1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 45 #include "llvm/Analysis/ScalarEvolution.h" 46 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/Analysis/VectorUtils.h" 51 #include "llvm/IR/Attributes.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DebugLoc.h" 57 #include "llvm/IR/DerivedTypes.h" 58 #include "llvm/IR/Dominators.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/IRBuilder.h" 61 #include "llvm/IR/InstrTypes.h" 62 #include "llvm/IR/Instruction.h" 63 #include "llvm/IR/Instructions.h" 64 #include "llvm/IR/IntrinsicInst.h" 65 #include "llvm/IR/Intrinsics.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PatternMatch.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/IR/Verifier.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/Casting.h" 77 #include "llvm/Support/CommandLine.h" 78 #include "llvm/Support/Compiler.h" 79 #include "llvm/Support/DOTGraphTraits.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/ErrorHandling.h" 82 #include "llvm/Support/GraphWriter.h" 83 #include "llvm/Support/InstructionCost.h" 84 #include "llvm/Support/KnownBits.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 88 #include "llvm/Transforms/Utils/LoopUtils.h" 89 #include "llvm/Transforms/Vectorize.h" 90 #include <algorithm> 91 #include <cassert> 92 #include <cstdint> 93 #include <iterator> 94 #include <memory> 95 #include <set> 96 #include <string> 97 #include <tuple> 98 #include <utility> 99 #include <vector> 100 101 using namespace llvm; 102 using namespace llvm::PatternMatch; 103 using namespace slpvectorizer; 104 105 #define SV_NAME "slp-vectorizer" 106 #define DEBUG_TYPE "SLP" 107 108 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 109 110 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 111 cl::desc("Run the SLP vectorization passes")); 112 113 static cl::opt<int> 114 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 115 cl::desc("Only vectorize if you gain more than this " 116 "number ")); 117 118 static cl::opt<bool> 119 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 120 cl::desc("Attempt to vectorize horizontal reductions")); 121 122 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 123 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 124 cl::desc( 125 "Attempt to vectorize horizontal reductions feeding into a store")); 126 127 static cl::opt<int> 128 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 129 cl::desc("Attempt to vectorize for this register size in bits")); 130 131 static cl::opt<unsigned> 132 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 133 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 134 135 static cl::opt<int> 136 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 137 cl::desc("Maximum depth of the lookup for consecutive stores.")); 138 139 /// Limits the size of scheduling regions in a block. 140 /// It avoid long compile times for _very_ large blocks where vector 141 /// instructions are spread over a wide range. 142 /// This limit is way higher than needed by real-world functions. 143 static cl::opt<int> 144 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 145 cl::desc("Limit the size of the SLP scheduling region per block")); 146 147 static cl::opt<int> MinVectorRegSizeOption( 148 "slp-min-reg-size", cl::init(128), cl::Hidden, 149 cl::desc("Attempt to vectorize for this register size in bits")); 150 151 static cl::opt<unsigned> RecursionMaxDepth( 152 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 153 cl::desc("Limit the recursion depth when building a vectorizable tree")); 154 155 static cl::opt<unsigned> MinTreeSize( 156 "slp-min-tree-size", cl::init(3), cl::Hidden, 157 cl::desc("Only vectorize small trees if they are fully vectorizable")); 158 159 // The maximum depth that the look-ahead score heuristic will explore. 160 // The higher this value, the higher the compilation time overhead. 161 static cl::opt<int> LookAheadMaxDepth( 162 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 163 cl::desc("The maximum look-ahead depth for operand reordering scores")); 164 165 static cl::opt<bool> 166 ViewSLPTree("view-slp-tree", cl::Hidden, 167 cl::desc("Display the SLP trees with Graphviz")); 168 169 // Limit the number of alias checks. The limit is chosen so that 170 // it has no negative effect on the llvm benchmarks. 171 static const unsigned AliasedCheckLimit = 10; 172 173 // Another limit for the alias checks: The maximum distance between load/store 174 // instructions where alias checks are done. 175 // This limit is useful for very large basic blocks. 176 static const unsigned MaxMemDepDistance = 160; 177 178 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 179 /// regions to be handled. 180 static const int MinScheduleRegionSize = 16; 181 182 /// Predicate for the element types that the SLP vectorizer supports. 183 /// 184 /// The most important thing to filter here are types which are invalid in LLVM 185 /// vectors. We also filter target specific types which have absolutely no 186 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 187 /// avoids spending time checking the cost model and realizing that they will 188 /// be inevitably scalarized. 189 static bool isValidElementType(Type *Ty) { 190 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 191 !Ty->isPPC_FP128Ty(); 192 } 193 194 /// \returns True if the value is a constant (but not globals/constant 195 /// expressions). 196 static bool isConstant(Value *V) { 197 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 198 } 199 200 /// Checks if \p V is one of vector-like instructions, i.e. undef, 201 /// insertelement/extractelement with constant indices for fixed vector type or 202 /// extractvalue instruction. 203 static bool isVectorLikeInstWithConstOps(Value *V) { 204 if (!isa<InsertElementInst, ExtractElementInst>(V) && 205 !isa<ExtractValueInst, UndefValue>(V)) 206 return false; 207 auto *I = dyn_cast<Instruction>(V); 208 if (!I || isa<ExtractValueInst>(I)) 209 return true; 210 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 211 return false; 212 if (isa<ExtractElementInst>(I)) 213 return isConstant(I->getOperand(1)); 214 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 215 return isConstant(I->getOperand(2)); 216 } 217 218 /// \returns true if all of the instructions in \p VL are in the same block or 219 /// false otherwise. 220 static bool allSameBlock(ArrayRef<Value *> VL) { 221 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 222 if (!I0) 223 return false; 224 if (all_of(VL, isVectorLikeInstWithConstOps)) 225 return true; 226 227 BasicBlock *BB = I0->getParent(); 228 for (int I = 1, E = VL.size(); I < E; I++) { 229 auto *II = dyn_cast<Instruction>(VL[I]); 230 if (!II) 231 return false; 232 233 if (BB != II->getParent()) 234 return false; 235 } 236 return true; 237 } 238 239 /// \returns True if all of the values in \p VL are constants (but not 240 /// globals/constant expressions). 241 static bool allConstant(ArrayRef<Value *> VL) { 242 // Constant expressions and globals can't be vectorized like normal integer/FP 243 // constants. 244 return all_of(VL, isConstant); 245 } 246 247 /// \returns True if all of the values in \p VL are identical or some of them 248 /// are UndefValue. 249 static bool isSplat(ArrayRef<Value *> VL) { 250 Value *FirstNonUndef = nullptr; 251 for (Value *V : VL) { 252 if (isa<UndefValue>(V)) 253 continue; 254 if (!FirstNonUndef) { 255 FirstNonUndef = V; 256 continue; 257 } 258 if (V != FirstNonUndef) 259 return false; 260 } 261 return FirstNonUndef != nullptr; 262 } 263 264 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 265 static bool isCommutative(Instruction *I) { 266 if (auto *Cmp = dyn_cast<CmpInst>(I)) 267 return Cmp->isCommutative(); 268 if (auto *BO = dyn_cast<BinaryOperator>(I)) 269 return BO->isCommutative(); 270 // TODO: This should check for generic Instruction::isCommutative(), but 271 // we need to confirm that the caller code correctly handles Intrinsics 272 // for example (does not have 2 operands). 273 return false; 274 } 275 276 /// Checks if the given value is actually an undefined constant vector. 277 static bool isUndefVector(const Value *V) { 278 if (isa<UndefValue>(V)) 279 return true; 280 auto *C = dyn_cast<Constant>(V); 281 if (!C) 282 return false; 283 if (!C->containsUndefOrPoisonElement()) 284 return false; 285 auto *VecTy = dyn_cast<FixedVectorType>(C->getType()); 286 if (!VecTy) 287 return false; 288 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { 289 if (Constant *Elem = C->getAggregateElement(I)) 290 if (!isa<UndefValue>(Elem)) 291 return false; 292 } 293 return true; 294 } 295 296 /// Checks if the vector of instructions can be represented as a shuffle, like: 297 /// %x0 = extractelement <4 x i8> %x, i32 0 298 /// %x3 = extractelement <4 x i8> %x, i32 3 299 /// %y1 = extractelement <4 x i8> %y, i32 1 300 /// %y2 = extractelement <4 x i8> %y, i32 2 301 /// %x0x0 = mul i8 %x0, %x0 302 /// %x3x3 = mul i8 %x3, %x3 303 /// %y1y1 = mul i8 %y1, %y1 304 /// %y2y2 = mul i8 %y2, %y2 305 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 306 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 307 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 308 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 309 /// ret <4 x i8> %ins4 310 /// can be transformed into: 311 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 312 /// i32 6> 313 /// %2 = mul <4 x i8> %1, %1 314 /// ret <4 x i8> %2 315 /// We convert this initially to something like: 316 /// %x0 = extractelement <4 x i8> %x, i32 0 317 /// %x3 = extractelement <4 x i8> %x, i32 3 318 /// %y1 = extractelement <4 x i8> %y, i32 1 319 /// %y2 = extractelement <4 x i8> %y, i32 2 320 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 321 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 322 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 323 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 324 /// %5 = mul <4 x i8> %4, %4 325 /// %6 = extractelement <4 x i8> %5, i32 0 326 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 327 /// %7 = extractelement <4 x i8> %5, i32 1 328 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 329 /// %8 = extractelement <4 x i8> %5, i32 2 330 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 331 /// %9 = extractelement <4 x i8> %5, i32 3 332 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 333 /// ret <4 x i8> %ins4 334 /// InstCombiner transforms this into a shuffle and vector mul 335 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 336 /// TODO: Can we split off and reuse the shuffle mask detection from 337 /// TargetTransformInfo::getInstructionThroughput? 338 static Optional<TargetTransformInfo::ShuffleKind> 339 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 340 const auto *It = 341 find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); }); 342 if (It == VL.end()) 343 return None; 344 auto *EI0 = cast<ExtractElementInst>(*It); 345 if (isa<ScalableVectorType>(EI0->getVectorOperandType())) 346 return None; 347 unsigned Size = 348 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 349 Value *Vec1 = nullptr; 350 Value *Vec2 = nullptr; 351 enum ShuffleMode { Unknown, Select, Permute }; 352 ShuffleMode CommonShuffleMode = Unknown; 353 Mask.assign(VL.size(), UndefMaskElem); 354 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 355 // Undef can be represented as an undef element in a vector. 356 if (isa<UndefValue>(VL[I])) 357 continue; 358 auto *EI = cast<ExtractElementInst>(VL[I]); 359 if (isa<ScalableVectorType>(EI->getVectorOperandType())) 360 return None; 361 auto *Vec = EI->getVectorOperand(); 362 // We can extractelement from undef or poison vector. 363 if (isUndefVector(Vec)) 364 continue; 365 // All vector operands must have the same number of vector elements. 366 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 367 return None; 368 if (isa<UndefValue>(EI->getIndexOperand())) 369 continue; 370 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 371 if (!Idx) 372 return None; 373 // Undefined behavior if Idx is negative or >= Size. 374 if (Idx->getValue().uge(Size)) 375 continue; 376 unsigned IntIdx = Idx->getValue().getZExtValue(); 377 Mask[I] = IntIdx; 378 // For correct shuffling we have to have at most 2 different vector operands 379 // in all extractelement instructions. 380 if (!Vec1 || Vec1 == Vec) { 381 Vec1 = Vec; 382 } else if (!Vec2 || Vec2 == Vec) { 383 Vec2 = Vec; 384 Mask[I] += Size; 385 } else { 386 return None; 387 } 388 if (CommonShuffleMode == Permute) 389 continue; 390 // If the extract index is not the same as the operation number, it is a 391 // permutation. 392 if (IntIdx != I) { 393 CommonShuffleMode = Permute; 394 continue; 395 } 396 CommonShuffleMode = Select; 397 } 398 // If we're not crossing lanes in different vectors, consider it as blending. 399 if (CommonShuffleMode == Select && Vec2) 400 return TargetTransformInfo::SK_Select; 401 // If Vec2 was never used, we have a permutation of a single vector, otherwise 402 // we have permutation of 2 vectors. 403 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 404 : TargetTransformInfo::SK_PermuteSingleSrc; 405 } 406 407 namespace { 408 409 /// Main data required for vectorization of instructions. 410 struct InstructionsState { 411 /// The very first instruction in the list with the main opcode. 412 Value *OpValue = nullptr; 413 414 /// The main/alternate instruction. 415 Instruction *MainOp = nullptr; 416 Instruction *AltOp = nullptr; 417 418 /// The main/alternate opcodes for the list of instructions. 419 unsigned getOpcode() const { 420 return MainOp ? MainOp->getOpcode() : 0; 421 } 422 423 unsigned getAltOpcode() const { 424 return AltOp ? AltOp->getOpcode() : 0; 425 } 426 427 /// Some of the instructions in the list have alternate opcodes. 428 bool isAltShuffle() const { return AltOp != MainOp; } 429 430 bool isOpcodeOrAlt(Instruction *I) const { 431 unsigned CheckedOpcode = I->getOpcode(); 432 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 433 } 434 435 InstructionsState() = delete; 436 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 437 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 438 }; 439 440 } // end anonymous namespace 441 442 /// Chooses the correct key for scheduling data. If \p Op has the same (or 443 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 444 /// OpValue. 445 static Value *isOneOf(const InstructionsState &S, Value *Op) { 446 auto *I = dyn_cast<Instruction>(Op); 447 if (I && S.isOpcodeOrAlt(I)) 448 return Op; 449 return S.OpValue; 450 } 451 452 /// \returns true if \p Opcode is allowed as part of of the main/alternate 453 /// instruction for SLP vectorization. 454 /// 455 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 456 /// "shuffled out" lane would result in division by zero. 457 static bool isValidForAlternation(unsigned Opcode) { 458 if (Instruction::isIntDivRem(Opcode)) 459 return false; 460 461 return true; 462 } 463 464 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 465 unsigned BaseIndex = 0); 466 467 /// Checks if the provided operands of 2 cmp instructions are compatible, i.e. 468 /// compatible instructions or constants, or just some other regular values. 469 static bool areCompatibleCmpOps(Value *BaseOp0, Value *BaseOp1, Value *Op0, 470 Value *Op1) { 471 return (isConstant(BaseOp0) && isConstant(Op0)) || 472 (isConstant(BaseOp1) && isConstant(Op1)) || 473 (!isa<Instruction>(BaseOp0) && !isa<Instruction>(Op0) && 474 !isa<Instruction>(BaseOp1) && !isa<Instruction>(Op1)) || 475 getSameOpcode({BaseOp0, Op0}).getOpcode() || 476 getSameOpcode({BaseOp1, Op1}).getOpcode(); 477 } 478 479 /// \returns analysis of the Instructions in \p VL described in 480 /// InstructionsState, the Opcode that we suppose the whole list 481 /// could be vectorized even if its structure is diverse. 482 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 483 unsigned BaseIndex) { 484 // Make sure these are all Instructions. 485 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 486 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 487 488 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 489 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 490 bool IsCmpOp = isa<CmpInst>(VL[BaseIndex]); 491 CmpInst::Predicate BasePred = 492 IsCmpOp ? cast<CmpInst>(VL[BaseIndex])->getPredicate() 493 : CmpInst::BAD_ICMP_PREDICATE; 494 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 495 unsigned AltOpcode = Opcode; 496 unsigned AltIndex = BaseIndex; 497 498 // Check for one alternate opcode from another BinaryOperator. 499 // TODO - generalize to support all operators (types, calls etc.). 500 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 501 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 502 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 503 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 504 continue; 505 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 506 isValidForAlternation(Opcode)) { 507 AltOpcode = InstOpcode; 508 AltIndex = Cnt; 509 continue; 510 } 511 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 512 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 513 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 514 if (Ty0 == Ty1) { 515 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 516 continue; 517 if (Opcode == AltOpcode) { 518 assert(isValidForAlternation(Opcode) && 519 isValidForAlternation(InstOpcode) && 520 "Cast isn't safe for alternation, logic needs to be updated!"); 521 AltOpcode = InstOpcode; 522 AltIndex = Cnt; 523 continue; 524 } 525 } 526 } else if (IsCmpOp && isa<CmpInst>(VL[Cnt])) { 527 auto *BaseInst = cast<Instruction>(VL[BaseIndex]); 528 auto *Inst = cast<Instruction>(VL[Cnt]); 529 Type *Ty0 = BaseInst->getOperand(0)->getType(); 530 Type *Ty1 = Inst->getOperand(0)->getType(); 531 if (Ty0 == Ty1) { 532 Value *BaseOp0 = BaseInst->getOperand(0); 533 Value *BaseOp1 = BaseInst->getOperand(1); 534 Value *Op0 = Inst->getOperand(0); 535 Value *Op1 = Inst->getOperand(1); 536 CmpInst::Predicate CurrentPred = 537 cast<CmpInst>(VL[Cnt])->getPredicate(); 538 CmpInst::Predicate SwappedCurrentPred = 539 CmpInst::getSwappedPredicate(CurrentPred); 540 // Check for compatible operands. If the corresponding operands are not 541 // compatible - need to perform alternate vectorization. 542 if (InstOpcode == Opcode) { 543 if (BasePred == CurrentPred && 544 areCompatibleCmpOps(BaseOp0, BaseOp1, Op0, Op1)) 545 continue; 546 if (BasePred == SwappedCurrentPred && 547 areCompatibleCmpOps(BaseOp0, BaseOp1, Op1, Op0)) 548 continue; 549 if (E == 2 && 550 (BasePred == CurrentPred || BasePred == SwappedCurrentPred)) 551 continue; 552 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 553 CmpInst::Predicate AltPred = AltInst->getPredicate(); 554 Value *AltOp0 = AltInst->getOperand(0); 555 Value *AltOp1 = AltInst->getOperand(1); 556 // Check if operands are compatible with alternate operands. 557 if (AltPred == CurrentPred && 558 areCompatibleCmpOps(AltOp0, AltOp1, Op0, Op1)) 559 continue; 560 if (AltPred == SwappedCurrentPred && 561 areCompatibleCmpOps(AltOp0, AltOp1, Op1, Op0)) 562 continue; 563 } 564 if (BaseIndex == AltIndex && BasePred != CurrentPred) { 565 assert(isValidForAlternation(Opcode) && 566 isValidForAlternation(InstOpcode) && 567 "Cast isn't safe for alternation, logic needs to be updated!"); 568 AltIndex = Cnt; 569 continue; 570 } 571 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 572 CmpInst::Predicate AltPred = AltInst->getPredicate(); 573 if (BasePred == CurrentPred || BasePred == SwappedCurrentPred || 574 AltPred == CurrentPred || AltPred == SwappedCurrentPred) 575 continue; 576 } 577 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 578 continue; 579 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 580 } 581 582 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 583 cast<Instruction>(VL[AltIndex])); 584 } 585 586 /// \returns true if all of the values in \p VL have the same type or false 587 /// otherwise. 588 static bool allSameType(ArrayRef<Value *> VL) { 589 Type *Ty = VL[0]->getType(); 590 for (int i = 1, e = VL.size(); i < e; i++) 591 if (VL[i]->getType() != Ty) 592 return false; 593 594 return true; 595 } 596 597 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 598 static Optional<unsigned> getExtractIndex(Instruction *E) { 599 unsigned Opcode = E->getOpcode(); 600 assert((Opcode == Instruction::ExtractElement || 601 Opcode == Instruction::ExtractValue) && 602 "Expected extractelement or extractvalue instruction."); 603 if (Opcode == Instruction::ExtractElement) { 604 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 605 if (!CI) 606 return None; 607 return CI->getZExtValue(); 608 } 609 ExtractValueInst *EI = cast<ExtractValueInst>(E); 610 if (EI->getNumIndices() != 1) 611 return None; 612 return *EI->idx_begin(); 613 } 614 615 /// \returns True if in-tree use also needs extract. This refers to 616 /// possible scalar operand in vectorized instruction. 617 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 618 TargetLibraryInfo *TLI) { 619 unsigned Opcode = UserInst->getOpcode(); 620 switch (Opcode) { 621 case Instruction::Load: { 622 LoadInst *LI = cast<LoadInst>(UserInst); 623 return (LI->getPointerOperand() == Scalar); 624 } 625 case Instruction::Store: { 626 StoreInst *SI = cast<StoreInst>(UserInst); 627 return (SI->getPointerOperand() == Scalar); 628 } 629 case Instruction::Call: { 630 CallInst *CI = cast<CallInst>(UserInst); 631 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 632 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 633 if (hasVectorInstrinsicScalarOpd(ID, i)) 634 return (CI->getArgOperand(i) == Scalar); 635 } 636 LLVM_FALLTHROUGH; 637 } 638 default: 639 return false; 640 } 641 } 642 643 /// \returns the AA location that is being access by the instruction. 644 static MemoryLocation getLocation(Instruction *I) { 645 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 646 return MemoryLocation::get(SI); 647 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 648 return MemoryLocation::get(LI); 649 return MemoryLocation(); 650 } 651 652 /// \returns True if the instruction is not a volatile or atomic load/store. 653 static bool isSimple(Instruction *I) { 654 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 655 return LI->isSimple(); 656 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 657 return SI->isSimple(); 658 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 659 return !MI->isVolatile(); 660 return true; 661 } 662 663 /// Shuffles \p Mask in accordance with the given \p SubMask. 664 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 665 if (SubMask.empty()) 666 return; 667 if (Mask.empty()) { 668 Mask.append(SubMask.begin(), SubMask.end()); 669 return; 670 } 671 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 672 int TermValue = std::min(Mask.size(), SubMask.size()); 673 for (int I = 0, E = SubMask.size(); I < E; ++I) { 674 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 675 Mask[SubMask[I]] >= TermValue) 676 continue; 677 NewMask[I] = Mask[SubMask[I]]; 678 } 679 Mask.swap(NewMask); 680 } 681 682 /// Order may have elements assigned special value (size) which is out of 683 /// bounds. Such indices only appear on places which correspond to undef values 684 /// (see canReuseExtract for details) and used in order to avoid undef values 685 /// have effect on operands ordering. 686 /// The first loop below simply finds all unused indices and then the next loop 687 /// nest assigns these indices for undef values positions. 688 /// As an example below Order has two undef positions and they have assigned 689 /// values 3 and 7 respectively: 690 /// before: 6 9 5 4 9 2 1 0 691 /// after: 6 3 5 4 7 2 1 0 692 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 693 const unsigned Sz = Order.size(); 694 SmallBitVector UnusedIndices(Sz, /*t=*/true); 695 SmallBitVector MaskedIndices(Sz); 696 for (unsigned I = 0; I < Sz; ++I) { 697 if (Order[I] < Sz) 698 UnusedIndices.reset(Order[I]); 699 else 700 MaskedIndices.set(I); 701 } 702 if (MaskedIndices.none()) 703 return; 704 assert(UnusedIndices.count() == MaskedIndices.count() && 705 "Non-synced masked/available indices."); 706 int Idx = UnusedIndices.find_first(); 707 int MIdx = MaskedIndices.find_first(); 708 while (MIdx >= 0) { 709 assert(Idx >= 0 && "Indices must be synced."); 710 Order[MIdx] = Idx; 711 Idx = UnusedIndices.find_next(Idx); 712 MIdx = MaskedIndices.find_next(MIdx); 713 } 714 } 715 716 namespace llvm { 717 718 static void inversePermutation(ArrayRef<unsigned> Indices, 719 SmallVectorImpl<int> &Mask) { 720 Mask.clear(); 721 const unsigned E = Indices.size(); 722 Mask.resize(E, UndefMaskElem); 723 for (unsigned I = 0; I < E; ++I) 724 Mask[Indices[I]] = I; 725 } 726 727 /// \returns inserting index of InsertElement or InsertValue instruction, 728 /// using Offset as base offset for index. 729 static Optional<unsigned> getInsertIndex(Value *InsertInst, 730 unsigned Offset = 0) { 731 int Index = Offset; 732 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 733 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 734 auto *VT = cast<FixedVectorType>(IE->getType()); 735 if (CI->getValue().uge(VT->getNumElements())) 736 return None; 737 Index *= VT->getNumElements(); 738 Index += CI->getZExtValue(); 739 return Index; 740 } 741 return None; 742 } 743 744 auto *IV = cast<InsertValueInst>(InsertInst); 745 Type *CurrentType = IV->getType(); 746 for (unsigned I : IV->indices()) { 747 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 748 Index *= ST->getNumElements(); 749 CurrentType = ST->getElementType(I); 750 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 751 Index *= AT->getNumElements(); 752 CurrentType = AT->getElementType(); 753 } else { 754 return None; 755 } 756 Index += I; 757 } 758 return Index; 759 } 760 761 /// Reorders the list of scalars in accordance with the given \p Mask. 762 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 763 ArrayRef<int> Mask) { 764 assert(!Mask.empty() && "Expected non-empty mask."); 765 SmallVector<Value *> Prev(Scalars.size(), 766 UndefValue::get(Scalars.front()->getType())); 767 Prev.swap(Scalars); 768 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 769 if (Mask[I] != UndefMaskElem) 770 Scalars[Mask[I]] = Prev[I]; 771 } 772 773 namespace slpvectorizer { 774 775 /// Bottom Up SLP Vectorizer. 776 class BoUpSLP { 777 struct TreeEntry; 778 struct ScheduleData; 779 780 public: 781 using ValueList = SmallVector<Value *, 8>; 782 using InstrList = SmallVector<Instruction *, 16>; 783 using ValueSet = SmallPtrSet<Value *, 16>; 784 using StoreList = SmallVector<StoreInst *, 8>; 785 using ExtraValueToDebugLocsMap = 786 MapVector<Value *, SmallVector<Instruction *, 2>>; 787 using OrdersType = SmallVector<unsigned, 4>; 788 789 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 790 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 791 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 792 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 793 : BatchAA(*Aa), F(Func), SE(Se), TTI(Tti), TLI(TLi), LI(Li), 794 DT(Dt), AC(AC), DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 795 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 796 // Use the vector register size specified by the target unless overridden 797 // by a command-line option. 798 // TODO: It would be better to limit the vectorization factor based on 799 // data type rather than just register size. For example, x86 AVX has 800 // 256-bit registers, but it does not support integer operations 801 // at that width (that requires AVX2). 802 if (MaxVectorRegSizeOption.getNumOccurrences()) 803 MaxVecRegSize = MaxVectorRegSizeOption; 804 else 805 MaxVecRegSize = 806 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 807 .getFixedSize(); 808 809 if (MinVectorRegSizeOption.getNumOccurrences()) 810 MinVecRegSize = MinVectorRegSizeOption; 811 else 812 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 813 } 814 815 /// Vectorize the tree that starts with the elements in \p VL. 816 /// Returns the vectorized root. 817 Value *vectorizeTree(); 818 819 /// Vectorize the tree but with the list of externally used values \p 820 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 821 /// generated extractvalue instructions. 822 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 823 824 /// \returns the cost incurred by unwanted spills and fills, caused by 825 /// holding live values over call sites. 826 InstructionCost getSpillCost() const; 827 828 /// \returns the vectorization cost of the subtree that starts at \p VL. 829 /// A negative number means that this is profitable. 830 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 831 832 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 833 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 834 void buildTree(ArrayRef<Value *> Roots, 835 ArrayRef<Value *> UserIgnoreLst = None); 836 837 /// Builds external uses of the vectorized scalars, i.e. the list of 838 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 839 /// ExternallyUsedValues contains additional list of external uses to handle 840 /// vectorization of reductions. 841 void 842 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 843 844 /// Clear the internal data structures that are created by 'buildTree'. 845 void deleteTree() { 846 VectorizableTree.clear(); 847 ScalarToTreeEntry.clear(); 848 MustGather.clear(); 849 ExternalUses.clear(); 850 for (auto &Iter : BlocksSchedules) { 851 BlockScheduling *BS = Iter.second.get(); 852 BS->clear(); 853 } 854 MinBWs.clear(); 855 InstrElementSize.clear(); 856 } 857 858 unsigned getTreeSize() const { return VectorizableTree.size(); } 859 860 /// Perform LICM and CSE on the newly generated gather sequences. 861 void optimizeGatherSequence(); 862 863 /// Checks if the specified gather tree entry \p TE can be represented as a 864 /// shuffled vector entry + (possibly) permutation with other gathers. It 865 /// implements the checks only for possibly ordered scalars (Loads, 866 /// ExtractElement, ExtractValue), which can be part of the graph. 867 Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); 868 869 /// Gets reordering data for the given tree entry. If the entry is vectorized 870 /// - just return ReorderIndices, otherwise check if the scalars can be 871 /// reordered and return the most optimal order. 872 /// \param TopToBottom If true, include the order of vectorized stores and 873 /// insertelement nodes, otherwise skip them. 874 Optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom); 875 876 /// Reorders the current graph to the most profitable order starting from the 877 /// root node to the leaf nodes. The best order is chosen only from the nodes 878 /// of the same size (vectorization factor). Smaller nodes are considered 879 /// parts of subgraph with smaller VF and they are reordered independently. We 880 /// can make it because we still need to extend smaller nodes to the wider VF 881 /// and we can merge reordering shuffles with the widening shuffles. 882 void reorderTopToBottom(); 883 884 /// Reorders the current graph to the most profitable order starting from 885 /// leaves to the root. It allows to rotate small subgraphs and reduce the 886 /// number of reshuffles if the leaf nodes use the same order. In this case we 887 /// can merge the orders and just shuffle user node instead of shuffling its 888 /// operands. Plus, even the leaf nodes have different orders, it allows to 889 /// sink reordering in the graph closer to the root node and merge it later 890 /// during analysis. 891 void reorderBottomToTop(bool IgnoreReorder = false); 892 893 /// \return The vector element size in bits to use when vectorizing the 894 /// expression tree ending at \p V. If V is a store, the size is the width of 895 /// the stored value. Otherwise, the size is the width of the largest loaded 896 /// value reaching V. This method is used by the vectorizer to calculate 897 /// vectorization factors. 898 unsigned getVectorElementSize(Value *V); 899 900 /// Compute the minimum type sizes required to represent the entries in a 901 /// vectorizable tree. 902 void computeMinimumValueSizes(); 903 904 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 905 unsigned getMaxVecRegSize() const { 906 return MaxVecRegSize; 907 } 908 909 // \returns minimum vector register size as set by cl::opt. 910 unsigned getMinVecRegSize() const { 911 return MinVecRegSize; 912 } 913 914 unsigned getMinVF(unsigned Sz) const { 915 return std::max(2U, getMinVecRegSize() / Sz); 916 } 917 918 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 919 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 920 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 921 return MaxVF ? MaxVF : UINT_MAX; 922 } 923 924 /// Check if homogeneous aggregate is isomorphic to some VectorType. 925 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 926 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 927 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 928 /// 929 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 930 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 931 932 /// \returns True if the VectorizableTree is both tiny and not fully 933 /// vectorizable. We do not vectorize such trees. 934 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; 935 936 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 937 /// can be load combined in the backend. Load combining may not be allowed in 938 /// the IR optimizer, so we do not want to alter the pattern. For example, 939 /// partially transforming a scalar bswap() pattern into vector code is 940 /// effectively impossible for the backend to undo. 941 /// TODO: If load combining is allowed in the IR optimizer, this analysis 942 /// may not be necessary. 943 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 944 945 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 946 /// can be load combined in the backend. Load combining may not be allowed in 947 /// the IR optimizer, so we do not want to alter the pattern. For example, 948 /// partially transforming a scalar bswap() pattern into vector code is 949 /// effectively impossible for the backend to undo. 950 /// TODO: If load combining is allowed in the IR optimizer, this analysis 951 /// may not be necessary. 952 bool isLoadCombineCandidate() const; 953 954 OptimizationRemarkEmitter *getORE() { return ORE; } 955 956 /// This structure holds any data we need about the edges being traversed 957 /// during buildTree_rec(). We keep track of: 958 /// (i) the user TreeEntry index, and 959 /// (ii) the index of the edge. 960 struct EdgeInfo { 961 EdgeInfo() = default; 962 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 963 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 964 /// The user TreeEntry. 965 TreeEntry *UserTE = nullptr; 966 /// The operand index of the use. 967 unsigned EdgeIdx = UINT_MAX; 968 #ifndef NDEBUG 969 friend inline raw_ostream &operator<<(raw_ostream &OS, 970 const BoUpSLP::EdgeInfo &EI) { 971 EI.dump(OS); 972 return OS; 973 } 974 /// Debug print. 975 void dump(raw_ostream &OS) const { 976 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 977 << " EdgeIdx:" << EdgeIdx << "}"; 978 } 979 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 980 #endif 981 }; 982 983 /// A helper data structure to hold the operands of a vector of instructions. 984 /// This supports a fixed vector length for all operand vectors. 985 class VLOperands { 986 /// For each operand we need (i) the value, and (ii) the opcode that it 987 /// would be attached to if the expression was in a left-linearized form. 988 /// This is required to avoid illegal operand reordering. 989 /// For example: 990 /// \verbatim 991 /// 0 Op1 992 /// |/ 993 /// Op1 Op2 Linearized + Op2 994 /// \ / ----------> |/ 995 /// - - 996 /// 997 /// Op1 - Op2 (0 + Op1) - Op2 998 /// \endverbatim 999 /// 1000 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 1001 /// 1002 /// Another way to think of this is to track all the operations across the 1003 /// path from the operand all the way to the root of the tree and to 1004 /// calculate the operation that corresponds to this path. For example, the 1005 /// path from Op2 to the root crosses the RHS of the '-', therefore the 1006 /// corresponding operation is a '-' (which matches the one in the 1007 /// linearized tree, as shown above). 1008 /// 1009 /// For lack of a better term, we refer to this operation as Accumulated 1010 /// Path Operation (APO). 1011 struct OperandData { 1012 OperandData() = default; 1013 OperandData(Value *V, bool APO, bool IsUsed) 1014 : V(V), APO(APO), IsUsed(IsUsed) {} 1015 /// The operand value. 1016 Value *V = nullptr; 1017 /// TreeEntries only allow a single opcode, or an alternate sequence of 1018 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 1019 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 1020 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 1021 /// (e.g., Add/Mul) 1022 bool APO = false; 1023 /// Helper data for the reordering function. 1024 bool IsUsed = false; 1025 }; 1026 1027 /// During operand reordering, we are trying to select the operand at lane 1028 /// that matches best with the operand at the neighboring lane. Our 1029 /// selection is based on the type of value we are looking for. For example, 1030 /// if the neighboring lane has a load, we need to look for a load that is 1031 /// accessing a consecutive address. These strategies are summarized in the 1032 /// 'ReorderingMode' enumerator. 1033 enum class ReorderingMode { 1034 Load, ///< Matching loads to consecutive memory addresses 1035 Opcode, ///< Matching instructions based on opcode (same or alternate) 1036 Constant, ///< Matching constants 1037 Splat, ///< Matching the same instruction multiple times (broadcast) 1038 Failed, ///< We failed to create a vectorizable group 1039 }; 1040 1041 using OperandDataVec = SmallVector<OperandData, 2>; 1042 1043 /// A vector of operand vectors. 1044 SmallVector<OperandDataVec, 4> OpsVec; 1045 1046 const DataLayout &DL; 1047 ScalarEvolution &SE; 1048 const BoUpSLP &R; 1049 1050 /// \returns the operand data at \p OpIdx and \p Lane. 1051 OperandData &getData(unsigned OpIdx, unsigned Lane) { 1052 return OpsVec[OpIdx][Lane]; 1053 } 1054 1055 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 1056 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 1057 return OpsVec[OpIdx][Lane]; 1058 } 1059 1060 /// Clears the used flag for all entries. 1061 void clearUsed() { 1062 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 1063 OpIdx != NumOperands; ++OpIdx) 1064 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1065 ++Lane) 1066 OpsVec[OpIdx][Lane].IsUsed = false; 1067 } 1068 1069 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 1070 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 1071 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 1072 } 1073 1074 // The hard-coded scores listed here are not very important, though it shall 1075 // be higher for better matches to improve the resulting cost. When 1076 // computing the scores of matching one sub-tree with another, we are 1077 // basically counting the number of values that are matching. So even if all 1078 // scores are set to 1, we would still get a decent matching result. 1079 // However, sometimes we have to break ties. For example we may have to 1080 // choose between matching loads vs matching opcodes. This is what these 1081 // scores are helping us with: they provide the order of preference. Also, 1082 // this is important if the scalar is externally used or used in another 1083 // tree entry node in the different lane. 1084 1085 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 1086 static const int ScoreConsecutiveLoads = 4; 1087 /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]). 1088 static const int ScoreReversedLoads = 3; 1089 /// ExtractElementInst from same vector and consecutive indexes. 1090 static const int ScoreConsecutiveExtracts = 4; 1091 /// ExtractElementInst from same vector and reversed indices. 1092 static const int ScoreReversedExtracts = 3; 1093 /// Constants. 1094 static const int ScoreConstants = 2; 1095 /// Instructions with the same opcode. 1096 static const int ScoreSameOpcode = 2; 1097 /// Instructions with alt opcodes (e.g, add + sub). 1098 static const int ScoreAltOpcodes = 1; 1099 /// Identical instructions (a.k.a. splat or broadcast). 1100 static const int ScoreSplat = 1; 1101 /// Matching with an undef is preferable to failing. 1102 static const int ScoreUndef = 1; 1103 /// Score for failing to find a decent match. 1104 static const int ScoreFail = 0; 1105 /// Score if all users are vectorized. 1106 static const int ScoreAllUserVectorized = 1; 1107 1108 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 1109 /// Also, checks if \p V1 and \p V2 are compatible with instructions in \p 1110 /// MainAltOps. 1111 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 1112 ScalarEvolution &SE, int NumLanes, 1113 ArrayRef<Value *> MainAltOps) { 1114 if (V1 == V2) 1115 return VLOperands::ScoreSplat; 1116 1117 auto *LI1 = dyn_cast<LoadInst>(V1); 1118 auto *LI2 = dyn_cast<LoadInst>(V2); 1119 if (LI1 && LI2) { 1120 if (LI1->getParent() != LI2->getParent()) 1121 return VLOperands::ScoreFail; 1122 1123 Optional<int> Dist = getPointersDiff( 1124 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1125 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1126 if (!Dist || *Dist == 0) 1127 return VLOperands::ScoreFail; 1128 // The distance is too large - still may be profitable to use masked 1129 // loads/gathers. 1130 if (std::abs(*Dist) > NumLanes / 2) 1131 return VLOperands::ScoreAltOpcodes; 1132 // This still will detect consecutive loads, but we might have "holes" 1133 // in some cases. It is ok for non-power-2 vectorization and may produce 1134 // better results. It should not affect current vectorization. 1135 return (*Dist > 0) ? VLOperands::ScoreConsecutiveLoads 1136 : VLOperands::ScoreReversedLoads; 1137 } 1138 1139 auto *C1 = dyn_cast<Constant>(V1); 1140 auto *C2 = dyn_cast<Constant>(V2); 1141 if (C1 && C2) 1142 return VLOperands::ScoreConstants; 1143 1144 // Extracts from consecutive indexes of the same vector better score as 1145 // the extracts could be optimized away. 1146 Value *EV1; 1147 ConstantInt *Ex1Idx; 1148 if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) { 1149 // Undefs are always profitable for extractelements. 1150 if (isa<UndefValue>(V2)) 1151 return VLOperands::ScoreConsecutiveExtracts; 1152 Value *EV2 = nullptr; 1153 ConstantInt *Ex2Idx = nullptr; 1154 if (match(V2, 1155 m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx), 1156 m_Undef())))) { 1157 // Undefs are always profitable for extractelements. 1158 if (!Ex2Idx) 1159 return VLOperands::ScoreConsecutiveExtracts; 1160 if (isUndefVector(EV2) && EV2->getType() == EV1->getType()) 1161 return VLOperands::ScoreConsecutiveExtracts; 1162 if (EV2 == EV1) { 1163 int Idx1 = Ex1Idx->getZExtValue(); 1164 int Idx2 = Ex2Idx->getZExtValue(); 1165 int Dist = Idx2 - Idx1; 1166 // The distance is too large - still may be profitable to use 1167 // shuffles. 1168 if (std::abs(Dist) == 0) 1169 return VLOperands::ScoreSplat; 1170 if (std::abs(Dist) > NumLanes / 2) 1171 return VLOperands::ScoreSameOpcode; 1172 return (Dist > 0) ? VLOperands::ScoreConsecutiveExtracts 1173 : VLOperands::ScoreReversedExtracts; 1174 } 1175 return VLOperands::ScoreAltOpcodes; 1176 } 1177 return VLOperands::ScoreFail; 1178 } 1179 1180 auto *I1 = dyn_cast<Instruction>(V1); 1181 auto *I2 = dyn_cast<Instruction>(V2); 1182 if (I1 && I2) { 1183 if (I1->getParent() != I2->getParent()) 1184 return VLOperands::ScoreFail; 1185 SmallVector<Value *, 4> Ops(MainAltOps.begin(), MainAltOps.end()); 1186 Ops.push_back(I1); 1187 Ops.push_back(I2); 1188 InstructionsState S = getSameOpcode(Ops); 1189 // Note: Only consider instructions with <= 2 operands to avoid 1190 // complexity explosion. 1191 if (S.getOpcode() && 1192 (S.MainOp->getNumOperands() <= 2 || !MainAltOps.empty() || 1193 !S.isAltShuffle()) && 1194 all_of(Ops, [&S](Value *V) { 1195 return cast<Instruction>(V)->getNumOperands() == 1196 S.MainOp->getNumOperands(); 1197 })) 1198 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 1199 : VLOperands::ScoreSameOpcode; 1200 } 1201 1202 if (isa<UndefValue>(V2)) 1203 return VLOperands::ScoreUndef; 1204 1205 return VLOperands::ScoreFail; 1206 } 1207 1208 /// \param Lane lane of the operands under analysis. 1209 /// \param OpIdx operand index in \p Lane lane we're looking the best 1210 /// candidate for. 1211 /// \param Idx operand index of the current candidate value. 1212 /// \returns The additional score due to possible broadcasting of the 1213 /// elements in the lane. It is more profitable to have power-of-2 unique 1214 /// elements in the lane, it will be vectorized with higher probability 1215 /// after removing duplicates. Currently the SLP vectorizer supports only 1216 /// vectorization of the power-of-2 number of unique scalars. 1217 int getSplatScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1218 Value *IdxLaneV = getData(Idx, Lane).V; 1219 if (!isa<Instruction>(IdxLaneV) || IdxLaneV == getData(OpIdx, Lane).V) 1220 return 0; 1221 SmallPtrSet<Value *, 4> Uniques; 1222 for (unsigned Ln = 0, E = getNumLanes(); Ln < E; ++Ln) { 1223 if (Ln == Lane) 1224 continue; 1225 Value *OpIdxLnV = getData(OpIdx, Ln).V; 1226 if (!isa<Instruction>(OpIdxLnV)) 1227 return 0; 1228 Uniques.insert(OpIdxLnV); 1229 } 1230 int UniquesCount = Uniques.size(); 1231 int UniquesCntWithIdxLaneV = 1232 Uniques.contains(IdxLaneV) ? UniquesCount : UniquesCount + 1; 1233 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1234 int UniquesCntWithOpIdxLaneV = 1235 Uniques.contains(OpIdxLaneV) ? UniquesCount : UniquesCount + 1; 1236 if (UniquesCntWithIdxLaneV == UniquesCntWithOpIdxLaneV) 1237 return 0; 1238 return (PowerOf2Ceil(UniquesCntWithOpIdxLaneV) - 1239 UniquesCntWithOpIdxLaneV) - 1240 (PowerOf2Ceil(UniquesCntWithIdxLaneV) - UniquesCntWithIdxLaneV); 1241 } 1242 1243 /// \param Lane lane of the operands under analysis. 1244 /// \param OpIdx operand index in \p Lane lane we're looking the best 1245 /// candidate for. 1246 /// \param Idx operand index of the current candidate value. 1247 /// \returns The additional score for the scalar which users are all 1248 /// vectorized. 1249 int getExternalUseScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1250 Value *IdxLaneV = getData(Idx, Lane).V; 1251 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1252 // Do not care about number of uses for vector-like instructions 1253 // (extractelement/extractvalue with constant indices), they are extracts 1254 // themselves and already externally used. Vectorization of such 1255 // instructions does not add extra extractelement instruction, just may 1256 // remove it. 1257 if (isVectorLikeInstWithConstOps(IdxLaneV) && 1258 isVectorLikeInstWithConstOps(OpIdxLaneV)) 1259 return VLOperands::ScoreAllUserVectorized; 1260 auto *IdxLaneI = dyn_cast<Instruction>(IdxLaneV); 1261 if (!IdxLaneI || !isa<Instruction>(OpIdxLaneV)) 1262 return 0; 1263 return R.areAllUsersVectorized(IdxLaneI, None) 1264 ? VLOperands::ScoreAllUserVectorized 1265 : 0; 1266 } 1267 1268 /// Go through the operands of \p LHS and \p RHS recursively until \p 1269 /// MaxLevel, and return the cummulative score. For example: 1270 /// \verbatim 1271 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1272 /// \ / \ / \ / \ / 1273 /// + + + + 1274 /// G1 G2 G3 G4 1275 /// \endverbatim 1276 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1277 /// each level recursively, accumulating the score. It starts from matching 1278 /// the additions at level 0, then moves on to the loads (level 1). The 1279 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1280 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1281 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1282 /// Please note that the order of the operands does not matter, as we 1283 /// evaluate the score of all profitable combinations of operands. In 1284 /// other words the score of G1 and G4 is the same as G1 and G2. This 1285 /// heuristic is based on ideas described in: 1286 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1287 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1288 /// Luís F. W. Góes 1289 int getScoreAtLevelRec(Value *LHS, Value *RHS, int CurrLevel, int MaxLevel, 1290 ArrayRef<Value *> MainAltOps) { 1291 1292 // Get the shallow score of V1 and V2. 1293 int ShallowScoreAtThisLevel = 1294 getShallowScore(LHS, RHS, DL, SE, getNumLanes(), MainAltOps); 1295 1296 // If reached MaxLevel, 1297 // or if V1 and V2 are not instructions, 1298 // or if they are SPLAT, 1299 // or if they are not consecutive, 1300 // or if profitable to vectorize loads or extractelements, early return 1301 // the current cost. 1302 auto *I1 = dyn_cast<Instruction>(LHS); 1303 auto *I2 = dyn_cast<Instruction>(RHS); 1304 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1305 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1306 (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) || 1307 (I1->getNumOperands() > 2 && I2->getNumOperands() > 2) || 1308 (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) && 1309 ShallowScoreAtThisLevel)) 1310 return ShallowScoreAtThisLevel; 1311 assert(I1 && I2 && "Should have early exited."); 1312 1313 // Contains the I2 operand indexes that got matched with I1 operands. 1314 SmallSet<unsigned, 4> Op2Used; 1315 1316 // Recursion towards the operands of I1 and I2. We are trying all possible 1317 // operand pairs, and keeping track of the best score. 1318 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1319 OpIdx1 != NumOperands1; ++OpIdx1) { 1320 // Try to pair op1I with the best operand of I2. 1321 int MaxTmpScore = 0; 1322 unsigned MaxOpIdx2 = 0; 1323 bool FoundBest = false; 1324 // If I2 is commutative try all combinations. 1325 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1326 unsigned ToIdx = isCommutative(I2) 1327 ? I2->getNumOperands() 1328 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1329 assert(FromIdx <= ToIdx && "Bad index"); 1330 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1331 // Skip operands already paired with OpIdx1. 1332 if (Op2Used.count(OpIdx2)) 1333 continue; 1334 // Recursively calculate the cost at each level 1335 int TmpScore = 1336 getScoreAtLevelRec(I1->getOperand(OpIdx1), I2->getOperand(OpIdx2), 1337 CurrLevel + 1, MaxLevel, None); 1338 // Look for the best score. 1339 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1340 MaxTmpScore = TmpScore; 1341 MaxOpIdx2 = OpIdx2; 1342 FoundBest = true; 1343 } 1344 } 1345 if (FoundBest) { 1346 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1347 Op2Used.insert(MaxOpIdx2); 1348 ShallowScoreAtThisLevel += MaxTmpScore; 1349 } 1350 } 1351 return ShallowScoreAtThisLevel; 1352 } 1353 1354 /// Score scaling factor for fully compatible instructions but with 1355 /// different number of external uses. Allows better selection of the 1356 /// instructions with less external uses. 1357 static const int ScoreScaleFactor = 10; 1358 1359 /// \Returns the look-ahead score, which tells us how much the sub-trees 1360 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1361 /// score. This helps break ties in an informed way when we cannot decide on 1362 /// the order of the operands by just considering the immediate 1363 /// predecessors. 1364 int getLookAheadScore(Value *LHS, Value *RHS, ArrayRef<Value *> MainAltOps, 1365 int Lane, unsigned OpIdx, unsigned Idx, 1366 bool &IsUsed) { 1367 int Score = 1368 getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth, MainAltOps); 1369 if (Score) { 1370 int SplatScore = getSplatScore(Lane, OpIdx, Idx); 1371 if (Score <= -SplatScore) { 1372 // Set the minimum score for splat-like sequence to avoid setting 1373 // failed state. 1374 Score = 1; 1375 } else { 1376 Score += SplatScore; 1377 // Scale score to see the difference between different operands 1378 // and similar operands but all vectorized/not all vectorized 1379 // uses. It does not affect actual selection of the best 1380 // compatible operand in general, just allows to select the 1381 // operand with all vectorized uses. 1382 Score *= ScoreScaleFactor; 1383 Score += getExternalUseScore(Lane, OpIdx, Idx); 1384 IsUsed = true; 1385 } 1386 } 1387 return Score; 1388 } 1389 1390 /// Best defined scores per lanes between the passes. Used to choose the 1391 /// best operand (with the highest score) between the passes. 1392 /// The key - {Operand Index, Lane}. 1393 /// The value - the best score between the passes for the lane and the 1394 /// operand. 1395 SmallDenseMap<std::pair<unsigned, unsigned>, unsigned, 8> 1396 BestScoresPerLanes; 1397 1398 // Search all operands in Ops[*][Lane] for the one that matches best 1399 // Ops[OpIdx][LastLane] and return its opreand index. 1400 // If no good match can be found, return None. 1401 Optional<unsigned> getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1402 ArrayRef<ReorderingMode> ReorderingModes, 1403 ArrayRef<Value *> MainAltOps) { 1404 unsigned NumOperands = getNumOperands(); 1405 1406 // The operand of the previous lane at OpIdx. 1407 Value *OpLastLane = getData(OpIdx, LastLane).V; 1408 1409 // Our strategy mode for OpIdx. 1410 ReorderingMode RMode = ReorderingModes[OpIdx]; 1411 if (RMode == ReorderingMode::Failed) 1412 return None; 1413 1414 // The linearized opcode of the operand at OpIdx, Lane. 1415 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1416 1417 // The best operand index and its score. 1418 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1419 // are using the score to differentiate between the two. 1420 struct BestOpData { 1421 Optional<unsigned> Idx = None; 1422 unsigned Score = 0; 1423 } BestOp; 1424 BestOp.Score = 1425 BestScoresPerLanes.try_emplace(std::make_pair(OpIdx, Lane), 0) 1426 .first->second; 1427 1428 // Track if the operand must be marked as used. If the operand is set to 1429 // Score 1 explicitly (because of non power-of-2 unique scalars, we may 1430 // want to reestimate the operands again on the following iterations). 1431 bool IsUsed = 1432 RMode == ReorderingMode::Splat || RMode == ReorderingMode::Constant; 1433 // Iterate through all unused operands and look for the best. 1434 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1435 // Get the operand at Idx and Lane. 1436 OperandData &OpData = getData(Idx, Lane); 1437 Value *Op = OpData.V; 1438 bool OpAPO = OpData.APO; 1439 1440 // Skip already selected operands. 1441 if (OpData.IsUsed) 1442 continue; 1443 1444 // Skip if we are trying to move the operand to a position with a 1445 // different opcode in the linearized tree form. This would break the 1446 // semantics. 1447 if (OpAPO != OpIdxAPO) 1448 continue; 1449 1450 // Look for an operand that matches the current mode. 1451 switch (RMode) { 1452 case ReorderingMode::Load: 1453 case ReorderingMode::Constant: 1454 case ReorderingMode::Opcode: { 1455 bool LeftToRight = Lane > LastLane; 1456 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1457 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1458 int Score = getLookAheadScore(OpLeft, OpRight, MainAltOps, Lane, 1459 OpIdx, Idx, IsUsed); 1460 if (Score > static_cast<int>(BestOp.Score)) { 1461 BestOp.Idx = Idx; 1462 BestOp.Score = Score; 1463 BestScoresPerLanes[std::make_pair(OpIdx, Lane)] = Score; 1464 } 1465 break; 1466 } 1467 case ReorderingMode::Splat: 1468 if (Op == OpLastLane) 1469 BestOp.Idx = Idx; 1470 break; 1471 case ReorderingMode::Failed: 1472 llvm_unreachable("Not expected Failed reordering mode."); 1473 } 1474 } 1475 1476 if (BestOp.Idx) { 1477 getData(BestOp.Idx.getValue(), Lane).IsUsed = IsUsed; 1478 return BestOp.Idx; 1479 } 1480 // If we could not find a good match return None. 1481 return None; 1482 } 1483 1484 /// Helper for reorderOperandVecs. 1485 /// \returns the lane that we should start reordering from. This is the one 1486 /// which has the least number of operands that can freely move about or 1487 /// less profitable because it already has the most optimal set of operands. 1488 unsigned getBestLaneToStartReordering() const { 1489 unsigned Min = UINT_MAX; 1490 unsigned SameOpNumber = 0; 1491 // std::pair<unsigned, unsigned> is used to implement a simple voting 1492 // algorithm and choose the lane with the least number of operands that 1493 // can freely move about or less profitable because it already has the 1494 // most optimal set of operands. The first unsigned is a counter for 1495 // voting, the second unsigned is the counter of lanes with instructions 1496 // with same/alternate opcodes and same parent basic block. 1497 MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap; 1498 // Try to be closer to the original results, if we have multiple lanes 1499 // with same cost. If 2 lanes have the same cost, use the one with the 1500 // lowest index. 1501 for (int I = getNumLanes(); I > 0; --I) { 1502 unsigned Lane = I - 1; 1503 OperandsOrderData NumFreeOpsHash = 1504 getMaxNumOperandsThatCanBeReordered(Lane); 1505 // Compare the number of operands that can move and choose the one with 1506 // the least number. 1507 if (NumFreeOpsHash.NumOfAPOs < Min) { 1508 Min = NumFreeOpsHash.NumOfAPOs; 1509 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1510 HashMap.clear(); 1511 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1512 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1513 NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) { 1514 // Select the most optimal lane in terms of number of operands that 1515 // should be moved around. 1516 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1517 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1518 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1519 NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) { 1520 auto It = HashMap.find(NumFreeOpsHash.Hash); 1521 if (It == HashMap.end()) 1522 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1523 else 1524 ++It->second.first; 1525 } 1526 } 1527 // Select the lane with the minimum counter. 1528 unsigned BestLane = 0; 1529 unsigned CntMin = UINT_MAX; 1530 for (const auto &Data : reverse(HashMap)) { 1531 if (Data.second.first < CntMin) { 1532 CntMin = Data.second.first; 1533 BestLane = Data.second.second; 1534 } 1535 } 1536 return BestLane; 1537 } 1538 1539 /// Data structure that helps to reorder operands. 1540 struct OperandsOrderData { 1541 /// The best number of operands with the same APOs, which can be 1542 /// reordered. 1543 unsigned NumOfAPOs = UINT_MAX; 1544 /// Number of operands with the same/alternate instruction opcode and 1545 /// parent. 1546 unsigned NumOpsWithSameOpcodeParent = 0; 1547 /// Hash for the actual operands ordering. 1548 /// Used to count operands, actually their position id and opcode 1549 /// value. It is used in the voting mechanism to find the lane with the 1550 /// least number of operands that can freely move about or less profitable 1551 /// because it already has the most optimal set of operands. Can be 1552 /// replaced with SmallVector<unsigned> instead but hash code is faster 1553 /// and requires less memory. 1554 unsigned Hash = 0; 1555 }; 1556 /// \returns the maximum number of operands that are allowed to be reordered 1557 /// for \p Lane and the number of compatible instructions(with the same 1558 /// parent/opcode). This is used as a heuristic for selecting the first lane 1559 /// to start operand reordering. 1560 OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1561 unsigned CntTrue = 0; 1562 unsigned NumOperands = getNumOperands(); 1563 // Operands with the same APO can be reordered. We therefore need to count 1564 // how many of them we have for each APO, like this: Cnt[APO] = x. 1565 // Since we only have two APOs, namely true and false, we can avoid using 1566 // a map. Instead we can simply count the number of operands that 1567 // correspond to one of them (in this case the 'true' APO), and calculate 1568 // the other by subtracting it from the total number of operands. 1569 // Operands with the same instruction opcode and parent are more 1570 // profitable since we don't need to move them in many cases, with a high 1571 // probability such lane already can be vectorized effectively. 1572 bool AllUndefs = true; 1573 unsigned NumOpsWithSameOpcodeParent = 0; 1574 Instruction *OpcodeI = nullptr; 1575 BasicBlock *Parent = nullptr; 1576 unsigned Hash = 0; 1577 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1578 const OperandData &OpData = getData(OpIdx, Lane); 1579 if (OpData.APO) 1580 ++CntTrue; 1581 // Use Boyer-Moore majority voting for finding the majority opcode and 1582 // the number of times it occurs. 1583 if (auto *I = dyn_cast<Instruction>(OpData.V)) { 1584 if (!OpcodeI || !getSameOpcode({OpcodeI, I}).getOpcode() || 1585 I->getParent() != Parent) { 1586 if (NumOpsWithSameOpcodeParent == 0) { 1587 NumOpsWithSameOpcodeParent = 1; 1588 OpcodeI = I; 1589 Parent = I->getParent(); 1590 } else { 1591 --NumOpsWithSameOpcodeParent; 1592 } 1593 } else { 1594 ++NumOpsWithSameOpcodeParent; 1595 } 1596 } 1597 Hash = hash_combine( 1598 Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1))); 1599 AllUndefs = AllUndefs && isa<UndefValue>(OpData.V); 1600 } 1601 if (AllUndefs) 1602 return {}; 1603 OperandsOrderData Data; 1604 Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue); 1605 Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent; 1606 Data.Hash = Hash; 1607 return Data; 1608 } 1609 1610 /// Go through the instructions in VL and append their operands. 1611 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1612 assert(!VL.empty() && "Bad VL"); 1613 assert((empty() || VL.size() == getNumLanes()) && 1614 "Expected same number of lanes"); 1615 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1616 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1617 OpsVec.resize(NumOperands); 1618 unsigned NumLanes = VL.size(); 1619 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1620 OpsVec[OpIdx].resize(NumLanes); 1621 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1622 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1623 // Our tree has just 3 nodes: the root and two operands. 1624 // It is therefore trivial to get the APO. We only need to check the 1625 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1626 // RHS operand. The LHS operand of both add and sub is never attached 1627 // to an inversese operation in the linearized form, therefore its APO 1628 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1629 1630 // Since operand reordering is performed on groups of commutative 1631 // operations or alternating sequences (e.g., +, -), we can safely 1632 // tell the inverse operations by checking commutativity. 1633 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1634 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1635 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1636 APO, false}; 1637 } 1638 } 1639 } 1640 1641 /// \returns the number of operands. 1642 unsigned getNumOperands() const { return OpsVec.size(); } 1643 1644 /// \returns the number of lanes. 1645 unsigned getNumLanes() const { return OpsVec[0].size(); } 1646 1647 /// \returns the operand value at \p OpIdx and \p Lane. 1648 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1649 return getData(OpIdx, Lane).V; 1650 } 1651 1652 /// \returns true if the data structure is empty. 1653 bool empty() const { return OpsVec.empty(); } 1654 1655 /// Clears the data. 1656 void clear() { OpsVec.clear(); } 1657 1658 /// \Returns true if there are enough operands identical to \p Op to fill 1659 /// the whole vector. 1660 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1661 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1662 bool OpAPO = getData(OpIdx, Lane).APO; 1663 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1664 if (Ln == Lane) 1665 continue; 1666 // This is set to true if we found a candidate for broadcast at Lane. 1667 bool FoundCandidate = false; 1668 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1669 OperandData &Data = getData(OpI, Ln); 1670 if (Data.APO != OpAPO || Data.IsUsed) 1671 continue; 1672 if (Data.V == Op) { 1673 FoundCandidate = true; 1674 Data.IsUsed = true; 1675 break; 1676 } 1677 } 1678 if (!FoundCandidate) 1679 return false; 1680 } 1681 return true; 1682 } 1683 1684 public: 1685 /// Initialize with all the operands of the instruction vector \p RootVL. 1686 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1687 ScalarEvolution &SE, const BoUpSLP &R) 1688 : DL(DL), SE(SE), R(R) { 1689 // Append all the operands of RootVL. 1690 appendOperandsOfVL(RootVL); 1691 } 1692 1693 /// \Returns a value vector with the operands across all lanes for the 1694 /// opearnd at \p OpIdx. 1695 ValueList getVL(unsigned OpIdx) const { 1696 ValueList OpVL(OpsVec[OpIdx].size()); 1697 assert(OpsVec[OpIdx].size() == getNumLanes() && 1698 "Expected same num of lanes across all operands"); 1699 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1700 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1701 return OpVL; 1702 } 1703 1704 // Performs operand reordering for 2 or more operands. 1705 // The original operands are in OrigOps[OpIdx][Lane]. 1706 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1707 void reorder() { 1708 unsigned NumOperands = getNumOperands(); 1709 unsigned NumLanes = getNumLanes(); 1710 // Each operand has its own mode. We are using this mode to help us select 1711 // the instructions for each lane, so that they match best with the ones 1712 // we have selected so far. 1713 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1714 1715 // This is a greedy single-pass algorithm. We are going over each lane 1716 // once and deciding on the best order right away with no back-tracking. 1717 // However, in order to increase its effectiveness, we start with the lane 1718 // that has operands that can move the least. For example, given the 1719 // following lanes: 1720 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1721 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1722 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1723 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1724 // we will start at Lane 1, since the operands of the subtraction cannot 1725 // be reordered. Then we will visit the rest of the lanes in a circular 1726 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1727 1728 // Find the first lane that we will start our search from. 1729 unsigned FirstLane = getBestLaneToStartReordering(); 1730 1731 // Initialize the modes. 1732 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1733 Value *OpLane0 = getValue(OpIdx, FirstLane); 1734 // Keep track if we have instructions with all the same opcode on one 1735 // side. 1736 if (isa<LoadInst>(OpLane0)) 1737 ReorderingModes[OpIdx] = ReorderingMode::Load; 1738 else if (isa<Instruction>(OpLane0)) { 1739 // Check if OpLane0 should be broadcast. 1740 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1741 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1742 else 1743 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1744 } 1745 else if (isa<Constant>(OpLane0)) 1746 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1747 else if (isa<Argument>(OpLane0)) 1748 // Our best hope is a Splat. It may save some cost in some cases. 1749 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1750 else 1751 // NOTE: This should be unreachable. 1752 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1753 } 1754 1755 // Check that we don't have same operands. No need to reorder if operands 1756 // are just perfect diamond or shuffled diamond match. Do not do it only 1757 // for possible broadcasts or non-power of 2 number of scalars (just for 1758 // now). 1759 auto &&SkipReordering = [this]() { 1760 SmallPtrSet<Value *, 4> UniqueValues; 1761 ArrayRef<OperandData> Op0 = OpsVec.front(); 1762 for (const OperandData &Data : Op0) 1763 UniqueValues.insert(Data.V); 1764 for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) { 1765 if (any_of(Op, [&UniqueValues](const OperandData &Data) { 1766 return !UniqueValues.contains(Data.V); 1767 })) 1768 return false; 1769 } 1770 // TODO: Check if we can remove a check for non-power-2 number of 1771 // scalars after full support of non-power-2 vectorization. 1772 return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size()); 1773 }; 1774 1775 // If the initial strategy fails for any of the operand indexes, then we 1776 // perform reordering again in a second pass. This helps avoid assigning 1777 // high priority to the failed strategy, and should improve reordering for 1778 // the non-failed operand indexes. 1779 for (int Pass = 0; Pass != 2; ++Pass) { 1780 // Check if no need to reorder operands since they're are perfect or 1781 // shuffled diamond match. 1782 // Need to to do it to avoid extra external use cost counting for 1783 // shuffled matches, which may cause regressions. 1784 if (SkipReordering()) 1785 break; 1786 // Skip the second pass if the first pass did not fail. 1787 bool StrategyFailed = false; 1788 // Mark all operand data as free to use. 1789 clearUsed(); 1790 // We keep the original operand order for the FirstLane, so reorder the 1791 // rest of the lanes. We are visiting the nodes in a circular fashion, 1792 // using FirstLane as the center point and increasing the radius 1793 // distance. 1794 SmallVector<SmallVector<Value *, 2>> MainAltOps(NumOperands); 1795 for (unsigned I = 0; I < NumOperands; ++I) 1796 MainAltOps[I].push_back(getData(I, FirstLane).V); 1797 1798 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1799 // Visit the lane on the right and then the lane on the left. 1800 for (int Direction : {+1, -1}) { 1801 int Lane = FirstLane + Direction * Distance; 1802 if (Lane < 0 || Lane >= (int)NumLanes) 1803 continue; 1804 int LastLane = Lane - Direction; 1805 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1806 "Out of bounds"); 1807 // Look for a good match for each operand. 1808 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1809 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1810 Optional<unsigned> BestIdx = getBestOperand( 1811 OpIdx, Lane, LastLane, ReorderingModes, MainAltOps[OpIdx]); 1812 // By not selecting a value, we allow the operands that follow to 1813 // select a better matching value. We will get a non-null value in 1814 // the next run of getBestOperand(). 1815 if (BestIdx) { 1816 // Swap the current operand with the one returned by 1817 // getBestOperand(). 1818 swap(OpIdx, BestIdx.getValue(), Lane); 1819 } else { 1820 // We failed to find a best operand, set mode to 'Failed'. 1821 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1822 // Enable the second pass. 1823 StrategyFailed = true; 1824 } 1825 // Try to get the alternate opcode and follow it during analysis. 1826 if (MainAltOps[OpIdx].size() != 2) { 1827 OperandData &AltOp = getData(OpIdx, Lane); 1828 InstructionsState OpS = 1829 getSameOpcode({MainAltOps[OpIdx].front(), AltOp.V}); 1830 if (OpS.getOpcode() && OpS.isAltShuffle()) 1831 MainAltOps[OpIdx].push_back(AltOp.V); 1832 } 1833 } 1834 } 1835 } 1836 // Skip second pass if the strategy did not fail. 1837 if (!StrategyFailed) 1838 break; 1839 } 1840 } 1841 1842 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1843 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1844 switch (RMode) { 1845 case ReorderingMode::Load: 1846 return "Load"; 1847 case ReorderingMode::Opcode: 1848 return "Opcode"; 1849 case ReorderingMode::Constant: 1850 return "Constant"; 1851 case ReorderingMode::Splat: 1852 return "Splat"; 1853 case ReorderingMode::Failed: 1854 return "Failed"; 1855 } 1856 llvm_unreachable("Unimplemented Reordering Type"); 1857 } 1858 1859 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1860 raw_ostream &OS) { 1861 return OS << getModeStr(RMode); 1862 } 1863 1864 /// Debug print. 1865 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1866 printMode(RMode, dbgs()); 1867 } 1868 1869 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1870 return printMode(RMode, OS); 1871 } 1872 1873 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1874 const unsigned Indent = 2; 1875 unsigned Cnt = 0; 1876 for (const OperandDataVec &OpDataVec : OpsVec) { 1877 OS << "Operand " << Cnt++ << "\n"; 1878 for (const OperandData &OpData : OpDataVec) { 1879 OS.indent(Indent) << "{"; 1880 if (Value *V = OpData.V) 1881 OS << *V; 1882 else 1883 OS << "null"; 1884 OS << ", APO:" << OpData.APO << "}\n"; 1885 } 1886 OS << "\n"; 1887 } 1888 return OS; 1889 } 1890 1891 /// Debug print. 1892 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1893 #endif 1894 }; 1895 1896 /// Checks if the instruction is marked for deletion. 1897 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1898 1899 /// Marks values operands for later deletion by replacing them with Undefs. 1900 void eraseInstructions(ArrayRef<Value *> AV); 1901 1902 ~BoUpSLP(); 1903 1904 private: 1905 /// Check if the operands on the edges \p Edges of the \p UserTE allows 1906 /// reordering (i.e. the operands can be reordered because they have only one 1907 /// user and reordarable). 1908 /// \param NonVectorized List of all gather nodes that require reordering 1909 /// (e.g., gather of extractlements or partially vectorizable loads). 1910 /// \param GatherOps List of gather operand nodes for \p UserTE that require 1911 /// reordering, subset of \p NonVectorized. 1912 bool 1913 canReorderOperands(TreeEntry *UserTE, 1914 SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 1915 ArrayRef<TreeEntry *> ReorderableGathers, 1916 SmallVectorImpl<TreeEntry *> &GatherOps); 1917 1918 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 1919 /// if any. If it is not vectorized (gather node), returns nullptr. 1920 TreeEntry *getVectorizedOperand(TreeEntry *UserTE, unsigned OpIdx) { 1921 ArrayRef<Value *> VL = UserTE->getOperand(OpIdx); 1922 TreeEntry *TE = nullptr; 1923 const auto *It = find_if(VL, [this, &TE](Value *V) { 1924 TE = getTreeEntry(V); 1925 return TE; 1926 }); 1927 if (It != VL.end() && TE->isSame(VL)) 1928 return TE; 1929 return nullptr; 1930 } 1931 1932 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 1933 /// if any. If it is not vectorized (gather node), returns nullptr. 1934 const TreeEntry *getVectorizedOperand(const TreeEntry *UserTE, 1935 unsigned OpIdx) const { 1936 return const_cast<BoUpSLP *>(this)->getVectorizedOperand( 1937 const_cast<TreeEntry *>(UserTE), OpIdx); 1938 } 1939 1940 /// Checks if all users of \p I are the part of the vectorization tree. 1941 bool areAllUsersVectorized(Instruction *I, 1942 ArrayRef<Value *> VectorizedVals) const; 1943 1944 /// \returns the cost of the vectorizable entry. 1945 InstructionCost getEntryCost(const TreeEntry *E, 1946 ArrayRef<Value *> VectorizedVals); 1947 1948 /// This is the recursive part of buildTree. 1949 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1950 const EdgeInfo &EI); 1951 1952 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1953 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1954 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1955 /// returns false, setting \p CurrentOrder to either an empty vector or a 1956 /// non-identity permutation that allows to reuse extract instructions. 1957 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1958 SmallVectorImpl<unsigned> &CurrentOrder) const; 1959 1960 /// Vectorize a single entry in the tree. 1961 Value *vectorizeTree(TreeEntry *E); 1962 1963 /// Vectorize a single entry in the tree, starting in \p VL. 1964 Value *vectorizeTree(ArrayRef<Value *> VL); 1965 1966 /// Create a new vector from a list of scalar values. Produces a sequence 1967 /// which exploits values reused across lanes, and arranges the inserts 1968 /// for ease of later optimization. 1969 Value *createBuildVector(ArrayRef<Value *> VL); 1970 1971 /// \returns the scalarization cost for this type. Scalarization in this 1972 /// context means the creation of vectors from a group of scalars. If \p 1973 /// NeedToShuffle is true, need to add a cost of reshuffling some of the 1974 /// vector elements. 1975 InstructionCost getGatherCost(FixedVectorType *Ty, 1976 const APInt &ShuffledIndices, 1977 bool NeedToShuffle) const; 1978 1979 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 1980 /// tree entries. 1981 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 1982 /// previous tree entries. \p Mask is filled with the shuffle mask. 1983 Optional<TargetTransformInfo::ShuffleKind> 1984 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 1985 SmallVectorImpl<const TreeEntry *> &Entries); 1986 1987 /// \returns the scalarization cost for this list of values. Assuming that 1988 /// this subtree gets vectorized, we may need to extract the values from the 1989 /// roots. This method calculates the cost of extracting the values. 1990 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 1991 1992 /// Set the Builder insert point to one after the last instruction in 1993 /// the bundle 1994 void setInsertPointAfterBundle(const TreeEntry *E); 1995 1996 /// \returns a vector from a collection of scalars in \p VL. 1997 Value *gather(ArrayRef<Value *> VL); 1998 1999 /// \returns whether the VectorizableTree is fully vectorizable and will 2000 /// be beneficial even the tree height is tiny. 2001 bool isFullyVectorizableTinyTree(bool ForReduction) const; 2002 2003 /// Reorder commutative or alt operands to get better probability of 2004 /// generating vectorized code. 2005 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 2006 SmallVectorImpl<Value *> &Left, 2007 SmallVectorImpl<Value *> &Right, 2008 const DataLayout &DL, 2009 ScalarEvolution &SE, 2010 const BoUpSLP &R); 2011 struct TreeEntry { 2012 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 2013 TreeEntry(VecTreeTy &Container) : Container(Container) {} 2014 2015 /// \returns true if the scalars in VL are equal to this entry. 2016 bool isSame(ArrayRef<Value *> VL) const { 2017 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 2018 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 2019 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 2020 return VL.size() == Mask.size() && 2021 std::equal(VL.begin(), VL.end(), Mask.begin(), 2022 [Scalars](Value *V, int Idx) { 2023 return (isa<UndefValue>(V) && 2024 Idx == UndefMaskElem) || 2025 (Idx != UndefMaskElem && V == Scalars[Idx]); 2026 }); 2027 }; 2028 if (!ReorderIndices.empty()) { 2029 // TODO: implement matching if the nodes are just reordered, still can 2030 // treat the vector as the same if the list of scalars matches VL 2031 // directly, without reordering. 2032 SmallVector<int> Mask; 2033 inversePermutation(ReorderIndices, Mask); 2034 if (VL.size() == Scalars.size()) 2035 return IsSame(Scalars, Mask); 2036 if (VL.size() == ReuseShuffleIndices.size()) { 2037 ::addMask(Mask, ReuseShuffleIndices); 2038 return IsSame(Scalars, Mask); 2039 } 2040 return false; 2041 } 2042 return IsSame(Scalars, ReuseShuffleIndices); 2043 } 2044 2045 /// \returns true if current entry has same operands as \p TE. 2046 bool hasEqualOperands(const TreeEntry &TE) const { 2047 if (TE.getNumOperands() != getNumOperands()) 2048 return false; 2049 SmallBitVector Used(getNumOperands()); 2050 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 2051 unsigned PrevCount = Used.count(); 2052 for (unsigned K = 0; K < E; ++K) { 2053 if (Used.test(K)) 2054 continue; 2055 if (getOperand(K) == TE.getOperand(I)) { 2056 Used.set(K); 2057 break; 2058 } 2059 } 2060 // Check if we actually found the matching operand. 2061 if (PrevCount == Used.count()) 2062 return false; 2063 } 2064 return true; 2065 } 2066 2067 /// \return Final vectorization factor for the node. Defined by the total 2068 /// number of vectorized scalars, including those, used several times in the 2069 /// entry and counted in the \a ReuseShuffleIndices, if any. 2070 unsigned getVectorFactor() const { 2071 if (!ReuseShuffleIndices.empty()) 2072 return ReuseShuffleIndices.size(); 2073 return Scalars.size(); 2074 }; 2075 2076 /// A vector of scalars. 2077 ValueList Scalars; 2078 2079 /// The Scalars are vectorized into this value. It is initialized to Null. 2080 Value *VectorizedValue = nullptr; 2081 2082 /// Do we need to gather this sequence or vectorize it 2083 /// (either with vector instruction or with scatter/gather 2084 /// intrinsics for store/load)? 2085 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 2086 EntryState State; 2087 2088 /// Does this sequence require some shuffling? 2089 SmallVector<int, 4> ReuseShuffleIndices; 2090 2091 /// Does this entry require reordering? 2092 SmallVector<unsigned, 4> ReorderIndices; 2093 2094 /// Points back to the VectorizableTree. 2095 /// 2096 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 2097 /// to be a pointer and needs to be able to initialize the child iterator. 2098 /// Thus we need a reference back to the container to translate the indices 2099 /// to entries. 2100 VecTreeTy &Container; 2101 2102 /// The TreeEntry index containing the user of this entry. We can actually 2103 /// have multiple users so the data structure is not truly a tree. 2104 SmallVector<EdgeInfo, 1> UserTreeIndices; 2105 2106 /// The index of this treeEntry in VectorizableTree. 2107 int Idx = -1; 2108 2109 private: 2110 /// The operands of each instruction in each lane Operands[op_index][lane]. 2111 /// Note: This helps avoid the replication of the code that performs the 2112 /// reordering of operands during buildTree_rec() and vectorizeTree(). 2113 SmallVector<ValueList, 2> Operands; 2114 2115 /// The main/alternate instruction. 2116 Instruction *MainOp = nullptr; 2117 Instruction *AltOp = nullptr; 2118 2119 public: 2120 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 2121 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 2122 if (Operands.size() < OpIdx + 1) 2123 Operands.resize(OpIdx + 1); 2124 assert(Operands[OpIdx].empty() && "Already resized?"); 2125 assert(OpVL.size() <= Scalars.size() && 2126 "Number of operands is greater than the number of scalars."); 2127 Operands[OpIdx].resize(OpVL.size()); 2128 copy(OpVL, Operands[OpIdx].begin()); 2129 } 2130 2131 /// Set the operands of this bundle in their original order. 2132 void setOperandsInOrder() { 2133 assert(Operands.empty() && "Already initialized?"); 2134 auto *I0 = cast<Instruction>(Scalars[0]); 2135 Operands.resize(I0->getNumOperands()); 2136 unsigned NumLanes = Scalars.size(); 2137 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 2138 OpIdx != NumOperands; ++OpIdx) { 2139 Operands[OpIdx].resize(NumLanes); 2140 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 2141 auto *I = cast<Instruction>(Scalars[Lane]); 2142 assert(I->getNumOperands() == NumOperands && 2143 "Expected same number of operands"); 2144 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 2145 } 2146 } 2147 } 2148 2149 /// Reorders operands of the node to the given mask \p Mask. 2150 void reorderOperands(ArrayRef<int> Mask) { 2151 for (ValueList &Operand : Operands) 2152 reorderScalars(Operand, Mask); 2153 } 2154 2155 /// \returns the \p OpIdx operand of this TreeEntry. 2156 ValueList &getOperand(unsigned OpIdx) { 2157 assert(OpIdx < Operands.size() && "Off bounds"); 2158 return Operands[OpIdx]; 2159 } 2160 2161 /// \returns the \p OpIdx operand of this TreeEntry. 2162 ArrayRef<Value *> getOperand(unsigned OpIdx) const { 2163 assert(OpIdx < Operands.size() && "Off bounds"); 2164 return Operands[OpIdx]; 2165 } 2166 2167 /// \returns the number of operands. 2168 unsigned getNumOperands() const { return Operands.size(); } 2169 2170 /// \return the single \p OpIdx operand. 2171 Value *getSingleOperand(unsigned OpIdx) const { 2172 assert(OpIdx < Operands.size() && "Off bounds"); 2173 assert(!Operands[OpIdx].empty() && "No operand available"); 2174 return Operands[OpIdx][0]; 2175 } 2176 2177 /// Some of the instructions in the list have alternate opcodes. 2178 bool isAltShuffle() const { return MainOp != AltOp; } 2179 2180 bool isOpcodeOrAlt(Instruction *I) const { 2181 unsigned CheckedOpcode = I->getOpcode(); 2182 return (getOpcode() == CheckedOpcode || 2183 getAltOpcode() == CheckedOpcode); 2184 } 2185 2186 /// Chooses the correct key for scheduling data. If \p Op has the same (or 2187 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 2188 /// \p OpValue. 2189 Value *isOneOf(Value *Op) const { 2190 auto *I = dyn_cast<Instruction>(Op); 2191 if (I && isOpcodeOrAlt(I)) 2192 return Op; 2193 return MainOp; 2194 } 2195 2196 void setOperations(const InstructionsState &S) { 2197 MainOp = S.MainOp; 2198 AltOp = S.AltOp; 2199 } 2200 2201 Instruction *getMainOp() const { 2202 return MainOp; 2203 } 2204 2205 Instruction *getAltOp() const { 2206 return AltOp; 2207 } 2208 2209 /// The main/alternate opcodes for the list of instructions. 2210 unsigned getOpcode() const { 2211 return MainOp ? MainOp->getOpcode() : 0; 2212 } 2213 2214 unsigned getAltOpcode() const { 2215 return AltOp ? AltOp->getOpcode() : 0; 2216 } 2217 2218 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 2219 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 2220 int findLaneForValue(Value *V) const { 2221 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 2222 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2223 if (!ReorderIndices.empty()) 2224 FoundLane = ReorderIndices[FoundLane]; 2225 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2226 if (!ReuseShuffleIndices.empty()) { 2227 FoundLane = std::distance(ReuseShuffleIndices.begin(), 2228 find(ReuseShuffleIndices, FoundLane)); 2229 } 2230 return FoundLane; 2231 } 2232 2233 #ifndef NDEBUG 2234 /// Debug printer. 2235 LLVM_DUMP_METHOD void dump() const { 2236 dbgs() << Idx << ".\n"; 2237 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 2238 dbgs() << "Operand " << OpI << ":\n"; 2239 for (const Value *V : Operands[OpI]) 2240 dbgs().indent(2) << *V << "\n"; 2241 } 2242 dbgs() << "Scalars: \n"; 2243 for (Value *V : Scalars) 2244 dbgs().indent(2) << *V << "\n"; 2245 dbgs() << "State: "; 2246 switch (State) { 2247 case Vectorize: 2248 dbgs() << "Vectorize\n"; 2249 break; 2250 case ScatterVectorize: 2251 dbgs() << "ScatterVectorize\n"; 2252 break; 2253 case NeedToGather: 2254 dbgs() << "NeedToGather\n"; 2255 break; 2256 } 2257 dbgs() << "MainOp: "; 2258 if (MainOp) 2259 dbgs() << *MainOp << "\n"; 2260 else 2261 dbgs() << "NULL\n"; 2262 dbgs() << "AltOp: "; 2263 if (AltOp) 2264 dbgs() << *AltOp << "\n"; 2265 else 2266 dbgs() << "NULL\n"; 2267 dbgs() << "VectorizedValue: "; 2268 if (VectorizedValue) 2269 dbgs() << *VectorizedValue << "\n"; 2270 else 2271 dbgs() << "NULL\n"; 2272 dbgs() << "ReuseShuffleIndices: "; 2273 if (ReuseShuffleIndices.empty()) 2274 dbgs() << "Empty"; 2275 else 2276 for (int ReuseIdx : ReuseShuffleIndices) 2277 dbgs() << ReuseIdx << ", "; 2278 dbgs() << "\n"; 2279 dbgs() << "ReorderIndices: "; 2280 for (unsigned ReorderIdx : ReorderIndices) 2281 dbgs() << ReorderIdx << ", "; 2282 dbgs() << "\n"; 2283 dbgs() << "UserTreeIndices: "; 2284 for (const auto &EInfo : UserTreeIndices) 2285 dbgs() << EInfo << ", "; 2286 dbgs() << "\n"; 2287 } 2288 #endif 2289 }; 2290 2291 #ifndef NDEBUG 2292 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 2293 InstructionCost VecCost, 2294 InstructionCost ScalarCost) const { 2295 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 2296 dbgs() << "SLP: Costs:\n"; 2297 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 2298 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 2299 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 2300 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 2301 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 2302 } 2303 #endif 2304 2305 /// Create a new VectorizableTree entry. 2306 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 2307 const InstructionsState &S, 2308 const EdgeInfo &UserTreeIdx, 2309 ArrayRef<int> ReuseShuffleIndices = None, 2310 ArrayRef<unsigned> ReorderIndices = None) { 2311 TreeEntry::EntryState EntryState = 2312 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 2313 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 2314 ReuseShuffleIndices, ReorderIndices); 2315 } 2316 2317 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 2318 TreeEntry::EntryState EntryState, 2319 Optional<ScheduleData *> Bundle, 2320 const InstructionsState &S, 2321 const EdgeInfo &UserTreeIdx, 2322 ArrayRef<int> ReuseShuffleIndices = None, 2323 ArrayRef<unsigned> ReorderIndices = None) { 2324 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 2325 (Bundle && EntryState != TreeEntry::NeedToGather)) && 2326 "Need to vectorize gather entry?"); 2327 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 2328 TreeEntry *Last = VectorizableTree.back().get(); 2329 Last->Idx = VectorizableTree.size() - 1; 2330 Last->State = EntryState; 2331 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 2332 ReuseShuffleIndices.end()); 2333 if (ReorderIndices.empty()) { 2334 Last->Scalars.assign(VL.begin(), VL.end()); 2335 Last->setOperations(S); 2336 } else { 2337 // Reorder scalars and build final mask. 2338 Last->Scalars.assign(VL.size(), nullptr); 2339 transform(ReorderIndices, Last->Scalars.begin(), 2340 [VL](unsigned Idx) -> Value * { 2341 if (Idx >= VL.size()) 2342 return UndefValue::get(VL.front()->getType()); 2343 return VL[Idx]; 2344 }); 2345 InstructionsState S = getSameOpcode(Last->Scalars); 2346 Last->setOperations(S); 2347 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 2348 } 2349 if (Last->State != TreeEntry::NeedToGather) { 2350 for (Value *V : VL) { 2351 assert(!getTreeEntry(V) && "Scalar already in tree!"); 2352 ScalarToTreeEntry[V] = Last; 2353 } 2354 // Update the scheduler bundle to point to this TreeEntry. 2355 unsigned Lane = 0; 2356 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 2357 BundleMember = BundleMember->NextInBundle) { 2358 BundleMember->TE = Last; 2359 BundleMember->Lane = Lane; 2360 ++Lane; 2361 } 2362 assert((!Bundle.getValue() || Lane == VL.size()) && 2363 "Bundle and VL out of sync"); 2364 } else { 2365 MustGather.insert(VL.begin(), VL.end()); 2366 } 2367 2368 if (UserTreeIdx.UserTE) 2369 Last->UserTreeIndices.push_back(UserTreeIdx); 2370 2371 return Last; 2372 } 2373 2374 /// -- Vectorization State -- 2375 /// Holds all of the tree entries. 2376 TreeEntry::VecTreeTy VectorizableTree; 2377 2378 #ifndef NDEBUG 2379 /// Debug printer. 2380 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 2381 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 2382 VectorizableTree[Id]->dump(); 2383 dbgs() << "\n"; 2384 } 2385 } 2386 #endif 2387 2388 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 2389 2390 const TreeEntry *getTreeEntry(Value *V) const { 2391 return ScalarToTreeEntry.lookup(V); 2392 } 2393 2394 /// Maps a specific scalar to its tree entry. 2395 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 2396 2397 /// Maps a value to the proposed vectorizable size. 2398 SmallDenseMap<Value *, unsigned> InstrElementSize; 2399 2400 /// A list of scalars that we found that we need to keep as scalars. 2401 ValueSet MustGather; 2402 2403 /// This POD struct describes one external user in the vectorized tree. 2404 struct ExternalUser { 2405 ExternalUser(Value *S, llvm::User *U, int L) 2406 : Scalar(S), User(U), Lane(L) {} 2407 2408 // Which scalar in our function. 2409 Value *Scalar; 2410 2411 // Which user that uses the scalar. 2412 llvm::User *User; 2413 2414 // Which lane does the scalar belong to. 2415 int Lane; 2416 }; 2417 using UserList = SmallVector<ExternalUser, 16>; 2418 2419 /// Checks if two instructions may access the same memory. 2420 /// 2421 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2422 /// is invariant in the calling loop. 2423 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2424 Instruction *Inst2) { 2425 // First check if the result is already in the cache. 2426 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2427 Optional<bool> &result = AliasCache[key]; 2428 if (result.hasValue()) { 2429 return result.getValue(); 2430 } 2431 bool aliased = true; 2432 if (Loc1.Ptr && isSimple(Inst1)) 2433 aliased = isModOrRefSet(BatchAA.getModRefInfo(Inst2, Loc1)); 2434 // Store the result in the cache. 2435 result = aliased; 2436 return aliased; 2437 } 2438 2439 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2440 2441 /// Cache for alias results. 2442 /// TODO: consider moving this to the AliasAnalysis itself. 2443 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2444 2445 // Cache for pointerMayBeCaptured calls inside AA. This is preserved 2446 // globally through SLP because we don't perform any action which 2447 // invalidates capture results. 2448 BatchAAResults BatchAA; 2449 2450 /// Removes an instruction from its block and eventually deletes it. 2451 /// It's like Instruction::eraseFromParent() except that the actual deletion 2452 /// is delayed until BoUpSLP is destructed. 2453 /// This is required to ensure that there are no incorrect collisions in the 2454 /// AliasCache, which can happen if a new instruction is allocated at the 2455 /// same address as a previously deleted instruction. 2456 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 2457 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 2458 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 2459 } 2460 2461 /// Temporary store for deleted instructions. Instructions will be deleted 2462 /// eventually when the BoUpSLP is destructed. 2463 DenseMap<Instruction *, bool> DeletedInstructions; 2464 2465 /// A list of values that need to extracted out of the tree. 2466 /// This list holds pairs of (Internal Scalar : External User). External User 2467 /// can be nullptr, it means that this Internal Scalar will be used later, 2468 /// after vectorization. 2469 UserList ExternalUses; 2470 2471 /// Values used only by @llvm.assume calls. 2472 SmallPtrSet<const Value *, 32> EphValues; 2473 2474 /// Holds all of the instructions that we gathered. 2475 SetVector<Instruction *> GatherShuffleSeq; 2476 2477 /// A list of blocks that we are going to CSE. 2478 SetVector<BasicBlock *> CSEBlocks; 2479 2480 /// Contains all scheduling relevant data for an instruction. 2481 /// A ScheduleData either represents a single instruction or a member of an 2482 /// instruction bundle (= a group of instructions which is combined into a 2483 /// vector instruction). 2484 struct ScheduleData { 2485 // The initial value for the dependency counters. It means that the 2486 // dependencies are not calculated yet. 2487 enum { InvalidDeps = -1 }; 2488 2489 ScheduleData() = default; 2490 2491 void init(int BlockSchedulingRegionID, Value *OpVal) { 2492 FirstInBundle = this; 2493 NextInBundle = nullptr; 2494 NextLoadStore = nullptr; 2495 IsScheduled = false; 2496 SchedulingRegionID = BlockSchedulingRegionID; 2497 clearDependencies(); 2498 OpValue = OpVal; 2499 TE = nullptr; 2500 Lane = -1; 2501 } 2502 2503 /// Verify basic self consistency properties 2504 void verify() { 2505 if (hasValidDependencies()) { 2506 assert(UnscheduledDeps <= Dependencies && "invariant"); 2507 } else { 2508 assert(UnscheduledDeps == Dependencies && "invariant"); 2509 } 2510 2511 if (IsScheduled) { 2512 assert(isSchedulingEntity() && 2513 "unexpected scheduled state"); 2514 for (const ScheduleData *BundleMember = this; BundleMember; 2515 BundleMember = BundleMember->NextInBundle) { 2516 assert(BundleMember->hasValidDependencies() && 2517 BundleMember->UnscheduledDeps == 0 && 2518 "unexpected scheduled state"); 2519 assert((BundleMember == this || !BundleMember->IsScheduled) && 2520 "only bundle is marked scheduled"); 2521 } 2522 } 2523 2524 assert(Inst->getParent() == FirstInBundle->Inst->getParent() && 2525 "all bundle members must be in same basic block"); 2526 } 2527 2528 /// Returns true if the dependency information has been calculated. 2529 /// Note that depenendency validity can vary between instructions within 2530 /// a single bundle. 2531 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2532 2533 /// Returns true for single instructions and for bundle representatives 2534 /// (= the head of a bundle). 2535 bool isSchedulingEntity() const { return FirstInBundle == this; } 2536 2537 /// Returns true if it represents an instruction bundle and not only a 2538 /// single instruction. 2539 bool isPartOfBundle() const { 2540 return NextInBundle != nullptr || FirstInBundle != this; 2541 } 2542 2543 /// Returns true if it is ready for scheduling, i.e. it has no more 2544 /// unscheduled depending instructions/bundles. 2545 bool isReady() const { 2546 assert(isSchedulingEntity() && 2547 "can't consider non-scheduling entity for ready list"); 2548 return unscheduledDepsInBundle() == 0 && !IsScheduled; 2549 } 2550 2551 /// Modifies the number of unscheduled dependencies for this instruction, 2552 /// and returns the number of remaining dependencies for the containing 2553 /// bundle. 2554 int incrementUnscheduledDeps(int Incr) { 2555 assert(hasValidDependencies() && 2556 "increment of unscheduled deps would be meaningless"); 2557 UnscheduledDeps += Incr; 2558 return FirstInBundle->unscheduledDepsInBundle(); 2559 } 2560 2561 /// Sets the number of unscheduled dependencies to the number of 2562 /// dependencies. 2563 void resetUnscheduledDeps() { 2564 UnscheduledDeps = Dependencies; 2565 } 2566 2567 /// Clears all dependency information. 2568 void clearDependencies() { 2569 Dependencies = InvalidDeps; 2570 resetUnscheduledDeps(); 2571 MemoryDependencies.clear(); 2572 } 2573 2574 int unscheduledDepsInBundle() const { 2575 assert(isSchedulingEntity() && "only meaningful on the bundle"); 2576 int Sum = 0; 2577 for (const ScheduleData *BundleMember = this; BundleMember; 2578 BundleMember = BundleMember->NextInBundle) { 2579 if (BundleMember->UnscheduledDeps == InvalidDeps) 2580 return InvalidDeps; 2581 Sum += BundleMember->UnscheduledDeps; 2582 } 2583 return Sum; 2584 } 2585 2586 void dump(raw_ostream &os) const { 2587 if (!isSchedulingEntity()) { 2588 os << "/ " << *Inst; 2589 } else if (NextInBundle) { 2590 os << '[' << *Inst; 2591 ScheduleData *SD = NextInBundle; 2592 while (SD) { 2593 os << ';' << *SD->Inst; 2594 SD = SD->NextInBundle; 2595 } 2596 os << ']'; 2597 } else { 2598 os << *Inst; 2599 } 2600 } 2601 2602 Instruction *Inst = nullptr; 2603 2604 /// Opcode of the current instruction in the schedule data. 2605 Value *OpValue = nullptr; 2606 2607 /// The TreeEntry that this instruction corresponds to. 2608 TreeEntry *TE = nullptr; 2609 2610 /// Points to the head in an instruction bundle (and always to this for 2611 /// single instructions). 2612 ScheduleData *FirstInBundle = nullptr; 2613 2614 /// Single linked list of all instructions in a bundle. Null if it is a 2615 /// single instruction. 2616 ScheduleData *NextInBundle = nullptr; 2617 2618 /// Single linked list of all memory instructions (e.g. load, store, call) 2619 /// in the block - until the end of the scheduling region. 2620 ScheduleData *NextLoadStore = nullptr; 2621 2622 /// The dependent memory instructions. 2623 /// This list is derived on demand in calculateDependencies(). 2624 SmallVector<ScheduleData *, 4> MemoryDependencies; 2625 2626 /// This ScheduleData is in the current scheduling region if this matches 2627 /// the current SchedulingRegionID of BlockScheduling. 2628 int SchedulingRegionID = 0; 2629 2630 /// Used for getting a "good" final ordering of instructions. 2631 int SchedulingPriority = 0; 2632 2633 /// The number of dependencies. Constitutes of the number of users of the 2634 /// instruction plus the number of dependent memory instructions (if any). 2635 /// This value is calculated on demand. 2636 /// If InvalidDeps, the number of dependencies is not calculated yet. 2637 int Dependencies = InvalidDeps; 2638 2639 /// The number of dependencies minus the number of dependencies of scheduled 2640 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2641 /// for scheduling. 2642 /// Note that this is negative as long as Dependencies is not calculated. 2643 int UnscheduledDeps = InvalidDeps; 2644 2645 /// The lane of this node in the TreeEntry. 2646 int Lane = -1; 2647 2648 /// True if this instruction is scheduled (or considered as scheduled in the 2649 /// dry-run). 2650 bool IsScheduled = false; 2651 }; 2652 2653 #ifndef NDEBUG 2654 friend inline raw_ostream &operator<<(raw_ostream &os, 2655 const BoUpSLP::ScheduleData &SD) { 2656 SD.dump(os); 2657 return os; 2658 } 2659 #endif 2660 2661 friend struct GraphTraits<BoUpSLP *>; 2662 friend struct DOTGraphTraits<BoUpSLP *>; 2663 2664 /// Contains all scheduling data for a basic block. 2665 struct BlockScheduling { 2666 BlockScheduling(BasicBlock *BB) 2667 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2668 2669 void clear() { 2670 ReadyInsts.clear(); 2671 ScheduleStart = nullptr; 2672 ScheduleEnd = nullptr; 2673 FirstLoadStoreInRegion = nullptr; 2674 LastLoadStoreInRegion = nullptr; 2675 2676 // Reduce the maximum schedule region size by the size of the 2677 // previous scheduling run. 2678 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2679 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2680 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2681 ScheduleRegionSize = 0; 2682 2683 // Make a new scheduling region, i.e. all existing ScheduleData is not 2684 // in the new region yet. 2685 ++SchedulingRegionID; 2686 } 2687 2688 ScheduleData *getScheduleData(Instruction *I) { 2689 if (BB != I->getParent()) 2690 // Avoid lookup if can't possibly be in map. 2691 return nullptr; 2692 ScheduleData *SD = ScheduleDataMap[I]; 2693 if (SD && isInSchedulingRegion(SD)) 2694 return SD; 2695 return nullptr; 2696 } 2697 2698 ScheduleData *getScheduleData(Value *V) { 2699 if (auto *I = dyn_cast<Instruction>(V)) 2700 return getScheduleData(I); 2701 return nullptr; 2702 } 2703 2704 ScheduleData *getScheduleData(Value *V, Value *Key) { 2705 if (V == Key) 2706 return getScheduleData(V); 2707 auto I = ExtraScheduleDataMap.find(V); 2708 if (I != ExtraScheduleDataMap.end()) { 2709 ScheduleData *SD = I->second[Key]; 2710 if (SD && isInSchedulingRegion(SD)) 2711 return SD; 2712 } 2713 return nullptr; 2714 } 2715 2716 bool isInSchedulingRegion(ScheduleData *SD) const { 2717 return SD->SchedulingRegionID == SchedulingRegionID; 2718 } 2719 2720 /// Marks an instruction as scheduled and puts all dependent ready 2721 /// instructions into the ready-list. 2722 template <typename ReadyListType> 2723 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2724 SD->IsScheduled = true; 2725 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2726 2727 for (ScheduleData *BundleMember = SD; BundleMember; 2728 BundleMember = BundleMember->NextInBundle) { 2729 if (BundleMember->Inst != BundleMember->OpValue) 2730 continue; 2731 2732 // Handle the def-use chain dependencies. 2733 2734 // Decrement the unscheduled counter and insert to ready list if ready. 2735 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2736 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2737 if (OpDef && OpDef->hasValidDependencies() && 2738 OpDef->incrementUnscheduledDeps(-1) == 0) { 2739 // There are no more unscheduled dependencies after 2740 // decrementing, so we can put the dependent instruction 2741 // into the ready list. 2742 ScheduleData *DepBundle = OpDef->FirstInBundle; 2743 assert(!DepBundle->IsScheduled && 2744 "already scheduled bundle gets ready"); 2745 ReadyList.insert(DepBundle); 2746 LLVM_DEBUG(dbgs() 2747 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2748 } 2749 }); 2750 }; 2751 2752 // If BundleMember is a vector bundle, its operands may have been 2753 // reordered during buildTree(). We therefore need to get its operands 2754 // through the TreeEntry. 2755 if (TreeEntry *TE = BundleMember->TE) { 2756 int Lane = BundleMember->Lane; 2757 assert(Lane >= 0 && "Lane not set"); 2758 2759 // Since vectorization tree is being built recursively this assertion 2760 // ensures that the tree entry has all operands set before reaching 2761 // this code. Couple of exceptions known at the moment are extracts 2762 // where their second (immediate) operand is not added. Since 2763 // immediates do not affect scheduler behavior this is considered 2764 // okay. 2765 auto *In = TE->getMainOp(); 2766 assert(In && 2767 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2768 In->getNumOperands() == TE->getNumOperands()) && 2769 "Missed TreeEntry operands?"); 2770 (void)In; // fake use to avoid build failure when assertions disabled 2771 2772 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2773 OpIdx != NumOperands; ++OpIdx) 2774 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2775 DecrUnsched(I); 2776 } else { 2777 // If BundleMember is a stand-alone instruction, no operand reordering 2778 // has taken place, so we directly access its operands. 2779 for (Use &U : BundleMember->Inst->operands()) 2780 if (auto *I = dyn_cast<Instruction>(U.get())) 2781 DecrUnsched(I); 2782 } 2783 // Handle the memory dependencies. 2784 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2785 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2786 // There are no more unscheduled dependencies after decrementing, 2787 // so we can put the dependent instruction into the ready list. 2788 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2789 assert(!DepBundle->IsScheduled && 2790 "already scheduled bundle gets ready"); 2791 ReadyList.insert(DepBundle); 2792 LLVM_DEBUG(dbgs() 2793 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2794 } 2795 } 2796 } 2797 } 2798 2799 /// Verify basic self consistency properties of the data structure. 2800 void verify() { 2801 if (!ScheduleStart) 2802 return; 2803 2804 assert(ScheduleStart->getParent() == ScheduleEnd->getParent() && 2805 ScheduleStart->comesBefore(ScheduleEnd) && 2806 "Not a valid scheduling region?"); 2807 2808 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2809 auto *SD = getScheduleData(I); 2810 assert(SD && "primary scheduledata must exist in window"); 2811 assert(isInSchedulingRegion(SD) && 2812 "primary schedule data not in window?"); 2813 assert(isInSchedulingRegion(SD->FirstInBundle) && 2814 "entire bundle in window!"); 2815 (void)SD; 2816 doForAllOpcodes(I, [](ScheduleData *SD) { SD->verify(); }); 2817 } 2818 2819 for (auto *SD : ReadyInsts) { 2820 assert(SD->isSchedulingEntity() && SD->isReady() && 2821 "item in ready list not ready?"); 2822 (void)SD; 2823 } 2824 } 2825 2826 void doForAllOpcodes(Value *V, 2827 function_ref<void(ScheduleData *SD)> Action) { 2828 if (ScheduleData *SD = getScheduleData(V)) 2829 Action(SD); 2830 auto I = ExtraScheduleDataMap.find(V); 2831 if (I != ExtraScheduleDataMap.end()) 2832 for (auto &P : I->second) 2833 if (isInSchedulingRegion(P.second)) 2834 Action(P.second); 2835 } 2836 2837 /// Put all instructions into the ReadyList which are ready for scheduling. 2838 template <typename ReadyListType> 2839 void initialFillReadyList(ReadyListType &ReadyList) { 2840 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2841 doForAllOpcodes(I, [&](ScheduleData *SD) { 2842 if (SD->isSchedulingEntity() && SD->isReady()) { 2843 ReadyList.insert(SD); 2844 LLVM_DEBUG(dbgs() 2845 << "SLP: initially in ready list: " << *SD << "\n"); 2846 } 2847 }); 2848 } 2849 } 2850 2851 /// Build a bundle from the ScheduleData nodes corresponding to the 2852 /// scalar instruction for each lane. 2853 ScheduleData *buildBundle(ArrayRef<Value *> VL); 2854 2855 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2856 /// cyclic dependencies. This is only a dry-run, no instructions are 2857 /// actually moved at this stage. 2858 /// \returns the scheduling bundle. The returned Optional value is non-None 2859 /// if \p VL is allowed to be scheduled. 2860 Optional<ScheduleData *> 2861 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2862 const InstructionsState &S); 2863 2864 /// Un-bundles a group of instructions. 2865 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2866 2867 /// Allocates schedule data chunk. 2868 ScheduleData *allocateScheduleDataChunks(); 2869 2870 /// Extends the scheduling region so that V is inside the region. 2871 /// \returns true if the region size is within the limit. 2872 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2873 2874 /// Initialize the ScheduleData structures for new instructions in the 2875 /// scheduling region. 2876 void initScheduleData(Instruction *FromI, Instruction *ToI, 2877 ScheduleData *PrevLoadStore, 2878 ScheduleData *NextLoadStore); 2879 2880 /// Updates the dependency information of a bundle and of all instructions/ 2881 /// bundles which depend on the original bundle. 2882 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2883 BoUpSLP *SLP); 2884 2885 /// Sets all instruction in the scheduling region to un-scheduled. 2886 void resetSchedule(); 2887 2888 BasicBlock *BB; 2889 2890 /// Simple memory allocation for ScheduleData. 2891 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2892 2893 /// The size of a ScheduleData array in ScheduleDataChunks. 2894 int ChunkSize; 2895 2896 /// The allocator position in the current chunk, which is the last entry 2897 /// of ScheduleDataChunks. 2898 int ChunkPos; 2899 2900 /// Attaches ScheduleData to Instruction. 2901 /// Note that the mapping survives during all vectorization iterations, i.e. 2902 /// ScheduleData structures are recycled. 2903 DenseMap<Instruction *, ScheduleData *> ScheduleDataMap; 2904 2905 /// Attaches ScheduleData to Instruction with the leading key. 2906 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2907 ExtraScheduleDataMap; 2908 2909 /// The ready-list for scheduling (only used for the dry-run). 2910 SetVector<ScheduleData *> ReadyInsts; 2911 2912 /// The first instruction of the scheduling region. 2913 Instruction *ScheduleStart = nullptr; 2914 2915 /// The first instruction _after_ the scheduling region. 2916 Instruction *ScheduleEnd = nullptr; 2917 2918 /// The first memory accessing instruction in the scheduling region 2919 /// (can be null). 2920 ScheduleData *FirstLoadStoreInRegion = nullptr; 2921 2922 /// The last memory accessing instruction in the scheduling region 2923 /// (can be null). 2924 ScheduleData *LastLoadStoreInRegion = nullptr; 2925 2926 /// The current size of the scheduling region. 2927 int ScheduleRegionSize = 0; 2928 2929 /// The maximum size allowed for the scheduling region. 2930 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2931 2932 /// The ID of the scheduling region. For a new vectorization iteration this 2933 /// is incremented which "removes" all ScheduleData from the region. 2934 /// Make sure that the initial SchedulingRegionID is greater than the 2935 /// initial SchedulingRegionID in ScheduleData (which is 0). 2936 int SchedulingRegionID = 1; 2937 }; 2938 2939 /// Attaches the BlockScheduling structures to basic blocks. 2940 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2941 2942 /// Performs the "real" scheduling. Done before vectorization is actually 2943 /// performed in a basic block. 2944 void scheduleBlock(BlockScheduling *BS); 2945 2946 /// List of users to ignore during scheduling and that don't need extracting. 2947 ArrayRef<Value *> UserIgnoreList; 2948 2949 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2950 /// sorted SmallVectors of unsigned. 2951 struct OrdersTypeDenseMapInfo { 2952 static OrdersType getEmptyKey() { 2953 OrdersType V; 2954 V.push_back(~1U); 2955 return V; 2956 } 2957 2958 static OrdersType getTombstoneKey() { 2959 OrdersType V; 2960 V.push_back(~2U); 2961 return V; 2962 } 2963 2964 static unsigned getHashValue(const OrdersType &V) { 2965 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2966 } 2967 2968 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2969 return LHS == RHS; 2970 } 2971 }; 2972 2973 // Analysis and block reference. 2974 Function *F; 2975 ScalarEvolution *SE; 2976 TargetTransformInfo *TTI; 2977 TargetLibraryInfo *TLI; 2978 LoopInfo *LI; 2979 DominatorTree *DT; 2980 AssumptionCache *AC; 2981 DemandedBits *DB; 2982 const DataLayout *DL; 2983 OptimizationRemarkEmitter *ORE; 2984 2985 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2986 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2987 2988 /// Instruction builder to construct the vectorized tree. 2989 IRBuilder<> Builder; 2990 2991 /// A map of scalar integer values to the smallest bit width with which they 2992 /// can legally be represented. The values map to (width, signed) pairs, 2993 /// where "width" indicates the minimum bit width and "signed" is True if the 2994 /// value must be signed-extended, rather than zero-extended, back to its 2995 /// original width. 2996 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2997 }; 2998 2999 } // end namespace slpvectorizer 3000 3001 template <> struct GraphTraits<BoUpSLP *> { 3002 using TreeEntry = BoUpSLP::TreeEntry; 3003 3004 /// NodeRef has to be a pointer per the GraphWriter. 3005 using NodeRef = TreeEntry *; 3006 3007 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 3008 3009 /// Add the VectorizableTree to the index iterator to be able to return 3010 /// TreeEntry pointers. 3011 struct ChildIteratorType 3012 : public iterator_adaptor_base< 3013 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 3014 ContainerTy &VectorizableTree; 3015 3016 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 3017 ContainerTy &VT) 3018 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 3019 3020 NodeRef operator*() { return I->UserTE; } 3021 }; 3022 3023 static NodeRef getEntryNode(BoUpSLP &R) { 3024 return R.VectorizableTree[0].get(); 3025 } 3026 3027 static ChildIteratorType child_begin(NodeRef N) { 3028 return {N->UserTreeIndices.begin(), N->Container}; 3029 } 3030 3031 static ChildIteratorType child_end(NodeRef N) { 3032 return {N->UserTreeIndices.end(), N->Container}; 3033 } 3034 3035 /// For the node iterator we just need to turn the TreeEntry iterator into a 3036 /// TreeEntry* iterator so that it dereferences to NodeRef. 3037 class nodes_iterator { 3038 using ItTy = ContainerTy::iterator; 3039 ItTy It; 3040 3041 public: 3042 nodes_iterator(const ItTy &It2) : It(It2) {} 3043 NodeRef operator*() { return It->get(); } 3044 nodes_iterator operator++() { 3045 ++It; 3046 return *this; 3047 } 3048 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 3049 }; 3050 3051 static nodes_iterator nodes_begin(BoUpSLP *R) { 3052 return nodes_iterator(R->VectorizableTree.begin()); 3053 } 3054 3055 static nodes_iterator nodes_end(BoUpSLP *R) { 3056 return nodes_iterator(R->VectorizableTree.end()); 3057 } 3058 3059 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 3060 }; 3061 3062 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 3063 using TreeEntry = BoUpSLP::TreeEntry; 3064 3065 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3066 3067 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 3068 std::string Str; 3069 raw_string_ostream OS(Str); 3070 if (isSplat(Entry->Scalars)) 3071 OS << "<splat> "; 3072 for (auto V : Entry->Scalars) { 3073 OS << *V; 3074 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 3075 return EU.Scalar == V; 3076 })) 3077 OS << " <extract>"; 3078 OS << "\n"; 3079 } 3080 return Str; 3081 } 3082 3083 static std::string getNodeAttributes(const TreeEntry *Entry, 3084 const BoUpSLP *) { 3085 if (Entry->State == TreeEntry::NeedToGather) 3086 return "color=red"; 3087 return ""; 3088 } 3089 }; 3090 3091 } // end namespace llvm 3092 3093 BoUpSLP::~BoUpSLP() { 3094 for (const auto &Pair : DeletedInstructions) { 3095 // Replace operands of ignored instructions with Undefs in case if they were 3096 // marked for deletion. 3097 if (Pair.getSecond()) { 3098 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 3099 Pair.getFirst()->replaceAllUsesWith(Undef); 3100 } 3101 Pair.getFirst()->dropAllReferences(); 3102 } 3103 for (const auto &Pair : DeletedInstructions) { 3104 assert(Pair.getFirst()->use_empty() && 3105 "trying to erase instruction with users."); 3106 Pair.getFirst()->eraseFromParent(); 3107 } 3108 #ifdef EXPENSIVE_CHECKS 3109 // If we could guarantee that this call is not extremely slow, we could 3110 // remove the ifdef limitation (see PR47712). 3111 assert(!verifyFunction(*F, &dbgs())); 3112 #endif 3113 } 3114 3115 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 3116 for (auto *V : AV) { 3117 if (auto *I = dyn_cast<Instruction>(V)) 3118 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 3119 }; 3120 } 3121 3122 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 3123 /// contains original mask for the scalars reused in the node. Procedure 3124 /// transform this mask in accordance with the given \p Mask. 3125 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 3126 assert(!Mask.empty() && Reuses.size() == Mask.size() && 3127 "Expected non-empty mask."); 3128 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 3129 Prev.swap(Reuses); 3130 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 3131 if (Mask[I] != UndefMaskElem) 3132 Reuses[Mask[I]] = Prev[I]; 3133 } 3134 3135 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 3136 /// the original order of the scalars. Procedure transforms the provided order 3137 /// in accordance with the given \p Mask. If the resulting \p Order is just an 3138 /// identity order, \p Order is cleared. 3139 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 3140 assert(!Mask.empty() && "Expected non-empty mask."); 3141 SmallVector<int> MaskOrder; 3142 if (Order.empty()) { 3143 MaskOrder.resize(Mask.size()); 3144 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 3145 } else { 3146 inversePermutation(Order, MaskOrder); 3147 } 3148 reorderReuses(MaskOrder, Mask); 3149 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 3150 Order.clear(); 3151 return; 3152 } 3153 Order.assign(Mask.size(), Mask.size()); 3154 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 3155 if (MaskOrder[I] != UndefMaskElem) 3156 Order[MaskOrder[I]] = I; 3157 fixupOrderingIndices(Order); 3158 } 3159 3160 Optional<BoUpSLP::OrdersType> 3161 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { 3162 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 3163 unsigned NumScalars = TE.Scalars.size(); 3164 OrdersType CurrentOrder(NumScalars, NumScalars); 3165 SmallVector<int> Positions; 3166 SmallBitVector UsedPositions(NumScalars); 3167 const TreeEntry *STE = nullptr; 3168 // Try to find all gathered scalars that are gets vectorized in other 3169 // vectorize node. Here we can have only one single tree vector node to 3170 // correctly identify order of the gathered scalars. 3171 for (unsigned I = 0; I < NumScalars; ++I) { 3172 Value *V = TE.Scalars[I]; 3173 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) 3174 continue; 3175 if (const auto *LocalSTE = getTreeEntry(V)) { 3176 if (!STE) 3177 STE = LocalSTE; 3178 else if (STE != LocalSTE) 3179 // Take the order only from the single vector node. 3180 return None; 3181 unsigned Lane = 3182 std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); 3183 if (Lane >= NumScalars) 3184 return None; 3185 if (CurrentOrder[Lane] != NumScalars) { 3186 if (Lane != I) 3187 continue; 3188 UsedPositions.reset(CurrentOrder[Lane]); 3189 } 3190 // The partial identity (where only some elements of the gather node are 3191 // in the identity order) is good. 3192 CurrentOrder[Lane] = I; 3193 UsedPositions.set(I); 3194 } 3195 } 3196 // Need to keep the order if we have a vector entry and at least 2 scalars or 3197 // the vectorized entry has just 2 scalars. 3198 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { 3199 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { 3200 for (unsigned I = 0; I < NumScalars; ++I) 3201 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) 3202 return false; 3203 return true; 3204 }; 3205 if (IsIdentityOrder(CurrentOrder)) { 3206 CurrentOrder.clear(); 3207 return CurrentOrder; 3208 } 3209 auto *It = CurrentOrder.begin(); 3210 for (unsigned I = 0; I < NumScalars;) { 3211 if (UsedPositions.test(I)) { 3212 ++I; 3213 continue; 3214 } 3215 if (*It == NumScalars) { 3216 *It = I; 3217 ++I; 3218 } 3219 ++It; 3220 } 3221 return CurrentOrder; 3222 } 3223 return None; 3224 } 3225 3226 Optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE, 3227 bool TopToBottom) { 3228 // No need to reorder if need to shuffle reuses, still need to shuffle the 3229 // node. 3230 if (!TE.ReuseShuffleIndices.empty()) 3231 return None; 3232 if (TE.State == TreeEntry::Vectorize && 3233 (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) || 3234 (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) && 3235 !TE.isAltShuffle()) 3236 return TE.ReorderIndices; 3237 if (TE.State == TreeEntry::NeedToGather) { 3238 // TODO: add analysis of other gather nodes with extractelement 3239 // instructions and other values/instructions, not only undefs. 3240 if (((TE.getOpcode() == Instruction::ExtractElement && 3241 !TE.isAltShuffle()) || 3242 (all_of(TE.Scalars, 3243 [](Value *V) { 3244 return isa<UndefValue, ExtractElementInst>(V); 3245 }) && 3246 any_of(TE.Scalars, 3247 [](Value *V) { return isa<ExtractElementInst>(V); }))) && 3248 all_of(TE.Scalars, 3249 [](Value *V) { 3250 auto *EE = dyn_cast<ExtractElementInst>(V); 3251 return !EE || isa<FixedVectorType>(EE->getVectorOperandType()); 3252 }) && 3253 allSameType(TE.Scalars)) { 3254 // Check that gather of extractelements can be represented as 3255 // just a shuffle of a single vector. 3256 OrdersType CurrentOrder; 3257 bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder); 3258 if (Reuse || !CurrentOrder.empty()) { 3259 if (!CurrentOrder.empty()) 3260 fixupOrderingIndices(CurrentOrder); 3261 return CurrentOrder; 3262 } 3263 } 3264 if (Optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE)) 3265 return CurrentOrder; 3266 } 3267 return None; 3268 } 3269 3270 void BoUpSLP::reorderTopToBottom() { 3271 // Maps VF to the graph nodes. 3272 DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries; 3273 // ExtractElement gather nodes which can be vectorized and need to handle 3274 // their ordering. 3275 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3276 // Find all reorderable nodes with the given VF. 3277 // Currently the are vectorized stores,loads,extracts + some gathering of 3278 // extracts. 3279 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders]( 3280 const std::unique_ptr<TreeEntry> &TE) { 3281 if (Optional<OrdersType> CurrentOrder = 3282 getReorderingData(*TE.get(), /*TopToBottom=*/true)) { 3283 // Do not include ordering for nodes used in the alt opcode vectorization, 3284 // better to reorder them during bottom-to-top stage. If follow the order 3285 // here, it causes reordering of the whole graph though actually it is 3286 // profitable just to reorder the subgraph that starts from the alternate 3287 // opcode vectorization node. Such nodes already end-up with the shuffle 3288 // instruction and it is just enough to change this shuffle rather than 3289 // rotate the scalars for the whole graph. 3290 unsigned Cnt = 0; 3291 const TreeEntry *UserTE = TE.get(); 3292 while (UserTE && Cnt < RecursionMaxDepth) { 3293 if (UserTE->UserTreeIndices.size() != 1) 3294 break; 3295 if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) { 3296 return EI.UserTE->State == TreeEntry::Vectorize && 3297 EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0; 3298 })) 3299 return; 3300 if (UserTE->UserTreeIndices.empty()) 3301 UserTE = nullptr; 3302 else 3303 UserTE = UserTE->UserTreeIndices.back().UserTE; 3304 ++Cnt; 3305 } 3306 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 3307 if (TE->State != TreeEntry::Vectorize) 3308 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3309 } 3310 }); 3311 3312 // Reorder the graph nodes according to their vectorization factor. 3313 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 3314 VF /= 2) { 3315 auto It = VFToOrderedEntries.find(VF); 3316 if (It == VFToOrderedEntries.end()) 3317 continue; 3318 // Try to find the most profitable order. We just are looking for the most 3319 // used order and reorder scalar elements in the nodes according to this 3320 // mostly used order. 3321 ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef(); 3322 // All operands are reordered and used only in this node - propagate the 3323 // most used order to the user node. 3324 MapVector<OrdersType, unsigned, 3325 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3326 OrdersUses; 3327 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3328 for (const TreeEntry *OpTE : OrderedEntries) { 3329 // No need to reorder this nodes, still need to extend and to use shuffle, 3330 // just need to merge reordering shuffle and the reuse shuffle. 3331 if (!OpTE->ReuseShuffleIndices.empty()) 3332 continue; 3333 // Count number of orders uses. 3334 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3335 if (OpTE->State == TreeEntry::NeedToGather) 3336 return GathersToOrders.find(OpTE)->second; 3337 return OpTE->ReorderIndices; 3338 }(); 3339 // Stores actually store the mask, not the order, need to invert. 3340 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3341 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3342 SmallVector<int> Mask; 3343 inversePermutation(Order, Mask); 3344 unsigned E = Order.size(); 3345 OrdersType CurrentOrder(E, E); 3346 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3347 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3348 }); 3349 fixupOrderingIndices(CurrentOrder); 3350 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3351 } else { 3352 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3353 } 3354 } 3355 // Set order of the user node. 3356 if (OrdersUses.empty()) 3357 continue; 3358 // Choose the most used order. 3359 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3360 unsigned Cnt = OrdersUses.front().second; 3361 for (const auto &Pair : drop_begin(OrdersUses)) { 3362 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3363 BestOrder = Pair.first; 3364 Cnt = Pair.second; 3365 } 3366 } 3367 // Set order of the user node. 3368 if (BestOrder.empty()) 3369 continue; 3370 SmallVector<int> Mask; 3371 inversePermutation(BestOrder, Mask); 3372 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3373 unsigned E = BestOrder.size(); 3374 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3375 return I < E ? static_cast<int>(I) : UndefMaskElem; 3376 }); 3377 // Do an actual reordering, if profitable. 3378 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 3379 // Just do the reordering for the nodes with the given VF. 3380 if (TE->Scalars.size() != VF) { 3381 if (TE->ReuseShuffleIndices.size() == VF) { 3382 // Need to reorder the reuses masks of the operands with smaller VF to 3383 // be able to find the match between the graph nodes and scalar 3384 // operands of the given node during vectorization/cost estimation. 3385 assert(all_of(TE->UserTreeIndices, 3386 [VF, &TE](const EdgeInfo &EI) { 3387 return EI.UserTE->Scalars.size() == VF || 3388 EI.UserTE->Scalars.size() == 3389 TE->Scalars.size(); 3390 }) && 3391 "All users must be of VF size."); 3392 // Update ordering of the operands with the smaller VF than the given 3393 // one. 3394 reorderReuses(TE->ReuseShuffleIndices, Mask); 3395 } 3396 continue; 3397 } 3398 if (TE->State == TreeEntry::Vectorize && 3399 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 3400 InsertElementInst>(TE->getMainOp()) && 3401 !TE->isAltShuffle()) { 3402 // Build correct orders for extract{element,value}, loads and 3403 // stores. 3404 reorderOrder(TE->ReorderIndices, Mask); 3405 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 3406 TE->reorderOperands(Mask); 3407 } else { 3408 // Reorder the node and its operands. 3409 TE->reorderOperands(Mask); 3410 assert(TE->ReorderIndices.empty() && 3411 "Expected empty reorder sequence."); 3412 reorderScalars(TE->Scalars, Mask); 3413 } 3414 if (!TE->ReuseShuffleIndices.empty()) { 3415 // Apply reversed order to keep the original ordering of the reused 3416 // elements to avoid extra reorder indices shuffling. 3417 OrdersType CurrentOrder; 3418 reorderOrder(CurrentOrder, MaskOrder); 3419 SmallVector<int> NewReuses; 3420 inversePermutation(CurrentOrder, NewReuses); 3421 addMask(NewReuses, TE->ReuseShuffleIndices); 3422 TE->ReuseShuffleIndices.swap(NewReuses); 3423 } 3424 } 3425 } 3426 } 3427 3428 bool BoUpSLP::canReorderOperands( 3429 TreeEntry *UserTE, SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 3430 ArrayRef<TreeEntry *> ReorderableGathers, 3431 SmallVectorImpl<TreeEntry *> &GatherOps) { 3432 for (unsigned I = 0, E = UserTE->getNumOperands(); I < E; ++I) { 3433 if (any_of(Edges, [I](const std::pair<unsigned, TreeEntry *> &OpData) { 3434 return OpData.first == I && 3435 OpData.second->State == TreeEntry::Vectorize; 3436 })) 3437 continue; 3438 if (TreeEntry *TE = getVectorizedOperand(UserTE, I)) { 3439 // Do not reorder if operand node is used by many user nodes. 3440 if (any_of(TE->UserTreeIndices, 3441 [UserTE](const EdgeInfo &EI) { return EI.UserTE != UserTE; })) 3442 return false; 3443 // Add the node to the list of the ordered nodes with the identity 3444 // order. 3445 Edges.emplace_back(I, TE); 3446 continue; 3447 } 3448 ArrayRef<Value *> VL = UserTE->getOperand(I); 3449 TreeEntry *Gather = nullptr; 3450 if (count_if(ReorderableGathers, [VL, &Gather](TreeEntry *TE) { 3451 assert(TE->State != TreeEntry::Vectorize && 3452 "Only non-vectorized nodes are expected."); 3453 if (TE->isSame(VL)) { 3454 Gather = TE; 3455 return true; 3456 } 3457 return false; 3458 }) > 1) 3459 return false; 3460 if (Gather) 3461 GatherOps.push_back(Gather); 3462 } 3463 return true; 3464 } 3465 3466 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { 3467 SetVector<TreeEntry *> OrderedEntries; 3468 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3469 // Find all reorderable leaf nodes with the given VF. 3470 // Currently the are vectorized loads,extracts without alternate operands + 3471 // some gathering of extracts. 3472 SmallVector<TreeEntry *> NonVectorized; 3473 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 3474 &NonVectorized]( 3475 const std::unique_ptr<TreeEntry> &TE) { 3476 if (TE->State != TreeEntry::Vectorize) 3477 NonVectorized.push_back(TE.get()); 3478 if (Optional<OrdersType> CurrentOrder = 3479 getReorderingData(*TE.get(), /*TopToBottom=*/false)) { 3480 OrderedEntries.insert(TE.get()); 3481 if (TE->State != TreeEntry::Vectorize) 3482 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3483 } 3484 }); 3485 3486 // 1. Propagate order to the graph nodes, which use only reordered nodes. 3487 // I.e., if the node has operands, that are reordered, try to make at least 3488 // one operand order in the natural order and reorder others + reorder the 3489 // user node itself. 3490 SmallPtrSet<const TreeEntry *, 4> Visited; 3491 while (!OrderedEntries.empty()) { 3492 // 1. Filter out only reordered nodes. 3493 // 2. If the entry has multiple uses - skip it and jump to the next node. 3494 MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 3495 SmallVector<TreeEntry *> Filtered; 3496 for (TreeEntry *TE : OrderedEntries) { 3497 if (!(TE->State == TreeEntry::Vectorize || 3498 (TE->State == TreeEntry::NeedToGather && 3499 GathersToOrders.count(TE))) || 3500 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3501 !all_of(drop_begin(TE->UserTreeIndices), 3502 [TE](const EdgeInfo &EI) { 3503 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 3504 }) || 3505 !Visited.insert(TE).second) { 3506 Filtered.push_back(TE); 3507 continue; 3508 } 3509 // Build a map between user nodes and their operands order to speedup 3510 // search. The graph currently does not provide this dependency directly. 3511 for (EdgeInfo &EI : TE->UserTreeIndices) { 3512 TreeEntry *UserTE = EI.UserTE; 3513 auto It = Users.find(UserTE); 3514 if (It == Users.end()) 3515 It = Users.insert({UserTE, {}}).first; 3516 It->second.emplace_back(EI.EdgeIdx, TE); 3517 } 3518 } 3519 // Erase filtered entries. 3520 for_each(Filtered, 3521 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 3522 for (auto &Data : Users) { 3523 // Check that operands are used only in the User node. 3524 SmallVector<TreeEntry *> GatherOps; 3525 if (!canReorderOperands(Data.first, Data.second, NonVectorized, 3526 GatherOps)) { 3527 for_each(Data.second, 3528 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3529 OrderedEntries.remove(Op.second); 3530 }); 3531 continue; 3532 } 3533 // All operands are reordered and used only in this node - propagate the 3534 // most used order to the user node. 3535 MapVector<OrdersType, unsigned, 3536 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3537 OrdersUses; 3538 // Do the analysis for each tree entry only once, otherwise the order of 3539 // the same node my be considered several times, though might be not 3540 // profitable. 3541 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3542 SmallPtrSet<const TreeEntry *, 4> VisitedUsers; 3543 for (const auto &Op : Data.second) { 3544 TreeEntry *OpTE = Op.second; 3545 if (!VisitedOps.insert(OpTE).second) 3546 continue; 3547 if (!OpTE->ReuseShuffleIndices.empty() || 3548 (IgnoreReorder && OpTE == VectorizableTree.front().get())) 3549 continue; 3550 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3551 if (OpTE->State == TreeEntry::NeedToGather) 3552 return GathersToOrders.find(OpTE)->second; 3553 return OpTE->ReorderIndices; 3554 }(); 3555 unsigned NumOps = count_if( 3556 Data.second, [OpTE](const std::pair<unsigned, TreeEntry *> &P) { 3557 return P.second == OpTE; 3558 }); 3559 // Stores actually store the mask, not the order, need to invert. 3560 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3561 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3562 SmallVector<int> Mask; 3563 inversePermutation(Order, Mask); 3564 unsigned E = Order.size(); 3565 OrdersType CurrentOrder(E, E); 3566 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3567 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3568 }); 3569 fixupOrderingIndices(CurrentOrder); 3570 OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second += 3571 NumOps; 3572 } else { 3573 OrdersUses.insert(std::make_pair(Order, 0)).first->second += NumOps; 3574 } 3575 auto Res = OrdersUses.insert(std::make_pair(OrdersType(), 0)); 3576 const auto &&AllowsReordering = [IgnoreReorder, &GathersToOrders]( 3577 const TreeEntry *TE) { 3578 if (!TE->ReorderIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3579 (TE->State == TreeEntry::Vectorize && TE->isAltShuffle()) || 3580 (IgnoreReorder && TE->Idx == 0)) 3581 return true; 3582 if (TE->State == TreeEntry::NeedToGather) { 3583 auto It = GathersToOrders.find(TE); 3584 if (It != GathersToOrders.end()) 3585 return !It->second.empty(); 3586 return true; 3587 } 3588 return false; 3589 }; 3590 for (const EdgeInfo &EI : OpTE->UserTreeIndices) { 3591 TreeEntry *UserTE = EI.UserTE; 3592 if (!VisitedUsers.insert(UserTE).second) 3593 continue; 3594 // May reorder user node if it requires reordering, has reused 3595 // scalars, is an alternate op vectorize node or its op nodes require 3596 // reordering. 3597 if (AllowsReordering(UserTE)) 3598 continue; 3599 // Check if users allow reordering. 3600 // Currently look up just 1 level of operands to avoid increase of 3601 // the compile time. 3602 // Profitable to reorder if definitely more operands allow 3603 // reordering rather than those with natural order. 3604 ArrayRef<std::pair<unsigned, TreeEntry *>> Ops = Users[UserTE]; 3605 if (static_cast<unsigned>(count_if( 3606 Ops, [UserTE, &AllowsReordering]( 3607 const std::pair<unsigned, TreeEntry *> &Op) { 3608 return AllowsReordering(Op.second) && 3609 all_of(Op.second->UserTreeIndices, 3610 [UserTE](const EdgeInfo &EI) { 3611 return EI.UserTE == UserTE; 3612 }); 3613 })) <= Ops.size() / 2) 3614 ++Res.first->second; 3615 } 3616 } 3617 // If no orders - skip current nodes and jump to the next one, if any. 3618 if (OrdersUses.empty()) { 3619 for_each(Data.second, 3620 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3621 OrderedEntries.remove(Op.second); 3622 }); 3623 continue; 3624 } 3625 // Choose the best order. 3626 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3627 unsigned Cnt = OrdersUses.front().second; 3628 for (const auto &Pair : drop_begin(OrdersUses)) { 3629 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3630 BestOrder = Pair.first; 3631 Cnt = Pair.second; 3632 } 3633 } 3634 // Set order of the user node (reordering of operands and user nodes). 3635 if (BestOrder.empty()) { 3636 for_each(Data.second, 3637 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3638 OrderedEntries.remove(Op.second); 3639 }); 3640 continue; 3641 } 3642 // Erase operands from OrderedEntries list and adjust their orders. 3643 VisitedOps.clear(); 3644 SmallVector<int> Mask; 3645 inversePermutation(BestOrder, Mask); 3646 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3647 unsigned E = BestOrder.size(); 3648 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3649 return I < E ? static_cast<int>(I) : UndefMaskElem; 3650 }); 3651 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 3652 TreeEntry *TE = Op.second; 3653 OrderedEntries.remove(TE); 3654 if (!VisitedOps.insert(TE).second) 3655 continue; 3656 if (TE->ReuseShuffleIndices.size() == BestOrder.size()) { 3657 // Just reorder reuses indices. 3658 reorderReuses(TE->ReuseShuffleIndices, Mask); 3659 continue; 3660 } 3661 // Gathers are processed separately. 3662 if (TE->State != TreeEntry::Vectorize) 3663 continue; 3664 assert((BestOrder.size() == TE->ReorderIndices.size() || 3665 TE->ReorderIndices.empty()) && 3666 "Non-matching sizes of user/operand entries."); 3667 reorderOrder(TE->ReorderIndices, Mask); 3668 } 3669 // For gathers just need to reorder its scalars. 3670 for (TreeEntry *Gather : GatherOps) { 3671 assert(Gather->ReorderIndices.empty() && 3672 "Unexpected reordering of gathers."); 3673 if (!Gather->ReuseShuffleIndices.empty()) { 3674 // Just reorder reuses indices. 3675 reorderReuses(Gather->ReuseShuffleIndices, Mask); 3676 continue; 3677 } 3678 reorderScalars(Gather->Scalars, Mask); 3679 OrderedEntries.remove(Gather); 3680 } 3681 // Reorder operands of the user node and set the ordering for the user 3682 // node itself. 3683 if (Data.first->State != TreeEntry::Vectorize || 3684 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 3685 Data.first->getMainOp()) || 3686 Data.first->isAltShuffle()) 3687 Data.first->reorderOperands(Mask); 3688 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 3689 Data.first->isAltShuffle()) { 3690 reorderScalars(Data.first->Scalars, Mask); 3691 reorderOrder(Data.first->ReorderIndices, MaskOrder); 3692 if (Data.first->ReuseShuffleIndices.empty() && 3693 !Data.first->ReorderIndices.empty() && 3694 !Data.first->isAltShuffle()) { 3695 // Insert user node to the list to try to sink reordering deeper in 3696 // the graph. 3697 OrderedEntries.insert(Data.first); 3698 } 3699 } else { 3700 reorderOrder(Data.first->ReorderIndices, Mask); 3701 } 3702 } 3703 } 3704 // If the reordering is unnecessary, just remove the reorder. 3705 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && 3706 VectorizableTree.front()->ReuseShuffleIndices.empty()) 3707 VectorizableTree.front()->ReorderIndices.clear(); 3708 } 3709 3710 void BoUpSLP::buildExternalUses( 3711 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3712 // Collect the values that we need to extract from the tree. 3713 for (auto &TEPtr : VectorizableTree) { 3714 TreeEntry *Entry = TEPtr.get(); 3715 3716 // No need to handle users of gathered values. 3717 if (Entry->State == TreeEntry::NeedToGather) 3718 continue; 3719 3720 // For each lane: 3721 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3722 Value *Scalar = Entry->Scalars[Lane]; 3723 int FoundLane = Entry->findLaneForValue(Scalar); 3724 3725 // Check if the scalar is externally used as an extra arg. 3726 auto ExtI = ExternallyUsedValues.find(Scalar); 3727 if (ExtI != ExternallyUsedValues.end()) { 3728 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 3729 << Lane << " from " << *Scalar << ".\n"); 3730 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 3731 } 3732 for (User *U : Scalar->users()) { 3733 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 3734 3735 Instruction *UserInst = dyn_cast<Instruction>(U); 3736 if (!UserInst) 3737 continue; 3738 3739 if (isDeleted(UserInst)) 3740 continue; 3741 3742 // Skip in-tree scalars that become vectors 3743 if (TreeEntry *UseEntry = getTreeEntry(U)) { 3744 Value *UseScalar = UseEntry->Scalars[0]; 3745 // Some in-tree scalars will remain as scalar in vectorized 3746 // instructions. If that is the case, the one in Lane 0 will 3747 // be used. 3748 if (UseScalar != U || 3749 UseEntry->State == TreeEntry::ScatterVectorize || 3750 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 3751 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 3752 << ".\n"); 3753 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 3754 continue; 3755 } 3756 } 3757 3758 // Ignore users in the user ignore list. 3759 if (is_contained(UserIgnoreList, UserInst)) 3760 continue; 3761 3762 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 3763 << Lane << " from " << *Scalar << ".\n"); 3764 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 3765 } 3766 } 3767 } 3768 } 3769 3770 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 3771 ArrayRef<Value *> UserIgnoreLst) { 3772 deleteTree(); 3773 UserIgnoreList = UserIgnoreLst; 3774 if (!allSameType(Roots)) 3775 return; 3776 buildTree_rec(Roots, 0, EdgeInfo()); 3777 } 3778 3779 namespace { 3780 /// Tracks the state we can represent the loads in the given sequence. 3781 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 3782 } // anonymous namespace 3783 3784 /// Checks if the given array of loads can be represented as a vectorized, 3785 /// scatter or just simple gather. 3786 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 3787 const TargetTransformInfo &TTI, 3788 const DataLayout &DL, ScalarEvolution &SE, 3789 SmallVectorImpl<unsigned> &Order, 3790 SmallVectorImpl<Value *> &PointerOps) { 3791 // Check that a vectorized load would load the same memory as a scalar 3792 // load. For example, we don't want to vectorize loads that are smaller 3793 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3794 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3795 // from such a struct, we read/write packed bits disagreeing with the 3796 // unvectorized version. 3797 Type *ScalarTy = VL0->getType(); 3798 3799 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 3800 return LoadsState::Gather; 3801 3802 // Make sure all loads in the bundle are simple - we can't vectorize 3803 // atomic or volatile loads. 3804 PointerOps.clear(); 3805 PointerOps.resize(VL.size()); 3806 auto *POIter = PointerOps.begin(); 3807 for (Value *V : VL) { 3808 auto *L = cast<LoadInst>(V); 3809 if (!L->isSimple()) 3810 return LoadsState::Gather; 3811 *POIter = L->getPointerOperand(); 3812 ++POIter; 3813 } 3814 3815 Order.clear(); 3816 // Check the order of pointer operands. 3817 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 3818 Value *Ptr0; 3819 Value *PtrN; 3820 if (Order.empty()) { 3821 Ptr0 = PointerOps.front(); 3822 PtrN = PointerOps.back(); 3823 } else { 3824 Ptr0 = PointerOps[Order.front()]; 3825 PtrN = PointerOps[Order.back()]; 3826 } 3827 Optional<int> Diff = 3828 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 3829 // Check that the sorted loads are consecutive. 3830 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 3831 return LoadsState::Vectorize; 3832 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 3833 for (Value *V : VL) 3834 CommonAlignment = 3835 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 3836 if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()), 3837 CommonAlignment)) 3838 return LoadsState::ScatterVectorize; 3839 } 3840 3841 return LoadsState::Gather; 3842 } 3843 3844 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 3845 const EdgeInfo &UserTreeIdx) { 3846 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 3847 3848 SmallVector<int> ReuseShuffleIndicies; 3849 SmallVector<Value *> UniqueValues; 3850 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, 3851 &UserTreeIdx, 3852 this](const InstructionsState &S) { 3853 // Check that every instruction appears once in this bundle. 3854 DenseMap<Value *, unsigned> UniquePositions; 3855 for (Value *V : VL) { 3856 if (isConstant(V)) { 3857 ReuseShuffleIndicies.emplace_back( 3858 isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size()); 3859 UniqueValues.emplace_back(V); 3860 continue; 3861 } 3862 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3863 ReuseShuffleIndicies.emplace_back(Res.first->second); 3864 if (Res.second) 3865 UniqueValues.emplace_back(V); 3866 } 3867 size_t NumUniqueScalarValues = UniqueValues.size(); 3868 if (NumUniqueScalarValues == VL.size()) { 3869 ReuseShuffleIndicies.clear(); 3870 } else { 3871 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 3872 if (NumUniqueScalarValues <= 1 || 3873 (UniquePositions.size() == 1 && all_of(UniqueValues, 3874 [](Value *V) { 3875 return isa<UndefValue>(V) || 3876 !isConstant(V); 3877 })) || 3878 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 3879 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 3880 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3881 return false; 3882 } 3883 VL = UniqueValues; 3884 } 3885 return true; 3886 }; 3887 3888 InstructionsState S = getSameOpcode(VL); 3889 if (Depth == RecursionMaxDepth) { 3890 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 3891 if (TryToFindDuplicates(S)) 3892 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3893 ReuseShuffleIndicies); 3894 return; 3895 } 3896 3897 // Don't handle scalable vectors 3898 if (S.getOpcode() == Instruction::ExtractElement && 3899 isa<ScalableVectorType>( 3900 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 3901 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 3902 if (TryToFindDuplicates(S)) 3903 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3904 ReuseShuffleIndicies); 3905 return; 3906 } 3907 3908 // Don't handle vectors. 3909 if (S.OpValue->getType()->isVectorTy() && 3910 !isa<InsertElementInst>(S.OpValue)) { 3911 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 3912 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3913 return; 3914 } 3915 3916 // Avoid attempting to schedule allocas; there are unmodeled dependencies 3917 // for "static" alloca status and for reordering with stacksave calls. 3918 for (Value *V : VL) { 3919 if (isa<AllocaInst>(V)) { 3920 LLVM_DEBUG(dbgs() << "SLP: Gathering due to alloca.\n"); 3921 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3922 return; 3923 } 3924 } 3925 3926 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 3927 if (SI->getValueOperand()->getType()->isVectorTy()) { 3928 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 3929 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3930 return; 3931 } 3932 3933 // If all of the operands are identical or constant we have a simple solution. 3934 // If we deal with insert/extract instructions, they all must have constant 3935 // indices, otherwise we should gather them, not try to vectorize. 3936 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() || 3937 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) && 3938 !all_of(VL, isVectorLikeInstWithConstOps))) { 3939 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 3940 if (TryToFindDuplicates(S)) 3941 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3942 ReuseShuffleIndicies); 3943 return; 3944 } 3945 3946 // We now know that this is a vector of instructions of the same type from 3947 // the same block. 3948 3949 // Don't vectorize ephemeral values. 3950 for (Value *V : VL) { 3951 if (EphValues.count(V)) { 3952 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3953 << ") is ephemeral.\n"); 3954 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3955 return; 3956 } 3957 } 3958 3959 // Check if this is a duplicate of another entry. 3960 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 3961 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 3962 if (!E->isSame(VL)) { 3963 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 3964 if (TryToFindDuplicates(S)) 3965 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3966 ReuseShuffleIndicies); 3967 return; 3968 } 3969 // Record the reuse of the tree node. FIXME, currently this is only used to 3970 // properly draw the graph rather than for the actual vectorization. 3971 E->UserTreeIndices.push_back(UserTreeIdx); 3972 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 3973 << ".\n"); 3974 return; 3975 } 3976 3977 // Check that none of the instructions in the bundle are already in the tree. 3978 for (Value *V : VL) { 3979 auto *I = dyn_cast<Instruction>(V); 3980 if (!I) 3981 continue; 3982 if (getTreeEntry(I)) { 3983 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3984 << ") is already in tree.\n"); 3985 if (TryToFindDuplicates(S)) 3986 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3987 ReuseShuffleIndicies); 3988 return; 3989 } 3990 } 3991 3992 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 3993 for (Value *V : VL) { 3994 if (is_contained(UserIgnoreList, V)) { 3995 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 3996 if (TryToFindDuplicates(S)) 3997 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3998 ReuseShuffleIndicies); 3999 return; 4000 } 4001 } 4002 4003 // Check that all of the users of the scalars that we want to vectorize are 4004 // schedulable. 4005 auto *VL0 = cast<Instruction>(S.OpValue); 4006 BasicBlock *BB = VL0->getParent(); 4007 4008 if (!DT->isReachableFromEntry(BB)) { 4009 // Don't go into unreachable blocks. They may contain instructions with 4010 // dependency cycles which confuse the final scheduling. 4011 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 4012 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4013 return; 4014 } 4015 4016 // Check that every instruction appears once in this bundle. 4017 if (!TryToFindDuplicates(S)) 4018 return; 4019 4020 auto &BSRef = BlocksSchedules[BB]; 4021 if (!BSRef) 4022 BSRef = std::make_unique<BlockScheduling>(BB); 4023 4024 BlockScheduling &BS = *BSRef.get(); 4025 4026 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 4027 #ifdef EXPENSIVE_CHECKS 4028 // Make sure we didn't break any internal invariants 4029 BS.verify(); 4030 #endif 4031 if (!Bundle) { 4032 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 4033 assert((!BS.getScheduleData(VL0) || 4034 !BS.getScheduleData(VL0)->isPartOfBundle()) && 4035 "tryScheduleBundle should cancelScheduling on failure"); 4036 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4037 ReuseShuffleIndicies); 4038 return; 4039 } 4040 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 4041 4042 unsigned ShuffleOrOp = S.isAltShuffle() ? 4043 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 4044 switch (ShuffleOrOp) { 4045 case Instruction::PHI: { 4046 auto *PH = cast<PHINode>(VL0); 4047 4048 // Check for terminator values (e.g. invoke). 4049 for (Value *V : VL) 4050 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 4051 Instruction *Term = dyn_cast<Instruction>( 4052 cast<PHINode>(V)->getIncomingValueForBlock( 4053 PH->getIncomingBlock(I))); 4054 if (Term && Term->isTerminator()) { 4055 LLVM_DEBUG(dbgs() 4056 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 4057 BS.cancelScheduling(VL, VL0); 4058 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4059 ReuseShuffleIndicies); 4060 return; 4061 } 4062 } 4063 4064 TreeEntry *TE = 4065 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 4066 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 4067 4068 // Keeps the reordered operands to avoid code duplication. 4069 SmallVector<ValueList, 2> OperandsVec; 4070 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 4071 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 4072 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 4073 TE->setOperand(I, Operands); 4074 OperandsVec.push_back(Operands); 4075 continue; 4076 } 4077 ValueList Operands; 4078 // Prepare the operand vector. 4079 for (Value *V : VL) 4080 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 4081 PH->getIncomingBlock(I))); 4082 TE->setOperand(I, Operands); 4083 OperandsVec.push_back(Operands); 4084 } 4085 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 4086 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 4087 return; 4088 } 4089 case Instruction::ExtractValue: 4090 case Instruction::ExtractElement: { 4091 OrdersType CurrentOrder; 4092 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 4093 if (Reuse) { 4094 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 4095 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4096 ReuseShuffleIndicies); 4097 // This is a special case, as it does not gather, but at the same time 4098 // we are not extending buildTree_rec() towards the operands. 4099 ValueList Op0; 4100 Op0.assign(VL.size(), VL0->getOperand(0)); 4101 VectorizableTree.back()->setOperand(0, Op0); 4102 return; 4103 } 4104 if (!CurrentOrder.empty()) { 4105 LLVM_DEBUG({ 4106 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 4107 "with order"; 4108 for (unsigned Idx : CurrentOrder) 4109 dbgs() << " " << Idx; 4110 dbgs() << "\n"; 4111 }); 4112 fixupOrderingIndices(CurrentOrder); 4113 // Insert new order with initial value 0, if it does not exist, 4114 // otherwise return the iterator to the existing one. 4115 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4116 ReuseShuffleIndicies, CurrentOrder); 4117 // This is a special case, as it does not gather, but at the same time 4118 // we are not extending buildTree_rec() towards the operands. 4119 ValueList Op0; 4120 Op0.assign(VL.size(), VL0->getOperand(0)); 4121 VectorizableTree.back()->setOperand(0, Op0); 4122 return; 4123 } 4124 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 4125 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4126 ReuseShuffleIndicies); 4127 BS.cancelScheduling(VL, VL0); 4128 return; 4129 } 4130 case Instruction::InsertElement: { 4131 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 4132 4133 // Check that we have a buildvector and not a shuffle of 2 or more 4134 // different vectors. 4135 ValueSet SourceVectors; 4136 for (Value *V : VL) { 4137 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 4138 assert(getInsertIndex(V) != None && "Non-constant or undef index?"); 4139 } 4140 4141 if (count_if(VL, [&SourceVectors](Value *V) { 4142 return !SourceVectors.contains(V); 4143 }) >= 2) { 4144 // Found 2nd source vector - cancel. 4145 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 4146 "different source vectors.\n"); 4147 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4148 BS.cancelScheduling(VL, VL0); 4149 return; 4150 } 4151 4152 auto OrdCompare = [](const std::pair<int, int> &P1, 4153 const std::pair<int, int> &P2) { 4154 return P1.first > P2.first; 4155 }; 4156 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 4157 decltype(OrdCompare)> 4158 Indices(OrdCompare); 4159 for (int I = 0, E = VL.size(); I < E; ++I) { 4160 unsigned Idx = *getInsertIndex(VL[I]); 4161 Indices.emplace(Idx, I); 4162 } 4163 OrdersType CurrentOrder(VL.size(), VL.size()); 4164 bool IsIdentity = true; 4165 for (int I = 0, E = VL.size(); I < E; ++I) { 4166 CurrentOrder[Indices.top().second] = I; 4167 IsIdentity &= Indices.top().second == I; 4168 Indices.pop(); 4169 } 4170 if (IsIdentity) 4171 CurrentOrder.clear(); 4172 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4173 None, CurrentOrder); 4174 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 4175 4176 constexpr int NumOps = 2; 4177 ValueList VectorOperands[NumOps]; 4178 for (int I = 0; I < NumOps; ++I) { 4179 for (Value *V : VL) 4180 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 4181 4182 TE->setOperand(I, VectorOperands[I]); 4183 } 4184 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 4185 return; 4186 } 4187 case Instruction::Load: { 4188 // Check that a vectorized load would load the same memory as a scalar 4189 // load. For example, we don't want to vectorize loads that are smaller 4190 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 4191 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 4192 // from such a struct, we read/write packed bits disagreeing with the 4193 // unvectorized version. 4194 SmallVector<Value *> PointerOps; 4195 OrdersType CurrentOrder; 4196 TreeEntry *TE = nullptr; 4197 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 4198 PointerOps)) { 4199 case LoadsState::Vectorize: 4200 if (CurrentOrder.empty()) { 4201 // Original loads are consecutive and does not require reordering. 4202 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4203 ReuseShuffleIndicies); 4204 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 4205 } else { 4206 fixupOrderingIndices(CurrentOrder); 4207 // Need to reorder. 4208 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4209 ReuseShuffleIndicies, CurrentOrder); 4210 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 4211 } 4212 TE->setOperandsInOrder(); 4213 break; 4214 case LoadsState::ScatterVectorize: 4215 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 4216 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 4217 UserTreeIdx, ReuseShuffleIndicies); 4218 TE->setOperandsInOrder(); 4219 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 4220 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 4221 break; 4222 case LoadsState::Gather: 4223 BS.cancelScheduling(VL, VL0); 4224 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4225 ReuseShuffleIndicies); 4226 #ifndef NDEBUG 4227 Type *ScalarTy = VL0->getType(); 4228 if (DL->getTypeSizeInBits(ScalarTy) != 4229 DL->getTypeAllocSizeInBits(ScalarTy)) 4230 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 4231 else if (any_of(VL, [](Value *V) { 4232 return !cast<LoadInst>(V)->isSimple(); 4233 })) 4234 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 4235 else 4236 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 4237 #endif // NDEBUG 4238 break; 4239 } 4240 return; 4241 } 4242 case Instruction::ZExt: 4243 case Instruction::SExt: 4244 case Instruction::FPToUI: 4245 case Instruction::FPToSI: 4246 case Instruction::FPExt: 4247 case Instruction::PtrToInt: 4248 case Instruction::IntToPtr: 4249 case Instruction::SIToFP: 4250 case Instruction::UIToFP: 4251 case Instruction::Trunc: 4252 case Instruction::FPTrunc: 4253 case Instruction::BitCast: { 4254 Type *SrcTy = VL0->getOperand(0)->getType(); 4255 for (Value *V : VL) { 4256 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 4257 if (Ty != SrcTy || !isValidElementType(Ty)) { 4258 BS.cancelScheduling(VL, VL0); 4259 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4260 ReuseShuffleIndicies); 4261 LLVM_DEBUG(dbgs() 4262 << "SLP: Gathering casts with different src types.\n"); 4263 return; 4264 } 4265 } 4266 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4267 ReuseShuffleIndicies); 4268 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 4269 4270 TE->setOperandsInOrder(); 4271 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4272 ValueList Operands; 4273 // Prepare the operand vector. 4274 for (Value *V : VL) 4275 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4276 4277 buildTree_rec(Operands, Depth + 1, {TE, i}); 4278 } 4279 return; 4280 } 4281 case Instruction::ICmp: 4282 case Instruction::FCmp: { 4283 // Check that all of the compares have the same predicate. 4284 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4285 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 4286 Type *ComparedTy = VL0->getOperand(0)->getType(); 4287 for (Value *V : VL) { 4288 CmpInst *Cmp = cast<CmpInst>(V); 4289 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 4290 Cmp->getOperand(0)->getType() != ComparedTy) { 4291 BS.cancelScheduling(VL, VL0); 4292 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4293 ReuseShuffleIndicies); 4294 LLVM_DEBUG(dbgs() 4295 << "SLP: Gathering cmp with different predicate.\n"); 4296 return; 4297 } 4298 } 4299 4300 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4301 ReuseShuffleIndicies); 4302 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 4303 4304 ValueList Left, Right; 4305 if (cast<CmpInst>(VL0)->isCommutative()) { 4306 // Commutative predicate - collect + sort operands of the instructions 4307 // so that each side is more likely to have the same opcode. 4308 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 4309 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4310 } else { 4311 // Collect operands - commute if it uses the swapped predicate. 4312 for (Value *V : VL) { 4313 auto *Cmp = cast<CmpInst>(V); 4314 Value *LHS = Cmp->getOperand(0); 4315 Value *RHS = Cmp->getOperand(1); 4316 if (Cmp->getPredicate() != P0) 4317 std::swap(LHS, RHS); 4318 Left.push_back(LHS); 4319 Right.push_back(RHS); 4320 } 4321 } 4322 TE->setOperand(0, Left); 4323 TE->setOperand(1, Right); 4324 buildTree_rec(Left, Depth + 1, {TE, 0}); 4325 buildTree_rec(Right, Depth + 1, {TE, 1}); 4326 return; 4327 } 4328 case Instruction::Select: 4329 case Instruction::FNeg: 4330 case Instruction::Add: 4331 case Instruction::FAdd: 4332 case Instruction::Sub: 4333 case Instruction::FSub: 4334 case Instruction::Mul: 4335 case Instruction::FMul: 4336 case Instruction::UDiv: 4337 case Instruction::SDiv: 4338 case Instruction::FDiv: 4339 case Instruction::URem: 4340 case Instruction::SRem: 4341 case Instruction::FRem: 4342 case Instruction::Shl: 4343 case Instruction::LShr: 4344 case Instruction::AShr: 4345 case Instruction::And: 4346 case Instruction::Or: 4347 case Instruction::Xor: { 4348 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4349 ReuseShuffleIndicies); 4350 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 4351 4352 // Sort operands of the instructions so that each side is more likely to 4353 // have the same opcode. 4354 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 4355 ValueList Left, Right; 4356 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4357 TE->setOperand(0, Left); 4358 TE->setOperand(1, Right); 4359 buildTree_rec(Left, Depth + 1, {TE, 0}); 4360 buildTree_rec(Right, Depth + 1, {TE, 1}); 4361 return; 4362 } 4363 4364 TE->setOperandsInOrder(); 4365 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4366 ValueList Operands; 4367 // Prepare the operand vector. 4368 for (Value *V : VL) 4369 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4370 4371 buildTree_rec(Operands, Depth + 1, {TE, i}); 4372 } 4373 return; 4374 } 4375 case Instruction::GetElementPtr: { 4376 // We don't combine GEPs with complicated (nested) indexing. 4377 for (Value *V : VL) { 4378 if (cast<Instruction>(V)->getNumOperands() != 2) { 4379 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 4380 BS.cancelScheduling(VL, VL0); 4381 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4382 ReuseShuffleIndicies); 4383 return; 4384 } 4385 } 4386 4387 // We can't combine several GEPs into one vector if they operate on 4388 // different types. 4389 Type *Ty0 = cast<GEPOperator>(VL0)->getSourceElementType(); 4390 for (Value *V : VL) { 4391 Type *CurTy = cast<GEPOperator>(V)->getSourceElementType(); 4392 if (Ty0 != CurTy) { 4393 LLVM_DEBUG(dbgs() 4394 << "SLP: not-vectorizable GEP (different types).\n"); 4395 BS.cancelScheduling(VL, VL0); 4396 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4397 ReuseShuffleIndicies); 4398 return; 4399 } 4400 } 4401 4402 // We don't combine GEPs with non-constant indexes. 4403 Type *Ty1 = VL0->getOperand(1)->getType(); 4404 for (Value *V : VL) { 4405 auto Op = cast<Instruction>(V)->getOperand(1); 4406 if (!isa<ConstantInt>(Op) || 4407 (Op->getType() != Ty1 && 4408 Op->getType()->getScalarSizeInBits() > 4409 DL->getIndexSizeInBits( 4410 V->getType()->getPointerAddressSpace()))) { 4411 LLVM_DEBUG(dbgs() 4412 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 4413 BS.cancelScheduling(VL, VL0); 4414 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4415 ReuseShuffleIndicies); 4416 return; 4417 } 4418 } 4419 4420 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4421 ReuseShuffleIndicies); 4422 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 4423 SmallVector<ValueList, 2> Operands(2); 4424 // Prepare the operand vector for pointer operands. 4425 for (Value *V : VL) 4426 Operands.front().push_back( 4427 cast<GetElementPtrInst>(V)->getPointerOperand()); 4428 TE->setOperand(0, Operands.front()); 4429 // Need to cast all indices to the same type before vectorization to 4430 // avoid crash. 4431 // Required to be able to find correct matches between different gather 4432 // nodes and reuse the vectorized values rather than trying to gather them 4433 // again. 4434 int IndexIdx = 1; 4435 Type *VL0Ty = VL0->getOperand(IndexIdx)->getType(); 4436 Type *Ty = all_of(VL, 4437 [VL0Ty, IndexIdx](Value *V) { 4438 return VL0Ty == cast<GetElementPtrInst>(V) 4439 ->getOperand(IndexIdx) 4440 ->getType(); 4441 }) 4442 ? VL0Ty 4443 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4444 ->getPointerOperandType() 4445 ->getScalarType()); 4446 // Prepare the operand vector. 4447 for (Value *V : VL) { 4448 auto *Op = cast<Instruction>(V)->getOperand(IndexIdx); 4449 auto *CI = cast<ConstantInt>(Op); 4450 Operands.back().push_back(ConstantExpr::getIntegerCast( 4451 CI, Ty, CI->getValue().isSignBitSet())); 4452 } 4453 TE->setOperand(IndexIdx, Operands.back()); 4454 4455 for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I) 4456 buildTree_rec(Operands[I], Depth + 1, {TE, I}); 4457 return; 4458 } 4459 case Instruction::Store: { 4460 // Check if the stores are consecutive or if we need to swizzle them. 4461 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 4462 // Avoid types that are padded when being allocated as scalars, while 4463 // being packed together in a vector (such as i1). 4464 if (DL->getTypeSizeInBits(ScalarTy) != 4465 DL->getTypeAllocSizeInBits(ScalarTy)) { 4466 BS.cancelScheduling(VL, VL0); 4467 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4468 ReuseShuffleIndicies); 4469 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 4470 return; 4471 } 4472 // Make sure all stores in the bundle are simple - we can't vectorize 4473 // atomic or volatile stores. 4474 SmallVector<Value *, 4> PointerOps(VL.size()); 4475 ValueList Operands(VL.size()); 4476 auto POIter = PointerOps.begin(); 4477 auto OIter = Operands.begin(); 4478 for (Value *V : VL) { 4479 auto *SI = cast<StoreInst>(V); 4480 if (!SI->isSimple()) { 4481 BS.cancelScheduling(VL, VL0); 4482 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4483 ReuseShuffleIndicies); 4484 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 4485 return; 4486 } 4487 *POIter = SI->getPointerOperand(); 4488 *OIter = SI->getValueOperand(); 4489 ++POIter; 4490 ++OIter; 4491 } 4492 4493 OrdersType CurrentOrder; 4494 // Check the order of pointer operands. 4495 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 4496 Value *Ptr0; 4497 Value *PtrN; 4498 if (CurrentOrder.empty()) { 4499 Ptr0 = PointerOps.front(); 4500 PtrN = PointerOps.back(); 4501 } else { 4502 Ptr0 = PointerOps[CurrentOrder.front()]; 4503 PtrN = PointerOps[CurrentOrder.back()]; 4504 } 4505 Optional<int> Dist = 4506 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 4507 // Check that the sorted pointer operands are consecutive. 4508 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 4509 if (CurrentOrder.empty()) { 4510 // Original stores are consecutive and does not require reordering. 4511 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 4512 UserTreeIdx, ReuseShuffleIndicies); 4513 TE->setOperandsInOrder(); 4514 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4515 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 4516 } else { 4517 fixupOrderingIndices(CurrentOrder); 4518 TreeEntry *TE = 4519 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4520 ReuseShuffleIndicies, CurrentOrder); 4521 TE->setOperandsInOrder(); 4522 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4523 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 4524 } 4525 return; 4526 } 4527 } 4528 4529 BS.cancelScheduling(VL, VL0); 4530 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4531 ReuseShuffleIndicies); 4532 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 4533 return; 4534 } 4535 case Instruction::Call: { 4536 // Check if the calls are all to the same vectorizable intrinsic or 4537 // library function. 4538 CallInst *CI = cast<CallInst>(VL0); 4539 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4540 4541 VFShape Shape = VFShape::get( 4542 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 4543 false /*HasGlobalPred*/); 4544 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4545 4546 if (!VecFunc && !isTriviallyVectorizable(ID)) { 4547 BS.cancelScheduling(VL, VL0); 4548 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4549 ReuseShuffleIndicies); 4550 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 4551 return; 4552 } 4553 Function *F = CI->getCalledFunction(); 4554 unsigned NumArgs = CI->arg_size(); 4555 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 4556 for (unsigned j = 0; j != NumArgs; ++j) 4557 if (hasVectorInstrinsicScalarOpd(ID, j)) 4558 ScalarArgs[j] = CI->getArgOperand(j); 4559 for (Value *V : VL) { 4560 CallInst *CI2 = dyn_cast<CallInst>(V); 4561 if (!CI2 || CI2->getCalledFunction() != F || 4562 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 4563 (VecFunc && 4564 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 4565 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 4566 BS.cancelScheduling(VL, VL0); 4567 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4568 ReuseShuffleIndicies); 4569 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 4570 << "\n"); 4571 return; 4572 } 4573 // Some intrinsics have scalar arguments and should be same in order for 4574 // them to be vectorized. 4575 for (unsigned j = 0; j != NumArgs; ++j) { 4576 if (hasVectorInstrinsicScalarOpd(ID, j)) { 4577 Value *A1J = CI2->getArgOperand(j); 4578 if (ScalarArgs[j] != A1J) { 4579 BS.cancelScheduling(VL, VL0); 4580 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4581 ReuseShuffleIndicies); 4582 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 4583 << " argument " << ScalarArgs[j] << "!=" << A1J 4584 << "\n"); 4585 return; 4586 } 4587 } 4588 } 4589 // Verify that the bundle operands are identical between the two calls. 4590 if (CI->hasOperandBundles() && 4591 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 4592 CI->op_begin() + CI->getBundleOperandsEndIndex(), 4593 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 4594 BS.cancelScheduling(VL, VL0); 4595 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4596 ReuseShuffleIndicies); 4597 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 4598 << *CI << "!=" << *V << '\n'); 4599 return; 4600 } 4601 } 4602 4603 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4604 ReuseShuffleIndicies); 4605 TE->setOperandsInOrder(); 4606 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 4607 // For scalar operands no need to to create an entry since no need to 4608 // vectorize it. 4609 if (hasVectorInstrinsicScalarOpd(ID, i)) 4610 continue; 4611 ValueList Operands; 4612 // Prepare the operand vector. 4613 for (Value *V : VL) { 4614 auto *CI2 = cast<CallInst>(V); 4615 Operands.push_back(CI2->getArgOperand(i)); 4616 } 4617 buildTree_rec(Operands, Depth + 1, {TE, i}); 4618 } 4619 return; 4620 } 4621 case Instruction::ShuffleVector: { 4622 // If this is not an alternate sequence of opcode like add-sub 4623 // then do not vectorize this instruction. 4624 if (!S.isAltShuffle()) { 4625 BS.cancelScheduling(VL, VL0); 4626 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4627 ReuseShuffleIndicies); 4628 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 4629 return; 4630 } 4631 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4632 ReuseShuffleIndicies); 4633 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 4634 4635 // Reorder operands if reordering would enable vectorization. 4636 auto *CI = dyn_cast<CmpInst>(VL0); 4637 if (isa<BinaryOperator>(VL0) || CI) { 4638 ValueList Left, Right; 4639 if (!CI || all_of(VL, [](Value *V) { 4640 return cast<CmpInst>(V)->isCommutative(); 4641 })) { 4642 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4643 } else { 4644 CmpInst::Predicate P0 = CI->getPredicate(); 4645 CmpInst::Predicate AltP0 = cast<CmpInst>(S.AltOp)->getPredicate(); 4646 assert(P0 != AltP0 && 4647 "Expected different main/alternate predicates."); 4648 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 4649 Value *BaseOp0 = VL0->getOperand(0); 4650 Value *BaseOp1 = VL0->getOperand(1); 4651 // Collect operands - commute if it uses the swapped predicate or 4652 // alternate operation. 4653 for (Value *V : VL) { 4654 auto *Cmp = cast<CmpInst>(V); 4655 Value *LHS = Cmp->getOperand(0); 4656 Value *RHS = Cmp->getOperand(1); 4657 CmpInst::Predicate CurrentPred = Cmp->getPredicate(); 4658 if (P0 == AltP0Swapped) { 4659 if (CI != Cmp && S.AltOp != Cmp && 4660 ((P0 == CurrentPred && 4661 !areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)) || 4662 (AltP0 == CurrentPred && 4663 areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)))) 4664 std::swap(LHS, RHS); 4665 } else if (P0 != CurrentPred && AltP0 != CurrentPred) { 4666 std::swap(LHS, RHS); 4667 } 4668 Left.push_back(LHS); 4669 Right.push_back(RHS); 4670 } 4671 } 4672 TE->setOperand(0, Left); 4673 TE->setOperand(1, Right); 4674 buildTree_rec(Left, Depth + 1, {TE, 0}); 4675 buildTree_rec(Right, Depth + 1, {TE, 1}); 4676 return; 4677 } 4678 4679 TE->setOperandsInOrder(); 4680 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4681 ValueList Operands; 4682 // Prepare the operand vector. 4683 for (Value *V : VL) 4684 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4685 4686 buildTree_rec(Operands, Depth + 1, {TE, i}); 4687 } 4688 return; 4689 } 4690 default: 4691 BS.cancelScheduling(VL, VL0); 4692 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4693 ReuseShuffleIndicies); 4694 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 4695 return; 4696 } 4697 } 4698 4699 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 4700 unsigned N = 1; 4701 Type *EltTy = T; 4702 4703 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 4704 isa<VectorType>(EltTy)) { 4705 if (auto *ST = dyn_cast<StructType>(EltTy)) { 4706 // Check that struct is homogeneous. 4707 for (const auto *Ty : ST->elements()) 4708 if (Ty != *ST->element_begin()) 4709 return 0; 4710 N *= ST->getNumElements(); 4711 EltTy = *ST->element_begin(); 4712 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 4713 N *= AT->getNumElements(); 4714 EltTy = AT->getElementType(); 4715 } else { 4716 auto *VT = cast<FixedVectorType>(EltTy); 4717 N *= VT->getNumElements(); 4718 EltTy = VT->getElementType(); 4719 } 4720 } 4721 4722 if (!isValidElementType(EltTy)) 4723 return 0; 4724 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 4725 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 4726 return 0; 4727 return N; 4728 } 4729 4730 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 4731 SmallVectorImpl<unsigned> &CurrentOrder) const { 4732 const auto *It = find_if(VL, [](Value *V) { 4733 return isa<ExtractElementInst, ExtractValueInst>(V); 4734 }); 4735 assert(It != VL.end() && "Expected at least one extract instruction."); 4736 auto *E0 = cast<Instruction>(*It); 4737 assert(all_of(VL, 4738 [](Value *V) { 4739 return isa<UndefValue, ExtractElementInst, ExtractValueInst>( 4740 V); 4741 }) && 4742 "Invalid opcode"); 4743 // Check if all of the extracts come from the same vector and from the 4744 // correct offset. 4745 Value *Vec = E0->getOperand(0); 4746 4747 CurrentOrder.clear(); 4748 4749 // We have to extract from a vector/aggregate with the same number of elements. 4750 unsigned NElts; 4751 if (E0->getOpcode() == Instruction::ExtractValue) { 4752 const DataLayout &DL = E0->getModule()->getDataLayout(); 4753 NElts = canMapToVector(Vec->getType(), DL); 4754 if (!NElts) 4755 return false; 4756 // Check if load can be rewritten as load of vector. 4757 LoadInst *LI = dyn_cast<LoadInst>(Vec); 4758 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 4759 return false; 4760 } else { 4761 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 4762 } 4763 4764 if (NElts != VL.size()) 4765 return false; 4766 4767 // Check that all of the indices extract from the correct offset. 4768 bool ShouldKeepOrder = true; 4769 unsigned E = VL.size(); 4770 // Assign to all items the initial value E + 1 so we can check if the extract 4771 // instruction index was used already. 4772 // Also, later we can check that all the indices are used and we have a 4773 // consecutive access in the extract instructions, by checking that no 4774 // element of CurrentOrder still has value E + 1. 4775 CurrentOrder.assign(E, E); 4776 unsigned I = 0; 4777 for (; I < E; ++I) { 4778 auto *Inst = dyn_cast<Instruction>(VL[I]); 4779 if (!Inst) 4780 continue; 4781 if (Inst->getOperand(0) != Vec) 4782 break; 4783 if (auto *EE = dyn_cast<ExtractElementInst>(Inst)) 4784 if (isa<UndefValue>(EE->getIndexOperand())) 4785 continue; 4786 Optional<unsigned> Idx = getExtractIndex(Inst); 4787 if (!Idx) 4788 break; 4789 const unsigned ExtIdx = *Idx; 4790 if (ExtIdx != I) { 4791 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E) 4792 break; 4793 ShouldKeepOrder = false; 4794 CurrentOrder[ExtIdx] = I; 4795 } else { 4796 if (CurrentOrder[I] != E) 4797 break; 4798 CurrentOrder[I] = I; 4799 } 4800 } 4801 if (I < E) { 4802 CurrentOrder.clear(); 4803 return false; 4804 } 4805 if (ShouldKeepOrder) 4806 CurrentOrder.clear(); 4807 4808 return ShouldKeepOrder; 4809 } 4810 4811 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 4812 ArrayRef<Value *> VectorizedVals) const { 4813 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 4814 all_of(I->users(), [this](User *U) { 4815 return ScalarToTreeEntry.count(U) > 0 || 4816 isVectorLikeInstWithConstOps(U) || 4817 (isa<ExtractElementInst>(U) && MustGather.contains(U)); 4818 }); 4819 } 4820 4821 static std::pair<InstructionCost, InstructionCost> 4822 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 4823 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 4824 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4825 4826 // Calculate the cost of the scalar and vector calls. 4827 SmallVector<Type *, 4> VecTys; 4828 for (Use &Arg : CI->args()) 4829 VecTys.push_back( 4830 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 4831 FastMathFlags FMF; 4832 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 4833 FMF = FPCI->getFastMathFlags(); 4834 SmallVector<const Value *> Arguments(CI->args()); 4835 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 4836 dyn_cast<IntrinsicInst>(CI)); 4837 auto IntrinsicCost = 4838 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 4839 4840 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4841 VecTy->getNumElements())), 4842 false /*HasGlobalPred*/); 4843 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4844 auto LibCost = IntrinsicCost; 4845 if (!CI->isNoBuiltin() && VecFunc) { 4846 // Calculate the cost of the vector library call. 4847 // If the corresponding vector call is cheaper, return its cost. 4848 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 4849 TTI::TCK_RecipThroughput); 4850 } 4851 return {IntrinsicCost, LibCost}; 4852 } 4853 4854 /// Compute the cost of creating a vector of type \p VecTy containing the 4855 /// extracted values from \p VL. 4856 static InstructionCost 4857 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 4858 TargetTransformInfo::ShuffleKind ShuffleKind, 4859 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 4860 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 4861 4862 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 4863 VecTy->getNumElements() < NumOfParts) 4864 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 4865 4866 bool AllConsecutive = true; 4867 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 4868 unsigned Idx = -1; 4869 InstructionCost Cost = 0; 4870 4871 // Process extracts in blocks of EltsPerVector to check if the source vector 4872 // operand can be re-used directly. If not, add the cost of creating a shuffle 4873 // to extract the values into a vector register. 4874 for (auto *V : VL) { 4875 ++Idx; 4876 4877 // Need to exclude undefs from analysis. 4878 if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem) 4879 continue; 4880 4881 // Reached the start of a new vector registers. 4882 if (Idx % EltsPerVector == 0) { 4883 AllConsecutive = true; 4884 continue; 4885 } 4886 4887 // Check all extracts for a vector register on the target directly 4888 // extract values in order. 4889 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 4890 if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) { 4891 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 4892 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 4893 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 4894 } 4895 4896 if (AllConsecutive) 4897 continue; 4898 4899 // Skip all indices, except for the last index per vector block. 4900 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 4901 continue; 4902 4903 // If we have a series of extracts which are not consecutive and hence 4904 // cannot re-use the source vector register directly, compute the shuffle 4905 // cost to extract the a vector with EltsPerVector elements. 4906 Cost += TTI.getShuffleCost( 4907 TargetTransformInfo::SK_PermuteSingleSrc, 4908 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 4909 } 4910 return Cost; 4911 } 4912 4913 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 4914 /// operations operands. 4915 static void 4916 buildShuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 4917 ArrayRef<int> ReusesIndices, 4918 const function_ref<bool(Instruction *)> IsAltOp, 4919 SmallVectorImpl<int> &Mask, 4920 SmallVectorImpl<Value *> *OpScalars = nullptr, 4921 SmallVectorImpl<Value *> *AltScalars = nullptr) { 4922 unsigned Sz = VL.size(); 4923 Mask.assign(Sz, UndefMaskElem); 4924 SmallVector<int> OrderMask; 4925 if (!ReorderIndices.empty()) 4926 inversePermutation(ReorderIndices, OrderMask); 4927 for (unsigned I = 0; I < Sz; ++I) { 4928 unsigned Idx = I; 4929 if (!ReorderIndices.empty()) 4930 Idx = OrderMask[I]; 4931 auto *OpInst = cast<Instruction>(VL[Idx]); 4932 if (IsAltOp(OpInst)) { 4933 Mask[I] = Sz + Idx; 4934 if (AltScalars) 4935 AltScalars->push_back(OpInst); 4936 } else { 4937 Mask[I] = Idx; 4938 if (OpScalars) 4939 OpScalars->push_back(OpInst); 4940 } 4941 } 4942 if (!ReusesIndices.empty()) { 4943 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 4944 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 4945 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 4946 }); 4947 Mask.swap(NewMask); 4948 } 4949 } 4950 4951 /// Checks if the specified instruction \p I is an alternate operation for the 4952 /// given \p MainOp and \p AltOp instructions. 4953 static bool isAlternateInstruction(const Instruction *I, 4954 const Instruction *MainOp, 4955 const Instruction *AltOp) { 4956 if (auto *CI0 = dyn_cast<CmpInst>(MainOp)) { 4957 auto *AltCI0 = cast<CmpInst>(AltOp); 4958 auto *CI = cast<CmpInst>(I); 4959 CmpInst::Predicate P0 = CI0->getPredicate(); 4960 CmpInst::Predicate AltP0 = AltCI0->getPredicate(); 4961 assert(P0 != AltP0 && "Expected different main/alternate predicates."); 4962 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 4963 CmpInst::Predicate CurrentPred = CI->getPredicate(); 4964 if (P0 == AltP0Swapped) 4965 return I == AltCI0 || 4966 (I != MainOp && 4967 !areCompatibleCmpOps(CI0->getOperand(0), CI0->getOperand(1), 4968 CI->getOperand(0), CI->getOperand(1))); 4969 return AltP0 == CurrentPred || AltP0Swapped == CurrentPred; 4970 } 4971 return I->getOpcode() == AltOp->getOpcode(); 4972 } 4973 4974 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 4975 ArrayRef<Value *> VectorizedVals) { 4976 ArrayRef<Value*> VL = E->Scalars; 4977 4978 Type *ScalarTy = VL[0]->getType(); 4979 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4980 ScalarTy = SI->getValueOperand()->getType(); 4981 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 4982 ScalarTy = CI->getOperand(0)->getType(); 4983 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 4984 ScalarTy = IE->getOperand(1)->getType(); 4985 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4986 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 4987 4988 // If we have computed a smaller type for the expression, update VecTy so 4989 // that the costs will be accurate. 4990 if (MinBWs.count(VL[0])) 4991 VecTy = FixedVectorType::get( 4992 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 4993 unsigned EntryVF = E->getVectorFactor(); 4994 auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF); 4995 4996 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4997 // FIXME: it tries to fix a problem with MSVC buildbots. 4998 TargetTransformInfo &TTIRef = *TTI; 4999 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 5000 VectorizedVals, E](InstructionCost &Cost) { 5001 DenseMap<Value *, int> ExtractVectorsTys; 5002 SmallPtrSet<Value *, 4> CheckedExtracts; 5003 for (auto *V : VL) { 5004 if (isa<UndefValue>(V)) 5005 continue; 5006 // If all users of instruction are going to be vectorized and this 5007 // instruction itself is not going to be vectorized, consider this 5008 // instruction as dead and remove its cost from the final cost of the 5009 // vectorized tree. 5010 // Also, avoid adjusting the cost for extractelements with multiple uses 5011 // in different graph entries. 5012 const TreeEntry *VE = getTreeEntry(V); 5013 if (!CheckedExtracts.insert(V).second || 5014 !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 5015 (VE && VE != E)) 5016 continue; 5017 auto *EE = cast<ExtractElementInst>(V); 5018 Optional<unsigned> EEIdx = getExtractIndex(EE); 5019 if (!EEIdx) 5020 continue; 5021 unsigned Idx = *EEIdx; 5022 if (TTIRef.getNumberOfParts(VecTy) != 5023 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 5024 auto It = 5025 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 5026 It->getSecond() = std::min<int>(It->second, Idx); 5027 } 5028 // Take credit for instruction that will become dead. 5029 if (EE->hasOneUse()) { 5030 Instruction *Ext = EE->user_back(); 5031 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5032 all_of(Ext->users(), 5033 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5034 // Use getExtractWithExtendCost() to calculate the cost of 5035 // extractelement/ext pair. 5036 Cost -= 5037 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 5038 EE->getVectorOperandType(), Idx); 5039 // Add back the cost of s|zext which is subtracted separately. 5040 Cost += TTIRef.getCastInstrCost( 5041 Ext->getOpcode(), Ext->getType(), EE->getType(), 5042 TTI::getCastContextHint(Ext), CostKind, Ext); 5043 continue; 5044 } 5045 } 5046 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 5047 EE->getVectorOperandType(), Idx); 5048 } 5049 // Add a cost for subvector extracts/inserts if required. 5050 for (const auto &Data : ExtractVectorsTys) { 5051 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 5052 unsigned NumElts = VecTy->getNumElements(); 5053 if (Data.second % NumElts == 0) 5054 continue; 5055 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 5056 unsigned Idx = (Data.second / NumElts) * NumElts; 5057 unsigned EENumElts = EEVTy->getNumElements(); 5058 if (Idx + NumElts <= EENumElts) { 5059 Cost += 5060 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5061 EEVTy, None, Idx, VecTy); 5062 } else { 5063 // Need to round up the subvector type vectorization factor to avoid a 5064 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 5065 // <= EENumElts. 5066 auto *SubVT = 5067 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 5068 Cost += 5069 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5070 EEVTy, None, Idx, SubVT); 5071 } 5072 } else { 5073 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 5074 VecTy, None, 0, EEVTy); 5075 } 5076 } 5077 }; 5078 if (E->State == TreeEntry::NeedToGather) { 5079 if (allConstant(VL)) 5080 return 0; 5081 if (isa<InsertElementInst>(VL[0])) 5082 return InstructionCost::getInvalid(); 5083 SmallVector<int> Mask; 5084 SmallVector<const TreeEntry *> Entries; 5085 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 5086 isGatherShuffledEntry(E, Mask, Entries); 5087 if (Shuffle.hasValue()) { 5088 InstructionCost GatherCost = 0; 5089 if (ShuffleVectorInst::isIdentityMask(Mask)) { 5090 // Perfect match in the graph, will reuse the previously vectorized 5091 // node. Cost is 0. 5092 LLVM_DEBUG( 5093 dbgs() 5094 << "SLP: perfect diamond match for gather bundle that starts with " 5095 << *VL.front() << ".\n"); 5096 if (NeedToShuffleReuses) 5097 GatherCost = 5098 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5099 FinalVecTy, E->ReuseShuffleIndices); 5100 } else { 5101 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 5102 << " entries for bundle that starts with " 5103 << *VL.front() << ".\n"); 5104 // Detected that instead of gather we can emit a shuffle of single/two 5105 // previously vectorized nodes. Add the cost of the permutation rather 5106 // than gather. 5107 ::addMask(Mask, E->ReuseShuffleIndices); 5108 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 5109 } 5110 return GatherCost; 5111 } 5112 if ((E->getOpcode() == Instruction::ExtractElement || 5113 all_of(E->Scalars, 5114 [](Value *V) { 5115 return isa<ExtractElementInst, UndefValue>(V); 5116 })) && 5117 allSameType(VL)) { 5118 // Check that gather of extractelements can be represented as just a 5119 // shuffle of a single/two vectors the scalars are extracted from. 5120 SmallVector<int> Mask; 5121 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 5122 isFixedVectorShuffle(VL, Mask); 5123 if (ShuffleKind.hasValue()) { 5124 // Found the bunch of extractelement instructions that must be gathered 5125 // into a vector and can be represented as a permutation elements in a 5126 // single input vector or of 2 input vectors. 5127 InstructionCost Cost = 5128 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 5129 AdjustExtractsCost(Cost); 5130 if (NeedToShuffleReuses) 5131 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5132 FinalVecTy, E->ReuseShuffleIndices); 5133 return Cost; 5134 } 5135 } 5136 if (isSplat(VL)) { 5137 // Found the broadcasting of the single scalar, calculate the cost as the 5138 // broadcast. 5139 assert(VecTy == FinalVecTy && 5140 "No reused scalars expected for broadcast."); 5141 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy); 5142 } 5143 InstructionCost ReuseShuffleCost = 0; 5144 if (NeedToShuffleReuses) 5145 ReuseShuffleCost = TTI->getShuffleCost( 5146 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 5147 // Improve gather cost for gather of loads, if we can group some of the 5148 // loads into vector loads. 5149 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 5150 !E->isAltShuffle()) { 5151 BoUpSLP::ValueSet VectorizedLoads; 5152 unsigned StartIdx = 0; 5153 unsigned VF = VL.size() / 2; 5154 unsigned VectorizedCnt = 0; 5155 unsigned ScatterVectorizeCnt = 0; 5156 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 5157 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 5158 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 5159 Cnt += VF) { 5160 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 5161 if (!VectorizedLoads.count(Slice.front()) && 5162 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 5163 SmallVector<Value *> PointerOps; 5164 OrdersType CurrentOrder; 5165 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 5166 *SE, CurrentOrder, PointerOps); 5167 switch (LS) { 5168 case LoadsState::Vectorize: 5169 case LoadsState::ScatterVectorize: 5170 // Mark the vectorized loads so that we don't vectorize them 5171 // again. 5172 if (LS == LoadsState::Vectorize) 5173 ++VectorizedCnt; 5174 else 5175 ++ScatterVectorizeCnt; 5176 VectorizedLoads.insert(Slice.begin(), Slice.end()); 5177 // If we vectorized initial block, no need to try to vectorize it 5178 // again. 5179 if (Cnt == StartIdx) 5180 StartIdx += VF; 5181 break; 5182 case LoadsState::Gather: 5183 break; 5184 } 5185 } 5186 } 5187 // Check if the whole array was vectorized already - exit. 5188 if (StartIdx >= VL.size()) 5189 break; 5190 // Found vectorizable parts - exit. 5191 if (!VectorizedLoads.empty()) 5192 break; 5193 } 5194 if (!VectorizedLoads.empty()) { 5195 InstructionCost GatherCost = 0; 5196 unsigned NumParts = TTI->getNumberOfParts(VecTy); 5197 bool NeedInsertSubvectorAnalysis = 5198 !NumParts || (VL.size() / VF) > NumParts; 5199 // Get the cost for gathered loads. 5200 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 5201 if (VectorizedLoads.contains(VL[I])) 5202 continue; 5203 GatherCost += getGatherCost(VL.slice(I, VF)); 5204 } 5205 // The cost for vectorized loads. 5206 InstructionCost ScalarsCost = 0; 5207 for (Value *V : VectorizedLoads) { 5208 auto *LI = cast<LoadInst>(V); 5209 ScalarsCost += TTI->getMemoryOpCost( 5210 Instruction::Load, LI->getType(), LI->getAlign(), 5211 LI->getPointerAddressSpace(), CostKind, LI); 5212 } 5213 auto *LI = cast<LoadInst>(E->getMainOp()); 5214 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 5215 Align Alignment = LI->getAlign(); 5216 GatherCost += 5217 VectorizedCnt * 5218 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 5219 LI->getPointerAddressSpace(), CostKind, LI); 5220 GatherCost += ScatterVectorizeCnt * 5221 TTI->getGatherScatterOpCost( 5222 Instruction::Load, LoadTy, LI->getPointerOperand(), 5223 /*VariableMask=*/false, Alignment, CostKind, LI); 5224 if (NeedInsertSubvectorAnalysis) { 5225 // Add the cost for the subvectors insert. 5226 for (int I = VF, E = VL.size(); I < E; I += VF) 5227 GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy, 5228 None, I, LoadTy); 5229 } 5230 return ReuseShuffleCost + GatherCost - ScalarsCost; 5231 } 5232 } 5233 return ReuseShuffleCost + getGatherCost(VL); 5234 } 5235 InstructionCost CommonCost = 0; 5236 SmallVector<int> Mask; 5237 if (!E->ReorderIndices.empty()) { 5238 SmallVector<int> NewMask; 5239 if (E->getOpcode() == Instruction::Store) { 5240 // For stores the order is actually a mask. 5241 NewMask.resize(E->ReorderIndices.size()); 5242 copy(E->ReorderIndices, NewMask.begin()); 5243 } else { 5244 inversePermutation(E->ReorderIndices, NewMask); 5245 } 5246 ::addMask(Mask, NewMask); 5247 } 5248 if (NeedToShuffleReuses) 5249 ::addMask(Mask, E->ReuseShuffleIndices); 5250 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 5251 CommonCost = 5252 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 5253 assert((E->State == TreeEntry::Vectorize || 5254 E->State == TreeEntry::ScatterVectorize) && 5255 "Unhandled state"); 5256 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 5257 Instruction *VL0 = E->getMainOp(); 5258 unsigned ShuffleOrOp = 5259 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 5260 switch (ShuffleOrOp) { 5261 case Instruction::PHI: 5262 return 0; 5263 5264 case Instruction::ExtractValue: 5265 case Instruction::ExtractElement: { 5266 // The common cost of removal ExtractElement/ExtractValue instructions + 5267 // the cost of shuffles, if required to resuffle the original vector. 5268 if (NeedToShuffleReuses) { 5269 unsigned Idx = 0; 5270 for (unsigned I : E->ReuseShuffleIndices) { 5271 if (ShuffleOrOp == Instruction::ExtractElement) { 5272 auto *EE = cast<ExtractElementInst>(VL[I]); 5273 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5274 EE->getVectorOperandType(), 5275 *getExtractIndex(EE)); 5276 } else { 5277 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5278 VecTy, Idx); 5279 ++Idx; 5280 } 5281 } 5282 Idx = EntryVF; 5283 for (Value *V : VL) { 5284 if (ShuffleOrOp == Instruction::ExtractElement) { 5285 auto *EE = cast<ExtractElementInst>(V); 5286 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5287 EE->getVectorOperandType(), 5288 *getExtractIndex(EE)); 5289 } else { 5290 --Idx; 5291 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5292 VecTy, Idx); 5293 } 5294 } 5295 } 5296 if (ShuffleOrOp == Instruction::ExtractValue) { 5297 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 5298 auto *EI = cast<Instruction>(VL[I]); 5299 // Take credit for instruction that will become dead. 5300 if (EI->hasOneUse()) { 5301 Instruction *Ext = EI->user_back(); 5302 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5303 all_of(Ext->users(), 5304 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5305 // Use getExtractWithExtendCost() to calculate the cost of 5306 // extractelement/ext pair. 5307 CommonCost -= TTI->getExtractWithExtendCost( 5308 Ext->getOpcode(), Ext->getType(), VecTy, I); 5309 // Add back the cost of s|zext which is subtracted separately. 5310 CommonCost += TTI->getCastInstrCost( 5311 Ext->getOpcode(), Ext->getType(), EI->getType(), 5312 TTI::getCastContextHint(Ext), CostKind, Ext); 5313 continue; 5314 } 5315 } 5316 CommonCost -= 5317 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 5318 } 5319 } else { 5320 AdjustExtractsCost(CommonCost); 5321 } 5322 return CommonCost; 5323 } 5324 case Instruction::InsertElement: { 5325 assert(E->ReuseShuffleIndices.empty() && 5326 "Unique insertelements only are expected."); 5327 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 5328 5329 unsigned const NumElts = SrcVecTy->getNumElements(); 5330 unsigned const NumScalars = VL.size(); 5331 APInt DemandedElts = APInt::getZero(NumElts); 5332 // TODO: Add support for Instruction::InsertValue. 5333 SmallVector<int> Mask; 5334 if (!E->ReorderIndices.empty()) { 5335 inversePermutation(E->ReorderIndices, Mask); 5336 Mask.append(NumElts - NumScalars, UndefMaskElem); 5337 } else { 5338 Mask.assign(NumElts, UndefMaskElem); 5339 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 5340 } 5341 unsigned Offset = *getInsertIndex(VL0); 5342 bool IsIdentity = true; 5343 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 5344 Mask.swap(PrevMask); 5345 for (unsigned I = 0; I < NumScalars; ++I) { 5346 unsigned InsertIdx = *getInsertIndex(VL[PrevMask[I]]); 5347 DemandedElts.setBit(InsertIdx); 5348 IsIdentity &= InsertIdx - Offset == I; 5349 Mask[InsertIdx - Offset] = I; 5350 } 5351 assert(Offset < NumElts && "Failed to find vector index offset"); 5352 5353 InstructionCost Cost = 0; 5354 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 5355 /*Insert*/ true, /*Extract*/ false); 5356 5357 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 5358 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 5359 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 5360 Cost += TTI->getShuffleCost( 5361 TargetTransformInfo::SK_PermuteSingleSrc, 5362 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 5363 } else if (!IsIdentity) { 5364 auto *FirstInsert = 5365 cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 5366 return !is_contained(E->Scalars, 5367 cast<Instruction>(V)->getOperand(0)); 5368 })); 5369 if (isUndefVector(FirstInsert->getOperand(0))) { 5370 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask); 5371 } else { 5372 SmallVector<int> InsertMask(NumElts); 5373 std::iota(InsertMask.begin(), InsertMask.end(), 0); 5374 for (unsigned I = 0; I < NumElts; I++) { 5375 if (Mask[I] != UndefMaskElem) 5376 InsertMask[Offset + I] = NumElts + I; 5377 } 5378 Cost += 5379 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask); 5380 } 5381 } 5382 5383 return Cost; 5384 } 5385 case Instruction::ZExt: 5386 case Instruction::SExt: 5387 case Instruction::FPToUI: 5388 case Instruction::FPToSI: 5389 case Instruction::FPExt: 5390 case Instruction::PtrToInt: 5391 case Instruction::IntToPtr: 5392 case Instruction::SIToFP: 5393 case Instruction::UIToFP: 5394 case Instruction::Trunc: 5395 case Instruction::FPTrunc: 5396 case Instruction::BitCast: { 5397 Type *SrcTy = VL0->getOperand(0)->getType(); 5398 InstructionCost ScalarEltCost = 5399 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 5400 TTI::getCastContextHint(VL0), CostKind, VL0); 5401 if (NeedToShuffleReuses) { 5402 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5403 } 5404 5405 // Calculate the cost of this instruction. 5406 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 5407 5408 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 5409 InstructionCost VecCost = 0; 5410 // Check if the values are candidates to demote. 5411 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 5412 VecCost = CommonCost + TTI->getCastInstrCost( 5413 E->getOpcode(), VecTy, SrcVecTy, 5414 TTI::getCastContextHint(VL0), CostKind, VL0); 5415 } 5416 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5417 return VecCost - ScalarCost; 5418 } 5419 case Instruction::FCmp: 5420 case Instruction::ICmp: 5421 case Instruction::Select: { 5422 // Calculate the cost of this instruction. 5423 InstructionCost ScalarEltCost = 5424 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5425 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 5426 if (NeedToShuffleReuses) { 5427 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5428 } 5429 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 5430 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5431 5432 // Check if all entries in VL are either compares or selects with compares 5433 // as condition that have the same predicates. 5434 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 5435 bool First = true; 5436 for (auto *V : VL) { 5437 CmpInst::Predicate CurrentPred; 5438 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 5439 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 5440 !match(V, MatchCmp)) || 5441 (!First && VecPred != CurrentPred)) { 5442 VecPred = CmpInst::BAD_ICMP_PREDICATE; 5443 break; 5444 } 5445 First = false; 5446 VecPred = CurrentPred; 5447 } 5448 5449 InstructionCost VecCost = TTI->getCmpSelInstrCost( 5450 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 5451 // Check if it is possible and profitable to use min/max for selects in 5452 // VL. 5453 // 5454 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 5455 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 5456 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 5457 {VecTy, VecTy}); 5458 InstructionCost IntrinsicCost = 5459 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5460 // If the selects are the only uses of the compares, they will be dead 5461 // and we can adjust the cost by removing their cost. 5462 if (IntrinsicAndUse.second) 5463 IntrinsicCost -= TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, 5464 MaskTy, VecPred, CostKind); 5465 VecCost = std::min(VecCost, IntrinsicCost); 5466 } 5467 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5468 return CommonCost + VecCost - ScalarCost; 5469 } 5470 case Instruction::FNeg: 5471 case Instruction::Add: 5472 case Instruction::FAdd: 5473 case Instruction::Sub: 5474 case Instruction::FSub: 5475 case Instruction::Mul: 5476 case Instruction::FMul: 5477 case Instruction::UDiv: 5478 case Instruction::SDiv: 5479 case Instruction::FDiv: 5480 case Instruction::URem: 5481 case Instruction::SRem: 5482 case Instruction::FRem: 5483 case Instruction::Shl: 5484 case Instruction::LShr: 5485 case Instruction::AShr: 5486 case Instruction::And: 5487 case Instruction::Or: 5488 case Instruction::Xor: { 5489 // Certain instructions can be cheaper to vectorize if they have a 5490 // constant second vector operand. 5491 TargetTransformInfo::OperandValueKind Op1VK = 5492 TargetTransformInfo::OK_AnyValue; 5493 TargetTransformInfo::OperandValueKind Op2VK = 5494 TargetTransformInfo::OK_UniformConstantValue; 5495 TargetTransformInfo::OperandValueProperties Op1VP = 5496 TargetTransformInfo::OP_None; 5497 TargetTransformInfo::OperandValueProperties Op2VP = 5498 TargetTransformInfo::OP_PowerOf2; 5499 5500 // If all operands are exactly the same ConstantInt then set the 5501 // operand kind to OK_UniformConstantValue. 5502 // If instead not all operands are constants, then set the operand kind 5503 // to OK_AnyValue. If all operands are constants but not the same, 5504 // then set the operand kind to OK_NonUniformConstantValue. 5505 ConstantInt *CInt0 = nullptr; 5506 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 5507 const Instruction *I = cast<Instruction>(VL[i]); 5508 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 5509 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 5510 if (!CInt) { 5511 Op2VK = TargetTransformInfo::OK_AnyValue; 5512 Op2VP = TargetTransformInfo::OP_None; 5513 break; 5514 } 5515 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 5516 !CInt->getValue().isPowerOf2()) 5517 Op2VP = TargetTransformInfo::OP_None; 5518 if (i == 0) { 5519 CInt0 = CInt; 5520 continue; 5521 } 5522 if (CInt0 != CInt) 5523 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5524 } 5525 5526 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 5527 InstructionCost ScalarEltCost = 5528 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 5529 Op2VK, Op1VP, Op2VP, Operands, VL0); 5530 if (NeedToShuffleReuses) { 5531 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5532 } 5533 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5534 InstructionCost VecCost = 5535 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 5536 Op2VK, Op1VP, Op2VP, Operands, VL0); 5537 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5538 return CommonCost + VecCost - ScalarCost; 5539 } 5540 case Instruction::GetElementPtr: { 5541 TargetTransformInfo::OperandValueKind Op1VK = 5542 TargetTransformInfo::OK_AnyValue; 5543 TargetTransformInfo::OperandValueKind Op2VK = 5544 TargetTransformInfo::OK_UniformConstantValue; 5545 5546 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 5547 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 5548 if (NeedToShuffleReuses) { 5549 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5550 } 5551 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5552 InstructionCost VecCost = TTI->getArithmeticInstrCost( 5553 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 5554 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5555 return CommonCost + VecCost - ScalarCost; 5556 } 5557 case Instruction::Load: { 5558 // Cost of wide load - cost of scalar loads. 5559 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 5560 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5561 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 5562 if (NeedToShuffleReuses) { 5563 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5564 } 5565 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 5566 InstructionCost VecLdCost; 5567 if (E->State == TreeEntry::Vectorize) { 5568 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 5569 CostKind, VL0); 5570 } else { 5571 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 5572 Align CommonAlignment = Alignment; 5573 for (Value *V : VL) 5574 CommonAlignment = 5575 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 5576 VecLdCost = TTI->getGatherScatterOpCost( 5577 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 5578 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 5579 } 5580 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 5581 return CommonCost + VecLdCost - ScalarLdCost; 5582 } 5583 case Instruction::Store: { 5584 // We know that we can merge the stores. Calculate the cost. 5585 bool IsReorder = !E->ReorderIndices.empty(); 5586 auto *SI = 5587 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 5588 Align Alignment = SI->getAlign(); 5589 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5590 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 5591 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 5592 InstructionCost VecStCost = TTI->getMemoryOpCost( 5593 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 5594 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 5595 return CommonCost + VecStCost - ScalarStCost; 5596 } 5597 case Instruction::Call: { 5598 CallInst *CI = cast<CallInst>(VL0); 5599 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5600 5601 // Calculate the cost of the scalar and vector calls. 5602 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 5603 InstructionCost ScalarEltCost = 5604 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5605 if (NeedToShuffleReuses) { 5606 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5607 } 5608 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 5609 5610 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 5611 InstructionCost VecCallCost = 5612 std::min(VecCallCosts.first, VecCallCosts.second); 5613 5614 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 5615 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 5616 << " for " << *CI << "\n"); 5617 5618 return CommonCost + VecCallCost - ScalarCallCost; 5619 } 5620 case Instruction::ShuffleVector: { 5621 assert(E->isAltShuffle() && 5622 ((Instruction::isBinaryOp(E->getOpcode()) && 5623 Instruction::isBinaryOp(E->getAltOpcode())) || 5624 (Instruction::isCast(E->getOpcode()) && 5625 Instruction::isCast(E->getAltOpcode())) || 5626 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 5627 "Invalid Shuffle Vector Operand"); 5628 InstructionCost ScalarCost = 0; 5629 if (NeedToShuffleReuses) { 5630 for (unsigned Idx : E->ReuseShuffleIndices) { 5631 Instruction *I = cast<Instruction>(VL[Idx]); 5632 CommonCost -= TTI->getInstructionCost(I, CostKind); 5633 } 5634 for (Value *V : VL) { 5635 Instruction *I = cast<Instruction>(V); 5636 CommonCost += TTI->getInstructionCost(I, CostKind); 5637 } 5638 } 5639 for (Value *V : VL) { 5640 Instruction *I = cast<Instruction>(V); 5641 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5642 ScalarCost += TTI->getInstructionCost(I, CostKind); 5643 } 5644 // VecCost is equal to sum of the cost of creating 2 vectors 5645 // and the cost of creating shuffle. 5646 InstructionCost VecCost = 0; 5647 // Try to find the previous shuffle node with the same operands and same 5648 // main/alternate ops. 5649 auto &&TryFindNodeWithEqualOperands = [this, E]() { 5650 for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 5651 if (TE.get() == E) 5652 break; 5653 if (TE->isAltShuffle() && 5654 ((TE->getOpcode() == E->getOpcode() && 5655 TE->getAltOpcode() == E->getAltOpcode()) || 5656 (TE->getOpcode() == E->getAltOpcode() && 5657 TE->getAltOpcode() == E->getOpcode())) && 5658 TE->hasEqualOperands(*E)) 5659 return true; 5660 } 5661 return false; 5662 }; 5663 if (TryFindNodeWithEqualOperands()) { 5664 LLVM_DEBUG({ 5665 dbgs() << "SLP: diamond match for alternate node found.\n"; 5666 E->dump(); 5667 }); 5668 // No need to add new vector costs here since we're going to reuse 5669 // same main/alternate vector ops, just do different shuffling. 5670 } else if (Instruction::isBinaryOp(E->getOpcode())) { 5671 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 5672 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 5673 CostKind); 5674 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 5675 VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 5676 Builder.getInt1Ty(), 5677 CI0->getPredicate(), CostKind, VL0); 5678 VecCost += TTI->getCmpSelInstrCost( 5679 E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5680 cast<CmpInst>(E->getAltOp())->getPredicate(), CostKind, 5681 E->getAltOp()); 5682 } else { 5683 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 5684 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 5685 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 5686 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 5687 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 5688 TTI::CastContextHint::None, CostKind); 5689 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 5690 TTI::CastContextHint::None, CostKind); 5691 } 5692 5693 SmallVector<int> Mask; 5694 buildShuffleEntryMask( 5695 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 5696 [E](Instruction *I) { 5697 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5698 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 5699 }, 5700 Mask); 5701 CommonCost = 5702 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy, Mask); 5703 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5704 return CommonCost + VecCost - ScalarCost; 5705 } 5706 default: 5707 llvm_unreachable("Unknown instruction"); 5708 } 5709 } 5710 5711 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { 5712 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 5713 << VectorizableTree.size() << " is fully vectorizable .\n"); 5714 5715 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { 5716 SmallVector<int> Mask; 5717 return TE->State == TreeEntry::NeedToGather && 5718 !any_of(TE->Scalars, 5719 [this](Value *V) { return EphValues.contains(V); }) && 5720 (allConstant(TE->Scalars) || isSplat(TE->Scalars) || 5721 TE->Scalars.size() < Limit || 5722 ((TE->getOpcode() == Instruction::ExtractElement || 5723 all_of(TE->Scalars, 5724 [](Value *V) { 5725 return isa<ExtractElementInst, UndefValue>(V); 5726 })) && 5727 isFixedVectorShuffle(TE->Scalars, Mask)) || 5728 (TE->State == TreeEntry::NeedToGather && 5729 TE->getOpcode() == Instruction::Load && !TE->isAltShuffle())); 5730 }; 5731 5732 // We only handle trees of heights 1 and 2. 5733 if (VectorizableTree.size() == 1 && 5734 (VectorizableTree[0]->State == TreeEntry::Vectorize || 5735 (ForReduction && 5736 AreVectorizableGathers(VectorizableTree[0].get(), 5737 VectorizableTree[0]->Scalars.size()) && 5738 VectorizableTree[0]->getVectorFactor() > 2))) 5739 return true; 5740 5741 if (VectorizableTree.size() != 2) 5742 return false; 5743 5744 // Handle splat and all-constants stores. Also try to vectorize tiny trees 5745 // with the second gather nodes if they have less scalar operands rather than 5746 // the initial tree element (may be profitable to shuffle the second gather) 5747 // or they are extractelements, which form shuffle. 5748 SmallVector<int> Mask; 5749 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 5750 AreVectorizableGathers(VectorizableTree[1].get(), 5751 VectorizableTree[0]->Scalars.size())) 5752 return true; 5753 5754 // Gathering cost would be too much for tiny trees. 5755 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 5756 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 5757 VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) 5758 return false; 5759 5760 return true; 5761 } 5762 5763 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 5764 TargetTransformInfo *TTI, 5765 bool MustMatchOrInst) { 5766 // Look past the root to find a source value. Arbitrarily follow the 5767 // path through operand 0 of any 'or'. Also, peek through optional 5768 // shift-left-by-multiple-of-8-bits. 5769 Value *ZextLoad = Root; 5770 const APInt *ShAmtC; 5771 bool FoundOr = false; 5772 while (!isa<ConstantExpr>(ZextLoad) && 5773 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 5774 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 5775 ShAmtC->urem(8) == 0))) { 5776 auto *BinOp = cast<BinaryOperator>(ZextLoad); 5777 ZextLoad = BinOp->getOperand(0); 5778 if (BinOp->getOpcode() == Instruction::Or) 5779 FoundOr = true; 5780 } 5781 // Check if the input is an extended load of the required or/shift expression. 5782 Value *Load; 5783 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 5784 !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load)) 5785 return false; 5786 5787 // Require that the total load bit width is a legal integer type. 5788 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 5789 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 5790 Type *SrcTy = Load->getType(); 5791 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 5792 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 5793 return false; 5794 5795 // Everything matched - assume that we can fold the whole sequence using 5796 // load combining. 5797 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 5798 << *(cast<Instruction>(Root)) << "\n"); 5799 5800 return true; 5801 } 5802 5803 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 5804 if (RdxKind != RecurKind::Or) 5805 return false; 5806 5807 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5808 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 5809 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 5810 /* MatchOr */ false); 5811 } 5812 5813 bool BoUpSLP::isLoadCombineCandidate() const { 5814 // Peek through a final sequence of stores and check if all operations are 5815 // likely to be load-combined. 5816 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5817 for (Value *Scalar : VectorizableTree[0]->Scalars) { 5818 Value *X; 5819 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 5820 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 5821 return false; 5822 } 5823 return true; 5824 } 5825 5826 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { 5827 // No need to vectorize inserts of gathered values. 5828 if (VectorizableTree.size() == 2 && 5829 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 5830 VectorizableTree[1]->State == TreeEntry::NeedToGather) 5831 return true; 5832 5833 // We can vectorize the tree if its size is greater than or equal to the 5834 // minimum size specified by the MinTreeSize command line option. 5835 if (VectorizableTree.size() >= MinTreeSize) 5836 return false; 5837 5838 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 5839 // can vectorize it if we can prove it fully vectorizable. 5840 if (isFullyVectorizableTinyTree(ForReduction)) 5841 return false; 5842 5843 assert(VectorizableTree.empty() 5844 ? ExternalUses.empty() 5845 : true && "We shouldn't have any external users"); 5846 5847 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 5848 // vectorizable. 5849 return true; 5850 } 5851 5852 InstructionCost BoUpSLP::getSpillCost() const { 5853 // Walk from the bottom of the tree to the top, tracking which values are 5854 // live. When we see a call instruction that is not part of our tree, 5855 // query TTI to see if there is a cost to keeping values live over it 5856 // (for example, if spills and fills are required). 5857 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 5858 InstructionCost Cost = 0; 5859 5860 SmallPtrSet<Instruction*, 4> LiveValues; 5861 Instruction *PrevInst = nullptr; 5862 5863 // The entries in VectorizableTree are not necessarily ordered by their 5864 // position in basic blocks. Collect them and order them by dominance so later 5865 // instructions are guaranteed to be visited first. For instructions in 5866 // different basic blocks, we only scan to the beginning of the block, so 5867 // their order does not matter, as long as all instructions in a basic block 5868 // are grouped together. Using dominance ensures a deterministic order. 5869 SmallVector<Instruction *, 16> OrderedScalars; 5870 for (const auto &TEPtr : VectorizableTree) { 5871 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 5872 if (!Inst) 5873 continue; 5874 OrderedScalars.push_back(Inst); 5875 } 5876 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 5877 auto *NodeA = DT->getNode(A->getParent()); 5878 auto *NodeB = DT->getNode(B->getParent()); 5879 assert(NodeA && "Should only process reachable instructions"); 5880 assert(NodeB && "Should only process reachable instructions"); 5881 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 5882 "Different nodes should have different DFS numbers"); 5883 if (NodeA != NodeB) 5884 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 5885 return B->comesBefore(A); 5886 }); 5887 5888 for (Instruction *Inst : OrderedScalars) { 5889 if (!PrevInst) { 5890 PrevInst = Inst; 5891 continue; 5892 } 5893 5894 // Update LiveValues. 5895 LiveValues.erase(PrevInst); 5896 for (auto &J : PrevInst->operands()) { 5897 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 5898 LiveValues.insert(cast<Instruction>(&*J)); 5899 } 5900 5901 LLVM_DEBUG({ 5902 dbgs() << "SLP: #LV: " << LiveValues.size(); 5903 for (auto *X : LiveValues) 5904 dbgs() << " " << X->getName(); 5905 dbgs() << ", Looking at "; 5906 Inst->dump(); 5907 }); 5908 5909 // Now find the sequence of instructions between PrevInst and Inst. 5910 unsigned NumCalls = 0; 5911 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 5912 PrevInstIt = 5913 PrevInst->getIterator().getReverse(); 5914 while (InstIt != PrevInstIt) { 5915 if (PrevInstIt == PrevInst->getParent()->rend()) { 5916 PrevInstIt = Inst->getParent()->rbegin(); 5917 continue; 5918 } 5919 5920 // Debug information does not impact spill cost. 5921 if ((isa<CallInst>(&*PrevInstIt) && 5922 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 5923 &*PrevInstIt != PrevInst) 5924 NumCalls++; 5925 5926 ++PrevInstIt; 5927 } 5928 5929 if (NumCalls) { 5930 SmallVector<Type*, 4> V; 5931 for (auto *II : LiveValues) { 5932 auto *ScalarTy = II->getType(); 5933 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 5934 ScalarTy = VectorTy->getElementType(); 5935 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 5936 } 5937 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 5938 } 5939 5940 PrevInst = Inst; 5941 } 5942 5943 return Cost; 5944 } 5945 5946 /// Check if two insertelement instructions are from the same buildvector. 5947 static bool areTwoInsertFromSameBuildVector(InsertElementInst *VU, 5948 InsertElementInst *V) { 5949 // Instructions must be from the same basic blocks. 5950 if (VU->getParent() != V->getParent()) 5951 return false; 5952 // Checks if 2 insertelements are from the same buildvector. 5953 if (VU->getType() != V->getType()) 5954 return false; 5955 // Multiple used inserts are separate nodes. 5956 if (!VU->hasOneUse() && !V->hasOneUse()) 5957 return false; 5958 auto *IE1 = VU; 5959 auto *IE2 = V; 5960 // Go through the vector operand of insertelement instructions trying to find 5961 // either VU as the original vector for IE2 or V as the original vector for 5962 // IE1. 5963 do { 5964 if (IE2 == VU || IE1 == V) 5965 return true; 5966 if (IE1) { 5967 if (IE1 != VU && !IE1->hasOneUse()) 5968 IE1 = nullptr; 5969 else 5970 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 5971 } 5972 if (IE2) { 5973 if (IE2 != V && !IE2->hasOneUse()) 5974 IE2 = nullptr; 5975 else 5976 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 5977 } 5978 } while (IE1 || IE2); 5979 return false; 5980 } 5981 5982 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 5983 InstructionCost Cost = 0; 5984 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 5985 << VectorizableTree.size() << ".\n"); 5986 5987 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 5988 5989 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 5990 TreeEntry &TE = *VectorizableTree[I].get(); 5991 5992 InstructionCost C = getEntryCost(&TE, VectorizedVals); 5993 Cost += C; 5994 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5995 << " for bundle that starts with " << *TE.Scalars[0] 5996 << ".\n" 5997 << "SLP: Current total cost = " << Cost << "\n"); 5998 } 5999 6000 SmallPtrSet<Value *, 16> ExtractCostCalculated; 6001 InstructionCost ExtractCost = 0; 6002 SmallVector<unsigned> VF; 6003 SmallVector<SmallVector<int>> ShuffleMask; 6004 SmallVector<Value *> FirstUsers; 6005 SmallVector<APInt> DemandedElts; 6006 for (ExternalUser &EU : ExternalUses) { 6007 // We only add extract cost once for the same scalar. 6008 if (!isa_and_nonnull<InsertElementInst>(EU.User) && 6009 !ExtractCostCalculated.insert(EU.Scalar).second) 6010 continue; 6011 6012 // Uses by ephemeral values are free (because the ephemeral value will be 6013 // removed prior to code generation, and so the extraction will be 6014 // removed as well). 6015 if (EphValues.count(EU.User)) 6016 continue; 6017 6018 // No extract cost for vector "scalar" 6019 if (isa<FixedVectorType>(EU.Scalar->getType())) 6020 continue; 6021 6022 // Already counted the cost for external uses when tried to adjust the cost 6023 // for extractelements, no need to add it again. 6024 if (isa<ExtractElementInst>(EU.Scalar)) 6025 continue; 6026 6027 // If found user is an insertelement, do not calculate extract cost but try 6028 // to detect it as a final shuffled/identity match. 6029 if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) { 6030 if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) { 6031 Optional<unsigned> InsertIdx = getInsertIndex(VU); 6032 if (InsertIdx) { 6033 auto *It = find_if(FirstUsers, [VU](Value *V) { 6034 return areTwoInsertFromSameBuildVector(VU, 6035 cast<InsertElementInst>(V)); 6036 }); 6037 int VecId = -1; 6038 if (It == FirstUsers.end()) { 6039 VF.push_back(FTy->getNumElements()); 6040 ShuffleMask.emplace_back(VF.back(), UndefMaskElem); 6041 // Find the insertvector, vectorized in tree, if any. 6042 Value *Base = VU; 6043 while (isa<InsertElementInst>(Base)) { 6044 // Build the mask for the vectorized insertelement instructions. 6045 if (const TreeEntry *E = getTreeEntry(Base)) { 6046 VU = cast<InsertElementInst>(Base); 6047 do { 6048 int Idx = E->findLaneForValue(Base); 6049 ShuffleMask.back()[Idx] = Idx; 6050 Base = cast<InsertElementInst>(Base)->getOperand(0); 6051 } while (E == getTreeEntry(Base)); 6052 break; 6053 } 6054 Base = cast<InsertElementInst>(Base)->getOperand(0); 6055 } 6056 FirstUsers.push_back(VU); 6057 DemandedElts.push_back(APInt::getZero(VF.back())); 6058 VecId = FirstUsers.size() - 1; 6059 } else { 6060 VecId = std::distance(FirstUsers.begin(), It); 6061 } 6062 ShuffleMask[VecId][*InsertIdx] = EU.Lane; 6063 DemandedElts[VecId].setBit(*InsertIdx); 6064 continue; 6065 } 6066 } 6067 } 6068 6069 // If we plan to rewrite the tree in a smaller type, we will need to sign 6070 // extend the extracted value back to the original type. Here, we account 6071 // for the extract and the added cost of the sign extend if needed. 6072 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 6073 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 6074 if (MinBWs.count(ScalarRoot)) { 6075 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 6076 auto Extend = 6077 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 6078 VecTy = FixedVectorType::get(MinTy, BundleWidth); 6079 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 6080 VecTy, EU.Lane); 6081 } else { 6082 ExtractCost += 6083 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 6084 } 6085 } 6086 6087 InstructionCost SpillCost = getSpillCost(); 6088 Cost += SpillCost + ExtractCost; 6089 if (FirstUsers.size() == 1) { 6090 int Limit = ShuffleMask.front().size() * 2; 6091 if (all_of(ShuffleMask.front(), [Limit](int Idx) { return Idx < Limit; }) && 6092 !ShuffleVectorInst::isIdentityMask(ShuffleMask.front())) { 6093 InstructionCost C = TTI->getShuffleCost( 6094 TTI::SK_PermuteSingleSrc, 6095 cast<FixedVectorType>(FirstUsers.front()->getType()), 6096 ShuffleMask.front()); 6097 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6098 << " for final shuffle of insertelement external users " 6099 << *VectorizableTree.front()->Scalars.front() << ".\n" 6100 << "SLP: Current total cost = " << Cost << "\n"); 6101 Cost += C; 6102 } 6103 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6104 cast<FixedVectorType>(FirstUsers.front()->getType()), 6105 DemandedElts.front(), /*Insert*/ true, /*Extract*/ false); 6106 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6107 << " for insertelements gather.\n" 6108 << "SLP: Current total cost = " << Cost << "\n"); 6109 Cost -= InsertCost; 6110 } else if (FirstUsers.size() >= 2) { 6111 unsigned MaxVF = *std::max_element(VF.begin(), VF.end()); 6112 // Combined masks of the first 2 vectors. 6113 SmallVector<int> CombinedMask(MaxVF, UndefMaskElem); 6114 copy(ShuffleMask.front(), CombinedMask.begin()); 6115 APInt CombinedDemandedElts = DemandedElts.front().zextOrSelf(MaxVF); 6116 auto *VecTy = FixedVectorType::get( 6117 cast<VectorType>(FirstUsers.front()->getType())->getElementType(), 6118 MaxVF); 6119 for (int I = 0, E = ShuffleMask[1].size(); I < E; ++I) { 6120 if (ShuffleMask[1][I] != UndefMaskElem) { 6121 CombinedMask[I] = ShuffleMask[1][I] + MaxVF; 6122 CombinedDemandedElts.setBit(I); 6123 } 6124 } 6125 InstructionCost C = 6126 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6127 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6128 << " for final shuffle of vector node and external " 6129 "insertelement users " 6130 << *VectorizableTree.front()->Scalars.front() << ".\n" 6131 << "SLP: Current total cost = " << Cost << "\n"); 6132 Cost += C; 6133 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6134 VecTy, CombinedDemandedElts, /*Insert*/ true, /*Extract*/ false); 6135 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6136 << " for insertelements gather.\n" 6137 << "SLP: Current total cost = " << Cost << "\n"); 6138 Cost -= InsertCost; 6139 for (int I = 2, E = FirstUsers.size(); I < E; ++I) { 6140 // Other elements - permutation of 2 vectors (the initial one and the 6141 // next Ith incoming vector). 6142 unsigned VF = ShuffleMask[I].size(); 6143 for (unsigned Idx = 0; Idx < VF; ++Idx) { 6144 int Mask = ShuffleMask[I][Idx]; 6145 if (Mask != UndefMaskElem) 6146 CombinedMask[Idx] = MaxVF + Mask; 6147 else if (CombinedMask[Idx] != UndefMaskElem) 6148 CombinedMask[Idx] = Idx; 6149 } 6150 for (unsigned Idx = VF; Idx < MaxVF; ++Idx) 6151 if (CombinedMask[Idx] != UndefMaskElem) 6152 CombinedMask[Idx] = Idx; 6153 InstructionCost C = 6154 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6155 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6156 << " for final shuffle of vector node and external " 6157 "insertelement users " 6158 << *VectorizableTree.front()->Scalars.front() << ".\n" 6159 << "SLP: Current total cost = " << Cost << "\n"); 6160 Cost += C; 6161 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6162 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I], 6163 /*Insert*/ true, /*Extract*/ false); 6164 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6165 << " for insertelements gather.\n" 6166 << "SLP: Current total cost = " << Cost << "\n"); 6167 Cost -= InsertCost; 6168 } 6169 } 6170 6171 #ifndef NDEBUG 6172 SmallString<256> Str; 6173 { 6174 raw_svector_ostream OS(Str); 6175 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 6176 << "SLP: Extract Cost = " << ExtractCost << ".\n" 6177 << "SLP: Total Cost = " << Cost << ".\n"; 6178 } 6179 LLVM_DEBUG(dbgs() << Str); 6180 if (ViewSLPTree) 6181 ViewGraph(this, "SLP" + F->getName(), false, Str); 6182 #endif 6183 6184 return Cost; 6185 } 6186 6187 Optional<TargetTransformInfo::ShuffleKind> 6188 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 6189 SmallVectorImpl<const TreeEntry *> &Entries) { 6190 // TODO: currently checking only for Scalars in the tree entry, need to count 6191 // reused elements too for better cost estimation. 6192 Mask.assign(TE->Scalars.size(), UndefMaskElem); 6193 Entries.clear(); 6194 // Build a lists of values to tree entries. 6195 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 6196 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 6197 if (EntryPtr.get() == TE) 6198 break; 6199 if (EntryPtr->State != TreeEntry::NeedToGather) 6200 continue; 6201 for (Value *V : EntryPtr->Scalars) 6202 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 6203 } 6204 // Find all tree entries used by the gathered values. If no common entries 6205 // found - not a shuffle. 6206 // Here we build a set of tree nodes for each gathered value and trying to 6207 // find the intersection between these sets. If we have at least one common 6208 // tree node for each gathered value - we have just a permutation of the 6209 // single vector. If we have 2 different sets, we're in situation where we 6210 // have a permutation of 2 input vectors. 6211 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 6212 DenseMap<Value *, int> UsedValuesEntry; 6213 for (Value *V : TE->Scalars) { 6214 if (isa<UndefValue>(V)) 6215 continue; 6216 // Build a list of tree entries where V is used. 6217 SmallPtrSet<const TreeEntry *, 4> VToTEs; 6218 auto It = ValueToTEs.find(V); 6219 if (It != ValueToTEs.end()) 6220 VToTEs = It->second; 6221 if (const TreeEntry *VTE = getTreeEntry(V)) 6222 VToTEs.insert(VTE); 6223 if (VToTEs.empty()) 6224 return None; 6225 if (UsedTEs.empty()) { 6226 // The first iteration, just insert the list of nodes to vector. 6227 UsedTEs.push_back(VToTEs); 6228 } else { 6229 // Need to check if there are any previously used tree nodes which use V. 6230 // If there are no such nodes, consider that we have another one input 6231 // vector. 6232 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 6233 unsigned Idx = 0; 6234 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 6235 // Do we have a non-empty intersection of previously listed tree entries 6236 // and tree entries using current V? 6237 set_intersect(VToTEs, Set); 6238 if (!VToTEs.empty()) { 6239 // Yes, write the new subset and continue analysis for the next 6240 // scalar. 6241 Set.swap(VToTEs); 6242 break; 6243 } 6244 VToTEs = SavedVToTEs; 6245 ++Idx; 6246 } 6247 // No non-empty intersection found - need to add a second set of possible 6248 // source vectors. 6249 if (Idx == UsedTEs.size()) { 6250 // If the number of input vectors is greater than 2 - not a permutation, 6251 // fallback to the regular gather. 6252 if (UsedTEs.size() == 2) 6253 return None; 6254 UsedTEs.push_back(SavedVToTEs); 6255 Idx = UsedTEs.size() - 1; 6256 } 6257 UsedValuesEntry.try_emplace(V, Idx); 6258 } 6259 } 6260 6261 unsigned VF = 0; 6262 if (UsedTEs.size() == 1) { 6263 // Try to find the perfect match in another gather node at first. 6264 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 6265 return EntryPtr->isSame(TE->Scalars); 6266 }); 6267 if (It != UsedTEs.front().end()) { 6268 Entries.push_back(*It); 6269 std::iota(Mask.begin(), Mask.end(), 0); 6270 return TargetTransformInfo::SK_PermuteSingleSrc; 6271 } 6272 // No perfect match, just shuffle, so choose the first tree node. 6273 Entries.push_back(*UsedTEs.front().begin()); 6274 } else { 6275 // Try to find nodes with the same vector factor. 6276 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 6277 DenseMap<int, const TreeEntry *> VFToTE; 6278 for (const TreeEntry *TE : UsedTEs.front()) 6279 VFToTE.try_emplace(TE->getVectorFactor(), TE); 6280 for (const TreeEntry *TE : UsedTEs.back()) { 6281 auto It = VFToTE.find(TE->getVectorFactor()); 6282 if (It != VFToTE.end()) { 6283 VF = It->first; 6284 Entries.push_back(It->second); 6285 Entries.push_back(TE); 6286 break; 6287 } 6288 } 6289 // No 2 source vectors with the same vector factor - give up and do regular 6290 // gather. 6291 if (Entries.empty()) 6292 return None; 6293 } 6294 6295 // Build a shuffle mask for better cost estimation and vector emission. 6296 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 6297 Value *V = TE->Scalars[I]; 6298 if (isa<UndefValue>(V)) 6299 continue; 6300 unsigned Idx = UsedValuesEntry.lookup(V); 6301 const TreeEntry *VTE = Entries[Idx]; 6302 int FoundLane = VTE->findLaneForValue(V); 6303 Mask[I] = Idx * VF + FoundLane; 6304 // Extra check required by isSingleSourceMaskImpl function (called by 6305 // ShuffleVectorInst::isSingleSourceMask). 6306 if (Mask[I] >= 2 * E) 6307 return None; 6308 } 6309 switch (Entries.size()) { 6310 case 1: 6311 return TargetTransformInfo::SK_PermuteSingleSrc; 6312 case 2: 6313 return TargetTransformInfo::SK_PermuteTwoSrc; 6314 default: 6315 break; 6316 } 6317 return None; 6318 } 6319 6320 InstructionCost BoUpSLP::getGatherCost(FixedVectorType *Ty, 6321 const APInt &ShuffledIndices, 6322 bool NeedToShuffle) const { 6323 InstructionCost Cost = 6324 TTI->getScalarizationOverhead(Ty, ~ShuffledIndices, /*Insert*/ true, 6325 /*Extract*/ false); 6326 if (NeedToShuffle) 6327 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 6328 return Cost; 6329 } 6330 6331 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 6332 // Find the type of the operands in VL. 6333 Type *ScalarTy = VL[0]->getType(); 6334 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 6335 ScalarTy = SI->getValueOperand()->getType(); 6336 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 6337 bool DuplicateNonConst = false; 6338 // Find the cost of inserting/extracting values from the vector. 6339 // Check if the same elements are inserted several times and count them as 6340 // shuffle candidates. 6341 APInt ShuffledElements = APInt::getZero(VL.size()); 6342 DenseSet<Value *> UniqueElements; 6343 // Iterate in reverse order to consider insert elements with the high cost. 6344 for (unsigned I = VL.size(); I > 0; --I) { 6345 unsigned Idx = I - 1; 6346 // No need to shuffle duplicates for constants. 6347 if (isConstant(VL[Idx])) { 6348 ShuffledElements.setBit(Idx); 6349 continue; 6350 } 6351 if (!UniqueElements.insert(VL[Idx]).second) { 6352 DuplicateNonConst = true; 6353 ShuffledElements.setBit(Idx); 6354 } 6355 } 6356 return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst); 6357 } 6358 6359 // Perform operand reordering on the instructions in VL and return the reordered 6360 // operands in Left and Right. 6361 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 6362 SmallVectorImpl<Value *> &Left, 6363 SmallVectorImpl<Value *> &Right, 6364 const DataLayout &DL, 6365 ScalarEvolution &SE, 6366 const BoUpSLP &R) { 6367 if (VL.empty()) 6368 return; 6369 VLOperands Ops(VL, DL, SE, R); 6370 // Reorder the operands in place. 6371 Ops.reorder(); 6372 Left = Ops.getVL(0); 6373 Right = Ops.getVL(1); 6374 } 6375 6376 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 6377 // Get the basic block this bundle is in. All instructions in the bundle 6378 // should be in this block. 6379 auto *Front = E->getMainOp(); 6380 auto *BB = Front->getParent(); 6381 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 6382 auto *I = cast<Instruction>(V); 6383 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 6384 })); 6385 6386 // The last instruction in the bundle in program order. 6387 Instruction *LastInst = nullptr; 6388 6389 // Find the last instruction. The common case should be that BB has been 6390 // scheduled, and the last instruction is VL.back(). So we start with 6391 // VL.back() and iterate over schedule data until we reach the end of the 6392 // bundle. The end of the bundle is marked by null ScheduleData. 6393 if (BlocksSchedules.count(BB)) { 6394 auto *Bundle = 6395 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 6396 if (Bundle && Bundle->isPartOfBundle()) 6397 for (; Bundle; Bundle = Bundle->NextInBundle) 6398 if (Bundle->OpValue == Bundle->Inst) 6399 LastInst = Bundle->Inst; 6400 } 6401 6402 // LastInst can still be null at this point if there's either not an entry 6403 // for BB in BlocksSchedules or there's no ScheduleData available for 6404 // VL.back(). This can be the case if buildTree_rec aborts for various 6405 // reasons (e.g., the maximum recursion depth is reached, the maximum region 6406 // size is reached, etc.). ScheduleData is initialized in the scheduling 6407 // "dry-run". 6408 // 6409 // If this happens, we can still find the last instruction by brute force. We 6410 // iterate forwards from Front (inclusive) until we either see all 6411 // instructions in the bundle or reach the end of the block. If Front is the 6412 // last instruction in program order, LastInst will be set to Front, and we 6413 // will visit all the remaining instructions in the block. 6414 // 6415 // One of the reasons we exit early from buildTree_rec is to place an upper 6416 // bound on compile-time. Thus, taking an additional compile-time hit here is 6417 // not ideal. However, this should be exceedingly rare since it requires that 6418 // we both exit early from buildTree_rec and that the bundle be out-of-order 6419 // (causing us to iterate all the way to the end of the block). 6420 if (!LastInst) { 6421 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 6422 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 6423 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 6424 LastInst = &I; 6425 if (Bundle.empty()) 6426 break; 6427 } 6428 } 6429 assert(LastInst && "Failed to find last instruction in bundle"); 6430 6431 // Set the insertion point after the last instruction in the bundle. Set the 6432 // debug location to Front. 6433 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 6434 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 6435 } 6436 6437 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 6438 // List of instructions/lanes from current block and/or the blocks which are 6439 // part of the current loop. These instructions will be inserted at the end to 6440 // make it possible to optimize loops and hoist invariant instructions out of 6441 // the loops body with better chances for success. 6442 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 6443 SmallSet<int, 4> PostponedIndices; 6444 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 6445 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 6446 SmallPtrSet<BasicBlock *, 4> Visited; 6447 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 6448 InsertBB = InsertBB->getSinglePredecessor(); 6449 return InsertBB && InsertBB == InstBB; 6450 }; 6451 for (int I = 0, E = VL.size(); I < E; ++I) { 6452 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 6453 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 6454 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 6455 PostponedIndices.insert(I).second) 6456 PostponedInsts.emplace_back(Inst, I); 6457 } 6458 6459 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 6460 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 6461 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 6462 if (!InsElt) 6463 return Vec; 6464 GatherShuffleSeq.insert(InsElt); 6465 CSEBlocks.insert(InsElt->getParent()); 6466 // Add to our 'need-to-extract' list. 6467 if (TreeEntry *Entry = getTreeEntry(V)) { 6468 // Find which lane we need to extract. 6469 unsigned FoundLane = Entry->findLaneForValue(V); 6470 ExternalUses.emplace_back(V, InsElt, FoundLane); 6471 } 6472 return Vec; 6473 }; 6474 Value *Val0 = 6475 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 6476 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 6477 Value *Vec = PoisonValue::get(VecTy); 6478 SmallVector<int> NonConsts; 6479 // Insert constant values at first. 6480 for (int I = 0, E = VL.size(); I < E; ++I) { 6481 if (PostponedIndices.contains(I)) 6482 continue; 6483 if (!isConstant(VL[I])) { 6484 NonConsts.push_back(I); 6485 continue; 6486 } 6487 Vec = CreateInsertElement(Vec, VL[I], I); 6488 } 6489 // Insert non-constant values. 6490 for (int I : NonConsts) 6491 Vec = CreateInsertElement(Vec, VL[I], I); 6492 // Append instructions, which are/may be part of the loop, in the end to make 6493 // it possible to hoist non-loop-based instructions. 6494 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 6495 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 6496 6497 return Vec; 6498 } 6499 6500 namespace { 6501 /// Merges shuffle masks and emits final shuffle instruction, if required. 6502 class ShuffleInstructionBuilder { 6503 IRBuilderBase &Builder; 6504 const unsigned VF = 0; 6505 bool IsFinalized = false; 6506 SmallVector<int, 4> Mask; 6507 /// Holds all of the instructions that we gathered. 6508 SetVector<Instruction *> &GatherShuffleSeq; 6509 /// A list of blocks that we are going to CSE. 6510 SetVector<BasicBlock *> &CSEBlocks; 6511 6512 public: 6513 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF, 6514 SetVector<Instruction *> &GatherShuffleSeq, 6515 SetVector<BasicBlock *> &CSEBlocks) 6516 : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq), 6517 CSEBlocks(CSEBlocks) {} 6518 6519 /// Adds a mask, inverting it before applying. 6520 void addInversedMask(ArrayRef<unsigned> SubMask) { 6521 if (SubMask.empty()) 6522 return; 6523 SmallVector<int, 4> NewMask; 6524 inversePermutation(SubMask, NewMask); 6525 addMask(NewMask); 6526 } 6527 6528 /// Functions adds masks, merging them into single one. 6529 void addMask(ArrayRef<unsigned> SubMask) { 6530 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 6531 addMask(NewMask); 6532 } 6533 6534 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 6535 6536 Value *finalize(Value *V) { 6537 IsFinalized = true; 6538 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 6539 if (VF == ValueVF && Mask.empty()) 6540 return V; 6541 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 6542 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 6543 addMask(NormalizedMask); 6544 6545 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 6546 return V; 6547 Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle"); 6548 if (auto *I = dyn_cast<Instruction>(Vec)) { 6549 GatherShuffleSeq.insert(I); 6550 CSEBlocks.insert(I->getParent()); 6551 } 6552 return Vec; 6553 } 6554 6555 ~ShuffleInstructionBuilder() { 6556 assert((IsFinalized || Mask.empty()) && 6557 "Shuffle construction must be finalized."); 6558 } 6559 }; 6560 } // namespace 6561 6562 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 6563 const unsigned VF = VL.size(); 6564 InstructionsState S = getSameOpcode(VL); 6565 if (S.getOpcode()) { 6566 if (TreeEntry *E = getTreeEntry(S.OpValue)) 6567 if (E->isSame(VL)) { 6568 Value *V = vectorizeTree(E); 6569 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 6570 if (!E->ReuseShuffleIndices.empty()) { 6571 // Reshuffle to get only unique values. 6572 // If some of the scalars are duplicated in the vectorization tree 6573 // entry, we do not vectorize them but instead generate a mask for 6574 // the reuses. But if there are several users of the same entry, 6575 // they may have different vectorization factors. This is especially 6576 // important for PHI nodes. In this case, we need to adapt the 6577 // resulting instruction for the user vectorization factor and have 6578 // to reshuffle it again to take only unique elements of the vector. 6579 // Without this code the function incorrectly returns reduced vector 6580 // instruction with the same elements, not with the unique ones. 6581 6582 // block: 6583 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 6584 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> 6585 // ... (use %2) 6586 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} 6587 // br %block 6588 SmallVector<int> UniqueIdxs(VF, UndefMaskElem); 6589 SmallSet<int, 4> UsedIdxs; 6590 int Pos = 0; 6591 int Sz = VL.size(); 6592 for (int Idx : E->ReuseShuffleIndices) { 6593 if (Idx != Sz && Idx != UndefMaskElem && 6594 UsedIdxs.insert(Idx).second) 6595 UniqueIdxs[Idx] = Pos; 6596 ++Pos; 6597 } 6598 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 6599 "less than original vector size."); 6600 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 6601 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 6602 } else { 6603 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 6604 "Expected vectorization factor less " 6605 "than original vector size."); 6606 SmallVector<int> UniformMask(VF, 0); 6607 std::iota(UniformMask.begin(), UniformMask.end(), 0); 6608 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 6609 } 6610 if (auto *I = dyn_cast<Instruction>(V)) { 6611 GatherShuffleSeq.insert(I); 6612 CSEBlocks.insert(I->getParent()); 6613 } 6614 } 6615 return V; 6616 } 6617 } 6618 6619 // Can't vectorize this, so simply build a new vector with each lane 6620 // corresponding to the requested value. 6621 return createBuildVector(VL); 6622 } 6623 Value *BoUpSLP::createBuildVector(ArrayRef<Value *> VL) { 6624 unsigned VF = VL.size(); 6625 // Exploit possible reuse of values across lanes. 6626 SmallVector<int> ReuseShuffleIndicies; 6627 SmallVector<Value *> UniqueValues; 6628 if (VL.size() > 2) { 6629 DenseMap<Value *, unsigned> UniquePositions; 6630 unsigned NumValues = 6631 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 6632 return !isa<UndefValue>(V); 6633 }).base()); 6634 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 6635 int UniqueVals = 0; 6636 for (Value *V : VL.drop_back(VL.size() - VF)) { 6637 if (isa<UndefValue>(V)) { 6638 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 6639 continue; 6640 } 6641 if (isConstant(V)) { 6642 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 6643 UniqueValues.emplace_back(V); 6644 continue; 6645 } 6646 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 6647 ReuseShuffleIndicies.emplace_back(Res.first->second); 6648 if (Res.second) { 6649 UniqueValues.emplace_back(V); 6650 ++UniqueVals; 6651 } 6652 } 6653 if (UniqueVals == 1 && UniqueValues.size() == 1) { 6654 // Emit pure splat vector. 6655 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 6656 UndefMaskElem); 6657 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 6658 ReuseShuffleIndicies.clear(); 6659 UniqueValues.clear(); 6660 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 6661 } 6662 UniqueValues.append(VF - UniqueValues.size(), 6663 PoisonValue::get(VL[0]->getType())); 6664 VL = UniqueValues; 6665 } 6666 6667 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6668 CSEBlocks); 6669 Value *Vec = gather(VL); 6670 if (!ReuseShuffleIndicies.empty()) { 6671 ShuffleBuilder.addMask(ReuseShuffleIndicies); 6672 Vec = ShuffleBuilder.finalize(Vec); 6673 } 6674 return Vec; 6675 } 6676 6677 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 6678 IRBuilder<>::InsertPointGuard Guard(Builder); 6679 6680 if (E->VectorizedValue) { 6681 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 6682 return E->VectorizedValue; 6683 } 6684 6685 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 6686 unsigned VF = E->getVectorFactor(); 6687 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6688 CSEBlocks); 6689 if (E->State == TreeEntry::NeedToGather) { 6690 if (E->getMainOp()) 6691 setInsertPointAfterBundle(E); 6692 Value *Vec; 6693 SmallVector<int> Mask; 6694 SmallVector<const TreeEntry *> Entries; 6695 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 6696 isGatherShuffledEntry(E, Mask, Entries); 6697 if (Shuffle.hasValue()) { 6698 assert((Entries.size() == 1 || Entries.size() == 2) && 6699 "Expected shuffle of 1 or 2 entries."); 6700 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 6701 Entries.back()->VectorizedValue, Mask); 6702 if (auto *I = dyn_cast<Instruction>(Vec)) { 6703 GatherShuffleSeq.insert(I); 6704 CSEBlocks.insert(I->getParent()); 6705 } 6706 } else { 6707 Vec = gather(E->Scalars); 6708 } 6709 if (NeedToShuffleReuses) { 6710 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6711 Vec = ShuffleBuilder.finalize(Vec); 6712 } 6713 E->VectorizedValue = Vec; 6714 return Vec; 6715 } 6716 6717 assert((E->State == TreeEntry::Vectorize || 6718 E->State == TreeEntry::ScatterVectorize) && 6719 "Unhandled state"); 6720 unsigned ShuffleOrOp = 6721 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 6722 Instruction *VL0 = E->getMainOp(); 6723 Type *ScalarTy = VL0->getType(); 6724 if (auto *Store = dyn_cast<StoreInst>(VL0)) 6725 ScalarTy = Store->getValueOperand()->getType(); 6726 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 6727 ScalarTy = IE->getOperand(1)->getType(); 6728 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 6729 switch (ShuffleOrOp) { 6730 case Instruction::PHI: { 6731 assert( 6732 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 6733 "PHI reordering is free."); 6734 auto *PH = cast<PHINode>(VL0); 6735 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 6736 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6737 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 6738 Value *V = NewPhi; 6739 6740 // Adjust insertion point once all PHI's have been generated. 6741 Builder.SetInsertPoint(&*PH->getParent()->getFirstInsertionPt()); 6742 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6743 6744 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6745 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6746 V = ShuffleBuilder.finalize(V); 6747 6748 E->VectorizedValue = V; 6749 6750 // PHINodes may have multiple entries from the same block. We want to 6751 // visit every block once. 6752 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 6753 6754 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 6755 ValueList Operands; 6756 BasicBlock *IBB = PH->getIncomingBlock(i); 6757 6758 if (!VisitedBBs.insert(IBB).second) { 6759 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 6760 continue; 6761 } 6762 6763 Builder.SetInsertPoint(IBB->getTerminator()); 6764 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6765 Value *Vec = vectorizeTree(E->getOperand(i)); 6766 NewPhi->addIncoming(Vec, IBB); 6767 } 6768 6769 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 6770 "Invalid number of incoming values"); 6771 return V; 6772 } 6773 6774 case Instruction::ExtractElement: { 6775 Value *V = E->getSingleOperand(0); 6776 Builder.SetInsertPoint(VL0); 6777 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6778 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6779 V = ShuffleBuilder.finalize(V); 6780 E->VectorizedValue = V; 6781 return V; 6782 } 6783 case Instruction::ExtractValue: { 6784 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 6785 Builder.SetInsertPoint(LI); 6786 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 6787 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 6788 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 6789 Value *NewV = propagateMetadata(V, E->Scalars); 6790 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6791 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6792 NewV = ShuffleBuilder.finalize(NewV); 6793 E->VectorizedValue = NewV; 6794 return NewV; 6795 } 6796 case Instruction::InsertElement: { 6797 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 6798 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 6799 Value *V = vectorizeTree(E->getOperand(1)); 6800 6801 // Create InsertVector shuffle if necessary 6802 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 6803 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 6804 })); 6805 const unsigned NumElts = 6806 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 6807 const unsigned NumScalars = E->Scalars.size(); 6808 6809 unsigned Offset = *getInsertIndex(VL0); 6810 assert(Offset < NumElts && "Failed to find vector index offset"); 6811 6812 // Create shuffle to resize vector 6813 SmallVector<int> Mask; 6814 if (!E->ReorderIndices.empty()) { 6815 inversePermutation(E->ReorderIndices, Mask); 6816 Mask.append(NumElts - NumScalars, UndefMaskElem); 6817 } else { 6818 Mask.assign(NumElts, UndefMaskElem); 6819 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 6820 } 6821 // Create InsertVector shuffle if necessary 6822 bool IsIdentity = true; 6823 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 6824 Mask.swap(PrevMask); 6825 for (unsigned I = 0; I < NumScalars; ++I) { 6826 Value *Scalar = E->Scalars[PrevMask[I]]; 6827 unsigned InsertIdx = *getInsertIndex(Scalar); 6828 IsIdentity &= InsertIdx - Offset == I; 6829 Mask[InsertIdx - Offset] = I; 6830 } 6831 if (!IsIdentity || NumElts != NumScalars) { 6832 V = Builder.CreateShuffleVector(V, Mask); 6833 if (auto *I = dyn_cast<Instruction>(V)) { 6834 GatherShuffleSeq.insert(I); 6835 CSEBlocks.insert(I->getParent()); 6836 } 6837 } 6838 6839 if ((!IsIdentity || Offset != 0 || 6840 !isUndefVector(FirstInsert->getOperand(0))) && 6841 NumElts != NumScalars) { 6842 SmallVector<int> InsertMask(NumElts); 6843 std::iota(InsertMask.begin(), InsertMask.end(), 0); 6844 for (unsigned I = 0; I < NumElts; I++) { 6845 if (Mask[I] != UndefMaskElem) 6846 InsertMask[Offset + I] = NumElts + I; 6847 } 6848 6849 V = Builder.CreateShuffleVector( 6850 FirstInsert->getOperand(0), V, InsertMask, 6851 cast<Instruction>(E->Scalars.back())->getName()); 6852 if (auto *I = dyn_cast<Instruction>(V)) { 6853 GatherShuffleSeq.insert(I); 6854 CSEBlocks.insert(I->getParent()); 6855 } 6856 } 6857 6858 ++NumVectorInstructions; 6859 E->VectorizedValue = V; 6860 return V; 6861 } 6862 case Instruction::ZExt: 6863 case Instruction::SExt: 6864 case Instruction::FPToUI: 6865 case Instruction::FPToSI: 6866 case Instruction::FPExt: 6867 case Instruction::PtrToInt: 6868 case Instruction::IntToPtr: 6869 case Instruction::SIToFP: 6870 case Instruction::UIToFP: 6871 case Instruction::Trunc: 6872 case Instruction::FPTrunc: 6873 case Instruction::BitCast: { 6874 setInsertPointAfterBundle(E); 6875 6876 Value *InVec = vectorizeTree(E->getOperand(0)); 6877 6878 if (E->VectorizedValue) { 6879 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6880 return E->VectorizedValue; 6881 } 6882 6883 auto *CI = cast<CastInst>(VL0); 6884 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 6885 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6886 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6887 V = ShuffleBuilder.finalize(V); 6888 6889 E->VectorizedValue = V; 6890 ++NumVectorInstructions; 6891 return V; 6892 } 6893 case Instruction::FCmp: 6894 case Instruction::ICmp: { 6895 setInsertPointAfterBundle(E); 6896 6897 Value *L = vectorizeTree(E->getOperand(0)); 6898 Value *R = vectorizeTree(E->getOperand(1)); 6899 6900 if (E->VectorizedValue) { 6901 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6902 return E->VectorizedValue; 6903 } 6904 6905 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 6906 Value *V = Builder.CreateCmp(P0, L, R); 6907 propagateIRFlags(V, E->Scalars, VL0); 6908 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6909 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6910 V = ShuffleBuilder.finalize(V); 6911 6912 E->VectorizedValue = V; 6913 ++NumVectorInstructions; 6914 return V; 6915 } 6916 case Instruction::Select: { 6917 setInsertPointAfterBundle(E); 6918 6919 Value *Cond = vectorizeTree(E->getOperand(0)); 6920 Value *True = vectorizeTree(E->getOperand(1)); 6921 Value *False = vectorizeTree(E->getOperand(2)); 6922 6923 if (E->VectorizedValue) { 6924 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6925 return E->VectorizedValue; 6926 } 6927 6928 Value *V = Builder.CreateSelect(Cond, True, False); 6929 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6930 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6931 V = ShuffleBuilder.finalize(V); 6932 6933 E->VectorizedValue = V; 6934 ++NumVectorInstructions; 6935 return V; 6936 } 6937 case Instruction::FNeg: { 6938 setInsertPointAfterBundle(E); 6939 6940 Value *Op = vectorizeTree(E->getOperand(0)); 6941 6942 if (E->VectorizedValue) { 6943 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6944 return E->VectorizedValue; 6945 } 6946 6947 Value *V = Builder.CreateUnOp( 6948 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 6949 propagateIRFlags(V, E->Scalars, VL0); 6950 if (auto *I = dyn_cast<Instruction>(V)) 6951 V = propagateMetadata(I, E->Scalars); 6952 6953 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6954 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6955 V = ShuffleBuilder.finalize(V); 6956 6957 E->VectorizedValue = V; 6958 ++NumVectorInstructions; 6959 6960 return V; 6961 } 6962 case Instruction::Add: 6963 case Instruction::FAdd: 6964 case Instruction::Sub: 6965 case Instruction::FSub: 6966 case Instruction::Mul: 6967 case Instruction::FMul: 6968 case Instruction::UDiv: 6969 case Instruction::SDiv: 6970 case Instruction::FDiv: 6971 case Instruction::URem: 6972 case Instruction::SRem: 6973 case Instruction::FRem: 6974 case Instruction::Shl: 6975 case Instruction::LShr: 6976 case Instruction::AShr: 6977 case Instruction::And: 6978 case Instruction::Or: 6979 case Instruction::Xor: { 6980 setInsertPointAfterBundle(E); 6981 6982 Value *LHS = vectorizeTree(E->getOperand(0)); 6983 Value *RHS = vectorizeTree(E->getOperand(1)); 6984 6985 if (E->VectorizedValue) { 6986 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6987 return E->VectorizedValue; 6988 } 6989 6990 Value *V = Builder.CreateBinOp( 6991 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 6992 RHS); 6993 propagateIRFlags(V, E->Scalars, VL0); 6994 if (auto *I = dyn_cast<Instruction>(V)) 6995 V = propagateMetadata(I, E->Scalars); 6996 6997 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6998 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6999 V = ShuffleBuilder.finalize(V); 7000 7001 E->VectorizedValue = V; 7002 ++NumVectorInstructions; 7003 7004 return V; 7005 } 7006 case Instruction::Load: { 7007 // Loads are inserted at the head of the tree because we don't want to 7008 // sink them all the way down past store instructions. 7009 setInsertPointAfterBundle(E); 7010 7011 LoadInst *LI = cast<LoadInst>(VL0); 7012 Instruction *NewLI; 7013 unsigned AS = LI->getPointerAddressSpace(); 7014 Value *PO = LI->getPointerOperand(); 7015 if (E->State == TreeEntry::Vectorize) { 7016 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 7017 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 7018 7019 // The pointer operand uses an in-tree scalar so we add the new BitCast 7020 // or LoadInst to ExternalUses list to make sure that an extract will 7021 // be generated in the future. 7022 if (TreeEntry *Entry = getTreeEntry(PO)) { 7023 // Find which lane we need to extract. 7024 unsigned FoundLane = Entry->findLaneForValue(PO); 7025 ExternalUses.emplace_back( 7026 PO, PO != VecPtr ? cast<User>(VecPtr) : NewLI, FoundLane); 7027 } 7028 } else { 7029 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 7030 Value *VecPtr = vectorizeTree(E->getOperand(0)); 7031 // Use the minimum alignment of the gathered loads. 7032 Align CommonAlignment = LI->getAlign(); 7033 for (Value *V : E->Scalars) 7034 CommonAlignment = 7035 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 7036 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 7037 } 7038 Value *V = propagateMetadata(NewLI, E->Scalars); 7039 7040 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7041 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7042 V = ShuffleBuilder.finalize(V); 7043 E->VectorizedValue = V; 7044 ++NumVectorInstructions; 7045 return V; 7046 } 7047 case Instruction::Store: { 7048 auto *SI = cast<StoreInst>(VL0); 7049 unsigned AS = SI->getPointerAddressSpace(); 7050 7051 setInsertPointAfterBundle(E); 7052 7053 Value *VecValue = vectorizeTree(E->getOperand(0)); 7054 ShuffleBuilder.addMask(E->ReorderIndices); 7055 VecValue = ShuffleBuilder.finalize(VecValue); 7056 7057 Value *ScalarPtr = SI->getPointerOperand(); 7058 Value *VecPtr = Builder.CreateBitCast( 7059 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 7060 StoreInst *ST = 7061 Builder.CreateAlignedStore(VecValue, VecPtr, SI->getAlign()); 7062 7063 // The pointer operand uses an in-tree scalar, so add the new BitCast or 7064 // StoreInst to ExternalUses to make sure that an extract will be 7065 // generated in the future. 7066 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 7067 // Find which lane we need to extract. 7068 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 7069 ExternalUses.push_back(ExternalUser( 7070 ScalarPtr, ScalarPtr != VecPtr ? cast<User>(VecPtr) : ST, 7071 FoundLane)); 7072 } 7073 7074 Value *V = propagateMetadata(ST, E->Scalars); 7075 7076 E->VectorizedValue = V; 7077 ++NumVectorInstructions; 7078 return V; 7079 } 7080 case Instruction::GetElementPtr: { 7081 auto *GEP0 = cast<GetElementPtrInst>(VL0); 7082 setInsertPointAfterBundle(E); 7083 7084 Value *Op0 = vectorizeTree(E->getOperand(0)); 7085 7086 SmallVector<Value *> OpVecs; 7087 for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) { 7088 Value *OpVec = vectorizeTree(E->getOperand(J)); 7089 OpVecs.push_back(OpVec); 7090 } 7091 7092 Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs); 7093 if (Instruction *I = dyn_cast<Instruction>(V)) 7094 V = propagateMetadata(I, E->Scalars); 7095 7096 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7097 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7098 V = ShuffleBuilder.finalize(V); 7099 7100 E->VectorizedValue = V; 7101 ++NumVectorInstructions; 7102 7103 return V; 7104 } 7105 case Instruction::Call: { 7106 CallInst *CI = cast<CallInst>(VL0); 7107 setInsertPointAfterBundle(E); 7108 7109 Intrinsic::ID IID = Intrinsic::not_intrinsic; 7110 if (Function *FI = CI->getCalledFunction()) 7111 IID = FI->getIntrinsicID(); 7112 7113 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7114 7115 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 7116 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 7117 VecCallCosts.first <= VecCallCosts.second; 7118 7119 Value *ScalarArg = nullptr; 7120 std::vector<Value *> OpVecs; 7121 SmallVector<Type *, 2> TysForDecl = 7122 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 7123 for (int j = 0, e = CI->arg_size(); j < e; ++j) { 7124 ValueList OpVL; 7125 // Some intrinsics have scalar arguments. This argument should not be 7126 // vectorized. 7127 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 7128 CallInst *CEI = cast<CallInst>(VL0); 7129 ScalarArg = CEI->getArgOperand(j); 7130 OpVecs.push_back(CEI->getArgOperand(j)); 7131 if (hasVectorInstrinsicOverloadedScalarOpd(IID, j)) 7132 TysForDecl.push_back(ScalarArg->getType()); 7133 continue; 7134 } 7135 7136 Value *OpVec = vectorizeTree(E->getOperand(j)); 7137 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 7138 OpVecs.push_back(OpVec); 7139 } 7140 7141 Function *CF; 7142 if (!UseIntrinsic) { 7143 VFShape Shape = 7144 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 7145 VecTy->getNumElements())), 7146 false /*HasGlobalPred*/); 7147 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 7148 } else { 7149 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 7150 } 7151 7152 SmallVector<OperandBundleDef, 1> OpBundles; 7153 CI->getOperandBundlesAsDefs(OpBundles); 7154 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 7155 7156 // The scalar argument uses an in-tree scalar so we add the new vectorized 7157 // call to ExternalUses list to make sure that an extract will be 7158 // generated in the future. 7159 if (ScalarArg) { 7160 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 7161 // Find which lane we need to extract. 7162 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 7163 ExternalUses.push_back( 7164 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 7165 } 7166 } 7167 7168 propagateIRFlags(V, E->Scalars, VL0); 7169 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7170 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7171 V = ShuffleBuilder.finalize(V); 7172 7173 E->VectorizedValue = V; 7174 ++NumVectorInstructions; 7175 return V; 7176 } 7177 case Instruction::ShuffleVector: { 7178 assert(E->isAltShuffle() && 7179 ((Instruction::isBinaryOp(E->getOpcode()) && 7180 Instruction::isBinaryOp(E->getAltOpcode())) || 7181 (Instruction::isCast(E->getOpcode()) && 7182 Instruction::isCast(E->getAltOpcode())) || 7183 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 7184 "Invalid Shuffle Vector Operand"); 7185 7186 Value *LHS = nullptr, *RHS = nullptr; 7187 if (Instruction::isBinaryOp(E->getOpcode()) || isa<CmpInst>(VL0)) { 7188 setInsertPointAfterBundle(E); 7189 LHS = vectorizeTree(E->getOperand(0)); 7190 RHS = vectorizeTree(E->getOperand(1)); 7191 } else { 7192 setInsertPointAfterBundle(E); 7193 LHS = vectorizeTree(E->getOperand(0)); 7194 } 7195 7196 if (E->VectorizedValue) { 7197 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7198 return E->VectorizedValue; 7199 } 7200 7201 Value *V0, *V1; 7202 if (Instruction::isBinaryOp(E->getOpcode())) { 7203 V0 = Builder.CreateBinOp( 7204 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 7205 V1 = Builder.CreateBinOp( 7206 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 7207 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 7208 V0 = Builder.CreateCmp(CI0->getPredicate(), LHS, RHS); 7209 auto *AltCI = cast<CmpInst>(E->getAltOp()); 7210 CmpInst::Predicate AltPred = AltCI->getPredicate(); 7211 V1 = Builder.CreateCmp(AltPred, LHS, RHS); 7212 } else { 7213 V0 = Builder.CreateCast( 7214 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 7215 V1 = Builder.CreateCast( 7216 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 7217 } 7218 // Add V0 and V1 to later analysis to try to find and remove matching 7219 // instruction, if any. 7220 for (Value *V : {V0, V1}) { 7221 if (auto *I = dyn_cast<Instruction>(V)) { 7222 GatherShuffleSeq.insert(I); 7223 CSEBlocks.insert(I->getParent()); 7224 } 7225 } 7226 7227 // Create shuffle to take alternate operations from the vector. 7228 // Also, gather up main and alt scalar ops to propagate IR flags to 7229 // each vector operation. 7230 ValueList OpScalars, AltScalars; 7231 SmallVector<int> Mask; 7232 buildShuffleEntryMask( 7233 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 7234 [E](Instruction *I) { 7235 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 7236 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 7237 }, 7238 Mask, &OpScalars, &AltScalars); 7239 7240 propagateIRFlags(V0, OpScalars); 7241 propagateIRFlags(V1, AltScalars); 7242 7243 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 7244 if (auto *I = dyn_cast<Instruction>(V)) { 7245 V = propagateMetadata(I, E->Scalars); 7246 GatherShuffleSeq.insert(I); 7247 CSEBlocks.insert(I->getParent()); 7248 } 7249 V = ShuffleBuilder.finalize(V); 7250 7251 E->VectorizedValue = V; 7252 ++NumVectorInstructions; 7253 7254 return V; 7255 } 7256 default: 7257 llvm_unreachable("unknown inst"); 7258 } 7259 return nullptr; 7260 } 7261 7262 Value *BoUpSLP::vectorizeTree() { 7263 ExtraValueToDebugLocsMap ExternallyUsedValues; 7264 return vectorizeTree(ExternallyUsedValues); 7265 } 7266 7267 Value * 7268 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 7269 // All blocks must be scheduled before any instructions are inserted. 7270 for (auto &BSIter : BlocksSchedules) { 7271 scheduleBlock(BSIter.second.get()); 7272 } 7273 7274 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7275 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 7276 7277 // If the vectorized tree can be rewritten in a smaller type, we truncate the 7278 // vectorized root. InstCombine will then rewrite the entire expression. We 7279 // sign extend the extracted values below. 7280 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 7281 if (MinBWs.count(ScalarRoot)) { 7282 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 7283 // If current instr is a phi and not the last phi, insert it after the 7284 // last phi node. 7285 if (isa<PHINode>(I)) 7286 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 7287 else 7288 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 7289 } 7290 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 7291 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 7292 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 7293 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 7294 VectorizableTree[0]->VectorizedValue = Trunc; 7295 } 7296 7297 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 7298 << " values .\n"); 7299 7300 // Extract all of the elements with the external uses. 7301 for (const auto &ExternalUse : ExternalUses) { 7302 Value *Scalar = ExternalUse.Scalar; 7303 llvm::User *User = ExternalUse.User; 7304 7305 // Skip users that we already RAUW. This happens when one instruction 7306 // has multiple uses of the same value. 7307 if (User && !is_contained(Scalar->users(), User)) 7308 continue; 7309 TreeEntry *E = getTreeEntry(Scalar); 7310 assert(E && "Invalid scalar"); 7311 assert(E->State != TreeEntry::NeedToGather && 7312 "Extracting from a gather list"); 7313 7314 Value *Vec = E->VectorizedValue; 7315 assert(Vec && "Can't find vectorizable value"); 7316 7317 Value *Lane = Builder.getInt32(ExternalUse.Lane); 7318 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 7319 if (Scalar->getType() != Vec->getType()) { 7320 Value *Ex; 7321 // "Reuse" the existing extract to improve final codegen. 7322 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 7323 Ex = Builder.CreateExtractElement(ES->getOperand(0), 7324 ES->getOperand(1)); 7325 } else { 7326 Ex = Builder.CreateExtractElement(Vec, Lane); 7327 } 7328 // If necessary, sign-extend or zero-extend ScalarRoot 7329 // to the larger type. 7330 if (!MinBWs.count(ScalarRoot)) 7331 return Ex; 7332 if (MinBWs[ScalarRoot].second) 7333 return Builder.CreateSExt(Ex, Scalar->getType()); 7334 return Builder.CreateZExt(Ex, Scalar->getType()); 7335 } 7336 assert(isa<FixedVectorType>(Scalar->getType()) && 7337 isa<InsertElementInst>(Scalar) && 7338 "In-tree scalar of vector type is not insertelement?"); 7339 return Vec; 7340 }; 7341 // If User == nullptr, the Scalar is used as extra arg. Generate 7342 // ExtractElement instruction and update the record for this scalar in 7343 // ExternallyUsedValues. 7344 if (!User) { 7345 assert(ExternallyUsedValues.count(Scalar) && 7346 "Scalar with nullptr as an external user must be registered in " 7347 "ExternallyUsedValues map"); 7348 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7349 Builder.SetInsertPoint(VecI->getParent(), 7350 std::next(VecI->getIterator())); 7351 } else { 7352 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7353 } 7354 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7355 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 7356 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 7357 auto It = ExternallyUsedValues.find(Scalar); 7358 assert(It != ExternallyUsedValues.end() && 7359 "Externally used scalar is not found in ExternallyUsedValues"); 7360 NewInstLocs.append(It->second); 7361 ExternallyUsedValues.erase(Scalar); 7362 // Required to update internally referenced instructions. 7363 Scalar->replaceAllUsesWith(NewInst); 7364 continue; 7365 } 7366 7367 // Generate extracts for out-of-tree users. 7368 // Find the insertion point for the extractelement lane. 7369 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7370 if (PHINode *PH = dyn_cast<PHINode>(User)) { 7371 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 7372 if (PH->getIncomingValue(i) == Scalar) { 7373 Instruction *IncomingTerminator = 7374 PH->getIncomingBlock(i)->getTerminator(); 7375 if (isa<CatchSwitchInst>(IncomingTerminator)) { 7376 Builder.SetInsertPoint(VecI->getParent(), 7377 std::next(VecI->getIterator())); 7378 } else { 7379 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 7380 } 7381 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7382 CSEBlocks.insert(PH->getIncomingBlock(i)); 7383 PH->setOperand(i, NewInst); 7384 } 7385 } 7386 } else { 7387 Builder.SetInsertPoint(cast<Instruction>(User)); 7388 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7389 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 7390 User->replaceUsesOfWith(Scalar, NewInst); 7391 } 7392 } else { 7393 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7394 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7395 CSEBlocks.insert(&F->getEntryBlock()); 7396 User->replaceUsesOfWith(Scalar, NewInst); 7397 } 7398 7399 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 7400 } 7401 7402 // For each vectorized value: 7403 for (auto &TEPtr : VectorizableTree) { 7404 TreeEntry *Entry = TEPtr.get(); 7405 7406 // No need to handle users of gathered values. 7407 if (Entry->State == TreeEntry::NeedToGather) 7408 continue; 7409 7410 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 7411 7412 // For each lane: 7413 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 7414 Value *Scalar = Entry->Scalars[Lane]; 7415 7416 #ifndef NDEBUG 7417 Type *Ty = Scalar->getType(); 7418 if (!Ty->isVoidTy()) { 7419 for (User *U : Scalar->users()) { 7420 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 7421 7422 // It is legal to delete users in the ignorelist. 7423 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) || 7424 (isa_and_nonnull<Instruction>(U) && 7425 isDeleted(cast<Instruction>(U)))) && 7426 "Deleting out-of-tree value"); 7427 } 7428 } 7429 #endif 7430 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 7431 eraseInstruction(cast<Instruction>(Scalar)); 7432 } 7433 } 7434 7435 Builder.ClearInsertionPoint(); 7436 InstrElementSize.clear(); 7437 7438 return VectorizableTree[0]->VectorizedValue; 7439 } 7440 7441 void BoUpSLP::optimizeGatherSequence() { 7442 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size() 7443 << " gather sequences instructions.\n"); 7444 // LICM InsertElementInst sequences. 7445 for (Instruction *I : GatherShuffleSeq) { 7446 if (isDeleted(I)) 7447 continue; 7448 7449 // Check if this block is inside a loop. 7450 Loop *L = LI->getLoopFor(I->getParent()); 7451 if (!L) 7452 continue; 7453 7454 // Check if it has a preheader. 7455 BasicBlock *PreHeader = L->getLoopPreheader(); 7456 if (!PreHeader) 7457 continue; 7458 7459 // If the vector or the element that we insert into it are 7460 // instructions that are defined in this basic block then we can't 7461 // hoist this instruction. 7462 if (any_of(I->operands(), [L](Value *V) { 7463 auto *OpI = dyn_cast<Instruction>(V); 7464 return OpI && L->contains(OpI); 7465 })) 7466 continue; 7467 7468 // We can hoist this instruction. Move it to the pre-header. 7469 I->moveBefore(PreHeader->getTerminator()); 7470 } 7471 7472 // Make a list of all reachable blocks in our CSE queue. 7473 SmallVector<const DomTreeNode *, 8> CSEWorkList; 7474 CSEWorkList.reserve(CSEBlocks.size()); 7475 for (BasicBlock *BB : CSEBlocks) 7476 if (DomTreeNode *N = DT->getNode(BB)) { 7477 assert(DT->isReachableFromEntry(N)); 7478 CSEWorkList.push_back(N); 7479 } 7480 7481 // Sort blocks by domination. This ensures we visit a block after all blocks 7482 // dominating it are visited. 7483 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 7484 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 7485 "Different nodes should have different DFS numbers"); 7486 return A->getDFSNumIn() < B->getDFSNumIn(); 7487 }); 7488 7489 // Less defined shuffles can be replaced by the more defined copies. 7490 // Between two shuffles one is less defined if it has the same vector operands 7491 // and its mask indeces are the same as in the first one or undefs. E.g. 7492 // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0, 7493 // poison, <0, 0, 0, 0>. 7494 auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2, 7495 SmallVectorImpl<int> &NewMask) { 7496 if (I1->getType() != I2->getType()) 7497 return false; 7498 auto *SI1 = dyn_cast<ShuffleVectorInst>(I1); 7499 auto *SI2 = dyn_cast<ShuffleVectorInst>(I2); 7500 if (!SI1 || !SI2) 7501 return I1->isIdenticalTo(I2); 7502 if (SI1->isIdenticalTo(SI2)) 7503 return true; 7504 for (int I = 0, E = SI1->getNumOperands(); I < E; ++I) 7505 if (SI1->getOperand(I) != SI2->getOperand(I)) 7506 return false; 7507 // Check if the second instruction is more defined than the first one. 7508 NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end()); 7509 ArrayRef<int> SM1 = SI1->getShuffleMask(); 7510 // Count trailing undefs in the mask to check the final number of used 7511 // registers. 7512 unsigned LastUndefsCnt = 0; 7513 for (int I = 0, E = NewMask.size(); I < E; ++I) { 7514 if (SM1[I] == UndefMaskElem) 7515 ++LastUndefsCnt; 7516 else 7517 LastUndefsCnt = 0; 7518 if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem && 7519 NewMask[I] != SM1[I]) 7520 return false; 7521 if (NewMask[I] == UndefMaskElem) 7522 NewMask[I] = SM1[I]; 7523 } 7524 // Check if the last undefs actually change the final number of used vector 7525 // registers. 7526 return SM1.size() - LastUndefsCnt > 1 && 7527 TTI->getNumberOfParts(SI1->getType()) == 7528 TTI->getNumberOfParts( 7529 FixedVectorType::get(SI1->getType()->getElementType(), 7530 SM1.size() - LastUndefsCnt)); 7531 }; 7532 // Perform O(N^2) search over the gather/shuffle sequences and merge identical 7533 // instructions. TODO: We can further optimize this scan if we split the 7534 // instructions into different buckets based on the insert lane. 7535 SmallVector<Instruction *, 16> Visited; 7536 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 7537 assert(*I && 7538 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 7539 "Worklist not sorted properly!"); 7540 BasicBlock *BB = (*I)->getBlock(); 7541 // For all instructions in blocks containing gather sequences: 7542 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 7543 if (isDeleted(&In)) 7544 continue; 7545 if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) && 7546 !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In)) 7547 continue; 7548 7549 // Check if we can replace this instruction with any of the 7550 // visited instructions. 7551 bool Replaced = false; 7552 for (Instruction *&V : Visited) { 7553 SmallVector<int> NewMask; 7554 if (IsIdenticalOrLessDefined(&In, V, NewMask) && 7555 DT->dominates(V->getParent(), In.getParent())) { 7556 In.replaceAllUsesWith(V); 7557 eraseInstruction(&In); 7558 if (auto *SI = dyn_cast<ShuffleVectorInst>(V)) 7559 if (!NewMask.empty()) 7560 SI->setShuffleMask(NewMask); 7561 Replaced = true; 7562 break; 7563 } 7564 if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) && 7565 GatherShuffleSeq.contains(V) && 7566 IsIdenticalOrLessDefined(V, &In, NewMask) && 7567 DT->dominates(In.getParent(), V->getParent())) { 7568 In.moveAfter(V); 7569 V->replaceAllUsesWith(&In); 7570 eraseInstruction(V); 7571 if (auto *SI = dyn_cast<ShuffleVectorInst>(&In)) 7572 if (!NewMask.empty()) 7573 SI->setShuffleMask(NewMask); 7574 V = &In; 7575 Replaced = true; 7576 break; 7577 } 7578 } 7579 if (!Replaced) { 7580 assert(!is_contained(Visited, &In)); 7581 Visited.push_back(&In); 7582 } 7583 } 7584 } 7585 CSEBlocks.clear(); 7586 GatherShuffleSeq.clear(); 7587 } 7588 7589 BoUpSLP::ScheduleData * 7590 BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) { 7591 ScheduleData *Bundle = nullptr; 7592 ScheduleData *PrevInBundle = nullptr; 7593 for (Value *V : VL) { 7594 ScheduleData *BundleMember = getScheduleData(V); 7595 assert(BundleMember && 7596 "no ScheduleData for bundle member " 7597 "(maybe not in same basic block)"); 7598 assert(BundleMember->isSchedulingEntity() && 7599 "bundle member already part of other bundle"); 7600 if (PrevInBundle) { 7601 PrevInBundle->NextInBundle = BundleMember; 7602 } else { 7603 Bundle = BundleMember; 7604 } 7605 7606 // Group the instructions to a bundle. 7607 BundleMember->FirstInBundle = Bundle; 7608 PrevInBundle = BundleMember; 7609 } 7610 assert(Bundle && "Failed to find schedule bundle"); 7611 return Bundle; 7612 } 7613 7614 // Groups the instructions to a bundle (which is then a single scheduling entity) 7615 // and schedules instructions until the bundle gets ready. 7616 Optional<BoUpSLP::ScheduleData *> 7617 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 7618 const InstructionsState &S) { 7619 // No need to schedule PHIs, insertelement, extractelement and extractvalue 7620 // instructions. 7621 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue)) 7622 return nullptr; 7623 7624 // Initialize the instruction bundle. 7625 Instruction *OldScheduleEnd = ScheduleEnd; 7626 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 7627 7628 auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule, 7629 ScheduleData *Bundle) { 7630 // The scheduling region got new instructions at the lower end (or it is a 7631 // new region for the first bundle). This makes it necessary to 7632 // recalculate all dependencies. 7633 // It is seldom that this needs to be done a second time after adding the 7634 // initial bundle to the region. 7635 if (ScheduleEnd != OldScheduleEnd) { 7636 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 7637 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 7638 ReSchedule = true; 7639 } 7640 if (Bundle) { 7641 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 7642 << " in block " << BB->getName() << "\n"); 7643 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 7644 } 7645 7646 if (ReSchedule) { 7647 resetSchedule(); 7648 initialFillReadyList(ReadyInsts); 7649 } 7650 7651 // Now try to schedule the new bundle or (if no bundle) just calculate 7652 // dependencies. As soon as the bundle is "ready" it means that there are no 7653 // cyclic dependencies and we can schedule it. Note that's important that we 7654 // don't "schedule" the bundle yet (see cancelScheduling). 7655 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 7656 !ReadyInsts.empty()) { 7657 ScheduleData *Picked = ReadyInsts.pop_back_val(); 7658 assert(Picked->isSchedulingEntity() && Picked->isReady() && 7659 "must be ready to schedule"); 7660 schedule(Picked, ReadyInsts); 7661 } 7662 }; 7663 7664 // Make sure that the scheduling region contains all 7665 // instructions of the bundle. 7666 for (Value *V : VL) { 7667 if (!extendSchedulingRegion(V, S)) { 7668 // If the scheduling region got new instructions at the lower end (or it 7669 // is a new region for the first bundle). This makes it necessary to 7670 // recalculate all dependencies. 7671 // Otherwise the compiler may crash trying to incorrectly calculate 7672 // dependencies and emit instruction in the wrong order at the actual 7673 // scheduling. 7674 TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr); 7675 return None; 7676 } 7677 } 7678 7679 bool ReSchedule = false; 7680 for (Value *V : VL) { 7681 ScheduleData *BundleMember = getScheduleData(V); 7682 assert(BundleMember && 7683 "no ScheduleData for bundle member (maybe not in same basic block)"); 7684 7685 // Make sure we don't leave the pieces of the bundle in the ready list when 7686 // whole bundle might not be ready. 7687 ReadyInsts.remove(BundleMember); 7688 7689 if (!BundleMember->IsScheduled) 7690 continue; 7691 // A bundle member was scheduled as single instruction before and now 7692 // needs to be scheduled as part of the bundle. We just get rid of the 7693 // existing schedule. 7694 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 7695 << " was already scheduled\n"); 7696 ReSchedule = true; 7697 } 7698 7699 auto *Bundle = buildBundle(VL); 7700 TryScheduleBundleImpl(ReSchedule, Bundle); 7701 if (!Bundle->isReady()) { 7702 cancelScheduling(VL, S.OpValue); 7703 return None; 7704 } 7705 return Bundle; 7706 } 7707 7708 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 7709 Value *OpValue) { 7710 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue)) 7711 return; 7712 7713 ScheduleData *Bundle = getScheduleData(OpValue); 7714 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 7715 assert(!Bundle->IsScheduled && 7716 "Can't cancel bundle which is already scheduled"); 7717 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 7718 "tried to unbundle something which is not a bundle"); 7719 7720 // Remove the bundle from the ready list. 7721 if (Bundle->isReady()) 7722 ReadyInsts.remove(Bundle); 7723 7724 // Un-bundle: make single instructions out of the bundle. 7725 ScheduleData *BundleMember = Bundle; 7726 while (BundleMember) { 7727 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 7728 BundleMember->FirstInBundle = BundleMember; 7729 ScheduleData *Next = BundleMember->NextInBundle; 7730 BundleMember->NextInBundle = nullptr; 7731 if (BundleMember->unscheduledDepsInBundle() == 0) { 7732 ReadyInsts.insert(BundleMember); 7733 } 7734 BundleMember = Next; 7735 } 7736 } 7737 7738 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 7739 // Allocate a new ScheduleData for the instruction. 7740 if (ChunkPos >= ChunkSize) { 7741 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 7742 ChunkPos = 0; 7743 } 7744 return &(ScheduleDataChunks.back()[ChunkPos++]); 7745 } 7746 7747 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 7748 const InstructionsState &S) { 7749 if (getScheduleData(V, isOneOf(S, V))) 7750 return true; 7751 Instruction *I = dyn_cast<Instruction>(V); 7752 assert(I && "bundle member must be an instruction"); 7753 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 7754 "phi nodes/insertelements/extractelements/extractvalues don't need to " 7755 "be scheduled"); 7756 auto &&CheckScheduleForI = [this, &S](Instruction *I) -> bool { 7757 ScheduleData *ISD = getScheduleData(I); 7758 if (!ISD) 7759 return false; 7760 assert(isInSchedulingRegion(ISD) && 7761 "ScheduleData not in scheduling region"); 7762 ScheduleData *SD = allocateScheduleDataChunks(); 7763 SD->Inst = I; 7764 SD->init(SchedulingRegionID, S.OpValue); 7765 ExtraScheduleDataMap[I][S.OpValue] = SD; 7766 return true; 7767 }; 7768 if (CheckScheduleForI(I)) 7769 return true; 7770 if (!ScheduleStart) { 7771 // It's the first instruction in the new region. 7772 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 7773 ScheduleStart = I; 7774 ScheduleEnd = I->getNextNode(); 7775 if (isOneOf(S, I) != I) 7776 CheckScheduleForI(I); 7777 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7778 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 7779 return true; 7780 } 7781 // Search up and down at the same time, because we don't know if the new 7782 // instruction is above or below the existing scheduling region. 7783 BasicBlock::reverse_iterator UpIter = 7784 ++ScheduleStart->getIterator().getReverse(); 7785 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 7786 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 7787 BasicBlock::iterator LowerEnd = BB->end(); 7788 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 7789 &*DownIter != I) { 7790 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 7791 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 7792 return false; 7793 } 7794 7795 ++UpIter; 7796 ++DownIter; 7797 } 7798 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 7799 assert(I->getParent() == ScheduleStart->getParent() && 7800 "Instruction is in wrong basic block."); 7801 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 7802 ScheduleStart = I; 7803 if (isOneOf(S, I) != I) 7804 CheckScheduleForI(I); 7805 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 7806 << "\n"); 7807 return true; 7808 } 7809 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 7810 "Expected to reach top of the basic block or instruction down the " 7811 "lower end."); 7812 assert(I->getParent() == ScheduleEnd->getParent() && 7813 "Instruction is in wrong basic block."); 7814 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 7815 nullptr); 7816 ScheduleEnd = I->getNextNode(); 7817 if (isOneOf(S, I) != I) 7818 CheckScheduleForI(I); 7819 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7820 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 7821 return true; 7822 } 7823 7824 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 7825 Instruction *ToI, 7826 ScheduleData *PrevLoadStore, 7827 ScheduleData *NextLoadStore) { 7828 ScheduleData *CurrentLoadStore = PrevLoadStore; 7829 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 7830 ScheduleData *SD = ScheduleDataMap[I]; 7831 if (!SD) { 7832 SD = allocateScheduleDataChunks(); 7833 ScheduleDataMap[I] = SD; 7834 SD->Inst = I; 7835 } 7836 assert(!isInSchedulingRegion(SD) && 7837 "new ScheduleData already in scheduling region"); 7838 SD->init(SchedulingRegionID, I); 7839 7840 if (I->mayReadOrWriteMemory() && 7841 (!isa<IntrinsicInst>(I) || 7842 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 7843 cast<IntrinsicInst>(I)->getIntrinsicID() != 7844 Intrinsic::pseudoprobe))) { 7845 // Update the linked list of memory accessing instructions. 7846 if (CurrentLoadStore) { 7847 CurrentLoadStore->NextLoadStore = SD; 7848 } else { 7849 FirstLoadStoreInRegion = SD; 7850 } 7851 CurrentLoadStore = SD; 7852 } 7853 } 7854 if (NextLoadStore) { 7855 if (CurrentLoadStore) 7856 CurrentLoadStore->NextLoadStore = NextLoadStore; 7857 } else { 7858 LastLoadStoreInRegion = CurrentLoadStore; 7859 } 7860 } 7861 7862 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 7863 bool InsertInReadyList, 7864 BoUpSLP *SLP) { 7865 assert(SD->isSchedulingEntity()); 7866 7867 SmallVector<ScheduleData *, 10> WorkList; 7868 WorkList.push_back(SD); 7869 7870 while (!WorkList.empty()) { 7871 ScheduleData *SD = WorkList.pop_back_val(); 7872 for (ScheduleData *BundleMember = SD; BundleMember; 7873 BundleMember = BundleMember->NextInBundle) { 7874 assert(isInSchedulingRegion(BundleMember)); 7875 if (BundleMember->hasValidDependencies()) 7876 continue; 7877 7878 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 7879 << "\n"); 7880 BundleMember->Dependencies = 0; 7881 BundleMember->resetUnscheduledDeps(); 7882 7883 // Handle def-use chain dependencies. 7884 if (BundleMember->OpValue != BundleMember->Inst) { 7885 if (ScheduleData *UseSD = getScheduleData(BundleMember->Inst)) { 7886 BundleMember->Dependencies++; 7887 ScheduleData *DestBundle = UseSD->FirstInBundle; 7888 if (!DestBundle->IsScheduled) 7889 BundleMember->incrementUnscheduledDeps(1); 7890 if (!DestBundle->hasValidDependencies()) 7891 WorkList.push_back(DestBundle); 7892 } 7893 } else { 7894 for (User *U : BundleMember->Inst->users()) { 7895 if (ScheduleData *UseSD = getScheduleData(cast<Instruction>(U))) { 7896 BundleMember->Dependencies++; 7897 ScheduleData *DestBundle = UseSD->FirstInBundle; 7898 if (!DestBundle->IsScheduled) 7899 BundleMember->incrementUnscheduledDeps(1); 7900 if (!DestBundle->hasValidDependencies()) 7901 WorkList.push_back(DestBundle); 7902 } 7903 } 7904 } 7905 7906 // Handle the memory dependencies (if any). 7907 ScheduleData *DepDest = BundleMember->NextLoadStore; 7908 if (!DepDest) 7909 continue; 7910 Instruction *SrcInst = BundleMember->Inst; 7911 assert(SrcInst->mayReadOrWriteMemory() && 7912 "NextLoadStore list for non memory effecting bundle?"); 7913 MemoryLocation SrcLoc = getLocation(SrcInst); 7914 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 7915 unsigned numAliased = 0; 7916 unsigned DistToSrc = 1; 7917 7918 for ( ; DepDest; DepDest = DepDest->NextLoadStore) { 7919 assert(isInSchedulingRegion(DepDest)); 7920 7921 // We have two limits to reduce the complexity: 7922 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 7923 // SLP->isAliased (which is the expensive part in this loop). 7924 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 7925 // the whole loop (even if the loop is fast, it's quadratic). 7926 // It's important for the loop break condition (see below) to 7927 // check this limit even between two read-only instructions. 7928 if (DistToSrc >= MaxMemDepDistance || 7929 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 7930 (numAliased >= AliasedCheckLimit || 7931 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 7932 7933 // We increment the counter only if the locations are aliased 7934 // (instead of counting all alias checks). This gives a better 7935 // balance between reduced runtime and accurate dependencies. 7936 numAliased++; 7937 7938 DepDest->MemoryDependencies.push_back(BundleMember); 7939 BundleMember->Dependencies++; 7940 ScheduleData *DestBundle = DepDest->FirstInBundle; 7941 if (!DestBundle->IsScheduled) { 7942 BundleMember->incrementUnscheduledDeps(1); 7943 } 7944 if (!DestBundle->hasValidDependencies()) { 7945 WorkList.push_back(DestBundle); 7946 } 7947 } 7948 7949 // Example, explaining the loop break condition: Let's assume our 7950 // starting instruction is i0 and MaxMemDepDistance = 3. 7951 // 7952 // +--------v--v--v 7953 // i0,i1,i2,i3,i4,i5,i6,i7,i8 7954 // +--------^--^--^ 7955 // 7956 // MaxMemDepDistance let us stop alias-checking at i3 and we add 7957 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 7958 // Previously we already added dependencies from i3 to i6,i7,i8 7959 // (because of MaxMemDepDistance). As we added a dependency from 7960 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 7961 // and we can abort this loop at i6. 7962 if (DistToSrc >= 2 * MaxMemDepDistance) 7963 break; 7964 DistToSrc++; 7965 } 7966 } 7967 if (InsertInReadyList && SD->isReady()) { 7968 ReadyInsts.insert(SD); 7969 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 7970 << "\n"); 7971 } 7972 } 7973 } 7974 7975 void BoUpSLP::BlockScheduling::resetSchedule() { 7976 assert(ScheduleStart && 7977 "tried to reset schedule on block which has not been scheduled"); 7978 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 7979 doForAllOpcodes(I, [&](ScheduleData *SD) { 7980 assert(isInSchedulingRegion(SD) && 7981 "ScheduleData not in scheduling region"); 7982 SD->IsScheduled = false; 7983 SD->resetUnscheduledDeps(); 7984 }); 7985 } 7986 ReadyInsts.clear(); 7987 } 7988 7989 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 7990 if (!BS->ScheduleStart) 7991 return; 7992 7993 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 7994 7995 BS->resetSchedule(); 7996 7997 // For the real scheduling we use a more sophisticated ready-list: it is 7998 // sorted by the original instruction location. This lets the final schedule 7999 // be as close as possible to the original instruction order. 8000 struct ScheduleDataCompare { 8001 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 8002 return SD2->SchedulingPriority < SD1->SchedulingPriority; 8003 } 8004 }; 8005 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 8006 8007 // Ensure that all dependency data is updated and fill the ready-list with 8008 // initial instructions. 8009 int Idx = 0; 8010 int NumToSchedule = 0; 8011 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 8012 I = I->getNextNode()) { 8013 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 8014 assert((isVectorLikeInstWithConstOps(SD->Inst) || 8015 SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr)) && 8016 "scheduler and vectorizer bundle mismatch"); 8017 SD->FirstInBundle->SchedulingPriority = Idx++; 8018 if (SD->isSchedulingEntity()) { 8019 BS->calculateDependencies(SD, false, this); 8020 NumToSchedule++; 8021 } 8022 }); 8023 } 8024 BS->initialFillReadyList(ReadyInsts); 8025 8026 Instruction *LastScheduledInst = BS->ScheduleEnd; 8027 8028 // Do the "real" scheduling. 8029 while (!ReadyInsts.empty()) { 8030 ScheduleData *picked = *ReadyInsts.begin(); 8031 ReadyInsts.erase(ReadyInsts.begin()); 8032 8033 // Move the scheduled instruction(s) to their dedicated places, if not 8034 // there yet. 8035 for (ScheduleData *BundleMember = picked; BundleMember; 8036 BundleMember = BundleMember->NextInBundle) { 8037 Instruction *pickedInst = BundleMember->Inst; 8038 if (pickedInst->getNextNode() != LastScheduledInst) 8039 pickedInst->moveBefore(LastScheduledInst); 8040 LastScheduledInst = pickedInst; 8041 } 8042 8043 BS->schedule(picked, ReadyInsts); 8044 NumToSchedule--; 8045 } 8046 assert(NumToSchedule == 0 && "could not schedule all instructions"); 8047 8048 // Check that we didn't break any of our invariants. 8049 #ifdef EXPENSIVE_CHECKS 8050 BS->verify(); 8051 #endif 8052 8053 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS) 8054 // Check that all schedulable entities got scheduled 8055 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; I = I->getNextNode()) { 8056 BS->doForAllOpcodes(I, [&](ScheduleData *SD) { 8057 if (SD->isSchedulingEntity() && SD->hasValidDependencies()) { 8058 assert(SD->IsScheduled && "must be scheduled at this point"); 8059 } 8060 }); 8061 } 8062 #endif 8063 8064 // Avoid duplicate scheduling of the block. 8065 BS->ScheduleStart = nullptr; 8066 } 8067 8068 unsigned BoUpSLP::getVectorElementSize(Value *V) { 8069 // If V is a store, just return the width of the stored value (or value 8070 // truncated just before storing) without traversing the expression tree. 8071 // This is the common case. 8072 if (auto *Store = dyn_cast<StoreInst>(V)) { 8073 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 8074 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 8075 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 8076 } 8077 8078 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 8079 return getVectorElementSize(IEI->getOperand(1)); 8080 8081 auto E = InstrElementSize.find(V); 8082 if (E != InstrElementSize.end()) 8083 return E->second; 8084 8085 // If V is not a store, we can traverse the expression tree to find loads 8086 // that feed it. The type of the loaded value may indicate a more suitable 8087 // width than V's type. We want to base the vector element size on the width 8088 // of memory operations where possible. 8089 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 8090 SmallPtrSet<Instruction *, 16> Visited; 8091 if (auto *I = dyn_cast<Instruction>(V)) { 8092 Worklist.emplace_back(I, I->getParent()); 8093 Visited.insert(I); 8094 } 8095 8096 // Traverse the expression tree in bottom-up order looking for loads. If we 8097 // encounter an instruction we don't yet handle, we give up. 8098 auto Width = 0u; 8099 while (!Worklist.empty()) { 8100 Instruction *I; 8101 BasicBlock *Parent; 8102 std::tie(I, Parent) = Worklist.pop_back_val(); 8103 8104 // We should only be looking at scalar instructions here. If the current 8105 // instruction has a vector type, skip. 8106 auto *Ty = I->getType(); 8107 if (isa<VectorType>(Ty)) 8108 continue; 8109 8110 // If the current instruction is a load, update MaxWidth to reflect the 8111 // width of the loaded value. 8112 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 8113 isa<ExtractValueInst>(I)) 8114 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 8115 8116 // Otherwise, we need to visit the operands of the instruction. We only 8117 // handle the interesting cases from buildTree here. If an operand is an 8118 // instruction we haven't yet visited and from the same basic block as the 8119 // user or the use is a PHI node, we add it to the worklist. 8120 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 8121 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 8122 isa<UnaryOperator>(I)) { 8123 for (Use &U : I->operands()) 8124 if (auto *J = dyn_cast<Instruction>(U.get())) 8125 if (Visited.insert(J).second && 8126 (isa<PHINode>(I) || J->getParent() == Parent)) 8127 Worklist.emplace_back(J, J->getParent()); 8128 } else { 8129 break; 8130 } 8131 } 8132 8133 // If we didn't encounter a memory access in the expression tree, or if we 8134 // gave up for some reason, just return the width of V. Otherwise, return the 8135 // maximum width we found. 8136 if (!Width) { 8137 if (auto *CI = dyn_cast<CmpInst>(V)) 8138 V = CI->getOperand(0); 8139 Width = DL->getTypeSizeInBits(V->getType()); 8140 } 8141 8142 for (Instruction *I : Visited) 8143 InstrElementSize[I] = Width; 8144 8145 return Width; 8146 } 8147 8148 // Determine if a value V in a vectorizable expression Expr can be demoted to a 8149 // smaller type with a truncation. We collect the values that will be demoted 8150 // in ToDemote and additional roots that require investigating in Roots. 8151 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 8152 SmallVectorImpl<Value *> &ToDemote, 8153 SmallVectorImpl<Value *> &Roots) { 8154 // We can always demote constants. 8155 if (isa<Constant>(V)) { 8156 ToDemote.push_back(V); 8157 return true; 8158 } 8159 8160 // If the value is not an instruction in the expression with only one use, it 8161 // cannot be demoted. 8162 auto *I = dyn_cast<Instruction>(V); 8163 if (!I || !I->hasOneUse() || !Expr.count(I)) 8164 return false; 8165 8166 switch (I->getOpcode()) { 8167 8168 // We can always demote truncations and extensions. Since truncations can 8169 // seed additional demotion, we save the truncated value. 8170 case Instruction::Trunc: 8171 Roots.push_back(I->getOperand(0)); 8172 break; 8173 case Instruction::ZExt: 8174 case Instruction::SExt: 8175 if (isa<ExtractElementInst>(I->getOperand(0)) || 8176 isa<InsertElementInst>(I->getOperand(0))) 8177 return false; 8178 break; 8179 8180 // We can demote certain binary operations if we can demote both of their 8181 // operands. 8182 case Instruction::Add: 8183 case Instruction::Sub: 8184 case Instruction::Mul: 8185 case Instruction::And: 8186 case Instruction::Or: 8187 case Instruction::Xor: 8188 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 8189 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 8190 return false; 8191 break; 8192 8193 // We can demote selects if we can demote their true and false values. 8194 case Instruction::Select: { 8195 SelectInst *SI = cast<SelectInst>(I); 8196 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 8197 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 8198 return false; 8199 break; 8200 } 8201 8202 // We can demote phis if we can demote all their incoming operands. Note that 8203 // we don't need to worry about cycles since we ensure single use above. 8204 case Instruction::PHI: { 8205 PHINode *PN = cast<PHINode>(I); 8206 for (Value *IncValue : PN->incoming_values()) 8207 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 8208 return false; 8209 break; 8210 } 8211 8212 // Otherwise, conservatively give up. 8213 default: 8214 return false; 8215 } 8216 8217 // Record the value that we can demote. 8218 ToDemote.push_back(V); 8219 return true; 8220 } 8221 8222 void BoUpSLP::computeMinimumValueSizes() { 8223 // If there are no external uses, the expression tree must be rooted by a 8224 // store. We can't demote in-memory values, so there is nothing to do here. 8225 if (ExternalUses.empty()) 8226 return; 8227 8228 // We only attempt to truncate integer expressions. 8229 auto &TreeRoot = VectorizableTree[0]->Scalars; 8230 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 8231 if (!TreeRootIT) 8232 return; 8233 8234 // If the expression is not rooted by a store, these roots should have 8235 // external uses. We will rely on InstCombine to rewrite the expression in 8236 // the narrower type. However, InstCombine only rewrites single-use values. 8237 // This means that if a tree entry other than a root is used externally, it 8238 // must have multiple uses and InstCombine will not rewrite it. The code 8239 // below ensures that only the roots are used externally. 8240 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 8241 for (auto &EU : ExternalUses) 8242 if (!Expr.erase(EU.Scalar)) 8243 return; 8244 if (!Expr.empty()) 8245 return; 8246 8247 // Collect the scalar values of the vectorizable expression. We will use this 8248 // context to determine which values can be demoted. If we see a truncation, 8249 // we mark it as seeding another demotion. 8250 for (auto &EntryPtr : VectorizableTree) 8251 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 8252 8253 // Ensure the roots of the vectorizable tree don't form a cycle. They must 8254 // have a single external user that is not in the vectorizable tree. 8255 for (auto *Root : TreeRoot) 8256 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 8257 return; 8258 8259 // Conservatively determine if we can actually truncate the roots of the 8260 // expression. Collect the values that can be demoted in ToDemote and 8261 // additional roots that require investigating in Roots. 8262 SmallVector<Value *, 32> ToDemote; 8263 SmallVector<Value *, 4> Roots; 8264 for (auto *Root : TreeRoot) 8265 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 8266 return; 8267 8268 // The maximum bit width required to represent all the values that can be 8269 // demoted without loss of precision. It would be safe to truncate the roots 8270 // of the expression to this width. 8271 auto MaxBitWidth = 8u; 8272 8273 // We first check if all the bits of the roots are demanded. If they're not, 8274 // we can truncate the roots to this narrower type. 8275 for (auto *Root : TreeRoot) { 8276 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 8277 MaxBitWidth = std::max<unsigned>( 8278 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 8279 } 8280 8281 // True if the roots can be zero-extended back to their original type, rather 8282 // than sign-extended. We know that if the leading bits are not demanded, we 8283 // can safely zero-extend. So we initialize IsKnownPositive to True. 8284 bool IsKnownPositive = true; 8285 8286 // If all the bits of the roots are demanded, we can try a little harder to 8287 // compute a narrower type. This can happen, for example, if the roots are 8288 // getelementptr indices. InstCombine promotes these indices to the pointer 8289 // width. Thus, all their bits are technically demanded even though the 8290 // address computation might be vectorized in a smaller type. 8291 // 8292 // We start by looking at each entry that can be demoted. We compute the 8293 // maximum bit width required to store the scalar by using ValueTracking to 8294 // compute the number of high-order bits we can truncate. 8295 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 8296 llvm::all_of(TreeRoot, [](Value *R) { 8297 assert(R->hasOneUse() && "Root should have only one use!"); 8298 return isa<GetElementPtrInst>(R->user_back()); 8299 })) { 8300 MaxBitWidth = 8u; 8301 8302 // Determine if the sign bit of all the roots is known to be zero. If not, 8303 // IsKnownPositive is set to False. 8304 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 8305 KnownBits Known = computeKnownBits(R, *DL); 8306 return Known.isNonNegative(); 8307 }); 8308 8309 // Determine the maximum number of bits required to store the scalar 8310 // values. 8311 for (auto *Scalar : ToDemote) { 8312 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 8313 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 8314 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 8315 } 8316 8317 // If we can't prove that the sign bit is zero, we must add one to the 8318 // maximum bit width to account for the unknown sign bit. This preserves 8319 // the existing sign bit so we can safely sign-extend the root back to the 8320 // original type. Otherwise, if we know the sign bit is zero, we will 8321 // zero-extend the root instead. 8322 // 8323 // FIXME: This is somewhat suboptimal, as there will be cases where adding 8324 // one to the maximum bit width will yield a larger-than-necessary 8325 // type. In general, we need to add an extra bit only if we can't 8326 // prove that the upper bit of the original type is equal to the 8327 // upper bit of the proposed smaller type. If these two bits are the 8328 // same (either zero or one) we know that sign-extending from the 8329 // smaller type will result in the same value. Here, since we can't 8330 // yet prove this, we are just making the proposed smaller type 8331 // larger to ensure correctness. 8332 if (!IsKnownPositive) 8333 ++MaxBitWidth; 8334 } 8335 8336 // Round MaxBitWidth up to the next power-of-two. 8337 if (!isPowerOf2_64(MaxBitWidth)) 8338 MaxBitWidth = NextPowerOf2(MaxBitWidth); 8339 8340 // If the maximum bit width we compute is less than the with of the roots' 8341 // type, we can proceed with the narrowing. Otherwise, do nothing. 8342 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 8343 return; 8344 8345 // If we can truncate the root, we must collect additional values that might 8346 // be demoted as a result. That is, those seeded by truncations we will 8347 // modify. 8348 while (!Roots.empty()) 8349 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 8350 8351 // Finally, map the values we can demote to the maximum bit with we computed. 8352 for (auto *Scalar : ToDemote) 8353 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 8354 } 8355 8356 namespace { 8357 8358 /// The SLPVectorizer Pass. 8359 struct SLPVectorizer : public FunctionPass { 8360 SLPVectorizerPass Impl; 8361 8362 /// Pass identification, replacement for typeid 8363 static char ID; 8364 8365 explicit SLPVectorizer() : FunctionPass(ID) { 8366 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 8367 } 8368 8369 bool doInitialization(Module &M) override { return false; } 8370 8371 bool runOnFunction(Function &F) override { 8372 if (skipFunction(F)) 8373 return false; 8374 8375 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 8376 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 8377 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 8378 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 8379 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 8380 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 8381 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 8382 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 8383 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 8384 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 8385 8386 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8387 } 8388 8389 void getAnalysisUsage(AnalysisUsage &AU) const override { 8390 FunctionPass::getAnalysisUsage(AU); 8391 AU.addRequired<AssumptionCacheTracker>(); 8392 AU.addRequired<ScalarEvolutionWrapperPass>(); 8393 AU.addRequired<AAResultsWrapperPass>(); 8394 AU.addRequired<TargetTransformInfoWrapperPass>(); 8395 AU.addRequired<LoopInfoWrapperPass>(); 8396 AU.addRequired<DominatorTreeWrapperPass>(); 8397 AU.addRequired<DemandedBitsWrapperPass>(); 8398 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 8399 AU.addRequired<InjectTLIMappingsLegacy>(); 8400 AU.addPreserved<LoopInfoWrapperPass>(); 8401 AU.addPreserved<DominatorTreeWrapperPass>(); 8402 AU.addPreserved<AAResultsWrapperPass>(); 8403 AU.addPreserved<GlobalsAAWrapperPass>(); 8404 AU.setPreservesCFG(); 8405 } 8406 }; 8407 8408 } // end anonymous namespace 8409 8410 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 8411 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 8412 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 8413 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 8414 auto *AA = &AM.getResult<AAManager>(F); 8415 auto *LI = &AM.getResult<LoopAnalysis>(F); 8416 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 8417 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 8418 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 8419 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8420 8421 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8422 if (!Changed) 8423 return PreservedAnalyses::all(); 8424 8425 PreservedAnalyses PA; 8426 PA.preserveSet<CFGAnalyses>(); 8427 return PA; 8428 } 8429 8430 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 8431 TargetTransformInfo *TTI_, 8432 TargetLibraryInfo *TLI_, AAResults *AA_, 8433 LoopInfo *LI_, DominatorTree *DT_, 8434 AssumptionCache *AC_, DemandedBits *DB_, 8435 OptimizationRemarkEmitter *ORE_) { 8436 if (!RunSLPVectorization) 8437 return false; 8438 SE = SE_; 8439 TTI = TTI_; 8440 TLI = TLI_; 8441 AA = AA_; 8442 LI = LI_; 8443 DT = DT_; 8444 AC = AC_; 8445 DB = DB_; 8446 DL = &F.getParent()->getDataLayout(); 8447 8448 Stores.clear(); 8449 GEPs.clear(); 8450 bool Changed = false; 8451 8452 // If the target claims to have no vector registers don't attempt 8453 // vectorization. 8454 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) { 8455 LLVM_DEBUG( 8456 dbgs() << "SLP: Didn't find any vector registers for target, abort.\n"); 8457 return false; 8458 } 8459 8460 // Don't vectorize when the attribute NoImplicitFloat is used. 8461 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 8462 return false; 8463 8464 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 8465 8466 // Use the bottom up slp vectorizer to construct chains that start with 8467 // store instructions. 8468 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 8469 8470 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 8471 // delete instructions. 8472 8473 // Update DFS numbers now so that we can use them for ordering. 8474 DT->updateDFSNumbers(); 8475 8476 // Scan the blocks in the function in post order. 8477 for (auto BB : post_order(&F.getEntryBlock())) { 8478 collectSeedInstructions(BB); 8479 8480 // Vectorize trees that end at stores. 8481 if (!Stores.empty()) { 8482 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 8483 << " underlying objects.\n"); 8484 Changed |= vectorizeStoreChains(R); 8485 } 8486 8487 // Vectorize trees that end at reductions. 8488 Changed |= vectorizeChainsInBlock(BB, R); 8489 8490 // Vectorize the index computations of getelementptr instructions. This 8491 // is primarily intended to catch gather-like idioms ending at 8492 // non-consecutive loads. 8493 if (!GEPs.empty()) { 8494 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 8495 << " underlying objects.\n"); 8496 Changed |= vectorizeGEPIndices(BB, R); 8497 } 8498 } 8499 8500 if (Changed) { 8501 R.optimizeGatherSequence(); 8502 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 8503 } 8504 return Changed; 8505 } 8506 8507 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 8508 unsigned Idx) { 8509 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 8510 << "\n"); 8511 const unsigned Sz = R.getVectorElementSize(Chain[0]); 8512 const unsigned MinVF = R.getMinVecRegSize() / Sz; 8513 unsigned VF = Chain.size(); 8514 8515 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 8516 return false; 8517 8518 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 8519 << "\n"); 8520 8521 R.buildTree(Chain); 8522 if (R.isTreeTinyAndNotFullyVectorizable()) 8523 return false; 8524 if (R.isLoadCombineCandidate()) 8525 return false; 8526 R.reorderTopToBottom(); 8527 R.reorderBottomToTop(); 8528 R.buildExternalUses(); 8529 8530 R.computeMinimumValueSizes(); 8531 8532 InstructionCost Cost = R.getTreeCost(); 8533 8534 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 8535 if (Cost < -SLPCostThreshold) { 8536 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 8537 8538 using namespace ore; 8539 8540 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 8541 cast<StoreInst>(Chain[0])) 8542 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 8543 << " and with tree size " 8544 << NV("TreeSize", R.getTreeSize())); 8545 8546 R.vectorizeTree(); 8547 return true; 8548 } 8549 8550 return false; 8551 } 8552 8553 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 8554 BoUpSLP &R) { 8555 // We may run into multiple chains that merge into a single chain. We mark the 8556 // stores that we vectorized so that we don't visit the same store twice. 8557 BoUpSLP::ValueSet VectorizedStores; 8558 bool Changed = false; 8559 8560 int E = Stores.size(); 8561 SmallBitVector Tails(E, false); 8562 int MaxIter = MaxStoreLookup.getValue(); 8563 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 8564 E, std::make_pair(E, INT_MAX)); 8565 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 8566 int IterCnt; 8567 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 8568 &CheckedPairs, 8569 &ConsecutiveChain](int K, int Idx) { 8570 if (IterCnt >= MaxIter) 8571 return true; 8572 if (CheckedPairs[Idx].test(K)) 8573 return ConsecutiveChain[K].second == 1 && 8574 ConsecutiveChain[K].first == Idx; 8575 ++IterCnt; 8576 CheckedPairs[Idx].set(K); 8577 CheckedPairs[K].set(Idx); 8578 Optional<int> Diff = getPointersDiff( 8579 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 8580 Stores[Idx]->getValueOperand()->getType(), 8581 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 8582 if (!Diff || *Diff == 0) 8583 return false; 8584 int Val = *Diff; 8585 if (Val < 0) { 8586 if (ConsecutiveChain[Idx].second > -Val) { 8587 Tails.set(K); 8588 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 8589 } 8590 return false; 8591 } 8592 if (ConsecutiveChain[K].second <= Val) 8593 return false; 8594 8595 Tails.set(Idx); 8596 ConsecutiveChain[K] = std::make_pair(Idx, Val); 8597 return Val == 1; 8598 }; 8599 // Do a quadratic search on all of the given stores in reverse order and find 8600 // all of the pairs of stores that follow each other. 8601 for (int Idx = E - 1; Idx >= 0; --Idx) { 8602 // If a store has multiple consecutive store candidates, search according 8603 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 8604 // This is because usually pairing with immediate succeeding or preceding 8605 // candidate create the best chance to find slp vectorization opportunity. 8606 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 8607 IterCnt = 0; 8608 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 8609 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 8610 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 8611 break; 8612 } 8613 8614 // Tracks if we tried to vectorize stores starting from the given tail 8615 // already. 8616 SmallBitVector TriedTails(E, false); 8617 // For stores that start but don't end a link in the chain: 8618 for (int Cnt = E; Cnt > 0; --Cnt) { 8619 int I = Cnt - 1; 8620 if (ConsecutiveChain[I].first == E || Tails.test(I)) 8621 continue; 8622 // We found a store instr that starts a chain. Now follow the chain and try 8623 // to vectorize it. 8624 BoUpSLP::ValueList Operands; 8625 // Collect the chain into a list. 8626 while (I != E && !VectorizedStores.count(Stores[I])) { 8627 Operands.push_back(Stores[I]); 8628 Tails.set(I); 8629 if (ConsecutiveChain[I].second != 1) { 8630 // Mark the new end in the chain and go back, if required. It might be 8631 // required if the original stores come in reversed order, for example. 8632 if (ConsecutiveChain[I].first != E && 8633 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 8634 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 8635 TriedTails.set(I); 8636 Tails.reset(ConsecutiveChain[I].first); 8637 if (Cnt < ConsecutiveChain[I].first + 2) 8638 Cnt = ConsecutiveChain[I].first + 2; 8639 } 8640 break; 8641 } 8642 // Move to the next value in the chain. 8643 I = ConsecutiveChain[I].first; 8644 } 8645 assert(!Operands.empty() && "Expected non-empty list of stores."); 8646 8647 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 8648 unsigned EltSize = R.getVectorElementSize(Operands[0]); 8649 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 8650 8651 unsigned MinVF = R.getMinVF(EltSize); 8652 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 8653 MaxElts); 8654 8655 // FIXME: Is division-by-2 the correct step? Should we assert that the 8656 // register size is a power-of-2? 8657 unsigned StartIdx = 0; 8658 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 8659 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 8660 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 8661 if (!VectorizedStores.count(Slice.front()) && 8662 !VectorizedStores.count(Slice.back()) && 8663 vectorizeStoreChain(Slice, R, Cnt)) { 8664 // Mark the vectorized stores so that we don't vectorize them again. 8665 VectorizedStores.insert(Slice.begin(), Slice.end()); 8666 Changed = true; 8667 // If we vectorized initial block, no need to try to vectorize it 8668 // again. 8669 if (Cnt == StartIdx) 8670 StartIdx += Size; 8671 Cnt += Size; 8672 continue; 8673 } 8674 ++Cnt; 8675 } 8676 // Check if the whole array was vectorized already - exit. 8677 if (StartIdx >= Operands.size()) 8678 break; 8679 } 8680 } 8681 8682 return Changed; 8683 } 8684 8685 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 8686 // Initialize the collections. We will make a single pass over the block. 8687 Stores.clear(); 8688 GEPs.clear(); 8689 8690 // Visit the store and getelementptr instructions in BB and organize them in 8691 // Stores and GEPs according to the underlying objects of their pointer 8692 // operands. 8693 for (Instruction &I : *BB) { 8694 // Ignore store instructions that are volatile or have a pointer operand 8695 // that doesn't point to a scalar type. 8696 if (auto *SI = dyn_cast<StoreInst>(&I)) { 8697 if (!SI->isSimple()) 8698 continue; 8699 if (!isValidElementType(SI->getValueOperand()->getType())) 8700 continue; 8701 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 8702 } 8703 8704 // Ignore getelementptr instructions that have more than one index, a 8705 // constant index, or a pointer operand that doesn't point to a scalar 8706 // type. 8707 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 8708 auto Idx = GEP->idx_begin()->get(); 8709 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 8710 continue; 8711 if (!isValidElementType(Idx->getType())) 8712 continue; 8713 if (GEP->getType()->isVectorTy()) 8714 continue; 8715 GEPs[GEP->getPointerOperand()].push_back(GEP); 8716 } 8717 } 8718 } 8719 8720 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 8721 if (!A || !B) 8722 return false; 8723 if (isa<InsertElementInst>(A) || isa<InsertElementInst>(B)) 8724 return false; 8725 Value *VL[] = {A, B}; 8726 return tryToVectorizeList(VL, R); 8727 } 8728 8729 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 8730 bool LimitForRegisterSize) { 8731 if (VL.size() < 2) 8732 return false; 8733 8734 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 8735 << VL.size() << ".\n"); 8736 8737 // Check that all of the parts are instructions of the same type, 8738 // we permit an alternate opcode via InstructionsState. 8739 InstructionsState S = getSameOpcode(VL); 8740 if (!S.getOpcode()) 8741 return false; 8742 8743 Instruction *I0 = cast<Instruction>(S.OpValue); 8744 // Make sure invalid types (including vector type) are rejected before 8745 // determining vectorization factor for scalar instructions. 8746 for (Value *V : VL) { 8747 Type *Ty = V->getType(); 8748 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 8749 // NOTE: the following will give user internal llvm type name, which may 8750 // not be useful. 8751 R.getORE()->emit([&]() { 8752 std::string type_str; 8753 llvm::raw_string_ostream rso(type_str); 8754 Ty->print(rso); 8755 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 8756 << "Cannot SLP vectorize list: type " 8757 << rso.str() + " is unsupported by vectorizer"; 8758 }); 8759 return false; 8760 } 8761 } 8762 8763 unsigned Sz = R.getVectorElementSize(I0); 8764 unsigned MinVF = R.getMinVF(Sz); 8765 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 8766 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 8767 if (MaxVF < 2) { 8768 R.getORE()->emit([&]() { 8769 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 8770 << "Cannot SLP vectorize list: vectorization factor " 8771 << "less than 2 is not supported"; 8772 }); 8773 return false; 8774 } 8775 8776 bool Changed = false; 8777 bool CandidateFound = false; 8778 InstructionCost MinCost = SLPCostThreshold.getValue(); 8779 Type *ScalarTy = VL[0]->getType(); 8780 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 8781 ScalarTy = IE->getOperand(1)->getType(); 8782 8783 unsigned NextInst = 0, MaxInst = VL.size(); 8784 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 8785 // No actual vectorization should happen, if number of parts is the same as 8786 // provided vectorization factor (i.e. the scalar type is used for vector 8787 // code during codegen). 8788 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 8789 if (TTI->getNumberOfParts(VecTy) == VF) 8790 continue; 8791 for (unsigned I = NextInst; I < MaxInst; ++I) { 8792 unsigned OpsWidth = 0; 8793 8794 if (I + VF > MaxInst) 8795 OpsWidth = MaxInst - I; 8796 else 8797 OpsWidth = VF; 8798 8799 if (!isPowerOf2_32(OpsWidth)) 8800 continue; 8801 8802 if ((LimitForRegisterSize && OpsWidth < MaxVF) || 8803 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 8804 break; 8805 8806 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 8807 // Check that a previous iteration of this loop did not delete the Value. 8808 if (llvm::any_of(Ops, [&R](Value *V) { 8809 auto *I = dyn_cast<Instruction>(V); 8810 return I && R.isDeleted(I); 8811 })) 8812 continue; 8813 8814 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 8815 << "\n"); 8816 8817 R.buildTree(Ops); 8818 if (R.isTreeTinyAndNotFullyVectorizable()) 8819 continue; 8820 R.reorderTopToBottom(); 8821 R.reorderBottomToTop(!isa<InsertElementInst>(Ops.front())); 8822 R.buildExternalUses(); 8823 8824 R.computeMinimumValueSizes(); 8825 InstructionCost Cost = R.getTreeCost(); 8826 CandidateFound = true; 8827 MinCost = std::min(MinCost, Cost); 8828 8829 if (Cost < -SLPCostThreshold) { 8830 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 8831 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 8832 cast<Instruction>(Ops[0])) 8833 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 8834 << " and with tree size " 8835 << ore::NV("TreeSize", R.getTreeSize())); 8836 8837 R.vectorizeTree(); 8838 // Move to the next bundle. 8839 I += VF - 1; 8840 NextInst = I + 1; 8841 Changed = true; 8842 } 8843 } 8844 } 8845 8846 if (!Changed && CandidateFound) { 8847 R.getORE()->emit([&]() { 8848 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 8849 << "List vectorization was possible but not beneficial with cost " 8850 << ore::NV("Cost", MinCost) << " >= " 8851 << ore::NV("Treshold", -SLPCostThreshold); 8852 }); 8853 } else if (!Changed) { 8854 R.getORE()->emit([&]() { 8855 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 8856 << "Cannot SLP vectorize list: vectorization was impossible" 8857 << " with available vectorization factors"; 8858 }); 8859 } 8860 return Changed; 8861 } 8862 8863 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 8864 if (!I) 8865 return false; 8866 8867 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 8868 return false; 8869 8870 Value *P = I->getParent(); 8871 8872 // Vectorize in current basic block only. 8873 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 8874 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 8875 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 8876 return false; 8877 8878 // Try to vectorize V. 8879 if (tryToVectorizePair(Op0, Op1, R)) 8880 return true; 8881 8882 auto *A = dyn_cast<BinaryOperator>(Op0); 8883 auto *B = dyn_cast<BinaryOperator>(Op1); 8884 // Try to skip B. 8885 if (B && B->hasOneUse()) { 8886 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 8887 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 8888 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 8889 return true; 8890 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 8891 return true; 8892 } 8893 8894 // Try to skip A. 8895 if (A && A->hasOneUse()) { 8896 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 8897 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 8898 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 8899 return true; 8900 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 8901 return true; 8902 } 8903 return false; 8904 } 8905 8906 namespace { 8907 8908 /// Model horizontal reductions. 8909 /// 8910 /// A horizontal reduction is a tree of reduction instructions that has values 8911 /// that can be put into a vector as its leaves. For example: 8912 /// 8913 /// mul mul mul mul 8914 /// \ / \ / 8915 /// + + 8916 /// \ / 8917 /// + 8918 /// This tree has "mul" as its leaf values and "+" as its reduction 8919 /// instructions. A reduction can feed into a store or a binary operation 8920 /// feeding a phi. 8921 /// ... 8922 /// \ / 8923 /// + 8924 /// | 8925 /// phi += 8926 /// 8927 /// Or: 8928 /// ... 8929 /// \ / 8930 /// + 8931 /// | 8932 /// *p = 8933 /// 8934 class HorizontalReduction { 8935 using ReductionOpsType = SmallVector<Value *, 16>; 8936 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 8937 ReductionOpsListType ReductionOps; 8938 SmallVector<Value *, 32> ReducedVals; 8939 // Use map vector to make stable output. 8940 MapVector<Instruction *, Value *> ExtraArgs; 8941 WeakTrackingVH ReductionRoot; 8942 /// The type of reduction operation. 8943 RecurKind RdxKind; 8944 8945 const unsigned INVALID_OPERAND_INDEX = std::numeric_limits<unsigned>::max(); 8946 8947 static bool isCmpSelMinMax(Instruction *I) { 8948 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 8949 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 8950 } 8951 8952 // And/or are potentially poison-safe logical patterns like: 8953 // select x, y, false 8954 // select x, true, y 8955 static bool isBoolLogicOp(Instruction *I) { 8956 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 8957 match(I, m_LogicalOr(m_Value(), m_Value())); 8958 } 8959 8960 /// Checks if instruction is associative and can be vectorized. 8961 static bool isVectorizable(RecurKind Kind, Instruction *I) { 8962 if (Kind == RecurKind::None) 8963 return false; 8964 8965 // Integer ops that map to select instructions or intrinsics are fine. 8966 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 8967 isBoolLogicOp(I)) 8968 return true; 8969 8970 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 8971 // FP min/max are associative except for NaN and -0.0. We do not 8972 // have to rule out -0.0 here because the intrinsic semantics do not 8973 // specify a fixed result for it. 8974 return I->getFastMathFlags().noNaNs(); 8975 } 8976 8977 return I->isAssociative(); 8978 } 8979 8980 static Value *getRdxOperand(Instruction *I, unsigned Index) { 8981 // Poison-safe 'or' takes the form: select X, true, Y 8982 // To make that work with the normal operand processing, we skip the 8983 // true value operand. 8984 // TODO: Change the code and data structures to handle this without a hack. 8985 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 8986 return I->getOperand(2); 8987 return I->getOperand(Index); 8988 } 8989 8990 /// Checks if the ParentStackElem.first should be marked as a reduction 8991 /// operation with an extra argument or as extra argument itself. 8992 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 8993 Value *ExtraArg) { 8994 if (ExtraArgs.count(ParentStackElem.first)) { 8995 ExtraArgs[ParentStackElem.first] = nullptr; 8996 // We ran into something like: 8997 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 8998 // The whole ParentStackElem.first should be considered as an extra value 8999 // in this case. 9000 // Do not perform analysis of remaining operands of ParentStackElem.first 9001 // instruction, this whole instruction is an extra argument. 9002 ParentStackElem.second = INVALID_OPERAND_INDEX; 9003 } else { 9004 // We ran into something like: 9005 // ParentStackElem.first += ... + ExtraArg + ... 9006 ExtraArgs[ParentStackElem.first] = ExtraArg; 9007 } 9008 } 9009 9010 /// Creates reduction operation with the current opcode. 9011 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 9012 Value *RHS, const Twine &Name, bool UseSelect) { 9013 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 9014 switch (Kind) { 9015 case RecurKind::Or: 9016 if (UseSelect && 9017 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 9018 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); 9019 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9020 Name); 9021 case RecurKind::And: 9022 if (UseSelect && 9023 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 9024 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); 9025 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9026 Name); 9027 case RecurKind::Add: 9028 case RecurKind::Mul: 9029 case RecurKind::Xor: 9030 case RecurKind::FAdd: 9031 case RecurKind::FMul: 9032 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 9033 Name); 9034 case RecurKind::FMax: 9035 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 9036 case RecurKind::FMin: 9037 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 9038 case RecurKind::SMax: 9039 if (UseSelect) { 9040 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 9041 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9042 } 9043 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 9044 case RecurKind::SMin: 9045 if (UseSelect) { 9046 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 9047 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9048 } 9049 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 9050 case RecurKind::UMax: 9051 if (UseSelect) { 9052 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 9053 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9054 } 9055 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 9056 case RecurKind::UMin: 9057 if (UseSelect) { 9058 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 9059 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 9060 } 9061 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 9062 default: 9063 llvm_unreachable("Unknown reduction operation."); 9064 } 9065 } 9066 9067 /// Creates reduction operation with the current opcode with the IR flags 9068 /// from \p ReductionOps. 9069 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 9070 Value *RHS, const Twine &Name, 9071 const ReductionOpsListType &ReductionOps) { 9072 bool UseSelect = ReductionOps.size() == 2 || 9073 // Logical or/and. 9074 (ReductionOps.size() == 1 && 9075 isa<SelectInst>(ReductionOps.front().front())); 9076 assert((!UseSelect || ReductionOps.size() != 2 || 9077 isa<SelectInst>(ReductionOps[1][0])) && 9078 "Expected cmp + select pairs for reduction"); 9079 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 9080 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 9081 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 9082 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 9083 propagateIRFlags(Op, ReductionOps[1]); 9084 return Op; 9085 } 9086 } 9087 propagateIRFlags(Op, ReductionOps[0]); 9088 return Op; 9089 } 9090 9091 /// Creates reduction operation with the current opcode with the IR flags 9092 /// from \p I. 9093 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 9094 Value *RHS, const Twine &Name, Instruction *I) { 9095 auto *SelI = dyn_cast<SelectInst>(I); 9096 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 9097 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 9098 if (auto *Sel = dyn_cast<SelectInst>(Op)) 9099 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 9100 } 9101 propagateIRFlags(Op, I); 9102 return Op; 9103 } 9104 9105 static RecurKind getRdxKind(Instruction *I) { 9106 assert(I && "Expected instruction for reduction matching"); 9107 if (match(I, m_Add(m_Value(), m_Value()))) 9108 return RecurKind::Add; 9109 if (match(I, m_Mul(m_Value(), m_Value()))) 9110 return RecurKind::Mul; 9111 if (match(I, m_And(m_Value(), m_Value())) || 9112 match(I, m_LogicalAnd(m_Value(), m_Value()))) 9113 return RecurKind::And; 9114 if (match(I, m_Or(m_Value(), m_Value())) || 9115 match(I, m_LogicalOr(m_Value(), m_Value()))) 9116 return RecurKind::Or; 9117 if (match(I, m_Xor(m_Value(), m_Value()))) 9118 return RecurKind::Xor; 9119 if (match(I, m_FAdd(m_Value(), m_Value()))) 9120 return RecurKind::FAdd; 9121 if (match(I, m_FMul(m_Value(), m_Value()))) 9122 return RecurKind::FMul; 9123 9124 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 9125 return RecurKind::FMax; 9126 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 9127 return RecurKind::FMin; 9128 9129 // This matches either cmp+select or intrinsics. SLP is expected to handle 9130 // either form. 9131 // TODO: If we are canonicalizing to intrinsics, we can remove several 9132 // special-case paths that deal with selects. 9133 if (match(I, m_SMax(m_Value(), m_Value()))) 9134 return RecurKind::SMax; 9135 if (match(I, m_SMin(m_Value(), m_Value()))) 9136 return RecurKind::SMin; 9137 if (match(I, m_UMax(m_Value(), m_Value()))) 9138 return RecurKind::UMax; 9139 if (match(I, m_UMin(m_Value(), m_Value()))) 9140 return RecurKind::UMin; 9141 9142 if (auto *Select = dyn_cast<SelectInst>(I)) { 9143 // Try harder: look for min/max pattern based on instructions producing 9144 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 9145 // During the intermediate stages of SLP, it's very common to have 9146 // pattern like this (since optimizeGatherSequence is run only once 9147 // at the end): 9148 // %1 = extractelement <2 x i32> %a, i32 0 9149 // %2 = extractelement <2 x i32> %a, i32 1 9150 // %cond = icmp sgt i32 %1, %2 9151 // %3 = extractelement <2 x i32> %a, i32 0 9152 // %4 = extractelement <2 x i32> %a, i32 1 9153 // %select = select i1 %cond, i32 %3, i32 %4 9154 CmpInst::Predicate Pred; 9155 Instruction *L1; 9156 Instruction *L2; 9157 9158 Value *LHS = Select->getTrueValue(); 9159 Value *RHS = Select->getFalseValue(); 9160 Value *Cond = Select->getCondition(); 9161 9162 // TODO: Support inverse predicates. 9163 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 9164 if (!isa<ExtractElementInst>(RHS) || 9165 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9166 return RecurKind::None; 9167 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 9168 if (!isa<ExtractElementInst>(LHS) || 9169 !L1->isIdenticalTo(cast<Instruction>(LHS))) 9170 return RecurKind::None; 9171 } else { 9172 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 9173 return RecurKind::None; 9174 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 9175 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 9176 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9177 return RecurKind::None; 9178 } 9179 9180 switch (Pred) { 9181 default: 9182 return RecurKind::None; 9183 case CmpInst::ICMP_SGT: 9184 case CmpInst::ICMP_SGE: 9185 return RecurKind::SMax; 9186 case CmpInst::ICMP_SLT: 9187 case CmpInst::ICMP_SLE: 9188 return RecurKind::SMin; 9189 case CmpInst::ICMP_UGT: 9190 case CmpInst::ICMP_UGE: 9191 return RecurKind::UMax; 9192 case CmpInst::ICMP_ULT: 9193 case CmpInst::ICMP_ULE: 9194 return RecurKind::UMin; 9195 } 9196 } 9197 return RecurKind::None; 9198 } 9199 9200 /// Get the index of the first operand. 9201 static unsigned getFirstOperandIndex(Instruction *I) { 9202 return isCmpSelMinMax(I) ? 1 : 0; 9203 } 9204 9205 /// Total number of operands in the reduction operation. 9206 static unsigned getNumberOfOperands(Instruction *I) { 9207 return isCmpSelMinMax(I) ? 3 : 2; 9208 } 9209 9210 /// Checks if the instruction is in basic block \p BB. 9211 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 9212 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 9213 if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) { 9214 auto *Sel = cast<SelectInst>(I); 9215 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); 9216 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; 9217 } 9218 return I->getParent() == BB; 9219 } 9220 9221 /// Expected number of uses for reduction operations/reduced values. 9222 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 9223 if (IsCmpSelMinMax) { 9224 // SelectInst must be used twice while the condition op must have single 9225 // use only. 9226 if (auto *Sel = dyn_cast<SelectInst>(I)) 9227 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 9228 return I->hasNUses(2); 9229 } 9230 9231 // Arithmetic reduction operation must be used once only. 9232 return I->hasOneUse(); 9233 } 9234 9235 /// Initializes the list of reduction operations. 9236 void initReductionOps(Instruction *I) { 9237 if (isCmpSelMinMax(I)) 9238 ReductionOps.assign(2, ReductionOpsType()); 9239 else 9240 ReductionOps.assign(1, ReductionOpsType()); 9241 } 9242 9243 /// Add all reduction operations for the reduction instruction \p I. 9244 void addReductionOps(Instruction *I) { 9245 if (isCmpSelMinMax(I)) { 9246 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 9247 ReductionOps[1].emplace_back(I); 9248 } else { 9249 ReductionOps[0].emplace_back(I); 9250 } 9251 } 9252 9253 static Value *getLHS(RecurKind Kind, Instruction *I) { 9254 if (Kind == RecurKind::None) 9255 return nullptr; 9256 return I->getOperand(getFirstOperandIndex(I)); 9257 } 9258 static Value *getRHS(RecurKind Kind, Instruction *I) { 9259 if (Kind == RecurKind::None) 9260 return nullptr; 9261 return I->getOperand(getFirstOperandIndex(I) + 1); 9262 } 9263 9264 public: 9265 HorizontalReduction() = default; 9266 9267 /// Try to find a reduction tree. 9268 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst) { 9269 assert((!Phi || is_contained(Phi->operands(), Inst)) && 9270 "Phi needs to use the binary operator"); 9271 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 9272 isa<IntrinsicInst>(Inst)) && 9273 "Expected binop, select, or intrinsic for reduction matching"); 9274 RdxKind = getRdxKind(Inst); 9275 9276 // We could have a initial reductions that is not an add. 9277 // r *= v1 + v2 + v3 + v4 9278 // In such a case start looking for a tree rooted in the first '+'. 9279 if (Phi) { 9280 if (getLHS(RdxKind, Inst) == Phi) { 9281 Phi = nullptr; 9282 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 9283 if (!Inst) 9284 return false; 9285 RdxKind = getRdxKind(Inst); 9286 } else if (getRHS(RdxKind, Inst) == Phi) { 9287 Phi = nullptr; 9288 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 9289 if (!Inst) 9290 return false; 9291 RdxKind = getRdxKind(Inst); 9292 } 9293 } 9294 9295 if (!isVectorizable(RdxKind, Inst)) 9296 return false; 9297 9298 // Analyze "regular" integer/FP types for reductions - no target-specific 9299 // types or pointers. 9300 Type *Ty = Inst->getType(); 9301 if (!isValidElementType(Ty) || Ty->isPointerTy()) 9302 return false; 9303 9304 // Though the ultimate reduction may have multiple uses, its condition must 9305 // have only single use. 9306 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 9307 if (!Sel->getCondition()->hasOneUse()) 9308 return false; 9309 9310 ReductionRoot = Inst; 9311 9312 // The opcode for leaf values that we perform a reduction on. 9313 // For example: load(x) + load(y) + load(z) + fptoui(w) 9314 // The leaf opcode for 'w' does not match, so we don't include it as a 9315 // potential candidate for the reduction. 9316 unsigned LeafOpcode = 0; 9317 9318 // Post-order traverse the reduction tree starting at Inst. We only handle 9319 // true trees containing binary operators or selects. 9320 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 9321 Stack.push_back(std::make_pair(Inst, getFirstOperandIndex(Inst))); 9322 initReductionOps(Inst); 9323 while (!Stack.empty()) { 9324 Instruction *TreeN = Stack.back().first; 9325 unsigned EdgeToVisit = Stack.back().second++; 9326 const RecurKind TreeRdxKind = getRdxKind(TreeN); 9327 bool IsReducedValue = TreeRdxKind != RdxKind; 9328 9329 // Postorder visit. 9330 if (IsReducedValue || EdgeToVisit >= getNumberOfOperands(TreeN)) { 9331 if (IsReducedValue) 9332 ReducedVals.push_back(TreeN); 9333 else { 9334 auto ExtraArgsIter = ExtraArgs.find(TreeN); 9335 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) { 9336 // Check if TreeN is an extra argument of its parent operation. 9337 if (Stack.size() <= 1) { 9338 // TreeN can't be an extra argument as it is a root reduction 9339 // operation. 9340 return false; 9341 } 9342 // Yes, TreeN is an extra argument, do not add it to a list of 9343 // reduction operations. 9344 // Stack[Stack.size() - 2] always points to the parent operation. 9345 markExtraArg(Stack[Stack.size() - 2], TreeN); 9346 ExtraArgs.erase(TreeN); 9347 } else 9348 addReductionOps(TreeN); 9349 } 9350 // Retract. 9351 Stack.pop_back(); 9352 continue; 9353 } 9354 9355 // Visit operands. 9356 Value *EdgeVal = getRdxOperand(TreeN, EdgeToVisit); 9357 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 9358 if (!EdgeInst) { 9359 // Edge value is not a reduction instruction or a leaf instruction. 9360 // (It may be a constant, function argument, or something else.) 9361 markExtraArg(Stack.back(), EdgeVal); 9362 continue; 9363 } 9364 RecurKind EdgeRdxKind = getRdxKind(EdgeInst); 9365 // Continue analysis if the next operand is a reduction operation or 9366 // (possibly) a leaf value. If the leaf value opcode is not set, 9367 // the first met operation != reduction operation is considered as the 9368 // leaf opcode. 9369 // Only handle trees in the current basic block. 9370 // Each tree node needs to have minimal number of users except for the 9371 // ultimate reduction. 9372 const bool IsRdxInst = EdgeRdxKind == RdxKind; 9373 if (EdgeInst != Phi && EdgeInst != Inst && 9374 hasSameParent(EdgeInst, Inst->getParent()) && 9375 hasRequiredNumberOfUses(isCmpSelMinMax(Inst), EdgeInst) && 9376 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) { 9377 if (IsRdxInst) { 9378 // We need to be able to reassociate the reduction operations. 9379 if (!isVectorizable(EdgeRdxKind, EdgeInst)) { 9380 // I is an extra argument for TreeN (its parent operation). 9381 markExtraArg(Stack.back(), EdgeInst); 9382 continue; 9383 } 9384 } else if (!LeafOpcode) { 9385 LeafOpcode = EdgeInst->getOpcode(); 9386 } 9387 Stack.push_back( 9388 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst))); 9389 continue; 9390 } 9391 // I is an extra argument for TreeN (its parent operation). 9392 markExtraArg(Stack.back(), EdgeInst); 9393 } 9394 return true; 9395 } 9396 9397 /// Attempt to vectorize the tree found by matchAssociativeReduction. 9398 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 9399 // If there are a sufficient number of reduction values, reduce 9400 // to a nearby power-of-2. We can safely generate oversized 9401 // vectors and rely on the backend to split them to legal sizes. 9402 unsigned NumReducedVals = ReducedVals.size(); 9403 if (NumReducedVals < 4) 9404 return nullptr; 9405 9406 // Intersect the fast-math-flags from all reduction operations. 9407 FastMathFlags RdxFMF; 9408 RdxFMF.set(); 9409 for (ReductionOpsType &RdxOp : ReductionOps) { 9410 for (Value *RdxVal : RdxOp) { 9411 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 9412 RdxFMF &= FPMO->getFastMathFlags(); 9413 } 9414 } 9415 9416 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 9417 Builder.setFastMathFlags(RdxFMF); 9418 9419 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 9420 // The same extra argument may be used several times, so log each attempt 9421 // to use it. 9422 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 9423 assert(Pair.first && "DebugLoc must be set."); 9424 ExternallyUsedValues[Pair.second].push_back(Pair.first); 9425 } 9426 9427 // The compare instruction of a min/max is the insertion point for new 9428 // instructions and may be replaced with a new compare instruction. 9429 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 9430 assert(isa<SelectInst>(RdxRootInst) && 9431 "Expected min/max reduction to have select root instruction"); 9432 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 9433 assert(isa<Instruction>(ScalarCond) && 9434 "Expected min/max reduction to have compare condition"); 9435 return cast<Instruction>(ScalarCond); 9436 }; 9437 9438 // The reduction root is used as the insertion point for new instructions, 9439 // so set it as externally used to prevent it from being deleted. 9440 ExternallyUsedValues[ReductionRoot]; 9441 SmallVector<Value *, 16> IgnoreList; 9442 for (ReductionOpsType &RdxOp : ReductionOps) 9443 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 9444 9445 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 9446 if (NumReducedVals > ReduxWidth) { 9447 // In the loop below, we are building a tree based on a window of 9448 // 'ReduxWidth' values. 9449 // If the operands of those values have common traits (compare predicate, 9450 // constant operand, etc), then we want to group those together to 9451 // minimize the cost of the reduction. 9452 9453 // TODO: This should be extended to count common operands for 9454 // compares and binops. 9455 9456 // Step 1: Count the number of times each compare predicate occurs. 9457 SmallDenseMap<unsigned, unsigned> PredCountMap; 9458 for (Value *RdxVal : ReducedVals) { 9459 CmpInst::Predicate Pred; 9460 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 9461 ++PredCountMap[Pred]; 9462 } 9463 // Step 2: Sort the values so the most common predicates come first. 9464 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 9465 CmpInst::Predicate PredA, PredB; 9466 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 9467 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 9468 return PredCountMap[PredA] > PredCountMap[PredB]; 9469 } 9470 return false; 9471 }); 9472 } 9473 9474 Value *VectorizedTree = nullptr; 9475 unsigned i = 0; 9476 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 9477 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 9478 V.buildTree(VL, IgnoreList); 9479 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) 9480 break; 9481 if (V.isLoadCombineReductionCandidate(RdxKind)) 9482 break; 9483 V.reorderTopToBottom(); 9484 V.reorderBottomToTop(/*IgnoreReorder=*/true); 9485 V.buildExternalUses(ExternallyUsedValues); 9486 9487 // For a poison-safe boolean logic reduction, do not replace select 9488 // instructions with logic ops. All reduced values will be frozen (see 9489 // below) to prevent leaking poison. 9490 if (isa<SelectInst>(ReductionRoot) && 9491 isBoolLogicOp(cast<Instruction>(ReductionRoot)) && 9492 NumReducedVals != ReduxWidth) 9493 break; 9494 9495 V.computeMinimumValueSizes(); 9496 9497 // Estimate cost. 9498 InstructionCost TreeCost = 9499 V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth)); 9500 InstructionCost ReductionCost = 9501 getReductionCost(TTI, ReducedVals[i], ReduxWidth, RdxFMF); 9502 InstructionCost Cost = TreeCost + ReductionCost; 9503 if (!Cost.isValid()) { 9504 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 9505 return nullptr; 9506 } 9507 if (Cost >= -SLPCostThreshold) { 9508 V.getORE()->emit([&]() { 9509 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 9510 cast<Instruction>(VL[0])) 9511 << "Vectorizing horizontal reduction is possible" 9512 << "but not beneficial with cost " << ore::NV("Cost", Cost) 9513 << " and threshold " 9514 << ore::NV("Threshold", -SLPCostThreshold); 9515 }); 9516 break; 9517 } 9518 9519 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 9520 << Cost << ". (HorRdx)\n"); 9521 V.getORE()->emit([&]() { 9522 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 9523 cast<Instruction>(VL[0])) 9524 << "Vectorized horizontal reduction with cost " 9525 << ore::NV("Cost", Cost) << " and with tree size " 9526 << ore::NV("TreeSize", V.getTreeSize()); 9527 }); 9528 9529 // Vectorize a tree. 9530 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 9531 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 9532 9533 // Emit a reduction. If the root is a select (min/max idiom), the insert 9534 // point is the compare condition of that select. 9535 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 9536 if (isCmpSelMinMax(RdxRootInst)) 9537 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 9538 else 9539 Builder.SetInsertPoint(RdxRootInst); 9540 9541 // To prevent poison from leaking across what used to be sequential, safe, 9542 // scalar boolean logic operations, the reduction operand must be frozen. 9543 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 9544 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 9545 9546 Value *ReducedSubTree = 9547 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 9548 9549 if (!VectorizedTree) { 9550 // Initialize the final value in the reduction. 9551 VectorizedTree = ReducedSubTree; 9552 } else { 9553 // Update the final value in the reduction. 9554 Builder.SetCurrentDebugLocation(Loc); 9555 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9556 ReducedSubTree, "op.rdx", ReductionOps); 9557 } 9558 i += ReduxWidth; 9559 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 9560 } 9561 9562 if (VectorizedTree) { 9563 // Finish the reduction. 9564 for (; i < NumReducedVals; ++i) { 9565 auto *I = cast<Instruction>(ReducedVals[i]); 9566 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9567 VectorizedTree = 9568 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 9569 } 9570 for (auto &Pair : ExternallyUsedValues) { 9571 // Add each externally used value to the final reduction. 9572 for (auto *I : Pair.second) { 9573 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9574 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9575 Pair.first, "op.extra", I); 9576 } 9577 } 9578 9579 ReductionRoot->replaceAllUsesWith(VectorizedTree); 9580 9581 // Mark all scalar reduction ops for deletion, they are replaced by the 9582 // vector reductions. 9583 V.eraseInstructions(IgnoreList); 9584 } 9585 return VectorizedTree; 9586 } 9587 9588 unsigned numReductionValues() const { return ReducedVals.size(); } 9589 9590 private: 9591 /// Calculate the cost of a reduction. 9592 InstructionCost getReductionCost(TargetTransformInfo *TTI, 9593 Value *FirstReducedVal, unsigned ReduxWidth, 9594 FastMathFlags FMF) { 9595 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 9596 Type *ScalarTy = FirstReducedVal->getType(); 9597 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 9598 InstructionCost VectorCost, ScalarCost; 9599 switch (RdxKind) { 9600 case RecurKind::Add: 9601 case RecurKind::Mul: 9602 case RecurKind::Or: 9603 case RecurKind::And: 9604 case RecurKind::Xor: 9605 case RecurKind::FAdd: 9606 case RecurKind::FMul: { 9607 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 9608 VectorCost = 9609 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 9610 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 9611 break; 9612 } 9613 case RecurKind::FMax: 9614 case RecurKind::FMin: { 9615 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9616 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9617 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 9618 /*IsUnsigned=*/false, CostKind); 9619 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9620 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, 9621 SclCondTy, RdxPred, CostKind) + 9622 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9623 SclCondTy, RdxPred, CostKind); 9624 break; 9625 } 9626 case RecurKind::SMax: 9627 case RecurKind::SMin: 9628 case RecurKind::UMax: 9629 case RecurKind::UMin: { 9630 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9631 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9632 bool IsUnsigned = 9633 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 9634 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned, 9635 CostKind); 9636 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9637 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, 9638 SclCondTy, RdxPred, CostKind) + 9639 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9640 SclCondTy, RdxPred, CostKind); 9641 break; 9642 } 9643 default: 9644 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 9645 } 9646 9647 // Scalar cost is repeated for N-1 elements. 9648 ScalarCost *= (ReduxWidth - 1); 9649 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 9650 << " for reduction that starts with " << *FirstReducedVal 9651 << " (It is a splitting reduction)\n"); 9652 return VectorCost - ScalarCost; 9653 } 9654 9655 /// Emit a horizontal reduction of the vectorized value. 9656 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 9657 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 9658 assert(VectorizedValue && "Need to have a vectorized tree node"); 9659 assert(isPowerOf2_32(ReduxWidth) && 9660 "We only handle power-of-two reductions for now"); 9661 assert(RdxKind != RecurKind::FMulAdd && 9662 "A call to the llvm.fmuladd intrinsic is not handled yet"); 9663 9664 ++NumVectorInstructions; 9665 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind); 9666 } 9667 }; 9668 9669 } // end anonymous namespace 9670 9671 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 9672 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 9673 return cast<FixedVectorType>(IE->getType())->getNumElements(); 9674 9675 unsigned AggregateSize = 1; 9676 auto *IV = cast<InsertValueInst>(InsertInst); 9677 Type *CurrentType = IV->getType(); 9678 do { 9679 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 9680 for (auto *Elt : ST->elements()) 9681 if (Elt != ST->getElementType(0)) // check homogeneity 9682 return None; 9683 AggregateSize *= ST->getNumElements(); 9684 CurrentType = ST->getElementType(0); 9685 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 9686 AggregateSize *= AT->getNumElements(); 9687 CurrentType = AT->getElementType(); 9688 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 9689 AggregateSize *= VT->getNumElements(); 9690 return AggregateSize; 9691 } else if (CurrentType->isSingleValueType()) { 9692 return AggregateSize; 9693 } else { 9694 return None; 9695 } 9696 } while (true); 9697 } 9698 9699 static void findBuildAggregate_rec(Instruction *LastInsertInst, 9700 TargetTransformInfo *TTI, 9701 SmallVectorImpl<Value *> &BuildVectorOpds, 9702 SmallVectorImpl<Value *> &InsertElts, 9703 unsigned OperandOffset) { 9704 do { 9705 Value *InsertedOperand = LastInsertInst->getOperand(1); 9706 Optional<unsigned> OperandIndex = 9707 getInsertIndex(LastInsertInst, OperandOffset); 9708 if (!OperandIndex) 9709 return; 9710 if (isa<InsertElementInst>(InsertedOperand) || 9711 isa<InsertValueInst>(InsertedOperand)) { 9712 findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 9713 BuildVectorOpds, InsertElts, *OperandIndex); 9714 9715 } else { 9716 BuildVectorOpds[*OperandIndex] = InsertedOperand; 9717 InsertElts[*OperandIndex] = LastInsertInst; 9718 } 9719 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 9720 } while (LastInsertInst != nullptr && 9721 (isa<InsertValueInst>(LastInsertInst) || 9722 isa<InsertElementInst>(LastInsertInst)) && 9723 LastInsertInst->hasOneUse()); 9724 } 9725 9726 /// Recognize construction of vectors like 9727 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 9728 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 9729 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 9730 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 9731 /// starting from the last insertelement or insertvalue instruction. 9732 /// 9733 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 9734 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 9735 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 9736 /// 9737 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 9738 /// 9739 /// \return true if it matches. 9740 static bool findBuildAggregate(Instruction *LastInsertInst, 9741 TargetTransformInfo *TTI, 9742 SmallVectorImpl<Value *> &BuildVectorOpds, 9743 SmallVectorImpl<Value *> &InsertElts) { 9744 9745 assert((isa<InsertElementInst>(LastInsertInst) || 9746 isa<InsertValueInst>(LastInsertInst)) && 9747 "Expected insertelement or insertvalue instruction!"); 9748 9749 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 9750 "Expected empty result vectors!"); 9751 9752 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 9753 if (!AggregateSize) 9754 return false; 9755 BuildVectorOpds.resize(*AggregateSize); 9756 InsertElts.resize(*AggregateSize); 9757 9758 findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 0); 9759 llvm::erase_value(BuildVectorOpds, nullptr); 9760 llvm::erase_value(InsertElts, nullptr); 9761 if (BuildVectorOpds.size() >= 2) 9762 return true; 9763 9764 return false; 9765 } 9766 9767 /// Try and get a reduction value from a phi node. 9768 /// 9769 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 9770 /// if they come from either \p ParentBB or a containing loop latch. 9771 /// 9772 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 9773 /// if not possible. 9774 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 9775 BasicBlock *ParentBB, LoopInfo *LI) { 9776 // There are situations where the reduction value is not dominated by the 9777 // reduction phi. Vectorizing such cases has been reported to cause 9778 // miscompiles. See PR25787. 9779 auto DominatedReduxValue = [&](Value *R) { 9780 return isa<Instruction>(R) && 9781 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 9782 }; 9783 9784 Value *Rdx = nullptr; 9785 9786 // Return the incoming value if it comes from the same BB as the phi node. 9787 if (P->getIncomingBlock(0) == ParentBB) { 9788 Rdx = P->getIncomingValue(0); 9789 } else if (P->getIncomingBlock(1) == ParentBB) { 9790 Rdx = P->getIncomingValue(1); 9791 } 9792 9793 if (Rdx && DominatedReduxValue(Rdx)) 9794 return Rdx; 9795 9796 // Otherwise, check whether we have a loop latch to look at. 9797 Loop *BBL = LI->getLoopFor(ParentBB); 9798 if (!BBL) 9799 return nullptr; 9800 BasicBlock *BBLatch = BBL->getLoopLatch(); 9801 if (!BBLatch) 9802 return nullptr; 9803 9804 // There is a loop latch, return the incoming value if it comes from 9805 // that. This reduction pattern occasionally turns up. 9806 if (P->getIncomingBlock(0) == BBLatch) { 9807 Rdx = P->getIncomingValue(0); 9808 } else if (P->getIncomingBlock(1) == BBLatch) { 9809 Rdx = P->getIncomingValue(1); 9810 } 9811 9812 if (Rdx && DominatedReduxValue(Rdx)) 9813 return Rdx; 9814 9815 return nullptr; 9816 } 9817 9818 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 9819 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 9820 return true; 9821 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 9822 return true; 9823 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 9824 return true; 9825 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 9826 return true; 9827 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 9828 return true; 9829 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 9830 return true; 9831 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 9832 return true; 9833 return false; 9834 } 9835 9836 /// Attempt to reduce a horizontal reduction. 9837 /// If it is legal to match a horizontal reduction feeding the phi node \a P 9838 /// with reduction operators \a Root (or one of its operands) in a basic block 9839 /// \a BB, then check if it can be done. If horizontal reduction is not found 9840 /// and root instruction is a binary operation, vectorization of the operands is 9841 /// attempted. 9842 /// \returns true if a horizontal reduction was matched and reduced or operands 9843 /// of one of the binary instruction were vectorized. 9844 /// \returns false if a horizontal reduction was not matched (or not possible) 9845 /// or no vectorization of any binary operation feeding \a Root instruction was 9846 /// performed. 9847 static bool tryToVectorizeHorReductionOrInstOperands( 9848 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 9849 TargetTransformInfo *TTI, 9850 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 9851 if (!ShouldVectorizeHor) 9852 return false; 9853 9854 if (!Root) 9855 return false; 9856 9857 if (Root->getParent() != BB || isa<PHINode>(Root)) 9858 return false; 9859 // Start analysis starting from Root instruction. If horizontal reduction is 9860 // found, try to vectorize it. If it is not a horizontal reduction or 9861 // vectorization is not possible or not effective, and currently analyzed 9862 // instruction is a binary operation, try to vectorize the operands, using 9863 // pre-order DFS traversal order. If the operands were not vectorized, repeat 9864 // the same procedure considering each operand as a possible root of the 9865 // horizontal reduction. 9866 // Interrupt the process if the Root instruction itself was vectorized or all 9867 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 9868 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 9869 // CmpInsts so we can skip extra attempts in 9870 // tryToVectorizeHorReductionOrInstOperands and save compile time. 9871 std::queue<std::pair<Instruction *, unsigned>> Stack; 9872 Stack.emplace(Root, 0); 9873 SmallPtrSet<Value *, 8> VisitedInstrs; 9874 SmallVector<WeakTrackingVH> PostponedInsts; 9875 bool Res = false; 9876 auto &&TryToReduce = [TTI, &P, &R](Instruction *Inst, Value *&B0, 9877 Value *&B1) -> Value * { 9878 bool IsBinop = matchRdxBop(Inst, B0, B1); 9879 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 9880 if (IsBinop || IsSelect) { 9881 HorizontalReduction HorRdx; 9882 if (HorRdx.matchAssociativeReduction(P, Inst)) 9883 return HorRdx.tryToReduce(R, TTI); 9884 } 9885 return nullptr; 9886 }; 9887 while (!Stack.empty()) { 9888 Instruction *Inst; 9889 unsigned Level; 9890 std::tie(Inst, Level) = Stack.front(); 9891 Stack.pop(); 9892 // Do not try to analyze instruction that has already been vectorized. 9893 // This may happen when we vectorize instruction operands on a previous 9894 // iteration while stack was populated before that happened. 9895 if (R.isDeleted(Inst)) 9896 continue; 9897 Value *B0 = nullptr, *B1 = nullptr; 9898 if (Value *V = TryToReduce(Inst, B0, B1)) { 9899 Res = true; 9900 // Set P to nullptr to avoid re-analysis of phi node in 9901 // matchAssociativeReduction function unless this is the root node. 9902 P = nullptr; 9903 if (auto *I = dyn_cast<Instruction>(V)) { 9904 // Try to find another reduction. 9905 Stack.emplace(I, Level); 9906 continue; 9907 } 9908 } else { 9909 bool IsBinop = B0 && B1; 9910 if (P && IsBinop) { 9911 Inst = dyn_cast<Instruction>(B0); 9912 if (Inst == P) 9913 Inst = dyn_cast<Instruction>(B1); 9914 if (!Inst) { 9915 // Set P to nullptr to avoid re-analysis of phi node in 9916 // matchAssociativeReduction function unless this is the root node. 9917 P = nullptr; 9918 continue; 9919 } 9920 } 9921 // Set P to nullptr to avoid re-analysis of phi node in 9922 // matchAssociativeReduction function unless this is the root node. 9923 P = nullptr; 9924 // Do not try to vectorize CmpInst operands, this is done separately. 9925 // Final attempt for binop args vectorization should happen after the loop 9926 // to try to find reductions. 9927 if (!isa<CmpInst>(Inst)) 9928 PostponedInsts.push_back(Inst); 9929 } 9930 9931 // Try to vectorize operands. 9932 // Continue analysis for the instruction from the same basic block only to 9933 // save compile time. 9934 if (++Level < RecursionMaxDepth) 9935 for (auto *Op : Inst->operand_values()) 9936 if (VisitedInstrs.insert(Op).second) 9937 if (auto *I = dyn_cast<Instruction>(Op)) 9938 // Do not try to vectorize CmpInst operands, this is done 9939 // separately. 9940 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 9941 I->getParent() == BB) 9942 Stack.emplace(I, Level); 9943 } 9944 // Try to vectorized binops where reductions were not found. 9945 for (Value *V : PostponedInsts) 9946 if (auto *Inst = dyn_cast<Instruction>(V)) 9947 if (!R.isDeleted(Inst)) 9948 Res |= Vectorize(Inst, R); 9949 return Res; 9950 } 9951 9952 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 9953 BasicBlock *BB, BoUpSLP &R, 9954 TargetTransformInfo *TTI) { 9955 auto *I = dyn_cast_or_null<Instruction>(V); 9956 if (!I) 9957 return false; 9958 9959 if (!isa<BinaryOperator>(I)) 9960 P = nullptr; 9961 // Try to match and vectorize a horizontal reduction. 9962 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 9963 return tryToVectorize(I, R); 9964 }; 9965 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 9966 ExtraVectorization); 9967 } 9968 9969 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 9970 BasicBlock *BB, BoUpSLP &R) { 9971 const DataLayout &DL = BB->getModule()->getDataLayout(); 9972 if (!R.canMapToVector(IVI->getType(), DL)) 9973 return false; 9974 9975 SmallVector<Value *, 16> BuildVectorOpds; 9976 SmallVector<Value *, 16> BuildVectorInsts; 9977 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 9978 return false; 9979 9980 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 9981 // Aggregate value is unlikely to be processed in vector register. 9982 return tryToVectorizeList(BuildVectorOpds, R); 9983 } 9984 9985 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 9986 BasicBlock *BB, BoUpSLP &R) { 9987 SmallVector<Value *, 16> BuildVectorInsts; 9988 SmallVector<Value *, 16> BuildVectorOpds; 9989 SmallVector<int> Mask; 9990 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 9991 (llvm::all_of( 9992 BuildVectorOpds, 9993 [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) && 9994 isFixedVectorShuffle(BuildVectorOpds, Mask))) 9995 return false; 9996 9997 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 9998 return tryToVectorizeList(BuildVectorInsts, R); 9999 } 10000 10001 template <typename T> 10002 static bool 10003 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, 10004 function_ref<unsigned(T *)> Limit, 10005 function_ref<bool(T *, T *)> Comparator, 10006 function_ref<bool(T *, T *)> AreCompatible, 10007 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper, 10008 bool LimitForRegisterSize) { 10009 bool Changed = false; 10010 // Sort by type, parent, operands. 10011 stable_sort(Incoming, Comparator); 10012 10013 // Try to vectorize elements base on their type. 10014 SmallVector<T *> Candidates; 10015 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { 10016 // Look for the next elements with the same type, parent and operand 10017 // kinds. 10018 auto *SameTypeIt = IncIt; 10019 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) 10020 ++SameTypeIt; 10021 10022 // Try to vectorize them. 10023 unsigned NumElts = (SameTypeIt - IncIt); 10024 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" 10025 << NumElts << ")\n"); 10026 // The vectorization is a 3-state attempt: 10027 // 1. Try to vectorize instructions with the same/alternate opcodes with the 10028 // size of maximal register at first. 10029 // 2. Try to vectorize remaining instructions with the same type, if 10030 // possible. This may result in the better vectorization results rather than 10031 // if we try just to vectorize instructions with the same/alternate opcodes. 10032 // 3. Final attempt to try to vectorize all instructions with the 10033 // same/alternate ops only, this may result in some extra final 10034 // vectorization. 10035 if (NumElts > 1 && 10036 TryToVectorizeHelper(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) { 10037 // Success start over because instructions might have been changed. 10038 Changed = true; 10039 } else if (NumElts < Limit(*IncIt) && 10040 (Candidates.empty() || 10041 Candidates.front()->getType() == (*IncIt)->getType())) { 10042 Candidates.append(IncIt, std::next(IncIt, NumElts)); 10043 } 10044 // Final attempt to vectorize instructions with the same types. 10045 if (Candidates.size() > 1 && 10046 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { 10047 if (TryToVectorizeHelper(Candidates, /*LimitForRegisterSize=*/false)) { 10048 // Success start over because instructions might have been changed. 10049 Changed = true; 10050 } else if (LimitForRegisterSize) { 10051 // Try to vectorize using small vectors. 10052 for (auto *It = Candidates.begin(), *End = Candidates.end(); 10053 It != End;) { 10054 auto *SameTypeIt = It; 10055 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) 10056 ++SameTypeIt; 10057 unsigned NumElts = (SameTypeIt - It); 10058 if (NumElts > 1 && TryToVectorizeHelper(makeArrayRef(It, NumElts), 10059 /*LimitForRegisterSize=*/false)) 10060 Changed = true; 10061 It = SameTypeIt; 10062 } 10063 } 10064 Candidates.clear(); 10065 } 10066 10067 // Start over at the next instruction of a different type (or the end). 10068 IncIt = SameTypeIt; 10069 } 10070 return Changed; 10071 } 10072 10073 /// Compare two cmp instructions. If IsCompatibility is true, function returns 10074 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding 10075 /// operands. If IsCompatibility is false, function implements strict weak 10076 /// ordering relation between two cmp instructions, returning true if the first 10077 /// instruction is "less" than the second, i.e. its predicate is less than the 10078 /// predicate of the second or the operands IDs are less than the operands IDs 10079 /// of the second cmp instruction. 10080 template <bool IsCompatibility> 10081 static bool compareCmp(Value *V, Value *V2, 10082 function_ref<bool(Instruction *)> IsDeleted) { 10083 auto *CI1 = cast<CmpInst>(V); 10084 auto *CI2 = cast<CmpInst>(V2); 10085 if (IsDeleted(CI2) || !isValidElementType(CI2->getType())) 10086 return false; 10087 if (CI1->getOperand(0)->getType()->getTypeID() < 10088 CI2->getOperand(0)->getType()->getTypeID()) 10089 return !IsCompatibility; 10090 if (CI1->getOperand(0)->getType()->getTypeID() > 10091 CI2->getOperand(0)->getType()->getTypeID()) 10092 return false; 10093 CmpInst::Predicate Pred1 = CI1->getPredicate(); 10094 CmpInst::Predicate Pred2 = CI2->getPredicate(); 10095 CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1); 10096 CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2); 10097 CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1); 10098 CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2); 10099 if (BasePred1 < BasePred2) 10100 return !IsCompatibility; 10101 if (BasePred1 > BasePred2) 10102 return false; 10103 // Compare operands. 10104 bool LEPreds = Pred1 <= Pred2; 10105 bool GEPreds = Pred1 >= Pred2; 10106 for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) { 10107 auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1); 10108 auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1); 10109 if (Op1->getValueID() < Op2->getValueID()) 10110 return !IsCompatibility; 10111 if (Op1->getValueID() > Op2->getValueID()) 10112 return false; 10113 if (auto *I1 = dyn_cast<Instruction>(Op1)) 10114 if (auto *I2 = dyn_cast<Instruction>(Op2)) { 10115 if (I1->getParent() != I2->getParent()) 10116 return false; 10117 InstructionsState S = getSameOpcode({I1, I2}); 10118 if (S.getOpcode()) 10119 continue; 10120 return false; 10121 } 10122 } 10123 return IsCompatibility; 10124 } 10125 10126 bool SLPVectorizerPass::vectorizeSimpleInstructions( 10127 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 10128 bool AtTerminator) { 10129 bool OpsChanged = false; 10130 SmallVector<Instruction *, 4> PostponedCmps; 10131 for (auto *I : reverse(Instructions)) { 10132 if (R.isDeleted(I)) 10133 continue; 10134 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 10135 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 10136 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 10137 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 10138 else if (isa<CmpInst>(I)) 10139 PostponedCmps.push_back(I); 10140 } 10141 if (AtTerminator) { 10142 // Try to find reductions first. 10143 for (Instruction *I : PostponedCmps) { 10144 if (R.isDeleted(I)) 10145 continue; 10146 for (Value *Op : I->operands()) 10147 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 10148 } 10149 // Try to vectorize operands as vector bundles. 10150 for (Instruction *I : PostponedCmps) { 10151 if (R.isDeleted(I)) 10152 continue; 10153 OpsChanged |= tryToVectorize(I, R); 10154 } 10155 // Try to vectorize list of compares. 10156 // Sort by type, compare predicate, etc. 10157 auto &&CompareSorter = [&R](Value *V, Value *V2) { 10158 return compareCmp<false>(V, V2, 10159 [&R](Instruction *I) { return R.isDeleted(I); }); 10160 }; 10161 10162 auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) { 10163 if (V1 == V2) 10164 return true; 10165 return compareCmp<true>(V1, V2, 10166 [&R](Instruction *I) { return R.isDeleted(I); }); 10167 }; 10168 auto Limit = [&R](Value *V) { 10169 unsigned EltSize = R.getVectorElementSize(V); 10170 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10171 }; 10172 10173 SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end()); 10174 OpsChanged |= tryToVectorizeSequence<Value>( 10175 Vals, Limit, CompareSorter, AreCompatibleCompares, 10176 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10177 // Exclude possible reductions from other blocks. 10178 bool ArePossiblyReducedInOtherBlock = 10179 any_of(Candidates, [](Value *V) { 10180 return any_of(V->users(), [V](User *U) { 10181 return isa<SelectInst>(U) && 10182 cast<SelectInst>(U)->getParent() != 10183 cast<Instruction>(V)->getParent(); 10184 }); 10185 }); 10186 if (ArePossiblyReducedInOtherBlock) 10187 return false; 10188 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10189 }, 10190 /*LimitForRegisterSize=*/true); 10191 Instructions.clear(); 10192 } else { 10193 // Insert in reverse order since the PostponedCmps vector was filled in 10194 // reverse order. 10195 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 10196 } 10197 return OpsChanged; 10198 } 10199 10200 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 10201 bool Changed = false; 10202 SmallVector<Value *, 4> Incoming; 10203 SmallPtrSet<Value *, 16> VisitedInstrs; 10204 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 10205 // node. Allows better to identify the chains that can be vectorized in the 10206 // better way. 10207 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 10208 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { 10209 assert(isValidElementType(V1->getType()) && 10210 isValidElementType(V2->getType()) && 10211 "Expected vectorizable types only."); 10212 // It is fine to compare type IDs here, since we expect only vectorizable 10213 // types, like ints, floats and pointers, we don't care about other type. 10214 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 10215 return true; 10216 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 10217 return false; 10218 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10219 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10220 if (Opcodes1.size() < Opcodes2.size()) 10221 return true; 10222 if (Opcodes1.size() > Opcodes2.size()) 10223 return false; 10224 Optional<bool> ConstOrder; 10225 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10226 // Undefs are compatible with any other value. 10227 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) { 10228 if (!ConstOrder) 10229 ConstOrder = 10230 !isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]); 10231 continue; 10232 } 10233 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10234 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10235 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 10236 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 10237 if (!NodeI1) 10238 return NodeI2 != nullptr; 10239 if (!NodeI2) 10240 return false; 10241 assert((NodeI1 == NodeI2) == 10242 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10243 "Different nodes should have different DFS numbers"); 10244 if (NodeI1 != NodeI2) 10245 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10246 InstructionsState S = getSameOpcode({I1, I2}); 10247 if (S.getOpcode()) 10248 continue; 10249 return I1->getOpcode() < I2->getOpcode(); 10250 } 10251 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) { 10252 if (!ConstOrder) 10253 ConstOrder = Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID(); 10254 continue; 10255 } 10256 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 10257 return true; 10258 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 10259 return false; 10260 } 10261 return ConstOrder && *ConstOrder; 10262 }; 10263 auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 10264 if (V1 == V2) 10265 return true; 10266 if (V1->getType() != V2->getType()) 10267 return false; 10268 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10269 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10270 if (Opcodes1.size() != Opcodes2.size()) 10271 return false; 10272 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10273 // Undefs are compatible with any other value. 10274 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 10275 continue; 10276 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10277 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10278 if (I1->getParent() != I2->getParent()) 10279 return false; 10280 InstructionsState S = getSameOpcode({I1, I2}); 10281 if (S.getOpcode()) 10282 continue; 10283 return false; 10284 } 10285 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 10286 continue; 10287 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 10288 return false; 10289 } 10290 return true; 10291 }; 10292 auto Limit = [&R](Value *V) { 10293 unsigned EltSize = R.getVectorElementSize(V); 10294 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10295 }; 10296 10297 bool HaveVectorizedPhiNodes = false; 10298 do { 10299 // Collect the incoming values from the PHIs. 10300 Incoming.clear(); 10301 for (Instruction &I : *BB) { 10302 PHINode *P = dyn_cast<PHINode>(&I); 10303 if (!P) 10304 break; 10305 10306 // No need to analyze deleted, vectorized and non-vectorizable 10307 // instructions. 10308 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 10309 isValidElementType(P->getType())) 10310 Incoming.push_back(P); 10311 } 10312 10313 // Find the corresponding non-phi nodes for better matching when trying to 10314 // build the tree. 10315 for (Value *V : Incoming) { 10316 SmallVectorImpl<Value *> &Opcodes = 10317 PHIToOpcodes.try_emplace(V).first->getSecond(); 10318 if (!Opcodes.empty()) 10319 continue; 10320 SmallVector<Value *, 4> Nodes(1, V); 10321 SmallPtrSet<Value *, 4> Visited; 10322 while (!Nodes.empty()) { 10323 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 10324 if (!Visited.insert(PHI).second) 10325 continue; 10326 for (Value *V : PHI->incoming_values()) { 10327 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 10328 Nodes.push_back(PHI1); 10329 continue; 10330 } 10331 Opcodes.emplace_back(V); 10332 } 10333 } 10334 } 10335 10336 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( 10337 Incoming, Limit, PHICompare, AreCompatiblePHIs, 10338 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10339 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10340 }, 10341 /*LimitForRegisterSize=*/true); 10342 Changed |= HaveVectorizedPhiNodes; 10343 VisitedInstrs.insert(Incoming.begin(), Incoming.end()); 10344 } while (HaveVectorizedPhiNodes); 10345 10346 VisitedInstrs.clear(); 10347 10348 SmallVector<Instruction *, 8> PostProcessInstructions; 10349 SmallDenseSet<Instruction *, 4> KeyNodes; 10350 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 10351 // Skip instructions with scalable type. The num of elements is unknown at 10352 // compile-time for scalable type. 10353 if (isa<ScalableVectorType>(it->getType())) 10354 continue; 10355 10356 // Skip instructions marked for the deletion. 10357 if (R.isDeleted(&*it)) 10358 continue; 10359 // We may go through BB multiple times so skip the one we have checked. 10360 if (!VisitedInstrs.insert(&*it).second) { 10361 if (it->use_empty() && KeyNodes.contains(&*it) && 10362 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10363 it->isTerminator())) { 10364 // We would like to start over since some instructions are deleted 10365 // and the iterator may become invalid value. 10366 Changed = true; 10367 it = BB->begin(); 10368 e = BB->end(); 10369 } 10370 continue; 10371 } 10372 10373 if (isa<DbgInfoIntrinsic>(it)) 10374 continue; 10375 10376 // Try to vectorize reductions that use PHINodes. 10377 if (PHINode *P = dyn_cast<PHINode>(it)) { 10378 // Check that the PHI is a reduction PHI. 10379 if (P->getNumIncomingValues() == 2) { 10380 // Try to match and vectorize a horizontal reduction. 10381 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 10382 TTI)) { 10383 Changed = true; 10384 it = BB->begin(); 10385 e = BB->end(); 10386 continue; 10387 } 10388 } 10389 // Try to vectorize the incoming values of the PHI, to catch reductions 10390 // that feed into PHIs. 10391 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 10392 // Skip if the incoming block is the current BB for now. Also, bypass 10393 // unreachable IR for efficiency and to avoid crashing. 10394 // TODO: Collect the skipped incoming values and try to vectorize them 10395 // after processing BB. 10396 if (BB == P->getIncomingBlock(I) || 10397 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 10398 continue; 10399 10400 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 10401 P->getIncomingBlock(I), R, TTI); 10402 } 10403 continue; 10404 } 10405 10406 // Ran into an instruction without users, like terminator, or function call 10407 // with ignored return value, store. Ignore unused instructions (basing on 10408 // instruction type, except for CallInst and InvokeInst). 10409 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 10410 isa<InvokeInst>(it))) { 10411 KeyNodes.insert(&*it); 10412 bool OpsChanged = false; 10413 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 10414 for (auto *V : it->operand_values()) { 10415 // Try to match and vectorize a horizontal reduction. 10416 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 10417 } 10418 } 10419 // Start vectorization of post-process list of instructions from the 10420 // top-tree instructions to try to vectorize as many instructions as 10421 // possible. 10422 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10423 it->isTerminator()); 10424 if (OpsChanged) { 10425 // We would like to start over since some instructions are deleted 10426 // and the iterator may become invalid value. 10427 Changed = true; 10428 it = BB->begin(); 10429 e = BB->end(); 10430 continue; 10431 } 10432 } 10433 10434 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 10435 isa<InsertValueInst>(it)) 10436 PostProcessInstructions.push_back(&*it); 10437 } 10438 10439 return Changed; 10440 } 10441 10442 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 10443 auto Changed = false; 10444 for (auto &Entry : GEPs) { 10445 // If the getelementptr list has fewer than two elements, there's nothing 10446 // to do. 10447 if (Entry.second.size() < 2) 10448 continue; 10449 10450 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 10451 << Entry.second.size() << ".\n"); 10452 10453 // Process the GEP list in chunks suitable for the target's supported 10454 // vector size. If a vector register can't hold 1 element, we are done. We 10455 // are trying to vectorize the index computations, so the maximum number of 10456 // elements is based on the size of the index expression, rather than the 10457 // size of the GEP itself (the target's pointer size). 10458 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 10459 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 10460 if (MaxVecRegSize < EltSize) 10461 continue; 10462 10463 unsigned MaxElts = MaxVecRegSize / EltSize; 10464 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 10465 auto Len = std::min<unsigned>(BE - BI, MaxElts); 10466 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 10467 10468 // Initialize a set a candidate getelementptrs. Note that we use a 10469 // SetVector here to preserve program order. If the index computations 10470 // are vectorizable and begin with loads, we want to minimize the chance 10471 // of having to reorder them later. 10472 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 10473 10474 // Some of the candidates may have already been vectorized after we 10475 // initially collected them. If so, they are marked as deleted, so remove 10476 // them from the set of candidates. 10477 Candidates.remove_if( 10478 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 10479 10480 // Remove from the set of candidates all pairs of getelementptrs with 10481 // constant differences. Such getelementptrs are likely not good 10482 // candidates for vectorization in a bottom-up phase since one can be 10483 // computed from the other. We also ensure all candidate getelementptr 10484 // indices are unique. 10485 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 10486 auto *GEPI = GEPList[I]; 10487 if (!Candidates.count(GEPI)) 10488 continue; 10489 auto *SCEVI = SE->getSCEV(GEPList[I]); 10490 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 10491 auto *GEPJ = GEPList[J]; 10492 auto *SCEVJ = SE->getSCEV(GEPList[J]); 10493 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 10494 Candidates.remove(GEPI); 10495 Candidates.remove(GEPJ); 10496 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 10497 Candidates.remove(GEPJ); 10498 } 10499 } 10500 } 10501 10502 // We break out of the above computation as soon as we know there are 10503 // fewer than two candidates remaining. 10504 if (Candidates.size() < 2) 10505 continue; 10506 10507 // Add the single, non-constant index of each candidate to the bundle. We 10508 // ensured the indices met these constraints when we originally collected 10509 // the getelementptrs. 10510 SmallVector<Value *, 16> Bundle(Candidates.size()); 10511 auto BundleIndex = 0u; 10512 for (auto *V : Candidates) { 10513 auto *GEP = cast<GetElementPtrInst>(V); 10514 auto *GEPIdx = GEP->idx_begin()->get(); 10515 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 10516 Bundle[BundleIndex++] = GEPIdx; 10517 } 10518 10519 // Try and vectorize the indices. We are currently only interested in 10520 // gather-like cases of the form: 10521 // 10522 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 10523 // 10524 // where the loads of "a", the loads of "b", and the subtractions can be 10525 // performed in parallel. It's likely that detecting this pattern in a 10526 // bottom-up phase will be simpler and less costly than building a 10527 // full-blown top-down phase beginning at the consecutive loads. 10528 Changed |= tryToVectorizeList(Bundle, R); 10529 } 10530 } 10531 return Changed; 10532 } 10533 10534 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 10535 bool Changed = false; 10536 // Sort by type, base pointers and values operand. Value operands must be 10537 // compatible (have the same opcode, same parent), otherwise it is 10538 // definitely not profitable to try to vectorize them. 10539 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 10540 if (V->getPointerOperandType()->getTypeID() < 10541 V2->getPointerOperandType()->getTypeID()) 10542 return true; 10543 if (V->getPointerOperandType()->getTypeID() > 10544 V2->getPointerOperandType()->getTypeID()) 10545 return false; 10546 // UndefValues are compatible with all other values. 10547 if (isa<UndefValue>(V->getValueOperand()) || 10548 isa<UndefValue>(V2->getValueOperand())) 10549 return false; 10550 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 10551 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10552 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 10553 DT->getNode(I1->getParent()); 10554 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 10555 DT->getNode(I2->getParent()); 10556 assert(NodeI1 && "Should only process reachable instructions"); 10557 assert(NodeI1 && "Should only process reachable instructions"); 10558 assert((NodeI1 == NodeI2) == 10559 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10560 "Different nodes should have different DFS numbers"); 10561 if (NodeI1 != NodeI2) 10562 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10563 InstructionsState S = getSameOpcode({I1, I2}); 10564 if (S.getOpcode()) 10565 return false; 10566 return I1->getOpcode() < I2->getOpcode(); 10567 } 10568 if (isa<Constant>(V->getValueOperand()) && 10569 isa<Constant>(V2->getValueOperand())) 10570 return false; 10571 return V->getValueOperand()->getValueID() < 10572 V2->getValueOperand()->getValueID(); 10573 }; 10574 10575 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 10576 if (V1 == V2) 10577 return true; 10578 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 10579 return false; 10580 // Undefs are compatible with any other value. 10581 if (isa<UndefValue>(V1->getValueOperand()) || 10582 isa<UndefValue>(V2->getValueOperand())) 10583 return true; 10584 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 10585 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10586 if (I1->getParent() != I2->getParent()) 10587 return false; 10588 InstructionsState S = getSameOpcode({I1, I2}); 10589 return S.getOpcode() > 0; 10590 } 10591 if (isa<Constant>(V1->getValueOperand()) && 10592 isa<Constant>(V2->getValueOperand())) 10593 return true; 10594 return V1->getValueOperand()->getValueID() == 10595 V2->getValueOperand()->getValueID(); 10596 }; 10597 auto Limit = [&R, this](StoreInst *SI) { 10598 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 10599 return R.getMinVF(EltSize); 10600 }; 10601 10602 // Attempt to sort and vectorize each of the store-groups. 10603 for (auto &Pair : Stores) { 10604 if (Pair.second.size() < 2) 10605 continue; 10606 10607 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 10608 << Pair.second.size() << ".\n"); 10609 10610 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) 10611 continue; 10612 10613 Changed |= tryToVectorizeSequence<StoreInst>( 10614 Pair.second, Limit, StoreSorter, AreCompatibleStores, 10615 [this, &R](ArrayRef<StoreInst *> Candidates, bool) { 10616 return vectorizeStores(Candidates, R); 10617 }, 10618 /*LimitForRegisterSize=*/false); 10619 } 10620 return Changed; 10621 } 10622 10623 char SLPVectorizer::ID = 0; 10624 10625 static const char lv_name[] = "SLP Vectorizer"; 10626 10627 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 10628 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 10629 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 10630 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 10631 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 10632 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 10633 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 10634 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 10635 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 10636 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 10637 10638 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 10639