Add a cost for subvector extracts/inserts if required. 3679 for (const auto &Data : ExtractVectorsTys) { 3680 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 3681 unsigned NumElts = VecTy->getNumElements(); 3682 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 3683 unsigned Idx = (Data.second / NumElts) * NumElts; 3684 unsigned EENumElts = EEVTy->getNumElements(); 3685 if (Idx + NumElts <= EENumElts) { 3686 Cost += 3687 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 3688 EEVTy, None, Idx, VecTy); 3689 } else { 3690 // Need to round up the subvector type vectorization factor to avoid a 3691 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 3692 // <= EENumElts. 3693 auto *SubVT = 3694 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 3695 Cost += 3696 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 3697 EEVTy, None, Idx, SubVT); 3698 } 3699 } else { 3700 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 3701 VecTy, None, 0, EEVTy); 3702 } 3703 } 3704 }; 3705 if (E->State == TreeEntry::NeedToGather) { 3706 if (allConstant(VL)) 3707 return 0; 3708 if (isa<InsertElementInst>(VL[0])) 3709 return InstructionCost::getInvalid(); 3710 SmallVector<int> Mask; 3711 SmallVector<const TreeEntry *> Entries; 3712 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 3713 isGatherShuffledEntry(E, Mask, Entries); 3714 if (Shuffle.hasValue()) { 3715 InstructionCost GatherCost = 0; 3716 if (ShuffleVectorInst::isIdentityMask(Mask)) { 3717 // Perfect match in the graph, will reuse the previously vectorized 3718 // node. Cost is 0. 3719 LLVM_DEBUG( 3720 dbgs() 3721 << "SLP: perfect diamond match for gather bundle that starts with " 3722 << *VL.front() << ".\n"); 3723 } else { 3724 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 3725 << " entries for bundle that starts with " 3726 << *VL.front() << ".\n"); 3727 // Detected that instead of gather we can emit a shuffle of single/two 3728 // previously vectorized nodes. Add the cost of the permutation rather 3729 // than gather. 3730 GatherCost = TTI->getShuffleCost(*Shuffle, VecTy, Mask); 3731 } 3732 return ReuseShuffleCost + GatherCost; 3733 } 3734 if (isSplat(VL)) { 3735 // Found the broadcasting of the single scalar, calculate the cost as the 3736 // broadcast. 3737 return ReuseShuffleCost + 3738 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, None, 3739 0); 3740 } 3741 if (E->getOpcode() == Instruction::ExtractElement && allSameType(VL) && 3742 allSameBlock(VL)) { 3743 // Check that gather of extractelements can be represented as just a 3744 // shuffle of a single/two vectors the scalars are extracted from. 3745 SmallVector<int> Mask; 3746 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 3747 isShuffle(VL, Mask); 3748 if (ShuffleKind.hasValue()) { 3749 // Found the bunch of extractelement instructions that must be gathered 3750 // into a vector and can be represented as a permutation elements in a 3751 // single input vector or of 2 input vectors. 3752 InstructionCost Cost = 3753 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 3754 AdjustExtractsCost(Cost, /*IsGather=*/true); 3755 return ReuseShuffleCost + Cost; 3756 } 3757 } 3758 return ReuseShuffleCost + getGatherCost(VL); 3759 } 3760 assert((E->State == TreeEntry::Vectorize || 3761 E->State == TreeEntry::ScatterVectorize) && 3762 "Unhandled state"); 3763 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 3764 Instruction *VL0 = E->getMainOp(); 3765 unsigned ShuffleOrOp = 3766 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 3767 switch (ShuffleOrOp) { 3768 case Instruction::PHI: 3769 return 0; 3770 3771 case Instruction::ExtractValue: 3772 case Instruction::ExtractElement: { 3773 // The common cost of removal ExtractElement/ExtractValue instructions + 3774 // the cost of shuffles, if required to resuffle the original vector. 3775 InstructionCost CommonCost = 0; 3776 if (NeedToShuffleReuses) { 3777 unsigned Idx = 0; 3778 for (unsigned I : E->ReuseShuffleIndices) { 3779 if (ShuffleOrOp == Instruction::ExtractElement) { 3780 auto *EE = cast<ExtractElementInst>(VL[I]); 3781 ReuseShuffleCost -= TTI->getVectorInstrCost( 3782 Instruction::ExtractElement, EE->getVectorOperandType(), 3783 *getExtractIndex(EE)); 3784 } else { 3785 ReuseShuffleCost -= TTI->getVectorInstrCost( 3786 Instruction::ExtractElement, VecTy, Idx); 3787 ++Idx; 3788 } 3789 } 3790 Idx = ReuseShuffleNumbers; 3791 for (Value *V : VL) { 3792 if (ShuffleOrOp == Instruction::ExtractElement) { 3793 auto *EE = cast<ExtractElementInst>(V); 3794 ReuseShuffleCost += TTI->getVectorInstrCost( 3795 Instruction::ExtractElement, EE->getVectorOperandType(), 3796 *getExtractIndex(EE)); 3797 } else { 3798 --Idx; 3799 ReuseShuffleCost += TTI->getVectorInstrCost( 3800 Instruction::ExtractElement, VecTy, Idx); 3801 } 3802 } 3803 CommonCost = ReuseShuffleCost; 3804 } else if (!E->ReorderIndices.empty()) { 3805 SmallVector<int> NewMask; 3806 inversePermutation(E->ReorderIndices, NewMask); 3807 CommonCost = TTI->getShuffleCost( 3808 TargetTransformInfo::SK_PermuteSingleSrc, VecTy, NewMask); 3809 } 3810 if (ShuffleOrOp == Instruction::ExtractValue) { 3811 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 3812 auto *EI = cast<Instruction>(VL[I]); 3813 // Take credit for instruction that will become dead. 3814 if (EI->hasOneUse()) { 3815 Instruction *Ext = EI->user_back(); 3816 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3817 all_of(Ext->users(), 3818 [](User *U) { return isa<GetElementPtrInst>(U); })) { 3819 // Use getExtractWithExtendCost() to calculate the cost of 3820 // extractelement/ext pair. 3821 CommonCost -= TTI->getExtractWithExtendCost( 3822 Ext->getOpcode(), Ext->getType(), VecTy, I); 3823 // Add back the cost of s|zext which is subtracted separately. 3824 CommonCost += TTI->getCastInstrCost( 3825 Ext->getOpcode(), Ext->getType(), EI->getType(), 3826 TTI::getCastContextHint(Ext), CostKind, Ext); 3827 continue; 3828 } 3829 } 3830 CommonCost -= 3831 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 3832 } 3833 } else { 3834 AdjustExtractsCost(CommonCost, /*IsGather=*/false); 3835 } 3836 return CommonCost; 3837 } 3838 case Instruction::InsertElement: { 3839 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 3840 3841 unsigned const NumElts = SrcVecTy->getNumElements(); 3842 unsigned const NumScalars = VL.size(); 3843 APInt DemandedElts = APInt::getNullValue(NumElts); 3844 // TODO: Add support for Instruction::InsertValue. 3845 unsigned Offset = UINT_MAX; 3846 bool IsIdentity = true; 3847 SmallVector<int> ShuffleMask(NumElts, UndefMaskElem); 3848 for (unsigned I = 0; I < NumScalars; ++I) { 3849 Optional<int> InsertIdx = getInsertIndex(VL[I], 0); 3850 if (!InsertIdx || *InsertIdx == UndefMaskElem) 3851 continue; 3852 unsigned Idx = *InsertIdx; 3853 DemandedElts.setBit(Idx); 3854 if (Idx < Offset) { 3855 Offset = Idx; 3856 IsIdentity &= I == 0; 3857 } else { 3858 assert(Idx >= Offset && "Failed to find vector index offset"); 3859 IsIdentity &= Idx - Offset == I; 3860 } 3861 ShuffleMask[Idx] = I; 3862 } 3863 assert(Offset < NumElts && "Failed to find vector index offset"); 3864 3865 InstructionCost Cost = 0; 3866 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 3867 /*Insert*/ true, /*Extract*/ false); 3868 3869 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) 3870 Cost += TTI->getShuffleCost( 3871 TargetTransformInfo::SK_InsertSubvector, SrcVecTy, /*Mask*/ None, 3872 Offset, 3873 FixedVectorType::get(SrcVecTy->getElementType(), NumScalars)); 3874 else if (!IsIdentity) 3875 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, 3876 ShuffleMask); 3877 3878 return Cost; 3879 } 3880 case Instruction::ZExt: 3881 case Instruction::SExt: 3882 case Instruction::FPToUI: 3883 case Instruction::FPToSI: 3884 case Instruction::FPExt: 3885 case Instruction::PtrToInt: 3886 case Instruction::IntToPtr: 3887 case Instruction::SIToFP: 3888 case Instruction::UIToFP: 3889 case Instruction::Trunc: 3890 case Instruction::FPTrunc: 3891 case Instruction::BitCast: { 3892 Type *SrcTy = VL0->getOperand(0)->getType(); 3893 InstructionCost ScalarEltCost = 3894 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 3895 TTI::getCastContextHint(VL0), CostKind, VL0); 3896 if (NeedToShuffleReuses) { 3897 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3898 } 3899 3900 // Calculate the cost of this instruction. 3901 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 3902 3903 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 3904 InstructionCost VecCost = 0; 3905 // Check if the values are candidates to demote. 3906 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 3907 VecCost = 3908 ReuseShuffleCost + 3909 TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy, 3910 TTI::getCastContextHint(VL0), CostKind, VL0); 3911 } 3912 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3913 return VecCost - ScalarCost; 3914 } 3915 case Instruction::FCmp: 3916 case Instruction::ICmp: 3917 case Instruction::Select: { 3918 // Calculate the cost of this instruction. 3919 InstructionCost ScalarEltCost = 3920 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 3921 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 3922 if (NeedToShuffleReuses) { 3923 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3924 } 3925 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 3926 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3927 3928 // Check if all entries in VL are either compares or selects with compares 3929 // as condition that have the same predicates. 3930 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 3931 bool First = true; 3932 for (auto *V : VL) { 3933 CmpInst::Predicate CurrentPred; 3934 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 3935 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 3936 !match(V, MatchCmp)) || 3937 (!First && VecPred != CurrentPred)) { 3938 VecPred = CmpInst::BAD_ICMP_PREDICATE; 3939 break; 3940 } 3941 First = false; 3942 VecPred = CurrentPred; 3943 } 3944 3945 InstructionCost VecCost = TTI->getCmpSelInstrCost( 3946 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 3947 // Check if it is possible and profitable to use min/max for selects in 3948 // VL. 3949 // 3950 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 3951 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 3952 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 3953 {VecTy, VecTy}); 3954 InstructionCost IntrinsicCost = 3955 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 3956 // If the selects are the only uses of the compares, they will be dead 3957 // and we can adjust the cost by removing their cost. 3958 if (IntrinsicAndUse.second) 3959 IntrinsicCost -= 3960 TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy, 3961 CmpInst::BAD_ICMP_PREDICATE, CostKind); 3962 VecCost = std::min(VecCost, IntrinsicCost); 3963 } 3964 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3965 return ReuseShuffleCost + VecCost - ScalarCost; 3966 } 3967 case Instruction::FNeg: 3968 case Instruction::Add: 3969 case Instruction::FAdd: 3970 case Instruction::Sub: 3971 case Instruction::FSub: 3972 case Instruction::Mul: 3973 case Instruction::FMul: 3974 case Instruction::UDiv: 3975 case Instruction::SDiv: 3976 case Instruction::FDiv: 3977 case Instruction::URem: 3978 case Instruction::SRem: 3979 case Instruction::FRem: 3980 case Instruction::Shl: 3981 case Instruction::LShr: 3982 case Instruction::AShr: 3983 case Instruction::And: 3984 case Instruction::Or: 3985 case Instruction::Xor: { 3986 // Certain instructions can be cheaper to vectorize if they have a 3987 // constant second vector operand. 3988 TargetTransformInfo::OperandValueKind Op1VK = 3989 TargetTransformInfo::OK_AnyValue; 3990 TargetTransformInfo::OperandValueKind Op2VK = 3991 TargetTransformInfo::OK_UniformConstantValue; 3992 TargetTransformInfo::OperandValueProperties Op1VP = 3993 TargetTransformInfo::OP_None; 3994 TargetTransformInfo::OperandValueProperties Op2VP = 3995 TargetTransformInfo::OP_PowerOf2; 3996 3997 // If all operands are exactly the same ConstantInt then set the 3998 // operand kind to OK_UniformConstantValue. 3999 // If instead not all operands are constants, then set the operand kind 4000 // to OK_AnyValue. If all operands are constants but not the same, 4001 // then set the operand kind to OK_NonUniformConstantValue. 4002 ConstantInt *CInt0 = nullptr; 4003 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 4004 const Instruction *I = cast<Instruction>(VL[i]); 4005 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 4006 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 4007 if (!CInt) { 4008 Op2VK = TargetTransformInfo::OK_AnyValue; 4009 Op2VP = TargetTransformInfo::OP_None; 4010 break; 4011 } 4012 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 4013 !CInt->getValue().isPowerOf2()) 4014 Op2VP = TargetTransformInfo::OP_None; 4015 if (i == 0) { 4016 CInt0 = CInt; 4017 continue; 4018 } 4019 if (CInt0 != CInt) 4020 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 4021 } 4022 4023 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 4024 InstructionCost ScalarEltCost = 4025 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 4026 Op2VK, Op1VP, Op2VP, Operands, VL0); 4027 if (NeedToShuffleReuses) { 4028 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4029 } 4030 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 4031 InstructionCost VecCost = 4032 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 4033 Op2VK, Op1VP, Op2VP, Operands, VL0); 4034 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 4035 return ReuseShuffleCost + VecCost - ScalarCost; 4036 } 4037 case Instruction::GetElementPtr: { 4038 TargetTransformInfo::OperandValueKind Op1VK = 4039 TargetTransformInfo::OK_AnyValue; 4040 TargetTransformInfo::OperandValueKind Op2VK = 4041 TargetTransformInfo::OK_UniformConstantValue; 4042 4043 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 4044 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 4045 if (NeedToShuffleReuses) { 4046 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4047 } 4048 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 4049 InstructionCost VecCost = TTI->getArithmeticInstrCost( 4050 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 4051 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 4052 return ReuseShuffleCost + VecCost - ScalarCost; 4053 } 4054 case Instruction::Load: { 4055 // Cost of wide load - cost of scalar loads. 4056 Align alignment = cast<LoadInst>(VL0)->getAlign(); 4057 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 4058 Instruction::Load, ScalarTy, alignment, 0, CostKind, VL0); 4059 if (NeedToShuffleReuses) { 4060 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4061 } 4062 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 4063 InstructionCost VecLdCost; 4064 if (E->State == TreeEntry::Vectorize) { 4065 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, 4066 CostKind, VL0); 4067 } else { 4068 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 4069 VecLdCost = TTI->getGatherScatterOpCost( 4070 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 4071 /*VariableMask=*/false, alignment, CostKind, VL0); 4072 } 4073 if (!NeedToShuffleReuses && !E->ReorderIndices.empty()) { 4074 SmallVector<int> NewMask; 4075 inversePermutation(E->ReorderIndices, NewMask); 4076 VecLdCost += TTI->getShuffleCost( 4077 TargetTransformInfo::SK_PermuteSingleSrc, VecTy, NewMask); 4078 } 4079 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecLdCost, ScalarLdCost)); 4080 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 4081 } 4082 case Instruction::Store: { 4083 // We know that we can merge the stores. Calculate the cost. 4084 bool IsReorder = !E->ReorderIndices.empty(); 4085 auto *SI = 4086 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 4087 Align Alignment = SI->getAlign(); 4088 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 4089 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 4090 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 4091 InstructionCost VecStCost = TTI->getMemoryOpCost( 4092 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 4093 if (IsReorder) { 4094 SmallVector<int> NewMask; 4095 inversePermutation(E->ReorderIndices, NewMask); 4096 VecStCost += TTI->getShuffleCost( 4097 TargetTransformInfo::SK_PermuteSingleSrc, VecTy, NewMask); 4098 } 4099 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecStCost, ScalarStCost)); 4100 return VecStCost - ScalarStCost; 4101 } 4102 case Instruction::Call: { 4103 CallInst *CI = cast<CallInst>(VL0); 4104 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4105 4106 // Calculate the cost of the scalar and vector calls. 4107 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 4108 InstructionCost ScalarEltCost = 4109 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 4110 if (NeedToShuffleReuses) { 4111 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4112 } 4113 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 4114 4115 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 4116 InstructionCost VecCallCost = 4117 std::min(VecCallCosts.first, VecCallCosts.second); 4118 4119 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 4120 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 4121 << " for " << *CI << "\n"); 4122 4123 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 4124 } 4125 case Instruction::ShuffleVector: { 4126 assert(E->isAltShuffle() && 4127 ((Instruction::isBinaryOp(E->getOpcode()) && 4128 Instruction::isBinaryOp(E->getAltOpcode())) || 4129 (Instruction::isCast(E->getOpcode()) && 4130 Instruction::isCast(E->getAltOpcode()))) && 4131 "Invalid Shuffle Vector Operand"); 4132 InstructionCost ScalarCost = 0; 4133 if (NeedToShuffleReuses) { 4134 for (unsigned Idx : E->ReuseShuffleIndices) { 4135 Instruction *I = cast<Instruction>(VL[Idx]); 4136 ReuseShuffleCost -= TTI->getInstructionCost(I, CostKind); 4137 } 4138 for (Value *V : VL) { 4139 Instruction *I = cast<Instruction>(V); 4140 ReuseShuffleCost += TTI->getInstructionCost(I, CostKind); 4141 } 4142 } 4143 for (Value *V : VL) { 4144 Instruction *I = cast<Instruction>(V); 4145 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 4146 ScalarCost += TTI->getInstructionCost(I, CostKind); 4147 } 4148 // VecCost is equal to sum of the cost of creating 2 vectors 4149 // and the cost of creating shuffle. 4150 InstructionCost VecCost = 0; 4151 if (Instruction::isBinaryOp(E->getOpcode())) { 4152 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 4153 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 4154 CostKind); 4155 } else { 4156 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 4157 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 4158 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 4159 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 4160 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 4161 TTI::CastContextHint::None, CostKind); 4162 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 4163 TTI::CastContextHint::None, CostKind); 4164 } 4165 4166 SmallVector<int> Mask(E->Scalars.size()); 4167 for (unsigned I = 0, End = E->Scalars.size(); I < End; ++I) { 4168 auto *OpInst = cast<Instruction>(E->Scalars[I]); 4169 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 4170 Mask[I] = I + (OpInst->getOpcode() == E->getAltOpcode() ? End : 0); 4171 } 4172 VecCost += 4173 TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, Mask, 0); 4174 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 4175 return ReuseShuffleCost + VecCost - ScalarCost; 4176 } 4177 default: 4178 llvm_unreachable("Unknown instruction"); 4179 } 4180 } 4181 4182 bool BoUpSLP::isFullyVectorizableTinyTree() const { 4183 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 4184 << VectorizableTree.size() << " is fully vectorizable .\n"); 4185 4186 // We only handle trees of heights 1 and 2. 4187 if (VectorizableTree.size() == 1 && 4188 VectorizableTree[0]->State == TreeEntry::Vectorize) 4189 return true; 4190 4191 if (VectorizableTree.size() != 2) 4192 return false; 4193 4194 // Handle splat and all-constants stores. Also try to vectorize tiny trees 4195 // with the second gather nodes if they have less scalar operands rather than 4196 // the initial tree element (may be profitable to shuffle the second gather) 4197 // or they are extractelements, which form shuffle. 4198 SmallVector<int> Mask; 4199 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 4200 (allConstant(VectorizableTree[1]->Scalars) || 4201 isSplat(VectorizableTree[1]->Scalars) || 4202 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 4203 VectorizableTree[1]->Scalars.size() < 4204 VectorizableTree[0]->Scalars.size()) || 4205 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 4206 VectorizableTree[1]->getOpcode() == Instruction::ExtractElement && 4207 isShuffle(VectorizableTree[1]->Scalars, Mask)))) 4208 return true; 4209 4210 // Gathering cost would be too much for tiny trees. 4211 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 4212 VectorizableTree[1]->State == TreeEntry::NeedToGather) 4213 return false; 4214 4215 return true; 4216 } 4217 4218 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 4219 TargetTransformInfo *TTI, 4220 bool MustMatchOrInst) { 4221 // Look past the root to find a source value. Arbitrarily follow the 4222 // path through operand 0 of any 'or'. Also, peek through optional 4223 // shift-left-by-multiple-of-8-bits. 4224 Value *ZextLoad = Root; 4225 const APInt *ShAmtC; 4226 bool FoundOr = false; 4227 while (!isa<ConstantExpr>(ZextLoad) && 4228 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 4229 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 4230 ShAmtC->urem(8) == 0))) { 4231 auto *BinOp = cast<BinaryOperator>(ZextLoad); 4232 ZextLoad = BinOp->getOperand(0); 4233 if (BinOp->getOpcode() == Instruction::Or) 4234 FoundOr = true; 4235 } 4236 // Check if the input is an extended load of the required or/shift expression. 4237 Value *LoadPtr; 4238 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 4239 !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr))))) 4240 return false; 4241 4242 // Require that the total load bit width is a legal integer type. 4243 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 4244 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 4245 Type *SrcTy = LoadPtr->getType()->getPointerElementType(); 4246 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 4247 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 4248 return false; 4249 4250 // Everything matched - assume that we can fold the whole sequence using 4251 // load combining. 4252 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 4253 << *(cast<Instruction>(Root)) << "\n"); 4254 4255 return true; 4256 } 4257 4258 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 4259 if (RdxKind != RecurKind::Or) 4260 return false; 4261 4262 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 4263 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 4264 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 4265 /* MatchOr */ false); 4266 } 4267 4268 bool BoUpSLP::isLoadCombineCandidate() const { 4269 // Peek through a final sequence of stores and check if all operations are 4270 // likely to be load-combined. 4271 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 4272 for (Value *Scalar : VectorizableTree[0]->Scalars) { 4273 Value *X; 4274 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 4275 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 4276 return false; 4277 } 4278 return true; 4279 } 4280 4281 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const { 4282 // No need to vectorize inserts of gathered values. 4283 if (VectorizableTree.size() == 2 && 4284 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 4285 VectorizableTree[1]->State == TreeEntry::NeedToGather) 4286 return true; 4287 4288 // We can vectorize the tree if its size is greater than or equal to the 4289 // minimum size specified by the MinTreeSize command line option. 4290 if (VectorizableTree.size() >= MinTreeSize) 4291 return false; 4292 4293 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 4294 // can vectorize it if we can prove it fully vectorizable. 4295 if (isFullyVectorizableTinyTree()) 4296 return false; 4297 4298 assert(VectorizableTree.empty() 4299 ? ExternalUses.empty() 4300 : true && "We shouldn't have any external users"); 4301 4302 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 4303 // vectorizable. 4304 return true; 4305 } 4306 4307 InstructionCost BoUpSLP::getSpillCost() const { 4308 // Walk from the bottom of the tree to the top, tracking which values are 4309 // live. When we see a call instruction that is not part of our tree, 4310 // query TTI to see if there is a cost to keeping values live over it 4311 // (for example, if spills and fills are required). 4312 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 4313 InstructionCost Cost = 0; 4314 4315 SmallPtrSet<Instruction*, 4> LiveValues; 4316 Instruction *PrevInst = nullptr; 4317 4318 // The entries in VectorizableTree are not necessarily ordered by their 4319 // position in basic blocks. Collect them and order them by dominance so later 4320 // instructions are guaranteed to be visited first. For instructions in 4321 // different basic blocks, we only scan to the beginning of the block, so 4322 // their order does not matter, as long as all instructions in a basic block 4323 // are grouped together. Using dominance ensures a deterministic order. 4324 SmallVector<Instruction *, 16> OrderedScalars; 4325 for (const auto &TEPtr : VectorizableTree) { 4326 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 4327 if (!Inst) 4328 continue; 4329 OrderedScalars.push_back(Inst); 4330 } 4331 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 4332 auto *NodeA = DT->getNode(A->getParent()); 4333 auto *NodeB = DT->getNode(B->getParent()); 4334 assert(NodeA && "Should only process reachable instructions"); 4335 assert(NodeB && "Should only process reachable instructions"); 4336 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 4337 "Different nodes should have different DFS numbers"); 4338 if (NodeA != NodeB) 4339 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 4340 return B->comesBefore(A); 4341 }); 4342 4343 for (Instruction *Inst : OrderedScalars) { 4344 if (!PrevInst) { 4345 PrevInst = Inst; 4346 continue; 4347 } 4348 4349 // Update LiveValues. 4350 LiveValues.erase(PrevInst); 4351 for (auto &J : PrevInst->operands()) { 4352 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 4353 LiveValues.insert(cast<Instruction>(&*J)); 4354 } 4355 4356 LLVM_DEBUG({ 4357 dbgs() << "SLP: #LV: " << LiveValues.size(); 4358 for (auto *X : LiveValues) 4359 dbgs() << " " << X->getName(); 4360 dbgs() << ", Looking at "; 4361 Inst->dump(); 4362 }); 4363 4364 // Now find the sequence of instructions between PrevInst and Inst. 4365 unsigned NumCalls = 0; 4366 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 4367 PrevInstIt = 4368 PrevInst->getIterator().getReverse(); 4369 while (InstIt != PrevInstIt) { 4370 if (PrevInstIt == PrevInst->getParent()->rend()) { 4371 PrevInstIt = Inst->getParent()->rbegin(); 4372 continue; 4373 } 4374 4375 // Debug information does not impact spill cost. 4376 if ((isa<CallInst>(&*PrevInstIt) && 4377 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 4378 &*PrevInstIt != PrevInst) 4379 NumCalls++; 4380 4381 ++PrevInstIt; 4382 } 4383 4384 if (NumCalls) { 4385 SmallVector<Type*, 4> V; 4386 for (auto *II : LiveValues) { 4387 auto *ScalarTy = II->getType(); 4388 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 4389 ScalarTy = VectorTy->getElementType(); 4390 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 4391 } 4392 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 4393 } 4394 4395 PrevInst = Inst; 4396 } 4397 4398 return Cost; 4399 } 4400 4401 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 4402 InstructionCost Cost = 0; 4403 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 4404 << VectorizableTree.size() << ".\n"); 4405 4406 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 4407 4408 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 4409 TreeEntry &TE = *VectorizableTree[I].get(); 4410 4411 InstructionCost C = getEntryCost(&TE, VectorizedVals); 4412 Cost += C; 4413 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 4414 << " for bundle that starts with " << *TE.Scalars[0] 4415 << ".\n" 4416 << "SLP: Current total cost = " << Cost << "\n"); 4417 } 4418 4419 SmallPtrSet<Value *, 16> ExtractCostCalculated; 4420 InstructionCost ExtractCost = 0; 4421 SmallBitVector IsIdentity; 4422 SmallVector<unsigned> VF; 4423 SmallVector<SmallVector<int>> ShuffleMask; 4424 SmallVector<Value *> FirstUsers; 4425 SmallVector<APInt> DemandedElts; 4426 for (ExternalUser &EU : ExternalUses) { 4427 // We only add extract cost once for the same scalar. 4428 if (!ExtractCostCalculated.insert(EU.Scalar).second) 4429 continue; 4430 4431 // Uses by ephemeral values are free (because the ephemeral value will be 4432 // removed prior to code generation, and so the extraction will be 4433 // removed as well). 4434 if (EphValues.count(EU.User)) 4435 continue; 4436 4437 // No extract cost for vector "scalar" 4438 if (isa<FixedVectorType>(EU.Scalar->getType())) 4439 continue; 4440 4441 // Already counted the cost for external uses when tried to adjust the cost 4442 // for extractelements, no need to add it again. 4443 if (isa<ExtractElementInst>(EU.Scalar)) 4444 continue; 4445 4446 // If found user is an insertelement, do not calculate extract cost but try 4447 // to detect it as a final shuffled/identity match. 4448 if (EU.User && isa<InsertElementInst>(EU.User)) { 4449 if (auto *FTy = dyn_cast<FixedVectorType>(EU.User->getType())) { 4450 Optional<int> InsertIdx = getInsertIndex(EU.User, 0); 4451 if (!InsertIdx || *InsertIdx == UndefMaskElem) 4452 continue; 4453 Value *VU = EU.User; 4454 auto *It = find_if(FirstUsers, [VU](Value *V) { 4455 // Checks if 2 insertelements are from the same buildvector. 4456 if (VU->getType() != V->getType()) 4457 return false; 4458 auto *IE1 = cast<InsertElementInst>(VU); 4459 auto *IE2 = cast<InsertElementInst>(V); 4460 // Go though of insertelement instructions trying to find either VU as 4461 // the original vector for IE2 or V as the original vector for IE1. 4462 do { 4463 if (IE1 == VU || IE2 == V) 4464 return true; 4465 if (IE1) 4466 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 4467 if (IE2) 4468 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 4469 } while (IE1 || IE2); 4470 return false; 4471 }); 4472 int VecId = -1; 4473 if (It == FirstUsers.end()) { 4474 VF.push_back(FTy->getNumElements()); 4475 ShuffleMask.emplace_back(VF.back(), UndefMaskElem); 4476 FirstUsers.push_back(EU.User); 4477 DemandedElts.push_back(APInt::getNullValue(VF.back())); 4478 IsIdentity.push_back(true); 4479 VecId = FirstUsers.size() - 1; 4480 } else { 4481 VecId = std::distance(FirstUsers.begin(), It); 4482 } 4483 int Idx = *InsertIdx; 4484 ShuffleMask[VecId][Idx] = EU.Lane; 4485 IsIdentity.set(IsIdentity.test(VecId) & 4486 (EU.Lane == Idx || EU.Lane == UndefMaskElem)); 4487 DemandedElts[VecId].setBit(Idx); 4488 } 4489 } 4490 4491 // If we plan to rewrite the tree in a smaller type, we will need to sign 4492 // extend the extracted value back to the original type. Here, we account 4493 // for the extract and the added cost of the sign extend if needed. 4494 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 4495 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4496 if (MinBWs.count(ScalarRoot)) { 4497 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4498 auto Extend = 4499 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 4500 VecTy = FixedVectorType::get(MinTy, BundleWidth); 4501 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 4502 VecTy, EU.Lane); 4503 } else { 4504 ExtractCost += 4505 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 4506 } 4507 } 4508 4509 InstructionCost SpillCost = getSpillCost(); 4510 Cost += SpillCost + ExtractCost; 4511 for (int I = 0, E = FirstUsers.size(); I < E; ++I) { 4512 if (!IsIdentity.test(I)) { 4513 InstructionCost C = TTI->getShuffleCost( 4514 TTI::SK_PermuteSingleSrc, 4515 cast<FixedVectorType>(FirstUsers[I]->getType()), ShuffleMask[I]); 4516 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 4517 << " for final shuffle of insertelement external users " 4518 << *VectorizableTree.front()->Scalars.front() << ".\n" 4519 << "SLP: Current total cost = " << Cost << "\n"); 4520 Cost += C; 4521 } 4522 unsigned VF = ShuffleMask[I].size(); 4523 for (int &Mask : ShuffleMask[I]) 4524 Mask = (Mask == UndefMaskElem ? 0 : VF) + Mask; 4525 InstructionCost C = TTI->getShuffleCost( 4526 TTI::SK_PermuteTwoSrc, cast<FixedVectorType>(FirstUsers[I]->getType()), 4527 ShuffleMask[I]); 4528 LLVM_DEBUG( 4529 dbgs() 4530 << "SLP: Adding cost " << C 4531 << " for final shuffle of vector node and external insertelement users " 4532 << *VectorizableTree.front()->Scalars.front() << ".\n" 4533 << "SLP: Current total cost = " << Cost << "\n"); 4534 Cost += C; 4535 InstructionCost InsertCost = TTI->getScalarizationOverhead( 4536 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I], 4537 /*Insert*/ true, 4538 /*Extract*/ false); 4539 Cost -= InsertCost; 4540 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 4541 << " for insertelements gather.\n" 4542 << "SLP: Current total cost = " << Cost << "\n"); 4543 } 4544 4545 #ifndef NDEBUG 4546 SmallString<256> Str; 4547 { 4548 raw_svector_ostream OS(Str); 4549 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 4550 << "SLP: Extract Cost = " << ExtractCost << ".\n" 4551 << "SLP: Total Cost = " << Cost << ".\n"; 4552 } 4553 LLVM_DEBUG(dbgs() << Str); 4554 if (ViewSLPTree) 4555 ViewGraph(this, "SLP" + F->getName(), false, Str); 4556 #endif 4557 4558 return Cost; 4559 } 4560 4561 Optional<TargetTransformInfo::ShuffleKind> 4562 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 4563 SmallVectorImpl<const TreeEntry *> &Entries) { 4564 // TODO: currently checking only for Scalars in the tree entry, need to count 4565 // reused elements too for better cost estimation. 4566 Mask.assign(TE->Scalars.size(), UndefMaskElem); 4567 Entries.clear(); 4568 // Build a lists of values to tree entries. 4569 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 4570 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 4571 if (EntryPtr.get() == TE) 4572 break; 4573 if (EntryPtr->State != TreeEntry::NeedToGather) 4574 continue; 4575 for (Value *V : EntryPtr->Scalars) 4576 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 4577 } 4578 // Find all tree entries used by the gathered values. If no common entries 4579 // found - not a shuffle. 4580 // Here we build a set of tree nodes for each gathered value and trying to 4581 // find the intersection between these sets. If we have at least one common 4582 // tree node for each gathered value - we have just a permutation of the 4583 // single vector. If we have 2 different sets, we're in situation where we 4584 // have a permutation of 2 input vectors. 4585 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 4586 DenseMap<Value *, int> UsedValuesEntry; 4587 for (Value *V : TE->Scalars) { 4588 if (isa<UndefValue>(V)) 4589 continue; 4590 // Build a list of tree entries where V is used. 4591 SmallPtrSet<const TreeEntry *, 4> VToTEs; 4592 auto It = ValueToTEs.find(V); 4593 if (It != ValueToTEs.end()) 4594 VToTEs = It->second; 4595 if (const TreeEntry *VTE = getTreeEntry(V)) 4596 VToTEs.insert(VTE); 4597 if (VToTEs.empty()) 4598 return None; 4599 if (UsedTEs.empty()) { 4600 // The first iteration, just insert the list of nodes to vector. 4601 UsedTEs.push_back(VToTEs); 4602 } else { 4603 // Need to check if there are any previously used tree nodes which use V. 4604 // If there are no such nodes, consider that we have another one input 4605 // vector. 4606 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 4607 unsigned Idx = 0; 4608 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 4609 // Do we have a non-empty intersection of previously listed tree entries 4610 // and tree entries using current V? 4611 set_intersect(VToTEs, Set); 4612 if (!VToTEs.empty()) { 4613 // Yes, write the new subset and continue analysis for the next 4614 // scalar. 4615 Set.swap(VToTEs); 4616 break; 4617 } 4618 VToTEs = SavedVToTEs; 4619 ++Idx; 4620 } 4621 // No non-empty intersection found - need to add a second set of possible 4622 // source vectors. 4623 if (Idx == UsedTEs.size()) { 4624 // If the number of input vectors is greater than 2 - not a permutation, 4625 // fallback to the regular gather. 4626 if (UsedTEs.size() == 2) 4627 return None; 4628 UsedTEs.push_back(SavedVToTEs); 4629 Idx = UsedTEs.size() - 1; 4630 } 4631 UsedValuesEntry.try_emplace(V, Idx); 4632 } 4633 } 4634 4635 unsigned VF = 0; 4636 if (UsedTEs.size() == 1) { 4637 // Try to find the perfect match in another gather node at first. 4638 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 4639 return EntryPtr->isSame(TE->Scalars); 4640 }); 4641 if (It != UsedTEs.front().end()) { 4642 Entries.push_back(*It); 4643 std::iota(Mask.begin(), Mask.end(), 0); 4644 return TargetTransformInfo::SK_PermuteSingleSrc; 4645 } 4646 // No perfect match, just shuffle, so choose the first tree node. 4647 Entries.push_back(*UsedTEs.front().begin()); 4648 } else { 4649 // Try to find nodes with the same vector factor. 4650 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 4651 // FIXME: Shall be replaced by GetVF function once non-power-2 patch is 4652 // landed. 4653 auto &&GetVF = [](const TreeEntry *TE) { 4654 if (!TE->ReuseShuffleIndices.empty()) 4655 return TE->ReuseShuffleIndices.size(); 4656 return TE->Scalars.size(); 4657 }; 4658 DenseMap<int, const TreeEntry *> VFToTE; 4659 for (const TreeEntry *TE : UsedTEs.front()) 4660 VFToTE.try_emplace(GetVF(TE), TE); 4661 for (const TreeEntry *TE : UsedTEs.back()) { 4662 auto It = VFToTE.find(GetVF(TE)); 4663 if (It != VFToTE.end()) { 4664 VF = It->first; 4665 Entries.push_back(It->second); 4666 Entries.push_back(TE); 4667 break; 4668 } 4669 } 4670 // No 2 source vectors with the same vector factor - give up and do regular 4671 // gather. 4672 if (Entries.empty()) 4673 return None; 4674 } 4675 4676 // Build a shuffle mask for better cost estimation and vector emission. 4677 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 4678 Value *V = TE->Scalars[I]; 4679 if (isa<UndefValue>(V)) 4680 continue; 4681 unsigned Idx = UsedValuesEntry.lookup(V); 4682 const TreeEntry *VTE = Entries[Idx]; 4683 int FoundLane = findLaneForValue(VTE->Scalars, VTE->ReuseShuffleIndices, V); 4684 Mask[I] = Idx * VF + FoundLane; 4685 // Extra check required by isSingleSourceMaskImpl function (called by 4686 // ShuffleVectorInst::isSingleSourceMask). 4687 if (Mask[I] >= 2 * E) 4688 return None; 4689 } 4690 switch (Entries.size()) { 4691 case 1: 4692 return TargetTransformInfo::SK_PermuteSingleSrc; 4693 case 2: 4694 return TargetTransformInfo::SK_PermuteTwoSrc; 4695 default: 4696 break; 4697 } 4698 return None; 4699 } 4700 4701 InstructionCost 4702 BoUpSLP::getGatherCost(FixedVectorType *Ty, 4703 const DenseSet<unsigned> &ShuffledIndices) const { 4704 unsigned NumElts = Ty->getNumElements(); 4705 APInt DemandedElts = APInt::getNullValue(NumElts); 4706 for (unsigned I = 0; I < NumElts; ++I) 4707 if (!ShuffledIndices.count(I)) 4708 DemandedElts.setBit(I); 4709 InstructionCost Cost = 4710 TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true, 4711 /*Extract*/ false); 4712 if (!ShuffledIndices.empty()) 4713 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 4714 return Cost; 4715 } 4716 4717 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 4718 // Find the type of the operands in VL. 4719 Type *ScalarTy = VL[0]->getType(); 4720 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4721 ScalarTy = SI->getValueOperand()->getType(); 4722 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4723 // Find the cost of inserting/extracting values from the vector. 4724 // Check if the same elements are inserted several times and count them as 4725 // shuffle candidates. 4726 DenseSet<unsigned> ShuffledElements; 4727 DenseSet<Value *> UniqueElements; 4728 // Iterate in reverse order to consider insert elements with the high cost. 4729 for (unsigned I = VL.size(); I > 0; --I) { 4730 unsigned Idx = I - 1; 4731 if (isConstant(VL[Idx])) 4732 continue; 4733 if (!UniqueElements.insert(VL[Idx]).second) 4734 ShuffledElements.insert(Idx); 4735 } 4736 return getGatherCost(VecTy, ShuffledElements); 4737 } 4738 4739 // Perform operand reordering on the instructions in VL and return the reordered 4740 // operands in Left and Right. 4741 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 4742 SmallVectorImpl<Value *> &Left, 4743 SmallVectorImpl<Value *> &Right, 4744 const DataLayout &DL, 4745 ScalarEvolution &SE, 4746 const BoUpSLP &R) { 4747 if (VL.empty()) 4748 return; 4749 VLOperands Ops(VL, DL, SE, R); 4750 // Reorder the operands in place. 4751 Ops.reorder(); 4752 Left = Ops.getVL(0); 4753 Right = Ops.getVL(1); 4754 } 4755 4756 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 4757 // Get the basic block this bundle is in. All instructions in the bundle 4758 // should be in this block. 4759 auto *Front = E->getMainOp(); 4760 auto *BB = Front->getParent(); 4761 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 4762 auto *I = cast<Instruction>(V); 4763 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 4764 })); 4765 4766 // The last instruction in the bundle in program order. 4767 Instruction *LastInst = nullptr; 4768 4769 // Find the last instruction. The common case should be that BB has been 4770 // scheduled, and the last instruction is VL.back(). So we start with 4771 // VL.back() and iterate over schedule data until we reach the end of the 4772 // bundle. The end of the bundle is marked by null ScheduleData. 4773 if (BlocksSchedules.count(BB)) { 4774 auto *Bundle = 4775 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 4776 if (Bundle && Bundle->isPartOfBundle()) 4777 for (; Bundle; Bundle = Bundle->NextInBundle) 4778 if (Bundle->OpValue == Bundle->Inst) 4779 LastInst = Bundle->Inst; 4780 } 4781 4782 // LastInst can still be null at this point if there's either not an entry 4783 // for BB in BlocksSchedules or there's no ScheduleData available for 4784 // VL.back(). This can be the case if buildTree_rec aborts for various 4785 // reasons (e.g., the maximum recursion depth is reached, the maximum region 4786 // size is reached, etc.). ScheduleData is initialized in the scheduling 4787 // "dry-run". 4788 // 4789 // If this happens, we can still find the last instruction by brute force. We 4790 // iterate forwards from Front (inclusive) until we either see all 4791 // instructions in the bundle or reach the end of the block. If Front is the 4792 // last instruction in program order, LastInst will be set to Front, and we 4793 // will visit all the remaining instructions in the block. 4794 // 4795 // One of the reasons we exit early from buildTree_rec is to place an upper 4796 // bound on compile-time. Thus, taking an additional compile-time hit here is 4797 // not ideal. However, this should be exceedingly rare since it requires that 4798 // we both exit early from buildTree_rec and that the bundle be out-of-order 4799 // (causing us to iterate all the way to the end of the block). 4800 if (!LastInst) { 4801 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 4802 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 4803 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 4804 LastInst = &I; 4805 if (Bundle.empty()) 4806 break; 4807 } 4808 } 4809 assert(LastInst && "Failed to find last instruction in bundle"); 4810 4811 // Set the insertion point after the last instruction in the bundle. Set the 4812 // debug location to Front. 4813 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 4814 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 4815 } 4816 4817 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 4818 // List of instructions/lanes from current block and/or the blocks which are 4819 // part of the current loop. These instructions will be inserted at the end to 4820 // make it possible to optimize loops and hoist invariant instructions out of 4821 // the loops body with better chances for success. 4822 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 4823 SmallSet<int, 4> PostponedIndices; 4824 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 4825 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 4826 SmallPtrSet<BasicBlock *, 4> Visited; 4827 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 4828 InsertBB = InsertBB->getSinglePredecessor(); 4829 return InsertBB && InsertBB == InstBB; 4830 }; 4831 for (int I = 0, E = VL.size(); I < E; ++I) { 4832 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 4833 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 4834 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 4835 PostponedIndices.insert(I).second) 4836 PostponedInsts.emplace_back(Inst, I); 4837 } 4838 4839 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 4840 // No need to insert undefs elements - exit. 4841 if (isa<UndefValue>(V)) 4842 return Vec; 4843 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 4844 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 4845 if (!InsElt) 4846 return Vec; 4847 GatherSeq.insert(InsElt); 4848 CSEBlocks.insert(InsElt->getParent()); 4849 // Add to our 'need-to-extract' list. 4850 if (TreeEntry *Entry = getTreeEntry(V)) { 4851 // Find which lane we need to extract. 4852 unsigned FoundLane = 4853 std::distance(Entry->Scalars.begin(), find(Entry->Scalars, V)); 4854 assert(FoundLane < Entry->Scalars.size() && "Couldn't find extract lane"); 4855 if (!Entry->ReuseShuffleIndices.empty()) { 4856 FoundLane = std::distance(Entry->ReuseShuffleIndices.begin(), 4857 find(Entry->ReuseShuffleIndices, FoundLane)); 4858 } 4859 ExternalUses.emplace_back(V, InsElt, FoundLane); 4860 } 4861 return Vec; 4862 }; 4863 Value *Val0 = 4864 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 4865 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 4866 Value *Vec = PoisonValue::get(VecTy); 4867 for (int I = 0, E = VL.size(); I < E; ++I) { 4868 if (PostponedIndices.contains(I)) 4869 continue; 4870 Vec = CreateInsertElement(Vec, VL[I], I); 4871 } 4872 // Append instructions, which are/may be part of the loop, in the end to make 4873 // it possible to hoist non-loop-based instructions. 4874 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 4875 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 4876 4877 return Vec; 4878 } 4879 4880 namespace { 4881 /// Merges shuffle masks and emits final shuffle instruction, if required. 4882 class ShuffleInstructionBuilder { 4883 IRBuilderBase &Builder; 4884 const unsigned VF = 0; 4885 bool IsFinalized = false; 4886 SmallVector<int, 4> Mask; 4887 4888 public: 4889 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF) 4890 : Builder(Builder), VF(VF) {} 4891 4892 /// Adds a mask, inverting it before applying. 4893 void addInversedMask(ArrayRef<unsigned> SubMask) { 4894 if (SubMask.empty()) 4895 return; 4896 SmallVector<int, 4> NewMask; 4897 inversePermutation(SubMask, NewMask); 4898 addMask(NewMask); 4899 } 4900 4901 /// Functions adds masks, merging them into single one. 4902 void addMask(ArrayRef<unsigned> SubMask) { 4903 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 4904 addMask(NewMask); 4905 } 4906 4907 void addMask(ArrayRef<int> SubMask) { 4908 if (SubMask.empty()) 4909 return; 4910 if (Mask.empty()) { 4911 Mask.append(SubMask.begin(), SubMask.end()); 4912 return; 4913 } 4914 SmallVector<int, 4> NewMask(SubMask.size(), SubMask.size()); 4915 int TermValue = std::min(Mask.size(), SubMask.size()); 4916 for (int I = 0, E = SubMask.size(); I < E; ++I) { 4917 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 4918 Mask[SubMask[I]] >= TermValue) { 4919 NewMask[I] = UndefMaskElem; 4920 continue; 4921 } 4922 NewMask[I] = Mask[SubMask[I]]; 4923 } 4924 Mask.swap(NewMask); 4925 } 4926 4927 Value *finalize(Value *V) { 4928 IsFinalized = true; 4929 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 4930 if (VF == ValueVF && Mask.empty()) 4931 return V; 4932 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 4933 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 4934 addMask(NormalizedMask); 4935 4936 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 4937 return V; 4938 return Builder.CreateShuffleVector(V, Mask, "shuffle"); 4939 } 4940 4941 ~ShuffleInstructionBuilder() { 4942 assert((IsFinalized || Mask.empty()) && 4943 "Shuffle construction must be finalized."); 4944 } 4945 }; 4946 } // namespace 4947 4948 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 4949 unsigned VF = VL.size(); 4950 InstructionsState S = getSameOpcode(VL); 4951 if (S.getOpcode()) { 4952 if (TreeEntry *E = getTreeEntry(S.OpValue)) 4953 if (E->isSame(VL)) { 4954 Value *V = vectorizeTree(E); 4955 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 4956 if (!E->ReuseShuffleIndices.empty()) { 4957 // Reshuffle to get only unique values. 4958 // If some of the scalars are duplicated in the vectorization tree 4959 // entry, we do not vectorize them but instead generate a mask for 4960 // the reuses. But if there are several users of the same entry, 4961 // they may have different vectorization factors. This is especially 4962 // important for PHI nodes. In this case, we need to adapt the 4963 // resulting instruction for the user vectorization factor and have 4964 // to reshuffle it again to take only unique elements of the vector. 4965 // Without this code the function incorrectly returns reduced vector 4966 // instruction with the same elements, not with the unique ones. 4967 4968 // block: 4969 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 4970 // %2 = shuffle <2 x > %phi, %poison, <4 x > <0, 0, 1, 1> 4971 // ... (use %2) 4972 // %shuffle = shuffle <2 x> %2, poison, <2 x> {0, 2} 4973 // br %block 4974 SmallVector<int> UniqueIdxs; 4975 SmallSet<int, 4> UsedIdxs; 4976 int Pos = 0; 4977 int Sz = VL.size(); 4978 for (int Idx : E->ReuseShuffleIndices) { 4979 if (Idx != Sz && UsedIdxs.insert(Idx).second) 4980 UniqueIdxs.emplace_back(Pos); 4981 ++Pos; 4982 } 4983 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 4984 "less than original vector size."); 4985 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 4986 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 4987 } else { 4988 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 4989 "Expected vectorization factor less " 4990 "than original vector size."); 4991 SmallVector<int> UniformMask(VF, 0); 4992 std::iota(UniformMask.begin(), UniformMask.end(), 0); 4993 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 4994 } 4995 } 4996 return V; 4997 } 4998 } 4999 5000 // Check that every instruction appears once in this bundle. 5001 SmallVector<int> ReuseShuffleIndicies; 5002 SmallVector<Value *> UniqueValues; 5003 if (VL.size() > 2) { 5004 DenseMap<Value *, unsigned> UniquePositions; 5005 unsigned NumValues = 5006 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 5007 return !isa<UndefValue>(V); 5008 }).base()); 5009 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 5010 int UniqueVals = 0; 5011 bool HasUndefs = false; 5012 for (Value *V : VL.drop_back(VL.size() - VF)) { 5013 if (isa<UndefValue>(V)) { 5014 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 5015 HasUndefs = true; 5016 continue; 5017 } 5018 if (isConstant(V)) { 5019 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 5020 UniqueValues.emplace_back(V); 5021 continue; 5022 } 5023 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 5024 ReuseShuffleIndicies.emplace_back(Res.first->second); 5025 if (Res.second) { 5026 UniqueValues.emplace_back(V); 5027 ++UniqueVals; 5028 } 5029 } 5030 if (HasUndefs && UniqueVals == 1 && UniqueValues.size() == 1) { 5031 // Emit pure splat vector. 5032 // FIXME: why it is not identified as an identity. 5033 unsigned NumUndefs = count(ReuseShuffleIndicies, UndefMaskElem); 5034 if (NumUndefs == ReuseShuffleIndicies.size() - 1) 5035 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 5036 UndefMaskElem); 5037 else 5038 ReuseShuffleIndicies.assign(VF, 0); 5039 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 5040 ReuseShuffleIndicies.clear(); 5041 UniqueValues.clear(); 5042 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 5043 } 5044 UniqueValues.append(VF - UniqueValues.size(), 5045 UndefValue::get(VL[0]->getType())); 5046 VL = UniqueValues; 5047 } 5048 5049 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF); 5050 Value *Vec = gather(VL); 5051 if (!ReuseShuffleIndicies.empty()) { 5052 ShuffleBuilder.addMask(ReuseShuffleIndicies); 5053 Vec = ShuffleBuilder.finalize(Vec); 5054 if (auto *I = dyn_cast<Instruction>(Vec)) { 5055 GatherSeq.insert(I); 5056 CSEBlocks.insert(I->getParent()); 5057 } 5058 } 5059 return Vec; 5060 } 5061 5062 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 5063 IRBuilder<>::InsertPointGuard Guard(Builder); 5064 5065 if (E->VectorizedValue) { 5066 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 5067 return E->VectorizedValue; 5068 } 5069 5070 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 5071 unsigned VF = E->Scalars.size(); 5072 if (NeedToShuffleReuses) 5073 VF = E->ReuseShuffleIndices.size(); 5074 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF); 5075 if (E->State == TreeEntry::NeedToGather) { 5076 setInsertPointAfterBundle(E); 5077 Value *Vec; 5078 SmallVector<int> Mask; 5079 SmallVector<const TreeEntry *> Entries; 5080 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 5081 isGatherShuffledEntry(E, Mask, Entries); 5082 if (Shuffle.hasValue()) { 5083 assert((Entries.size() == 1 || Entries.size() == 2) && 5084 "Expected shuffle of 1 or 2 entries."); 5085 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 5086 Entries.back()->VectorizedValue, Mask); 5087 } else { 5088 Vec = gather(E->Scalars); 5089 } 5090 if (NeedToShuffleReuses) { 5091 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5092 Vec = ShuffleBuilder.finalize(Vec); 5093 if (auto *I = dyn_cast<Instruction>(Vec)) { 5094 GatherSeq.insert(I); 5095 CSEBlocks.insert(I->getParent()); 5096 } 5097 } 5098 E->VectorizedValue = Vec; 5099 return Vec; 5100 } 5101 5102 assert((E->State == TreeEntry::Vectorize || 5103 E->State == TreeEntry::ScatterVectorize) && 5104 "Unhandled state"); 5105 unsigned ShuffleOrOp = 5106 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 5107 Instruction *VL0 = E->getMainOp(); 5108 Type *ScalarTy = VL0->getType(); 5109 if (auto *Store = dyn_cast<StoreInst>(VL0)) 5110 ScalarTy = Store->getValueOperand()->getType(); 5111 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 5112 ScalarTy = IE->getOperand(1)->getType(); 5113 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 5114 switch (ShuffleOrOp) { 5115 case Instruction::PHI: { 5116 auto *PH = cast<PHINode>(VL0); 5117 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 5118 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 5119 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 5120 Value *V = NewPhi; 5121 if (NeedToShuffleReuses) 5122 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 5123 5124 E->VectorizedValue = V; 5125 5126 // PHINodes may have multiple entries from the same block. We want to 5127 // visit every block once. 5128 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 5129 5130 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 5131 ValueList Operands; 5132 BasicBlock *IBB = PH->getIncomingBlock(i); 5133 5134 if (!VisitedBBs.insert(IBB).second) { 5135 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 5136 continue; 5137 } 5138 5139 Builder.SetInsertPoint(IBB->getTerminator()); 5140 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 5141 Value *Vec = vectorizeTree(E->getOperand(i)); 5142 NewPhi->addIncoming(Vec, IBB); 5143 } 5144 5145 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 5146 "Invalid number of incoming values"); 5147 return V; 5148 } 5149 5150 case Instruction::ExtractElement: { 5151 Value *V = E->getSingleOperand(0); 5152 Builder.SetInsertPoint(VL0); 5153 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5154 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5155 V = ShuffleBuilder.finalize(V); 5156 E->VectorizedValue = V; 5157 return V; 5158 } 5159 case Instruction::ExtractValue: { 5160 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 5161 Builder.SetInsertPoint(LI); 5162 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 5163 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 5164 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 5165 Value *NewV = propagateMetadata(V, E->Scalars); 5166 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5167 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5168 NewV = ShuffleBuilder.finalize(NewV); 5169 E->VectorizedValue = NewV; 5170 return NewV; 5171 } 5172 case Instruction::InsertElement: { 5173 Builder.SetInsertPoint(VL0); 5174 Value *V = vectorizeTree(E->getOperand(1)); 5175 5176 const unsigned NumElts = 5177 cast<FixedVectorType>(VL0->getType())->getNumElements(); 5178 const unsigned NumScalars = E->Scalars.size(); 5179 5180 // Create InsertVector shuffle if necessary 5181 Instruction *FirstInsert = nullptr; 5182 bool IsIdentity = true; 5183 unsigned Offset = UINT_MAX; 5184 for (unsigned I = 0; I < NumScalars; ++I) { 5185 Value *Scalar = E->Scalars[I]; 5186 if (!FirstInsert && 5187 !is_contained(E->Scalars, cast<Instruction>(Scalar)->getOperand(0))) 5188 FirstInsert = cast<Instruction>(Scalar); 5189 Optional<int> InsertIdx = getInsertIndex(Scalar, 0); 5190 if (!InsertIdx || *InsertIdx == UndefMaskElem) 5191 continue; 5192 unsigned Idx = *InsertIdx; 5193 if (Idx < Offset) { 5194 Offset = Idx; 5195 IsIdentity &= I == 0; 5196 } else { 5197 assert(Idx >= Offset && "Failed to find vector index offset"); 5198 IsIdentity &= Idx - Offset == I; 5199 } 5200 } 5201 assert(Offset < NumElts && "Failed to find vector index offset"); 5202 5203 // Create shuffle to resize vector 5204 SmallVector<int> Mask(NumElts, UndefMaskElem); 5205 if (!IsIdentity) { 5206 for (unsigned I = 0; I < NumScalars; ++I) { 5207 Value *Scalar = E->Scalars[I]; 5208 Optional<int> InsertIdx = getInsertIndex(Scalar, 0); 5209 if (!InsertIdx || *InsertIdx == UndefMaskElem) 5210 continue; 5211 Mask[*InsertIdx - Offset] = I; 5212 } 5213 } else { 5214 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 5215 } 5216 if (!IsIdentity || NumElts != NumScalars) 5217 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), Mask); 5218 5219 if (NumElts != NumScalars) { 5220 SmallVector<int> InsertMask(NumElts); 5221 std::iota(InsertMask.begin(), InsertMask.end(), 0); 5222 for (unsigned I = 0; I < NumElts; I++) { 5223 if (Mask[I] != UndefMaskElem) 5224 InsertMask[Offset + I] = NumElts + I; 5225 } 5226 5227 V = Builder.CreateShuffleVector( 5228 FirstInsert->getOperand(0), V, InsertMask, 5229 cast<Instruction>(E->Scalars.back())->getName()); 5230 } 5231 5232 ++NumVectorInstructions; 5233 E->VectorizedValue = V; 5234 return V; 5235 } 5236 case Instruction::ZExt: 5237 case Instruction::SExt: 5238 case Instruction::FPToUI: 5239 case Instruction::FPToSI: 5240 case Instruction::FPExt: 5241 case Instruction::PtrToInt: 5242 case Instruction::IntToPtr: 5243 case Instruction::SIToFP: 5244 case Instruction::UIToFP: 5245 case Instruction::Trunc: 5246 case Instruction::FPTrunc: 5247 case Instruction::BitCast: { 5248 setInsertPointAfterBundle(E); 5249 5250 Value *InVec = vectorizeTree(E->getOperand(0)); 5251 5252 if (E->VectorizedValue) { 5253 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 5254 return E->VectorizedValue; 5255 } 5256 5257 auto *CI = cast<CastInst>(VL0); 5258 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 5259 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5260 V = ShuffleBuilder.finalize(V); 5261 5262 E->VectorizedValue = V; 5263 ++NumVectorInstructions; 5264 return V; 5265 } 5266 case Instruction::FCmp: 5267 case Instruction::ICmp: { 5268 setInsertPointAfterBundle(E); 5269 5270 Value *L = vectorizeTree(E->getOperand(0)); 5271 Value *R = vectorizeTree(E->getOperand(1)); 5272 5273 if (E->VectorizedValue) { 5274 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 5275 return E->VectorizedValue; 5276 } 5277 5278 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 5279 Value *V = Builder.CreateCmp(P0, L, R); 5280 propagateIRFlags(V, E->Scalars, VL0); 5281 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5282 V = ShuffleBuilder.finalize(V); 5283 5284 E->VectorizedValue = V; 5285 ++NumVectorInstructions; 5286 return V; 5287 } 5288 case Instruction::Select: { 5289 setInsertPointAfterBundle(E); 5290 5291 Value *Cond = vectorizeTree(E->getOperand(0)); 5292 Value *True = vectorizeTree(E->getOperand(1)); 5293 Value *False = vectorizeTree(E->getOperand(2)); 5294 5295 if (E->VectorizedValue) { 5296 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 5297 return E->VectorizedValue; 5298 } 5299 5300 Value *V = Builder.CreateSelect(Cond, True, False); 5301 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5302 V = ShuffleBuilder.finalize(V); 5303 5304 E->VectorizedValue = V; 5305 ++NumVectorInstructions; 5306 return V; 5307 } 5308 case Instruction::FNeg: { 5309 setInsertPointAfterBundle(E); 5310 5311 Value *Op = vectorizeTree(E->getOperand(0)); 5312 5313 if (E->VectorizedValue) { 5314 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 5315 return E->VectorizedValue; 5316 } 5317 5318 Value *V = Builder.CreateUnOp( 5319 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 5320 propagateIRFlags(V, E->Scalars, VL0); 5321 if (auto *I = dyn_cast<Instruction>(V)) 5322 V = propagateMetadata(I, E->Scalars); 5323 5324 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5325 V = ShuffleBuilder.finalize(V); 5326 5327 E->VectorizedValue = V; 5328 ++NumVectorInstructions; 5329 5330 return V; 5331 } 5332 case Instruction::Add: 5333 case Instruction::FAdd: 5334 case Instruction::Sub: 5335 case Instruction::FSub: 5336 case Instruction::Mul: 5337 case Instruction::FMul: 5338 case Instruction::UDiv: 5339 case Instruction::SDiv: 5340 case Instruction::FDiv: 5341 case Instruction::URem: 5342 case Instruction::SRem: 5343 case Instruction::FRem: 5344 case Instruction::Shl: 5345 case Instruction::LShr: 5346 case Instruction::AShr: 5347 case Instruction::And: 5348 case Instruction::Or: 5349 case Instruction::Xor: { 5350 setInsertPointAfterBundle(E); 5351 5352 Value *LHS = vectorizeTree(E->getOperand(0)); 5353 Value *RHS = vectorizeTree(E->getOperand(1)); 5354 5355 if (E->VectorizedValue) { 5356 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 5357 return E->VectorizedValue; 5358 } 5359 5360 Value *V = Builder.CreateBinOp( 5361 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 5362 RHS); 5363 propagateIRFlags(V, E->Scalars, VL0); 5364 if (auto *I = dyn_cast<Instruction>(V)) 5365 V = propagateMetadata(I, E->Scalars); 5366 5367 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5368 V = ShuffleBuilder.finalize(V); 5369 5370 E->VectorizedValue = V; 5371 ++NumVectorInstructions; 5372 5373 return V; 5374 } 5375 case Instruction::Load: { 5376 // Loads are inserted at the head of the tree because we don't want to 5377 // sink them all the way down past store instructions. 5378 bool IsReorder = E->updateStateIfReorder(); 5379 if (IsReorder) 5380 VL0 = E->getMainOp(); 5381 setInsertPointAfterBundle(E); 5382 5383 LoadInst *LI = cast<LoadInst>(VL0); 5384 Instruction *NewLI; 5385 unsigned AS = LI->getPointerAddressSpace(); 5386 Value *PO = LI->getPointerOperand(); 5387 if (E->State == TreeEntry::Vectorize) { 5388 5389 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 5390 5391 // The pointer operand uses an in-tree scalar so we add the new BitCast 5392 // to ExternalUses list to make sure that an extract will be generated 5393 // in the future. 5394 if (getTreeEntry(PO)) 5395 ExternalUses.emplace_back(PO, cast<User>(VecPtr), 0); 5396 5397 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 5398 } else { 5399 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 5400 Value *VecPtr = vectorizeTree(E->getOperand(0)); 5401 // Use the minimum alignment of the gathered loads. 5402 Align CommonAlignment = LI->getAlign(); 5403 for (Value *V : E->Scalars) 5404 CommonAlignment = 5405 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 5406 NewLI = Builder.CreateMaskedGather(VecPtr, CommonAlignment); 5407 } 5408 Value *V = propagateMetadata(NewLI, E->Scalars); 5409 5410 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5411 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5412 V = ShuffleBuilder.finalize(V); 5413 E->VectorizedValue = V; 5414 ++NumVectorInstructions; 5415 return V; 5416 } 5417 case Instruction::Store: { 5418 bool IsReorder = !E->ReorderIndices.empty(); 5419 auto *SI = cast<StoreInst>( 5420 IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0); 5421 unsigned AS = SI->getPointerAddressSpace(); 5422 5423 setInsertPointAfterBundle(E); 5424 5425 Value *VecValue = vectorizeTree(E->getOperand(0)); 5426 ShuffleBuilder.addMask(E->ReorderIndices); 5427 VecValue = ShuffleBuilder.finalize(VecValue); 5428 5429 Value *ScalarPtr = SI->getPointerOperand(); 5430 Value *VecPtr = Builder.CreateBitCast( 5431 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 5432 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 5433 SI->getAlign()); 5434 5435 // The pointer operand uses an in-tree scalar, so add the new BitCast to 5436 // ExternalUses to make sure that an extract will be generated in the 5437 // future. 5438 if (getTreeEntry(ScalarPtr)) 5439 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 5440 5441 Value *V = propagateMetadata(ST, E->Scalars); 5442 5443 E->VectorizedValue = V; 5444 ++NumVectorInstructions; 5445 return V; 5446 } 5447 case Instruction::GetElementPtr: { 5448 setInsertPointAfterBundle(E); 5449 5450 Value *Op0 = vectorizeTree(E->getOperand(0)); 5451 5452 std::vector<Value *> OpVecs; 5453 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 5454 ++j) { 5455 ValueList &VL = E->getOperand(j); 5456 // Need to cast all elements to the same type before vectorization to 5457 // avoid crash. 5458 Type *VL0Ty = VL0->getOperand(j)->getType(); 5459 Type *Ty = llvm::all_of( 5460 VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); }) 5461 ? VL0Ty 5462 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 5463 ->getPointerOperandType() 5464 ->getScalarType()); 5465 for (Value *&V : VL) { 5466 auto *CI = cast<ConstantInt>(V); 5467 V = ConstantExpr::getIntegerCast(CI, Ty, 5468 CI->getValue().isSignBitSet()); 5469 } 5470 Value *OpVec = vectorizeTree(VL); 5471 OpVecs.push_back(OpVec); 5472 } 5473 5474 Value *V = Builder.CreateGEP( 5475 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 5476 if (Instruction *I = dyn_cast<Instruction>(V)) 5477 V = propagateMetadata(I, E->Scalars); 5478 5479 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5480 V = ShuffleBuilder.finalize(V); 5481 5482 E->VectorizedValue = V; 5483 ++NumVectorInstructions; 5484 5485 return V; 5486 } 5487 case Instruction::Call: { 5488 CallInst *CI = cast<CallInst>(VL0); 5489 setInsertPointAfterBundle(E); 5490 5491 Intrinsic::ID IID = Intrinsic::not_intrinsic; 5492 if (Function *FI = CI->getCalledFunction()) 5493 IID = FI->getIntrinsicID(); 5494 5495 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5496 5497 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 5498 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 5499 VecCallCosts.first <= VecCallCosts.second; 5500 5501 Value *ScalarArg = nullptr; 5502 std::vector<Value *> OpVecs; 5503 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 5504 ValueList OpVL; 5505 // Some intrinsics have scalar arguments. This argument should not be 5506 // vectorized. 5507 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 5508 CallInst *CEI = cast<CallInst>(VL0); 5509 ScalarArg = CEI->getArgOperand(j); 5510 OpVecs.push_back(CEI->getArgOperand(j)); 5511 continue; 5512 } 5513 5514 Value *OpVec = vectorizeTree(E->getOperand(j)); 5515 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 5516 OpVecs.push_back(OpVec); 5517 } 5518 5519 Function *CF; 5520 if (!UseIntrinsic) { 5521 VFShape Shape = 5522 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 5523 VecTy->getNumElements())), 5524 false /*HasGlobalPred*/); 5525 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 5526 } else { 5527 Type *Tys[] = {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 5528 CF = Intrinsic::getDeclaration(F->getParent(), ID, Tys); 5529 } 5530 5531 SmallVector<OperandBundleDef, 1> OpBundles; 5532 CI->getOperandBundlesAsDefs(OpBundles); 5533 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 5534 5535 // The scalar argument uses an in-tree scalar so we add the new vectorized 5536 // call to ExternalUses list to make sure that an extract will be 5537 // generated in the future. 5538 if (ScalarArg && getTreeEntry(ScalarArg)) 5539 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 5540 5541 propagateIRFlags(V, E->Scalars, VL0); 5542 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5543 V = ShuffleBuilder.finalize(V); 5544 5545 E->VectorizedValue = V; 5546 ++NumVectorInstructions; 5547 return V; 5548 } 5549 case Instruction::ShuffleVector: { 5550 assert(E->isAltShuffle() && 5551 ((Instruction::isBinaryOp(E->getOpcode()) && 5552 Instruction::isBinaryOp(E->getAltOpcode())) || 5553 (Instruction::isCast(E->getOpcode()) && 5554 Instruction::isCast(E->getAltOpcode()))) && 5555 "Invalid Shuffle Vector Operand"); 5556 5557 Value *LHS = nullptr, *RHS = nullptr; 5558 if (Instruction::isBinaryOp(E->getOpcode())) { 5559 setInsertPointAfterBundle(E); 5560 LHS = vectorizeTree(E->getOperand(0)); 5561 RHS = vectorizeTree(E->getOperand(1)); 5562 } else { 5563 setInsertPointAfterBundle(E); 5564 LHS = vectorizeTree(E->getOperand(0)); 5565 } 5566 5567 if (E->VectorizedValue) { 5568 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 5569 return E->VectorizedValue; 5570 } 5571 5572 Value *V0, *V1; 5573 if (Instruction::isBinaryOp(E->getOpcode())) { 5574 V0 = Builder.CreateBinOp( 5575 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 5576 V1 = Builder.CreateBinOp( 5577 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 5578 } else { 5579 V0 = Builder.CreateCast( 5580 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 5581 V1 = Builder.CreateCast( 5582 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 5583 } 5584 5585 // Create shuffle to take alternate operations from the vector. 5586 // Also, gather up main and alt scalar ops to propagate IR flags to 5587 // each vector operation. 5588 ValueList OpScalars, AltScalars; 5589 unsigned e = E->Scalars.size(); 5590 SmallVector<int, 8> Mask(e); 5591 for (unsigned i = 0; i < e; ++i) { 5592 auto *OpInst = cast<Instruction>(E->Scalars[i]); 5593 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 5594 if (OpInst->getOpcode() == E->getAltOpcode()) { 5595 Mask[i] = e + i; 5596 AltScalars.push_back(E->Scalars[i]); 5597 } else { 5598 Mask[i] = i; 5599 OpScalars.push_back(E->Scalars[i]); 5600 } 5601 } 5602 5603 propagateIRFlags(V0, OpScalars); 5604 propagateIRFlags(V1, AltScalars); 5605 5606 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 5607 if (Instruction *I = dyn_cast<Instruction>(V)) 5608 V = propagateMetadata(I, E->Scalars); 5609 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5610 V = ShuffleBuilder.finalize(V); 5611 5612 E->VectorizedValue = V; 5613 ++NumVectorInstructions; 5614 5615 return V; 5616 } 5617 default: 5618 llvm_unreachable("unknown inst"); 5619 } 5620 return nullptr; 5621 } 5622 5623 Value *BoUpSLP::vectorizeTree() { 5624 ExtraValueToDebugLocsMap ExternallyUsedValues; 5625 return vectorizeTree(ExternallyUsedValues); 5626 } 5627 5628 Value * 5629 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 5630 // All blocks must be scheduled before any instructions are inserted. 5631 for (auto &BSIter : BlocksSchedules) { 5632 scheduleBlock(BSIter.second.get()); 5633 } 5634 5635 Builder.SetInsertPoint(&F->getEntryBlock().front()); 5636 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 5637 5638 // If the vectorized tree can be rewritten in a smaller type, we truncate the 5639 // vectorized root. InstCombine will then rewrite the entire expression. We 5640 // sign extend the extracted values below. 5641 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 5642 if (MinBWs.count(ScalarRoot)) { 5643 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 5644 // If current instr is a phi and not the last phi, insert it after the 5645 // last phi node. 5646 if (isa<PHINode>(I)) 5647 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 5648 else 5649 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 5650 } 5651 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 5652 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 5653 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 5654 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 5655 VectorizableTree[0]->VectorizedValue = Trunc; 5656 } 5657 5658 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 5659 << " values .\n"); 5660 5661 // Extract all of the elements with the external uses. 5662 for (const auto &ExternalUse : ExternalUses) { 5663 Value *Scalar = ExternalUse.Scalar; 5664 llvm::User *User = ExternalUse.User; 5665 5666 // Skip users that we already RAUW. This happens when one instruction 5667 // has multiple uses of the same value. 5668 if (User && !is_contained(Scalar->users(), User)) 5669 continue; 5670 TreeEntry *E = getTreeEntry(Scalar); 5671 assert(E && "Invalid scalar"); 5672 assert(E->State != TreeEntry::NeedToGather && 5673 "Extracting from a gather list"); 5674 5675 Value *Vec = E->VectorizedValue; 5676 assert(Vec && "Can't find vectorizable value"); 5677 5678 Value *Lane = Builder.getInt32(ExternalUse.Lane); 5679 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 5680 if (Scalar->getType() != Vec->getType()) { 5681 Value *Ex; 5682 // "Reuse" the existing extract to improve final codegen. 5683 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 5684 Ex = Builder.CreateExtractElement(ES->getOperand(0), 5685 ES->getOperand(1)); 5686 } else { 5687 Ex = Builder.CreateExtractElement(Vec, Lane); 5688 } 5689 // If necessary, sign-extend or zero-extend ScalarRoot 5690 // to the larger type. 5691 if (!MinBWs.count(ScalarRoot)) 5692 return Ex; 5693 if (MinBWs[ScalarRoot].second) 5694 return Builder.CreateSExt(Ex, Scalar->getType()); 5695 return Builder.CreateZExt(Ex, Scalar->getType()); 5696 } 5697 assert(isa<FixedVectorType>(Scalar->getType()) && 5698 isa<InsertElementInst>(Scalar) && 5699 "In-tree scalar of vector type is not insertelement?"); 5700 return Vec; 5701 }; 5702 // If User == nullptr, the Scalar is used as extra arg. Generate 5703 // ExtractElement instruction and update the record for this scalar in 5704 // ExternallyUsedValues. 5705 if (!User) { 5706 assert(ExternallyUsedValues.count(Scalar) && 5707 "Scalar with nullptr as an external user must be registered in " 5708 "ExternallyUsedValues map"); 5709 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 5710 Builder.SetInsertPoint(VecI->getParent(), 5711 std::next(VecI->getIterator())); 5712 } else { 5713 Builder.SetInsertPoint(&F->getEntryBlock().front()); 5714 } 5715 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 5716 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 5717 auto &Locs = ExternallyUsedValues[Scalar]; 5718 ExternallyUsedValues.insert({NewInst, Locs}); 5719 ExternallyUsedValues.erase(Scalar); 5720 // Required to update internally referenced instructions. 5721 Scalar->replaceAllUsesWith(NewInst); 5722 continue; 5723 } 5724 5725 // Generate extracts for out-of-tree users. 5726 // Find the insertion point for the extractelement lane. 5727 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 5728 if (PHINode *PH = dyn_cast<PHINode>(User)) { 5729 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 5730 if (PH->getIncomingValue(i) == Scalar) { 5731 Instruction *IncomingTerminator = 5732 PH->getIncomingBlock(i)->getTerminator(); 5733 if (isa<CatchSwitchInst>(IncomingTerminator)) { 5734 Builder.SetInsertPoint(VecI->getParent(), 5735 std::next(VecI->getIterator())); 5736 } else { 5737 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 5738 } 5739 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 5740 CSEBlocks.insert(PH->getIncomingBlock(i)); 5741 PH->setOperand(i, NewInst); 5742 } 5743 } 5744 } else { 5745 Builder.SetInsertPoint(cast<Instruction>(User)); 5746 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 5747 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 5748 User->replaceUsesOfWith(Scalar, NewInst); 5749 } 5750 } else { 5751 Builder.SetInsertPoint(&F->getEntryBlock().front()); 5752 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 5753 CSEBlocks.insert(&F->getEntryBlock()); 5754 User->replaceUsesOfWith(Scalar, NewInst); 5755 } 5756 5757 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 5758 } 5759 5760 // For each vectorized value: 5761 for (auto &TEPtr : VectorizableTree) { 5762 TreeEntry *Entry = TEPtr.get(); 5763 5764 // No need to handle users of gathered values. 5765 if (Entry->State == TreeEntry::NeedToGather) 5766 continue; 5767 5768 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 5769 5770 // For each lane: 5771 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 5772 Value *Scalar = Entry->Scalars[Lane]; 5773 5774 #ifndef NDEBUG 5775 Type *Ty = Scalar->getType(); 5776 if (!Ty->isVoidTy()) { 5777 for (User *U : Scalar->users()) { 5778 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 5779 5780 // It is legal to delete users in the ignorelist. 5781 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 5782 "Deleting out-of-tree value"); 5783 } 5784 } 5785 #endif 5786 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 5787 eraseInstruction(cast<Instruction>(Scalar)); 5788 } 5789 } 5790 5791 Builder.ClearInsertionPoint(); 5792 InstrElementSize.clear(); 5793 5794 return VectorizableTree[0]->VectorizedValue; 5795 } 5796 5797 void BoUpSLP::optimizeGatherSequence() { 5798 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 5799 << " gather sequences instructions.\n"); 5800 // LICM InsertElementInst sequences. 5801 for (Instruction *I : GatherSeq) { 5802 if (isDeleted(I)) 5803 continue; 5804 5805 // Check if this block is inside a loop. 5806 Loop *L = LI->getLoopFor(I->getParent()); 5807 if (!L) 5808 continue; 5809 5810 // Check if it has a preheader. 5811 BasicBlock *PreHeader = L->getLoopPreheader(); 5812 if (!PreHeader) 5813 continue; 5814 5815 // If the vector or the element that we insert into it are 5816 // instructions that are defined in this basic block then we can't 5817 // hoist this instruction. 5818 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 5819 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 5820 if (Op0 && L->contains(Op0)) 5821 continue; 5822 if (Op1 && L->contains(Op1)) 5823 continue; 5824 5825 // We can hoist this instruction. Move it to the pre-header. 5826 I->moveBefore(PreHeader->getTerminator()); 5827 } 5828 5829 // Make a list of all reachable blocks in our CSE queue. 5830 SmallVector<const DomTreeNode *, 8> CSEWorkList; 5831 CSEWorkList.reserve(CSEBlocks.size()); 5832 for (BasicBlock *BB : CSEBlocks) 5833 if (DomTreeNode *N = DT->getNode(BB)) { 5834 assert(DT->isReachableFromEntry(N)); 5835 CSEWorkList.push_back(N); 5836 } 5837 5838 // Sort blocks by domination. This ensures we visit a block after all blocks 5839 // dominating it are visited. 5840 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 5841 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 5842 "Different nodes should have different DFS numbers"); 5843 return A->getDFSNumIn() < B->getDFSNumIn(); 5844 }); 5845 5846 // Perform O(N^2) search over the gather sequences and merge identical 5847 // instructions. TODO: We can further optimize this scan if we split the 5848 // instructions into different buckets based on the insert lane. 5849 SmallVector<Instruction *, 16> Visited; 5850 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 5851 assert(*I && 5852 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 5853 "Worklist not sorted properly!"); 5854 BasicBlock *BB = (*I)->getBlock(); 5855 // For all instructions in blocks containing gather sequences: 5856 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 5857 Instruction *In = &*it++; 5858 if (isDeleted(In)) 5859 continue; 5860 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 5861 continue; 5862 5863 // Check if we can replace this instruction with any of the 5864 // visited instructions. 5865 for (Instruction *v : Visited) { 5866 if (In->isIdenticalTo(v) && 5867 DT->dominates(v->getParent(), In->getParent())) { 5868 In->replaceAllUsesWith(v); 5869 eraseInstruction(In); 5870 In = nullptr; 5871 break; 5872 } 5873 } 5874 if (In) { 5875 assert(!is_contained(Visited, In)); 5876 Visited.push_back(In); 5877 } 5878 } 5879 } 5880 CSEBlocks.clear(); 5881 GatherSeq.clear(); 5882 } 5883 5884 // Groups the instructions to a bundle (which is then a single scheduling entity) 5885 // and schedules instructions until the bundle gets ready. 5886 Optional<BoUpSLP::ScheduleData *> 5887 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 5888 const InstructionsState &S) { 5889 if (isa<PHINode>(S.OpValue)) 5890 return nullptr; 5891 5892 // Initialize the instruction bundle. 5893 Instruction *OldScheduleEnd = ScheduleEnd; 5894 ScheduleData *PrevInBundle = nullptr; 5895 ScheduleData *Bundle = nullptr; 5896 bool ReSchedule = false; 5897 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 5898 5899 auto &&TryScheduleBundle = [this, OldScheduleEnd, SLP](bool ReSchedule, 5900 ScheduleData *Bundle) { 5901 // The scheduling region got new instructions at the lower end (or it is a 5902 // new region for the first bundle). This makes it necessary to 5903 // recalculate all dependencies. 5904 // It is seldom that this needs to be done a second time after adding the 5905 // initial bundle to the region. 5906 if (ScheduleEnd != OldScheduleEnd) { 5907 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 5908 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 5909 ReSchedule = true; 5910 } 5911 if (ReSchedule) { 5912 resetSchedule(); 5913 initialFillReadyList(ReadyInsts); 5914 } 5915 if (Bundle) { 5916 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 5917 << " in block " << BB->getName() << "\n"); 5918 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 5919 } 5920 5921 // Now try to schedule the new bundle or (if no bundle) just calculate 5922 // dependencies. As soon as the bundle is "ready" it means that there are no 5923 // cyclic dependencies and we can schedule it. Note that's important that we 5924 // don't "schedule" the bundle yet (see cancelScheduling). 5925 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 5926 !ReadyInsts.empty()) { 5927 ScheduleData *Picked = ReadyInsts.pop_back_val(); 5928 if (Picked->isSchedulingEntity() && Picked->isReady()) 5929 schedule(Picked, ReadyInsts); 5930 } 5931 }; 5932 5933 // Make sure that the scheduling region contains all 5934 // instructions of the bundle. 5935 for (Value *V : VL) { 5936 if (!extendSchedulingRegion(V, S)) { 5937 // If the scheduling region got new instructions at the lower end (or it 5938 // is a new region for the first bundle). This makes it necessary to 5939 // recalculate all dependencies. 5940 // Otherwise the compiler may crash trying to incorrectly calculate 5941 // dependencies and emit instruction in the wrong order at the actual 5942 // scheduling. 5943 TryScheduleBundle(/*ReSchedule=*/false, nullptr); 5944 return None; 5945 } 5946 } 5947 5948 for (Value *V : VL) { 5949 ScheduleData *BundleMember = getScheduleData(V); 5950 assert(BundleMember && 5951 "no ScheduleData for bundle member (maybe not in same basic block)"); 5952 if (BundleMember->IsScheduled) { 5953 // A bundle member was scheduled as single instruction before and now 5954 // needs to be scheduled as part of the bundle. We just get rid of the 5955 // existing schedule. 5956 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 5957 << " was already scheduled\n"); 5958 ReSchedule = true; 5959 } 5960 assert(BundleMember->isSchedulingEntity() && 5961 "bundle member already part of other bundle"); 5962 if (PrevInBundle) { 5963 PrevInBundle->NextInBundle = BundleMember; 5964 } else { 5965 Bundle = BundleMember; 5966 } 5967 BundleMember->UnscheduledDepsInBundle = 0; 5968 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 5969 5970 // Group the instructions to a bundle. 5971 BundleMember->FirstInBundle = Bundle; 5972 PrevInBundle = BundleMember; 5973 } 5974 assert(Bundle && "Failed to find schedule bundle"); 5975 TryScheduleBundle(ReSchedule, Bundle); 5976 if (!Bundle->isReady()) { 5977 cancelScheduling(VL, S.OpValue); 5978 return None; 5979 } 5980 return Bundle; 5981 } 5982 5983 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 5984 Value *OpValue) { 5985 if (isa<PHINode>(OpValue)) 5986 return; 5987 5988 ScheduleData *Bundle = getScheduleData(OpValue); 5989 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 5990 assert(!Bundle->IsScheduled && 5991 "Can't cancel bundle which is already scheduled"); 5992 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 5993 "tried to unbundle something which is not a bundle"); 5994 5995 // Un-bundle: make single instructions out of the bundle. 5996 ScheduleData *BundleMember = Bundle; 5997 while (BundleMember) { 5998 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 5999 BundleMember->FirstInBundle = BundleMember; 6000 ScheduleData *Next = BundleMember->NextInBundle; 6001 BundleMember->NextInBundle = nullptr; 6002 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 6003 if (BundleMember->UnscheduledDepsInBundle == 0) { 6004 ReadyInsts.insert(BundleMember); 6005 } 6006 BundleMember = Next; 6007 } 6008 } 6009 6010 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 6011 // Allocate a new ScheduleData for the instruction. 6012 if (ChunkPos >= ChunkSize) { 6013 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 6014 ChunkPos = 0; 6015 } 6016 return &(ScheduleDataChunks.back()[ChunkPos++]); 6017 } 6018 6019 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 6020 const InstructionsState &S) { 6021 if (getScheduleData(V, isOneOf(S, V))) 6022 return true; 6023 Instruction *I = dyn_cast<Instruction>(V); 6024 assert(I && "bundle member must be an instruction"); 6025 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 6026 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 6027 ScheduleData *ISD = getScheduleData(I); 6028 if (!ISD) 6029 return false; 6030 assert(isInSchedulingRegion(ISD) && 6031 "ScheduleData not in scheduling region"); 6032 ScheduleData *SD = allocateScheduleDataChunks(); 6033 SD->Inst = I; 6034 SD->init(SchedulingRegionID, S.OpValue); 6035 ExtraScheduleDataMap[I][S.OpValue] = SD; 6036 return true; 6037 }; 6038 if (CheckSheduleForI(I)) 6039 return true; 6040 if (!ScheduleStart) { 6041 // It's the first instruction in the new region. 6042 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 6043 ScheduleStart = I; 6044 ScheduleEnd = I->getNextNode(); 6045 if (isOneOf(S, I) != I) 6046 CheckSheduleForI(I); 6047 assert(ScheduleEnd && "tried to vectorize a terminator?"); 6048 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 6049 return true; 6050 } 6051 // Search up and down at the same time, because we don't know if the new 6052 // instruction is above or below the existing scheduling region. 6053 BasicBlock::reverse_iterator UpIter = 6054 ++ScheduleStart->getIterator().getReverse(); 6055 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 6056 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 6057 BasicBlock::iterator LowerEnd = BB->end(); 6058 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 6059 &*DownIter != I) { 6060 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 6061 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 6062 return false; 6063 } 6064 6065 ++UpIter; 6066 ++DownIter; 6067 } 6068 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 6069 assert(I->getParent() == ScheduleStart->getParent() && 6070 "Instruction is in wrong basic block."); 6071 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 6072 ScheduleStart = I; 6073 if (isOneOf(S, I) != I) 6074 CheckSheduleForI(I); 6075 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 6076 << "\n"); 6077 return true; 6078 } 6079 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 6080 "Expected to reach top of the basic block or instruction down the " 6081 "lower end."); 6082 assert(I->getParent() == ScheduleEnd->getParent() && 6083 "Instruction is in wrong basic block."); 6084 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 6085 nullptr); 6086 ScheduleEnd = I->getNextNode(); 6087 if (isOneOf(S, I) != I) 6088 CheckSheduleForI(I); 6089 assert(ScheduleEnd && "tried to vectorize a terminator?"); 6090 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 6091 return true; 6092 } 6093 6094 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 6095 Instruction *ToI, 6096 ScheduleData *PrevLoadStore, 6097 ScheduleData *NextLoadStore) { 6098 ScheduleData *CurrentLoadStore = PrevLoadStore; 6099 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 6100 ScheduleData *SD = ScheduleDataMap[I]; 6101 if (!SD) { 6102 SD = allocateScheduleDataChunks(); 6103 ScheduleDataMap[I] = SD; 6104 SD->Inst = I; 6105 } 6106 assert(!isInSchedulingRegion(SD) && 6107 "new ScheduleData already in scheduling region"); 6108 SD->init(SchedulingRegionID, I); 6109 6110 if (I->mayReadOrWriteMemory() && 6111 (!isa<IntrinsicInst>(I) || 6112 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 6113 cast<IntrinsicInst>(I)->getIntrinsicID() != 6114 Intrinsic::pseudoprobe))) { 6115 // Update the linked list of memory accessing instructions. 6116 if (CurrentLoadStore) { 6117 CurrentLoadStore->NextLoadStore = SD; 6118 } else { 6119 FirstLoadStoreInRegion = SD; 6120 } 6121 CurrentLoadStore = SD; 6122 } 6123 } 6124 if (NextLoadStore) { 6125 if (CurrentLoadStore) 6126 CurrentLoadStore->NextLoadStore = NextLoadStore; 6127 } else { 6128 LastLoadStoreInRegion = CurrentLoadStore; 6129 } 6130 } 6131 6132 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 6133 bool InsertInReadyList, 6134 BoUpSLP *SLP) { 6135 assert(SD->isSchedulingEntity()); 6136 6137 SmallVector<ScheduleData *, 10> WorkList; 6138 WorkList.push_back(SD); 6139 6140 while (!WorkList.empty()) { 6141 ScheduleData *SD = WorkList.pop_back_val(); 6142 6143 ScheduleData *BundleMember = SD; 6144 while (BundleMember) { 6145 assert(isInSchedulingRegion(BundleMember)); 6146 if (!BundleMember->hasValidDependencies()) { 6147 6148 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 6149 << "\n"); 6150 BundleMember->Dependencies = 0; 6151 BundleMember->resetUnscheduledDeps(); 6152 6153 // Handle def-use chain dependencies. 6154 if (BundleMember->OpValue != BundleMember->Inst) { 6155 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 6156 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 6157 BundleMember->Dependencies++; 6158 ScheduleData *DestBundle = UseSD->FirstInBundle; 6159 if (!DestBundle->IsScheduled) 6160 BundleMember->incrementUnscheduledDeps(1); 6161 if (!DestBundle->hasValidDependencies()) 6162 WorkList.push_back(DestBundle); 6163 } 6164 } else { 6165 for (User *U : BundleMember->Inst->users()) { 6166 if (isa<Instruction>(U)) { 6167 ScheduleData *UseSD = getScheduleData(U); 6168 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle) && 6169 // Ignore inner deps for insertelement 6170 !(UseSD->FirstInBundle == SD && 6171 isa<InsertElementInst>(BundleMember->Inst))) { 6172 BundleMember->Dependencies++; 6173 ScheduleData *DestBundle = UseSD->FirstInBundle; 6174 if (!DestBundle->IsScheduled) 6175 BundleMember->incrementUnscheduledDeps(1); 6176 if (!DestBundle->hasValidDependencies()) 6177 WorkList.push_back(DestBundle); 6178 } 6179 } else { 6180 // I'm not sure if this can ever happen. But we need to be safe. 6181 // This lets the instruction/bundle never be scheduled and 6182 // eventually disable vectorization. 6183 BundleMember->Dependencies++; 6184 BundleMember->incrementUnscheduledDeps(1); 6185 } 6186 } 6187 } 6188 6189 // Handle the memory dependencies. 6190 ScheduleData *DepDest = BundleMember->NextLoadStore; 6191 if (DepDest) { 6192 Instruction *SrcInst = BundleMember->Inst; 6193 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 6194 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 6195 unsigned numAliased = 0; 6196 unsigned DistToSrc = 1; 6197 6198 while (DepDest) { 6199 assert(isInSchedulingRegion(DepDest)); 6200 6201 // We have two limits to reduce the complexity: 6202 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 6203 // SLP->isAliased (which is the expensive part in this loop). 6204 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 6205 // the whole loop (even if the loop is fast, it's quadratic). 6206 // It's important for the loop break condition (see below) to 6207 // check this limit even between two read-only instructions. 6208 if (DistToSrc >= MaxMemDepDistance || 6209 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 6210 (numAliased >= AliasedCheckLimit || 6211 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 6212 6213 // We increment the counter only if the locations are aliased 6214 // (instead of counting all alias checks). This gives a better 6215 // balance between reduced runtime and accurate dependencies. 6216 numAliased++; 6217 6218 DepDest->MemoryDependencies.push_back(BundleMember); 6219 BundleMember->Dependencies++; 6220 ScheduleData *DestBundle = DepDest->FirstInBundle; 6221 if (!DestBundle->IsScheduled) { 6222 BundleMember->incrementUnscheduledDeps(1); 6223 } 6224 if (!DestBundle->hasValidDependencies()) { 6225 WorkList.push_back(DestBundle); 6226 } 6227 } 6228 DepDest = DepDest->NextLoadStore; 6229 6230 // Example, explaining the loop break condition: Let's assume our 6231 // starting instruction is i0 and MaxMemDepDistance = 3. 6232 // 6233 // +--------v--v--v 6234 // i0,i1,i2,i3,i4,i5,i6,i7,i8 6235 // +--------^--^--^ 6236 // 6237 // MaxMemDepDistance let us stop alias-checking at i3 and we add 6238 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 6239 // Previously we already added dependencies from i3 to i6,i7,i8 6240 // (because of MaxMemDepDistance). As we added a dependency from 6241 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 6242 // and we can abort this loop at i6. 6243 if (DistToSrc >= 2 * MaxMemDepDistance) 6244 break; 6245 DistToSrc++; 6246 } 6247 } 6248 } 6249 BundleMember = BundleMember->NextInBundle; 6250 } 6251 if (InsertInReadyList && SD->isReady()) { 6252 ReadyInsts.push_back(SD); 6253 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 6254 << "\n"); 6255 } 6256 } 6257 } 6258 6259 void BoUpSLP::BlockScheduling::resetSchedule() { 6260 assert(ScheduleStart && 6261 "tried to reset schedule on block which has not been scheduled"); 6262 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 6263 doForAllOpcodes(I, [&](ScheduleData *SD) { 6264 assert(isInSchedulingRegion(SD) && 6265 "ScheduleData not in scheduling region"); 6266 SD->IsScheduled = false; 6267 SD->resetUnscheduledDeps(); 6268 }); 6269 } 6270 ReadyInsts.clear(); 6271 } 6272 6273 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 6274 if (!BS->ScheduleStart) 6275 return; 6276 6277 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 6278 6279 BS->resetSchedule(); 6280 6281 // For the real scheduling we use a more sophisticated ready-list: it is 6282 // sorted by the original instruction location. This lets the final schedule 6283 // be as close as possible to the original instruction order. 6284 struct ScheduleDataCompare { 6285 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 6286 return SD2->SchedulingPriority < SD1->SchedulingPriority; 6287 } 6288 }; 6289 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 6290 6291 // Ensure that all dependency data is updated and fill the ready-list with 6292 // initial instructions. 6293 int Idx = 0; 6294 int NumToSchedule = 0; 6295 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 6296 I = I->getNextNode()) { 6297 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 6298 assert(SD->isPartOfBundle() == 6299 (getTreeEntry(SD->Inst) != nullptr) && 6300 "scheduler and vectorizer bundle mismatch"); 6301 SD->FirstInBundle->SchedulingPriority = Idx++; 6302 if (SD->isSchedulingEntity()) { 6303 BS->calculateDependencies(SD, false, this); 6304 NumToSchedule++; 6305 } 6306 }); 6307 } 6308 BS->initialFillReadyList(ReadyInsts); 6309 6310 Instruction *LastScheduledInst = BS->ScheduleEnd; 6311 6312 // Do the "real" scheduling. 6313 while (!ReadyInsts.empty()) { 6314 ScheduleData *picked = *ReadyInsts.begin(); 6315 ReadyInsts.erase(ReadyInsts.begin()); 6316 6317 // Move the scheduled instruction(s) to their dedicated places, if not 6318 // there yet. 6319 ScheduleData *BundleMember = picked; 6320 while (BundleMember) { 6321 Instruction *pickedInst = BundleMember->Inst; 6322 if (LastScheduledInst->getNextNode() != pickedInst) { 6323 BS->BB->getInstList().remove(pickedInst); 6324 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 6325 pickedInst); 6326 } 6327 LastScheduledInst = pickedInst; 6328 BundleMember = BundleMember->NextInBundle; 6329 } 6330 6331 BS->schedule(picked, ReadyInsts); 6332 NumToSchedule--; 6333 } 6334 assert(NumToSchedule == 0 && "could not schedule all instructions"); 6335 6336 // Avoid duplicate scheduling of the block. 6337 BS->ScheduleStart = nullptr; 6338 } 6339 6340 unsigned BoUpSLP::getVectorElementSize(Value *V) { 6341 // If V is a store, just return the width of the stored value (or value 6342 // truncated just before storing) without traversing the expression tree. 6343 // This is the common case. 6344 if (auto *Store = dyn_cast<StoreInst>(V)) { 6345 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 6346 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 6347 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 6348 } 6349 6350 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 6351 return getVectorElementSize(IEI->getOperand(1)); 6352 6353 auto E = InstrElementSize.find(V); 6354 if (E != InstrElementSize.end()) 6355 return E->second; 6356 6357 // If V is not a store, we can traverse the expression tree to find loads 6358 // that feed it. The type of the loaded value may indicate a more suitable 6359 // width than V's type. We want to base the vector element size on the width 6360 // of memory operations where possible. 6361 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 6362 SmallPtrSet<Instruction *, 16> Visited; 6363 if (auto *I = dyn_cast<Instruction>(V)) { 6364 Worklist.emplace_back(I, I->getParent()); 6365 Visited.insert(I); 6366 } 6367 6368 // Traverse the expression tree in bottom-up order looking for loads. If we 6369 // encounter an instruction we don't yet handle, we give up. 6370 auto Width = 0u; 6371 while (!Worklist.empty()) { 6372 Instruction *I; 6373 BasicBlock *Parent; 6374 std::tie(I, Parent) = Worklist.pop_back_val(); 6375 6376 // We should only be looking at scalar instructions here. If the current 6377 // instruction has a vector type, skip. 6378 auto *Ty = I->getType(); 6379 if (isa<VectorType>(Ty)) 6380 continue; 6381 6382 // If the current instruction is a load, update MaxWidth to reflect the 6383 // width of the loaded value. 6384 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 6385 isa<ExtractValueInst>(I)) 6386 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 6387 6388 // Otherwise, we need to visit the operands of the instruction. We only 6389 // handle the interesting cases from buildTree here. If an operand is an 6390 // instruction we haven't yet visited and from the same basic block as the 6391 // user or the use is a PHI node, we add it to the worklist. 6392 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 6393 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 6394 isa<UnaryOperator>(I)) { 6395 for (Use &U : I->operands()) 6396 if (auto *J = dyn_cast<Instruction>(U.get())) 6397 if (Visited.insert(J).second && 6398 (isa<PHINode>(I) || J->getParent() == Parent)) 6399 Worklist.emplace_back(J, J->getParent()); 6400 } else { 6401 break; 6402 } 6403 } 6404 6405 // If we didn't encounter a memory access in the expression tree, or if we 6406 // gave up for some reason, just return the width of V. Otherwise, return the 6407 // maximum width we found. 6408 if (!Width) { 6409 if (auto *CI = dyn_cast<CmpInst>(V)) 6410 V = CI->getOperand(0); 6411 Width = DL->getTypeSizeInBits(V->getType()); 6412 } 6413 6414 for (Instruction *I : Visited) 6415 InstrElementSize[I] = Width; 6416 6417 return Width; 6418 } 6419 6420 // Determine if a value V in a vectorizable expression Expr can be demoted to a 6421 // smaller type with a truncation. We collect the values that will be demoted 6422 // in ToDemote and additional roots that require investigating in Roots. 6423 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 6424 SmallVectorImpl<Value *> &ToDemote, 6425 SmallVectorImpl<Value *> &Roots) { 6426 // We can always demote constants. 6427 if (isa<Constant>(V)) { 6428 ToDemote.push_back(V); 6429 return true; 6430 } 6431 6432 // If the value is not an instruction in the expression with only one use, it 6433 // cannot be demoted. 6434 auto *I = dyn_cast<Instruction>(V); 6435 if (!I || !I->hasOneUse() || !Expr.count(I)) 6436 return false; 6437 6438 switch (I->getOpcode()) { 6439 6440 // We can always demote truncations and extensions. Since truncations can 6441 // seed additional demotion, we save the truncated value. 6442 case Instruction::Trunc: 6443 Roots.push_back(I->getOperand(0)); 6444 break; 6445 case Instruction::ZExt: 6446 case Instruction::SExt: 6447 if (isa<ExtractElementInst>(I->getOperand(0)) || 6448 isa<InsertElementInst>(I->getOperand(0))) 6449 return false; 6450 break; 6451 6452 // We can demote certain binary operations if we can demote both of their 6453 // operands. 6454 case Instruction::Add: 6455 case Instruction::Sub: 6456 case Instruction::Mul: 6457 case Instruction::And: 6458 case Instruction::Or: 6459 case Instruction::Xor: 6460 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 6461 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 6462 return false; 6463 break; 6464 6465 // We can demote selects if we can demote their true and false values. 6466 case Instruction::Select: { 6467 SelectInst *SI = cast<SelectInst>(I); 6468 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 6469 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 6470 return false; 6471 break; 6472 } 6473 6474 // We can demote phis if we can demote all their incoming operands. Note that 6475 // we don't need to worry about cycles since we ensure single use above. 6476 case Instruction::PHI: { 6477 PHINode *PN = cast<PHINode>(I); 6478 for (Value *IncValue : PN->incoming_values()) 6479 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 6480 return false; 6481 break; 6482 } 6483 6484 // Otherwise, conservatively give up. 6485 default: 6486 return false; 6487 } 6488 6489 // Record the value that we can demote. 6490 ToDemote.push_back(V); 6491 return true; 6492 } 6493 6494 void BoUpSLP::computeMinimumValueSizes() { 6495 // If there are no external uses, the expression tree must be rooted by a 6496 // store. We can't demote in-memory values, so there is nothing to do here. 6497 if (ExternalUses.empty()) 6498 return; 6499 6500 // We only attempt to truncate integer expressions. 6501 auto &TreeRoot = VectorizableTree[0]->Scalars; 6502 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 6503 if (!TreeRootIT) 6504 return; 6505 6506 // If the expression is not rooted by a store, these roots should have 6507 // external uses. We will rely on InstCombine to rewrite the expression in 6508 // the narrower type. However, InstCombine only rewrites single-use values. 6509 // This means that if a tree entry other than a root is used externally, it 6510 // must have multiple uses and InstCombine will not rewrite it. The code 6511 // below ensures that only the roots are used externally. 6512 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 6513 for (auto &EU : ExternalUses) 6514 if (!Expr.erase(EU.Scalar)) 6515 return; 6516 if (!Expr.empty()) 6517 return; 6518 6519 // Collect the scalar values of the vectorizable expression. We will use this 6520 // context to determine which values can be demoted. If we see a truncation, 6521 // we mark it as seeding another demotion. 6522 for (auto &EntryPtr : VectorizableTree) 6523 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 6524 6525 // Ensure the roots of the vectorizable tree don't form a cycle. They must 6526 // have a single external user that is not in the vectorizable tree. 6527 for (auto *Root : TreeRoot) 6528 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 6529 return; 6530 6531 // Conservatively determine if we can actually truncate the roots of the 6532 // expression. Collect the values that can be demoted in ToDemote and 6533 // additional roots that require investigating in Roots. 6534 SmallVector<Value *, 32> ToDemote; 6535 SmallVector<Value *, 4> Roots; 6536 for (auto *Root : TreeRoot) 6537 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 6538 return; 6539 6540 // The maximum bit width required to represent all the values that can be 6541 // demoted without loss of precision. It would be safe to truncate the roots 6542 // of the expression to this width. 6543 auto MaxBitWidth = 8u; 6544 6545 // We first check if all the bits of the roots are demanded. If they're not, 6546 // we can truncate the roots to this narrower type. 6547 for (auto *Root : TreeRoot) { 6548 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 6549 MaxBitWidth = std::max<unsigned>( 6550 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 6551 } 6552 6553 // True if the roots can be zero-extended back to their original type, rather 6554 // than sign-extended. We know that if the leading bits are not demanded, we 6555 // can safely zero-extend. So we initialize IsKnownPositive to True. 6556 bool IsKnownPositive = true; 6557 6558 // If all the bits of the roots are demanded, we can try a little harder to 6559 // compute a narrower type. This can happen, for example, if the roots are 6560 // getelementptr indices. InstCombine promotes these indices to the pointer 6561 // width. Thus, all their bits are technically demanded even though the 6562 // address computation might be vectorized in a smaller type. 6563 // 6564 // We start by looking at each entry that can be demoted. We compute the 6565 // maximum bit width required to store the scalar by using ValueTracking to 6566 // compute the number of high-order bits we can truncate. 6567 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 6568 llvm::all_of(TreeRoot, [](Value *R) { 6569 assert(R->hasOneUse() && "Root should have only one use!"); 6570 return isa<GetElementPtrInst>(R->user_back()); 6571 })) { 6572 MaxBitWidth = 8u; 6573 6574 // Determine if the sign bit of all the roots is known to be zero. If not, 6575 // IsKnownPositive is set to False. 6576 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 6577 KnownBits Known = computeKnownBits(R, *DL); 6578 return Known.isNonNegative(); 6579 }); 6580 6581 // Determine the maximum number of bits required to store the scalar 6582 // values. 6583 for (auto *Scalar : ToDemote) { 6584 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 6585 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 6586 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 6587 } 6588 6589 // If we can't prove that the sign bit is zero, we must add one to the 6590 // maximum bit width to account for the unknown sign bit. This preserves 6591 // the existing sign bit so we can safely sign-extend the root back to the 6592 // original type. Otherwise, if we know the sign bit is zero, we will 6593 // zero-extend the root instead. 6594 // 6595 // FIXME: This is somewhat suboptimal, as there will be cases where adding 6596 // one to the maximum bit width will yield a larger-than-necessary 6597 // type. In general, we need to add an extra bit only if we can't 6598 // prove that the upper bit of the original type is equal to the 6599 // upper bit of the proposed smaller type. If these two bits are the 6600 // same (either zero or one) we know that sign-extending from the 6601 // smaller type will result in the same value. Here, since we can't 6602 // yet prove this, we are just making the proposed smaller type 6603 // larger to ensure correctness. 6604 if (!IsKnownPositive) 6605 ++MaxBitWidth; 6606 } 6607 6608 // Round MaxBitWidth up to the next power-of-two. 6609 if (!isPowerOf2_64(MaxBitWidth)) 6610 MaxBitWidth = NextPowerOf2(MaxBitWidth); 6611 6612 // If the maximum bit width we compute is less than the with of the roots' 6613 // type, we can proceed with the narrowing. Otherwise, do nothing. 6614 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 6615 return; 6616 6617 // If we can truncate the root, we must collect additional values that might 6618 // be demoted as a result. That is, those seeded by truncations we will 6619 // modify. 6620 while (!Roots.empty()) 6621 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 6622 6623 // Finally, map the values we can demote to the maximum bit with we computed. 6624 for (auto *Scalar : ToDemote) 6625 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 6626 } 6627 6628 namespace { 6629 6630 /// The SLPVectorizer Pass. 6631 struct SLPVectorizer : public FunctionPass { 6632 SLPVectorizerPass Impl; 6633 6634 /// Pass identification, replacement for typeid 6635 static char ID; 6636 6637 explicit SLPVectorizer() : FunctionPass(ID) { 6638 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 6639 } 6640 6641 bool doInitialization(Module &M) override { 6642 return false; 6643 } 6644 6645 bool runOnFunction(Function &F) override { 6646 if (skipFunction(F)) 6647 return false; 6648 6649 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 6650 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 6651 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 6652 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 6653 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 6654 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 6655 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 6656 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 6657 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 6658 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 6659 6660 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 6661 } 6662 6663 void getAnalysisUsage(AnalysisUsage &AU) const override { 6664 FunctionPass::getAnalysisUsage(AU); 6665 AU.addRequired<AssumptionCacheTracker>(); 6666 AU.addRequired<ScalarEvolutionWrapperPass>(); 6667 AU.addRequired<AAResultsWrapperPass>(); 6668 AU.addRequired<TargetTransformInfoWrapperPass>(); 6669 AU.addRequired<LoopInfoWrapperPass>(); 6670 AU.addRequired<DominatorTreeWrapperPass>(); 6671 AU.addRequired<DemandedBitsWrapperPass>(); 6672 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 6673 AU.addRequired<InjectTLIMappingsLegacy>(); 6674 AU.addPreserved<LoopInfoWrapperPass>(); 6675 AU.addPreserved<DominatorTreeWrapperPass>(); 6676 AU.addPreserved<AAResultsWrapperPass>(); 6677 AU.addPreserved<GlobalsAAWrapperPass>(); 6678 AU.setPreservesCFG(); 6679 } 6680 }; 6681 6682 } // end anonymous namespace 6683 6684 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 6685 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 6686 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 6687 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 6688 auto *AA = &AM.getResult<AAManager>(F); 6689 auto *LI = &AM.getResult<LoopAnalysis>(F); 6690 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 6691 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 6692 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 6693 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 6694 6695 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 6696 if (!Changed) 6697 return PreservedAnalyses::all(); 6698 6699 PreservedAnalyses PA; 6700 PA.preserveSet<CFGAnalyses>(); 6701 return PA; 6702 } 6703 6704 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 6705 TargetTransformInfo *TTI_, 6706 TargetLibraryInfo *TLI_, AAResults *AA_, 6707 LoopInfo *LI_, DominatorTree *DT_, 6708 AssumptionCache *AC_, DemandedBits *DB_, 6709 OptimizationRemarkEmitter *ORE_) { 6710 if (!RunSLPVectorization) 6711 return false; 6712 SE = SE_; 6713 TTI = TTI_; 6714 TLI = TLI_; 6715 AA = AA_; 6716 LI = LI_; 6717 DT = DT_; 6718 AC = AC_; 6719 DB = DB_; 6720 DL = &F.getParent()->getDataLayout(); 6721 6722 Stores.clear(); 6723 GEPs.clear(); 6724 bool Changed = false; 6725 6726 // If the target claims to have no vector registers don't attempt 6727 // vectorization. 6728 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) 6729 return false; 6730 6731 // Don't vectorize when the attribute NoImplicitFloat is used. 6732 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 6733 return false; 6734 6735 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 6736 6737 // Use the bottom up slp vectorizer to construct chains that start with 6738 // store instructions. 6739 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 6740 6741 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 6742 // delete instructions. 6743 6744 // Update DFS numbers now so that we can use them for ordering. 6745 DT->updateDFSNumbers(); 6746 6747 // Scan the blocks in the function in post order. 6748 for (auto BB : post_order(&F.getEntryBlock())) { 6749 collectSeedInstructions(BB); 6750 6751 // Vectorize trees that end at stores. 6752 if (!Stores.empty()) { 6753 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 6754 << " underlying objects.\n"); 6755 Changed |= vectorizeStoreChains(R); 6756 } 6757 6758 // Vectorize trees that end at reductions. 6759 Changed |= vectorizeChainsInBlock(BB, R); 6760 6761 // Vectorize the index computations of getelementptr instructions. This 6762 // is primarily intended to catch gather-like idioms ending at 6763 // non-consecutive loads. 6764 if (!GEPs.empty()) { 6765 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 6766 << " underlying objects.\n"); 6767 Changed |= vectorizeGEPIndices(BB, R); 6768 } 6769 } 6770 6771 if (Changed) { 6772 R.optimizeGatherSequence(); 6773 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 6774 } 6775 return Changed; 6776 } 6777 6778 /// Order may have elements assigned special value (size) which is out of 6779 /// bounds. Such indices only appear on places which correspond to undef values 6780 /// (see canReuseExtract for details) and used in order to avoid undef values 6781 /// have effect on operands ordering. 6782 /// The first loop below simply finds all unused indices and then the next loop 6783 /// nest assigns these indices for undef values positions. 6784 /// As an example below Order has two undef positions and they have assigned 6785 /// values 3 and 7 respectively: 6786 /// before: 6 9 5 4 9 2 1 0 6787 /// after: 6 3 5 4 7 2 1 0 6788 /// \returns Fixed ordering. 6789 static BoUpSLP::OrdersType fixupOrderingIndices(ArrayRef<unsigned> Order) { 6790 BoUpSLP::OrdersType NewOrder(Order.begin(), Order.end()); 6791 const unsigned Sz = NewOrder.size(); 6792 SmallBitVector UsedIndices(Sz); 6793 SmallVector<int> MaskedIndices; 6794 for (int I = 0, E = NewOrder.size(); I < E; ++I) { 6795 if (NewOrder[I] < Sz) 6796 UsedIndices.set(NewOrder[I]); 6797 else 6798 MaskedIndices.push_back(I); 6799 } 6800 if (MaskedIndices.empty()) 6801 return NewOrder; 6802 SmallVector<int> AvailableIndices(MaskedIndices.size()); 6803 unsigned Cnt = 0; 6804 int Idx = UsedIndices.find_first(); 6805 do { 6806 AvailableIndices[Cnt] = Idx; 6807 Idx = UsedIndices.find_next(Idx); 6808 ++Cnt; 6809 } while (Idx > 0); 6810 assert(Cnt == MaskedIndices.size() && "Non-synced masked/available indices."); 6811 for (int I = 0, E = MaskedIndices.size(); I < E; ++I) 6812 NewOrder[MaskedIndices[I]] = AvailableIndices[I]; 6813 return NewOrder; 6814 } 6815 6816 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 6817 unsigned Idx) { 6818 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 6819 << "\n"); 6820 const unsigned Sz = R.getVectorElementSize(Chain[0]); 6821 const unsigned MinVF = R.getMinVecRegSize() / Sz; 6822 unsigned VF = Chain.size(); 6823 6824 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 6825 return false; 6826 6827 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 6828 << "\n"); 6829 6830 R.buildTree(Chain); 6831 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 6832 // TODO: Handle orders of size less than number of elements in the vector. 6833 if (Order && Order->size() == Chain.size()) { 6834 // TODO: reorder tree nodes without tree rebuilding. 6835 SmallVector<Value *, 4> ReorderedOps(Chain.size()); 6836 transform(fixupOrderingIndices(*Order), ReorderedOps.begin(), 6837 [Chain](const unsigned Idx) { return Chain[Idx]; }); 6838 R.buildTree(ReorderedOps); 6839 } 6840 if (R.isTreeTinyAndNotFullyVectorizable()) 6841 return false; 6842 if (R.isLoadCombineCandidate()) 6843 return false; 6844 6845 R.computeMinimumValueSizes(); 6846 6847 InstructionCost Cost = R.getTreeCost(); 6848 6849 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 6850 if (Cost < -SLPCostThreshold) { 6851 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 6852 6853 using namespace ore; 6854 6855 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 6856 cast<StoreInst>(Chain[0])) 6857 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 6858 << " and with tree size " 6859 << NV("TreeSize", R.getTreeSize())); 6860 6861 R.vectorizeTree(); 6862 return true; 6863 } 6864 6865 return false; 6866 } 6867 6868 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 6869 BoUpSLP &R) { 6870 // We may run into multiple chains that merge into a single chain. We mark the 6871 // stores that we vectorized so that we don't visit the same store twice. 6872 BoUpSLP::ValueSet VectorizedStores; 6873 bool Changed = false; 6874 6875 int E = Stores.size(); 6876 SmallBitVector Tails(E, false); 6877 int MaxIter = MaxStoreLookup.getValue(); 6878 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 6879 E, std::make_pair(E, INT_MAX)); 6880 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 6881 int IterCnt; 6882 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 6883 &CheckedPairs, 6884 &ConsecutiveChain](int K, int Idx) { 6885 if (IterCnt >= MaxIter) 6886 return true; 6887 if (CheckedPairs[Idx].test(K)) 6888 return ConsecutiveChain[K].second == 1 && 6889 ConsecutiveChain[K].first == Idx; 6890 ++IterCnt; 6891 CheckedPairs[Idx].set(K); 6892 CheckedPairs[K].set(Idx); 6893 Optional<int> Diff = getPointersDiff(Stores[K]->getPointerOperand(), 6894 Stores[Idx]->getPointerOperand(), *DL, 6895 *SE, /*StrictCheck=*/true); 6896 if (!Diff || *Diff == 0) 6897 return false; 6898 int Val = *Diff; 6899 if (Val < 0) { 6900 if (ConsecutiveChain[Idx].second > -Val) { 6901 Tails.set(K); 6902 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 6903 } 6904 return false; 6905 } 6906 if (ConsecutiveChain[K].second <= Val) 6907 return false; 6908 6909 Tails.set(Idx); 6910 ConsecutiveChain[K] = std::make_pair(Idx, Val); 6911 return Val == 1; 6912 }; 6913 // Do a quadratic search on all of the given stores in reverse order and find 6914 // all of the pairs of stores that follow each other. 6915 for (int Idx = E - 1; Idx >= 0; --Idx) { 6916 // If a store has multiple consecutive store candidates, search according 6917 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 6918 // This is because usually pairing with immediate succeeding or preceding 6919 // candidate create the best chance to find slp vectorization opportunity. 6920 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 6921 IterCnt = 0; 6922 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 6923 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 6924 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 6925 break; 6926 } 6927 6928 // Tracks if we tried to vectorize stores starting from the given tail 6929 // already. 6930 SmallBitVector TriedTails(E, false); 6931 // For stores that start but don't end a link in the chain: 6932 for (int Cnt = E; Cnt > 0; --Cnt) { 6933 int I = Cnt - 1; 6934 if (ConsecutiveChain[I].first == E || Tails.test(I)) 6935 continue; 6936 // We found a store instr that starts a chain. Now follow the chain and try 6937 // to vectorize it. 6938 BoUpSLP::ValueList Operands; 6939 // Collect the chain into a list. 6940 while (I != E && !VectorizedStores.count(Stores[I])) { 6941 Operands.push_back(Stores[I]); 6942 Tails.set(I); 6943 if (ConsecutiveChain[I].second != 1) { 6944 // Mark the new end in the chain and go back, if required. It might be 6945 // required if the original stores come in reversed order, for example. 6946 if (ConsecutiveChain[I].first != E && 6947 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 6948 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 6949 TriedTails.set(I); 6950 Tails.reset(ConsecutiveChain[I].first); 6951 if (Cnt < ConsecutiveChain[I].first + 2) 6952 Cnt = ConsecutiveChain[I].first + 2; 6953 } 6954 break; 6955 } 6956 // Move to the next value in the chain. 6957 I = ConsecutiveChain[I].first; 6958 } 6959 assert(!Operands.empty() && "Expected non-empty list of stores."); 6960 6961 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 6962 unsigned EltSize = R.getVectorElementSize(Operands[0]); 6963 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 6964 6965 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / EltSize); 6966 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 6967 MaxElts); 6968 6969 // FIXME: Is division-by-2 the correct step? Should we assert that the 6970 // register size is a power-of-2? 6971 unsigned StartIdx = 0; 6972 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 6973 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 6974 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 6975 if (!VectorizedStores.count(Slice.front()) && 6976 !VectorizedStores.count(Slice.back()) && 6977 vectorizeStoreChain(Slice, R, Cnt)) { 6978 // Mark the vectorized stores so that we don't vectorize them again. 6979 VectorizedStores.insert(Slice.begin(), Slice.end()); 6980 Changed = true; 6981 // If we vectorized initial block, no need to try to vectorize it 6982 // again. 6983 if (Cnt == StartIdx) 6984 StartIdx += Size; 6985 Cnt += Size; 6986 continue; 6987 } 6988 ++Cnt; 6989 } 6990 // Check if the whole array was vectorized already - exit. 6991 if (StartIdx >= Operands.size()) 6992 break; 6993 } 6994 } 6995 6996 return Changed; 6997 } 6998 6999 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 7000 // Initialize the collections. We will make a single pass over the block. 7001 Stores.clear(); 7002 GEPs.clear(); 7003 7004 // Visit the store and getelementptr instructions in BB and organize them in 7005 // Stores and GEPs according to the underlying objects of their pointer 7006 // operands. 7007 for (Instruction &I : *BB) { 7008 // Ignore store instructions that are volatile or have a pointer operand 7009 // that doesn't point to a scalar type. 7010 if (auto *SI = dyn_cast<StoreInst>(&I)) { 7011 if (!SI->isSimple()) 7012 continue; 7013 if (!isValidElementType(SI->getValueOperand()->getType())) 7014 continue; 7015 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 7016 } 7017 7018 // Ignore getelementptr instructions that have more than one index, a 7019 // constant index, or a pointer operand that doesn't point to a scalar 7020 // type. 7021 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 7022 auto Idx = GEP->idx_begin()->get(); 7023 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 7024 continue; 7025 if (!isValidElementType(Idx->getType())) 7026 continue; 7027 if (GEP->getType()->isVectorTy()) 7028 continue; 7029 GEPs[GEP->getPointerOperand()].push_back(GEP); 7030 } 7031 } 7032 } 7033 7034 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 7035 if (!A || !B) 7036 return false; 7037 Value *VL[] = {A, B}; 7038 return tryToVectorizeList(VL, R, /*AllowReorder=*/true); 7039 } 7040 7041 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 7042 bool AllowReorder) { 7043 if (VL.size() < 2) 7044 return false; 7045 7046 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 7047 << VL.size() << ".\n"); 7048 7049 // Check that all of the parts are instructions of the same type, 7050 // we permit an alternate opcode via InstructionsState. 7051 InstructionsState S = getSameOpcode(VL); 7052 if (!S.getOpcode()) 7053 return false; 7054 7055 Instruction *I0 = cast<Instruction>(S.OpValue); 7056 // Make sure invalid types (including vector type) are rejected before 7057 // determining vectorization factor for scalar instructions. 7058 for (Value *V : VL) { 7059 Type *Ty = V->getType(); 7060 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 7061 // NOTE: the following will give user internal llvm type name, which may 7062 // not be useful. 7063 R.getORE()->emit([&]() { 7064 std::string type_str; 7065 llvm::raw_string_ostream rso(type_str); 7066 Ty->print(rso); 7067 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 7068 << "Cannot SLP vectorize list: type " 7069 << rso.str() + " is unsupported by vectorizer"; 7070 }); 7071 return false; 7072 } 7073 } 7074 7075 unsigned Sz = R.getVectorElementSize(I0); 7076 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 7077 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 7078 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 7079 if (MaxVF < 2) { 7080 R.getORE()->emit([&]() { 7081 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 7082 << "Cannot SLP vectorize list: vectorization factor " 7083 << "less than 2 is not supported"; 7084 }); 7085 return false; 7086 } 7087 7088 bool Changed = false; 7089 bool CandidateFound = false; 7090 InstructionCost MinCost = SLPCostThreshold.getValue(); 7091 Type *ScalarTy = VL[0]->getType(); 7092 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 7093 ScalarTy = IE->getOperand(1)->getType(); 7094 7095 unsigned NextInst = 0, MaxInst = VL.size(); 7096 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 7097 // No actual vectorization should happen, if number of parts is the same as 7098 // provided vectorization factor (i.e. the scalar type is used for vector 7099 // code during codegen). 7100 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 7101 if (TTI->getNumberOfParts(VecTy) == VF) 7102 continue; 7103 for (unsigned I = NextInst; I < MaxInst; ++I) { 7104 unsigned OpsWidth = 0; 7105 7106 if (I + VF > MaxInst) 7107 OpsWidth = MaxInst - I; 7108 else 7109 OpsWidth = VF; 7110 7111 if (!isPowerOf2_32(OpsWidth)) 7112 continue; 7113 7114 if ((VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 7115 break; 7116 7117 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 7118 // Check that a previous iteration of this loop did not delete the Value. 7119 if (llvm::any_of(Ops, [&R](Value *V) { 7120 auto *I = dyn_cast<Instruction>(V); 7121 return I && R.isDeleted(I); 7122 })) 7123 continue; 7124 7125 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 7126 << "\n"); 7127 7128 R.buildTree(Ops); 7129 if (AllowReorder) { 7130 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 7131 if (Order) { 7132 // TODO: reorder tree nodes without tree rebuilding. 7133 SmallVector<Value *, 4> ReorderedOps(Ops.size()); 7134 transform(fixupOrderingIndices(*Order), ReorderedOps.begin(), 7135 [Ops](const unsigned Idx) { return Ops[Idx]; }); 7136 R.buildTree(ReorderedOps); 7137 } 7138 } 7139 if (R.isTreeTinyAndNotFullyVectorizable()) 7140 continue; 7141 7142 R.computeMinimumValueSizes(); 7143 InstructionCost Cost = R.getTreeCost(); 7144 CandidateFound = true; 7145 MinCost = std::min(MinCost, Cost); 7146 7147 if (Cost < -SLPCostThreshold) { 7148 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 7149 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 7150 cast<Instruction>(Ops[0])) 7151 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 7152 << " and with tree size " 7153 << ore::NV("TreeSize", R.getTreeSize())); 7154 7155 R.vectorizeTree(); 7156 // Move to the next bundle. 7157 I += VF - 1; 7158 NextInst = I + 1; 7159 Changed = true; 7160 } 7161 } 7162 } 7163 7164 if (!Changed && CandidateFound) { 7165 R.getORE()->emit([&]() { 7166 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 7167 << "List vectorization was possible but not beneficial with cost " 7168 << ore::NV("Cost", MinCost) << " >= " 7169 << ore::NV("Treshold", -SLPCostThreshold); 7170 }); 7171 } else if (!Changed) { 7172 R.getORE()->emit([&]() { 7173 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 7174 << "Cannot SLP vectorize list: vectorization was impossible" 7175 << " with available vectorization factors"; 7176 }); 7177 } 7178 return Changed; 7179 } 7180 7181 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 7182 if (!I) 7183 return false; 7184 7185 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 7186 return false; 7187 7188 Value *P = I->getParent(); 7189 7190 // Vectorize in current basic block only. 7191 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 7192 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 7193 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 7194 return false; 7195 7196 // Try to vectorize V. 7197 if (tryToVectorizePair(Op0, Op1, R)) 7198 return true; 7199 7200 auto *A = dyn_cast<BinaryOperator>(Op0); 7201 auto *B = dyn_cast<BinaryOperator>(Op1); 7202 // Try to skip B. 7203 if (B && B->hasOneUse()) { 7204 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 7205 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 7206 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 7207 return true; 7208 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 7209 return true; 7210 } 7211 7212 // Try to skip A. 7213 if (A && A->hasOneUse()) { 7214 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 7215 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 7216 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 7217 return true; 7218 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 7219 return true; 7220 } 7221 return false; 7222 } 7223 7224 namespace { 7225 7226 /// Model horizontal reductions. 7227 /// 7228 /// A horizontal reduction is a tree of reduction instructions that has values 7229 /// that can be put into a vector as its leaves. For example: 7230 /// 7231 /// mul mul mul mul 7232 /// \ / \ / 7233 /// + + 7234 /// \ / 7235 /// + 7236 /// This tree has "mul" as its leaf values and "+" as its reduction 7237 /// instructions. A reduction can feed into a store or a binary operation 7238 /// feeding a phi. 7239 /// ... 7240 /// \ / 7241 /// + 7242 /// | 7243 /// phi += 7244 /// 7245 /// Or: 7246 /// ... 7247 /// \ / 7248 /// + 7249 /// | 7250 /// *p = 7251 /// 7252 class HorizontalReduction { 7253 using ReductionOpsType = SmallVector<Value *, 16>; 7254 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 7255 ReductionOpsListType ReductionOps; 7256 SmallVector<Value *, 32> ReducedVals; 7257 // Use map vector to make stable output. 7258 MapVector<Instruction *, Value *> ExtraArgs; 7259 WeakTrackingVH ReductionRoot; 7260 /// The type of reduction operation. 7261 RecurKind RdxKind; 7262 7263 /// Checks if instruction is associative and can be vectorized. 7264 static bool isVectorizable(RecurKind Kind, Instruction *I) { 7265 if (Kind == RecurKind::None) 7266 return false; 7267 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind)) 7268 return true; 7269 7270 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 7271 // FP min/max are associative except for NaN and -0.0. We do not 7272 // have to rule out -0.0 here because the intrinsic semantics do not 7273 // specify a fixed result for it. 7274 return I->getFastMathFlags().noNaNs(); 7275 } 7276 7277 return I->isAssociative(); 7278 } 7279 7280 /// Checks if the ParentStackElem.first should be marked as a reduction 7281 /// operation with an extra argument or as extra argument itself. 7282 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 7283 Value *ExtraArg) { 7284 if (ExtraArgs.count(ParentStackElem.first)) { 7285 ExtraArgs[ParentStackElem.first] = nullptr; 7286 // We ran into something like: 7287 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 7288 // The whole ParentStackElem.first should be considered as an extra value 7289 // in this case. 7290 // Do not perform analysis of remaining operands of ParentStackElem.first 7291 // instruction, this whole instruction is an extra argument. 7292 ParentStackElem.second = getNumberOfOperands(ParentStackElem.first); 7293 } else { 7294 // We ran into something like: 7295 // ParentStackElem.first += ... + ExtraArg + ... 7296 ExtraArgs[ParentStackElem.first] = ExtraArg; 7297 } 7298 } 7299 7300 /// Creates reduction operation with the current opcode. 7301 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 7302 Value *RHS, const Twine &Name, bool UseSelect) { 7303 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 7304 switch (Kind) { 7305 case RecurKind::Add: 7306 case RecurKind::Mul: 7307 case RecurKind::Or: 7308 case RecurKind::And: 7309 case RecurKind::Xor: 7310 case RecurKind::FAdd: 7311 case RecurKind::FMul: 7312 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 7313 Name); 7314 case RecurKind::FMax: 7315 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 7316 case RecurKind::FMin: 7317 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 7318 case RecurKind::SMax: 7319 if (UseSelect) { 7320 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 7321 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 7322 } 7323 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 7324 case RecurKind::SMin: 7325 if (UseSelect) { 7326 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 7327 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 7328 } 7329 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 7330 case RecurKind::UMax: 7331 if (UseSelect) { 7332 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 7333 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 7334 } 7335 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 7336 case RecurKind::UMin: 7337 if (UseSelect) { 7338 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 7339 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 7340 } 7341 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 7342 default: 7343 llvm_unreachable("Unknown reduction operation."); 7344 } 7345 } 7346 7347 /// Creates reduction operation with the current opcode with the IR flags 7348 /// from \p ReductionOps. 7349 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 7350 Value *RHS, const Twine &Name, 7351 const ReductionOpsListType &ReductionOps) { 7352 bool UseSelect = ReductionOps.size() == 2; 7353 assert((!UseSelect || isa<SelectInst>(ReductionOps[1][0])) && 7354 "Expected cmp + select pairs for reduction"); 7355 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 7356 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 7357 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 7358 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 7359 propagateIRFlags(Op, ReductionOps[1]); 7360 return Op; 7361 } 7362 } 7363 propagateIRFlags(Op, ReductionOps[0]); 7364 return Op; 7365 } 7366 7367 /// Creates reduction operation with the current opcode with the IR flags 7368 /// from \p I. 7369 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 7370 Value *RHS, const Twine &Name, Instruction *I) { 7371 auto *SelI = dyn_cast<SelectInst>(I); 7372 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 7373 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 7374 if (auto *Sel = dyn_cast<SelectInst>(Op)) 7375 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 7376 } 7377 propagateIRFlags(Op, I); 7378 return Op; 7379 } 7380 7381 static RecurKind getRdxKind(Instruction *I) { 7382 assert(I && "Expected instruction for reduction matching"); 7383 TargetTransformInfo::ReductionFlags RdxFlags; 7384 if (match(I, m_Add(m_Value(), m_Value()))) 7385 return RecurKind::Add; 7386 if (match(I, m_Mul(m_Value(), m_Value()))) 7387 return RecurKind::Mul; 7388 if (match(I, m_And(m_Value(), m_Value()))) 7389 return RecurKind::And; 7390 if (match(I, m_Or(m_Value(), m_Value()))) 7391 return RecurKind::Or; 7392 if (match(I, m_Xor(m_Value(), m_Value()))) 7393 return RecurKind::Xor; 7394 if (match(I, m_FAdd(m_Value(), m_Value()))) 7395 return RecurKind::FAdd; 7396 if (match(I, m_FMul(m_Value(), m_Value()))) 7397 return RecurKind::FMul; 7398 7399 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 7400 return RecurKind::FMax; 7401 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 7402 return RecurKind::FMin; 7403 7404 // This matches either cmp+select or intrinsics. SLP is expected to handle 7405 // either form. 7406 // TODO: If we are canonicalizing to intrinsics, we can remove several 7407 // special-case paths that deal with selects. 7408 if (match(I, m_SMax(m_Value(), m_Value()))) 7409 return RecurKind::SMax; 7410 if (match(I, m_SMin(m_Value(), m_Value()))) 7411 return RecurKind::SMin; 7412 if (match(I, m_UMax(m_Value(), m_Value()))) 7413 return RecurKind::UMax; 7414 if (match(I, m_UMin(m_Value(), m_Value()))) 7415 return RecurKind::UMin; 7416 7417 if (auto *Select = dyn_cast<SelectInst>(I)) { 7418 // Try harder: look for min/max pattern based on instructions producing 7419 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 7420 // During the intermediate stages of SLP, it's very common to have 7421 // pattern like this (since optimizeGatherSequence is run only once 7422 // at the end): 7423 // %1 = extractelement <2 x i32> %a, i32 0 7424 // %2 = extractelement <2 x i32> %a, i32 1 7425 // %cond = icmp sgt i32 %1, %2 7426 // %3 = extractelement <2 x i32> %a, i32 0 7427 // %4 = extractelement <2 x i32> %a, i32 1 7428 // %select = select i1 %cond, i32 %3, i32 %4 7429 CmpInst::Predicate Pred; 7430 Instruction *L1; 7431 Instruction *L2; 7432 7433 Value *LHS = Select->getTrueValue(); 7434 Value *RHS = Select->getFalseValue(); 7435 Value *Cond = Select->getCondition(); 7436 7437 // TODO: Support inverse predicates. 7438 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 7439 if (!isa<ExtractElementInst>(RHS) || 7440 !L2->isIdenticalTo(cast<Instruction>(RHS))) 7441 return RecurKind::None; 7442 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 7443 if (!isa<ExtractElementInst>(LHS) || 7444 !L1->isIdenticalTo(cast<Instruction>(LHS))) 7445 return RecurKind::None; 7446 } else { 7447 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 7448 return RecurKind::None; 7449 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 7450 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 7451 !L2->isIdenticalTo(cast<Instruction>(RHS))) 7452 return RecurKind::None; 7453 } 7454 7455 TargetTransformInfo::ReductionFlags RdxFlags; 7456 switch (Pred) { 7457 default: 7458 return RecurKind::None; 7459 case CmpInst::ICMP_SGT: 7460 case CmpInst::ICMP_SGE: 7461 return RecurKind::SMax; 7462 case CmpInst::ICMP_SLT: 7463 case CmpInst::ICMP_SLE: 7464 return RecurKind::SMin; 7465 case CmpInst::ICMP_UGT: 7466 case CmpInst::ICMP_UGE: 7467 return RecurKind::UMax; 7468 case CmpInst::ICMP_ULT: 7469 case CmpInst::ICMP_ULE: 7470 return RecurKind::UMin; 7471 } 7472 } 7473 return RecurKind::None; 7474 } 7475 7476 /// Get the index of the first operand. 7477 static unsigned getFirstOperandIndex(Instruction *I) { 7478 return isa<SelectInst>(I) ? 1 : 0; 7479 } 7480 7481 /// Total number of operands in the reduction operation. 7482 static unsigned getNumberOfOperands(Instruction *I) { 7483 return isa<SelectInst>(I) ? 3 : 2; 7484 } 7485 7486 /// Checks if the instruction is in basic block \p BB. 7487 /// For a min/max reduction check that both compare and select are in \p BB. 7488 static bool hasSameParent(Instruction *I, BasicBlock *BB, bool IsRedOp) { 7489 auto *Sel = dyn_cast<SelectInst>(I); 7490 if (IsRedOp && Sel) { 7491 auto *Cmp = cast<Instruction>(Sel->getCondition()); 7492 return Sel->getParent() == BB && Cmp->getParent() == BB; 7493 } 7494 return I->getParent() == BB; 7495 } 7496 7497 /// Expected number of uses for reduction operations/reduced values. 7498 static bool hasRequiredNumberOfUses(bool MatchCmpSel, Instruction *I) { 7499 // SelectInst must be used twice while the condition op must have single 7500 // use only. 7501 if (MatchCmpSel) { 7502 if (auto *Sel = dyn_cast<SelectInst>(I)) 7503 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 7504 return I->hasNUses(2); 7505 } 7506 7507 // Arithmetic reduction operation must be used once only. 7508 return I->hasOneUse(); 7509 } 7510 7511 /// Initializes the list of reduction operations. 7512 void initReductionOps(Instruction *I) { 7513 if (isa<SelectInst>(I)) 7514 ReductionOps.assign(2, ReductionOpsType()); 7515 else 7516 ReductionOps.assign(1, ReductionOpsType()); 7517 } 7518 7519 /// Add all reduction operations for the reduction instruction \p I. 7520 void addReductionOps(Instruction *I) { 7521 if (auto *Sel = dyn_cast<SelectInst>(I)) { 7522 ReductionOps[0].emplace_back(Sel->getCondition()); 7523 ReductionOps[1].emplace_back(Sel); 7524 } else { 7525 ReductionOps[0].emplace_back(I); 7526 } 7527 } 7528 7529 static Value *getLHS(RecurKind Kind, Instruction *I) { 7530 if (Kind == RecurKind::None) 7531 return nullptr; 7532 return I->getOperand(getFirstOperandIndex(I)); 7533 } 7534 static Value *getRHS(RecurKind Kind, Instruction *I) { 7535 if (Kind == RecurKind::None) 7536 return nullptr; 7537 return I->getOperand(getFirstOperandIndex(I) + 1); 7538 } 7539 7540 public: 7541 HorizontalReduction() = default; 7542 7543 /// Try to find a reduction tree. 7544 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 7545 assert((!Phi || is_contained(Phi->operands(), B)) && 7546 "Phi needs to use the binary operator"); 7547 7548 RdxKind = getRdxKind(B); 7549 7550 // We could have a initial reductions that is not an add. 7551 // r *= v1 + v2 + v3 + v4 7552 // In such a case start looking for a tree rooted in the first '+'. 7553 if (Phi) { 7554 if (getLHS(RdxKind, B) == Phi) { 7555 Phi = nullptr; 7556 B = dyn_cast<Instruction>(getRHS(RdxKind, B)); 7557 if (!B) 7558 return false; 7559 RdxKind = getRdxKind(B); 7560 } else if (getRHS(RdxKind, B) == Phi) { 7561 Phi = nullptr; 7562 B = dyn_cast<Instruction>(getLHS(RdxKind, B)); 7563 if (!B) 7564 return false; 7565 RdxKind = getRdxKind(B); 7566 } 7567 } 7568 7569 if (!isVectorizable(RdxKind, B)) 7570 return false; 7571 7572 // Analyze "regular" integer/FP types for reductions - no target-specific 7573 // types or pointers. 7574 Type *Ty = B->getType(); 7575 if (!isValidElementType(Ty) || Ty->isPointerTy()) 7576 return false; 7577 7578 // Though the ultimate reduction may have multiple uses, its condition must 7579 // have only single use. 7580 if (auto *SI = dyn_cast<SelectInst>(B)) 7581 if (!SI->getCondition()->hasOneUse()) 7582 return false; 7583 7584 ReductionRoot = B; 7585 7586 // The opcode for leaf values that we perform a reduction on. 7587 // For example: load(x) + load(y) + load(z) + fptoui(w) 7588 // The leaf opcode for 'w' does not match, so we don't include it as a 7589 // potential candidate for the reduction. 7590 unsigned LeafOpcode = 0; 7591 7592 // Post order traverse the reduction tree starting at B. We only handle true 7593 // trees containing only binary operators. 7594 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 7595 Stack.push_back(std::make_pair(B, getFirstOperandIndex(B))); 7596 initReductionOps(B); 7597 while (!Stack.empty()) { 7598 Instruction *TreeN = Stack.back().first; 7599 unsigned EdgeToVisit = Stack.back().second++; 7600 const RecurKind TreeRdxKind = getRdxKind(TreeN); 7601 bool IsReducedValue = TreeRdxKind != RdxKind; 7602 7603 // Postorder visit. 7604 if (IsReducedValue || EdgeToVisit == getNumberOfOperands(TreeN)) { 7605 if (IsReducedValue) 7606 ReducedVals.push_back(TreeN); 7607 else { 7608 auto ExtraArgsIter = ExtraArgs.find(TreeN); 7609 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) { 7610 // Check if TreeN is an extra argument of its parent operation. 7611 if (Stack.size() <= 1) { 7612 // TreeN can't be an extra argument as it is a root reduction 7613 // operation. 7614 return false; 7615 } 7616 // Yes, TreeN is an extra argument, do not add it to a list of 7617 // reduction operations. 7618 // Stack[Stack.size() - 2] always points to the parent operation. 7619 markExtraArg(Stack[Stack.size() - 2], TreeN); 7620 ExtraArgs.erase(TreeN); 7621 } else 7622 addReductionOps(TreeN); 7623 } 7624 // Retract. 7625 Stack.pop_back(); 7626 continue; 7627 } 7628 7629 // Visit left or right. 7630 Value *EdgeVal = TreeN->getOperand(EdgeToVisit); 7631 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 7632 if (!EdgeInst) { 7633 // Edge value is not a reduction instruction or a leaf instruction. 7634 // (It may be a constant, function argument, or something else.) 7635 markExtraArg(Stack.back(), EdgeVal); 7636 continue; 7637 } 7638 RecurKind EdgeRdxKind = getRdxKind(EdgeInst); 7639 // Continue analysis if the next operand is a reduction operation or 7640 // (possibly) a leaf value. If the leaf value opcode is not set, 7641 // the first met operation != reduction operation is considered as the 7642 // leaf opcode. 7643 // Only handle trees in the current basic block. 7644 // Each tree node needs to have minimal number of users except for the 7645 // ultimate reduction. 7646 const bool IsRdxInst = EdgeRdxKind == RdxKind; 7647 if (EdgeInst != Phi && EdgeInst != B && 7648 hasSameParent(EdgeInst, B->getParent(), IsRdxInst) && 7649 hasRequiredNumberOfUses(isa<SelectInst>(B), EdgeInst) && 7650 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) { 7651 if (IsRdxInst) { 7652 // We need to be able to reassociate the reduction operations. 7653 if (!isVectorizable(EdgeRdxKind, EdgeInst)) { 7654 // I is an extra argument for TreeN (its parent operation). 7655 markExtraArg(Stack.back(), EdgeInst); 7656 continue; 7657 } 7658 } else if (!LeafOpcode) { 7659 LeafOpcode = EdgeInst->getOpcode(); 7660 } 7661 Stack.push_back( 7662 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst))); 7663 continue; 7664 } 7665 // I is an extra argument for TreeN (its parent operation). 7666 markExtraArg(Stack.back(), EdgeInst); 7667 } 7668 return true; 7669 } 7670 7671 /// Attempt to vectorize the tree found by matchAssociativeReduction. 7672 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 7673 // If there are a sufficient number of reduction values, reduce 7674 // to a nearby power-of-2. We can safely generate oversized 7675 // vectors and rely on the backend to split them to legal sizes. 7676 unsigned NumReducedVals = ReducedVals.size(); 7677 if (NumReducedVals < 4) 7678 return false; 7679 7680 // Intersect the fast-math-flags from all reduction operations. 7681 FastMathFlags RdxFMF; 7682 RdxFMF.set(); 7683 for (ReductionOpsType &RdxOp : ReductionOps) { 7684 for (Value *RdxVal : RdxOp) { 7685 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 7686 RdxFMF &= FPMO->getFastMathFlags(); 7687 } 7688 } 7689 7690 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 7691 Builder.setFastMathFlags(RdxFMF); 7692 7693 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 7694 // The same extra argument may be used several times, so log each attempt 7695 // to use it. 7696 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 7697 assert(Pair.first && "DebugLoc must be set."); 7698 ExternallyUsedValues[Pair.second].push_back(Pair.first); 7699 } 7700 7701 // The compare instruction of a min/max is the insertion point for new 7702 // instructions and may be replaced with a new compare instruction. 7703 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 7704 assert(isa<SelectInst>(RdxRootInst) && 7705 "Expected min/max reduction to have select root instruction"); 7706 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 7707 assert(isa<Instruction>(ScalarCond) && 7708 "Expected min/max reduction to have compare condition"); 7709 return cast<Instruction>(ScalarCond); 7710 }; 7711 7712 // The reduction root is used as the insertion point for new instructions, 7713 // so set it as externally used to prevent it from being deleted. 7714 ExternallyUsedValues[ReductionRoot]; 7715 SmallVector<Value *, 16> IgnoreList; 7716 for (ReductionOpsType &RdxOp : ReductionOps) 7717 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 7718 7719 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 7720 if (NumReducedVals > ReduxWidth) { 7721 // In the loop below, we are building a tree based on a window of 7722 // 'ReduxWidth' values. 7723 // If the operands of those values have common traits (compare predicate, 7724 // constant operand, etc), then we want to group those together to 7725 // minimize the cost of the reduction. 7726 7727 // TODO: This should be extended to count common operands for 7728 // compares and binops. 7729 7730 // Step 1: Count the number of times each compare predicate occurs. 7731 SmallDenseMap<unsigned, unsigned> PredCountMap; 7732 for (Value *RdxVal : ReducedVals) { 7733 CmpInst::Predicate Pred; 7734 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 7735 ++PredCountMap[Pred]; 7736 } 7737 // Step 2: Sort the values so the most common predicates come first. 7738 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 7739 CmpInst::Predicate PredA, PredB; 7740 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 7741 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 7742 return PredCountMap[PredA] > PredCountMap[PredB]; 7743 } 7744 return false; 7745 }); 7746 } 7747 7748 Value *VectorizedTree = nullptr; 7749 unsigned i = 0; 7750 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 7751 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 7752 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 7753 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 7754 if (Order) { 7755 assert(Order->size() == VL.size() && 7756 "Order size must be the same as number of vectorized " 7757 "instructions."); 7758 // TODO: reorder tree nodes without tree rebuilding. 7759 SmallVector<Value *, 4> ReorderedOps(VL.size()); 7760 transform(fixupOrderingIndices(*Order), ReorderedOps.begin(), 7761 [VL](const unsigned Idx) { return VL[Idx]; }); 7762 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 7763 } 7764 if (V.isTreeTinyAndNotFullyVectorizable()) 7765 break; 7766 if (V.isLoadCombineReductionCandidate(RdxKind)) 7767 break; 7768 7769 V.computeMinimumValueSizes(); 7770 7771 // Estimate cost. 7772 InstructionCost TreeCost = 7773 V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth)); 7774 InstructionCost ReductionCost = 7775 getReductionCost(TTI, ReducedVals[i], ReduxWidth); 7776 InstructionCost Cost = TreeCost + ReductionCost; 7777 if (!Cost.isValid()) { 7778 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 7779 return false; 7780 } 7781 if (Cost >= -SLPCostThreshold) { 7782 V.getORE()->emit([&]() { 7783 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 7784 cast<Instruction>(VL[0])) 7785 << "Vectorizing horizontal reduction is possible" 7786 << "but not beneficial with cost " << ore::NV("Cost", Cost) 7787 << " and threshold " 7788 << ore::NV("Threshold", -SLPCostThreshold); 7789 }); 7790 break; 7791 } 7792 7793 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 7794 << Cost << ". (HorRdx)\n"); 7795 V.getORE()->emit([&]() { 7796 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 7797 cast<Instruction>(VL[0])) 7798 << "Vectorized horizontal reduction with cost " 7799 << ore::NV("Cost", Cost) << " and with tree size " 7800 << ore::NV("TreeSize", V.getTreeSize()); 7801 }); 7802 7803 // Vectorize a tree. 7804 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 7805 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 7806 7807 // Emit a reduction. If the root is a select (min/max idiom), the insert 7808 // point is the compare condition of that select. 7809 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 7810 if (isa<SelectInst>(RdxRootInst)) 7811 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 7812 else 7813 Builder.SetInsertPoint(RdxRootInst); 7814 7815 Value *ReducedSubTree = 7816 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 7817 7818 if (!VectorizedTree) { 7819 // Initialize the final value in the reduction. 7820 VectorizedTree = ReducedSubTree; 7821 } else { 7822 // Update the final value in the reduction. 7823 Builder.SetCurrentDebugLocation(Loc); 7824 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 7825 ReducedSubTree, "op.rdx", ReductionOps); 7826 } 7827 i += ReduxWidth; 7828 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 7829 } 7830 7831 if (VectorizedTree) { 7832 // Finish the reduction. 7833 for (; i < NumReducedVals; ++i) { 7834 auto *I = cast<Instruction>(ReducedVals[i]); 7835 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 7836 VectorizedTree = 7837 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 7838 } 7839 for (auto &Pair : ExternallyUsedValues) { 7840 // Add each externally used value to the final reduction. 7841 for (auto *I : Pair.second) { 7842 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 7843 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 7844 Pair.first, "op.extra", I); 7845 } 7846 } 7847 7848 ReductionRoot->replaceAllUsesWith(VectorizedTree); 7849 7850 // Mark all scalar reduction ops for deletion, they are replaced by the 7851 // vector reductions. 7852 V.eraseInstructions(IgnoreList); 7853 } 7854 return VectorizedTree != nullptr; 7855 } 7856 7857 unsigned numReductionValues() const { return ReducedVals.size(); } 7858 7859 private: 7860 /// Calculate the cost of a reduction. 7861 InstructionCost getReductionCost(TargetTransformInfo *TTI, 7862 Value *FirstReducedVal, 7863 unsigned ReduxWidth) { 7864 Type *ScalarTy = FirstReducedVal->getType(); 7865 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 7866 InstructionCost VectorCost, ScalarCost; 7867 switch (RdxKind) { 7868 case RecurKind::Add: 7869 case RecurKind::Mul: 7870 case RecurKind::Or: 7871 case RecurKind::And: 7872 case RecurKind::Xor: 7873 case RecurKind::FAdd: 7874 case RecurKind::FMul: { 7875 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 7876 VectorCost = TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, 7877 /*IsPairwiseForm=*/false); 7878 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy); 7879 break; 7880 } 7881 case RecurKind::FMax: 7882 case RecurKind::FMin: { 7883 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 7884 VectorCost = 7885 TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 7886 /*pairwise=*/false, /*unsigned=*/false); 7887 ScalarCost = 7888 TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy) + 7889 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 7890 CmpInst::makeCmpResultType(ScalarTy)); 7891 break; 7892 } 7893 case RecurKind::SMax: 7894 case RecurKind::SMin: 7895 case RecurKind::UMax: 7896 case RecurKind::UMin: { 7897 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 7898 bool IsUnsigned = 7899 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 7900 VectorCost = 7901 TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 7902 /*IsPairwiseForm=*/false, IsUnsigned); 7903 ScalarCost = 7904 TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy) + 7905 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 7906 CmpInst::makeCmpResultType(ScalarTy)); 7907 break; 7908 } 7909 default: 7910 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 7911 } 7912 7913 // Scalar cost is repeated for N-1 elements. 7914 ScalarCost *= (ReduxWidth - 1); 7915 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 7916 << " for reduction that starts with " << *FirstReducedVal 7917 << " (It is a splitting reduction)\n"); 7918 return VectorCost - ScalarCost; 7919 } 7920 7921 /// Emit a horizontal reduction of the vectorized value. 7922 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 7923 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 7924 assert(VectorizedValue && "Need to have a vectorized tree node"); 7925 assert(isPowerOf2_32(ReduxWidth) && 7926 "We only handle power-of-two reductions for now"); 7927 7928 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind, 7929 ReductionOps.back()); 7930 } 7931 }; 7932 7933 } // end anonymous namespace 7934 7935 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 7936 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 7937 return cast<FixedVectorType>(IE->getType())->getNumElements(); 7938 7939 unsigned AggregateSize = 1; 7940 auto *IV = cast<InsertValueInst>(InsertInst); 7941 Type *CurrentType = IV->getType(); 7942 do { 7943 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 7944 for (auto *Elt : ST->elements()) 7945 if (Elt != ST->getElementType(0)) // check homogeneity 7946 return None; 7947 AggregateSize *= ST->getNumElements(); 7948 CurrentType = ST->getElementType(0); 7949 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 7950 AggregateSize *= AT->getNumElements(); 7951 CurrentType = AT->getElementType(); 7952 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 7953 AggregateSize *= VT->getNumElements(); 7954 return AggregateSize; 7955 } else if (CurrentType->isSingleValueType()) { 7956 return AggregateSize; 7957 } else { 7958 return None; 7959 } 7960 } while (true); 7961 } 7962 7963 static bool findBuildAggregate_rec(Instruction *LastInsertInst, 7964 TargetTransformInfo *TTI, 7965 SmallVectorImpl<Value *> &BuildVectorOpds, 7966 SmallVectorImpl<Value *> &InsertElts, 7967 unsigned OperandOffset) { 7968 do { 7969 Value *InsertedOperand = LastInsertInst->getOperand(1); 7970 Optional<int> OperandIndex = getInsertIndex(LastInsertInst, OperandOffset); 7971 if (!OperandIndex) 7972 return false; 7973 if (isa<InsertElementInst>(InsertedOperand) || 7974 isa<InsertValueInst>(InsertedOperand)) { 7975 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 7976 BuildVectorOpds, InsertElts, *OperandIndex)) 7977 return false; 7978 } else { 7979 BuildVectorOpds[*OperandIndex] = InsertedOperand; 7980 InsertElts[*OperandIndex] = LastInsertInst; 7981 } 7982 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 7983 } while (LastInsertInst != nullptr && 7984 (isa<InsertValueInst>(LastInsertInst) || 7985 isa<InsertElementInst>(LastInsertInst)) && 7986 LastInsertInst->hasOneUse()); 7987 return true; 7988 } 7989 7990 /// Recognize construction of vectors like 7991 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 7992 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 7993 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 7994 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 7995 /// starting from the last insertelement or insertvalue instruction. 7996 /// 7997 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 7998 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 7999 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 8000 /// 8001 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 8002 /// 8003 /// \return true if it matches. 8004 static bool findBuildAggregate(Instruction *LastInsertInst, 8005 TargetTransformInfo *TTI, 8006 SmallVectorImpl<Value *> &BuildVectorOpds, 8007 SmallVectorImpl<Value *> &InsertElts) { 8008 8009 assert((isa<InsertElementInst>(LastInsertInst) || 8010 isa<InsertValueInst>(LastInsertInst)) && 8011 "Expected insertelement or insertvalue instruction!"); 8012 8013 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 8014 "Expected empty result vectors!"); 8015 8016 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 8017 if (!AggregateSize) 8018 return false; 8019 BuildVectorOpds.resize(*AggregateSize); 8020 InsertElts.resize(*AggregateSize); 8021 8022 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 8023 0)) { 8024 llvm::erase_value(BuildVectorOpds, nullptr); 8025 llvm::erase_value(InsertElts, nullptr); 8026 if (BuildVectorOpds.size() >= 2) 8027 return true; 8028 } 8029 8030 return false; 8031 } 8032 8033 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 8034 return V->getType() < V2->getType(); 8035 } 8036 8037 /// Try and get a reduction value from a phi node. 8038 /// 8039 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 8040 /// if they come from either \p ParentBB or a containing loop latch. 8041 /// 8042 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 8043 /// if not possible. 8044 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 8045 BasicBlock *ParentBB, LoopInfo *LI) { 8046 // There are situations where the reduction value is not dominated by the 8047 // reduction phi. Vectorizing such cases has been reported to cause 8048 // miscompiles. See PR25787. 8049 auto DominatedReduxValue = [&](Value *R) { 8050 return isa<Instruction>(R) && 8051 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 8052 }; 8053 8054 Value *Rdx = nullptr; 8055 8056 // Return the incoming value if it comes from the same BB as the phi node. 8057 if (P->getIncomingBlock(0) == ParentBB) { 8058 Rdx = P->getIncomingValue(0); 8059 } else if (P->getIncomingBlock(1) == ParentBB) { 8060 Rdx = P->getIncomingValue(1); 8061 } 8062 8063 if (Rdx && DominatedReduxValue(Rdx)) 8064 return Rdx; 8065 8066 // Otherwise, check whether we have a loop latch to look at. 8067 Loop *BBL = LI->getLoopFor(ParentBB); 8068 if (!BBL) 8069 return nullptr; 8070 BasicBlock *BBLatch = BBL->getLoopLatch(); 8071 if (!BBLatch) 8072 return nullptr; 8073 8074 // There is a loop latch, return the incoming value if it comes from 8075 // that. This reduction pattern occasionally turns up. 8076 if (P->getIncomingBlock(0) == BBLatch) { 8077 Rdx = P->getIncomingValue(0); 8078 } else if (P->getIncomingBlock(1) == BBLatch) { 8079 Rdx = P->getIncomingValue(1); 8080 } 8081 8082 if (Rdx && DominatedReduxValue(Rdx)) 8083 return Rdx; 8084 8085 return nullptr; 8086 } 8087 8088 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 8089 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 8090 return true; 8091 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 8092 return true; 8093 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 8094 return true; 8095 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 8096 return true; 8097 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 8098 return true; 8099 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 8100 return true; 8101 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 8102 return true; 8103 return false; 8104 } 8105 8106 /// Attempt to reduce a horizontal reduction. 8107 /// If it is legal to match a horizontal reduction feeding the phi node \a P 8108 /// with reduction operators \a Root (or one of its operands) in a basic block 8109 /// \a BB, then check if it can be done. If horizontal reduction is not found 8110 /// and root instruction is a binary operation, vectorization of the operands is 8111 /// attempted. 8112 /// \returns true if a horizontal reduction was matched and reduced or operands 8113 /// of one of the binary instruction were vectorized. 8114 /// \returns false if a horizontal reduction was not matched (or not possible) 8115 /// or no vectorization of any binary operation feeding \a Root instruction was 8116 /// performed. 8117 static bool tryToVectorizeHorReductionOrInstOperands( 8118 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 8119 TargetTransformInfo *TTI, 8120 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 8121 if (!ShouldVectorizeHor) 8122 return false; 8123 8124 if (!Root) 8125 return false; 8126 8127 if (Root->getParent() != BB || isa<PHINode>(Root)) 8128 return false; 8129 // Start analysis starting from Root instruction. If horizontal reduction is 8130 // found, try to vectorize it. If it is not a horizontal reduction or 8131 // vectorization is not possible or not effective, and currently analyzed 8132 // instruction is a binary operation, try to vectorize the operands, using 8133 // pre-order DFS traversal order. If the operands were not vectorized, repeat 8134 // the same procedure considering each operand as a possible root of the 8135 // horizontal reduction. 8136 // Interrupt the process if the Root instruction itself was vectorized or all 8137 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 8138 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 8139 // CmpInsts so we can skip extra attempts in 8140 // tryToVectorizeHorReductionOrInstOperands and save compile time. 8141 SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0}); 8142 SmallPtrSet<Value *, 8> VisitedInstrs; 8143 bool Res = false; 8144 while (!Stack.empty()) { 8145 Instruction *Inst; 8146 unsigned Level; 8147 std::tie(Inst, Level) = Stack.pop_back_val(); 8148 Value *B0, *B1; 8149 bool IsBinop = matchRdxBop(Inst, B0, B1); 8150 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 8151 if (IsBinop || IsSelect) { 8152 HorizontalReduction HorRdx; 8153 if (HorRdx.matchAssociativeReduction(P, Inst)) { 8154 if (HorRdx.tryToReduce(R, TTI)) { 8155 Res = true; 8156 // Set P to nullptr to avoid re-analysis of phi node in 8157 // matchAssociativeReduction function unless this is the root node. 8158 P = nullptr; 8159 continue; 8160 } 8161 } 8162 if (P && IsBinop) { 8163 Inst = dyn_cast<Instruction>(B0); 8164 if (Inst == P) 8165 Inst = dyn_cast<Instruction>(B1); 8166 if (!Inst) { 8167 // Set P to nullptr to avoid re-analysis of phi node in 8168 // matchAssociativeReduction function unless this is the root node. 8169 P = nullptr; 8170 continue; 8171 } 8172 } 8173 } 8174 // Set P to nullptr to avoid re-analysis of phi node in 8175 // matchAssociativeReduction function unless this is the root node. 8176 P = nullptr; 8177 // Do not try to vectorize CmpInst operands, this is done separately. 8178 if (!isa<CmpInst>(Inst) && Vectorize(Inst, R)) { 8179 Res = true; 8180 continue; 8181 } 8182 8183 // Try to vectorize operands. 8184 // Continue analysis for the instruction from the same basic block only to 8185 // save compile time. 8186 if (++Level < RecursionMaxDepth) 8187 for (auto *Op : Inst->operand_values()) 8188 if (VisitedInstrs.insert(Op).second) 8189 if (auto *I = dyn_cast<Instruction>(Op)) 8190 // Do not try to vectorize CmpInst operands, this is done 8191 // separately. 8192 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 8193 I->getParent() == BB) 8194 Stack.emplace_back(I, Level); 8195 } 8196 return Res; 8197 } 8198 8199 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 8200 BasicBlock *BB, BoUpSLP &R, 8201 TargetTransformInfo *TTI) { 8202 auto *I = dyn_cast_or_null<Instruction>(V); 8203 if (!I) 8204 return false; 8205 8206 if (!isa<BinaryOperator>(I)) 8207 P = nullptr; 8208 // Try to match and vectorize a horizontal reduction. 8209 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 8210 return tryToVectorize(I, R); 8211 }; 8212 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 8213 ExtraVectorization); 8214 } 8215 8216 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 8217 BasicBlock *BB, BoUpSLP &R) { 8218 const DataLayout &DL = BB->getModule()->getDataLayout(); 8219 if (!R.canMapToVector(IVI->getType(), DL)) 8220 return false; 8221 8222 SmallVector<Value *, 16> BuildVectorOpds; 8223 SmallVector<Value *, 16> BuildVectorInsts; 8224 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 8225 return false; 8226 8227 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 8228 // Aggregate value is unlikely to be processed in vector register, we need to 8229 // extract scalars into scalar registers, so NeedExtraction is set true. 8230 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false); 8231 } 8232 8233 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 8234 BasicBlock *BB, BoUpSLP &R) { 8235 SmallVector<Value *, 16> BuildVectorInsts; 8236 SmallVector<Value *, 16> BuildVectorOpds; 8237 SmallVector<int> Mask; 8238 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 8239 (llvm::all_of(BuildVectorOpds, 8240 [](Value *V) { return isa<ExtractElementInst>(V); }) && 8241 isShuffle(BuildVectorOpds, Mask))) 8242 return false; 8243 8244 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 8245 return tryToVectorizeList(BuildVectorInsts, R, /*AllowReorder=*/false); 8246 } 8247 8248 bool SLPVectorizerPass::vectorizeSimpleInstructions( 8249 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 8250 bool AtTerminator) { 8251 bool OpsChanged = false; 8252 SmallVector<Instruction *, 4> PostponedCmps; 8253 for (auto *I : reverse(Instructions)) { 8254 if (R.isDeleted(I)) 8255 continue; 8256 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 8257 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 8258 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 8259 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 8260 else if (isa<CmpInst>(I)) 8261 PostponedCmps.push_back(I); 8262 } 8263 if (AtTerminator) { 8264 // Try to find reductions first. 8265 for (Instruction *I : PostponedCmps) { 8266 if (R.isDeleted(I)) 8267 continue; 8268 for (Value *Op : I->operands()) 8269 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 8270 } 8271 // Try to vectorize operands as vector bundles. 8272 for (Instruction *I : PostponedCmps) { 8273 if (R.isDeleted(I)) 8274 continue; 8275 OpsChanged |= tryToVectorize(I, R); 8276 } 8277 Instructions.clear(); 8278 } else { 8279 // Insert in reverse order since the PostponedCmps vector was filled in 8280 // reverse order. 8281 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 8282 } 8283 return OpsChanged; 8284 } 8285 8286 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 8287 bool Changed = false; 8288 SmallVector<Value *, 4> Incoming; 8289 SmallPtrSet<Value *, 16> VisitedInstrs; 8290 8291 bool HaveVectorizedPhiNodes = true; 8292 while (HaveVectorizedPhiNodes) { 8293 HaveVectorizedPhiNodes = false; 8294 8295 // Collect the incoming values from the PHIs. 8296 Incoming.clear(); 8297 for (Instruction &I : *BB) { 8298 PHINode *P = dyn_cast<PHINode>(&I); 8299 if (!P) 8300 break; 8301 8302 if (!VisitedInstrs.count(P) && !R.isDeleted(P)) 8303 Incoming.push_back(P); 8304 } 8305 8306 // Sort by type. 8307 llvm::stable_sort(Incoming, PhiTypeSorterFunc); 8308 8309 // Try to vectorize elements base on their type. 8310 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 8311 E = Incoming.end(); 8312 IncIt != E;) { 8313 8314 // Look for the next elements with the same type. 8315 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 8316 while (SameTypeIt != E && 8317 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 8318 VisitedInstrs.insert(*SameTypeIt); 8319 ++SameTypeIt; 8320 } 8321 8322 // Try to vectorize them. 8323 unsigned NumElts = (SameTypeIt - IncIt); 8324 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 8325 << NumElts << ")\n"); 8326 // The order in which the phi nodes appear in the program does not matter. 8327 // So allow tryToVectorizeList to reorder them if it is beneficial. This 8328 // is done when there are exactly two elements since tryToVectorizeList 8329 // asserts that there are only two values when AllowReorder is true. 8330 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, 8331 /*AllowReorder=*/true)) { 8332 // Success start over because instructions might have been changed. 8333 HaveVectorizedPhiNodes = true; 8334 Changed = true; 8335 break; 8336 } 8337 8338 // Start over at the next instruction of a different type (or the end). 8339 IncIt = SameTypeIt; 8340 } 8341 } 8342 8343 VisitedInstrs.clear(); 8344 8345 SmallVector<Instruction *, 8> PostProcessInstructions; 8346 SmallDenseSet<Instruction *, 4> KeyNodes; 8347 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 8348 // Skip instructions with scalable type. The num of elements is unknown at 8349 // compile-time for scalable type. 8350 if (isa<ScalableVectorType>(it->getType())) 8351 continue; 8352 8353 // Skip instructions marked for the deletion. 8354 if (R.isDeleted(&*it)) 8355 continue; 8356 // We may go through BB multiple times so skip the one we have checked. 8357 if (!VisitedInstrs.insert(&*it).second) { 8358 if (it->use_empty() && KeyNodes.contains(&*it) && 8359 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 8360 it->isTerminator())) { 8361 // We would like to start over since some instructions are deleted 8362 // and the iterator may become invalid value. 8363 Changed = true; 8364 it = BB->begin(); 8365 e = BB->end(); 8366 } 8367 continue; 8368 } 8369 8370 if (isa<DbgInfoIntrinsic>(it)) 8371 continue; 8372 8373 // Try to vectorize reductions that use PHINodes. 8374 if (PHINode *P = dyn_cast<PHINode>(it)) { 8375 // Check that the PHI is a reduction PHI. 8376 if (P->getNumIncomingValues() == 2) { 8377 // Try to match and vectorize a horizontal reduction. 8378 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 8379 TTI)) { 8380 Changed = true; 8381 it = BB->begin(); 8382 e = BB->end(); 8383 continue; 8384 } 8385 } 8386 // Try to vectorize the incoming values of the PHI, to catch reductions 8387 // that feed into PHIs. 8388 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 8389 // Skip if the incoming block is the current BB for now. Also, bypass 8390 // unreachable IR for efficiency and to avoid crashing. 8391 // TODO: Collect the skipped incoming values and try to vectorize them 8392 // after processing BB. 8393 if (BB == P->getIncomingBlock(I) || 8394 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 8395 continue; 8396 8397 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 8398 P->getIncomingBlock(I), R, TTI); 8399 } 8400 continue; 8401 } 8402 8403 // Ran into an instruction without users, like terminator, or function call 8404 // with ignored return value, store. Ignore unused instructions (basing on 8405 // instruction type, except for CallInst and InvokeInst). 8406 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 8407 isa<InvokeInst>(it))) { 8408 KeyNodes.insert(&*it); 8409 bool OpsChanged = false; 8410 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 8411 for (auto *V : it->operand_values()) { 8412 // Try to match and vectorize a horizontal reduction. 8413 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 8414 } 8415 } 8416 // Start vectorization of post-process list of instructions from the 8417 // top-tree instructions to try to vectorize as many instructions as 8418 // possible. 8419 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 8420 it->isTerminator()); 8421 if (OpsChanged) { 8422 // We would like to start over since some instructions are deleted 8423 // and the iterator may become invalid value. 8424 Changed = true; 8425 it = BB->begin(); 8426 e = BB->end(); 8427 continue; 8428 } 8429 } 8430 8431 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 8432 isa<InsertValueInst>(it)) 8433 PostProcessInstructions.push_back(&*it); 8434 } 8435 8436 return Changed; 8437 } 8438 8439 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 8440 auto Changed = false; 8441 for (auto &Entry : GEPs) { 8442 // If the getelementptr list has fewer than two elements, there's nothing 8443 // to do. 8444 if (Entry.second.size() < 2) 8445 continue; 8446 8447 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 8448 << Entry.second.size() << ".\n"); 8449 8450 // Process the GEP list in chunks suitable for the target's supported 8451 // vector size. If a vector register can't hold 1 element, we are done. We 8452 // are trying to vectorize the index computations, so the maximum number of 8453 // elements is based on the size of the index expression, rather than the 8454 // size of the GEP itself (the target's pointer size). 8455 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 8456 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 8457 if (MaxVecRegSize < EltSize) 8458 continue; 8459 8460 unsigned MaxElts = MaxVecRegSize / EltSize; 8461 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 8462 auto Len = std::min<unsigned>(BE - BI, MaxElts); 8463 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 8464 8465 // Initialize a set a candidate getelementptrs. Note that we use a 8466 // SetVector here to preserve program order. If the index computations 8467 // are vectorizable and begin with loads, we want to minimize the chance 8468 // of having to reorder them later. 8469 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 8470 8471 // Some of the candidates may have already been vectorized after we 8472 // initially collected them. If so, they are marked as deleted, so remove 8473 // them from the set of candidates. 8474 Candidates.remove_if( 8475 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 8476 8477 // Remove from the set of candidates all pairs of getelementptrs with 8478 // constant differences. Such getelementptrs are likely not good 8479 // candidates for vectorization in a bottom-up phase since one can be 8480 // computed from the other. We also ensure all candidate getelementptr 8481 // indices are unique. 8482 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 8483 auto *GEPI = GEPList[I]; 8484 if (!Candidates.count(GEPI)) 8485 continue; 8486 auto *SCEVI = SE->getSCEV(GEPList[I]); 8487 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 8488 auto *GEPJ = GEPList[J]; 8489 auto *SCEVJ = SE->getSCEV(GEPList[J]); 8490 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 8491 Candidates.remove(GEPI); 8492 Candidates.remove(GEPJ); 8493 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 8494 Candidates.remove(GEPJ); 8495 } 8496 } 8497 } 8498 8499 // We break out of the above computation as soon as we know there are 8500 // fewer than two candidates remaining. 8501 if (Candidates.size() < 2) 8502 continue; 8503 8504 // Add the single, non-constant index of each candidate to the bundle. We 8505 // ensured the indices met these constraints when we originally collected 8506 // the getelementptrs. 8507 SmallVector<Value *, 16> Bundle(Candidates.size()); 8508 auto BundleIndex = 0u; 8509 for (auto *V : Candidates) { 8510 auto *GEP = cast<GetElementPtrInst>(V); 8511 auto *GEPIdx = GEP->idx_begin()->get(); 8512 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 8513 Bundle[BundleIndex++] = GEPIdx; 8514 } 8515 8516 // Try and vectorize the indices. We are currently only interested in 8517 // gather-like cases of the form: 8518 // 8519 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 8520 // 8521 // where the loads of "a", the loads of "b", and the subtractions can be 8522 // performed in parallel. It's likely that detecting this pattern in a 8523 // bottom-up phase will be simpler and less costly than building a 8524 // full-blown top-down phase beginning at the consecutive loads. 8525 Changed |= tryToVectorizeList(Bundle, R); 8526 } 8527 } 8528 return Changed; 8529 } 8530 8531 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 8532 bool Changed = false; 8533 // Attempt to sort and vectorize each of the store-groups. 8534 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 8535 ++it) { 8536 if (it->second.size() < 2) 8537 continue; 8538 8539 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 8540 << it->second.size() << ".\n"); 8541 8542 Changed |= vectorizeStores(it->second, R); 8543 } 8544 return Changed; 8545 } 8546 8547 char SLPVectorizer::ID = 0; 8548 8549 static const char lv_name[] = "SLP Vectorizer"; 8550 8551 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 8552 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 8553 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 8554 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 8555 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 8556 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 8557 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 8558 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 8559 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 8560 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 8561 8562 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 8563