1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive
10 // stores that can be put together into vector-stores. Next, it attempts to
11 // construct vectorizable tree using the use-def chains. If a profitable tree
12 // was found, the SLP vectorizer performs vectorization on the tree.
13 //
14 // The pass is inspired by the work described in the paper:
15 //  "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/DenseSet.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/PostOrderIterator.h"
24 #include "llvm/ADT/PriorityQueue.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SetOperations.h"
27 #include "llvm/ADT/SetVector.h"
28 #include "llvm/ADT/SmallBitVector.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/SmallString.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/ADT/iterator.h"
34 #include "llvm/ADT/iterator_range.h"
35 #include "llvm/Analysis/AliasAnalysis.h"
36 #include "llvm/Analysis/AssumptionCache.h"
37 #include "llvm/Analysis/CodeMetrics.h"
38 #include "llvm/Analysis/DemandedBits.h"
39 #include "llvm/Analysis/GlobalsModRef.h"
40 #include "llvm/Analysis/IVDescriptors.h"
41 #include "llvm/Analysis/LoopAccessAnalysis.h"
42 #include "llvm/Analysis/LoopInfo.h"
43 #include "llvm/Analysis/MemoryLocation.h"
44 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
45 #include "llvm/Analysis/ScalarEvolution.h"
46 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
47 #include "llvm/Analysis/TargetLibraryInfo.h"
48 #include "llvm/Analysis/TargetTransformInfo.h"
49 #include "llvm/Analysis/ValueTracking.h"
50 #include "llvm/Analysis/VectorUtils.h"
51 #include "llvm/IR/Attributes.h"
52 #include "llvm/IR/BasicBlock.h"
53 #include "llvm/IR/Constant.h"
54 #include "llvm/IR/Constants.h"
55 #include "llvm/IR/DataLayout.h"
56 #include "llvm/IR/DerivedTypes.h"
57 #include "llvm/IR/Dominators.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/IRBuilder.h"
60 #include "llvm/IR/InstrTypes.h"
61 #include "llvm/IR/Instruction.h"
62 #include "llvm/IR/Instructions.h"
63 #include "llvm/IR/IntrinsicInst.h"
64 #include "llvm/IR/Intrinsics.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/Operator.h"
67 #include "llvm/IR/PatternMatch.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/Use.h"
70 #include "llvm/IR/User.h"
71 #include "llvm/IR/Value.h"
72 #include "llvm/IR/ValueHandle.h"
73 #ifdef EXPENSIVE_CHECKS
74 #include "llvm/IR/Verifier.h"
75 #endif
76 #include "llvm/Pass.h"
77 #include "llvm/Support/Casting.h"
78 #include "llvm/Support/CommandLine.h"
79 #include "llvm/Support/Compiler.h"
80 #include "llvm/Support/DOTGraphTraits.h"
81 #include "llvm/Support/Debug.h"
82 #include "llvm/Support/ErrorHandling.h"
83 #include "llvm/Support/GraphWriter.h"
84 #include "llvm/Support/InstructionCost.h"
85 #include "llvm/Support/KnownBits.h"
86 #include "llvm/Support/MathExtras.h"
87 #include "llvm/Support/raw_ostream.h"
88 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
89 #include "llvm/Transforms/Utils/Local.h"
90 #include "llvm/Transforms/Utils/LoopUtils.h"
91 #include "llvm/Transforms/Vectorize.h"
92 #include <algorithm>
93 #include <cassert>
94 #include <cstdint>
95 #include <iterator>
96 #include <memory>
97 #include <set>
98 #include <string>
99 #include <tuple>
100 #include <utility>
101 #include <vector>
102 
103 using namespace llvm;
104 using namespace llvm::PatternMatch;
105 using namespace slpvectorizer;
106 
107 #define SV_NAME "slp-vectorizer"
108 #define DEBUG_TYPE "SLP"
109 
110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated");
111 
112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden,
113                                   cl::desc("Run the SLP vectorization passes"));
114 
115 static cl::opt<int>
116     SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
117                      cl::desc("Only vectorize if you gain more than this "
118                               "number "));
119 
120 static cl::opt<bool>
121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
122                    cl::desc("Attempt to vectorize horizontal reductions"));
123 
124 static cl::opt<bool> ShouldStartVectorizeHorAtStore(
125     "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
126     cl::desc(
127         "Attempt to vectorize horizontal reductions feeding into a store"));
128 
129 static cl::opt<int>
130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
131     cl::desc("Attempt to vectorize for this register size in bits"));
132 
133 static cl::opt<unsigned>
134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden,
135     cl::desc("Maximum SLP vectorization factor (0=unlimited)"));
136 
137 static cl::opt<int>
138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden,
139     cl::desc("Maximum depth of the lookup for consecutive stores."));
140 
141 /// Limits the size of scheduling regions in a block.
142 /// It avoid long compile times for _very_ large blocks where vector
143 /// instructions are spread over a wide range.
144 /// This limit is way higher than needed by real-world functions.
145 static cl::opt<int>
146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
147     cl::desc("Limit the size of the SLP scheduling region per block"));
148 
149 static cl::opt<int> MinVectorRegSizeOption(
150     "slp-min-reg-size", cl::init(128), cl::Hidden,
151     cl::desc("Attempt to vectorize for this register size in bits"));
152 
153 static cl::opt<unsigned> RecursionMaxDepth(
154     "slp-recursion-max-depth", cl::init(12), cl::Hidden,
155     cl::desc("Limit the recursion depth when building a vectorizable tree"));
156 
157 static cl::opt<unsigned> MinTreeSize(
158     "slp-min-tree-size", cl::init(3), cl::Hidden,
159     cl::desc("Only vectorize small trees if they are fully vectorizable"));
160 
161 // The maximum depth that the look-ahead score heuristic will explore.
162 // The higher this value, the higher the compilation time overhead.
163 static cl::opt<int> LookAheadMaxDepth(
164     "slp-max-look-ahead-depth", cl::init(2), cl::Hidden,
165     cl::desc("The maximum look-ahead depth for operand reordering scores"));
166 
167 // The maximum depth that the look-ahead score heuristic will explore
168 // when it probing among candidates for vectorization tree roots.
169 // The higher this value, the higher the compilation time overhead but unlike
170 // similar limit for operands ordering this is less frequently used, hence
171 // impact of higher value is less noticeable.
172 static cl::opt<int> RootLookAheadMaxDepth(
173     "slp-max-root-look-ahead-depth", cl::init(2), cl::Hidden,
174     cl::desc("The maximum look-ahead depth for searching best rooting option"));
175 
176 static cl::opt<bool>
177     ViewSLPTree("view-slp-tree", cl::Hidden,
178                 cl::desc("Display the SLP trees with Graphviz"));
179 
180 // Limit the number of alias checks. The limit is chosen so that
181 // it has no negative effect on the llvm benchmarks.
182 static const unsigned AliasedCheckLimit = 10;
183 
184 // Another limit for the alias checks: The maximum distance between load/store
185 // instructions where alias checks are done.
186 // This limit is useful for very large basic blocks.
187 static const unsigned MaxMemDepDistance = 160;
188 
189 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
190 /// regions to be handled.
191 static const int MinScheduleRegionSize = 16;
192 
193 /// Predicate for the element types that the SLP vectorizer supports.
194 ///
195 /// The most important thing to filter here are types which are invalid in LLVM
196 /// vectors. We also filter target specific types which have absolutely no
197 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
198 /// avoids spending time checking the cost model and realizing that they will
199 /// be inevitably scalarized.
200 static bool isValidElementType(Type *Ty) {
201   return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
202          !Ty->isPPC_FP128Ty();
203 }
204 
205 /// \returns True if the value is a constant (but not globals/constant
206 /// expressions).
207 static bool isConstant(Value *V) {
208   return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V);
209 }
210 
211 /// Checks if \p V is one of vector-like instructions, i.e. undef,
212 /// insertelement/extractelement with constant indices for fixed vector type or
213 /// extractvalue instruction.
214 static bool isVectorLikeInstWithConstOps(Value *V) {
215   if (!isa<InsertElementInst, ExtractElementInst>(V) &&
216       !isa<ExtractValueInst, UndefValue>(V))
217     return false;
218   auto *I = dyn_cast<Instruction>(V);
219   if (!I || isa<ExtractValueInst>(I))
220     return true;
221   if (!isa<FixedVectorType>(I->getOperand(0)->getType()))
222     return false;
223   if (isa<ExtractElementInst>(I))
224     return isConstant(I->getOperand(1));
225   assert(isa<InsertElementInst>(V) && "Expected only insertelement.");
226   return isConstant(I->getOperand(2));
227 }
228 
229 /// \returns true if all of the instructions in \p VL are in the same block or
230 /// false otherwise.
231 static bool allSameBlock(ArrayRef<Value *> VL) {
232   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
233   if (!I0)
234     return false;
235   if (all_of(VL, isVectorLikeInstWithConstOps))
236     return true;
237 
238   BasicBlock *BB = I0->getParent();
239   for (int I = 1, E = VL.size(); I < E; I++) {
240     auto *II = dyn_cast<Instruction>(VL[I]);
241     if (!II)
242       return false;
243 
244     if (BB != II->getParent())
245       return false;
246   }
247   return true;
248 }
249 
250 /// \returns True if all of the values in \p VL are constants (but not
251 /// globals/constant expressions).
252 static bool allConstant(ArrayRef<Value *> VL) {
253   // Constant expressions and globals can't be vectorized like normal integer/FP
254   // constants.
255   return all_of(VL, isConstant);
256 }
257 
258 /// \returns True if all of the values in \p VL are identical or some of them
259 /// are UndefValue.
260 static bool isSplat(ArrayRef<Value *> VL) {
261   Value *FirstNonUndef = nullptr;
262   for (Value *V : VL) {
263     if (isa<UndefValue>(V))
264       continue;
265     if (!FirstNonUndef) {
266       FirstNonUndef = V;
267       continue;
268     }
269     if (V != FirstNonUndef)
270       return false;
271   }
272   return FirstNonUndef != nullptr;
273 }
274 
275 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator.
276 static bool isCommutative(Instruction *I) {
277   if (auto *Cmp = dyn_cast<CmpInst>(I))
278     return Cmp->isCommutative();
279   if (auto *BO = dyn_cast<BinaryOperator>(I))
280     return BO->isCommutative();
281   // TODO: This should check for generic Instruction::isCommutative(), but
282   //       we need to confirm that the caller code correctly handles Intrinsics
283   //       for example (does not have 2 operands).
284   return false;
285 }
286 
287 /// Checks if the given value is actually an undefined constant vector.
288 static bool isUndefVector(const Value *V) {
289   if (isa<UndefValue>(V))
290     return true;
291   auto *C = dyn_cast<Constant>(V);
292   if (!C)
293     return false;
294   if (!C->containsUndefOrPoisonElement())
295     return false;
296   auto *VecTy = dyn_cast<FixedVectorType>(C->getType());
297   if (!VecTy)
298     return false;
299   for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) {
300     if (Constant *Elem = C->getAggregateElement(I))
301       if (!isa<UndefValue>(Elem))
302         return false;
303   }
304   return true;
305 }
306 
307 /// Checks if the vector of instructions can be represented as a shuffle, like:
308 /// %x0 = extractelement <4 x i8> %x, i32 0
309 /// %x3 = extractelement <4 x i8> %x, i32 3
310 /// %y1 = extractelement <4 x i8> %y, i32 1
311 /// %y2 = extractelement <4 x i8> %y, i32 2
312 /// %x0x0 = mul i8 %x0, %x0
313 /// %x3x3 = mul i8 %x3, %x3
314 /// %y1y1 = mul i8 %y1, %y1
315 /// %y2y2 = mul i8 %y2, %y2
316 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0
317 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1
318 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2
319 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3
320 /// ret <4 x i8> %ins4
321 /// can be transformed into:
322 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5,
323 ///                                                         i32 6>
324 /// %2 = mul <4 x i8> %1, %1
325 /// ret <4 x i8> %2
326 /// We convert this initially to something like:
327 /// %x0 = extractelement <4 x i8> %x, i32 0
328 /// %x3 = extractelement <4 x i8> %x, i32 3
329 /// %y1 = extractelement <4 x i8> %y, i32 1
330 /// %y2 = extractelement <4 x i8> %y, i32 2
331 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0
332 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1
333 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2
334 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3
335 /// %5 = mul <4 x i8> %4, %4
336 /// %6 = extractelement <4 x i8> %5, i32 0
337 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0
338 /// %7 = extractelement <4 x i8> %5, i32 1
339 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1
340 /// %8 = extractelement <4 x i8> %5, i32 2
341 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2
342 /// %9 = extractelement <4 x i8> %5, i32 3
343 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3
344 /// ret <4 x i8> %ins4
345 /// InstCombiner transforms this into a shuffle and vector mul
346 /// Mask will return the Shuffle Mask equivalent to the extracted elements.
347 /// TODO: Can we split off and reuse the shuffle mask detection from
348 /// TargetTransformInfo::getInstructionThroughput?
349 static Optional<TargetTransformInfo::ShuffleKind>
350 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) {
351   const auto *It =
352       find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); });
353   if (It == VL.end())
354     return None;
355   auto *EI0 = cast<ExtractElementInst>(*It);
356   if (isa<ScalableVectorType>(EI0->getVectorOperandType()))
357     return None;
358   unsigned Size =
359       cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements();
360   Value *Vec1 = nullptr;
361   Value *Vec2 = nullptr;
362   enum ShuffleMode { Unknown, Select, Permute };
363   ShuffleMode CommonShuffleMode = Unknown;
364   Mask.assign(VL.size(), UndefMaskElem);
365   for (unsigned I = 0, E = VL.size(); I < E; ++I) {
366     // Undef can be represented as an undef element in a vector.
367     if (isa<UndefValue>(VL[I]))
368       continue;
369     auto *EI = cast<ExtractElementInst>(VL[I]);
370     if (isa<ScalableVectorType>(EI->getVectorOperandType()))
371       return None;
372     auto *Vec = EI->getVectorOperand();
373     // We can extractelement from undef or poison vector.
374     if (isUndefVector(Vec))
375       continue;
376     // All vector operands must have the same number of vector elements.
377     if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size)
378       return None;
379     if (isa<UndefValue>(EI->getIndexOperand()))
380       continue;
381     auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand());
382     if (!Idx)
383       return None;
384     // Undefined behavior if Idx is negative or >= Size.
385     if (Idx->getValue().uge(Size))
386       continue;
387     unsigned IntIdx = Idx->getValue().getZExtValue();
388     Mask[I] = IntIdx;
389     // For correct shuffling we have to have at most 2 different vector operands
390     // in all extractelement instructions.
391     if (!Vec1 || Vec1 == Vec) {
392       Vec1 = Vec;
393     } else if (!Vec2 || Vec2 == Vec) {
394       Vec2 = Vec;
395       Mask[I] += Size;
396     } else {
397       return None;
398     }
399     if (CommonShuffleMode == Permute)
400       continue;
401     // If the extract index is not the same as the operation number, it is a
402     // permutation.
403     if (IntIdx != I) {
404       CommonShuffleMode = Permute;
405       continue;
406     }
407     CommonShuffleMode = Select;
408   }
409   // If we're not crossing lanes in different vectors, consider it as blending.
410   if (CommonShuffleMode == Select && Vec2)
411     return TargetTransformInfo::SK_Select;
412   // If Vec2 was never used, we have a permutation of a single vector, otherwise
413   // we have permutation of 2 vectors.
414   return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc
415               : TargetTransformInfo::SK_PermuteSingleSrc;
416 }
417 
418 namespace {
419 
420 /// Main data required for vectorization of instructions.
421 struct InstructionsState {
422   /// The very first instruction in the list with the main opcode.
423   Value *OpValue = nullptr;
424 
425   /// The main/alternate instruction.
426   Instruction *MainOp = nullptr;
427   Instruction *AltOp = nullptr;
428 
429   /// The main/alternate opcodes for the list of instructions.
430   unsigned getOpcode() const {
431     return MainOp ? MainOp->getOpcode() : 0;
432   }
433 
434   unsigned getAltOpcode() const {
435     return AltOp ? AltOp->getOpcode() : 0;
436   }
437 
438   /// Some of the instructions in the list have alternate opcodes.
439   bool isAltShuffle() const { return AltOp != MainOp; }
440 
441   bool isOpcodeOrAlt(Instruction *I) const {
442     unsigned CheckedOpcode = I->getOpcode();
443     return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode;
444   }
445 
446   InstructionsState() = delete;
447   InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp)
448       : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {}
449 };
450 
451 } // end anonymous namespace
452 
453 /// Chooses the correct key for scheduling data. If \p Op has the same (or
454 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p
455 /// OpValue.
456 static Value *isOneOf(const InstructionsState &S, Value *Op) {
457   auto *I = dyn_cast<Instruction>(Op);
458   if (I && S.isOpcodeOrAlt(I))
459     return Op;
460   return S.OpValue;
461 }
462 
463 /// \returns true if \p Opcode is allowed as part of of the main/alternate
464 /// instruction for SLP vectorization.
465 ///
466 /// Example of unsupported opcode is SDIV that can potentially cause UB if the
467 /// "shuffled out" lane would result in division by zero.
468 static bool isValidForAlternation(unsigned Opcode) {
469   if (Instruction::isIntDivRem(Opcode))
470     return false;
471 
472   return true;
473 }
474 
475 static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
476                                        unsigned BaseIndex = 0);
477 
478 /// Checks if the provided operands of 2 cmp instructions are compatible, i.e.
479 /// compatible instructions or constants, or just some other regular values.
480 static bool areCompatibleCmpOps(Value *BaseOp0, Value *BaseOp1, Value *Op0,
481                                 Value *Op1) {
482   return (isConstant(BaseOp0) && isConstant(Op0)) ||
483          (isConstant(BaseOp1) && isConstant(Op1)) ||
484          (!isa<Instruction>(BaseOp0) && !isa<Instruction>(Op0) &&
485           !isa<Instruction>(BaseOp1) && !isa<Instruction>(Op1)) ||
486          getSameOpcode({BaseOp0, Op0}).getOpcode() ||
487          getSameOpcode({BaseOp1, Op1}).getOpcode();
488 }
489 
490 /// \returns analysis of the Instructions in \p VL described in
491 /// InstructionsState, the Opcode that we suppose the whole list
492 /// could be vectorized even if its structure is diverse.
493 static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
494                                        unsigned BaseIndex) {
495   // Make sure these are all Instructions.
496   if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); }))
497     return InstructionsState(VL[BaseIndex], nullptr, nullptr);
498 
499   bool IsCastOp = isa<CastInst>(VL[BaseIndex]);
500   bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]);
501   bool IsCmpOp = isa<CmpInst>(VL[BaseIndex]);
502   CmpInst::Predicate BasePred =
503       IsCmpOp ? cast<CmpInst>(VL[BaseIndex])->getPredicate()
504               : CmpInst::BAD_ICMP_PREDICATE;
505   unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode();
506   unsigned AltOpcode = Opcode;
507   unsigned AltIndex = BaseIndex;
508 
509   // Check for one alternate opcode from another BinaryOperator.
510   // TODO - generalize to support all operators (types, calls etc.).
511   for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) {
512     unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode();
513     if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) {
514       if (InstOpcode == Opcode || InstOpcode == AltOpcode)
515         continue;
516       if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) &&
517           isValidForAlternation(Opcode)) {
518         AltOpcode = InstOpcode;
519         AltIndex = Cnt;
520         continue;
521       }
522     } else if (IsCastOp && isa<CastInst>(VL[Cnt])) {
523       Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType();
524       Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType();
525       if (Ty0 == Ty1) {
526         if (InstOpcode == Opcode || InstOpcode == AltOpcode)
527           continue;
528         if (Opcode == AltOpcode) {
529           assert(isValidForAlternation(Opcode) &&
530                  isValidForAlternation(InstOpcode) &&
531                  "Cast isn't safe for alternation, logic needs to be updated!");
532           AltOpcode = InstOpcode;
533           AltIndex = Cnt;
534           continue;
535         }
536       }
537     } else if (IsCmpOp && isa<CmpInst>(VL[Cnt])) {
538       auto *BaseInst = cast<Instruction>(VL[BaseIndex]);
539       auto *Inst = cast<Instruction>(VL[Cnt]);
540       Type *Ty0 = BaseInst->getOperand(0)->getType();
541       Type *Ty1 = Inst->getOperand(0)->getType();
542       if (Ty0 == Ty1) {
543         Value *BaseOp0 = BaseInst->getOperand(0);
544         Value *BaseOp1 = BaseInst->getOperand(1);
545         Value *Op0 = Inst->getOperand(0);
546         Value *Op1 = Inst->getOperand(1);
547         CmpInst::Predicate CurrentPred =
548             cast<CmpInst>(VL[Cnt])->getPredicate();
549         CmpInst::Predicate SwappedCurrentPred =
550             CmpInst::getSwappedPredicate(CurrentPred);
551         // Check for compatible operands. If the corresponding operands are not
552         // compatible - need to perform alternate vectorization.
553         if (InstOpcode == Opcode) {
554           if (BasePred == CurrentPred &&
555               areCompatibleCmpOps(BaseOp0, BaseOp1, Op0, Op1))
556             continue;
557           if (BasePred == SwappedCurrentPred &&
558               areCompatibleCmpOps(BaseOp0, BaseOp1, Op1, Op0))
559             continue;
560           if (E == 2 &&
561               (BasePred == CurrentPred || BasePred == SwappedCurrentPred))
562             continue;
563           auto *AltInst = cast<CmpInst>(VL[AltIndex]);
564           CmpInst::Predicate AltPred = AltInst->getPredicate();
565           Value *AltOp0 = AltInst->getOperand(0);
566           Value *AltOp1 = AltInst->getOperand(1);
567           // Check if operands are compatible with alternate operands.
568           if (AltPred == CurrentPred &&
569               areCompatibleCmpOps(AltOp0, AltOp1, Op0, Op1))
570             continue;
571           if (AltPred == SwappedCurrentPred &&
572               areCompatibleCmpOps(AltOp0, AltOp1, Op1, Op0))
573             continue;
574         }
575         if (BaseIndex == AltIndex && BasePred != CurrentPred) {
576           assert(isValidForAlternation(Opcode) &&
577                  isValidForAlternation(InstOpcode) &&
578                  "Cast isn't safe for alternation, logic needs to be updated!");
579           AltIndex = Cnt;
580           continue;
581         }
582         auto *AltInst = cast<CmpInst>(VL[AltIndex]);
583         CmpInst::Predicate AltPred = AltInst->getPredicate();
584         if (BasePred == CurrentPred || BasePred == SwappedCurrentPred ||
585             AltPred == CurrentPred || AltPred == SwappedCurrentPred)
586           continue;
587       }
588     } else if (InstOpcode == Opcode || InstOpcode == AltOpcode)
589       continue;
590     return InstructionsState(VL[BaseIndex], nullptr, nullptr);
591   }
592 
593   return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]),
594                            cast<Instruction>(VL[AltIndex]));
595 }
596 
597 /// \returns true if all of the values in \p VL have the same type or false
598 /// otherwise.
599 static bool allSameType(ArrayRef<Value *> VL) {
600   Type *Ty = VL[0]->getType();
601   for (int i = 1, e = VL.size(); i < e; i++)
602     if (VL[i]->getType() != Ty)
603       return false;
604 
605   return true;
606 }
607 
608 /// \returns True if Extract{Value,Element} instruction extracts element Idx.
609 static Optional<unsigned> getExtractIndex(Instruction *E) {
610   unsigned Opcode = E->getOpcode();
611   assert((Opcode == Instruction::ExtractElement ||
612           Opcode == Instruction::ExtractValue) &&
613          "Expected extractelement or extractvalue instruction.");
614   if (Opcode == Instruction::ExtractElement) {
615     auto *CI = dyn_cast<ConstantInt>(E->getOperand(1));
616     if (!CI)
617       return None;
618     return CI->getZExtValue();
619   }
620   ExtractValueInst *EI = cast<ExtractValueInst>(E);
621   if (EI->getNumIndices() != 1)
622     return None;
623   return *EI->idx_begin();
624 }
625 
626 /// \returns True if in-tree use also needs extract. This refers to
627 /// possible scalar operand in vectorized instruction.
628 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
629                                     TargetLibraryInfo *TLI) {
630   unsigned Opcode = UserInst->getOpcode();
631   switch (Opcode) {
632   case Instruction::Load: {
633     LoadInst *LI = cast<LoadInst>(UserInst);
634     return (LI->getPointerOperand() == Scalar);
635   }
636   case Instruction::Store: {
637     StoreInst *SI = cast<StoreInst>(UserInst);
638     return (SI->getPointerOperand() == Scalar);
639   }
640   case Instruction::Call: {
641     CallInst *CI = cast<CallInst>(UserInst);
642     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
643     for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) {
644       if (isVectorIntrinsicWithScalarOpAtArg(ID, i))
645         return (CI->getArgOperand(i) == Scalar);
646     }
647     LLVM_FALLTHROUGH;
648   }
649   default:
650     return false;
651   }
652 }
653 
654 /// \returns the AA location that is being access by the instruction.
655 static MemoryLocation getLocation(Instruction *I) {
656   if (StoreInst *SI = dyn_cast<StoreInst>(I))
657     return MemoryLocation::get(SI);
658   if (LoadInst *LI = dyn_cast<LoadInst>(I))
659     return MemoryLocation::get(LI);
660   return MemoryLocation();
661 }
662 
663 /// \returns True if the instruction is not a volatile or atomic load/store.
664 static bool isSimple(Instruction *I) {
665   if (LoadInst *LI = dyn_cast<LoadInst>(I))
666     return LI->isSimple();
667   if (StoreInst *SI = dyn_cast<StoreInst>(I))
668     return SI->isSimple();
669   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
670     return !MI->isVolatile();
671   return true;
672 }
673 
674 /// Shuffles \p Mask in accordance with the given \p SubMask.
675 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) {
676   if (SubMask.empty())
677     return;
678   if (Mask.empty()) {
679     Mask.append(SubMask.begin(), SubMask.end());
680     return;
681   }
682   SmallVector<int> NewMask(SubMask.size(), UndefMaskElem);
683   int TermValue = std::min(Mask.size(), SubMask.size());
684   for (int I = 0, E = SubMask.size(); I < E; ++I) {
685     if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem ||
686         Mask[SubMask[I]] >= TermValue)
687       continue;
688     NewMask[I] = Mask[SubMask[I]];
689   }
690   Mask.swap(NewMask);
691 }
692 
693 /// Order may have elements assigned special value (size) which is out of
694 /// bounds. Such indices only appear on places which correspond to undef values
695 /// (see canReuseExtract for details) and used in order to avoid undef values
696 /// have effect on operands ordering.
697 /// The first loop below simply finds all unused indices and then the next loop
698 /// nest assigns these indices for undef values positions.
699 /// As an example below Order has two undef positions and they have assigned
700 /// values 3 and 7 respectively:
701 /// before:  6 9 5 4 9 2 1 0
702 /// after:   6 3 5 4 7 2 1 0
703 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) {
704   const unsigned Sz = Order.size();
705   SmallBitVector UnusedIndices(Sz, /*t=*/true);
706   SmallBitVector MaskedIndices(Sz);
707   for (unsigned I = 0; I < Sz; ++I) {
708     if (Order[I] < Sz)
709       UnusedIndices.reset(Order[I]);
710     else
711       MaskedIndices.set(I);
712   }
713   if (MaskedIndices.none())
714     return;
715   assert(UnusedIndices.count() == MaskedIndices.count() &&
716          "Non-synced masked/available indices.");
717   int Idx = UnusedIndices.find_first();
718   int MIdx = MaskedIndices.find_first();
719   while (MIdx >= 0) {
720     assert(Idx >= 0 && "Indices must be synced.");
721     Order[MIdx] = Idx;
722     Idx = UnusedIndices.find_next(Idx);
723     MIdx = MaskedIndices.find_next(MIdx);
724   }
725 }
726 
727 namespace llvm {
728 
729 static void inversePermutation(ArrayRef<unsigned> Indices,
730                                SmallVectorImpl<int> &Mask) {
731   Mask.clear();
732   const unsigned E = Indices.size();
733   Mask.resize(E, UndefMaskElem);
734   for (unsigned I = 0; I < E; ++I)
735     Mask[Indices[I]] = I;
736 }
737 
738 /// \returns inserting index of InsertElement or InsertValue instruction,
739 /// using Offset as base offset for index.
740 static Optional<unsigned> getInsertIndex(const Value *InsertInst,
741                                          unsigned Offset = 0) {
742   int Index = Offset;
743   if (const auto *IE = dyn_cast<InsertElementInst>(InsertInst)) {
744     if (const auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) {
745       auto *VT = cast<FixedVectorType>(IE->getType());
746       if (CI->getValue().uge(VT->getNumElements()))
747         return None;
748       Index *= VT->getNumElements();
749       Index += CI->getZExtValue();
750       return Index;
751     }
752     return None;
753   }
754 
755   const auto *IV = cast<InsertValueInst>(InsertInst);
756   Type *CurrentType = IV->getType();
757   for (unsigned I : IV->indices()) {
758     if (const auto *ST = dyn_cast<StructType>(CurrentType)) {
759       Index *= ST->getNumElements();
760       CurrentType = ST->getElementType(I);
761     } else if (const auto *AT = dyn_cast<ArrayType>(CurrentType)) {
762       Index *= AT->getNumElements();
763       CurrentType = AT->getElementType();
764     } else {
765       return None;
766     }
767     Index += I;
768   }
769   return Index;
770 }
771 
772 /// Reorders the list of scalars in accordance with the given \p Mask.
773 static void reorderScalars(SmallVectorImpl<Value *> &Scalars,
774                            ArrayRef<int> Mask) {
775   assert(!Mask.empty() && "Expected non-empty mask.");
776   SmallVector<Value *> Prev(Scalars.size(),
777                             UndefValue::get(Scalars.front()->getType()));
778   Prev.swap(Scalars);
779   for (unsigned I = 0, E = Prev.size(); I < E; ++I)
780     if (Mask[I] != UndefMaskElem)
781       Scalars[Mask[I]] = Prev[I];
782 }
783 
784 /// Checks if the provided value does not require scheduling. It does not
785 /// require scheduling if this is not an instruction or it is an instruction
786 /// that does not read/write memory and all operands are either not instructions
787 /// or phi nodes or instructions from different blocks.
788 static bool areAllOperandsNonInsts(Value *V) {
789   auto *I = dyn_cast<Instruction>(V);
790   if (!I)
791     return true;
792   return !mayHaveNonDefUseDependency(*I) &&
793     all_of(I->operands(), [I](Value *V) {
794       auto *IO = dyn_cast<Instruction>(V);
795       if (!IO)
796         return true;
797       return isa<PHINode>(IO) || IO->getParent() != I->getParent();
798     });
799 }
800 
801 /// Checks if the provided value does not require scheduling. It does not
802 /// require scheduling if this is not an instruction or it is an instruction
803 /// that does not read/write memory and all users are phi nodes or instructions
804 /// from the different blocks.
805 static bool isUsedOutsideBlock(Value *V) {
806   auto *I = dyn_cast<Instruction>(V);
807   if (!I)
808     return true;
809   // Limits the number of uses to save compile time.
810   constexpr int UsesLimit = 8;
811   return !I->mayReadOrWriteMemory() && !I->hasNUsesOrMore(UsesLimit) &&
812          all_of(I->users(), [I](User *U) {
813            auto *IU = dyn_cast<Instruction>(U);
814            if (!IU)
815              return true;
816            return IU->getParent() != I->getParent() || isa<PHINode>(IU);
817          });
818 }
819 
820 /// Checks if the specified value does not require scheduling. It does not
821 /// require scheduling if all operands and all users do not need to be scheduled
822 /// in the current basic block.
823 static bool doesNotNeedToBeScheduled(Value *V) {
824   return areAllOperandsNonInsts(V) && isUsedOutsideBlock(V);
825 }
826 
827 /// Checks if the specified array of instructions does not require scheduling.
828 /// It is so if all either instructions have operands that do not require
829 /// scheduling or their users do not require scheduling since they are phis or
830 /// in other basic blocks.
831 static bool doesNotNeedToSchedule(ArrayRef<Value *> VL) {
832   return !VL.empty() &&
833          (all_of(VL, isUsedOutsideBlock) || all_of(VL, areAllOperandsNonInsts));
834 }
835 
836 namespace slpvectorizer {
837 
838 /// Bottom Up SLP Vectorizer.
839 class BoUpSLP {
840   struct TreeEntry;
841   struct ScheduleData;
842 
843 public:
844   using ValueList = SmallVector<Value *, 8>;
845   using InstrList = SmallVector<Instruction *, 16>;
846   using ValueSet = SmallPtrSet<Value *, 16>;
847   using StoreList = SmallVector<StoreInst *, 8>;
848   using ExtraValueToDebugLocsMap =
849       MapVector<Value *, SmallVector<Instruction *, 2>>;
850   using OrdersType = SmallVector<unsigned, 4>;
851 
852   BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
853           TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li,
854           DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB,
855           const DataLayout *DL, OptimizationRemarkEmitter *ORE)
856       : BatchAA(*Aa), F(Func), SE(Se), TTI(Tti), TLI(TLi), LI(Li),
857         DT(Dt), AC(AC), DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) {
858     CodeMetrics::collectEphemeralValues(F, AC, EphValues);
859     // Use the vector register size specified by the target unless overridden
860     // by a command-line option.
861     // TODO: It would be better to limit the vectorization factor based on
862     //       data type rather than just register size. For example, x86 AVX has
863     //       256-bit registers, but it does not support integer operations
864     //       at that width (that requires AVX2).
865     if (MaxVectorRegSizeOption.getNumOccurrences())
866       MaxVecRegSize = MaxVectorRegSizeOption;
867     else
868       MaxVecRegSize =
869           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
870               .getFixedSize();
871 
872     if (MinVectorRegSizeOption.getNumOccurrences())
873       MinVecRegSize = MinVectorRegSizeOption;
874     else
875       MinVecRegSize = TTI->getMinVectorRegisterBitWidth();
876   }
877 
878   /// Vectorize the tree that starts with the elements in \p VL.
879   /// Returns the vectorized root.
880   Value *vectorizeTree();
881 
882   /// Vectorize the tree but with the list of externally used values \p
883   /// ExternallyUsedValues. Values in this MapVector can be replaced but the
884   /// generated extractvalue instructions.
885   Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues);
886 
887   /// \returns the cost incurred by unwanted spills and fills, caused by
888   /// holding live values over call sites.
889   InstructionCost getSpillCost() const;
890 
891   /// \returns the vectorization cost of the subtree that starts at \p VL.
892   /// A negative number means that this is profitable.
893   InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None);
894 
895   /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
896   /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
897   void buildTree(ArrayRef<Value *> Roots,
898                  const SmallDenseSet<Value *> &UserIgnoreLst);
899 
900   /// Construct a vectorizable tree that starts at \p Roots.
901   void buildTree(ArrayRef<Value *> Roots);
902 
903   /// Builds external uses of the vectorized scalars, i.e. the list of
904   /// vectorized scalars to be extracted, their lanes and their scalar users. \p
905   /// ExternallyUsedValues contains additional list of external uses to handle
906   /// vectorization of reductions.
907   void
908   buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {});
909 
910   /// Clear the internal data structures that are created by 'buildTree'.
911   void deleteTree() {
912     VectorizableTree.clear();
913     ScalarToTreeEntry.clear();
914     MustGather.clear();
915     ExternalUses.clear();
916     for (auto &Iter : BlocksSchedules) {
917       BlockScheduling *BS = Iter.second.get();
918       BS->clear();
919     }
920     MinBWs.clear();
921     InstrElementSize.clear();
922     UserIgnoreList = nullptr;
923   }
924 
925   unsigned getTreeSize() const { return VectorizableTree.size(); }
926 
927   /// Perform LICM and CSE on the newly generated gather sequences.
928   void optimizeGatherSequence();
929 
930   /// Checks if the specified gather tree entry \p TE can be represented as a
931   /// shuffled vector entry + (possibly) permutation with other gathers. It
932   /// implements the checks only for possibly ordered scalars (Loads,
933   /// ExtractElement, ExtractValue), which can be part of the graph.
934   Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE);
935 
936   /// Sort loads into increasing pointers offsets to allow greater clustering.
937   Optional<OrdersType> findPartiallyOrderedLoads(const TreeEntry &TE);
938 
939   /// Gets reordering data for the given tree entry. If the entry is vectorized
940   /// - just return ReorderIndices, otherwise check if the scalars can be
941   /// reordered and return the most optimal order.
942   /// \param TopToBottom If true, include the order of vectorized stores and
943   /// insertelement nodes, otherwise skip them.
944   Optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom);
945 
946   /// Reorders the current graph to the most profitable order starting from the
947   /// root node to the leaf nodes. The best order is chosen only from the nodes
948   /// of the same size (vectorization factor). Smaller nodes are considered
949   /// parts of subgraph with smaller VF and they are reordered independently. We
950   /// can make it because we still need to extend smaller nodes to the wider VF
951   /// and we can merge reordering shuffles with the widening shuffles.
952   void reorderTopToBottom();
953 
954   /// Reorders the current graph to the most profitable order starting from
955   /// leaves to the root. It allows to rotate small subgraphs and reduce the
956   /// number of reshuffles if the leaf nodes use the same order. In this case we
957   /// can merge the orders and just shuffle user node instead of shuffling its
958   /// operands. Plus, even the leaf nodes have different orders, it allows to
959   /// sink reordering in the graph closer to the root node and merge it later
960   /// during analysis.
961   void reorderBottomToTop(bool IgnoreReorder = false);
962 
963   /// \return The vector element size in bits to use when vectorizing the
964   /// expression tree ending at \p V. If V is a store, the size is the width of
965   /// the stored value. Otherwise, the size is the width of the largest loaded
966   /// value reaching V. This method is used by the vectorizer to calculate
967   /// vectorization factors.
968   unsigned getVectorElementSize(Value *V);
969 
970   /// Compute the minimum type sizes required to represent the entries in a
971   /// vectorizable tree.
972   void computeMinimumValueSizes();
973 
974   // \returns maximum vector register size as set by TTI or overridden by cl::opt.
975   unsigned getMaxVecRegSize() const {
976     return MaxVecRegSize;
977   }
978 
979   // \returns minimum vector register size as set by cl::opt.
980   unsigned getMinVecRegSize() const {
981     return MinVecRegSize;
982   }
983 
984   unsigned getMinVF(unsigned Sz) const {
985     return std::max(2U, getMinVecRegSize() / Sz);
986   }
987 
988   unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const {
989     unsigned MaxVF = MaxVFOption.getNumOccurrences() ?
990       MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode);
991     return MaxVF ? MaxVF : UINT_MAX;
992   }
993 
994   /// Check if homogeneous aggregate is isomorphic to some VectorType.
995   /// Accepts homogeneous multidimensional aggregate of scalars/vectors like
996   /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> },
997   /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on.
998   ///
999   /// \returns number of elements in vector if isomorphism exists, 0 otherwise.
1000   unsigned canMapToVector(Type *T, const DataLayout &DL) const;
1001 
1002   /// \returns True if the VectorizableTree is both tiny and not fully
1003   /// vectorizable. We do not vectorize such trees.
1004   bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const;
1005 
1006   /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values
1007   /// can be load combined in the backend. Load combining may not be allowed in
1008   /// the IR optimizer, so we do not want to alter the pattern. For example,
1009   /// partially transforming a scalar bswap() pattern into vector code is
1010   /// effectively impossible for the backend to undo.
1011   /// TODO: If load combining is allowed in the IR optimizer, this analysis
1012   ///       may not be necessary.
1013   bool isLoadCombineReductionCandidate(RecurKind RdxKind) const;
1014 
1015   /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values
1016   /// can be load combined in the backend. Load combining may not be allowed in
1017   /// the IR optimizer, so we do not want to alter the pattern. For example,
1018   /// partially transforming a scalar bswap() pattern into vector code is
1019   /// effectively impossible for the backend to undo.
1020   /// TODO: If load combining is allowed in the IR optimizer, this analysis
1021   ///       may not be necessary.
1022   bool isLoadCombineCandidate() const;
1023 
1024   OptimizationRemarkEmitter *getORE() { return ORE; }
1025 
1026   /// This structure holds any data we need about the edges being traversed
1027   /// during buildTree_rec(). We keep track of:
1028   /// (i) the user TreeEntry index, and
1029   /// (ii) the index of the edge.
1030   struct EdgeInfo {
1031     EdgeInfo() = default;
1032     EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx)
1033         : UserTE(UserTE), EdgeIdx(EdgeIdx) {}
1034     /// The user TreeEntry.
1035     TreeEntry *UserTE = nullptr;
1036     /// The operand index of the use.
1037     unsigned EdgeIdx = UINT_MAX;
1038 #ifndef NDEBUG
1039     friend inline raw_ostream &operator<<(raw_ostream &OS,
1040                                           const BoUpSLP::EdgeInfo &EI) {
1041       EI.dump(OS);
1042       return OS;
1043     }
1044     /// Debug print.
1045     void dump(raw_ostream &OS) const {
1046       OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null")
1047          << " EdgeIdx:" << EdgeIdx << "}";
1048     }
1049     LLVM_DUMP_METHOD void dump() const { dump(dbgs()); }
1050 #endif
1051   };
1052 
1053   /// A helper class used for scoring candidates for two consecutive lanes.
1054   class LookAheadHeuristics {
1055     const DataLayout &DL;
1056     ScalarEvolution &SE;
1057     const BoUpSLP &R;
1058     int NumLanes; // Total number of lanes (aka vectorization factor).
1059     int MaxLevel; // The maximum recursion depth for accumulating score.
1060 
1061   public:
1062     LookAheadHeuristics(const DataLayout &DL, ScalarEvolution &SE,
1063                         const BoUpSLP &R, int NumLanes, int MaxLevel)
1064         : DL(DL), SE(SE), R(R), NumLanes(NumLanes), MaxLevel(MaxLevel) {}
1065 
1066     // The hard-coded scores listed here are not very important, though it shall
1067     // be higher for better matches to improve the resulting cost. When
1068     // computing the scores of matching one sub-tree with another, we are
1069     // basically counting the number of values that are matching. So even if all
1070     // scores are set to 1, we would still get a decent matching result.
1071     // However, sometimes we have to break ties. For example we may have to
1072     // choose between matching loads vs matching opcodes. This is what these
1073     // scores are helping us with: they provide the order of preference. Also,
1074     // this is important if the scalar is externally used or used in another
1075     // tree entry node in the different lane.
1076 
1077     /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]).
1078     static const int ScoreConsecutiveLoads = 4;
1079     /// The same load multiple times. This should have a better score than
1080     /// `ScoreSplat` because it in x86 for a 2-lane vector we can represent it
1081     /// with `movddup (%reg), xmm0` which has a throughput of 0.5 versus 0.5 for
1082     /// a vector load and 1.0 for a broadcast.
1083     static const int ScoreSplatLoads = 3;
1084     /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]).
1085     static const int ScoreReversedLoads = 3;
1086     /// ExtractElementInst from same vector and consecutive indexes.
1087     static const int ScoreConsecutiveExtracts = 4;
1088     /// ExtractElementInst from same vector and reversed indices.
1089     static const int ScoreReversedExtracts = 3;
1090     /// Constants.
1091     static const int ScoreConstants = 2;
1092     /// Instructions with the same opcode.
1093     static const int ScoreSameOpcode = 2;
1094     /// Instructions with alt opcodes (e.g, add + sub).
1095     static const int ScoreAltOpcodes = 1;
1096     /// Identical instructions (a.k.a. splat or broadcast).
1097     static const int ScoreSplat = 1;
1098     /// Matching with an undef is preferable to failing.
1099     static const int ScoreUndef = 1;
1100     /// Score for failing to find a decent match.
1101     static const int ScoreFail = 0;
1102     /// Score if all users are vectorized.
1103     static const int ScoreAllUserVectorized = 1;
1104 
1105     /// \returns the score of placing \p V1 and \p V2 in consecutive lanes.
1106     /// \p U1 and \p U2 are the users of \p V1 and \p V2.
1107     /// Also, checks if \p V1 and \p V2 are compatible with instructions in \p
1108     /// MainAltOps.
1109     int getShallowScore(Value *V1, Value *V2, Instruction *U1, Instruction *U2,
1110                         ArrayRef<Value *> MainAltOps) const {
1111       if (V1 == V2) {
1112         if (isa<LoadInst>(V1)) {
1113           // Retruns true if the users of V1 and V2 won't need to be extracted.
1114           auto AllUsersAreInternal = [U1, U2, this](Value *V1, Value *V2) {
1115             // Bail out if we have too many uses to save compilation time.
1116             static constexpr unsigned Limit = 8;
1117             if (V1->hasNUsesOrMore(Limit) || V2->hasNUsesOrMore(Limit))
1118               return false;
1119 
1120             auto AllUsersVectorized = [U1, U2, this](Value *V) {
1121               return llvm::all_of(V->users(), [U1, U2, this](Value *U) {
1122                 return U == U1 || U == U2 || R.getTreeEntry(U) != nullptr;
1123               });
1124             };
1125             return AllUsersVectorized(V1) && AllUsersVectorized(V2);
1126           };
1127           // A broadcast of a load can be cheaper on some targets.
1128           if (R.TTI->isLegalBroadcastLoad(V1->getType(),
1129                                           ElementCount::getFixed(NumLanes)) &&
1130               ((int)V1->getNumUses() == NumLanes ||
1131                AllUsersAreInternal(V1, V2)))
1132             return LookAheadHeuristics::ScoreSplatLoads;
1133         }
1134         return LookAheadHeuristics::ScoreSplat;
1135       }
1136 
1137       auto *LI1 = dyn_cast<LoadInst>(V1);
1138       auto *LI2 = dyn_cast<LoadInst>(V2);
1139       if (LI1 && LI2) {
1140         if (LI1->getParent() != LI2->getParent())
1141           return LookAheadHeuristics::ScoreFail;
1142 
1143         Optional<int> Dist = getPointersDiff(
1144             LI1->getType(), LI1->getPointerOperand(), LI2->getType(),
1145             LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true);
1146         if (!Dist || *Dist == 0)
1147           return LookAheadHeuristics::ScoreFail;
1148         // The distance is too large - still may be profitable to use masked
1149         // loads/gathers.
1150         if (std::abs(*Dist) > NumLanes / 2)
1151           return LookAheadHeuristics::ScoreAltOpcodes;
1152         // This still will detect consecutive loads, but we might have "holes"
1153         // in some cases. It is ok for non-power-2 vectorization and may produce
1154         // better results. It should not affect current vectorization.
1155         return (*Dist > 0) ? LookAheadHeuristics::ScoreConsecutiveLoads
1156                            : LookAheadHeuristics::ScoreReversedLoads;
1157       }
1158 
1159       auto *C1 = dyn_cast<Constant>(V1);
1160       auto *C2 = dyn_cast<Constant>(V2);
1161       if (C1 && C2)
1162         return LookAheadHeuristics::ScoreConstants;
1163 
1164       // Extracts from consecutive indexes of the same vector better score as
1165       // the extracts could be optimized away.
1166       Value *EV1;
1167       ConstantInt *Ex1Idx;
1168       if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) {
1169         // Undefs are always profitable for extractelements.
1170         if (isa<UndefValue>(V2))
1171           return LookAheadHeuristics::ScoreConsecutiveExtracts;
1172         Value *EV2 = nullptr;
1173         ConstantInt *Ex2Idx = nullptr;
1174         if (match(V2,
1175                   m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx),
1176                                                          m_Undef())))) {
1177           // Undefs are always profitable for extractelements.
1178           if (!Ex2Idx)
1179             return LookAheadHeuristics::ScoreConsecutiveExtracts;
1180           if (isUndefVector(EV2) && EV2->getType() == EV1->getType())
1181             return LookAheadHeuristics::ScoreConsecutiveExtracts;
1182           if (EV2 == EV1) {
1183             int Idx1 = Ex1Idx->getZExtValue();
1184             int Idx2 = Ex2Idx->getZExtValue();
1185             int Dist = Idx2 - Idx1;
1186             // The distance is too large - still may be profitable to use
1187             // shuffles.
1188             if (std::abs(Dist) == 0)
1189               return LookAheadHeuristics::ScoreSplat;
1190             if (std::abs(Dist) > NumLanes / 2)
1191               return LookAheadHeuristics::ScoreSameOpcode;
1192             return (Dist > 0) ? LookAheadHeuristics::ScoreConsecutiveExtracts
1193                               : LookAheadHeuristics::ScoreReversedExtracts;
1194           }
1195           return LookAheadHeuristics::ScoreAltOpcodes;
1196         }
1197         return LookAheadHeuristics::ScoreFail;
1198       }
1199 
1200       auto *I1 = dyn_cast<Instruction>(V1);
1201       auto *I2 = dyn_cast<Instruction>(V2);
1202       if (I1 && I2) {
1203         if (I1->getParent() != I2->getParent())
1204           return LookAheadHeuristics::ScoreFail;
1205         SmallVector<Value *, 4> Ops(MainAltOps.begin(), MainAltOps.end());
1206         Ops.push_back(I1);
1207         Ops.push_back(I2);
1208         InstructionsState S = getSameOpcode(Ops);
1209         // Note: Only consider instructions with <= 2 operands to avoid
1210         // complexity explosion.
1211         if (S.getOpcode() &&
1212             (S.MainOp->getNumOperands() <= 2 || !MainAltOps.empty() ||
1213              !S.isAltShuffle()) &&
1214             all_of(Ops, [&S](Value *V) {
1215               return cast<Instruction>(V)->getNumOperands() ==
1216                      S.MainOp->getNumOperands();
1217             }))
1218           return S.isAltShuffle() ? LookAheadHeuristics::ScoreAltOpcodes
1219                                   : LookAheadHeuristics::ScoreSameOpcode;
1220       }
1221 
1222       if (isa<UndefValue>(V2))
1223         return LookAheadHeuristics::ScoreUndef;
1224 
1225       return LookAheadHeuristics::ScoreFail;
1226     }
1227 
1228     /// Go through the operands of \p LHS and \p RHS recursively until
1229     /// MaxLevel, and return the cummulative score. \p U1 and \p U2 are
1230     /// the users of \p LHS and \p RHS (that is \p LHS and \p RHS are operands
1231     /// of \p U1 and \p U2), except at the beginning of the recursion where
1232     /// these are set to nullptr.
1233     ///
1234     /// For example:
1235     /// \verbatim
1236     ///  A[0]  B[0]  A[1]  B[1]  C[0] D[0]  B[1] A[1]
1237     ///     \ /         \ /         \ /        \ /
1238     ///      +           +           +          +
1239     ///     G1          G2          G3         G4
1240     /// \endverbatim
1241     /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at
1242     /// each level recursively, accumulating the score. It starts from matching
1243     /// the additions at level 0, then moves on to the loads (level 1). The
1244     /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and
1245     /// {B[0],B[1]} match with LookAheadHeuristics::ScoreConsecutiveLoads, while
1246     /// {A[0],C[0]} has a score of LookAheadHeuristics::ScoreFail.
1247     /// Please note that the order of the operands does not matter, as we
1248     /// evaluate the score of all profitable combinations of operands. In
1249     /// other words the score of G1 and G4 is the same as G1 and G2. This
1250     /// heuristic is based on ideas described in:
1251     ///   Look-ahead SLP: Auto-vectorization in the presence of commutative
1252     ///   operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha,
1253     ///   Luís F. W. Góes
1254     int getScoreAtLevelRec(Value *LHS, Value *RHS, Instruction *U1,
1255                            Instruction *U2, int CurrLevel,
1256                            ArrayRef<Value *> MainAltOps) const {
1257 
1258       // Get the shallow score of V1 and V2.
1259       int ShallowScoreAtThisLevel =
1260           getShallowScore(LHS, RHS, U1, U2, MainAltOps);
1261 
1262       // If reached MaxLevel,
1263       //  or if V1 and V2 are not instructions,
1264       //  or if they are SPLAT,
1265       //  or if they are not consecutive,
1266       //  or if profitable to vectorize loads or extractelements, early return
1267       //  the current cost.
1268       auto *I1 = dyn_cast<Instruction>(LHS);
1269       auto *I2 = dyn_cast<Instruction>(RHS);
1270       if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 ||
1271           ShallowScoreAtThisLevel == LookAheadHeuristics::ScoreFail ||
1272           (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) ||
1273             (I1->getNumOperands() > 2 && I2->getNumOperands() > 2) ||
1274             (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) &&
1275            ShallowScoreAtThisLevel))
1276         return ShallowScoreAtThisLevel;
1277       assert(I1 && I2 && "Should have early exited.");
1278 
1279       // Contains the I2 operand indexes that got matched with I1 operands.
1280       SmallSet<unsigned, 4> Op2Used;
1281 
1282       // Recursion towards the operands of I1 and I2. We are trying all possible
1283       // operand pairs, and keeping track of the best score.
1284       for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands();
1285            OpIdx1 != NumOperands1; ++OpIdx1) {
1286         // Try to pair op1I with the best operand of I2.
1287         int MaxTmpScore = 0;
1288         unsigned MaxOpIdx2 = 0;
1289         bool FoundBest = false;
1290         // If I2 is commutative try all combinations.
1291         unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1;
1292         unsigned ToIdx = isCommutative(I2)
1293                              ? I2->getNumOperands()
1294                              : std::min(I2->getNumOperands(), OpIdx1 + 1);
1295         assert(FromIdx <= ToIdx && "Bad index");
1296         for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) {
1297           // Skip operands already paired with OpIdx1.
1298           if (Op2Used.count(OpIdx2))
1299             continue;
1300           // Recursively calculate the cost at each level
1301           int TmpScore =
1302               getScoreAtLevelRec(I1->getOperand(OpIdx1), I2->getOperand(OpIdx2),
1303                                  I1, I2, CurrLevel + 1, None);
1304           // Look for the best score.
1305           if (TmpScore > LookAheadHeuristics::ScoreFail &&
1306               TmpScore > MaxTmpScore) {
1307             MaxTmpScore = TmpScore;
1308             MaxOpIdx2 = OpIdx2;
1309             FoundBest = true;
1310           }
1311         }
1312         if (FoundBest) {
1313           // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it.
1314           Op2Used.insert(MaxOpIdx2);
1315           ShallowScoreAtThisLevel += MaxTmpScore;
1316         }
1317       }
1318       return ShallowScoreAtThisLevel;
1319     }
1320   };
1321   /// A helper data structure to hold the operands of a vector of instructions.
1322   /// This supports a fixed vector length for all operand vectors.
1323   class VLOperands {
1324     /// For each operand we need (i) the value, and (ii) the opcode that it
1325     /// would be attached to if the expression was in a left-linearized form.
1326     /// This is required to avoid illegal operand reordering.
1327     /// For example:
1328     /// \verbatim
1329     ///                         0 Op1
1330     ///                         |/
1331     /// Op1 Op2   Linearized    + Op2
1332     ///   \ /     ---------->   |/
1333     ///    -                    -
1334     ///
1335     /// Op1 - Op2            (0 + Op1) - Op2
1336     /// \endverbatim
1337     ///
1338     /// Value Op1 is attached to a '+' operation, and Op2 to a '-'.
1339     ///
1340     /// Another way to think of this is to track all the operations across the
1341     /// path from the operand all the way to the root of the tree and to
1342     /// calculate the operation that corresponds to this path. For example, the
1343     /// path from Op2 to the root crosses the RHS of the '-', therefore the
1344     /// corresponding operation is a '-' (which matches the one in the
1345     /// linearized tree, as shown above).
1346     ///
1347     /// For lack of a better term, we refer to this operation as Accumulated
1348     /// Path Operation (APO).
1349     struct OperandData {
1350       OperandData() = default;
1351       OperandData(Value *V, bool APO, bool IsUsed)
1352           : V(V), APO(APO), IsUsed(IsUsed) {}
1353       /// The operand value.
1354       Value *V = nullptr;
1355       /// TreeEntries only allow a single opcode, or an alternate sequence of
1356       /// them (e.g, +, -). Therefore, we can safely use a boolean value for the
1357       /// APO. It is set to 'true' if 'V' is attached to an inverse operation
1358       /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise
1359       /// (e.g., Add/Mul)
1360       bool APO = false;
1361       /// Helper data for the reordering function.
1362       bool IsUsed = false;
1363     };
1364 
1365     /// During operand reordering, we are trying to select the operand at lane
1366     /// that matches best with the operand at the neighboring lane. Our
1367     /// selection is based on the type of value we are looking for. For example,
1368     /// if the neighboring lane has a load, we need to look for a load that is
1369     /// accessing a consecutive address. These strategies are summarized in the
1370     /// 'ReorderingMode' enumerator.
1371     enum class ReorderingMode {
1372       Load,     ///< Matching loads to consecutive memory addresses
1373       Opcode,   ///< Matching instructions based on opcode (same or alternate)
1374       Constant, ///< Matching constants
1375       Splat,    ///< Matching the same instruction multiple times (broadcast)
1376       Failed,   ///< We failed to create a vectorizable group
1377     };
1378 
1379     using OperandDataVec = SmallVector<OperandData, 2>;
1380 
1381     /// A vector of operand vectors.
1382     SmallVector<OperandDataVec, 4> OpsVec;
1383 
1384     const DataLayout &DL;
1385     ScalarEvolution &SE;
1386     const BoUpSLP &R;
1387 
1388     /// \returns the operand data at \p OpIdx and \p Lane.
1389     OperandData &getData(unsigned OpIdx, unsigned Lane) {
1390       return OpsVec[OpIdx][Lane];
1391     }
1392 
1393     /// \returns the operand data at \p OpIdx and \p Lane. Const version.
1394     const OperandData &getData(unsigned OpIdx, unsigned Lane) const {
1395       return OpsVec[OpIdx][Lane];
1396     }
1397 
1398     /// Clears the used flag for all entries.
1399     void clearUsed() {
1400       for (unsigned OpIdx = 0, NumOperands = getNumOperands();
1401            OpIdx != NumOperands; ++OpIdx)
1402         for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
1403              ++Lane)
1404           OpsVec[OpIdx][Lane].IsUsed = false;
1405     }
1406 
1407     /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2.
1408     void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) {
1409       std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]);
1410     }
1411 
1412     /// \param Lane lane of the operands under analysis.
1413     /// \param OpIdx operand index in \p Lane lane we're looking the best
1414     /// candidate for.
1415     /// \param Idx operand index of the current candidate value.
1416     /// \returns The additional score due to possible broadcasting of the
1417     /// elements in the lane. It is more profitable to have power-of-2 unique
1418     /// elements in the lane, it will be vectorized with higher probability
1419     /// after removing duplicates. Currently the SLP vectorizer supports only
1420     /// vectorization of the power-of-2 number of unique scalars.
1421     int getSplatScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const {
1422       Value *IdxLaneV = getData(Idx, Lane).V;
1423       if (!isa<Instruction>(IdxLaneV) || IdxLaneV == getData(OpIdx, Lane).V)
1424         return 0;
1425       SmallPtrSet<Value *, 4> Uniques;
1426       for (unsigned Ln = 0, E = getNumLanes(); Ln < E; ++Ln) {
1427         if (Ln == Lane)
1428           continue;
1429         Value *OpIdxLnV = getData(OpIdx, Ln).V;
1430         if (!isa<Instruction>(OpIdxLnV))
1431           return 0;
1432         Uniques.insert(OpIdxLnV);
1433       }
1434       int UniquesCount = Uniques.size();
1435       int UniquesCntWithIdxLaneV =
1436           Uniques.contains(IdxLaneV) ? UniquesCount : UniquesCount + 1;
1437       Value *OpIdxLaneV = getData(OpIdx, Lane).V;
1438       int UniquesCntWithOpIdxLaneV =
1439           Uniques.contains(OpIdxLaneV) ? UniquesCount : UniquesCount + 1;
1440       if (UniquesCntWithIdxLaneV == UniquesCntWithOpIdxLaneV)
1441         return 0;
1442       return (PowerOf2Ceil(UniquesCntWithOpIdxLaneV) -
1443               UniquesCntWithOpIdxLaneV) -
1444              (PowerOf2Ceil(UniquesCntWithIdxLaneV) - UniquesCntWithIdxLaneV);
1445     }
1446 
1447     /// \param Lane lane of the operands under analysis.
1448     /// \param OpIdx operand index in \p Lane lane we're looking the best
1449     /// candidate for.
1450     /// \param Idx operand index of the current candidate value.
1451     /// \returns The additional score for the scalar which users are all
1452     /// vectorized.
1453     int getExternalUseScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const {
1454       Value *IdxLaneV = getData(Idx, Lane).V;
1455       Value *OpIdxLaneV = getData(OpIdx, Lane).V;
1456       // Do not care about number of uses for vector-like instructions
1457       // (extractelement/extractvalue with constant indices), they are extracts
1458       // themselves and already externally used. Vectorization of such
1459       // instructions does not add extra extractelement instruction, just may
1460       // remove it.
1461       if (isVectorLikeInstWithConstOps(IdxLaneV) &&
1462           isVectorLikeInstWithConstOps(OpIdxLaneV))
1463         return LookAheadHeuristics::ScoreAllUserVectorized;
1464       auto *IdxLaneI = dyn_cast<Instruction>(IdxLaneV);
1465       if (!IdxLaneI || !isa<Instruction>(OpIdxLaneV))
1466         return 0;
1467       return R.areAllUsersVectorized(IdxLaneI, None)
1468                  ? LookAheadHeuristics::ScoreAllUserVectorized
1469                  : 0;
1470     }
1471 
1472     /// Score scaling factor for fully compatible instructions but with
1473     /// different number of external uses. Allows better selection of the
1474     /// instructions with less external uses.
1475     static const int ScoreScaleFactor = 10;
1476 
1477     /// \Returns the look-ahead score, which tells us how much the sub-trees
1478     /// rooted at \p LHS and \p RHS match, the more they match the higher the
1479     /// score. This helps break ties in an informed way when we cannot decide on
1480     /// the order of the operands by just considering the immediate
1481     /// predecessors.
1482     int getLookAheadScore(Value *LHS, Value *RHS, ArrayRef<Value *> MainAltOps,
1483                           int Lane, unsigned OpIdx, unsigned Idx,
1484                           bool &IsUsed) {
1485       LookAheadHeuristics LookAhead(DL, SE, R, getNumLanes(),
1486                                     LookAheadMaxDepth);
1487       // Keep track of the instruction stack as we recurse into the operands
1488       // during the look-ahead score exploration.
1489       int Score =
1490           LookAhead.getScoreAtLevelRec(LHS, RHS, /*U1=*/nullptr, /*U2=*/nullptr,
1491                                        /*CurrLevel=*/1, MainAltOps);
1492       if (Score) {
1493         int SplatScore = getSplatScore(Lane, OpIdx, Idx);
1494         if (Score <= -SplatScore) {
1495           // Set the minimum score for splat-like sequence to avoid setting
1496           // failed state.
1497           Score = 1;
1498         } else {
1499           Score += SplatScore;
1500           // Scale score to see the difference between different operands
1501           // and similar operands but all vectorized/not all vectorized
1502           // uses. It does not affect actual selection of the best
1503           // compatible operand in general, just allows to select the
1504           // operand with all vectorized uses.
1505           Score *= ScoreScaleFactor;
1506           Score += getExternalUseScore(Lane, OpIdx, Idx);
1507           IsUsed = true;
1508         }
1509       }
1510       return Score;
1511     }
1512 
1513     /// Best defined scores per lanes between the passes. Used to choose the
1514     /// best operand (with the highest score) between the passes.
1515     /// The key - {Operand Index, Lane}.
1516     /// The value - the best score between the passes for the lane and the
1517     /// operand.
1518     SmallDenseMap<std::pair<unsigned, unsigned>, unsigned, 8>
1519         BestScoresPerLanes;
1520 
1521     // Search all operands in Ops[*][Lane] for the one that matches best
1522     // Ops[OpIdx][LastLane] and return its opreand index.
1523     // If no good match can be found, return None.
1524     Optional<unsigned> getBestOperand(unsigned OpIdx, int Lane, int LastLane,
1525                                       ArrayRef<ReorderingMode> ReorderingModes,
1526                                       ArrayRef<Value *> MainAltOps) {
1527       unsigned NumOperands = getNumOperands();
1528 
1529       // The operand of the previous lane at OpIdx.
1530       Value *OpLastLane = getData(OpIdx, LastLane).V;
1531 
1532       // Our strategy mode for OpIdx.
1533       ReorderingMode RMode = ReorderingModes[OpIdx];
1534       if (RMode == ReorderingMode::Failed)
1535         return None;
1536 
1537       // The linearized opcode of the operand at OpIdx, Lane.
1538       bool OpIdxAPO = getData(OpIdx, Lane).APO;
1539 
1540       // The best operand index and its score.
1541       // Sometimes we have more than one option (e.g., Opcode and Undefs), so we
1542       // are using the score to differentiate between the two.
1543       struct BestOpData {
1544         Optional<unsigned> Idx = None;
1545         unsigned Score = 0;
1546       } BestOp;
1547       BestOp.Score =
1548           BestScoresPerLanes.try_emplace(std::make_pair(OpIdx, Lane), 0)
1549               .first->second;
1550 
1551       // Track if the operand must be marked as used. If the operand is set to
1552       // Score 1 explicitly (because of non power-of-2 unique scalars, we may
1553       // want to reestimate the operands again on the following iterations).
1554       bool IsUsed =
1555           RMode == ReorderingMode::Splat || RMode == ReorderingMode::Constant;
1556       // Iterate through all unused operands and look for the best.
1557       for (unsigned Idx = 0; Idx != NumOperands; ++Idx) {
1558         // Get the operand at Idx and Lane.
1559         OperandData &OpData = getData(Idx, Lane);
1560         Value *Op = OpData.V;
1561         bool OpAPO = OpData.APO;
1562 
1563         // Skip already selected operands.
1564         if (OpData.IsUsed)
1565           continue;
1566 
1567         // Skip if we are trying to move the operand to a position with a
1568         // different opcode in the linearized tree form. This would break the
1569         // semantics.
1570         if (OpAPO != OpIdxAPO)
1571           continue;
1572 
1573         // Look for an operand that matches the current mode.
1574         switch (RMode) {
1575         case ReorderingMode::Load:
1576         case ReorderingMode::Constant:
1577         case ReorderingMode::Opcode: {
1578           bool LeftToRight = Lane > LastLane;
1579           Value *OpLeft = (LeftToRight) ? OpLastLane : Op;
1580           Value *OpRight = (LeftToRight) ? Op : OpLastLane;
1581           int Score = getLookAheadScore(OpLeft, OpRight, MainAltOps, Lane,
1582                                         OpIdx, Idx, IsUsed);
1583           if (Score > static_cast<int>(BestOp.Score)) {
1584             BestOp.Idx = Idx;
1585             BestOp.Score = Score;
1586             BestScoresPerLanes[std::make_pair(OpIdx, Lane)] = Score;
1587           }
1588           break;
1589         }
1590         case ReorderingMode::Splat:
1591           if (Op == OpLastLane)
1592             BestOp.Idx = Idx;
1593           break;
1594         case ReorderingMode::Failed:
1595           llvm_unreachable("Not expected Failed reordering mode.");
1596         }
1597       }
1598 
1599       if (BestOp.Idx) {
1600         getData(BestOp.Idx.getValue(), Lane).IsUsed = IsUsed;
1601         return BestOp.Idx;
1602       }
1603       // If we could not find a good match return None.
1604       return None;
1605     }
1606 
1607     /// Helper for reorderOperandVecs.
1608     /// \returns the lane that we should start reordering from. This is the one
1609     /// which has the least number of operands that can freely move about or
1610     /// less profitable because it already has the most optimal set of operands.
1611     unsigned getBestLaneToStartReordering() const {
1612       unsigned Min = UINT_MAX;
1613       unsigned SameOpNumber = 0;
1614       // std::pair<unsigned, unsigned> is used to implement a simple voting
1615       // algorithm and choose the lane with the least number of operands that
1616       // can freely move about or less profitable because it already has the
1617       // most optimal set of operands. The first unsigned is a counter for
1618       // voting, the second unsigned is the counter of lanes with instructions
1619       // with same/alternate opcodes and same parent basic block.
1620       MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap;
1621       // Try to be closer to the original results, if we have multiple lanes
1622       // with same cost. If 2 lanes have the same cost, use the one with the
1623       // lowest index.
1624       for (int I = getNumLanes(); I > 0; --I) {
1625         unsigned Lane = I - 1;
1626         OperandsOrderData NumFreeOpsHash =
1627             getMaxNumOperandsThatCanBeReordered(Lane);
1628         // Compare the number of operands that can move and choose the one with
1629         // the least number.
1630         if (NumFreeOpsHash.NumOfAPOs < Min) {
1631           Min = NumFreeOpsHash.NumOfAPOs;
1632           SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent;
1633           HashMap.clear();
1634           HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane);
1635         } else if (NumFreeOpsHash.NumOfAPOs == Min &&
1636                    NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) {
1637           // Select the most optimal lane in terms of number of operands that
1638           // should be moved around.
1639           SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent;
1640           HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane);
1641         } else if (NumFreeOpsHash.NumOfAPOs == Min &&
1642                    NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) {
1643           auto It = HashMap.find(NumFreeOpsHash.Hash);
1644           if (It == HashMap.end())
1645             HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane);
1646           else
1647             ++It->second.first;
1648         }
1649       }
1650       // Select the lane with the minimum counter.
1651       unsigned BestLane = 0;
1652       unsigned CntMin = UINT_MAX;
1653       for (const auto &Data : reverse(HashMap)) {
1654         if (Data.second.first < CntMin) {
1655           CntMin = Data.second.first;
1656           BestLane = Data.second.second;
1657         }
1658       }
1659       return BestLane;
1660     }
1661 
1662     /// Data structure that helps to reorder operands.
1663     struct OperandsOrderData {
1664       /// The best number of operands with the same APOs, which can be
1665       /// reordered.
1666       unsigned NumOfAPOs = UINT_MAX;
1667       /// Number of operands with the same/alternate instruction opcode and
1668       /// parent.
1669       unsigned NumOpsWithSameOpcodeParent = 0;
1670       /// Hash for the actual operands ordering.
1671       /// Used to count operands, actually their position id and opcode
1672       /// value. It is used in the voting mechanism to find the lane with the
1673       /// least number of operands that can freely move about or less profitable
1674       /// because it already has the most optimal set of operands. Can be
1675       /// replaced with SmallVector<unsigned> instead but hash code is faster
1676       /// and requires less memory.
1677       unsigned Hash = 0;
1678     };
1679     /// \returns the maximum number of operands that are allowed to be reordered
1680     /// for \p Lane and the number of compatible instructions(with the same
1681     /// parent/opcode). This is used as a heuristic for selecting the first lane
1682     /// to start operand reordering.
1683     OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const {
1684       unsigned CntTrue = 0;
1685       unsigned NumOperands = getNumOperands();
1686       // Operands with the same APO can be reordered. We therefore need to count
1687       // how many of them we have for each APO, like this: Cnt[APO] = x.
1688       // Since we only have two APOs, namely true and false, we can avoid using
1689       // a map. Instead we can simply count the number of operands that
1690       // correspond to one of them (in this case the 'true' APO), and calculate
1691       // the other by subtracting it from the total number of operands.
1692       // Operands with the same instruction opcode and parent are more
1693       // profitable since we don't need to move them in many cases, with a high
1694       // probability such lane already can be vectorized effectively.
1695       bool AllUndefs = true;
1696       unsigned NumOpsWithSameOpcodeParent = 0;
1697       Instruction *OpcodeI = nullptr;
1698       BasicBlock *Parent = nullptr;
1699       unsigned Hash = 0;
1700       for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1701         const OperandData &OpData = getData(OpIdx, Lane);
1702         if (OpData.APO)
1703           ++CntTrue;
1704         // Use Boyer-Moore majority voting for finding the majority opcode and
1705         // the number of times it occurs.
1706         if (auto *I = dyn_cast<Instruction>(OpData.V)) {
1707           if (!OpcodeI || !getSameOpcode({OpcodeI, I}).getOpcode() ||
1708               I->getParent() != Parent) {
1709             if (NumOpsWithSameOpcodeParent == 0) {
1710               NumOpsWithSameOpcodeParent = 1;
1711               OpcodeI = I;
1712               Parent = I->getParent();
1713             } else {
1714               --NumOpsWithSameOpcodeParent;
1715             }
1716           } else {
1717             ++NumOpsWithSameOpcodeParent;
1718           }
1719         }
1720         Hash = hash_combine(
1721             Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1)));
1722         AllUndefs = AllUndefs && isa<UndefValue>(OpData.V);
1723       }
1724       if (AllUndefs)
1725         return {};
1726       OperandsOrderData Data;
1727       Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue);
1728       Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent;
1729       Data.Hash = Hash;
1730       return Data;
1731     }
1732 
1733     /// Go through the instructions in VL and append their operands.
1734     void appendOperandsOfVL(ArrayRef<Value *> VL) {
1735       assert(!VL.empty() && "Bad VL");
1736       assert((empty() || VL.size() == getNumLanes()) &&
1737              "Expected same number of lanes");
1738       assert(isa<Instruction>(VL[0]) && "Expected instruction");
1739       unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands();
1740       OpsVec.resize(NumOperands);
1741       unsigned NumLanes = VL.size();
1742       for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1743         OpsVec[OpIdx].resize(NumLanes);
1744         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1745           assert(isa<Instruction>(VL[Lane]) && "Expected instruction");
1746           // Our tree has just 3 nodes: the root and two operands.
1747           // It is therefore trivial to get the APO. We only need to check the
1748           // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or
1749           // RHS operand. The LHS operand of both add and sub is never attached
1750           // to an inversese operation in the linearized form, therefore its APO
1751           // is false. The RHS is true only if VL[Lane] is an inverse operation.
1752 
1753           // Since operand reordering is performed on groups of commutative
1754           // operations or alternating sequences (e.g., +, -), we can safely
1755           // tell the inverse operations by checking commutativity.
1756           bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane]));
1757           bool APO = (OpIdx == 0) ? false : IsInverseOperation;
1758           OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx),
1759                                  APO, false};
1760         }
1761       }
1762     }
1763 
1764     /// \returns the number of operands.
1765     unsigned getNumOperands() const { return OpsVec.size(); }
1766 
1767     /// \returns the number of lanes.
1768     unsigned getNumLanes() const { return OpsVec[0].size(); }
1769 
1770     /// \returns the operand value at \p OpIdx and \p Lane.
1771     Value *getValue(unsigned OpIdx, unsigned Lane) const {
1772       return getData(OpIdx, Lane).V;
1773     }
1774 
1775     /// \returns true if the data structure is empty.
1776     bool empty() const { return OpsVec.empty(); }
1777 
1778     /// Clears the data.
1779     void clear() { OpsVec.clear(); }
1780 
1781     /// \Returns true if there are enough operands identical to \p Op to fill
1782     /// the whole vector.
1783     /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow.
1784     bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) {
1785       bool OpAPO = getData(OpIdx, Lane).APO;
1786       for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) {
1787         if (Ln == Lane)
1788           continue;
1789         // This is set to true if we found a candidate for broadcast at Lane.
1790         bool FoundCandidate = false;
1791         for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) {
1792           OperandData &Data = getData(OpI, Ln);
1793           if (Data.APO != OpAPO || Data.IsUsed)
1794             continue;
1795           if (Data.V == Op) {
1796             FoundCandidate = true;
1797             Data.IsUsed = true;
1798             break;
1799           }
1800         }
1801         if (!FoundCandidate)
1802           return false;
1803       }
1804       return true;
1805     }
1806 
1807   public:
1808     /// Initialize with all the operands of the instruction vector \p RootVL.
1809     VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL,
1810                ScalarEvolution &SE, const BoUpSLP &R)
1811         : DL(DL), SE(SE), R(R) {
1812       // Append all the operands of RootVL.
1813       appendOperandsOfVL(RootVL);
1814     }
1815 
1816     /// \Returns a value vector with the operands across all lanes for the
1817     /// opearnd at \p OpIdx.
1818     ValueList getVL(unsigned OpIdx) const {
1819       ValueList OpVL(OpsVec[OpIdx].size());
1820       assert(OpsVec[OpIdx].size() == getNumLanes() &&
1821              "Expected same num of lanes across all operands");
1822       for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane)
1823         OpVL[Lane] = OpsVec[OpIdx][Lane].V;
1824       return OpVL;
1825     }
1826 
1827     // Performs operand reordering for 2 or more operands.
1828     // The original operands are in OrigOps[OpIdx][Lane].
1829     // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'.
1830     void reorder() {
1831       unsigned NumOperands = getNumOperands();
1832       unsigned NumLanes = getNumLanes();
1833       // Each operand has its own mode. We are using this mode to help us select
1834       // the instructions for each lane, so that they match best with the ones
1835       // we have selected so far.
1836       SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands);
1837 
1838       // This is a greedy single-pass algorithm. We are going over each lane
1839       // once and deciding on the best order right away with no back-tracking.
1840       // However, in order to increase its effectiveness, we start with the lane
1841       // that has operands that can move the least. For example, given the
1842       // following lanes:
1843       //  Lane 0 : A[0] = B[0] + C[0]   // Visited 3rd
1844       //  Lane 1 : A[1] = C[1] - B[1]   // Visited 1st
1845       //  Lane 2 : A[2] = B[2] + C[2]   // Visited 2nd
1846       //  Lane 3 : A[3] = C[3] - B[3]   // Visited 4th
1847       // we will start at Lane 1, since the operands of the subtraction cannot
1848       // be reordered. Then we will visit the rest of the lanes in a circular
1849       // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3.
1850 
1851       // Find the first lane that we will start our search from.
1852       unsigned FirstLane = getBestLaneToStartReordering();
1853 
1854       // Initialize the modes.
1855       for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1856         Value *OpLane0 = getValue(OpIdx, FirstLane);
1857         // Keep track if we have instructions with all the same opcode on one
1858         // side.
1859         if (isa<LoadInst>(OpLane0))
1860           ReorderingModes[OpIdx] = ReorderingMode::Load;
1861         else if (isa<Instruction>(OpLane0)) {
1862           // Check if OpLane0 should be broadcast.
1863           if (shouldBroadcast(OpLane0, OpIdx, FirstLane))
1864             ReorderingModes[OpIdx] = ReorderingMode::Splat;
1865           else
1866             ReorderingModes[OpIdx] = ReorderingMode::Opcode;
1867         }
1868         else if (isa<Constant>(OpLane0))
1869           ReorderingModes[OpIdx] = ReorderingMode::Constant;
1870         else if (isa<Argument>(OpLane0))
1871           // Our best hope is a Splat. It may save some cost in some cases.
1872           ReorderingModes[OpIdx] = ReorderingMode::Splat;
1873         else
1874           // NOTE: This should be unreachable.
1875           ReorderingModes[OpIdx] = ReorderingMode::Failed;
1876       }
1877 
1878       // Check that we don't have same operands. No need to reorder if operands
1879       // are just perfect diamond or shuffled diamond match. Do not do it only
1880       // for possible broadcasts or non-power of 2 number of scalars (just for
1881       // now).
1882       auto &&SkipReordering = [this]() {
1883         SmallPtrSet<Value *, 4> UniqueValues;
1884         ArrayRef<OperandData> Op0 = OpsVec.front();
1885         for (const OperandData &Data : Op0)
1886           UniqueValues.insert(Data.V);
1887         for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) {
1888           if (any_of(Op, [&UniqueValues](const OperandData &Data) {
1889                 return !UniqueValues.contains(Data.V);
1890               }))
1891             return false;
1892         }
1893         // TODO: Check if we can remove a check for non-power-2 number of
1894         // scalars after full support of non-power-2 vectorization.
1895         return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size());
1896       };
1897 
1898       // If the initial strategy fails for any of the operand indexes, then we
1899       // perform reordering again in a second pass. This helps avoid assigning
1900       // high priority to the failed strategy, and should improve reordering for
1901       // the non-failed operand indexes.
1902       for (int Pass = 0; Pass != 2; ++Pass) {
1903         // Check if no need to reorder operands since they're are perfect or
1904         // shuffled diamond match.
1905         // Need to to do it to avoid extra external use cost counting for
1906         // shuffled matches, which may cause regressions.
1907         if (SkipReordering())
1908           break;
1909         // Skip the second pass if the first pass did not fail.
1910         bool StrategyFailed = false;
1911         // Mark all operand data as free to use.
1912         clearUsed();
1913         // We keep the original operand order for the FirstLane, so reorder the
1914         // rest of the lanes. We are visiting the nodes in a circular fashion,
1915         // using FirstLane as the center point and increasing the radius
1916         // distance.
1917         SmallVector<SmallVector<Value *, 2>> MainAltOps(NumOperands);
1918         for (unsigned I = 0; I < NumOperands; ++I)
1919           MainAltOps[I].push_back(getData(I, FirstLane).V);
1920 
1921         for (unsigned Distance = 1; Distance != NumLanes; ++Distance) {
1922           // Visit the lane on the right and then the lane on the left.
1923           for (int Direction : {+1, -1}) {
1924             int Lane = FirstLane + Direction * Distance;
1925             if (Lane < 0 || Lane >= (int)NumLanes)
1926               continue;
1927             int LastLane = Lane - Direction;
1928             assert(LastLane >= 0 && LastLane < (int)NumLanes &&
1929                    "Out of bounds");
1930             // Look for a good match for each operand.
1931             for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1932               // Search for the operand that matches SortedOps[OpIdx][Lane-1].
1933               Optional<unsigned> BestIdx = getBestOperand(
1934                   OpIdx, Lane, LastLane, ReorderingModes, MainAltOps[OpIdx]);
1935               // By not selecting a value, we allow the operands that follow to
1936               // select a better matching value. We will get a non-null value in
1937               // the next run of getBestOperand().
1938               if (BestIdx) {
1939                 // Swap the current operand with the one returned by
1940                 // getBestOperand().
1941                 swap(OpIdx, BestIdx.getValue(), Lane);
1942               } else {
1943                 // We failed to find a best operand, set mode to 'Failed'.
1944                 ReorderingModes[OpIdx] = ReorderingMode::Failed;
1945                 // Enable the second pass.
1946                 StrategyFailed = true;
1947               }
1948               // Try to get the alternate opcode and follow it during analysis.
1949               if (MainAltOps[OpIdx].size() != 2) {
1950                 OperandData &AltOp = getData(OpIdx, Lane);
1951                 InstructionsState OpS =
1952                     getSameOpcode({MainAltOps[OpIdx].front(), AltOp.V});
1953                 if (OpS.getOpcode() && OpS.isAltShuffle())
1954                   MainAltOps[OpIdx].push_back(AltOp.V);
1955               }
1956             }
1957           }
1958         }
1959         // Skip second pass if the strategy did not fail.
1960         if (!StrategyFailed)
1961           break;
1962       }
1963     }
1964 
1965 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1966     LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) {
1967       switch (RMode) {
1968       case ReorderingMode::Load:
1969         return "Load";
1970       case ReorderingMode::Opcode:
1971         return "Opcode";
1972       case ReorderingMode::Constant:
1973         return "Constant";
1974       case ReorderingMode::Splat:
1975         return "Splat";
1976       case ReorderingMode::Failed:
1977         return "Failed";
1978       }
1979       llvm_unreachable("Unimplemented Reordering Type");
1980     }
1981 
1982     LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode,
1983                                                    raw_ostream &OS) {
1984       return OS << getModeStr(RMode);
1985     }
1986 
1987     /// Debug print.
1988     LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) {
1989       printMode(RMode, dbgs());
1990     }
1991 
1992     friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) {
1993       return printMode(RMode, OS);
1994     }
1995 
1996     LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const {
1997       const unsigned Indent = 2;
1998       unsigned Cnt = 0;
1999       for (const OperandDataVec &OpDataVec : OpsVec) {
2000         OS << "Operand " << Cnt++ << "\n";
2001         for (const OperandData &OpData : OpDataVec) {
2002           OS.indent(Indent) << "{";
2003           if (Value *V = OpData.V)
2004             OS << *V;
2005           else
2006             OS << "null";
2007           OS << ", APO:" << OpData.APO << "}\n";
2008         }
2009         OS << "\n";
2010       }
2011       return OS;
2012     }
2013 
2014     /// Debug print.
2015     LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
2016 #endif
2017   };
2018 
2019   /// Evaluate each pair in \p Candidates and return index into \p Candidates
2020   /// for a pair which have highest score deemed to have best chance to form
2021   /// root of profitable tree to vectorize. Return None if no candidate scored
2022   /// above the LookAheadHeuristics::ScoreFail.
2023   /// \param Limit Lower limit of the cost, considered to be good enough score.
2024   Optional<int>
2025   findBestRootPair(ArrayRef<std::pair<Value *, Value *>> Candidates,
2026                    int Limit = LookAheadHeuristics::ScoreFail) {
2027     LookAheadHeuristics LookAhead(*DL, *SE, *this, /*NumLanes=*/2,
2028                                   RootLookAheadMaxDepth);
2029     int BestScore = Limit;
2030     Optional<int> Index = None;
2031     for (int I : seq<int>(0, Candidates.size())) {
2032       int Score = LookAhead.getScoreAtLevelRec(Candidates[I].first,
2033                                                Candidates[I].second,
2034                                                /*U1=*/nullptr, /*U2=*/nullptr,
2035                                                /*Level=*/1, None);
2036       if (Score > BestScore) {
2037         BestScore = Score;
2038         Index = I;
2039       }
2040     }
2041     return Index;
2042   }
2043 
2044   /// Checks if the instruction is marked for deletion.
2045   bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); }
2046 
2047   /// Removes an instruction from its block and eventually deletes it.
2048   /// It's like Instruction::eraseFromParent() except that the actual deletion
2049   /// is delayed until BoUpSLP is destructed.
2050   void eraseInstruction(Instruction *I) {
2051     DeletedInstructions.insert(I);
2052   }
2053 
2054   /// Checks if the instruction was already analyzed for being possible
2055   /// reduction root.
2056   bool isAnalyzedReductionRoot(Instruction *I) const {
2057     return AnalyzedReductionsRoots.count(I);
2058   }
2059   /// Register given instruction as already analyzed for being possible
2060   /// reduction root.
2061   void analyzedReductionRoot(Instruction *I) {
2062     AnalyzedReductionsRoots.insert(I);
2063   }
2064   /// Checks if the provided list of reduced values was checked already for
2065   /// vectorization.
2066   bool areAnalyzedReductionVals(ArrayRef<Value *> VL) {
2067     return AnalyzedReductionVals.contains(hash_value(VL));
2068   }
2069   /// Adds the list of reduced values to list of already checked values for the
2070   /// vectorization.
2071   void analyzedReductionVals(ArrayRef<Value *> VL) {
2072     AnalyzedReductionVals.insert(hash_value(VL));
2073   }
2074   /// Clear the list of the analyzed reduction root instructions.
2075   void clearReductionData() {
2076     AnalyzedReductionsRoots.clear();
2077     AnalyzedReductionVals.clear();
2078   }
2079   /// Checks if the given value is gathered in one of the nodes.
2080   bool isAnyGathered(const SmallDenseSet<Value *> &Vals) const {
2081     return any_of(MustGather, [&](Value *V) { return Vals.contains(V); });
2082   }
2083 
2084   ~BoUpSLP();
2085 
2086 private:
2087   /// Check if the operands on the edges \p Edges of the \p UserTE allows
2088   /// reordering (i.e. the operands can be reordered because they have only one
2089   /// user and reordarable).
2090   /// \param ReorderableGathers List of all gather nodes that require reordering
2091   /// (e.g., gather of extractlements or partially vectorizable loads).
2092   /// \param GatherOps List of gather operand nodes for \p UserTE that require
2093   /// reordering, subset of \p NonVectorized.
2094   bool
2095   canReorderOperands(TreeEntry *UserTE,
2096                      SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges,
2097                      ArrayRef<TreeEntry *> ReorderableGathers,
2098                      SmallVectorImpl<TreeEntry *> &GatherOps);
2099 
2100   /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph,
2101   /// if any. If it is not vectorized (gather node), returns nullptr.
2102   TreeEntry *getVectorizedOperand(TreeEntry *UserTE, unsigned OpIdx) {
2103     ArrayRef<Value *> VL = UserTE->getOperand(OpIdx);
2104     TreeEntry *TE = nullptr;
2105     const auto *It = find_if(VL, [this, &TE](Value *V) {
2106       TE = getTreeEntry(V);
2107       return TE;
2108     });
2109     if (It != VL.end() && TE->isSame(VL))
2110       return TE;
2111     return nullptr;
2112   }
2113 
2114   /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph,
2115   /// if any. If it is not vectorized (gather node), returns nullptr.
2116   const TreeEntry *getVectorizedOperand(const TreeEntry *UserTE,
2117                                         unsigned OpIdx) const {
2118     return const_cast<BoUpSLP *>(this)->getVectorizedOperand(
2119         const_cast<TreeEntry *>(UserTE), OpIdx);
2120   }
2121 
2122   /// Checks if all users of \p I are the part of the vectorization tree.
2123   bool areAllUsersVectorized(Instruction *I,
2124                              ArrayRef<Value *> VectorizedVals) const;
2125 
2126   /// \returns the cost of the vectorizable entry.
2127   InstructionCost getEntryCost(const TreeEntry *E,
2128                                ArrayRef<Value *> VectorizedVals);
2129 
2130   /// This is the recursive part of buildTree.
2131   void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth,
2132                      const EdgeInfo &EI);
2133 
2134   /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can
2135   /// be vectorized to use the original vector (or aggregate "bitcast" to a
2136   /// vector) and sets \p CurrentOrder to the identity permutation; otherwise
2137   /// returns false, setting \p CurrentOrder to either an empty vector or a
2138   /// non-identity permutation that allows to reuse extract instructions.
2139   bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
2140                        SmallVectorImpl<unsigned> &CurrentOrder) const;
2141 
2142   /// Vectorize a single entry in the tree.
2143   Value *vectorizeTree(TreeEntry *E);
2144 
2145   /// Vectorize a single entry in the tree, starting in \p VL.
2146   Value *vectorizeTree(ArrayRef<Value *> VL);
2147 
2148   /// Create a new vector from a list of scalar values.  Produces a sequence
2149   /// which exploits values reused across lanes, and arranges the inserts
2150   /// for ease of later optimization.
2151   Value *createBuildVector(ArrayRef<Value *> VL);
2152 
2153   /// \returns the scalarization cost for this type. Scalarization in this
2154   /// context means the creation of vectors from a group of scalars. If \p
2155   /// NeedToShuffle is true, need to add a cost of reshuffling some of the
2156   /// vector elements.
2157   InstructionCost getGatherCost(FixedVectorType *Ty,
2158                                 const APInt &ShuffledIndices,
2159                                 bool NeedToShuffle) const;
2160 
2161   /// Checks if the gathered \p VL can be represented as shuffle(s) of previous
2162   /// tree entries.
2163   /// \returns ShuffleKind, if gathered values can be represented as shuffles of
2164   /// previous tree entries. \p Mask is filled with the shuffle mask.
2165   Optional<TargetTransformInfo::ShuffleKind>
2166   isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask,
2167                         SmallVectorImpl<const TreeEntry *> &Entries);
2168 
2169   /// \returns the scalarization cost for this list of values. Assuming that
2170   /// this subtree gets vectorized, we may need to extract the values from the
2171   /// roots. This method calculates the cost of extracting the values.
2172   InstructionCost getGatherCost(ArrayRef<Value *> VL) const;
2173 
2174   /// Set the Builder insert point to one after the last instruction in
2175   /// the bundle
2176   void setInsertPointAfterBundle(const TreeEntry *E);
2177 
2178   /// \returns a vector from a collection of scalars in \p VL.
2179   Value *gather(ArrayRef<Value *> VL);
2180 
2181   /// \returns whether the VectorizableTree is fully vectorizable and will
2182   /// be beneficial even the tree height is tiny.
2183   bool isFullyVectorizableTinyTree(bool ForReduction) const;
2184 
2185   /// Reorder commutative or alt operands to get better probability of
2186   /// generating vectorized code.
2187   static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
2188                                              SmallVectorImpl<Value *> &Left,
2189                                              SmallVectorImpl<Value *> &Right,
2190                                              const DataLayout &DL,
2191                                              ScalarEvolution &SE,
2192                                              const BoUpSLP &R);
2193 
2194   /// Helper for `findExternalStoreUsersReorderIndices()`. It iterates over the
2195   /// users of \p TE and collects the stores. It returns the map from the store
2196   /// pointers to the collected stores.
2197   DenseMap<Value *, SmallVector<StoreInst *, 4>>
2198   collectUserStores(const BoUpSLP::TreeEntry *TE) const;
2199 
2200   /// Helper for `findExternalStoreUsersReorderIndices()`. It checks if the
2201   /// stores in \p StoresVec can for a vector instruction. If so it returns true
2202   /// and populates \p ReorderIndices with the shuffle indices of the the stores
2203   /// when compared to the sorted vector.
2204   bool CanFormVector(const SmallVector<StoreInst *, 4> &StoresVec,
2205                      OrdersType &ReorderIndices) const;
2206 
2207   /// Iterates through the users of \p TE, looking for scalar stores that can be
2208   /// potentially vectorized in a future SLP-tree. If found, it keeps track of
2209   /// their order and builds an order index vector for each store bundle. It
2210   /// returns all these order vectors found.
2211   /// We run this after the tree has formed, otherwise we may come across user
2212   /// instructions that are not yet in the tree.
2213   SmallVector<OrdersType, 1>
2214   findExternalStoreUsersReorderIndices(TreeEntry *TE) const;
2215 
2216   struct TreeEntry {
2217     using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>;
2218     TreeEntry(VecTreeTy &Container) : Container(Container) {}
2219 
2220     /// \returns true if the scalars in VL are equal to this entry.
2221     bool isSame(ArrayRef<Value *> VL) const {
2222       auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) {
2223         if (Mask.size() != VL.size() && VL.size() == Scalars.size())
2224           return std::equal(VL.begin(), VL.end(), Scalars.begin());
2225         return VL.size() == Mask.size() &&
2226                std::equal(VL.begin(), VL.end(), Mask.begin(),
2227                           [Scalars](Value *V, int Idx) {
2228                             return (isa<UndefValue>(V) &&
2229                                     Idx == UndefMaskElem) ||
2230                                    (Idx != UndefMaskElem && V == Scalars[Idx]);
2231                           });
2232       };
2233       if (!ReorderIndices.empty()) {
2234         // TODO: implement matching if the nodes are just reordered, still can
2235         // treat the vector as the same if the list of scalars matches VL
2236         // directly, without reordering.
2237         SmallVector<int> Mask;
2238         inversePermutation(ReorderIndices, Mask);
2239         if (VL.size() == Scalars.size())
2240           return IsSame(Scalars, Mask);
2241         if (VL.size() == ReuseShuffleIndices.size()) {
2242           ::addMask(Mask, ReuseShuffleIndices);
2243           return IsSame(Scalars, Mask);
2244         }
2245         return false;
2246       }
2247       return IsSame(Scalars, ReuseShuffleIndices);
2248     }
2249 
2250     /// \returns true if current entry has same operands as \p TE.
2251     bool hasEqualOperands(const TreeEntry &TE) const {
2252       if (TE.getNumOperands() != getNumOperands())
2253         return false;
2254       SmallBitVector Used(getNumOperands());
2255       for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
2256         unsigned PrevCount = Used.count();
2257         for (unsigned K = 0; K < E; ++K) {
2258           if (Used.test(K))
2259             continue;
2260           if (getOperand(K) == TE.getOperand(I)) {
2261             Used.set(K);
2262             break;
2263           }
2264         }
2265         // Check if we actually found the matching operand.
2266         if (PrevCount == Used.count())
2267           return false;
2268       }
2269       return true;
2270     }
2271 
2272     /// \return Final vectorization factor for the node. Defined by the total
2273     /// number of vectorized scalars, including those, used several times in the
2274     /// entry and counted in the \a ReuseShuffleIndices, if any.
2275     unsigned getVectorFactor() const {
2276       if (!ReuseShuffleIndices.empty())
2277         return ReuseShuffleIndices.size();
2278       return Scalars.size();
2279     };
2280 
2281     /// A vector of scalars.
2282     ValueList Scalars;
2283 
2284     /// The Scalars are vectorized into this value. It is initialized to Null.
2285     Value *VectorizedValue = nullptr;
2286 
2287     /// Do we need to gather this sequence or vectorize it
2288     /// (either with vector instruction or with scatter/gather
2289     /// intrinsics for store/load)?
2290     enum EntryState { Vectorize, ScatterVectorize, NeedToGather };
2291     EntryState State;
2292 
2293     /// Does this sequence require some shuffling?
2294     SmallVector<int, 4> ReuseShuffleIndices;
2295 
2296     /// Does this entry require reordering?
2297     SmallVector<unsigned, 4> ReorderIndices;
2298 
2299     /// Points back to the VectorizableTree.
2300     ///
2301     /// Only used for Graphviz right now.  Unfortunately GraphTrait::NodeRef has
2302     /// to be a pointer and needs to be able to initialize the child iterator.
2303     /// Thus we need a reference back to the container to translate the indices
2304     /// to entries.
2305     VecTreeTy &Container;
2306 
2307     /// The TreeEntry index containing the user of this entry.  We can actually
2308     /// have multiple users so the data structure is not truly a tree.
2309     SmallVector<EdgeInfo, 1> UserTreeIndices;
2310 
2311     /// The index of this treeEntry in VectorizableTree.
2312     int Idx = -1;
2313 
2314   private:
2315     /// The operands of each instruction in each lane Operands[op_index][lane].
2316     /// Note: This helps avoid the replication of the code that performs the
2317     /// reordering of operands during buildTree_rec() and vectorizeTree().
2318     SmallVector<ValueList, 2> Operands;
2319 
2320     /// The main/alternate instruction.
2321     Instruction *MainOp = nullptr;
2322     Instruction *AltOp = nullptr;
2323 
2324   public:
2325     /// Set this bundle's \p OpIdx'th operand to \p OpVL.
2326     void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) {
2327       if (Operands.size() < OpIdx + 1)
2328         Operands.resize(OpIdx + 1);
2329       assert(Operands[OpIdx].empty() && "Already resized?");
2330       assert(OpVL.size() <= Scalars.size() &&
2331              "Number of operands is greater than the number of scalars.");
2332       Operands[OpIdx].resize(OpVL.size());
2333       copy(OpVL, Operands[OpIdx].begin());
2334     }
2335 
2336     /// Set the operands of this bundle in their original order.
2337     void setOperandsInOrder() {
2338       assert(Operands.empty() && "Already initialized?");
2339       auto *I0 = cast<Instruction>(Scalars[0]);
2340       Operands.resize(I0->getNumOperands());
2341       unsigned NumLanes = Scalars.size();
2342       for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands();
2343            OpIdx != NumOperands; ++OpIdx) {
2344         Operands[OpIdx].resize(NumLanes);
2345         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
2346           auto *I = cast<Instruction>(Scalars[Lane]);
2347           assert(I->getNumOperands() == NumOperands &&
2348                  "Expected same number of operands");
2349           Operands[OpIdx][Lane] = I->getOperand(OpIdx);
2350         }
2351       }
2352     }
2353 
2354     /// Reorders operands of the node to the given mask \p Mask.
2355     void reorderOperands(ArrayRef<int> Mask) {
2356       for (ValueList &Operand : Operands)
2357         reorderScalars(Operand, Mask);
2358     }
2359 
2360     /// \returns the \p OpIdx operand of this TreeEntry.
2361     ValueList &getOperand(unsigned OpIdx) {
2362       assert(OpIdx < Operands.size() && "Off bounds");
2363       return Operands[OpIdx];
2364     }
2365 
2366     /// \returns the \p OpIdx operand of this TreeEntry.
2367     ArrayRef<Value *> getOperand(unsigned OpIdx) const {
2368       assert(OpIdx < Operands.size() && "Off bounds");
2369       return Operands[OpIdx];
2370     }
2371 
2372     /// \returns the number of operands.
2373     unsigned getNumOperands() const { return Operands.size(); }
2374 
2375     /// \return the single \p OpIdx operand.
2376     Value *getSingleOperand(unsigned OpIdx) const {
2377       assert(OpIdx < Operands.size() && "Off bounds");
2378       assert(!Operands[OpIdx].empty() && "No operand available");
2379       return Operands[OpIdx][0];
2380     }
2381 
2382     /// Some of the instructions in the list have alternate opcodes.
2383     bool isAltShuffle() const { return MainOp != AltOp; }
2384 
2385     bool isOpcodeOrAlt(Instruction *I) const {
2386       unsigned CheckedOpcode = I->getOpcode();
2387       return (getOpcode() == CheckedOpcode ||
2388               getAltOpcode() == CheckedOpcode);
2389     }
2390 
2391     /// Chooses the correct key for scheduling data. If \p Op has the same (or
2392     /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is
2393     /// \p OpValue.
2394     Value *isOneOf(Value *Op) const {
2395       auto *I = dyn_cast<Instruction>(Op);
2396       if (I && isOpcodeOrAlt(I))
2397         return Op;
2398       return MainOp;
2399     }
2400 
2401     void setOperations(const InstructionsState &S) {
2402       MainOp = S.MainOp;
2403       AltOp = S.AltOp;
2404     }
2405 
2406     Instruction *getMainOp() const {
2407       return MainOp;
2408     }
2409 
2410     Instruction *getAltOp() const {
2411       return AltOp;
2412     }
2413 
2414     /// The main/alternate opcodes for the list of instructions.
2415     unsigned getOpcode() const {
2416       return MainOp ? MainOp->getOpcode() : 0;
2417     }
2418 
2419     unsigned getAltOpcode() const {
2420       return AltOp ? AltOp->getOpcode() : 0;
2421     }
2422 
2423     /// When ReuseReorderShuffleIndices is empty it just returns position of \p
2424     /// V within vector of Scalars. Otherwise, try to remap on its reuse index.
2425     int findLaneForValue(Value *V) const {
2426       unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V));
2427       assert(FoundLane < Scalars.size() && "Couldn't find extract lane");
2428       if (!ReorderIndices.empty())
2429         FoundLane = ReorderIndices[FoundLane];
2430       assert(FoundLane < Scalars.size() && "Couldn't find extract lane");
2431       if (!ReuseShuffleIndices.empty()) {
2432         FoundLane = std::distance(ReuseShuffleIndices.begin(),
2433                                   find(ReuseShuffleIndices, FoundLane));
2434       }
2435       return FoundLane;
2436     }
2437 
2438 #ifndef NDEBUG
2439     /// Debug printer.
2440     LLVM_DUMP_METHOD void dump() const {
2441       dbgs() << Idx << ".\n";
2442       for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) {
2443         dbgs() << "Operand " << OpI << ":\n";
2444         for (const Value *V : Operands[OpI])
2445           dbgs().indent(2) << *V << "\n";
2446       }
2447       dbgs() << "Scalars: \n";
2448       for (Value *V : Scalars)
2449         dbgs().indent(2) << *V << "\n";
2450       dbgs() << "State: ";
2451       switch (State) {
2452       case Vectorize:
2453         dbgs() << "Vectorize\n";
2454         break;
2455       case ScatterVectorize:
2456         dbgs() << "ScatterVectorize\n";
2457         break;
2458       case NeedToGather:
2459         dbgs() << "NeedToGather\n";
2460         break;
2461       }
2462       dbgs() << "MainOp: ";
2463       if (MainOp)
2464         dbgs() << *MainOp << "\n";
2465       else
2466         dbgs() << "NULL\n";
2467       dbgs() << "AltOp: ";
2468       if (AltOp)
2469         dbgs() << *AltOp << "\n";
2470       else
2471         dbgs() << "NULL\n";
2472       dbgs() << "VectorizedValue: ";
2473       if (VectorizedValue)
2474         dbgs() << *VectorizedValue << "\n";
2475       else
2476         dbgs() << "NULL\n";
2477       dbgs() << "ReuseShuffleIndices: ";
2478       if (ReuseShuffleIndices.empty())
2479         dbgs() << "Empty";
2480       else
2481         for (int ReuseIdx : ReuseShuffleIndices)
2482           dbgs() << ReuseIdx << ", ";
2483       dbgs() << "\n";
2484       dbgs() << "ReorderIndices: ";
2485       for (unsigned ReorderIdx : ReorderIndices)
2486         dbgs() << ReorderIdx << ", ";
2487       dbgs() << "\n";
2488       dbgs() << "UserTreeIndices: ";
2489       for (const auto &EInfo : UserTreeIndices)
2490         dbgs() << EInfo << ", ";
2491       dbgs() << "\n";
2492     }
2493 #endif
2494   };
2495 
2496 #ifndef NDEBUG
2497   void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost,
2498                      InstructionCost VecCost,
2499                      InstructionCost ScalarCost) const {
2500     dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump();
2501     dbgs() << "SLP: Costs:\n";
2502     dbgs() << "SLP:     ReuseShuffleCost = " << ReuseShuffleCost << "\n";
2503     dbgs() << "SLP:     VectorCost = " << VecCost << "\n";
2504     dbgs() << "SLP:     ScalarCost = " << ScalarCost << "\n";
2505     dbgs() << "SLP:     ReuseShuffleCost + VecCost - ScalarCost = " <<
2506                ReuseShuffleCost + VecCost - ScalarCost << "\n";
2507   }
2508 #endif
2509 
2510   /// Create a new VectorizableTree entry.
2511   TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle,
2512                           const InstructionsState &S,
2513                           const EdgeInfo &UserTreeIdx,
2514                           ArrayRef<int> ReuseShuffleIndices = None,
2515                           ArrayRef<unsigned> ReorderIndices = None) {
2516     TreeEntry::EntryState EntryState =
2517         Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather;
2518     return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx,
2519                         ReuseShuffleIndices, ReorderIndices);
2520   }
2521 
2522   TreeEntry *newTreeEntry(ArrayRef<Value *> VL,
2523                           TreeEntry::EntryState EntryState,
2524                           Optional<ScheduleData *> Bundle,
2525                           const InstructionsState &S,
2526                           const EdgeInfo &UserTreeIdx,
2527                           ArrayRef<int> ReuseShuffleIndices = None,
2528                           ArrayRef<unsigned> ReorderIndices = None) {
2529     assert(((!Bundle && EntryState == TreeEntry::NeedToGather) ||
2530             (Bundle && EntryState != TreeEntry::NeedToGather)) &&
2531            "Need to vectorize gather entry?");
2532     VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree));
2533     TreeEntry *Last = VectorizableTree.back().get();
2534     Last->Idx = VectorizableTree.size() - 1;
2535     Last->State = EntryState;
2536     Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(),
2537                                      ReuseShuffleIndices.end());
2538     if (ReorderIndices.empty()) {
2539       Last->Scalars.assign(VL.begin(), VL.end());
2540       Last->setOperations(S);
2541     } else {
2542       // Reorder scalars and build final mask.
2543       Last->Scalars.assign(VL.size(), nullptr);
2544       transform(ReorderIndices, Last->Scalars.begin(),
2545                 [VL](unsigned Idx) -> Value * {
2546                   if (Idx >= VL.size())
2547                     return UndefValue::get(VL.front()->getType());
2548                   return VL[Idx];
2549                 });
2550       InstructionsState S = getSameOpcode(Last->Scalars);
2551       Last->setOperations(S);
2552       Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end());
2553     }
2554     if (Last->State != TreeEntry::NeedToGather) {
2555       for (Value *V : VL) {
2556         assert(!getTreeEntry(V) && "Scalar already in tree!");
2557         ScalarToTreeEntry[V] = Last;
2558       }
2559       // Update the scheduler bundle to point to this TreeEntry.
2560       ScheduleData *BundleMember = Bundle.getValue();
2561       assert((BundleMember || isa<PHINode>(S.MainOp) ||
2562               isVectorLikeInstWithConstOps(S.MainOp) ||
2563               doesNotNeedToSchedule(VL)) &&
2564              "Bundle and VL out of sync");
2565       if (BundleMember) {
2566         for (Value *V : VL) {
2567           if (doesNotNeedToBeScheduled(V))
2568             continue;
2569           assert(BundleMember && "Unexpected end of bundle.");
2570           BundleMember->TE = Last;
2571           BundleMember = BundleMember->NextInBundle;
2572         }
2573       }
2574       assert(!BundleMember && "Bundle and VL out of sync");
2575     } else {
2576       MustGather.insert(VL.begin(), VL.end());
2577     }
2578 
2579     if (UserTreeIdx.UserTE)
2580       Last->UserTreeIndices.push_back(UserTreeIdx);
2581 
2582     return Last;
2583   }
2584 
2585   /// -- Vectorization State --
2586   /// Holds all of the tree entries.
2587   TreeEntry::VecTreeTy VectorizableTree;
2588 
2589 #ifndef NDEBUG
2590   /// Debug printer.
2591   LLVM_DUMP_METHOD void dumpVectorizableTree() const {
2592     for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) {
2593       VectorizableTree[Id]->dump();
2594       dbgs() << "\n";
2595     }
2596   }
2597 #endif
2598 
2599   TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); }
2600 
2601   const TreeEntry *getTreeEntry(Value *V) const {
2602     return ScalarToTreeEntry.lookup(V);
2603   }
2604 
2605   /// Maps a specific scalar to its tree entry.
2606   SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry;
2607 
2608   /// Maps a value to the proposed vectorizable size.
2609   SmallDenseMap<Value *, unsigned> InstrElementSize;
2610 
2611   /// A list of scalars that we found that we need to keep as scalars.
2612   ValueSet MustGather;
2613 
2614   /// This POD struct describes one external user in the vectorized tree.
2615   struct ExternalUser {
2616     ExternalUser(Value *S, llvm::User *U, int L)
2617         : Scalar(S), User(U), Lane(L) {}
2618 
2619     // Which scalar in our function.
2620     Value *Scalar;
2621 
2622     // Which user that uses the scalar.
2623     llvm::User *User;
2624 
2625     // Which lane does the scalar belong to.
2626     int Lane;
2627   };
2628   using UserList = SmallVector<ExternalUser, 16>;
2629 
2630   /// Checks if two instructions may access the same memory.
2631   ///
2632   /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
2633   /// is invariant in the calling loop.
2634   bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
2635                  Instruction *Inst2) {
2636     // First check if the result is already in the cache.
2637     AliasCacheKey key = std::make_pair(Inst1, Inst2);
2638     Optional<bool> &result = AliasCache[key];
2639     if (result.hasValue()) {
2640       return result.getValue();
2641     }
2642     bool aliased = true;
2643     if (Loc1.Ptr && isSimple(Inst1))
2644       aliased = isModOrRefSet(BatchAA.getModRefInfo(Inst2, Loc1));
2645     // Store the result in the cache.
2646     result = aliased;
2647     return aliased;
2648   }
2649 
2650   using AliasCacheKey = std::pair<Instruction *, Instruction *>;
2651 
2652   /// Cache for alias results.
2653   /// TODO: consider moving this to the AliasAnalysis itself.
2654   DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
2655 
2656   // Cache for pointerMayBeCaptured calls inside AA.  This is preserved
2657   // globally through SLP because we don't perform any action which
2658   // invalidates capture results.
2659   BatchAAResults BatchAA;
2660 
2661   /// Temporary store for deleted instructions. Instructions will be deleted
2662   /// eventually when the BoUpSLP is destructed.  The deferral is required to
2663   /// ensure that there are no incorrect collisions in the AliasCache, which
2664   /// can happen if a new instruction is allocated at the same address as a
2665   /// previously deleted instruction.
2666   DenseSet<Instruction *> DeletedInstructions;
2667 
2668   /// Set of the instruction, being analyzed already for reductions.
2669   SmallPtrSet<Instruction *, 16> AnalyzedReductionsRoots;
2670 
2671   /// Set of hashes for the list of reduction values already being analyzed.
2672   DenseSet<size_t> AnalyzedReductionVals;
2673 
2674   /// A list of values that need to extracted out of the tree.
2675   /// This list holds pairs of (Internal Scalar : External User). External User
2676   /// can be nullptr, it means that this Internal Scalar will be used later,
2677   /// after vectorization.
2678   UserList ExternalUses;
2679 
2680   /// Values used only by @llvm.assume calls.
2681   SmallPtrSet<const Value *, 32> EphValues;
2682 
2683   /// Holds all of the instructions that we gathered.
2684   SetVector<Instruction *> GatherShuffleSeq;
2685 
2686   /// A list of blocks that we are going to CSE.
2687   SetVector<BasicBlock *> CSEBlocks;
2688 
2689   /// Contains all scheduling relevant data for an instruction.
2690   /// A ScheduleData either represents a single instruction or a member of an
2691   /// instruction bundle (= a group of instructions which is combined into a
2692   /// vector instruction).
2693   struct ScheduleData {
2694     // The initial value for the dependency counters. It means that the
2695     // dependencies are not calculated yet.
2696     enum { InvalidDeps = -1 };
2697 
2698     ScheduleData() = default;
2699 
2700     void init(int BlockSchedulingRegionID, Value *OpVal) {
2701       FirstInBundle = this;
2702       NextInBundle = nullptr;
2703       NextLoadStore = nullptr;
2704       IsScheduled = false;
2705       SchedulingRegionID = BlockSchedulingRegionID;
2706       clearDependencies();
2707       OpValue = OpVal;
2708       TE = nullptr;
2709     }
2710 
2711     /// Verify basic self consistency properties
2712     void verify() {
2713       if (hasValidDependencies()) {
2714         assert(UnscheduledDeps <= Dependencies && "invariant");
2715       } else {
2716         assert(UnscheduledDeps == Dependencies && "invariant");
2717       }
2718 
2719       if (IsScheduled) {
2720         assert(isSchedulingEntity() &&
2721                 "unexpected scheduled state");
2722         for (const ScheduleData *BundleMember = this; BundleMember;
2723              BundleMember = BundleMember->NextInBundle) {
2724           assert(BundleMember->hasValidDependencies() &&
2725                  BundleMember->UnscheduledDeps == 0 &&
2726                  "unexpected scheduled state");
2727           assert((BundleMember == this || !BundleMember->IsScheduled) &&
2728                  "only bundle is marked scheduled");
2729         }
2730       }
2731 
2732       assert(Inst->getParent() == FirstInBundle->Inst->getParent() &&
2733              "all bundle members must be in same basic block");
2734     }
2735 
2736     /// Returns true if the dependency information has been calculated.
2737     /// Note that depenendency validity can vary between instructions within
2738     /// a single bundle.
2739     bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
2740 
2741     /// Returns true for single instructions and for bundle representatives
2742     /// (= the head of a bundle).
2743     bool isSchedulingEntity() const { return FirstInBundle == this; }
2744 
2745     /// Returns true if it represents an instruction bundle and not only a
2746     /// single instruction.
2747     bool isPartOfBundle() const {
2748       return NextInBundle != nullptr || FirstInBundle != this || TE;
2749     }
2750 
2751     /// Returns true if it is ready for scheduling, i.e. it has no more
2752     /// unscheduled depending instructions/bundles.
2753     bool isReady() const {
2754       assert(isSchedulingEntity() &&
2755              "can't consider non-scheduling entity for ready list");
2756       return unscheduledDepsInBundle() == 0 && !IsScheduled;
2757     }
2758 
2759     /// Modifies the number of unscheduled dependencies for this instruction,
2760     /// and returns the number of remaining dependencies for the containing
2761     /// bundle.
2762     int incrementUnscheduledDeps(int Incr) {
2763       assert(hasValidDependencies() &&
2764              "increment of unscheduled deps would be meaningless");
2765       UnscheduledDeps += Incr;
2766       return FirstInBundle->unscheduledDepsInBundle();
2767     }
2768 
2769     /// Sets the number of unscheduled dependencies to the number of
2770     /// dependencies.
2771     void resetUnscheduledDeps() {
2772       UnscheduledDeps = Dependencies;
2773     }
2774 
2775     /// Clears all dependency information.
2776     void clearDependencies() {
2777       Dependencies = InvalidDeps;
2778       resetUnscheduledDeps();
2779       MemoryDependencies.clear();
2780       ControlDependencies.clear();
2781     }
2782 
2783     int unscheduledDepsInBundle() const {
2784       assert(isSchedulingEntity() && "only meaningful on the bundle");
2785       int Sum = 0;
2786       for (const ScheduleData *BundleMember = this; BundleMember;
2787            BundleMember = BundleMember->NextInBundle) {
2788         if (BundleMember->UnscheduledDeps == InvalidDeps)
2789           return InvalidDeps;
2790         Sum += BundleMember->UnscheduledDeps;
2791       }
2792       return Sum;
2793     }
2794 
2795     void dump(raw_ostream &os) const {
2796       if (!isSchedulingEntity()) {
2797         os << "/ " << *Inst;
2798       } else if (NextInBundle) {
2799         os << '[' << *Inst;
2800         ScheduleData *SD = NextInBundle;
2801         while (SD) {
2802           os << ';' << *SD->Inst;
2803           SD = SD->NextInBundle;
2804         }
2805         os << ']';
2806       } else {
2807         os << *Inst;
2808       }
2809     }
2810 
2811     Instruction *Inst = nullptr;
2812 
2813     /// Opcode of the current instruction in the schedule data.
2814     Value *OpValue = nullptr;
2815 
2816     /// The TreeEntry that this instruction corresponds to.
2817     TreeEntry *TE = nullptr;
2818 
2819     /// Points to the head in an instruction bundle (and always to this for
2820     /// single instructions).
2821     ScheduleData *FirstInBundle = nullptr;
2822 
2823     /// Single linked list of all instructions in a bundle. Null if it is a
2824     /// single instruction.
2825     ScheduleData *NextInBundle = nullptr;
2826 
2827     /// Single linked list of all memory instructions (e.g. load, store, call)
2828     /// in the block - until the end of the scheduling region.
2829     ScheduleData *NextLoadStore = nullptr;
2830 
2831     /// The dependent memory instructions.
2832     /// This list is derived on demand in calculateDependencies().
2833     SmallVector<ScheduleData *, 4> MemoryDependencies;
2834 
2835     /// List of instructions which this instruction could be control dependent
2836     /// on.  Allowing such nodes to be scheduled below this one could introduce
2837     /// a runtime fault which didn't exist in the original program.
2838     /// ex: this is a load or udiv following a readonly call which inf loops
2839     SmallVector<ScheduleData *, 4> ControlDependencies;
2840 
2841     /// This ScheduleData is in the current scheduling region if this matches
2842     /// the current SchedulingRegionID of BlockScheduling.
2843     int SchedulingRegionID = 0;
2844 
2845     /// Used for getting a "good" final ordering of instructions.
2846     int SchedulingPriority = 0;
2847 
2848     /// The number of dependencies. Constitutes of the number of users of the
2849     /// instruction plus the number of dependent memory instructions (if any).
2850     /// This value is calculated on demand.
2851     /// If InvalidDeps, the number of dependencies is not calculated yet.
2852     int Dependencies = InvalidDeps;
2853 
2854     /// The number of dependencies minus the number of dependencies of scheduled
2855     /// instructions. As soon as this is zero, the instruction/bundle gets ready
2856     /// for scheduling.
2857     /// Note that this is negative as long as Dependencies is not calculated.
2858     int UnscheduledDeps = InvalidDeps;
2859 
2860     /// True if this instruction is scheduled (or considered as scheduled in the
2861     /// dry-run).
2862     bool IsScheduled = false;
2863   };
2864 
2865 #ifndef NDEBUG
2866   friend inline raw_ostream &operator<<(raw_ostream &os,
2867                                         const BoUpSLP::ScheduleData &SD) {
2868     SD.dump(os);
2869     return os;
2870   }
2871 #endif
2872 
2873   friend struct GraphTraits<BoUpSLP *>;
2874   friend struct DOTGraphTraits<BoUpSLP *>;
2875 
2876   /// Contains all scheduling data for a basic block.
2877   /// It does not schedules instructions, which are not memory read/write
2878   /// instructions and their operands are either constants, or arguments, or
2879   /// phis, or instructions from others blocks, or their users are phis or from
2880   /// the other blocks. The resulting vector instructions can be placed at the
2881   /// beginning of the basic block without scheduling (if operands does not need
2882   /// to be scheduled) or at the end of the block (if users are outside of the
2883   /// block). It allows to save some compile time and memory used by the
2884   /// compiler.
2885   /// ScheduleData is assigned for each instruction in between the boundaries of
2886   /// the tree entry, even for those, which are not part of the graph. It is
2887   /// required to correctly follow the dependencies between the instructions and
2888   /// their correct scheduling. The ScheduleData is not allocated for the
2889   /// instructions, which do not require scheduling, like phis, nodes with
2890   /// extractelements/insertelements only or nodes with instructions, with
2891   /// uses/operands outside of the block.
2892   struct BlockScheduling {
2893     BlockScheduling(BasicBlock *BB)
2894         : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {}
2895 
2896     void clear() {
2897       ReadyInsts.clear();
2898       ScheduleStart = nullptr;
2899       ScheduleEnd = nullptr;
2900       FirstLoadStoreInRegion = nullptr;
2901       LastLoadStoreInRegion = nullptr;
2902       RegionHasStackSave = false;
2903 
2904       // Reduce the maximum schedule region size by the size of the
2905       // previous scheduling run.
2906       ScheduleRegionSizeLimit -= ScheduleRegionSize;
2907       if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
2908         ScheduleRegionSizeLimit = MinScheduleRegionSize;
2909       ScheduleRegionSize = 0;
2910 
2911       // Make a new scheduling region, i.e. all existing ScheduleData is not
2912       // in the new region yet.
2913       ++SchedulingRegionID;
2914     }
2915 
2916     ScheduleData *getScheduleData(Instruction *I) {
2917       if (BB != I->getParent())
2918         // Avoid lookup if can't possibly be in map.
2919         return nullptr;
2920       ScheduleData *SD = ScheduleDataMap.lookup(I);
2921       if (SD && isInSchedulingRegion(SD))
2922         return SD;
2923       return nullptr;
2924     }
2925 
2926     ScheduleData *getScheduleData(Value *V) {
2927       if (auto *I = dyn_cast<Instruction>(V))
2928         return getScheduleData(I);
2929       return nullptr;
2930     }
2931 
2932     ScheduleData *getScheduleData(Value *V, Value *Key) {
2933       if (V == Key)
2934         return getScheduleData(V);
2935       auto I = ExtraScheduleDataMap.find(V);
2936       if (I != ExtraScheduleDataMap.end()) {
2937         ScheduleData *SD = I->second.lookup(Key);
2938         if (SD && isInSchedulingRegion(SD))
2939           return SD;
2940       }
2941       return nullptr;
2942     }
2943 
2944     bool isInSchedulingRegion(ScheduleData *SD) const {
2945       return SD->SchedulingRegionID == SchedulingRegionID;
2946     }
2947 
2948     /// Marks an instruction as scheduled and puts all dependent ready
2949     /// instructions into the ready-list.
2950     template <typename ReadyListType>
2951     void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
2952       SD->IsScheduled = true;
2953       LLVM_DEBUG(dbgs() << "SLP:   schedule " << *SD << "\n");
2954 
2955       for (ScheduleData *BundleMember = SD; BundleMember;
2956            BundleMember = BundleMember->NextInBundle) {
2957         if (BundleMember->Inst != BundleMember->OpValue)
2958           continue;
2959 
2960         // Handle the def-use chain dependencies.
2961 
2962         // Decrement the unscheduled counter and insert to ready list if ready.
2963         auto &&DecrUnsched = [this, &ReadyList](Instruction *I) {
2964           doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) {
2965             if (OpDef && OpDef->hasValidDependencies() &&
2966                 OpDef->incrementUnscheduledDeps(-1) == 0) {
2967               // There are no more unscheduled dependencies after
2968               // decrementing, so we can put the dependent instruction
2969               // into the ready list.
2970               ScheduleData *DepBundle = OpDef->FirstInBundle;
2971               assert(!DepBundle->IsScheduled &&
2972                      "already scheduled bundle gets ready");
2973               ReadyList.insert(DepBundle);
2974               LLVM_DEBUG(dbgs()
2975                          << "SLP:    gets ready (def): " << *DepBundle << "\n");
2976             }
2977           });
2978         };
2979 
2980         // If BundleMember is a vector bundle, its operands may have been
2981         // reordered during buildTree(). We therefore need to get its operands
2982         // through the TreeEntry.
2983         if (TreeEntry *TE = BundleMember->TE) {
2984           // Need to search for the lane since the tree entry can be reordered.
2985           int Lane = std::distance(TE->Scalars.begin(),
2986                                    find(TE->Scalars, BundleMember->Inst));
2987           assert(Lane >= 0 && "Lane not set");
2988 
2989           // Since vectorization tree is being built recursively this assertion
2990           // ensures that the tree entry has all operands set before reaching
2991           // this code. Couple of exceptions known at the moment are extracts
2992           // where their second (immediate) operand is not added. Since
2993           // immediates do not affect scheduler behavior this is considered
2994           // okay.
2995           auto *In = BundleMember->Inst;
2996           assert(In &&
2997                  (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) ||
2998                   In->getNumOperands() == TE->getNumOperands()) &&
2999                  "Missed TreeEntry operands?");
3000           (void)In; // fake use to avoid build failure when assertions disabled
3001 
3002           for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands();
3003                OpIdx != NumOperands; ++OpIdx)
3004             if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane]))
3005               DecrUnsched(I);
3006         } else {
3007           // If BundleMember is a stand-alone instruction, no operand reordering
3008           // has taken place, so we directly access its operands.
3009           for (Use &U : BundleMember->Inst->operands())
3010             if (auto *I = dyn_cast<Instruction>(U.get()))
3011               DecrUnsched(I);
3012         }
3013         // Handle the memory dependencies.
3014         for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
3015           if (MemoryDepSD->hasValidDependencies() &&
3016               MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
3017             // There are no more unscheduled dependencies after decrementing,
3018             // so we can put the dependent instruction into the ready list.
3019             ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
3020             assert(!DepBundle->IsScheduled &&
3021                    "already scheduled bundle gets ready");
3022             ReadyList.insert(DepBundle);
3023             LLVM_DEBUG(dbgs()
3024                        << "SLP:    gets ready (mem): " << *DepBundle << "\n");
3025           }
3026         }
3027         // Handle the control dependencies.
3028         for (ScheduleData *DepSD : BundleMember->ControlDependencies) {
3029           if (DepSD->incrementUnscheduledDeps(-1) == 0) {
3030             // There are no more unscheduled dependencies after decrementing,
3031             // so we can put the dependent instruction into the ready list.
3032             ScheduleData *DepBundle = DepSD->FirstInBundle;
3033             assert(!DepBundle->IsScheduled &&
3034                    "already scheduled bundle gets ready");
3035             ReadyList.insert(DepBundle);
3036             LLVM_DEBUG(dbgs()
3037                        << "SLP:    gets ready (ctl): " << *DepBundle << "\n");
3038           }
3039         }
3040 
3041       }
3042     }
3043 
3044     /// Verify basic self consistency properties of the data structure.
3045     void verify() {
3046       if (!ScheduleStart)
3047         return;
3048 
3049       assert(ScheduleStart->getParent() == ScheduleEnd->getParent() &&
3050              ScheduleStart->comesBefore(ScheduleEnd) &&
3051              "Not a valid scheduling region?");
3052 
3053       for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
3054         auto *SD = getScheduleData(I);
3055         if (!SD)
3056           continue;
3057         assert(isInSchedulingRegion(SD) &&
3058                "primary schedule data not in window?");
3059         assert(isInSchedulingRegion(SD->FirstInBundle) &&
3060                "entire bundle in window!");
3061         (void)SD;
3062         doForAllOpcodes(I, [](ScheduleData *SD) { SD->verify(); });
3063       }
3064 
3065       for (auto *SD : ReadyInsts) {
3066         assert(SD->isSchedulingEntity() && SD->isReady() &&
3067                "item in ready list not ready?");
3068         (void)SD;
3069       }
3070     }
3071 
3072     void doForAllOpcodes(Value *V,
3073                          function_ref<void(ScheduleData *SD)> Action) {
3074       if (ScheduleData *SD = getScheduleData(V))
3075         Action(SD);
3076       auto I = ExtraScheduleDataMap.find(V);
3077       if (I != ExtraScheduleDataMap.end())
3078         for (auto &P : I->second)
3079           if (isInSchedulingRegion(P.second))
3080             Action(P.second);
3081     }
3082 
3083     /// Put all instructions into the ReadyList which are ready for scheduling.
3084     template <typename ReadyListType>
3085     void initialFillReadyList(ReadyListType &ReadyList) {
3086       for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
3087         doForAllOpcodes(I, [&](ScheduleData *SD) {
3088           if (SD->isSchedulingEntity() && SD->hasValidDependencies() &&
3089               SD->isReady()) {
3090             ReadyList.insert(SD);
3091             LLVM_DEBUG(dbgs()
3092                        << "SLP:    initially in ready list: " << *SD << "\n");
3093           }
3094         });
3095       }
3096     }
3097 
3098     /// Build a bundle from the ScheduleData nodes corresponding to the
3099     /// scalar instruction for each lane.
3100     ScheduleData *buildBundle(ArrayRef<Value *> VL);
3101 
3102     /// Checks if a bundle of instructions can be scheduled, i.e. has no
3103     /// cyclic dependencies. This is only a dry-run, no instructions are
3104     /// actually moved at this stage.
3105     /// \returns the scheduling bundle. The returned Optional value is non-None
3106     /// if \p VL is allowed to be scheduled.
3107     Optional<ScheduleData *>
3108     tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
3109                       const InstructionsState &S);
3110 
3111     /// Un-bundles a group of instructions.
3112     void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue);
3113 
3114     /// Allocates schedule data chunk.
3115     ScheduleData *allocateScheduleDataChunks();
3116 
3117     /// Extends the scheduling region so that V is inside the region.
3118     /// \returns true if the region size is within the limit.
3119     bool extendSchedulingRegion(Value *V, const InstructionsState &S);
3120 
3121     /// Initialize the ScheduleData structures for new instructions in the
3122     /// scheduling region.
3123     void initScheduleData(Instruction *FromI, Instruction *ToI,
3124                           ScheduleData *PrevLoadStore,
3125                           ScheduleData *NextLoadStore);
3126 
3127     /// Updates the dependency information of a bundle and of all instructions/
3128     /// bundles which depend on the original bundle.
3129     void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
3130                                BoUpSLP *SLP);
3131 
3132     /// Sets all instruction in the scheduling region to un-scheduled.
3133     void resetSchedule();
3134 
3135     BasicBlock *BB;
3136 
3137     /// Simple memory allocation for ScheduleData.
3138     std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
3139 
3140     /// The size of a ScheduleData array in ScheduleDataChunks.
3141     int ChunkSize;
3142 
3143     /// The allocator position in the current chunk, which is the last entry
3144     /// of ScheduleDataChunks.
3145     int ChunkPos;
3146 
3147     /// Attaches ScheduleData to Instruction.
3148     /// Note that the mapping survives during all vectorization iterations, i.e.
3149     /// ScheduleData structures are recycled.
3150     DenseMap<Instruction *, ScheduleData *> ScheduleDataMap;
3151 
3152     /// Attaches ScheduleData to Instruction with the leading key.
3153     DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>>
3154         ExtraScheduleDataMap;
3155 
3156     /// The ready-list for scheduling (only used for the dry-run).
3157     SetVector<ScheduleData *> ReadyInsts;
3158 
3159     /// The first instruction of the scheduling region.
3160     Instruction *ScheduleStart = nullptr;
3161 
3162     /// The first instruction _after_ the scheduling region.
3163     Instruction *ScheduleEnd = nullptr;
3164 
3165     /// The first memory accessing instruction in the scheduling region
3166     /// (can be null).
3167     ScheduleData *FirstLoadStoreInRegion = nullptr;
3168 
3169     /// The last memory accessing instruction in the scheduling region
3170     /// (can be null).
3171     ScheduleData *LastLoadStoreInRegion = nullptr;
3172 
3173     /// Is there an llvm.stacksave or llvm.stackrestore in the scheduling
3174     /// region?  Used to optimize the dependence calculation for the
3175     /// common case where there isn't.
3176     bool RegionHasStackSave = false;
3177 
3178     /// The current size of the scheduling region.
3179     int ScheduleRegionSize = 0;
3180 
3181     /// The maximum size allowed for the scheduling region.
3182     int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget;
3183 
3184     /// The ID of the scheduling region. For a new vectorization iteration this
3185     /// is incremented which "removes" all ScheduleData from the region.
3186     /// Make sure that the initial SchedulingRegionID is greater than the
3187     /// initial SchedulingRegionID in ScheduleData (which is 0).
3188     int SchedulingRegionID = 1;
3189   };
3190 
3191   /// Attaches the BlockScheduling structures to basic blocks.
3192   MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
3193 
3194   /// Performs the "real" scheduling. Done before vectorization is actually
3195   /// performed in a basic block.
3196   void scheduleBlock(BlockScheduling *BS);
3197 
3198   /// List of users to ignore during scheduling and that don't need extracting.
3199   const SmallDenseSet<Value *> *UserIgnoreList = nullptr;
3200 
3201   /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of
3202   /// sorted SmallVectors of unsigned.
3203   struct OrdersTypeDenseMapInfo {
3204     static OrdersType getEmptyKey() {
3205       OrdersType V;
3206       V.push_back(~1U);
3207       return V;
3208     }
3209 
3210     static OrdersType getTombstoneKey() {
3211       OrdersType V;
3212       V.push_back(~2U);
3213       return V;
3214     }
3215 
3216     static unsigned getHashValue(const OrdersType &V) {
3217       return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
3218     }
3219 
3220     static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) {
3221       return LHS == RHS;
3222     }
3223   };
3224 
3225   // Analysis and block reference.
3226   Function *F;
3227   ScalarEvolution *SE;
3228   TargetTransformInfo *TTI;
3229   TargetLibraryInfo *TLI;
3230   LoopInfo *LI;
3231   DominatorTree *DT;
3232   AssumptionCache *AC;
3233   DemandedBits *DB;
3234   const DataLayout *DL;
3235   OptimizationRemarkEmitter *ORE;
3236 
3237   unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
3238   unsigned MinVecRegSize; // Set by cl::opt (default: 128).
3239 
3240   /// Instruction builder to construct the vectorized tree.
3241   IRBuilder<> Builder;
3242 
3243   /// A map of scalar integer values to the smallest bit width with which they
3244   /// can legally be represented. The values map to (width, signed) pairs,
3245   /// where "width" indicates the minimum bit width and "signed" is True if the
3246   /// value must be signed-extended, rather than zero-extended, back to its
3247   /// original width.
3248   MapVector<Value *, std::pair<uint64_t, bool>> MinBWs;
3249 };
3250 
3251 } // end namespace slpvectorizer
3252 
3253 template <> struct GraphTraits<BoUpSLP *> {
3254   using TreeEntry = BoUpSLP::TreeEntry;
3255 
3256   /// NodeRef has to be a pointer per the GraphWriter.
3257   using NodeRef = TreeEntry *;
3258 
3259   using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy;
3260 
3261   /// Add the VectorizableTree to the index iterator to be able to return
3262   /// TreeEntry pointers.
3263   struct ChildIteratorType
3264       : public iterator_adaptor_base<
3265             ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> {
3266     ContainerTy &VectorizableTree;
3267 
3268     ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W,
3269                       ContainerTy &VT)
3270         : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {}
3271 
3272     NodeRef operator*() { return I->UserTE; }
3273   };
3274 
3275   static NodeRef getEntryNode(BoUpSLP &R) {
3276     return R.VectorizableTree[0].get();
3277   }
3278 
3279   static ChildIteratorType child_begin(NodeRef N) {
3280     return {N->UserTreeIndices.begin(), N->Container};
3281   }
3282 
3283   static ChildIteratorType child_end(NodeRef N) {
3284     return {N->UserTreeIndices.end(), N->Container};
3285   }
3286 
3287   /// For the node iterator we just need to turn the TreeEntry iterator into a
3288   /// TreeEntry* iterator so that it dereferences to NodeRef.
3289   class nodes_iterator {
3290     using ItTy = ContainerTy::iterator;
3291     ItTy It;
3292 
3293   public:
3294     nodes_iterator(const ItTy &It2) : It(It2) {}
3295     NodeRef operator*() { return It->get(); }
3296     nodes_iterator operator++() {
3297       ++It;
3298       return *this;
3299     }
3300     bool operator!=(const nodes_iterator &N2) const { return N2.It != It; }
3301   };
3302 
3303   static nodes_iterator nodes_begin(BoUpSLP *R) {
3304     return nodes_iterator(R->VectorizableTree.begin());
3305   }
3306 
3307   static nodes_iterator nodes_end(BoUpSLP *R) {
3308     return nodes_iterator(R->VectorizableTree.end());
3309   }
3310 
3311   static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); }
3312 };
3313 
3314 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits {
3315   using TreeEntry = BoUpSLP::TreeEntry;
3316 
3317   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
3318 
3319   std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) {
3320     std::string Str;
3321     raw_string_ostream OS(Str);
3322     if (isSplat(Entry->Scalars))
3323       OS << "<splat> ";
3324     for (auto V : Entry->Scalars) {
3325       OS << *V;
3326       if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) {
3327             return EU.Scalar == V;
3328           }))
3329         OS << " <extract>";
3330       OS << "\n";
3331     }
3332     return Str;
3333   }
3334 
3335   static std::string getNodeAttributes(const TreeEntry *Entry,
3336                                        const BoUpSLP *) {
3337     if (Entry->State == TreeEntry::NeedToGather)
3338       return "color=red";
3339     return "";
3340   }
3341 };
3342 
3343 } // end namespace llvm
3344 
3345 BoUpSLP::~BoUpSLP() {
3346   SmallVector<WeakTrackingVH> DeadInsts;
3347   for (auto *I : DeletedInstructions) {
3348     for (Use &U : I->operands()) {
3349       auto *Op = dyn_cast<Instruction>(U.get());
3350       if (Op && !DeletedInstructions.count(Op) && Op->hasOneUser() &&
3351           wouldInstructionBeTriviallyDead(Op, TLI))
3352         DeadInsts.emplace_back(Op);
3353     }
3354     I->dropAllReferences();
3355   }
3356   for (auto *I : DeletedInstructions) {
3357     assert(I->use_empty() &&
3358            "trying to erase instruction with users.");
3359     I->eraseFromParent();
3360   }
3361 
3362   // Cleanup any dead scalar code feeding the vectorized instructions
3363   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI);
3364 
3365 #ifdef EXPENSIVE_CHECKS
3366   // If we could guarantee that this call is not extremely slow, we could
3367   // remove the ifdef limitation (see PR47712).
3368   assert(!verifyFunction(*F, &dbgs()));
3369 #endif
3370 }
3371 
3372 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses
3373 /// contains original mask for the scalars reused in the node. Procedure
3374 /// transform this mask in accordance with the given \p Mask.
3375 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) {
3376   assert(!Mask.empty() && Reuses.size() == Mask.size() &&
3377          "Expected non-empty mask.");
3378   SmallVector<int> Prev(Reuses.begin(), Reuses.end());
3379   Prev.swap(Reuses);
3380   for (unsigned I = 0, E = Prev.size(); I < E; ++I)
3381     if (Mask[I] != UndefMaskElem)
3382       Reuses[Mask[I]] = Prev[I];
3383 }
3384 
3385 /// Reorders the given \p Order according to the given \p Mask. \p Order - is
3386 /// the original order of the scalars. Procedure transforms the provided order
3387 /// in accordance with the given \p Mask. If the resulting \p Order is just an
3388 /// identity order, \p Order is cleared.
3389 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) {
3390   assert(!Mask.empty() && "Expected non-empty mask.");
3391   SmallVector<int> MaskOrder;
3392   if (Order.empty()) {
3393     MaskOrder.resize(Mask.size());
3394     std::iota(MaskOrder.begin(), MaskOrder.end(), 0);
3395   } else {
3396     inversePermutation(Order, MaskOrder);
3397   }
3398   reorderReuses(MaskOrder, Mask);
3399   if (ShuffleVectorInst::isIdentityMask(MaskOrder)) {
3400     Order.clear();
3401     return;
3402   }
3403   Order.assign(Mask.size(), Mask.size());
3404   for (unsigned I = 0, E = Mask.size(); I < E; ++I)
3405     if (MaskOrder[I] != UndefMaskElem)
3406       Order[MaskOrder[I]] = I;
3407   fixupOrderingIndices(Order);
3408 }
3409 
3410 Optional<BoUpSLP::OrdersType>
3411 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) {
3412   assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only.");
3413   unsigned NumScalars = TE.Scalars.size();
3414   OrdersType CurrentOrder(NumScalars, NumScalars);
3415   SmallVector<int> Positions;
3416   SmallBitVector UsedPositions(NumScalars);
3417   const TreeEntry *STE = nullptr;
3418   // Try to find all gathered scalars that are gets vectorized in other
3419   // vectorize node. Here we can have only one single tree vector node to
3420   // correctly identify order of the gathered scalars.
3421   for (unsigned I = 0; I < NumScalars; ++I) {
3422     Value *V = TE.Scalars[I];
3423     if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V))
3424       continue;
3425     if (const auto *LocalSTE = getTreeEntry(V)) {
3426       if (!STE)
3427         STE = LocalSTE;
3428       else if (STE != LocalSTE)
3429         // Take the order only from the single vector node.
3430         return None;
3431       unsigned Lane =
3432           std::distance(STE->Scalars.begin(), find(STE->Scalars, V));
3433       if (Lane >= NumScalars)
3434         return None;
3435       if (CurrentOrder[Lane] != NumScalars) {
3436         if (Lane != I)
3437           continue;
3438         UsedPositions.reset(CurrentOrder[Lane]);
3439       }
3440       // The partial identity (where only some elements of the gather node are
3441       // in the identity order) is good.
3442       CurrentOrder[Lane] = I;
3443       UsedPositions.set(I);
3444     }
3445   }
3446   // Need to keep the order if we have a vector entry and at least 2 scalars or
3447   // the vectorized entry has just 2 scalars.
3448   if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) {
3449     auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) {
3450       for (unsigned I = 0; I < NumScalars; ++I)
3451         if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars)
3452           return false;
3453       return true;
3454     };
3455     if (IsIdentityOrder(CurrentOrder)) {
3456       CurrentOrder.clear();
3457       return CurrentOrder;
3458     }
3459     auto *It = CurrentOrder.begin();
3460     for (unsigned I = 0; I < NumScalars;) {
3461       if (UsedPositions.test(I)) {
3462         ++I;
3463         continue;
3464       }
3465       if (*It == NumScalars) {
3466         *It = I;
3467         ++I;
3468       }
3469       ++It;
3470     }
3471     return CurrentOrder;
3472   }
3473   return None;
3474 }
3475 
3476 bool clusterSortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy,
3477                             const DataLayout &DL, ScalarEvolution &SE,
3478                             SmallVectorImpl<unsigned> &SortedIndices) {
3479   assert(llvm::all_of(
3480              VL, [](const Value *V) { return V->getType()->isPointerTy(); }) &&
3481          "Expected list of pointer operands.");
3482   // Map from bases to a vector of (Ptr, Offset, OrigIdx), which we insert each
3483   // Ptr into, sort and return the sorted indices with values next to one
3484   // another.
3485   MapVector<Value *, SmallVector<std::tuple<Value *, int, unsigned>>> Bases;
3486   Bases[VL[0]].push_back(std::make_tuple(VL[0], 0U, 0U));
3487 
3488   unsigned Cnt = 1;
3489   for (Value *Ptr : VL.drop_front()) {
3490     bool Found = any_of(Bases, [&](auto &Base) {
3491       Optional<int> Diff =
3492           getPointersDiff(ElemTy, Base.first, ElemTy, Ptr, DL, SE,
3493                           /*StrictCheck=*/true);
3494       if (!Diff)
3495         return false;
3496 
3497       Base.second.emplace_back(Ptr, *Diff, Cnt++);
3498       return true;
3499     });
3500 
3501     if (!Found) {
3502       // If we haven't found enough to usefully cluster, return early.
3503       if (Bases.size() > VL.size() / 2 - 1)
3504         return false;
3505 
3506       // Not found already - add a new Base
3507       Bases[Ptr].emplace_back(Ptr, 0, Cnt++);
3508     }
3509   }
3510 
3511   // For each of the bases sort the pointers by Offset and check if any of the
3512   // base become consecutively allocated.
3513   bool AnyConsecutive = false;
3514   for (auto &Base : Bases) {
3515     auto &Vec = Base.second;
3516     if (Vec.size() > 1) {
3517       llvm::stable_sort(Vec, [](const std::tuple<Value *, int, unsigned> &X,
3518                                 const std::tuple<Value *, int, unsigned> &Y) {
3519         return std::get<1>(X) < std::get<1>(Y);
3520       });
3521       int InitialOffset = std::get<1>(Vec[0]);
3522       AnyConsecutive |= all_of(enumerate(Vec), [InitialOffset](auto &P) {
3523         return std::get<1>(P.value()) == int(P.index()) + InitialOffset;
3524       });
3525     }
3526   }
3527 
3528   // Fill SortedIndices array only if it looks worth-while to sort the ptrs.
3529   SortedIndices.clear();
3530   if (!AnyConsecutive)
3531     return false;
3532 
3533   for (auto &Base : Bases) {
3534     for (auto &T : Base.second)
3535       SortedIndices.push_back(std::get<2>(T));
3536   }
3537 
3538   assert(SortedIndices.size() == VL.size() &&
3539          "Expected SortedIndices to be the size of VL");
3540   return true;
3541 }
3542 
3543 Optional<BoUpSLP::OrdersType>
3544 BoUpSLP::findPartiallyOrderedLoads(const BoUpSLP::TreeEntry &TE) {
3545   assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only.");
3546   Type *ScalarTy = TE.Scalars[0]->getType();
3547 
3548   SmallVector<Value *> Ptrs;
3549   Ptrs.reserve(TE.Scalars.size());
3550   for (Value *V : TE.Scalars) {
3551     auto *L = dyn_cast<LoadInst>(V);
3552     if (!L || !L->isSimple())
3553       return None;
3554     Ptrs.push_back(L->getPointerOperand());
3555   }
3556 
3557   BoUpSLP::OrdersType Order;
3558   if (clusterSortPtrAccesses(Ptrs, ScalarTy, *DL, *SE, Order))
3559     return Order;
3560   return None;
3561 }
3562 
3563 Optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE,
3564                                                          bool TopToBottom) {
3565   // No need to reorder if need to shuffle reuses, still need to shuffle the
3566   // node.
3567   if (!TE.ReuseShuffleIndices.empty())
3568     return None;
3569   if (TE.State == TreeEntry::Vectorize &&
3570       (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) ||
3571        (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) &&
3572       !TE.isAltShuffle())
3573     return TE.ReorderIndices;
3574   if (TE.State == TreeEntry::NeedToGather) {
3575     // TODO: add analysis of other gather nodes with extractelement
3576     // instructions and other values/instructions, not only undefs.
3577     if (((TE.getOpcode() == Instruction::ExtractElement &&
3578           !TE.isAltShuffle()) ||
3579          (all_of(TE.Scalars,
3580                  [](Value *V) {
3581                    return isa<UndefValue, ExtractElementInst>(V);
3582                  }) &&
3583           any_of(TE.Scalars,
3584                  [](Value *V) { return isa<ExtractElementInst>(V); }))) &&
3585         all_of(TE.Scalars,
3586                [](Value *V) {
3587                  auto *EE = dyn_cast<ExtractElementInst>(V);
3588                  return !EE || isa<FixedVectorType>(EE->getVectorOperandType());
3589                }) &&
3590         allSameType(TE.Scalars)) {
3591       // Check that gather of extractelements can be represented as
3592       // just a shuffle of a single vector.
3593       OrdersType CurrentOrder;
3594       bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder);
3595       if (Reuse || !CurrentOrder.empty()) {
3596         if (!CurrentOrder.empty())
3597           fixupOrderingIndices(CurrentOrder);
3598         return CurrentOrder;
3599       }
3600     }
3601     if (Optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE))
3602       return CurrentOrder;
3603     if (TE.Scalars.size() >= 4)
3604       if (Optional<OrdersType> Order = findPartiallyOrderedLoads(TE))
3605         return Order;
3606   }
3607   return None;
3608 }
3609 
3610 void BoUpSLP::reorderTopToBottom() {
3611   // Maps VF to the graph nodes.
3612   DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries;
3613   // ExtractElement gather nodes which can be vectorized and need to handle
3614   // their ordering.
3615   DenseMap<const TreeEntry *, OrdersType> GathersToOrders;
3616 
3617   // Maps a TreeEntry to the reorder indices of external users.
3618   DenseMap<const TreeEntry *, SmallVector<OrdersType, 1>>
3619       ExternalUserReorderMap;
3620   // Find all reorderable nodes with the given VF.
3621   // Currently the are vectorized stores,loads,extracts + some gathering of
3622   // extracts.
3623   for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders,
3624                               &ExternalUserReorderMap](
3625                                  const std::unique_ptr<TreeEntry> &TE) {
3626     // Look for external users that will probably be vectorized.
3627     SmallVector<OrdersType, 1> ExternalUserReorderIndices =
3628         findExternalStoreUsersReorderIndices(TE.get());
3629     if (!ExternalUserReorderIndices.empty()) {
3630       VFToOrderedEntries[TE->Scalars.size()].insert(TE.get());
3631       ExternalUserReorderMap.try_emplace(TE.get(),
3632                                          std::move(ExternalUserReorderIndices));
3633     }
3634 
3635     if (Optional<OrdersType> CurrentOrder =
3636             getReorderingData(*TE, /*TopToBottom=*/true)) {
3637       // Do not include ordering for nodes used in the alt opcode vectorization,
3638       // better to reorder them during bottom-to-top stage. If follow the order
3639       // here, it causes reordering of the whole graph though actually it is
3640       // profitable just to reorder the subgraph that starts from the alternate
3641       // opcode vectorization node. Such nodes already end-up with the shuffle
3642       // instruction and it is just enough to change this shuffle rather than
3643       // rotate the scalars for the whole graph.
3644       unsigned Cnt = 0;
3645       const TreeEntry *UserTE = TE.get();
3646       while (UserTE && Cnt < RecursionMaxDepth) {
3647         if (UserTE->UserTreeIndices.size() != 1)
3648           break;
3649         if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) {
3650               return EI.UserTE->State == TreeEntry::Vectorize &&
3651                      EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0;
3652             }))
3653           return;
3654         if (UserTE->UserTreeIndices.empty())
3655           UserTE = nullptr;
3656         else
3657           UserTE = UserTE->UserTreeIndices.back().UserTE;
3658         ++Cnt;
3659       }
3660       VFToOrderedEntries[TE->Scalars.size()].insert(TE.get());
3661       if (TE->State != TreeEntry::Vectorize)
3662         GathersToOrders.try_emplace(TE.get(), *CurrentOrder);
3663     }
3664   });
3665 
3666   // Reorder the graph nodes according to their vectorization factor.
3667   for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1;
3668        VF /= 2) {
3669     auto It = VFToOrderedEntries.find(VF);
3670     if (It == VFToOrderedEntries.end())
3671       continue;
3672     // Try to find the most profitable order. We just are looking for the most
3673     // used order and reorder scalar elements in the nodes according to this
3674     // mostly used order.
3675     ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef();
3676     // All operands are reordered and used only in this node - propagate the
3677     // most used order to the user node.
3678     MapVector<OrdersType, unsigned,
3679               DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>>
3680         OrdersUses;
3681     SmallPtrSet<const TreeEntry *, 4> VisitedOps;
3682     for (const TreeEntry *OpTE : OrderedEntries) {
3683       // No need to reorder this nodes, still need to extend and to use shuffle,
3684       // just need to merge reordering shuffle and the reuse shuffle.
3685       if (!OpTE->ReuseShuffleIndices.empty())
3686         continue;
3687       // Count number of orders uses.
3688       const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & {
3689         if (OpTE->State == TreeEntry::NeedToGather) {
3690           auto It = GathersToOrders.find(OpTE);
3691           if (It != GathersToOrders.end())
3692             return It->second;
3693         }
3694         return OpTE->ReorderIndices;
3695       }();
3696       // First consider the order of the external scalar users.
3697       auto It = ExternalUserReorderMap.find(OpTE);
3698       if (It != ExternalUserReorderMap.end()) {
3699         const auto &ExternalUserReorderIndices = It->second;
3700         for (const OrdersType &ExtOrder : ExternalUserReorderIndices)
3701           ++OrdersUses.insert(std::make_pair(ExtOrder, 0)).first->second;
3702         // No other useful reorder data in this entry.
3703         if (Order.empty())
3704           continue;
3705       }
3706       // Stores actually store the mask, not the order, need to invert.
3707       if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() &&
3708           OpTE->getOpcode() == Instruction::Store && !Order.empty()) {
3709         SmallVector<int> Mask;
3710         inversePermutation(Order, Mask);
3711         unsigned E = Order.size();
3712         OrdersType CurrentOrder(E, E);
3713         transform(Mask, CurrentOrder.begin(), [E](int Idx) {
3714           return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx);
3715         });
3716         fixupOrderingIndices(CurrentOrder);
3717         ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second;
3718       } else {
3719         ++OrdersUses.insert(std::make_pair(Order, 0)).first->second;
3720       }
3721     }
3722     // Set order of the user node.
3723     if (OrdersUses.empty())
3724       continue;
3725     // Choose the most used order.
3726     ArrayRef<unsigned> BestOrder = OrdersUses.front().first;
3727     unsigned Cnt = OrdersUses.front().second;
3728     for (const auto &Pair : drop_begin(OrdersUses)) {
3729       if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) {
3730         BestOrder = Pair.first;
3731         Cnt = Pair.second;
3732       }
3733     }
3734     // Set order of the user node.
3735     if (BestOrder.empty())
3736       continue;
3737     SmallVector<int> Mask;
3738     inversePermutation(BestOrder, Mask);
3739     SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem);
3740     unsigned E = BestOrder.size();
3741     transform(BestOrder, MaskOrder.begin(), [E](unsigned I) {
3742       return I < E ? static_cast<int>(I) : UndefMaskElem;
3743     });
3744     // Do an actual reordering, if profitable.
3745     for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) {
3746       // Just do the reordering for the nodes with the given VF.
3747       if (TE->Scalars.size() != VF) {
3748         if (TE->ReuseShuffleIndices.size() == VF) {
3749           // Need to reorder the reuses masks of the operands with smaller VF to
3750           // be able to find the match between the graph nodes and scalar
3751           // operands of the given node during vectorization/cost estimation.
3752           assert(all_of(TE->UserTreeIndices,
3753                         [VF, &TE](const EdgeInfo &EI) {
3754                           return EI.UserTE->Scalars.size() == VF ||
3755                                  EI.UserTE->Scalars.size() ==
3756                                      TE->Scalars.size();
3757                         }) &&
3758                  "All users must be of VF size.");
3759           // Update ordering of the operands with the smaller VF than the given
3760           // one.
3761           reorderReuses(TE->ReuseShuffleIndices, Mask);
3762         }
3763         continue;
3764       }
3765       if (TE->State == TreeEntry::Vectorize &&
3766           isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst,
3767               InsertElementInst>(TE->getMainOp()) &&
3768           !TE->isAltShuffle()) {
3769         // Build correct orders for extract{element,value}, loads and
3770         // stores.
3771         reorderOrder(TE->ReorderIndices, Mask);
3772         if (isa<InsertElementInst, StoreInst>(TE->getMainOp()))
3773           TE->reorderOperands(Mask);
3774       } else {
3775         // Reorder the node and its operands.
3776         TE->reorderOperands(Mask);
3777         assert(TE->ReorderIndices.empty() &&
3778                "Expected empty reorder sequence.");
3779         reorderScalars(TE->Scalars, Mask);
3780       }
3781       if (!TE->ReuseShuffleIndices.empty()) {
3782         // Apply reversed order to keep the original ordering of the reused
3783         // elements to avoid extra reorder indices shuffling.
3784         OrdersType CurrentOrder;
3785         reorderOrder(CurrentOrder, MaskOrder);
3786         SmallVector<int> NewReuses;
3787         inversePermutation(CurrentOrder, NewReuses);
3788         addMask(NewReuses, TE->ReuseShuffleIndices);
3789         TE->ReuseShuffleIndices.swap(NewReuses);
3790       }
3791     }
3792   }
3793 }
3794 
3795 bool BoUpSLP::canReorderOperands(
3796     TreeEntry *UserTE, SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges,
3797     ArrayRef<TreeEntry *> ReorderableGathers,
3798     SmallVectorImpl<TreeEntry *> &GatherOps) {
3799   for (unsigned I = 0, E = UserTE->getNumOperands(); I < E; ++I) {
3800     if (any_of(Edges, [I](const std::pair<unsigned, TreeEntry *> &OpData) {
3801           return OpData.first == I &&
3802                  OpData.second->State == TreeEntry::Vectorize;
3803         }))
3804       continue;
3805     if (TreeEntry *TE = getVectorizedOperand(UserTE, I)) {
3806       // Do not reorder if operand node is used by many user nodes.
3807       if (any_of(TE->UserTreeIndices,
3808                  [UserTE](const EdgeInfo &EI) { return EI.UserTE != UserTE; }))
3809         return false;
3810       // Add the node to the list of the ordered nodes with the identity
3811       // order.
3812       Edges.emplace_back(I, TE);
3813       continue;
3814     }
3815     ArrayRef<Value *> VL = UserTE->getOperand(I);
3816     TreeEntry *Gather = nullptr;
3817     if (count_if(ReorderableGathers, [VL, &Gather](TreeEntry *TE) {
3818           assert(TE->State != TreeEntry::Vectorize &&
3819                  "Only non-vectorized nodes are expected.");
3820           if (TE->isSame(VL)) {
3821             Gather = TE;
3822             return true;
3823           }
3824           return false;
3825         }) > 1)
3826       return false;
3827     if (Gather)
3828       GatherOps.push_back(Gather);
3829   }
3830   return true;
3831 }
3832 
3833 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) {
3834   SetVector<TreeEntry *> OrderedEntries;
3835   DenseMap<const TreeEntry *, OrdersType> GathersToOrders;
3836   // Find all reorderable leaf nodes with the given VF.
3837   // Currently the are vectorized loads,extracts without alternate operands +
3838   // some gathering of extracts.
3839   SmallVector<TreeEntry *> NonVectorized;
3840   for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders,
3841                               &NonVectorized](
3842                                  const std::unique_ptr<TreeEntry> &TE) {
3843     if (TE->State != TreeEntry::Vectorize)
3844       NonVectorized.push_back(TE.get());
3845     if (Optional<OrdersType> CurrentOrder =
3846             getReorderingData(*TE, /*TopToBottom=*/false)) {
3847       OrderedEntries.insert(TE.get());
3848       if (TE->State != TreeEntry::Vectorize)
3849         GathersToOrders.try_emplace(TE.get(), *CurrentOrder);
3850     }
3851   });
3852 
3853   // 1. Propagate order to the graph nodes, which use only reordered nodes.
3854   // I.e., if the node has operands, that are reordered, try to make at least
3855   // one operand order in the natural order and reorder others + reorder the
3856   // user node itself.
3857   SmallPtrSet<const TreeEntry *, 4> Visited;
3858   while (!OrderedEntries.empty()) {
3859     // 1. Filter out only reordered nodes.
3860     // 2. If the entry has multiple uses - skip it and jump to the next node.
3861     DenseMap<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users;
3862     SmallVector<TreeEntry *> Filtered;
3863     for (TreeEntry *TE : OrderedEntries) {
3864       if (!(TE->State == TreeEntry::Vectorize ||
3865             (TE->State == TreeEntry::NeedToGather &&
3866              GathersToOrders.count(TE))) ||
3867           TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() ||
3868           !all_of(drop_begin(TE->UserTreeIndices),
3869                   [TE](const EdgeInfo &EI) {
3870                     return EI.UserTE == TE->UserTreeIndices.front().UserTE;
3871                   }) ||
3872           !Visited.insert(TE).second) {
3873         Filtered.push_back(TE);
3874         continue;
3875       }
3876       // Build a map between user nodes and their operands order to speedup
3877       // search. The graph currently does not provide this dependency directly.
3878       for (EdgeInfo &EI : TE->UserTreeIndices) {
3879         TreeEntry *UserTE = EI.UserTE;
3880         auto It = Users.find(UserTE);
3881         if (It == Users.end())
3882           It = Users.insert({UserTE, {}}).first;
3883         It->second.emplace_back(EI.EdgeIdx, TE);
3884       }
3885     }
3886     // Erase filtered entries.
3887     for_each(Filtered,
3888              [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); });
3889     SmallVector<
3890         std::pair<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>>>
3891         UsersVec(Users.begin(), Users.end());
3892     sort(UsersVec, [](const auto &Data1, const auto &Data2) {
3893       return Data1.first->Idx > Data2.first->Idx;
3894     });
3895     for (auto &Data : UsersVec) {
3896       // Check that operands are used only in the User node.
3897       SmallVector<TreeEntry *> GatherOps;
3898       if (!canReorderOperands(Data.first, Data.second, NonVectorized,
3899                               GatherOps)) {
3900         for_each(Data.second,
3901                  [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) {
3902                    OrderedEntries.remove(Op.second);
3903                  });
3904         continue;
3905       }
3906       // All operands are reordered and used only in this node - propagate the
3907       // most used order to the user node.
3908       MapVector<OrdersType, unsigned,
3909                 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>>
3910           OrdersUses;
3911       // Do the analysis for each tree entry only once, otherwise the order of
3912       // the same node my be considered several times, though might be not
3913       // profitable.
3914       SmallPtrSet<const TreeEntry *, 4> VisitedOps;
3915       SmallPtrSet<const TreeEntry *, 4> VisitedUsers;
3916       for (const auto &Op : Data.second) {
3917         TreeEntry *OpTE = Op.second;
3918         if (!VisitedOps.insert(OpTE).second)
3919           continue;
3920         if (!OpTE->ReuseShuffleIndices.empty() ||
3921             (IgnoreReorder && OpTE == VectorizableTree.front().get()))
3922           continue;
3923         const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & {
3924           if (OpTE->State == TreeEntry::NeedToGather)
3925             return GathersToOrders.find(OpTE)->second;
3926           return OpTE->ReorderIndices;
3927         }();
3928         unsigned NumOps = count_if(
3929             Data.second, [OpTE](const std::pair<unsigned, TreeEntry *> &P) {
3930               return P.second == OpTE;
3931             });
3932         // Stores actually store the mask, not the order, need to invert.
3933         if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() &&
3934             OpTE->getOpcode() == Instruction::Store && !Order.empty()) {
3935           SmallVector<int> Mask;
3936           inversePermutation(Order, Mask);
3937           unsigned E = Order.size();
3938           OrdersType CurrentOrder(E, E);
3939           transform(Mask, CurrentOrder.begin(), [E](int Idx) {
3940             return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx);
3941           });
3942           fixupOrderingIndices(CurrentOrder);
3943           OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second +=
3944               NumOps;
3945         } else {
3946           OrdersUses.insert(std::make_pair(Order, 0)).first->second += NumOps;
3947         }
3948         auto Res = OrdersUses.insert(std::make_pair(OrdersType(), 0));
3949         const auto &&AllowsReordering = [IgnoreReorder, &GathersToOrders](
3950                                             const TreeEntry *TE) {
3951           if (!TE->ReorderIndices.empty() || !TE->ReuseShuffleIndices.empty() ||
3952               (TE->State == TreeEntry::Vectorize && TE->isAltShuffle()) ||
3953               (IgnoreReorder && TE->Idx == 0))
3954             return true;
3955           if (TE->State == TreeEntry::NeedToGather) {
3956             auto It = GathersToOrders.find(TE);
3957             if (It != GathersToOrders.end())
3958               return !It->second.empty();
3959             return true;
3960           }
3961           return false;
3962         };
3963         for (const EdgeInfo &EI : OpTE->UserTreeIndices) {
3964           TreeEntry *UserTE = EI.UserTE;
3965           if (!VisitedUsers.insert(UserTE).second)
3966             continue;
3967           // May reorder user node if it requires reordering, has reused
3968           // scalars, is an alternate op vectorize node or its op nodes require
3969           // reordering.
3970           if (AllowsReordering(UserTE))
3971             continue;
3972           // Check if users allow reordering.
3973           // Currently look up just 1 level of operands to avoid increase of
3974           // the compile time.
3975           // Profitable to reorder if definitely more operands allow
3976           // reordering rather than those with natural order.
3977           ArrayRef<std::pair<unsigned, TreeEntry *>> Ops = Users[UserTE];
3978           if (static_cast<unsigned>(count_if(
3979                   Ops, [UserTE, &AllowsReordering](
3980                            const std::pair<unsigned, TreeEntry *> &Op) {
3981                     return AllowsReordering(Op.second) &&
3982                            all_of(Op.second->UserTreeIndices,
3983                                   [UserTE](const EdgeInfo &EI) {
3984                                     return EI.UserTE == UserTE;
3985                                   });
3986                   })) <= Ops.size() / 2)
3987             ++Res.first->second;
3988         }
3989       }
3990       // If no orders - skip current nodes and jump to the next one, if any.
3991       if (OrdersUses.empty()) {
3992         for_each(Data.second,
3993                  [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) {
3994                    OrderedEntries.remove(Op.second);
3995                  });
3996         continue;
3997       }
3998       // Choose the best order.
3999       ArrayRef<unsigned> BestOrder = OrdersUses.front().first;
4000       unsigned Cnt = OrdersUses.front().second;
4001       for (const auto &Pair : drop_begin(OrdersUses)) {
4002         if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) {
4003           BestOrder = Pair.first;
4004           Cnt = Pair.second;
4005         }
4006       }
4007       // Set order of the user node (reordering of operands and user nodes).
4008       if (BestOrder.empty()) {
4009         for_each(Data.second,
4010                  [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) {
4011                    OrderedEntries.remove(Op.second);
4012                  });
4013         continue;
4014       }
4015       // Erase operands from OrderedEntries list and adjust their orders.
4016       VisitedOps.clear();
4017       SmallVector<int> Mask;
4018       inversePermutation(BestOrder, Mask);
4019       SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem);
4020       unsigned E = BestOrder.size();
4021       transform(BestOrder, MaskOrder.begin(), [E](unsigned I) {
4022         return I < E ? static_cast<int>(I) : UndefMaskElem;
4023       });
4024       for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) {
4025         TreeEntry *TE = Op.second;
4026         OrderedEntries.remove(TE);
4027         if (!VisitedOps.insert(TE).second)
4028           continue;
4029         if (TE->ReuseShuffleIndices.size() == BestOrder.size()) {
4030           // Just reorder reuses indices.
4031           reorderReuses(TE->ReuseShuffleIndices, Mask);
4032           continue;
4033         }
4034         // Gathers are processed separately.
4035         if (TE->State != TreeEntry::Vectorize)
4036           continue;
4037         assert((BestOrder.size() == TE->ReorderIndices.size() ||
4038                 TE->ReorderIndices.empty()) &&
4039                "Non-matching sizes of user/operand entries.");
4040         reorderOrder(TE->ReorderIndices, Mask);
4041       }
4042       // For gathers just need to reorder its scalars.
4043       for (TreeEntry *Gather : GatherOps) {
4044         assert(Gather->ReorderIndices.empty() &&
4045                "Unexpected reordering of gathers.");
4046         if (!Gather->ReuseShuffleIndices.empty()) {
4047           // Just reorder reuses indices.
4048           reorderReuses(Gather->ReuseShuffleIndices, Mask);
4049           continue;
4050         }
4051         reorderScalars(Gather->Scalars, Mask);
4052         OrderedEntries.remove(Gather);
4053       }
4054       // Reorder operands of the user node and set the ordering for the user
4055       // node itself.
4056       if (Data.first->State != TreeEntry::Vectorize ||
4057           !isa<ExtractElementInst, ExtractValueInst, LoadInst>(
4058               Data.first->getMainOp()) ||
4059           Data.first->isAltShuffle())
4060         Data.first->reorderOperands(Mask);
4061       if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) ||
4062           Data.first->isAltShuffle()) {
4063         reorderScalars(Data.first->Scalars, Mask);
4064         reorderOrder(Data.first->ReorderIndices, MaskOrder);
4065         if (Data.first->ReuseShuffleIndices.empty() &&
4066             !Data.first->ReorderIndices.empty() &&
4067             !Data.first->isAltShuffle()) {
4068           // Insert user node to the list to try to sink reordering deeper in
4069           // the graph.
4070           OrderedEntries.insert(Data.first);
4071         }
4072       } else {
4073         reorderOrder(Data.first->ReorderIndices, Mask);
4074       }
4075     }
4076   }
4077   // If the reordering is unnecessary, just remove the reorder.
4078   if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() &&
4079       VectorizableTree.front()->ReuseShuffleIndices.empty())
4080     VectorizableTree.front()->ReorderIndices.clear();
4081 }
4082 
4083 void BoUpSLP::buildExternalUses(
4084     const ExtraValueToDebugLocsMap &ExternallyUsedValues) {
4085   // Collect the values that we need to extract from the tree.
4086   for (auto &TEPtr : VectorizableTree) {
4087     TreeEntry *Entry = TEPtr.get();
4088 
4089     // No need to handle users of gathered values.
4090     if (Entry->State == TreeEntry::NeedToGather)
4091       continue;
4092 
4093     // For each lane:
4094     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
4095       Value *Scalar = Entry->Scalars[Lane];
4096       int FoundLane = Entry->findLaneForValue(Scalar);
4097 
4098       // Check if the scalar is externally used as an extra arg.
4099       auto ExtI = ExternallyUsedValues.find(Scalar);
4100       if (ExtI != ExternallyUsedValues.end()) {
4101         LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane "
4102                           << Lane << " from " << *Scalar << ".\n");
4103         ExternalUses.emplace_back(Scalar, nullptr, FoundLane);
4104       }
4105       for (User *U : Scalar->users()) {
4106         LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
4107 
4108         Instruction *UserInst = dyn_cast<Instruction>(U);
4109         if (!UserInst)
4110           continue;
4111 
4112         if (isDeleted(UserInst))
4113           continue;
4114 
4115         // Skip in-tree scalars that become vectors
4116         if (TreeEntry *UseEntry = getTreeEntry(U)) {
4117           Value *UseScalar = UseEntry->Scalars[0];
4118           // Some in-tree scalars will remain as scalar in vectorized
4119           // instructions. If that is the case, the one in Lane 0 will
4120           // be used.
4121           if (UseScalar != U ||
4122               UseEntry->State == TreeEntry::ScatterVectorize ||
4123               !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
4124             LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
4125                               << ".\n");
4126             assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state");
4127             continue;
4128           }
4129         }
4130 
4131         // Ignore users in the user ignore list.
4132         if (UserIgnoreList && UserIgnoreList->contains(UserInst))
4133           continue;
4134 
4135         LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane "
4136                           << Lane << " from " << *Scalar << ".\n");
4137         ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane));
4138       }
4139     }
4140   }
4141 }
4142 
4143 DenseMap<Value *, SmallVector<StoreInst *, 4>>
4144 BoUpSLP::collectUserStores(const BoUpSLP::TreeEntry *TE) const {
4145   DenseMap<Value *, SmallVector<StoreInst *, 4>> PtrToStoresMap;
4146   for (unsigned Lane : seq<unsigned>(0, TE->Scalars.size())) {
4147     Value *V = TE->Scalars[Lane];
4148     // To save compilation time we don't visit if we have too many users.
4149     static constexpr unsigned UsersLimit = 4;
4150     if (V->hasNUsesOrMore(UsersLimit))
4151       break;
4152 
4153     // Collect stores per pointer object.
4154     for (User *U : V->users()) {
4155       auto *SI = dyn_cast<StoreInst>(U);
4156       if (SI == nullptr || !SI->isSimple() ||
4157           !isValidElementType(SI->getValueOperand()->getType()))
4158         continue;
4159       // Skip entry if already
4160       if (getTreeEntry(U))
4161         continue;
4162 
4163       Value *Ptr = getUnderlyingObject(SI->getPointerOperand());
4164       auto &StoresVec = PtrToStoresMap[Ptr];
4165       // For now just keep one store per pointer object per lane.
4166       // TODO: Extend this to support multiple stores per pointer per lane
4167       if (StoresVec.size() > Lane)
4168         continue;
4169       // Skip if in different BBs.
4170       if (!StoresVec.empty() &&
4171           SI->getParent() != StoresVec.back()->getParent())
4172         continue;
4173       // Make sure that the stores are of the same type.
4174       if (!StoresVec.empty() &&
4175           SI->getValueOperand()->getType() !=
4176               StoresVec.back()->getValueOperand()->getType())
4177         continue;
4178       StoresVec.push_back(SI);
4179     }
4180   }
4181   return PtrToStoresMap;
4182 }
4183 
4184 bool BoUpSLP::CanFormVector(const SmallVector<StoreInst *, 4> &StoresVec,
4185                             OrdersType &ReorderIndices) const {
4186   // We check whether the stores in StoreVec can form a vector by sorting them
4187   // and checking whether they are consecutive.
4188 
4189   // To avoid calling getPointersDiff() while sorting we create a vector of
4190   // pairs {store, offset from first} and sort this instead.
4191   SmallVector<std::pair<StoreInst *, int>, 4> StoreOffsetVec(StoresVec.size());
4192   StoreInst *S0 = StoresVec[0];
4193   StoreOffsetVec[0] = {S0, 0};
4194   Type *S0Ty = S0->getValueOperand()->getType();
4195   Value *S0Ptr = S0->getPointerOperand();
4196   for (unsigned Idx : seq<unsigned>(1, StoresVec.size())) {
4197     StoreInst *SI = StoresVec[Idx];
4198     Optional<int> Diff =
4199         getPointersDiff(S0Ty, S0Ptr, SI->getValueOperand()->getType(),
4200                         SI->getPointerOperand(), *DL, *SE,
4201                         /*StrictCheck=*/true);
4202     // We failed to compare the pointers so just abandon this StoresVec.
4203     if (!Diff)
4204       return false;
4205     StoreOffsetVec[Idx] = {StoresVec[Idx], *Diff};
4206   }
4207 
4208   // Sort the vector based on the pointers. We create a copy because we may
4209   // need the original later for calculating the reorder (shuffle) indices.
4210   stable_sort(StoreOffsetVec, [](const std::pair<StoreInst *, int> &Pair1,
4211                                  const std::pair<StoreInst *, int> &Pair2) {
4212     int Offset1 = Pair1.second;
4213     int Offset2 = Pair2.second;
4214     return Offset1 < Offset2;
4215   });
4216 
4217   // Check if the stores are consecutive by checking if their difference is 1.
4218   for (unsigned Idx : seq<unsigned>(1, StoreOffsetVec.size()))
4219     if (StoreOffsetVec[Idx].second != StoreOffsetVec[Idx-1].second + 1)
4220       return false;
4221 
4222   // Calculate the shuffle indices according to their offset against the sorted
4223   // StoreOffsetVec.
4224   ReorderIndices.reserve(StoresVec.size());
4225   for (StoreInst *SI : StoresVec) {
4226     unsigned Idx = find_if(StoreOffsetVec,
4227                            [SI](const std::pair<StoreInst *, int> &Pair) {
4228                              return Pair.first == SI;
4229                            }) -
4230                    StoreOffsetVec.begin();
4231     ReorderIndices.push_back(Idx);
4232   }
4233   // Identity order (e.g., {0,1,2,3}) is modeled as an empty OrdersType in
4234   // reorderTopToBottom() and reorderBottomToTop(), so we are following the
4235   // same convention here.
4236   auto IsIdentityOrder = [](const OrdersType &Order) {
4237     for (unsigned Idx : seq<unsigned>(0, Order.size()))
4238       if (Idx != Order[Idx])
4239         return false;
4240     return true;
4241   };
4242   if (IsIdentityOrder(ReorderIndices))
4243     ReorderIndices.clear();
4244 
4245   return true;
4246 }
4247 
4248 #ifndef NDEBUG
4249 LLVM_DUMP_METHOD static void dumpOrder(const BoUpSLP::OrdersType &Order) {
4250   for (unsigned Idx : Order)
4251     dbgs() << Idx << ", ";
4252   dbgs() << "\n";
4253 }
4254 #endif
4255 
4256 SmallVector<BoUpSLP::OrdersType, 1>
4257 BoUpSLP::findExternalStoreUsersReorderIndices(TreeEntry *TE) const {
4258   unsigned NumLanes = TE->Scalars.size();
4259 
4260   DenseMap<Value *, SmallVector<StoreInst *, 4>> PtrToStoresMap =
4261       collectUserStores(TE);
4262 
4263   // Holds the reorder indices for each candidate store vector that is a user of
4264   // the current TreeEntry.
4265   SmallVector<OrdersType, 1> ExternalReorderIndices;
4266 
4267   // Now inspect the stores collected per pointer and look for vectorization
4268   // candidates. For each candidate calculate the reorder index vector and push
4269   // it into `ExternalReorderIndices`
4270   for (const auto &Pair : PtrToStoresMap) {
4271     auto &StoresVec = Pair.second;
4272     // If we have fewer than NumLanes stores, then we can't form a vector.
4273     if (StoresVec.size() != NumLanes)
4274       continue;
4275 
4276     // If the stores are not consecutive then abandon this StoresVec.
4277     OrdersType ReorderIndices;
4278     if (!CanFormVector(StoresVec, ReorderIndices))
4279       continue;
4280 
4281     // We now know that the scalars in StoresVec can form a vector instruction,
4282     // so set the reorder indices.
4283     ExternalReorderIndices.push_back(ReorderIndices);
4284   }
4285   return ExternalReorderIndices;
4286 }
4287 
4288 void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
4289                         const SmallDenseSet<Value *> &UserIgnoreLst) {
4290   deleteTree();
4291   UserIgnoreList = &UserIgnoreLst;
4292   if (!allSameType(Roots))
4293     return;
4294   buildTree_rec(Roots, 0, EdgeInfo());
4295 }
4296 
4297 void BoUpSLP::buildTree(ArrayRef<Value *> Roots) {
4298   deleteTree();
4299   if (!allSameType(Roots))
4300     return;
4301   buildTree_rec(Roots, 0, EdgeInfo());
4302 }
4303 
4304 namespace {
4305 /// Tracks the state we can represent the loads in the given sequence.
4306 enum class LoadsState { Gather, Vectorize, ScatterVectorize };
4307 } // anonymous namespace
4308 
4309 /// Checks if the given array of loads can be represented as a vectorized,
4310 /// scatter or just simple gather.
4311 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0,
4312                                     const TargetTransformInfo &TTI,
4313                                     const DataLayout &DL, ScalarEvolution &SE,
4314                                     SmallVectorImpl<unsigned> &Order,
4315                                     SmallVectorImpl<Value *> &PointerOps) {
4316   // Check that a vectorized load would load the same memory as a scalar
4317   // load. For example, we don't want to vectorize loads that are smaller
4318   // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
4319   // treats loading/storing it as an i8 struct. If we vectorize loads/stores
4320   // from such a struct, we read/write packed bits disagreeing with the
4321   // unvectorized version.
4322   Type *ScalarTy = VL0->getType();
4323 
4324   if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy))
4325     return LoadsState::Gather;
4326 
4327   // Make sure all loads in the bundle are simple - we can't vectorize
4328   // atomic or volatile loads.
4329   PointerOps.clear();
4330   PointerOps.resize(VL.size());
4331   auto *POIter = PointerOps.begin();
4332   for (Value *V : VL) {
4333     auto *L = cast<LoadInst>(V);
4334     if (!L->isSimple())
4335       return LoadsState::Gather;
4336     *POIter = L->getPointerOperand();
4337     ++POIter;
4338   }
4339 
4340   Order.clear();
4341   // Check the order of pointer operands.
4342   if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) {
4343     Value *Ptr0;
4344     Value *PtrN;
4345     if (Order.empty()) {
4346       Ptr0 = PointerOps.front();
4347       PtrN = PointerOps.back();
4348     } else {
4349       Ptr0 = PointerOps[Order.front()];
4350       PtrN = PointerOps[Order.back()];
4351     }
4352     Optional<int> Diff =
4353         getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE);
4354     // Check that the sorted loads are consecutive.
4355     if (static_cast<unsigned>(*Diff) == VL.size() - 1)
4356       return LoadsState::Vectorize;
4357     Align CommonAlignment = cast<LoadInst>(VL0)->getAlign();
4358     for (Value *V : VL)
4359       CommonAlignment =
4360           commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign());
4361     auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
4362     if (TTI.isLegalMaskedGather(VecTy, CommonAlignment) &&
4363         !TTI.forceScalarizeMaskedGather(VecTy, CommonAlignment))
4364       return LoadsState::ScatterVectorize;
4365   }
4366 
4367   return LoadsState::Gather;
4368 }
4369 
4370 /// \return true if the specified list of values has only one instruction that
4371 /// requires scheduling, false otherwise.
4372 #ifndef NDEBUG
4373 static bool needToScheduleSingleInstruction(ArrayRef<Value *> VL) {
4374   Value *NeedsScheduling = nullptr;
4375   for (Value *V : VL) {
4376     if (doesNotNeedToBeScheduled(V))
4377       continue;
4378     if (!NeedsScheduling) {
4379       NeedsScheduling = V;
4380       continue;
4381     }
4382     return false;
4383   }
4384   return NeedsScheduling;
4385 }
4386 #endif
4387 
4388 /// Generates key/subkey pair for the given value to provide effective sorting
4389 /// of the values and better detection of the vectorizable values sequences. The
4390 /// keys/subkeys can be used for better sorting of the values themselves (keys)
4391 /// and in values subgroups (subkeys).
4392 static std::pair<size_t, size_t> generateKeySubkey(
4393     Value *V, const TargetLibraryInfo *TLI,
4394     function_ref<hash_code(size_t, LoadInst *)> LoadsSubkeyGenerator,
4395     bool AllowAlternate) {
4396   hash_code Key = hash_value(V->getValueID() + 2);
4397   hash_code SubKey = hash_value(0);
4398   // Sort the loads by the distance between the pointers.
4399   if (auto *LI = dyn_cast<LoadInst>(V)) {
4400     Key = hash_combine(hash_value(Instruction::Load), Key);
4401     if (LI->isSimple())
4402       SubKey = hash_value(LoadsSubkeyGenerator(Key, LI));
4403     else
4404       SubKey = hash_value(LI);
4405   } else if (isVectorLikeInstWithConstOps(V)) {
4406     // Sort extracts by the vector operands.
4407     if (isa<ExtractElementInst, UndefValue>(V))
4408       Key = hash_value(Value::UndefValueVal + 1);
4409     if (auto *EI = dyn_cast<ExtractElementInst>(V)) {
4410       if (!isUndefVector(EI->getVectorOperand()) &&
4411           !isa<UndefValue>(EI->getIndexOperand()))
4412         SubKey = hash_value(EI->getVectorOperand());
4413     }
4414   } else if (auto *I = dyn_cast<Instruction>(V)) {
4415     // Sort other instructions just by the opcodes except for CMPInst.
4416     // For CMP also sort by the predicate kind.
4417     if ((isa<BinaryOperator>(I) || isa<CastInst>(I)) &&
4418         isValidForAlternation(I->getOpcode())) {
4419       if (AllowAlternate)
4420         Key = hash_value(isa<BinaryOperator>(I) ? 1 : 0);
4421       else
4422         Key = hash_combine(hash_value(I->getOpcode()), Key);
4423       SubKey = hash_combine(
4424           hash_value(I->getOpcode()), hash_value(I->getType()),
4425           hash_value(isa<BinaryOperator>(I)
4426                          ? I->getType()
4427                          : cast<CastInst>(I)->getOperand(0)->getType()));
4428     } else if (auto *CI = dyn_cast<CmpInst>(I)) {
4429       CmpInst::Predicate Pred = CI->getPredicate();
4430       if (CI->isCommutative())
4431         Pred = std::min(Pred, CmpInst::getInversePredicate(Pred));
4432       CmpInst::Predicate SwapPred = CmpInst::getSwappedPredicate(Pred);
4433       SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(Pred),
4434                             hash_value(SwapPred),
4435                             hash_value(CI->getOperand(0)->getType()));
4436     } else if (auto *Call = dyn_cast<CallInst>(I)) {
4437       Intrinsic::ID ID = getVectorIntrinsicIDForCall(Call, TLI);
4438       if (isTriviallyVectorizable(ID))
4439         SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(ID));
4440       else if (!VFDatabase(*Call).getMappings(*Call).empty())
4441         SubKey = hash_combine(hash_value(I->getOpcode()),
4442                               hash_value(Call->getCalledFunction()));
4443       else
4444         SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(Call));
4445       for (const CallBase::BundleOpInfo &Op : Call->bundle_op_infos())
4446         SubKey = hash_combine(hash_value(Op.Begin), hash_value(Op.End),
4447                               hash_value(Op.Tag), SubKey);
4448     } else if (auto *Gep = dyn_cast<GetElementPtrInst>(I)) {
4449       if (Gep->getNumOperands() == 2 && isa<ConstantInt>(Gep->getOperand(1)))
4450         SubKey = hash_value(Gep->getPointerOperand());
4451       else
4452         SubKey = hash_value(Gep);
4453     } else if (BinaryOperator::isIntDivRem(I->getOpcode()) &&
4454                !isa<ConstantInt>(I->getOperand(1))) {
4455       // Do not try to vectorize instructions with potentially high cost.
4456       SubKey = hash_value(I);
4457     } else {
4458       SubKey = hash_value(I->getOpcode());
4459     }
4460     Key = hash_combine(hash_value(I->getParent()), Key);
4461   }
4462   return std::make_pair(Key, SubKey);
4463 }
4464 
4465 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth,
4466                             const EdgeInfo &UserTreeIdx) {
4467   assert((allConstant(VL) || allSameType(VL)) && "Invalid types!");
4468 
4469   SmallVector<int> ReuseShuffleIndicies;
4470   SmallVector<Value *> UniqueValues;
4471   auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues,
4472                                 &UserTreeIdx,
4473                                 this](const InstructionsState &S) {
4474     // Check that every instruction appears once in this bundle.
4475     DenseMap<Value *, unsigned> UniquePositions;
4476     for (Value *V : VL) {
4477       if (isConstant(V)) {
4478         ReuseShuffleIndicies.emplace_back(
4479             isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size());
4480         UniqueValues.emplace_back(V);
4481         continue;
4482       }
4483       auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
4484       ReuseShuffleIndicies.emplace_back(Res.first->second);
4485       if (Res.second)
4486         UniqueValues.emplace_back(V);
4487     }
4488     size_t NumUniqueScalarValues = UniqueValues.size();
4489     if (NumUniqueScalarValues == VL.size()) {
4490       ReuseShuffleIndicies.clear();
4491     } else {
4492       LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n");
4493       if (NumUniqueScalarValues <= 1 ||
4494           (UniquePositions.size() == 1 && all_of(UniqueValues,
4495                                                  [](Value *V) {
4496                                                    return isa<UndefValue>(V) ||
4497                                                           !isConstant(V);
4498                                                  })) ||
4499           !llvm::isPowerOf2_32(NumUniqueScalarValues)) {
4500         LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
4501         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
4502         return false;
4503       }
4504       VL = UniqueValues;
4505     }
4506     return true;
4507   };
4508 
4509   InstructionsState S = getSameOpcode(VL);
4510   if (Depth == RecursionMaxDepth) {
4511     LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
4512     if (TryToFindDuplicates(S))
4513       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4514                    ReuseShuffleIndicies);
4515     return;
4516   }
4517 
4518   // Don't handle scalable vectors
4519   if (S.getOpcode() == Instruction::ExtractElement &&
4520       isa<ScalableVectorType>(
4521           cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) {
4522     LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n");
4523     if (TryToFindDuplicates(S))
4524       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4525                    ReuseShuffleIndicies);
4526     return;
4527   }
4528 
4529   // Don't handle vectors.
4530   if (S.OpValue->getType()->isVectorTy() &&
4531       !isa<InsertElementInst>(S.OpValue)) {
4532     LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
4533     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
4534     return;
4535   }
4536 
4537   if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
4538     if (SI->getValueOperand()->getType()->isVectorTy()) {
4539       LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
4540       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
4541       return;
4542     }
4543 
4544   // If all of the operands are identical or constant we have a simple solution.
4545   // If we deal with insert/extract instructions, they all must have constant
4546   // indices, otherwise we should gather them, not try to vectorize.
4547   // If alternate op node with 2 elements with gathered operands - do not
4548   // vectorize.
4549   auto &&NotProfitableForVectorization = [&S, this,
4550                                           Depth](ArrayRef<Value *> VL) {
4551     if (!S.getOpcode() || !S.isAltShuffle() || VL.size() > 2)
4552       return false;
4553     if (VectorizableTree.size() < MinTreeSize)
4554       return false;
4555     if (Depth >= RecursionMaxDepth - 1)
4556       return true;
4557     // Check if all operands are extracts, part of vector node or can build a
4558     // regular vectorize node.
4559     SmallVector<unsigned, 2> InstsCount(VL.size(), 0);
4560     for (Value *V : VL) {
4561       auto *I = cast<Instruction>(V);
4562       InstsCount.push_back(count_if(I->operand_values(), [](Value *Op) {
4563         return isa<Instruction>(Op) || isVectorLikeInstWithConstOps(Op);
4564       }));
4565     }
4566     bool IsCommutative = isCommutative(S.MainOp) || isCommutative(S.AltOp);
4567     if ((IsCommutative &&
4568          std::accumulate(InstsCount.begin(), InstsCount.end(), 0) < 2) ||
4569         (!IsCommutative &&
4570          all_of(InstsCount, [](unsigned ICnt) { return ICnt < 2; })))
4571       return true;
4572     assert(VL.size() == 2 && "Expected only 2 alternate op instructions.");
4573     SmallVector<SmallVector<std::pair<Value *, Value *>>> Candidates;
4574     auto *I1 = cast<Instruction>(VL.front());
4575     auto *I2 = cast<Instruction>(VL.back());
4576     for (int Op = 0, E = S.MainOp->getNumOperands(); Op < E; ++Op)
4577       Candidates.emplace_back().emplace_back(I1->getOperand(Op),
4578                                              I2->getOperand(Op));
4579     if (count_if(
4580             Candidates, [this](ArrayRef<std::pair<Value *, Value *>> Cand) {
4581               return findBestRootPair(Cand, LookAheadHeuristics::ScoreSplat);
4582             }) >= S.MainOp->getNumOperands() / 2)
4583       return false;
4584     if (S.MainOp->getNumOperands() > 2)
4585       return true;
4586     if (IsCommutative) {
4587       // Check permuted operands.
4588       Candidates.clear();
4589       for (int Op = 0, E = S.MainOp->getNumOperands(); Op < E; ++Op)
4590         Candidates.emplace_back().emplace_back(I1->getOperand(Op),
4591                                                I2->getOperand((Op + 1) % E));
4592       if (any_of(
4593               Candidates, [this](ArrayRef<std::pair<Value *, Value *>> Cand) {
4594                 return findBestRootPair(Cand, LookAheadHeuristics::ScoreSplat);
4595               }))
4596         return false;
4597     }
4598     return true;
4599   };
4600   if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() ||
4601       (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) &&
4602        !all_of(VL, isVectorLikeInstWithConstOps)) ||
4603       NotProfitableForVectorization(VL)) {
4604     LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O, small shuffle. \n");
4605     if (TryToFindDuplicates(S))
4606       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4607                    ReuseShuffleIndicies);
4608     return;
4609   }
4610 
4611   // We now know that this is a vector of instructions of the same type from
4612   // the same block.
4613 
4614   // Don't vectorize ephemeral values.
4615   if (!EphValues.empty()) {
4616     for (Value *V : VL) {
4617       if (EphValues.count(V)) {
4618         LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
4619                           << ") is ephemeral.\n");
4620         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
4621         return;
4622       }
4623     }
4624   }
4625 
4626   // Check if this is a duplicate of another entry.
4627   if (TreeEntry *E = getTreeEntry(S.OpValue)) {
4628     LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n");
4629     if (!E->isSame(VL)) {
4630       LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
4631       if (TryToFindDuplicates(S))
4632         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4633                      ReuseShuffleIndicies);
4634       return;
4635     }
4636     // Record the reuse of the tree node.  FIXME, currently this is only used to
4637     // properly draw the graph rather than for the actual vectorization.
4638     E->UserTreeIndices.push_back(UserTreeIdx);
4639     LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue
4640                       << ".\n");
4641     return;
4642   }
4643 
4644   // Check that none of the instructions in the bundle are already in the tree.
4645   for (Value *V : VL) {
4646     auto *I = dyn_cast<Instruction>(V);
4647     if (!I)
4648       continue;
4649     if (getTreeEntry(I)) {
4650       LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
4651                         << ") is already in tree.\n");
4652       if (TryToFindDuplicates(S))
4653         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4654                      ReuseShuffleIndicies);
4655       return;
4656     }
4657   }
4658 
4659   // The reduction nodes (stored in UserIgnoreList) also should stay scalar.
4660   if (UserIgnoreList && !UserIgnoreList->empty()) {
4661     for (Value *V : VL) {
4662       if (UserIgnoreList && UserIgnoreList->contains(V)) {
4663         LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
4664         if (TryToFindDuplicates(S))
4665           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4666                        ReuseShuffleIndicies);
4667         return;
4668       }
4669     }
4670   }
4671 
4672   // Check that all of the users of the scalars that we want to vectorize are
4673   // schedulable.
4674   auto *VL0 = cast<Instruction>(S.OpValue);
4675   BasicBlock *BB = VL0->getParent();
4676 
4677   if (!DT->isReachableFromEntry(BB)) {
4678     // Don't go into unreachable blocks. They may contain instructions with
4679     // dependency cycles which confuse the final scheduling.
4680     LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
4681     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
4682     return;
4683   }
4684 
4685   // Check that every instruction appears once in this bundle.
4686   if (!TryToFindDuplicates(S))
4687     return;
4688 
4689   auto &BSRef = BlocksSchedules[BB];
4690   if (!BSRef)
4691     BSRef = std::make_unique<BlockScheduling>(BB);
4692 
4693   BlockScheduling &BS = *BSRef;
4694 
4695   Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S);
4696 #ifdef EXPENSIVE_CHECKS
4697   // Make sure we didn't break any internal invariants
4698   BS.verify();
4699 #endif
4700   if (!Bundle) {
4701     LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
4702     assert((!BS.getScheduleData(VL0) ||
4703             !BS.getScheduleData(VL0)->isPartOfBundle()) &&
4704            "tryScheduleBundle should cancelScheduling on failure");
4705     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4706                  ReuseShuffleIndicies);
4707     return;
4708   }
4709   LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
4710 
4711   unsigned ShuffleOrOp = S.isAltShuffle() ?
4712                 (unsigned) Instruction::ShuffleVector : S.getOpcode();
4713   switch (ShuffleOrOp) {
4714     case Instruction::PHI: {
4715       auto *PH = cast<PHINode>(VL0);
4716 
4717       // Check for terminator values (e.g. invoke).
4718       for (Value *V : VL)
4719         for (Value *Incoming : cast<PHINode>(V)->incoming_values()) {
4720           Instruction *Term = dyn_cast<Instruction>(Incoming);
4721           if (Term && Term->isTerminator()) {
4722             LLVM_DEBUG(dbgs()
4723                        << "SLP: Need to swizzle PHINodes (terminator use).\n");
4724             BS.cancelScheduling(VL, VL0);
4725             newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4726                          ReuseShuffleIndicies);
4727             return;
4728           }
4729         }
4730 
4731       TreeEntry *TE =
4732           newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies);
4733       LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
4734 
4735       // Keeps the reordered operands to avoid code duplication.
4736       SmallVector<ValueList, 2> OperandsVec;
4737       for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) {
4738         if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) {
4739           ValueList Operands(VL.size(), PoisonValue::get(PH->getType()));
4740           TE->setOperand(I, Operands);
4741           OperandsVec.push_back(Operands);
4742           continue;
4743         }
4744         ValueList Operands;
4745         // Prepare the operand vector.
4746         for (Value *V : VL)
4747           Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(
4748               PH->getIncomingBlock(I)));
4749         TE->setOperand(I, Operands);
4750         OperandsVec.push_back(Operands);
4751       }
4752       for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx)
4753         buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx});
4754       return;
4755     }
4756     case Instruction::ExtractValue:
4757     case Instruction::ExtractElement: {
4758       OrdersType CurrentOrder;
4759       bool Reuse = canReuseExtract(VL, VL0, CurrentOrder);
4760       if (Reuse) {
4761         LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n");
4762         newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4763                      ReuseShuffleIndicies);
4764         // This is a special case, as it does not gather, but at the same time
4765         // we are not extending buildTree_rec() towards the operands.
4766         ValueList Op0;
4767         Op0.assign(VL.size(), VL0->getOperand(0));
4768         VectorizableTree.back()->setOperand(0, Op0);
4769         return;
4770       }
4771       if (!CurrentOrder.empty()) {
4772         LLVM_DEBUG({
4773           dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
4774                     "with order";
4775           for (unsigned Idx : CurrentOrder)
4776             dbgs() << " " << Idx;
4777           dbgs() << "\n";
4778         });
4779         fixupOrderingIndices(CurrentOrder);
4780         // Insert new order with initial value 0, if it does not exist,
4781         // otherwise return the iterator to the existing one.
4782         newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4783                      ReuseShuffleIndicies, CurrentOrder);
4784         // This is a special case, as it does not gather, but at the same time
4785         // we are not extending buildTree_rec() towards the operands.
4786         ValueList Op0;
4787         Op0.assign(VL.size(), VL0->getOperand(0));
4788         VectorizableTree.back()->setOperand(0, Op0);
4789         return;
4790       }
4791       LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n");
4792       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4793                    ReuseShuffleIndicies);
4794       BS.cancelScheduling(VL, VL0);
4795       return;
4796     }
4797     case Instruction::InsertElement: {
4798       assert(ReuseShuffleIndicies.empty() && "All inserts should be unique");
4799 
4800       // Check that we have a buildvector and not a shuffle of 2 or more
4801       // different vectors.
4802       ValueSet SourceVectors;
4803       for (Value *V : VL) {
4804         SourceVectors.insert(cast<Instruction>(V)->getOperand(0));
4805         assert(getInsertIndex(V) != None && "Non-constant or undef index?");
4806       }
4807 
4808       if (count_if(VL, [&SourceVectors](Value *V) {
4809             return !SourceVectors.contains(V);
4810           }) >= 2) {
4811         // Found 2nd source vector - cancel.
4812         LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with "
4813                              "different source vectors.\n");
4814         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
4815         BS.cancelScheduling(VL, VL0);
4816         return;
4817       }
4818 
4819       auto OrdCompare = [](const std::pair<int, int> &P1,
4820                            const std::pair<int, int> &P2) {
4821         return P1.first > P2.first;
4822       };
4823       PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>,
4824                     decltype(OrdCompare)>
4825           Indices(OrdCompare);
4826       for (int I = 0, E = VL.size(); I < E; ++I) {
4827         unsigned Idx = *getInsertIndex(VL[I]);
4828         Indices.emplace(Idx, I);
4829       }
4830       OrdersType CurrentOrder(VL.size(), VL.size());
4831       bool IsIdentity = true;
4832       for (int I = 0, E = VL.size(); I < E; ++I) {
4833         CurrentOrder[Indices.top().second] = I;
4834         IsIdentity &= Indices.top().second == I;
4835         Indices.pop();
4836       }
4837       if (IsIdentity)
4838         CurrentOrder.clear();
4839       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4840                                    None, CurrentOrder);
4841       LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n");
4842 
4843       constexpr int NumOps = 2;
4844       ValueList VectorOperands[NumOps];
4845       for (int I = 0; I < NumOps; ++I) {
4846         for (Value *V : VL)
4847           VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I));
4848 
4849         TE->setOperand(I, VectorOperands[I]);
4850       }
4851       buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1});
4852       return;
4853     }
4854     case Instruction::Load: {
4855       // Check that a vectorized load would load the same memory as a scalar
4856       // load. For example, we don't want to vectorize loads that are smaller
4857       // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
4858       // treats loading/storing it as an i8 struct. If we vectorize loads/stores
4859       // from such a struct, we read/write packed bits disagreeing with the
4860       // unvectorized version.
4861       SmallVector<Value *> PointerOps;
4862       OrdersType CurrentOrder;
4863       TreeEntry *TE = nullptr;
4864       switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder,
4865                                 PointerOps)) {
4866       case LoadsState::Vectorize:
4867         if (CurrentOrder.empty()) {
4868           // Original loads are consecutive and does not require reordering.
4869           TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4870                             ReuseShuffleIndicies);
4871           LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n");
4872         } else {
4873           fixupOrderingIndices(CurrentOrder);
4874           // Need to reorder.
4875           TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4876                             ReuseShuffleIndicies, CurrentOrder);
4877           LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n");
4878         }
4879         TE->setOperandsInOrder();
4880         break;
4881       case LoadsState::ScatterVectorize:
4882         // Vectorizing non-consecutive loads with `llvm.masked.gather`.
4883         TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S,
4884                           UserTreeIdx, ReuseShuffleIndicies);
4885         TE->setOperandsInOrder();
4886         buildTree_rec(PointerOps, Depth + 1, {TE, 0});
4887         LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n");
4888         break;
4889       case LoadsState::Gather:
4890         BS.cancelScheduling(VL, VL0);
4891         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4892                      ReuseShuffleIndicies);
4893 #ifndef NDEBUG
4894         Type *ScalarTy = VL0->getType();
4895         if (DL->getTypeSizeInBits(ScalarTy) !=
4896             DL->getTypeAllocSizeInBits(ScalarTy))
4897           LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n");
4898         else if (any_of(VL, [](Value *V) {
4899                    return !cast<LoadInst>(V)->isSimple();
4900                  }))
4901           LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
4902         else
4903           LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
4904 #endif // NDEBUG
4905         break;
4906       }
4907       return;
4908     }
4909     case Instruction::ZExt:
4910     case Instruction::SExt:
4911     case Instruction::FPToUI:
4912     case Instruction::FPToSI:
4913     case Instruction::FPExt:
4914     case Instruction::PtrToInt:
4915     case Instruction::IntToPtr:
4916     case Instruction::SIToFP:
4917     case Instruction::UIToFP:
4918     case Instruction::Trunc:
4919     case Instruction::FPTrunc:
4920     case Instruction::BitCast: {
4921       Type *SrcTy = VL0->getOperand(0)->getType();
4922       for (Value *V : VL) {
4923         Type *Ty = cast<Instruction>(V)->getOperand(0)->getType();
4924         if (Ty != SrcTy || !isValidElementType(Ty)) {
4925           BS.cancelScheduling(VL, VL0);
4926           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4927                        ReuseShuffleIndicies);
4928           LLVM_DEBUG(dbgs()
4929                      << "SLP: Gathering casts with different src types.\n");
4930           return;
4931         }
4932       }
4933       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4934                                    ReuseShuffleIndicies);
4935       LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n");
4936 
4937       TE->setOperandsInOrder();
4938       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
4939         ValueList Operands;
4940         // Prepare the operand vector.
4941         for (Value *V : VL)
4942           Operands.push_back(cast<Instruction>(V)->getOperand(i));
4943 
4944         buildTree_rec(Operands, Depth + 1, {TE, i});
4945       }
4946       return;
4947     }
4948     case Instruction::ICmp:
4949     case Instruction::FCmp: {
4950       // Check that all of the compares have the same predicate.
4951       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
4952       CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0);
4953       Type *ComparedTy = VL0->getOperand(0)->getType();
4954       for (Value *V : VL) {
4955         CmpInst *Cmp = cast<CmpInst>(V);
4956         if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) ||
4957             Cmp->getOperand(0)->getType() != ComparedTy) {
4958           BS.cancelScheduling(VL, VL0);
4959           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4960                        ReuseShuffleIndicies);
4961           LLVM_DEBUG(dbgs()
4962                      << "SLP: Gathering cmp with different predicate.\n");
4963           return;
4964         }
4965       }
4966 
4967       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4968                                    ReuseShuffleIndicies);
4969       LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n");
4970 
4971       ValueList Left, Right;
4972       if (cast<CmpInst>(VL0)->isCommutative()) {
4973         // Commutative predicate - collect + sort operands of the instructions
4974         // so that each side is more likely to have the same opcode.
4975         assert(P0 == SwapP0 && "Commutative Predicate mismatch");
4976         reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
4977       } else {
4978         // Collect operands - commute if it uses the swapped predicate.
4979         for (Value *V : VL) {
4980           auto *Cmp = cast<CmpInst>(V);
4981           Value *LHS = Cmp->getOperand(0);
4982           Value *RHS = Cmp->getOperand(1);
4983           if (Cmp->getPredicate() != P0)
4984             std::swap(LHS, RHS);
4985           Left.push_back(LHS);
4986           Right.push_back(RHS);
4987         }
4988       }
4989       TE->setOperand(0, Left);
4990       TE->setOperand(1, Right);
4991       buildTree_rec(Left, Depth + 1, {TE, 0});
4992       buildTree_rec(Right, Depth + 1, {TE, 1});
4993       return;
4994     }
4995     case Instruction::Select:
4996     case Instruction::FNeg:
4997     case Instruction::Add:
4998     case Instruction::FAdd:
4999     case Instruction::Sub:
5000     case Instruction::FSub:
5001     case Instruction::Mul:
5002     case Instruction::FMul:
5003     case Instruction::UDiv:
5004     case Instruction::SDiv:
5005     case Instruction::FDiv:
5006     case Instruction::URem:
5007     case Instruction::SRem:
5008     case Instruction::FRem:
5009     case Instruction::Shl:
5010     case Instruction::LShr:
5011     case Instruction::AShr:
5012     case Instruction::And:
5013     case Instruction::Or:
5014     case Instruction::Xor: {
5015       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
5016                                    ReuseShuffleIndicies);
5017       LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n");
5018 
5019       // Sort operands of the instructions so that each side is more likely to
5020       // have the same opcode.
5021       if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
5022         ValueList Left, Right;
5023         reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
5024         TE->setOperand(0, Left);
5025         TE->setOperand(1, Right);
5026         buildTree_rec(Left, Depth + 1, {TE, 0});
5027         buildTree_rec(Right, Depth + 1, {TE, 1});
5028         return;
5029       }
5030 
5031       TE->setOperandsInOrder();
5032       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
5033         ValueList Operands;
5034         // Prepare the operand vector.
5035         for (Value *V : VL)
5036           Operands.push_back(cast<Instruction>(V)->getOperand(i));
5037 
5038         buildTree_rec(Operands, Depth + 1, {TE, i});
5039       }
5040       return;
5041     }
5042     case Instruction::GetElementPtr: {
5043       // We don't combine GEPs with complicated (nested) indexing.
5044       for (Value *V : VL) {
5045         if (cast<Instruction>(V)->getNumOperands() != 2) {
5046           LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
5047           BS.cancelScheduling(VL, VL0);
5048           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5049                        ReuseShuffleIndicies);
5050           return;
5051         }
5052       }
5053 
5054       // We can't combine several GEPs into one vector if they operate on
5055       // different types.
5056       Type *Ty0 = cast<GEPOperator>(VL0)->getSourceElementType();
5057       for (Value *V : VL) {
5058         Type *CurTy = cast<GEPOperator>(V)->getSourceElementType();
5059         if (Ty0 != CurTy) {
5060           LLVM_DEBUG(dbgs()
5061                      << "SLP: not-vectorizable GEP (different types).\n");
5062           BS.cancelScheduling(VL, VL0);
5063           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5064                        ReuseShuffleIndicies);
5065           return;
5066         }
5067       }
5068 
5069       // We don't combine GEPs with non-constant indexes.
5070       Type *Ty1 = VL0->getOperand(1)->getType();
5071       for (Value *V : VL) {
5072         auto Op = cast<Instruction>(V)->getOperand(1);
5073         if (!isa<ConstantInt>(Op) ||
5074             (Op->getType() != Ty1 &&
5075              Op->getType()->getScalarSizeInBits() >
5076                  DL->getIndexSizeInBits(
5077                      V->getType()->getPointerAddressSpace()))) {
5078           LLVM_DEBUG(dbgs()
5079                      << "SLP: not-vectorizable GEP (non-constant indexes).\n");
5080           BS.cancelScheduling(VL, VL0);
5081           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5082                        ReuseShuffleIndicies);
5083           return;
5084         }
5085       }
5086 
5087       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
5088                                    ReuseShuffleIndicies);
5089       LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
5090       SmallVector<ValueList, 2> Operands(2);
5091       // Prepare the operand vector for pointer operands.
5092       for (Value *V : VL)
5093         Operands.front().push_back(
5094             cast<GetElementPtrInst>(V)->getPointerOperand());
5095       TE->setOperand(0, Operands.front());
5096       // Need to cast all indices to the same type before vectorization to
5097       // avoid crash.
5098       // Required to be able to find correct matches between different gather
5099       // nodes and reuse the vectorized values rather than trying to gather them
5100       // again.
5101       int IndexIdx = 1;
5102       Type *VL0Ty = VL0->getOperand(IndexIdx)->getType();
5103       Type *Ty = all_of(VL,
5104                         [VL0Ty, IndexIdx](Value *V) {
5105                           return VL0Ty == cast<GetElementPtrInst>(V)
5106                                               ->getOperand(IndexIdx)
5107                                               ->getType();
5108                         })
5109                      ? VL0Ty
5110                      : DL->getIndexType(cast<GetElementPtrInst>(VL0)
5111                                             ->getPointerOperandType()
5112                                             ->getScalarType());
5113       // Prepare the operand vector.
5114       for (Value *V : VL) {
5115         auto *Op = cast<Instruction>(V)->getOperand(IndexIdx);
5116         auto *CI = cast<ConstantInt>(Op);
5117         Operands.back().push_back(ConstantExpr::getIntegerCast(
5118             CI, Ty, CI->getValue().isSignBitSet()));
5119       }
5120       TE->setOperand(IndexIdx, Operands.back());
5121 
5122       for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I)
5123         buildTree_rec(Operands[I], Depth + 1, {TE, I});
5124       return;
5125     }
5126     case Instruction::Store: {
5127       // Check if the stores are consecutive or if we need to swizzle them.
5128       llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType();
5129       // Avoid types that are padded when being allocated as scalars, while
5130       // being packed together in a vector (such as i1).
5131       if (DL->getTypeSizeInBits(ScalarTy) !=
5132           DL->getTypeAllocSizeInBits(ScalarTy)) {
5133         BS.cancelScheduling(VL, VL0);
5134         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5135                      ReuseShuffleIndicies);
5136         LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n");
5137         return;
5138       }
5139       // Make sure all stores in the bundle are simple - we can't vectorize
5140       // atomic or volatile stores.
5141       SmallVector<Value *, 4> PointerOps(VL.size());
5142       ValueList Operands(VL.size());
5143       auto POIter = PointerOps.begin();
5144       auto OIter = Operands.begin();
5145       for (Value *V : VL) {
5146         auto *SI = cast<StoreInst>(V);
5147         if (!SI->isSimple()) {
5148           BS.cancelScheduling(VL, VL0);
5149           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5150                        ReuseShuffleIndicies);
5151           LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n");
5152           return;
5153         }
5154         *POIter = SI->getPointerOperand();
5155         *OIter = SI->getValueOperand();
5156         ++POIter;
5157         ++OIter;
5158       }
5159 
5160       OrdersType CurrentOrder;
5161       // Check the order of pointer operands.
5162       if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) {
5163         Value *Ptr0;
5164         Value *PtrN;
5165         if (CurrentOrder.empty()) {
5166           Ptr0 = PointerOps.front();
5167           PtrN = PointerOps.back();
5168         } else {
5169           Ptr0 = PointerOps[CurrentOrder.front()];
5170           PtrN = PointerOps[CurrentOrder.back()];
5171         }
5172         Optional<int> Dist =
5173             getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE);
5174         // Check that the sorted pointer operands are consecutive.
5175         if (static_cast<unsigned>(*Dist) == VL.size() - 1) {
5176           if (CurrentOrder.empty()) {
5177             // Original stores are consecutive and does not require reordering.
5178             TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
5179                                          UserTreeIdx, ReuseShuffleIndicies);
5180             TE->setOperandsInOrder();
5181             buildTree_rec(Operands, Depth + 1, {TE, 0});
5182             LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n");
5183           } else {
5184             fixupOrderingIndices(CurrentOrder);
5185             TreeEntry *TE =
5186                 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
5187                              ReuseShuffleIndicies, CurrentOrder);
5188             TE->setOperandsInOrder();
5189             buildTree_rec(Operands, Depth + 1, {TE, 0});
5190             LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n");
5191           }
5192           return;
5193         }
5194       }
5195 
5196       BS.cancelScheduling(VL, VL0);
5197       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5198                    ReuseShuffleIndicies);
5199       LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
5200       return;
5201     }
5202     case Instruction::Call: {
5203       // Check if the calls are all to the same vectorizable intrinsic or
5204       // library function.
5205       CallInst *CI = cast<CallInst>(VL0);
5206       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
5207 
5208       VFShape Shape = VFShape::get(
5209           *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())),
5210           false /*HasGlobalPred*/);
5211       Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
5212 
5213       if (!VecFunc && !isTriviallyVectorizable(ID)) {
5214         BS.cancelScheduling(VL, VL0);
5215         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5216                      ReuseShuffleIndicies);
5217         LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
5218         return;
5219       }
5220       Function *F = CI->getCalledFunction();
5221       unsigned NumArgs = CI->arg_size();
5222       SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr);
5223       for (unsigned j = 0; j != NumArgs; ++j)
5224         if (isVectorIntrinsicWithScalarOpAtArg(ID, j))
5225           ScalarArgs[j] = CI->getArgOperand(j);
5226       for (Value *V : VL) {
5227         CallInst *CI2 = dyn_cast<CallInst>(V);
5228         if (!CI2 || CI2->getCalledFunction() != F ||
5229             getVectorIntrinsicIDForCall(CI2, TLI) != ID ||
5230             (VecFunc &&
5231              VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) ||
5232             !CI->hasIdenticalOperandBundleSchema(*CI2)) {
5233           BS.cancelScheduling(VL, VL0);
5234           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5235                        ReuseShuffleIndicies);
5236           LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V
5237                             << "\n");
5238           return;
5239         }
5240         // Some intrinsics have scalar arguments and should be same in order for
5241         // them to be vectorized.
5242         for (unsigned j = 0; j != NumArgs; ++j) {
5243           if (isVectorIntrinsicWithScalarOpAtArg(ID, j)) {
5244             Value *A1J = CI2->getArgOperand(j);
5245             if (ScalarArgs[j] != A1J) {
5246               BS.cancelScheduling(VL, VL0);
5247               newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5248                            ReuseShuffleIndicies);
5249               LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
5250                                 << " argument " << ScalarArgs[j] << "!=" << A1J
5251                                 << "\n");
5252               return;
5253             }
5254           }
5255         }
5256         // Verify that the bundle operands are identical between the two calls.
5257         if (CI->hasOperandBundles() &&
5258             !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(),
5259                         CI->op_begin() + CI->getBundleOperandsEndIndex(),
5260                         CI2->op_begin() + CI2->getBundleOperandsStartIndex())) {
5261           BS.cancelScheduling(VL, VL0);
5262           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5263                        ReuseShuffleIndicies);
5264           LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:"
5265                             << *CI << "!=" << *V << '\n');
5266           return;
5267         }
5268       }
5269 
5270       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
5271                                    ReuseShuffleIndicies);
5272       TE->setOperandsInOrder();
5273       for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) {
5274         // For scalar operands no need to to create an entry since no need to
5275         // vectorize it.
5276         if (isVectorIntrinsicWithScalarOpAtArg(ID, i))
5277           continue;
5278         ValueList Operands;
5279         // Prepare the operand vector.
5280         for (Value *V : VL) {
5281           auto *CI2 = cast<CallInst>(V);
5282           Operands.push_back(CI2->getArgOperand(i));
5283         }
5284         buildTree_rec(Operands, Depth + 1, {TE, i});
5285       }
5286       return;
5287     }
5288     case Instruction::ShuffleVector: {
5289       // If this is not an alternate sequence of opcode like add-sub
5290       // then do not vectorize this instruction.
5291       if (!S.isAltShuffle()) {
5292         BS.cancelScheduling(VL, VL0);
5293         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5294                      ReuseShuffleIndicies);
5295         LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
5296         return;
5297       }
5298       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
5299                                    ReuseShuffleIndicies);
5300       LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
5301 
5302       // Reorder operands if reordering would enable vectorization.
5303       auto *CI = dyn_cast<CmpInst>(VL0);
5304       if (isa<BinaryOperator>(VL0) || CI) {
5305         ValueList Left, Right;
5306         if (!CI || all_of(VL, [](Value *V) {
5307               return cast<CmpInst>(V)->isCommutative();
5308             })) {
5309           reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
5310         } else {
5311           CmpInst::Predicate P0 = CI->getPredicate();
5312           CmpInst::Predicate AltP0 = cast<CmpInst>(S.AltOp)->getPredicate();
5313           assert(P0 != AltP0 &&
5314                  "Expected different main/alternate predicates.");
5315           CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0);
5316           Value *BaseOp0 = VL0->getOperand(0);
5317           Value *BaseOp1 = VL0->getOperand(1);
5318           // Collect operands - commute if it uses the swapped predicate or
5319           // alternate operation.
5320           for (Value *V : VL) {
5321             auto *Cmp = cast<CmpInst>(V);
5322             Value *LHS = Cmp->getOperand(0);
5323             Value *RHS = Cmp->getOperand(1);
5324             CmpInst::Predicate CurrentPred = Cmp->getPredicate();
5325             if (P0 == AltP0Swapped) {
5326               if (CI != Cmp && S.AltOp != Cmp &&
5327                   ((P0 == CurrentPred &&
5328                     !areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)) ||
5329                    (AltP0 == CurrentPred &&
5330                     areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS))))
5331                 std::swap(LHS, RHS);
5332             } else if (P0 != CurrentPred && AltP0 != CurrentPred) {
5333               std::swap(LHS, RHS);
5334             }
5335             Left.push_back(LHS);
5336             Right.push_back(RHS);
5337           }
5338         }
5339         TE->setOperand(0, Left);
5340         TE->setOperand(1, Right);
5341         buildTree_rec(Left, Depth + 1, {TE, 0});
5342         buildTree_rec(Right, Depth + 1, {TE, 1});
5343         return;
5344       }
5345 
5346       TE->setOperandsInOrder();
5347       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
5348         ValueList Operands;
5349         // Prepare the operand vector.
5350         for (Value *V : VL)
5351           Operands.push_back(cast<Instruction>(V)->getOperand(i));
5352 
5353         buildTree_rec(Operands, Depth + 1, {TE, i});
5354       }
5355       return;
5356     }
5357     default:
5358       BS.cancelScheduling(VL, VL0);
5359       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
5360                    ReuseShuffleIndicies);
5361       LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
5362       return;
5363   }
5364 }
5365 
5366 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const {
5367   unsigned N = 1;
5368   Type *EltTy = T;
5369 
5370   while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) ||
5371          isa<VectorType>(EltTy)) {
5372     if (auto *ST = dyn_cast<StructType>(EltTy)) {
5373       // Check that struct is homogeneous.
5374       for (const auto *Ty : ST->elements())
5375         if (Ty != *ST->element_begin())
5376           return 0;
5377       N *= ST->getNumElements();
5378       EltTy = *ST->element_begin();
5379     } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) {
5380       N *= AT->getNumElements();
5381       EltTy = AT->getElementType();
5382     } else {
5383       auto *VT = cast<FixedVectorType>(EltTy);
5384       N *= VT->getNumElements();
5385       EltTy = VT->getElementType();
5386     }
5387   }
5388 
5389   if (!isValidElementType(EltTy))
5390     return 0;
5391   uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N));
5392   if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T))
5393     return 0;
5394   return N;
5395 }
5396 
5397 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
5398                               SmallVectorImpl<unsigned> &CurrentOrder) const {
5399   const auto *It = find_if(VL, [](Value *V) {
5400     return isa<ExtractElementInst, ExtractValueInst>(V);
5401   });
5402   assert(It != VL.end() && "Expected at least one extract instruction.");
5403   auto *E0 = cast<Instruction>(*It);
5404   assert(all_of(VL,
5405                 [](Value *V) {
5406                   return isa<UndefValue, ExtractElementInst, ExtractValueInst>(
5407                       V);
5408                 }) &&
5409          "Invalid opcode");
5410   // Check if all of the extracts come from the same vector and from the
5411   // correct offset.
5412   Value *Vec = E0->getOperand(0);
5413 
5414   CurrentOrder.clear();
5415 
5416   // We have to extract from a vector/aggregate with the same number of elements.
5417   unsigned NElts;
5418   if (E0->getOpcode() == Instruction::ExtractValue) {
5419     const DataLayout &DL = E0->getModule()->getDataLayout();
5420     NElts = canMapToVector(Vec->getType(), DL);
5421     if (!NElts)
5422       return false;
5423     // Check if load can be rewritten as load of vector.
5424     LoadInst *LI = dyn_cast<LoadInst>(Vec);
5425     if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size()))
5426       return false;
5427   } else {
5428     NElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
5429   }
5430 
5431   if (NElts != VL.size())
5432     return false;
5433 
5434   // Check that all of the indices extract from the correct offset.
5435   bool ShouldKeepOrder = true;
5436   unsigned E = VL.size();
5437   // Assign to all items the initial value E + 1 so we can check if the extract
5438   // instruction index was used already.
5439   // Also, later we can check that all the indices are used and we have a
5440   // consecutive access in the extract instructions, by checking that no
5441   // element of CurrentOrder still has value E + 1.
5442   CurrentOrder.assign(E, E);
5443   unsigned I = 0;
5444   for (; I < E; ++I) {
5445     auto *Inst = dyn_cast<Instruction>(VL[I]);
5446     if (!Inst)
5447       continue;
5448     if (Inst->getOperand(0) != Vec)
5449       break;
5450     if (auto *EE = dyn_cast<ExtractElementInst>(Inst))
5451       if (isa<UndefValue>(EE->getIndexOperand()))
5452         continue;
5453     Optional<unsigned> Idx = getExtractIndex(Inst);
5454     if (!Idx)
5455       break;
5456     const unsigned ExtIdx = *Idx;
5457     if (ExtIdx != I) {
5458       if (ExtIdx >= E || CurrentOrder[ExtIdx] != E)
5459         break;
5460       ShouldKeepOrder = false;
5461       CurrentOrder[ExtIdx] = I;
5462     } else {
5463       if (CurrentOrder[I] != E)
5464         break;
5465       CurrentOrder[I] = I;
5466     }
5467   }
5468   if (I < E) {
5469     CurrentOrder.clear();
5470     return false;
5471   }
5472   if (ShouldKeepOrder)
5473     CurrentOrder.clear();
5474 
5475   return ShouldKeepOrder;
5476 }
5477 
5478 bool BoUpSLP::areAllUsersVectorized(Instruction *I,
5479                                     ArrayRef<Value *> VectorizedVals) const {
5480   return (I->hasOneUse() && is_contained(VectorizedVals, I)) ||
5481          all_of(I->users(), [this](User *U) {
5482            return ScalarToTreeEntry.count(U) > 0 ||
5483                   isVectorLikeInstWithConstOps(U) ||
5484                   (isa<ExtractElementInst>(U) && MustGather.contains(U));
5485          });
5486 }
5487 
5488 static std::pair<InstructionCost, InstructionCost>
5489 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy,
5490                    TargetTransformInfo *TTI, TargetLibraryInfo *TLI) {
5491   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
5492 
5493   // Calculate the cost of the scalar and vector calls.
5494   SmallVector<Type *, 4> VecTys;
5495   for (Use &Arg : CI->args())
5496     VecTys.push_back(
5497         FixedVectorType::get(Arg->getType(), VecTy->getNumElements()));
5498   FastMathFlags FMF;
5499   if (auto *FPCI = dyn_cast<FPMathOperator>(CI))
5500     FMF = FPCI->getFastMathFlags();
5501   SmallVector<const Value *> Arguments(CI->args());
5502   IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF,
5503                                     dyn_cast<IntrinsicInst>(CI));
5504   auto IntrinsicCost =
5505     TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput);
5506 
5507   auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>(
5508                                      VecTy->getNumElements())),
5509                             false /*HasGlobalPred*/);
5510   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
5511   auto LibCost = IntrinsicCost;
5512   if (!CI->isNoBuiltin() && VecFunc) {
5513     // Calculate the cost of the vector library call.
5514     // If the corresponding vector call is cheaper, return its cost.
5515     LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys,
5516                                     TTI::TCK_RecipThroughput);
5517   }
5518   return {IntrinsicCost, LibCost};
5519 }
5520 
5521 /// Compute the cost of creating a vector of type \p VecTy containing the
5522 /// extracted values from \p VL.
5523 static InstructionCost
5524 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy,
5525                    TargetTransformInfo::ShuffleKind ShuffleKind,
5526                    ArrayRef<int> Mask, TargetTransformInfo &TTI) {
5527   unsigned NumOfParts = TTI.getNumberOfParts(VecTy);
5528 
5529   if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts ||
5530       VecTy->getNumElements() < NumOfParts)
5531     return TTI.getShuffleCost(ShuffleKind, VecTy, Mask);
5532 
5533   bool AllConsecutive = true;
5534   unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts;
5535   unsigned Idx = -1;
5536   InstructionCost Cost = 0;
5537 
5538   // Process extracts in blocks of EltsPerVector to check if the source vector
5539   // operand can be re-used directly. If not, add the cost of creating a shuffle
5540   // to extract the values into a vector register.
5541   SmallVector<int> RegMask(EltsPerVector, UndefMaskElem);
5542   for (auto *V : VL) {
5543     ++Idx;
5544 
5545     // Need to exclude undefs from analysis.
5546     if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem)
5547       continue;
5548 
5549     // Reached the start of a new vector registers.
5550     if (Idx % EltsPerVector == 0) {
5551       RegMask.assign(EltsPerVector, UndefMaskElem);
5552       AllConsecutive = true;
5553       continue;
5554     }
5555 
5556     // Check all extracts for a vector register on the target directly
5557     // extract values in order.
5558     unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V));
5559     if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) {
5560       unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1]));
5561       AllConsecutive &= PrevIdx + 1 == CurrentIdx &&
5562                         CurrentIdx % EltsPerVector == Idx % EltsPerVector;
5563       RegMask[Idx % EltsPerVector] = CurrentIdx % EltsPerVector;
5564     }
5565 
5566     if (AllConsecutive)
5567       continue;
5568 
5569     // Skip all indices, except for the last index per vector block.
5570     if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size())
5571       continue;
5572 
5573     // If we have a series of extracts which are not consecutive and hence
5574     // cannot re-use the source vector register directly, compute the shuffle
5575     // cost to extract the vector with EltsPerVector elements.
5576     Cost += TTI.getShuffleCost(
5577         TargetTransformInfo::SK_PermuteSingleSrc,
5578         FixedVectorType::get(VecTy->getElementType(), EltsPerVector), RegMask);
5579   }
5580   return Cost;
5581 }
5582 
5583 /// Build shuffle mask for shuffle graph entries and lists of main and alternate
5584 /// operations operands.
5585 static void
5586 buildShuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices,
5587                       ArrayRef<int> ReusesIndices,
5588                       const function_ref<bool(Instruction *)> IsAltOp,
5589                       SmallVectorImpl<int> &Mask,
5590                       SmallVectorImpl<Value *> *OpScalars = nullptr,
5591                       SmallVectorImpl<Value *> *AltScalars = nullptr) {
5592   unsigned Sz = VL.size();
5593   Mask.assign(Sz, UndefMaskElem);
5594   SmallVector<int> OrderMask;
5595   if (!ReorderIndices.empty())
5596     inversePermutation(ReorderIndices, OrderMask);
5597   for (unsigned I = 0; I < Sz; ++I) {
5598     unsigned Idx = I;
5599     if (!ReorderIndices.empty())
5600       Idx = OrderMask[I];
5601     auto *OpInst = cast<Instruction>(VL[Idx]);
5602     if (IsAltOp(OpInst)) {
5603       Mask[I] = Sz + Idx;
5604       if (AltScalars)
5605         AltScalars->push_back(OpInst);
5606     } else {
5607       Mask[I] = Idx;
5608       if (OpScalars)
5609         OpScalars->push_back(OpInst);
5610     }
5611   }
5612   if (!ReusesIndices.empty()) {
5613     SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem);
5614     transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) {
5615       return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem;
5616     });
5617     Mask.swap(NewMask);
5618   }
5619 }
5620 
5621 /// Checks if the specified instruction \p I is an alternate operation for the
5622 /// given \p MainOp and \p AltOp instructions.
5623 static bool isAlternateInstruction(const Instruction *I,
5624                                    const Instruction *MainOp,
5625                                    const Instruction *AltOp) {
5626   if (auto *CI0 = dyn_cast<CmpInst>(MainOp)) {
5627     auto *AltCI0 = cast<CmpInst>(AltOp);
5628     auto *CI = cast<CmpInst>(I);
5629     CmpInst::Predicate P0 = CI0->getPredicate();
5630     CmpInst::Predicate AltP0 = AltCI0->getPredicate();
5631     assert(P0 != AltP0 && "Expected different main/alternate predicates.");
5632     CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0);
5633     CmpInst::Predicate CurrentPred = CI->getPredicate();
5634     if (P0 == AltP0Swapped)
5635       return I == AltCI0 ||
5636              (I != MainOp &&
5637               !areCompatibleCmpOps(CI0->getOperand(0), CI0->getOperand(1),
5638                                    CI->getOperand(0), CI->getOperand(1)));
5639     return AltP0 == CurrentPred || AltP0Swapped == CurrentPred;
5640   }
5641   return I->getOpcode() == AltOp->getOpcode();
5642 }
5643 
5644 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E,
5645                                       ArrayRef<Value *> VectorizedVals) {
5646   ArrayRef<Value*> VL = E->Scalars;
5647 
5648   Type *ScalarTy = VL[0]->getType();
5649   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
5650     ScalarTy = SI->getValueOperand()->getType();
5651   else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0]))
5652     ScalarTy = CI->getOperand(0)->getType();
5653   else if (auto *IE = dyn_cast<InsertElementInst>(VL[0]))
5654     ScalarTy = IE->getOperand(1)->getType();
5655   auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
5656   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
5657 
5658   // If we have computed a smaller type for the expression, update VecTy so
5659   // that the costs will be accurate.
5660   if (MinBWs.count(VL[0]))
5661     VecTy = FixedVectorType::get(
5662         IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size());
5663   unsigned EntryVF = E->getVectorFactor();
5664   auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF);
5665 
5666   bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
5667   // FIXME: it tries to fix a problem with MSVC buildbots.
5668   TargetTransformInfo &TTIRef = *TTI;
5669   auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy,
5670                                VectorizedVals, E](InstructionCost &Cost) {
5671     DenseMap<Value *, int> ExtractVectorsTys;
5672     SmallPtrSet<Value *, 4> CheckedExtracts;
5673     for (auto *V : VL) {
5674       if (isa<UndefValue>(V))
5675         continue;
5676       // If all users of instruction are going to be vectorized and this
5677       // instruction itself is not going to be vectorized, consider this
5678       // instruction as dead and remove its cost from the final cost of the
5679       // vectorized tree.
5680       // Also, avoid adjusting the cost for extractelements with multiple uses
5681       // in different graph entries.
5682       const TreeEntry *VE = getTreeEntry(V);
5683       if (!CheckedExtracts.insert(V).second ||
5684           !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) ||
5685           (VE && VE != E))
5686         continue;
5687       auto *EE = cast<ExtractElementInst>(V);
5688       Optional<unsigned> EEIdx = getExtractIndex(EE);
5689       if (!EEIdx)
5690         continue;
5691       unsigned Idx = *EEIdx;
5692       if (TTIRef.getNumberOfParts(VecTy) !=
5693           TTIRef.getNumberOfParts(EE->getVectorOperandType())) {
5694         auto It =
5695             ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first;
5696         It->getSecond() = std::min<int>(It->second, Idx);
5697       }
5698       // Take credit for instruction that will become dead.
5699       if (EE->hasOneUse()) {
5700         Instruction *Ext = EE->user_back();
5701         if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
5702             all_of(Ext->users(),
5703                    [](User *U) { return isa<GetElementPtrInst>(U); })) {
5704           // Use getExtractWithExtendCost() to calculate the cost of
5705           // extractelement/ext pair.
5706           Cost -=
5707               TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(),
5708                                               EE->getVectorOperandType(), Idx);
5709           // Add back the cost of s|zext which is subtracted separately.
5710           Cost += TTIRef.getCastInstrCost(
5711               Ext->getOpcode(), Ext->getType(), EE->getType(),
5712               TTI::getCastContextHint(Ext), CostKind, Ext);
5713           continue;
5714         }
5715       }
5716       Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement,
5717                                         EE->getVectorOperandType(), Idx);
5718     }
5719     // Add a cost for subvector extracts/inserts if required.
5720     for (const auto &Data : ExtractVectorsTys) {
5721       auto *EEVTy = cast<FixedVectorType>(Data.first->getType());
5722       unsigned NumElts = VecTy->getNumElements();
5723       if (Data.second % NumElts == 0)
5724         continue;
5725       if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) {
5726         unsigned Idx = (Data.second / NumElts) * NumElts;
5727         unsigned EENumElts = EEVTy->getNumElements();
5728         if (Idx + NumElts <= EENumElts) {
5729           Cost +=
5730               TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
5731                                     EEVTy, None, Idx, VecTy);
5732         } else {
5733           // Need to round up the subvector type vectorization factor to avoid a
5734           // crash in cost model functions. Make SubVT so that Idx + VF of SubVT
5735           // <= EENumElts.
5736           auto *SubVT =
5737               FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx);
5738           Cost +=
5739               TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
5740                                     EEVTy, None, Idx, SubVT);
5741         }
5742       } else {
5743         Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector,
5744                                       VecTy, None, 0, EEVTy);
5745       }
5746     }
5747   };
5748   if (E->State == TreeEntry::NeedToGather) {
5749     if (allConstant(VL))
5750       return 0;
5751     if (isa<InsertElementInst>(VL[0]))
5752       return InstructionCost::getInvalid();
5753     SmallVector<int> Mask;
5754     SmallVector<const TreeEntry *> Entries;
5755     Optional<TargetTransformInfo::ShuffleKind> Shuffle =
5756         isGatherShuffledEntry(E, Mask, Entries);
5757     if (Shuffle.hasValue()) {
5758       InstructionCost GatherCost = 0;
5759       if (ShuffleVectorInst::isIdentityMask(Mask)) {
5760         // Perfect match in the graph, will reuse the previously vectorized
5761         // node. Cost is 0.
5762         LLVM_DEBUG(
5763             dbgs()
5764             << "SLP: perfect diamond match for gather bundle that starts with "
5765             << *VL.front() << ".\n");
5766         if (NeedToShuffleReuses)
5767           GatherCost =
5768               TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc,
5769                                   FinalVecTy, E->ReuseShuffleIndices);
5770       } else {
5771         LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size()
5772                           << " entries for bundle that starts with "
5773                           << *VL.front() << ".\n");
5774         // Detected that instead of gather we can emit a shuffle of single/two
5775         // previously vectorized nodes. Add the cost of the permutation rather
5776         // than gather.
5777         ::addMask(Mask, E->ReuseShuffleIndices);
5778         GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask);
5779       }
5780       return GatherCost;
5781     }
5782     if ((E->getOpcode() == Instruction::ExtractElement ||
5783          all_of(E->Scalars,
5784                 [](Value *V) {
5785                   return isa<ExtractElementInst, UndefValue>(V);
5786                 })) &&
5787         allSameType(VL)) {
5788       // Check that gather of extractelements can be represented as just a
5789       // shuffle of a single/two vectors the scalars are extracted from.
5790       SmallVector<int> Mask;
5791       Optional<TargetTransformInfo::ShuffleKind> ShuffleKind =
5792           isFixedVectorShuffle(VL, Mask);
5793       if (ShuffleKind.hasValue()) {
5794         // Found the bunch of extractelement instructions that must be gathered
5795         // into a vector and can be represented as a permutation elements in a
5796         // single input vector or of 2 input vectors.
5797         InstructionCost Cost =
5798             computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI);
5799         AdjustExtractsCost(Cost);
5800         if (NeedToShuffleReuses)
5801           Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc,
5802                                       FinalVecTy, E->ReuseShuffleIndices);
5803         return Cost;
5804       }
5805     }
5806     if (isSplat(VL)) {
5807       // Found the broadcasting of the single scalar, calculate the cost as the
5808       // broadcast.
5809       assert(VecTy == FinalVecTy &&
5810              "No reused scalars expected for broadcast.");
5811       return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy,
5812                                  /*Mask=*/None, /*Index=*/0,
5813                                  /*SubTp=*/nullptr, /*Args=*/VL[0]);
5814     }
5815     InstructionCost ReuseShuffleCost = 0;
5816     if (NeedToShuffleReuses)
5817       ReuseShuffleCost = TTI->getShuffleCost(
5818           TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices);
5819     // Improve gather cost for gather of loads, if we can group some of the
5820     // loads into vector loads.
5821     if (VL.size() > 2 && E->getOpcode() == Instruction::Load &&
5822         !E->isAltShuffle()) {
5823       BoUpSLP::ValueSet VectorizedLoads;
5824       unsigned StartIdx = 0;
5825       unsigned VF = VL.size() / 2;
5826       unsigned VectorizedCnt = 0;
5827       unsigned ScatterVectorizeCnt = 0;
5828       const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType());
5829       for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) {
5830         for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End;
5831              Cnt += VF) {
5832           ArrayRef<Value *> Slice = VL.slice(Cnt, VF);
5833           if (!VectorizedLoads.count(Slice.front()) &&
5834               !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) {
5835             SmallVector<Value *> PointerOps;
5836             OrdersType CurrentOrder;
5837             LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL,
5838                                               *SE, CurrentOrder, PointerOps);
5839             switch (LS) {
5840             case LoadsState::Vectorize:
5841             case LoadsState::ScatterVectorize:
5842               // Mark the vectorized loads so that we don't vectorize them
5843               // again.
5844               if (LS == LoadsState::Vectorize)
5845                 ++VectorizedCnt;
5846               else
5847                 ++ScatterVectorizeCnt;
5848               VectorizedLoads.insert(Slice.begin(), Slice.end());
5849               // If we vectorized initial block, no need to try to vectorize it
5850               // again.
5851               if (Cnt == StartIdx)
5852                 StartIdx += VF;
5853               break;
5854             case LoadsState::Gather:
5855               break;
5856             }
5857           }
5858         }
5859         // Check if the whole array was vectorized already - exit.
5860         if (StartIdx >= VL.size())
5861           break;
5862         // Found vectorizable parts - exit.
5863         if (!VectorizedLoads.empty())
5864           break;
5865       }
5866       if (!VectorizedLoads.empty()) {
5867         InstructionCost GatherCost = 0;
5868         unsigned NumParts = TTI->getNumberOfParts(VecTy);
5869         bool NeedInsertSubvectorAnalysis =
5870             !NumParts || (VL.size() / VF) > NumParts;
5871         // Get the cost for gathered loads.
5872         for (unsigned I = 0, End = VL.size(); I < End; I += VF) {
5873           if (VectorizedLoads.contains(VL[I]))
5874             continue;
5875           GatherCost += getGatherCost(VL.slice(I, VF));
5876         }
5877         // The cost for vectorized loads.
5878         InstructionCost ScalarsCost = 0;
5879         for (Value *V : VectorizedLoads) {
5880           auto *LI = cast<LoadInst>(V);
5881           ScalarsCost += TTI->getMemoryOpCost(
5882               Instruction::Load, LI->getType(), LI->getAlign(),
5883               LI->getPointerAddressSpace(), CostKind, LI);
5884         }
5885         auto *LI = cast<LoadInst>(E->getMainOp());
5886         auto *LoadTy = FixedVectorType::get(LI->getType(), VF);
5887         Align Alignment = LI->getAlign();
5888         GatherCost +=
5889             VectorizedCnt *
5890             TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment,
5891                                  LI->getPointerAddressSpace(), CostKind, LI);
5892         GatherCost += ScatterVectorizeCnt *
5893                       TTI->getGatherScatterOpCost(
5894                           Instruction::Load, LoadTy, LI->getPointerOperand(),
5895                           /*VariableMask=*/false, Alignment, CostKind, LI);
5896         if (NeedInsertSubvectorAnalysis) {
5897           // Add the cost for the subvectors insert.
5898           for (int I = VF, E = VL.size(); I < E; I += VF)
5899             GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy,
5900                                               None, I, LoadTy);
5901         }
5902         return ReuseShuffleCost + GatherCost - ScalarsCost;
5903       }
5904     }
5905     return ReuseShuffleCost + getGatherCost(VL);
5906   }
5907   InstructionCost CommonCost = 0;
5908   SmallVector<int> Mask;
5909   if (!E->ReorderIndices.empty()) {
5910     SmallVector<int> NewMask;
5911     if (E->getOpcode() == Instruction::Store) {
5912       // For stores the order is actually a mask.
5913       NewMask.resize(E->ReorderIndices.size());
5914       copy(E->ReorderIndices, NewMask.begin());
5915     } else {
5916       inversePermutation(E->ReorderIndices, NewMask);
5917     }
5918     ::addMask(Mask, NewMask);
5919   }
5920   if (NeedToShuffleReuses)
5921     ::addMask(Mask, E->ReuseShuffleIndices);
5922   if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask))
5923     CommonCost =
5924         TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask);
5925   assert((E->State == TreeEntry::Vectorize ||
5926           E->State == TreeEntry::ScatterVectorize) &&
5927          "Unhandled state");
5928   assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL");
5929   Instruction *VL0 = E->getMainOp();
5930   unsigned ShuffleOrOp =
5931       E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
5932   switch (ShuffleOrOp) {
5933     case Instruction::PHI:
5934       return 0;
5935 
5936     case Instruction::ExtractValue:
5937     case Instruction::ExtractElement: {
5938       // The common cost of removal ExtractElement/ExtractValue instructions +
5939       // the cost of shuffles, if required to resuffle the original vector.
5940       if (NeedToShuffleReuses) {
5941         unsigned Idx = 0;
5942         for (unsigned I : E->ReuseShuffleIndices) {
5943           if (ShuffleOrOp == Instruction::ExtractElement) {
5944             auto *EE = cast<ExtractElementInst>(VL[I]);
5945             CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement,
5946                                                   EE->getVectorOperandType(),
5947                                                   *getExtractIndex(EE));
5948           } else {
5949             CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement,
5950                                                   VecTy, Idx);
5951             ++Idx;
5952           }
5953         }
5954         Idx = EntryVF;
5955         for (Value *V : VL) {
5956           if (ShuffleOrOp == Instruction::ExtractElement) {
5957             auto *EE = cast<ExtractElementInst>(V);
5958             CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement,
5959                                                   EE->getVectorOperandType(),
5960                                                   *getExtractIndex(EE));
5961           } else {
5962             --Idx;
5963             CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement,
5964                                                   VecTy, Idx);
5965           }
5966         }
5967       }
5968       if (ShuffleOrOp == Instruction::ExtractValue) {
5969         for (unsigned I = 0, E = VL.size(); I < E; ++I) {
5970           auto *EI = cast<Instruction>(VL[I]);
5971           // Take credit for instruction that will become dead.
5972           if (EI->hasOneUse()) {
5973             Instruction *Ext = EI->user_back();
5974             if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
5975                 all_of(Ext->users(),
5976                        [](User *U) { return isa<GetElementPtrInst>(U); })) {
5977               // Use getExtractWithExtendCost() to calculate the cost of
5978               // extractelement/ext pair.
5979               CommonCost -= TTI->getExtractWithExtendCost(
5980                   Ext->getOpcode(), Ext->getType(), VecTy, I);
5981               // Add back the cost of s|zext which is subtracted separately.
5982               CommonCost += TTI->getCastInstrCost(
5983                   Ext->getOpcode(), Ext->getType(), EI->getType(),
5984                   TTI::getCastContextHint(Ext), CostKind, Ext);
5985               continue;
5986             }
5987           }
5988           CommonCost -=
5989               TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I);
5990         }
5991       } else {
5992         AdjustExtractsCost(CommonCost);
5993       }
5994       return CommonCost;
5995     }
5996     case Instruction::InsertElement: {
5997       assert(E->ReuseShuffleIndices.empty() &&
5998              "Unique insertelements only are expected.");
5999       auto *SrcVecTy = cast<FixedVectorType>(VL0->getType());
6000 
6001       unsigned const NumElts = SrcVecTy->getNumElements();
6002       unsigned const NumScalars = VL.size();
6003       APInt DemandedElts = APInt::getZero(NumElts);
6004       // TODO: Add support for Instruction::InsertValue.
6005       SmallVector<int> Mask;
6006       if (!E->ReorderIndices.empty()) {
6007         inversePermutation(E->ReorderIndices, Mask);
6008         Mask.append(NumElts - NumScalars, UndefMaskElem);
6009       } else {
6010         Mask.assign(NumElts, UndefMaskElem);
6011         std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0);
6012       }
6013       unsigned Offset = *getInsertIndex(VL0);
6014       bool IsIdentity = true;
6015       SmallVector<int> PrevMask(NumElts, UndefMaskElem);
6016       Mask.swap(PrevMask);
6017       for (unsigned I = 0; I < NumScalars; ++I) {
6018         unsigned InsertIdx = *getInsertIndex(VL[PrevMask[I]]);
6019         DemandedElts.setBit(InsertIdx);
6020         IsIdentity &= InsertIdx - Offset == I;
6021         Mask[InsertIdx - Offset] = I;
6022       }
6023       assert(Offset < NumElts && "Failed to find vector index offset");
6024 
6025       InstructionCost Cost = 0;
6026       Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts,
6027                                             /*Insert*/ true, /*Extract*/ false);
6028 
6029       if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) {
6030         // FIXME: Replace with SK_InsertSubvector once it is properly supported.
6031         unsigned Sz = PowerOf2Ceil(Offset + NumScalars);
6032         Cost += TTI->getShuffleCost(
6033             TargetTransformInfo::SK_PermuteSingleSrc,
6034             FixedVectorType::get(SrcVecTy->getElementType(), Sz));
6035       } else if (!IsIdentity) {
6036         auto *FirstInsert =
6037             cast<Instruction>(*find_if(E->Scalars, [E](Value *V) {
6038               return !is_contained(E->Scalars,
6039                                    cast<Instruction>(V)->getOperand(0));
6040             }));
6041         if (isUndefVector(FirstInsert->getOperand(0))) {
6042           Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask);
6043         } else {
6044           SmallVector<int> InsertMask(NumElts);
6045           std::iota(InsertMask.begin(), InsertMask.end(), 0);
6046           for (unsigned I = 0; I < NumElts; I++) {
6047             if (Mask[I] != UndefMaskElem)
6048               InsertMask[Offset + I] = NumElts + I;
6049           }
6050           Cost +=
6051               TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask);
6052         }
6053       }
6054 
6055       return Cost;
6056     }
6057     case Instruction::ZExt:
6058     case Instruction::SExt:
6059     case Instruction::FPToUI:
6060     case Instruction::FPToSI:
6061     case Instruction::FPExt:
6062     case Instruction::PtrToInt:
6063     case Instruction::IntToPtr:
6064     case Instruction::SIToFP:
6065     case Instruction::UIToFP:
6066     case Instruction::Trunc:
6067     case Instruction::FPTrunc:
6068     case Instruction::BitCast: {
6069       Type *SrcTy = VL0->getOperand(0)->getType();
6070       InstructionCost ScalarEltCost =
6071           TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy,
6072                                 TTI::getCastContextHint(VL0), CostKind, VL0);
6073       if (NeedToShuffleReuses) {
6074         CommonCost -= (EntryVF - VL.size()) * ScalarEltCost;
6075       }
6076 
6077       // Calculate the cost of this instruction.
6078       InstructionCost ScalarCost = VL.size() * ScalarEltCost;
6079 
6080       auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size());
6081       InstructionCost VecCost = 0;
6082       // Check if the values are candidates to demote.
6083       if (!MinBWs.count(VL0) || VecTy != SrcVecTy) {
6084         VecCost = CommonCost + TTI->getCastInstrCost(
6085                                    E->getOpcode(), VecTy, SrcVecTy,
6086                                    TTI::getCastContextHint(VL0), CostKind, VL0);
6087       }
6088       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
6089       return VecCost - ScalarCost;
6090     }
6091     case Instruction::FCmp:
6092     case Instruction::ICmp:
6093     case Instruction::Select: {
6094       // Calculate the cost of this instruction.
6095       InstructionCost ScalarEltCost =
6096           TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(),
6097                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0);
6098       if (NeedToShuffleReuses) {
6099         CommonCost -= (EntryVF - VL.size()) * ScalarEltCost;
6100       }
6101       auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size());
6102       InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
6103 
6104       // Check if all entries in VL are either compares or selects with compares
6105       // as condition that have the same predicates.
6106       CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE;
6107       bool First = true;
6108       for (auto *V : VL) {
6109         CmpInst::Predicate CurrentPred;
6110         auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value());
6111         if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) &&
6112              !match(V, MatchCmp)) ||
6113             (!First && VecPred != CurrentPred)) {
6114           VecPred = CmpInst::BAD_ICMP_PREDICATE;
6115           break;
6116         }
6117         First = false;
6118         VecPred = CurrentPred;
6119       }
6120 
6121       InstructionCost VecCost = TTI->getCmpSelInstrCost(
6122           E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0);
6123       // Check if it is possible and profitable to use min/max for selects in
6124       // VL.
6125       //
6126       auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL);
6127       if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) {
6128         IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy,
6129                                           {VecTy, VecTy});
6130         InstructionCost IntrinsicCost =
6131             TTI->getIntrinsicInstrCost(CostAttrs, CostKind);
6132         // If the selects are the only uses of the compares, they will be dead
6133         // and we can adjust the cost by removing their cost.
6134         if (IntrinsicAndUse.second)
6135           IntrinsicCost -= TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy,
6136                                                    MaskTy, VecPred, CostKind);
6137         VecCost = std::min(VecCost, IntrinsicCost);
6138       }
6139       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
6140       return CommonCost + VecCost - ScalarCost;
6141     }
6142     case Instruction::FNeg:
6143     case Instruction::Add:
6144     case Instruction::FAdd:
6145     case Instruction::Sub:
6146     case Instruction::FSub:
6147     case Instruction::Mul:
6148     case Instruction::FMul:
6149     case Instruction::UDiv:
6150     case Instruction::SDiv:
6151     case Instruction::FDiv:
6152     case Instruction::URem:
6153     case Instruction::SRem:
6154     case Instruction::FRem:
6155     case Instruction::Shl:
6156     case Instruction::LShr:
6157     case Instruction::AShr:
6158     case Instruction::And:
6159     case Instruction::Or:
6160     case Instruction::Xor: {
6161       // Certain instructions can be cheaper to vectorize if they have a
6162       // constant second vector operand.
6163       TargetTransformInfo::OperandValueKind Op1VK =
6164           TargetTransformInfo::OK_AnyValue;
6165       TargetTransformInfo::OperandValueKind Op2VK =
6166           TargetTransformInfo::OK_UniformConstantValue;
6167       TargetTransformInfo::OperandValueProperties Op1VP =
6168           TargetTransformInfo::OP_None;
6169       TargetTransformInfo::OperandValueProperties Op2VP =
6170           TargetTransformInfo::OP_PowerOf2;
6171 
6172       // If all operands are exactly the same ConstantInt then set the
6173       // operand kind to OK_UniformConstantValue.
6174       // If instead not all operands are constants, then set the operand kind
6175       // to OK_AnyValue. If all operands are constants but not the same,
6176       // then set the operand kind to OK_NonUniformConstantValue.
6177       ConstantInt *CInt0 = nullptr;
6178       for (unsigned i = 0, e = VL.size(); i < e; ++i) {
6179         const Instruction *I = cast<Instruction>(VL[i]);
6180         unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0;
6181         ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx));
6182         if (!CInt) {
6183           Op2VK = TargetTransformInfo::OK_AnyValue;
6184           Op2VP = TargetTransformInfo::OP_None;
6185           break;
6186         }
6187         if (Op2VP == TargetTransformInfo::OP_PowerOf2 &&
6188             !CInt->getValue().isPowerOf2())
6189           Op2VP = TargetTransformInfo::OP_None;
6190         if (i == 0) {
6191           CInt0 = CInt;
6192           continue;
6193         }
6194         if (CInt0 != CInt)
6195           Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
6196       }
6197 
6198       SmallVector<const Value *, 4> Operands(VL0->operand_values());
6199       InstructionCost ScalarEltCost =
6200           TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK,
6201                                       Op2VK, Op1VP, Op2VP, Operands, VL0);
6202       if (NeedToShuffleReuses) {
6203         CommonCost -= (EntryVF - VL.size()) * ScalarEltCost;
6204       }
6205       InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
6206       InstructionCost VecCost =
6207           TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK,
6208                                       Op2VK, Op1VP, Op2VP, Operands, VL0);
6209       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
6210       return CommonCost + VecCost - ScalarCost;
6211     }
6212     case Instruction::GetElementPtr: {
6213       TargetTransformInfo::OperandValueKind Op1VK =
6214           TargetTransformInfo::OK_AnyValue;
6215       TargetTransformInfo::OperandValueKind Op2VK =
6216           TargetTransformInfo::OK_UniformConstantValue;
6217 
6218       InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost(
6219           Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK);
6220       if (NeedToShuffleReuses) {
6221         CommonCost -= (EntryVF - VL.size()) * ScalarEltCost;
6222       }
6223       InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
6224       InstructionCost VecCost = TTI->getArithmeticInstrCost(
6225           Instruction::Add, VecTy, CostKind, Op1VK, Op2VK);
6226       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
6227       return CommonCost + VecCost - ScalarCost;
6228     }
6229     case Instruction::Load: {
6230       // Cost of wide load - cost of scalar loads.
6231       Align Alignment = cast<LoadInst>(VL0)->getAlign();
6232       InstructionCost ScalarEltCost = TTI->getMemoryOpCost(
6233           Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0);
6234       if (NeedToShuffleReuses) {
6235         CommonCost -= (EntryVF - VL.size()) * ScalarEltCost;
6236       }
6237       InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost;
6238       InstructionCost VecLdCost;
6239       if (E->State == TreeEntry::Vectorize) {
6240         VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0,
6241                                          CostKind, VL0);
6242       } else {
6243         assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState");
6244         Align CommonAlignment = Alignment;
6245         for (Value *V : VL)
6246           CommonAlignment =
6247               commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign());
6248         VecLdCost = TTI->getGatherScatterOpCost(
6249             Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(),
6250             /*VariableMask=*/false, CommonAlignment, CostKind, VL0);
6251       }
6252       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost));
6253       return CommonCost + VecLdCost - ScalarLdCost;
6254     }
6255     case Instruction::Store: {
6256       // We know that we can merge the stores. Calculate the cost.
6257       bool IsReorder = !E->ReorderIndices.empty();
6258       auto *SI =
6259           cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0);
6260       Align Alignment = SI->getAlign();
6261       InstructionCost ScalarEltCost = TTI->getMemoryOpCost(
6262           Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0);
6263       InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost;
6264       InstructionCost VecStCost = TTI->getMemoryOpCost(
6265           Instruction::Store, VecTy, Alignment, 0, CostKind, VL0);
6266       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost));
6267       return CommonCost + VecStCost - ScalarStCost;
6268     }
6269     case Instruction::Call: {
6270       CallInst *CI = cast<CallInst>(VL0);
6271       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
6272 
6273       // Calculate the cost of the scalar and vector calls.
6274       IntrinsicCostAttributes CostAttrs(ID, *CI, 1);
6275       InstructionCost ScalarEltCost =
6276           TTI->getIntrinsicInstrCost(CostAttrs, CostKind);
6277       if (NeedToShuffleReuses) {
6278         CommonCost -= (EntryVF - VL.size()) * ScalarEltCost;
6279       }
6280       InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost;
6281 
6282       auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
6283       InstructionCost VecCallCost =
6284           std::min(VecCallCosts.first, VecCallCosts.second);
6285 
6286       LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost
6287                         << " (" << VecCallCost << "-" << ScalarCallCost << ")"
6288                         << " for " << *CI << "\n");
6289 
6290       return CommonCost + VecCallCost - ScalarCallCost;
6291     }
6292     case Instruction::ShuffleVector: {
6293       assert(E->isAltShuffle() &&
6294              ((Instruction::isBinaryOp(E->getOpcode()) &&
6295                Instruction::isBinaryOp(E->getAltOpcode())) ||
6296               (Instruction::isCast(E->getOpcode()) &&
6297                Instruction::isCast(E->getAltOpcode())) ||
6298               (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) &&
6299              "Invalid Shuffle Vector Operand");
6300       InstructionCost ScalarCost = 0;
6301       if (NeedToShuffleReuses) {
6302         for (unsigned Idx : E->ReuseShuffleIndices) {
6303           Instruction *I = cast<Instruction>(VL[Idx]);
6304           CommonCost -= TTI->getInstructionCost(I, CostKind);
6305         }
6306         for (Value *V : VL) {
6307           Instruction *I = cast<Instruction>(V);
6308           CommonCost += TTI->getInstructionCost(I, CostKind);
6309         }
6310       }
6311       for (Value *V : VL) {
6312         Instruction *I = cast<Instruction>(V);
6313         assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode");
6314         ScalarCost += TTI->getInstructionCost(I, CostKind);
6315       }
6316       // VecCost is equal to sum of the cost of creating 2 vectors
6317       // and the cost of creating shuffle.
6318       InstructionCost VecCost = 0;
6319       // Try to find the previous shuffle node with the same operands and same
6320       // main/alternate ops.
6321       auto &&TryFindNodeWithEqualOperands = [this, E]() {
6322         for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) {
6323           if (TE.get() == E)
6324             break;
6325           if (TE->isAltShuffle() &&
6326               ((TE->getOpcode() == E->getOpcode() &&
6327                 TE->getAltOpcode() == E->getAltOpcode()) ||
6328                (TE->getOpcode() == E->getAltOpcode() &&
6329                 TE->getAltOpcode() == E->getOpcode())) &&
6330               TE->hasEqualOperands(*E))
6331             return true;
6332         }
6333         return false;
6334       };
6335       if (TryFindNodeWithEqualOperands()) {
6336         LLVM_DEBUG({
6337           dbgs() << "SLP: diamond match for alternate node found.\n";
6338           E->dump();
6339         });
6340         // No need to add new vector costs here since we're going to reuse
6341         // same main/alternate vector ops, just do different shuffling.
6342       } else if (Instruction::isBinaryOp(E->getOpcode())) {
6343         VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind);
6344         VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy,
6345                                                CostKind);
6346       } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) {
6347         VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy,
6348                                           Builder.getInt1Ty(),
6349                                           CI0->getPredicate(), CostKind, VL0);
6350         VecCost += TTI->getCmpSelInstrCost(
6351             E->getOpcode(), ScalarTy, Builder.getInt1Ty(),
6352             cast<CmpInst>(E->getAltOp())->getPredicate(), CostKind,
6353             E->getAltOp());
6354       } else {
6355         Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType();
6356         Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType();
6357         auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size());
6358         auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size());
6359         VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty,
6360                                         TTI::CastContextHint::None, CostKind);
6361         VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty,
6362                                          TTI::CastContextHint::None, CostKind);
6363       }
6364 
6365       if (E->ReuseShuffleIndices.empty()) {
6366         CommonCost =
6367             TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy);
6368       } else {
6369         SmallVector<int> Mask;
6370         buildShuffleEntryMask(
6371             E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices,
6372             [E](Instruction *I) {
6373               assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode");
6374               return I->getOpcode() == E->getAltOpcode();
6375             },
6376             Mask);
6377         CommonCost = TTI->getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc,
6378                                          FinalVecTy, Mask);
6379       }
6380       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
6381       return CommonCost + VecCost - ScalarCost;
6382     }
6383     default:
6384       llvm_unreachable("Unknown instruction");
6385   }
6386 }
6387 
6388 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const {
6389   LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height "
6390                     << VectorizableTree.size() << " is fully vectorizable .\n");
6391 
6392   auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) {
6393     SmallVector<int> Mask;
6394     return TE->State == TreeEntry::NeedToGather &&
6395            !any_of(TE->Scalars,
6396                    [this](Value *V) { return EphValues.contains(V); }) &&
6397            (allConstant(TE->Scalars) || isSplat(TE->Scalars) ||
6398             TE->Scalars.size() < Limit ||
6399             ((TE->getOpcode() == Instruction::ExtractElement ||
6400               all_of(TE->Scalars,
6401                      [](Value *V) {
6402                        return isa<ExtractElementInst, UndefValue>(V);
6403                      })) &&
6404              isFixedVectorShuffle(TE->Scalars, Mask)) ||
6405             (TE->State == TreeEntry::NeedToGather &&
6406              TE->getOpcode() == Instruction::Load && !TE->isAltShuffle()));
6407   };
6408 
6409   // We only handle trees of heights 1 and 2.
6410   if (VectorizableTree.size() == 1 &&
6411       (VectorizableTree[0]->State == TreeEntry::Vectorize ||
6412        (ForReduction &&
6413         AreVectorizableGathers(VectorizableTree[0].get(),
6414                                VectorizableTree[0]->Scalars.size()) &&
6415         VectorizableTree[0]->getVectorFactor() > 2)))
6416     return true;
6417 
6418   if (VectorizableTree.size() != 2)
6419     return false;
6420 
6421   // Handle splat and all-constants stores. Also try to vectorize tiny trees
6422   // with the second gather nodes if they have less scalar operands rather than
6423   // the initial tree element (may be profitable to shuffle the second gather)
6424   // or they are extractelements, which form shuffle.
6425   SmallVector<int> Mask;
6426   if (VectorizableTree[0]->State == TreeEntry::Vectorize &&
6427       AreVectorizableGathers(VectorizableTree[1].get(),
6428                              VectorizableTree[0]->Scalars.size()))
6429     return true;
6430 
6431   // Gathering cost would be too much for tiny trees.
6432   if (VectorizableTree[0]->State == TreeEntry::NeedToGather ||
6433       (VectorizableTree[1]->State == TreeEntry::NeedToGather &&
6434        VectorizableTree[0]->State != TreeEntry::ScatterVectorize))
6435     return false;
6436 
6437   return true;
6438 }
6439 
6440 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts,
6441                                        TargetTransformInfo *TTI,
6442                                        bool MustMatchOrInst) {
6443   // Look past the root to find a source value. Arbitrarily follow the
6444   // path through operand 0 of any 'or'. Also, peek through optional
6445   // shift-left-by-multiple-of-8-bits.
6446   Value *ZextLoad = Root;
6447   const APInt *ShAmtC;
6448   bool FoundOr = false;
6449   while (!isa<ConstantExpr>(ZextLoad) &&
6450          (match(ZextLoad, m_Or(m_Value(), m_Value())) ||
6451           (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) &&
6452            ShAmtC->urem(8) == 0))) {
6453     auto *BinOp = cast<BinaryOperator>(ZextLoad);
6454     ZextLoad = BinOp->getOperand(0);
6455     if (BinOp->getOpcode() == Instruction::Or)
6456       FoundOr = true;
6457   }
6458   // Check if the input is an extended load of the required or/shift expression.
6459   Value *Load;
6460   if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root ||
6461       !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load))
6462     return false;
6463 
6464   // Require that the total load bit width is a legal integer type.
6465   // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target.
6466   // But <16 x i8> --> i128 is not, so the backend probably can't reduce it.
6467   Type *SrcTy = Load->getType();
6468   unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts;
6469   if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth)))
6470     return false;
6471 
6472   // Everything matched - assume that we can fold the whole sequence using
6473   // load combining.
6474   LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at "
6475              << *(cast<Instruction>(Root)) << "\n");
6476 
6477   return true;
6478 }
6479 
6480 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const {
6481   if (RdxKind != RecurKind::Or)
6482     return false;
6483 
6484   unsigned NumElts = VectorizableTree[0]->Scalars.size();
6485   Value *FirstReduced = VectorizableTree[0]->Scalars[0];
6486   return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI,
6487                                     /* MatchOr */ false);
6488 }
6489 
6490 bool BoUpSLP::isLoadCombineCandidate() const {
6491   // Peek through a final sequence of stores and check if all operations are
6492   // likely to be load-combined.
6493   unsigned NumElts = VectorizableTree[0]->Scalars.size();
6494   for (Value *Scalar : VectorizableTree[0]->Scalars) {
6495     Value *X;
6496     if (!match(Scalar, m_Store(m_Value(X), m_Value())) ||
6497         !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true))
6498       return false;
6499   }
6500   return true;
6501 }
6502 
6503 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const {
6504   // No need to vectorize inserts of gathered values.
6505   if (VectorizableTree.size() == 2 &&
6506       isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) &&
6507       VectorizableTree[1]->State == TreeEntry::NeedToGather)
6508     return true;
6509 
6510   // We can vectorize the tree if its size is greater than or equal to the
6511   // minimum size specified by the MinTreeSize command line option.
6512   if (VectorizableTree.size() >= MinTreeSize)
6513     return false;
6514 
6515   // If we have a tiny tree (a tree whose size is less than MinTreeSize), we
6516   // can vectorize it if we can prove it fully vectorizable.
6517   if (isFullyVectorizableTinyTree(ForReduction))
6518     return false;
6519 
6520   assert(VectorizableTree.empty()
6521              ? ExternalUses.empty()
6522              : true && "We shouldn't have any external users");
6523 
6524   // Otherwise, we can't vectorize the tree. It is both tiny and not fully
6525   // vectorizable.
6526   return true;
6527 }
6528 
6529 InstructionCost BoUpSLP::getSpillCost() const {
6530   // Walk from the bottom of the tree to the top, tracking which values are
6531   // live. When we see a call instruction that is not part of our tree,
6532   // query TTI to see if there is a cost to keeping values live over it
6533   // (for example, if spills and fills are required).
6534   unsigned BundleWidth = VectorizableTree.front()->Scalars.size();
6535   InstructionCost Cost = 0;
6536 
6537   SmallPtrSet<Instruction*, 4> LiveValues;
6538   Instruction *PrevInst = nullptr;
6539 
6540   // The entries in VectorizableTree are not necessarily ordered by their
6541   // position in basic blocks. Collect them and order them by dominance so later
6542   // instructions are guaranteed to be visited first. For instructions in
6543   // different basic blocks, we only scan to the beginning of the block, so
6544   // their order does not matter, as long as all instructions in a basic block
6545   // are grouped together. Using dominance ensures a deterministic order.
6546   SmallVector<Instruction *, 16> OrderedScalars;
6547   for (const auto &TEPtr : VectorizableTree) {
6548     Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]);
6549     if (!Inst)
6550       continue;
6551     OrderedScalars.push_back(Inst);
6552   }
6553   llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) {
6554     auto *NodeA = DT->getNode(A->getParent());
6555     auto *NodeB = DT->getNode(B->getParent());
6556     assert(NodeA && "Should only process reachable instructions");
6557     assert(NodeB && "Should only process reachable instructions");
6558     assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) &&
6559            "Different nodes should have different DFS numbers");
6560     if (NodeA != NodeB)
6561       return NodeA->getDFSNumIn() < NodeB->getDFSNumIn();
6562     return B->comesBefore(A);
6563   });
6564 
6565   for (Instruction *Inst : OrderedScalars) {
6566     if (!PrevInst) {
6567       PrevInst = Inst;
6568       continue;
6569     }
6570 
6571     // Update LiveValues.
6572     LiveValues.erase(PrevInst);
6573     for (auto &J : PrevInst->operands()) {
6574       if (isa<Instruction>(&*J) && getTreeEntry(&*J))
6575         LiveValues.insert(cast<Instruction>(&*J));
6576     }
6577 
6578     LLVM_DEBUG({
6579       dbgs() << "SLP: #LV: " << LiveValues.size();
6580       for (auto *X : LiveValues)
6581         dbgs() << " " << X->getName();
6582       dbgs() << ", Looking at ";
6583       Inst->dump();
6584     });
6585 
6586     // Now find the sequence of instructions between PrevInst and Inst.
6587     unsigned NumCalls = 0;
6588     BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(),
6589                                  PrevInstIt =
6590                                      PrevInst->getIterator().getReverse();
6591     while (InstIt != PrevInstIt) {
6592       if (PrevInstIt == PrevInst->getParent()->rend()) {
6593         PrevInstIt = Inst->getParent()->rbegin();
6594         continue;
6595       }
6596 
6597       // Debug information does not impact spill cost.
6598       if ((isa<CallInst>(&*PrevInstIt) &&
6599            !isa<DbgInfoIntrinsic>(&*PrevInstIt)) &&
6600           &*PrevInstIt != PrevInst)
6601         NumCalls++;
6602 
6603       ++PrevInstIt;
6604     }
6605 
6606     if (NumCalls) {
6607       SmallVector<Type*, 4> V;
6608       for (auto *II : LiveValues) {
6609         auto *ScalarTy = II->getType();
6610         if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy))
6611           ScalarTy = VectorTy->getElementType();
6612         V.push_back(FixedVectorType::get(ScalarTy, BundleWidth));
6613       }
6614       Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V);
6615     }
6616 
6617     PrevInst = Inst;
6618   }
6619 
6620   return Cost;
6621 }
6622 
6623 /// Check if two insertelement instructions are from the same buildvector.
6624 static bool areTwoInsertFromSameBuildVector(InsertElementInst *VU,
6625                                             InsertElementInst *V) {
6626   // Instructions must be from the same basic blocks.
6627   if (VU->getParent() != V->getParent())
6628     return false;
6629   // Checks if 2 insertelements are from the same buildvector.
6630   if (VU->getType() != V->getType())
6631     return false;
6632   // Multiple used inserts are separate nodes.
6633   if (!VU->hasOneUse() && !V->hasOneUse())
6634     return false;
6635   auto *IE1 = VU;
6636   auto *IE2 = V;
6637   unsigned Idx1 = *getInsertIndex(IE1);
6638   unsigned Idx2 = *getInsertIndex(IE2);
6639   // Go through the vector operand of insertelement instructions trying to find
6640   // either VU as the original vector for IE2 or V as the original vector for
6641   // IE1.
6642   do {
6643     if (IE2 == VU)
6644       return VU->hasOneUse();
6645     if (IE1 == V)
6646       return V->hasOneUse();
6647     if (IE1) {
6648       if ((IE1 != VU && !IE1->hasOneUse()) ||
6649           getInsertIndex(IE1).getValueOr(Idx2) == Idx2)
6650         IE1 = nullptr;
6651       else
6652         IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0));
6653     }
6654     if (IE2) {
6655       if ((IE2 != V && !IE2->hasOneUse()) ||
6656           getInsertIndex(IE2).getValueOr(Idx1) == Idx1)
6657         IE2 = nullptr;
6658       else
6659         IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0));
6660     }
6661   } while (IE1 || IE2);
6662   return false;
6663 }
6664 
6665 /// Checks if the \p IE1 instructions is followed by \p IE2 instruction in the
6666 /// buildvector sequence.
6667 static bool isFirstInsertElement(const InsertElementInst *IE1,
6668                                  const InsertElementInst *IE2) {
6669   if (IE1 == IE2)
6670     return false;
6671   const auto *I1 = IE1;
6672   const auto *I2 = IE2;
6673   const InsertElementInst *PrevI1;
6674   const InsertElementInst *PrevI2;
6675   unsigned Idx1 = *getInsertIndex(IE1);
6676   unsigned Idx2 = *getInsertIndex(IE2);
6677   do {
6678     if (I2 == IE1)
6679       return true;
6680     if (I1 == IE2)
6681       return false;
6682     PrevI1 = I1;
6683     PrevI2 = I2;
6684     if (I1 && (I1 == IE1 || I1->hasOneUse()) &&
6685         getInsertIndex(I1).getValueOr(Idx2) != Idx2)
6686       I1 = dyn_cast<InsertElementInst>(I1->getOperand(0));
6687     if (I2 && ((I2 == IE2 || I2->hasOneUse())) &&
6688         getInsertIndex(I2).getValueOr(Idx1) != Idx1)
6689       I2 = dyn_cast<InsertElementInst>(I2->getOperand(0));
6690   } while ((I1 && PrevI1 != I1) || (I2 && PrevI2 != I2));
6691   llvm_unreachable("Two different buildvectors not expected.");
6692 }
6693 
6694 namespace {
6695 /// Returns incoming Value *, if the requested type is Value * too, or a default
6696 /// value, otherwise.
6697 struct ValueSelect {
6698   template <typename U>
6699   static typename std::enable_if<std::is_same<Value *, U>::value, Value *>::type
6700   get(Value *V) {
6701     return V;
6702   }
6703   template <typename U>
6704   static typename std::enable_if<!std::is_same<Value *, U>::value, U>::type
6705   get(Value *) {
6706     return U();
6707   }
6708 };
6709 } // namespace
6710 
6711 /// Does the analysis of the provided shuffle masks and performs the requested
6712 /// actions on the vectors with the given shuffle masks. It tries to do it in
6713 /// several steps.
6714 /// 1. If the Base vector is not undef vector, resizing the very first mask to
6715 /// have common VF and perform action for 2 input vectors (including non-undef
6716 /// Base). Other shuffle masks are combined with the resulting after the 1 stage
6717 /// and processed as a shuffle of 2 elements.
6718 /// 2. If the Base is undef vector and have only 1 shuffle mask, perform the
6719 /// action only for 1 vector with the given mask, if it is not the identity
6720 /// mask.
6721 /// 3. If > 2 masks are used, perform the remaining shuffle actions for 2
6722 /// vectors, combing the masks properly between the steps.
6723 template <typename T>
6724 static T *performExtractsShuffleAction(
6725     MutableArrayRef<std::pair<T *, SmallVector<int>>> ShuffleMask, Value *Base,
6726     function_ref<unsigned(T *)> GetVF,
6727     function_ref<std::pair<T *, bool>(T *, ArrayRef<int>)> ResizeAction,
6728     function_ref<T *(ArrayRef<int>, ArrayRef<T *>)> Action) {
6729   assert(!ShuffleMask.empty() && "Empty list of shuffles for inserts.");
6730   SmallVector<int> Mask(ShuffleMask.begin()->second);
6731   auto VMIt = std::next(ShuffleMask.begin());
6732   T *Prev = nullptr;
6733   bool IsBaseNotUndef = !isUndefVector(Base);
6734   if (IsBaseNotUndef) {
6735     // Base is not undef, need to combine it with the next subvectors.
6736     std::pair<T *, bool> Res = ResizeAction(ShuffleMask.begin()->first, Mask);
6737     for (unsigned Idx = 0, VF = Mask.size(); Idx < VF; ++Idx) {
6738       if (Mask[Idx] == UndefMaskElem)
6739         Mask[Idx] = Idx;
6740       else
6741         Mask[Idx] = (Res.second ? Idx : Mask[Idx]) + VF;
6742     }
6743     auto *V = ValueSelect::get<T *>(Base);
6744     (void)V;
6745     assert((!V || GetVF(V) == Mask.size()) &&
6746            "Expected base vector of VF number of elements.");
6747     Prev = Action(Mask, {nullptr, Res.first});
6748   } else if (ShuffleMask.size() == 1) {
6749     // Base is undef and only 1 vector is shuffled - perform the action only for
6750     // single vector, if the mask is not the identity mask.
6751     std::pair<T *, bool> Res = ResizeAction(ShuffleMask.begin()->first, Mask);
6752     if (Res.second)
6753       // Identity mask is found.
6754       Prev = Res.first;
6755     else
6756       Prev = Action(Mask, {ShuffleMask.begin()->first});
6757   } else {
6758     // Base is undef and at least 2 input vectors shuffled - perform 2 vectors
6759     // shuffles step by step, combining shuffle between the steps.
6760     unsigned Vec1VF = GetVF(ShuffleMask.begin()->first);
6761     unsigned Vec2VF = GetVF(VMIt->first);
6762     if (Vec1VF == Vec2VF) {
6763       // No need to resize the input vectors since they are of the same size, we
6764       // can shuffle them directly.
6765       ArrayRef<int> SecMask = VMIt->second;
6766       for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) {
6767         if (SecMask[I] != UndefMaskElem) {
6768           assert(Mask[I] == UndefMaskElem && "Multiple uses of scalars.");
6769           Mask[I] = SecMask[I] + Vec1VF;
6770         }
6771       }
6772       Prev = Action(Mask, {ShuffleMask.begin()->first, VMIt->first});
6773     } else {
6774       // Vectors of different sizes - resize and reshuffle.
6775       std::pair<T *, bool> Res1 =
6776           ResizeAction(ShuffleMask.begin()->first, Mask);
6777       std::pair<T *, bool> Res2 = ResizeAction(VMIt->first, VMIt->second);
6778       ArrayRef<int> SecMask = VMIt->second;
6779       for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) {
6780         if (Mask[I] != UndefMaskElem) {
6781           assert(SecMask[I] == UndefMaskElem && "Multiple uses of scalars.");
6782           if (Res1.second)
6783             Mask[I] = I;
6784         } else if (SecMask[I] != UndefMaskElem) {
6785           assert(Mask[I] == UndefMaskElem && "Multiple uses of scalars.");
6786           Mask[I] = (Res2.second ? I : SecMask[I]) + VF;
6787         }
6788       }
6789       Prev = Action(Mask, {Res1.first, Res2.first});
6790     }
6791     VMIt = std::next(VMIt);
6792   }
6793   // Perform requested actions for the remaining masks/vectors.
6794   for (auto E = ShuffleMask.end(); VMIt != E; ++VMIt) {
6795     // Shuffle other input vectors, if any.
6796     std::pair<T *, bool> Res = ResizeAction(VMIt->first, VMIt->second);
6797     ArrayRef<int> SecMask = VMIt->second;
6798     for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) {
6799       if (SecMask[I] != UndefMaskElem) {
6800         assert((Mask[I] == UndefMaskElem || IsBaseNotUndef) &&
6801                "Multiple uses of scalars.");
6802         Mask[I] = (Res.second ? I : SecMask[I]) + VF;
6803       } else if (Mask[I] != UndefMaskElem) {
6804         Mask[I] = I;
6805       }
6806     }
6807     Prev = Action(Mask, {Prev, Res.first});
6808   }
6809   return Prev;
6810 }
6811 
6812 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) {
6813   InstructionCost Cost = 0;
6814   LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size "
6815                     << VectorizableTree.size() << ".\n");
6816 
6817   unsigned BundleWidth = VectorizableTree[0]->Scalars.size();
6818 
6819   for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) {
6820     TreeEntry &TE = *VectorizableTree[I];
6821 
6822     InstructionCost C = getEntryCost(&TE, VectorizedVals);
6823     Cost += C;
6824     LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
6825                       << " for bundle that starts with " << *TE.Scalars[0]
6826                       << ".\n"
6827                       << "SLP: Current total cost = " << Cost << "\n");
6828   }
6829 
6830   SmallPtrSet<Value *, 16> ExtractCostCalculated;
6831   InstructionCost ExtractCost = 0;
6832   SmallVector<MapVector<const TreeEntry *, SmallVector<int>>> ShuffleMasks;
6833   SmallVector<std::pair<Value *, const TreeEntry *>> FirstUsers;
6834   SmallVector<APInt> DemandedElts;
6835   for (ExternalUser &EU : ExternalUses) {
6836     // We only add extract cost once for the same scalar.
6837     if (!isa_and_nonnull<InsertElementInst>(EU.User) &&
6838         !ExtractCostCalculated.insert(EU.Scalar).second)
6839       continue;
6840 
6841     // Uses by ephemeral values are free (because the ephemeral value will be
6842     // removed prior to code generation, and so the extraction will be
6843     // removed as well).
6844     if (EphValues.count(EU.User))
6845       continue;
6846 
6847     // No extract cost for vector "scalar"
6848     if (isa<FixedVectorType>(EU.Scalar->getType()))
6849       continue;
6850 
6851     // Already counted the cost for external uses when tried to adjust the cost
6852     // for extractelements, no need to add it again.
6853     if (isa<ExtractElementInst>(EU.Scalar))
6854       continue;
6855 
6856     // If found user is an insertelement, do not calculate extract cost but try
6857     // to detect it as a final shuffled/identity match.
6858     if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) {
6859       if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) {
6860         Optional<unsigned> InsertIdx = getInsertIndex(VU);
6861         if (InsertIdx) {
6862           const TreeEntry *ScalarTE = getTreeEntry(EU.Scalar);
6863           auto *It =
6864               find_if(FirstUsers,
6865                       [VU](const std::pair<Value *, const TreeEntry *> &Pair) {
6866                         return areTwoInsertFromSameBuildVector(
6867                             VU, cast<InsertElementInst>(Pair.first));
6868                       });
6869           int VecId = -1;
6870           if (It == FirstUsers.end()) {
6871             (void)ShuffleMasks.emplace_back();
6872             SmallVectorImpl<int> &Mask = ShuffleMasks.back()[ScalarTE];
6873             if (Mask.empty())
6874               Mask.assign(FTy->getNumElements(), UndefMaskElem);
6875             // Find the insertvector, vectorized in tree, if any.
6876             Value *Base = VU;
6877             while (auto *IEBase = dyn_cast<InsertElementInst>(Base)) {
6878               if (IEBase != EU.User &&
6879                   (!IEBase->hasOneUse() ||
6880                    getInsertIndex(IEBase).getValueOr(*InsertIdx) == *InsertIdx))
6881                 break;
6882               // Build the mask for the vectorized insertelement instructions.
6883               if (const TreeEntry *E = getTreeEntry(IEBase)) {
6884                 VU = IEBase;
6885                 do {
6886                   IEBase = cast<InsertElementInst>(Base);
6887                   int Idx = *getInsertIndex(IEBase);
6888                   assert(Mask[Idx] == UndefMaskElem &&
6889                          "InsertElementInstruction used already.");
6890                   Mask[Idx] = Idx;
6891                   Base = IEBase->getOperand(0);
6892                 } while (E == getTreeEntry(Base));
6893                 break;
6894               }
6895               Base = cast<InsertElementInst>(Base)->getOperand(0);
6896             }
6897             FirstUsers.emplace_back(VU, ScalarTE);
6898             DemandedElts.push_back(APInt::getZero(FTy->getNumElements()));
6899             VecId = FirstUsers.size() - 1;
6900           } else {
6901             if (isFirstInsertElement(VU, cast<InsertElementInst>(It->first)))
6902               It->first = VU;
6903             VecId = std::distance(FirstUsers.begin(), It);
6904           }
6905           int InIdx = *InsertIdx;
6906           SmallVectorImpl<int> &Mask = ShuffleMasks[VecId][ScalarTE];
6907           if (Mask.empty())
6908             Mask.assign(FTy->getNumElements(), UndefMaskElem);
6909           Mask[InIdx] = EU.Lane;
6910           DemandedElts[VecId].setBit(InIdx);
6911           continue;
6912         }
6913       }
6914     }
6915 
6916     // If we plan to rewrite the tree in a smaller type, we will need to sign
6917     // extend the extracted value back to the original type. Here, we account
6918     // for the extract and the added cost of the sign extend if needed.
6919     auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth);
6920     auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
6921     if (MinBWs.count(ScalarRoot)) {
6922       auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
6923       auto Extend =
6924           MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt;
6925       VecTy = FixedVectorType::get(MinTy, BundleWidth);
6926       ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(),
6927                                                    VecTy, EU.Lane);
6928     } else {
6929       ExtractCost +=
6930           TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane);
6931     }
6932   }
6933 
6934   InstructionCost SpillCost = getSpillCost();
6935   Cost += SpillCost + ExtractCost;
6936   auto &&ResizeToVF = [this, &Cost](const TreeEntry *TE, ArrayRef<int> Mask) {
6937     InstructionCost C = 0;
6938     unsigned VF = Mask.size();
6939     unsigned VecVF = TE->getVectorFactor();
6940     if (VF != VecVF &&
6941         (any_of(Mask, [VF](int Idx) { return Idx >= static_cast<int>(VF); }) ||
6942          (all_of(Mask,
6943                  [VF](int Idx) { return Idx < 2 * static_cast<int>(VF); }) &&
6944           !ShuffleVectorInst::isIdentityMask(Mask)))) {
6945       SmallVector<int> OrigMask(VecVF, UndefMaskElem);
6946       std::copy(Mask.begin(), std::next(Mask.begin(), std::min(VF, VecVF)),
6947                 OrigMask.begin());
6948       C = TTI->getShuffleCost(
6949           TTI::SK_PermuteSingleSrc,
6950           FixedVectorType::get(TE->getMainOp()->getType(), VecVF), OrigMask);
6951       LLVM_DEBUG(
6952           dbgs() << "SLP: Adding cost " << C
6953                  << " for final shuffle of insertelement external users.\n";
6954           TE->dump(); dbgs() << "SLP: Current total cost = " << Cost << "\n");
6955       Cost += C;
6956       return std::make_pair(TE, true);
6957     }
6958     return std::make_pair(TE, false);
6959   };
6960   // Calculate the cost of the reshuffled vectors, if any.
6961   for (int I = 0, E = FirstUsers.size(); I < E; ++I) {
6962     Value *Base = cast<Instruction>(FirstUsers[I].first)->getOperand(0);
6963     unsigned VF = ShuffleMasks[I].begin()->second.size();
6964     auto *FTy = FixedVectorType::get(
6965         cast<VectorType>(FirstUsers[I].first->getType())->getElementType(), VF);
6966     auto Vector = ShuffleMasks[I].takeVector();
6967     auto &&EstimateShufflesCost = [this, FTy,
6968                                    &Cost](ArrayRef<int> Mask,
6969                                           ArrayRef<const TreeEntry *> TEs) {
6970       assert((TEs.size() == 1 || TEs.size() == 2) &&
6971              "Expected exactly 1 or 2 tree entries.");
6972       if (TEs.size() == 1) {
6973         int Limit = 2 * Mask.size();
6974         if (!all_of(Mask, [Limit](int Idx) { return Idx < Limit; }) ||
6975             !ShuffleVectorInst::isIdentityMask(Mask)) {
6976           InstructionCost C =
6977               TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FTy, Mask);
6978           LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
6979                             << " for final shuffle of insertelement "
6980                                "external users.\n";
6981                      TEs.front()->dump();
6982                      dbgs() << "SLP: Current total cost = " << Cost << "\n");
6983           Cost += C;
6984         }
6985       } else {
6986         InstructionCost C =
6987             TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, FTy, Mask);
6988         LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
6989                           << " for final shuffle of vector node and external "
6990                              "insertelement users.\n";
6991                    if (TEs.front()) { TEs.front()->dump(); } TEs.back()->dump();
6992                    dbgs() << "SLP: Current total cost = " << Cost << "\n");
6993         Cost += C;
6994       }
6995       return TEs.back();
6996     };
6997     (void)performExtractsShuffleAction<const TreeEntry>(
6998         makeMutableArrayRef(Vector.data(), Vector.size()), Base,
6999         [](const TreeEntry *E) { return E->getVectorFactor(); }, ResizeToVF,
7000         EstimateShufflesCost);
7001     InstructionCost InsertCost = TTI->getScalarizationOverhead(
7002         cast<FixedVectorType>(FirstUsers[I].first->getType()), DemandedElts[I],
7003         /*Insert*/ true, /*Extract*/ false);
7004     Cost -= InsertCost;
7005   }
7006 
7007 #ifndef NDEBUG
7008   SmallString<256> Str;
7009   {
7010     raw_svector_ostream OS(Str);
7011     OS << "SLP: Spill Cost = " << SpillCost << ".\n"
7012        << "SLP: Extract Cost = " << ExtractCost << ".\n"
7013        << "SLP: Total Cost = " << Cost << ".\n";
7014   }
7015   LLVM_DEBUG(dbgs() << Str);
7016   if (ViewSLPTree)
7017     ViewGraph(this, "SLP" + F->getName(), false, Str);
7018 #endif
7019 
7020   return Cost;
7021 }
7022 
7023 Optional<TargetTransformInfo::ShuffleKind>
7024 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask,
7025                                SmallVectorImpl<const TreeEntry *> &Entries) {
7026   // TODO: currently checking only for Scalars in the tree entry, need to count
7027   // reused elements too for better cost estimation.
7028   Mask.assign(TE->Scalars.size(), UndefMaskElem);
7029   Entries.clear();
7030   // Build a lists of values to tree entries.
7031   DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs;
7032   for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) {
7033     if (EntryPtr.get() == TE)
7034       break;
7035     if (EntryPtr->State != TreeEntry::NeedToGather)
7036       continue;
7037     for (Value *V : EntryPtr->Scalars)
7038       ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get());
7039   }
7040   // Find all tree entries used by the gathered values. If no common entries
7041   // found - not a shuffle.
7042   // Here we build a set of tree nodes for each gathered value and trying to
7043   // find the intersection between these sets. If we have at least one common
7044   // tree node for each gathered value - we have just a permutation of the
7045   // single vector. If we have 2 different sets, we're in situation where we
7046   // have a permutation of 2 input vectors.
7047   SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs;
7048   DenseMap<Value *, int> UsedValuesEntry;
7049   for (Value *V : TE->Scalars) {
7050     if (isa<UndefValue>(V))
7051       continue;
7052     // Build a list of tree entries where V is used.
7053     SmallPtrSet<const TreeEntry *, 4> VToTEs;
7054     auto It = ValueToTEs.find(V);
7055     if (It != ValueToTEs.end())
7056       VToTEs = It->second;
7057     if (const TreeEntry *VTE = getTreeEntry(V))
7058       VToTEs.insert(VTE);
7059     if (VToTEs.empty())
7060       return None;
7061     if (UsedTEs.empty()) {
7062       // The first iteration, just insert the list of nodes to vector.
7063       UsedTEs.push_back(VToTEs);
7064     } else {
7065       // Need to check if there are any previously used tree nodes which use V.
7066       // If there are no such nodes, consider that we have another one input
7067       // vector.
7068       SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs);
7069       unsigned Idx = 0;
7070       for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) {
7071         // Do we have a non-empty intersection of previously listed tree entries
7072         // and tree entries using current V?
7073         set_intersect(VToTEs, Set);
7074         if (!VToTEs.empty()) {
7075           // Yes, write the new subset and continue analysis for the next
7076           // scalar.
7077           Set.swap(VToTEs);
7078           break;
7079         }
7080         VToTEs = SavedVToTEs;
7081         ++Idx;
7082       }
7083       // No non-empty intersection found - need to add a second set of possible
7084       // source vectors.
7085       if (Idx == UsedTEs.size()) {
7086         // If the number of input vectors is greater than 2 - not a permutation,
7087         // fallback to the regular gather.
7088         if (UsedTEs.size() == 2)
7089           return None;
7090         UsedTEs.push_back(SavedVToTEs);
7091         Idx = UsedTEs.size() - 1;
7092       }
7093       UsedValuesEntry.try_emplace(V, Idx);
7094     }
7095   }
7096 
7097   if (UsedTEs.empty()) {
7098     assert(all_of(TE->Scalars, UndefValue::classof) &&
7099            "Expected vector of undefs only.");
7100     return None;
7101   }
7102 
7103   unsigned VF = 0;
7104   if (UsedTEs.size() == 1) {
7105     // Try to find the perfect match in another gather node at first.
7106     auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) {
7107       return EntryPtr->isSame(TE->Scalars);
7108     });
7109     if (It != UsedTEs.front().end()) {
7110       Entries.push_back(*It);
7111       std::iota(Mask.begin(), Mask.end(), 0);
7112       return TargetTransformInfo::SK_PermuteSingleSrc;
7113     }
7114     // No perfect match, just shuffle, so choose the first tree node.
7115     Entries.push_back(*UsedTEs.front().begin());
7116   } else {
7117     // Try to find nodes with the same vector factor.
7118     assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries.");
7119     DenseMap<int, const TreeEntry *> VFToTE;
7120     for (const TreeEntry *TE : UsedTEs.front())
7121       VFToTE.try_emplace(TE->getVectorFactor(), TE);
7122     for (const TreeEntry *TE : UsedTEs.back()) {
7123       auto It = VFToTE.find(TE->getVectorFactor());
7124       if (It != VFToTE.end()) {
7125         VF = It->first;
7126         Entries.push_back(It->second);
7127         Entries.push_back(TE);
7128         break;
7129       }
7130     }
7131     // No 2 source vectors with the same vector factor - give up and do regular
7132     // gather.
7133     if (Entries.empty())
7134       return None;
7135   }
7136 
7137   // Build a shuffle mask for better cost estimation and vector emission.
7138   for (int I = 0, E = TE->Scalars.size(); I < E; ++I) {
7139     Value *V = TE->Scalars[I];
7140     if (isa<UndefValue>(V))
7141       continue;
7142     unsigned Idx = UsedValuesEntry.lookup(V);
7143     const TreeEntry *VTE = Entries[Idx];
7144     int FoundLane = VTE->findLaneForValue(V);
7145     Mask[I] = Idx * VF + FoundLane;
7146     // Extra check required by isSingleSourceMaskImpl function (called by
7147     // ShuffleVectorInst::isSingleSourceMask).
7148     if (Mask[I] >= 2 * E)
7149       return None;
7150   }
7151   switch (Entries.size()) {
7152   case 1:
7153     return TargetTransformInfo::SK_PermuteSingleSrc;
7154   case 2:
7155     return TargetTransformInfo::SK_PermuteTwoSrc;
7156   default:
7157     break;
7158   }
7159   return None;
7160 }
7161 
7162 InstructionCost BoUpSLP::getGatherCost(FixedVectorType *Ty,
7163                                        const APInt &ShuffledIndices,
7164                                        bool NeedToShuffle) const {
7165   InstructionCost Cost =
7166       TTI->getScalarizationOverhead(Ty, ~ShuffledIndices, /*Insert*/ true,
7167                                     /*Extract*/ false);
7168   if (NeedToShuffle)
7169     Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty);
7170   return Cost;
7171 }
7172 
7173 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const {
7174   // Find the type of the operands in VL.
7175   Type *ScalarTy = VL[0]->getType();
7176   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
7177     ScalarTy = SI->getValueOperand()->getType();
7178   auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
7179   bool DuplicateNonConst = false;
7180   // Find the cost of inserting/extracting values from the vector.
7181   // Check if the same elements are inserted several times and count them as
7182   // shuffle candidates.
7183   APInt ShuffledElements = APInt::getZero(VL.size());
7184   DenseSet<Value *> UniqueElements;
7185   // Iterate in reverse order to consider insert elements with the high cost.
7186   for (unsigned I = VL.size(); I > 0; --I) {
7187     unsigned Idx = I - 1;
7188     // No need to shuffle duplicates for constants.
7189     if (isConstant(VL[Idx])) {
7190       ShuffledElements.setBit(Idx);
7191       continue;
7192     }
7193     if (!UniqueElements.insert(VL[Idx]).second) {
7194       DuplicateNonConst = true;
7195       ShuffledElements.setBit(Idx);
7196     }
7197   }
7198   return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst);
7199 }
7200 
7201 // Perform operand reordering on the instructions in VL and return the reordered
7202 // operands in Left and Right.
7203 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
7204                                              SmallVectorImpl<Value *> &Left,
7205                                              SmallVectorImpl<Value *> &Right,
7206                                              const DataLayout &DL,
7207                                              ScalarEvolution &SE,
7208                                              const BoUpSLP &R) {
7209   if (VL.empty())
7210     return;
7211   VLOperands Ops(VL, DL, SE, R);
7212   // Reorder the operands in place.
7213   Ops.reorder();
7214   Left = Ops.getVL(0);
7215   Right = Ops.getVL(1);
7216 }
7217 
7218 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) {
7219   // Get the basic block this bundle is in. All instructions in the bundle
7220   // should be in this block.
7221   auto *Front = E->getMainOp();
7222   auto *BB = Front->getParent();
7223   assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool {
7224     auto *I = cast<Instruction>(V);
7225     return !E->isOpcodeOrAlt(I) || I->getParent() == BB;
7226   }));
7227 
7228   auto &&FindLastInst = [E, Front]() {
7229     Instruction *LastInst = Front;
7230     for (Value *V : E->Scalars) {
7231       auto *I = dyn_cast<Instruction>(V);
7232       if (!I)
7233         continue;
7234       if (LastInst->comesBefore(I))
7235         LastInst = I;
7236     }
7237     return LastInst;
7238   };
7239 
7240   auto &&FindFirstInst = [E, Front]() {
7241     Instruction *FirstInst = Front;
7242     for (Value *V : E->Scalars) {
7243       auto *I = dyn_cast<Instruction>(V);
7244       if (!I)
7245         continue;
7246       if (I->comesBefore(FirstInst))
7247         FirstInst = I;
7248     }
7249     return FirstInst;
7250   };
7251 
7252   // Set the insert point to the beginning of the basic block if the entry
7253   // should not be scheduled.
7254   if (E->State != TreeEntry::NeedToGather &&
7255       doesNotNeedToSchedule(E->Scalars)) {
7256     Instruction *InsertInst;
7257     if (all_of(E->Scalars, isUsedOutsideBlock))
7258       InsertInst = FindLastInst();
7259     else
7260       InsertInst = FindFirstInst();
7261     // If the instruction is PHI, set the insert point after all the PHIs.
7262     if (isa<PHINode>(InsertInst))
7263       InsertInst = BB->getFirstNonPHI();
7264     BasicBlock::iterator InsertPt = InsertInst->getIterator();
7265     Builder.SetInsertPoint(BB, InsertPt);
7266     Builder.SetCurrentDebugLocation(Front->getDebugLoc());
7267     return;
7268   }
7269 
7270   // The last instruction in the bundle in program order.
7271   Instruction *LastInst = nullptr;
7272 
7273   // Find the last instruction. The common case should be that BB has been
7274   // scheduled, and the last instruction is VL.back(). So we start with
7275   // VL.back() and iterate over schedule data until we reach the end of the
7276   // bundle. The end of the bundle is marked by null ScheduleData.
7277   if (BlocksSchedules.count(BB)) {
7278     Value *V = E->isOneOf(E->Scalars.back());
7279     if (doesNotNeedToBeScheduled(V))
7280       V = *find_if_not(E->Scalars, doesNotNeedToBeScheduled);
7281     auto *Bundle = BlocksSchedules[BB]->getScheduleData(V);
7282     if (Bundle && Bundle->isPartOfBundle())
7283       for (; Bundle; Bundle = Bundle->NextInBundle)
7284         if (Bundle->OpValue == Bundle->Inst)
7285           LastInst = Bundle->Inst;
7286   }
7287 
7288   // LastInst can still be null at this point if there's either not an entry
7289   // for BB in BlocksSchedules or there's no ScheduleData available for
7290   // VL.back(). This can be the case if buildTree_rec aborts for various
7291   // reasons (e.g., the maximum recursion depth is reached, the maximum region
7292   // size is reached, etc.). ScheduleData is initialized in the scheduling
7293   // "dry-run".
7294   //
7295   // If this happens, we can still find the last instruction by brute force. We
7296   // iterate forwards from Front (inclusive) until we either see all
7297   // instructions in the bundle or reach the end of the block. If Front is the
7298   // last instruction in program order, LastInst will be set to Front, and we
7299   // will visit all the remaining instructions in the block.
7300   //
7301   // One of the reasons we exit early from buildTree_rec is to place an upper
7302   // bound on compile-time. Thus, taking an additional compile-time hit here is
7303   // not ideal. However, this should be exceedingly rare since it requires that
7304   // we both exit early from buildTree_rec and that the bundle be out-of-order
7305   // (causing us to iterate all the way to the end of the block).
7306   if (!LastInst) {
7307     LastInst = FindLastInst();
7308     // If the instruction is PHI, set the insert point after all the PHIs.
7309     if (isa<PHINode>(LastInst))
7310       LastInst = BB->getFirstNonPHI()->getPrevNode();
7311   }
7312   assert(LastInst && "Failed to find last instruction in bundle");
7313 
7314   // Set the insertion point after the last instruction in the bundle. Set the
7315   // debug location to Front.
7316   Builder.SetInsertPoint(BB, std::next(LastInst->getIterator()));
7317   Builder.SetCurrentDebugLocation(Front->getDebugLoc());
7318 }
7319 
7320 Value *BoUpSLP::gather(ArrayRef<Value *> VL) {
7321   // List of instructions/lanes from current block and/or the blocks which are
7322   // part of the current loop. These instructions will be inserted at the end to
7323   // make it possible to optimize loops and hoist invariant instructions out of
7324   // the loops body with better chances for success.
7325   SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts;
7326   SmallSet<int, 4> PostponedIndices;
7327   Loop *L = LI->getLoopFor(Builder.GetInsertBlock());
7328   auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) {
7329     SmallPtrSet<BasicBlock *, 4> Visited;
7330     while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second)
7331       InsertBB = InsertBB->getSinglePredecessor();
7332     return InsertBB && InsertBB == InstBB;
7333   };
7334   for (int I = 0, E = VL.size(); I < E; ++I) {
7335     if (auto *Inst = dyn_cast<Instruction>(VL[I]))
7336       if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) ||
7337            getTreeEntry(Inst) || (L && (L->contains(Inst)))) &&
7338           PostponedIndices.insert(I).second)
7339         PostponedInsts.emplace_back(Inst, I);
7340   }
7341 
7342   auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) {
7343     Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos));
7344     auto *InsElt = dyn_cast<InsertElementInst>(Vec);
7345     if (!InsElt)
7346       return Vec;
7347     GatherShuffleSeq.insert(InsElt);
7348     CSEBlocks.insert(InsElt->getParent());
7349     // Add to our 'need-to-extract' list.
7350     if (TreeEntry *Entry = getTreeEntry(V)) {
7351       // Find which lane we need to extract.
7352       unsigned FoundLane = Entry->findLaneForValue(V);
7353       ExternalUses.emplace_back(V, InsElt, FoundLane);
7354     }
7355     return Vec;
7356   };
7357   Value *Val0 =
7358       isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0];
7359   FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size());
7360   Value *Vec = PoisonValue::get(VecTy);
7361   SmallVector<int> NonConsts;
7362   // Insert constant values at first.
7363   for (int I = 0, E = VL.size(); I < E; ++I) {
7364     if (PostponedIndices.contains(I))
7365       continue;
7366     if (!isConstant(VL[I])) {
7367       NonConsts.push_back(I);
7368       continue;
7369     }
7370     Vec = CreateInsertElement(Vec, VL[I], I);
7371   }
7372   // Insert non-constant values.
7373   for (int I : NonConsts)
7374     Vec = CreateInsertElement(Vec, VL[I], I);
7375   // Append instructions, which are/may be part of the loop, in the end to make
7376   // it possible to hoist non-loop-based instructions.
7377   for (const std::pair<Value *, unsigned> &Pair : PostponedInsts)
7378     Vec = CreateInsertElement(Vec, Pair.first, Pair.second);
7379 
7380   return Vec;
7381 }
7382 
7383 namespace {
7384 /// Merges shuffle masks and emits final shuffle instruction, if required.
7385 class ShuffleInstructionBuilder {
7386   IRBuilderBase &Builder;
7387   const unsigned VF = 0;
7388   bool IsFinalized = false;
7389   SmallVector<int, 4> Mask;
7390   /// Holds all of the instructions that we gathered.
7391   SetVector<Instruction *> &GatherShuffleSeq;
7392   /// A list of blocks that we are going to CSE.
7393   SetVector<BasicBlock *> &CSEBlocks;
7394 
7395 public:
7396   ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF,
7397                             SetVector<Instruction *> &GatherShuffleSeq,
7398                             SetVector<BasicBlock *> &CSEBlocks)
7399       : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq),
7400         CSEBlocks(CSEBlocks) {}
7401 
7402   /// Adds a mask, inverting it before applying.
7403   void addInversedMask(ArrayRef<unsigned> SubMask) {
7404     if (SubMask.empty())
7405       return;
7406     SmallVector<int, 4> NewMask;
7407     inversePermutation(SubMask, NewMask);
7408     addMask(NewMask);
7409   }
7410 
7411   /// Functions adds masks, merging them into  single one.
7412   void addMask(ArrayRef<unsigned> SubMask) {
7413     SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end());
7414     addMask(NewMask);
7415   }
7416 
7417   void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); }
7418 
7419   Value *finalize(Value *V) {
7420     IsFinalized = true;
7421     unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements();
7422     if (VF == ValueVF && Mask.empty())
7423       return V;
7424     SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem);
7425     std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0);
7426     addMask(NormalizedMask);
7427 
7428     if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask))
7429       return V;
7430     Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle");
7431     if (auto *I = dyn_cast<Instruction>(Vec)) {
7432       GatherShuffleSeq.insert(I);
7433       CSEBlocks.insert(I->getParent());
7434     }
7435     return Vec;
7436   }
7437 
7438   ~ShuffleInstructionBuilder() {
7439     assert((IsFinalized || Mask.empty()) &&
7440            "Shuffle construction must be finalized.");
7441   }
7442 };
7443 } // namespace
7444 
7445 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
7446   const unsigned VF = VL.size();
7447   InstructionsState S = getSameOpcode(VL);
7448   if (S.getOpcode()) {
7449     if (TreeEntry *E = getTreeEntry(S.OpValue))
7450       if (E->isSame(VL)) {
7451         Value *V = vectorizeTree(E);
7452         if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) {
7453           if (!E->ReuseShuffleIndices.empty()) {
7454             // Reshuffle to get only unique values.
7455             // If some of the scalars are duplicated in the vectorization tree
7456             // entry, we do not vectorize them but instead generate a mask for
7457             // the reuses. But if there are several users of the same entry,
7458             // they may have different vectorization factors. This is especially
7459             // important for PHI nodes. In this case, we need to adapt the
7460             // resulting instruction for the user vectorization factor and have
7461             // to reshuffle it again to take only unique elements of the vector.
7462             // Without this code the function incorrectly returns reduced vector
7463             // instruction with the same elements, not with the unique ones.
7464 
7465             // block:
7466             // %phi = phi <2 x > { .., %entry} {%shuffle, %block}
7467             // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0>
7468             // ... (use %2)
7469             // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0}
7470             // br %block
7471             SmallVector<int> UniqueIdxs(VF, UndefMaskElem);
7472             SmallSet<int, 4> UsedIdxs;
7473             int Pos = 0;
7474             int Sz = VL.size();
7475             for (int Idx : E->ReuseShuffleIndices) {
7476               if (Idx != Sz && Idx != UndefMaskElem &&
7477                   UsedIdxs.insert(Idx).second)
7478                 UniqueIdxs[Idx] = Pos;
7479               ++Pos;
7480             }
7481             assert(VF >= UsedIdxs.size() && "Expected vectorization factor "
7482                                             "less than original vector size.");
7483             UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem);
7484             V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle");
7485           } else {
7486             assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() &&
7487                    "Expected vectorization factor less "
7488                    "than original vector size.");
7489             SmallVector<int> UniformMask(VF, 0);
7490             std::iota(UniformMask.begin(), UniformMask.end(), 0);
7491             V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle");
7492           }
7493           if (auto *I = dyn_cast<Instruction>(V)) {
7494             GatherShuffleSeq.insert(I);
7495             CSEBlocks.insert(I->getParent());
7496           }
7497         }
7498         return V;
7499       }
7500   }
7501 
7502   // Can't vectorize this, so simply build a new vector with each lane
7503   // corresponding to the requested value.
7504   return createBuildVector(VL);
7505 }
7506 Value *BoUpSLP::createBuildVector(ArrayRef<Value *> VL) {
7507   unsigned VF = VL.size();
7508   // Exploit possible reuse of values across lanes.
7509   SmallVector<int> ReuseShuffleIndicies;
7510   SmallVector<Value *> UniqueValues;
7511   if (VL.size() > 2) {
7512     DenseMap<Value *, unsigned> UniquePositions;
7513     unsigned NumValues =
7514         std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) {
7515                                     return !isa<UndefValue>(V);
7516                                   }).base());
7517     VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues));
7518     int UniqueVals = 0;
7519     for (Value *V : VL.drop_back(VL.size() - VF)) {
7520       if (isa<UndefValue>(V)) {
7521         ReuseShuffleIndicies.emplace_back(UndefMaskElem);
7522         continue;
7523       }
7524       if (isConstant(V)) {
7525         ReuseShuffleIndicies.emplace_back(UniqueValues.size());
7526         UniqueValues.emplace_back(V);
7527         continue;
7528       }
7529       auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
7530       ReuseShuffleIndicies.emplace_back(Res.first->second);
7531       if (Res.second) {
7532         UniqueValues.emplace_back(V);
7533         ++UniqueVals;
7534       }
7535     }
7536     if (UniqueVals == 1 && UniqueValues.size() == 1) {
7537       // Emit pure splat vector.
7538       ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(),
7539                                   UndefMaskElem);
7540     } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) {
7541       ReuseShuffleIndicies.clear();
7542       UniqueValues.clear();
7543       UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues));
7544     }
7545     UniqueValues.append(VF - UniqueValues.size(),
7546                         PoisonValue::get(VL[0]->getType()));
7547     VL = UniqueValues;
7548   }
7549 
7550   ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq,
7551                                            CSEBlocks);
7552   Value *Vec = gather(VL);
7553   if (!ReuseShuffleIndicies.empty()) {
7554     ShuffleBuilder.addMask(ReuseShuffleIndicies);
7555     Vec = ShuffleBuilder.finalize(Vec);
7556   }
7557   return Vec;
7558 }
7559 
7560 Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
7561   IRBuilder<>::InsertPointGuard Guard(Builder);
7562 
7563   if (E->VectorizedValue) {
7564     LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
7565     return E->VectorizedValue;
7566   }
7567 
7568   bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
7569   unsigned VF = E->getVectorFactor();
7570   ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq,
7571                                            CSEBlocks);
7572   if (E->State == TreeEntry::NeedToGather) {
7573     if (E->getMainOp())
7574       setInsertPointAfterBundle(E);
7575     Value *Vec;
7576     SmallVector<int> Mask;
7577     SmallVector<const TreeEntry *> Entries;
7578     Optional<TargetTransformInfo::ShuffleKind> Shuffle =
7579         isGatherShuffledEntry(E, Mask, Entries);
7580     if (Shuffle.hasValue()) {
7581       assert((Entries.size() == 1 || Entries.size() == 2) &&
7582              "Expected shuffle of 1 or 2 entries.");
7583       Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue,
7584                                         Entries.back()->VectorizedValue, Mask);
7585       if (auto *I = dyn_cast<Instruction>(Vec)) {
7586         GatherShuffleSeq.insert(I);
7587         CSEBlocks.insert(I->getParent());
7588       }
7589     } else {
7590       Vec = gather(E->Scalars);
7591     }
7592     if (NeedToShuffleReuses) {
7593       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
7594       Vec = ShuffleBuilder.finalize(Vec);
7595     }
7596     E->VectorizedValue = Vec;
7597     return Vec;
7598   }
7599 
7600   assert((E->State == TreeEntry::Vectorize ||
7601           E->State == TreeEntry::ScatterVectorize) &&
7602          "Unhandled state");
7603   unsigned ShuffleOrOp =
7604       E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
7605   Instruction *VL0 = E->getMainOp();
7606   Type *ScalarTy = VL0->getType();
7607   if (auto *Store = dyn_cast<StoreInst>(VL0))
7608     ScalarTy = Store->getValueOperand()->getType();
7609   else if (auto *IE = dyn_cast<InsertElementInst>(VL0))
7610     ScalarTy = IE->getOperand(1)->getType();
7611   auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size());
7612   switch (ShuffleOrOp) {
7613     case Instruction::PHI: {
7614       assert(
7615           (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) &&
7616           "PHI reordering is free.");
7617       auto *PH = cast<PHINode>(VL0);
7618       Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
7619       Builder.SetCurrentDebugLocation(PH->getDebugLoc());
7620       PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
7621       Value *V = NewPhi;
7622 
7623       // Adjust insertion point once all PHI's have been generated.
7624       Builder.SetInsertPoint(&*PH->getParent()->getFirstInsertionPt());
7625       Builder.SetCurrentDebugLocation(PH->getDebugLoc());
7626 
7627       ShuffleBuilder.addInversedMask(E->ReorderIndices);
7628       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
7629       V = ShuffleBuilder.finalize(V);
7630 
7631       E->VectorizedValue = V;
7632 
7633       // PHINodes may have multiple entries from the same block. We want to
7634       // visit every block once.
7635       SmallPtrSet<BasicBlock*, 4> VisitedBBs;
7636 
7637       for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
7638         ValueList Operands;
7639         BasicBlock *IBB = PH->getIncomingBlock(i);
7640 
7641         if (!VisitedBBs.insert(IBB).second) {
7642           NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
7643           continue;
7644         }
7645 
7646         Builder.SetInsertPoint(IBB->getTerminator());
7647         Builder.SetCurrentDebugLocation(PH->getDebugLoc());
7648         Value *Vec = vectorizeTree(E->getOperand(i));
7649         NewPhi->addIncoming(Vec, IBB);
7650       }
7651 
7652       assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
7653              "Invalid number of incoming values");
7654       return V;
7655     }
7656 
7657     case Instruction::ExtractElement: {
7658       Value *V = E->getSingleOperand(0);
7659       Builder.SetInsertPoint(VL0);
7660       ShuffleBuilder.addInversedMask(E->ReorderIndices);
7661       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
7662       V = ShuffleBuilder.finalize(V);
7663       E->VectorizedValue = V;
7664       return V;
7665     }
7666     case Instruction::ExtractValue: {
7667       auto *LI = cast<LoadInst>(E->getSingleOperand(0));
7668       Builder.SetInsertPoint(LI);
7669       auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace());
7670       Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy);
7671       LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign());
7672       Value *NewV = propagateMetadata(V, E->Scalars);
7673       ShuffleBuilder.addInversedMask(E->ReorderIndices);
7674       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
7675       NewV = ShuffleBuilder.finalize(NewV);
7676       E->VectorizedValue = NewV;
7677       return NewV;
7678     }
7679     case Instruction::InsertElement: {
7680       assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique");
7681       Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back()));
7682       Value *V = vectorizeTree(E->getOperand(1));
7683 
7684       // Create InsertVector shuffle if necessary
7685       auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) {
7686         return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0));
7687       }));
7688       const unsigned NumElts =
7689           cast<FixedVectorType>(FirstInsert->getType())->getNumElements();
7690       const unsigned NumScalars = E->Scalars.size();
7691 
7692       unsigned Offset = *getInsertIndex(VL0);
7693       assert(Offset < NumElts && "Failed to find vector index offset");
7694 
7695       // Create shuffle to resize vector
7696       SmallVector<int> Mask;
7697       if (!E->ReorderIndices.empty()) {
7698         inversePermutation(E->ReorderIndices, Mask);
7699         Mask.append(NumElts - NumScalars, UndefMaskElem);
7700       } else {
7701         Mask.assign(NumElts, UndefMaskElem);
7702         std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0);
7703       }
7704       // Create InsertVector shuffle if necessary
7705       bool IsIdentity = true;
7706       SmallVector<int> PrevMask(NumElts, UndefMaskElem);
7707       Mask.swap(PrevMask);
7708       for (unsigned I = 0; I < NumScalars; ++I) {
7709         Value *Scalar = E->Scalars[PrevMask[I]];
7710         unsigned InsertIdx = *getInsertIndex(Scalar);
7711         IsIdentity &= InsertIdx - Offset == I;
7712         Mask[InsertIdx - Offset] = I;
7713       }
7714       if (!IsIdentity || NumElts != NumScalars) {
7715         V = Builder.CreateShuffleVector(V, Mask);
7716         if (auto *I = dyn_cast<Instruction>(V)) {
7717           GatherShuffleSeq.insert(I);
7718           CSEBlocks.insert(I->getParent());
7719         }
7720       }
7721 
7722       if ((!IsIdentity || Offset != 0 ||
7723            !isUndefVector(FirstInsert->getOperand(0))) &&
7724           NumElts != NumScalars) {
7725         SmallVector<int> InsertMask(NumElts);
7726         std::iota(InsertMask.begin(), InsertMask.end(), 0);
7727         for (unsigned I = 0; I < NumElts; I++) {
7728           if (Mask[I] != UndefMaskElem)
7729             InsertMask[Offset + I] = NumElts + I;
7730         }
7731 
7732         V = Builder.CreateShuffleVector(
7733             FirstInsert->getOperand(0), V, InsertMask,
7734             cast<Instruction>(E->Scalars.back())->getName());
7735         if (auto *I = dyn_cast<Instruction>(V)) {
7736           GatherShuffleSeq.insert(I);
7737           CSEBlocks.insert(I->getParent());
7738         }
7739       }
7740 
7741       ++NumVectorInstructions;
7742       E->VectorizedValue = V;
7743       return V;
7744     }
7745     case Instruction::ZExt:
7746     case Instruction::SExt:
7747     case Instruction::FPToUI:
7748     case Instruction::FPToSI:
7749     case Instruction::FPExt:
7750     case Instruction::PtrToInt:
7751     case Instruction::IntToPtr:
7752     case Instruction::SIToFP:
7753     case Instruction::UIToFP:
7754     case Instruction::Trunc:
7755     case Instruction::FPTrunc:
7756     case Instruction::BitCast: {
7757       setInsertPointAfterBundle(E);
7758 
7759       Value *InVec = vectorizeTree(E->getOperand(0));
7760 
7761       if (E->VectorizedValue) {
7762         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
7763         return E->VectorizedValue;
7764       }
7765 
7766       auto *CI = cast<CastInst>(VL0);
7767       Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
7768       ShuffleBuilder.addInversedMask(E->ReorderIndices);
7769       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
7770       V = ShuffleBuilder.finalize(V);
7771 
7772       E->VectorizedValue = V;
7773       ++NumVectorInstructions;
7774       return V;
7775     }
7776     case Instruction::FCmp:
7777     case Instruction::ICmp: {
7778       setInsertPointAfterBundle(E);
7779 
7780       Value *L = vectorizeTree(E->getOperand(0));
7781       Value *R = vectorizeTree(E->getOperand(1));
7782 
7783       if (E->VectorizedValue) {
7784         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
7785         return E->VectorizedValue;
7786       }
7787 
7788       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
7789       Value *V = Builder.CreateCmp(P0, L, R);
7790       propagateIRFlags(V, E->Scalars, VL0);
7791       ShuffleBuilder.addInversedMask(E->ReorderIndices);
7792       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
7793       V = ShuffleBuilder.finalize(V);
7794 
7795       E->VectorizedValue = V;
7796       ++NumVectorInstructions;
7797       return V;
7798     }
7799     case Instruction::Select: {
7800       setInsertPointAfterBundle(E);
7801 
7802       Value *Cond = vectorizeTree(E->getOperand(0));
7803       Value *True = vectorizeTree(E->getOperand(1));
7804       Value *False = vectorizeTree(E->getOperand(2));
7805 
7806       if (E->VectorizedValue) {
7807         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
7808         return E->VectorizedValue;
7809       }
7810 
7811       Value *V = Builder.CreateSelect(Cond, True, False);
7812       ShuffleBuilder.addInversedMask(E->ReorderIndices);
7813       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
7814       V = ShuffleBuilder.finalize(V);
7815 
7816       E->VectorizedValue = V;
7817       ++NumVectorInstructions;
7818       return V;
7819     }
7820     case Instruction::FNeg: {
7821       setInsertPointAfterBundle(E);
7822 
7823       Value *Op = vectorizeTree(E->getOperand(0));
7824 
7825       if (E->VectorizedValue) {
7826         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
7827         return E->VectorizedValue;
7828       }
7829 
7830       Value *V = Builder.CreateUnOp(
7831           static_cast<Instruction::UnaryOps>(E->getOpcode()), Op);
7832       propagateIRFlags(V, E->Scalars, VL0);
7833       if (auto *I = dyn_cast<Instruction>(V))
7834         V = propagateMetadata(I, E->Scalars);
7835 
7836       ShuffleBuilder.addInversedMask(E->ReorderIndices);
7837       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
7838       V = ShuffleBuilder.finalize(V);
7839 
7840       E->VectorizedValue = V;
7841       ++NumVectorInstructions;
7842 
7843       return V;
7844     }
7845     case Instruction::Add:
7846     case Instruction::FAdd:
7847     case Instruction::Sub:
7848     case Instruction::FSub:
7849     case Instruction::Mul:
7850     case Instruction::FMul:
7851     case Instruction::UDiv:
7852     case Instruction::SDiv:
7853     case Instruction::FDiv:
7854     case Instruction::URem:
7855     case Instruction::SRem:
7856     case Instruction::FRem:
7857     case Instruction::Shl:
7858     case Instruction::LShr:
7859     case Instruction::AShr:
7860     case Instruction::And:
7861     case Instruction::Or:
7862     case Instruction::Xor: {
7863       setInsertPointAfterBundle(E);
7864 
7865       Value *LHS = vectorizeTree(E->getOperand(0));
7866       Value *RHS = vectorizeTree(E->getOperand(1));
7867 
7868       if (E->VectorizedValue) {
7869         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
7870         return E->VectorizedValue;
7871       }
7872 
7873       Value *V = Builder.CreateBinOp(
7874           static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS,
7875           RHS);
7876       propagateIRFlags(V, E->Scalars, VL0);
7877       if (auto *I = dyn_cast<Instruction>(V))
7878         V = propagateMetadata(I, E->Scalars);
7879 
7880       ShuffleBuilder.addInversedMask(E->ReorderIndices);
7881       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
7882       V = ShuffleBuilder.finalize(V);
7883 
7884       E->VectorizedValue = V;
7885       ++NumVectorInstructions;
7886 
7887       return V;
7888     }
7889     case Instruction::Load: {
7890       // Loads are inserted at the head of the tree because we don't want to
7891       // sink them all the way down past store instructions.
7892       setInsertPointAfterBundle(E);
7893 
7894       LoadInst *LI = cast<LoadInst>(VL0);
7895       Instruction *NewLI;
7896       unsigned AS = LI->getPointerAddressSpace();
7897       Value *PO = LI->getPointerOperand();
7898       if (E->State == TreeEntry::Vectorize) {
7899         Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS));
7900         NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign());
7901 
7902         // The pointer operand uses an in-tree scalar so we add the new BitCast
7903         // or LoadInst to ExternalUses list to make sure that an extract will
7904         // be generated in the future.
7905         if (TreeEntry *Entry = getTreeEntry(PO)) {
7906           // Find which lane we need to extract.
7907           unsigned FoundLane = Entry->findLaneForValue(PO);
7908           ExternalUses.emplace_back(
7909               PO, PO != VecPtr ? cast<User>(VecPtr) : NewLI, FoundLane);
7910         }
7911       } else {
7912         assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state");
7913         Value *VecPtr = vectorizeTree(E->getOperand(0));
7914         // Use the minimum alignment of the gathered loads.
7915         Align CommonAlignment = LI->getAlign();
7916         for (Value *V : E->Scalars)
7917           CommonAlignment =
7918               commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign());
7919         NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment);
7920       }
7921       Value *V = propagateMetadata(NewLI, E->Scalars);
7922 
7923       ShuffleBuilder.addInversedMask(E->ReorderIndices);
7924       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
7925       V = ShuffleBuilder.finalize(V);
7926       E->VectorizedValue = V;
7927       ++NumVectorInstructions;
7928       return V;
7929     }
7930     case Instruction::Store: {
7931       auto *SI = cast<StoreInst>(VL0);
7932       unsigned AS = SI->getPointerAddressSpace();
7933 
7934       setInsertPointAfterBundle(E);
7935 
7936       Value *VecValue = vectorizeTree(E->getOperand(0));
7937       ShuffleBuilder.addMask(E->ReorderIndices);
7938       VecValue = ShuffleBuilder.finalize(VecValue);
7939 
7940       Value *ScalarPtr = SI->getPointerOperand();
7941       Value *VecPtr = Builder.CreateBitCast(
7942           ScalarPtr, VecValue->getType()->getPointerTo(AS));
7943       StoreInst *ST =
7944           Builder.CreateAlignedStore(VecValue, VecPtr, SI->getAlign());
7945 
7946       // The pointer operand uses an in-tree scalar, so add the new BitCast or
7947       // StoreInst to ExternalUses to make sure that an extract will be
7948       // generated in the future.
7949       if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) {
7950         // Find which lane we need to extract.
7951         unsigned FoundLane = Entry->findLaneForValue(ScalarPtr);
7952         ExternalUses.push_back(ExternalUser(
7953             ScalarPtr, ScalarPtr != VecPtr ? cast<User>(VecPtr) : ST,
7954             FoundLane));
7955       }
7956 
7957       Value *V = propagateMetadata(ST, E->Scalars);
7958 
7959       E->VectorizedValue = V;
7960       ++NumVectorInstructions;
7961       return V;
7962     }
7963     case Instruction::GetElementPtr: {
7964       auto *GEP0 = cast<GetElementPtrInst>(VL0);
7965       setInsertPointAfterBundle(E);
7966 
7967       Value *Op0 = vectorizeTree(E->getOperand(0));
7968 
7969       SmallVector<Value *> OpVecs;
7970       for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) {
7971         Value *OpVec = vectorizeTree(E->getOperand(J));
7972         OpVecs.push_back(OpVec);
7973       }
7974 
7975       Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs);
7976       if (Instruction *I = dyn_cast<Instruction>(V))
7977         V = propagateMetadata(I, E->Scalars);
7978 
7979       ShuffleBuilder.addInversedMask(E->ReorderIndices);
7980       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
7981       V = ShuffleBuilder.finalize(V);
7982 
7983       E->VectorizedValue = V;
7984       ++NumVectorInstructions;
7985 
7986       return V;
7987     }
7988     case Instruction::Call: {
7989       CallInst *CI = cast<CallInst>(VL0);
7990       setInsertPointAfterBundle(E);
7991 
7992       Intrinsic::ID IID  = Intrinsic::not_intrinsic;
7993       if (Function *FI = CI->getCalledFunction())
7994         IID = FI->getIntrinsicID();
7995 
7996       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
7997 
7998       auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
7999       bool UseIntrinsic = ID != Intrinsic::not_intrinsic &&
8000                           VecCallCosts.first <= VecCallCosts.second;
8001 
8002       Value *ScalarArg = nullptr;
8003       std::vector<Value *> OpVecs;
8004       SmallVector<Type *, 2> TysForDecl =
8005           {FixedVectorType::get(CI->getType(), E->Scalars.size())};
8006       for (int j = 0, e = CI->arg_size(); j < e; ++j) {
8007         ValueList OpVL;
8008         // Some intrinsics have scalar arguments. This argument should not be
8009         // vectorized.
8010         if (UseIntrinsic && isVectorIntrinsicWithScalarOpAtArg(IID, j)) {
8011           CallInst *CEI = cast<CallInst>(VL0);
8012           ScalarArg = CEI->getArgOperand(j);
8013           OpVecs.push_back(CEI->getArgOperand(j));
8014           if (isVectorIntrinsicWithOverloadTypeAtArg(IID, j))
8015             TysForDecl.push_back(ScalarArg->getType());
8016           continue;
8017         }
8018 
8019         Value *OpVec = vectorizeTree(E->getOperand(j));
8020         LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
8021         OpVecs.push_back(OpVec);
8022         if (isVectorIntrinsicWithOverloadTypeAtArg(IID, j))
8023           TysForDecl.push_back(OpVec->getType());
8024       }
8025 
8026       Function *CF;
8027       if (!UseIntrinsic) {
8028         VFShape Shape =
8029             VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>(
8030                                   VecTy->getNumElements())),
8031                          false /*HasGlobalPred*/);
8032         CF = VFDatabase(*CI).getVectorizedFunction(Shape);
8033       } else {
8034         CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl);
8035       }
8036 
8037       SmallVector<OperandBundleDef, 1> OpBundles;
8038       CI->getOperandBundlesAsDefs(OpBundles);
8039       Value *V = Builder.CreateCall(CF, OpVecs, OpBundles);
8040 
8041       // The scalar argument uses an in-tree scalar so we add the new vectorized
8042       // call to ExternalUses list to make sure that an extract will be
8043       // generated in the future.
8044       if (ScalarArg) {
8045         if (TreeEntry *Entry = getTreeEntry(ScalarArg)) {
8046           // Find which lane we need to extract.
8047           unsigned FoundLane = Entry->findLaneForValue(ScalarArg);
8048           ExternalUses.push_back(
8049               ExternalUser(ScalarArg, cast<User>(V), FoundLane));
8050         }
8051       }
8052 
8053       propagateIRFlags(V, E->Scalars, VL0);
8054       ShuffleBuilder.addInversedMask(E->ReorderIndices);
8055       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
8056       V = ShuffleBuilder.finalize(V);
8057 
8058       E->VectorizedValue = V;
8059       ++NumVectorInstructions;
8060       return V;
8061     }
8062     case Instruction::ShuffleVector: {
8063       assert(E->isAltShuffle() &&
8064              ((Instruction::isBinaryOp(E->getOpcode()) &&
8065                Instruction::isBinaryOp(E->getAltOpcode())) ||
8066               (Instruction::isCast(E->getOpcode()) &&
8067                Instruction::isCast(E->getAltOpcode())) ||
8068               (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) &&
8069              "Invalid Shuffle Vector Operand");
8070 
8071       Value *LHS = nullptr, *RHS = nullptr;
8072       if (Instruction::isBinaryOp(E->getOpcode()) || isa<CmpInst>(VL0)) {
8073         setInsertPointAfterBundle(E);
8074         LHS = vectorizeTree(E->getOperand(0));
8075         RHS = vectorizeTree(E->getOperand(1));
8076       } else {
8077         setInsertPointAfterBundle(E);
8078         LHS = vectorizeTree(E->getOperand(0));
8079       }
8080 
8081       if (E->VectorizedValue) {
8082         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
8083         return E->VectorizedValue;
8084       }
8085 
8086       Value *V0, *V1;
8087       if (Instruction::isBinaryOp(E->getOpcode())) {
8088         V0 = Builder.CreateBinOp(
8089             static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS);
8090         V1 = Builder.CreateBinOp(
8091             static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS);
8092       } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) {
8093         V0 = Builder.CreateCmp(CI0->getPredicate(), LHS, RHS);
8094         auto *AltCI = cast<CmpInst>(E->getAltOp());
8095         CmpInst::Predicate AltPred = AltCI->getPredicate();
8096         V1 = Builder.CreateCmp(AltPred, LHS, RHS);
8097       } else {
8098         V0 = Builder.CreateCast(
8099             static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy);
8100         V1 = Builder.CreateCast(
8101             static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy);
8102       }
8103       // Add V0 and V1 to later analysis to try to find and remove matching
8104       // instruction, if any.
8105       for (Value *V : {V0, V1}) {
8106         if (auto *I = dyn_cast<Instruction>(V)) {
8107           GatherShuffleSeq.insert(I);
8108           CSEBlocks.insert(I->getParent());
8109         }
8110       }
8111 
8112       // Create shuffle to take alternate operations from the vector.
8113       // Also, gather up main and alt scalar ops to propagate IR flags to
8114       // each vector operation.
8115       ValueList OpScalars, AltScalars;
8116       SmallVector<int> Mask;
8117       buildShuffleEntryMask(
8118           E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices,
8119           [E](Instruction *I) {
8120             assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode");
8121             return isAlternateInstruction(I, E->getMainOp(), E->getAltOp());
8122           },
8123           Mask, &OpScalars, &AltScalars);
8124 
8125       propagateIRFlags(V0, OpScalars);
8126       propagateIRFlags(V1, AltScalars);
8127 
8128       Value *V = Builder.CreateShuffleVector(V0, V1, Mask);
8129       if (auto *I = dyn_cast<Instruction>(V)) {
8130         V = propagateMetadata(I, E->Scalars);
8131         GatherShuffleSeq.insert(I);
8132         CSEBlocks.insert(I->getParent());
8133       }
8134       V = ShuffleBuilder.finalize(V);
8135 
8136       E->VectorizedValue = V;
8137       ++NumVectorInstructions;
8138 
8139       return V;
8140     }
8141     default:
8142     llvm_unreachable("unknown inst");
8143   }
8144   return nullptr;
8145 }
8146 
8147 Value *BoUpSLP::vectorizeTree() {
8148   ExtraValueToDebugLocsMap ExternallyUsedValues;
8149   return vectorizeTree(ExternallyUsedValues);
8150 }
8151 
8152 namespace {
8153 /// Data type for handling buildvector sequences with the reused scalars from
8154 /// other tree entries.
8155 struct ShuffledInsertData {
8156   /// List of insertelements to be replaced by shuffles.
8157   SmallVector<InsertElementInst *> InsertElements;
8158   /// The parent vectors and shuffle mask for the given list of inserts.
8159   MapVector<Value *, SmallVector<int>> ValueMasks;
8160 };
8161 } // namespace
8162 
8163 Value *
8164 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) {
8165   // All blocks must be scheduled before any instructions are inserted.
8166   for (auto &BSIter : BlocksSchedules) {
8167     scheduleBlock(BSIter.second.get());
8168   }
8169 
8170   Builder.SetInsertPoint(&F->getEntryBlock().front());
8171   auto *VectorRoot = vectorizeTree(VectorizableTree[0].get());
8172 
8173   // If the vectorized tree can be rewritten in a smaller type, we truncate the
8174   // vectorized root. InstCombine will then rewrite the entire expression. We
8175   // sign extend the extracted values below.
8176   auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
8177   if (MinBWs.count(ScalarRoot)) {
8178     if (auto *I = dyn_cast<Instruction>(VectorRoot)) {
8179       // If current instr is a phi and not the last phi, insert it after the
8180       // last phi node.
8181       if (isa<PHINode>(I))
8182         Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt());
8183       else
8184         Builder.SetInsertPoint(&*++BasicBlock::iterator(I));
8185     }
8186     auto BundleWidth = VectorizableTree[0]->Scalars.size();
8187     auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
8188     auto *VecTy = FixedVectorType::get(MinTy, BundleWidth);
8189     auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy);
8190     VectorizableTree[0]->VectorizedValue = Trunc;
8191   }
8192 
8193   LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size()
8194                     << " values .\n");
8195 
8196   SmallVector<ShuffledInsertData> ShuffledInserts;
8197   // Maps vector instruction to original insertelement instruction
8198   DenseMap<Value *, InsertElementInst *> VectorToInsertElement;
8199   // Extract all of the elements with the external uses.
8200   for (const auto &ExternalUse : ExternalUses) {
8201     Value *Scalar = ExternalUse.Scalar;
8202     llvm::User *User = ExternalUse.User;
8203 
8204     // Skip users that we already RAUW. This happens when one instruction
8205     // has multiple uses of the same value.
8206     if (User && !is_contained(Scalar->users(), User))
8207       continue;
8208     TreeEntry *E = getTreeEntry(Scalar);
8209     assert(E && "Invalid scalar");
8210     assert(E->State != TreeEntry::NeedToGather &&
8211            "Extracting from a gather list");
8212 
8213     Value *Vec = E->VectorizedValue;
8214     assert(Vec && "Can't find vectorizable value");
8215 
8216     Value *Lane = Builder.getInt32(ExternalUse.Lane);
8217     auto ExtractAndExtendIfNeeded = [&](Value *Vec) {
8218       if (Scalar->getType() != Vec->getType()) {
8219         Value *Ex;
8220         // "Reuse" the existing extract to improve final codegen.
8221         if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) {
8222           Ex = Builder.CreateExtractElement(ES->getOperand(0),
8223                                             ES->getOperand(1));
8224         } else {
8225           Ex = Builder.CreateExtractElement(Vec, Lane);
8226         }
8227         // If necessary, sign-extend or zero-extend ScalarRoot
8228         // to the larger type.
8229         if (!MinBWs.count(ScalarRoot))
8230           return Ex;
8231         if (MinBWs[ScalarRoot].second)
8232           return Builder.CreateSExt(Ex, Scalar->getType());
8233         return Builder.CreateZExt(Ex, Scalar->getType());
8234       }
8235       assert(isa<FixedVectorType>(Scalar->getType()) &&
8236              isa<InsertElementInst>(Scalar) &&
8237              "In-tree scalar of vector type is not insertelement?");
8238       auto *IE = cast<InsertElementInst>(Scalar);
8239       VectorToInsertElement.try_emplace(Vec, IE);
8240       return Vec;
8241     };
8242     // If User == nullptr, the Scalar is used as extra arg. Generate
8243     // ExtractElement instruction and update the record for this scalar in
8244     // ExternallyUsedValues.
8245     if (!User) {
8246       assert(ExternallyUsedValues.count(Scalar) &&
8247              "Scalar with nullptr as an external user must be registered in "
8248              "ExternallyUsedValues map");
8249       if (auto *VecI = dyn_cast<Instruction>(Vec)) {
8250         Builder.SetInsertPoint(VecI->getParent(),
8251                                std::next(VecI->getIterator()));
8252       } else {
8253         Builder.SetInsertPoint(&F->getEntryBlock().front());
8254       }
8255       Value *NewInst = ExtractAndExtendIfNeeded(Vec);
8256       CSEBlocks.insert(cast<Instruction>(Scalar)->getParent());
8257       auto &NewInstLocs = ExternallyUsedValues[NewInst];
8258       auto It = ExternallyUsedValues.find(Scalar);
8259       assert(It != ExternallyUsedValues.end() &&
8260              "Externally used scalar is not found in ExternallyUsedValues");
8261       NewInstLocs.append(It->second);
8262       ExternallyUsedValues.erase(Scalar);
8263       // Required to update internally referenced instructions.
8264       Scalar->replaceAllUsesWith(NewInst);
8265       continue;
8266     }
8267 
8268     if (auto *VU = dyn_cast<InsertElementInst>(User)) {
8269       // Skip if the scalar is another vector op or Vec is not an instruction.
8270       if (!Scalar->getType()->isVectorTy() && isa<Instruction>(Vec)) {
8271         if (auto *FTy = dyn_cast<FixedVectorType>(User->getType())) {
8272           Optional<unsigned> InsertIdx = getInsertIndex(VU);
8273           if (InsertIdx) {
8274             auto *It =
8275                 find_if(ShuffledInserts, [VU](const ShuffledInsertData &Data) {
8276                   // Checks if 2 insertelements are from the same buildvector.
8277                   InsertElementInst *VecInsert = Data.InsertElements.front();
8278                   return areTwoInsertFromSameBuildVector(VU, VecInsert);
8279                 });
8280             unsigned Idx = *InsertIdx;
8281             if (It == ShuffledInserts.end()) {
8282               (void)ShuffledInserts.emplace_back();
8283               It = std::next(ShuffledInserts.begin(),
8284                              ShuffledInserts.size() - 1);
8285               SmallVectorImpl<int> &Mask = It->ValueMasks[Vec];
8286               if (Mask.empty())
8287                 Mask.assign(FTy->getNumElements(), UndefMaskElem);
8288               // Find the insertvector, vectorized in tree, if any.
8289               Value *Base = VU;
8290               while (auto *IEBase = dyn_cast<InsertElementInst>(Base)) {
8291                 if (IEBase != User &&
8292                     (!IEBase->hasOneUse() ||
8293                      getInsertIndex(IEBase).getValueOr(Idx) == Idx))
8294                   break;
8295                 // Build the mask for the vectorized insertelement instructions.
8296                 if (const TreeEntry *E = getTreeEntry(IEBase)) {
8297                   do {
8298                     IEBase = cast<InsertElementInst>(Base);
8299                     int IEIdx = *getInsertIndex(IEBase);
8300                     assert(Mask[Idx] == UndefMaskElem &&
8301                            "InsertElementInstruction used already.");
8302                     Mask[IEIdx] = IEIdx;
8303                     Base = IEBase->getOperand(0);
8304                   } while (E == getTreeEntry(Base));
8305                   break;
8306                 }
8307                 Base = cast<InsertElementInst>(Base)->getOperand(0);
8308                 // After the vectorization the def-use chain has changed, need
8309                 // to look through original insertelement instructions, if they
8310                 // get replaced by vector instructions.
8311                 auto It = VectorToInsertElement.find(Base);
8312                 if (It != VectorToInsertElement.end())
8313                   Base = It->second;
8314               }
8315             }
8316             SmallVectorImpl<int> &Mask = It->ValueMasks[Vec];
8317             if (Mask.empty())
8318               Mask.assign(FTy->getNumElements(), UndefMaskElem);
8319             Mask[Idx] = ExternalUse.Lane;
8320             It->InsertElements.push_back(cast<InsertElementInst>(User));
8321             continue;
8322           }
8323         }
8324       }
8325     }
8326 
8327     // Generate extracts for out-of-tree users.
8328     // Find the insertion point for the extractelement lane.
8329     if (auto *VecI = dyn_cast<Instruction>(Vec)) {
8330       if (PHINode *PH = dyn_cast<PHINode>(User)) {
8331         for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
8332           if (PH->getIncomingValue(i) == Scalar) {
8333             Instruction *IncomingTerminator =
8334                 PH->getIncomingBlock(i)->getTerminator();
8335             if (isa<CatchSwitchInst>(IncomingTerminator)) {
8336               Builder.SetInsertPoint(VecI->getParent(),
8337                                      std::next(VecI->getIterator()));
8338             } else {
8339               Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
8340             }
8341             Value *NewInst = ExtractAndExtendIfNeeded(Vec);
8342             CSEBlocks.insert(PH->getIncomingBlock(i));
8343             PH->setOperand(i, NewInst);
8344           }
8345         }
8346       } else {
8347         Builder.SetInsertPoint(cast<Instruction>(User));
8348         Value *NewInst = ExtractAndExtendIfNeeded(Vec);
8349         CSEBlocks.insert(cast<Instruction>(User)->getParent());
8350         User->replaceUsesOfWith(Scalar, NewInst);
8351       }
8352     } else {
8353       Builder.SetInsertPoint(&F->getEntryBlock().front());
8354       Value *NewInst = ExtractAndExtendIfNeeded(Vec);
8355       CSEBlocks.insert(&F->getEntryBlock());
8356       User->replaceUsesOfWith(Scalar, NewInst);
8357     }
8358 
8359     LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
8360   }
8361 
8362   // Checks if the mask is an identity mask.
8363   auto &&IsIdentityMask = [](ArrayRef<int> Mask, FixedVectorType *VecTy) {
8364     int Limit = Mask.size();
8365     return VecTy->getNumElements() == Mask.size() &&
8366            all_of(Mask, [Limit](int Idx) { return Idx < Limit; }) &&
8367            ShuffleVectorInst::isIdentityMask(Mask);
8368   };
8369   // Tries to combine 2 different masks into single one.
8370   auto &&CombineMasks = [](SmallVectorImpl<int> &Mask, ArrayRef<int> ExtMask) {
8371     SmallVector<int> NewMask(ExtMask.size(), UndefMaskElem);
8372     for (int I = 0, Sz = ExtMask.size(); I < Sz; ++I) {
8373       if (ExtMask[I] == UndefMaskElem)
8374         continue;
8375       NewMask[I] = Mask[ExtMask[I]];
8376     }
8377     Mask.swap(NewMask);
8378   };
8379   // Peek through shuffles, trying to simplify the final shuffle code.
8380   auto &&PeekThroughShuffles =
8381       [&IsIdentityMask, &CombineMasks](Value *&V, SmallVectorImpl<int> &Mask,
8382                                        bool CheckForLengthChange = false) {
8383         while (auto *SV = dyn_cast<ShuffleVectorInst>(V)) {
8384           // Exit if not a fixed vector type or changing size shuffle.
8385           if (!isa<FixedVectorType>(SV->getType()) ||
8386               (CheckForLengthChange && SV->changesLength()))
8387             break;
8388           // Exit if the identity or broadcast mask is found.
8389           if (IsIdentityMask(Mask, cast<FixedVectorType>(SV->getType())) ||
8390               SV->isZeroEltSplat())
8391             break;
8392           bool IsOp1Undef = isUndefVector(SV->getOperand(0));
8393           bool IsOp2Undef = isUndefVector(SV->getOperand(1));
8394           if (!IsOp1Undef && !IsOp2Undef)
8395             break;
8396           SmallVector<int> ShuffleMask(SV->getShuffleMask().begin(),
8397                                        SV->getShuffleMask().end());
8398           CombineMasks(ShuffleMask, Mask);
8399           Mask.swap(ShuffleMask);
8400           if (IsOp2Undef)
8401             V = SV->getOperand(0);
8402           else
8403             V = SV->getOperand(1);
8404         }
8405       };
8406   // Smart shuffle instruction emission, walks through shuffles trees and
8407   // tries to find the best matching vector for the actual shuffle
8408   // instruction.
8409   auto &&CreateShuffle = [this, &IsIdentityMask, &PeekThroughShuffles,
8410                           &CombineMasks](Value *V1, Value *V2,
8411                                          ArrayRef<int> Mask) -> Value * {
8412     assert(V1 && "Expected at least one vector value.");
8413     if (V2 && !isUndefVector(V2)) {
8414       // Peek through shuffles.
8415       Value *Op1 = V1;
8416       Value *Op2 = V2;
8417       int VF =
8418           cast<VectorType>(V1->getType())->getElementCount().getKnownMinValue();
8419       SmallVector<int> CombinedMask1(Mask.size(), UndefMaskElem);
8420       SmallVector<int> CombinedMask2(Mask.size(), UndefMaskElem);
8421       for (int I = 0, E = Mask.size(); I < E; ++I) {
8422         if (Mask[I] < VF)
8423           CombinedMask1[I] = Mask[I];
8424         else
8425           CombinedMask2[I] = Mask[I] - VF;
8426       }
8427       Value *PrevOp1;
8428       Value *PrevOp2;
8429       do {
8430         PrevOp1 = Op1;
8431         PrevOp2 = Op2;
8432         PeekThroughShuffles(Op1, CombinedMask1, /*CheckForLengthChange=*/true);
8433         PeekThroughShuffles(Op2, CombinedMask2, /*CheckForLengthChange=*/true);
8434         // Check if we have 2 resizing shuffles - need to peek through operands
8435         // again.
8436         if (auto *SV1 = dyn_cast<ShuffleVectorInst>(Op1))
8437           if (auto *SV2 = dyn_cast<ShuffleVectorInst>(Op2))
8438             if (SV1->getOperand(0)->getType() ==
8439                     SV2->getOperand(0)->getType() &&
8440                 SV1->getOperand(0)->getType() != SV1->getType() &&
8441                 isUndefVector(SV1->getOperand(1)) &&
8442                 isUndefVector(SV2->getOperand(1))) {
8443               Op1 = SV1->getOperand(0);
8444               Op2 = SV2->getOperand(0);
8445               SmallVector<int> ShuffleMask1(SV1->getShuffleMask().begin(),
8446                                             SV1->getShuffleMask().end());
8447               CombineMasks(ShuffleMask1, CombinedMask1);
8448               CombinedMask1.swap(ShuffleMask1);
8449               SmallVector<int> ShuffleMask2(SV2->getShuffleMask().begin(),
8450                                             SV2->getShuffleMask().end());
8451               CombineMasks(ShuffleMask2, CombinedMask2);
8452               CombinedMask2.swap(ShuffleMask2);
8453             }
8454       } while (PrevOp1 != Op1 || PrevOp2 != Op2);
8455       VF = cast<VectorType>(Op1->getType())
8456                ->getElementCount()
8457                .getKnownMinValue();
8458       for (int I = 0, E = Mask.size(); I < E; ++I) {
8459         if (CombinedMask2[I] != UndefMaskElem) {
8460           assert(CombinedMask1[I] == UndefMaskElem &&
8461                  "Expected undefined mask element");
8462           CombinedMask1[I] = CombinedMask2[I] + (Op1 == Op2 ? 0 : VF);
8463         }
8464       }
8465       Value *Vec = Builder.CreateShuffleVector(
8466           Op1, Op1 == Op2 ? PoisonValue::get(Op1->getType()) : Op2,
8467           CombinedMask1);
8468       if (auto *I = dyn_cast<Instruction>(Vec)) {
8469         GatherShuffleSeq.insert(I);
8470         CSEBlocks.insert(I->getParent());
8471       }
8472       return Vec;
8473     }
8474     if (isa<PoisonValue>(V1))
8475       return PoisonValue::get(FixedVectorType::get(
8476           cast<VectorType>(V1->getType())->getElementType(), Mask.size()));
8477     Value *Op = V1;
8478     SmallVector<int> CombinedMask(Mask.begin(), Mask.end());
8479     PeekThroughShuffles(Op, CombinedMask);
8480     if (!isa<FixedVectorType>(Op->getType()) ||
8481         !IsIdentityMask(CombinedMask, cast<FixedVectorType>(Op->getType()))) {
8482       Value *Vec = Builder.CreateShuffleVector(Op, CombinedMask);
8483       if (auto *I = dyn_cast<Instruction>(Vec)) {
8484         GatherShuffleSeq.insert(I);
8485         CSEBlocks.insert(I->getParent());
8486       }
8487       return Vec;
8488     }
8489     return Op;
8490   };
8491 
8492   auto &&ResizeToVF = [&CreateShuffle](Value *Vec, ArrayRef<int> Mask) {
8493     unsigned VF = Mask.size();
8494     unsigned VecVF = cast<FixedVectorType>(Vec->getType())->getNumElements();
8495     if (VF != VecVF) {
8496       if (any_of(Mask, [VF](int Idx) { return Idx >= static_cast<int>(VF); })) {
8497         Vec = CreateShuffle(Vec, nullptr, Mask);
8498         return std::make_pair(Vec, true);
8499       }
8500       SmallVector<int> ResizeMask(VF, UndefMaskElem);
8501       for (unsigned I = 0; I < VF; ++I) {
8502         if (Mask[I] != UndefMaskElem)
8503           ResizeMask[Mask[I]] = Mask[I];
8504       }
8505       Vec = CreateShuffle(Vec, nullptr, ResizeMask);
8506     }
8507 
8508     return std::make_pair(Vec, false);
8509   };
8510   // Perform shuffling of the vectorize tree entries for better handling of
8511   // external extracts.
8512   for (int I = 0, E = ShuffledInserts.size(); I < E; ++I) {
8513     // Find the first and the last instruction in the list of insertelements.
8514     sort(ShuffledInserts[I].InsertElements, isFirstInsertElement);
8515     InsertElementInst *FirstInsert = ShuffledInserts[I].InsertElements.front();
8516     InsertElementInst *LastInsert = ShuffledInserts[I].InsertElements.back();
8517     Builder.SetInsertPoint(LastInsert);
8518     auto Vector = ShuffledInserts[I].ValueMasks.takeVector();
8519     Value *NewInst = performExtractsShuffleAction<Value>(
8520         makeMutableArrayRef(Vector.data(), Vector.size()),
8521         FirstInsert->getOperand(0),
8522         [](Value *Vec) {
8523           return cast<VectorType>(Vec->getType())
8524               ->getElementCount()
8525               .getKnownMinValue();
8526         },
8527         ResizeToVF,
8528         [FirstInsert, &CreateShuffle](ArrayRef<int> Mask,
8529                                       ArrayRef<Value *> Vals) {
8530           assert((Vals.size() == 1 || Vals.size() == 2) &&
8531                  "Expected exactly 1 or 2 input values.");
8532           if (Vals.size() == 1) {
8533             // Do not create shuffle if the mask is a simple identity
8534             // non-resizing mask.
8535             if (Mask.size() != cast<FixedVectorType>(Vals.front()->getType())
8536                                    ->getNumElements() ||
8537                 !ShuffleVectorInst::isIdentityMask(Mask))
8538               return CreateShuffle(Vals.front(), nullptr, Mask);
8539             return Vals.front();
8540           }
8541           return CreateShuffle(Vals.front() ? Vals.front()
8542                                             : FirstInsert->getOperand(0),
8543                                Vals.back(), Mask);
8544         });
8545     auto It = ShuffledInserts[I].InsertElements.rbegin();
8546     // Rebuild buildvector chain.
8547     InsertElementInst *II = nullptr;
8548     if (It != ShuffledInserts[I].InsertElements.rend())
8549       II = *It;
8550     SmallVector<Instruction *> Inserts;
8551     while (It != ShuffledInserts[I].InsertElements.rend()) {
8552       assert(II && "Must be an insertelement instruction.");
8553       if (*It == II)
8554         ++It;
8555       else
8556         Inserts.push_back(cast<Instruction>(II));
8557       II = dyn_cast<InsertElementInst>(II->getOperand(0));
8558     }
8559     for (Instruction *II : reverse(Inserts)) {
8560       II->replaceUsesOfWith(II->getOperand(0), NewInst);
8561       if (auto *NewI = dyn_cast<Instruction>(NewInst))
8562         if (II->getParent() == NewI->getParent() && II->comesBefore(NewI))
8563           II->moveAfter(NewI);
8564       NewInst = II;
8565     }
8566     LastInsert->replaceAllUsesWith(NewInst);
8567     for (InsertElementInst *IE : reverse(ShuffledInserts[I].InsertElements)) {
8568       IE->replaceUsesOfWith(IE->getOperand(1),
8569                             PoisonValue::get(IE->getOperand(1)->getType()));
8570       eraseInstruction(IE);
8571     }
8572     CSEBlocks.insert(LastInsert->getParent());
8573   }
8574 
8575   // For each vectorized value:
8576   for (auto &TEPtr : VectorizableTree) {
8577     TreeEntry *Entry = TEPtr.get();
8578 
8579     // No need to handle users of gathered values.
8580     if (Entry->State == TreeEntry::NeedToGather)
8581       continue;
8582 
8583     assert(Entry->VectorizedValue && "Can't find vectorizable value");
8584 
8585     // For each lane:
8586     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
8587       Value *Scalar = Entry->Scalars[Lane];
8588 
8589 #ifndef NDEBUG
8590       Type *Ty = Scalar->getType();
8591       if (!Ty->isVoidTy()) {
8592         for (User *U : Scalar->users()) {
8593           LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
8594 
8595           // It is legal to delete users in the ignorelist.
8596           assert((getTreeEntry(U) ||
8597                   (UserIgnoreList && UserIgnoreList->contains(U)) ||
8598                   (isa_and_nonnull<Instruction>(U) &&
8599                    isDeleted(cast<Instruction>(U)))) &&
8600                  "Deleting out-of-tree value");
8601         }
8602       }
8603 #endif
8604       LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
8605       eraseInstruction(cast<Instruction>(Scalar));
8606     }
8607   }
8608 
8609   Builder.ClearInsertionPoint();
8610   InstrElementSize.clear();
8611 
8612   return VectorizableTree[0]->VectorizedValue;
8613 }
8614 
8615 void BoUpSLP::optimizeGatherSequence() {
8616   LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size()
8617                     << " gather sequences instructions.\n");
8618   // LICM InsertElementInst sequences.
8619   for (Instruction *I : GatherShuffleSeq) {
8620     if (isDeleted(I))
8621       continue;
8622 
8623     // Check if this block is inside a loop.
8624     Loop *L = LI->getLoopFor(I->getParent());
8625     if (!L)
8626       continue;
8627 
8628     // Check if it has a preheader.
8629     BasicBlock *PreHeader = L->getLoopPreheader();
8630     if (!PreHeader)
8631       continue;
8632 
8633     // If the vector or the element that we insert into it are
8634     // instructions that are defined in this basic block then we can't
8635     // hoist this instruction.
8636     if (any_of(I->operands(), [L](Value *V) {
8637           auto *OpI = dyn_cast<Instruction>(V);
8638           return OpI && L->contains(OpI);
8639         }))
8640       continue;
8641 
8642     // We can hoist this instruction. Move it to the pre-header.
8643     I->moveBefore(PreHeader->getTerminator());
8644   }
8645 
8646   // Make a list of all reachable blocks in our CSE queue.
8647   SmallVector<const DomTreeNode *, 8> CSEWorkList;
8648   CSEWorkList.reserve(CSEBlocks.size());
8649   for (BasicBlock *BB : CSEBlocks)
8650     if (DomTreeNode *N = DT->getNode(BB)) {
8651       assert(DT->isReachableFromEntry(N));
8652       CSEWorkList.push_back(N);
8653     }
8654 
8655   // Sort blocks by domination. This ensures we visit a block after all blocks
8656   // dominating it are visited.
8657   llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) {
8658     assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) &&
8659            "Different nodes should have different DFS numbers");
8660     return A->getDFSNumIn() < B->getDFSNumIn();
8661   });
8662 
8663   // Less defined shuffles can be replaced by the more defined copies.
8664   // Between two shuffles one is less defined if it has the same vector operands
8665   // and its mask indeces are the same as in the first one or undefs. E.g.
8666   // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0,
8667   // poison, <0, 0, 0, 0>.
8668   auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2,
8669                                            SmallVectorImpl<int> &NewMask) {
8670     if (I1->getType() != I2->getType())
8671       return false;
8672     auto *SI1 = dyn_cast<ShuffleVectorInst>(I1);
8673     auto *SI2 = dyn_cast<ShuffleVectorInst>(I2);
8674     if (!SI1 || !SI2)
8675       return I1->isIdenticalTo(I2);
8676     if (SI1->isIdenticalTo(SI2))
8677       return true;
8678     for (int I = 0, E = SI1->getNumOperands(); I < E; ++I)
8679       if (SI1->getOperand(I) != SI2->getOperand(I))
8680         return false;
8681     // Check if the second instruction is more defined than the first one.
8682     NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end());
8683     ArrayRef<int> SM1 = SI1->getShuffleMask();
8684     // Count trailing undefs in the mask to check the final number of used
8685     // registers.
8686     unsigned LastUndefsCnt = 0;
8687     for (int I = 0, E = NewMask.size(); I < E; ++I) {
8688       if (SM1[I] == UndefMaskElem)
8689         ++LastUndefsCnt;
8690       else
8691         LastUndefsCnt = 0;
8692       if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem &&
8693           NewMask[I] != SM1[I])
8694         return false;
8695       if (NewMask[I] == UndefMaskElem)
8696         NewMask[I] = SM1[I];
8697     }
8698     // Check if the last undefs actually change the final number of used vector
8699     // registers.
8700     return SM1.size() - LastUndefsCnt > 1 &&
8701            TTI->getNumberOfParts(SI1->getType()) ==
8702                TTI->getNumberOfParts(
8703                    FixedVectorType::get(SI1->getType()->getElementType(),
8704                                         SM1.size() - LastUndefsCnt));
8705   };
8706   // Perform O(N^2) search over the gather/shuffle sequences and merge identical
8707   // instructions. TODO: We can further optimize this scan if we split the
8708   // instructions into different buckets based on the insert lane.
8709   SmallVector<Instruction *, 16> Visited;
8710   for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
8711     assert(*I &&
8712            (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
8713            "Worklist not sorted properly!");
8714     BasicBlock *BB = (*I)->getBlock();
8715     // For all instructions in blocks containing gather sequences:
8716     for (Instruction &In : llvm::make_early_inc_range(*BB)) {
8717       if (isDeleted(&In))
8718         continue;
8719       if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) &&
8720           !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In))
8721         continue;
8722 
8723       // Check if we can replace this instruction with any of the
8724       // visited instructions.
8725       bool Replaced = false;
8726       for (Instruction *&V : Visited) {
8727         SmallVector<int> NewMask;
8728         if (IsIdenticalOrLessDefined(&In, V, NewMask) &&
8729             DT->dominates(V->getParent(), In.getParent())) {
8730           In.replaceAllUsesWith(V);
8731           eraseInstruction(&In);
8732           if (auto *SI = dyn_cast<ShuffleVectorInst>(V))
8733             if (!NewMask.empty())
8734               SI->setShuffleMask(NewMask);
8735           Replaced = true;
8736           break;
8737         }
8738         if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) &&
8739             GatherShuffleSeq.contains(V) &&
8740             IsIdenticalOrLessDefined(V, &In, NewMask) &&
8741             DT->dominates(In.getParent(), V->getParent())) {
8742           In.moveAfter(V);
8743           V->replaceAllUsesWith(&In);
8744           eraseInstruction(V);
8745           if (auto *SI = dyn_cast<ShuffleVectorInst>(&In))
8746             if (!NewMask.empty())
8747               SI->setShuffleMask(NewMask);
8748           V = &In;
8749           Replaced = true;
8750           break;
8751         }
8752       }
8753       if (!Replaced) {
8754         assert(!is_contained(Visited, &In));
8755         Visited.push_back(&In);
8756       }
8757     }
8758   }
8759   CSEBlocks.clear();
8760   GatherShuffleSeq.clear();
8761 }
8762 
8763 BoUpSLP::ScheduleData *
8764 BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) {
8765   ScheduleData *Bundle = nullptr;
8766   ScheduleData *PrevInBundle = nullptr;
8767   for (Value *V : VL) {
8768     if (doesNotNeedToBeScheduled(V))
8769       continue;
8770     ScheduleData *BundleMember = getScheduleData(V);
8771     assert(BundleMember &&
8772            "no ScheduleData for bundle member "
8773            "(maybe not in same basic block)");
8774     assert(BundleMember->isSchedulingEntity() &&
8775            "bundle member already part of other bundle");
8776     if (PrevInBundle) {
8777       PrevInBundle->NextInBundle = BundleMember;
8778     } else {
8779       Bundle = BundleMember;
8780     }
8781 
8782     // Group the instructions to a bundle.
8783     BundleMember->FirstInBundle = Bundle;
8784     PrevInBundle = BundleMember;
8785   }
8786   assert(Bundle && "Failed to find schedule bundle");
8787   return Bundle;
8788 }
8789 
8790 // Groups the instructions to a bundle (which is then a single scheduling entity)
8791 // and schedules instructions until the bundle gets ready.
8792 Optional<BoUpSLP::ScheduleData *>
8793 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
8794                                             const InstructionsState &S) {
8795   // No need to schedule PHIs, insertelement, extractelement and extractvalue
8796   // instructions.
8797   if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue) ||
8798       doesNotNeedToSchedule(VL))
8799     return nullptr;
8800 
8801   // Initialize the instruction bundle.
8802   Instruction *OldScheduleEnd = ScheduleEnd;
8803   LLVM_DEBUG(dbgs() << "SLP:  bundle: " << *S.OpValue << "\n");
8804 
8805   auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule,
8806                                                          ScheduleData *Bundle) {
8807     // The scheduling region got new instructions at the lower end (or it is a
8808     // new region for the first bundle). This makes it necessary to
8809     // recalculate all dependencies.
8810     // It is seldom that this needs to be done a second time after adding the
8811     // initial bundle to the region.
8812     if (ScheduleEnd != OldScheduleEnd) {
8813       for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode())
8814         doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); });
8815       ReSchedule = true;
8816     }
8817     if (Bundle) {
8818       LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle
8819                         << " in block " << BB->getName() << "\n");
8820       calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP);
8821     }
8822 
8823     if (ReSchedule) {
8824       resetSchedule();
8825       initialFillReadyList(ReadyInsts);
8826     }
8827 
8828     // Now try to schedule the new bundle or (if no bundle) just calculate
8829     // dependencies. As soon as the bundle is "ready" it means that there are no
8830     // cyclic dependencies and we can schedule it. Note that's important that we
8831     // don't "schedule" the bundle yet (see cancelScheduling).
8832     while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) &&
8833            !ReadyInsts.empty()) {
8834       ScheduleData *Picked = ReadyInsts.pop_back_val();
8835       assert(Picked->isSchedulingEntity() && Picked->isReady() &&
8836              "must be ready to schedule");
8837       schedule(Picked, ReadyInsts);
8838     }
8839   };
8840 
8841   // Make sure that the scheduling region contains all
8842   // instructions of the bundle.
8843   for (Value *V : VL) {
8844     if (doesNotNeedToBeScheduled(V))
8845       continue;
8846     if (!extendSchedulingRegion(V, S)) {
8847       // If the scheduling region got new instructions at the lower end (or it
8848       // is a new region for the first bundle). This makes it necessary to
8849       // recalculate all dependencies.
8850       // Otherwise the compiler may crash trying to incorrectly calculate
8851       // dependencies and emit instruction in the wrong order at the actual
8852       // scheduling.
8853       TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr);
8854       return None;
8855     }
8856   }
8857 
8858   bool ReSchedule = false;
8859   for (Value *V : VL) {
8860     if (doesNotNeedToBeScheduled(V))
8861       continue;
8862     ScheduleData *BundleMember = getScheduleData(V);
8863     assert(BundleMember &&
8864            "no ScheduleData for bundle member (maybe not in same basic block)");
8865 
8866     // Make sure we don't leave the pieces of the bundle in the ready list when
8867     // whole bundle might not be ready.
8868     ReadyInsts.remove(BundleMember);
8869 
8870     if (!BundleMember->IsScheduled)
8871       continue;
8872     // A bundle member was scheduled as single instruction before and now
8873     // needs to be scheduled as part of the bundle. We just get rid of the
8874     // existing schedule.
8875     LLVM_DEBUG(dbgs() << "SLP:  reset schedule because " << *BundleMember
8876                       << " was already scheduled\n");
8877     ReSchedule = true;
8878   }
8879 
8880   auto *Bundle = buildBundle(VL);
8881   TryScheduleBundleImpl(ReSchedule, Bundle);
8882   if (!Bundle->isReady()) {
8883     cancelScheduling(VL, S.OpValue);
8884     return None;
8885   }
8886   return Bundle;
8887 }
8888 
8889 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL,
8890                                                 Value *OpValue) {
8891   if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue) ||
8892       doesNotNeedToSchedule(VL))
8893     return;
8894 
8895   if (doesNotNeedToBeScheduled(OpValue))
8896     OpValue = *find_if_not(VL, doesNotNeedToBeScheduled);
8897   ScheduleData *Bundle = getScheduleData(OpValue);
8898   LLVM_DEBUG(dbgs() << "SLP:  cancel scheduling of " << *Bundle << "\n");
8899   assert(!Bundle->IsScheduled &&
8900          "Can't cancel bundle which is already scheduled");
8901   assert(Bundle->isSchedulingEntity() &&
8902          (Bundle->isPartOfBundle() || needToScheduleSingleInstruction(VL)) &&
8903          "tried to unbundle something which is not a bundle");
8904 
8905   // Remove the bundle from the ready list.
8906   if (Bundle->isReady())
8907     ReadyInsts.remove(Bundle);
8908 
8909   // Un-bundle: make single instructions out of the bundle.
8910   ScheduleData *BundleMember = Bundle;
8911   while (BundleMember) {
8912     assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
8913     BundleMember->FirstInBundle = BundleMember;
8914     ScheduleData *Next = BundleMember->NextInBundle;
8915     BundleMember->NextInBundle = nullptr;
8916     BundleMember->TE = nullptr;
8917     if (BundleMember->unscheduledDepsInBundle() == 0) {
8918       ReadyInsts.insert(BundleMember);
8919     }
8920     BundleMember = Next;
8921   }
8922 }
8923 
8924 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() {
8925   // Allocate a new ScheduleData for the instruction.
8926   if (ChunkPos >= ChunkSize) {
8927     ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize));
8928     ChunkPos = 0;
8929   }
8930   return &(ScheduleDataChunks.back()[ChunkPos++]);
8931 }
8932 
8933 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V,
8934                                                       const InstructionsState &S) {
8935   if (getScheduleData(V, isOneOf(S, V)))
8936     return true;
8937   Instruction *I = dyn_cast<Instruction>(V);
8938   assert(I && "bundle member must be an instruction");
8939   assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) &&
8940          !doesNotNeedToBeScheduled(I) &&
8941          "phi nodes/insertelements/extractelements/extractvalues don't need to "
8942          "be scheduled");
8943   auto &&CheckScheduleForI = [this, &S](Instruction *I) -> bool {
8944     ScheduleData *ISD = getScheduleData(I);
8945     if (!ISD)
8946       return false;
8947     assert(isInSchedulingRegion(ISD) &&
8948            "ScheduleData not in scheduling region");
8949     ScheduleData *SD = allocateScheduleDataChunks();
8950     SD->Inst = I;
8951     SD->init(SchedulingRegionID, S.OpValue);
8952     ExtraScheduleDataMap[I][S.OpValue] = SD;
8953     return true;
8954   };
8955   if (CheckScheduleForI(I))
8956     return true;
8957   if (!ScheduleStart) {
8958     // It's the first instruction in the new region.
8959     initScheduleData(I, I->getNextNode(), nullptr, nullptr);
8960     ScheduleStart = I;
8961     ScheduleEnd = I->getNextNode();
8962     if (isOneOf(S, I) != I)
8963       CheckScheduleForI(I);
8964     assert(ScheduleEnd && "tried to vectorize a terminator?");
8965     LLVM_DEBUG(dbgs() << "SLP:  initialize schedule region to " << *I << "\n");
8966     return true;
8967   }
8968   // Search up and down at the same time, because we don't know if the new
8969   // instruction is above or below the existing scheduling region.
8970   BasicBlock::reverse_iterator UpIter =
8971       ++ScheduleStart->getIterator().getReverse();
8972   BasicBlock::reverse_iterator UpperEnd = BB->rend();
8973   BasicBlock::iterator DownIter = ScheduleEnd->getIterator();
8974   BasicBlock::iterator LowerEnd = BB->end();
8975   while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I &&
8976          &*DownIter != I) {
8977     if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
8978       LLVM_DEBUG(dbgs() << "SLP:  exceeded schedule region size limit\n");
8979       return false;
8980     }
8981 
8982     ++UpIter;
8983     ++DownIter;
8984   }
8985   if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) {
8986     assert(I->getParent() == ScheduleStart->getParent() &&
8987            "Instruction is in wrong basic block.");
8988     initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
8989     ScheduleStart = I;
8990     if (isOneOf(S, I) != I)
8991       CheckScheduleForI(I);
8992     LLVM_DEBUG(dbgs() << "SLP:  extend schedule region start to " << *I
8993                       << "\n");
8994     return true;
8995   }
8996   assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) &&
8997          "Expected to reach top of the basic block or instruction down the "
8998          "lower end.");
8999   assert(I->getParent() == ScheduleEnd->getParent() &&
9000          "Instruction is in wrong basic block.");
9001   initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
9002                    nullptr);
9003   ScheduleEnd = I->getNextNode();
9004   if (isOneOf(S, I) != I)
9005     CheckScheduleForI(I);
9006   assert(ScheduleEnd && "tried to vectorize a terminator?");
9007   LLVM_DEBUG(dbgs() << "SLP:  extend schedule region end to " << *I << "\n");
9008   return true;
9009 }
9010 
9011 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
9012                                                 Instruction *ToI,
9013                                                 ScheduleData *PrevLoadStore,
9014                                                 ScheduleData *NextLoadStore) {
9015   ScheduleData *CurrentLoadStore = PrevLoadStore;
9016   for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
9017     // No need to allocate data for non-schedulable instructions.
9018     if (doesNotNeedToBeScheduled(I))
9019       continue;
9020     ScheduleData *SD = ScheduleDataMap.lookup(I);
9021     if (!SD) {
9022       SD = allocateScheduleDataChunks();
9023       ScheduleDataMap[I] = SD;
9024       SD->Inst = I;
9025     }
9026     assert(!isInSchedulingRegion(SD) &&
9027            "new ScheduleData already in scheduling region");
9028     SD->init(SchedulingRegionID, I);
9029 
9030     if (I->mayReadOrWriteMemory() &&
9031         (!isa<IntrinsicInst>(I) ||
9032          (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect &&
9033           cast<IntrinsicInst>(I)->getIntrinsicID() !=
9034               Intrinsic::pseudoprobe))) {
9035       // Update the linked list of memory accessing instructions.
9036       if (CurrentLoadStore) {
9037         CurrentLoadStore->NextLoadStore = SD;
9038       } else {
9039         FirstLoadStoreInRegion = SD;
9040       }
9041       CurrentLoadStore = SD;
9042     }
9043 
9044     if (match(I, m_Intrinsic<Intrinsic::stacksave>()) ||
9045         match(I, m_Intrinsic<Intrinsic::stackrestore>()))
9046       RegionHasStackSave = true;
9047   }
9048   if (NextLoadStore) {
9049     if (CurrentLoadStore)
9050       CurrentLoadStore->NextLoadStore = NextLoadStore;
9051   } else {
9052     LastLoadStoreInRegion = CurrentLoadStore;
9053   }
9054 }
9055 
9056 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
9057                                                      bool InsertInReadyList,
9058                                                      BoUpSLP *SLP) {
9059   assert(SD->isSchedulingEntity());
9060 
9061   SmallVector<ScheduleData *, 10> WorkList;
9062   WorkList.push_back(SD);
9063 
9064   while (!WorkList.empty()) {
9065     ScheduleData *SD = WorkList.pop_back_val();
9066     for (ScheduleData *BundleMember = SD; BundleMember;
9067          BundleMember = BundleMember->NextInBundle) {
9068       assert(isInSchedulingRegion(BundleMember));
9069       if (BundleMember->hasValidDependencies())
9070         continue;
9071 
9072       LLVM_DEBUG(dbgs() << "SLP:       update deps of " << *BundleMember
9073                  << "\n");
9074       BundleMember->Dependencies = 0;
9075       BundleMember->resetUnscheduledDeps();
9076 
9077       // Handle def-use chain dependencies.
9078       if (BundleMember->OpValue != BundleMember->Inst) {
9079         if (ScheduleData *UseSD = getScheduleData(BundleMember->Inst)) {
9080           BundleMember->Dependencies++;
9081           ScheduleData *DestBundle = UseSD->FirstInBundle;
9082           if (!DestBundle->IsScheduled)
9083             BundleMember->incrementUnscheduledDeps(1);
9084           if (!DestBundle->hasValidDependencies())
9085             WorkList.push_back(DestBundle);
9086         }
9087       } else {
9088         for (User *U : BundleMember->Inst->users()) {
9089           if (ScheduleData *UseSD = getScheduleData(cast<Instruction>(U))) {
9090             BundleMember->Dependencies++;
9091             ScheduleData *DestBundle = UseSD->FirstInBundle;
9092             if (!DestBundle->IsScheduled)
9093               BundleMember->incrementUnscheduledDeps(1);
9094             if (!DestBundle->hasValidDependencies())
9095               WorkList.push_back(DestBundle);
9096           }
9097         }
9098       }
9099 
9100       auto makeControlDependent = [&](Instruction *I) {
9101         auto *DepDest = getScheduleData(I);
9102         assert(DepDest && "must be in schedule window");
9103         DepDest->ControlDependencies.push_back(BundleMember);
9104         BundleMember->Dependencies++;
9105         ScheduleData *DestBundle = DepDest->FirstInBundle;
9106         if (!DestBundle->IsScheduled)
9107           BundleMember->incrementUnscheduledDeps(1);
9108         if (!DestBundle->hasValidDependencies())
9109           WorkList.push_back(DestBundle);
9110       };
9111 
9112       // Any instruction which isn't safe to speculate at the begining of the
9113       // block is control dependend on any early exit or non-willreturn call
9114       // which proceeds it.
9115       if (!isGuaranteedToTransferExecutionToSuccessor(BundleMember->Inst)) {
9116         for (Instruction *I = BundleMember->Inst->getNextNode();
9117              I != ScheduleEnd; I = I->getNextNode()) {
9118           if (isSafeToSpeculativelyExecute(I, &*BB->begin()))
9119             continue;
9120 
9121           // Add the dependency
9122           makeControlDependent(I);
9123 
9124           if (!isGuaranteedToTransferExecutionToSuccessor(I))
9125             // Everything past here must be control dependent on I.
9126             break;
9127         }
9128       }
9129 
9130       if (RegionHasStackSave) {
9131         // If we have an inalloc alloca instruction, it needs to be scheduled
9132         // after any preceeding stacksave.  We also need to prevent any alloca
9133         // from reordering above a preceeding stackrestore.
9134         if (match(BundleMember->Inst, m_Intrinsic<Intrinsic::stacksave>()) ||
9135             match(BundleMember->Inst, m_Intrinsic<Intrinsic::stackrestore>())) {
9136           for (Instruction *I = BundleMember->Inst->getNextNode();
9137                I != ScheduleEnd; I = I->getNextNode()) {
9138             if (match(I, m_Intrinsic<Intrinsic::stacksave>()) ||
9139                 match(I, m_Intrinsic<Intrinsic::stackrestore>()))
9140               // Any allocas past here must be control dependent on I, and I
9141               // must be memory dependend on BundleMember->Inst.
9142               break;
9143 
9144             if (!isa<AllocaInst>(I))
9145               continue;
9146 
9147             // Add the dependency
9148             makeControlDependent(I);
9149           }
9150         }
9151 
9152         // In addition to the cases handle just above, we need to prevent
9153         // allocas from moving below a stacksave.  The stackrestore case
9154         // is currently thought to be conservatism.
9155         if (isa<AllocaInst>(BundleMember->Inst)) {
9156           for (Instruction *I = BundleMember->Inst->getNextNode();
9157                I != ScheduleEnd; I = I->getNextNode()) {
9158             if (!match(I, m_Intrinsic<Intrinsic::stacksave>()) &&
9159                 !match(I, m_Intrinsic<Intrinsic::stackrestore>()))
9160               continue;
9161 
9162             // Add the dependency
9163             makeControlDependent(I);
9164             break;
9165           }
9166         }
9167       }
9168 
9169       // Handle the memory dependencies (if any).
9170       ScheduleData *DepDest = BundleMember->NextLoadStore;
9171       if (!DepDest)
9172         continue;
9173       Instruction *SrcInst = BundleMember->Inst;
9174       assert(SrcInst->mayReadOrWriteMemory() &&
9175              "NextLoadStore list for non memory effecting bundle?");
9176       MemoryLocation SrcLoc = getLocation(SrcInst);
9177       bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
9178       unsigned numAliased = 0;
9179       unsigned DistToSrc = 1;
9180 
9181       for ( ; DepDest; DepDest = DepDest->NextLoadStore) {
9182         assert(isInSchedulingRegion(DepDest));
9183 
9184         // We have two limits to reduce the complexity:
9185         // 1) AliasedCheckLimit: It's a small limit to reduce calls to
9186         //    SLP->isAliased (which is the expensive part in this loop).
9187         // 2) MaxMemDepDistance: It's for very large blocks and it aborts
9188         //    the whole loop (even if the loop is fast, it's quadratic).
9189         //    It's important for the loop break condition (see below) to
9190         //    check this limit even between two read-only instructions.
9191         if (DistToSrc >= MaxMemDepDistance ||
9192             ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
9193              (numAliased >= AliasedCheckLimit ||
9194               SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
9195 
9196           // We increment the counter only if the locations are aliased
9197           // (instead of counting all alias checks). This gives a better
9198           // balance between reduced runtime and accurate dependencies.
9199           numAliased++;
9200 
9201           DepDest->MemoryDependencies.push_back(BundleMember);
9202           BundleMember->Dependencies++;
9203           ScheduleData *DestBundle = DepDest->FirstInBundle;
9204           if (!DestBundle->IsScheduled) {
9205             BundleMember->incrementUnscheduledDeps(1);
9206           }
9207           if (!DestBundle->hasValidDependencies()) {
9208             WorkList.push_back(DestBundle);
9209           }
9210         }
9211 
9212         // Example, explaining the loop break condition: Let's assume our
9213         // starting instruction is i0 and MaxMemDepDistance = 3.
9214         //
9215         //                      +--------v--v--v
9216         //             i0,i1,i2,i3,i4,i5,i6,i7,i8
9217         //             +--------^--^--^
9218         //
9219         // MaxMemDepDistance let us stop alias-checking at i3 and we add
9220         // dependencies from i0 to i3,i4,.. (even if they are not aliased).
9221         // Previously we already added dependencies from i3 to i6,i7,i8
9222         // (because of MaxMemDepDistance). As we added a dependency from
9223         // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
9224         // and we can abort this loop at i6.
9225         if (DistToSrc >= 2 * MaxMemDepDistance)
9226           break;
9227         DistToSrc++;
9228       }
9229     }
9230     if (InsertInReadyList && SD->isReady()) {
9231       ReadyInsts.insert(SD);
9232       LLVM_DEBUG(dbgs() << "SLP:     gets ready on update: " << *SD->Inst
9233                         << "\n");
9234     }
9235   }
9236 }
9237 
9238 void BoUpSLP::BlockScheduling::resetSchedule() {
9239   assert(ScheduleStart &&
9240          "tried to reset schedule on block which has not been scheduled");
9241   for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
9242     doForAllOpcodes(I, [&](ScheduleData *SD) {
9243       assert(isInSchedulingRegion(SD) &&
9244              "ScheduleData not in scheduling region");
9245       SD->IsScheduled = false;
9246       SD->resetUnscheduledDeps();
9247     });
9248   }
9249   ReadyInsts.clear();
9250 }
9251 
9252 void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
9253   if (!BS->ScheduleStart)
9254     return;
9255 
9256   LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n");
9257 
9258   // A key point - if we got here, pre-scheduling was able to find a valid
9259   // scheduling of the sub-graph of the scheduling window which consists
9260   // of all vector bundles and their transitive users.  As such, we do not
9261   // need to reschedule anything *outside of* that subgraph.
9262 
9263   BS->resetSchedule();
9264 
9265   // For the real scheduling we use a more sophisticated ready-list: it is
9266   // sorted by the original instruction location. This lets the final schedule
9267   // be as  close as possible to the original instruction order.
9268   // WARNING: If changing this order causes a correctness issue, that means
9269   // there is some missing dependence edge in the schedule data graph.
9270   struct ScheduleDataCompare {
9271     bool operator()(ScheduleData *SD1, ScheduleData *SD2) const {
9272       return SD2->SchedulingPriority < SD1->SchedulingPriority;
9273     }
9274   };
9275   std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
9276 
9277   // Ensure that all dependency data is updated (for nodes in the sub-graph)
9278   // and fill the ready-list with initial instructions.
9279   int Idx = 0;
9280   for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
9281        I = I->getNextNode()) {
9282     BS->doForAllOpcodes(I, [this, &Idx, BS](ScheduleData *SD) {
9283       TreeEntry *SDTE = getTreeEntry(SD->Inst);
9284       (void)SDTE;
9285       assert((isVectorLikeInstWithConstOps(SD->Inst) ||
9286               SD->isPartOfBundle() ==
9287                   (SDTE && !doesNotNeedToSchedule(SDTE->Scalars))) &&
9288              "scheduler and vectorizer bundle mismatch");
9289       SD->FirstInBundle->SchedulingPriority = Idx++;
9290 
9291       if (SD->isSchedulingEntity() && SD->isPartOfBundle())
9292         BS->calculateDependencies(SD, false, this);
9293     });
9294   }
9295   BS->initialFillReadyList(ReadyInsts);
9296 
9297   Instruction *LastScheduledInst = BS->ScheduleEnd;
9298 
9299   // Do the "real" scheduling.
9300   while (!ReadyInsts.empty()) {
9301     ScheduleData *picked = *ReadyInsts.begin();
9302     ReadyInsts.erase(ReadyInsts.begin());
9303 
9304     // Move the scheduled instruction(s) to their dedicated places, if not
9305     // there yet.
9306     for (ScheduleData *BundleMember = picked; BundleMember;
9307          BundleMember = BundleMember->NextInBundle) {
9308       Instruction *pickedInst = BundleMember->Inst;
9309       if (pickedInst->getNextNode() != LastScheduledInst)
9310         pickedInst->moveBefore(LastScheduledInst);
9311       LastScheduledInst = pickedInst;
9312     }
9313 
9314     BS->schedule(picked, ReadyInsts);
9315   }
9316 
9317   // Check that we didn't break any of our invariants.
9318 #ifdef EXPENSIVE_CHECKS
9319   BS->verify();
9320 #endif
9321 
9322 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS)
9323   // Check that all schedulable entities got scheduled
9324   for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; I = I->getNextNode()) {
9325     BS->doForAllOpcodes(I, [&](ScheduleData *SD) {
9326       if (SD->isSchedulingEntity() && SD->hasValidDependencies()) {
9327         assert(SD->IsScheduled && "must be scheduled at this point");
9328       }
9329     });
9330   }
9331 #endif
9332 
9333   // Avoid duplicate scheduling of the block.
9334   BS->ScheduleStart = nullptr;
9335 }
9336 
9337 unsigned BoUpSLP::getVectorElementSize(Value *V) {
9338   // If V is a store, just return the width of the stored value (or value
9339   // truncated just before storing) without traversing the expression tree.
9340   // This is the common case.
9341   if (auto *Store = dyn_cast<StoreInst>(V))
9342     return DL->getTypeSizeInBits(Store->getValueOperand()->getType());
9343 
9344   if (auto *IEI = dyn_cast<InsertElementInst>(V))
9345     return getVectorElementSize(IEI->getOperand(1));
9346 
9347   auto E = InstrElementSize.find(V);
9348   if (E != InstrElementSize.end())
9349     return E->second;
9350 
9351   // If V is not a store, we can traverse the expression tree to find loads
9352   // that feed it. The type of the loaded value may indicate a more suitable
9353   // width than V's type. We want to base the vector element size on the width
9354   // of memory operations where possible.
9355   SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist;
9356   SmallPtrSet<Instruction *, 16> Visited;
9357   if (auto *I = dyn_cast<Instruction>(V)) {
9358     Worklist.emplace_back(I, I->getParent());
9359     Visited.insert(I);
9360   }
9361 
9362   // Traverse the expression tree in bottom-up order looking for loads. If we
9363   // encounter an instruction we don't yet handle, we give up.
9364   auto Width = 0u;
9365   while (!Worklist.empty()) {
9366     Instruction *I;
9367     BasicBlock *Parent;
9368     std::tie(I, Parent) = Worklist.pop_back_val();
9369 
9370     // We should only be looking at scalar instructions here. If the current
9371     // instruction has a vector type, skip.
9372     auto *Ty = I->getType();
9373     if (isa<VectorType>(Ty))
9374       continue;
9375 
9376     // If the current instruction is a load, update MaxWidth to reflect the
9377     // width of the loaded value.
9378     if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) ||
9379         isa<ExtractValueInst>(I))
9380       Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty));
9381 
9382     // Otherwise, we need to visit the operands of the instruction. We only
9383     // handle the interesting cases from buildTree here. If an operand is an
9384     // instruction we haven't yet visited and from the same basic block as the
9385     // user or the use is a PHI node, we add it to the worklist.
9386     else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
9387              isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) ||
9388              isa<UnaryOperator>(I)) {
9389       for (Use &U : I->operands())
9390         if (auto *J = dyn_cast<Instruction>(U.get()))
9391           if (Visited.insert(J).second &&
9392               (isa<PHINode>(I) || J->getParent() == Parent))
9393             Worklist.emplace_back(J, J->getParent());
9394     } else {
9395       break;
9396     }
9397   }
9398 
9399   // If we didn't encounter a memory access in the expression tree, or if we
9400   // gave up for some reason, just return the width of V. Otherwise, return the
9401   // maximum width we found.
9402   if (!Width) {
9403     if (auto *CI = dyn_cast<CmpInst>(V))
9404       V = CI->getOperand(0);
9405     Width = DL->getTypeSizeInBits(V->getType());
9406   }
9407 
9408   for (Instruction *I : Visited)
9409     InstrElementSize[I] = Width;
9410 
9411   return Width;
9412 }
9413 
9414 // Determine if a value V in a vectorizable expression Expr can be demoted to a
9415 // smaller type with a truncation. We collect the values that will be demoted
9416 // in ToDemote and additional roots that require investigating in Roots.
9417 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr,
9418                                   SmallVectorImpl<Value *> &ToDemote,
9419                                   SmallVectorImpl<Value *> &Roots) {
9420   // We can always demote constants.
9421   if (isa<Constant>(V)) {
9422     ToDemote.push_back(V);
9423     return true;
9424   }
9425 
9426   // If the value is not an instruction in the expression with only one use, it
9427   // cannot be demoted.
9428   auto *I = dyn_cast<Instruction>(V);
9429   if (!I || !I->hasOneUse() || !Expr.count(I))
9430     return false;
9431 
9432   switch (I->getOpcode()) {
9433 
9434   // We can always demote truncations and extensions. Since truncations can
9435   // seed additional demotion, we save the truncated value.
9436   case Instruction::Trunc:
9437     Roots.push_back(I->getOperand(0));
9438     break;
9439   case Instruction::ZExt:
9440   case Instruction::SExt:
9441     if (isa<ExtractElementInst>(I->getOperand(0)) ||
9442         isa<InsertElementInst>(I->getOperand(0)))
9443       return false;
9444     break;
9445 
9446   // We can demote certain binary operations if we can demote both of their
9447   // operands.
9448   case Instruction::Add:
9449   case Instruction::Sub:
9450   case Instruction::Mul:
9451   case Instruction::And:
9452   case Instruction::Or:
9453   case Instruction::Xor:
9454     if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) ||
9455         !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots))
9456       return false;
9457     break;
9458 
9459   // We can demote selects if we can demote their true and false values.
9460   case Instruction::Select: {
9461     SelectInst *SI = cast<SelectInst>(I);
9462     if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) ||
9463         !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots))
9464       return false;
9465     break;
9466   }
9467 
9468   // We can demote phis if we can demote all their incoming operands. Note that
9469   // we don't need to worry about cycles since we ensure single use above.
9470   case Instruction::PHI: {
9471     PHINode *PN = cast<PHINode>(I);
9472     for (Value *IncValue : PN->incoming_values())
9473       if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots))
9474         return false;
9475     break;
9476   }
9477 
9478   // Otherwise, conservatively give up.
9479   default:
9480     return false;
9481   }
9482 
9483   // Record the value that we can demote.
9484   ToDemote.push_back(V);
9485   return true;
9486 }
9487 
9488 void BoUpSLP::computeMinimumValueSizes() {
9489   // If there are no external uses, the expression tree must be rooted by a
9490   // store. We can't demote in-memory values, so there is nothing to do here.
9491   if (ExternalUses.empty())
9492     return;
9493 
9494   // We only attempt to truncate integer expressions.
9495   auto &TreeRoot = VectorizableTree[0]->Scalars;
9496   auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType());
9497   if (!TreeRootIT)
9498     return;
9499 
9500   // If the expression is not rooted by a store, these roots should have
9501   // external uses. We will rely on InstCombine to rewrite the expression in
9502   // the narrower type. However, InstCombine only rewrites single-use values.
9503   // This means that if a tree entry other than a root is used externally, it
9504   // must have multiple uses and InstCombine will not rewrite it. The code
9505   // below ensures that only the roots are used externally.
9506   SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end());
9507   for (auto &EU : ExternalUses)
9508     if (!Expr.erase(EU.Scalar))
9509       return;
9510   if (!Expr.empty())
9511     return;
9512 
9513   // Collect the scalar values of the vectorizable expression. We will use this
9514   // context to determine which values can be demoted. If we see a truncation,
9515   // we mark it as seeding another demotion.
9516   for (auto &EntryPtr : VectorizableTree)
9517     Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end());
9518 
9519   // Ensure the roots of the vectorizable tree don't form a cycle. They must
9520   // have a single external user that is not in the vectorizable tree.
9521   for (auto *Root : TreeRoot)
9522     if (!Root->hasOneUse() || Expr.count(*Root->user_begin()))
9523       return;
9524 
9525   // Conservatively determine if we can actually truncate the roots of the
9526   // expression. Collect the values that can be demoted in ToDemote and
9527   // additional roots that require investigating in Roots.
9528   SmallVector<Value *, 32> ToDemote;
9529   SmallVector<Value *, 4> Roots;
9530   for (auto *Root : TreeRoot)
9531     if (!collectValuesToDemote(Root, Expr, ToDemote, Roots))
9532       return;
9533 
9534   // The maximum bit width required to represent all the values that can be
9535   // demoted without loss of precision. It would be safe to truncate the roots
9536   // of the expression to this width.
9537   auto MaxBitWidth = 8u;
9538 
9539   // We first check if all the bits of the roots are demanded. If they're not,
9540   // we can truncate the roots to this narrower type.
9541   for (auto *Root : TreeRoot) {
9542     auto Mask = DB->getDemandedBits(cast<Instruction>(Root));
9543     MaxBitWidth = std::max<unsigned>(
9544         Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth);
9545   }
9546 
9547   // True if the roots can be zero-extended back to their original type, rather
9548   // than sign-extended. We know that if the leading bits are not demanded, we
9549   // can safely zero-extend. So we initialize IsKnownPositive to True.
9550   bool IsKnownPositive = true;
9551 
9552   // If all the bits of the roots are demanded, we can try a little harder to
9553   // compute a narrower type. This can happen, for example, if the roots are
9554   // getelementptr indices. InstCombine promotes these indices to the pointer
9555   // width. Thus, all their bits are technically demanded even though the
9556   // address computation might be vectorized in a smaller type.
9557   //
9558   // We start by looking at each entry that can be demoted. We compute the
9559   // maximum bit width required to store the scalar by using ValueTracking to
9560   // compute the number of high-order bits we can truncate.
9561   if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) &&
9562       llvm::all_of(TreeRoot, [](Value *R) {
9563         assert(R->hasOneUse() && "Root should have only one use!");
9564         return isa<GetElementPtrInst>(R->user_back());
9565       })) {
9566     MaxBitWidth = 8u;
9567 
9568     // Determine if the sign bit of all the roots is known to be zero. If not,
9569     // IsKnownPositive is set to False.
9570     IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) {
9571       KnownBits Known = computeKnownBits(R, *DL);
9572       return Known.isNonNegative();
9573     });
9574 
9575     // Determine the maximum number of bits required to store the scalar
9576     // values.
9577     for (auto *Scalar : ToDemote) {
9578       auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT);
9579       auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType());
9580       MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth);
9581     }
9582 
9583     // If we can't prove that the sign bit is zero, we must add one to the
9584     // maximum bit width to account for the unknown sign bit. This preserves
9585     // the existing sign bit so we can safely sign-extend the root back to the
9586     // original type. Otherwise, if we know the sign bit is zero, we will
9587     // zero-extend the root instead.
9588     //
9589     // FIXME: This is somewhat suboptimal, as there will be cases where adding
9590     //        one to the maximum bit width will yield a larger-than-necessary
9591     //        type. In general, we need to add an extra bit only if we can't
9592     //        prove that the upper bit of the original type is equal to the
9593     //        upper bit of the proposed smaller type. If these two bits are the
9594     //        same (either zero or one) we know that sign-extending from the
9595     //        smaller type will result in the same value. Here, since we can't
9596     //        yet prove this, we are just making the proposed smaller type
9597     //        larger to ensure correctness.
9598     if (!IsKnownPositive)
9599       ++MaxBitWidth;
9600   }
9601 
9602   // Round MaxBitWidth up to the next power-of-two.
9603   if (!isPowerOf2_64(MaxBitWidth))
9604     MaxBitWidth = NextPowerOf2(MaxBitWidth);
9605 
9606   // If the maximum bit width we compute is less than the with of the roots'
9607   // type, we can proceed with the narrowing. Otherwise, do nothing.
9608   if (MaxBitWidth >= TreeRootIT->getBitWidth())
9609     return;
9610 
9611   // If we can truncate the root, we must collect additional values that might
9612   // be demoted as a result. That is, those seeded by truncations we will
9613   // modify.
9614   while (!Roots.empty())
9615     collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots);
9616 
9617   // Finally, map the values we can demote to the maximum bit with we computed.
9618   for (auto *Scalar : ToDemote)
9619     MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive);
9620 }
9621 
9622 namespace {
9623 
9624 /// The SLPVectorizer Pass.
9625 struct SLPVectorizer : public FunctionPass {
9626   SLPVectorizerPass Impl;
9627 
9628   /// Pass identification, replacement for typeid
9629   static char ID;
9630 
9631   explicit SLPVectorizer() : FunctionPass(ID) {
9632     initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
9633   }
9634 
9635   bool doInitialization(Module &M) override { return false; }
9636 
9637   bool runOnFunction(Function &F) override {
9638     if (skipFunction(F))
9639       return false;
9640 
9641     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
9642     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
9643     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
9644     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
9645     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
9646     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
9647     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
9648     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
9649     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
9650     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
9651 
9652     return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
9653   }
9654 
9655   void getAnalysisUsage(AnalysisUsage &AU) const override {
9656     FunctionPass::getAnalysisUsage(AU);
9657     AU.addRequired<AssumptionCacheTracker>();
9658     AU.addRequired<ScalarEvolutionWrapperPass>();
9659     AU.addRequired<AAResultsWrapperPass>();
9660     AU.addRequired<TargetTransformInfoWrapperPass>();
9661     AU.addRequired<LoopInfoWrapperPass>();
9662     AU.addRequired<DominatorTreeWrapperPass>();
9663     AU.addRequired<DemandedBitsWrapperPass>();
9664     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
9665     AU.addRequired<InjectTLIMappingsLegacy>();
9666     AU.addPreserved<LoopInfoWrapperPass>();
9667     AU.addPreserved<DominatorTreeWrapperPass>();
9668     AU.addPreserved<AAResultsWrapperPass>();
9669     AU.addPreserved<GlobalsAAWrapperPass>();
9670     AU.setPreservesCFG();
9671   }
9672 };
9673 
9674 } // end anonymous namespace
9675 
9676 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
9677   auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
9678   auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
9679   auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
9680   auto *AA = &AM.getResult<AAManager>(F);
9681   auto *LI = &AM.getResult<LoopAnalysis>(F);
9682   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
9683   auto *AC = &AM.getResult<AssumptionAnalysis>(F);
9684   auto *DB = &AM.getResult<DemandedBitsAnalysis>(F);
9685   auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
9686 
9687   bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
9688   if (!Changed)
9689     return PreservedAnalyses::all();
9690 
9691   PreservedAnalyses PA;
9692   PA.preserveSet<CFGAnalyses>();
9693   return PA;
9694 }
9695 
9696 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_,
9697                                 TargetTransformInfo *TTI_,
9698                                 TargetLibraryInfo *TLI_, AAResults *AA_,
9699                                 LoopInfo *LI_, DominatorTree *DT_,
9700                                 AssumptionCache *AC_, DemandedBits *DB_,
9701                                 OptimizationRemarkEmitter *ORE_) {
9702   if (!RunSLPVectorization)
9703     return false;
9704   SE = SE_;
9705   TTI = TTI_;
9706   TLI = TLI_;
9707   AA = AA_;
9708   LI = LI_;
9709   DT = DT_;
9710   AC = AC_;
9711   DB = DB_;
9712   DL = &F.getParent()->getDataLayout();
9713 
9714   Stores.clear();
9715   GEPs.clear();
9716   bool Changed = false;
9717 
9718   // If the target claims to have no vector registers don't attempt
9719   // vectorization.
9720   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) {
9721     LLVM_DEBUG(
9722         dbgs() << "SLP: Didn't find any vector registers for target, abort.\n");
9723     return false;
9724   }
9725 
9726   // Don't vectorize when the attribute NoImplicitFloat is used.
9727   if (F.hasFnAttribute(Attribute::NoImplicitFloat))
9728     return false;
9729 
9730   LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
9731 
9732   // Use the bottom up slp vectorizer to construct chains that start with
9733   // store instructions.
9734   BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_);
9735 
9736   // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
9737   // delete instructions.
9738 
9739   // Update DFS numbers now so that we can use them for ordering.
9740   DT->updateDFSNumbers();
9741 
9742   // Scan the blocks in the function in post order.
9743   for (auto BB : post_order(&F.getEntryBlock())) {
9744     // Start new block - clear the list of reduction roots.
9745     R.clearReductionData();
9746     collectSeedInstructions(BB);
9747 
9748     // Vectorize trees that end at stores.
9749     if (!Stores.empty()) {
9750       LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size()
9751                         << " underlying objects.\n");
9752       Changed |= vectorizeStoreChains(R);
9753     }
9754 
9755     // Vectorize trees that end at reductions.
9756     Changed |= vectorizeChainsInBlock(BB, R);
9757 
9758     // Vectorize the index computations of getelementptr instructions. This
9759     // is primarily intended to catch gather-like idioms ending at
9760     // non-consecutive loads.
9761     if (!GEPs.empty()) {
9762       LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size()
9763                         << " underlying objects.\n");
9764       Changed |= vectorizeGEPIndices(BB, R);
9765     }
9766   }
9767 
9768   if (Changed) {
9769     R.optimizeGatherSequence();
9770     LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
9771   }
9772   return Changed;
9773 }
9774 
9775 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R,
9776                                             unsigned Idx, unsigned MinVF) {
9777   LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size()
9778                     << "\n");
9779   const unsigned Sz = R.getVectorElementSize(Chain[0]);
9780   unsigned VF = Chain.size();
9781 
9782   if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF)
9783     return false;
9784 
9785   LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx
9786                     << "\n");
9787 
9788   R.buildTree(Chain);
9789   if (R.isTreeTinyAndNotFullyVectorizable())
9790     return false;
9791   if (R.isLoadCombineCandidate())
9792     return false;
9793   R.reorderTopToBottom();
9794   R.reorderBottomToTop();
9795   R.buildExternalUses();
9796 
9797   R.computeMinimumValueSizes();
9798 
9799   InstructionCost Cost = R.getTreeCost();
9800 
9801   LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n");
9802   if (Cost < -SLPCostThreshold) {
9803     LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n");
9804 
9805     using namespace ore;
9806 
9807     R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized",
9808                                         cast<StoreInst>(Chain[0]))
9809                      << "Stores SLP vectorized with cost " << NV("Cost", Cost)
9810                      << " and with tree size "
9811                      << NV("TreeSize", R.getTreeSize()));
9812 
9813     R.vectorizeTree();
9814     return true;
9815   }
9816 
9817   return false;
9818 }
9819 
9820 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores,
9821                                         BoUpSLP &R) {
9822   // We may run into multiple chains that merge into a single chain. We mark the
9823   // stores that we vectorized so that we don't visit the same store twice.
9824   BoUpSLP::ValueSet VectorizedStores;
9825   bool Changed = false;
9826 
9827   int E = Stores.size();
9828   SmallBitVector Tails(E, false);
9829   int MaxIter = MaxStoreLookup.getValue();
9830   SmallVector<std::pair<int, int>, 16> ConsecutiveChain(
9831       E, std::make_pair(E, INT_MAX));
9832   SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false));
9833   int IterCnt;
9834   auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter,
9835                                   &CheckedPairs,
9836                                   &ConsecutiveChain](int K, int Idx) {
9837     if (IterCnt >= MaxIter)
9838       return true;
9839     if (CheckedPairs[Idx].test(K))
9840       return ConsecutiveChain[K].second == 1 &&
9841              ConsecutiveChain[K].first == Idx;
9842     ++IterCnt;
9843     CheckedPairs[Idx].set(K);
9844     CheckedPairs[K].set(Idx);
9845     Optional<int> Diff = getPointersDiff(
9846         Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(),
9847         Stores[Idx]->getValueOperand()->getType(),
9848         Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true);
9849     if (!Diff || *Diff == 0)
9850       return false;
9851     int Val = *Diff;
9852     if (Val < 0) {
9853       if (ConsecutiveChain[Idx].second > -Val) {
9854         Tails.set(K);
9855         ConsecutiveChain[Idx] = std::make_pair(K, -Val);
9856       }
9857       return false;
9858     }
9859     if (ConsecutiveChain[K].second <= Val)
9860       return false;
9861 
9862     Tails.set(Idx);
9863     ConsecutiveChain[K] = std::make_pair(Idx, Val);
9864     return Val == 1;
9865   };
9866   // Do a quadratic search on all of the given stores in reverse order and find
9867   // all of the pairs of stores that follow each other.
9868   for (int Idx = E - 1; Idx >= 0; --Idx) {
9869     // If a store has multiple consecutive store candidates, search according
9870     // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ...
9871     // This is because usually pairing with immediate succeeding or preceding
9872     // candidate create the best chance to find slp vectorization opportunity.
9873     const int MaxLookDepth = std::max(E - Idx, Idx + 1);
9874     IterCnt = 0;
9875     for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset)
9876       if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) ||
9877           (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx)))
9878         break;
9879   }
9880 
9881   // Tracks if we tried to vectorize stores starting from the given tail
9882   // already.
9883   SmallBitVector TriedTails(E, false);
9884   // For stores that start but don't end a link in the chain:
9885   for (int Cnt = E; Cnt > 0; --Cnt) {
9886     int I = Cnt - 1;
9887     if (ConsecutiveChain[I].first == E || Tails.test(I))
9888       continue;
9889     // We found a store instr that starts a chain. Now follow the chain and try
9890     // to vectorize it.
9891     BoUpSLP::ValueList Operands;
9892     // Collect the chain into a list.
9893     while (I != E && !VectorizedStores.count(Stores[I])) {
9894       Operands.push_back(Stores[I]);
9895       Tails.set(I);
9896       if (ConsecutiveChain[I].second != 1) {
9897         // Mark the new end in the chain and go back, if required. It might be
9898         // required if the original stores come in reversed order, for example.
9899         if (ConsecutiveChain[I].first != E &&
9900             Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) &&
9901             !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) {
9902           TriedTails.set(I);
9903           Tails.reset(ConsecutiveChain[I].first);
9904           if (Cnt < ConsecutiveChain[I].first + 2)
9905             Cnt = ConsecutiveChain[I].first + 2;
9906         }
9907         break;
9908       }
9909       // Move to the next value in the chain.
9910       I = ConsecutiveChain[I].first;
9911     }
9912     assert(!Operands.empty() && "Expected non-empty list of stores.");
9913 
9914     unsigned MaxVecRegSize = R.getMaxVecRegSize();
9915     unsigned EltSize = R.getVectorElementSize(Operands[0]);
9916     unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize);
9917 
9918     unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store),
9919                               MaxElts);
9920     auto *Store = cast<StoreInst>(Operands[0]);
9921     Type *StoreTy = Store->getValueOperand()->getType();
9922     Type *ValueTy = StoreTy;
9923     if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand()))
9924       ValueTy = Trunc->getSrcTy();
9925     unsigned MinVF = TTI->getStoreMinimumVF(
9926         R.getMinVF(DL->getTypeSizeInBits(ValueTy)), StoreTy, ValueTy);
9927 
9928     // FIXME: Is division-by-2 the correct step? Should we assert that the
9929     // register size is a power-of-2?
9930     unsigned StartIdx = 0;
9931     for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) {
9932       for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) {
9933         ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size);
9934         if (!VectorizedStores.count(Slice.front()) &&
9935             !VectorizedStores.count(Slice.back()) &&
9936             vectorizeStoreChain(Slice, R, Cnt, MinVF)) {
9937           // Mark the vectorized stores so that we don't vectorize them again.
9938           VectorizedStores.insert(Slice.begin(), Slice.end());
9939           Changed = true;
9940           // If we vectorized initial block, no need to try to vectorize it
9941           // again.
9942           if (Cnt == StartIdx)
9943             StartIdx += Size;
9944           Cnt += Size;
9945           continue;
9946         }
9947         ++Cnt;
9948       }
9949       // Check if the whole array was vectorized already - exit.
9950       if (StartIdx >= Operands.size())
9951         break;
9952     }
9953   }
9954 
9955   return Changed;
9956 }
9957 
9958 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) {
9959   // Initialize the collections. We will make a single pass over the block.
9960   Stores.clear();
9961   GEPs.clear();
9962 
9963   // Visit the store and getelementptr instructions in BB and organize them in
9964   // Stores and GEPs according to the underlying objects of their pointer
9965   // operands.
9966   for (Instruction &I : *BB) {
9967     // Ignore store instructions that are volatile or have a pointer operand
9968     // that doesn't point to a scalar type.
9969     if (auto *SI = dyn_cast<StoreInst>(&I)) {
9970       if (!SI->isSimple())
9971         continue;
9972       if (!isValidElementType(SI->getValueOperand()->getType()))
9973         continue;
9974       Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI);
9975     }
9976 
9977     // Ignore getelementptr instructions that have more than one index, a
9978     // constant index, or a pointer operand that doesn't point to a scalar
9979     // type.
9980     else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
9981       auto Idx = GEP->idx_begin()->get();
9982       if (GEP->getNumIndices() > 1 || isa<Constant>(Idx))
9983         continue;
9984       if (!isValidElementType(Idx->getType()))
9985         continue;
9986       if (GEP->getType()->isVectorTy())
9987         continue;
9988       GEPs[GEP->getPointerOperand()].push_back(GEP);
9989     }
9990   }
9991 }
9992 
9993 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
9994   if (!A || !B)
9995     return false;
9996   if (isa<InsertElementInst>(A) || isa<InsertElementInst>(B))
9997     return false;
9998   Value *VL[] = {A, B};
9999   return tryToVectorizeList(VL, R);
10000 }
10001 
10002 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
10003                                            bool LimitForRegisterSize) {
10004   if (VL.size() < 2)
10005     return false;
10006 
10007   LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = "
10008                     << VL.size() << ".\n");
10009 
10010   // Check that all of the parts are instructions of the same type,
10011   // we permit an alternate opcode via InstructionsState.
10012   InstructionsState S = getSameOpcode(VL);
10013   if (!S.getOpcode())
10014     return false;
10015 
10016   Instruction *I0 = cast<Instruction>(S.OpValue);
10017   // Make sure invalid types (including vector type) are rejected before
10018   // determining vectorization factor for scalar instructions.
10019   for (Value *V : VL) {
10020     Type *Ty = V->getType();
10021     if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) {
10022       // NOTE: the following will give user internal llvm type name, which may
10023       // not be useful.
10024       R.getORE()->emit([&]() {
10025         std::string type_str;
10026         llvm::raw_string_ostream rso(type_str);
10027         Ty->print(rso);
10028         return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0)
10029                << "Cannot SLP vectorize list: type "
10030                << rso.str() + " is unsupported by vectorizer";
10031       });
10032       return false;
10033     }
10034   }
10035 
10036   unsigned Sz = R.getVectorElementSize(I0);
10037   unsigned MinVF = R.getMinVF(Sz);
10038   unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF);
10039   MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF);
10040   if (MaxVF < 2) {
10041     R.getORE()->emit([&]() {
10042       return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0)
10043              << "Cannot SLP vectorize list: vectorization factor "
10044              << "less than 2 is not supported";
10045     });
10046     return false;
10047   }
10048 
10049   bool Changed = false;
10050   bool CandidateFound = false;
10051   InstructionCost MinCost = SLPCostThreshold.getValue();
10052   Type *ScalarTy = VL[0]->getType();
10053   if (auto *IE = dyn_cast<InsertElementInst>(VL[0]))
10054     ScalarTy = IE->getOperand(1)->getType();
10055 
10056   unsigned NextInst = 0, MaxInst = VL.size();
10057   for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) {
10058     // No actual vectorization should happen, if number of parts is the same as
10059     // provided vectorization factor (i.e. the scalar type is used for vector
10060     // code during codegen).
10061     auto *VecTy = FixedVectorType::get(ScalarTy, VF);
10062     if (TTI->getNumberOfParts(VecTy) == VF)
10063       continue;
10064     for (unsigned I = NextInst; I < MaxInst; ++I) {
10065       unsigned OpsWidth = 0;
10066 
10067       if (I + VF > MaxInst)
10068         OpsWidth = MaxInst - I;
10069       else
10070         OpsWidth = VF;
10071 
10072       if (!isPowerOf2_32(OpsWidth))
10073         continue;
10074 
10075       if ((LimitForRegisterSize && OpsWidth < MaxVF) ||
10076           (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2))
10077         break;
10078 
10079       ArrayRef<Value *> Ops = VL.slice(I, OpsWidth);
10080       // Check that a previous iteration of this loop did not delete the Value.
10081       if (llvm::any_of(Ops, [&R](Value *V) {
10082             auto *I = dyn_cast<Instruction>(V);
10083             return I && R.isDeleted(I);
10084           }))
10085         continue;
10086 
10087       LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
10088                         << "\n");
10089 
10090       R.buildTree(Ops);
10091       if (R.isTreeTinyAndNotFullyVectorizable())
10092         continue;
10093       R.reorderTopToBottom();
10094       R.reorderBottomToTop(!isa<InsertElementInst>(Ops.front()));
10095       R.buildExternalUses();
10096 
10097       R.computeMinimumValueSizes();
10098       InstructionCost Cost = R.getTreeCost();
10099       CandidateFound = true;
10100       MinCost = std::min(MinCost, Cost);
10101 
10102       if (Cost < -SLPCostThreshold) {
10103         LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
10104         R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList",
10105                                                     cast<Instruction>(Ops[0]))
10106                                  << "SLP vectorized with cost " << ore::NV("Cost", Cost)
10107                                  << " and with tree size "
10108                                  << ore::NV("TreeSize", R.getTreeSize()));
10109 
10110         R.vectorizeTree();
10111         // Move to the next bundle.
10112         I += VF - 1;
10113         NextInst = I + 1;
10114         Changed = true;
10115       }
10116     }
10117   }
10118 
10119   if (!Changed && CandidateFound) {
10120     R.getORE()->emit([&]() {
10121       return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0)
10122              << "List vectorization was possible but not beneficial with cost "
10123              << ore::NV("Cost", MinCost) << " >= "
10124              << ore::NV("Treshold", -SLPCostThreshold);
10125     });
10126   } else if (!Changed) {
10127     R.getORE()->emit([&]() {
10128       return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0)
10129              << "Cannot SLP vectorize list: vectorization was impossible"
10130              << " with available vectorization factors";
10131     });
10132   }
10133   return Changed;
10134 }
10135 
10136 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) {
10137   if (!I)
10138     return false;
10139 
10140   if ((!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) ||
10141       isa<VectorType>(I->getType()))
10142     return false;
10143 
10144   Value *P = I->getParent();
10145 
10146   // Vectorize in current basic block only.
10147   auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
10148   auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
10149   if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P)
10150     return false;
10151 
10152   // First collect all possible candidates
10153   SmallVector<std::pair<Value *, Value *>, 4> Candidates;
10154   Candidates.emplace_back(Op0, Op1);
10155 
10156   auto *A = dyn_cast<BinaryOperator>(Op0);
10157   auto *B = dyn_cast<BinaryOperator>(Op1);
10158   // Try to skip B.
10159   if (A && B && B->hasOneUse()) {
10160     auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
10161     auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
10162     if (B0 && B0->getParent() == P)
10163       Candidates.emplace_back(A, B0);
10164     if (B1 && B1->getParent() == P)
10165       Candidates.emplace_back(A, B1);
10166   }
10167   // Try to skip A.
10168   if (B && A && A->hasOneUse()) {
10169     auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
10170     auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
10171     if (A0 && A0->getParent() == P)
10172       Candidates.emplace_back(A0, B);
10173     if (A1 && A1->getParent() == P)
10174       Candidates.emplace_back(A1, B);
10175   }
10176 
10177   if (Candidates.size() == 1)
10178     return tryToVectorizePair(Op0, Op1, R);
10179 
10180   // We have multiple options. Try to pick the single best.
10181   Optional<int> BestCandidate = R.findBestRootPair(Candidates);
10182   if (!BestCandidate)
10183     return false;
10184   return tryToVectorizePair(Candidates[*BestCandidate].first,
10185                             Candidates[*BestCandidate].second, R);
10186 }
10187 
10188 namespace {
10189 
10190 /// Model horizontal reductions.
10191 ///
10192 /// A horizontal reduction is a tree of reduction instructions that has values
10193 /// that can be put into a vector as its leaves. For example:
10194 ///
10195 /// mul mul mul mul
10196 ///  \  /    \  /
10197 ///   +       +
10198 ///    \     /
10199 ///       +
10200 /// This tree has "mul" as its leaf values and "+" as its reduction
10201 /// instructions. A reduction can feed into a store or a binary operation
10202 /// feeding a phi.
10203 ///    ...
10204 ///    \  /
10205 ///     +
10206 ///     |
10207 ///  phi +=
10208 ///
10209 ///  Or:
10210 ///    ...
10211 ///    \  /
10212 ///     +
10213 ///     |
10214 ///   *p =
10215 ///
10216 class HorizontalReduction {
10217   using ReductionOpsType = SmallVector<Value *, 16>;
10218   using ReductionOpsListType = SmallVector<ReductionOpsType, 2>;
10219   ReductionOpsListType ReductionOps;
10220   /// List of possibly reduced values.
10221   SmallVector<SmallVector<Value *>> ReducedVals;
10222   /// Maps reduced value to the corresponding reduction operation.
10223   DenseMap<Value *, SmallVector<Instruction *>> ReducedValsToOps;
10224   // Use map vector to make stable output.
10225   MapVector<Instruction *, Value *> ExtraArgs;
10226   WeakTrackingVH ReductionRoot;
10227   /// The type of reduction operation.
10228   RecurKind RdxKind;
10229 
10230   static bool isCmpSelMinMax(Instruction *I) {
10231     return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) &&
10232            RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I));
10233   }
10234 
10235   // And/or are potentially poison-safe logical patterns like:
10236   // select x, y, false
10237   // select x, true, y
10238   static bool isBoolLogicOp(Instruction *I) {
10239     return match(I, m_LogicalAnd(m_Value(), m_Value())) ||
10240            match(I, m_LogicalOr(m_Value(), m_Value()));
10241   }
10242 
10243   /// Checks if instruction is associative and can be vectorized.
10244   static bool isVectorizable(RecurKind Kind, Instruction *I) {
10245     if (Kind == RecurKind::None)
10246       return false;
10247 
10248     // Integer ops that map to select instructions or intrinsics are fine.
10249     if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) ||
10250         isBoolLogicOp(I))
10251       return true;
10252 
10253     if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) {
10254       // FP min/max are associative except for NaN and -0.0. We do not
10255       // have to rule out -0.0 here because the intrinsic semantics do not
10256       // specify a fixed result for it.
10257       return I->getFastMathFlags().noNaNs();
10258     }
10259 
10260     return I->isAssociative();
10261   }
10262 
10263   static Value *getRdxOperand(Instruction *I, unsigned Index) {
10264     // Poison-safe 'or' takes the form: select X, true, Y
10265     // To make that work with the normal operand processing, we skip the
10266     // true value operand.
10267     // TODO: Change the code and data structures to handle this without a hack.
10268     if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1)
10269       return I->getOperand(2);
10270     return I->getOperand(Index);
10271   }
10272 
10273   /// Creates reduction operation with the current opcode.
10274   static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS,
10275                          Value *RHS, const Twine &Name, bool UseSelect) {
10276     unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind);
10277     switch (Kind) {
10278     case RecurKind::Or:
10279       if (UseSelect &&
10280           LHS->getType() == CmpInst::makeCmpResultType(LHS->getType()))
10281         return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name);
10282       return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS,
10283                                  Name);
10284     case RecurKind::And:
10285       if (UseSelect &&
10286           LHS->getType() == CmpInst::makeCmpResultType(LHS->getType()))
10287         return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name);
10288       return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS,
10289                                  Name);
10290     case RecurKind::Add:
10291     case RecurKind::Mul:
10292     case RecurKind::Xor:
10293     case RecurKind::FAdd:
10294     case RecurKind::FMul:
10295       return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS,
10296                                  Name);
10297     case RecurKind::FMax:
10298       return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS);
10299     case RecurKind::FMin:
10300       return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS);
10301     case RecurKind::SMax:
10302       if (UseSelect) {
10303         Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name);
10304         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
10305       }
10306       return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS);
10307     case RecurKind::SMin:
10308       if (UseSelect) {
10309         Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name);
10310         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
10311       }
10312       return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS);
10313     case RecurKind::UMax:
10314       if (UseSelect) {
10315         Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name);
10316         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
10317       }
10318       return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS);
10319     case RecurKind::UMin:
10320       if (UseSelect) {
10321         Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name);
10322         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
10323       }
10324       return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS);
10325     default:
10326       llvm_unreachable("Unknown reduction operation.");
10327     }
10328   }
10329 
10330   /// Creates reduction operation with the current opcode with the IR flags
10331   /// from \p ReductionOps, dropping nuw/nsw flags.
10332   static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS,
10333                          Value *RHS, const Twine &Name,
10334                          const ReductionOpsListType &ReductionOps) {
10335     bool UseSelect = ReductionOps.size() == 2 ||
10336                      // Logical or/and.
10337                      (ReductionOps.size() == 1 &&
10338                       isa<SelectInst>(ReductionOps.front().front()));
10339     assert((!UseSelect || ReductionOps.size() != 2 ||
10340             isa<SelectInst>(ReductionOps[1][0])) &&
10341            "Expected cmp + select pairs for reduction");
10342     Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect);
10343     if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) {
10344       if (auto *Sel = dyn_cast<SelectInst>(Op)) {
10345         propagateIRFlags(Sel->getCondition(), ReductionOps[0], nullptr,
10346                          /*IncludeWrapFlags=*/false);
10347         propagateIRFlags(Op, ReductionOps[1], nullptr,
10348                          /*IncludeWrapFlags=*/false);
10349         return Op;
10350       }
10351     }
10352     propagateIRFlags(Op, ReductionOps[0], nullptr, /*IncludeWrapFlags=*/false);
10353     return Op;
10354   }
10355 
10356   static RecurKind getRdxKind(Value *V) {
10357     auto *I = dyn_cast<Instruction>(V);
10358     if (!I)
10359       return RecurKind::None;
10360     if (match(I, m_Add(m_Value(), m_Value())))
10361       return RecurKind::Add;
10362     if (match(I, m_Mul(m_Value(), m_Value())))
10363       return RecurKind::Mul;
10364     if (match(I, m_And(m_Value(), m_Value())) ||
10365         match(I, m_LogicalAnd(m_Value(), m_Value())))
10366       return RecurKind::And;
10367     if (match(I, m_Or(m_Value(), m_Value())) ||
10368         match(I, m_LogicalOr(m_Value(), m_Value())))
10369       return RecurKind::Or;
10370     if (match(I, m_Xor(m_Value(), m_Value())))
10371       return RecurKind::Xor;
10372     if (match(I, m_FAdd(m_Value(), m_Value())))
10373       return RecurKind::FAdd;
10374     if (match(I, m_FMul(m_Value(), m_Value())))
10375       return RecurKind::FMul;
10376 
10377     if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value())))
10378       return RecurKind::FMax;
10379     if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value())))
10380       return RecurKind::FMin;
10381 
10382     // This matches either cmp+select or intrinsics. SLP is expected to handle
10383     // either form.
10384     // TODO: If we are canonicalizing to intrinsics, we can remove several
10385     //       special-case paths that deal with selects.
10386     if (match(I, m_SMax(m_Value(), m_Value())))
10387       return RecurKind::SMax;
10388     if (match(I, m_SMin(m_Value(), m_Value())))
10389       return RecurKind::SMin;
10390     if (match(I, m_UMax(m_Value(), m_Value())))
10391       return RecurKind::UMax;
10392     if (match(I, m_UMin(m_Value(), m_Value())))
10393       return RecurKind::UMin;
10394 
10395     if (auto *Select = dyn_cast<SelectInst>(I)) {
10396       // Try harder: look for min/max pattern based on instructions producing
10397       // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2).
10398       // During the intermediate stages of SLP, it's very common to have
10399       // pattern like this (since optimizeGatherSequence is run only once
10400       // at the end):
10401       // %1 = extractelement <2 x i32> %a, i32 0
10402       // %2 = extractelement <2 x i32> %a, i32 1
10403       // %cond = icmp sgt i32 %1, %2
10404       // %3 = extractelement <2 x i32> %a, i32 0
10405       // %4 = extractelement <2 x i32> %a, i32 1
10406       // %select = select i1 %cond, i32 %3, i32 %4
10407       CmpInst::Predicate Pred;
10408       Instruction *L1;
10409       Instruction *L2;
10410 
10411       Value *LHS = Select->getTrueValue();
10412       Value *RHS = Select->getFalseValue();
10413       Value *Cond = Select->getCondition();
10414 
10415       // TODO: Support inverse predicates.
10416       if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) {
10417         if (!isa<ExtractElementInst>(RHS) ||
10418             !L2->isIdenticalTo(cast<Instruction>(RHS)))
10419           return RecurKind::None;
10420       } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) {
10421         if (!isa<ExtractElementInst>(LHS) ||
10422             !L1->isIdenticalTo(cast<Instruction>(LHS)))
10423           return RecurKind::None;
10424       } else {
10425         if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS))
10426           return RecurKind::None;
10427         if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) ||
10428             !L1->isIdenticalTo(cast<Instruction>(LHS)) ||
10429             !L2->isIdenticalTo(cast<Instruction>(RHS)))
10430           return RecurKind::None;
10431       }
10432 
10433       switch (Pred) {
10434       default:
10435         return RecurKind::None;
10436       case CmpInst::ICMP_SGT:
10437       case CmpInst::ICMP_SGE:
10438         return RecurKind::SMax;
10439       case CmpInst::ICMP_SLT:
10440       case CmpInst::ICMP_SLE:
10441         return RecurKind::SMin;
10442       case CmpInst::ICMP_UGT:
10443       case CmpInst::ICMP_UGE:
10444         return RecurKind::UMax;
10445       case CmpInst::ICMP_ULT:
10446       case CmpInst::ICMP_ULE:
10447         return RecurKind::UMin;
10448       }
10449     }
10450     return RecurKind::None;
10451   }
10452 
10453   /// Get the index of the first operand.
10454   static unsigned getFirstOperandIndex(Instruction *I) {
10455     return isCmpSelMinMax(I) ? 1 : 0;
10456   }
10457 
10458   /// Total number of operands in the reduction operation.
10459   static unsigned getNumberOfOperands(Instruction *I) {
10460     return isCmpSelMinMax(I) ? 3 : 2;
10461   }
10462 
10463   /// Checks if the instruction is in basic block \p BB.
10464   /// For a cmp+sel min/max reduction check that both ops are in \p BB.
10465   static bool hasSameParent(Instruction *I, BasicBlock *BB) {
10466     if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) {
10467       auto *Sel = cast<SelectInst>(I);
10468       auto *Cmp = dyn_cast<Instruction>(Sel->getCondition());
10469       return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB;
10470     }
10471     return I->getParent() == BB;
10472   }
10473 
10474   /// Expected number of uses for reduction operations/reduced values.
10475   static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) {
10476     if (IsCmpSelMinMax) {
10477       // SelectInst must be used twice while the condition op must have single
10478       // use only.
10479       if (auto *Sel = dyn_cast<SelectInst>(I))
10480         return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse();
10481       return I->hasNUses(2);
10482     }
10483 
10484     // Arithmetic reduction operation must be used once only.
10485     return I->hasOneUse();
10486   }
10487 
10488   /// Initializes the list of reduction operations.
10489   void initReductionOps(Instruction *I) {
10490     if (isCmpSelMinMax(I))
10491       ReductionOps.assign(2, ReductionOpsType());
10492     else
10493       ReductionOps.assign(1, ReductionOpsType());
10494   }
10495 
10496   /// Add all reduction operations for the reduction instruction \p I.
10497   void addReductionOps(Instruction *I) {
10498     if (isCmpSelMinMax(I)) {
10499       ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition());
10500       ReductionOps[1].emplace_back(I);
10501     } else {
10502       ReductionOps[0].emplace_back(I);
10503     }
10504   }
10505 
10506   static Value *getLHS(RecurKind Kind, Instruction *I) {
10507     if (Kind == RecurKind::None)
10508       return nullptr;
10509     return I->getOperand(getFirstOperandIndex(I));
10510   }
10511   static Value *getRHS(RecurKind Kind, Instruction *I) {
10512     if (Kind == RecurKind::None)
10513       return nullptr;
10514     return I->getOperand(getFirstOperandIndex(I) + 1);
10515   }
10516 
10517 public:
10518   HorizontalReduction() = default;
10519 
10520   /// Try to find a reduction tree.
10521   bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst,
10522                                  ScalarEvolution &SE, const DataLayout &DL,
10523                                  const TargetLibraryInfo &TLI) {
10524     assert((!Phi || is_contained(Phi->operands(), Inst)) &&
10525            "Phi needs to use the binary operator");
10526     assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) ||
10527             isa<IntrinsicInst>(Inst)) &&
10528            "Expected binop, select, or intrinsic for reduction matching");
10529     RdxKind = getRdxKind(Inst);
10530 
10531     // We could have a initial reductions that is not an add.
10532     //  r *= v1 + v2 + v3 + v4
10533     // In such a case start looking for a tree rooted in the first '+'.
10534     if (Phi) {
10535       if (getLHS(RdxKind, Inst) == Phi) {
10536         Phi = nullptr;
10537         Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst));
10538         if (!Inst)
10539           return false;
10540         RdxKind = getRdxKind(Inst);
10541       } else if (getRHS(RdxKind, Inst) == Phi) {
10542         Phi = nullptr;
10543         Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst));
10544         if (!Inst)
10545           return false;
10546         RdxKind = getRdxKind(Inst);
10547       }
10548     }
10549 
10550     if (!isVectorizable(RdxKind, Inst))
10551       return false;
10552 
10553     // Analyze "regular" integer/FP types for reductions - no target-specific
10554     // types or pointers.
10555     Type *Ty = Inst->getType();
10556     if (!isValidElementType(Ty) || Ty->isPointerTy())
10557       return false;
10558 
10559     // Though the ultimate reduction may have multiple uses, its condition must
10560     // have only single use.
10561     if (auto *Sel = dyn_cast<SelectInst>(Inst))
10562       if (!Sel->getCondition()->hasOneUse())
10563         return false;
10564 
10565     ReductionRoot = Inst;
10566 
10567     // Iterate through all the operands of the possible reduction tree and
10568     // gather all the reduced values, sorting them by their value id.
10569     BasicBlock *BB = Inst->getParent();
10570     bool IsCmpSelMinMax = isCmpSelMinMax(Inst);
10571     SmallVector<Instruction *> Worklist(1, Inst);
10572     // Checks if the operands of the \p TreeN instruction are also reduction
10573     // operations or should be treated as reduced values or an extra argument,
10574     // which is not part of the reduction.
10575     auto &&CheckOperands = [this, IsCmpSelMinMax,
10576                             BB](Instruction *TreeN,
10577                                 SmallVectorImpl<Value *> &ExtraArgs,
10578                                 SmallVectorImpl<Value *> &PossibleReducedVals,
10579                                 SmallVectorImpl<Instruction *> &ReductionOps) {
10580       for (int I = getFirstOperandIndex(TreeN),
10581                End = getNumberOfOperands(TreeN);
10582            I < End; ++I) {
10583         Value *EdgeVal = getRdxOperand(TreeN, I);
10584         ReducedValsToOps[EdgeVal].push_back(TreeN);
10585         auto *EdgeInst = dyn_cast<Instruction>(EdgeVal);
10586         // Edge has wrong parent - mark as an extra argument.
10587         if (EdgeInst && !isVectorLikeInstWithConstOps(EdgeInst) &&
10588             !hasSameParent(EdgeInst, BB)) {
10589           ExtraArgs.push_back(EdgeVal);
10590           continue;
10591         }
10592         // If the edge is not an instruction, or it is different from the main
10593         // reduction opcode or has too many uses - possible reduced value.
10594         if (!EdgeInst || getRdxKind(EdgeInst) != RdxKind ||
10595             IsCmpSelMinMax != isCmpSelMinMax(EdgeInst) ||
10596             !hasRequiredNumberOfUses(IsCmpSelMinMax, EdgeInst) ||
10597             !isVectorizable(getRdxKind(EdgeInst), EdgeInst)) {
10598           PossibleReducedVals.push_back(EdgeVal);
10599           continue;
10600         }
10601         ReductionOps.push_back(EdgeInst);
10602       }
10603     };
10604     // Try to regroup reduced values so that it gets more profitable to try to
10605     // reduce them. Values are grouped by their value ids, instructions - by
10606     // instruction op id and/or alternate op id, plus do extra analysis for
10607     // loads (grouping them by the distabce between pointers) and cmp
10608     // instructions (grouping them by the predicate).
10609     MapVector<size_t, MapVector<size_t, MapVector<Value *, unsigned>>>
10610         PossibleReducedVals;
10611     initReductionOps(Inst);
10612     while (!Worklist.empty()) {
10613       Instruction *TreeN = Worklist.pop_back_val();
10614       SmallVector<Value *> Args;
10615       SmallVector<Value *> PossibleRedVals;
10616       SmallVector<Instruction *> PossibleReductionOps;
10617       CheckOperands(TreeN, Args, PossibleRedVals, PossibleReductionOps);
10618       // If too many extra args - mark the instruction itself as a reduction
10619       // value, not a reduction operation.
10620       if (Args.size() < 2) {
10621         addReductionOps(TreeN);
10622         // Add extra args.
10623         if (!Args.empty()) {
10624           assert(Args.size() == 1 && "Expected only single argument.");
10625           ExtraArgs[TreeN] = Args.front();
10626         }
10627         // Add reduction values. The values are sorted for better vectorization
10628         // results.
10629         for (Value *V : PossibleRedVals) {
10630           size_t Key, Idx;
10631           std::tie(Key, Idx) = generateKeySubkey(
10632               V, &TLI,
10633               [&PossibleReducedVals, &DL, &SE](size_t Key, LoadInst *LI) {
10634                 for (const auto &LoadData : PossibleReducedVals[Key]) {
10635                   auto *RLI = cast<LoadInst>(LoadData.second.front().first);
10636                   if (getPointersDiff(RLI->getType(), RLI->getPointerOperand(),
10637                                       LI->getType(), LI->getPointerOperand(),
10638                                       DL, SE, /*StrictCheck=*/true))
10639                     return hash_value(RLI->getPointerOperand());
10640                 }
10641                 return hash_value(LI->getPointerOperand());
10642               },
10643               /*AllowAlternate=*/false);
10644           ++PossibleReducedVals[Key][Idx]
10645                 .insert(std::make_pair(V, 0))
10646                 .first->second;
10647         }
10648         Worklist.append(PossibleReductionOps.rbegin(),
10649                         PossibleReductionOps.rend());
10650       } else {
10651         size_t Key, Idx;
10652         std::tie(Key, Idx) = generateKeySubkey(
10653             TreeN, &TLI,
10654             [&PossibleReducedVals, &DL, &SE](size_t Key, LoadInst *LI) {
10655               for (const auto &LoadData : PossibleReducedVals[Key]) {
10656                 auto *RLI = cast<LoadInst>(LoadData.second.front().first);
10657                 if (getPointersDiff(RLI->getType(), RLI->getPointerOperand(),
10658                                     LI->getType(), LI->getPointerOperand(), DL,
10659                                     SE, /*StrictCheck=*/true))
10660                   return hash_value(RLI->getPointerOperand());
10661               }
10662               return hash_value(LI->getPointerOperand());
10663             },
10664             /*AllowAlternate=*/false);
10665         ++PossibleReducedVals[Key][Idx]
10666               .insert(std::make_pair(TreeN, 0))
10667               .first->second;
10668       }
10669     }
10670     auto PossibleReducedValsVect = PossibleReducedVals.takeVector();
10671     // Sort values by the total number of values kinds to start the reduction
10672     // from the longest possible reduced values sequences.
10673     for (auto &PossibleReducedVals : PossibleReducedValsVect) {
10674       auto PossibleRedVals = PossibleReducedVals.second.takeVector();
10675       SmallVector<SmallVector<Value *>> PossibleRedValsVect;
10676       for (auto It = PossibleRedVals.begin(), E = PossibleRedVals.end();
10677            It != E; ++It) {
10678         PossibleRedValsVect.emplace_back();
10679         auto RedValsVect = It->second.takeVector();
10680         stable_sort(RedValsVect, [](const auto &P1, const auto &P2) {
10681           return P1.second < P2.second;
10682         });
10683         for (const std::pair<Value *, unsigned> &Data : RedValsVect)
10684           PossibleRedValsVect.back().append(Data.second, Data.first);
10685       }
10686       stable_sort(PossibleRedValsVect, [](const auto &P1, const auto &P2) {
10687         return P1.size() > P2.size();
10688       });
10689       ReducedVals.emplace_back();
10690       for (ArrayRef<Value *> Data : PossibleRedValsVect)
10691         ReducedVals.back().append(Data.rbegin(), Data.rend());
10692     }
10693     // Sort the reduced values by number of same/alternate opcode and/or pointer
10694     // operand.
10695     stable_sort(ReducedVals, [](ArrayRef<Value *> P1, ArrayRef<Value *> P2) {
10696       return P1.size() > P2.size();
10697     });
10698     return true;
10699   }
10700 
10701   /// Attempt to vectorize the tree found by matchAssociativeReduction.
10702   Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
10703     constexpr int ReductionLimit = 4;
10704     constexpr unsigned RegMaxNumber = 4;
10705     constexpr unsigned RedValsMaxNumber = 128;
10706     // If there are a sufficient number of reduction values, reduce
10707     // to a nearby power-of-2. We can safely generate oversized
10708     // vectors and rely on the backend to split them to legal sizes.
10709     unsigned NumReducedVals = std::accumulate(
10710         ReducedVals.begin(), ReducedVals.end(), 0,
10711         [](int Num, ArrayRef<Value *> Vals) { return Num + Vals.size(); });
10712     if (NumReducedVals < ReductionLimit)
10713       return nullptr;
10714 
10715     IRBuilder<> Builder(cast<Instruction>(ReductionRoot));
10716 
10717     // Track the reduced values in case if they are replaced by extractelement
10718     // because of the vectorization.
10719     DenseMap<Value *, WeakTrackingVH> TrackedVals;
10720     BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues;
10721     // The same extra argument may be used several times, so log each attempt
10722     // to use it.
10723     for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) {
10724       assert(Pair.first && "DebugLoc must be set.");
10725       ExternallyUsedValues[Pair.second].push_back(Pair.first);
10726       TrackedVals.try_emplace(Pair.second, Pair.second);
10727     }
10728 
10729     // The compare instruction of a min/max is the insertion point for new
10730     // instructions and may be replaced with a new compare instruction.
10731     auto &&GetCmpForMinMaxReduction = [](Instruction *RdxRootInst) {
10732       assert(isa<SelectInst>(RdxRootInst) &&
10733              "Expected min/max reduction to have select root instruction");
10734       Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition();
10735       assert(isa<Instruction>(ScalarCond) &&
10736              "Expected min/max reduction to have compare condition");
10737       return cast<Instruction>(ScalarCond);
10738     };
10739 
10740     // The reduction root is used as the insertion point for new instructions,
10741     // so set it as externally used to prevent it from being deleted.
10742     ExternallyUsedValues[ReductionRoot];
10743     SmallDenseSet<Value *> IgnoreList;
10744     for (ReductionOpsType &RdxOps : ReductionOps)
10745       for (Value *RdxOp : RdxOps) {
10746         if (!RdxOp)
10747           continue;
10748         IgnoreList.insert(RdxOp);
10749       }
10750     bool IsCmpSelMinMax = isCmpSelMinMax(cast<Instruction>(ReductionRoot));
10751 
10752     // Need to track reduced vals, they may be changed during vectorization of
10753     // subvectors.
10754     for (ArrayRef<Value *> Candidates : ReducedVals)
10755       for (Value *V : Candidates)
10756         TrackedVals.try_emplace(V, V);
10757 
10758     DenseMap<Value *, unsigned> VectorizedVals;
10759     Value *VectorizedTree = nullptr;
10760     bool CheckForReusedReductionOps = false;
10761     // Try to vectorize elements based on their type.
10762     for (unsigned I = 0, E = ReducedVals.size(); I < E; ++I) {
10763       ArrayRef<Value *> OrigReducedVals = ReducedVals[I];
10764       InstructionsState S = getSameOpcode(OrigReducedVals);
10765       SmallVector<Value *> Candidates;
10766       DenseMap<Value *, Value *> TrackedToOrig;
10767       for (unsigned Cnt = 0, Sz = OrigReducedVals.size(); Cnt < Sz; ++Cnt) {
10768         Value *RdxVal = TrackedVals.find(OrigReducedVals[Cnt])->second;
10769         // Check if the reduction value was not overriden by the extractelement
10770         // instruction because of the vectorization and exclude it, if it is not
10771         // compatible with other values.
10772         if (auto *Inst = dyn_cast<Instruction>(RdxVal))
10773           if (isVectorLikeInstWithConstOps(Inst) &&
10774               (!S.getOpcode() || !S.isOpcodeOrAlt(Inst)))
10775             continue;
10776         Candidates.push_back(RdxVal);
10777         TrackedToOrig.try_emplace(RdxVal, OrigReducedVals[Cnt]);
10778       }
10779       bool ShuffledExtracts = false;
10780       // Try to handle shuffled extractelements.
10781       if (S.getOpcode() == Instruction::ExtractElement && !S.isAltShuffle() &&
10782           I + 1 < E) {
10783         InstructionsState NextS = getSameOpcode(ReducedVals[I + 1]);
10784         if (NextS.getOpcode() == Instruction::ExtractElement &&
10785             !NextS.isAltShuffle()) {
10786           SmallVector<Value *> CommonCandidates(Candidates);
10787           for (Value *RV : ReducedVals[I + 1]) {
10788             Value *RdxVal = TrackedVals.find(RV)->second;
10789             // Check if the reduction value was not overriden by the
10790             // extractelement instruction because of the vectorization and
10791             // exclude it, if it is not compatible with other values.
10792             if (auto *Inst = dyn_cast<Instruction>(RdxVal))
10793               if (!NextS.getOpcode() || !NextS.isOpcodeOrAlt(Inst))
10794                 continue;
10795             CommonCandidates.push_back(RdxVal);
10796             TrackedToOrig.try_emplace(RdxVal, RV);
10797           }
10798           SmallVector<int> Mask;
10799           if (isFixedVectorShuffle(CommonCandidates, Mask)) {
10800             ++I;
10801             Candidates.swap(CommonCandidates);
10802             ShuffledExtracts = true;
10803           }
10804         }
10805       }
10806       unsigned NumReducedVals = Candidates.size();
10807       if (NumReducedVals < ReductionLimit)
10808         continue;
10809 
10810       unsigned MaxVecRegSize = V.getMaxVecRegSize();
10811       unsigned EltSize = V.getVectorElementSize(Candidates[0]);
10812       unsigned MaxElts = RegMaxNumber * PowerOf2Floor(MaxVecRegSize / EltSize);
10813 
10814       unsigned ReduxWidth = std::min<unsigned>(
10815           PowerOf2Floor(NumReducedVals), std::max(RedValsMaxNumber, MaxElts));
10816       unsigned Start = 0;
10817       unsigned Pos = Start;
10818       // Restarts vectorization attempt with lower vector factor.
10819       unsigned PrevReduxWidth = ReduxWidth;
10820       bool CheckForReusedReductionOpsLocal = false;
10821       auto &&AdjustReducedVals = [&Pos, &Start, &ReduxWidth, NumReducedVals,
10822                                   &CheckForReusedReductionOpsLocal,
10823                                   &PrevReduxWidth, &V,
10824                                   &IgnoreList](bool IgnoreVL = false) {
10825         bool IsAnyRedOpGathered = !IgnoreVL && V.isAnyGathered(IgnoreList);
10826         if (!CheckForReusedReductionOpsLocal && PrevReduxWidth == ReduxWidth) {
10827           // Check if any of the reduction ops are gathered. If so, worth
10828           // trying again with less number of reduction ops.
10829           CheckForReusedReductionOpsLocal |= IsAnyRedOpGathered;
10830         }
10831         ++Pos;
10832         if (Pos < NumReducedVals - ReduxWidth + 1)
10833           return IsAnyRedOpGathered;
10834         Pos = Start;
10835         ReduxWidth /= 2;
10836         return IsAnyRedOpGathered;
10837       };
10838       while (Pos < NumReducedVals - ReduxWidth + 1 &&
10839              ReduxWidth >= ReductionLimit) {
10840         // Dependency in tree of the reduction ops - drop this attempt, try
10841         // later.
10842         if (CheckForReusedReductionOpsLocal && PrevReduxWidth != ReduxWidth &&
10843             Start == 0) {
10844           CheckForReusedReductionOps = true;
10845           break;
10846         }
10847         PrevReduxWidth = ReduxWidth;
10848         ArrayRef<Value *> VL(std::next(Candidates.begin(), Pos), ReduxWidth);
10849         // Beeing analyzed already - skip.
10850         if (V.areAnalyzedReductionVals(VL)) {
10851           (void)AdjustReducedVals(/*IgnoreVL=*/true);
10852           continue;
10853         }
10854         // Early exit if any of the reduction values were deleted during
10855         // previous vectorization attempts.
10856         if (any_of(VL, [&V](Value *RedVal) {
10857               auto *RedValI = dyn_cast<Instruction>(RedVal);
10858               if (!RedValI)
10859                 return false;
10860               return V.isDeleted(RedValI);
10861             }))
10862           break;
10863         V.buildTree(VL, IgnoreList);
10864         if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) {
10865           if (!AdjustReducedVals())
10866             V.analyzedReductionVals(VL);
10867           continue;
10868         }
10869         if (V.isLoadCombineReductionCandidate(RdxKind)) {
10870           if (!AdjustReducedVals())
10871             V.analyzedReductionVals(VL);
10872           continue;
10873         }
10874         V.reorderTopToBottom();
10875         // No need to reorder the root node at all.
10876         V.reorderBottomToTop(/*IgnoreReorder=*/true);
10877         // Keep extracted other reduction values, if they are used in the
10878         // vectorization trees.
10879         BoUpSLP::ExtraValueToDebugLocsMap LocalExternallyUsedValues(
10880             ExternallyUsedValues);
10881         for (unsigned Cnt = 0, Sz = ReducedVals.size(); Cnt < Sz; ++Cnt) {
10882           if (Cnt == I || (ShuffledExtracts && Cnt == I - 1))
10883             continue;
10884           for_each(ReducedVals[Cnt],
10885                    [&LocalExternallyUsedValues, &TrackedVals](Value *V) {
10886                      if (isa<Instruction>(V))
10887                        LocalExternallyUsedValues[TrackedVals[V]];
10888                    });
10889         }
10890         // Number of uses of the candidates in the vector of values.
10891         SmallDenseMap<Value *, unsigned> NumUses;
10892         for (unsigned Cnt = 0; Cnt < Pos; ++Cnt) {
10893           Value *V = Candidates[Cnt];
10894           if (NumUses.count(V) > 0)
10895             continue;
10896           NumUses[V] = std::count(VL.begin(), VL.end(), V);
10897         }
10898         for (unsigned Cnt = Pos + ReduxWidth; Cnt < NumReducedVals; ++Cnt) {
10899           Value *V = Candidates[Cnt];
10900           if (NumUses.count(V) > 0)
10901             continue;
10902           NumUses[V] = std::count(VL.begin(), VL.end(), V);
10903         }
10904         // Gather externally used values.
10905         SmallPtrSet<Value *, 4> Visited;
10906         for (unsigned Cnt = 0; Cnt < Pos; ++Cnt) {
10907           Value *V = Candidates[Cnt];
10908           if (!Visited.insert(V).second)
10909             continue;
10910           unsigned NumOps = VectorizedVals.lookup(V) + NumUses[V];
10911           if (NumOps != ReducedValsToOps.find(V)->second.size())
10912             LocalExternallyUsedValues[V];
10913         }
10914         for (unsigned Cnt = Pos + ReduxWidth; Cnt < NumReducedVals; ++Cnt) {
10915           Value *V = Candidates[Cnt];
10916           if (!Visited.insert(V).second)
10917             continue;
10918           unsigned NumOps = VectorizedVals.lookup(V) + NumUses[V];
10919           if (NumOps != ReducedValsToOps.find(V)->second.size())
10920             LocalExternallyUsedValues[V];
10921         }
10922         V.buildExternalUses(LocalExternallyUsedValues);
10923 
10924         V.computeMinimumValueSizes();
10925 
10926         // Intersect the fast-math-flags from all reduction operations.
10927         FastMathFlags RdxFMF;
10928         RdxFMF.set();
10929         for (Value *U : IgnoreList)
10930           if (auto *FPMO = dyn_cast<FPMathOperator>(U))
10931             RdxFMF &= FPMO->getFastMathFlags();
10932         // Estimate cost.
10933         InstructionCost TreeCost = V.getTreeCost(VL);
10934         InstructionCost ReductionCost =
10935             getReductionCost(TTI, VL, ReduxWidth, RdxFMF);
10936         InstructionCost Cost = TreeCost + ReductionCost;
10937         if (!Cost.isValid()) {
10938           LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n");
10939           return nullptr;
10940         }
10941         if (Cost >= -SLPCostThreshold) {
10942           V.getORE()->emit([&]() {
10943             return OptimizationRemarkMissed(
10944                        SV_NAME, "HorSLPNotBeneficial",
10945                        ReducedValsToOps.find(VL[0])->second.front())
10946                    << "Vectorizing horizontal reduction is possible"
10947                    << "but not beneficial with cost " << ore::NV("Cost", Cost)
10948                    << " and threshold "
10949                    << ore::NV("Threshold", -SLPCostThreshold);
10950           });
10951           if (!AdjustReducedVals())
10952             V.analyzedReductionVals(VL);
10953           continue;
10954         }
10955 
10956         LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
10957                           << Cost << ". (HorRdx)\n");
10958         V.getORE()->emit([&]() {
10959           return OptimizationRemark(
10960                      SV_NAME, "VectorizedHorizontalReduction",
10961                      ReducedValsToOps.find(VL[0])->second.front())
10962                  << "Vectorized horizontal reduction with cost "
10963                  << ore::NV("Cost", Cost) << " and with tree size "
10964                  << ore::NV("TreeSize", V.getTreeSize());
10965         });
10966 
10967         Builder.setFastMathFlags(RdxFMF);
10968 
10969         // Vectorize a tree.
10970         Value *VectorizedRoot = V.vectorizeTree(LocalExternallyUsedValues);
10971 
10972         // Emit a reduction. If the root is a select (min/max idiom), the insert
10973         // point is the compare condition of that select.
10974         Instruction *RdxRootInst = cast<Instruction>(ReductionRoot);
10975         if (IsCmpSelMinMax)
10976           Builder.SetInsertPoint(GetCmpForMinMaxReduction(RdxRootInst));
10977         else
10978           Builder.SetInsertPoint(RdxRootInst);
10979 
10980         // To prevent poison from leaking across what used to be sequential,
10981         // safe, scalar boolean logic operations, the reduction operand must be
10982         // frozen.
10983         if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst))
10984           VectorizedRoot = Builder.CreateFreeze(VectorizedRoot);
10985 
10986         Value *ReducedSubTree =
10987             emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI);
10988 
10989         if (!VectorizedTree) {
10990           // Initialize the final value in the reduction.
10991           VectorizedTree = ReducedSubTree;
10992         } else {
10993           // Update the final value in the reduction.
10994           Builder.SetCurrentDebugLocation(
10995               cast<Instruction>(ReductionOps.front().front())->getDebugLoc());
10996           VectorizedTree = createOp(Builder, RdxKind, VectorizedTree,
10997                                     ReducedSubTree, "op.rdx", ReductionOps);
10998         }
10999         // Count vectorized reduced values to exclude them from final reduction.
11000         for (Value *V : VL)
11001           ++VectorizedVals.try_emplace(TrackedToOrig.find(V)->second, 0)
11002                 .first->getSecond();
11003         Pos += ReduxWidth;
11004         Start = Pos;
11005         ReduxWidth = PowerOf2Floor(NumReducedVals - Pos);
11006       }
11007     }
11008     if (VectorizedTree) {
11009       // Finish the reduction.
11010       // Need to add extra arguments and not vectorized possible reduction
11011       // values.
11012       // Try to avoid dependencies between the scalar remainders after
11013       // reductions.
11014       auto &&FinalGen =
11015           [this, &Builder,
11016            &TrackedVals](ArrayRef<std::pair<Instruction *, Value *>> InstVals) {
11017             unsigned Sz = InstVals.size();
11018             SmallVector<std::pair<Instruction *, Value *>> ExtraReds(Sz / 2 +
11019                                                                      Sz % 2);
11020             for (unsigned I = 0, E = (Sz / 2) * 2; I < E; I += 2) {
11021               Instruction *RedOp = InstVals[I + 1].first;
11022               Builder.SetCurrentDebugLocation(RedOp->getDebugLoc());
11023               Value *RdxVal1 = InstVals[I].second;
11024               Value *StableRdxVal1 = RdxVal1;
11025               auto It1 = TrackedVals.find(RdxVal1);
11026               if (It1 != TrackedVals.end())
11027                 StableRdxVal1 = It1->second;
11028               Value *RdxVal2 = InstVals[I + 1].second;
11029               Value *StableRdxVal2 = RdxVal2;
11030               auto It2 = TrackedVals.find(RdxVal2);
11031               if (It2 != TrackedVals.end())
11032                 StableRdxVal2 = It2->second;
11033               Value *ExtraRed = createOp(Builder, RdxKind, StableRdxVal1,
11034                                          StableRdxVal2, "op.rdx", ReductionOps);
11035               ExtraReds[I / 2] = std::make_pair(InstVals[I].first, ExtraRed);
11036             }
11037             if (Sz % 2 == 1)
11038               ExtraReds[Sz / 2] = InstVals.back();
11039             return ExtraReds;
11040           };
11041       SmallVector<std::pair<Instruction *, Value *>> ExtraReductions;
11042       SmallPtrSet<Value *, 8> Visited;
11043       for (ArrayRef<Value *> Candidates : ReducedVals) {
11044         for (Value *RdxVal : Candidates) {
11045           if (!Visited.insert(RdxVal).second)
11046             continue;
11047           unsigned NumOps = VectorizedVals.lookup(RdxVal);
11048           for (Instruction *RedOp :
11049                makeArrayRef(ReducedValsToOps.find(RdxVal)->second)
11050                    .drop_back(NumOps))
11051             ExtraReductions.emplace_back(RedOp, RdxVal);
11052         }
11053       }
11054       for (auto &Pair : ExternallyUsedValues) {
11055         // Add each externally used value to the final reduction.
11056         for (auto *I : Pair.second)
11057           ExtraReductions.emplace_back(I, Pair.first);
11058       }
11059       // Iterate through all not-vectorized reduction values/extra arguments.
11060       while (ExtraReductions.size() > 1) {
11061         SmallVector<std::pair<Instruction *, Value *>> NewReds =
11062             FinalGen(ExtraReductions);
11063         ExtraReductions.swap(NewReds);
11064       }
11065       // Final reduction.
11066       if (ExtraReductions.size() == 1) {
11067         Instruction *RedOp = ExtraReductions.back().first;
11068         Builder.SetCurrentDebugLocation(RedOp->getDebugLoc());
11069         Value *RdxVal = ExtraReductions.back().second;
11070         Value *StableRdxVal = RdxVal;
11071         auto It = TrackedVals.find(RdxVal);
11072         if (It != TrackedVals.end())
11073           StableRdxVal = It->second;
11074         VectorizedTree = createOp(Builder, RdxKind, VectorizedTree,
11075                                   StableRdxVal, "op.rdx", ReductionOps);
11076       }
11077 
11078       ReductionRoot->replaceAllUsesWith(VectorizedTree);
11079 
11080       // The original scalar reduction is expected to have no remaining
11081       // uses outside the reduction tree itself.  Assert that we got this
11082       // correct, replace internal uses with undef, and mark for eventual
11083       // deletion.
11084 #ifndef NDEBUG
11085       SmallSet<Value *, 4> IgnoreSet;
11086       for (ArrayRef<Value *> RdxOps : ReductionOps)
11087         IgnoreSet.insert(RdxOps.begin(), RdxOps.end());
11088 #endif
11089       for (ArrayRef<Value *> RdxOps : ReductionOps) {
11090         for (Value *Ignore : RdxOps) {
11091           if (!Ignore)
11092             continue;
11093 #ifndef NDEBUG
11094           for (auto *U : Ignore->users()) {
11095             assert(IgnoreSet.count(U) &&
11096                    "All users must be either in the reduction ops list.");
11097           }
11098 #endif
11099           if (!Ignore->use_empty()) {
11100             Value *Undef = UndefValue::get(Ignore->getType());
11101             Ignore->replaceAllUsesWith(Undef);
11102           }
11103           V.eraseInstruction(cast<Instruction>(Ignore));
11104         }
11105       }
11106     } else if (!CheckForReusedReductionOps) {
11107       for (ReductionOpsType &RdxOps : ReductionOps)
11108         for (Value *RdxOp : RdxOps)
11109           V.analyzedReductionRoot(cast<Instruction>(RdxOp));
11110     }
11111     return VectorizedTree;
11112   }
11113 
11114 private:
11115   /// Calculate the cost of a reduction.
11116   InstructionCost getReductionCost(TargetTransformInfo *TTI,
11117                                    ArrayRef<Value *> ReducedVals,
11118                                    unsigned ReduxWidth, FastMathFlags FMF) {
11119     TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
11120     Value *FirstReducedVal = ReducedVals.front();
11121     Type *ScalarTy = FirstReducedVal->getType();
11122     FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth);
11123     InstructionCost VectorCost = 0, ScalarCost;
11124     // If all of the reduced values are constant, the vector cost is 0, since
11125     // the reduction value can be calculated at the compile time.
11126     bool AllConsts = all_of(ReducedVals, isConstant);
11127     switch (RdxKind) {
11128     case RecurKind::Add:
11129     case RecurKind::Mul:
11130     case RecurKind::Or:
11131     case RecurKind::And:
11132     case RecurKind::Xor:
11133     case RecurKind::FAdd:
11134     case RecurKind::FMul: {
11135       unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind);
11136       if (!AllConsts)
11137         VectorCost =
11138             TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind);
11139       ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind);
11140       break;
11141     }
11142     case RecurKind::FMax:
11143     case RecurKind::FMin: {
11144       auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy);
11145       if (!AllConsts) {
11146         auto *VecCondTy =
11147             cast<VectorType>(CmpInst::makeCmpResultType(VectorTy));
11148         VectorCost =
11149             TTI->getMinMaxReductionCost(VectorTy, VecCondTy,
11150                                         /*IsUnsigned=*/false, CostKind);
11151       }
11152       CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind);
11153       ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy,
11154                                            SclCondTy, RdxPred, CostKind) +
11155                    TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
11156                                            SclCondTy, RdxPred, CostKind);
11157       break;
11158     }
11159     case RecurKind::SMax:
11160     case RecurKind::SMin:
11161     case RecurKind::UMax:
11162     case RecurKind::UMin: {
11163       auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy);
11164       if (!AllConsts) {
11165         auto *VecCondTy =
11166             cast<VectorType>(CmpInst::makeCmpResultType(VectorTy));
11167         bool IsUnsigned =
11168             RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin;
11169         VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy,
11170                                                  IsUnsigned, CostKind);
11171       }
11172       CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind);
11173       ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy,
11174                                            SclCondTy, RdxPred, CostKind) +
11175                    TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
11176                                            SclCondTy, RdxPred, CostKind);
11177       break;
11178     }
11179     default:
11180       llvm_unreachable("Expected arithmetic or min/max reduction operation");
11181     }
11182 
11183     // Scalar cost is repeated for N-1 elements.
11184     ScalarCost *= (ReduxWidth - 1);
11185     LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost
11186                       << " for reduction that starts with " << *FirstReducedVal
11187                       << " (It is a splitting reduction)\n");
11188     return VectorCost - ScalarCost;
11189   }
11190 
11191   /// Emit a horizontal reduction of the vectorized value.
11192   Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder,
11193                        unsigned ReduxWidth, const TargetTransformInfo *TTI) {
11194     assert(VectorizedValue && "Need to have a vectorized tree node");
11195     assert(isPowerOf2_32(ReduxWidth) &&
11196            "We only handle power-of-two reductions for now");
11197     assert(RdxKind != RecurKind::FMulAdd &&
11198            "A call to the llvm.fmuladd intrinsic is not handled yet");
11199 
11200     ++NumVectorInstructions;
11201     return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind);
11202   }
11203 };
11204 
11205 } // end anonymous namespace
11206 
11207 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) {
11208   if (auto *IE = dyn_cast<InsertElementInst>(InsertInst))
11209     return cast<FixedVectorType>(IE->getType())->getNumElements();
11210 
11211   unsigned AggregateSize = 1;
11212   auto *IV = cast<InsertValueInst>(InsertInst);
11213   Type *CurrentType = IV->getType();
11214   do {
11215     if (auto *ST = dyn_cast<StructType>(CurrentType)) {
11216       for (auto *Elt : ST->elements())
11217         if (Elt != ST->getElementType(0)) // check homogeneity
11218           return None;
11219       AggregateSize *= ST->getNumElements();
11220       CurrentType = ST->getElementType(0);
11221     } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) {
11222       AggregateSize *= AT->getNumElements();
11223       CurrentType = AT->getElementType();
11224     } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) {
11225       AggregateSize *= VT->getNumElements();
11226       return AggregateSize;
11227     } else if (CurrentType->isSingleValueType()) {
11228       return AggregateSize;
11229     } else {
11230       return None;
11231     }
11232   } while (true);
11233 }
11234 
11235 static void findBuildAggregate_rec(Instruction *LastInsertInst,
11236                                    TargetTransformInfo *TTI,
11237                                    SmallVectorImpl<Value *> &BuildVectorOpds,
11238                                    SmallVectorImpl<Value *> &InsertElts,
11239                                    unsigned OperandOffset) {
11240   do {
11241     Value *InsertedOperand = LastInsertInst->getOperand(1);
11242     Optional<unsigned> OperandIndex =
11243         getInsertIndex(LastInsertInst, OperandOffset);
11244     if (!OperandIndex)
11245       return;
11246     if (isa<InsertElementInst>(InsertedOperand) ||
11247         isa<InsertValueInst>(InsertedOperand)) {
11248       findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI,
11249                              BuildVectorOpds, InsertElts, *OperandIndex);
11250 
11251     } else {
11252       BuildVectorOpds[*OperandIndex] = InsertedOperand;
11253       InsertElts[*OperandIndex] = LastInsertInst;
11254     }
11255     LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0));
11256   } while (LastInsertInst != nullptr &&
11257            (isa<InsertValueInst>(LastInsertInst) ||
11258             isa<InsertElementInst>(LastInsertInst)) &&
11259            LastInsertInst->hasOneUse());
11260 }
11261 
11262 /// Recognize construction of vectors like
11263 ///  %ra = insertelement <4 x float> poison, float %s0, i32 0
11264 ///  %rb = insertelement <4 x float> %ra, float %s1, i32 1
11265 ///  %rc = insertelement <4 x float> %rb, float %s2, i32 2
11266 ///  %rd = insertelement <4 x float> %rc, float %s3, i32 3
11267 ///  starting from the last insertelement or insertvalue instruction.
11268 ///
11269 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>},
11270 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on.
11271 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples.
11272 ///
11273 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type.
11274 ///
11275 /// \return true if it matches.
11276 static bool findBuildAggregate(Instruction *LastInsertInst,
11277                                TargetTransformInfo *TTI,
11278                                SmallVectorImpl<Value *> &BuildVectorOpds,
11279                                SmallVectorImpl<Value *> &InsertElts) {
11280 
11281   assert((isa<InsertElementInst>(LastInsertInst) ||
11282           isa<InsertValueInst>(LastInsertInst)) &&
11283          "Expected insertelement or insertvalue instruction!");
11284 
11285   assert((BuildVectorOpds.empty() && InsertElts.empty()) &&
11286          "Expected empty result vectors!");
11287 
11288   Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst);
11289   if (!AggregateSize)
11290     return false;
11291   BuildVectorOpds.resize(*AggregateSize);
11292   InsertElts.resize(*AggregateSize);
11293 
11294   findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 0);
11295   llvm::erase_value(BuildVectorOpds, nullptr);
11296   llvm::erase_value(InsertElts, nullptr);
11297   if (BuildVectorOpds.size() >= 2)
11298     return true;
11299 
11300   return false;
11301 }
11302 
11303 /// Try and get a reduction value from a phi node.
11304 ///
11305 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions
11306 /// if they come from either \p ParentBB or a containing loop latch.
11307 ///
11308 /// \returns A candidate reduction value if possible, or \code nullptr \endcode
11309 /// if not possible.
11310 static Value *getReductionValue(const DominatorTree *DT, PHINode *P,
11311                                 BasicBlock *ParentBB, LoopInfo *LI) {
11312   // There are situations where the reduction value is not dominated by the
11313   // reduction phi. Vectorizing such cases has been reported to cause
11314   // miscompiles. See PR25787.
11315   auto DominatedReduxValue = [&](Value *R) {
11316     return isa<Instruction>(R) &&
11317            DT->dominates(P->getParent(), cast<Instruction>(R)->getParent());
11318   };
11319 
11320   Value *Rdx = nullptr;
11321 
11322   // Return the incoming value if it comes from the same BB as the phi node.
11323   if (P->getIncomingBlock(0) == ParentBB) {
11324     Rdx = P->getIncomingValue(0);
11325   } else if (P->getIncomingBlock(1) == ParentBB) {
11326     Rdx = P->getIncomingValue(1);
11327   }
11328 
11329   if (Rdx && DominatedReduxValue(Rdx))
11330     return Rdx;
11331 
11332   // Otherwise, check whether we have a loop latch to look at.
11333   Loop *BBL = LI->getLoopFor(ParentBB);
11334   if (!BBL)
11335     return nullptr;
11336   BasicBlock *BBLatch = BBL->getLoopLatch();
11337   if (!BBLatch)
11338     return nullptr;
11339 
11340   // There is a loop latch, return the incoming value if it comes from
11341   // that. This reduction pattern occasionally turns up.
11342   if (P->getIncomingBlock(0) == BBLatch) {
11343     Rdx = P->getIncomingValue(0);
11344   } else if (P->getIncomingBlock(1) == BBLatch) {
11345     Rdx = P->getIncomingValue(1);
11346   }
11347 
11348   if (Rdx && DominatedReduxValue(Rdx))
11349     return Rdx;
11350 
11351   return nullptr;
11352 }
11353 
11354 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) {
11355   if (match(I, m_BinOp(m_Value(V0), m_Value(V1))))
11356     return true;
11357   if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1))))
11358     return true;
11359   if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1))))
11360     return true;
11361   if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1))))
11362     return true;
11363   if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1))))
11364     return true;
11365   if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1))))
11366     return true;
11367   if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1))))
11368     return true;
11369   return false;
11370 }
11371 
11372 /// Attempt to reduce a horizontal reduction.
11373 /// If it is legal to match a horizontal reduction feeding the phi node \a P
11374 /// with reduction operators \a Root (or one of its operands) in a basic block
11375 /// \a BB, then check if it can be done. If horizontal reduction is not found
11376 /// and root instruction is a binary operation, vectorization of the operands is
11377 /// attempted.
11378 /// \returns true if a horizontal reduction was matched and reduced or operands
11379 /// of one of the binary instruction were vectorized.
11380 /// \returns false if a horizontal reduction was not matched (or not possible)
11381 /// or no vectorization of any binary operation feeding \a Root instruction was
11382 /// performed.
11383 static bool tryToVectorizeHorReductionOrInstOperands(
11384     PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R,
11385     TargetTransformInfo *TTI, ScalarEvolution &SE, const DataLayout &DL,
11386     const TargetLibraryInfo &TLI,
11387     const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) {
11388   if (!ShouldVectorizeHor)
11389     return false;
11390 
11391   if (!Root)
11392     return false;
11393 
11394   if (Root->getParent() != BB || isa<PHINode>(Root))
11395     return false;
11396   // Start analysis starting from Root instruction. If horizontal reduction is
11397   // found, try to vectorize it. If it is not a horizontal reduction or
11398   // vectorization is not possible or not effective, and currently analyzed
11399   // instruction is a binary operation, try to vectorize the operands, using
11400   // pre-order DFS traversal order. If the operands were not vectorized, repeat
11401   // the same procedure considering each operand as a possible root of the
11402   // horizontal reduction.
11403   // Interrupt the process if the Root instruction itself was vectorized or all
11404   // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized.
11405   // Skip the analysis of CmpInsts. Compiler implements postanalysis of the
11406   // CmpInsts so we can skip extra attempts in
11407   // tryToVectorizeHorReductionOrInstOperands and save compile time.
11408   std::queue<std::pair<Instruction *, unsigned>> Stack;
11409   Stack.emplace(Root, 0);
11410   SmallPtrSet<Value *, 8> VisitedInstrs;
11411   SmallVector<WeakTrackingVH> PostponedInsts;
11412   bool Res = false;
11413   auto &&TryToReduce = [TTI, &SE, &DL, &P, &R, &TLI](Instruction *Inst,
11414                                                      Value *&B0,
11415                                                      Value *&B1) -> Value * {
11416     if (R.isAnalyzedReductionRoot(Inst))
11417       return nullptr;
11418     bool IsBinop = matchRdxBop(Inst, B0, B1);
11419     bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value()));
11420     if (IsBinop || IsSelect) {
11421       HorizontalReduction HorRdx;
11422       if (HorRdx.matchAssociativeReduction(P, Inst, SE, DL, TLI))
11423         return HorRdx.tryToReduce(R, TTI);
11424     }
11425     return nullptr;
11426   };
11427   while (!Stack.empty()) {
11428     Instruction *Inst;
11429     unsigned Level;
11430     std::tie(Inst, Level) = Stack.front();
11431     Stack.pop();
11432     // Do not try to analyze instruction that has already been vectorized.
11433     // This may happen when we vectorize instruction operands on a previous
11434     // iteration while stack was populated before that happened.
11435     if (R.isDeleted(Inst))
11436       continue;
11437     Value *B0 = nullptr, *B1 = nullptr;
11438     if (Value *V = TryToReduce(Inst, B0, B1)) {
11439       Res = true;
11440       // Set P to nullptr to avoid re-analysis of phi node in
11441       // matchAssociativeReduction function unless this is the root node.
11442       P = nullptr;
11443       if (auto *I = dyn_cast<Instruction>(V)) {
11444         // Try to find another reduction.
11445         Stack.emplace(I, Level);
11446         continue;
11447       }
11448     } else {
11449       bool IsBinop = B0 && B1;
11450       if (P && IsBinop) {
11451         Inst = dyn_cast<Instruction>(B0);
11452         if (Inst == P)
11453           Inst = dyn_cast<Instruction>(B1);
11454         if (!Inst) {
11455           // Set P to nullptr to avoid re-analysis of phi node in
11456           // matchAssociativeReduction function unless this is the root node.
11457           P = nullptr;
11458           continue;
11459         }
11460       }
11461       // Set P to nullptr to avoid re-analysis of phi node in
11462       // matchAssociativeReduction function unless this is the root node.
11463       P = nullptr;
11464       // Do not try to vectorize CmpInst operands, this is done separately.
11465       // Final attempt for binop args vectorization should happen after the loop
11466       // to try to find reductions.
11467       if (!isa<CmpInst, InsertElementInst, InsertValueInst>(Inst))
11468         PostponedInsts.push_back(Inst);
11469     }
11470 
11471     // Try to vectorize operands.
11472     // Continue analysis for the instruction from the same basic block only to
11473     // save compile time.
11474     if (++Level < RecursionMaxDepth)
11475       for (auto *Op : Inst->operand_values())
11476         if (VisitedInstrs.insert(Op).second)
11477           if (auto *I = dyn_cast<Instruction>(Op))
11478             // Do not try to vectorize CmpInst operands,  this is done
11479             // separately.
11480             if (!isa<PHINode, CmpInst, InsertElementInst, InsertValueInst>(I) &&
11481                 !R.isDeleted(I) && I->getParent() == BB)
11482               Stack.emplace(I, Level);
11483   }
11484   // Try to vectorized binops where reductions were not found.
11485   for (Value *V : PostponedInsts)
11486     if (auto *Inst = dyn_cast<Instruction>(V))
11487       if (!R.isDeleted(Inst))
11488         Res |= Vectorize(Inst, R);
11489   return Res;
11490 }
11491 
11492 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V,
11493                                                  BasicBlock *BB, BoUpSLP &R,
11494                                                  TargetTransformInfo *TTI) {
11495   auto *I = dyn_cast_or_null<Instruction>(V);
11496   if (!I)
11497     return false;
11498 
11499   if (!isa<BinaryOperator>(I))
11500     P = nullptr;
11501   // Try to match and vectorize a horizontal reduction.
11502   auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool {
11503     return tryToVectorize(I, R);
11504   };
11505   return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, *SE, *DL,
11506                                                   *TLI, ExtraVectorization);
11507 }
11508 
11509 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI,
11510                                                  BasicBlock *BB, BoUpSLP &R) {
11511   const DataLayout &DL = BB->getModule()->getDataLayout();
11512   if (!R.canMapToVector(IVI->getType(), DL))
11513     return false;
11514 
11515   SmallVector<Value *, 16> BuildVectorOpds;
11516   SmallVector<Value *, 16> BuildVectorInsts;
11517   if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts))
11518     return false;
11519 
11520   LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n");
11521   // Aggregate value is unlikely to be processed in vector register.
11522   return tryToVectorizeList(BuildVectorOpds, R);
11523 }
11524 
11525 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI,
11526                                                    BasicBlock *BB, BoUpSLP &R) {
11527   SmallVector<Value *, 16> BuildVectorInsts;
11528   SmallVector<Value *, 16> BuildVectorOpds;
11529   SmallVector<int> Mask;
11530   if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) ||
11531       (llvm::all_of(
11532            BuildVectorOpds,
11533            [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) &&
11534        isFixedVectorShuffle(BuildVectorOpds, Mask)))
11535     return false;
11536 
11537   LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n");
11538   return tryToVectorizeList(BuildVectorInsts, R);
11539 }
11540 
11541 template <typename T>
11542 static bool
11543 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming,
11544                        function_ref<unsigned(T *)> Limit,
11545                        function_ref<bool(T *, T *)> Comparator,
11546                        function_ref<bool(T *, T *)> AreCompatible,
11547                        function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper,
11548                        bool LimitForRegisterSize) {
11549   bool Changed = false;
11550   // Sort by type, parent, operands.
11551   stable_sort(Incoming, Comparator);
11552 
11553   // Try to vectorize elements base on their type.
11554   SmallVector<T *> Candidates;
11555   for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) {
11556     // Look for the next elements with the same type, parent and operand
11557     // kinds.
11558     auto *SameTypeIt = IncIt;
11559     while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt))
11560       ++SameTypeIt;
11561 
11562     // Try to vectorize them.
11563     unsigned NumElts = (SameTypeIt - IncIt);
11564     LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes ("
11565                       << NumElts << ")\n");
11566     // The vectorization is a 3-state attempt:
11567     // 1. Try to vectorize instructions with the same/alternate opcodes with the
11568     // size of maximal register at first.
11569     // 2. Try to vectorize remaining instructions with the same type, if
11570     // possible. This may result in the better vectorization results rather than
11571     // if we try just to vectorize instructions with the same/alternate opcodes.
11572     // 3. Final attempt to try to vectorize all instructions with the
11573     // same/alternate ops only, this may result in some extra final
11574     // vectorization.
11575     if (NumElts > 1 &&
11576         TryToVectorizeHelper(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) {
11577       // Success start over because instructions might have been changed.
11578       Changed = true;
11579     } else if (NumElts < Limit(*IncIt) &&
11580                (Candidates.empty() ||
11581                 Candidates.front()->getType() == (*IncIt)->getType())) {
11582       Candidates.append(IncIt, std::next(IncIt, NumElts));
11583     }
11584     // Final attempt to vectorize instructions with the same types.
11585     if (Candidates.size() > 1 &&
11586         (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) {
11587       if (TryToVectorizeHelper(Candidates, /*LimitForRegisterSize=*/false)) {
11588         // Success start over because instructions might have been changed.
11589         Changed = true;
11590       } else if (LimitForRegisterSize) {
11591         // Try to vectorize using small vectors.
11592         for (auto *It = Candidates.begin(), *End = Candidates.end();
11593              It != End;) {
11594           auto *SameTypeIt = It;
11595           while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It))
11596             ++SameTypeIt;
11597           unsigned NumElts = (SameTypeIt - It);
11598           if (NumElts > 1 && TryToVectorizeHelper(makeArrayRef(It, NumElts),
11599                                             /*LimitForRegisterSize=*/false))
11600             Changed = true;
11601           It = SameTypeIt;
11602         }
11603       }
11604       Candidates.clear();
11605     }
11606 
11607     // Start over at the next instruction of a different type (or the end).
11608     IncIt = SameTypeIt;
11609   }
11610   return Changed;
11611 }
11612 
11613 /// Compare two cmp instructions. If IsCompatibility is true, function returns
11614 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding
11615 /// operands. If IsCompatibility is false, function implements strict weak
11616 /// ordering relation between two cmp instructions, returning true if the first
11617 /// instruction is "less" than the second, i.e. its predicate is less than the
11618 /// predicate of the second or the operands IDs are less than the operands IDs
11619 /// of the second cmp instruction.
11620 template <bool IsCompatibility>
11621 static bool compareCmp(Value *V, Value *V2,
11622                        function_ref<bool(Instruction *)> IsDeleted) {
11623   auto *CI1 = cast<CmpInst>(V);
11624   auto *CI2 = cast<CmpInst>(V2);
11625   if (IsDeleted(CI2) || !isValidElementType(CI2->getType()))
11626     return false;
11627   if (CI1->getOperand(0)->getType()->getTypeID() <
11628       CI2->getOperand(0)->getType()->getTypeID())
11629     return !IsCompatibility;
11630   if (CI1->getOperand(0)->getType()->getTypeID() >
11631       CI2->getOperand(0)->getType()->getTypeID())
11632     return false;
11633   CmpInst::Predicate Pred1 = CI1->getPredicate();
11634   CmpInst::Predicate Pred2 = CI2->getPredicate();
11635   CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1);
11636   CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2);
11637   CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1);
11638   CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2);
11639   if (BasePred1 < BasePred2)
11640     return !IsCompatibility;
11641   if (BasePred1 > BasePred2)
11642     return false;
11643   // Compare operands.
11644   bool LEPreds = Pred1 <= Pred2;
11645   bool GEPreds = Pred1 >= Pred2;
11646   for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) {
11647     auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1);
11648     auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1);
11649     if (Op1->getValueID() < Op2->getValueID())
11650       return !IsCompatibility;
11651     if (Op1->getValueID() > Op2->getValueID())
11652       return false;
11653     if (auto *I1 = dyn_cast<Instruction>(Op1))
11654       if (auto *I2 = dyn_cast<Instruction>(Op2)) {
11655         if (I1->getParent() != I2->getParent())
11656           return false;
11657         InstructionsState S = getSameOpcode({I1, I2});
11658         if (S.getOpcode())
11659           continue;
11660         return false;
11661       }
11662   }
11663   return IsCompatibility;
11664 }
11665 
11666 bool SLPVectorizerPass::vectorizeSimpleInstructions(
11667     SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R,
11668     bool AtTerminator) {
11669   bool OpsChanged = false;
11670   SmallVector<Instruction *, 4> PostponedCmps;
11671   for (auto *I : reverse(Instructions)) {
11672     if (R.isDeleted(I))
11673       continue;
11674     if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) {
11675       OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R);
11676     } else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) {
11677       OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R);
11678     } else if (isa<CmpInst>(I)) {
11679       PostponedCmps.push_back(I);
11680       continue;
11681     }
11682     // Try to find reductions in buildvector sequnces.
11683     OpsChanged |= vectorizeRootInstruction(nullptr, I, BB, R, TTI);
11684   }
11685   if (AtTerminator) {
11686     // Try to find reductions first.
11687     for (Instruction *I : PostponedCmps) {
11688       if (R.isDeleted(I))
11689         continue;
11690       for (Value *Op : I->operands())
11691         OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI);
11692     }
11693     // Try to vectorize operands as vector bundles.
11694     for (Instruction *I : PostponedCmps) {
11695       if (R.isDeleted(I))
11696         continue;
11697       OpsChanged |= tryToVectorize(I, R);
11698     }
11699     // Try to vectorize list of compares.
11700     // Sort by type, compare predicate, etc.
11701     auto &&CompareSorter = [&R](Value *V, Value *V2) {
11702       return compareCmp<false>(V, V2,
11703                                [&R](Instruction *I) { return R.isDeleted(I); });
11704     };
11705 
11706     auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) {
11707       if (V1 == V2)
11708         return true;
11709       return compareCmp<true>(V1, V2,
11710                               [&R](Instruction *I) { return R.isDeleted(I); });
11711     };
11712     auto Limit = [&R](Value *V) {
11713       unsigned EltSize = R.getVectorElementSize(V);
11714       return std::max(2U, R.getMaxVecRegSize() / EltSize);
11715     };
11716 
11717     SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end());
11718     OpsChanged |= tryToVectorizeSequence<Value>(
11719         Vals, Limit, CompareSorter, AreCompatibleCompares,
11720         [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) {
11721           // Exclude possible reductions from other blocks.
11722           bool ArePossiblyReducedInOtherBlock =
11723               any_of(Candidates, [](Value *V) {
11724                 return any_of(V->users(), [V](User *U) {
11725                   return isa<SelectInst>(U) &&
11726                          cast<SelectInst>(U)->getParent() !=
11727                              cast<Instruction>(V)->getParent();
11728                 });
11729               });
11730           if (ArePossiblyReducedInOtherBlock)
11731             return false;
11732           return tryToVectorizeList(Candidates, R, LimitForRegisterSize);
11733         },
11734         /*LimitForRegisterSize=*/true);
11735     Instructions.clear();
11736   } else {
11737     // Insert in reverse order since the PostponedCmps vector was filled in
11738     // reverse order.
11739     Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend());
11740   }
11741   return OpsChanged;
11742 }
11743 
11744 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
11745   bool Changed = false;
11746   SmallVector<Value *, 4> Incoming;
11747   SmallPtrSet<Value *, 16> VisitedInstrs;
11748   // Maps phi nodes to the non-phi nodes found in the use tree for each phi
11749   // node. Allows better to identify the chains that can be vectorized in the
11750   // better way.
11751   DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes;
11752   auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) {
11753     assert(isValidElementType(V1->getType()) &&
11754            isValidElementType(V2->getType()) &&
11755            "Expected vectorizable types only.");
11756     // It is fine to compare type IDs here, since we expect only vectorizable
11757     // types, like ints, floats and pointers, we don't care about other type.
11758     if (V1->getType()->getTypeID() < V2->getType()->getTypeID())
11759       return true;
11760     if (V1->getType()->getTypeID() > V2->getType()->getTypeID())
11761       return false;
11762     ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1];
11763     ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2];
11764     if (Opcodes1.size() < Opcodes2.size())
11765       return true;
11766     if (Opcodes1.size() > Opcodes2.size())
11767       return false;
11768     Optional<bool> ConstOrder;
11769     for (int I = 0, E = Opcodes1.size(); I < E; ++I) {
11770       // Undefs are compatible with any other value.
11771       if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) {
11772         if (!ConstOrder)
11773           ConstOrder =
11774               !isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]);
11775         continue;
11776       }
11777       if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I]))
11778         if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) {
11779           DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent());
11780           DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent());
11781           if (!NodeI1)
11782             return NodeI2 != nullptr;
11783           if (!NodeI2)
11784             return false;
11785           assert((NodeI1 == NodeI2) ==
11786                      (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) &&
11787                  "Different nodes should have different DFS numbers");
11788           if (NodeI1 != NodeI2)
11789             return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn();
11790           InstructionsState S = getSameOpcode({I1, I2});
11791           if (S.getOpcode())
11792             continue;
11793           return I1->getOpcode() < I2->getOpcode();
11794         }
11795       if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) {
11796         if (!ConstOrder)
11797           ConstOrder = Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID();
11798         continue;
11799       }
11800       if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID())
11801         return true;
11802       if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID())
11803         return false;
11804     }
11805     return ConstOrder && *ConstOrder;
11806   };
11807   auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) {
11808     if (V1 == V2)
11809       return true;
11810     if (V1->getType() != V2->getType())
11811       return false;
11812     ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1];
11813     ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2];
11814     if (Opcodes1.size() != Opcodes2.size())
11815       return false;
11816     for (int I = 0, E = Opcodes1.size(); I < E; ++I) {
11817       // Undefs are compatible with any other value.
11818       if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I]))
11819         continue;
11820       if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I]))
11821         if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) {
11822           if (I1->getParent() != I2->getParent())
11823             return false;
11824           InstructionsState S = getSameOpcode({I1, I2});
11825           if (S.getOpcode())
11826             continue;
11827           return false;
11828         }
11829       if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I]))
11830         continue;
11831       if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID())
11832         return false;
11833     }
11834     return true;
11835   };
11836   auto Limit = [&R](Value *V) {
11837     unsigned EltSize = R.getVectorElementSize(V);
11838     return std::max(2U, R.getMaxVecRegSize() / EltSize);
11839   };
11840 
11841   bool HaveVectorizedPhiNodes = false;
11842   do {
11843     // Collect the incoming values from the PHIs.
11844     Incoming.clear();
11845     for (Instruction &I : *BB) {
11846       PHINode *P = dyn_cast<PHINode>(&I);
11847       if (!P)
11848         break;
11849 
11850       // No need to analyze deleted, vectorized and non-vectorizable
11851       // instructions.
11852       if (!VisitedInstrs.count(P) && !R.isDeleted(P) &&
11853           isValidElementType(P->getType()))
11854         Incoming.push_back(P);
11855     }
11856 
11857     // Find the corresponding non-phi nodes for better matching when trying to
11858     // build the tree.
11859     for (Value *V : Incoming) {
11860       SmallVectorImpl<Value *> &Opcodes =
11861           PHIToOpcodes.try_emplace(V).first->getSecond();
11862       if (!Opcodes.empty())
11863         continue;
11864       SmallVector<Value *, 4> Nodes(1, V);
11865       SmallPtrSet<Value *, 4> Visited;
11866       while (!Nodes.empty()) {
11867         auto *PHI = cast<PHINode>(Nodes.pop_back_val());
11868         if (!Visited.insert(PHI).second)
11869           continue;
11870         for (Value *V : PHI->incoming_values()) {
11871           if (auto *PHI1 = dyn_cast<PHINode>((V))) {
11872             Nodes.push_back(PHI1);
11873             continue;
11874           }
11875           Opcodes.emplace_back(V);
11876         }
11877       }
11878     }
11879 
11880     HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>(
11881         Incoming, Limit, PHICompare, AreCompatiblePHIs,
11882         [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) {
11883           return tryToVectorizeList(Candidates, R, LimitForRegisterSize);
11884         },
11885         /*LimitForRegisterSize=*/true);
11886     Changed |= HaveVectorizedPhiNodes;
11887     VisitedInstrs.insert(Incoming.begin(), Incoming.end());
11888   } while (HaveVectorizedPhiNodes);
11889 
11890   VisitedInstrs.clear();
11891 
11892   SmallVector<Instruction *, 8> PostProcessInstructions;
11893   SmallDenseSet<Instruction *, 4> KeyNodes;
11894   for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
11895     // Skip instructions with scalable type. The num of elements is unknown at
11896     // compile-time for scalable type.
11897     if (isa<ScalableVectorType>(it->getType()))
11898       continue;
11899 
11900     // Skip instructions marked for the deletion.
11901     if (R.isDeleted(&*it))
11902       continue;
11903     // We may go through BB multiple times so skip the one we have checked.
11904     if (!VisitedInstrs.insert(&*it).second) {
11905       if (it->use_empty() && KeyNodes.contains(&*it) &&
11906           vectorizeSimpleInstructions(PostProcessInstructions, BB, R,
11907                                       it->isTerminator())) {
11908         // We would like to start over since some instructions are deleted
11909         // and the iterator may become invalid value.
11910         Changed = true;
11911         it = BB->begin();
11912         e = BB->end();
11913       }
11914       continue;
11915     }
11916 
11917     if (isa<DbgInfoIntrinsic>(it))
11918       continue;
11919 
11920     // Try to vectorize reductions that use PHINodes.
11921     if (PHINode *P = dyn_cast<PHINode>(it)) {
11922       // Check that the PHI is a reduction PHI.
11923       if (P->getNumIncomingValues() == 2) {
11924         // Try to match and vectorize a horizontal reduction.
11925         if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R,
11926                                      TTI)) {
11927           Changed = true;
11928           it = BB->begin();
11929           e = BB->end();
11930           continue;
11931         }
11932       }
11933       // Try to vectorize the incoming values of the PHI, to catch reductions
11934       // that feed into PHIs.
11935       for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) {
11936         // Skip if the incoming block is the current BB for now. Also, bypass
11937         // unreachable IR for efficiency and to avoid crashing.
11938         // TODO: Collect the skipped incoming values and try to vectorize them
11939         // after processing BB.
11940         if (BB == P->getIncomingBlock(I) ||
11941             !DT->isReachableFromEntry(P->getIncomingBlock(I)))
11942           continue;
11943 
11944         Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I),
11945                                             P->getIncomingBlock(I), R, TTI);
11946       }
11947       continue;
11948     }
11949 
11950     // Ran into an instruction without users, like terminator, or function call
11951     // with ignored return value, store. Ignore unused instructions (basing on
11952     // instruction type, except for CallInst and InvokeInst).
11953     if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) ||
11954                             isa<InvokeInst>(it))) {
11955       KeyNodes.insert(&*it);
11956       bool OpsChanged = false;
11957       if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) {
11958         for (auto *V : it->operand_values()) {
11959           // Try to match and vectorize a horizontal reduction.
11960           OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI);
11961         }
11962       }
11963       // Start vectorization of post-process list of instructions from the
11964       // top-tree instructions to try to vectorize as many instructions as
11965       // possible.
11966       OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R,
11967                                                 it->isTerminator());
11968       if (OpsChanged) {
11969         // We would like to start over since some instructions are deleted
11970         // and the iterator may become invalid value.
11971         Changed = true;
11972         it = BB->begin();
11973         e = BB->end();
11974         continue;
11975       }
11976     }
11977 
11978     if (isa<InsertElementInst>(it) || isa<CmpInst>(it) ||
11979         isa<InsertValueInst>(it))
11980       PostProcessInstructions.push_back(&*it);
11981   }
11982 
11983   return Changed;
11984 }
11985 
11986 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) {
11987   auto Changed = false;
11988   for (auto &Entry : GEPs) {
11989     // If the getelementptr list has fewer than two elements, there's nothing
11990     // to do.
11991     if (Entry.second.size() < 2)
11992       continue;
11993 
11994     LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length "
11995                       << Entry.second.size() << ".\n");
11996 
11997     // Process the GEP list in chunks suitable for the target's supported
11998     // vector size. If a vector register can't hold 1 element, we are done. We
11999     // are trying to vectorize the index computations, so the maximum number of
12000     // elements is based on the size of the index expression, rather than the
12001     // size of the GEP itself (the target's pointer size).
12002     unsigned MaxVecRegSize = R.getMaxVecRegSize();
12003     unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin());
12004     if (MaxVecRegSize < EltSize)
12005       continue;
12006 
12007     unsigned MaxElts = MaxVecRegSize / EltSize;
12008     for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) {
12009       auto Len = std::min<unsigned>(BE - BI, MaxElts);
12010       ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len);
12011 
12012       // Initialize a set a candidate getelementptrs. Note that we use a
12013       // SetVector here to preserve program order. If the index computations
12014       // are vectorizable and begin with loads, we want to minimize the chance
12015       // of having to reorder them later.
12016       SetVector<Value *> Candidates(GEPList.begin(), GEPList.end());
12017 
12018       // Some of the candidates may have already been vectorized after we
12019       // initially collected them. If so, they are marked as deleted, so remove
12020       // them from the set of candidates.
12021       Candidates.remove_if(
12022           [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); });
12023 
12024       // Remove from the set of candidates all pairs of getelementptrs with
12025       // constant differences. Such getelementptrs are likely not good
12026       // candidates for vectorization in a bottom-up phase since one can be
12027       // computed from the other. We also ensure all candidate getelementptr
12028       // indices are unique.
12029       for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) {
12030         auto *GEPI = GEPList[I];
12031         if (!Candidates.count(GEPI))
12032           continue;
12033         auto *SCEVI = SE->getSCEV(GEPList[I]);
12034         for (int J = I + 1; J < E && Candidates.size() > 1; ++J) {
12035           auto *GEPJ = GEPList[J];
12036           auto *SCEVJ = SE->getSCEV(GEPList[J]);
12037           if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) {
12038             Candidates.remove(GEPI);
12039             Candidates.remove(GEPJ);
12040           } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) {
12041             Candidates.remove(GEPJ);
12042           }
12043         }
12044       }
12045 
12046       // We break out of the above computation as soon as we know there are
12047       // fewer than two candidates remaining.
12048       if (Candidates.size() < 2)
12049         continue;
12050 
12051       // Add the single, non-constant index of each candidate to the bundle. We
12052       // ensured the indices met these constraints when we originally collected
12053       // the getelementptrs.
12054       SmallVector<Value *, 16> Bundle(Candidates.size());
12055       auto BundleIndex = 0u;
12056       for (auto *V : Candidates) {
12057         auto *GEP = cast<GetElementPtrInst>(V);
12058         auto *GEPIdx = GEP->idx_begin()->get();
12059         assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx));
12060         Bundle[BundleIndex++] = GEPIdx;
12061       }
12062 
12063       // Try and vectorize the indices. We are currently only interested in
12064       // gather-like cases of the form:
12065       //
12066       // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ...
12067       //
12068       // where the loads of "a", the loads of "b", and the subtractions can be
12069       // performed in parallel. It's likely that detecting this pattern in a
12070       // bottom-up phase will be simpler and less costly than building a
12071       // full-blown top-down phase beginning at the consecutive loads.
12072       Changed |= tryToVectorizeList(Bundle, R);
12073     }
12074   }
12075   return Changed;
12076 }
12077 
12078 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) {
12079   bool Changed = false;
12080   // Sort by type, base pointers and values operand. Value operands must be
12081   // compatible (have the same opcode, same parent), otherwise it is
12082   // definitely not profitable to try to vectorize them.
12083   auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) {
12084     if (V->getPointerOperandType()->getTypeID() <
12085         V2->getPointerOperandType()->getTypeID())
12086       return true;
12087     if (V->getPointerOperandType()->getTypeID() >
12088         V2->getPointerOperandType()->getTypeID())
12089       return false;
12090     // UndefValues are compatible with all other values.
12091     if (isa<UndefValue>(V->getValueOperand()) ||
12092         isa<UndefValue>(V2->getValueOperand()))
12093       return false;
12094     if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand()))
12095       if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) {
12096         DomTreeNodeBase<llvm::BasicBlock> *NodeI1 =
12097             DT->getNode(I1->getParent());
12098         DomTreeNodeBase<llvm::BasicBlock> *NodeI2 =
12099             DT->getNode(I2->getParent());
12100         assert(NodeI1 && "Should only process reachable instructions");
12101         assert(NodeI2 && "Should only process reachable instructions");
12102         assert((NodeI1 == NodeI2) ==
12103                    (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) &&
12104                "Different nodes should have different DFS numbers");
12105         if (NodeI1 != NodeI2)
12106           return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn();
12107         InstructionsState S = getSameOpcode({I1, I2});
12108         if (S.getOpcode())
12109           return false;
12110         return I1->getOpcode() < I2->getOpcode();
12111       }
12112     if (isa<Constant>(V->getValueOperand()) &&
12113         isa<Constant>(V2->getValueOperand()))
12114       return false;
12115     return V->getValueOperand()->getValueID() <
12116            V2->getValueOperand()->getValueID();
12117   };
12118 
12119   auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) {
12120     if (V1 == V2)
12121       return true;
12122     if (V1->getPointerOperandType() != V2->getPointerOperandType())
12123       return false;
12124     // Undefs are compatible with any other value.
12125     if (isa<UndefValue>(V1->getValueOperand()) ||
12126         isa<UndefValue>(V2->getValueOperand()))
12127       return true;
12128     if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand()))
12129       if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) {
12130         if (I1->getParent() != I2->getParent())
12131           return false;
12132         InstructionsState S = getSameOpcode({I1, I2});
12133         return S.getOpcode() > 0;
12134       }
12135     if (isa<Constant>(V1->getValueOperand()) &&
12136         isa<Constant>(V2->getValueOperand()))
12137       return true;
12138     return V1->getValueOperand()->getValueID() ==
12139            V2->getValueOperand()->getValueID();
12140   };
12141   auto Limit = [&R, this](StoreInst *SI) {
12142     unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType());
12143     return R.getMinVF(EltSize);
12144   };
12145 
12146   // Attempt to sort and vectorize each of the store-groups.
12147   for (auto &Pair : Stores) {
12148     if (Pair.second.size() < 2)
12149       continue;
12150 
12151     LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
12152                       << Pair.second.size() << ".\n");
12153 
12154     if (!isValidElementType(Pair.second.front()->getValueOperand()->getType()))
12155       continue;
12156 
12157     Changed |= tryToVectorizeSequence<StoreInst>(
12158         Pair.second, Limit, StoreSorter, AreCompatibleStores,
12159         [this, &R](ArrayRef<StoreInst *> Candidates, bool) {
12160           return vectorizeStores(Candidates, R);
12161         },
12162         /*LimitForRegisterSize=*/false);
12163   }
12164   return Changed;
12165 }
12166 
12167 char SLPVectorizer::ID = 0;
12168 
12169 static const char lv_name[] = "SLP Vectorizer";
12170 
12171 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
12172 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
12173 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
12174 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
12175 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
12176 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
12177 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
12178 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
12179 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
12180 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
12181 
12182 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); }
12183