1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/PostOrderIterator.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/CodeMetrics.h" 26 #include "llvm/Analysis/DemandedBits.h" 27 #include "llvm/Analysis/GlobalsModRef.h" 28 #include "llvm/Analysis/LoopAccessAnalysis.h" 29 #include "llvm/Analysis/LoopAccessAnalysis.h" 30 #include "llvm/Analysis/LoopInfo.h" 31 #include "llvm/Analysis/ScalarEvolution.h" 32 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 33 #include "llvm/Analysis/TargetTransformInfo.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/Analysis/VectorUtils.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/IRBuilder.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/Module.h" 42 #include "llvm/IR/NoFolder.h" 43 #include "llvm/IR/Type.h" 44 #include "llvm/IR/Value.h" 45 #include "llvm/IR/Verifier.h" 46 #include "llvm/Pass.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include "llvm/Transforms/Vectorize.h" 51 #include <algorithm> 52 #include <memory> 53 54 using namespace llvm; 55 56 #define SV_NAME "slp-vectorizer" 57 #define DEBUG_TYPE "SLP" 58 59 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 60 61 static cl::opt<int> 62 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 63 cl::desc("Only vectorize if you gain more than this " 64 "number ")); 65 66 static cl::opt<bool> 67 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 68 cl::desc("Attempt to vectorize horizontal reductions")); 69 70 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 71 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 72 cl::desc( 73 "Attempt to vectorize horizontal reductions feeding into a store")); 74 75 static cl::opt<int> 76 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 77 cl::desc("Attempt to vectorize for this register size in bits")); 78 79 /// Limits the size of scheduling regions in a block. 80 /// It avoid long compile times for _very_ large blocks where vector 81 /// instructions are spread over a wide range. 82 /// This limit is way higher than needed by real-world functions. 83 static cl::opt<int> 84 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 85 cl::desc("Limit the size of the SLP scheduling region per block")); 86 87 static cl::opt<int> MinVectorRegSizeOption( 88 "slp-min-reg-size", cl::init(128), cl::Hidden, 89 cl::desc("Attempt to vectorize for this register size in bits")); 90 91 namespace { 92 93 // FIXME: Set this via cl::opt to allow overriding. 94 static const unsigned RecursionMaxDepth = 12; 95 96 // Limit the number of alias checks. The limit is chosen so that 97 // it has no negative effect on the llvm benchmarks. 98 static const unsigned AliasedCheckLimit = 10; 99 100 // Another limit for the alias checks: The maximum distance between load/store 101 // instructions where alias checks are done. 102 // This limit is useful for very large basic blocks. 103 static const unsigned MaxMemDepDistance = 160; 104 105 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 106 /// regions to be handled. 107 static const int MinScheduleRegionSize = 16; 108 109 /// \brief Predicate for the element types that the SLP vectorizer supports. 110 /// 111 /// The most important thing to filter here are types which are invalid in LLVM 112 /// vectors. We also filter target specific types which have absolutely no 113 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 114 /// avoids spending time checking the cost model and realizing that they will 115 /// be inevitably scalarized. 116 static bool isValidElementType(Type *Ty) { 117 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 118 !Ty->isPPC_FP128Ty(); 119 } 120 121 /// \returns the parent basic block if all of the instructions in \p VL 122 /// are in the same block or null otherwise. 123 static BasicBlock *getSameBlock(ArrayRef<Value *> VL) { 124 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 125 if (!I0) 126 return nullptr; 127 BasicBlock *BB = I0->getParent(); 128 for (int i = 1, e = VL.size(); i < e; i++) { 129 Instruction *I = dyn_cast<Instruction>(VL[i]); 130 if (!I) 131 return nullptr; 132 133 if (BB != I->getParent()) 134 return nullptr; 135 } 136 return BB; 137 } 138 139 /// \returns True if all of the values in \p VL are constants. 140 static bool allConstant(ArrayRef<Value *> VL) { 141 for (unsigned i = 0, e = VL.size(); i < e; ++i) 142 if (!isa<Constant>(VL[i])) 143 return false; 144 return true; 145 } 146 147 /// \returns True if all of the values in \p VL are identical. 148 static bool isSplat(ArrayRef<Value *> VL) { 149 for (unsigned i = 1, e = VL.size(); i < e; ++i) 150 if (VL[i] != VL[0]) 151 return false; 152 return true; 153 } 154 155 ///\returns Opcode that can be clubbed with \p Op to create an alternate 156 /// sequence which can later be merged as a ShuffleVector instruction. 157 static unsigned getAltOpcode(unsigned Op) { 158 switch (Op) { 159 case Instruction::FAdd: 160 return Instruction::FSub; 161 case Instruction::FSub: 162 return Instruction::FAdd; 163 case Instruction::Add: 164 return Instruction::Sub; 165 case Instruction::Sub: 166 return Instruction::Add; 167 default: 168 return 0; 169 } 170 } 171 172 ///\returns bool representing if Opcode \p Op can be part 173 /// of an alternate sequence which can later be merged as 174 /// a ShuffleVector instruction. 175 static bool canCombineAsAltInst(unsigned Op) { 176 return Op == Instruction::FAdd || Op == Instruction::FSub || 177 Op == Instruction::Sub || Op == Instruction::Add; 178 } 179 180 /// \returns ShuffleVector instruction if instructions in \p VL have 181 /// alternate fadd,fsub / fsub,fadd/add,sub/sub,add sequence. 182 /// (i.e. e.g. opcodes of fadd,fsub,fadd,fsub...) 183 static unsigned isAltInst(ArrayRef<Value *> VL) { 184 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 185 unsigned Opcode = I0->getOpcode(); 186 unsigned AltOpcode = getAltOpcode(Opcode); 187 for (int i = 1, e = VL.size(); i < e; i++) { 188 Instruction *I = dyn_cast<Instruction>(VL[i]); 189 if (!I || I->getOpcode() != ((i & 1) ? AltOpcode : Opcode)) 190 return 0; 191 } 192 return Instruction::ShuffleVector; 193 } 194 195 /// \returns The opcode if all of the Instructions in \p VL have the same 196 /// opcode, or zero. 197 static unsigned getSameOpcode(ArrayRef<Value *> VL) { 198 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 199 if (!I0) 200 return 0; 201 unsigned Opcode = I0->getOpcode(); 202 for (int i = 1, e = VL.size(); i < e; i++) { 203 Instruction *I = dyn_cast<Instruction>(VL[i]); 204 if (!I || Opcode != I->getOpcode()) { 205 if (canCombineAsAltInst(Opcode) && i == 1) 206 return isAltInst(VL); 207 return 0; 208 } 209 } 210 return Opcode; 211 } 212 213 /// Get the intersection (logical and) of all of the potential IR flags 214 /// of each scalar operation (VL) that will be converted into a vector (I). 215 /// Flag set: NSW, NUW, exact, and all of fast-math. 216 static void propagateIRFlags(Value *I, ArrayRef<Value *> VL) { 217 if (auto *VecOp = dyn_cast<BinaryOperator>(I)) { 218 if (auto *Intersection = dyn_cast<BinaryOperator>(VL[0])) { 219 // Intersection is initialized to the 0th scalar, 220 // so start counting from index '1'. 221 for (int i = 1, e = VL.size(); i < e; ++i) { 222 if (auto *Scalar = dyn_cast<BinaryOperator>(VL[i])) 223 Intersection->andIRFlags(Scalar); 224 } 225 VecOp->copyIRFlags(Intersection); 226 } 227 } 228 } 229 230 /// \returns \p I after propagating metadata from \p VL. 231 static Instruction *propagateMetadata(Instruction *I, ArrayRef<Value *> VL) { 232 Instruction *I0 = cast<Instruction>(VL[0]); 233 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 234 I0->getAllMetadataOtherThanDebugLoc(Metadata); 235 236 for (unsigned i = 0, n = Metadata.size(); i != n; ++i) { 237 unsigned Kind = Metadata[i].first; 238 MDNode *MD = Metadata[i].second; 239 240 for (int i = 1, e = VL.size(); MD && i != e; i++) { 241 Instruction *I = cast<Instruction>(VL[i]); 242 MDNode *IMD = I->getMetadata(Kind); 243 244 switch (Kind) { 245 default: 246 MD = nullptr; // Remove unknown metadata 247 break; 248 case LLVMContext::MD_tbaa: 249 MD = MDNode::getMostGenericTBAA(MD, IMD); 250 break; 251 case LLVMContext::MD_alias_scope: 252 MD = MDNode::getMostGenericAliasScope(MD, IMD); 253 break; 254 case LLVMContext::MD_noalias: 255 MD = MDNode::intersect(MD, IMD); 256 break; 257 case LLVMContext::MD_fpmath: 258 MD = MDNode::getMostGenericFPMath(MD, IMD); 259 break; 260 case LLVMContext::MD_nontemporal: 261 MD = MDNode::intersect(MD, IMD); 262 break; 263 } 264 } 265 I->setMetadata(Kind, MD); 266 } 267 return I; 268 } 269 270 /// \returns The type that all of the values in \p VL have or null if there 271 /// are different types. 272 static Type* getSameType(ArrayRef<Value *> VL) { 273 Type *Ty = VL[0]->getType(); 274 for (int i = 1, e = VL.size(); i < e; i++) 275 if (VL[i]->getType() != Ty) 276 return nullptr; 277 278 return Ty; 279 } 280 281 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 282 static bool matchExtractIndex(Instruction *E, unsigned Idx, unsigned Opcode) { 283 assert(Opcode == Instruction::ExtractElement || 284 Opcode == Instruction::ExtractValue); 285 if (Opcode == Instruction::ExtractElement) { 286 ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 287 return CI && CI->getZExtValue() == Idx; 288 } else { 289 ExtractValueInst *EI = cast<ExtractValueInst>(E); 290 return EI->getNumIndices() == 1 && *EI->idx_begin() == Idx; 291 } 292 } 293 294 /// \returns True if in-tree use also needs extract. This refers to 295 /// possible scalar operand in vectorized instruction. 296 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 297 TargetLibraryInfo *TLI) { 298 299 unsigned Opcode = UserInst->getOpcode(); 300 switch (Opcode) { 301 case Instruction::Load: { 302 LoadInst *LI = cast<LoadInst>(UserInst); 303 return (LI->getPointerOperand() == Scalar); 304 } 305 case Instruction::Store: { 306 StoreInst *SI = cast<StoreInst>(UserInst); 307 return (SI->getPointerOperand() == Scalar); 308 } 309 case Instruction::Call: { 310 CallInst *CI = cast<CallInst>(UserInst); 311 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 312 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 313 return (CI->getArgOperand(1) == Scalar); 314 } 315 } 316 default: 317 return false; 318 } 319 } 320 321 /// \returns the AA location that is being access by the instruction. 322 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 323 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 324 return MemoryLocation::get(SI); 325 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 326 return MemoryLocation::get(LI); 327 return MemoryLocation(); 328 } 329 330 /// \returns True if the instruction is not a volatile or atomic load/store. 331 static bool isSimple(Instruction *I) { 332 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 333 return LI->isSimple(); 334 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 335 return SI->isSimple(); 336 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 337 return !MI->isVolatile(); 338 return true; 339 } 340 341 /// Bottom Up SLP Vectorizer. 342 class BoUpSLP { 343 public: 344 typedef SmallVector<Value *, 8> ValueList; 345 typedef SmallVector<Instruction *, 16> InstrList; 346 typedef SmallPtrSet<Value *, 16> ValueSet; 347 typedef SmallVector<StoreInst *, 8> StoreList; 348 349 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 350 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 351 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 352 const DataLayout *DL) 353 : NumLoadsWantToKeepOrder(0), NumLoadsWantToChangeOrder(0), F(Func), 354 SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), DB(DB), 355 DL(DL), Builder(Se->getContext()) { 356 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 357 // Use the vector register size specified by the target unless overridden 358 // by a command-line option. 359 // TODO: It would be better to limit the vectorization factor based on 360 // data type rather than just register size. For example, x86 AVX has 361 // 256-bit registers, but it does not support integer operations 362 // at that width (that requires AVX2). 363 if (MaxVectorRegSizeOption.getNumOccurrences()) 364 MaxVecRegSize = MaxVectorRegSizeOption; 365 else 366 MaxVecRegSize = TTI->getRegisterBitWidth(true); 367 368 MinVecRegSize = MinVectorRegSizeOption; 369 } 370 371 /// \brief Vectorize the tree that starts with the elements in \p VL. 372 /// Returns the vectorized root. 373 Value *vectorizeTree(); 374 375 /// \returns the cost incurred by unwanted spills and fills, caused by 376 /// holding live values over call sites. 377 int getSpillCost(); 378 379 /// \returns the vectorization cost of the subtree that starts at \p VL. 380 /// A negative number means that this is profitable. 381 int getTreeCost(); 382 383 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 384 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 385 void buildTree(ArrayRef<Value *> Roots, 386 ArrayRef<Value *> UserIgnoreLst = None); 387 388 /// Clear the internal data structures that are created by 'buildTree'. 389 void deleteTree() { 390 VectorizableTree.clear(); 391 ScalarToTreeEntry.clear(); 392 MustGather.clear(); 393 ExternalUses.clear(); 394 NumLoadsWantToKeepOrder = 0; 395 NumLoadsWantToChangeOrder = 0; 396 for (auto &Iter : BlocksSchedules) { 397 BlockScheduling *BS = Iter.second.get(); 398 BS->clear(); 399 } 400 MinBWs.clear(); 401 } 402 403 /// \brief Perform LICM and CSE on the newly generated gather sequences. 404 void optimizeGatherSequence(); 405 406 /// \returns true if it is beneficial to reverse the vector order. 407 bool shouldReorder() const { 408 return NumLoadsWantToChangeOrder > NumLoadsWantToKeepOrder; 409 } 410 411 /// \return The vector element size in bits to use when vectorizing the 412 /// expression tree ending at \p V. If V is a store, the size is the width of 413 /// the stored value. Otherwise, the size is the width of the largest loaded 414 /// value reaching V. This method is used by the vectorizer to calculate 415 /// vectorization factors. 416 unsigned getVectorElementSize(Value *V); 417 418 /// Compute the minimum type sizes required to represent the entries in a 419 /// vectorizable tree. 420 void computeMinimumValueSizes(); 421 422 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 423 unsigned getMaxVecRegSize() const { 424 return MaxVecRegSize; 425 } 426 427 // \returns minimum vector register size as set by cl::opt. 428 unsigned getMinVecRegSize() const { 429 return MinVecRegSize; 430 } 431 432 /// \brief Check if ArrayType or StructType is isomorphic to some VectorType. 433 /// 434 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 435 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 436 437 private: 438 struct TreeEntry; 439 440 /// \returns the cost of the vectorizable entry. 441 int getEntryCost(TreeEntry *E); 442 443 /// This is the recursive part of buildTree. 444 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth); 445 446 /// \returns True if the ExtractElement/ExtractValue instructions in VL can 447 /// be vectorized to use the original vector (or aggregate "bitcast" to a vector). 448 bool canReuseExtract(ArrayRef<Value *> VL, unsigned Opcode) const; 449 450 /// Vectorize a single entry in the tree. 451 Value *vectorizeTree(TreeEntry *E); 452 453 /// Vectorize a single entry in the tree, starting in \p VL. 454 Value *vectorizeTree(ArrayRef<Value *> VL); 455 456 /// \returns the pointer to the vectorized value if \p VL is already 457 /// vectorized, or NULL. They may happen in cycles. 458 Value *alreadyVectorized(ArrayRef<Value *> VL) const; 459 460 /// \returns the scalarization cost for this type. Scalarization in this 461 /// context means the creation of vectors from a group of scalars. 462 int getGatherCost(Type *Ty); 463 464 /// \returns the scalarization cost for this list of values. Assuming that 465 /// this subtree gets vectorized, we may need to extract the values from the 466 /// roots. This method calculates the cost of extracting the values. 467 int getGatherCost(ArrayRef<Value *> VL); 468 469 /// \brief Set the Builder insert point to one after the last instruction in 470 /// the bundle 471 void setInsertPointAfterBundle(ArrayRef<Value *> VL); 472 473 /// \returns a vector from a collection of scalars in \p VL. 474 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 475 476 /// \returns whether the VectorizableTree is fully vectorizable and will 477 /// be beneficial even the tree height is tiny. 478 bool isFullyVectorizableTinyTree(); 479 480 /// \reorder commutative operands in alt shuffle if they result in 481 /// vectorized code. 482 void reorderAltShuffleOperands(ArrayRef<Value *> VL, 483 SmallVectorImpl<Value *> &Left, 484 SmallVectorImpl<Value *> &Right); 485 /// \reorder commutative operands to get better probability of 486 /// generating vectorized code. 487 void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 488 SmallVectorImpl<Value *> &Left, 489 SmallVectorImpl<Value *> &Right); 490 struct TreeEntry { 491 TreeEntry() : Scalars(), VectorizedValue(nullptr), 492 NeedToGather(0) {} 493 494 /// \returns true if the scalars in VL are equal to this entry. 495 bool isSame(ArrayRef<Value *> VL) const { 496 assert(VL.size() == Scalars.size() && "Invalid size"); 497 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 498 } 499 500 /// A vector of scalars. 501 ValueList Scalars; 502 503 /// The Scalars are vectorized into this value. It is initialized to Null. 504 Value *VectorizedValue; 505 506 /// Do we need to gather this sequence ? 507 bool NeedToGather; 508 }; 509 510 /// Create a new VectorizableTree entry. 511 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized) { 512 VectorizableTree.emplace_back(); 513 int idx = VectorizableTree.size() - 1; 514 TreeEntry *Last = &VectorizableTree[idx]; 515 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 516 Last->NeedToGather = !Vectorized; 517 if (Vectorized) { 518 for (int i = 0, e = VL.size(); i != e; ++i) { 519 assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!"); 520 ScalarToTreeEntry[VL[i]] = idx; 521 } 522 } else { 523 MustGather.insert(VL.begin(), VL.end()); 524 } 525 return Last; 526 } 527 528 /// -- Vectorization State -- 529 /// Holds all of the tree entries. 530 std::vector<TreeEntry> VectorizableTree; 531 532 /// Maps a specific scalar to its tree entry. 533 SmallDenseMap<Value*, int> ScalarToTreeEntry; 534 535 /// A list of scalars that we found that we need to keep as scalars. 536 ValueSet MustGather; 537 538 /// This POD struct describes one external user in the vectorized tree. 539 struct ExternalUser { 540 ExternalUser (Value *S, llvm::User *U, int L) : 541 Scalar(S), User(U), Lane(L){} 542 // Which scalar in our function. 543 Value *Scalar; 544 // Which user that uses the scalar. 545 llvm::User *User; 546 // Which lane does the scalar belong to. 547 int Lane; 548 }; 549 typedef SmallVector<ExternalUser, 16> UserList; 550 551 /// Checks if two instructions may access the same memory. 552 /// 553 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 554 /// is invariant in the calling loop. 555 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 556 Instruction *Inst2) { 557 558 // First check if the result is already in the cache. 559 AliasCacheKey key = std::make_pair(Inst1, Inst2); 560 Optional<bool> &result = AliasCache[key]; 561 if (result.hasValue()) { 562 return result.getValue(); 563 } 564 MemoryLocation Loc2 = getLocation(Inst2, AA); 565 bool aliased = true; 566 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 567 // Do the alias check. 568 aliased = AA->alias(Loc1, Loc2); 569 } 570 // Store the result in the cache. 571 result = aliased; 572 return aliased; 573 } 574 575 typedef std::pair<Instruction *, Instruction *> AliasCacheKey; 576 577 /// Cache for alias results. 578 /// TODO: consider moving this to the AliasAnalysis itself. 579 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 580 581 /// Removes an instruction from its block and eventually deletes it. 582 /// It's like Instruction::eraseFromParent() except that the actual deletion 583 /// is delayed until BoUpSLP is destructed. 584 /// This is required to ensure that there are no incorrect collisions in the 585 /// AliasCache, which can happen if a new instruction is allocated at the 586 /// same address as a previously deleted instruction. 587 void eraseInstruction(Instruction *I) { 588 I->removeFromParent(); 589 I->dropAllReferences(); 590 DeletedInstructions.push_back(std::unique_ptr<Instruction>(I)); 591 } 592 593 /// Temporary store for deleted instructions. Instructions will be deleted 594 /// eventually when the BoUpSLP is destructed. 595 SmallVector<std::unique_ptr<Instruction>, 8> DeletedInstructions; 596 597 /// A list of values that need to extracted out of the tree. 598 /// This list holds pairs of (Internal Scalar : External User). 599 UserList ExternalUses; 600 601 /// Values used only by @llvm.assume calls. 602 SmallPtrSet<const Value *, 32> EphValues; 603 604 /// Holds all of the instructions that we gathered. 605 SetVector<Instruction *> GatherSeq; 606 /// A list of blocks that we are going to CSE. 607 SetVector<BasicBlock *> CSEBlocks; 608 609 /// Contains all scheduling relevant data for an instruction. 610 /// A ScheduleData either represents a single instruction or a member of an 611 /// instruction bundle (= a group of instructions which is combined into a 612 /// vector instruction). 613 struct ScheduleData { 614 615 // The initial value for the dependency counters. It means that the 616 // dependencies are not calculated yet. 617 enum { InvalidDeps = -1 }; 618 619 ScheduleData() 620 : Inst(nullptr), FirstInBundle(nullptr), NextInBundle(nullptr), 621 NextLoadStore(nullptr), SchedulingRegionID(0), SchedulingPriority(0), 622 Dependencies(InvalidDeps), UnscheduledDeps(InvalidDeps), 623 UnscheduledDepsInBundle(InvalidDeps), IsScheduled(false) {} 624 625 void init(int BlockSchedulingRegionID) { 626 FirstInBundle = this; 627 NextInBundle = nullptr; 628 NextLoadStore = nullptr; 629 IsScheduled = false; 630 SchedulingRegionID = BlockSchedulingRegionID; 631 UnscheduledDepsInBundle = UnscheduledDeps; 632 clearDependencies(); 633 } 634 635 /// Returns true if the dependency information has been calculated. 636 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 637 638 /// Returns true for single instructions and for bundle representatives 639 /// (= the head of a bundle). 640 bool isSchedulingEntity() const { return FirstInBundle == this; } 641 642 /// Returns true if it represents an instruction bundle and not only a 643 /// single instruction. 644 bool isPartOfBundle() const { 645 return NextInBundle != nullptr || FirstInBundle != this; 646 } 647 648 /// Returns true if it is ready for scheduling, i.e. it has no more 649 /// unscheduled depending instructions/bundles. 650 bool isReady() const { 651 assert(isSchedulingEntity() && 652 "can't consider non-scheduling entity for ready list"); 653 return UnscheduledDepsInBundle == 0 && !IsScheduled; 654 } 655 656 /// Modifies the number of unscheduled dependencies, also updating it for 657 /// the whole bundle. 658 int incrementUnscheduledDeps(int Incr) { 659 UnscheduledDeps += Incr; 660 return FirstInBundle->UnscheduledDepsInBundle += Incr; 661 } 662 663 /// Sets the number of unscheduled dependencies to the number of 664 /// dependencies. 665 void resetUnscheduledDeps() { 666 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 667 } 668 669 /// Clears all dependency information. 670 void clearDependencies() { 671 Dependencies = InvalidDeps; 672 resetUnscheduledDeps(); 673 MemoryDependencies.clear(); 674 } 675 676 void dump(raw_ostream &os) const { 677 if (!isSchedulingEntity()) { 678 os << "/ " << *Inst; 679 } else if (NextInBundle) { 680 os << '[' << *Inst; 681 ScheduleData *SD = NextInBundle; 682 while (SD) { 683 os << ';' << *SD->Inst; 684 SD = SD->NextInBundle; 685 } 686 os << ']'; 687 } else { 688 os << *Inst; 689 } 690 } 691 692 Instruction *Inst; 693 694 /// Points to the head in an instruction bundle (and always to this for 695 /// single instructions). 696 ScheduleData *FirstInBundle; 697 698 /// Single linked list of all instructions in a bundle. Null if it is a 699 /// single instruction. 700 ScheduleData *NextInBundle; 701 702 /// Single linked list of all memory instructions (e.g. load, store, call) 703 /// in the block - until the end of the scheduling region. 704 ScheduleData *NextLoadStore; 705 706 /// The dependent memory instructions. 707 /// This list is derived on demand in calculateDependencies(). 708 SmallVector<ScheduleData *, 4> MemoryDependencies; 709 710 /// This ScheduleData is in the current scheduling region if this matches 711 /// the current SchedulingRegionID of BlockScheduling. 712 int SchedulingRegionID; 713 714 /// Used for getting a "good" final ordering of instructions. 715 int SchedulingPriority; 716 717 /// The number of dependencies. Constitutes of the number of users of the 718 /// instruction plus the number of dependent memory instructions (if any). 719 /// This value is calculated on demand. 720 /// If InvalidDeps, the number of dependencies is not calculated yet. 721 /// 722 int Dependencies; 723 724 /// The number of dependencies minus the number of dependencies of scheduled 725 /// instructions. As soon as this is zero, the instruction/bundle gets ready 726 /// for scheduling. 727 /// Note that this is negative as long as Dependencies is not calculated. 728 int UnscheduledDeps; 729 730 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 731 /// single instructions. 732 int UnscheduledDepsInBundle; 733 734 /// True if this instruction is scheduled (or considered as scheduled in the 735 /// dry-run). 736 bool IsScheduled; 737 }; 738 739 #ifndef NDEBUG 740 friend raw_ostream &operator<<(raw_ostream &os, 741 const BoUpSLP::ScheduleData &SD); 742 #endif 743 744 /// Contains all scheduling data for a basic block. 745 /// 746 struct BlockScheduling { 747 748 BlockScheduling(BasicBlock *BB) 749 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize), 750 ScheduleStart(nullptr), ScheduleEnd(nullptr), 751 FirstLoadStoreInRegion(nullptr), LastLoadStoreInRegion(nullptr), 752 ScheduleRegionSize(0), 753 ScheduleRegionSizeLimit(ScheduleRegionSizeBudget), 754 // Make sure that the initial SchedulingRegionID is greater than the 755 // initial SchedulingRegionID in ScheduleData (which is 0). 756 SchedulingRegionID(1) {} 757 758 void clear() { 759 ReadyInsts.clear(); 760 ScheduleStart = nullptr; 761 ScheduleEnd = nullptr; 762 FirstLoadStoreInRegion = nullptr; 763 LastLoadStoreInRegion = nullptr; 764 765 // Reduce the maximum schedule region size by the size of the 766 // previous scheduling run. 767 ScheduleRegionSizeLimit -= ScheduleRegionSize; 768 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 769 ScheduleRegionSizeLimit = MinScheduleRegionSize; 770 ScheduleRegionSize = 0; 771 772 // Make a new scheduling region, i.e. all existing ScheduleData is not 773 // in the new region yet. 774 ++SchedulingRegionID; 775 } 776 777 ScheduleData *getScheduleData(Value *V) { 778 ScheduleData *SD = ScheduleDataMap[V]; 779 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 780 return SD; 781 return nullptr; 782 } 783 784 bool isInSchedulingRegion(ScheduleData *SD) { 785 return SD->SchedulingRegionID == SchedulingRegionID; 786 } 787 788 /// Marks an instruction as scheduled and puts all dependent ready 789 /// instructions into the ready-list. 790 template <typename ReadyListType> 791 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 792 SD->IsScheduled = true; 793 DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 794 795 ScheduleData *BundleMember = SD; 796 while (BundleMember) { 797 // Handle the def-use chain dependencies. 798 for (Use &U : BundleMember->Inst->operands()) { 799 ScheduleData *OpDef = getScheduleData(U.get()); 800 if (OpDef && OpDef->hasValidDependencies() && 801 OpDef->incrementUnscheduledDeps(-1) == 0) { 802 // There are no more unscheduled dependencies after decrementing, 803 // so we can put the dependent instruction into the ready list. 804 ScheduleData *DepBundle = OpDef->FirstInBundle; 805 assert(!DepBundle->IsScheduled && 806 "already scheduled bundle gets ready"); 807 ReadyList.insert(DepBundle); 808 DEBUG(dbgs() << "SLP: gets ready (def): " << *DepBundle << "\n"); 809 } 810 } 811 // Handle the memory dependencies. 812 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 813 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 814 // There are no more unscheduled dependencies after decrementing, 815 // so we can put the dependent instruction into the ready list. 816 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 817 assert(!DepBundle->IsScheduled && 818 "already scheduled bundle gets ready"); 819 ReadyList.insert(DepBundle); 820 DEBUG(dbgs() << "SLP: gets ready (mem): " << *DepBundle << "\n"); 821 } 822 } 823 BundleMember = BundleMember->NextInBundle; 824 } 825 } 826 827 /// Put all instructions into the ReadyList which are ready for scheduling. 828 template <typename ReadyListType> 829 void initialFillReadyList(ReadyListType &ReadyList) { 830 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 831 ScheduleData *SD = getScheduleData(I); 832 if (SD->isSchedulingEntity() && SD->isReady()) { 833 ReadyList.insert(SD); 834 DEBUG(dbgs() << "SLP: initially in ready list: " << *I << "\n"); 835 } 836 } 837 } 838 839 /// Checks if a bundle of instructions can be scheduled, i.e. has no 840 /// cyclic dependencies. This is only a dry-run, no instructions are 841 /// actually moved at this stage. 842 bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP); 843 844 /// Un-bundles a group of instructions. 845 void cancelScheduling(ArrayRef<Value *> VL); 846 847 /// Extends the scheduling region so that V is inside the region. 848 /// \returns true if the region size is within the limit. 849 bool extendSchedulingRegion(Value *V); 850 851 /// Initialize the ScheduleData structures for new instructions in the 852 /// scheduling region. 853 void initScheduleData(Instruction *FromI, Instruction *ToI, 854 ScheduleData *PrevLoadStore, 855 ScheduleData *NextLoadStore); 856 857 /// Updates the dependency information of a bundle and of all instructions/ 858 /// bundles which depend on the original bundle. 859 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 860 BoUpSLP *SLP); 861 862 /// Sets all instruction in the scheduling region to un-scheduled. 863 void resetSchedule(); 864 865 BasicBlock *BB; 866 867 /// Simple memory allocation for ScheduleData. 868 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 869 870 /// The size of a ScheduleData array in ScheduleDataChunks. 871 int ChunkSize; 872 873 /// The allocator position in the current chunk, which is the last entry 874 /// of ScheduleDataChunks. 875 int ChunkPos; 876 877 /// Attaches ScheduleData to Instruction. 878 /// Note that the mapping survives during all vectorization iterations, i.e. 879 /// ScheduleData structures are recycled. 880 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 881 882 struct ReadyList : SmallVector<ScheduleData *, 8> { 883 void insert(ScheduleData *SD) { push_back(SD); } 884 }; 885 886 /// The ready-list for scheduling (only used for the dry-run). 887 ReadyList ReadyInsts; 888 889 /// The first instruction of the scheduling region. 890 Instruction *ScheduleStart; 891 892 /// The first instruction _after_ the scheduling region. 893 Instruction *ScheduleEnd; 894 895 /// The first memory accessing instruction in the scheduling region 896 /// (can be null). 897 ScheduleData *FirstLoadStoreInRegion; 898 899 /// The last memory accessing instruction in the scheduling region 900 /// (can be null). 901 ScheduleData *LastLoadStoreInRegion; 902 903 /// The current size of the scheduling region. 904 int ScheduleRegionSize; 905 906 /// The maximum size allowed for the scheduling region. 907 int ScheduleRegionSizeLimit; 908 909 /// The ID of the scheduling region. For a new vectorization iteration this 910 /// is incremented which "removes" all ScheduleData from the region. 911 int SchedulingRegionID; 912 }; 913 914 /// Attaches the BlockScheduling structures to basic blocks. 915 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 916 917 /// Performs the "real" scheduling. Done before vectorization is actually 918 /// performed in a basic block. 919 void scheduleBlock(BlockScheduling *BS); 920 921 /// List of users to ignore during scheduling and that don't need extracting. 922 ArrayRef<Value *> UserIgnoreList; 923 924 // Number of load-bundles, which contain consecutive loads. 925 int NumLoadsWantToKeepOrder; 926 927 // Number of load-bundles of size 2, which are consecutive loads if reversed. 928 int NumLoadsWantToChangeOrder; 929 930 // Analysis and block reference. 931 Function *F; 932 ScalarEvolution *SE; 933 TargetTransformInfo *TTI; 934 TargetLibraryInfo *TLI; 935 AliasAnalysis *AA; 936 LoopInfo *LI; 937 DominatorTree *DT; 938 AssumptionCache *AC; 939 DemandedBits *DB; 940 const DataLayout *DL; 941 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 942 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 943 /// Instruction builder to construct the vectorized tree. 944 IRBuilder<> Builder; 945 946 /// A map of scalar integer values to the smallest bit width with which they 947 /// can legally be represented. 948 MapVector<Value *, uint64_t> MinBWs; 949 }; 950 951 #ifndef NDEBUG 952 raw_ostream &operator<<(raw_ostream &os, const BoUpSLP::ScheduleData &SD) { 953 SD.dump(os); 954 return os; 955 } 956 #endif 957 958 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 959 ArrayRef<Value *> UserIgnoreLst) { 960 deleteTree(); 961 UserIgnoreList = UserIgnoreLst; 962 if (!getSameType(Roots)) 963 return; 964 buildTree_rec(Roots, 0); 965 966 // Collect the values that we need to extract from the tree. 967 for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) { 968 TreeEntry *Entry = &VectorizableTree[EIdx]; 969 970 // For each lane: 971 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 972 Value *Scalar = Entry->Scalars[Lane]; 973 974 // No need to handle users of gathered values. 975 if (Entry->NeedToGather) 976 continue; 977 978 for (User *U : Scalar->users()) { 979 DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 980 981 Instruction *UserInst = dyn_cast<Instruction>(U); 982 if (!UserInst) 983 continue; 984 985 // Skip in-tree scalars that become vectors 986 if (ScalarToTreeEntry.count(U)) { 987 int Idx = ScalarToTreeEntry[U]; 988 TreeEntry *UseEntry = &VectorizableTree[Idx]; 989 Value *UseScalar = UseEntry->Scalars[0]; 990 // Some in-tree scalars will remain as scalar in vectorized 991 // instructions. If that is the case, the one in Lane 0 will 992 // be used. 993 if (UseScalar != U || 994 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 995 DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 996 << ".\n"); 997 assert(!VectorizableTree[Idx].NeedToGather && "Bad state"); 998 continue; 999 } 1000 } 1001 1002 // Ignore users in the user ignore list. 1003 if (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), UserInst) != 1004 UserIgnoreList.end()) 1005 continue; 1006 1007 DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " << 1008 Lane << " from " << *Scalar << ".\n"); 1009 ExternalUses.push_back(ExternalUser(Scalar, U, Lane)); 1010 } 1011 } 1012 } 1013 } 1014 1015 1016 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { 1017 bool SameTy = getSameType(VL); (void)SameTy; 1018 bool isAltShuffle = false; 1019 assert(SameTy && "Invalid types!"); 1020 1021 if (Depth == RecursionMaxDepth) { 1022 DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 1023 newTreeEntry(VL, false); 1024 return; 1025 } 1026 1027 // Don't handle vectors. 1028 if (VL[0]->getType()->isVectorTy()) { 1029 DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 1030 newTreeEntry(VL, false); 1031 return; 1032 } 1033 1034 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1035 if (SI->getValueOperand()->getType()->isVectorTy()) { 1036 DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 1037 newTreeEntry(VL, false); 1038 return; 1039 } 1040 unsigned Opcode = getSameOpcode(VL); 1041 1042 // Check that this shuffle vector refers to the alternate 1043 // sequence of opcodes. 1044 if (Opcode == Instruction::ShuffleVector) { 1045 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 1046 unsigned Op = I0->getOpcode(); 1047 if (Op != Instruction::ShuffleVector) 1048 isAltShuffle = true; 1049 } 1050 1051 // If all of the operands are identical or constant we have a simple solution. 1052 if (allConstant(VL) || isSplat(VL) || !getSameBlock(VL) || !Opcode) { 1053 DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 1054 newTreeEntry(VL, false); 1055 return; 1056 } 1057 1058 // We now know that this is a vector of instructions of the same type from 1059 // the same block. 1060 1061 // Don't vectorize ephemeral values. 1062 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1063 if (EphValues.count(VL[i])) { 1064 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1065 ") is ephemeral.\n"); 1066 newTreeEntry(VL, false); 1067 return; 1068 } 1069 } 1070 1071 // Check if this is a duplicate of another entry. 1072 if (ScalarToTreeEntry.count(VL[0])) { 1073 int Idx = ScalarToTreeEntry[VL[0]]; 1074 TreeEntry *E = &VectorizableTree[Idx]; 1075 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1076 DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n"); 1077 if (E->Scalars[i] != VL[i]) { 1078 DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 1079 newTreeEntry(VL, false); 1080 return; 1081 } 1082 } 1083 DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n"); 1084 return; 1085 } 1086 1087 // Check that none of the instructions in the bundle are already in the tree. 1088 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1089 if (ScalarToTreeEntry.count(VL[i])) { 1090 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1091 ") is already in tree.\n"); 1092 newTreeEntry(VL, false); 1093 return; 1094 } 1095 } 1096 1097 // If any of the scalars is marked as a value that needs to stay scalar then 1098 // we need to gather the scalars. 1099 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1100 if (MustGather.count(VL[i])) { 1101 DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 1102 newTreeEntry(VL, false); 1103 return; 1104 } 1105 } 1106 1107 // Check that all of the users of the scalars that we want to vectorize are 1108 // schedulable. 1109 Instruction *VL0 = cast<Instruction>(VL[0]); 1110 BasicBlock *BB = cast<Instruction>(VL0)->getParent(); 1111 1112 if (!DT->isReachableFromEntry(BB)) { 1113 // Don't go into unreachable blocks. They may contain instructions with 1114 // dependency cycles which confuse the final scheduling. 1115 DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 1116 newTreeEntry(VL, false); 1117 return; 1118 } 1119 1120 // Check that every instructions appears once in this bundle. 1121 for (unsigned i = 0, e = VL.size(); i < e; ++i) 1122 for (unsigned j = i+1; j < e; ++j) 1123 if (VL[i] == VL[j]) { 1124 DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 1125 newTreeEntry(VL, false); 1126 return; 1127 } 1128 1129 auto &BSRef = BlocksSchedules[BB]; 1130 if (!BSRef) { 1131 BSRef = llvm::make_unique<BlockScheduling>(BB); 1132 } 1133 BlockScheduling &BS = *BSRef.get(); 1134 1135 if (!BS.tryScheduleBundle(VL, this)) { 1136 DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 1137 assert((!BS.getScheduleData(VL[0]) || 1138 !BS.getScheduleData(VL[0])->isPartOfBundle()) && 1139 "tryScheduleBundle should cancelScheduling on failure"); 1140 newTreeEntry(VL, false); 1141 return; 1142 } 1143 DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 1144 1145 switch (Opcode) { 1146 case Instruction::PHI: { 1147 PHINode *PH = dyn_cast<PHINode>(VL0); 1148 1149 // Check for terminator values (e.g. invoke). 1150 for (unsigned j = 0; j < VL.size(); ++j) 1151 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1152 TerminatorInst *Term = dyn_cast<TerminatorInst>( 1153 cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i))); 1154 if (Term) { 1155 DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n"); 1156 BS.cancelScheduling(VL); 1157 newTreeEntry(VL, false); 1158 return; 1159 } 1160 } 1161 1162 newTreeEntry(VL, true); 1163 DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 1164 1165 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1166 ValueList Operands; 1167 // Prepare the operand vector. 1168 for (unsigned j = 0; j < VL.size(); ++j) 1169 Operands.push_back(cast<PHINode>(VL[j])->getIncomingValueForBlock( 1170 PH->getIncomingBlock(i))); 1171 1172 buildTree_rec(Operands, Depth + 1); 1173 } 1174 return; 1175 } 1176 case Instruction::ExtractValue: 1177 case Instruction::ExtractElement: { 1178 bool Reuse = canReuseExtract(VL, Opcode); 1179 if (Reuse) { 1180 DEBUG(dbgs() << "SLP: Reusing extract sequence.\n"); 1181 } else { 1182 BS.cancelScheduling(VL); 1183 } 1184 newTreeEntry(VL, Reuse); 1185 return; 1186 } 1187 case Instruction::Load: { 1188 // Check that a vectorized load would load the same memory as a scalar 1189 // load. 1190 // For example we don't want vectorize loads that are smaller than 8 bit. 1191 // Even though we have a packed struct {<i2, i2, i2, i2>} LLVM treats 1192 // loading/storing it as an i8 struct. If we vectorize loads/stores from 1193 // such a struct we read/write packed bits disagreeing with the 1194 // unvectorized version. 1195 Type *ScalarTy = VL[0]->getType(); 1196 1197 if (DL->getTypeSizeInBits(ScalarTy) != 1198 DL->getTypeAllocSizeInBits(ScalarTy)) { 1199 BS.cancelScheduling(VL); 1200 newTreeEntry(VL, false); 1201 DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 1202 return; 1203 } 1204 // Check if the loads are consecutive or of we need to swizzle them. 1205 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { 1206 LoadInst *L = cast<LoadInst>(VL[i]); 1207 if (!L->isSimple()) { 1208 BS.cancelScheduling(VL); 1209 newTreeEntry(VL, false); 1210 DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 1211 return; 1212 } 1213 1214 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1215 if (VL.size() == 2 && isConsecutiveAccess(VL[1], VL[0], *DL, *SE)) { 1216 ++NumLoadsWantToChangeOrder; 1217 } 1218 BS.cancelScheduling(VL); 1219 newTreeEntry(VL, false); 1220 DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 1221 return; 1222 } 1223 } 1224 ++NumLoadsWantToKeepOrder; 1225 newTreeEntry(VL, true); 1226 DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 1227 return; 1228 } 1229 case Instruction::ZExt: 1230 case Instruction::SExt: 1231 case Instruction::FPToUI: 1232 case Instruction::FPToSI: 1233 case Instruction::FPExt: 1234 case Instruction::PtrToInt: 1235 case Instruction::IntToPtr: 1236 case Instruction::SIToFP: 1237 case Instruction::UIToFP: 1238 case Instruction::Trunc: 1239 case Instruction::FPTrunc: 1240 case Instruction::BitCast: { 1241 Type *SrcTy = VL0->getOperand(0)->getType(); 1242 for (unsigned i = 0; i < VL.size(); ++i) { 1243 Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType(); 1244 if (Ty != SrcTy || !isValidElementType(Ty)) { 1245 BS.cancelScheduling(VL); 1246 newTreeEntry(VL, false); 1247 DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n"); 1248 return; 1249 } 1250 } 1251 newTreeEntry(VL, true); 1252 DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 1253 1254 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1255 ValueList Operands; 1256 // Prepare the operand vector. 1257 for (unsigned j = 0; j < VL.size(); ++j) 1258 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); 1259 1260 buildTree_rec(Operands, Depth+1); 1261 } 1262 return; 1263 } 1264 case Instruction::ICmp: 1265 case Instruction::FCmp: { 1266 // Check that all of the compares have the same predicate. 1267 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 1268 Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType(); 1269 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1270 CmpInst *Cmp = cast<CmpInst>(VL[i]); 1271 if (Cmp->getPredicate() != P0 || 1272 Cmp->getOperand(0)->getType() != ComparedTy) { 1273 BS.cancelScheduling(VL); 1274 newTreeEntry(VL, false); 1275 DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n"); 1276 return; 1277 } 1278 } 1279 1280 newTreeEntry(VL, true); 1281 DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 1282 1283 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1284 ValueList Operands; 1285 // Prepare the operand vector. 1286 for (unsigned j = 0; j < VL.size(); ++j) 1287 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); 1288 1289 buildTree_rec(Operands, Depth+1); 1290 } 1291 return; 1292 } 1293 case Instruction::Select: 1294 case Instruction::Add: 1295 case Instruction::FAdd: 1296 case Instruction::Sub: 1297 case Instruction::FSub: 1298 case Instruction::Mul: 1299 case Instruction::FMul: 1300 case Instruction::UDiv: 1301 case Instruction::SDiv: 1302 case Instruction::FDiv: 1303 case Instruction::URem: 1304 case Instruction::SRem: 1305 case Instruction::FRem: 1306 case Instruction::Shl: 1307 case Instruction::LShr: 1308 case Instruction::AShr: 1309 case Instruction::And: 1310 case Instruction::Or: 1311 case Instruction::Xor: { 1312 newTreeEntry(VL, true); 1313 DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); 1314 1315 // Sort operands of the instructions so that each side is more likely to 1316 // have the same opcode. 1317 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 1318 ValueList Left, Right; 1319 reorderInputsAccordingToOpcode(VL, Left, Right); 1320 buildTree_rec(Left, Depth + 1); 1321 buildTree_rec(Right, Depth + 1); 1322 return; 1323 } 1324 1325 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1326 ValueList Operands; 1327 // Prepare the operand vector. 1328 for (unsigned j = 0; j < VL.size(); ++j) 1329 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); 1330 1331 buildTree_rec(Operands, Depth+1); 1332 } 1333 return; 1334 } 1335 case Instruction::GetElementPtr: { 1336 // We don't combine GEPs with complicated (nested) indexing. 1337 for (unsigned j = 0; j < VL.size(); ++j) { 1338 if (cast<Instruction>(VL[j])->getNumOperands() != 2) { 1339 DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 1340 BS.cancelScheduling(VL); 1341 newTreeEntry(VL, false); 1342 return; 1343 } 1344 } 1345 1346 // We can't combine several GEPs into one vector if they operate on 1347 // different types. 1348 Type *Ty0 = cast<Instruction>(VL0)->getOperand(0)->getType(); 1349 for (unsigned j = 0; j < VL.size(); ++j) { 1350 Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType(); 1351 if (Ty0 != CurTy) { 1352 DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n"); 1353 BS.cancelScheduling(VL); 1354 newTreeEntry(VL, false); 1355 return; 1356 } 1357 } 1358 1359 // We don't combine GEPs with non-constant indexes. 1360 for (unsigned j = 0; j < VL.size(); ++j) { 1361 auto Op = cast<Instruction>(VL[j])->getOperand(1); 1362 if (!isa<ConstantInt>(Op)) { 1363 DEBUG( 1364 dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 1365 BS.cancelScheduling(VL); 1366 newTreeEntry(VL, false); 1367 return; 1368 } 1369 } 1370 1371 newTreeEntry(VL, true); 1372 DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 1373 for (unsigned i = 0, e = 2; i < e; ++i) { 1374 ValueList Operands; 1375 // Prepare the operand vector. 1376 for (unsigned j = 0; j < VL.size(); ++j) 1377 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); 1378 1379 buildTree_rec(Operands, Depth + 1); 1380 } 1381 return; 1382 } 1383 case Instruction::Store: { 1384 // Check if the stores are consecutive or of we need to swizzle them. 1385 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 1386 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1387 BS.cancelScheduling(VL); 1388 newTreeEntry(VL, false); 1389 DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 1390 return; 1391 } 1392 1393 newTreeEntry(VL, true); 1394 DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 1395 1396 ValueList Operands; 1397 for (unsigned j = 0; j < VL.size(); ++j) 1398 Operands.push_back(cast<Instruction>(VL[j])->getOperand(0)); 1399 1400 buildTree_rec(Operands, Depth + 1); 1401 return; 1402 } 1403 case Instruction::Call: { 1404 // Check if the calls are all to the same vectorizable intrinsic. 1405 CallInst *CI = cast<CallInst>(VL[0]); 1406 // Check if this is an Intrinsic call or something that can be 1407 // represented by an intrinsic call 1408 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 1409 if (!isTriviallyVectorizable(ID)) { 1410 BS.cancelScheduling(VL); 1411 newTreeEntry(VL, false); 1412 DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 1413 return; 1414 } 1415 Function *Int = CI->getCalledFunction(); 1416 Value *A1I = nullptr; 1417 if (hasVectorInstrinsicScalarOpd(ID, 1)) 1418 A1I = CI->getArgOperand(1); 1419 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 1420 CallInst *CI2 = dyn_cast<CallInst>(VL[i]); 1421 if (!CI2 || CI2->getCalledFunction() != Int || 1422 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 1423 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 1424 BS.cancelScheduling(VL); 1425 newTreeEntry(VL, false); 1426 DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] 1427 << "\n"); 1428 return; 1429 } 1430 // ctlz,cttz and powi are special intrinsics whose second argument 1431 // should be same in order for them to be vectorized. 1432 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 1433 Value *A1J = CI2->getArgOperand(1); 1434 if (A1I != A1J) { 1435 BS.cancelScheduling(VL); 1436 newTreeEntry(VL, false); 1437 DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 1438 << " argument "<< A1I<<"!=" << A1J 1439 << "\n"); 1440 return; 1441 } 1442 } 1443 // Verify that the bundle operands are identical between the two calls. 1444 if (CI->hasOperandBundles() && 1445 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 1446 CI->op_begin() + CI->getBundleOperandsEndIndex(), 1447 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 1448 BS.cancelScheduling(VL); 1449 newTreeEntry(VL, false); 1450 DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" << *CI << "!=" 1451 << *VL[i] << '\n'); 1452 return; 1453 } 1454 } 1455 1456 newTreeEntry(VL, true); 1457 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 1458 ValueList Operands; 1459 // Prepare the operand vector. 1460 for (unsigned j = 0; j < VL.size(); ++j) { 1461 CallInst *CI2 = dyn_cast<CallInst>(VL[j]); 1462 Operands.push_back(CI2->getArgOperand(i)); 1463 } 1464 buildTree_rec(Operands, Depth + 1); 1465 } 1466 return; 1467 } 1468 case Instruction::ShuffleVector: { 1469 // If this is not an alternate sequence of opcode like add-sub 1470 // then do not vectorize this instruction. 1471 if (!isAltShuffle) { 1472 BS.cancelScheduling(VL); 1473 newTreeEntry(VL, false); 1474 DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 1475 return; 1476 } 1477 newTreeEntry(VL, true); 1478 DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 1479 1480 // Reorder operands if reordering would enable vectorization. 1481 if (isa<BinaryOperator>(VL0)) { 1482 ValueList Left, Right; 1483 reorderAltShuffleOperands(VL, Left, Right); 1484 buildTree_rec(Left, Depth + 1); 1485 buildTree_rec(Right, Depth + 1); 1486 return; 1487 } 1488 1489 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1490 ValueList Operands; 1491 // Prepare the operand vector. 1492 for (unsigned j = 0; j < VL.size(); ++j) 1493 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); 1494 1495 buildTree_rec(Operands, Depth + 1); 1496 } 1497 return; 1498 } 1499 default: 1500 BS.cancelScheduling(VL); 1501 newTreeEntry(VL, false); 1502 DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 1503 return; 1504 } 1505 } 1506 1507 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 1508 unsigned N; 1509 Type *EltTy; 1510 auto *ST = dyn_cast<StructType>(T); 1511 if (ST) { 1512 N = ST->getNumElements(); 1513 EltTy = *ST->element_begin(); 1514 } else { 1515 N = cast<ArrayType>(T)->getNumElements(); 1516 EltTy = cast<ArrayType>(T)->getElementType(); 1517 } 1518 if (!isValidElementType(EltTy)) 1519 return 0; 1520 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); 1521 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 1522 return 0; 1523 if (ST) { 1524 // Check that struct is homogeneous. 1525 for (const auto *Ty : ST->elements()) 1526 if (Ty != EltTy) 1527 return 0; 1528 } 1529 return N; 1530 } 1531 1532 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, unsigned Opcode) const { 1533 assert(Opcode == Instruction::ExtractElement || 1534 Opcode == Instruction::ExtractValue); 1535 assert(Opcode == getSameOpcode(VL) && "Invalid opcode"); 1536 // Check if all of the extracts come from the same vector and from the 1537 // correct offset. 1538 Value *VL0 = VL[0]; 1539 Instruction *E0 = cast<Instruction>(VL0); 1540 Value *Vec = E0->getOperand(0); 1541 1542 // We have to extract from a vector/aggregate with the same number of elements. 1543 unsigned NElts; 1544 if (Opcode == Instruction::ExtractValue) { 1545 const DataLayout &DL = E0->getModule()->getDataLayout(); 1546 NElts = canMapToVector(Vec->getType(), DL); 1547 if (!NElts) 1548 return false; 1549 // Check if load can be rewritten as load of vector. 1550 LoadInst *LI = dyn_cast<LoadInst>(Vec); 1551 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 1552 return false; 1553 } else { 1554 NElts = Vec->getType()->getVectorNumElements(); 1555 } 1556 1557 if (NElts != VL.size()) 1558 return false; 1559 1560 // Check that all of the indices extract from the correct offset. 1561 if (!matchExtractIndex(E0, 0, Opcode)) 1562 return false; 1563 1564 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1565 Instruction *E = cast<Instruction>(VL[i]); 1566 if (!matchExtractIndex(E, i, Opcode)) 1567 return false; 1568 if (E->getOperand(0) != Vec) 1569 return false; 1570 } 1571 1572 return true; 1573 } 1574 1575 int BoUpSLP::getEntryCost(TreeEntry *E) { 1576 ArrayRef<Value*> VL = E->Scalars; 1577 1578 Type *ScalarTy = VL[0]->getType(); 1579 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1580 ScalarTy = SI->getValueOperand()->getType(); 1581 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1582 1583 // If we have computed a smaller type for the expression, update VecTy so 1584 // that the costs will be accurate. 1585 if (MinBWs.count(VL[0])) 1586 VecTy = VectorType::get(IntegerType::get(F->getContext(), MinBWs[VL[0]]), 1587 VL.size()); 1588 1589 if (E->NeedToGather) { 1590 if (allConstant(VL)) 1591 return 0; 1592 if (isSplat(VL)) { 1593 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 1594 } 1595 return getGatherCost(E->Scalars); 1596 } 1597 unsigned Opcode = getSameOpcode(VL); 1598 assert(Opcode && getSameType(VL) && getSameBlock(VL) && "Invalid VL"); 1599 Instruction *VL0 = cast<Instruction>(VL[0]); 1600 switch (Opcode) { 1601 case Instruction::PHI: { 1602 return 0; 1603 } 1604 case Instruction::ExtractValue: 1605 case Instruction::ExtractElement: { 1606 if (canReuseExtract(VL, Opcode)) { 1607 int DeadCost = 0; 1608 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 1609 Instruction *E = cast<Instruction>(VL[i]); 1610 if (E->hasOneUse()) 1611 // Take credit for instruction that will become dead. 1612 DeadCost += 1613 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 1614 } 1615 return -DeadCost; 1616 } 1617 return getGatherCost(VecTy); 1618 } 1619 case Instruction::ZExt: 1620 case Instruction::SExt: 1621 case Instruction::FPToUI: 1622 case Instruction::FPToSI: 1623 case Instruction::FPExt: 1624 case Instruction::PtrToInt: 1625 case Instruction::IntToPtr: 1626 case Instruction::SIToFP: 1627 case Instruction::UIToFP: 1628 case Instruction::Trunc: 1629 case Instruction::FPTrunc: 1630 case Instruction::BitCast: { 1631 Type *SrcTy = VL0->getOperand(0)->getType(); 1632 1633 // Calculate the cost of this instruction. 1634 int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(), 1635 VL0->getType(), SrcTy); 1636 1637 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 1638 int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy); 1639 return VecCost - ScalarCost; 1640 } 1641 case Instruction::FCmp: 1642 case Instruction::ICmp: 1643 case Instruction::Select: { 1644 // Calculate the cost of this instruction. 1645 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 1646 int ScalarCost = VecTy->getNumElements() * 1647 TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty()); 1648 int VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy); 1649 return VecCost - ScalarCost; 1650 } 1651 case Instruction::Add: 1652 case Instruction::FAdd: 1653 case Instruction::Sub: 1654 case Instruction::FSub: 1655 case Instruction::Mul: 1656 case Instruction::FMul: 1657 case Instruction::UDiv: 1658 case Instruction::SDiv: 1659 case Instruction::FDiv: 1660 case Instruction::URem: 1661 case Instruction::SRem: 1662 case Instruction::FRem: 1663 case Instruction::Shl: 1664 case Instruction::LShr: 1665 case Instruction::AShr: 1666 case Instruction::And: 1667 case Instruction::Or: 1668 case Instruction::Xor: { 1669 // Certain instructions can be cheaper to vectorize if they have a 1670 // constant second vector operand. 1671 TargetTransformInfo::OperandValueKind Op1VK = 1672 TargetTransformInfo::OK_AnyValue; 1673 TargetTransformInfo::OperandValueKind Op2VK = 1674 TargetTransformInfo::OK_UniformConstantValue; 1675 TargetTransformInfo::OperandValueProperties Op1VP = 1676 TargetTransformInfo::OP_None; 1677 TargetTransformInfo::OperandValueProperties Op2VP = 1678 TargetTransformInfo::OP_None; 1679 1680 // If all operands are exactly the same ConstantInt then set the 1681 // operand kind to OK_UniformConstantValue. 1682 // If instead not all operands are constants, then set the operand kind 1683 // to OK_AnyValue. If all operands are constants but not the same, 1684 // then set the operand kind to OK_NonUniformConstantValue. 1685 ConstantInt *CInt = nullptr; 1686 for (unsigned i = 0; i < VL.size(); ++i) { 1687 const Instruction *I = cast<Instruction>(VL[i]); 1688 if (!isa<ConstantInt>(I->getOperand(1))) { 1689 Op2VK = TargetTransformInfo::OK_AnyValue; 1690 break; 1691 } 1692 if (i == 0) { 1693 CInt = cast<ConstantInt>(I->getOperand(1)); 1694 continue; 1695 } 1696 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && 1697 CInt != cast<ConstantInt>(I->getOperand(1))) 1698 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 1699 } 1700 // FIXME: Currently cost of model modification for division by power of 1701 // 2 is handled for X86 and AArch64. Add support for other targets. 1702 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt && 1703 CInt->getValue().isPowerOf2()) 1704 Op2VP = TargetTransformInfo::OP_PowerOf2; 1705 1706 int ScalarCost = VecTy->getNumElements() * 1707 TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, 1708 Op2VK, Op1VP, Op2VP); 1709 int VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK, 1710 Op1VP, Op2VP); 1711 return VecCost - ScalarCost; 1712 } 1713 case Instruction::GetElementPtr: { 1714 TargetTransformInfo::OperandValueKind Op1VK = 1715 TargetTransformInfo::OK_AnyValue; 1716 TargetTransformInfo::OperandValueKind Op2VK = 1717 TargetTransformInfo::OK_UniformConstantValue; 1718 1719 int ScalarCost = 1720 VecTy->getNumElements() * 1721 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 1722 int VecCost = 1723 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 1724 1725 return VecCost - ScalarCost; 1726 } 1727 case Instruction::Load: { 1728 // Cost of wide load - cost of scalar loads. 1729 unsigned alignment = dyn_cast<LoadInst>(VL0)->getAlignment(); 1730 int ScalarLdCost = VecTy->getNumElements() * 1731 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0); 1732 int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, 1733 VecTy, alignment, 0); 1734 return VecLdCost - ScalarLdCost; 1735 } 1736 case Instruction::Store: { 1737 // We know that we can merge the stores. Calculate the cost. 1738 unsigned alignment = dyn_cast<StoreInst>(VL0)->getAlignment(); 1739 int ScalarStCost = VecTy->getNumElements() * 1740 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0); 1741 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, 1742 VecTy, alignment, 0); 1743 return VecStCost - ScalarStCost; 1744 } 1745 case Instruction::Call: { 1746 CallInst *CI = cast<CallInst>(VL0); 1747 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 1748 1749 // Calculate the cost of the scalar and vector calls. 1750 SmallVector<Type*, 4> ScalarTys, VecTys; 1751 for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) { 1752 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 1753 VecTys.push_back(VectorType::get(CI->getArgOperand(op)->getType(), 1754 VecTy->getNumElements())); 1755 } 1756 1757 FastMathFlags FMF; 1758 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 1759 FMF = FPMO->getFastMathFlags(); 1760 1761 int ScalarCallCost = VecTy->getNumElements() * 1762 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 1763 1764 int VecCallCost = TTI->getIntrinsicInstrCost(ID, VecTy, VecTys, FMF); 1765 1766 DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost 1767 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 1768 << " for " << *CI << "\n"); 1769 1770 return VecCallCost - ScalarCallCost; 1771 } 1772 case Instruction::ShuffleVector: { 1773 TargetTransformInfo::OperandValueKind Op1VK = 1774 TargetTransformInfo::OK_AnyValue; 1775 TargetTransformInfo::OperandValueKind Op2VK = 1776 TargetTransformInfo::OK_AnyValue; 1777 int ScalarCost = 0; 1778 int VecCost = 0; 1779 for (unsigned i = 0; i < VL.size(); ++i) { 1780 Instruction *I = cast<Instruction>(VL[i]); 1781 if (!I) 1782 break; 1783 ScalarCost += 1784 TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK); 1785 } 1786 // VecCost is equal to sum of the cost of creating 2 vectors 1787 // and the cost of creating shuffle. 1788 Instruction *I0 = cast<Instruction>(VL[0]); 1789 VecCost = 1790 TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK); 1791 Instruction *I1 = cast<Instruction>(VL[1]); 1792 VecCost += 1793 TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK); 1794 VecCost += 1795 TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0); 1796 return VecCost - ScalarCost; 1797 } 1798 default: 1799 llvm_unreachable("Unknown instruction"); 1800 } 1801 } 1802 1803 bool BoUpSLP::isFullyVectorizableTinyTree() { 1804 DEBUG(dbgs() << "SLP: Check whether the tree with height " << 1805 VectorizableTree.size() << " is fully vectorizable .\n"); 1806 1807 // We only handle trees of height 2. 1808 if (VectorizableTree.size() != 2) 1809 return false; 1810 1811 // Handle splat and all-constants stores. 1812 if (!VectorizableTree[0].NeedToGather && 1813 (allConstant(VectorizableTree[1].Scalars) || 1814 isSplat(VectorizableTree[1].Scalars))) 1815 return true; 1816 1817 // Gathering cost would be too much for tiny trees. 1818 if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather) 1819 return false; 1820 1821 return true; 1822 } 1823 1824 int BoUpSLP::getSpillCost() { 1825 // Walk from the bottom of the tree to the top, tracking which values are 1826 // live. When we see a call instruction that is not part of our tree, 1827 // query TTI to see if there is a cost to keeping values live over it 1828 // (for example, if spills and fills are required). 1829 unsigned BundleWidth = VectorizableTree.front().Scalars.size(); 1830 int Cost = 0; 1831 1832 SmallPtrSet<Instruction*, 4> LiveValues; 1833 Instruction *PrevInst = nullptr; 1834 1835 for (unsigned N = 0; N < VectorizableTree.size(); ++N) { 1836 Instruction *Inst = dyn_cast<Instruction>(VectorizableTree[N].Scalars[0]); 1837 if (!Inst) 1838 continue; 1839 1840 if (!PrevInst) { 1841 PrevInst = Inst; 1842 continue; 1843 } 1844 1845 // Update LiveValues. 1846 LiveValues.erase(PrevInst); 1847 for (auto &J : PrevInst->operands()) { 1848 if (isa<Instruction>(&*J) && ScalarToTreeEntry.count(&*J)) 1849 LiveValues.insert(cast<Instruction>(&*J)); 1850 } 1851 1852 DEBUG( 1853 dbgs() << "SLP: #LV: " << LiveValues.size(); 1854 for (auto *X : LiveValues) 1855 dbgs() << " " << X->getName(); 1856 dbgs() << ", Looking at "; 1857 Inst->dump(); 1858 ); 1859 1860 // Now find the sequence of instructions between PrevInst and Inst. 1861 BasicBlock::reverse_iterator InstIt(Inst->getIterator()), 1862 PrevInstIt(PrevInst->getIterator()); 1863 --PrevInstIt; 1864 while (InstIt != PrevInstIt) { 1865 if (PrevInstIt == PrevInst->getParent()->rend()) { 1866 PrevInstIt = Inst->getParent()->rbegin(); 1867 continue; 1868 } 1869 1870 if (isa<CallInst>(&*PrevInstIt) && &*PrevInstIt != PrevInst) { 1871 SmallVector<Type*, 4> V; 1872 for (auto *II : LiveValues) 1873 V.push_back(VectorType::get(II->getType(), BundleWidth)); 1874 Cost += TTI->getCostOfKeepingLiveOverCall(V); 1875 } 1876 1877 ++PrevInstIt; 1878 } 1879 1880 PrevInst = Inst; 1881 } 1882 1883 return Cost; 1884 } 1885 1886 int BoUpSLP::getTreeCost() { 1887 int Cost = 0; 1888 DEBUG(dbgs() << "SLP: Calculating cost for tree of size " << 1889 VectorizableTree.size() << ".\n"); 1890 1891 // We only vectorize tiny trees if it is fully vectorizable. 1892 if (VectorizableTree.size() < 3 && !isFullyVectorizableTinyTree()) { 1893 if (VectorizableTree.empty()) { 1894 assert(!ExternalUses.size() && "We should not have any external users"); 1895 } 1896 return INT_MAX; 1897 } 1898 1899 unsigned BundleWidth = VectorizableTree[0].Scalars.size(); 1900 1901 for (TreeEntry &TE : VectorizableTree) { 1902 int C = getEntryCost(&TE); 1903 DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with " 1904 << *TE.Scalars[0] << ".\n"); 1905 Cost += C; 1906 } 1907 1908 SmallSet<Value *, 16> ExtractCostCalculated; 1909 int ExtractCost = 0; 1910 for (ExternalUser &EU : ExternalUses) { 1911 // We only add extract cost once for the same scalar. 1912 if (!ExtractCostCalculated.insert(EU.Scalar).second) 1913 continue; 1914 1915 // Uses by ephemeral values are free (because the ephemeral value will be 1916 // removed prior to code generation, and so the extraction will be 1917 // removed as well). 1918 if (EphValues.count(EU.User)) 1919 continue; 1920 1921 // If we plan to rewrite the tree in a smaller type, we will need to sign 1922 // extend the extracted value back to the original type. Here, we account 1923 // for the extract and the added cost of the sign extend if needed. 1924 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); 1925 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 1926 if (MinBWs.count(ScalarRoot)) { 1927 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot]); 1928 VecTy = VectorType::get(MinTy, BundleWidth); 1929 ExtractCost += TTI->getExtractWithExtendCost( 1930 Instruction::SExt, EU.Scalar->getType(), VecTy, EU.Lane); 1931 } else { 1932 ExtractCost += 1933 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 1934 } 1935 } 1936 1937 int SpillCost = getSpillCost(); 1938 Cost += SpillCost + ExtractCost; 1939 1940 DEBUG(dbgs() << "SLP: Spill Cost = " << SpillCost << ".\n" 1941 << "SLP: Extract Cost = " << ExtractCost << ".\n" 1942 << "SLP: Total Cost = " << Cost << ".\n"); 1943 return Cost; 1944 } 1945 1946 int BoUpSLP::getGatherCost(Type *Ty) { 1947 int Cost = 0; 1948 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 1949 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 1950 return Cost; 1951 } 1952 1953 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) { 1954 // Find the type of the operands in VL. 1955 Type *ScalarTy = VL[0]->getType(); 1956 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1957 ScalarTy = SI->getValueOperand()->getType(); 1958 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1959 // Find the cost of inserting/extracting values from the vector. 1960 return getGatherCost(VecTy); 1961 } 1962 1963 // Reorder commutative operations in alternate shuffle if the resulting vectors 1964 // are consecutive loads. This would allow us to vectorize the tree. 1965 // If we have something like- 1966 // load a[0] - load b[0] 1967 // load b[1] + load a[1] 1968 // load a[2] - load b[2] 1969 // load a[3] + load b[3] 1970 // Reordering the second load b[1] load a[1] would allow us to vectorize this 1971 // code. 1972 void BoUpSLP::reorderAltShuffleOperands(ArrayRef<Value *> VL, 1973 SmallVectorImpl<Value *> &Left, 1974 SmallVectorImpl<Value *> &Right) { 1975 // Push left and right operands of binary operation into Left and Right 1976 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 1977 Left.push_back(cast<Instruction>(VL[i])->getOperand(0)); 1978 Right.push_back(cast<Instruction>(VL[i])->getOperand(1)); 1979 } 1980 1981 // Reorder if we have a commutative operation and consecutive access 1982 // are on either side of the alternate instructions. 1983 for (unsigned j = 0; j < VL.size() - 1; ++j) { 1984 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 1985 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 1986 Instruction *VL1 = cast<Instruction>(VL[j]); 1987 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 1988 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 1989 std::swap(Left[j], Right[j]); 1990 continue; 1991 } else if (VL2->isCommutative() && 1992 isConsecutiveAccess(L, L1, *DL, *SE)) { 1993 std::swap(Left[j + 1], Right[j + 1]); 1994 continue; 1995 } 1996 // else unchanged 1997 } 1998 } 1999 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2000 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2001 Instruction *VL1 = cast<Instruction>(VL[j]); 2002 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 2003 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 2004 std::swap(Left[j], Right[j]); 2005 continue; 2006 } else if (VL2->isCommutative() && 2007 isConsecutiveAccess(L, L1, *DL, *SE)) { 2008 std::swap(Left[j + 1], Right[j + 1]); 2009 continue; 2010 } 2011 // else unchanged 2012 } 2013 } 2014 } 2015 } 2016 2017 // Return true if I should be commuted before adding it's left and right 2018 // operands to the arrays Left and Right. 2019 // 2020 // The vectorizer is trying to either have all elements one side being 2021 // instruction with the same opcode to enable further vectorization, or having 2022 // a splat to lower the vectorizing cost. 2023 static bool shouldReorderOperands(int i, Instruction &I, 2024 SmallVectorImpl<Value *> &Left, 2025 SmallVectorImpl<Value *> &Right, 2026 bool AllSameOpcodeLeft, 2027 bool AllSameOpcodeRight, bool SplatLeft, 2028 bool SplatRight) { 2029 Value *VLeft = I.getOperand(0); 2030 Value *VRight = I.getOperand(1); 2031 // If we have "SplatRight", try to see if commuting is needed to preserve it. 2032 if (SplatRight) { 2033 if (VRight == Right[i - 1]) 2034 // Preserve SplatRight 2035 return false; 2036 if (VLeft == Right[i - 1]) { 2037 // Commuting would preserve SplatRight, but we don't want to break 2038 // SplatLeft either, i.e. preserve the original order if possible. 2039 // (FIXME: why do we care?) 2040 if (SplatLeft && VLeft == Left[i - 1]) 2041 return false; 2042 return true; 2043 } 2044 } 2045 // Symmetrically handle Right side. 2046 if (SplatLeft) { 2047 if (VLeft == Left[i - 1]) 2048 // Preserve SplatLeft 2049 return false; 2050 if (VRight == Left[i - 1]) 2051 return true; 2052 } 2053 2054 Instruction *ILeft = dyn_cast<Instruction>(VLeft); 2055 Instruction *IRight = dyn_cast<Instruction>(VRight); 2056 2057 // If we have "AllSameOpcodeRight", try to see if the left operands preserves 2058 // it and not the right, in this case we want to commute. 2059 if (AllSameOpcodeRight) { 2060 unsigned RightPrevOpcode = cast<Instruction>(Right[i - 1])->getOpcode(); 2061 if (IRight && RightPrevOpcode == IRight->getOpcode()) 2062 // Do not commute, a match on the right preserves AllSameOpcodeRight 2063 return false; 2064 if (ILeft && RightPrevOpcode == ILeft->getOpcode()) { 2065 // We have a match and may want to commute, but first check if there is 2066 // not also a match on the existing operands on the Left to preserve 2067 // AllSameOpcodeLeft, i.e. preserve the original order if possible. 2068 // (FIXME: why do we care?) 2069 if (AllSameOpcodeLeft && ILeft && 2070 cast<Instruction>(Left[i - 1])->getOpcode() == ILeft->getOpcode()) 2071 return false; 2072 return true; 2073 } 2074 } 2075 // Symmetrically handle Left side. 2076 if (AllSameOpcodeLeft) { 2077 unsigned LeftPrevOpcode = cast<Instruction>(Left[i - 1])->getOpcode(); 2078 if (ILeft && LeftPrevOpcode == ILeft->getOpcode()) 2079 return false; 2080 if (IRight && LeftPrevOpcode == IRight->getOpcode()) 2081 return true; 2082 } 2083 return false; 2084 } 2085 2086 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 2087 SmallVectorImpl<Value *> &Left, 2088 SmallVectorImpl<Value *> &Right) { 2089 2090 if (VL.size()) { 2091 // Peel the first iteration out of the loop since there's nothing 2092 // interesting to do anyway and it simplifies the checks in the loop. 2093 auto VLeft = cast<Instruction>(VL[0])->getOperand(0); 2094 auto VRight = cast<Instruction>(VL[0])->getOperand(1); 2095 if (!isa<Instruction>(VRight) && isa<Instruction>(VLeft)) 2096 // Favor having instruction to the right. FIXME: why? 2097 std::swap(VLeft, VRight); 2098 Left.push_back(VLeft); 2099 Right.push_back(VRight); 2100 } 2101 2102 // Keep track if we have instructions with all the same opcode on one side. 2103 bool AllSameOpcodeLeft = isa<Instruction>(Left[0]); 2104 bool AllSameOpcodeRight = isa<Instruction>(Right[0]); 2105 // Keep track if we have one side with all the same value (broadcast). 2106 bool SplatLeft = true; 2107 bool SplatRight = true; 2108 2109 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 2110 Instruction *I = cast<Instruction>(VL[i]); 2111 assert(I->isCommutative() && "Can only process commutative instruction"); 2112 // Commute to favor either a splat or maximizing having the same opcodes on 2113 // one side. 2114 if (shouldReorderOperands(i, *I, Left, Right, AllSameOpcodeLeft, 2115 AllSameOpcodeRight, SplatLeft, SplatRight)) { 2116 Left.push_back(I->getOperand(1)); 2117 Right.push_back(I->getOperand(0)); 2118 } else { 2119 Left.push_back(I->getOperand(0)); 2120 Right.push_back(I->getOperand(1)); 2121 } 2122 // Update Splat* and AllSameOpcode* after the insertion. 2123 SplatRight = SplatRight && (Right[i - 1] == Right[i]); 2124 SplatLeft = SplatLeft && (Left[i - 1] == Left[i]); 2125 AllSameOpcodeLeft = AllSameOpcodeLeft && isa<Instruction>(Left[i]) && 2126 (cast<Instruction>(Left[i - 1])->getOpcode() == 2127 cast<Instruction>(Left[i])->getOpcode()); 2128 AllSameOpcodeRight = AllSameOpcodeRight && isa<Instruction>(Right[i]) && 2129 (cast<Instruction>(Right[i - 1])->getOpcode() == 2130 cast<Instruction>(Right[i])->getOpcode()); 2131 } 2132 2133 // If one operand end up being broadcast, return this operand order. 2134 if (SplatRight || SplatLeft) 2135 return; 2136 2137 // Finally check if we can get longer vectorizable chain by reordering 2138 // without breaking the good operand order detected above. 2139 // E.g. If we have something like- 2140 // load a[0] load b[0] 2141 // load b[1] load a[1] 2142 // load a[2] load b[2] 2143 // load a[3] load b[3] 2144 // Reordering the second load b[1] load a[1] would allow us to vectorize 2145 // this code and we still retain AllSameOpcode property. 2146 // FIXME: This load reordering might break AllSameOpcode in some rare cases 2147 // such as- 2148 // add a[0],c[0] load b[0] 2149 // add a[1],c[2] load b[1] 2150 // b[2] load b[2] 2151 // add a[3],c[3] load b[3] 2152 for (unsigned j = 0; j < VL.size() - 1; ++j) { 2153 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2154 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2155 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2156 std::swap(Left[j + 1], Right[j + 1]); 2157 continue; 2158 } 2159 } 2160 } 2161 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2162 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2163 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2164 std::swap(Left[j + 1], Right[j + 1]); 2165 continue; 2166 } 2167 } 2168 } 2169 // else unchanged 2170 } 2171 } 2172 2173 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) { 2174 Instruction *VL0 = cast<Instruction>(VL[0]); 2175 BasicBlock::iterator NextInst(VL0); 2176 ++NextInst; 2177 Builder.SetInsertPoint(VL0->getParent(), NextInst); 2178 Builder.SetCurrentDebugLocation(VL0->getDebugLoc()); 2179 } 2180 2181 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 2182 Value *Vec = UndefValue::get(Ty); 2183 // Generate the 'InsertElement' instruction. 2184 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 2185 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 2186 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { 2187 GatherSeq.insert(Insrt); 2188 CSEBlocks.insert(Insrt->getParent()); 2189 2190 // Add to our 'need-to-extract' list. 2191 if (ScalarToTreeEntry.count(VL[i])) { 2192 int Idx = ScalarToTreeEntry[VL[i]]; 2193 TreeEntry *E = &VectorizableTree[Idx]; 2194 // Find which lane we need to extract. 2195 int FoundLane = -1; 2196 for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) { 2197 // Is this the lane of the scalar that we are looking for ? 2198 if (E->Scalars[Lane] == VL[i]) { 2199 FoundLane = Lane; 2200 break; 2201 } 2202 } 2203 assert(FoundLane >= 0 && "Could not find the correct lane"); 2204 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 2205 } 2206 } 2207 } 2208 2209 return Vec; 2210 } 2211 2212 Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) const { 2213 SmallDenseMap<Value*, int>::const_iterator Entry 2214 = ScalarToTreeEntry.find(VL[0]); 2215 if (Entry != ScalarToTreeEntry.end()) { 2216 int Idx = Entry->second; 2217 const TreeEntry *En = &VectorizableTree[Idx]; 2218 if (En->isSame(VL) && En->VectorizedValue) 2219 return En->VectorizedValue; 2220 } 2221 return nullptr; 2222 } 2223 2224 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 2225 if (ScalarToTreeEntry.count(VL[0])) { 2226 int Idx = ScalarToTreeEntry[VL[0]]; 2227 TreeEntry *E = &VectorizableTree[Idx]; 2228 if (E->isSame(VL)) 2229 return vectorizeTree(E); 2230 } 2231 2232 Type *ScalarTy = VL[0]->getType(); 2233 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2234 ScalarTy = SI->getValueOperand()->getType(); 2235 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2236 2237 return Gather(VL, VecTy); 2238 } 2239 2240 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 2241 IRBuilder<>::InsertPointGuard Guard(Builder); 2242 2243 if (E->VectorizedValue) { 2244 DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 2245 return E->VectorizedValue; 2246 } 2247 2248 Instruction *VL0 = cast<Instruction>(E->Scalars[0]); 2249 Type *ScalarTy = VL0->getType(); 2250 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 2251 ScalarTy = SI->getValueOperand()->getType(); 2252 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 2253 2254 if (E->NeedToGather) { 2255 setInsertPointAfterBundle(E->Scalars); 2256 return Gather(E->Scalars, VecTy); 2257 } 2258 2259 unsigned Opcode = getSameOpcode(E->Scalars); 2260 2261 switch (Opcode) { 2262 case Instruction::PHI: { 2263 PHINode *PH = dyn_cast<PHINode>(VL0); 2264 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 2265 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 2266 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 2267 E->VectorizedValue = NewPhi; 2268 2269 // PHINodes may have multiple entries from the same block. We want to 2270 // visit every block once. 2271 SmallSet<BasicBlock*, 4> VisitedBBs; 2272 2273 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2274 ValueList Operands; 2275 BasicBlock *IBB = PH->getIncomingBlock(i); 2276 2277 if (!VisitedBBs.insert(IBB).second) { 2278 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 2279 continue; 2280 } 2281 2282 // Prepare the operand vector. 2283 for (Value *V : E->Scalars) 2284 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB)); 2285 2286 Builder.SetInsertPoint(IBB->getTerminator()); 2287 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 2288 Value *Vec = vectorizeTree(Operands); 2289 NewPhi->addIncoming(Vec, IBB); 2290 } 2291 2292 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 2293 "Invalid number of incoming values"); 2294 return NewPhi; 2295 } 2296 2297 case Instruction::ExtractElement: { 2298 if (canReuseExtract(E->Scalars, Instruction::ExtractElement)) { 2299 Value *V = VL0->getOperand(0); 2300 E->VectorizedValue = V; 2301 return V; 2302 } 2303 return Gather(E->Scalars, VecTy); 2304 } 2305 case Instruction::ExtractValue: { 2306 if (canReuseExtract(E->Scalars, Instruction::ExtractValue)) { 2307 LoadInst *LI = cast<LoadInst>(VL0->getOperand(0)); 2308 Builder.SetInsertPoint(LI); 2309 PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 2310 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 2311 LoadInst *V = Builder.CreateAlignedLoad(Ptr, LI->getAlignment()); 2312 E->VectorizedValue = V; 2313 return propagateMetadata(V, E->Scalars); 2314 } 2315 return Gather(E->Scalars, VecTy); 2316 } 2317 case Instruction::ZExt: 2318 case Instruction::SExt: 2319 case Instruction::FPToUI: 2320 case Instruction::FPToSI: 2321 case Instruction::FPExt: 2322 case Instruction::PtrToInt: 2323 case Instruction::IntToPtr: 2324 case Instruction::SIToFP: 2325 case Instruction::UIToFP: 2326 case Instruction::Trunc: 2327 case Instruction::FPTrunc: 2328 case Instruction::BitCast: { 2329 ValueList INVL; 2330 for (Value *V : E->Scalars) 2331 INVL.push_back(cast<Instruction>(V)->getOperand(0)); 2332 2333 setInsertPointAfterBundle(E->Scalars); 2334 2335 Value *InVec = vectorizeTree(INVL); 2336 2337 if (Value *V = alreadyVectorized(E->Scalars)) 2338 return V; 2339 2340 CastInst *CI = dyn_cast<CastInst>(VL0); 2341 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 2342 E->VectorizedValue = V; 2343 ++NumVectorInstructions; 2344 return V; 2345 } 2346 case Instruction::FCmp: 2347 case Instruction::ICmp: { 2348 ValueList LHSV, RHSV; 2349 for (Value *V : E->Scalars) { 2350 LHSV.push_back(cast<Instruction>(V)->getOperand(0)); 2351 RHSV.push_back(cast<Instruction>(V)->getOperand(1)); 2352 } 2353 2354 setInsertPointAfterBundle(E->Scalars); 2355 2356 Value *L = vectorizeTree(LHSV); 2357 Value *R = vectorizeTree(RHSV); 2358 2359 if (Value *V = alreadyVectorized(E->Scalars)) 2360 return V; 2361 2362 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2363 Value *V; 2364 if (Opcode == Instruction::FCmp) 2365 V = Builder.CreateFCmp(P0, L, R); 2366 else 2367 V = Builder.CreateICmp(P0, L, R); 2368 2369 E->VectorizedValue = V; 2370 ++NumVectorInstructions; 2371 return V; 2372 } 2373 case Instruction::Select: { 2374 ValueList TrueVec, FalseVec, CondVec; 2375 for (Value *V : E->Scalars) { 2376 CondVec.push_back(cast<Instruction>(V)->getOperand(0)); 2377 TrueVec.push_back(cast<Instruction>(V)->getOperand(1)); 2378 FalseVec.push_back(cast<Instruction>(V)->getOperand(2)); 2379 } 2380 2381 setInsertPointAfterBundle(E->Scalars); 2382 2383 Value *Cond = vectorizeTree(CondVec); 2384 Value *True = vectorizeTree(TrueVec); 2385 Value *False = vectorizeTree(FalseVec); 2386 2387 if (Value *V = alreadyVectorized(E->Scalars)) 2388 return V; 2389 2390 Value *V = Builder.CreateSelect(Cond, True, False); 2391 E->VectorizedValue = V; 2392 ++NumVectorInstructions; 2393 return V; 2394 } 2395 case Instruction::Add: 2396 case Instruction::FAdd: 2397 case Instruction::Sub: 2398 case Instruction::FSub: 2399 case Instruction::Mul: 2400 case Instruction::FMul: 2401 case Instruction::UDiv: 2402 case Instruction::SDiv: 2403 case Instruction::FDiv: 2404 case Instruction::URem: 2405 case Instruction::SRem: 2406 case Instruction::FRem: 2407 case Instruction::Shl: 2408 case Instruction::LShr: 2409 case Instruction::AShr: 2410 case Instruction::And: 2411 case Instruction::Or: 2412 case Instruction::Xor: { 2413 ValueList LHSVL, RHSVL; 2414 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) 2415 reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL); 2416 else 2417 for (Value *V : E->Scalars) { 2418 LHSVL.push_back(cast<Instruction>(V)->getOperand(0)); 2419 RHSVL.push_back(cast<Instruction>(V)->getOperand(1)); 2420 } 2421 2422 setInsertPointAfterBundle(E->Scalars); 2423 2424 Value *LHS = vectorizeTree(LHSVL); 2425 Value *RHS = vectorizeTree(RHSVL); 2426 2427 if (LHS == RHS && isa<Instruction>(LHS)) { 2428 assert((VL0->getOperand(0) == VL0->getOperand(1)) && "Invalid order"); 2429 } 2430 2431 if (Value *V = alreadyVectorized(E->Scalars)) 2432 return V; 2433 2434 BinaryOperator *BinOp = cast<BinaryOperator>(VL0); 2435 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS); 2436 E->VectorizedValue = V; 2437 propagateIRFlags(E->VectorizedValue, E->Scalars); 2438 ++NumVectorInstructions; 2439 2440 if (Instruction *I = dyn_cast<Instruction>(V)) 2441 return propagateMetadata(I, E->Scalars); 2442 2443 return V; 2444 } 2445 case Instruction::Load: { 2446 // Loads are inserted at the head of the tree because we don't want to 2447 // sink them all the way down past store instructions. 2448 setInsertPointAfterBundle(E->Scalars); 2449 2450 LoadInst *LI = cast<LoadInst>(VL0); 2451 Type *ScalarLoadTy = LI->getType(); 2452 unsigned AS = LI->getPointerAddressSpace(); 2453 2454 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 2455 VecTy->getPointerTo(AS)); 2456 2457 // The pointer operand uses an in-tree scalar so we add the new BitCast to 2458 // ExternalUses list to make sure that an extract will be generated in the 2459 // future. 2460 if (ScalarToTreeEntry.count(LI->getPointerOperand())) 2461 ExternalUses.push_back( 2462 ExternalUser(LI->getPointerOperand(), cast<User>(VecPtr), 0)); 2463 2464 unsigned Alignment = LI->getAlignment(); 2465 LI = Builder.CreateLoad(VecPtr); 2466 if (!Alignment) { 2467 Alignment = DL->getABITypeAlignment(ScalarLoadTy); 2468 } 2469 LI->setAlignment(Alignment); 2470 E->VectorizedValue = LI; 2471 ++NumVectorInstructions; 2472 return propagateMetadata(LI, E->Scalars); 2473 } 2474 case Instruction::Store: { 2475 StoreInst *SI = cast<StoreInst>(VL0); 2476 unsigned Alignment = SI->getAlignment(); 2477 unsigned AS = SI->getPointerAddressSpace(); 2478 2479 ValueList ValueOp; 2480 for (Value *V : E->Scalars) 2481 ValueOp.push_back(cast<StoreInst>(V)->getValueOperand()); 2482 2483 setInsertPointAfterBundle(E->Scalars); 2484 2485 Value *VecValue = vectorizeTree(ValueOp); 2486 Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(), 2487 VecTy->getPointerTo(AS)); 2488 StoreInst *S = Builder.CreateStore(VecValue, VecPtr); 2489 2490 // The pointer operand uses an in-tree scalar so we add the new BitCast to 2491 // ExternalUses list to make sure that an extract will be generated in the 2492 // future. 2493 if (ScalarToTreeEntry.count(SI->getPointerOperand())) 2494 ExternalUses.push_back( 2495 ExternalUser(SI->getPointerOperand(), cast<User>(VecPtr), 0)); 2496 2497 if (!Alignment) { 2498 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); 2499 } 2500 S->setAlignment(Alignment); 2501 E->VectorizedValue = S; 2502 ++NumVectorInstructions; 2503 return propagateMetadata(S, E->Scalars); 2504 } 2505 case Instruction::GetElementPtr: { 2506 setInsertPointAfterBundle(E->Scalars); 2507 2508 ValueList Op0VL; 2509 for (Value *V : E->Scalars) 2510 Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0)); 2511 2512 Value *Op0 = vectorizeTree(Op0VL); 2513 2514 std::vector<Value *> OpVecs; 2515 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 2516 ++j) { 2517 ValueList OpVL; 2518 for (Value *V : E->Scalars) 2519 OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j)); 2520 2521 Value *OpVec = vectorizeTree(OpVL); 2522 OpVecs.push_back(OpVec); 2523 } 2524 2525 Value *V = Builder.CreateGEP( 2526 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 2527 E->VectorizedValue = V; 2528 ++NumVectorInstructions; 2529 2530 if (Instruction *I = dyn_cast<Instruction>(V)) 2531 return propagateMetadata(I, E->Scalars); 2532 2533 return V; 2534 } 2535 case Instruction::Call: { 2536 CallInst *CI = cast<CallInst>(VL0); 2537 setInsertPointAfterBundle(E->Scalars); 2538 Function *FI; 2539 Intrinsic::ID IID = Intrinsic::not_intrinsic; 2540 Value *ScalarArg = nullptr; 2541 if (CI && (FI = CI->getCalledFunction())) { 2542 IID = FI->getIntrinsicID(); 2543 } 2544 std::vector<Value *> OpVecs; 2545 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 2546 ValueList OpVL; 2547 // ctlz,cttz and powi are special intrinsics whose second argument is 2548 // a scalar. This argument should not be vectorized. 2549 if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) { 2550 CallInst *CEI = cast<CallInst>(E->Scalars[0]); 2551 ScalarArg = CEI->getArgOperand(j); 2552 OpVecs.push_back(CEI->getArgOperand(j)); 2553 continue; 2554 } 2555 for (Value *V : E->Scalars) { 2556 CallInst *CEI = cast<CallInst>(V); 2557 OpVL.push_back(CEI->getArgOperand(j)); 2558 } 2559 2560 Value *OpVec = vectorizeTree(OpVL); 2561 DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 2562 OpVecs.push_back(OpVec); 2563 } 2564 2565 Module *M = F->getParent(); 2566 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2567 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 2568 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 2569 SmallVector<OperandBundleDef, 1> OpBundles; 2570 CI->getOperandBundlesAsDefs(OpBundles); 2571 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 2572 2573 // The scalar argument uses an in-tree scalar so we add the new vectorized 2574 // call to ExternalUses list to make sure that an extract will be 2575 // generated in the future. 2576 if (ScalarArg && ScalarToTreeEntry.count(ScalarArg)) 2577 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 2578 2579 E->VectorizedValue = V; 2580 ++NumVectorInstructions; 2581 return V; 2582 } 2583 case Instruction::ShuffleVector: { 2584 ValueList LHSVL, RHSVL; 2585 assert(isa<BinaryOperator>(VL0) && "Invalid Shuffle Vector Operand"); 2586 reorderAltShuffleOperands(E->Scalars, LHSVL, RHSVL); 2587 setInsertPointAfterBundle(E->Scalars); 2588 2589 Value *LHS = vectorizeTree(LHSVL); 2590 Value *RHS = vectorizeTree(RHSVL); 2591 2592 if (Value *V = alreadyVectorized(E->Scalars)) 2593 return V; 2594 2595 // Create a vector of LHS op1 RHS 2596 BinaryOperator *BinOp0 = cast<BinaryOperator>(VL0); 2597 Value *V0 = Builder.CreateBinOp(BinOp0->getOpcode(), LHS, RHS); 2598 2599 // Create a vector of LHS op2 RHS 2600 Instruction *VL1 = cast<Instruction>(E->Scalars[1]); 2601 BinaryOperator *BinOp1 = cast<BinaryOperator>(VL1); 2602 Value *V1 = Builder.CreateBinOp(BinOp1->getOpcode(), LHS, RHS); 2603 2604 // Create shuffle to take alternate operations from the vector. 2605 // Also, gather up odd and even scalar ops to propagate IR flags to 2606 // each vector operation. 2607 ValueList OddScalars, EvenScalars; 2608 unsigned e = E->Scalars.size(); 2609 SmallVector<Constant *, 8> Mask(e); 2610 for (unsigned i = 0; i < e; ++i) { 2611 if (i & 1) { 2612 Mask[i] = Builder.getInt32(e + i); 2613 OddScalars.push_back(E->Scalars[i]); 2614 } else { 2615 Mask[i] = Builder.getInt32(i); 2616 EvenScalars.push_back(E->Scalars[i]); 2617 } 2618 } 2619 2620 Value *ShuffleMask = ConstantVector::get(Mask); 2621 propagateIRFlags(V0, EvenScalars); 2622 propagateIRFlags(V1, OddScalars); 2623 2624 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 2625 E->VectorizedValue = V; 2626 ++NumVectorInstructions; 2627 if (Instruction *I = dyn_cast<Instruction>(V)) 2628 return propagateMetadata(I, E->Scalars); 2629 2630 return V; 2631 } 2632 default: 2633 llvm_unreachable("unknown inst"); 2634 } 2635 return nullptr; 2636 } 2637 2638 Value *BoUpSLP::vectorizeTree() { 2639 2640 // All blocks must be scheduled before any instructions are inserted. 2641 for (auto &BSIter : BlocksSchedules) { 2642 scheduleBlock(BSIter.second.get()); 2643 } 2644 2645 Builder.SetInsertPoint(&F->getEntryBlock().front()); 2646 auto *VectorRoot = vectorizeTree(&VectorizableTree[0]); 2647 2648 // If the vectorized tree can be rewritten in a smaller type, we truncate the 2649 // vectorized root. InstCombine will then rewrite the entire expression. We 2650 // sign extend the extracted values below. 2651 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 2652 if (MinBWs.count(ScalarRoot)) { 2653 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 2654 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 2655 auto BundleWidth = VectorizableTree[0].Scalars.size(); 2656 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot]); 2657 auto *VecTy = VectorType::get(MinTy, BundleWidth); 2658 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 2659 VectorizableTree[0].VectorizedValue = Trunc; 2660 } 2661 2662 DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n"); 2663 2664 // Extract all of the elements with the external uses. 2665 for (UserList::iterator it = ExternalUses.begin(), e = ExternalUses.end(); 2666 it != e; ++it) { 2667 Value *Scalar = it->Scalar; 2668 llvm::User *User = it->User; 2669 2670 // Skip users that we already RAUW. This happens when one instruction 2671 // has multiple uses of the same value. 2672 if (std::find(Scalar->user_begin(), Scalar->user_end(), User) == 2673 Scalar->user_end()) 2674 continue; 2675 assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar"); 2676 2677 int Idx = ScalarToTreeEntry[Scalar]; 2678 TreeEntry *E = &VectorizableTree[Idx]; 2679 assert(!E->NeedToGather && "Extracting from a gather list"); 2680 2681 Value *Vec = E->VectorizedValue; 2682 assert(Vec && "Can't find vectorizable value"); 2683 2684 Value *Lane = Builder.getInt32(it->Lane); 2685 // Generate extracts for out-of-tree users. 2686 // Find the insertion point for the extractelement lane. 2687 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 2688 if (PHINode *PH = dyn_cast<PHINode>(User)) { 2689 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 2690 if (PH->getIncomingValue(i) == Scalar) { 2691 TerminatorInst *IncomingTerminator = 2692 PH->getIncomingBlock(i)->getTerminator(); 2693 if (isa<CatchSwitchInst>(IncomingTerminator)) { 2694 Builder.SetInsertPoint(VecI->getParent(), 2695 std::next(VecI->getIterator())); 2696 } else { 2697 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 2698 } 2699 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2700 if (MinBWs.count(ScalarRoot)) 2701 Ex = Builder.CreateSExt(Ex, Scalar->getType()); 2702 CSEBlocks.insert(PH->getIncomingBlock(i)); 2703 PH->setOperand(i, Ex); 2704 } 2705 } 2706 } else { 2707 Builder.SetInsertPoint(cast<Instruction>(User)); 2708 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2709 if (MinBWs.count(ScalarRoot)) 2710 Ex = Builder.CreateSExt(Ex, Scalar->getType()); 2711 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 2712 User->replaceUsesOfWith(Scalar, Ex); 2713 } 2714 } else { 2715 Builder.SetInsertPoint(&F->getEntryBlock().front()); 2716 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2717 if (MinBWs.count(ScalarRoot)) 2718 Ex = Builder.CreateSExt(Ex, Scalar->getType()); 2719 CSEBlocks.insert(&F->getEntryBlock()); 2720 User->replaceUsesOfWith(Scalar, Ex); 2721 } 2722 2723 DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 2724 } 2725 2726 // For each vectorized value: 2727 for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) { 2728 TreeEntry *Entry = &VectorizableTree[EIdx]; 2729 2730 // For each lane: 2731 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2732 Value *Scalar = Entry->Scalars[Lane]; 2733 // No need to handle users of gathered values. 2734 if (Entry->NeedToGather) 2735 continue; 2736 2737 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 2738 2739 Type *Ty = Scalar->getType(); 2740 if (!Ty->isVoidTy()) { 2741 #ifndef NDEBUG 2742 for (User *U : Scalar->users()) { 2743 DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 2744 2745 assert((ScalarToTreeEntry.count(U) || 2746 // It is legal to replace users in the ignorelist by undef. 2747 (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), U) != 2748 UserIgnoreList.end())) && 2749 "Replacing out-of-tree value with undef"); 2750 } 2751 #endif 2752 Value *Undef = UndefValue::get(Ty); 2753 Scalar->replaceAllUsesWith(Undef); 2754 } 2755 DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 2756 eraseInstruction(cast<Instruction>(Scalar)); 2757 } 2758 } 2759 2760 Builder.ClearInsertionPoint(); 2761 2762 return VectorizableTree[0].VectorizedValue; 2763 } 2764 2765 void BoUpSLP::optimizeGatherSequence() { 2766 DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 2767 << " gather sequences instructions.\n"); 2768 // LICM InsertElementInst sequences. 2769 for (SetVector<Instruction *>::iterator it = GatherSeq.begin(), 2770 e = GatherSeq.end(); it != e; ++it) { 2771 InsertElementInst *Insert = dyn_cast<InsertElementInst>(*it); 2772 2773 if (!Insert) 2774 continue; 2775 2776 // Check if this block is inside a loop. 2777 Loop *L = LI->getLoopFor(Insert->getParent()); 2778 if (!L) 2779 continue; 2780 2781 // Check if it has a preheader. 2782 BasicBlock *PreHeader = L->getLoopPreheader(); 2783 if (!PreHeader) 2784 continue; 2785 2786 // If the vector or the element that we insert into it are 2787 // instructions that are defined in this basic block then we can't 2788 // hoist this instruction. 2789 Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0)); 2790 Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1)); 2791 if (CurrVec && L->contains(CurrVec)) 2792 continue; 2793 if (NewElem && L->contains(NewElem)) 2794 continue; 2795 2796 // We can hoist this instruction. Move it to the pre-header. 2797 Insert->moveBefore(PreHeader->getTerminator()); 2798 } 2799 2800 // Make a list of all reachable blocks in our CSE queue. 2801 SmallVector<const DomTreeNode *, 8> CSEWorkList; 2802 CSEWorkList.reserve(CSEBlocks.size()); 2803 for (BasicBlock *BB : CSEBlocks) 2804 if (DomTreeNode *N = DT->getNode(BB)) { 2805 assert(DT->isReachableFromEntry(N)); 2806 CSEWorkList.push_back(N); 2807 } 2808 2809 // Sort blocks by domination. This ensures we visit a block after all blocks 2810 // dominating it are visited. 2811 std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(), 2812 [this](const DomTreeNode *A, const DomTreeNode *B) { 2813 return DT->properlyDominates(A, B); 2814 }); 2815 2816 // Perform O(N^2) search over the gather sequences and merge identical 2817 // instructions. TODO: We can further optimize this scan if we split the 2818 // instructions into different buckets based on the insert lane. 2819 SmallVector<Instruction *, 16> Visited; 2820 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 2821 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 2822 "Worklist not sorted properly!"); 2823 BasicBlock *BB = (*I)->getBlock(); 2824 // For all instructions in blocks containing gather sequences: 2825 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 2826 Instruction *In = &*it++; 2827 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 2828 continue; 2829 2830 // Check if we can replace this instruction with any of the 2831 // visited instructions. 2832 for (SmallVectorImpl<Instruction *>::iterator v = Visited.begin(), 2833 ve = Visited.end(); 2834 v != ve; ++v) { 2835 if (In->isIdenticalTo(*v) && 2836 DT->dominates((*v)->getParent(), In->getParent())) { 2837 In->replaceAllUsesWith(*v); 2838 eraseInstruction(In); 2839 In = nullptr; 2840 break; 2841 } 2842 } 2843 if (In) { 2844 assert(std::find(Visited.begin(), Visited.end(), In) == Visited.end()); 2845 Visited.push_back(In); 2846 } 2847 } 2848 } 2849 CSEBlocks.clear(); 2850 GatherSeq.clear(); 2851 } 2852 2853 // Groups the instructions to a bundle (which is then a single scheduling entity) 2854 // and schedules instructions until the bundle gets ready. 2855 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, 2856 BoUpSLP *SLP) { 2857 if (isa<PHINode>(VL[0])) 2858 return true; 2859 2860 // Initialize the instruction bundle. 2861 Instruction *OldScheduleEnd = ScheduleEnd; 2862 ScheduleData *PrevInBundle = nullptr; 2863 ScheduleData *Bundle = nullptr; 2864 bool ReSchedule = false; 2865 DEBUG(dbgs() << "SLP: bundle: " << *VL[0] << "\n"); 2866 2867 // Make sure that the scheduling region contains all 2868 // instructions of the bundle. 2869 for (Value *V : VL) { 2870 if (!extendSchedulingRegion(V)) 2871 return false; 2872 } 2873 2874 for (Value *V : VL) { 2875 ScheduleData *BundleMember = getScheduleData(V); 2876 assert(BundleMember && 2877 "no ScheduleData for bundle member (maybe not in same basic block)"); 2878 if (BundleMember->IsScheduled) { 2879 // A bundle member was scheduled as single instruction before and now 2880 // needs to be scheduled as part of the bundle. We just get rid of the 2881 // existing schedule. 2882 DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 2883 << " was already scheduled\n"); 2884 ReSchedule = true; 2885 } 2886 assert(BundleMember->isSchedulingEntity() && 2887 "bundle member already part of other bundle"); 2888 if (PrevInBundle) { 2889 PrevInBundle->NextInBundle = BundleMember; 2890 } else { 2891 Bundle = BundleMember; 2892 } 2893 BundleMember->UnscheduledDepsInBundle = 0; 2894 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 2895 2896 // Group the instructions to a bundle. 2897 BundleMember->FirstInBundle = Bundle; 2898 PrevInBundle = BundleMember; 2899 } 2900 if (ScheduleEnd != OldScheduleEnd) { 2901 // The scheduling region got new instructions at the lower end (or it is a 2902 // new region for the first bundle). This makes it necessary to 2903 // recalculate all dependencies. 2904 // It is seldom that this needs to be done a second time after adding the 2905 // initial bundle to the region. 2906 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2907 ScheduleData *SD = getScheduleData(I); 2908 SD->clearDependencies(); 2909 } 2910 ReSchedule = true; 2911 } 2912 if (ReSchedule) { 2913 resetSchedule(); 2914 initialFillReadyList(ReadyInsts); 2915 } 2916 2917 DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 2918 << BB->getName() << "\n"); 2919 2920 calculateDependencies(Bundle, true, SLP); 2921 2922 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 2923 // means that there are no cyclic dependencies and we can schedule it. 2924 // Note that's important that we don't "schedule" the bundle yet (see 2925 // cancelScheduling). 2926 while (!Bundle->isReady() && !ReadyInsts.empty()) { 2927 2928 ScheduleData *pickedSD = ReadyInsts.back(); 2929 ReadyInsts.pop_back(); 2930 2931 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 2932 schedule(pickedSD, ReadyInsts); 2933 } 2934 } 2935 if (!Bundle->isReady()) { 2936 cancelScheduling(VL); 2937 return false; 2938 } 2939 return true; 2940 } 2941 2942 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL) { 2943 if (isa<PHINode>(VL[0])) 2944 return; 2945 2946 ScheduleData *Bundle = getScheduleData(VL[0]); 2947 DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 2948 assert(!Bundle->IsScheduled && 2949 "Can't cancel bundle which is already scheduled"); 2950 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 2951 "tried to unbundle something which is not a bundle"); 2952 2953 // Un-bundle: make single instructions out of the bundle. 2954 ScheduleData *BundleMember = Bundle; 2955 while (BundleMember) { 2956 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 2957 BundleMember->FirstInBundle = BundleMember; 2958 ScheduleData *Next = BundleMember->NextInBundle; 2959 BundleMember->NextInBundle = nullptr; 2960 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 2961 if (BundleMember->UnscheduledDepsInBundle == 0) { 2962 ReadyInsts.insert(BundleMember); 2963 } 2964 BundleMember = Next; 2965 } 2966 } 2967 2968 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V) { 2969 if (getScheduleData(V)) 2970 return true; 2971 Instruction *I = dyn_cast<Instruction>(V); 2972 assert(I && "bundle member must be an instruction"); 2973 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 2974 if (!ScheduleStart) { 2975 // It's the first instruction in the new region. 2976 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 2977 ScheduleStart = I; 2978 ScheduleEnd = I->getNextNode(); 2979 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 2980 DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 2981 return true; 2982 } 2983 // Search up and down at the same time, because we don't know if the new 2984 // instruction is above or below the existing scheduling region. 2985 BasicBlock::reverse_iterator UpIter(ScheduleStart->getIterator()); 2986 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 2987 BasicBlock::iterator DownIter(ScheduleEnd); 2988 BasicBlock::iterator LowerEnd = BB->end(); 2989 for (;;) { 2990 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 2991 DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 2992 return false; 2993 } 2994 2995 if (UpIter != UpperEnd) { 2996 if (&*UpIter == I) { 2997 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 2998 ScheduleStart = I; 2999 DEBUG(dbgs() << "SLP: extend schedule region start to " << *I << "\n"); 3000 return true; 3001 } 3002 UpIter++; 3003 } 3004 if (DownIter != LowerEnd) { 3005 if (&*DownIter == I) { 3006 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 3007 nullptr); 3008 ScheduleEnd = I->getNextNode(); 3009 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 3010 DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 3011 return true; 3012 } 3013 DownIter++; 3014 } 3015 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 3016 "instruction not found in block"); 3017 } 3018 return true; 3019 } 3020 3021 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 3022 Instruction *ToI, 3023 ScheduleData *PrevLoadStore, 3024 ScheduleData *NextLoadStore) { 3025 ScheduleData *CurrentLoadStore = PrevLoadStore; 3026 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 3027 ScheduleData *SD = ScheduleDataMap[I]; 3028 if (!SD) { 3029 // Allocate a new ScheduleData for the instruction. 3030 if (ChunkPos >= ChunkSize) { 3031 ScheduleDataChunks.push_back( 3032 llvm::make_unique<ScheduleData[]>(ChunkSize)); 3033 ChunkPos = 0; 3034 } 3035 SD = &(ScheduleDataChunks.back()[ChunkPos++]); 3036 ScheduleDataMap[I] = SD; 3037 SD->Inst = I; 3038 } 3039 assert(!isInSchedulingRegion(SD) && 3040 "new ScheduleData already in scheduling region"); 3041 SD->init(SchedulingRegionID); 3042 3043 if (I->mayReadOrWriteMemory()) { 3044 // Update the linked list of memory accessing instructions. 3045 if (CurrentLoadStore) { 3046 CurrentLoadStore->NextLoadStore = SD; 3047 } else { 3048 FirstLoadStoreInRegion = SD; 3049 } 3050 CurrentLoadStore = SD; 3051 } 3052 } 3053 if (NextLoadStore) { 3054 if (CurrentLoadStore) 3055 CurrentLoadStore->NextLoadStore = NextLoadStore; 3056 } else { 3057 LastLoadStoreInRegion = CurrentLoadStore; 3058 } 3059 } 3060 3061 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 3062 bool InsertInReadyList, 3063 BoUpSLP *SLP) { 3064 assert(SD->isSchedulingEntity()); 3065 3066 SmallVector<ScheduleData *, 10> WorkList; 3067 WorkList.push_back(SD); 3068 3069 while (!WorkList.empty()) { 3070 ScheduleData *SD = WorkList.back(); 3071 WorkList.pop_back(); 3072 3073 ScheduleData *BundleMember = SD; 3074 while (BundleMember) { 3075 assert(isInSchedulingRegion(BundleMember)); 3076 if (!BundleMember->hasValidDependencies()) { 3077 3078 DEBUG(dbgs() << "SLP: update deps of " << *BundleMember << "\n"); 3079 BundleMember->Dependencies = 0; 3080 BundleMember->resetUnscheduledDeps(); 3081 3082 // Handle def-use chain dependencies. 3083 for (User *U : BundleMember->Inst->users()) { 3084 if (isa<Instruction>(U)) { 3085 ScheduleData *UseSD = getScheduleData(U); 3086 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 3087 BundleMember->Dependencies++; 3088 ScheduleData *DestBundle = UseSD->FirstInBundle; 3089 if (!DestBundle->IsScheduled) { 3090 BundleMember->incrementUnscheduledDeps(1); 3091 } 3092 if (!DestBundle->hasValidDependencies()) { 3093 WorkList.push_back(DestBundle); 3094 } 3095 } 3096 } else { 3097 // I'm not sure if this can ever happen. But we need to be safe. 3098 // This lets the instruction/bundle never be scheduled and 3099 // eventually disable vectorization. 3100 BundleMember->Dependencies++; 3101 BundleMember->incrementUnscheduledDeps(1); 3102 } 3103 } 3104 3105 // Handle the memory dependencies. 3106 ScheduleData *DepDest = BundleMember->NextLoadStore; 3107 if (DepDest) { 3108 Instruction *SrcInst = BundleMember->Inst; 3109 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 3110 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 3111 unsigned numAliased = 0; 3112 unsigned DistToSrc = 1; 3113 3114 while (DepDest) { 3115 assert(isInSchedulingRegion(DepDest)); 3116 3117 // We have two limits to reduce the complexity: 3118 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 3119 // SLP->isAliased (which is the expensive part in this loop). 3120 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 3121 // the whole loop (even if the loop is fast, it's quadratic). 3122 // It's important for the loop break condition (see below) to 3123 // check this limit even between two read-only instructions. 3124 if (DistToSrc >= MaxMemDepDistance || 3125 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 3126 (numAliased >= AliasedCheckLimit || 3127 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 3128 3129 // We increment the counter only if the locations are aliased 3130 // (instead of counting all alias checks). This gives a better 3131 // balance between reduced runtime and accurate dependencies. 3132 numAliased++; 3133 3134 DepDest->MemoryDependencies.push_back(BundleMember); 3135 BundleMember->Dependencies++; 3136 ScheduleData *DestBundle = DepDest->FirstInBundle; 3137 if (!DestBundle->IsScheduled) { 3138 BundleMember->incrementUnscheduledDeps(1); 3139 } 3140 if (!DestBundle->hasValidDependencies()) { 3141 WorkList.push_back(DestBundle); 3142 } 3143 } 3144 DepDest = DepDest->NextLoadStore; 3145 3146 // Example, explaining the loop break condition: Let's assume our 3147 // starting instruction is i0 and MaxMemDepDistance = 3. 3148 // 3149 // +--------v--v--v 3150 // i0,i1,i2,i3,i4,i5,i6,i7,i8 3151 // +--------^--^--^ 3152 // 3153 // MaxMemDepDistance let us stop alias-checking at i3 and we add 3154 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 3155 // Previously we already added dependencies from i3 to i6,i7,i8 3156 // (because of MaxMemDepDistance). As we added a dependency from 3157 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 3158 // and we can abort this loop at i6. 3159 if (DistToSrc >= 2 * MaxMemDepDistance) 3160 break; 3161 DistToSrc++; 3162 } 3163 } 3164 } 3165 BundleMember = BundleMember->NextInBundle; 3166 } 3167 if (InsertInReadyList && SD->isReady()) { 3168 ReadyInsts.push_back(SD); 3169 DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst << "\n"); 3170 } 3171 } 3172 } 3173 3174 void BoUpSLP::BlockScheduling::resetSchedule() { 3175 assert(ScheduleStart && 3176 "tried to reset schedule on block which has not been scheduled"); 3177 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3178 ScheduleData *SD = getScheduleData(I); 3179 assert(isInSchedulingRegion(SD)); 3180 SD->IsScheduled = false; 3181 SD->resetUnscheduledDeps(); 3182 } 3183 ReadyInsts.clear(); 3184 } 3185 3186 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 3187 3188 if (!BS->ScheduleStart) 3189 return; 3190 3191 DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 3192 3193 BS->resetSchedule(); 3194 3195 // For the real scheduling we use a more sophisticated ready-list: it is 3196 // sorted by the original instruction location. This lets the final schedule 3197 // be as close as possible to the original instruction order. 3198 struct ScheduleDataCompare { 3199 bool operator()(ScheduleData *SD1, ScheduleData *SD2) { 3200 return SD2->SchedulingPriority < SD1->SchedulingPriority; 3201 } 3202 }; 3203 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 3204 3205 // Ensure that all dependency data is updated and fill the ready-list with 3206 // initial instructions. 3207 int Idx = 0; 3208 int NumToSchedule = 0; 3209 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 3210 I = I->getNextNode()) { 3211 ScheduleData *SD = BS->getScheduleData(I); 3212 assert( 3213 SD->isPartOfBundle() == (ScalarToTreeEntry.count(SD->Inst) != 0) && 3214 "scheduler and vectorizer have different opinion on what is a bundle"); 3215 SD->FirstInBundle->SchedulingPriority = Idx++; 3216 if (SD->isSchedulingEntity()) { 3217 BS->calculateDependencies(SD, false, this); 3218 NumToSchedule++; 3219 } 3220 } 3221 BS->initialFillReadyList(ReadyInsts); 3222 3223 Instruction *LastScheduledInst = BS->ScheduleEnd; 3224 3225 // Do the "real" scheduling. 3226 while (!ReadyInsts.empty()) { 3227 ScheduleData *picked = *ReadyInsts.begin(); 3228 ReadyInsts.erase(ReadyInsts.begin()); 3229 3230 // Move the scheduled instruction(s) to their dedicated places, if not 3231 // there yet. 3232 ScheduleData *BundleMember = picked; 3233 while (BundleMember) { 3234 Instruction *pickedInst = BundleMember->Inst; 3235 if (LastScheduledInst->getNextNode() != pickedInst) { 3236 BS->BB->getInstList().remove(pickedInst); 3237 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 3238 pickedInst); 3239 } 3240 LastScheduledInst = pickedInst; 3241 BundleMember = BundleMember->NextInBundle; 3242 } 3243 3244 BS->schedule(picked, ReadyInsts); 3245 NumToSchedule--; 3246 } 3247 assert(NumToSchedule == 0 && "could not schedule all instructions"); 3248 3249 // Avoid duplicate scheduling of the block. 3250 BS->ScheduleStart = nullptr; 3251 } 3252 3253 unsigned BoUpSLP::getVectorElementSize(Value *V) { 3254 // If V is a store, just return the width of the stored value without 3255 // traversing the expression tree. This is the common case. 3256 if (auto *Store = dyn_cast<StoreInst>(V)) 3257 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 3258 3259 // If V is not a store, we can traverse the expression tree to find loads 3260 // that feed it. The type of the loaded value may indicate a more suitable 3261 // width than V's type. We want to base the vector element size on the width 3262 // of memory operations where possible. 3263 SmallVector<Instruction *, 16> Worklist; 3264 SmallPtrSet<Instruction *, 16> Visited; 3265 if (auto *I = dyn_cast<Instruction>(V)) 3266 Worklist.push_back(I); 3267 3268 // Traverse the expression tree in bottom-up order looking for loads. If we 3269 // encounter an instruciton we don't yet handle, we give up. 3270 auto MaxWidth = 0u; 3271 auto FoundUnknownInst = false; 3272 while (!Worklist.empty() && !FoundUnknownInst) { 3273 auto *I = Worklist.pop_back_val(); 3274 Visited.insert(I); 3275 3276 // We should only be looking at scalar instructions here. If the current 3277 // instruction has a vector type, give up. 3278 auto *Ty = I->getType(); 3279 if (isa<VectorType>(Ty)) 3280 FoundUnknownInst = true; 3281 3282 // If the current instruction is a load, update MaxWidth to reflect the 3283 // width of the loaded value. 3284 else if (isa<LoadInst>(I)) 3285 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 3286 3287 // Otherwise, we need to visit the operands of the instruction. We only 3288 // handle the interesting cases from buildTree here. If an operand is an 3289 // instruction we haven't yet visited, we add it to the worklist. 3290 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 3291 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 3292 for (Use &U : I->operands()) 3293 if (auto *J = dyn_cast<Instruction>(U.get())) 3294 if (!Visited.count(J)) 3295 Worklist.push_back(J); 3296 } 3297 3298 // If we don't yet handle the instruction, give up. 3299 else 3300 FoundUnknownInst = true; 3301 } 3302 3303 // If we didn't encounter a memory access in the expression tree, or if we 3304 // gave up for some reason, just return the width of V. 3305 if (!MaxWidth || FoundUnknownInst) 3306 return DL->getTypeSizeInBits(V->getType()); 3307 3308 // Otherwise, return the maximum width we found. 3309 return MaxWidth; 3310 } 3311 3312 // Determine if a value V in a vectorizable expression Expr can be demoted to a 3313 // smaller type with a truncation. We collect the values that will be demoted 3314 // in ToDemote and additional roots that require investigating in Roots. 3315 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 3316 SmallVectorImpl<Value *> &ToDemote, 3317 SmallVectorImpl<Value *> &Roots) { 3318 3319 // We can always demote constants. 3320 if (isa<Constant>(V)) { 3321 ToDemote.push_back(V); 3322 return true; 3323 } 3324 3325 // If the value is not an instruction in the expression with only one use, it 3326 // cannot be demoted. 3327 auto *I = dyn_cast<Instruction>(V); 3328 if (!I || !I->hasOneUse() || !Expr.count(I)) 3329 return false; 3330 3331 switch (I->getOpcode()) { 3332 3333 // We can always demote truncations and extensions. Since truncations can 3334 // seed additional demotion, we save the truncated value. 3335 case Instruction::Trunc: 3336 Roots.push_back(I->getOperand(0)); 3337 case Instruction::ZExt: 3338 case Instruction::SExt: 3339 break; 3340 3341 // We can demote certain binary operations if we can demote both of their 3342 // operands. 3343 case Instruction::Add: 3344 case Instruction::Sub: 3345 case Instruction::Mul: 3346 case Instruction::And: 3347 case Instruction::Or: 3348 case Instruction::Xor: 3349 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 3350 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 3351 return false; 3352 break; 3353 3354 // We can demote selects if we can demote their true and false values. 3355 case Instruction::Select: { 3356 SelectInst *SI = cast<SelectInst>(I); 3357 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 3358 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 3359 return false; 3360 break; 3361 } 3362 3363 // We can demote phis if we can demote all their incoming operands. Note that 3364 // we don't need to worry about cycles since we ensure single use above. 3365 case Instruction::PHI: { 3366 PHINode *PN = cast<PHINode>(I); 3367 for (Value *IncValue : PN->incoming_values()) 3368 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 3369 return false; 3370 break; 3371 } 3372 3373 // Otherwise, conservatively give up. 3374 default: 3375 return false; 3376 } 3377 3378 // Record the value that we can demote. 3379 ToDemote.push_back(V); 3380 return true; 3381 } 3382 3383 void BoUpSLP::computeMinimumValueSizes() { 3384 // If there are no external uses, the expression tree must be rooted by a 3385 // store. We can't demote in-memory values, so there is nothing to do here. 3386 if (ExternalUses.empty()) 3387 return; 3388 3389 // We only attempt to truncate integer expressions. 3390 auto &TreeRoot = VectorizableTree[0].Scalars; 3391 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 3392 if (!TreeRootIT) 3393 return; 3394 3395 // If the expression is not rooted by a store, these roots should have 3396 // external uses. We will rely on InstCombine to rewrite the expression in 3397 // the narrower type. However, InstCombine only rewrites single-use values. 3398 // This means that if a tree entry other than a root is used externally, it 3399 // must have multiple uses and InstCombine will not rewrite it. The code 3400 // below ensures that only the roots are used externally. 3401 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 3402 for (auto &EU : ExternalUses) 3403 if (!Expr.erase(EU.Scalar)) 3404 return; 3405 if (!Expr.empty()) 3406 return; 3407 3408 // Collect the scalar values of the vectorizable expression. We will use this 3409 // context to determine which values can be demoted. If we see a truncation, 3410 // we mark it as seeding another demotion. 3411 for (auto &Entry : VectorizableTree) 3412 Expr.insert(Entry.Scalars.begin(), Entry.Scalars.end()); 3413 3414 // Ensure the roots of the vectorizable tree don't form a cycle. They must 3415 // have a single external user that is not in the vectorizable tree. 3416 for (auto *Root : TreeRoot) 3417 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 3418 return; 3419 3420 // Conservatively determine if we can actually truncate the roots of the 3421 // expression. Collect the values that can be demoted in ToDemote and 3422 // additional roots that require investigating in Roots. 3423 SmallVector<Value *, 32> ToDemote; 3424 SmallVector<Value *, 4> Roots; 3425 for (auto *Root : TreeRoot) 3426 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 3427 return; 3428 3429 // The maximum bit width required to represent all the values that can be 3430 // demoted without loss of precision. It would be safe to truncate the roots 3431 // of the expression to this width. 3432 auto MaxBitWidth = 8u; 3433 3434 // We first check if all the bits of the roots are demanded. If they're not, 3435 // we can truncate the roots to this narrower type. 3436 for (auto *Root : TreeRoot) { 3437 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 3438 MaxBitWidth = std::max<unsigned>( 3439 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 3440 } 3441 3442 // If all the bits of the roots are demanded, we can try a little harder to 3443 // compute a narrower type. This can happen, for example, if the roots are 3444 // getelementptr indices. InstCombine promotes these indices to the pointer 3445 // width. Thus, all their bits are technically demanded even though the 3446 // address computation might be vectorized in a smaller type. 3447 // 3448 // We start by looking at each entry that can be demoted. We compute the 3449 // maximum bit width required to store the scalar by using ValueTracking to 3450 // compute the number of high-order bits we can truncate. 3451 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType())) { 3452 MaxBitWidth = 8u; 3453 for (auto *Scalar : ToDemote) { 3454 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, 0, DT); 3455 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 3456 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 3457 } 3458 } 3459 3460 // Round MaxBitWidth up to the next power-of-two. 3461 if (!isPowerOf2_64(MaxBitWidth)) 3462 MaxBitWidth = NextPowerOf2(MaxBitWidth); 3463 3464 // If the maximum bit width we compute is less than the with of the roots' 3465 // type, we can proceed with the narrowing. Otherwise, do nothing. 3466 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 3467 return; 3468 3469 // If we can truncate the root, we must collect additional values that might 3470 // be demoted as a result. That is, those seeded by truncations we will 3471 // modify. 3472 while (!Roots.empty()) 3473 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 3474 3475 // Finally, map the values we can demote to the maximum bit with we computed. 3476 for (auto *Scalar : ToDemote) 3477 MinBWs[Scalar] = MaxBitWidth; 3478 } 3479 3480 /// The SLPVectorizer Pass. 3481 struct SLPVectorizer : public FunctionPass { 3482 typedef SmallVector<StoreInst *, 8> StoreList; 3483 typedef MapVector<Value *, StoreList> StoreListMap; 3484 typedef SmallVector<WeakVH, 8> WeakVHList; 3485 typedef MapVector<Value *, WeakVHList> WeakVHListMap; 3486 3487 /// Pass identification, replacement for typeid 3488 static char ID; 3489 3490 explicit SLPVectorizer() : FunctionPass(ID) { 3491 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 3492 } 3493 3494 ScalarEvolution *SE; 3495 TargetTransformInfo *TTI; 3496 TargetLibraryInfo *TLI; 3497 AliasAnalysis *AA; 3498 LoopInfo *LI; 3499 DominatorTree *DT; 3500 AssumptionCache *AC; 3501 DemandedBits *DB; 3502 const DataLayout *DL; 3503 3504 bool doInitialization(Module &M) override { 3505 DL = &M.getDataLayout(); 3506 return false; 3507 } 3508 3509 bool runOnFunction(Function &F) override { 3510 if (skipFunction(F)) 3511 return false; 3512 3513 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 3514 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 3515 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 3516 TLI = TLIP ? &TLIP->getTLI() : nullptr; 3517 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3518 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 3519 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3520 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 3521 DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 3522 3523 Stores.clear(); 3524 GEPs.clear(); 3525 bool Changed = false; 3526 3527 // If the target claims to have no vector registers don't attempt 3528 // vectorization. 3529 if (!TTI->getNumberOfRegisters(true)) 3530 return false; 3531 3532 // Don't vectorize when the attribute NoImplicitFloat is used. 3533 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 3534 return false; 3535 3536 DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 3537 3538 // Use the bottom up slp vectorizer to construct chains that start with 3539 // store instructions. 3540 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL); 3541 3542 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 3543 // delete instructions. 3544 3545 // Scan the blocks in the function in post order. 3546 for (auto BB : post_order(&F.getEntryBlock())) { 3547 collectSeedInstructions(BB); 3548 3549 // Vectorize trees that end at stores. 3550 if (!Stores.empty()) { 3551 DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 3552 << " underlying objects.\n"); 3553 Changed |= vectorizeStoreChains(R); 3554 } 3555 3556 // Vectorize trees that end at reductions. 3557 Changed |= vectorizeChainsInBlock(BB, R); 3558 3559 // Vectorize the index computations of getelementptr instructions. This 3560 // is primarily intended to catch gather-like idioms ending at 3561 // non-consecutive loads. 3562 if (!GEPs.empty()) { 3563 DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 3564 << " underlying objects.\n"); 3565 Changed |= vectorizeGEPIndices(BB, R); 3566 } 3567 } 3568 3569 if (Changed) { 3570 R.optimizeGatherSequence(); 3571 DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 3572 DEBUG(verifyFunction(F)); 3573 } 3574 return Changed; 3575 } 3576 3577 void getAnalysisUsage(AnalysisUsage &AU) const override { 3578 FunctionPass::getAnalysisUsage(AU); 3579 AU.addRequired<AssumptionCacheTracker>(); 3580 AU.addRequired<ScalarEvolutionWrapperPass>(); 3581 AU.addRequired<AAResultsWrapperPass>(); 3582 AU.addRequired<TargetTransformInfoWrapperPass>(); 3583 AU.addRequired<LoopInfoWrapperPass>(); 3584 AU.addRequired<DominatorTreeWrapperPass>(); 3585 AU.addRequired<DemandedBitsWrapperPass>(); 3586 AU.addPreserved<LoopInfoWrapperPass>(); 3587 AU.addPreserved<DominatorTreeWrapperPass>(); 3588 AU.addPreserved<AAResultsWrapperPass>(); 3589 AU.addPreserved<GlobalsAAWrapperPass>(); 3590 AU.setPreservesCFG(); 3591 } 3592 3593 private: 3594 /// \brief Collect store and getelementptr instructions and organize them 3595 /// according to the underlying object of their pointer operands. We sort the 3596 /// instructions by their underlying objects to reduce the cost of 3597 /// consecutive access queries. 3598 /// 3599 /// TODO: We can further reduce this cost if we flush the chain creation 3600 /// every time we run into a memory barrier. 3601 void collectSeedInstructions(BasicBlock *BB); 3602 3603 /// \brief Try to vectorize a chain that starts at two arithmetic instrs. 3604 bool tryToVectorizePair(Value *A, Value *B, BoUpSLP &R); 3605 3606 /// \brief Try to vectorize a list of operands. 3607 /// \@param BuildVector A list of users to ignore for the purpose of 3608 /// scheduling and that don't need extracting. 3609 /// \returns true if a value was vectorized. 3610 bool tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 3611 ArrayRef<Value *> BuildVector = None, 3612 bool allowReorder = false); 3613 3614 /// \brief Try to vectorize a chain that may start at the operands of \V; 3615 bool tryToVectorize(BinaryOperator *V, BoUpSLP &R); 3616 3617 /// \brief Vectorize the store instructions collected in Stores. 3618 bool vectorizeStoreChains(BoUpSLP &R); 3619 3620 /// \brief Vectorize the index computations of the getelementptr instructions 3621 /// collected in GEPs. 3622 bool vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R); 3623 3624 /// \brief Scan the basic block and look for patterns that are likely to start 3625 /// a vectorization chain. 3626 bool vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R); 3627 3628 bool vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold, 3629 BoUpSLP &R, unsigned VecRegSize); 3630 3631 bool vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold, 3632 BoUpSLP &R); 3633 3634 /// The store instructions in a basic block organized by base pointer. 3635 StoreListMap Stores; 3636 3637 /// The getelementptr instructions in a basic block organized by base pointer. 3638 WeakVHListMap GEPs; 3639 }; 3640 3641 /// \brief Check that the Values in the slice in VL array are still existent in 3642 /// the WeakVH array. 3643 /// Vectorization of part of the VL array may cause later values in the VL array 3644 /// to become invalid. We track when this has happened in the WeakVH array. 3645 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, ArrayRef<WeakVH> VH, 3646 unsigned SliceBegin, unsigned SliceSize) { 3647 VL = VL.slice(SliceBegin, SliceSize); 3648 VH = VH.slice(SliceBegin, SliceSize); 3649 return !std::equal(VL.begin(), VL.end(), VH.begin()); 3650 } 3651 3652 bool SLPVectorizer::vectorizeStoreChain(ArrayRef<Value *> Chain, 3653 int CostThreshold, BoUpSLP &R, 3654 unsigned VecRegSize) { 3655 unsigned ChainLen = Chain.size(); 3656 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 3657 << "\n"); 3658 unsigned Sz = R.getVectorElementSize(Chain[0]); 3659 unsigned VF = VecRegSize / Sz; 3660 3661 if (!isPowerOf2_32(Sz) || VF < 2) 3662 return false; 3663 3664 // Keep track of values that were deleted by vectorizing in the loop below. 3665 SmallVector<WeakVH, 8> TrackValues(Chain.begin(), Chain.end()); 3666 3667 bool Changed = false; 3668 // Look for profitable vectorizable trees at all offsets, starting at zero. 3669 for (unsigned i = 0, e = ChainLen; i < e; ++i) { 3670 if (i + VF > e) 3671 break; 3672 3673 // Check that a previous iteration of this loop did not delete the Value. 3674 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) 3675 continue; 3676 3677 DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 3678 << "\n"); 3679 ArrayRef<Value *> Operands = Chain.slice(i, VF); 3680 3681 R.buildTree(Operands); 3682 R.computeMinimumValueSizes(); 3683 3684 int Cost = R.getTreeCost(); 3685 3686 DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n"); 3687 if (Cost < CostThreshold) { 3688 DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 3689 R.vectorizeTree(); 3690 3691 // Move to the next bundle. 3692 i += VF - 1; 3693 Changed = true; 3694 } 3695 } 3696 3697 return Changed; 3698 } 3699 3700 bool SLPVectorizer::vectorizeStores(ArrayRef<StoreInst *> Stores, 3701 int costThreshold, BoUpSLP &R) { 3702 SetVector<StoreInst *> Heads, Tails; 3703 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 3704 3705 // We may run into multiple chains that merge into a single chain. We mark the 3706 // stores that we vectorized so that we don't visit the same store twice. 3707 BoUpSLP::ValueSet VectorizedStores; 3708 bool Changed = false; 3709 3710 // Do a quadratic search on all of the given stores and find 3711 // all of the pairs of stores that follow each other. 3712 SmallVector<unsigned, 16> IndexQueue; 3713 for (unsigned i = 0, e = Stores.size(); i < e; ++i) { 3714 IndexQueue.clear(); 3715 // If a store has multiple consecutive store candidates, search Stores 3716 // array according to the sequence: from i+1 to e, then from i-1 to 0. 3717 // This is because usually pairing with immediate succeeding or preceding 3718 // candidate create the best chance to find slp vectorization opportunity. 3719 unsigned j = 0; 3720 for (j = i + 1; j < e; ++j) 3721 IndexQueue.push_back(j); 3722 for (j = i; j > 0; --j) 3723 IndexQueue.push_back(j - 1); 3724 3725 for (auto &k : IndexQueue) { 3726 if (isConsecutiveAccess(Stores[i], Stores[k], *DL, *SE)) { 3727 Tails.insert(Stores[k]); 3728 Heads.insert(Stores[i]); 3729 ConsecutiveChain[Stores[i]] = Stores[k]; 3730 break; 3731 } 3732 } 3733 } 3734 3735 // For stores that start but don't end a link in the chain: 3736 for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end(); 3737 it != e; ++it) { 3738 if (Tails.count(*it)) 3739 continue; 3740 3741 // We found a store instr that starts a chain. Now follow the chain and try 3742 // to vectorize it. 3743 BoUpSLP::ValueList Operands; 3744 StoreInst *I = *it; 3745 // Collect the chain into a list. 3746 while (Tails.count(I) || Heads.count(I)) { 3747 if (VectorizedStores.count(I)) 3748 break; 3749 Operands.push_back(I); 3750 // Move to the next value in the chain. 3751 I = ConsecutiveChain[I]; 3752 } 3753 3754 // FIXME: Is division-by-2 the correct step? Should we assert that the 3755 // register size is a power-of-2? 3756 for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize(); Size /= 2) { 3757 if (vectorizeStoreChain(Operands, costThreshold, R, Size)) { 3758 // Mark the vectorized stores so that we don't vectorize them again. 3759 VectorizedStores.insert(Operands.begin(), Operands.end()); 3760 Changed = true; 3761 break; 3762 } 3763 } 3764 } 3765 3766 return Changed; 3767 } 3768 3769 void SLPVectorizer::collectSeedInstructions(BasicBlock *BB) { 3770 3771 // Initialize the collections. We will make a single pass over the block. 3772 Stores.clear(); 3773 GEPs.clear(); 3774 3775 // Visit the store and getelementptr instructions in BB and organize them in 3776 // Stores and GEPs according to the underlying objects of their pointer 3777 // operands. 3778 for (Instruction &I : *BB) { 3779 3780 // Ignore store instructions that are volatile or have a pointer operand 3781 // that doesn't point to a scalar type. 3782 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3783 if (!SI->isSimple()) 3784 continue; 3785 if (!isValidElementType(SI->getValueOperand()->getType())) 3786 continue; 3787 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); 3788 } 3789 3790 // Ignore getelementptr instructions that have more than one index, a 3791 // constant index, or a pointer operand that doesn't point to a scalar 3792 // type. 3793 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 3794 auto Idx = GEP->idx_begin()->get(); 3795 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 3796 continue; 3797 if (!isValidElementType(Idx->getType())) 3798 continue; 3799 GEPs[GetUnderlyingObject(GEP->getPointerOperand(), *DL)].push_back(GEP); 3800 } 3801 } 3802 } 3803 3804 bool SLPVectorizer::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 3805 if (!A || !B) 3806 return false; 3807 Value *VL[] = { A, B }; 3808 return tryToVectorizeList(VL, R, None, true); 3809 } 3810 3811 bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 3812 ArrayRef<Value *> BuildVector, 3813 bool allowReorder) { 3814 if (VL.size() < 2) 3815 return false; 3816 3817 DEBUG(dbgs() << "SLP: Vectorizing a list of length = " << VL.size() << ".\n"); 3818 3819 // Check that all of the parts are scalar instructions of the same type. 3820 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 3821 if (!I0) 3822 return false; 3823 3824 unsigned Opcode0 = I0->getOpcode(); 3825 3826 // FIXME: Register size should be a parameter to this function, so we can 3827 // try different vectorization factors. 3828 unsigned Sz = R.getVectorElementSize(I0); 3829 unsigned VF = R.getMinVecRegSize() / Sz; 3830 3831 for (Value *V : VL) { 3832 Type *Ty = V->getType(); 3833 if (!isValidElementType(Ty)) 3834 return false; 3835 Instruction *Inst = dyn_cast<Instruction>(V); 3836 if (!Inst || Inst->getOpcode() != Opcode0) 3837 return false; 3838 } 3839 3840 bool Changed = false; 3841 3842 // Keep track of values that were deleted by vectorizing in the loop below. 3843 SmallVector<WeakVH, 8> TrackValues(VL.begin(), VL.end()); 3844 3845 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3846 unsigned OpsWidth = 0; 3847 3848 if (i + VF > e) 3849 OpsWidth = e - i; 3850 else 3851 OpsWidth = VF; 3852 3853 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 3854 break; 3855 3856 // Check that a previous iteration of this loop did not delete the Value. 3857 if (hasValueBeenRAUWed(VL, TrackValues, i, OpsWidth)) 3858 continue; 3859 3860 DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 3861 << "\n"); 3862 ArrayRef<Value *> Ops = VL.slice(i, OpsWidth); 3863 3864 ArrayRef<Value *> BuildVectorSlice; 3865 if (!BuildVector.empty()) 3866 BuildVectorSlice = BuildVector.slice(i, OpsWidth); 3867 3868 R.buildTree(Ops, BuildVectorSlice); 3869 // TODO: check if we can allow reordering also for other cases than 3870 // tryToVectorizePair() 3871 if (allowReorder && R.shouldReorder()) { 3872 assert(Ops.size() == 2); 3873 assert(BuildVectorSlice.empty()); 3874 Value *ReorderedOps[] = { Ops[1], Ops[0] }; 3875 R.buildTree(ReorderedOps, None); 3876 } 3877 R.computeMinimumValueSizes(); 3878 int Cost = R.getTreeCost(); 3879 3880 if (Cost < -SLPCostThreshold) { 3881 DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 3882 Value *VectorizedRoot = R.vectorizeTree(); 3883 3884 // Reconstruct the build vector by extracting the vectorized root. This 3885 // way we handle the case where some elements of the vector are undefined. 3886 // (return (inserelt <4 xi32> (insertelt undef (opd0) 0) (opd1) 2)) 3887 if (!BuildVectorSlice.empty()) { 3888 // The insert point is the last build vector instruction. The vectorized 3889 // root will precede it. This guarantees that we get an instruction. The 3890 // vectorized tree could have been constant folded. 3891 Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back()); 3892 unsigned VecIdx = 0; 3893 for (auto &V : BuildVectorSlice) { 3894 IRBuilder<NoFolder> Builder(InsertAfter->getParent(), 3895 ++BasicBlock::iterator(InsertAfter)); 3896 Instruction *I = cast<Instruction>(V); 3897 assert(isa<InsertElementInst>(I) || isa<InsertValueInst>(I)); 3898 Instruction *Extract = cast<Instruction>(Builder.CreateExtractElement( 3899 VectorizedRoot, Builder.getInt32(VecIdx++))); 3900 I->setOperand(1, Extract); 3901 I->removeFromParent(); 3902 I->insertAfter(Extract); 3903 InsertAfter = I; 3904 } 3905 } 3906 // Move to the next bundle. 3907 i += VF - 1; 3908 Changed = true; 3909 } 3910 } 3911 3912 return Changed; 3913 } 3914 3915 bool SLPVectorizer::tryToVectorize(BinaryOperator *V, BoUpSLP &R) { 3916 if (!V) 3917 return false; 3918 3919 // Try to vectorize V. 3920 if (tryToVectorizePair(V->getOperand(0), V->getOperand(1), R)) 3921 return true; 3922 3923 BinaryOperator *A = dyn_cast<BinaryOperator>(V->getOperand(0)); 3924 BinaryOperator *B = dyn_cast<BinaryOperator>(V->getOperand(1)); 3925 // Try to skip B. 3926 if (B && B->hasOneUse()) { 3927 BinaryOperator *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 3928 BinaryOperator *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 3929 if (tryToVectorizePair(A, B0, R)) { 3930 return true; 3931 } 3932 if (tryToVectorizePair(A, B1, R)) { 3933 return true; 3934 } 3935 } 3936 3937 // Try to skip A. 3938 if (A && A->hasOneUse()) { 3939 BinaryOperator *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 3940 BinaryOperator *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 3941 if (tryToVectorizePair(A0, B, R)) { 3942 return true; 3943 } 3944 if (tryToVectorizePair(A1, B, R)) { 3945 return true; 3946 } 3947 } 3948 return 0; 3949 } 3950 3951 /// \brief Generate a shuffle mask to be used in a reduction tree. 3952 /// 3953 /// \param VecLen The length of the vector to be reduced. 3954 /// \param NumEltsToRdx The number of elements that should be reduced in the 3955 /// vector. 3956 /// \param IsPairwise Whether the reduction is a pairwise or splitting 3957 /// reduction. A pairwise reduction will generate a mask of 3958 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 3959 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 3960 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 3961 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 3962 bool IsPairwise, bool IsLeft, 3963 IRBuilder<> &Builder) { 3964 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 3965 3966 SmallVector<Constant *, 32> ShuffleMask( 3967 VecLen, UndefValue::get(Builder.getInt32Ty())); 3968 3969 if (IsPairwise) 3970 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 3971 for (unsigned i = 0; i != NumEltsToRdx; ++i) 3972 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 3973 else 3974 // Move the upper half of the vector to the lower half. 3975 for (unsigned i = 0; i != NumEltsToRdx; ++i) 3976 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 3977 3978 return ConstantVector::get(ShuffleMask); 3979 } 3980 3981 3982 /// Model horizontal reductions. 3983 /// 3984 /// A horizontal reduction is a tree of reduction operations (currently add and 3985 /// fadd) that has operations that can be put into a vector as its leaf. 3986 /// For example, this tree: 3987 /// 3988 /// mul mul mul mul 3989 /// \ / \ / 3990 /// + + 3991 /// \ / 3992 /// + 3993 /// This tree has "mul" as its reduced values and "+" as its reduction 3994 /// operations. A reduction might be feeding into a store or a binary operation 3995 /// feeding a phi. 3996 /// ... 3997 /// \ / 3998 /// + 3999 /// | 4000 /// phi += 4001 /// 4002 /// Or: 4003 /// ... 4004 /// \ / 4005 /// + 4006 /// | 4007 /// *p = 4008 /// 4009 class HorizontalReduction { 4010 SmallVector<Value *, 16> ReductionOps; 4011 SmallVector<Value *, 32> ReducedVals; 4012 4013 BinaryOperator *ReductionRoot; 4014 PHINode *ReductionPHI; 4015 4016 /// The opcode of the reduction. 4017 unsigned ReductionOpcode; 4018 /// The opcode of the values we perform a reduction on. 4019 unsigned ReducedValueOpcode; 4020 /// Should we model this reduction as a pairwise reduction tree or a tree that 4021 /// splits the vector in halves and adds those halves. 4022 bool IsPairwiseReduction; 4023 4024 public: 4025 /// The width of one full horizontal reduction operation. 4026 unsigned ReduxWidth; 4027 4028 /// Minimal width of available vector registers. It's used to determine 4029 /// ReduxWidth. 4030 unsigned MinVecRegSize; 4031 4032 HorizontalReduction(unsigned MinVecRegSize) 4033 : ReductionRoot(nullptr), ReductionPHI(nullptr), ReductionOpcode(0), 4034 ReducedValueOpcode(0), IsPairwiseReduction(false), ReduxWidth(0), 4035 MinVecRegSize(MinVecRegSize) {} 4036 4037 /// \brief Try to find a reduction tree. 4038 bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B) { 4039 assert((!Phi || 4040 std::find(Phi->op_begin(), Phi->op_end(), B) != Phi->op_end()) && 4041 "Thi phi needs to use the binary operator"); 4042 4043 // We could have a initial reductions that is not an add. 4044 // r *= v1 + v2 + v3 + v4 4045 // In such a case start looking for a tree rooted in the first '+'. 4046 if (Phi) { 4047 if (B->getOperand(0) == Phi) { 4048 Phi = nullptr; 4049 B = dyn_cast<BinaryOperator>(B->getOperand(1)); 4050 } else if (B->getOperand(1) == Phi) { 4051 Phi = nullptr; 4052 B = dyn_cast<BinaryOperator>(B->getOperand(0)); 4053 } 4054 } 4055 4056 if (!B) 4057 return false; 4058 4059 Type *Ty = B->getType(); 4060 if (!isValidElementType(Ty)) 4061 return false; 4062 4063 const DataLayout &DL = B->getModule()->getDataLayout(); 4064 ReductionOpcode = B->getOpcode(); 4065 ReducedValueOpcode = 0; 4066 // FIXME: Register size should be a parameter to this function, so we can 4067 // try different vectorization factors. 4068 ReduxWidth = MinVecRegSize / DL.getTypeSizeInBits(Ty); 4069 ReductionRoot = B; 4070 ReductionPHI = Phi; 4071 4072 if (ReduxWidth < 4) 4073 return false; 4074 4075 // We currently only support adds. 4076 if (ReductionOpcode != Instruction::Add && 4077 ReductionOpcode != Instruction::FAdd) 4078 return false; 4079 4080 // Post order traverse the reduction tree starting at B. We only handle true 4081 // trees containing only binary operators or selects. 4082 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 4083 Stack.push_back(std::make_pair(B, 0)); 4084 while (!Stack.empty()) { 4085 Instruction *TreeN = Stack.back().first; 4086 unsigned EdgeToVist = Stack.back().second++; 4087 bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode; 4088 4089 // Only handle trees in the current basic block. 4090 if (TreeN->getParent() != B->getParent()) 4091 return false; 4092 4093 // Each tree node needs to have one user except for the ultimate 4094 // reduction. 4095 if (!TreeN->hasOneUse() && TreeN != B) 4096 return false; 4097 4098 // Postorder vist. 4099 if (EdgeToVist == 2 || IsReducedValue) { 4100 if (IsReducedValue) { 4101 // Make sure that the opcodes of the operations that we are going to 4102 // reduce match. 4103 if (!ReducedValueOpcode) 4104 ReducedValueOpcode = TreeN->getOpcode(); 4105 else if (ReducedValueOpcode != TreeN->getOpcode()) 4106 return false; 4107 ReducedVals.push_back(TreeN); 4108 } else { 4109 // We need to be able to reassociate the adds. 4110 if (!TreeN->isAssociative()) 4111 return false; 4112 ReductionOps.push_back(TreeN); 4113 } 4114 // Retract. 4115 Stack.pop_back(); 4116 continue; 4117 } 4118 4119 // Visit left or right. 4120 Value *NextV = TreeN->getOperand(EdgeToVist); 4121 // We currently only allow BinaryOperator's and SelectInst's as reduction 4122 // values in our tree. 4123 if (isa<BinaryOperator>(NextV) || isa<SelectInst>(NextV)) 4124 Stack.push_back(std::make_pair(cast<Instruction>(NextV), 0)); 4125 else if (NextV != Phi) 4126 return false; 4127 } 4128 return true; 4129 } 4130 4131 /// \brief Attempt to vectorize the tree found by 4132 /// matchAssociativeReduction. 4133 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 4134 if (ReducedVals.empty()) 4135 return false; 4136 4137 unsigned NumReducedVals = ReducedVals.size(); 4138 if (NumReducedVals < ReduxWidth) 4139 return false; 4140 4141 Value *VectorizedTree = nullptr; 4142 IRBuilder<> Builder(ReductionRoot); 4143 FastMathFlags Unsafe; 4144 Unsafe.setUnsafeAlgebra(); 4145 Builder.setFastMathFlags(Unsafe); 4146 unsigned i = 0; 4147 4148 for (; i < NumReducedVals - ReduxWidth + 1; i += ReduxWidth) { 4149 V.buildTree(makeArrayRef(&ReducedVals[i], ReduxWidth), ReductionOps); 4150 V.computeMinimumValueSizes(); 4151 4152 // Estimate cost. 4153 int Cost = V.getTreeCost() + getReductionCost(TTI, ReducedVals[i]); 4154 if (Cost >= -SLPCostThreshold) 4155 break; 4156 4157 DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost 4158 << ". (HorRdx)\n"); 4159 4160 // Vectorize a tree. 4161 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 4162 Value *VectorizedRoot = V.vectorizeTree(); 4163 4164 // Emit a reduction. 4165 Value *ReducedSubTree = emitReduction(VectorizedRoot, Builder); 4166 if (VectorizedTree) { 4167 Builder.SetCurrentDebugLocation(Loc); 4168 VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree, 4169 ReducedSubTree, "bin.rdx"); 4170 } else 4171 VectorizedTree = ReducedSubTree; 4172 } 4173 4174 if (VectorizedTree) { 4175 // Finish the reduction. 4176 for (; i < NumReducedVals; ++i) { 4177 Builder.SetCurrentDebugLocation( 4178 cast<Instruction>(ReducedVals[i])->getDebugLoc()); 4179 VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree, 4180 ReducedVals[i]); 4181 } 4182 // Update users. 4183 if (ReductionPHI) { 4184 assert(ReductionRoot && "Need a reduction operation"); 4185 ReductionRoot->setOperand(0, VectorizedTree); 4186 ReductionRoot->setOperand(1, ReductionPHI); 4187 } else 4188 ReductionRoot->replaceAllUsesWith(VectorizedTree); 4189 } 4190 return VectorizedTree != nullptr; 4191 } 4192 4193 unsigned numReductionValues() const { 4194 return ReducedVals.size(); 4195 } 4196 4197 private: 4198 /// \brief Calculate the cost of a reduction. 4199 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal) { 4200 Type *ScalarTy = FirstReducedVal->getType(); 4201 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 4202 4203 int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true); 4204 int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false); 4205 4206 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 4207 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 4208 4209 int ScalarReduxCost = 4210 ReduxWidth * TTI->getArithmeticInstrCost(ReductionOpcode, VecTy); 4211 4212 DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 4213 << " for reduction that starts with " << *FirstReducedVal 4214 << " (It is a " 4215 << (IsPairwiseReduction ? "pairwise" : "splitting") 4216 << " reduction)\n"); 4217 4218 return VecReduxCost - ScalarReduxCost; 4219 } 4220 4221 static Value *createBinOp(IRBuilder<> &Builder, unsigned Opcode, Value *L, 4222 Value *R, const Twine &Name = "") { 4223 if (Opcode == Instruction::FAdd) 4224 return Builder.CreateFAdd(L, R, Name); 4225 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, L, R, Name); 4226 } 4227 4228 /// \brief Emit a horizontal reduction of the vectorized value. 4229 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder) { 4230 assert(VectorizedValue && "Need to have a vectorized tree node"); 4231 assert(isPowerOf2_32(ReduxWidth) && 4232 "We only handle power-of-two reductions for now"); 4233 4234 Value *TmpVec = VectorizedValue; 4235 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 4236 if (IsPairwiseReduction) { 4237 Value *LeftMask = 4238 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 4239 Value *RightMask = 4240 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 4241 4242 Value *LeftShuf = Builder.CreateShuffleVector( 4243 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 4244 Value *RightShuf = Builder.CreateShuffleVector( 4245 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 4246 "rdx.shuf.r"); 4247 TmpVec = createBinOp(Builder, ReductionOpcode, LeftShuf, RightShuf, 4248 "bin.rdx"); 4249 } else { 4250 Value *UpperHalf = 4251 createRdxShuffleMask(ReduxWidth, i, false, false, Builder); 4252 Value *Shuf = Builder.CreateShuffleVector( 4253 TmpVec, UndefValue::get(TmpVec->getType()), UpperHalf, "rdx.shuf"); 4254 TmpVec = createBinOp(Builder, ReductionOpcode, TmpVec, Shuf, "bin.rdx"); 4255 } 4256 } 4257 4258 // The result is in the first element of the vector. 4259 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 4260 } 4261 }; 4262 4263 /// \brief Recognize construction of vectors like 4264 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 4265 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 4266 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 4267 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 4268 /// 4269 /// Returns true if it matches 4270 /// 4271 static bool findBuildVector(InsertElementInst *FirstInsertElem, 4272 SmallVectorImpl<Value *> &BuildVector, 4273 SmallVectorImpl<Value *> &BuildVectorOpds) { 4274 if (!isa<UndefValue>(FirstInsertElem->getOperand(0))) 4275 return false; 4276 4277 InsertElementInst *IE = FirstInsertElem; 4278 while (true) { 4279 BuildVector.push_back(IE); 4280 BuildVectorOpds.push_back(IE->getOperand(1)); 4281 4282 if (IE->use_empty()) 4283 return false; 4284 4285 InsertElementInst *NextUse = dyn_cast<InsertElementInst>(IE->user_back()); 4286 if (!NextUse) 4287 return true; 4288 4289 // If this isn't the final use, make sure the next insertelement is the only 4290 // use. It's OK if the final constructed vector is used multiple times 4291 if (!IE->hasOneUse()) 4292 return false; 4293 4294 IE = NextUse; 4295 } 4296 4297 return false; 4298 } 4299 4300 /// \brief Like findBuildVector, but looks backwards for construction of aggregate. 4301 /// 4302 /// \return true if it matches. 4303 static bool findBuildAggregate(InsertValueInst *IV, 4304 SmallVectorImpl<Value *> &BuildVector, 4305 SmallVectorImpl<Value *> &BuildVectorOpds) { 4306 if (!IV->hasOneUse()) 4307 return false; 4308 Value *V = IV->getAggregateOperand(); 4309 if (!isa<UndefValue>(V)) { 4310 InsertValueInst *I = dyn_cast<InsertValueInst>(V); 4311 if (!I || !findBuildAggregate(I, BuildVector, BuildVectorOpds)) 4312 return false; 4313 } 4314 BuildVector.push_back(IV); 4315 BuildVectorOpds.push_back(IV->getInsertedValueOperand()); 4316 return true; 4317 } 4318 4319 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 4320 return V->getType() < V2->getType(); 4321 } 4322 4323 /// \brief Try and get a reduction value from a phi node. 4324 /// 4325 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 4326 /// if they come from either \p ParentBB or a containing loop latch. 4327 /// 4328 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 4329 /// if not possible. 4330 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 4331 BasicBlock *ParentBB, LoopInfo *LI) { 4332 // There are situations where the reduction value is not dominated by the 4333 // reduction phi. Vectorizing such cases has been reported to cause 4334 // miscompiles. See PR25787. 4335 auto DominatedReduxValue = [&](Value *R) { 4336 return ( 4337 dyn_cast<Instruction>(R) && 4338 DT->dominates(P->getParent(), dyn_cast<Instruction>(R)->getParent())); 4339 }; 4340 4341 Value *Rdx = nullptr; 4342 4343 // Return the incoming value if it comes from the same BB as the phi node. 4344 if (P->getIncomingBlock(0) == ParentBB) { 4345 Rdx = P->getIncomingValue(0); 4346 } else if (P->getIncomingBlock(1) == ParentBB) { 4347 Rdx = P->getIncomingValue(1); 4348 } 4349 4350 if (Rdx && DominatedReduxValue(Rdx)) 4351 return Rdx; 4352 4353 // Otherwise, check whether we have a loop latch to look at. 4354 Loop *BBL = LI->getLoopFor(ParentBB); 4355 if (!BBL) 4356 return nullptr; 4357 BasicBlock *BBLatch = BBL->getLoopLatch(); 4358 if (!BBLatch) 4359 return nullptr; 4360 4361 // There is a loop latch, return the incoming value if it comes from 4362 // that. This reduction pattern occassionaly turns up. 4363 if (P->getIncomingBlock(0) == BBLatch) { 4364 Rdx = P->getIncomingValue(0); 4365 } else if (P->getIncomingBlock(1) == BBLatch) { 4366 Rdx = P->getIncomingValue(1); 4367 } 4368 4369 if (Rdx && DominatedReduxValue(Rdx)) 4370 return Rdx; 4371 4372 return nullptr; 4373 } 4374 4375 /// \brief Attempt to reduce a horizontal reduction. 4376 /// If it is legal to match a horizontal reduction feeding 4377 /// the phi node P with reduction operators BI, then check if it 4378 /// can be done. 4379 /// \returns true if a horizontal reduction was matched and reduced. 4380 /// \returns false if a horizontal reduction was not matched. 4381 static bool canMatchHorizontalReduction(PHINode *P, BinaryOperator *BI, 4382 BoUpSLP &R, TargetTransformInfo *TTI, 4383 unsigned MinRegSize) { 4384 if (!ShouldVectorizeHor) 4385 return false; 4386 4387 HorizontalReduction HorRdx(MinRegSize); 4388 if (!HorRdx.matchAssociativeReduction(P, BI)) 4389 return false; 4390 4391 // If there is a sufficient number of reduction values, reduce 4392 // to a nearby power-of-2. Can safely generate oversized 4393 // vectors and rely on the backend to split them to legal sizes. 4394 HorRdx.ReduxWidth = 4395 std::max((uint64_t)4, PowerOf2Floor(HorRdx.numReductionValues())); 4396 4397 return HorRdx.tryToReduce(R, TTI); 4398 } 4399 4400 bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 4401 bool Changed = false; 4402 SmallVector<Value *, 4> Incoming; 4403 SmallSet<Value *, 16> VisitedInstrs; 4404 4405 bool HaveVectorizedPhiNodes = true; 4406 while (HaveVectorizedPhiNodes) { 4407 HaveVectorizedPhiNodes = false; 4408 4409 // Collect the incoming values from the PHIs. 4410 Incoming.clear(); 4411 for (Instruction &I : *BB) { 4412 PHINode *P = dyn_cast<PHINode>(&I); 4413 if (!P) 4414 break; 4415 4416 if (!VisitedInstrs.count(P)) 4417 Incoming.push_back(P); 4418 } 4419 4420 // Sort by type. 4421 std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc); 4422 4423 // Try to vectorize elements base on their type. 4424 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 4425 E = Incoming.end(); 4426 IncIt != E;) { 4427 4428 // Look for the next elements with the same type. 4429 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 4430 while (SameTypeIt != E && 4431 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 4432 VisitedInstrs.insert(*SameTypeIt); 4433 ++SameTypeIt; 4434 } 4435 4436 // Try to vectorize them. 4437 unsigned NumElts = (SameTypeIt - IncIt); 4438 DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n"); 4439 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R)) { 4440 // Success start over because instructions might have been changed. 4441 HaveVectorizedPhiNodes = true; 4442 Changed = true; 4443 break; 4444 } 4445 4446 // Start over at the next instruction of a different type (or the end). 4447 IncIt = SameTypeIt; 4448 } 4449 } 4450 4451 VisitedInstrs.clear(); 4452 4453 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) { 4454 // We may go through BB multiple times so skip the one we have checked. 4455 if (!VisitedInstrs.insert(&*it).second) 4456 continue; 4457 4458 if (isa<DbgInfoIntrinsic>(it)) 4459 continue; 4460 4461 // Try to vectorize reductions that use PHINodes. 4462 if (PHINode *P = dyn_cast<PHINode>(it)) { 4463 // Check that the PHI is a reduction PHI. 4464 if (P->getNumIncomingValues() != 2) 4465 return Changed; 4466 4467 Value *Rdx = getReductionValue(DT, P, BB, LI); 4468 4469 // Check if this is a Binary Operator. 4470 BinaryOperator *BI = dyn_cast_or_null<BinaryOperator>(Rdx); 4471 if (!BI) 4472 continue; 4473 4474 // Try to match and vectorize a horizontal reduction. 4475 if (canMatchHorizontalReduction(P, BI, R, TTI, R.getMinVecRegSize())) { 4476 Changed = true; 4477 it = BB->begin(); 4478 e = BB->end(); 4479 continue; 4480 } 4481 4482 Value *Inst = BI->getOperand(0); 4483 if (Inst == P) 4484 Inst = BI->getOperand(1); 4485 4486 if (tryToVectorize(dyn_cast<BinaryOperator>(Inst), R)) { 4487 // We would like to start over since some instructions are deleted 4488 // and the iterator may become invalid value. 4489 Changed = true; 4490 it = BB->begin(); 4491 e = BB->end(); 4492 continue; 4493 } 4494 4495 continue; 4496 } 4497 4498 if (ShouldStartVectorizeHorAtStore) 4499 if (StoreInst *SI = dyn_cast<StoreInst>(it)) 4500 if (BinaryOperator *BinOp = 4501 dyn_cast<BinaryOperator>(SI->getValueOperand())) { 4502 if (canMatchHorizontalReduction(nullptr, BinOp, R, TTI, 4503 R.getMinVecRegSize()) || 4504 tryToVectorize(BinOp, R)) { 4505 Changed = true; 4506 it = BB->begin(); 4507 e = BB->end(); 4508 continue; 4509 } 4510 } 4511 4512 // Try to vectorize horizontal reductions feeding into a return. 4513 if (ReturnInst *RI = dyn_cast<ReturnInst>(it)) 4514 if (RI->getNumOperands() != 0) 4515 if (BinaryOperator *BinOp = 4516 dyn_cast<BinaryOperator>(RI->getOperand(0))) { 4517 DEBUG(dbgs() << "SLP: Found a return to vectorize.\n"); 4518 if (tryToVectorizePair(BinOp->getOperand(0), 4519 BinOp->getOperand(1), R)) { 4520 Changed = true; 4521 it = BB->begin(); 4522 e = BB->end(); 4523 continue; 4524 } 4525 } 4526 4527 // Try to vectorize trees that start at compare instructions. 4528 if (CmpInst *CI = dyn_cast<CmpInst>(it)) { 4529 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) { 4530 Changed = true; 4531 // We would like to start over since some instructions are deleted 4532 // and the iterator may become invalid value. 4533 it = BB->begin(); 4534 e = BB->end(); 4535 continue; 4536 } 4537 4538 for (int i = 0; i < 2; ++i) { 4539 if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i))) { 4540 if (tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R)) { 4541 Changed = true; 4542 // We would like to start over since some instructions are deleted 4543 // and the iterator may become invalid value. 4544 it = BB->begin(); 4545 e = BB->end(); 4546 break; 4547 } 4548 } 4549 } 4550 continue; 4551 } 4552 4553 // Try to vectorize trees that start at insertelement instructions. 4554 if (InsertElementInst *FirstInsertElem = dyn_cast<InsertElementInst>(it)) { 4555 SmallVector<Value *, 16> BuildVector; 4556 SmallVector<Value *, 16> BuildVectorOpds; 4557 if (!findBuildVector(FirstInsertElem, BuildVector, BuildVectorOpds)) 4558 continue; 4559 4560 // Vectorize starting with the build vector operands ignoring the 4561 // BuildVector instructions for the purpose of scheduling and user 4562 // extraction. 4563 if (tryToVectorizeList(BuildVectorOpds, R, BuildVector)) { 4564 Changed = true; 4565 it = BB->begin(); 4566 e = BB->end(); 4567 } 4568 4569 continue; 4570 } 4571 4572 // Try to vectorize trees that start at insertvalue instructions feeding into 4573 // a store. 4574 if (StoreInst *SI = dyn_cast<StoreInst>(it)) { 4575 if (InsertValueInst *LastInsertValue = dyn_cast<InsertValueInst>(SI->getValueOperand())) { 4576 const DataLayout &DL = BB->getModule()->getDataLayout(); 4577 if (R.canMapToVector(SI->getValueOperand()->getType(), DL)) { 4578 SmallVector<Value *, 16> BuildVector; 4579 SmallVector<Value *, 16> BuildVectorOpds; 4580 if (!findBuildAggregate(LastInsertValue, BuildVector, BuildVectorOpds)) 4581 continue; 4582 4583 DEBUG(dbgs() << "SLP: store of array mappable to vector: " << *SI << "\n"); 4584 if (tryToVectorizeList(BuildVectorOpds, R, BuildVector, false)) { 4585 Changed = true; 4586 it = BB->begin(); 4587 e = BB->end(); 4588 } 4589 continue; 4590 } 4591 } 4592 } 4593 } 4594 4595 return Changed; 4596 } 4597 4598 bool SLPVectorizer::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 4599 auto Changed = false; 4600 for (auto &Entry : GEPs) { 4601 4602 // If the getelementptr list has fewer than two elements, there's nothing 4603 // to do. 4604 if (Entry.second.size() < 2) 4605 continue; 4606 4607 DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 4608 << Entry.second.size() << ".\n"); 4609 4610 // We process the getelementptr list in chunks of 16 (like we do for 4611 // stores) to minimize compile-time. 4612 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) { 4613 auto Len = std::min<unsigned>(BE - BI, 16); 4614 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 4615 4616 // Initialize a set a candidate getelementptrs. Note that we use a 4617 // SetVector here to preserve program order. If the index computations 4618 // are vectorizable and begin with loads, we want to minimize the chance 4619 // of having to reorder them later. 4620 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 4621 4622 // Some of the candidates may have already been vectorized after we 4623 // initially collected them. If so, the WeakVHs will have nullified the 4624 // values, so remove them from the set of candidates. 4625 Candidates.remove(nullptr); 4626 4627 // Remove from the set of candidates all pairs of getelementptrs with 4628 // constant differences. Such getelementptrs are likely not good 4629 // candidates for vectorization in a bottom-up phase since one can be 4630 // computed from the other. We also ensure all candidate getelementptr 4631 // indices are unique. 4632 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 4633 auto *GEPI = cast<GetElementPtrInst>(GEPList[I]); 4634 if (!Candidates.count(GEPI)) 4635 continue; 4636 auto *SCEVI = SE->getSCEV(GEPList[I]); 4637 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 4638 auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]); 4639 auto *SCEVJ = SE->getSCEV(GEPList[J]); 4640 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 4641 Candidates.remove(GEPList[I]); 4642 Candidates.remove(GEPList[J]); 4643 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 4644 Candidates.remove(GEPList[J]); 4645 } 4646 } 4647 } 4648 4649 // We break out of the above computation as soon as we know there are 4650 // fewer than two candidates remaining. 4651 if (Candidates.size() < 2) 4652 continue; 4653 4654 // Add the single, non-constant index of each candidate to the bundle. We 4655 // ensured the indices met these constraints when we originally collected 4656 // the getelementptrs. 4657 SmallVector<Value *, 16> Bundle(Candidates.size()); 4658 auto BundleIndex = 0u; 4659 for (auto *V : Candidates) { 4660 auto *GEP = cast<GetElementPtrInst>(V); 4661 auto *GEPIdx = GEP->idx_begin()->get(); 4662 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 4663 Bundle[BundleIndex++] = GEPIdx; 4664 } 4665 4666 // Try and vectorize the indices. We are currently only interested in 4667 // gather-like cases of the form: 4668 // 4669 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 4670 // 4671 // where the loads of "a", the loads of "b", and the subtractions can be 4672 // performed in parallel. It's likely that detecting this pattern in a 4673 // bottom-up phase will be simpler and less costly than building a 4674 // full-blown top-down phase beginning at the consecutive loads. 4675 Changed |= tryToVectorizeList(Bundle, R); 4676 } 4677 } 4678 return Changed; 4679 } 4680 4681 bool SLPVectorizer::vectorizeStoreChains(BoUpSLP &R) { 4682 bool Changed = false; 4683 // Attempt to sort and vectorize each of the store-groups. 4684 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 4685 ++it) { 4686 if (it->second.size() < 2) 4687 continue; 4688 4689 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 4690 << it->second.size() << ".\n"); 4691 4692 // Process the stores in chunks of 16. 4693 // TODO: The limit of 16 inhibits greater vectorization factors. 4694 // For example, AVX2 supports v32i8. Increasing this limit, however, 4695 // may cause a significant compile-time increase. 4696 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) { 4697 unsigned Len = std::min<unsigned>(CE - CI, 16); 4698 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), 4699 -SLPCostThreshold, R); 4700 } 4701 } 4702 return Changed; 4703 } 4704 4705 } // end anonymous namespace 4706 4707 char SLPVectorizer::ID = 0; 4708 static const char lv_name[] = "SLP Vectorizer"; 4709 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 4710 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 4711 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 4712 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 4713 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 4714 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 4715 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 4716 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 4717 4718 namespace llvm { 4719 Pass *createSLPVectorizerPass() { return new SLPVectorizer(); } 4720 } 4721