1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 45 #include "llvm/Analysis/ScalarEvolution.h" 46 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/Analysis/VectorUtils.h" 51 #include "llvm/IR/Attributes.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DerivedTypes.h" 57 #include "llvm/IR/Dominators.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/IRBuilder.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #ifdef EXPENSIVE_CHECKS 74 #include "llvm/IR/Verifier.h" 75 #endif 76 #include "llvm/Pass.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/Compiler.h" 80 #include "llvm/Support/DOTGraphTraits.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/GraphWriter.h" 84 #include "llvm/Support/InstructionCost.h" 85 #include "llvm/Support/KnownBits.h" 86 #include "llvm/Support/MathExtras.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 89 #include "llvm/Transforms/Utils/Local.h" 90 #include "llvm/Transforms/Utils/LoopUtils.h" 91 #include "llvm/Transforms/Vectorize.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <memory> 97 #include <set> 98 #include <string> 99 #include <tuple> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 using namespace slpvectorizer; 106 107 #define SV_NAME "slp-vectorizer" 108 #define DEBUG_TYPE "SLP" 109 110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 111 112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 113 cl::desc("Run the SLP vectorization passes")); 114 115 static cl::opt<int> 116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 117 cl::desc("Only vectorize if you gain more than this " 118 "number ")); 119 120 static cl::opt<bool> 121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 122 cl::desc("Attempt to vectorize horizontal reductions")); 123 124 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 126 cl::desc( 127 "Attempt to vectorize horizontal reductions feeding into a store")); 128 129 static cl::opt<int> 130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 131 cl::desc("Attempt to vectorize for this register size in bits")); 132 133 static cl::opt<unsigned> 134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 135 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 136 137 static cl::opt<int> 138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 139 cl::desc("Maximum depth of the lookup for consecutive stores.")); 140 141 /// Limits the size of scheduling regions in a block. 142 /// It avoid long compile times for _very_ large blocks where vector 143 /// instructions are spread over a wide range. 144 /// This limit is way higher than needed by real-world functions. 145 static cl::opt<int> 146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 147 cl::desc("Limit the size of the SLP scheduling region per block")); 148 149 static cl::opt<int> MinVectorRegSizeOption( 150 "slp-min-reg-size", cl::init(128), cl::Hidden, 151 cl::desc("Attempt to vectorize for this register size in bits")); 152 153 static cl::opt<unsigned> RecursionMaxDepth( 154 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 155 cl::desc("Limit the recursion depth when building a vectorizable tree")); 156 157 static cl::opt<unsigned> MinTreeSize( 158 "slp-min-tree-size", cl::init(3), cl::Hidden, 159 cl::desc("Only vectorize small trees if they are fully vectorizable")); 160 161 // The maximum depth that the look-ahead score heuristic will explore. 162 // The higher this value, the higher the compilation time overhead. 163 static cl::opt<int> LookAheadMaxDepth( 164 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 165 cl::desc("The maximum look-ahead depth for operand reordering scores")); 166 167 // The maximum depth that the look-ahead score heuristic will explore 168 // when it probing among candidates for vectorization tree roots. 169 // The higher this value, the higher the compilation time overhead but unlike 170 // similar limit for operands ordering this is less frequently used, hence 171 // impact of higher value is less noticeable. 172 static cl::opt<int> RootLookAheadMaxDepth( 173 "slp-max-root-look-ahead-depth", cl::init(2), cl::Hidden, 174 cl::desc("The maximum look-ahead depth for searching best rooting option")); 175 176 static cl::opt<bool> 177 ViewSLPTree("view-slp-tree", cl::Hidden, 178 cl::desc("Display the SLP trees with Graphviz")); 179 180 // Limit the number of alias checks. The limit is chosen so that 181 // it has no negative effect on the llvm benchmarks. 182 static const unsigned AliasedCheckLimit = 10; 183 184 // Another limit for the alias checks: The maximum distance between load/store 185 // instructions where alias checks are done. 186 // This limit is useful for very large basic blocks. 187 static const unsigned MaxMemDepDistance = 160; 188 189 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 190 /// regions to be handled. 191 static const int MinScheduleRegionSize = 16; 192 193 /// Predicate for the element types that the SLP vectorizer supports. 194 /// 195 /// The most important thing to filter here are types which are invalid in LLVM 196 /// vectors. We also filter target specific types which have absolutely no 197 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 198 /// avoids spending time checking the cost model and realizing that they will 199 /// be inevitably scalarized. 200 static bool isValidElementType(Type *Ty) { 201 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 202 !Ty->isPPC_FP128Ty(); 203 } 204 205 /// \returns True if the value is a constant (but not globals/constant 206 /// expressions). 207 static bool isConstant(Value *V) { 208 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 209 } 210 211 /// Checks if \p V is one of vector-like instructions, i.e. undef, 212 /// insertelement/extractelement with constant indices for fixed vector type or 213 /// extractvalue instruction. 214 static bool isVectorLikeInstWithConstOps(Value *V) { 215 if (!isa<InsertElementInst, ExtractElementInst>(V) && 216 !isa<ExtractValueInst, UndefValue>(V)) 217 return false; 218 auto *I = dyn_cast<Instruction>(V); 219 if (!I || isa<ExtractValueInst>(I)) 220 return true; 221 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 222 return false; 223 if (isa<ExtractElementInst>(I)) 224 return isConstant(I->getOperand(1)); 225 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 226 return isConstant(I->getOperand(2)); 227 } 228 229 /// \returns true if all of the instructions in \p VL are in the same block or 230 /// false otherwise. 231 static bool allSameBlock(ArrayRef<Value *> VL) { 232 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 233 if (!I0) 234 return false; 235 if (all_of(VL, isVectorLikeInstWithConstOps)) 236 return true; 237 238 BasicBlock *BB = I0->getParent(); 239 for (int I = 1, E = VL.size(); I < E; I++) { 240 auto *II = dyn_cast<Instruction>(VL[I]); 241 if (!II) 242 return false; 243 244 if (BB != II->getParent()) 245 return false; 246 } 247 return true; 248 } 249 250 /// \returns True if all of the values in \p VL are constants (but not 251 /// globals/constant expressions). 252 static bool allConstant(ArrayRef<Value *> VL) { 253 // Constant expressions and globals can't be vectorized like normal integer/FP 254 // constants. 255 return all_of(VL, isConstant); 256 } 257 258 /// \returns True if all of the values in \p VL are identical or some of them 259 /// are UndefValue. 260 static bool isSplat(ArrayRef<Value *> VL) { 261 Value *FirstNonUndef = nullptr; 262 for (Value *V : VL) { 263 if (isa<UndefValue>(V)) 264 continue; 265 if (!FirstNonUndef) { 266 FirstNonUndef = V; 267 continue; 268 } 269 if (V != FirstNonUndef) 270 return false; 271 } 272 return FirstNonUndef != nullptr; 273 } 274 275 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 276 static bool isCommutative(Instruction *I) { 277 if (auto *Cmp = dyn_cast<CmpInst>(I)) 278 return Cmp->isCommutative(); 279 if (auto *BO = dyn_cast<BinaryOperator>(I)) 280 return BO->isCommutative(); 281 // TODO: This should check for generic Instruction::isCommutative(), but 282 // we need to confirm that the caller code correctly handles Intrinsics 283 // for example (does not have 2 operands). 284 return false; 285 } 286 287 /// Checks if the given value is actually an undefined constant vector. 288 static bool isUndefVector(const Value *V) { 289 if (isa<UndefValue>(V)) 290 return true; 291 auto *C = dyn_cast<Constant>(V); 292 if (!C) 293 return false; 294 if (!C->containsUndefOrPoisonElement()) 295 return false; 296 auto *VecTy = dyn_cast<FixedVectorType>(C->getType()); 297 if (!VecTy) 298 return false; 299 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { 300 if (Constant *Elem = C->getAggregateElement(I)) 301 if (!isa<UndefValue>(Elem)) 302 return false; 303 } 304 return true; 305 } 306 307 /// Checks if the vector of instructions can be represented as a shuffle, like: 308 /// %x0 = extractelement <4 x i8> %x, i32 0 309 /// %x3 = extractelement <4 x i8> %x, i32 3 310 /// %y1 = extractelement <4 x i8> %y, i32 1 311 /// %y2 = extractelement <4 x i8> %y, i32 2 312 /// %x0x0 = mul i8 %x0, %x0 313 /// %x3x3 = mul i8 %x3, %x3 314 /// %y1y1 = mul i8 %y1, %y1 315 /// %y2y2 = mul i8 %y2, %y2 316 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 317 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 318 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 319 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 320 /// ret <4 x i8> %ins4 321 /// can be transformed into: 322 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 323 /// i32 6> 324 /// %2 = mul <4 x i8> %1, %1 325 /// ret <4 x i8> %2 326 /// We convert this initially to something like: 327 /// %x0 = extractelement <4 x i8> %x, i32 0 328 /// %x3 = extractelement <4 x i8> %x, i32 3 329 /// %y1 = extractelement <4 x i8> %y, i32 1 330 /// %y2 = extractelement <4 x i8> %y, i32 2 331 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 332 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 333 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 334 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 335 /// %5 = mul <4 x i8> %4, %4 336 /// %6 = extractelement <4 x i8> %5, i32 0 337 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 338 /// %7 = extractelement <4 x i8> %5, i32 1 339 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 340 /// %8 = extractelement <4 x i8> %5, i32 2 341 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 342 /// %9 = extractelement <4 x i8> %5, i32 3 343 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 344 /// ret <4 x i8> %ins4 345 /// InstCombiner transforms this into a shuffle and vector mul 346 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 347 /// TODO: Can we split off and reuse the shuffle mask detection from 348 /// TargetTransformInfo::getInstructionThroughput? 349 static Optional<TargetTransformInfo::ShuffleKind> 350 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 351 const auto *It = 352 find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); }); 353 if (It == VL.end()) 354 return None; 355 auto *EI0 = cast<ExtractElementInst>(*It); 356 if (isa<ScalableVectorType>(EI0->getVectorOperandType())) 357 return None; 358 unsigned Size = 359 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 360 Value *Vec1 = nullptr; 361 Value *Vec2 = nullptr; 362 enum ShuffleMode { Unknown, Select, Permute }; 363 ShuffleMode CommonShuffleMode = Unknown; 364 Mask.assign(VL.size(), UndefMaskElem); 365 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 366 // Undef can be represented as an undef element in a vector. 367 if (isa<UndefValue>(VL[I])) 368 continue; 369 auto *EI = cast<ExtractElementInst>(VL[I]); 370 if (isa<ScalableVectorType>(EI->getVectorOperandType())) 371 return None; 372 auto *Vec = EI->getVectorOperand(); 373 // We can extractelement from undef or poison vector. 374 if (isUndefVector(Vec)) 375 continue; 376 // All vector operands must have the same number of vector elements. 377 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 378 return None; 379 if (isa<UndefValue>(EI->getIndexOperand())) 380 continue; 381 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 382 if (!Idx) 383 return None; 384 // Undefined behavior if Idx is negative or >= Size. 385 if (Idx->getValue().uge(Size)) 386 continue; 387 unsigned IntIdx = Idx->getValue().getZExtValue(); 388 Mask[I] = IntIdx; 389 // For correct shuffling we have to have at most 2 different vector operands 390 // in all extractelement instructions. 391 if (!Vec1 || Vec1 == Vec) { 392 Vec1 = Vec; 393 } else if (!Vec2 || Vec2 == Vec) { 394 Vec2 = Vec; 395 Mask[I] += Size; 396 } else { 397 return None; 398 } 399 if (CommonShuffleMode == Permute) 400 continue; 401 // If the extract index is not the same as the operation number, it is a 402 // permutation. 403 if (IntIdx != I) { 404 CommonShuffleMode = Permute; 405 continue; 406 } 407 CommonShuffleMode = Select; 408 } 409 // If we're not crossing lanes in different vectors, consider it as blending. 410 if (CommonShuffleMode == Select && Vec2) 411 return TargetTransformInfo::SK_Select; 412 // If Vec2 was never used, we have a permutation of a single vector, otherwise 413 // we have permutation of 2 vectors. 414 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 415 : TargetTransformInfo::SK_PermuteSingleSrc; 416 } 417 418 namespace { 419 420 /// Main data required for vectorization of instructions. 421 struct InstructionsState { 422 /// The very first instruction in the list with the main opcode. 423 Value *OpValue = nullptr; 424 425 /// The main/alternate instruction. 426 Instruction *MainOp = nullptr; 427 Instruction *AltOp = nullptr; 428 429 /// The main/alternate opcodes for the list of instructions. 430 unsigned getOpcode() const { 431 return MainOp ? MainOp->getOpcode() : 0; 432 } 433 434 unsigned getAltOpcode() const { 435 return AltOp ? AltOp->getOpcode() : 0; 436 } 437 438 /// Some of the instructions in the list have alternate opcodes. 439 bool isAltShuffle() const { return AltOp != MainOp; } 440 441 bool isOpcodeOrAlt(Instruction *I) const { 442 unsigned CheckedOpcode = I->getOpcode(); 443 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 444 } 445 446 InstructionsState() = delete; 447 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 448 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 449 }; 450 451 } // end anonymous namespace 452 453 /// Chooses the correct key for scheduling data. If \p Op has the same (or 454 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 455 /// OpValue. 456 static Value *isOneOf(const InstructionsState &S, Value *Op) { 457 auto *I = dyn_cast<Instruction>(Op); 458 if (I && S.isOpcodeOrAlt(I)) 459 return Op; 460 return S.OpValue; 461 } 462 463 /// \returns true if \p Opcode is allowed as part of of the main/alternate 464 /// instruction for SLP vectorization. 465 /// 466 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 467 /// "shuffled out" lane would result in division by zero. 468 static bool isValidForAlternation(unsigned Opcode) { 469 if (Instruction::isIntDivRem(Opcode)) 470 return false; 471 472 return true; 473 } 474 475 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 476 unsigned BaseIndex = 0); 477 478 /// Checks if the provided operands of 2 cmp instructions are compatible, i.e. 479 /// compatible instructions or constants, or just some other regular values. 480 static bool areCompatibleCmpOps(Value *BaseOp0, Value *BaseOp1, Value *Op0, 481 Value *Op1) { 482 return (isConstant(BaseOp0) && isConstant(Op0)) || 483 (isConstant(BaseOp1) && isConstant(Op1)) || 484 (!isa<Instruction>(BaseOp0) && !isa<Instruction>(Op0) && 485 !isa<Instruction>(BaseOp1) && !isa<Instruction>(Op1)) || 486 getSameOpcode({BaseOp0, Op0}).getOpcode() || 487 getSameOpcode({BaseOp1, Op1}).getOpcode(); 488 } 489 490 /// \returns analysis of the Instructions in \p VL described in 491 /// InstructionsState, the Opcode that we suppose the whole list 492 /// could be vectorized even if its structure is diverse. 493 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 494 unsigned BaseIndex) { 495 // Make sure these are all Instructions. 496 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 497 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 498 499 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 500 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 501 bool IsCmpOp = isa<CmpInst>(VL[BaseIndex]); 502 CmpInst::Predicate BasePred = 503 IsCmpOp ? cast<CmpInst>(VL[BaseIndex])->getPredicate() 504 : CmpInst::BAD_ICMP_PREDICATE; 505 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 506 unsigned AltOpcode = Opcode; 507 unsigned AltIndex = BaseIndex; 508 509 // Check for one alternate opcode from another BinaryOperator. 510 // TODO - generalize to support all operators (types, calls etc.). 511 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 512 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 513 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 514 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 515 continue; 516 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 517 isValidForAlternation(Opcode)) { 518 AltOpcode = InstOpcode; 519 AltIndex = Cnt; 520 continue; 521 } 522 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 523 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 524 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 525 if (Ty0 == Ty1) { 526 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 527 continue; 528 if (Opcode == AltOpcode) { 529 assert(isValidForAlternation(Opcode) && 530 isValidForAlternation(InstOpcode) && 531 "Cast isn't safe for alternation, logic needs to be updated!"); 532 AltOpcode = InstOpcode; 533 AltIndex = Cnt; 534 continue; 535 } 536 } 537 } else if (IsCmpOp && isa<CmpInst>(VL[Cnt])) { 538 auto *BaseInst = cast<Instruction>(VL[BaseIndex]); 539 auto *Inst = cast<Instruction>(VL[Cnt]); 540 Type *Ty0 = BaseInst->getOperand(0)->getType(); 541 Type *Ty1 = Inst->getOperand(0)->getType(); 542 if (Ty0 == Ty1) { 543 Value *BaseOp0 = BaseInst->getOperand(0); 544 Value *BaseOp1 = BaseInst->getOperand(1); 545 Value *Op0 = Inst->getOperand(0); 546 Value *Op1 = Inst->getOperand(1); 547 CmpInst::Predicate CurrentPred = 548 cast<CmpInst>(VL[Cnt])->getPredicate(); 549 CmpInst::Predicate SwappedCurrentPred = 550 CmpInst::getSwappedPredicate(CurrentPred); 551 // Check for compatible operands. If the corresponding operands are not 552 // compatible - need to perform alternate vectorization. 553 if (InstOpcode == Opcode) { 554 if (BasePred == CurrentPred && 555 areCompatibleCmpOps(BaseOp0, BaseOp1, Op0, Op1)) 556 continue; 557 if (BasePred == SwappedCurrentPred && 558 areCompatibleCmpOps(BaseOp0, BaseOp1, Op1, Op0)) 559 continue; 560 if (E == 2 && 561 (BasePred == CurrentPred || BasePred == SwappedCurrentPred)) 562 continue; 563 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 564 CmpInst::Predicate AltPred = AltInst->getPredicate(); 565 Value *AltOp0 = AltInst->getOperand(0); 566 Value *AltOp1 = AltInst->getOperand(1); 567 // Check if operands are compatible with alternate operands. 568 if (AltPred == CurrentPred && 569 areCompatibleCmpOps(AltOp0, AltOp1, Op0, Op1)) 570 continue; 571 if (AltPred == SwappedCurrentPred && 572 areCompatibleCmpOps(AltOp0, AltOp1, Op1, Op0)) 573 continue; 574 } 575 if (BaseIndex == AltIndex && BasePred != CurrentPred) { 576 assert(isValidForAlternation(Opcode) && 577 isValidForAlternation(InstOpcode) && 578 "Cast isn't safe for alternation, logic needs to be updated!"); 579 AltIndex = Cnt; 580 continue; 581 } 582 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 583 CmpInst::Predicate AltPred = AltInst->getPredicate(); 584 if (BasePred == CurrentPred || BasePred == SwappedCurrentPred || 585 AltPred == CurrentPred || AltPred == SwappedCurrentPred) 586 continue; 587 } 588 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 589 continue; 590 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 591 } 592 593 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 594 cast<Instruction>(VL[AltIndex])); 595 } 596 597 /// \returns true if all of the values in \p VL have the same type or false 598 /// otherwise. 599 static bool allSameType(ArrayRef<Value *> VL) { 600 Type *Ty = VL[0]->getType(); 601 for (int i = 1, e = VL.size(); i < e; i++) 602 if (VL[i]->getType() != Ty) 603 return false; 604 605 return true; 606 } 607 608 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 609 static Optional<unsigned> getExtractIndex(Instruction *E) { 610 unsigned Opcode = E->getOpcode(); 611 assert((Opcode == Instruction::ExtractElement || 612 Opcode == Instruction::ExtractValue) && 613 "Expected extractelement or extractvalue instruction."); 614 if (Opcode == Instruction::ExtractElement) { 615 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 616 if (!CI) 617 return None; 618 return CI->getZExtValue(); 619 } 620 ExtractValueInst *EI = cast<ExtractValueInst>(E); 621 if (EI->getNumIndices() != 1) 622 return None; 623 return *EI->idx_begin(); 624 } 625 626 /// \returns True if in-tree use also needs extract. This refers to 627 /// possible scalar operand in vectorized instruction. 628 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 629 TargetLibraryInfo *TLI) { 630 unsigned Opcode = UserInst->getOpcode(); 631 switch (Opcode) { 632 case Instruction::Load: { 633 LoadInst *LI = cast<LoadInst>(UserInst); 634 return (LI->getPointerOperand() == Scalar); 635 } 636 case Instruction::Store: { 637 StoreInst *SI = cast<StoreInst>(UserInst); 638 return (SI->getPointerOperand() == Scalar); 639 } 640 case Instruction::Call: { 641 CallInst *CI = cast<CallInst>(UserInst); 642 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 643 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 644 if (isVectorIntrinsicWithScalarOpAtArg(ID, i)) 645 return (CI->getArgOperand(i) == Scalar); 646 } 647 LLVM_FALLTHROUGH; 648 } 649 default: 650 return false; 651 } 652 } 653 654 /// \returns the AA location that is being access by the instruction. 655 static MemoryLocation getLocation(Instruction *I) { 656 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 657 return MemoryLocation::get(SI); 658 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 659 return MemoryLocation::get(LI); 660 return MemoryLocation(); 661 } 662 663 /// \returns True if the instruction is not a volatile or atomic load/store. 664 static bool isSimple(Instruction *I) { 665 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 666 return LI->isSimple(); 667 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 668 return SI->isSimple(); 669 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 670 return !MI->isVolatile(); 671 return true; 672 } 673 674 /// Shuffles \p Mask in accordance with the given \p SubMask. 675 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 676 if (SubMask.empty()) 677 return; 678 if (Mask.empty()) { 679 Mask.append(SubMask.begin(), SubMask.end()); 680 return; 681 } 682 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 683 int TermValue = std::min(Mask.size(), SubMask.size()); 684 for (int I = 0, E = SubMask.size(); I < E; ++I) { 685 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 686 Mask[SubMask[I]] >= TermValue) 687 continue; 688 NewMask[I] = Mask[SubMask[I]]; 689 } 690 Mask.swap(NewMask); 691 } 692 693 /// Order may have elements assigned special value (size) which is out of 694 /// bounds. Such indices only appear on places which correspond to undef values 695 /// (see canReuseExtract for details) and used in order to avoid undef values 696 /// have effect on operands ordering. 697 /// The first loop below simply finds all unused indices and then the next loop 698 /// nest assigns these indices for undef values positions. 699 /// As an example below Order has two undef positions and they have assigned 700 /// values 3 and 7 respectively: 701 /// before: 6 9 5 4 9 2 1 0 702 /// after: 6 3 5 4 7 2 1 0 703 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 704 const unsigned Sz = Order.size(); 705 SmallBitVector UnusedIndices(Sz, /*t=*/true); 706 SmallBitVector MaskedIndices(Sz); 707 for (unsigned I = 0; I < Sz; ++I) { 708 if (Order[I] < Sz) 709 UnusedIndices.reset(Order[I]); 710 else 711 MaskedIndices.set(I); 712 } 713 if (MaskedIndices.none()) 714 return; 715 assert(UnusedIndices.count() == MaskedIndices.count() && 716 "Non-synced masked/available indices."); 717 int Idx = UnusedIndices.find_first(); 718 int MIdx = MaskedIndices.find_first(); 719 while (MIdx >= 0) { 720 assert(Idx >= 0 && "Indices must be synced."); 721 Order[MIdx] = Idx; 722 Idx = UnusedIndices.find_next(Idx); 723 MIdx = MaskedIndices.find_next(MIdx); 724 } 725 } 726 727 namespace llvm { 728 729 static void inversePermutation(ArrayRef<unsigned> Indices, 730 SmallVectorImpl<int> &Mask) { 731 Mask.clear(); 732 const unsigned E = Indices.size(); 733 Mask.resize(E, UndefMaskElem); 734 for (unsigned I = 0; I < E; ++I) 735 Mask[Indices[I]] = I; 736 } 737 738 /// \returns inserting index of InsertElement or InsertValue instruction, 739 /// using Offset as base offset for index. 740 static Optional<unsigned> getInsertIndex(const Value *InsertInst, 741 unsigned Offset = 0) { 742 int Index = Offset; 743 if (const auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 744 if (const auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 745 auto *VT = cast<FixedVectorType>(IE->getType()); 746 if (CI->getValue().uge(VT->getNumElements())) 747 return None; 748 Index *= VT->getNumElements(); 749 Index += CI->getZExtValue(); 750 return Index; 751 } 752 return None; 753 } 754 755 const auto *IV = cast<InsertValueInst>(InsertInst); 756 Type *CurrentType = IV->getType(); 757 for (unsigned I : IV->indices()) { 758 if (const auto *ST = dyn_cast<StructType>(CurrentType)) { 759 Index *= ST->getNumElements(); 760 CurrentType = ST->getElementType(I); 761 } else if (const auto *AT = dyn_cast<ArrayType>(CurrentType)) { 762 Index *= AT->getNumElements(); 763 CurrentType = AT->getElementType(); 764 } else { 765 return None; 766 } 767 Index += I; 768 } 769 return Index; 770 } 771 772 /// Reorders the list of scalars in accordance with the given \p Mask. 773 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 774 ArrayRef<int> Mask) { 775 assert(!Mask.empty() && "Expected non-empty mask."); 776 SmallVector<Value *> Prev(Scalars.size(), 777 UndefValue::get(Scalars.front()->getType())); 778 Prev.swap(Scalars); 779 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 780 if (Mask[I] != UndefMaskElem) 781 Scalars[Mask[I]] = Prev[I]; 782 } 783 784 /// Checks if the provided value does not require scheduling. It does not 785 /// require scheduling if this is not an instruction or it is an instruction 786 /// that does not read/write memory and all operands are either not instructions 787 /// or phi nodes or instructions from different blocks. 788 static bool areAllOperandsNonInsts(Value *V) { 789 auto *I = dyn_cast<Instruction>(V); 790 if (!I) 791 return true; 792 return !mayHaveNonDefUseDependency(*I) && 793 all_of(I->operands(), [I](Value *V) { 794 auto *IO = dyn_cast<Instruction>(V); 795 if (!IO) 796 return true; 797 return isa<PHINode>(IO) || IO->getParent() != I->getParent(); 798 }); 799 } 800 801 /// Checks if the provided value does not require scheduling. It does not 802 /// require scheduling if this is not an instruction or it is an instruction 803 /// that does not read/write memory and all users are phi nodes or instructions 804 /// from the different blocks. 805 static bool isUsedOutsideBlock(Value *V) { 806 auto *I = dyn_cast<Instruction>(V); 807 if (!I) 808 return true; 809 // Limits the number of uses to save compile time. 810 constexpr int UsesLimit = 8; 811 return !I->mayReadOrWriteMemory() && !I->hasNUsesOrMore(UsesLimit) && 812 all_of(I->users(), [I](User *U) { 813 auto *IU = dyn_cast<Instruction>(U); 814 if (!IU) 815 return true; 816 return IU->getParent() != I->getParent() || isa<PHINode>(IU); 817 }); 818 } 819 820 /// Checks if the specified value does not require scheduling. It does not 821 /// require scheduling if all operands and all users do not need to be scheduled 822 /// in the current basic block. 823 static bool doesNotNeedToBeScheduled(Value *V) { 824 return areAllOperandsNonInsts(V) && isUsedOutsideBlock(V); 825 } 826 827 /// Checks if the specified array of instructions does not require scheduling. 828 /// It is so if all either instructions have operands that do not require 829 /// scheduling or their users do not require scheduling since they are phis or 830 /// in other basic blocks. 831 static bool doesNotNeedToSchedule(ArrayRef<Value *> VL) { 832 return !VL.empty() && 833 (all_of(VL, isUsedOutsideBlock) || all_of(VL, areAllOperandsNonInsts)); 834 } 835 836 namespace slpvectorizer { 837 838 /// Bottom Up SLP Vectorizer. 839 class BoUpSLP { 840 struct TreeEntry; 841 struct ScheduleData; 842 843 public: 844 using ValueList = SmallVector<Value *, 8>; 845 using InstrList = SmallVector<Instruction *, 16>; 846 using ValueSet = SmallPtrSet<Value *, 16>; 847 using StoreList = SmallVector<StoreInst *, 8>; 848 using ExtraValueToDebugLocsMap = 849 MapVector<Value *, SmallVector<Instruction *, 2>>; 850 using OrdersType = SmallVector<unsigned, 4>; 851 852 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 853 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 854 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 855 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 856 : BatchAA(*Aa), F(Func), SE(Se), TTI(Tti), TLI(TLi), LI(Li), 857 DT(Dt), AC(AC), DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 858 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 859 // Use the vector register size specified by the target unless overridden 860 // by a command-line option. 861 // TODO: It would be better to limit the vectorization factor based on 862 // data type rather than just register size. For example, x86 AVX has 863 // 256-bit registers, but it does not support integer operations 864 // at that width (that requires AVX2). 865 if (MaxVectorRegSizeOption.getNumOccurrences()) 866 MaxVecRegSize = MaxVectorRegSizeOption; 867 else 868 MaxVecRegSize = 869 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 870 .getFixedSize(); 871 872 if (MinVectorRegSizeOption.getNumOccurrences()) 873 MinVecRegSize = MinVectorRegSizeOption; 874 else 875 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 876 } 877 878 /// Vectorize the tree that starts with the elements in \p VL. 879 /// Returns the vectorized root. 880 Value *vectorizeTree(); 881 882 /// Vectorize the tree but with the list of externally used values \p 883 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 884 /// generated extractvalue instructions. 885 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 886 887 /// \returns the cost incurred by unwanted spills and fills, caused by 888 /// holding live values over call sites. 889 InstructionCost getSpillCost() const; 890 891 /// \returns the vectorization cost of the subtree that starts at \p VL. 892 /// A negative number means that this is profitable. 893 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 894 895 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 896 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 897 void buildTree(ArrayRef<Value *> Roots, 898 const SmallDenseSet<Value *> &UserIgnoreLst); 899 900 /// Construct a vectorizable tree that starts at \p Roots. 901 void buildTree(ArrayRef<Value *> Roots); 902 903 /// Builds external uses of the vectorized scalars, i.e. the list of 904 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 905 /// ExternallyUsedValues contains additional list of external uses to handle 906 /// vectorization of reductions. 907 void 908 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 909 910 /// Clear the internal data structures that are created by 'buildTree'. 911 void deleteTree() { 912 VectorizableTree.clear(); 913 ScalarToTreeEntry.clear(); 914 MustGather.clear(); 915 ExternalUses.clear(); 916 for (auto &Iter : BlocksSchedules) { 917 BlockScheduling *BS = Iter.second.get(); 918 BS->clear(); 919 } 920 MinBWs.clear(); 921 InstrElementSize.clear(); 922 UserIgnoreList = nullptr; 923 } 924 925 unsigned getTreeSize() const { return VectorizableTree.size(); } 926 927 /// Perform LICM and CSE on the newly generated gather sequences. 928 void optimizeGatherSequence(); 929 930 /// Checks if the specified gather tree entry \p TE can be represented as a 931 /// shuffled vector entry + (possibly) permutation with other gathers. It 932 /// implements the checks only for possibly ordered scalars (Loads, 933 /// ExtractElement, ExtractValue), which can be part of the graph. 934 Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); 935 936 /// Sort loads into increasing pointers offsets to allow greater clustering. 937 Optional<OrdersType> findPartiallyOrderedLoads(const TreeEntry &TE); 938 939 /// Gets reordering data for the given tree entry. If the entry is vectorized 940 /// - just return ReorderIndices, otherwise check if the scalars can be 941 /// reordered and return the most optimal order. 942 /// \param TopToBottom If true, include the order of vectorized stores and 943 /// insertelement nodes, otherwise skip them. 944 Optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom); 945 946 /// Reorders the current graph to the most profitable order starting from the 947 /// root node to the leaf nodes. The best order is chosen only from the nodes 948 /// of the same size (vectorization factor). Smaller nodes are considered 949 /// parts of subgraph with smaller VF and they are reordered independently. We 950 /// can make it because we still need to extend smaller nodes to the wider VF 951 /// and we can merge reordering shuffles with the widening shuffles. 952 void reorderTopToBottom(); 953 954 /// Reorders the current graph to the most profitable order starting from 955 /// leaves to the root. It allows to rotate small subgraphs and reduce the 956 /// number of reshuffles if the leaf nodes use the same order. In this case we 957 /// can merge the orders and just shuffle user node instead of shuffling its 958 /// operands. Plus, even the leaf nodes have different orders, it allows to 959 /// sink reordering in the graph closer to the root node and merge it later 960 /// during analysis. 961 void reorderBottomToTop(bool IgnoreReorder = false); 962 963 /// \return The vector element size in bits to use when vectorizing the 964 /// expression tree ending at \p V. If V is a store, the size is the width of 965 /// the stored value. Otherwise, the size is the width of the largest loaded 966 /// value reaching V. This method is used by the vectorizer to calculate 967 /// vectorization factors. 968 unsigned getVectorElementSize(Value *V); 969 970 /// Compute the minimum type sizes required to represent the entries in a 971 /// vectorizable tree. 972 void computeMinimumValueSizes(); 973 974 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 975 unsigned getMaxVecRegSize() const { 976 return MaxVecRegSize; 977 } 978 979 // \returns minimum vector register size as set by cl::opt. 980 unsigned getMinVecRegSize() const { 981 return MinVecRegSize; 982 } 983 984 unsigned getMinVF(unsigned Sz) const { 985 return std::max(2U, getMinVecRegSize() / Sz); 986 } 987 988 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 989 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 990 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 991 return MaxVF ? MaxVF : UINT_MAX; 992 } 993 994 /// Check if homogeneous aggregate is isomorphic to some VectorType. 995 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 996 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 997 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 998 /// 999 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 1000 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 1001 1002 /// \returns True if the VectorizableTree is both tiny and not fully 1003 /// vectorizable. We do not vectorize such trees. 1004 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; 1005 1006 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 1007 /// can be load combined in the backend. Load combining may not be allowed in 1008 /// the IR optimizer, so we do not want to alter the pattern. For example, 1009 /// partially transforming a scalar bswap() pattern into vector code is 1010 /// effectively impossible for the backend to undo. 1011 /// TODO: If load combining is allowed in the IR optimizer, this analysis 1012 /// may not be necessary. 1013 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 1014 1015 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 1016 /// can be load combined in the backend. Load combining may not be allowed in 1017 /// the IR optimizer, so we do not want to alter the pattern. For example, 1018 /// partially transforming a scalar bswap() pattern into vector code is 1019 /// effectively impossible for the backend to undo. 1020 /// TODO: If load combining is allowed in the IR optimizer, this analysis 1021 /// may not be necessary. 1022 bool isLoadCombineCandidate() const; 1023 1024 OptimizationRemarkEmitter *getORE() { return ORE; } 1025 1026 /// This structure holds any data we need about the edges being traversed 1027 /// during buildTree_rec(). We keep track of: 1028 /// (i) the user TreeEntry index, and 1029 /// (ii) the index of the edge. 1030 struct EdgeInfo { 1031 EdgeInfo() = default; 1032 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 1033 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 1034 /// The user TreeEntry. 1035 TreeEntry *UserTE = nullptr; 1036 /// The operand index of the use. 1037 unsigned EdgeIdx = UINT_MAX; 1038 #ifndef NDEBUG 1039 friend inline raw_ostream &operator<<(raw_ostream &OS, 1040 const BoUpSLP::EdgeInfo &EI) { 1041 EI.dump(OS); 1042 return OS; 1043 } 1044 /// Debug print. 1045 void dump(raw_ostream &OS) const { 1046 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 1047 << " EdgeIdx:" << EdgeIdx << "}"; 1048 } 1049 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 1050 #endif 1051 }; 1052 1053 /// A helper class used for scoring candidates for two consecutive lanes. 1054 class LookAheadHeuristics { 1055 const DataLayout &DL; 1056 ScalarEvolution &SE; 1057 const BoUpSLP &R; 1058 int NumLanes; // Total number of lanes (aka vectorization factor). 1059 int MaxLevel; // The maximum recursion depth for accumulating score. 1060 1061 public: 1062 LookAheadHeuristics(const DataLayout &DL, ScalarEvolution &SE, 1063 const BoUpSLP &R, int NumLanes, int MaxLevel) 1064 : DL(DL), SE(SE), R(R), NumLanes(NumLanes), MaxLevel(MaxLevel) {} 1065 1066 // The hard-coded scores listed here are not very important, though it shall 1067 // be higher for better matches to improve the resulting cost. When 1068 // computing the scores of matching one sub-tree with another, we are 1069 // basically counting the number of values that are matching. So even if all 1070 // scores are set to 1, we would still get a decent matching result. 1071 // However, sometimes we have to break ties. For example we may have to 1072 // choose between matching loads vs matching opcodes. This is what these 1073 // scores are helping us with: they provide the order of preference. Also, 1074 // this is important if the scalar is externally used or used in another 1075 // tree entry node in the different lane. 1076 1077 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 1078 static const int ScoreConsecutiveLoads = 4; 1079 /// The same load multiple times. This should have a better score than 1080 /// `ScoreSplat` because it in x86 for a 2-lane vector we can represent it 1081 /// with `movddup (%reg), xmm0` which has a throughput of 0.5 versus 0.5 for 1082 /// a vector load and 1.0 for a broadcast. 1083 static const int ScoreSplatLoads = 3; 1084 /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]). 1085 static const int ScoreReversedLoads = 3; 1086 /// ExtractElementInst from same vector and consecutive indexes. 1087 static const int ScoreConsecutiveExtracts = 4; 1088 /// ExtractElementInst from same vector and reversed indices. 1089 static const int ScoreReversedExtracts = 3; 1090 /// Constants. 1091 static const int ScoreConstants = 2; 1092 /// Instructions with the same opcode. 1093 static const int ScoreSameOpcode = 2; 1094 /// Instructions with alt opcodes (e.g, add + sub). 1095 static const int ScoreAltOpcodes = 1; 1096 /// Identical instructions (a.k.a. splat or broadcast). 1097 static const int ScoreSplat = 1; 1098 /// Matching with an undef is preferable to failing. 1099 static const int ScoreUndef = 1; 1100 /// Score for failing to find a decent match. 1101 static const int ScoreFail = 0; 1102 /// Score if all users are vectorized. 1103 static const int ScoreAllUserVectorized = 1; 1104 1105 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 1106 /// \p U1 and \p U2 are the users of \p V1 and \p V2. 1107 /// Also, checks if \p V1 and \p V2 are compatible with instructions in \p 1108 /// MainAltOps. 1109 int getShallowScore(Value *V1, Value *V2, Instruction *U1, Instruction *U2, 1110 ArrayRef<Value *> MainAltOps) const { 1111 if (V1 == V2) { 1112 if (isa<LoadInst>(V1)) { 1113 // Retruns true if the users of V1 and V2 won't need to be extracted. 1114 auto AllUsersAreInternal = [U1, U2, this](Value *V1, Value *V2) { 1115 // Bail out if we have too many uses to save compilation time. 1116 static constexpr unsigned Limit = 8; 1117 if (V1->hasNUsesOrMore(Limit) || V2->hasNUsesOrMore(Limit)) 1118 return false; 1119 1120 auto AllUsersVectorized = [U1, U2, this](Value *V) { 1121 return llvm::all_of(V->users(), [U1, U2, this](Value *U) { 1122 return U == U1 || U == U2 || R.getTreeEntry(U) != nullptr; 1123 }); 1124 }; 1125 return AllUsersVectorized(V1) && AllUsersVectorized(V2); 1126 }; 1127 // A broadcast of a load can be cheaper on some targets. 1128 if (R.TTI->isLegalBroadcastLoad(V1->getType(), 1129 ElementCount::getFixed(NumLanes)) && 1130 ((int)V1->getNumUses() == NumLanes || 1131 AllUsersAreInternal(V1, V2))) 1132 return LookAheadHeuristics::ScoreSplatLoads; 1133 } 1134 return LookAheadHeuristics::ScoreSplat; 1135 } 1136 1137 auto *LI1 = dyn_cast<LoadInst>(V1); 1138 auto *LI2 = dyn_cast<LoadInst>(V2); 1139 if (LI1 && LI2) { 1140 if (LI1->getParent() != LI2->getParent()) 1141 return LookAheadHeuristics::ScoreFail; 1142 1143 Optional<int> Dist = getPointersDiff( 1144 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1145 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1146 if (!Dist || *Dist == 0) 1147 return LookAheadHeuristics::ScoreFail; 1148 // The distance is too large - still may be profitable to use masked 1149 // loads/gathers. 1150 if (std::abs(*Dist) > NumLanes / 2) 1151 return LookAheadHeuristics::ScoreAltOpcodes; 1152 // This still will detect consecutive loads, but we might have "holes" 1153 // in some cases. It is ok for non-power-2 vectorization and may produce 1154 // better results. It should not affect current vectorization. 1155 return (*Dist > 0) ? LookAheadHeuristics::ScoreConsecutiveLoads 1156 : LookAheadHeuristics::ScoreReversedLoads; 1157 } 1158 1159 auto *C1 = dyn_cast<Constant>(V1); 1160 auto *C2 = dyn_cast<Constant>(V2); 1161 if (C1 && C2) 1162 return LookAheadHeuristics::ScoreConstants; 1163 1164 // Extracts from consecutive indexes of the same vector better score as 1165 // the extracts could be optimized away. 1166 Value *EV1; 1167 ConstantInt *Ex1Idx; 1168 if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) { 1169 // Undefs are always profitable for extractelements. 1170 if (isa<UndefValue>(V2)) 1171 return LookAheadHeuristics::ScoreConsecutiveExtracts; 1172 Value *EV2 = nullptr; 1173 ConstantInt *Ex2Idx = nullptr; 1174 if (match(V2, 1175 m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx), 1176 m_Undef())))) { 1177 // Undefs are always profitable for extractelements. 1178 if (!Ex2Idx) 1179 return LookAheadHeuristics::ScoreConsecutiveExtracts; 1180 if (isUndefVector(EV2) && EV2->getType() == EV1->getType()) 1181 return LookAheadHeuristics::ScoreConsecutiveExtracts; 1182 if (EV2 == EV1) { 1183 int Idx1 = Ex1Idx->getZExtValue(); 1184 int Idx2 = Ex2Idx->getZExtValue(); 1185 int Dist = Idx2 - Idx1; 1186 // The distance is too large - still may be profitable to use 1187 // shuffles. 1188 if (std::abs(Dist) == 0) 1189 return LookAheadHeuristics::ScoreSplat; 1190 if (std::abs(Dist) > NumLanes / 2) 1191 return LookAheadHeuristics::ScoreSameOpcode; 1192 return (Dist > 0) ? LookAheadHeuristics::ScoreConsecutiveExtracts 1193 : LookAheadHeuristics::ScoreReversedExtracts; 1194 } 1195 return LookAheadHeuristics::ScoreAltOpcodes; 1196 } 1197 return LookAheadHeuristics::ScoreFail; 1198 } 1199 1200 auto *I1 = dyn_cast<Instruction>(V1); 1201 auto *I2 = dyn_cast<Instruction>(V2); 1202 if (I1 && I2) { 1203 if (I1->getParent() != I2->getParent()) 1204 return LookAheadHeuristics::ScoreFail; 1205 SmallVector<Value *, 4> Ops(MainAltOps.begin(), MainAltOps.end()); 1206 Ops.push_back(I1); 1207 Ops.push_back(I2); 1208 InstructionsState S = getSameOpcode(Ops); 1209 // Note: Only consider instructions with <= 2 operands to avoid 1210 // complexity explosion. 1211 if (S.getOpcode() && 1212 (S.MainOp->getNumOperands() <= 2 || !MainAltOps.empty() || 1213 !S.isAltShuffle()) && 1214 all_of(Ops, [&S](Value *V) { 1215 return cast<Instruction>(V)->getNumOperands() == 1216 S.MainOp->getNumOperands(); 1217 })) 1218 return S.isAltShuffle() ? LookAheadHeuristics::ScoreAltOpcodes 1219 : LookAheadHeuristics::ScoreSameOpcode; 1220 } 1221 1222 if (isa<UndefValue>(V2)) 1223 return LookAheadHeuristics::ScoreUndef; 1224 1225 return LookAheadHeuristics::ScoreFail; 1226 } 1227 1228 /// Go through the operands of \p LHS and \p RHS recursively until 1229 /// MaxLevel, and return the cummulative score. \p U1 and \p U2 are 1230 /// the users of \p LHS and \p RHS (that is \p LHS and \p RHS are operands 1231 /// of \p U1 and \p U2), except at the beginning of the recursion where 1232 /// these are set to nullptr. 1233 /// 1234 /// For example: 1235 /// \verbatim 1236 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1237 /// \ / \ / \ / \ / 1238 /// + + + + 1239 /// G1 G2 G3 G4 1240 /// \endverbatim 1241 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1242 /// each level recursively, accumulating the score. It starts from matching 1243 /// the additions at level 0, then moves on to the loads (level 1). The 1244 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1245 /// {B[0],B[1]} match with LookAheadHeuristics::ScoreConsecutiveLoads, while 1246 /// {A[0],C[0]} has a score of LookAheadHeuristics::ScoreFail. 1247 /// Please note that the order of the operands does not matter, as we 1248 /// evaluate the score of all profitable combinations of operands. In 1249 /// other words the score of G1 and G4 is the same as G1 and G2. This 1250 /// heuristic is based on ideas described in: 1251 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1252 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1253 /// Luís F. W. Góes 1254 int getScoreAtLevelRec(Value *LHS, Value *RHS, Instruction *U1, 1255 Instruction *U2, int CurrLevel, 1256 ArrayRef<Value *> MainAltOps) const { 1257 1258 // Get the shallow score of V1 and V2. 1259 int ShallowScoreAtThisLevel = 1260 getShallowScore(LHS, RHS, U1, U2, MainAltOps); 1261 1262 // If reached MaxLevel, 1263 // or if V1 and V2 are not instructions, 1264 // or if they are SPLAT, 1265 // or if they are not consecutive, 1266 // or if profitable to vectorize loads or extractelements, early return 1267 // the current cost. 1268 auto *I1 = dyn_cast<Instruction>(LHS); 1269 auto *I2 = dyn_cast<Instruction>(RHS); 1270 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1271 ShallowScoreAtThisLevel == LookAheadHeuristics::ScoreFail || 1272 (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) || 1273 (I1->getNumOperands() > 2 && I2->getNumOperands() > 2) || 1274 (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) && 1275 ShallowScoreAtThisLevel)) 1276 return ShallowScoreAtThisLevel; 1277 assert(I1 && I2 && "Should have early exited."); 1278 1279 // Contains the I2 operand indexes that got matched with I1 operands. 1280 SmallSet<unsigned, 4> Op2Used; 1281 1282 // Recursion towards the operands of I1 and I2. We are trying all possible 1283 // operand pairs, and keeping track of the best score. 1284 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1285 OpIdx1 != NumOperands1; ++OpIdx1) { 1286 // Try to pair op1I with the best operand of I2. 1287 int MaxTmpScore = 0; 1288 unsigned MaxOpIdx2 = 0; 1289 bool FoundBest = false; 1290 // If I2 is commutative try all combinations. 1291 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1292 unsigned ToIdx = isCommutative(I2) 1293 ? I2->getNumOperands() 1294 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1295 assert(FromIdx <= ToIdx && "Bad index"); 1296 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1297 // Skip operands already paired with OpIdx1. 1298 if (Op2Used.count(OpIdx2)) 1299 continue; 1300 // Recursively calculate the cost at each level 1301 int TmpScore = 1302 getScoreAtLevelRec(I1->getOperand(OpIdx1), I2->getOperand(OpIdx2), 1303 I1, I2, CurrLevel + 1, None); 1304 // Look for the best score. 1305 if (TmpScore > LookAheadHeuristics::ScoreFail && 1306 TmpScore > MaxTmpScore) { 1307 MaxTmpScore = TmpScore; 1308 MaxOpIdx2 = OpIdx2; 1309 FoundBest = true; 1310 } 1311 } 1312 if (FoundBest) { 1313 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1314 Op2Used.insert(MaxOpIdx2); 1315 ShallowScoreAtThisLevel += MaxTmpScore; 1316 } 1317 } 1318 return ShallowScoreAtThisLevel; 1319 } 1320 }; 1321 /// A helper data structure to hold the operands of a vector of instructions. 1322 /// This supports a fixed vector length for all operand vectors. 1323 class VLOperands { 1324 /// For each operand we need (i) the value, and (ii) the opcode that it 1325 /// would be attached to if the expression was in a left-linearized form. 1326 /// This is required to avoid illegal operand reordering. 1327 /// For example: 1328 /// \verbatim 1329 /// 0 Op1 1330 /// |/ 1331 /// Op1 Op2 Linearized + Op2 1332 /// \ / ----------> |/ 1333 /// - - 1334 /// 1335 /// Op1 - Op2 (0 + Op1) - Op2 1336 /// \endverbatim 1337 /// 1338 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 1339 /// 1340 /// Another way to think of this is to track all the operations across the 1341 /// path from the operand all the way to the root of the tree and to 1342 /// calculate the operation that corresponds to this path. For example, the 1343 /// path from Op2 to the root crosses the RHS of the '-', therefore the 1344 /// corresponding operation is a '-' (which matches the one in the 1345 /// linearized tree, as shown above). 1346 /// 1347 /// For lack of a better term, we refer to this operation as Accumulated 1348 /// Path Operation (APO). 1349 struct OperandData { 1350 OperandData() = default; 1351 OperandData(Value *V, bool APO, bool IsUsed) 1352 : V(V), APO(APO), IsUsed(IsUsed) {} 1353 /// The operand value. 1354 Value *V = nullptr; 1355 /// TreeEntries only allow a single opcode, or an alternate sequence of 1356 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 1357 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 1358 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 1359 /// (e.g., Add/Mul) 1360 bool APO = false; 1361 /// Helper data for the reordering function. 1362 bool IsUsed = false; 1363 }; 1364 1365 /// During operand reordering, we are trying to select the operand at lane 1366 /// that matches best with the operand at the neighboring lane. Our 1367 /// selection is based on the type of value we are looking for. For example, 1368 /// if the neighboring lane has a load, we need to look for a load that is 1369 /// accessing a consecutive address. These strategies are summarized in the 1370 /// 'ReorderingMode' enumerator. 1371 enum class ReorderingMode { 1372 Load, ///< Matching loads to consecutive memory addresses 1373 Opcode, ///< Matching instructions based on opcode (same or alternate) 1374 Constant, ///< Matching constants 1375 Splat, ///< Matching the same instruction multiple times (broadcast) 1376 Failed, ///< We failed to create a vectorizable group 1377 }; 1378 1379 using OperandDataVec = SmallVector<OperandData, 2>; 1380 1381 /// A vector of operand vectors. 1382 SmallVector<OperandDataVec, 4> OpsVec; 1383 1384 const DataLayout &DL; 1385 ScalarEvolution &SE; 1386 const BoUpSLP &R; 1387 1388 /// \returns the operand data at \p OpIdx and \p Lane. 1389 OperandData &getData(unsigned OpIdx, unsigned Lane) { 1390 return OpsVec[OpIdx][Lane]; 1391 } 1392 1393 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 1394 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 1395 return OpsVec[OpIdx][Lane]; 1396 } 1397 1398 /// Clears the used flag for all entries. 1399 void clearUsed() { 1400 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 1401 OpIdx != NumOperands; ++OpIdx) 1402 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1403 ++Lane) 1404 OpsVec[OpIdx][Lane].IsUsed = false; 1405 } 1406 1407 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 1408 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 1409 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 1410 } 1411 1412 /// \param Lane lane of the operands under analysis. 1413 /// \param OpIdx operand index in \p Lane lane we're looking the best 1414 /// candidate for. 1415 /// \param Idx operand index of the current candidate value. 1416 /// \returns The additional score due to possible broadcasting of the 1417 /// elements in the lane. It is more profitable to have power-of-2 unique 1418 /// elements in the lane, it will be vectorized with higher probability 1419 /// after removing duplicates. Currently the SLP vectorizer supports only 1420 /// vectorization of the power-of-2 number of unique scalars. 1421 int getSplatScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1422 Value *IdxLaneV = getData(Idx, Lane).V; 1423 if (!isa<Instruction>(IdxLaneV) || IdxLaneV == getData(OpIdx, Lane).V) 1424 return 0; 1425 SmallPtrSet<Value *, 4> Uniques; 1426 for (unsigned Ln = 0, E = getNumLanes(); Ln < E; ++Ln) { 1427 if (Ln == Lane) 1428 continue; 1429 Value *OpIdxLnV = getData(OpIdx, Ln).V; 1430 if (!isa<Instruction>(OpIdxLnV)) 1431 return 0; 1432 Uniques.insert(OpIdxLnV); 1433 } 1434 int UniquesCount = Uniques.size(); 1435 int UniquesCntWithIdxLaneV = 1436 Uniques.contains(IdxLaneV) ? UniquesCount : UniquesCount + 1; 1437 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1438 int UniquesCntWithOpIdxLaneV = 1439 Uniques.contains(OpIdxLaneV) ? UniquesCount : UniquesCount + 1; 1440 if (UniquesCntWithIdxLaneV == UniquesCntWithOpIdxLaneV) 1441 return 0; 1442 return (PowerOf2Ceil(UniquesCntWithOpIdxLaneV) - 1443 UniquesCntWithOpIdxLaneV) - 1444 (PowerOf2Ceil(UniquesCntWithIdxLaneV) - UniquesCntWithIdxLaneV); 1445 } 1446 1447 /// \param Lane lane of the operands under analysis. 1448 /// \param OpIdx operand index in \p Lane lane we're looking the best 1449 /// candidate for. 1450 /// \param Idx operand index of the current candidate value. 1451 /// \returns The additional score for the scalar which users are all 1452 /// vectorized. 1453 int getExternalUseScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1454 Value *IdxLaneV = getData(Idx, Lane).V; 1455 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1456 // Do not care about number of uses for vector-like instructions 1457 // (extractelement/extractvalue with constant indices), they are extracts 1458 // themselves and already externally used. Vectorization of such 1459 // instructions does not add extra extractelement instruction, just may 1460 // remove it. 1461 if (isVectorLikeInstWithConstOps(IdxLaneV) && 1462 isVectorLikeInstWithConstOps(OpIdxLaneV)) 1463 return LookAheadHeuristics::ScoreAllUserVectorized; 1464 auto *IdxLaneI = dyn_cast<Instruction>(IdxLaneV); 1465 if (!IdxLaneI || !isa<Instruction>(OpIdxLaneV)) 1466 return 0; 1467 return R.areAllUsersVectorized(IdxLaneI, None) 1468 ? LookAheadHeuristics::ScoreAllUserVectorized 1469 : 0; 1470 } 1471 1472 /// Score scaling factor for fully compatible instructions but with 1473 /// different number of external uses. Allows better selection of the 1474 /// instructions with less external uses. 1475 static const int ScoreScaleFactor = 10; 1476 1477 /// \Returns the look-ahead score, which tells us how much the sub-trees 1478 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1479 /// score. This helps break ties in an informed way when we cannot decide on 1480 /// the order of the operands by just considering the immediate 1481 /// predecessors. 1482 int getLookAheadScore(Value *LHS, Value *RHS, ArrayRef<Value *> MainAltOps, 1483 int Lane, unsigned OpIdx, unsigned Idx, 1484 bool &IsUsed) { 1485 LookAheadHeuristics LookAhead(DL, SE, R, getNumLanes(), 1486 LookAheadMaxDepth); 1487 // Keep track of the instruction stack as we recurse into the operands 1488 // during the look-ahead score exploration. 1489 int Score = 1490 LookAhead.getScoreAtLevelRec(LHS, RHS, /*U1=*/nullptr, /*U2=*/nullptr, 1491 /*CurrLevel=*/1, MainAltOps); 1492 if (Score) { 1493 int SplatScore = getSplatScore(Lane, OpIdx, Idx); 1494 if (Score <= -SplatScore) { 1495 // Set the minimum score for splat-like sequence to avoid setting 1496 // failed state. 1497 Score = 1; 1498 } else { 1499 Score += SplatScore; 1500 // Scale score to see the difference between different operands 1501 // and similar operands but all vectorized/not all vectorized 1502 // uses. It does not affect actual selection of the best 1503 // compatible operand in general, just allows to select the 1504 // operand with all vectorized uses. 1505 Score *= ScoreScaleFactor; 1506 Score += getExternalUseScore(Lane, OpIdx, Idx); 1507 IsUsed = true; 1508 } 1509 } 1510 return Score; 1511 } 1512 1513 /// Best defined scores per lanes between the passes. Used to choose the 1514 /// best operand (with the highest score) between the passes. 1515 /// The key - {Operand Index, Lane}. 1516 /// The value - the best score between the passes for the lane and the 1517 /// operand. 1518 SmallDenseMap<std::pair<unsigned, unsigned>, unsigned, 8> 1519 BestScoresPerLanes; 1520 1521 // Search all operands in Ops[*][Lane] for the one that matches best 1522 // Ops[OpIdx][LastLane] and return its opreand index. 1523 // If no good match can be found, return None. 1524 Optional<unsigned> getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1525 ArrayRef<ReorderingMode> ReorderingModes, 1526 ArrayRef<Value *> MainAltOps) { 1527 unsigned NumOperands = getNumOperands(); 1528 1529 // The operand of the previous lane at OpIdx. 1530 Value *OpLastLane = getData(OpIdx, LastLane).V; 1531 1532 // Our strategy mode for OpIdx. 1533 ReorderingMode RMode = ReorderingModes[OpIdx]; 1534 if (RMode == ReorderingMode::Failed) 1535 return None; 1536 1537 // The linearized opcode of the operand at OpIdx, Lane. 1538 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1539 1540 // The best operand index and its score. 1541 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1542 // are using the score to differentiate between the two. 1543 struct BestOpData { 1544 Optional<unsigned> Idx = None; 1545 unsigned Score = 0; 1546 } BestOp; 1547 BestOp.Score = 1548 BestScoresPerLanes.try_emplace(std::make_pair(OpIdx, Lane), 0) 1549 .first->second; 1550 1551 // Track if the operand must be marked as used. If the operand is set to 1552 // Score 1 explicitly (because of non power-of-2 unique scalars, we may 1553 // want to reestimate the operands again on the following iterations). 1554 bool IsUsed = 1555 RMode == ReorderingMode::Splat || RMode == ReorderingMode::Constant; 1556 // Iterate through all unused operands and look for the best. 1557 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1558 // Get the operand at Idx and Lane. 1559 OperandData &OpData = getData(Idx, Lane); 1560 Value *Op = OpData.V; 1561 bool OpAPO = OpData.APO; 1562 1563 // Skip already selected operands. 1564 if (OpData.IsUsed) 1565 continue; 1566 1567 // Skip if we are trying to move the operand to a position with a 1568 // different opcode in the linearized tree form. This would break the 1569 // semantics. 1570 if (OpAPO != OpIdxAPO) 1571 continue; 1572 1573 // Look for an operand that matches the current mode. 1574 switch (RMode) { 1575 case ReorderingMode::Load: 1576 case ReorderingMode::Constant: 1577 case ReorderingMode::Opcode: { 1578 bool LeftToRight = Lane > LastLane; 1579 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1580 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1581 int Score = getLookAheadScore(OpLeft, OpRight, MainAltOps, Lane, 1582 OpIdx, Idx, IsUsed); 1583 if (Score > static_cast<int>(BestOp.Score)) { 1584 BestOp.Idx = Idx; 1585 BestOp.Score = Score; 1586 BestScoresPerLanes[std::make_pair(OpIdx, Lane)] = Score; 1587 } 1588 break; 1589 } 1590 case ReorderingMode::Splat: 1591 if (Op == OpLastLane) 1592 BestOp.Idx = Idx; 1593 break; 1594 case ReorderingMode::Failed: 1595 llvm_unreachable("Not expected Failed reordering mode."); 1596 } 1597 } 1598 1599 if (BestOp.Idx) { 1600 getData(BestOp.Idx.getValue(), Lane).IsUsed = IsUsed; 1601 return BestOp.Idx; 1602 } 1603 // If we could not find a good match return None. 1604 return None; 1605 } 1606 1607 /// Helper for reorderOperandVecs. 1608 /// \returns the lane that we should start reordering from. This is the one 1609 /// which has the least number of operands that can freely move about or 1610 /// less profitable because it already has the most optimal set of operands. 1611 unsigned getBestLaneToStartReordering() const { 1612 unsigned Min = UINT_MAX; 1613 unsigned SameOpNumber = 0; 1614 // std::pair<unsigned, unsigned> is used to implement a simple voting 1615 // algorithm and choose the lane with the least number of operands that 1616 // can freely move about or less profitable because it already has the 1617 // most optimal set of operands. The first unsigned is a counter for 1618 // voting, the second unsigned is the counter of lanes with instructions 1619 // with same/alternate opcodes and same parent basic block. 1620 MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap; 1621 // Try to be closer to the original results, if we have multiple lanes 1622 // with same cost. If 2 lanes have the same cost, use the one with the 1623 // lowest index. 1624 for (int I = getNumLanes(); I > 0; --I) { 1625 unsigned Lane = I - 1; 1626 OperandsOrderData NumFreeOpsHash = 1627 getMaxNumOperandsThatCanBeReordered(Lane); 1628 // Compare the number of operands that can move and choose the one with 1629 // the least number. 1630 if (NumFreeOpsHash.NumOfAPOs < Min) { 1631 Min = NumFreeOpsHash.NumOfAPOs; 1632 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1633 HashMap.clear(); 1634 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1635 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1636 NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) { 1637 // Select the most optimal lane in terms of number of operands that 1638 // should be moved around. 1639 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1640 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1641 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1642 NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) { 1643 auto It = HashMap.find(NumFreeOpsHash.Hash); 1644 if (It == HashMap.end()) 1645 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1646 else 1647 ++It->second.first; 1648 } 1649 } 1650 // Select the lane with the minimum counter. 1651 unsigned BestLane = 0; 1652 unsigned CntMin = UINT_MAX; 1653 for (const auto &Data : reverse(HashMap)) { 1654 if (Data.second.first < CntMin) { 1655 CntMin = Data.second.first; 1656 BestLane = Data.second.second; 1657 } 1658 } 1659 return BestLane; 1660 } 1661 1662 /// Data structure that helps to reorder operands. 1663 struct OperandsOrderData { 1664 /// The best number of operands with the same APOs, which can be 1665 /// reordered. 1666 unsigned NumOfAPOs = UINT_MAX; 1667 /// Number of operands with the same/alternate instruction opcode and 1668 /// parent. 1669 unsigned NumOpsWithSameOpcodeParent = 0; 1670 /// Hash for the actual operands ordering. 1671 /// Used to count operands, actually their position id and opcode 1672 /// value. It is used in the voting mechanism to find the lane with the 1673 /// least number of operands that can freely move about or less profitable 1674 /// because it already has the most optimal set of operands. Can be 1675 /// replaced with SmallVector<unsigned> instead but hash code is faster 1676 /// and requires less memory. 1677 unsigned Hash = 0; 1678 }; 1679 /// \returns the maximum number of operands that are allowed to be reordered 1680 /// for \p Lane and the number of compatible instructions(with the same 1681 /// parent/opcode). This is used as a heuristic for selecting the first lane 1682 /// to start operand reordering. 1683 OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1684 unsigned CntTrue = 0; 1685 unsigned NumOperands = getNumOperands(); 1686 // Operands with the same APO can be reordered. We therefore need to count 1687 // how many of them we have for each APO, like this: Cnt[APO] = x. 1688 // Since we only have two APOs, namely true and false, we can avoid using 1689 // a map. Instead we can simply count the number of operands that 1690 // correspond to one of them (in this case the 'true' APO), and calculate 1691 // the other by subtracting it from the total number of operands. 1692 // Operands with the same instruction opcode and parent are more 1693 // profitable since we don't need to move them in many cases, with a high 1694 // probability such lane already can be vectorized effectively. 1695 bool AllUndefs = true; 1696 unsigned NumOpsWithSameOpcodeParent = 0; 1697 Instruction *OpcodeI = nullptr; 1698 BasicBlock *Parent = nullptr; 1699 unsigned Hash = 0; 1700 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1701 const OperandData &OpData = getData(OpIdx, Lane); 1702 if (OpData.APO) 1703 ++CntTrue; 1704 // Use Boyer-Moore majority voting for finding the majority opcode and 1705 // the number of times it occurs. 1706 if (auto *I = dyn_cast<Instruction>(OpData.V)) { 1707 if (!OpcodeI || !getSameOpcode({OpcodeI, I}).getOpcode() || 1708 I->getParent() != Parent) { 1709 if (NumOpsWithSameOpcodeParent == 0) { 1710 NumOpsWithSameOpcodeParent = 1; 1711 OpcodeI = I; 1712 Parent = I->getParent(); 1713 } else { 1714 --NumOpsWithSameOpcodeParent; 1715 } 1716 } else { 1717 ++NumOpsWithSameOpcodeParent; 1718 } 1719 } 1720 Hash = hash_combine( 1721 Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1))); 1722 AllUndefs = AllUndefs && isa<UndefValue>(OpData.V); 1723 } 1724 if (AllUndefs) 1725 return {}; 1726 OperandsOrderData Data; 1727 Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue); 1728 Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent; 1729 Data.Hash = Hash; 1730 return Data; 1731 } 1732 1733 /// Go through the instructions in VL and append their operands. 1734 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1735 assert(!VL.empty() && "Bad VL"); 1736 assert((empty() || VL.size() == getNumLanes()) && 1737 "Expected same number of lanes"); 1738 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1739 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1740 OpsVec.resize(NumOperands); 1741 unsigned NumLanes = VL.size(); 1742 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1743 OpsVec[OpIdx].resize(NumLanes); 1744 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1745 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1746 // Our tree has just 3 nodes: the root and two operands. 1747 // It is therefore trivial to get the APO. We only need to check the 1748 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1749 // RHS operand. The LHS operand of both add and sub is never attached 1750 // to an inversese operation in the linearized form, therefore its APO 1751 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1752 1753 // Since operand reordering is performed on groups of commutative 1754 // operations or alternating sequences (e.g., +, -), we can safely 1755 // tell the inverse operations by checking commutativity. 1756 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1757 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1758 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1759 APO, false}; 1760 } 1761 } 1762 } 1763 1764 /// \returns the number of operands. 1765 unsigned getNumOperands() const { return OpsVec.size(); } 1766 1767 /// \returns the number of lanes. 1768 unsigned getNumLanes() const { return OpsVec[0].size(); } 1769 1770 /// \returns the operand value at \p OpIdx and \p Lane. 1771 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1772 return getData(OpIdx, Lane).V; 1773 } 1774 1775 /// \returns true if the data structure is empty. 1776 bool empty() const { return OpsVec.empty(); } 1777 1778 /// Clears the data. 1779 void clear() { OpsVec.clear(); } 1780 1781 /// \Returns true if there are enough operands identical to \p Op to fill 1782 /// the whole vector. 1783 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1784 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1785 bool OpAPO = getData(OpIdx, Lane).APO; 1786 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1787 if (Ln == Lane) 1788 continue; 1789 // This is set to true if we found a candidate for broadcast at Lane. 1790 bool FoundCandidate = false; 1791 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1792 OperandData &Data = getData(OpI, Ln); 1793 if (Data.APO != OpAPO || Data.IsUsed) 1794 continue; 1795 if (Data.V == Op) { 1796 FoundCandidate = true; 1797 Data.IsUsed = true; 1798 break; 1799 } 1800 } 1801 if (!FoundCandidate) 1802 return false; 1803 } 1804 return true; 1805 } 1806 1807 public: 1808 /// Initialize with all the operands of the instruction vector \p RootVL. 1809 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1810 ScalarEvolution &SE, const BoUpSLP &R) 1811 : DL(DL), SE(SE), R(R) { 1812 // Append all the operands of RootVL. 1813 appendOperandsOfVL(RootVL); 1814 } 1815 1816 /// \Returns a value vector with the operands across all lanes for the 1817 /// opearnd at \p OpIdx. 1818 ValueList getVL(unsigned OpIdx) const { 1819 ValueList OpVL(OpsVec[OpIdx].size()); 1820 assert(OpsVec[OpIdx].size() == getNumLanes() && 1821 "Expected same num of lanes across all operands"); 1822 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1823 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1824 return OpVL; 1825 } 1826 1827 // Performs operand reordering for 2 or more operands. 1828 // The original operands are in OrigOps[OpIdx][Lane]. 1829 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1830 void reorder() { 1831 unsigned NumOperands = getNumOperands(); 1832 unsigned NumLanes = getNumLanes(); 1833 // Each operand has its own mode. We are using this mode to help us select 1834 // the instructions for each lane, so that they match best with the ones 1835 // we have selected so far. 1836 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1837 1838 // This is a greedy single-pass algorithm. We are going over each lane 1839 // once and deciding on the best order right away with no back-tracking. 1840 // However, in order to increase its effectiveness, we start with the lane 1841 // that has operands that can move the least. For example, given the 1842 // following lanes: 1843 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1844 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1845 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1846 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1847 // we will start at Lane 1, since the operands of the subtraction cannot 1848 // be reordered. Then we will visit the rest of the lanes in a circular 1849 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1850 1851 // Find the first lane that we will start our search from. 1852 unsigned FirstLane = getBestLaneToStartReordering(); 1853 1854 // Initialize the modes. 1855 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1856 Value *OpLane0 = getValue(OpIdx, FirstLane); 1857 // Keep track if we have instructions with all the same opcode on one 1858 // side. 1859 if (isa<LoadInst>(OpLane0)) 1860 ReorderingModes[OpIdx] = ReorderingMode::Load; 1861 else if (isa<Instruction>(OpLane0)) { 1862 // Check if OpLane0 should be broadcast. 1863 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1864 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1865 else 1866 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1867 } 1868 else if (isa<Constant>(OpLane0)) 1869 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1870 else if (isa<Argument>(OpLane0)) 1871 // Our best hope is a Splat. It may save some cost in some cases. 1872 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1873 else 1874 // NOTE: This should be unreachable. 1875 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1876 } 1877 1878 // Check that we don't have same operands. No need to reorder if operands 1879 // are just perfect diamond or shuffled diamond match. Do not do it only 1880 // for possible broadcasts or non-power of 2 number of scalars (just for 1881 // now). 1882 auto &&SkipReordering = [this]() { 1883 SmallPtrSet<Value *, 4> UniqueValues; 1884 ArrayRef<OperandData> Op0 = OpsVec.front(); 1885 for (const OperandData &Data : Op0) 1886 UniqueValues.insert(Data.V); 1887 for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) { 1888 if (any_of(Op, [&UniqueValues](const OperandData &Data) { 1889 return !UniqueValues.contains(Data.V); 1890 })) 1891 return false; 1892 } 1893 // TODO: Check if we can remove a check for non-power-2 number of 1894 // scalars after full support of non-power-2 vectorization. 1895 return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size()); 1896 }; 1897 1898 // If the initial strategy fails for any of the operand indexes, then we 1899 // perform reordering again in a second pass. This helps avoid assigning 1900 // high priority to the failed strategy, and should improve reordering for 1901 // the non-failed operand indexes. 1902 for (int Pass = 0; Pass != 2; ++Pass) { 1903 // Check if no need to reorder operands since they're are perfect or 1904 // shuffled diamond match. 1905 // Need to to do it to avoid extra external use cost counting for 1906 // shuffled matches, which may cause regressions. 1907 if (SkipReordering()) 1908 break; 1909 // Skip the second pass if the first pass did not fail. 1910 bool StrategyFailed = false; 1911 // Mark all operand data as free to use. 1912 clearUsed(); 1913 // We keep the original operand order for the FirstLane, so reorder the 1914 // rest of the lanes. We are visiting the nodes in a circular fashion, 1915 // using FirstLane as the center point and increasing the radius 1916 // distance. 1917 SmallVector<SmallVector<Value *, 2>> MainAltOps(NumOperands); 1918 for (unsigned I = 0; I < NumOperands; ++I) 1919 MainAltOps[I].push_back(getData(I, FirstLane).V); 1920 1921 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1922 // Visit the lane on the right and then the lane on the left. 1923 for (int Direction : {+1, -1}) { 1924 int Lane = FirstLane + Direction * Distance; 1925 if (Lane < 0 || Lane >= (int)NumLanes) 1926 continue; 1927 int LastLane = Lane - Direction; 1928 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1929 "Out of bounds"); 1930 // Look for a good match for each operand. 1931 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1932 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1933 Optional<unsigned> BestIdx = getBestOperand( 1934 OpIdx, Lane, LastLane, ReorderingModes, MainAltOps[OpIdx]); 1935 // By not selecting a value, we allow the operands that follow to 1936 // select a better matching value. We will get a non-null value in 1937 // the next run of getBestOperand(). 1938 if (BestIdx) { 1939 // Swap the current operand with the one returned by 1940 // getBestOperand(). 1941 swap(OpIdx, BestIdx.getValue(), Lane); 1942 } else { 1943 // We failed to find a best operand, set mode to 'Failed'. 1944 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1945 // Enable the second pass. 1946 StrategyFailed = true; 1947 } 1948 // Try to get the alternate opcode and follow it during analysis. 1949 if (MainAltOps[OpIdx].size() != 2) { 1950 OperandData &AltOp = getData(OpIdx, Lane); 1951 InstructionsState OpS = 1952 getSameOpcode({MainAltOps[OpIdx].front(), AltOp.V}); 1953 if (OpS.getOpcode() && OpS.isAltShuffle()) 1954 MainAltOps[OpIdx].push_back(AltOp.V); 1955 } 1956 } 1957 } 1958 } 1959 // Skip second pass if the strategy did not fail. 1960 if (!StrategyFailed) 1961 break; 1962 } 1963 } 1964 1965 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1966 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1967 switch (RMode) { 1968 case ReorderingMode::Load: 1969 return "Load"; 1970 case ReorderingMode::Opcode: 1971 return "Opcode"; 1972 case ReorderingMode::Constant: 1973 return "Constant"; 1974 case ReorderingMode::Splat: 1975 return "Splat"; 1976 case ReorderingMode::Failed: 1977 return "Failed"; 1978 } 1979 llvm_unreachable("Unimplemented Reordering Type"); 1980 } 1981 1982 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1983 raw_ostream &OS) { 1984 return OS << getModeStr(RMode); 1985 } 1986 1987 /// Debug print. 1988 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1989 printMode(RMode, dbgs()); 1990 } 1991 1992 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1993 return printMode(RMode, OS); 1994 } 1995 1996 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1997 const unsigned Indent = 2; 1998 unsigned Cnt = 0; 1999 for (const OperandDataVec &OpDataVec : OpsVec) { 2000 OS << "Operand " << Cnt++ << "\n"; 2001 for (const OperandData &OpData : OpDataVec) { 2002 OS.indent(Indent) << "{"; 2003 if (Value *V = OpData.V) 2004 OS << *V; 2005 else 2006 OS << "null"; 2007 OS << ", APO:" << OpData.APO << "}\n"; 2008 } 2009 OS << "\n"; 2010 } 2011 return OS; 2012 } 2013 2014 /// Debug print. 2015 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 2016 #endif 2017 }; 2018 2019 /// Evaluate each pair in \p Candidates and return index into \p Candidates 2020 /// for a pair which have highest score deemed to have best chance to form 2021 /// root of profitable tree to vectorize. Return None if no candidate scored 2022 /// above the LookAheadHeuristics::ScoreFail. 2023 /// \param Limit Lower limit of the cost, considered to be good enough score. 2024 Optional<int> 2025 findBestRootPair(ArrayRef<std::pair<Value *, Value *>> Candidates, 2026 int Limit = LookAheadHeuristics::ScoreFail) { 2027 LookAheadHeuristics LookAhead(*DL, *SE, *this, /*NumLanes=*/2, 2028 RootLookAheadMaxDepth); 2029 int BestScore = Limit; 2030 Optional<int> Index = None; 2031 for (int I : seq<int>(0, Candidates.size())) { 2032 int Score = LookAhead.getScoreAtLevelRec(Candidates[I].first, 2033 Candidates[I].second, 2034 /*U1=*/nullptr, /*U2=*/nullptr, 2035 /*Level=*/1, None); 2036 if (Score > BestScore) { 2037 BestScore = Score; 2038 Index = I; 2039 } 2040 } 2041 return Index; 2042 } 2043 2044 /// Checks if the instruction is marked for deletion. 2045 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 2046 2047 /// Removes an instruction from its block and eventually deletes it. 2048 /// It's like Instruction::eraseFromParent() except that the actual deletion 2049 /// is delayed until BoUpSLP is destructed. 2050 void eraseInstruction(Instruction *I) { 2051 DeletedInstructions.insert(I); 2052 } 2053 2054 /// Checks if the instruction was already analyzed for being possible 2055 /// reduction root. 2056 bool isAnalyzedReductionRoot(Instruction *I) const { 2057 return AnalyzedReductionsRoots.count(I); 2058 } 2059 /// Register given instruction as already analyzed for being possible 2060 /// reduction root. 2061 void analyzedReductionRoot(Instruction *I) { 2062 AnalyzedReductionsRoots.insert(I); 2063 } 2064 /// Checks if the provided list of reduced values was checked already for 2065 /// vectorization. 2066 bool areAnalyzedReductionVals(ArrayRef<Value *> VL) { 2067 return AnalyzedReductionVals.contains(hash_value(VL)); 2068 } 2069 /// Adds the list of reduced values to list of already checked values for the 2070 /// vectorization. 2071 void analyzedReductionVals(ArrayRef<Value *> VL) { 2072 AnalyzedReductionVals.insert(hash_value(VL)); 2073 } 2074 /// Clear the list of the analyzed reduction root instructions. 2075 void clearReductionData() { 2076 AnalyzedReductionsRoots.clear(); 2077 AnalyzedReductionVals.clear(); 2078 } 2079 /// Checks if the given value is gathered in one of the nodes. 2080 bool isAnyGathered(const SmallDenseSet<Value *> &Vals) const { 2081 return any_of(MustGather, [&](Value *V) { return Vals.contains(V); }); 2082 } 2083 2084 ~BoUpSLP(); 2085 2086 private: 2087 /// Check if the operands on the edges \p Edges of the \p UserTE allows 2088 /// reordering (i.e. the operands can be reordered because they have only one 2089 /// user and reordarable). 2090 /// \param ReorderableGathers List of all gather nodes that require reordering 2091 /// (e.g., gather of extractlements or partially vectorizable loads). 2092 /// \param GatherOps List of gather operand nodes for \p UserTE that require 2093 /// reordering, subset of \p NonVectorized. 2094 bool 2095 canReorderOperands(TreeEntry *UserTE, 2096 SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 2097 ArrayRef<TreeEntry *> ReorderableGathers, 2098 SmallVectorImpl<TreeEntry *> &GatherOps); 2099 2100 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 2101 /// if any. If it is not vectorized (gather node), returns nullptr. 2102 TreeEntry *getVectorizedOperand(TreeEntry *UserTE, unsigned OpIdx) { 2103 ArrayRef<Value *> VL = UserTE->getOperand(OpIdx); 2104 TreeEntry *TE = nullptr; 2105 const auto *It = find_if(VL, [this, &TE](Value *V) { 2106 TE = getTreeEntry(V); 2107 return TE; 2108 }); 2109 if (It != VL.end() && TE->isSame(VL)) 2110 return TE; 2111 return nullptr; 2112 } 2113 2114 /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, 2115 /// if any. If it is not vectorized (gather node), returns nullptr. 2116 const TreeEntry *getVectorizedOperand(const TreeEntry *UserTE, 2117 unsigned OpIdx) const { 2118 return const_cast<BoUpSLP *>(this)->getVectorizedOperand( 2119 const_cast<TreeEntry *>(UserTE), OpIdx); 2120 } 2121 2122 /// Checks if all users of \p I are the part of the vectorization tree. 2123 bool areAllUsersVectorized(Instruction *I, 2124 ArrayRef<Value *> VectorizedVals) const; 2125 2126 /// \returns the cost of the vectorizable entry. 2127 InstructionCost getEntryCost(const TreeEntry *E, 2128 ArrayRef<Value *> VectorizedVals); 2129 2130 /// This is the recursive part of buildTree. 2131 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 2132 const EdgeInfo &EI); 2133 2134 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 2135 /// be vectorized to use the original vector (or aggregate "bitcast" to a 2136 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 2137 /// returns false, setting \p CurrentOrder to either an empty vector or a 2138 /// non-identity permutation that allows to reuse extract instructions. 2139 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 2140 SmallVectorImpl<unsigned> &CurrentOrder) const; 2141 2142 /// Vectorize a single entry in the tree. 2143 Value *vectorizeTree(TreeEntry *E); 2144 2145 /// Vectorize a single entry in the tree, starting in \p VL. 2146 Value *vectorizeTree(ArrayRef<Value *> VL); 2147 2148 /// Create a new vector from a list of scalar values. Produces a sequence 2149 /// which exploits values reused across lanes, and arranges the inserts 2150 /// for ease of later optimization. 2151 Value *createBuildVector(ArrayRef<Value *> VL); 2152 2153 /// \returns the scalarization cost for this type. Scalarization in this 2154 /// context means the creation of vectors from a group of scalars. If \p 2155 /// NeedToShuffle is true, need to add a cost of reshuffling some of the 2156 /// vector elements. 2157 InstructionCost getGatherCost(FixedVectorType *Ty, 2158 const APInt &ShuffledIndices, 2159 bool NeedToShuffle) const; 2160 2161 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 2162 /// tree entries. 2163 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 2164 /// previous tree entries. \p Mask is filled with the shuffle mask. 2165 Optional<TargetTransformInfo::ShuffleKind> 2166 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 2167 SmallVectorImpl<const TreeEntry *> &Entries); 2168 2169 /// \returns the scalarization cost for this list of values. Assuming that 2170 /// this subtree gets vectorized, we may need to extract the values from the 2171 /// roots. This method calculates the cost of extracting the values. 2172 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 2173 2174 /// Set the Builder insert point to one after the last instruction in 2175 /// the bundle 2176 void setInsertPointAfterBundle(const TreeEntry *E); 2177 2178 /// \returns a vector from a collection of scalars in \p VL. 2179 Value *gather(ArrayRef<Value *> VL); 2180 2181 /// \returns whether the VectorizableTree is fully vectorizable and will 2182 /// be beneficial even the tree height is tiny. 2183 bool isFullyVectorizableTinyTree(bool ForReduction) const; 2184 2185 /// Reorder commutative or alt operands to get better probability of 2186 /// generating vectorized code. 2187 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 2188 SmallVectorImpl<Value *> &Left, 2189 SmallVectorImpl<Value *> &Right, 2190 const DataLayout &DL, 2191 ScalarEvolution &SE, 2192 const BoUpSLP &R); 2193 2194 /// Helper for `findExternalStoreUsersReorderIndices()`. It iterates over the 2195 /// users of \p TE and collects the stores. It returns the map from the store 2196 /// pointers to the collected stores. 2197 DenseMap<Value *, SmallVector<StoreInst *, 4>> 2198 collectUserStores(const BoUpSLP::TreeEntry *TE) const; 2199 2200 /// Helper for `findExternalStoreUsersReorderIndices()`. It checks if the 2201 /// stores in \p StoresVec can for a vector instruction. If so it returns true 2202 /// and populates \p ReorderIndices with the shuffle indices of the the stores 2203 /// when compared to the sorted vector. 2204 bool CanFormVector(const SmallVector<StoreInst *, 4> &StoresVec, 2205 OrdersType &ReorderIndices) const; 2206 2207 /// Iterates through the users of \p TE, looking for scalar stores that can be 2208 /// potentially vectorized in a future SLP-tree. If found, it keeps track of 2209 /// their order and builds an order index vector for each store bundle. It 2210 /// returns all these order vectors found. 2211 /// We run this after the tree has formed, otherwise we may come across user 2212 /// instructions that are not yet in the tree. 2213 SmallVector<OrdersType, 1> 2214 findExternalStoreUsersReorderIndices(TreeEntry *TE) const; 2215 2216 struct TreeEntry { 2217 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 2218 TreeEntry(VecTreeTy &Container) : Container(Container) {} 2219 2220 /// \returns true if the scalars in VL are equal to this entry. 2221 bool isSame(ArrayRef<Value *> VL) const { 2222 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 2223 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 2224 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 2225 return VL.size() == Mask.size() && 2226 std::equal(VL.begin(), VL.end(), Mask.begin(), 2227 [Scalars](Value *V, int Idx) { 2228 return (isa<UndefValue>(V) && 2229 Idx == UndefMaskElem) || 2230 (Idx != UndefMaskElem && V == Scalars[Idx]); 2231 }); 2232 }; 2233 if (!ReorderIndices.empty()) { 2234 // TODO: implement matching if the nodes are just reordered, still can 2235 // treat the vector as the same if the list of scalars matches VL 2236 // directly, without reordering. 2237 SmallVector<int> Mask; 2238 inversePermutation(ReorderIndices, Mask); 2239 if (VL.size() == Scalars.size()) 2240 return IsSame(Scalars, Mask); 2241 if (VL.size() == ReuseShuffleIndices.size()) { 2242 ::addMask(Mask, ReuseShuffleIndices); 2243 return IsSame(Scalars, Mask); 2244 } 2245 return false; 2246 } 2247 return IsSame(Scalars, ReuseShuffleIndices); 2248 } 2249 2250 /// \returns true if current entry has same operands as \p TE. 2251 bool hasEqualOperands(const TreeEntry &TE) const { 2252 if (TE.getNumOperands() != getNumOperands()) 2253 return false; 2254 SmallBitVector Used(getNumOperands()); 2255 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 2256 unsigned PrevCount = Used.count(); 2257 for (unsigned K = 0; K < E; ++K) { 2258 if (Used.test(K)) 2259 continue; 2260 if (getOperand(K) == TE.getOperand(I)) { 2261 Used.set(K); 2262 break; 2263 } 2264 } 2265 // Check if we actually found the matching operand. 2266 if (PrevCount == Used.count()) 2267 return false; 2268 } 2269 return true; 2270 } 2271 2272 /// \return Final vectorization factor for the node. Defined by the total 2273 /// number of vectorized scalars, including those, used several times in the 2274 /// entry and counted in the \a ReuseShuffleIndices, if any. 2275 unsigned getVectorFactor() const { 2276 if (!ReuseShuffleIndices.empty()) 2277 return ReuseShuffleIndices.size(); 2278 return Scalars.size(); 2279 }; 2280 2281 /// A vector of scalars. 2282 ValueList Scalars; 2283 2284 /// The Scalars are vectorized into this value. It is initialized to Null. 2285 Value *VectorizedValue = nullptr; 2286 2287 /// Do we need to gather this sequence or vectorize it 2288 /// (either with vector instruction or with scatter/gather 2289 /// intrinsics for store/load)? 2290 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 2291 EntryState State; 2292 2293 /// Does this sequence require some shuffling? 2294 SmallVector<int, 4> ReuseShuffleIndices; 2295 2296 /// Does this entry require reordering? 2297 SmallVector<unsigned, 4> ReorderIndices; 2298 2299 /// Points back to the VectorizableTree. 2300 /// 2301 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 2302 /// to be a pointer and needs to be able to initialize the child iterator. 2303 /// Thus we need a reference back to the container to translate the indices 2304 /// to entries. 2305 VecTreeTy &Container; 2306 2307 /// The TreeEntry index containing the user of this entry. We can actually 2308 /// have multiple users so the data structure is not truly a tree. 2309 SmallVector<EdgeInfo, 1> UserTreeIndices; 2310 2311 /// The index of this treeEntry in VectorizableTree. 2312 int Idx = -1; 2313 2314 private: 2315 /// The operands of each instruction in each lane Operands[op_index][lane]. 2316 /// Note: This helps avoid the replication of the code that performs the 2317 /// reordering of operands during buildTree_rec() and vectorizeTree(). 2318 SmallVector<ValueList, 2> Operands; 2319 2320 /// The main/alternate instruction. 2321 Instruction *MainOp = nullptr; 2322 Instruction *AltOp = nullptr; 2323 2324 public: 2325 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 2326 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 2327 if (Operands.size() < OpIdx + 1) 2328 Operands.resize(OpIdx + 1); 2329 assert(Operands[OpIdx].empty() && "Already resized?"); 2330 assert(OpVL.size() <= Scalars.size() && 2331 "Number of operands is greater than the number of scalars."); 2332 Operands[OpIdx].resize(OpVL.size()); 2333 copy(OpVL, Operands[OpIdx].begin()); 2334 } 2335 2336 /// Set the operands of this bundle in their original order. 2337 void setOperandsInOrder() { 2338 assert(Operands.empty() && "Already initialized?"); 2339 auto *I0 = cast<Instruction>(Scalars[0]); 2340 Operands.resize(I0->getNumOperands()); 2341 unsigned NumLanes = Scalars.size(); 2342 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 2343 OpIdx != NumOperands; ++OpIdx) { 2344 Operands[OpIdx].resize(NumLanes); 2345 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 2346 auto *I = cast<Instruction>(Scalars[Lane]); 2347 assert(I->getNumOperands() == NumOperands && 2348 "Expected same number of operands"); 2349 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 2350 } 2351 } 2352 } 2353 2354 /// Reorders operands of the node to the given mask \p Mask. 2355 void reorderOperands(ArrayRef<int> Mask) { 2356 for (ValueList &Operand : Operands) 2357 reorderScalars(Operand, Mask); 2358 } 2359 2360 /// \returns the \p OpIdx operand of this TreeEntry. 2361 ValueList &getOperand(unsigned OpIdx) { 2362 assert(OpIdx < Operands.size() && "Off bounds"); 2363 return Operands[OpIdx]; 2364 } 2365 2366 /// \returns the \p OpIdx operand of this TreeEntry. 2367 ArrayRef<Value *> getOperand(unsigned OpIdx) const { 2368 assert(OpIdx < Operands.size() && "Off bounds"); 2369 return Operands[OpIdx]; 2370 } 2371 2372 /// \returns the number of operands. 2373 unsigned getNumOperands() const { return Operands.size(); } 2374 2375 /// \return the single \p OpIdx operand. 2376 Value *getSingleOperand(unsigned OpIdx) const { 2377 assert(OpIdx < Operands.size() && "Off bounds"); 2378 assert(!Operands[OpIdx].empty() && "No operand available"); 2379 return Operands[OpIdx][0]; 2380 } 2381 2382 /// Some of the instructions in the list have alternate opcodes. 2383 bool isAltShuffle() const { return MainOp != AltOp; } 2384 2385 bool isOpcodeOrAlt(Instruction *I) const { 2386 unsigned CheckedOpcode = I->getOpcode(); 2387 return (getOpcode() == CheckedOpcode || 2388 getAltOpcode() == CheckedOpcode); 2389 } 2390 2391 /// Chooses the correct key for scheduling data. If \p Op has the same (or 2392 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 2393 /// \p OpValue. 2394 Value *isOneOf(Value *Op) const { 2395 auto *I = dyn_cast<Instruction>(Op); 2396 if (I && isOpcodeOrAlt(I)) 2397 return Op; 2398 return MainOp; 2399 } 2400 2401 void setOperations(const InstructionsState &S) { 2402 MainOp = S.MainOp; 2403 AltOp = S.AltOp; 2404 } 2405 2406 Instruction *getMainOp() const { 2407 return MainOp; 2408 } 2409 2410 Instruction *getAltOp() const { 2411 return AltOp; 2412 } 2413 2414 /// The main/alternate opcodes for the list of instructions. 2415 unsigned getOpcode() const { 2416 return MainOp ? MainOp->getOpcode() : 0; 2417 } 2418 2419 unsigned getAltOpcode() const { 2420 return AltOp ? AltOp->getOpcode() : 0; 2421 } 2422 2423 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 2424 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 2425 int findLaneForValue(Value *V) const { 2426 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 2427 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2428 if (!ReorderIndices.empty()) 2429 FoundLane = ReorderIndices[FoundLane]; 2430 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2431 if (!ReuseShuffleIndices.empty()) { 2432 FoundLane = std::distance(ReuseShuffleIndices.begin(), 2433 find(ReuseShuffleIndices, FoundLane)); 2434 } 2435 return FoundLane; 2436 } 2437 2438 #ifndef NDEBUG 2439 /// Debug printer. 2440 LLVM_DUMP_METHOD void dump() const { 2441 dbgs() << Idx << ".\n"; 2442 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 2443 dbgs() << "Operand " << OpI << ":\n"; 2444 for (const Value *V : Operands[OpI]) 2445 dbgs().indent(2) << *V << "\n"; 2446 } 2447 dbgs() << "Scalars: \n"; 2448 for (Value *V : Scalars) 2449 dbgs().indent(2) << *V << "\n"; 2450 dbgs() << "State: "; 2451 switch (State) { 2452 case Vectorize: 2453 dbgs() << "Vectorize\n"; 2454 break; 2455 case ScatterVectorize: 2456 dbgs() << "ScatterVectorize\n"; 2457 break; 2458 case NeedToGather: 2459 dbgs() << "NeedToGather\n"; 2460 break; 2461 } 2462 dbgs() << "MainOp: "; 2463 if (MainOp) 2464 dbgs() << *MainOp << "\n"; 2465 else 2466 dbgs() << "NULL\n"; 2467 dbgs() << "AltOp: "; 2468 if (AltOp) 2469 dbgs() << *AltOp << "\n"; 2470 else 2471 dbgs() << "NULL\n"; 2472 dbgs() << "VectorizedValue: "; 2473 if (VectorizedValue) 2474 dbgs() << *VectorizedValue << "\n"; 2475 else 2476 dbgs() << "NULL\n"; 2477 dbgs() << "ReuseShuffleIndices: "; 2478 if (ReuseShuffleIndices.empty()) 2479 dbgs() << "Empty"; 2480 else 2481 for (int ReuseIdx : ReuseShuffleIndices) 2482 dbgs() << ReuseIdx << ", "; 2483 dbgs() << "\n"; 2484 dbgs() << "ReorderIndices: "; 2485 for (unsigned ReorderIdx : ReorderIndices) 2486 dbgs() << ReorderIdx << ", "; 2487 dbgs() << "\n"; 2488 dbgs() << "UserTreeIndices: "; 2489 for (const auto &EInfo : UserTreeIndices) 2490 dbgs() << EInfo << ", "; 2491 dbgs() << "\n"; 2492 } 2493 #endif 2494 }; 2495 2496 #ifndef NDEBUG 2497 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 2498 InstructionCost VecCost, 2499 InstructionCost ScalarCost) const { 2500 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 2501 dbgs() << "SLP: Costs:\n"; 2502 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 2503 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 2504 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 2505 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 2506 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 2507 } 2508 #endif 2509 2510 /// Create a new VectorizableTree entry. 2511 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 2512 const InstructionsState &S, 2513 const EdgeInfo &UserTreeIdx, 2514 ArrayRef<int> ReuseShuffleIndices = None, 2515 ArrayRef<unsigned> ReorderIndices = None) { 2516 TreeEntry::EntryState EntryState = 2517 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 2518 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 2519 ReuseShuffleIndices, ReorderIndices); 2520 } 2521 2522 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 2523 TreeEntry::EntryState EntryState, 2524 Optional<ScheduleData *> Bundle, 2525 const InstructionsState &S, 2526 const EdgeInfo &UserTreeIdx, 2527 ArrayRef<int> ReuseShuffleIndices = None, 2528 ArrayRef<unsigned> ReorderIndices = None) { 2529 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 2530 (Bundle && EntryState != TreeEntry::NeedToGather)) && 2531 "Need to vectorize gather entry?"); 2532 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 2533 TreeEntry *Last = VectorizableTree.back().get(); 2534 Last->Idx = VectorizableTree.size() - 1; 2535 Last->State = EntryState; 2536 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 2537 ReuseShuffleIndices.end()); 2538 if (ReorderIndices.empty()) { 2539 Last->Scalars.assign(VL.begin(), VL.end()); 2540 Last->setOperations(S); 2541 } else { 2542 // Reorder scalars and build final mask. 2543 Last->Scalars.assign(VL.size(), nullptr); 2544 transform(ReorderIndices, Last->Scalars.begin(), 2545 [VL](unsigned Idx) -> Value * { 2546 if (Idx >= VL.size()) 2547 return UndefValue::get(VL.front()->getType()); 2548 return VL[Idx]; 2549 }); 2550 InstructionsState S = getSameOpcode(Last->Scalars); 2551 Last->setOperations(S); 2552 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 2553 } 2554 if (Last->State != TreeEntry::NeedToGather) { 2555 for (Value *V : VL) { 2556 assert(!getTreeEntry(V) && "Scalar already in tree!"); 2557 ScalarToTreeEntry[V] = Last; 2558 } 2559 // Update the scheduler bundle to point to this TreeEntry. 2560 ScheduleData *BundleMember = Bundle.getValue(); 2561 assert((BundleMember || isa<PHINode>(S.MainOp) || 2562 isVectorLikeInstWithConstOps(S.MainOp) || 2563 doesNotNeedToSchedule(VL)) && 2564 "Bundle and VL out of sync"); 2565 if (BundleMember) { 2566 for (Value *V : VL) { 2567 if (doesNotNeedToBeScheduled(V)) 2568 continue; 2569 assert(BundleMember && "Unexpected end of bundle."); 2570 BundleMember->TE = Last; 2571 BundleMember = BundleMember->NextInBundle; 2572 } 2573 } 2574 assert(!BundleMember && "Bundle and VL out of sync"); 2575 } else { 2576 MustGather.insert(VL.begin(), VL.end()); 2577 } 2578 2579 if (UserTreeIdx.UserTE) 2580 Last->UserTreeIndices.push_back(UserTreeIdx); 2581 2582 return Last; 2583 } 2584 2585 /// -- Vectorization State -- 2586 /// Holds all of the tree entries. 2587 TreeEntry::VecTreeTy VectorizableTree; 2588 2589 #ifndef NDEBUG 2590 /// Debug printer. 2591 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 2592 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 2593 VectorizableTree[Id]->dump(); 2594 dbgs() << "\n"; 2595 } 2596 } 2597 #endif 2598 2599 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 2600 2601 const TreeEntry *getTreeEntry(Value *V) const { 2602 return ScalarToTreeEntry.lookup(V); 2603 } 2604 2605 /// Maps a specific scalar to its tree entry. 2606 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 2607 2608 /// Maps a value to the proposed vectorizable size. 2609 SmallDenseMap<Value *, unsigned> InstrElementSize; 2610 2611 /// A list of scalars that we found that we need to keep as scalars. 2612 ValueSet MustGather; 2613 2614 /// This POD struct describes one external user in the vectorized tree. 2615 struct ExternalUser { 2616 ExternalUser(Value *S, llvm::User *U, int L) 2617 : Scalar(S), User(U), Lane(L) {} 2618 2619 // Which scalar in our function. 2620 Value *Scalar; 2621 2622 // Which user that uses the scalar. 2623 llvm::User *User; 2624 2625 // Which lane does the scalar belong to. 2626 int Lane; 2627 }; 2628 using UserList = SmallVector<ExternalUser, 16>; 2629 2630 /// Checks if two instructions may access the same memory. 2631 /// 2632 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2633 /// is invariant in the calling loop. 2634 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2635 Instruction *Inst2) { 2636 // First check if the result is already in the cache. 2637 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2638 Optional<bool> &result = AliasCache[key]; 2639 if (result.hasValue()) { 2640 return result.getValue(); 2641 } 2642 bool aliased = true; 2643 if (Loc1.Ptr && isSimple(Inst1)) 2644 aliased = isModOrRefSet(BatchAA.getModRefInfo(Inst2, Loc1)); 2645 // Store the result in the cache. 2646 result = aliased; 2647 return aliased; 2648 } 2649 2650 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2651 2652 /// Cache for alias results. 2653 /// TODO: consider moving this to the AliasAnalysis itself. 2654 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2655 2656 // Cache for pointerMayBeCaptured calls inside AA. This is preserved 2657 // globally through SLP because we don't perform any action which 2658 // invalidates capture results. 2659 BatchAAResults BatchAA; 2660 2661 /// Temporary store for deleted instructions. Instructions will be deleted 2662 /// eventually when the BoUpSLP is destructed. The deferral is required to 2663 /// ensure that there are no incorrect collisions in the AliasCache, which 2664 /// can happen if a new instruction is allocated at the same address as a 2665 /// previously deleted instruction. 2666 DenseSet<Instruction *> DeletedInstructions; 2667 2668 /// Set of the instruction, being analyzed already for reductions. 2669 SmallPtrSet<Instruction *, 16> AnalyzedReductionsRoots; 2670 2671 /// Set of hashes for the list of reduction values already being analyzed. 2672 DenseSet<size_t> AnalyzedReductionVals; 2673 2674 /// A list of values that need to extracted out of the tree. 2675 /// This list holds pairs of (Internal Scalar : External User). External User 2676 /// can be nullptr, it means that this Internal Scalar will be used later, 2677 /// after vectorization. 2678 UserList ExternalUses; 2679 2680 /// Values used only by @llvm.assume calls. 2681 SmallPtrSet<const Value *, 32> EphValues; 2682 2683 /// Holds all of the instructions that we gathered. 2684 SetVector<Instruction *> GatherShuffleSeq; 2685 2686 /// A list of blocks that we are going to CSE. 2687 SetVector<BasicBlock *> CSEBlocks; 2688 2689 /// Contains all scheduling relevant data for an instruction. 2690 /// A ScheduleData either represents a single instruction or a member of an 2691 /// instruction bundle (= a group of instructions which is combined into a 2692 /// vector instruction). 2693 struct ScheduleData { 2694 // The initial value for the dependency counters. It means that the 2695 // dependencies are not calculated yet. 2696 enum { InvalidDeps = -1 }; 2697 2698 ScheduleData() = default; 2699 2700 void init(int BlockSchedulingRegionID, Value *OpVal) { 2701 FirstInBundle = this; 2702 NextInBundle = nullptr; 2703 NextLoadStore = nullptr; 2704 IsScheduled = false; 2705 SchedulingRegionID = BlockSchedulingRegionID; 2706 clearDependencies(); 2707 OpValue = OpVal; 2708 TE = nullptr; 2709 } 2710 2711 /// Verify basic self consistency properties 2712 void verify() { 2713 if (hasValidDependencies()) { 2714 assert(UnscheduledDeps <= Dependencies && "invariant"); 2715 } else { 2716 assert(UnscheduledDeps == Dependencies && "invariant"); 2717 } 2718 2719 if (IsScheduled) { 2720 assert(isSchedulingEntity() && 2721 "unexpected scheduled state"); 2722 for (const ScheduleData *BundleMember = this; BundleMember; 2723 BundleMember = BundleMember->NextInBundle) { 2724 assert(BundleMember->hasValidDependencies() && 2725 BundleMember->UnscheduledDeps == 0 && 2726 "unexpected scheduled state"); 2727 assert((BundleMember == this || !BundleMember->IsScheduled) && 2728 "only bundle is marked scheduled"); 2729 } 2730 } 2731 2732 assert(Inst->getParent() == FirstInBundle->Inst->getParent() && 2733 "all bundle members must be in same basic block"); 2734 } 2735 2736 /// Returns true if the dependency information has been calculated. 2737 /// Note that depenendency validity can vary between instructions within 2738 /// a single bundle. 2739 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2740 2741 /// Returns true for single instructions and for bundle representatives 2742 /// (= the head of a bundle). 2743 bool isSchedulingEntity() const { return FirstInBundle == this; } 2744 2745 /// Returns true if it represents an instruction bundle and not only a 2746 /// single instruction. 2747 bool isPartOfBundle() const { 2748 return NextInBundle != nullptr || FirstInBundle != this || TE; 2749 } 2750 2751 /// Returns true if it is ready for scheduling, i.e. it has no more 2752 /// unscheduled depending instructions/bundles. 2753 bool isReady() const { 2754 assert(isSchedulingEntity() && 2755 "can't consider non-scheduling entity for ready list"); 2756 return unscheduledDepsInBundle() == 0 && !IsScheduled; 2757 } 2758 2759 /// Modifies the number of unscheduled dependencies for this instruction, 2760 /// and returns the number of remaining dependencies for the containing 2761 /// bundle. 2762 int incrementUnscheduledDeps(int Incr) { 2763 assert(hasValidDependencies() && 2764 "increment of unscheduled deps would be meaningless"); 2765 UnscheduledDeps += Incr; 2766 return FirstInBundle->unscheduledDepsInBundle(); 2767 } 2768 2769 /// Sets the number of unscheduled dependencies to the number of 2770 /// dependencies. 2771 void resetUnscheduledDeps() { 2772 UnscheduledDeps = Dependencies; 2773 } 2774 2775 /// Clears all dependency information. 2776 void clearDependencies() { 2777 Dependencies = InvalidDeps; 2778 resetUnscheduledDeps(); 2779 MemoryDependencies.clear(); 2780 ControlDependencies.clear(); 2781 } 2782 2783 int unscheduledDepsInBundle() const { 2784 assert(isSchedulingEntity() && "only meaningful on the bundle"); 2785 int Sum = 0; 2786 for (const ScheduleData *BundleMember = this; BundleMember; 2787 BundleMember = BundleMember->NextInBundle) { 2788 if (BundleMember->UnscheduledDeps == InvalidDeps) 2789 return InvalidDeps; 2790 Sum += BundleMember->UnscheduledDeps; 2791 } 2792 return Sum; 2793 } 2794 2795 void dump(raw_ostream &os) const { 2796 if (!isSchedulingEntity()) { 2797 os << "/ " << *Inst; 2798 } else if (NextInBundle) { 2799 os << '[' << *Inst; 2800 ScheduleData *SD = NextInBundle; 2801 while (SD) { 2802 os << ';' << *SD->Inst; 2803 SD = SD->NextInBundle; 2804 } 2805 os << ']'; 2806 } else { 2807 os << *Inst; 2808 } 2809 } 2810 2811 Instruction *Inst = nullptr; 2812 2813 /// Opcode of the current instruction in the schedule data. 2814 Value *OpValue = nullptr; 2815 2816 /// The TreeEntry that this instruction corresponds to. 2817 TreeEntry *TE = nullptr; 2818 2819 /// Points to the head in an instruction bundle (and always to this for 2820 /// single instructions). 2821 ScheduleData *FirstInBundle = nullptr; 2822 2823 /// Single linked list of all instructions in a bundle. Null if it is a 2824 /// single instruction. 2825 ScheduleData *NextInBundle = nullptr; 2826 2827 /// Single linked list of all memory instructions (e.g. load, store, call) 2828 /// in the block - until the end of the scheduling region. 2829 ScheduleData *NextLoadStore = nullptr; 2830 2831 /// The dependent memory instructions. 2832 /// This list is derived on demand in calculateDependencies(). 2833 SmallVector<ScheduleData *, 4> MemoryDependencies; 2834 2835 /// List of instructions which this instruction could be control dependent 2836 /// on. Allowing such nodes to be scheduled below this one could introduce 2837 /// a runtime fault which didn't exist in the original program. 2838 /// ex: this is a load or udiv following a readonly call which inf loops 2839 SmallVector<ScheduleData *, 4> ControlDependencies; 2840 2841 /// This ScheduleData is in the current scheduling region if this matches 2842 /// the current SchedulingRegionID of BlockScheduling. 2843 int SchedulingRegionID = 0; 2844 2845 /// Used for getting a "good" final ordering of instructions. 2846 int SchedulingPriority = 0; 2847 2848 /// The number of dependencies. Constitutes of the number of users of the 2849 /// instruction plus the number of dependent memory instructions (if any). 2850 /// This value is calculated on demand. 2851 /// If InvalidDeps, the number of dependencies is not calculated yet. 2852 int Dependencies = InvalidDeps; 2853 2854 /// The number of dependencies minus the number of dependencies of scheduled 2855 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2856 /// for scheduling. 2857 /// Note that this is negative as long as Dependencies is not calculated. 2858 int UnscheduledDeps = InvalidDeps; 2859 2860 /// True if this instruction is scheduled (or considered as scheduled in the 2861 /// dry-run). 2862 bool IsScheduled = false; 2863 }; 2864 2865 #ifndef NDEBUG 2866 friend inline raw_ostream &operator<<(raw_ostream &os, 2867 const BoUpSLP::ScheduleData &SD) { 2868 SD.dump(os); 2869 return os; 2870 } 2871 #endif 2872 2873 friend struct GraphTraits<BoUpSLP *>; 2874 friend struct DOTGraphTraits<BoUpSLP *>; 2875 2876 /// Contains all scheduling data for a basic block. 2877 /// It does not schedules instructions, which are not memory read/write 2878 /// instructions and their operands are either constants, or arguments, or 2879 /// phis, or instructions from others blocks, or their users are phis or from 2880 /// the other blocks. The resulting vector instructions can be placed at the 2881 /// beginning of the basic block without scheduling (if operands does not need 2882 /// to be scheduled) or at the end of the block (if users are outside of the 2883 /// block). It allows to save some compile time and memory used by the 2884 /// compiler. 2885 /// ScheduleData is assigned for each instruction in between the boundaries of 2886 /// the tree entry, even for those, which are not part of the graph. It is 2887 /// required to correctly follow the dependencies between the instructions and 2888 /// their correct scheduling. The ScheduleData is not allocated for the 2889 /// instructions, which do not require scheduling, like phis, nodes with 2890 /// extractelements/insertelements only or nodes with instructions, with 2891 /// uses/operands outside of the block. 2892 struct BlockScheduling { 2893 BlockScheduling(BasicBlock *BB) 2894 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2895 2896 void clear() { 2897 ReadyInsts.clear(); 2898 ScheduleStart = nullptr; 2899 ScheduleEnd = nullptr; 2900 FirstLoadStoreInRegion = nullptr; 2901 LastLoadStoreInRegion = nullptr; 2902 RegionHasStackSave = false; 2903 2904 // Reduce the maximum schedule region size by the size of the 2905 // previous scheduling run. 2906 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2907 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2908 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2909 ScheduleRegionSize = 0; 2910 2911 // Make a new scheduling region, i.e. all existing ScheduleData is not 2912 // in the new region yet. 2913 ++SchedulingRegionID; 2914 } 2915 2916 ScheduleData *getScheduleData(Instruction *I) { 2917 if (BB != I->getParent()) 2918 // Avoid lookup if can't possibly be in map. 2919 return nullptr; 2920 ScheduleData *SD = ScheduleDataMap.lookup(I); 2921 if (SD && isInSchedulingRegion(SD)) 2922 return SD; 2923 return nullptr; 2924 } 2925 2926 ScheduleData *getScheduleData(Value *V) { 2927 if (auto *I = dyn_cast<Instruction>(V)) 2928 return getScheduleData(I); 2929 return nullptr; 2930 } 2931 2932 ScheduleData *getScheduleData(Value *V, Value *Key) { 2933 if (V == Key) 2934 return getScheduleData(V); 2935 auto I = ExtraScheduleDataMap.find(V); 2936 if (I != ExtraScheduleDataMap.end()) { 2937 ScheduleData *SD = I->second.lookup(Key); 2938 if (SD && isInSchedulingRegion(SD)) 2939 return SD; 2940 } 2941 return nullptr; 2942 } 2943 2944 bool isInSchedulingRegion(ScheduleData *SD) const { 2945 return SD->SchedulingRegionID == SchedulingRegionID; 2946 } 2947 2948 /// Marks an instruction as scheduled and puts all dependent ready 2949 /// instructions into the ready-list. 2950 template <typename ReadyListType> 2951 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2952 SD->IsScheduled = true; 2953 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2954 2955 for (ScheduleData *BundleMember = SD; BundleMember; 2956 BundleMember = BundleMember->NextInBundle) { 2957 if (BundleMember->Inst != BundleMember->OpValue) 2958 continue; 2959 2960 // Handle the def-use chain dependencies. 2961 2962 // Decrement the unscheduled counter and insert to ready list if ready. 2963 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2964 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2965 if (OpDef && OpDef->hasValidDependencies() && 2966 OpDef->incrementUnscheduledDeps(-1) == 0) { 2967 // There are no more unscheduled dependencies after 2968 // decrementing, so we can put the dependent instruction 2969 // into the ready list. 2970 ScheduleData *DepBundle = OpDef->FirstInBundle; 2971 assert(!DepBundle->IsScheduled && 2972 "already scheduled bundle gets ready"); 2973 ReadyList.insert(DepBundle); 2974 LLVM_DEBUG(dbgs() 2975 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2976 } 2977 }); 2978 }; 2979 2980 // If BundleMember is a vector bundle, its operands may have been 2981 // reordered during buildTree(). We therefore need to get its operands 2982 // through the TreeEntry. 2983 if (TreeEntry *TE = BundleMember->TE) { 2984 // Need to search for the lane since the tree entry can be reordered. 2985 int Lane = std::distance(TE->Scalars.begin(), 2986 find(TE->Scalars, BundleMember->Inst)); 2987 assert(Lane >= 0 && "Lane not set"); 2988 2989 // Since vectorization tree is being built recursively this assertion 2990 // ensures that the tree entry has all operands set before reaching 2991 // this code. Couple of exceptions known at the moment are extracts 2992 // where their second (immediate) operand is not added. Since 2993 // immediates do not affect scheduler behavior this is considered 2994 // okay. 2995 auto *In = BundleMember->Inst; 2996 assert(In && 2997 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2998 In->getNumOperands() == TE->getNumOperands()) && 2999 "Missed TreeEntry operands?"); 3000 (void)In; // fake use to avoid build failure when assertions disabled 3001 3002 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 3003 OpIdx != NumOperands; ++OpIdx) 3004 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 3005 DecrUnsched(I); 3006 } else { 3007 // If BundleMember is a stand-alone instruction, no operand reordering 3008 // has taken place, so we directly access its operands. 3009 for (Use &U : BundleMember->Inst->operands()) 3010 if (auto *I = dyn_cast<Instruction>(U.get())) 3011 DecrUnsched(I); 3012 } 3013 // Handle the memory dependencies. 3014 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 3015 if (MemoryDepSD->hasValidDependencies() && 3016 MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 3017 // There are no more unscheduled dependencies after decrementing, 3018 // so we can put the dependent instruction into the ready list. 3019 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 3020 assert(!DepBundle->IsScheduled && 3021 "already scheduled bundle gets ready"); 3022 ReadyList.insert(DepBundle); 3023 LLVM_DEBUG(dbgs() 3024 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 3025 } 3026 } 3027 // Handle the control dependencies. 3028 for (ScheduleData *DepSD : BundleMember->ControlDependencies) { 3029 if (DepSD->incrementUnscheduledDeps(-1) == 0) { 3030 // There are no more unscheduled dependencies after decrementing, 3031 // so we can put the dependent instruction into the ready list. 3032 ScheduleData *DepBundle = DepSD->FirstInBundle; 3033 assert(!DepBundle->IsScheduled && 3034 "already scheduled bundle gets ready"); 3035 ReadyList.insert(DepBundle); 3036 LLVM_DEBUG(dbgs() 3037 << "SLP: gets ready (ctl): " << *DepBundle << "\n"); 3038 } 3039 } 3040 3041 } 3042 } 3043 3044 /// Verify basic self consistency properties of the data structure. 3045 void verify() { 3046 if (!ScheduleStart) 3047 return; 3048 3049 assert(ScheduleStart->getParent() == ScheduleEnd->getParent() && 3050 ScheduleStart->comesBefore(ScheduleEnd) && 3051 "Not a valid scheduling region?"); 3052 3053 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3054 auto *SD = getScheduleData(I); 3055 if (!SD) 3056 continue; 3057 assert(isInSchedulingRegion(SD) && 3058 "primary schedule data not in window?"); 3059 assert(isInSchedulingRegion(SD->FirstInBundle) && 3060 "entire bundle in window!"); 3061 (void)SD; 3062 doForAllOpcodes(I, [](ScheduleData *SD) { SD->verify(); }); 3063 } 3064 3065 for (auto *SD : ReadyInsts) { 3066 assert(SD->isSchedulingEntity() && SD->isReady() && 3067 "item in ready list not ready?"); 3068 (void)SD; 3069 } 3070 } 3071 3072 void doForAllOpcodes(Value *V, 3073 function_ref<void(ScheduleData *SD)> Action) { 3074 if (ScheduleData *SD = getScheduleData(V)) 3075 Action(SD); 3076 auto I = ExtraScheduleDataMap.find(V); 3077 if (I != ExtraScheduleDataMap.end()) 3078 for (auto &P : I->second) 3079 if (isInSchedulingRegion(P.second)) 3080 Action(P.second); 3081 } 3082 3083 /// Put all instructions into the ReadyList which are ready for scheduling. 3084 template <typename ReadyListType> 3085 void initialFillReadyList(ReadyListType &ReadyList) { 3086 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3087 doForAllOpcodes(I, [&](ScheduleData *SD) { 3088 if (SD->isSchedulingEntity() && SD->hasValidDependencies() && 3089 SD->isReady()) { 3090 ReadyList.insert(SD); 3091 LLVM_DEBUG(dbgs() 3092 << "SLP: initially in ready list: " << *SD << "\n"); 3093 } 3094 }); 3095 } 3096 } 3097 3098 /// Build a bundle from the ScheduleData nodes corresponding to the 3099 /// scalar instruction for each lane. 3100 ScheduleData *buildBundle(ArrayRef<Value *> VL); 3101 3102 /// Checks if a bundle of instructions can be scheduled, i.e. has no 3103 /// cyclic dependencies. This is only a dry-run, no instructions are 3104 /// actually moved at this stage. 3105 /// \returns the scheduling bundle. The returned Optional value is non-None 3106 /// if \p VL is allowed to be scheduled. 3107 Optional<ScheduleData *> 3108 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 3109 const InstructionsState &S); 3110 3111 /// Un-bundles a group of instructions. 3112 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 3113 3114 /// Allocates schedule data chunk. 3115 ScheduleData *allocateScheduleDataChunks(); 3116 3117 /// Extends the scheduling region so that V is inside the region. 3118 /// \returns true if the region size is within the limit. 3119 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 3120 3121 /// Initialize the ScheduleData structures for new instructions in the 3122 /// scheduling region. 3123 void initScheduleData(Instruction *FromI, Instruction *ToI, 3124 ScheduleData *PrevLoadStore, 3125 ScheduleData *NextLoadStore); 3126 3127 /// Updates the dependency information of a bundle and of all instructions/ 3128 /// bundles which depend on the original bundle. 3129 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 3130 BoUpSLP *SLP); 3131 3132 /// Sets all instruction in the scheduling region to un-scheduled. 3133 void resetSchedule(); 3134 3135 BasicBlock *BB; 3136 3137 /// Simple memory allocation for ScheduleData. 3138 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 3139 3140 /// The size of a ScheduleData array in ScheduleDataChunks. 3141 int ChunkSize; 3142 3143 /// The allocator position in the current chunk, which is the last entry 3144 /// of ScheduleDataChunks. 3145 int ChunkPos; 3146 3147 /// Attaches ScheduleData to Instruction. 3148 /// Note that the mapping survives during all vectorization iterations, i.e. 3149 /// ScheduleData structures are recycled. 3150 DenseMap<Instruction *, ScheduleData *> ScheduleDataMap; 3151 3152 /// Attaches ScheduleData to Instruction with the leading key. 3153 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 3154 ExtraScheduleDataMap; 3155 3156 /// The ready-list for scheduling (only used for the dry-run). 3157 SetVector<ScheduleData *> ReadyInsts; 3158 3159 /// The first instruction of the scheduling region. 3160 Instruction *ScheduleStart = nullptr; 3161 3162 /// The first instruction _after_ the scheduling region. 3163 Instruction *ScheduleEnd = nullptr; 3164 3165 /// The first memory accessing instruction in the scheduling region 3166 /// (can be null). 3167 ScheduleData *FirstLoadStoreInRegion = nullptr; 3168 3169 /// The last memory accessing instruction in the scheduling region 3170 /// (can be null). 3171 ScheduleData *LastLoadStoreInRegion = nullptr; 3172 3173 /// Is there an llvm.stacksave or llvm.stackrestore in the scheduling 3174 /// region? Used to optimize the dependence calculation for the 3175 /// common case where there isn't. 3176 bool RegionHasStackSave = false; 3177 3178 /// The current size of the scheduling region. 3179 int ScheduleRegionSize = 0; 3180 3181 /// The maximum size allowed for the scheduling region. 3182 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 3183 3184 /// The ID of the scheduling region. For a new vectorization iteration this 3185 /// is incremented which "removes" all ScheduleData from the region. 3186 /// Make sure that the initial SchedulingRegionID is greater than the 3187 /// initial SchedulingRegionID in ScheduleData (which is 0). 3188 int SchedulingRegionID = 1; 3189 }; 3190 3191 /// Attaches the BlockScheduling structures to basic blocks. 3192 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 3193 3194 /// Performs the "real" scheduling. Done before vectorization is actually 3195 /// performed in a basic block. 3196 void scheduleBlock(BlockScheduling *BS); 3197 3198 /// List of users to ignore during scheduling and that don't need extracting. 3199 const SmallDenseSet<Value *> *UserIgnoreList = nullptr; 3200 3201 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 3202 /// sorted SmallVectors of unsigned. 3203 struct OrdersTypeDenseMapInfo { 3204 static OrdersType getEmptyKey() { 3205 OrdersType V; 3206 V.push_back(~1U); 3207 return V; 3208 } 3209 3210 static OrdersType getTombstoneKey() { 3211 OrdersType V; 3212 V.push_back(~2U); 3213 return V; 3214 } 3215 3216 static unsigned getHashValue(const OrdersType &V) { 3217 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 3218 } 3219 3220 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 3221 return LHS == RHS; 3222 } 3223 }; 3224 3225 // Analysis and block reference. 3226 Function *F; 3227 ScalarEvolution *SE; 3228 TargetTransformInfo *TTI; 3229 TargetLibraryInfo *TLI; 3230 LoopInfo *LI; 3231 DominatorTree *DT; 3232 AssumptionCache *AC; 3233 DemandedBits *DB; 3234 const DataLayout *DL; 3235 OptimizationRemarkEmitter *ORE; 3236 3237 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 3238 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 3239 3240 /// Instruction builder to construct the vectorized tree. 3241 IRBuilder<> Builder; 3242 3243 /// A map of scalar integer values to the smallest bit width with which they 3244 /// can legally be represented. The values map to (width, signed) pairs, 3245 /// where "width" indicates the minimum bit width and "signed" is True if the 3246 /// value must be signed-extended, rather than zero-extended, back to its 3247 /// original width. 3248 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 3249 }; 3250 3251 } // end namespace slpvectorizer 3252 3253 template <> struct GraphTraits<BoUpSLP *> { 3254 using TreeEntry = BoUpSLP::TreeEntry; 3255 3256 /// NodeRef has to be a pointer per the GraphWriter. 3257 using NodeRef = TreeEntry *; 3258 3259 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 3260 3261 /// Add the VectorizableTree to the index iterator to be able to return 3262 /// TreeEntry pointers. 3263 struct ChildIteratorType 3264 : public iterator_adaptor_base< 3265 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 3266 ContainerTy &VectorizableTree; 3267 3268 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 3269 ContainerTy &VT) 3270 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 3271 3272 NodeRef operator*() { return I->UserTE; } 3273 }; 3274 3275 static NodeRef getEntryNode(BoUpSLP &R) { 3276 return R.VectorizableTree[0].get(); 3277 } 3278 3279 static ChildIteratorType child_begin(NodeRef N) { 3280 return {N->UserTreeIndices.begin(), N->Container}; 3281 } 3282 3283 static ChildIteratorType child_end(NodeRef N) { 3284 return {N->UserTreeIndices.end(), N->Container}; 3285 } 3286 3287 /// For the node iterator we just need to turn the TreeEntry iterator into a 3288 /// TreeEntry* iterator so that it dereferences to NodeRef. 3289 class nodes_iterator { 3290 using ItTy = ContainerTy::iterator; 3291 ItTy It; 3292 3293 public: 3294 nodes_iterator(const ItTy &It2) : It(It2) {} 3295 NodeRef operator*() { return It->get(); } 3296 nodes_iterator operator++() { 3297 ++It; 3298 return *this; 3299 } 3300 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 3301 }; 3302 3303 static nodes_iterator nodes_begin(BoUpSLP *R) { 3304 return nodes_iterator(R->VectorizableTree.begin()); 3305 } 3306 3307 static nodes_iterator nodes_end(BoUpSLP *R) { 3308 return nodes_iterator(R->VectorizableTree.end()); 3309 } 3310 3311 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 3312 }; 3313 3314 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 3315 using TreeEntry = BoUpSLP::TreeEntry; 3316 3317 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3318 3319 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 3320 std::string Str; 3321 raw_string_ostream OS(Str); 3322 if (isSplat(Entry->Scalars)) 3323 OS << "<splat> "; 3324 for (auto V : Entry->Scalars) { 3325 OS << *V; 3326 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 3327 return EU.Scalar == V; 3328 })) 3329 OS << " <extract>"; 3330 OS << "\n"; 3331 } 3332 return Str; 3333 } 3334 3335 static std::string getNodeAttributes(const TreeEntry *Entry, 3336 const BoUpSLP *) { 3337 if (Entry->State == TreeEntry::NeedToGather) 3338 return "color=red"; 3339 return ""; 3340 } 3341 }; 3342 3343 } // end namespace llvm 3344 3345 BoUpSLP::~BoUpSLP() { 3346 SmallVector<WeakTrackingVH> DeadInsts; 3347 for (auto *I : DeletedInstructions) { 3348 for (Use &U : I->operands()) { 3349 auto *Op = dyn_cast<Instruction>(U.get()); 3350 if (Op && !DeletedInstructions.count(Op) && Op->hasOneUser() && 3351 wouldInstructionBeTriviallyDead(Op, TLI)) 3352 DeadInsts.emplace_back(Op); 3353 } 3354 I->dropAllReferences(); 3355 } 3356 for (auto *I : DeletedInstructions) { 3357 assert(I->use_empty() && 3358 "trying to erase instruction with users."); 3359 I->eraseFromParent(); 3360 } 3361 3362 // Cleanup any dead scalar code feeding the vectorized instructions 3363 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI); 3364 3365 #ifdef EXPENSIVE_CHECKS 3366 // If we could guarantee that this call is not extremely slow, we could 3367 // remove the ifdef limitation (see PR47712). 3368 assert(!verifyFunction(*F, &dbgs())); 3369 #endif 3370 } 3371 3372 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 3373 /// contains original mask for the scalars reused in the node. Procedure 3374 /// transform this mask in accordance with the given \p Mask. 3375 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 3376 assert(!Mask.empty() && Reuses.size() == Mask.size() && 3377 "Expected non-empty mask."); 3378 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 3379 Prev.swap(Reuses); 3380 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 3381 if (Mask[I] != UndefMaskElem) 3382 Reuses[Mask[I]] = Prev[I]; 3383 } 3384 3385 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 3386 /// the original order of the scalars. Procedure transforms the provided order 3387 /// in accordance with the given \p Mask. If the resulting \p Order is just an 3388 /// identity order, \p Order is cleared. 3389 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 3390 assert(!Mask.empty() && "Expected non-empty mask."); 3391 SmallVector<int> MaskOrder; 3392 if (Order.empty()) { 3393 MaskOrder.resize(Mask.size()); 3394 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 3395 } else { 3396 inversePermutation(Order, MaskOrder); 3397 } 3398 reorderReuses(MaskOrder, Mask); 3399 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 3400 Order.clear(); 3401 return; 3402 } 3403 Order.assign(Mask.size(), Mask.size()); 3404 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 3405 if (MaskOrder[I] != UndefMaskElem) 3406 Order[MaskOrder[I]] = I; 3407 fixupOrderingIndices(Order); 3408 } 3409 3410 Optional<BoUpSLP::OrdersType> 3411 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { 3412 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 3413 unsigned NumScalars = TE.Scalars.size(); 3414 OrdersType CurrentOrder(NumScalars, NumScalars); 3415 SmallVector<int> Positions; 3416 SmallBitVector UsedPositions(NumScalars); 3417 const TreeEntry *STE = nullptr; 3418 // Try to find all gathered scalars that are gets vectorized in other 3419 // vectorize node. Here we can have only one single tree vector node to 3420 // correctly identify order of the gathered scalars. 3421 for (unsigned I = 0; I < NumScalars; ++I) { 3422 Value *V = TE.Scalars[I]; 3423 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) 3424 continue; 3425 if (const auto *LocalSTE = getTreeEntry(V)) { 3426 if (!STE) 3427 STE = LocalSTE; 3428 else if (STE != LocalSTE) 3429 // Take the order only from the single vector node. 3430 return None; 3431 unsigned Lane = 3432 std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); 3433 if (Lane >= NumScalars) 3434 return None; 3435 if (CurrentOrder[Lane] != NumScalars) { 3436 if (Lane != I) 3437 continue; 3438 UsedPositions.reset(CurrentOrder[Lane]); 3439 } 3440 // The partial identity (where only some elements of the gather node are 3441 // in the identity order) is good. 3442 CurrentOrder[Lane] = I; 3443 UsedPositions.set(I); 3444 } 3445 } 3446 // Need to keep the order if we have a vector entry and at least 2 scalars or 3447 // the vectorized entry has just 2 scalars. 3448 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { 3449 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { 3450 for (unsigned I = 0; I < NumScalars; ++I) 3451 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) 3452 return false; 3453 return true; 3454 }; 3455 if (IsIdentityOrder(CurrentOrder)) { 3456 CurrentOrder.clear(); 3457 return CurrentOrder; 3458 } 3459 auto *It = CurrentOrder.begin(); 3460 for (unsigned I = 0; I < NumScalars;) { 3461 if (UsedPositions.test(I)) { 3462 ++I; 3463 continue; 3464 } 3465 if (*It == NumScalars) { 3466 *It = I; 3467 ++I; 3468 } 3469 ++It; 3470 } 3471 return CurrentOrder; 3472 } 3473 return None; 3474 } 3475 3476 bool clusterSortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy, 3477 const DataLayout &DL, ScalarEvolution &SE, 3478 SmallVectorImpl<unsigned> &SortedIndices) { 3479 assert(llvm::all_of( 3480 VL, [](const Value *V) { return V->getType()->isPointerTy(); }) && 3481 "Expected list of pointer operands."); 3482 // Map from bases to a vector of (Ptr, Offset, OrigIdx), which we insert each 3483 // Ptr into, sort and return the sorted indices with values next to one 3484 // another. 3485 MapVector<Value *, SmallVector<std::tuple<Value *, int, unsigned>>> Bases; 3486 Bases[VL[0]].push_back(std::make_tuple(VL[0], 0U, 0U)); 3487 3488 unsigned Cnt = 1; 3489 for (Value *Ptr : VL.drop_front()) { 3490 bool Found = any_of(Bases, [&](auto &Base) { 3491 Optional<int> Diff = 3492 getPointersDiff(ElemTy, Base.first, ElemTy, Ptr, DL, SE, 3493 /*StrictCheck=*/true); 3494 if (!Diff) 3495 return false; 3496 3497 Base.second.emplace_back(Ptr, *Diff, Cnt++); 3498 return true; 3499 }); 3500 3501 if (!Found) { 3502 // If we haven't found enough to usefully cluster, return early. 3503 if (Bases.size() > VL.size() / 2 - 1) 3504 return false; 3505 3506 // Not found already - add a new Base 3507 Bases[Ptr].emplace_back(Ptr, 0, Cnt++); 3508 } 3509 } 3510 3511 // For each of the bases sort the pointers by Offset and check if any of the 3512 // base become consecutively allocated. 3513 bool AnyConsecutive = false; 3514 for (auto &Base : Bases) { 3515 auto &Vec = Base.second; 3516 if (Vec.size() > 1) { 3517 llvm::stable_sort(Vec, [](const std::tuple<Value *, int, unsigned> &X, 3518 const std::tuple<Value *, int, unsigned> &Y) { 3519 return std::get<1>(X) < std::get<1>(Y); 3520 }); 3521 int InitialOffset = std::get<1>(Vec[0]); 3522 AnyConsecutive |= all_of(enumerate(Vec), [InitialOffset](auto &P) { 3523 return std::get<1>(P.value()) == int(P.index()) + InitialOffset; 3524 }); 3525 } 3526 } 3527 3528 // Fill SortedIndices array only if it looks worth-while to sort the ptrs. 3529 SortedIndices.clear(); 3530 if (!AnyConsecutive) 3531 return false; 3532 3533 for (auto &Base : Bases) { 3534 for (auto &T : Base.second) 3535 SortedIndices.push_back(std::get<2>(T)); 3536 } 3537 3538 assert(SortedIndices.size() == VL.size() && 3539 "Expected SortedIndices to be the size of VL"); 3540 return true; 3541 } 3542 3543 Optional<BoUpSLP::OrdersType> 3544 BoUpSLP::findPartiallyOrderedLoads(const BoUpSLP::TreeEntry &TE) { 3545 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 3546 Type *ScalarTy = TE.Scalars[0]->getType(); 3547 3548 SmallVector<Value *> Ptrs; 3549 Ptrs.reserve(TE.Scalars.size()); 3550 for (Value *V : TE.Scalars) { 3551 auto *L = dyn_cast<LoadInst>(V); 3552 if (!L || !L->isSimple()) 3553 return None; 3554 Ptrs.push_back(L->getPointerOperand()); 3555 } 3556 3557 BoUpSLP::OrdersType Order; 3558 if (clusterSortPtrAccesses(Ptrs, ScalarTy, *DL, *SE, Order)) 3559 return Order; 3560 return None; 3561 } 3562 3563 Optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE, 3564 bool TopToBottom) { 3565 // No need to reorder if need to shuffle reuses, still need to shuffle the 3566 // node. 3567 if (!TE.ReuseShuffleIndices.empty()) 3568 return None; 3569 if (TE.State == TreeEntry::Vectorize && 3570 (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) || 3571 (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) && 3572 !TE.isAltShuffle()) 3573 return TE.ReorderIndices; 3574 if (TE.State == TreeEntry::NeedToGather) { 3575 // TODO: add analysis of other gather nodes with extractelement 3576 // instructions and other values/instructions, not only undefs. 3577 if (((TE.getOpcode() == Instruction::ExtractElement && 3578 !TE.isAltShuffle()) || 3579 (all_of(TE.Scalars, 3580 [](Value *V) { 3581 return isa<UndefValue, ExtractElementInst>(V); 3582 }) && 3583 any_of(TE.Scalars, 3584 [](Value *V) { return isa<ExtractElementInst>(V); }))) && 3585 all_of(TE.Scalars, 3586 [](Value *V) { 3587 auto *EE = dyn_cast<ExtractElementInst>(V); 3588 return !EE || isa<FixedVectorType>(EE->getVectorOperandType()); 3589 }) && 3590 allSameType(TE.Scalars)) { 3591 // Check that gather of extractelements can be represented as 3592 // just a shuffle of a single vector. 3593 OrdersType CurrentOrder; 3594 bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder); 3595 if (Reuse || !CurrentOrder.empty()) { 3596 if (!CurrentOrder.empty()) 3597 fixupOrderingIndices(CurrentOrder); 3598 return CurrentOrder; 3599 } 3600 } 3601 if (Optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE)) 3602 return CurrentOrder; 3603 if (TE.Scalars.size() >= 4) 3604 if (Optional<OrdersType> Order = findPartiallyOrderedLoads(TE)) 3605 return Order; 3606 } 3607 return None; 3608 } 3609 3610 void BoUpSLP::reorderTopToBottom() { 3611 // Maps VF to the graph nodes. 3612 DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries; 3613 // ExtractElement gather nodes which can be vectorized and need to handle 3614 // their ordering. 3615 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3616 3617 // Maps a TreeEntry to the reorder indices of external users. 3618 DenseMap<const TreeEntry *, SmallVector<OrdersType, 1>> 3619 ExternalUserReorderMap; 3620 // Find all reorderable nodes with the given VF. 3621 // Currently the are vectorized stores,loads,extracts + some gathering of 3622 // extracts. 3623 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders, 3624 &ExternalUserReorderMap]( 3625 const std::unique_ptr<TreeEntry> &TE) { 3626 // Look for external users that will probably be vectorized. 3627 SmallVector<OrdersType, 1> ExternalUserReorderIndices = 3628 findExternalStoreUsersReorderIndices(TE.get()); 3629 if (!ExternalUserReorderIndices.empty()) { 3630 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 3631 ExternalUserReorderMap.try_emplace(TE.get(), 3632 std::move(ExternalUserReorderIndices)); 3633 } 3634 3635 if (Optional<OrdersType> CurrentOrder = 3636 getReorderingData(*TE, /*TopToBottom=*/true)) { 3637 // Do not include ordering for nodes used in the alt opcode vectorization, 3638 // better to reorder them during bottom-to-top stage. If follow the order 3639 // here, it causes reordering of the whole graph though actually it is 3640 // profitable just to reorder the subgraph that starts from the alternate 3641 // opcode vectorization node. Such nodes already end-up with the shuffle 3642 // instruction and it is just enough to change this shuffle rather than 3643 // rotate the scalars for the whole graph. 3644 unsigned Cnt = 0; 3645 const TreeEntry *UserTE = TE.get(); 3646 while (UserTE && Cnt < RecursionMaxDepth) { 3647 if (UserTE->UserTreeIndices.size() != 1) 3648 break; 3649 if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) { 3650 return EI.UserTE->State == TreeEntry::Vectorize && 3651 EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0; 3652 })) 3653 return; 3654 if (UserTE->UserTreeIndices.empty()) 3655 UserTE = nullptr; 3656 else 3657 UserTE = UserTE->UserTreeIndices.back().UserTE; 3658 ++Cnt; 3659 } 3660 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 3661 if (TE->State != TreeEntry::Vectorize) 3662 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3663 } 3664 }); 3665 3666 // Reorder the graph nodes according to their vectorization factor. 3667 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 3668 VF /= 2) { 3669 auto It = VFToOrderedEntries.find(VF); 3670 if (It == VFToOrderedEntries.end()) 3671 continue; 3672 // Try to find the most profitable order. We just are looking for the most 3673 // used order and reorder scalar elements in the nodes according to this 3674 // mostly used order. 3675 ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef(); 3676 // All operands are reordered and used only in this node - propagate the 3677 // most used order to the user node. 3678 MapVector<OrdersType, unsigned, 3679 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3680 OrdersUses; 3681 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3682 for (const TreeEntry *OpTE : OrderedEntries) { 3683 // No need to reorder this nodes, still need to extend and to use shuffle, 3684 // just need to merge reordering shuffle and the reuse shuffle. 3685 if (!OpTE->ReuseShuffleIndices.empty()) 3686 continue; 3687 // Count number of orders uses. 3688 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3689 if (OpTE->State == TreeEntry::NeedToGather) { 3690 auto It = GathersToOrders.find(OpTE); 3691 if (It != GathersToOrders.end()) 3692 return It->second; 3693 } 3694 return OpTE->ReorderIndices; 3695 }(); 3696 // First consider the order of the external scalar users. 3697 auto It = ExternalUserReorderMap.find(OpTE); 3698 if (It != ExternalUserReorderMap.end()) { 3699 const auto &ExternalUserReorderIndices = It->second; 3700 for (const OrdersType &ExtOrder : ExternalUserReorderIndices) 3701 ++OrdersUses.insert(std::make_pair(ExtOrder, 0)).first->second; 3702 // No other useful reorder data in this entry. 3703 if (Order.empty()) 3704 continue; 3705 } 3706 // Stores actually store the mask, not the order, need to invert. 3707 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3708 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3709 SmallVector<int> Mask; 3710 inversePermutation(Order, Mask); 3711 unsigned E = Order.size(); 3712 OrdersType CurrentOrder(E, E); 3713 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3714 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3715 }); 3716 fixupOrderingIndices(CurrentOrder); 3717 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3718 } else { 3719 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3720 } 3721 } 3722 // Set order of the user node. 3723 if (OrdersUses.empty()) 3724 continue; 3725 // Choose the most used order. 3726 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3727 unsigned Cnt = OrdersUses.front().second; 3728 for (const auto &Pair : drop_begin(OrdersUses)) { 3729 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3730 BestOrder = Pair.first; 3731 Cnt = Pair.second; 3732 } 3733 } 3734 // Set order of the user node. 3735 if (BestOrder.empty()) 3736 continue; 3737 SmallVector<int> Mask; 3738 inversePermutation(BestOrder, Mask); 3739 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3740 unsigned E = BestOrder.size(); 3741 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3742 return I < E ? static_cast<int>(I) : UndefMaskElem; 3743 }); 3744 // Do an actual reordering, if profitable. 3745 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 3746 // Just do the reordering for the nodes with the given VF. 3747 if (TE->Scalars.size() != VF) { 3748 if (TE->ReuseShuffleIndices.size() == VF) { 3749 // Need to reorder the reuses masks of the operands with smaller VF to 3750 // be able to find the match between the graph nodes and scalar 3751 // operands of the given node during vectorization/cost estimation. 3752 assert(all_of(TE->UserTreeIndices, 3753 [VF, &TE](const EdgeInfo &EI) { 3754 return EI.UserTE->Scalars.size() == VF || 3755 EI.UserTE->Scalars.size() == 3756 TE->Scalars.size(); 3757 }) && 3758 "All users must be of VF size."); 3759 // Update ordering of the operands with the smaller VF than the given 3760 // one. 3761 reorderReuses(TE->ReuseShuffleIndices, Mask); 3762 } 3763 continue; 3764 } 3765 if (TE->State == TreeEntry::Vectorize && 3766 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 3767 InsertElementInst>(TE->getMainOp()) && 3768 !TE->isAltShuffle()) { 3769 // Build correct orders for extract{element,value}, loads and 3770 // stores. 3771 reorderOrder(TE->ReorderIndices, Mask); 3772 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 3773 TE->reorderOperands(Mask); 3774 } else { 3775 // Reorder the node and its operands. 3776 TE->reorderOperands(Mask); 3777 assert(TE->ReorderIndices.empty() && 3778 "Expected empty reorder sequence."); 3779 reorderScalars(TE->Scalars, Mask); 3780 } 3781 if (!TE->ReuseShuffleIndices.empty()) { 3782 // Apply reversed order to keep the original ordering of the reused 3783 // elements to avoid extra reorder indices shuffling. 3784 OrdersType CurrentOrder; 3785 reorderOrder(CurrentOrder, MaskOrder); 3786 SmallVector<int> NewReuses; 3787 inversePermutation(CurrentOrder, NewReuses); 3788 addMask(NewReuses, TE->ReuseShuffleIndices); 3789 TE->ReuseShuffleIndices.swap(NewReuses); 3790 } 3791 } 3792 } 3793 } 3794 3795 bool BoUpSLP::canReorderOperands( 3796 TreeEntry *UserTE, SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, 3797 ArrayRef<TreeEntry *> ReorderableGathers, 3798 SmallVectorImpl<TreeEntry *> &GatherOps) { 3799 for (unsigned I = 0, E = UserTE->getNumOperands(); I < E; ++I) { 3800 if (any_of(Edges, [I](const std::pair<unsigned, TreeEntry *> &OpData) { 3801 return OpData.first == I && 3802 OpData.second->State == TreeEntry::Vectorize; 3803 })) 3804 continue; 3805 if (TreeEntry *TE = getVectorizedOperand(UserTE, I)) { 3806 // Do not reorder if operand node is used by many user nodes. 3807 if (any_of(TE->UserTreeIndices, 3808 [UserTE](const EdgeInfo &EI) { return EI.UserTE != UserTE; })) 3809 return false; 3810 // Add the node to the list of the ordered nodes with the identity 3811 // order. 3812 Edges.emplace_back(I, TE); 3813 continue; 3814 } 3815 ArrayRef<Value *> VL = UserTE->getOperand(I); 3816 TreeEntry *Gather = nullptr; 3817 if (count_if(ReorderableGathers, [VL, &Gather](TreeEntry *TE) { 3818 assert(TE->State != TreeEntry::Vectorize && 3819 "Only non-vectorized nodes are expected."); 3820 if (TE->isSame(VL)) { 3821 Gather = TE; 3822 return true; 3823 } 3824 return false; 3825 }) > 1) 3826 return false; 3827 if (Gather) 3828 GatherOps.push_back(Gather); 3829 } 3830 return true; 3831 } 3832 3833 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { 3834 SetVector<TreeEntry *> OrderedEntries; 3835 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3836 // Find all reorderable leaf nodes with the given VF. 3837 // Currently the are vectorized loads,extracts without alternate operands + 3838 // some gathering of extracts. 3839 SmallVector<TreeEntry *> NonVectorized; 3840 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 3841 &NonVectorized]( 3842 const std::unique_ptr<TreeEntry> &TE) { 3843 if (TE->State != TreeEntry::Vectorize) 3844 NonVectorized.push_back(TE.get()); 3845 if (Optional<OrdersType> CurrentOrder = 3846 getReorderingData(*TE, /*TopToBottom=*/false)) { 3847 OrderedEntries.insert(TE.get()); 3848 if (TE->State != TreeEntry::Vectorize) 3849 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3850 } 3851 }); 3852 3853 // 1. Propagate order to the graph nodes, which use only reordered nodes. 3854 // I.e., if the node has operands, that are reordered, try to make at least 3855 // one operand order in the natural order and reorder others + reorder the 3856 // user node itself. 3857 SmallPtrSet<const TreeEntry *, 4> Visited; 3858 while (!OrderedEntries.empty()) { 3859 // 1. Filter out only reordered nodes. 3860 // 2. If the entry has multiple uses - skip it and jump to the next node. 3861 DenseMap<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 3862 SmallVector<TreeEntry *> Filtered; 3863 for (TreeEntry *TE : OrderedEntries) { 3864 if (!(TE->State == TreeEntry::Vectorize || 3865 (TE->State == TreeEntry::NeedToGather && 3866 GathersToOrders.count(TE))) || 3867 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3868 !all_of(drop_begin(TE->UserTreeIndices), 3869 [TE](const EdgeInfo &EI) { 3870 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 3871 }) || 3872 !Visited.insert(TE).second) { 3873 Filtered.push_back(TE); 3874 continue; 3875 } 3876 // Build a map between user nodes and their operands order to speedup 3877 // search. The graph currently does not provide this dependency directly. 3878 for (EdgeInfo &EI : TE->UserTreeIndices) { 3879 TreeEntry *UserTE = EI.UserTE; 3880 auto It = Users.find(UserTE); 3881 if (It == Users.end()) 3882 It = Users.insert({UserTE, {}}).first; 3883 It->second.emplace_back(EI.EdgeIdx, TE); 3884 } 3885 } 3886 // Erase filtered entries. 3887 for_each(Filtered, 3888 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 3889 SmallVector< 3890 std::pair<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>>> 3891 UsersVec(Users.begin(), Users.end()); 3892 sort(UsersVec, [](const auto &Data1, const auto &Data2) { 3893 return Data1.first->Idx > Data2.first->Idx; 3894 }); 3895 for (auto &Data : UsersVec) { 3896 // Check that operands are used only in the User node. 3897 SmallVector<TreeEntry *> GatherOps; 3898 if (!canReorderOperands(Data.first, Data.second, NonVectorized, 3899 GatherOps)) { 3900 for_each(Data.second, 3901 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3902 OrderedEntries.remove(Op.second); 3903 }); 3904 continue; 3905 } 3906 // All operands are reordered and used only in this node - propagate the 3907 // most used order to the user node. 3908 MapVector<OrdersType, unsigned, 3909 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3910 OrdersUses; 3911 // Do the analysis for each tree entry only once, otherwise the order of 3912 // the same node my be considered several times, though might be not 3913 // profitable. 3914 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3915 SmallPtrSet<const TreeEntry *, 4> VisitedUsers; 3916 for (const auto &Op : Data.second) { 3917 TreeEntry *OpTE = Op.second; 3918 if (!VisitedOps.insert(OpTE).second) 3919 continue; 3920 if (!OpTE->ReuseShuffleIndices.empty() || 3921 (IgnoreReorder && OpTE == VectorizableTree.front().get())) 3922 continue; 3923 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3924 if (OpTE->State == TreeEntry::NeedToGather) 3925 return GathersToOrders.find(OpTE)->second; 3926 return OpTE->ReorderIndices; 3927 }(); 3928 unsigned NumOps = count_if( 3929 Data.second, [OpTE](const std::pair<unsigned, TreeEntry *> &P) { 3930 return P.second == OpTE; 3931 }); 3932 // Stores actually store the mask, not the order, need to invert. 3933 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3934 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3935 SmallVector<int> Mask; 3936 inversePermutation(Order, Mask); 3937 unsigned E = Order.size(); 3938 OrdersType CurrentOrder(E, E); 3939 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3940 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3941 }); 3942 fixupOrderingIndices(CurrentOrder); 3943 OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second += 3944 NumOps; 3945 } else { 3946 OrdersUses.insert(std::make_pair(Order, 0)).first->second += NumOps; 3947 } 3948 auto Res = OrdersUses.insert(std::make_pair(OrdersType(), 0)); 3949 const auto &&AllowsReordering = [IgnoreReorder, &GathersToOrders]( 3950 const TreeEntry *TE) { 3951 if (!TE->ReorderIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3952 (TE->State == TreeEntry::Vectorize && TE->isAltShuffle()) || 3953 (IgnoreReorder && TE->Idx == 0)) 3954 return true; 3955 if (TE->State == TreeEntry::NeedToGather) { 3956 auto It = GathersToOrders.find(TE); 3957 if (It != GathersToOrders.end()) 3958 return !It->second.empty(); 3959 return true; 3960 } 3961 return false; 3962 }; 3963 for (const EdgeInfo &EI : OpTE->UserTreeIndices) { 3964 TreeEntry *UserTE = EI.UserTE; 3965 if (!VisitedUsers.insert(UserTE).second) 3966 continue; 3967 // May reorder user node if it requires reordering, has reused 3968 // scalars, is an alternate op vectorize node or its op nodes require 3969 // reordering. 3970 if (AllowsReordering(UserTE)) 3971 continue; 3972 // Check if users allow reordering. 3973 // Currently look up just 1 level of operands to avoid increase of 3974 // the compile time. 3975 // Profitable to reorder if definitely more operands allow 3976 // reordering rather than those with natural order. 3977 ArrayRef<std::pair<unsigned, TreeEntry *>> Ops = Users[UserTE]; 3978 if (static_cast<unsigned>(count_if( 3979 Ops, [UserTE, &AllowsReordering]( 3980 const std::pair<unsigned, TreeEntry *> &Op) { 3981 return AllowsReordering(Op.second) && 3982 all_of(Op.second->UserTreeIndices, 3983 [UserTE](const EdgeInfo &EI) { 3984 return EI.UserTE == UserTE; 3985 }); 3986 })) <= Ops.size() / 2) 3987 ++Res.first->second; 3988 } 3989 } 3990 // If no orders - skip current nodes and jump to the next one, if any. 3991 if (OrdersUses.empty()) { 3992 for_each(Data.second, 3993 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3994 OrderedEntries.remove(Op.second); 3995 }); 3996 continue; 3997 } 3998 // Choose the best order. 3999 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 4000 unsigned Cnt = OrdersUses.front().second; 4001 for (const auto &Pair : drop_begin(OrdersUses)) { 4002 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 4003 BestOrder = Pair.first; 4004 Cnt = Pair.second; 4005 } 4006 } 4007 // Set order of the user node (reordering of operands and user nodes). 4008 if (BestOrder.empty()) { 4009 for_each(Data.second, 4010 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 4011 OrderedEntries.remove(Op.second); 4012 }); 4013 continue; 4014 } 4015 // Erase operands from OrderedEntries list and adjust their orders. 4016 VisitedOps.clear(); 4017 SmallVector<int> Mask; 4018 inversePermutation(BestOrder, Mask); 4019 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 4020 unsigned E = BestOrder.size(); 4021 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 4022 return I < E ? static_cast<int>(I) : UndefMaskElem; 4023 }); 4024 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 4025 TreeEntry *TE = Op.second; 4026 OrderedEntries.remove(TE); 4027 if (!VisitedOps.insert(TE).second) 4028 continue; 4029 if (TE->ReuseShuffleIndices.size() == BestOrder.size()) { 4030 // Just reorder reuses indices. 4031 reorderReuses(TE->ReuseShuffleIndices, Mask); 4032 continue; 4033 } 4034 // Gathers are processed separately. 4035 if (TE->State != TreeEntry::Vectorize) 4036 continue; 4037 assert((BestOrder.size() == TE->ReorderIndices.size() || 4038 TE->ReorderIndices.empty()) && 4039 "Non-matching sizes of user/operand entries."); 4040 reorderOrder(TE->ReorderIndices, Mask); 4041 } 4042 // For gathers just need to reorder its scalars. 4043 for (TreeEntry *Gather : GatherOps) { 4044 assert(Gather->ReorderIndices.empty() && 4045 "Unexpected reordering of gathers."); 4046 if (!Gather->ReuseShuffleIndices.empty()) { 4047 // Just reorder reuses indices. 4048 reorderReuses(Gather->ReuseShuffleIndices, Mask); 4049 continue; 4050 } 4051 reorderScalars(Gather->Scalars, Mask); 4052 OrderedEntries.remove(Gather); 4053 } 4054 // Reorder operands of the user node and set the ordering for the user 4055 // node itself. 4056 if (Data.first->State != TreeEntry::Vectorize || 4057 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 4058 Data.first->getMainOp()) || 4059 Data.first->isAltShuffle()) 4060 Data.first->reorderOperands(Mask); 4061 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 4062 Data.first->isAltShuffle()) { 4063 reorderScalars(Data.first->Scalars, Mask); 4064 reorderOrder(Data.first->ReorderIndices, MaskOrder); 4065 if (Data.first->ReuseShuffleIndices.empty() && 4066 !Data.first->ReorderIndices.empty() && 4067 !Data.first->isAltShuffle()) { 4068 // Insert user node to the list to try to sink reordering deeper in 4069 // the graph. 4070 OrderedEntries.insert(Data.first); 4071 } 4072 } else { 4073 reorderOrder(Data.first->ReorderIndices, Mask); 4074 } 4075 } 4076 } 4077 // If the reordering is unnecessary, just remove the reorder. 4078 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && 4079 VectorizableTree.front()->ReuseShuffleIndices.empty()) 4080 VectorizableTree.front()->ReorderIndices.clear(); 4081 } 4082 4083 void BoUpSLP::buildExternalUses( 4084 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 4085 // Collect the values that we need to extract from the tree. 4086 for (auto &TEPtr : VectorizableTree) { 4087 TreeEntry *Entry = TEPtr.get(); 4088 4089 // No need to handle users of gathered values. 4090 if (Entry->State == TreeEntry::NeedToGather) 4091 continue; 4092 4093 // For each lane: 4094 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 4095 Value *Scalar = Entry->Scalars[Lane]; 4096 int FoundLane = Entry->findLaneForValue(Scalar); 4097 4098 // Check if the scalar is externally used as an extra arg. 4099 auto ExtI = ExternallyUsedValues.find(Scalar); 4100 if (ExtI != ExternallyUsedValues.end()) { 4101 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 4102 << Lane << " from " << *Scalar << ".\n"); 4103 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 4104 } 4105 for (User *U : Scalar->users()) { 4106 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 4107 4108 Instruction *UserInst = dyn_cast<Instruction>(U); 4109 if (!UserInst) 4110 continue; 4111 4112 if (isDeleted(UserInst)) 4113 continue; 4114 4115 // Skip in-tree scalars that become vectors 4116 if (TreeEntry *UseEntry = getTreeEntry(U)) { 4117 Value *UseScalar = UseEntry->Scalars[0]; 4118 // Some in-tree scalars will remain as scalar in vectorized 4119 // instructions. If that is the case, the one in Lane 0 will 4120 // be used. 4121 if (UseScalar != U || 4122 UseEntry->State == TreeEntry::ScatterVectorize || 4123 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 4124 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 4125 << ".\n"); 4126 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 4127 continue; 4128 } 4129 } 4130 4131 // Ignore users in the user ignore list. 4132 if (UserIgnoreList && UserIgnoreList->contains(UserInst)) 4133 continue; 4134 4135 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 4136 << Lane << " from " << *Scalar << ".\n"); 4137 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 4138 } 4139 } 4140 } 4141 } 4142 4143 DenseMap<Value *, SmallVector<StoreInst *, 4>> 4144 BoUpSLP::collectUserStores(const BoUpSLP::TreeEntry *TE) const { 4145 DenseMap<Value *, SmallVector<StoreInst *, 4>> PtrToStoresMap; 4146 for (unsigned Lane : seq<unsigned>(0, TE->Scalars.size())) { 4147 Value *V = TE->Scalars[Lane]; 4148 // To save compilation time we don't visit if we have too many users. 4149 static constexpr unsigned UsersLimit = 4; 4150 if (V->hasNUsesOrMore(UsersLimit)) 4151 break; 4152 4153 // Collect stores per pointer object. 4154 for (User *U : V->users()) { 4155 auto *SI = dyn_cast<StoreInst>(U); 4156 if (SI == nullptr || !SI->isSimple() || 4157 !isValidElementType(SI->getValueOperand()->getType())) 4158 continue; 4159 // Skip entry if already 4160 if (getTreeEntry(U)) 4161 continue; 4162 4163 Value *Ptr = getUnderlyingObject(SI->getPointerOperand()); 4164 auto &StoresVec = PtrToStoresMap[Ptr]; 4165 // For now just keep one store per pointer object per lane. 4166 // TODO: Extend this to support multiple stores per pointer per lane 4167 if (StoresVec.size() > Lane) 4168 continue; 4169 // Skip if in different BBs. 4170 if (!StoresVec.empty() && 4171 SI->getParent() != StoresVec.back()->getParent()) 4172 continue; 4173 // Make sure that the stores are of the same type. 4174 if (!StoresVec.empty() && 4175 SI->getValueOperand()->getType() != 4176 StoresVec.back()->getValueOperand()->getType()) 4177 continue; 4178 StoresVec.push_back(SI); 4179 } 4180 } 4181 return PtrToStoresMap; 4182 } 4183 4184 bool BoUpSLP::CanFormVector(const SmallVector<StoreInst *, 4> &StoresVec, 4185 OrdersType &ReorderIndices) const { 4186 // We check whether the stores in StoreVec can form a vector by sorting them 4187 // and checking whether they are consecutive. 4188 4189 // To avoid calling getPointersDiff() while sorting we create a vector of 4190 // pairs {store, offset from first} and sort this instead. 4191 SmallVector<std::pair<StoreInst *, int>, 4> StoreOffsetVec(StoresVec.size()); 4192 StoreInst *S0 = StoresVec[0]; 4193 StoreOffsetVec[0] = {S0, 0}; 4194 Type *S0Ty = S0->getValueOperand()->getType(); 4195 Value *S0Ptr = S0->getPointerOperand(); 4196 for (unsigned Idx : seq<unsigned>(1, StoresVec.size())) { 4197 StoreInst *SI = StoresVec[Idx]; 4198 Optional<int> Diff = 4199 getPointersDiff(S0Ty, S0Ptr, SI->getValueOperand()->getType(), 4200 SI->getPointerOperand(), *DL, *SE, 4201 /*StrictCheck=*/true); 4202 // We failed to compare the pointers so just abandon this StoresVec. 4203 if (!Diff) 4204 return false; 4205 StoreOffsetVec[Idx] = {StoresVec[Idx], *Diff}; 4206 } 4207 4208 // Sort the vector based on the pointers. We create a copy because we may 4209 // need the original later for calculating the reorder (shuffle) indices. 4210 stable_sort(StoreOffsetVec, [](const std::pair<StoreInst *, int> &Pair1, 4211 const std::pair<StoreInst *, int> &Pair2) { 4212 int Offset1 = Pair1.second; 4213 int Offset2 = Pair2.second; 4214 return Offset1 < Offset2; 4215 }); 4216 4217 // Check if the stores are consecutive by checking if their difference is 1. 4218 for (unsigned Idx : seq<unsigned>(1, StoreOffsetVec.size())) 4219 if (StoreOffsetVec[Idx].second != StoreOffsetVec[Idx-1].second + 1) 4220 return false; 4221 4222 // Calculate the shuffle indices according to their offset against the sorted 4223 // StoreOffsetVec. 4224 ReorderIndices.reserve(StoresVec.size()); 4225 for (StoreInst *SI : StoresVec) { 4226 unsigned Idx = find_if(StoreOffsetVec, 4227 [SI](const std::pair<StoreInst *, int> &Pair) { 4228 return Pair.first == SI; 4229 }) - 4230 StoreOffsetVec.begin(); 4231 ReorderIndices.push_back(Idx); 4232 } 4233 // Identity order (e.g., {0,1,2,3}) is modeled as an empty OrdersType in 4234 // reorderTopToBottom() and reorderBottomToTop(), so we are following the 4235 // same convention here. 4236 auto IsIdentityOrder = [](const OrdersType &Order) { 4237 for (unsigned Idx : seq<unsigned>(0, Order.size())) 4238 if (Idx != Order[Idx]) 4239 return false; 4240 return true; 4241 }; 4242 if (IsIdentityOrder(ReorderIndices)) 4243 ReorderIndices.clear(); 4244 4245 return true; 4246 } 4247 4248 #ifndef NDEBUG 4249 LLVM_DUMP_METHOD static void dumpOrder(const BoUpSLP::OrdersType &Order) { 4250 for (unsigned Idx : Order) 4251 dbgs() << Idx << ", "; 4252 dbgs() << "\n"; 4253 } 4254 #endif 4255 4256 SmallVector<BoUpSLP::OrdersType, 1> 4257 BoUpSLP::findExternalStoreUsersReorderIndices(TreeEntry *TE) const { 4258 unsigned NumLanes = TE->Scalars.size(); 4259 4260 DenseMap<Value *, SmallVector<StoreInst *, 4>> PtrToStoresMap = 4261 collectUserStores(TE); 4262 4263 // Holds the reorder indices for each candidate store vector that is a user of 4264 // the current TreeEntry. 4265 SmallVector<OrdersType, 1> ExternalReorderIndices; 4266 4267 // Now inspect the stores collected per pointer and look for vectorization 4268 // candidates. For each candidate calculate the reorder index vector and push 4269 // it into `ExternalReorderIndices` 4270 for (const auto &Pair : PtrToStoresMap) { 4271 auto &StoresVec = Pair.second; 4272 // If we have fewer than NumLanes stores, then we can't form a vector. 4273 if (StoresVec.size() != NumLanes) 4274 continue; 4275 4276 // If the stores are not consecutive then abandon this StoresVec. 4277 OrdersType ReorderIndices; 4278 if (!CanFormVector(StoresVec, ReorderIndices)) 4279 continue; 4280 4281 // We now know that the scalars in StoresVec can form a vector instruction, 4282 // so set the reorder indices. 4283 ExternalReorderIndices.push_back(ReorderIndices); 4284 } 4285 return ExternalReorderIndices; 4286 } 4287 4288 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 4289 const SmallDenseSet<Value *> &UserIgnoreLst) { 4290 deleteTree(); 4291 UserIgnoreList = &UserIgnoreLst; 4292 if (!allSameType(Roots)) 4293 return; 4294 buildTree_rec(Roots, 0, EdgeInfo()); 4295 } 4296 4297 void BoUpSLP::buildTree(ArrayRef<Value *> Roots) { 4298 deleteTree(); 4299 if (!allSameType(Roots)) 4300 return; 4301 buildTree_rec(Roots, 0, EdgeInfo()); 4302 } 4303 4304 namespace { 4305 /// Tracks the state we can represent the loads in the given sequence. 4306 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 4307 } // anonymous namespace 4308 4309 /// Checks if the given array of loads can be represented as a vectorized, 4310 /// scatter or just simple gather. 4311 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 4312 const TargetTransformInfo &TTI, 4313 const DataLayout &DL, ScalarEvolution &SE, 4314 SmallVectorImpl<unsigned> &Order, 4315 SmallVectorImpl<Value *> &PointerOps) { 4316 // Check that a vectorized load would load the same memory as a scalar 4317 // load. For example, we don't want to vectorize loads that are smaller 4318 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 4319 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 4320 // from such a struct, we read/write packed bits disagreeing with the 4321 // unvectorized version. 4322 Type *ScalarTy = VL0->getType(); 4323 4324 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 4325 return LoadsState::Gather; 4326 4327 // Make sure all loads in the bundle are simple - we can't vectorize 4328 // atomic or volatile loads. 4329 PointerOps.clear(); 4330 PointerOps.resize(VL.size()); 4331 auto *POIter = PointerOps.begin(); 4332 for (Value *V : VL) { 4333 auto *L = cast<LoadInst>(V); 4334 if (!L->isSimple()) 4335 return LoadsState::Gather; 4336 *POIter = L->getPointerOperand(); 4337 ++POIter; 4338 } 4339 4340 Order.clear(); 4341 // Check the order of pointer operands. 4342 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 4343 Value *Ptr0; 4344 Value *PtrN; 4345 if (Order.empty()) { 4346 Ptr0 = PointerOps.front(); 4347 PtrN = PointerOps.back(); 4348 } else { 4349 Ptr0 = PointerOps[Order.front()]; 4350 PtrN = PointerOps[Order.back()]; 4351 } 4352 Optional<int> Diff = 4353 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 4354 // Check that the sorted loads are consecutive. 4355 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 4356 return LoadsState::Vectorize; 4357 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 4358 for (Value *V : VL) 4359 CommonAlignment = 4360 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 4361 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4362 if (TTI.isLegalMaskedGather(VecTy, CommonAlignment) && 4363 !TTI.forceScalarizeMaskedGather(VecTy, CommonAlignment)) 4364 return LoadsState::ScatterVectorize; 4365 } 4366 4367 return LoadsState::Gather; 4368 } 4369 4370 /// \return true if the specified list of values has only one instruction that 4371 /// requires scheduling, false otherwise. 4372 #ifndef NDEBUG 4373 static bool needToScheduleSingleInstruction(ArrayRef<Value *> VL) { 4374 Value *NeedsScheduling = nullptr; 4375 for (Value *V : VL) { 4376 if (doesNotNeedToBeScheduled(V)) 4377 continue; 4378 if (!NeedsScheduling) { 4379 NeedsScheduling = V; 4380 continue; 4381 } 4382 return false; 4383 } 4384 return NeedsScheduling; 4385 } 4386 #endif 4387 4388 /// Generates key/subkey pair for the given value to provide effective sorting 4389 /// of the values and better detection of the vectorizable values sequences. The 4390 /// keys/subkeys can be used for better sorting of the values themselves (keys) 4391 /// and in values subgroups (subkeys). 4392 static std::pair<size_t, size_t> generateKeySubkey( 4393 Value *V, const TargetLibraryInfo *TLI, 4394 function_ref<hash_code(size_t, LoadInst *)> LoadsSubkeyGenerator, 4395 bool AllowAlternate) { 4396 hash_code Key = hash_value(V->getValueID() + 2); 4397 hash_code SubKey = hash_value(0); 4398 // Sort the loads by the distance between the pointers. 4399 if (auto *LI = dyn_cast<LoadInst>(V)) { 4400 Key = hash_combine(hash_value(Instruction::Load), Key); 4401 if (LI->isSimple()) 4402 SubKey = hash_value(LoadsSubkeyGenerator(Key, LI)); 4403 else 4404 SubKey = hash_value(LI); 4405 } else if (isVectorLikeInstWithConstOps(V)) { 4406 // Sort extracts by the vector operands. 4407 if (isa<ExtractElementInst, UndefValue>(V)) 4408 Key = hash_value(Value::UndefValueVal + 1); 4409 if (auto *EI = dyn_cast<ExtractElementInst>(V)) { 4410 if (!isUndefVector(EI->getVectorOperand()) && 4411 !isa<UndefValue>(EI->getIndexOperand())) 4412 SubKey = hash_value(EI->getVectorOperand()); 4413 } 4414 } else if (auto *I = dyn_cast<Instruction>(V)) { 4415 // Sort other instructions just by the opcodes except for CMPInst. 4416 // For CMP also sort by the predicate kind. 4417 if ((isa<BinaryOperator>(I) || isa<CastInst>(I)) && 4418 isValidForAlternation(I->getOpcode())) { 4419 if (AllowAlternate) 4420 Key = hash_value(isa<BinaryOperator>(I) ? 1 : 0); 4421 else 4422 Key = hash_combine(hash_value(I->getOpcode()), Key); 4423 SubKey = hash_combine( 4424 hash_value(I->getOpcode()), hash_value(I->getType()), 4425 hash_value(isa<BinaryOperator>(I) 4426 ? I->getType() 4427 : cast<CastInst>(I)->getOperand(0)->getType())); 4428 } else if (auto *CI = dyn_cast<CmpInst>(I)) { 4429 CmpInst::Predicate Pred = CI->getPredicate(); 4430 if (CI->isCommutative()) 4431 Pred = std::min(Pred, CmpInst::getInversePredicate(Pred)); 4432 CmpInst::Predicate SwapPred = CmpInst::getSwappedPredicate(Pred); 4433 SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(Pred), 4434 hash_value(SwapPred), 4435 hash_value(CI->getOperand(0)->getType())); 4436 } else if (auto *Call = dyn_cast<CallInst>(I)) { 4437 Intrinsic::ID ID = getVectorIntrinsicIDForCall(Call, TLI); 4438 if (isTriviallyVectorizable(ID)) 4439 SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(ID)); 4440 else if (!VFDatabase(*Call).getMappings(*Call).empty()) 4441 SubKey = hash_combine(hash_value(I->getOpcode()), 4442 hash_value(Call->getCalledFunction())); 4443 else 4444 SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(Call)); 4445 for (const CallBase::BundleOpInfo &Op : Call->bundle_op_infos()) 4446 SubKey = hash_combine(hash_value(Op.Begin), hash_value(Op.End), 4447 hash_value(Op.Tag), SubKey); 4448 } else if (auto *Gep = dyn_cast<GetElementPtrInst>(I)) { 4449 if (Gep->getNumOperands() == 2 && isa<ConstantInt>(Gep->getOperand(1))) 4450 SubKey = hash_value(Gep->getPointerOperand()); 4451 else 4452 SubKey = hash_value(Gep); 4453 } else if (BinaryOperator::isIntDivRem(I->getOpcode()) && 4454 !isa<ConstantInt>(I->getOperand(1))) { 4455 // Do not try to vectorize instructions with potentially high cost. 4456 SubKey = hash_value(I); 4457 } else { 4458 SubKey = hash_value(I->getOpcode()); 4459 } 4460 Key = hash_combine(hash_value(I->getParent()), Key); 4461 } 4462 return std::make_pair(Key, SubKey); 4463 } 4464 4465 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 4466 const EdgeInfo &UserTreeIdx) { 4467 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 4468 4469 SmallVector<int> ReuseShuffleIndicies; 4470 SmallVector<Value *> UniqueValues; 4471 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, 4472 &UserTreeIdx, 4473 this](const InstructionsState &S) { 4474 // Check that every instruction appears once in this bundle. 4475 DenseMap<Value *, unsigned> UniquePositions; 4476 for (Value *V : VL) { 4477 if (isConstant(V)) { 4478 ReuseShuffleIndicies.emplace_back( 4479 isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size()); 4480 UniqueValues.emplace_back(V); 4481 continue; 4482 } 4483 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 4484 ReuseShuffleIndicies.emplace_back(Res.first->second); 4485 if (Res.second) 4486 UniqueValues.emplace_back(V); 4487 } 4488 size_t NumUniqueScalarValues = UniqueValues.size(); 4489 if (NumUniqueScalarValues == VL.size()) { 4490 ReuseShuffleIndicies.clear(); 4491 } else { 4492 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 4493 if (NumUniqueScalarValues <= 1 || 4494 (UniquePositions.size() == 1 && all_of(UniqueValues, 4495 [](Value *V) { 4496 return isa<UndefValue>(V) || 4497 !isConstant(V); 4498 })) || 4499 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 4500 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 4501 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4502 return false; 4503 } 4504 VL = UniqueValues; 4505 } 4506 return true; 4507 }; 4508 4509 InstructionsState S = getSameOpcode(VL); 4510 if (Depth == RecursionMaxDepth) { 4511 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 4512 if (TryToFindDuplicates(S)) 4513 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4514 ReuseShuffleIndicies); 4515 return; 4516 } 4517 4518 // Don't handle scalable vectors 4519 if (S.getOpcode() == Instruction::ExtractElement && 4520 isa<ScalableVectorType>( 4521 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 4522 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 4523 if (TryToFindDuplicates(S)) 4524 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4525 ReuseShuffleIndicies); 4526 return; 4527 } 4528 4529 // Don't handle vectors. 4530 if (S.OpValue->getType()->isVectorTy() && 4531 !isa<InsertElementInst>(S.OpValue)) { 4532 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 4533 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4534 return; 4535 } 4536 4537 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 4538 if (SI->getValueOperand()->getType()->isVectorTy()) { 4539 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 4540 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4541 return; 4542 } 4543 4544 // If all of the operands are identical or constant we have a simple solution. 4545 // If we deal with insert/extract instructions, they all must have constant 4546 // indices, otherwise we should gather them, not try to vectorize. 4547 // If alternate op node with 2 elements with gathered operands - do not 4548 // vectorize. 4549 auto &&NotProfitableForVectorization = [&S, this, 4550 Depth](ArrayRef<Value *> VL) { 4551 if (!S.getOpcode() || !S.isAltShuffle() || VL.size() > 2) 4552 return false; 4553 if (VectorizableTree.size() < MinTreeSize) 4554 return false; 4555 if (Depth >= RecursionMaxDepth - 1) 4556 return true; 4557 // Check if all operands are extracts, part of vector node or can build a 4558 // regular vectorize node. 4559 SmallVector<unsigned, 2> InstsCount(VL.size(), 0); 4560 for (Value *V : VL) { 4561 auto *I = cast<Instruction>(V); 4562 InstsCount.push_back(count_if(I->operand_values(), [](Value *Op) { 4563 return isa<Instruction>(Op) || isVectorLikeInstWithConstOps(Op); 4564 })); 4565 } 4566 bool IsCommutative = isCommutative(S.MainOp) || isCommutative(S.AltOp); 4567 if ((IsCommutative && 4568 std::accumulate(InstsCount.begin(), InstsCount.end(), 0) < 2) || 4569 (!IsCommutative && 4570 all_of(InstsCount, [](unsigned ICnt) { return ICnt < 2; }))) 4571 return true; 4572 assert(VL.size() == 2 && "Expected only 2 alternate op instructions."); 4573 SmallVector<SmallVector<std::pair<Value *, Value *>>> Candidates; 4574 auto *I1 = cast<Instruction>(VL.front()); 4575 auto *I2 = cast<Instruction>(VL.back()); 4576 for (int Op = 0, E = S.MainOp->getNumOperands(); Op < E; ++Op) 4577 Candidates.emplace_back().emplace_back(I1->getOperand(Op), 4578 I2->getOperand(Op)); 4579 if (count_if( 4580 Candidates, [this](ArrayRef<std::pair<Value *, Value *>> Cand) { 4581 return findBestRootPair(Cand, LookAheadHeuristics::ScoreSplat); 4582 }) >= S.MainOp->getNumOperands() / 2) 4583 return false; 4584 if (S.MainOp->getNumOperands() > 2) 4585 return true; 4586 if (IsCommutative) { 4587 // Check permuted operands. 4588 Candidates.clear(); 4589 for (int Op = 0, E = S.MainOp->getNumOperands(); Op < E; ++Op) 4590 Candidates.emplace_back().emplace_back(I1->getOperand(Op), 4591 I2->getOperand((Op + 1) % E)); 4592 if (any_of( 4593 Candidates, [this](ArrayRef<std::pair<Value *, Value *>> Cand) { 4594 return findBestRootPair(Cand, LookAheadHeuristics::ScoreSplat); 4595 })) 4596 return false; 4597 } 4598 return true; 4599 }; 4600 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() || 4601 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) && 4602 !all_of(VL, isVectorLikeInstWithConstOps)) || 4603 NotProfitableForVectorization(VL)) { 4604 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O, small shuffle. \n"); 4605 if (TryToFindDuplicates(S)) 4606 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4607 ReuseShuffleIndicies); 4608 return; 4609 } 4610 4611 // We now know that this is a vector of instructions of the same type from 4612 // the same block. 4613 4614 // Don't vectorize ephemeral values. 4615 if (!EphValues.empty()) { 4616 for (Value *V : VL) { 4617 if (EphValues.count(V)) { 4618 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 4619 << ") is ephemeral.\n"); 4620 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4621 return; 4622 } 4623 } 4624 } 4625 4626 // Check if this is a duplicate of another entry. 4627 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 4628 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 4629 if (!E->isSame(VL)) { 4630 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 4631 if (TryToFindDuplicates(S)) 4632 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4633 ReuseShuffleIndicies); 4634 return; 4635 } 4636 // Record the reuse of the tree node. FIXME, currently this is only used to 4637 // properly draw the graph rather than for the actual vectorization. 4638 E->UserTreeIndices.push_back(UserTreeIdx); 4639 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 4640 << ".\n"); 4641 return; 4642 } 4643 4644 // Check that none of the instructions in the bundle are already in the tree. 4645 for (Value *V : VL) { 4646 auto *I = dyn_cast<Instruction>(V); 4647 if (!I) 4648 continue; 4649 if (getTreeEntry(I)) { 4650 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 4651 << ") is already in tree.\n"); 4652 if (TryToFindDuplicates(S)) 4653 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4654 ReuseShuffleIndicies); 4655 return; 4656 } 4657 } 4658 4659 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 4660 if (UserIgnoreList && !UserIgnoreList->empty()) { 4661 for (Value *V : VL) { 4662 if (UserIgnoreList && UserIgnoreList->contains(V)) { 4663 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 4664 if (TryToFindDuplicates(S)) 4665 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4666 ReuseShuffleIndicies); 4667 return; 4668 } 4669 } 4670 } 4671 4672 // Check that all of the users of the scalars that we want to vectorize are 4673 // schedulable. 4674 auto *VL0 = cast<Instruction>(S.OpValue); 4675 BasicBlock *BB = VL0->getParent(); 4676 4677 if (!DT->isReachableFromEntry(BB)) { 4678 // Don't go into unreachable blocks. They may contain instructions with 4679 // dependency cycles which confuse the final scheduling. 4680 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 4681 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4682 return; 4683 } 4684 4685 // Check that every instruction appears once in this bundle. 4686 if (!TryToFindDuplicates(S)) 4687 return; 4688 4689 auto &BSRef = BlocksSchedules[BB]; 4690 if (!BSRef) 4691 BSRef = std::make_unique<BlockScheduling>(BB); 4692 4693 BlockScheduling &BS = *BSRef; 4694 4695 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 4696 #ifdef EXPENSIVE_CHECKS 4697 // Make sure we didn't break any internal invariants 4698 BS.verify(); 4699 #endif 4700 if (!Bundle) { 4701 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 4702 assert((!BS.getScheduleData(VL0) || 4703 !BS.getScheduleData(VL0)->isPartOfBundle()) && 4704 "tryScheduleBundle should cancelScheduling on failure"); 4705 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4706 ReuseShuffleIndicies); 4707 return; 4708 } 4709 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 4710 4711 unsigned ShuffleOrOp = S.isAltShuffle() ? 4712 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 4713 switch (ShuffleOrOp) { 4714 case Instruction::PHI: { 4715 auto *PH = cast<PHINode>(VL0); 4716 4717 // Check for terminator values (e.g. invoke). 4718 for (Value *V : VL) 4719 for (Value *Incoming : cast<PHINode>(V)->incoming_values()) { 4720 Instruction *Term = dyn_cast<Instruction>(Incoming); 4721 if (Term && Term->isTerminator()) { 4722 LLVM_DEBUG(dbgs() 4723 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 4724 BS.cancelScheduling(VL, VL0); 4725 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4726 ReuseShuffleIndicies); 4727 return; 4728 } 4729 } 4730 4731 TreeEntry *TE = 4732 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 4733 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 4734 4735 // Keeps the reordered operands to avoid code duplication. 4736 SmallVector<ValueList, 2> OperandsVec; 4737 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 4738 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 4739 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 4740 TE->setOperand(I, Operands); 4741 OperandsVec.push_back(Operands); 4742 continue; 4743 } 4744 ValueList Operands; 4745 // Prepare the operand vector. 4746 for (Value *V : VL) 4747 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 4748 PH->getIncomingBlock(I))); 4749 TE->setOperand(I, Operands); 4750 OperandsVec.push_back(Operands); 4751 } 4752 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 4753 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 4754 return; 4755 } 4756 case Instruction::ExtractValue: 4757 case Instruction::ExtractElement: { 4758 OrdersType CurrentOrder; 4759 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 4760 if (Reuse) { 4761 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 4762 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4763 ReuseShuffleIndicies); 4764 // This is a special case, as it does not gather, but at the same time 4765 // we are not extending buildTree_rec() towards the operands. 4766 ValueList Op0; 4767 Op0.assign(VL.size(), VL0->getOperand(0)); 4768 VectorizableTree.back()->setOperand(0, Op0); 4769 return; 4770 } 4771 if (!CurrentOrder.empty()) { 4772 LLVM_DEBUG({ 4773 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 4774 "with order"; 4775 for (unsigned Idx : CurrentOrder) 4776 dbgs() << " " << Idx; 4777 dbgs() << "\n"; 4778 }); 4779 fixupOrderingIndices(CurrentOrder); 4780 // Insert new order with initial value 0, if it does not exist, 4781 // otherwise return the iterator to the existing one. 4782 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4783 ReuseShuffleIndicies, CurrentOrder); 4784 // This is a special case, as it does not gather, but at the same time 4785 // we are not extending buildTree_rec() towards the operands. 4786 ValueList Op0; 4787 Op0.assign(VL.size(), VL0->getOperand(0)); 4788 VectorizableTree.back()->setOperand(0, Op0); 4789 return; 4790 } 4791 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 4792 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4793 ReuseShuffleIndicies); 4794 BS.cancelScheduling(VL, VL0); 4795 return; 4796 } 4797 case Instruction::InsertElement: { 4798 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 4799 4800 // Check that we have a buildvector and not a shuffle of 2 or more 4801 // different vectors. 4802 ValueSet SourceVectors; 4803 for (Value *V : VL) { 4804 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 4805 assert(getInsertIndex(V) != None && "Non-constant or undef index?"); 4806 } 4807 4808 if (count_if(VL, [&SourceVectors](Value *V) { 4809 return !SourceVectors.contains(V); 4810 }) >= 2) { 4811 // Found 2nd source vector - cancel. 4812 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 4813 "different source vectors.\n"); 4814 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4815 BS.cancelScheduling(VL, VL0); 4816 return; 4817 } 4818 4819 auto OrdCompare = [](const std::pair<int, int> &P1, 4820 const std::pair<int, int> &P2) { 4821 return P1.first > P2.first; 4822 }; 4823 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 4824 decltype(OrdCompare)> 4825 Indices(OrdCompare); 4826 for (int I = 0, E = VL.size(); I < E; ++I) { 4827 unsigned Idx = *getInsertIndex(VL[I]); 4828 Indices.emplace(Idx, I); 4829 } 4830 OrdersType CurrentOrder(VL.size(), VL.size()); 4831 bool IsIdentity = true; 4832 for (int I = 0, E = VL.size(); I < E; ++I) { 4833 CurrentOrder[Indices.top().second] = I; 4834 IsIdentity &= Indices.top().second == I; 4835 Indices.pop(); 4836 } 4837 if (IsIdentity) 4838 CurrentOrder.clear(); 4839 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4840 None, CurrentOrder); 4841 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 4842 4843 constexpr int NumOps = 2; 4844 ValueList VectorOperands[NumOps]; 4845 for (int I = 0; I < NumOps; ++I) { 4846 for (Value *V : VL) 4847 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 4848 4849 TE->setOperand(I, VectorOperands[I]); 4850 } 4851 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 4852 return; 4853 } 4854 case Instruction::Load: { 4855 // Check that a vectorized load would load the same memory as a scalar 4856 // load. For example, we don't want to vectorize loads that are smaller 4857 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 4858 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 4859 // from such a struct, we read/write packed bits disagreeing with the 4860 // unvectorized version. 4861 SmallVector<Value *> PointerOps; 4862 OrdersType CurrentOrder; 4863 TreeEntry *TE = nullptr; 4864 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 4865 PointerOps)) { 4866 case LoadsState::Vectorize: 4867 if (CurrentOrder.empty()) { 4868 // Original loads are consecutive and does not require reordering. 4869 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4870 ReuseShuffleIndicies); 4871 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 4872 } else { 4873 fixupOrderingIndices(CurrentOrder); 4874 // Need to reorder. 4875 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4876 ReuseShuffleIndicies, CurrentOrder); 4877 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 4878 } 4879 TE->setOperandsInOrder(); 4880 break; 4881 case LoadsState::ScatterVectorize: 4882 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 4883 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 4884 UserTreeIdx, ReuseShuffleIndicies); 4885 TE->setOperandsInOrder(); 4886 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 4887 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 4888 break; 4889 case LoadsState::Gather: 4890 BS.cancelScheduling(VL, VL0); 4891 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4892 ReuseShuffleIndicies); 4893 #ifndef NDEBUG 4894 Type *ScalarTy = VL0->getType(); 4895 if (DL->getTypeSizeInBits(ScalarTy) != 4896 DL->getTypeAllocSizeInBits(ScalarTy)) 4897 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 4898 else if (any_of(VL, [](Value *V) { 4899 return !cast<LoadInst>(V)->isSimple(); 4900 })) 4901 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 4902 else 4903 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 4904 #endif // NDEBUG 4905 break; 4906 } 4907 return; 4908 } 4909 case Instruction::ZExt: 4910 case Instruction::SExt: 4911 case Instruction::FPToUI: 4912 case Instruction::FPToSI: 4913 case Instruction::FPExt: 4914 case Instruction::PtrToInt: 4915 case Instruction::IntToPtr: 4916 case Instruction::SIToFP: 4917 case Instruction::UIToFP: 4918 case Instruction::Trunc: 4919 case Instruction::FPTrunc: 4920 case Instruction::BitCast: { 4921 Type *SrcTy = VL0->getOperand(0)->getType(); 4922 for (Value *V : VL) { 4923 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 4924 if (Ty != SrcTy || !isValidElementType(Ty)) { 4925 BS.cancelScheduling(VL, VL0); 4926 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4927 ReuseShuffleIndicies); 4928 LLVM_DEBUG(dbgs() 4929 << "SLP: Gathering casts with different src types.\n"); 4930 return; 4931 } 4932 } 4933 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4934 ReuseShuffleIndicies); 4935 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 4936 4937 TE->setOperandsInOrder(); 4938 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4939 ValueList Operands; 4940 // Prepare the operand vector. 4941 for (Value *V : VL) 4942 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4943 4944 buildTree_rec(Operands, Depth + 1, {TE, i}); 4945 } 4946 return; 4947 } 4948 case Instruction::ICmp: 4949 case Instruction::FCmp: { 4950 // Check that all of the compares have the same predicate. 4951 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4952 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 4953 Type *ComparedTy = VL0->getOperand(0)->getType(); 4954 for (Value *V : VL) { 4955 CmpInst *Cmp = cast<CmpInst>(V); 4956 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 4957 Cmp->getOperand(0)->getType() != ComparedTy) { 4958 BS.cancelScheduling(VL, VL0); 4959 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4960 ReuseShuffleIndicies); 4961 LLVM_DEBUG(dbgs() 4962 << "SLP: Gathering cmp with different predicate.\n"); 4963 return; 4964 } 4965 } 4966 4967 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4968 ReuseShuffleIndicies); 4969 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 4970 4971 ValueList Left, Right; 4972 if (cast<CmpInst>(VL0)->isCommutative()) { 4973 // Commutative predicate - collect + sort operands of the instructions 4974 // so that each side is more likely to have the same opcode. 4975 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 4976 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4977 } else { 4978 // Collect operands - commute if it uses the swapped predicate. 4979 for (Value *V : VL) { 4980 auto *Cmp = cast<CmpInst>(V); 4981 Value *LHS = Cmp->getOperand(0); 4982 Value *RHS = Cmp->getOperand(1); 4983 if (Cmp->getPredicate() != P0) 4984 std::swap(LHS, RHS); 4985 Left.push_back(LHS); 4986 Right.push_back(RHS); 4987 } 4988 } 4989 TE->setOperand(0, Left); 4990 TE->setOperand(1, Right); 4991 buildTree_rec(Left, Depth + 1, {TE, 0}); 4992 buildTree_rec(Right, Depth + 1, {TE, 1}); 4993 return; 4994 } 4995 case Instruction::Select: 4996 case Instruction::FNeg: 4997 case Instruction::Add: 4998 case Instruction::FAdd: 4999 case Instruction::Sub: 5000 case Instruction::FSub: 5001 case Instruction::Mul: 5002 case Instruction::FMul: 5003 case Instruction::UDiv: 5004 case Instruction::SDiv: 5005 case Instruction::FDiv: 5006 case Instruction::URem: 5007 case Instruction::SRem: 5008 case Instruction::FRem: 5009 case Instruction::Shl: 5010 case Instruction::LShr: 5011 case Instruction::AShr: 5012 case Instruction::And: 5013 case Instruction::Or: 5014 case Instruction::Xor: { 5015 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 5016 ReuseShuffleIndicies); 5017 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 5018 5019 // Sort operands of the instructions so that each side is more likely to 5020 // have the same opcode. 5021 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 5022 ValueList Left, Right; 5023 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 5024 TE->setOperand(0, Left); 5025 TE->setOperand(1, Right); 5026 buildTree_rec(Left, Depth + 1, {TE, 0}); 5027 buildTree_rec(Right, Depth + 1, {TE, 1}); 5028 return; 5029 } 5030 5031 TE->setOperandsInOrder(); 5032 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 5033 ValueList Operands; 5034 // Prepare the operand vector. 5035 for (Value *V : VL) 5036 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 5037 5038 buildTree_rec(Operands, Depth + 1, {TE, i}); 5039 } 5040 return; 5041 } 5042 case Instruction::GetElementPtr: { 5043 // We don't combine GEPs with complicated (nested) indexing. 5044 for (Value *V : VL) { 5045 if (cast<Instruction>(V)->getNumOperands() != 2) { 5046 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 5047 BS.cancelScheduling(VL, VL0); 5048 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5049 ReuseShuffleIndicies); 5050 return; 5051 } 5052 } 5053 5054 // We can't combine several GEPs into one vector if they operate on 5055 // different types. 5056 Type *Ty0 = cast<GEPOperator>(VL0)->getSourceElementType(); 5057 for (Value *V : VL) { 5058 Type *CurTy = cast<GEPOperator>(V)->getSourceElementType(); 5059 if (Ty0 != CurTy) { 5060 LLVM_DEBUG(dbgs() 5061 << "SLP: not-vectorizable GEP (different types).\n"); 5062 BS.cancelScheduling(VL, VL0); 5063 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5064 ReuseShuffleIndicies); 5065 return; 5066 } 5067 } 5068 5069 // We don't combine GEPs with non-constant indexes. 5070 Type *Ty1 = VL0->getOperand(1)->getType(); 5071 for (Value *V : VL) { 5072 auto Op = cast<Instruction>(V)->getOperand(1); 5073 if (!isa<ConstantInt>(Op) || 5074 (Op->getType() != Ty1 && 5075 Op->getType()->getScalarSizeInBits() > 5076 DL->getIndexSizeInBits( 5077 V->getType()->getPointerAddressSpace()))) { 5078 LLVM_DEBUG(dbgs() 5079 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 5080 BS.cancelScheduling(VL, VL0); 5081 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5082 ReuseShuffleIndicies); 5083 return; 5084 } 5085 } 5086 5087 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 5088 ReuseShuffleIndicies); 5089 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 5090 SmallVector<ValueList, 2> Operands(2); 5091 // Prepare the operand vector for pointer operands. 5092 for (Value *V : VL) 5093 Operands.front().push_back( 5094 cast<GetElementPtrInst>(V)->getPointerOperand()); 5095 TE->setOperand(0, Operands.front()); 5096 // Need to cast all indices to the same type before vectorization to 5097 // avoid crash. 5098 // Required to be able to find correct matches between different gather 5099 // nodes and reuse the vectorized values rather than trying to gather them 5100 // again. 5101 int IndexIdx = 1; 5102 Type *VL0Ty = VL0->getOperand(IndexIdx)->getType(); 5103 Type *Ty = all_of(VL, 5104 [VL0Ty, IndexIdx](Value *V) { 5105 return VL0Ty == cast<GetElementPtrInst>(V) 5106 ->getOperand(IndexIdx) 5107 ->getType(); 5108 }) 5109 ? VL0Ty 5110 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 5111 ->getPointerOperandType() 5112 ->getScalarType()); 5113 // Prepare the operand vector. 5114 for (Value *V : VL) { 5115 auto *Op = cast<Instruction>(V)->getOperand(IndexIdx); 5116 auto *CI = cast<ConstantInt>(Op); 5117 Operands.back().push_back(ConstantExpr::getIntegerCast( 5118 CI, Ty, CI->getValue().isSignBitSet())); 5119 } 5120 TE->setOperand(IndexIdx, Operands.back()); 5121 5122 for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I) 5123 buildTree_rec(Operands[I], Depth + 1, {TE, I}); 5124 return; 5125 } 5126 case Instruction::Store: { 5127 // Check if the stores are consecutive or if we need to swizzle them. 5128 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 5129 // Avoid types that are padded when being allocated as scalars, while 5130 // being packed together in a vector (such as i1). 5131 if (DL->getTypeSizeInBits(ScalarTy) != 5132 DL->getTypeAllocSizeInBits(ScalarTy)) { 5133 BS.cancelScheduling(VL, VL0); 5134 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5135 ReuseShuffleIndicies); 5136 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 5137 return; 5138 } 5139 // Make sure all stores in the bundle are simple - we can't vectorize 5140 // atomic or volatile stores. 5141 SmallVector<Value *, 4> PointerOps(VL.size()); 5142 ValueList Operands(VL.size()); 5143 auto POIter = PointerOps.begin(); 5144 auto OIter = Operands.begin(); 5145 for (Value *V : VL) { 5146 auto *SI = cast<StoreInst>(V); 5147 if (!SI->isSimple()) { 5148 BS.cancelScheduling(VL, VL0); 5149 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5150 ReuseShuffleIndicies); 5151 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 5152 return; 5153 } 5154 *POIter = SI->getPointerOperand(); 5155 *OIter = SI->getValueOperand(); 5156 ++POIter; 5157 ++OIter; 5158 } 5159 5160 OrdersType CurrentOrder; 5161 // Check the order of pointer operands. 5162 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 5163 Value *Ptr0; 5164 Value *PtrN; 5165 if (CurrentOrder.empty()) { 5166 Ptr0 = PointerOps.front(); 5167 PtrN = PointerOps.back(); 5168 } else { 5169 Ptr0 = PointerOps[CurrentOrder.front()]; 5170 PtrN = PointerOps[CurrentOrder.back()]; 5171 } 5172 Optional<int> Dist = 5173 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 5174 // Check that the sorted pointer operands are consecutive. 5175 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 5176 if (CurrentOrder.empty()) { 5177 // Original stores are consecutive and does not require reordering. 5178 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 5179 UserTreeIdx, ReuseShuffleIndicies); 5180 TE->setOperandsInOrder(); 5181 buildTree_rec(Operands, Depth + 1, {TE, 0}); 5182 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 5183 } else { 5184 fixupOrderingIndices(CurrentOrder); 5185 TreeEntry *TE = 5186 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 5187 ReuseShuffleIndicies, CurrentOrder); 5188 TE->setOperandsInOrder(); 5189 buildTree_rec(Operands, Depth + 1, {TE, 0}); 5190 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 5191 } 5192 return; 5193 } 5194 } 5195 5196 BS.cancelScheduling(VL, VL0); 5197 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5198 ReuseShuffleIndicies); 5199 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 5200 return; 5201 } 5202 case Instruction::Call: { 5203 // Check if the calls are all to the same vectorizable intrinsic or 5204 // library function. 5205 CallInst *CI = cast<CallInst>(VL0); 5206 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5207 5208 VFShape Shape = VFShape::get( 5209 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 5210 false /*HasGlobalPred*/); 5211 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 5212 5213 if (!VecFunc && !isTriviallyVectorizable(ID)) { 5214 BS.cancelScheduling(VL, VL0); 5215 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5216 ReuseShuffleIndicies); 5217 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 5218 return; 5219 } 5220 Function *F = CI->getCalledFunction(); 5221 unsigned NumArgs = CI->arg_size(); 5222 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 5223 for (unsigned j = 0; j != NumArgs; ++j) 5224 if (isVectorIntrinsicWithScalarOpAtArg(ID, j)) 5225 ScalarArgs[j] = CI->getArgOperand(j); 5226 for (Value *V : VL) { 5227 CallInst *CI2 = dyn_cast<CallInst>(V); 5228 if (!CI2 || CI2->getCalledFunction() != F || 5229 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 5230 (VecFunc && 5231 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 5232 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 5233 BS.cancelScheduling(VL, VL0); 5234 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5235 ReuseShuffleIndicies); 5236 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 5237 << "\n"); 5238 return; 5239 } 5240 // Some intrinsics have scalar arguments and should be same in order for 5241 // them to be vectorized. 5242 for (unsigned j = 0; j != NumArgs; ++j) { 5243 if (isVectorIntrinsicWithScalarOpAtArg(ID, j)) { 5244 Value *A1J = CI2->getArgOperand(j); 5245 if (ScalarArgs[j] != A1J) { 5246 BS.cancelScheduling(VL, VL0); 5247 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5248 ReuseShuffleIndicies); 5249 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 5250 << " argument " << ScalarArgs[j] << "!=" << A1J 5251 << "\n"); 5252 return; 5253 } 5254 } 5255 } 5256 // Verify that the bundle operands are identical between the two calls. 5257 if (CI->hasOperandBundles() && 5258 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 5259 CI->op_begin() + CI->getBundleOperandsEndIndex(), 5260 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 5261 BS.cancelScheduling(VL, VL0); 5262 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5263 ReuseShuffleIndicies); 5264 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 5265 << *CI << "!=" << *V << '\n'); 5266 return; 5267 } 5268 } 5269 5270 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 5271 ReuseShuffleIndicies); 5272 TE->setOperandsInOrder(); 5273 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 5274 // For scalar operands no need to to create an entry since no need to 5275 // vectorize it. 5276 if (isVectorIntrinsicWithScalarOpAtArg(ID, i)) 5277 continue; 5278 ValueList Operands; 5279 // Prepare the operand vector. 5280 for (Value *V : VL) { 5281 auto *CI2 = cast<CallInst>(V); 5282 Operands.push_back(CI2->getArgOperand(i)); 5283 } 5284 buildTree_rec(Operands, Depth + 1, {TE, i}); 5285 } 5286 return; 5287 } 5288 case Instruction::ShuffleVector: { 5289 // If this is not an alternate sequence of opcode like add-sub 5290 // then do not vectorize this instruction. 5291 if (!S.isAltShuffle()) { 5292 BS.cancelScheduling(VL, VL0); 5293 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5294 ReuseShuffleIndicies); 5295 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 5296 return; 5297 } 5298 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 5299 ReuseShuffleIndicies); 5300 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 5301 5302 // Reorder operands if reordering would enable vectorization. 5303 auto *CI = dyn_cast<CmpInst>(VL0); 5304 if (isa<BinaryOperator>(VL0) || CI) { 5305 ValueList Left, Right; 5306 if (!CI || all_of(VL, [](Value *V) { 5307 return cast<CmpInst>(V)->isCommutative(); 5308 })) { 5309 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 5310 } else { 5311 CmpInst::Predicate P0 = CI->getPredicate(); 5312 CmpInst::Predicate AltP0 = cast<CmpInst>(S.AltOp)->getPredicate(); 5313 assert(P0 != AltP0 && 5314 "Expected different main/alternate predicates."); 5315 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 5316 Value *BaseOp0 = VL0->getOperand(0); 5317 Value *BaseOp1 = VL0->getOperand(1); 5318 // Collect operands - commute if it uses the swapped predicate or 5319 // alternate operation. 5320 for (Value *V : VL) { 5321 auto *Cmp = cast<CmpInst>(V); 5322 Value *LHS = Cmp->getOperand(0); 5323 Value *RHS = Cmp->getOperand(1); 5324 CmpInst::Predicate CurrentPred = Cmp->getPredicate(); 5325 if (P0 == AltP0Swapped) { 5326 if (CI != Cmp && S.AltOp != Cmp && 5327 ((P0 == CurrentPred && 5328 !areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)) || 5329 (AltP0 == CurrentPred && 5330 areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)))) 5331 std::swap(LHS, RHS); 5332 } else if (P0 != CurrentPred && AltP0 != CurrentPred) { 5333 std::swap(LHS, RHS); 5334 } 5335 Left.push_back(LHS); 5336 Right.push_back(RHS); 5337 } 5338 } 5339 TE->setOperand(0, Left); 5340 TE->setOperand(1, Right); 5341 buildTree_rec(Left, Depth + 1, {TE, 0}); 5342 buildTree_rec(Right, Depth + 1, {TE, 1}); 5343 return; 5344 } 5345 5346 TE->setOperandsInOrder(); 5347 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 5348 ValueList Operands; 5349 // Prepare the operand vector. 5350 for (Value *V : VL) 5351 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 5352 5353 buildTree_rec(Operands, Depth + 1, {TE, i}); 5354 } 5355 return; 5356 } 5357 default: 5358 BS.cancelScheduling(VL, VL0); 5359 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 5360 ReuseShuffleIndicies); 5361 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 5362 return; 5363 } 5364 } 5365 5366 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 5367 unsigned N = 1; 5368 Type *EltTy = T; 5369 5370 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 5371 isa<VectorType>(EltTy)) { 5372 if (auto *ST = dyn_cast<StructType>(EltTy)) { 5373 // Check that struct is homogeneous. 5374 for (const auto *Ty : ST->elements()) 5375 if (Ty != *ST->element_begin()) 5376 return 0; 5377 N *= ST->getNumElements(); 5378 EltTy = *ST->element_begin(); 5379 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 5380 N *= AT->getNumElements(); 5381 EltTy = AT->getElementType(); 5382 } else { 5383 auto *VT = cast<FixedVectorType>(EltTy); 5384 N *= VT->getNumElements(); 5385 EltTy = VT->getElementType(); 5386 } 5387 } 5388 5389 if (!isValidElementType(EltTy)) 5390 return 0; 5391 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 5392 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 5393 return 0; 5394 return N; 5395 } 5396 5397 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 5398 SmallVectorImpl<unsigned> &CurrentOrder) const { 5399 const auto *It = find_if(VL, [](Value *V) { 5400 return isa<ExtractElementInst, ExtractValueInst>(V); 5401 }); 5402 assert(It != VL.end() && "Expected at least one extract instruction."); 5403 auto *E0 = cast<Instruction>(*It); 5404 assert(all_of(VL, 5405 [](Value *V) { 5406 return isa<UndefValue, ExtractElementInst, ExtractValueInst>( 5407 V); 5408 }) && 5409 "Invalid opcode"); 5410 // Check if all of the extracts come from the same vector and from the 5411 // correct offset. 5412 Value *Vec = E0->getOperand(0); 5413 5414 CurrentOrder.clear(); 5415 5416 // We have to extract from a vector/aggregate with the same number of elements. 5417 unsigned NElts; 5418 if (E0->getOpcode() == Instruction::ExtractValue) { 5419 const DataLayout &DL = E0->getModule()->getDataLayout(); 5420 NElts = canMapToVector(Vec->getType(), DL); 5421 if (!NElts) 5422 return false; 5423 // Check if load can be rewritten as load of vector. 5424 LoadInst *LI = dyn_cast<LoadInst>(Vec); 5425 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 5426 return false; 5427 } else { 5428 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 5429 } 5430 5431 if (NElts != VL.size()) 5432 return false; 5433 5434 // Check that all of the indices extract from the correct offset. 5435 bool ShouldKeepOrder = true; 5436 unsigned E = VL.size(); 5437 // Assign to all items the initial value E + 1 so we can check if the extract 5438 // instruction index was used already. 5439 // Also, later we can check that all the indices are used and we have a 5440 // consecutive access in the extract instructions, by checking that no 5441 // element of CurrentOrder still has value E + 1. 5442 CurrentOrder.assign(E, E); 5443 unsigned I = 0; 5444 for (; I < E; ++I) { 5445 auto *Inst = dyn_cast<Instruction>(VL[I]); 5446 if (!Inst) 5447 continue; 5448 if (Inst->getOperand(0) != Vec) 5449 break; 5450 if (auto *EE = dyn_cast<ExtractElementInst>(Inst)) 5451 if (isa<UndefValue>(EE->getIndexOperand())) 5452 continue; 5453 Optional<unsigned> Idx = getExtractIndex(Inst); 5454 if (!Idx) 5455 break; 5456 const unsigned ExtIdx = *Idx; 5457 if (ExtIdx != I) { 5458 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E) 5459 break; 5460 ShouldKeepOrder = false; 5461 CurrentOrder[ExtIdx] = I; 5462 } else { 5463 if (CurrentOrder[I] != E) 5464 break; 5465 CurrentOrder[I] = I; 5466 } 5467 } 5468 if (I < E) { 5469 CurrentOrder.clear(); 5470 return false; 5471 } 5472 if (ShouldKeepOrder) 5473 CurrentOrder.clear(); 5474 5475 return ShouldKeepOrder; 5476 } 5477 5478 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 5479 ArrayRef<Value *> VectorizedVals) const { 5480 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 5481 all_of(I->users(), [this](User *U) { 5482 return ScalarToTreeEntry.count(U) > 0 || 5483 isVectorLikeInstWithConstOps(U) || 5484 (isa<ExtractElementInst>(U) && MustGather.contains(U)); 5485 }); 5486 } 5487 5488 static std::pair<InstructionCost, InstructionCost> 5489 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 5490 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 5491 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5492 5493 // Calculate the cost of the scalar and vector calls. 5494 SmallVector<Type *, 4> VecTys; 5495 for (Use &Arg : CI->args()) 5496 VecTys.push_back( 5497 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 5498 FastMathFlags FMF; 5499 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 5500 FMF = FPCI->getFastMathFlags(); 5501 SmallVector<const Value *> Arguments(CI->args()); 5502 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 5503 dyn_cast<IntrinsicInst>(CI)); 5504 auto IntrinsicCost = 5505 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 5506 5507 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 5508 VecTy->getNumElements())), 5509 false /*HasGlobalPred*/); 5510 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 5511 auto LibCost = IntrinsicCost; 5512 if (!CI->isNoBuiltin() && VecFunc) { 5513 // Calculate the cost of the vector library call. 5514 // If the corresponding vector call is cheaper, return its cost. 5515 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 5516 TTI::TCK_RecipThroughput); 5517 } 5518 return {IntrinsicCost, LibCost}; 5519 } 5520 5521 /// Compute the cost of creating a vector of type \p VecTy containing the 5522 /// extracted values from \p VL. 5523 static InstructionCost 5524 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 5525 TargetTransformInfo::ShuffleKind ShuffleKind, 5526 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 5527 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 5528 5529 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 5530 VecTy->getNumElements() < NumOfParts) 5531 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 5532 5533 bool AllConsecutive = true; 5534 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 5535 unsigned Idx = -1; 5536 InstructionCost Cost = 0; 5537 5538 // Process extracts in blocks of EltsPerVector to check if the source vector 5539 // operand can be re-used directly. If not, add the cost of creating a shuffle 5540 // to extract the values into a vector register. 5541 SmallVector<int> RegMask(EltsPerVector, UndefMaskElem); 5542 for (auto *V : VL) { 5543 ++Idx; 5544 5545 // Need to exclude undefs from analysis. 5546 if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem) 5547 continue; 5548 5549 // Reached the start of a new vector registers. 5550 if (Idx % EltsPerVector == 0) { 5551 RegMask.assign(EltsPerVector, UndefMaskElem); 5552 AllConsecutive = true; 5553 continue; 5554 } 5555 5556 // Check all extracts for a vector register on the target directly 5557 // extract values in order. 5558 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 5559 if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) { 5560 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 5561 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 5562 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 5563 RegMask[Idx % EltsPerVector] = CurrentIdx % EltsPerVector; 5564 } 5565 5566 if (AllConsecutive) 5567 continue; 5568 5569 // Skip all indices, except for the last index per vector block. 5570 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 5571 continue; 5572 5573 // If we have a series of extracts which are not consecutive and hence 5574 // cannot re-use the source vector register directly, compute the shuffle 5575 // cost to extract the vector with EltsPerVector elements. 5576 Cost += TTI.getShuffleCost( 5577 TargetTransformInfo::SK_PermuteSingleSrc, 5578 FixedVectorType::get(VecTy->getElementType(), EltsPerVector), RegMask); 5579 } 5580 return Cost; 5581 } 5582 5583 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 5584 /// operations operands. 5585 static void 5586 buildShuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 5587 ArrayRef<int> ReusesIndices, 5588 const function_ref<bool(Instruction *)> IsAltOp, 5589 SmallVectorImpl<int> &Mask, 5590 SmallVectorImpl<Value *> *OpScalars = nullptr, 5591 SmallVectorImpl<Value *> *AltScalars = nullptr) { 5592 unsigned Sz = VL.size(); 5593 Mask.assign(Sz, UndefMaskElem); 5594 SmallVector<int> OrderMask; 5595 if (!ReorderIndices.empty()) 5596 inversePermutation(ReorderIndices, OrderMask); 5597 for (unsigned I = 0; I < Sz; ++I) { 5598 unsigned Idx = I; 5599 if (!ReorderIndices.empty()) 5600 Idx = OrderMask[I]; 5601 auto *OpInst = cast<Instruction>(VL[Idx]); 5602 if (IsAltOp(OpInst)) { 5603 Mask[I] = Sz + Idx; 5604 if (AltScalars) 5605 AltScalars->push_back(OpInst); 5606 } else { 5607 Mask[I] = Idx; 5608 if (OpScalars) 5609 OpScalars->push_back(OpInst); 5610 } 5611 } 5612 if (!ReusesIndices.empty()) { 5613 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 5614 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 5615 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 5616 }); 5617 Mask.swap(NewMask); 5618 } 5619 } 5620 5621 /// Checks if the specified instruction \p I is an alternate operation for the 5622 /// given \p MainOp and \p AltOp instructions. 5623 static bool isAlternateInstruction(const Instruction *I, 5624 const Instruction *MainOp, 5625 const Instruction *AltOp) { 5626 if (auto *CI0 = dyn_cast<CmpInst>(MainOp)) { 5627 auto *AltCI0 = cast<CmpInst>(AltOp); 5628 auto *CI = cast<CmpInst>(I); 5629 CmpInst::Predicate P0 = CI0->getPredicate(); 5630 CmpInst::Predicate AltP0 = AltCI0->getPredicate(); 5631 assert(P0 != AltP0 && "Expected different main/alternate predicates."); 5632 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 5633 CmpInst::Predicate CurrentPred = CI->getPredicate(); 5634 if (P0 == AltP0Swapped) 5635 return I == AltCI0 || 5636 (I != MainOp && 5637 !areCompatibleCmpOps(CI0->getOperand(0), CI0->getOperand(1), 5638 CI->getOperand(0), CI->getOperand(1))); 5639 return AltP0 == CurrentPred || AltP0Swapped == CurrentPred; 5640 } 5641 return I->getOpcode() == AltOp->getOpcode(); 5642 } 5643 5644 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 5645 ArrayRef<Value *> VectorizedVals) { 5646 ArrayRef<Value*> VL = E->Scalars; 5647 5648 Type *ScalarTy = VL[0]->getType(); 5649 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 5650 ScalarTy = SI->getValueOperand()->getType(); 5651 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 5652 ScalarTy = CI->getOperand(0)->getType(); 5653 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 5654 ScalarTy = IE->getOperand(1)->getType(); 5655 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 5656 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 5657 5658 // If we have computed a smaller type for the expression, update VecTy so 5659 // that the costs will be accurate. 5660 if (MinBWs.count(VL[0])) 5661 VecTy = FixedVectorType::get( 5662 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 5663 unsigned EntryVF = E->getVectorFactor(); 5664 auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF); 5665 5666 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 5667 // FIXME: it tries to fix a problem with MSVC buildbots. 5668 TargetTransformInfo &TTIRef = *TTI; 5669 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 5670 VectorizedVals, E](InstructionCost &Cost) { 5671 DenseMap<Value *, int> ExtractVectorsTys; 5672 SmallPtrSet<Value *, 4> CheckedExtracts; 5673 for (auto *V : VL) { 5674 if (isa<UndefValue>(V)) 5675 continue; 5676 // If all users of instruction are going to be vectorized and this 5677 // instruction itself is not going to be vectorized, consider this 5678 // instruction as dead and remove its cost from the final cost of the 5679 // vectorized tree. 5680 // Also, avoid adjusting the cost for extractelements with multiple uses 5681 // in different graph entries. 5682 const TreeEntry *VE = getTreeEntry(V); 5683 if (!CheckedExtracts.insert(V).second || 5684 !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 5685 (VE && VE != E)) 5686 continue; 5687 auto *EE = cast<ExtractElementInst>(V); 5688 Optional<unsigned> EEIdx = getExtractIndex(EE); 5689 if (!EEIdx) 5690 continue; 5691 unsigned Idx = *EEIdx; 5692 if (TTIRef.getNumberOfParts(VecTy) != 5693 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 5694 auto It = 5695 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 5696 It->getSecond() = std::min<int>(It->second, Idx); 5697 } 5698 // Take credit for instruction that will become dead. 5699 if (EE->hasOneUse()) { 5700 Instruction *Ext = EE->user_back(); 5701 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5702 all_of(Ext->users(), 5703 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5704 // Use getExtractWithExtendCost() to calculate the cost of 5705 // extractelement/ext pair. 5706 Cost -= 5707 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 5708 EE->getVectorOperandType(), Idx); 5709 // Add back the cost of s|zext which is subtracted separately. 5710 Cost += TTIRef.getCastInstrCost( 5711 Ext->getOpcode(), Ext->getType(), EE->getType(), 5712 TTI::getCastContextHint(Ext), CostKind, Ext); 5713 continue; 5714 } 5715 } 5716 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 5717 EE->getVectorOperandType(), Idx); 5718 } 5719 // Add a cost for subvector extracts/inserts if required. 5720 for (const auto &Data : ExtractVectorsTys) { 5721 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 5722 unsigned NumElts = VecTy->getNumElements(); 5723 if (Data.second % NumElts == 0) 5724 continue; 5725 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 5726 unsigned Idx = (Data.second / NumElts) * NumElts; 5727 unsigned EENumElts = EEVTy->getNumElements(); 5728 if (Idx + NumElts <= EENumElts) { 5729 Cost += 5730 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5731 EEVTy, None, Idx, VecTy); 5732 } else { 5733 // Need to round up the subvector type vectorization factor to avoid a 5734 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 5735 // <= EENumElts. 5736 auto *SubVT = 5737 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 5738 Cost += 5739 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5740 EEVTy, None, Idx, SubVT); 5741 } 5742 } else { 5743 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 5744 VecTy, None, 0, EEVTy); 5745 } 5746 } 5747 }; 5748 if (E->State == TreeEntry::NeedToGather) { 5749 if (allConstant(VL)) 5750 return 0; 5751 if (isa<InsertElementInst>(VL[0])) 5752 return InstructionCost::getInvalid(); 5753 SmallVector<int> Mask; 5754 SmallVector<const TreeEntry *> Entries; 5755 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 5756 isGatherShuffledEntry(E, Mask, Entries); 5757 if (Shuffle.hasValue()) { 5758 InstructionCost GatherCost = 0; 5759 if (ShuffleVectorInst::isIdentityMask(Mask)) { 5760 // Perfect match in the graph, will reuse the previously vectorized 5761 // node. Cost is 0. 5762 LLVM_DEBUG( 5763 dbgs() 5764 << "SLP: perfect diamond match for gather bundle that starts with " 5765 << *VL.front() << ".\n"); 5766 if (NeedToShuffleReuses) 5767 GatherCost = 5768 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5769 FinalVecTy, E->ReuseShuffleIndices); 5770 } else { 5771 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 5772 << " entries for bundle that starts with " 5773 << *VL.front() << ".\n"); 5774 // Detected that instead of gather we can emit a shuffle of single/two 5775 // previously vectorized nodes. Add the cost of the permutation rather 5776 // than gather. 5777 ::addMask(Mask, E->ReuseShuffleIndices); 5778 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 5779 } 5780 return GatherCost; 5781 } 5782 if ((E->getOpcode() == Instruction::ExtractElement || 5783 all_of(E->Scalars, 5784 [](Value *V) { 5785 return isa<ExtractElementInst, UndefValue>(V); 5786 })) && 5787 allSameType(VL)) { 5788 // Check that gather of extractelements can be represented as just a 5789 // shuffle of a single/two vectors the scalars are extracted from. 5790 SmallVector<int> Mask; 5791 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 5792 isFixedVectorShuffle(VL, Mask); 5793 if (ShuffleKind.hasValue()) { 5794 // Found the bunch of extractelement instructions that must be gathered 5795 // into a vector and can be represented as a permutation elements in a 5796 // single input vector or of 2 input vectors. 5797 InstructionCost Cost = 5798 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 5799 AdjustExtractsCost(Cost); 5800 if (NeedToShuffleReuses) 5801 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5802 FinalVecTy, E->ReuseShuffleIndices); 5803 return Cost; 5804 } 5805 } 5806 if (isSplat(VL)) { 5807 // Found the broadcasting of the single scalar, calculate the cost as the 5808 // broadcast. 5809 assert(VecTy == FinalVecTy && 5810 "No reused scalars expected for broadcast."); 5811 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 5812 /*Mask=*/None, /*Index=*/0, 5813 /*SubTp=*/nullptr, /*Args=*/VL[0]); 5814 } 5815 InstructionCost ReuseShuffleCost = 0; 5816 if (NeedToShuffleReuses) 5817 ReuseShuffleCost = TTI->getShuffleCost( 5818 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 5819 // Improve gather cost for gather of loads, if we can group some of the 5820 // loads into vector loads. 5821 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 5822 !E->isAltShuffle()) { 5823 BoUpSLP::ValueSet VectorizedLoads; 5824 unsigned StartIdx = 0; 5825 unsigned VF = VL.size() / 2; 5826 unsigned VectorizedCnt = 0; 5827 unsigned ScatterVectorizeCnt = 0; 5828 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 5829 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 5830 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 5831 Cnt += VF) { 5832 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 5833 if (!VectorizedLoads.count(Slice.front()) && 5834 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 5835 SmallVector<Value *> PointerOps; 5836 OrdersType CurrentOrder; 5837 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 5838 *SE, CurrentOrder, PointerOps); 5839 switch (LS) { 5840 case LoadsState::Vectorize: 5841 case LoadsState::ScatterVectorize: 5842 // Mark the vectorized loads so that we don't vectorize them 5843 // again. 5844 if (LS == LoadsState::Vectorize) 5845 ++VectorizedCnt; 5846 else 5847 ++ScatterVectorizeCnt; 5848 VectorizedLoads.insert(Slice.begin(), Slice.end()); 5849 // If we vectorized initial block, no need to try to vectorize it 5850 // again. 5851 if (Cnt == StartIdx) 5852 StartIdx += VF; 5853 break; 5854 case LoadsState::Gather: 5855 break; 5856 } 5857 } 5858 } 5859 // Check if the whole array was vectorized already - exit. 5860 if (StartIdx >= VL.size()) 5861 break; 5862 // Found vectorizable parts - exit. 5863 if (!VectorizedLoads.empty()) 5864 break; 5865 } 5866 if (!VectorizedLoads.empty()) { 5867 InstructionCost GatherCost = 0; 5868 unsigned NumParts = TTI->getNumberOfParts(VecTy); 5869 bool NeedInsertSubvectorAnalysis = 5870 !NumParts || (VL.size() / VF) > NumParts; 5871 // Get the cost for gathered loads. 5872 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 5873 if (VectorizedLoads.contains(VL[I])) 5874 continue; 5875 GatherCost += getGatherCost(VL.slice(I, VF)); 5876 } 5877 // The cost for vectorized loads. 5878 InstructionCost ScalarsCost = 0; 5879 for (Value *V : VectorizedLoads) { 5880 auto *LI = cast<LoadInst>(V); 5881 ScalarsCost += TTI->getMemoryOpCost( 5882 Instruction::Load, LI->getType(), LI->getAlign(), 5883 LI->getPointerAddressSpace(), CostKind, LI); 5884 } 5885 auto *LI = cast<LoadInst>(E->getMainOp()); 5886 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 5887 Align Alignment = LI->getAlign(); 5888 GatherCost += 5889 VectorizedCnt * 5890 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 5891 LI->getPointerAddressSpace(), CostKind, LI); 5892 GatherCost += ScatterVectorizeCnt * 5893 TTI->getGatherScatterOpCost( 5894 Instruction::Load, LoadTy, LI->getPointerOperand(), 5895 /*VariableMask=*/false, Alignment, CostKind, LI); 5896 if (NeedInsertSubvectorAnalysis) { 5897 // Add the cost for the subvectors insert. 5898 for (int I = VF, E = VL.size(); I < E; I += VF) 5899 GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy, 5900 None, I, LoadTy); 5901 } 5902 return ReuseShuffleCost + GatherCost - ScalarsCost; 5903 } 5904 } 5905 return ReuseShuffleCost + getGatherCost(VL); 5906 } 5907 InstructionCost CommonCost = 0; 5908 SmallVector<int> Mask; 5909 if (!E->ReorderIndices.empty()) { 5910 SmallVector<int> NewMask; 5911 if (E->getOpcode() == Instruction::Store) { 5912 // For stores the order is actually a mask. 5913 NewMask.resize(E->ReorderIndices.size()); 5914 copy(E->ReorderIndices, NewMask.begin()); 5915 } else { 5916 inversePermutation(E->ReorderIndices, NewMask); 5917 } 5918 ::addMask(Mask, NewMask); 5919 } 5920 if (NeedToShuffleReuses) 5921 ::addMask(Mask, E->ReuseShuffleIndices); 5922 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 5923 CommonCost = 5924 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 5925 assert((E->State == TreeEntry::Vectorize || 5926 E->State == TreeEntry::ScatterVectorize) && 5927 "Unhandled state"); 5928 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 5929 Instruction *VL0 = E->getMainOp(); 5930 unsigned ShuffleOrOp = 5931 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 5932 switch (ShuffleOrOp) { 5933 case Instruction::PHI: 5934 return 0; 5935 5936 case Instruction::ExtractValue: 5937 case Instruction::ExtractElement: { 5938 // The common cost of removal ExtractElement/ExtractValue instructions + 5939 // the cost of shuffles, if required to resuffle the original vector. 5940 if (NeedToShuffleReuses) { 5941 unsigned Idx = 0; 5942 for (unsigned I : E->ReuseShuffleIndices) { 5943 if (ShuffleOrOp == Instruction::ExtractElement) { 5944 auto *EE = cast<ExtractElementInst>(VL[I]); 5945 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5946 EE->getVectorOperandType(), 5947 *getExtractIndex(EE)); 5948 } else { 5949 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5950 VecTy, Idx); 5951 ++Idx; 5952 } 5953 } 5954 Idx = EntryVF; 5955 for (Value *V : VL) { 5956 if (ShuffleOrOp == Instruction::ExtractElement) { 5957 auto *EE = cast<ExtractElementInst>(V); 5958 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5959 EE->getVectorOperandType(), 5960 *getExtractIndex(EE)); 5961 } else { 5962 --Idx; 5963 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5964 VecTy, Idx); 5965 } 5966 } 5967 } 5968 if (ShuffleOrOp == Instruction::ExtractValue) { 5969 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 5970 auto *EI = cast<Instruction>(VL[I]); 5971 // Take credit for instruction that will become dead. 5972 if (EI->hasOneUse()) { 5973 Instruction *Ext = EI->user_back(); 5974 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5975 all_of(Ext->users(), 5976 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5977 // Use getExtractWithExtendCost() to calculate the cost of 5978 // extractelement/ext pair. 5979 CommonCost -= TTI->getExtractWithExtendCost( 5980 Ext->getOpcode(), Ext->getType(), VecTy, I); 5981 // Add back the cost of s|zext which is subtracted separately. 5982 CommonCost += TTI->getCastInstrCost( 5983 Ext->getOpcode(), Ext->getType(), EI->getType(), 5984 TTI::getCastContextHint(Ext), CostKind, Ext); 5985 continue; 5986 } 5987 } 5988 CommonCost -= 5989 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 5990 } 5991 } else { 5992 AdjustExtractsCost(CommonCost); 5993 } 5994 return CommonCost; 5995 } 5996 case Instruction::InsertElement: { 5997 assert(E->ReuseShuffleIndices.empty() && 5998 "Unique insertelements only are expected."); 5999 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 6000 6001 unsigned const NumElts = SrcVecTy->getNumElements(); 6002 unsigned const NumScalars = VL.size(); 6003 APInt DemandedElts = APInt::getZero(NumElts); 6004 // TODO: Add support for Instruction::InsertValue. 6005 SmallVector<int> Mask; 6006 if (!E->ReorderIndices.empty()) { 6007 inversePermutation(E->ReorderIndices, Mask); 6008 Mask.append(NumElts - NumScalars, UndefMaskElem); 6009 } else { 6010 Mask.assign(NumElts, UndefMaskElem); 6011 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 6012 } 6013 unsigned Offset = *getInsertIndex(VL0); 6014 bool IsIdentity = true; 6015 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 6016 Mask.swap(PrevMask); 6017 for (unsigned I = 0; I < NumScalars; ++I) { 6018 unsigned InsertIdx = *getInsertIndex(VL[PrevMask[I]]); 6019 DemandedElts.setBit(InsertIdx); 6020 IsIdentity &= InsertIdx - Offset == I; 6021 Mask[InsertIdx - Offset] = I; 6022 } 6023 assert(Offset < NumElts && "Failed to find vector index offset"); 6024 6025 InstructionCost Cost = 0; 6026 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 6027 /*Insert*/ true, /*Extract*/ false); 6028 6029 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 6030 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 6031 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 6032 Cost += TTI->getShuffleCost( 6033 TargetTransformInfo::SK_PermuteSingleSrc, 6034 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 6035 } else if (!IsIdentity) { 6036 auto *FirstInsert = 6037 cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 6038 return !is_contained(E->Scalars, 6039 cast<Instruction>(V)->getOperand(0)); 6040 })); 6041 if (isUndefVector(FirstInsert->getOperand(0))) { 6042 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask); 6043 } else { 6044 SmallVector<int> InsertMask(NumElts); 6045 std::iota(InsertMask.begin(), InsertMask.end(), 0); 6046 for (unsigned I = 0; I < NumElts; I++) { 6047 if (Mask[I] != UndefMaskElem) 6048 InsertMask[Offset + I] = NumElts + I; 6049 } 6050 Cost += 6051 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask); 6052 } 6053 } 6054 6055 return Cost; 6056 } 6057 case Instruction::ZExt: 6058 case Instruction::SExt: 6059 case Instruction::FPToUI: 6060 case Instruction::FPToSI: 6061 case Instruction::FPExt: 6062 case Instruction::PtrToInt: 6063 case Instruction::IntToPtr: 6064 case Instruction::SIToFP: 6065 case Instruction::UIToFP: 6066 case Instruction::Trunc: 6067 case Instruction::FPTrunc: 6068 case Instruction::BitCast: { 6069 Type *SrcTy = VL0->getOperand(0)->getType(); 6070 InstructionCost ScalarEltCost = 6071 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 6072 TTI::getCastContextHint(VL0), CostKind, VL0); 6073 if (NeedToShuffleReuses) { 6074 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 6075 } 6076 6077 // Calculate the cost of this instruction. 6078 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 6079 6080 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 6081 InstructionCost VecCost = 0; 6082 // Check if the values are candidates to demote. 6083 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 6084 VecCost = CommonCost + TTI->getCastInstrCost( 6085 E->getOpcode(), VecTy, SrcVecTy, 6086 TTI::getCastContextHint(VL0), CostKind, VL0); 6087 } 6088 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 6089 return VecCost - ScalarCost; 6090 } 6091 case Instruction::FCmp: 6092 case Instruction::ICmp: 6093 case Instruction::Select: { 6094 // Calculate the cost of this instruction. 6095 InstructionCost ScalarEltCost = 6096 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 6097 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 6098 if (NeedToShuffleReuses) { 6099 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 6100 } 6101 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 6102 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 6103 6104 // Check if all entries in VL are either compares or selects with compares 6105 // as condition that have the same predicates. 6106 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 6107 bool First = true; 6108 for (auto *V : VL) { 6109 CmpInst::Predicate CurrentPred; 6110 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 6111 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 6112 !match(V, MatchCmp)) || 6113 (!First && VecPred != CurrentPred)) { 6114 VecPred = CmpInst::BAD_ICMP_PREDICATE; 6115 break; 6116 } 6117 First = false; 6118 VecPred = CurrentPred; 6119 } 6120 6121 InstructionCost VecCost = TTI->getCmpSelInstrCost( 6122 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 6123 // Check if it is possible and profitable to use min/max for selects in 6124 // VL. 6125 // 6126 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 6127 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 6128 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 6129 {VecTy, VecTy}); 6130 InstructionCost IntrinsicCost = 6131 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 6132 // If the selects are the only uses of the compares, they will be dead 6133 // and we can adjust the cost by removing their cost. 6134 if (IntrinsicAndUse.second) 6135 IntrinsicCost -= TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, 6136 MaskTy, VecPred, CostKind); 6137 VecCost = std::min(VecCost, IntrinsicCost); 6138 } 6139 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 6140 return CommonCost + VecCost - ScalarCost; 6141 } 6142 case Instruction::FNeg: 6143 case Instruction::Add: 6144 case Instruction::FAdd: 6145 case Instruction::Sub: 6146 case Instruction::FSub: 6147 case Instruction::Mul: 6148 case Instruction::FMul: 6149 case Instruction::UDiv: 6150 case Instruction::SDiv: 6151 case Instruction::FDiv: 6152 case Instruction::URem: 6153 case Instruction::SRem: 6154 case Instruction::FRem: 6155 case Instruction::Shl: 6156 case Instruction::LShr: 6157 case Instruction::AShr: 6158 case Instruction::And: 6159 case Instruction::Or: 6160 case Instruction::Xor: { 6161 // Certain instructions can be cheaper to vectorize if they have a 6162 // constant second vector operand. 6163 TargetTransformInfo::OperandValueKind Op1VK = 6164 TargetTransformInfo::OK_AnyValue; 6165 TargetTransformInfo::OperandValueKind Op2VK = 6166 TargetTransformInfo::OK_UniformConstantValue; 6167 TargetTransformInfo::OperandValueProperties Op1VP = 6168 TargetTransformInfo::OP_None; 6169 TargetTransformInfo::OperandValueProperties Op2VP = 6170 TargetTransformInfo::OP_PowerOf2; 6171 6172 // If all operands are exactly the same ConstantInt then set the 6173 // operand kind to OK_UniformConstantValue. 6174 // If instead not all operands are constants, then set the operand kind 6175 // to OK_AnyValue. If all operands are constants but not the same, 6176 // then set the operand kind to OK_NonUniformConstantValue. 6177 ConstantInt *CInt0 = nullptr; 6178 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 6179 const Instruction *I = cast<Instruction>(VL[i]); 6180 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 6181 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 6182 if (!CInt) { 6183 Op2VK = TargetTransformInfo::OK_AnyValue; 6184 Op2VP = TargetTransformInfo::OP_None; 6185 break; 6186 } 6187 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 6188 !CInt->getValue().isPowerOf2()) 6189 Op2VP = TargetTransformInfo::OP_None; 6190 if (i == 0) { 6191 CInt0 = CInt; 6192 continue; 6193 } 6194 if (CInt0 != CInt) 6195 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 6196 } 6197 6198 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 6199 InstructionCost ScalarEltCost = 6200 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 6201 Op2VK, Op1VP, Op2VP, Operands, VL0); 6202 if (NeedToShuffleReuses) { 6203 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 6204 } 6205 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 6206 InstructionCost VecCost = 6207 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 6208 Op2VK, Op1VP, Op2VP, Operands, VL0); 6209 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 6210 return CommonCost + VecCost - ScalarCost; 6211 } 6212 case Instruction::GetElementPtr: { 6213 TargetTransformInfo::OperandValueKind Op1VK = 6214 TargetTransformInfo::OK_AnyValue; 6215 TargetTransformInfo::OperandValueKind Op2VK = 6216 TargetTransformInfo::OK_UniformConstantValue; 6217 6218 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 6219 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 6220 if (NeedToShuffleReuses) { 6221 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 6222 } 6223 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 6224 InstructionCost VecCost = TTI->getArithmeticInstrCost( 6225 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 6226 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 6227 return CommonCost + VecCost - ScalarCost; 6228 } 6229 case Instruction::Load: { 6230 // Cost of wide load - cost of scalar loads. 6231 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 6232 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 6233 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 6234 if (NeedToShuffleReuses) { 6235 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 6236 } 6237 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 6238 InstructionCost VecLdCost; 6239 if (E->State == TreeEntry::Vectorize) { 6240 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 6241 CostKind, VL0); 6242 } else { 6243 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 6244 Align CommonAlignment = Alignment; 6245 for (Value *V : VL) 6246 CommonAlignment = 6247 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 6248 VecLdCost = TTI->getGatherScatterOpCost( 6249 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 6250 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 6251 } 6252 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 6253 return CommonCost + VecLdCost - ScalarLdCost; 6254 } 6255 case Instruction::Store: { 6256 // We know that we can merge the stores. Calculate the cost. 6257 bool IsReorder = !E->ReorderIndices.empty(); 6258 auto *SI = 6259 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 6260 Align Alignment = SI->getAlign(); 6261 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 6262 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 6263 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 6264 InstructionCost VecStCost = TTI->getMemoryOpCost( 6265 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 6266 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 6267 return CommonCost + VecStCost - ScalarStCost; 6268 } 6269 case Instruction::Call: { 6270 CallInst *CI = cast<CallInst>(VL0); 6271 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6272 6273 // Calculate the cost of the scalar and vector calls. 6274 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 6275 InstructionCost ScalarEltCost = 6276 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 6277 if (NeedToShuffleReuses) { 6278 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 6279 } 6280 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 6281 6282 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 6283 InstructionCost VecCallCost = 6284 std::min(VecCallCosts.first, VecCallCosts.second); 6285 6286 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 6287 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 6288 << " for " << *CI << "\n"); 6289 6290 return CommonCost + VecCallCost - ScalarCallCost; 6291 } 6292 case Instruction::ShuffleVector: { 6293 assert(E->isAltShuffle() && 6294 ((Instruction::isBinaryOp(E->getOpcode()) && 6295 Instruction::isBinaryOp(E->getAltOpcode())) || 6296 (Instruction::isCast(E->getOpcode()) && 6297 Instruction::isCast(E->getAltOpcode())) || 6298 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 6299 "Invalid Shuffle Vector Operand"); 6300 InstructionCost ScalarCost = 0; 6301 if (NeedToShuffleReuses) { 6302 for (unsigned Idx : E->ReuseShuffleIndices) { 6303 Instruction *I = cast<Instruction>(VL[Idx]); 6304 CommonCost -= TTI->getInstructionCost(I, CostKind); 6305 } 6306 for (Value *V : VL) { 6307 Instruction *I = cast<Instruction>(V); 6308 CommonCost += TTI->getInstructionCost(I, CostKind); 6309 } 6310 } 6311 for (Value *V : VL) { 6312 Instruction *I = cast<Instruction>(V); 6313 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 6314 ScalarCost += TTI->getInstructionCost(I, CostKind); 6315 } 6316 // VecCost is equal to sum of the cost of creating 2 vectors 6317 // and the cost of creating shuffle. 6318 InstructionCost VecCost = 0; 6319 // Try to find the previous shuffle node with the same operands and same 6320 // main/alternate ops. 6321 auto &&TryFindNodeWithEqualOperands = [this, E]() { 6322 for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 6323 if (TE.get() == E) 6324 break; 6325 if (TE->isAltShuffle() && 6326 ((TE->getOpcode() == E->getOpcode() && 6327 TE->getAltOpcode() == E->getAltOpcode()) || 6328 (TE->getOpcode() == E->getAltOpcode() && 6329 TE->getAltOpcode() == E->getOpcode())) && 6330 TE->hasEqualOperands(*E)) 6331 return true; 6332 } 6333 return false; 6334 }; 6335 if (TryFindNodeWithEqualOperands()) { 6336 LLVM_DEBUG({ 6337 dbgs() << "SLP: diamond match for alternate node found.\n"; 6338 E->dump(); 6339 }); 6340 // No need to add new vector costs here since we're going to reuse 6341 // same main/alternate vector ops, just do different shuffling. 6342 } else if (Instruction::isBinaryOp(E->getOpcode())) { 6343 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 6344 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 6345 CostKind); 6346 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 6347 VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 6348 Builder.getInt1Ty(), 6349 CI0->getPredicate(), CostKind, VL0); 6350 VecCost += TTI->getCmpSelInstrCost( 6351 E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 6352 cast<CmpInst>(E->getAltOp())->getPredicate(), CostKind, 6353 E->getAltOp()); 6354 } else { 6355 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 6356 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 6357 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 6358 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 6359 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 6360 TTI::CastContextHint::None, CostKind); 6361 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 6362 TTI::CastContextHint::None, CostKind); 6363 } 6364 6365 if (E->ReuseShuffleIndices.empty()) { 6366 CommonCost = 6367 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy); 6368 } else { 6369 SmallVector<int> Mask; 6370 buildShuffleEntryMask( 6371 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 6372 [E](Instruction *I) { 6373 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 6374 return I->getOpcode() == E->getAltOpcode(); 6375 }, 6376 Mask); 6377 CommonCost = TTI->getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc, 6378 FinalVecTy, Mask); 6379 } 6380 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 6381 return CommonCost + VecCost - ScalarCost; 6382 } 6383 default: 6384 llvm_unreachable("Unknown instruction"); 6385 } 6386 } 6387 6388 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { 6389 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 6390 << VectorizableTree.size() << " is fully vectorizable .\n"); 6391 6392 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { 6393 SmallVector<int> Mask; 6394 return TE->State == TreeEntry::NeedToGather && 6395 !any_of(TE->Scalars, 6396 [this](Value *V) { return EphValues.contains(V); }) && 6397 (allConstant(TE->Scalars) || isSplat(TE->Scalars) || 6398 TE->Scalars.size() < Limit || 6399 ((TE->getOpcode() == Instruction::ExtractElement || 6400 all_of(TE->Scalars, 6401 [](Value *V) { 6402 return isa<ExtractElementInst, UndefValue>(V); 6403 })) && 6404 isFixedVectorShuffle(TE->Scalars, Mask)) || 6405 (TE->State == TreeEntry::NeedToGather && 6406 TE->getOpcode() == Instruction::Load && !TE->isAltShuffle())); 6407 }; 6408 6409 // We only handle trees of heights 1 and 2. 6410 if (VectorizableTree.size() == 1 && 6411 (VectorizableTree[0]->State == TreeEntry::Vectorize || 6412 (ForReduction && 6413 AreVectorizableGathers(VectorizableTree[0].get(), 6414 VectorizableTree[0]->Scalars.size()) && 6415 VectorizableTree[0]->getVectorFactor() > 2))) 6416 return true; 6417 6418 if (VectorizableTree.size() != 2) 6419 return false; 6420 6421 // Handle splat and all-constants stores. Also try to vectorize tiny trees 6422 // with the second gather nodes if they have less scalar operands rather than 6423 // the initial tree element (may be profitable to shuffle the second gather) 6424 // or they are extractelements, which form shuffle. 6425 SmallVector<int> Mask; 6426 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 6427 AreVectorizableGathers(VectorizableTree[1].get(), 6428 VectorizableTree[0]->Scalars.size())) 6429 return true; 6430 6431 // Gathering cost would be too much for tiny trees. 6432 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 6433 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 6434 VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) 6435 return false; 6436 6437 return true; 6438 } 6439 6440 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 6441 TargetTransformInfo *TTI, 6442 bool MustMatchOrInst) { 6443 // Look past the root to find a source value. Arbitrarily follow the 6444 // path through operand 0 of any 'or'. Also, peek through optional 6445 // shift-left-by-multiple-of-8-bits. 6446 Value *ZextLoad = Root; 6447 const APInt *ShAmtC; 6448 bool FoundOr = false; 6449 while (!isa<ConstantExpr>(ZextLoad) && 6450 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 6451 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 6452 ShAmtC->urem(8) == 0))) { 6453 auto *BinOp = cast<BinaryOperator>(ZextLoad); 6454 ZextLoad = BinOp->getOperand(0); 6455 if (BinOp->getOpcode() == Instruction::Or) 6456 FoundOr = true; 6457 } 6458 // Check if the input is an extended load of the required or/shift expression. 6459 Value *Load; 6460 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 6461 !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load)) 6462 return false; 6463 6464 // Require that the total load bit width is a legal integer type. 6465 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 6466 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 6467 Type *SrcTy = Load->getType(); 6468 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 6469 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 6470 return false; 6471 6472 // Everything matched - assume that we can fold the whole sequence using 6473 // load combining. 6474 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 6475 << *(cast<Instruction>(Root)) << "\n"); 6476 6477 return true; 6478 } 6479 6480 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 6481 if (RdxKind != RecurKind::Or) 6482 return false; 6483 6484 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 6485 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 6486 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 6487 /* MatchOr */ false); 6488 } 6489 6490 bool BoUpSLP::isLoadCombineCandidate() const { 6491 // Peek through a final sequence of stores and check if all operations are 6492 // likely to be load-combined. 6493 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 6494 for (Value *Scalar : VectorizableTree[0]->Scalars) { 6495 Value *X; 6496 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 6497 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 6498 return false; 6499 } 6500 return true; 6501 } 6502 6503 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { 6504 // No need to vectorize inserts of gathered values. 6505 if (VectorizableTree.size() == 2 && 6506 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 6507 VectorizableTree[1]->State == TreeEntry::NeedToGather) 6508 return true; 6509 6510 // We can vectorize the tree if its size is greater than or equal to the 6511 // minimum size specified by the MinTreeSize command line option. 6512 if (VectorizableTree.size() >= MinTreeSize) 6513 return false; 6514 6515 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 6516 // can vectorize it if we can prove it fully vectorizable. 6517 if (isFullyVectorizableTinyTree(ForReduction)) 6518 return false; 6519 6520 assert(VectorizableTree.empty() 6521 ? ExternalUses.empty() 6522 : true && "We shouldn't have any external users"); 6523 6524 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 6525 // vectorizable. 6526 return true; 6527 } 6528 6529 InstructionCost BoUpSLP::getSpillCost() const { 6530 // Walk from the bottom of the tree to the top, tracking which values are 6531 // live. When we see a call instruction that is not part of our tree, 6532 // query TTI to see if there is a cost to keeping values live over it 6533 // (for example, if spills and fills are required). 6534 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 6535 InstructionCost Cost = 0; 6536 6537 SmallPtrSet<Instruction*, 4> LiveValues; 6538 Instruction *PrevInst = nullptr; 6539 6540 // The entries in VectorizableTree are not necessarily ordered by their 6541 // position in basic blocks. Collect them and order them by dominance so later 6542 // instructions are guaranteed to be visited first. For instructions in 6543 // different basic blocks, we only scan to the beginning of the block, so 6544 // their order does not matter, as long as all instructions in a basic block 6545 // are grouped together. Using dominance ensures a deterministic order. 6546 SmallVector<Instruction *, 16> OrderedScalars; 6547 for (const auto &TEPtr : VectorizableTree) { 6548 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 6549 if (!Inst) 6550 continue; 6551 OrderedScalars.push_back(Inst); 6552 } 6553 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 6554 auto *NodeA = DT->getNode(A->getParent()); 6555 auto *NodeB = DT->getNode(B->getParent()); 6556 assert(NodeA && "Should only process reachable instructions"); 6557 assert(NodeB && "Should only process reachable instructions"); 6558 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 6559 "Different nodes should have different DFS numbers"); 6560 if (NodeA != NodeB) 6561 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 6562 return B->comesBefore(A); 6563 }); 6564 6565 for (Instruction *Inst : OrderedScalars) { 6566 if (!PrevInst) { 6567 PrevInst = Inst; 6568 continue; 6569 } 6570 6571 // Update LiveValues. 6572 LiveValues.erase(PrevInst); 6573 for (auto &J : PrevInst->operands()) { 6574 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 6575 LiveValues.insert(cast<Instruction>(&*J)); 6576 } 6577 6578 LLVM_DEBUG({ 6579 dbgs() << "SLP: #LV: " << LiveValues.size(); 6580 for (auto *X : LiveValues) 6581 dbgs() << " " << X->getName(); 6582 dbgs() << ", Looking at "; 6583 Inst->dump(); 6584 }); 6585 6586 // Now find the sequence of instructions between PrevInst and Inst. 6587 unsigned NumCalls = 0; 6588 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 6589 PrevInstIt = 6590 PrevInst->getIterator().getReverse(); 6591 while (InstIt != PrevInstIt) { 6592 if (PrevInstIt == PrevInst->getParent()->rend()) { 6593 PrevInstIt = Inst->getParent()->rbegin(); 6594 continue; 6595 } 6596 6597 // Debug information does not impact spill cost. 6598 if ((isa<CallInst>(&*PrevInstIt) && 6599 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 6600 &*PrevInstIt != PrevInst) 6601 NumCalls++; 6602 6603 ++PrevInstIt; 6604 } 6605 6606 if (NumCalls) { 6607 SmallVector<Type*, 4> V; 6608 for (auto *II : LiveValues) { 6609 auto *ScalarTy = II->getType(); 6610 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 6611 ScalarTy = VectorTy->getElementType(); 6612 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 6613 } 6614 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 6615 } 6616 6617 PrevInst = Inst; 6618 } 6619 6620 return Cost; 6621 } 6622 6623 /// Check if two insertelement instructions are from the same buildvector. 6624 static bool areTwoInsertFromSameBuildVector(InsertElementInst *VU, 6625 InsertElementInst *V) { 6626 // Instructions must be from the same basic blocks. 6627 if (VU->getParent() != V->getParent()) 6628 return false; 6629 // Checks if 2 insertelements are from the same buildvector. 6630 if (VU->getType() != V->getType()) 6631 return false; 6632 // Multiple used inserts are separate nodes. 6633 if (!VU->hasOneUse() && !V->hasOneUse()) 6634 return false; 6635 auto *IE1 = VU; 6636 auto *IE2 = V; 6637 unsigned Idx1 = *getInsertIndex(IE1); 6638 unsigned Idx2 = *getInsertIndex(IE2); 6639 // Go through the vector operand of insertelement instructions trying to find 6640 // either VU as the original vector for IE2 or V as the original vector for 6641 // IE1. 6642 do { 6643 if (IE2 == VU) 6644 return VU->hasOneUse(); 6645 if (IE1 == V) 6646 return V->hasOneUse(); 6647 if (IE1) { 6648 if ((IE1 != VU && !IE1->hasOneUse()) || 6649 getInsertIndex(IE1).getValueOr(Idx2) == Idx2) 6650 IE1 = nullptr; 6651 else 6652 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 6653 } 6654 if (IE2) { 6655 if ((IE2 != V && !IE2->hasOneUse()) || 6656 getInsertIndex(IE2).getValueOr(Idx1) == Idx1) 6657 IE2 = nullptr; 6658 else 6659 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 6660 } 6661 } while (IE1 || IE2); 6662 return false; 6663 } 6664 6665 /// Checks if the \p IE1 instructions is followed by \p IE2 instruction in the 6666 /// buildvector sequence. 6667 static bool isFirstInsertElement(const InsertElementInst *IE1, 6668 const InsertElementInst *IE2) { 6669 if (IE1 == IE2) 6670 return false; 6671 const auto *I1 = IE1; 6672 const auto *I2 = IE2; 6673 const InsertElementInst *PrevI1; 6674 const InsertElementInst *PrevI2; 6675 unsigned Idx1 = *getInsertIndex(IE1); 6676 unsigned Idx2 = *getInsertIndex(IE2); 6677 do { 6678 if (I2 == IE1) 6679 return true; 6680 if (I1 == IE2) 6681 return false; 6682 PrevI1 = I1; 6683 PrevI2 = I2; 6684 if (I1 && (I1 == IE1 || I1->hasOneUse()) && 6685 getInsertIndex(I1).getValueOr(Idx2) != Idx2) 6686 I1 = dyn_cast<InsertElementInst>(I1->getOperand(0)); 6687 if (I2 && ((I2 == IE2 || I2->hasOneUse())) && 6688 getInsertIndex(I2).getValueOr(Idx1) != Idx1) 6689 I2 = dyn_cast<InsertElementInst>(I2->getOperand(0)); 6690 } while ((I1 && PrevI1 != I1) || (I2 && PrevI2 != I2)); 6691 llvm_unreachable("Two different buildvectors not expected."); 6692 } 6693 6694 namespace { 6695 /// Returns incoming Value *, if the requested type is Value * too, or a default 6696 /// value, otherwise. 6697 struct ValueSelect { 6698 template <typename U> 6699 static typename std::enable_if<std::is_same<Value *, U>::value, Value *>::type 6700 get(Value *V) { 6701 return V; 6702 } 6703 template <typename U> 6704 static typename std::enable_if<!std::is_same<Value *, U>::value, U>::type 6705 get(Value *) { 6706 return U(); 6707 } 6708 }; 6709 } // namespace 6710 6711 /// Does the analysis of the provided shuffle masks and performs the requested 6712 /// actions on the vectors with the given shuffle masks. It tries to do it in 6713 /// several steps. 6714 /// 1. If the Base vector is not undef vector, resizing the very first mask to 6715 /// have common VF and perform action for 2 input vectors (including non-undef 6716 /// Base). Other shuffle masks are combined with the resulting after the 1 stage 6717 /// and processed as a shuffle of 2 elements. 6718 /// 2. If the Base is undef vector and have only 1 shuffle mask, perform the 6719 /// action only for 1 vector with the given mask, if it is not the identity 6720 /// mask. 6721 /// 3. If > 2 masks are used, perform the remaining shuffle actions for 2 6722 /// vectors, combing the masks properly between the steps. 6723 template <typename T> 6724 static T *performExtractsShuffleAction( 6725 MutableArrayRef<std::pair<T *, SmallVector<int>>> ShuffleMask, Value *Base, 6726 function_ref<unsigned(T *)> GetVF, 6727 function_ref<std::pair<T *, bool>(T *, ArrayRef<int>)> ResizeAction, 6728 function_ref<T *(ArrayRef<int>, ArrayRef<T *>)> Action) { 6729 assert(!ShuffleMask.empty() && "Empty list of shuffles for inserts."); 6730 SmallVector<int> Mask(ShuffleMask.begin()->second); 6731 auto VMIt = std::next(ShuffleMask.begin()); 6732 T *Prev = nullptr; 6733 bool IsBaseNotUndef = !isUndefVector(Base); 6734 if (IsBaseNotUndef) { 6735 // Base is not undef, need to combine it with the next subvectors. 6736 std::pair<T *, bool> Res = ResizeAction(ShuffleMask.begin()->first, Mask); 6737 for (unsigned Idx = 0, VF = Mask.size(); Idx < VF; ++Idx) { 6738 if (Mask[Idx] == UndefMaskElem) 6739 Mask[Idx] = Idx; 6740 else 6741 Mask[Idx] = (Res.second ? Idx : Mask[Idx]) + VF; 6742 } 6743 auto *V = ValueSelect::get<T *>(Base); 6744 (void)V; 6745 assert((!V || GetVF(V) == Mask.size()) && 6746 "Expected base vector of VF number of elements."); 6747 Prev = Action(Mask, {nullptr, Res.first}); 6748 } else if (ShuffleMask.size() == 1) { 6749 // Base is undef and only 1 vector is shuffled - perform the action only for 6750 // single vector, if the mask is not the identity mask. 6751 std::pair<T *, bool> Res = ResizeAction(ShuffleMask.begin()->first, Mask); 6752 if (Res.second) 6753 // Identity mask is found. 6754 Prev = Res.first; 6755 else 6756 Prev = Action(Mask, {ShuffleMask.begin()->first}); 6757 } else { 6758 // Base is undef and at least 2 input vectors shuffled - perform 2 vectors 6759 // shuffles step by step, combining shuffle between the steps. 6760 unsigned Vec1VF = GetVF(ShuffleMask.begin()->first); 6761 unsigned Vec2VF = GetVF(VMIt->first); 6762 if (Vec1VF == Vec2VF) { 6763 // No need to resize the input vectors since they are of the same size, we 6764 // can shuffle them directly. 6765 ArrayRef<int> SecMask = VMIt->second; 6766 for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) { 6767 if (SecMask[I] != UndefMaskElem) { 6768 assert(Mask[I] == UndefMaskElem && "Multiple uses of scalars."); 6769 Mask[I] = SecMask[I] + Vec1VF; 6770 } 6771 } 6772 Prev = Action(Mask, {ShuffleMask.begin()->first, VMIt->first}); 6773 } else { 6774 // Vectors of different sizes - resize and reshuffle. 6775 std::pair<T *, bool> Res1 = 6776 ResizeAction(ShuffleMask.begin()->first, Mask); 6777 std::pair<T *, bool> Res2 = ResizeAction(VMIt->first, VMIt->second); 6778 ArrayRef<int> SecMask = VMIt->second; 6779 for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) { 6780 if (Mask[I] != UndefMaskElem) { 6781 assert(SecMask[I] == UndefMaskElem && "Multiple uses of scalars."); 6782 if (Res1.second) 6783 Mask[I] = I; 6784 } else if (SecMask[I] != UndefMaskElem) { 6785 assert(Mask[I] == UndefMaskElem && "Multiple uses of scalars."); 6786 Mask[I] = (Res2.second ? I : SecMask[I]) + VF; 6787 } 6788 } 6789 Prev = Action(Mask, {Res1.first, Res2.first}); 6790 } 6791 VMIt = std::next(VMIt); 6792 } 6793 // Perform requested actions for the remaining masks/vectors. 6794 for (auto E = ShuffleMask.end(); VMIt != E; ++VMIt) { 6795 // Shuffle other input vectors, if any. 6796 std::pair<T *, bool> Res = ResizeAction(VMIt->first, VMIt->second); 6797 ArrayRef<int> SecMask = VMIt->second; 6798 for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) { 6799 if (SecMask[I] != UndefMaskElem) { 6800 assert((Mask[I] == UndefMaskElem || IsBaseNotUndef) && 6801 "Multiple uses of scalars."); 6802 Mask[I] = (Res.second ? I : SecMask[I]) + VF; 6803 } else if (Mask[I] != UndefMaskElem) { 6804 Mask[I] = I; 6805 } 6806 } 6807 Prev = Action(Mask, {Prev, Res.first}); 6808 } 6809 return Prev; 6810 } 6811 6812 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 6813 InstructionCost Cost = 0; 6814 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 6815 << VectorizableTree.size() << ".\n"); 6816 6817 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 6818 6819 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 6820 TreeEntry &TE = *VectorizableTree[I]; 6821 6822 InstructionCost C = getEntryCost(&TE, VectorizedVals); 6823 Cost += C; 6824 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6825 << " for bundle that starts with " << *TE.Scalars[0] 6826 << ".\n" 6827 << "SLP: Current total cost = " << Cost << "\n"); 6828 } 6829 6830 SmallPtrSet<Value *, 16> ExtractCostCalculated; 6831 InstructionCost ExtractCost = 0; 6832 SmallVector<MapVector<const TreeEntry *, SmallVector<int>>> ShuffleMasks; 6833 SmallVector<std::pair<Value *, const TreeEntry *>> FirstUsers; 6834 SmallVector<APInt> DemandedElts; 6835 for (ExternalUser &EU : ExternalUses) { 6836 // We only add extract cost once for the same scalar. 6837 if (!isa_and_nonnull<InsertElementInst>(EU.User) && 6838 !ExtractCostCalculated.insert(EU.Scalar).second) 6839 continue; 6840 6841 // Uses by ephemeral values are free (because the ephemeral value will be 6842 // removed prior to code generation, and so the extraction will be 6843 // removed as well). 6844 if (EphValues.count(EU.User)) 6845 continue; 6846 6847 // No extract cost for vector "scalar" 6848 if (isa<FixedVectorType>(EU.Scalar->getType())) 6849 continue; 6850 6851 // Already counted the cost for external uses when tried to adjust the cost 6852 // for extractelements, no need to add it again. 6853 if (isa<ExtractElementInst>(EU.Scalar)) 6854 continue; 6855 6856 // If found user is an insertelement, do not calculate extract cost but try 6857 // to detect it as a final shuffled/identity match. 6858 if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) { 6859 if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) { 6860 Optional<unsigned> InsertIdx = getInsertIndex(VU); 6861 if (InsertIdx) { 6862 const TreeEntry *ScalarTE = getTreeEntry(EU.Scalar); 6863 auto *It = 6864 find_if(FirstUsers, 6865 [VU](const std::pair<Value *, const TreeEntry *> &Pair) { 6866 return areTwoInsertFromSameBuildVector( 6867 VU, cast<InsertElementInst>(Pair.first)); 6868 }); 6869 int VecId = -1; 6870 if (It == FirstUsers.end()) { 6871 (void)ShuffleMasks.emplace_back(); 6872 SmallVectorImpl<int> &Mask = ShuffleMasks.back()[ScalarTE]; 6873 if (Mask.empty()) 6874 Mask.assign(FTy->getNumElements(), UndefMaskElem); 6875 // Find the insertvector, vectorized in tree, if any. 6876 Value *Base = VU; 6877 while (auto *IEBase = dyn_cast<InsertElementInst>(Base)) { 6878 if (IEBase != EU.User && 6879 (!IEBase->hasOneUse() || 6880 getInsertIndex(IEBase).getValueOr(*InsertIdx) == *InsertIdx)) 6881 break; 6882 // Build the mask for the vectorized insertelement instructions. 6883 if (const TreeEntry *E = getTreeEntry(IEBase)) { 6884 VU = IEBase; 6885 do { 6886 IEBase = cast<InsertElementInst>(Base); 6887 int Idx = *getInsertIndex(IEBase); 6888 assert(Mask[Idx] == UndefMaskElem && 6889 "InsertElementInstruction used already."); 6890 Mask[Idx] = Idx; 6891 Base = IEBase->getOperand(0); 6892 } while (E == getTreeEntry(Base)); 6893 break; 6894 } 6895 Base = cast<InsertElementInst>(Base)->getOperand(0); 6896 } 6897 FirstUsers.emplace_back(VU, ScalarTE); 6898 DemandedElts.push_back(APInt::getZero(FTy->getNumElements())); 6899 VecId = FirstUsers.size() - 1; 6900 } else { 6901 if (isFirstInsertElement(VU, cast<InsertElementInst>(It->first))) 6902 It->first = VU; 6903 VecId = std::distance(FirstUsers.begin(), It); 6904 } 6905 int InIdx = *InsertIdx; 6906 SmallVectorImpl<int> &Mask = ShuffleMasks[VecId][ScalarTE]; 6907 if (Mask.empty()) 6908 Mask.assign(FTy->getNumElements(), UndefMaskElem); 6909 Mask[InIdx] = EU.Lane; 6910 DemandedElts[VecId].setBit(InIdx); 6911 continue; 6912 } 6913 } 6914 } 6915 6916 // If we plan to rewrite the tree in a smaller type, we will need to sign 6917 // extend the extracted value back to the original type. Here, we account 6918 // for the extract and the added cost of the sign extend if needed. 6919 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 6920 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 6921 if (MinBWs.count(ScalarRoot)) { 6922 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 6923 auto Extend = 6924 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 6925 VecTy = FixedVectorType::get(MinTy, BundleWidth); 6926 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 6927 VecTy, EU.Lane); 6928 } else { 6929 ExtractCost += 6930 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 6931 } 6932 } 6933 6934 InstructionCost SpillCost = getSpillCost(); 6935 Cost += SpillCost + ExtractCost; 6936 auto &&ResizeToVF = [this, &Cost](const TreeEntry *TE, ArrayRef<int> Mask) { 6937 InstructionCost C = 0; 6938 unsigned VF = Mask.size(); 6939 unsigned VecVF = TE->getVectorFactor(); 6940 if (VF != VecVF && 6941 (any_of(Mask, [VF](int Idx) { return Idx >= static_cast<int>(VF); }) || 6942 (all_of(Mask, 6943 [VF](int Idx) { return Idx < 2 * static_cast<int>(VF); }) && 6944 !ShuffleVectorInst::isIdentityMask(Mask)))) { 6945 SmallVector<int> OrigMask(VecVF, UndefMaskElem); 6946 std::copy(Mask.begin(), std::next(Mask.begin(), std::min(VF, VecVF)), 6947 OrigMask.begin()); 6948 C = TTI->getShuffleCost( 6949 TTI::SK_PermuteSingleSrc, 6950 FixedVectorType::get(TE->getMainOp()->getType(), VecVF), OrigMask); 6951 LLVM_DEBUG( 6952 dbgs() << "SLP: Adding cost " << C 6953 << " for final shuffle of insertelement external users.\n"; 6954 TE->dump(); dbgs() << "SLP: Current total cost = " << Cost << "\n"); 6955 Cost += C; 6956 return std::make_pair(TE, true); 6957 } 6958 return std::make_pair(TE, false); 6959 }; 6960 // Calculate the cost of the reshuffled vectors, if any. 6961 for (int I = 0, E = FirstUsers.size(); I < E; ++I) { 6962 Value *Base = cast<Instruction>(FirstUsers[I].first)->getOperand(0); 6963 unsigned VF = ShuffleMasks[I].begin()->second.size(); 6964 auto *FTy = FixedVectorType::get( 6965 cast<VectorType>(FirstUsers[I].first->getType())->getElementType(), VF); 6966 auto Vector = ShuffleMasks[I].takeVector(); 6967 auto &&EstimateShufflesCost = [this, FTy, 6968 &Cost](ArrayRef<int> Mask, 6969 ArrayRef<const TreeEntry *> TEs) { 6970 assert((TEs.size() == 1 || TEs.size() == 2) && 6971 "Expected exactly 1 or 2 tree entries."); 6972 if (TEs.size() == 1) { 6973 int Limit = 2 * Mask.size(); 6974 if (!all_of(Mask, [Limit](int Idx) { return Idx < Limit; }) || 6975 !ShuffleVectorInst::isIdentityMask(Mask)) { 6976 InstructionCost C = 6977 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FTy, Mask); 6978 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6979 << " for final shuffle of insertelement " 6980 "external users.\n"; 6981 TEs.front()->dump(); 6982 dbgs() << "SLP: Current total cost = " << Cost << "\n"); 6983 Cost += C; 6984 } 6985 } else { 6986 InstructionCost C = 6987 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, FTy, Mask); 6988 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6989 << " for final shuffle of vector node and external " 6990 "insertelement users.\n"; 6991 if (TEs.front()) { TEs.front()->dump(); } TEs.back()->dump(); 6992 dbgs() << "SLP: Current total cost = " << Cost << "\n"); 6993 Cost += C; 6994 } 6995 return TEs.back(); 6996 }; 6997 (void)performExtractsShuffleAction<const TreeEntry>( 6998 makeMutableArrayRef(Vector.data(), Vector.size()), Base, 6999 [](const TreeEntry *E) { return E->getVectorFactor(); }, ResizeToVF, 7000 EstimateShufflesCost); 7001 InstructionCost InsertCost = TTI->getScalarizationOverhead( 7002 cast<FixedVectorType>(FirstUsers[I].first->getType()), DemandedElts[I], 7003 /*Insert*/ true, /*Extract*/ false); 7004 Cost -= InsertCost; 7005 } 7006 7007 #ifndef NDEBUG 7008 SmallString<256> Str; 7009 { 7010 raw_svector_ostream OS(Str); 7011 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 7012 << "SLP: Extract Cost = " << ExtractCost << ".\n" 7013 << "SLP: Total Cost = " << Cost << ".\n"; 7014 } 7015 LLVM_DEBUG(dbgs() << Str); 7016 if (ViewSLPTree) 7017 ViewGraph(this, "SLP" + F->getName(), false, Str); 7018 #endif 7019 7020 return Cost; 7021 } 7022 7023 Optional<TargetTransformInfo::ShuffleKind> 7024 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 7025 SmallVectorImpl<const TreeEntry *> &Entries) { 7026 // TODO: currently checking only for Scalars in the tree entry, need to count 7027 // reused elements too for better cost estimation. 7028 Mask.assign(TE->Scalars.size(), UndefMaskElem); 7029 Entries.clear(); 7030 // Build a lists of values to tree entries. 7031 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 7032 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 7033 if (EntryPtr.get() == TE) 7034 break; 7035 if (EntryPtr->State != TreeEntry::NeedToGather) 7036 continue; 7037 for (Value *V : EntryPtr->Scalars) 7038 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 7039 } 7040 // Find all tree entries used by the gathered values. If no common entries 7041 // found - not a shuffle. 7042 // Here we build a set of tree nodes for each gathered value and trying to 7043 // find the intersection between these sets. If we have at least one common 7044 // tree node for each gathered value - we have just a permutation of the 7045 // single vector. If we have 2 different sets, we're in situation where we 7046 // have a permutation of 2 input vectors. 7047 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 7048 DenseMap<Value *, int> UsedValuesEntry; 7049 for (Value *V : TE->Scalars) { 7050 if (isa<UndefValue>(V)) 7051 continue; 7052 // Build a list of tree entries where V is used. 7053 SmallPtrSet<const TreeEntry *, 4> VToTEs; 7054 auto It = ValueToTEs.find(V); 7055 if (It != ValueToTEs.end()) 7056 VToTEs = It->second; 7057 if (const TreeEntry *VTE = getTreeEntry(V)) 7058 VToTEs.insert(VTE); 7059 if (VToTEs.empty()) 7060 return None; 7061 if (UsedTEs.empty()) { 7062 // The first iteration, just insert the list of nodes to vector. 7063 UsedTEs.push_back(VToTEs); 7064 } else { 7065 // Need to check if there are any previously used tree nodes which use V. 7066 // If there are no such nodes, consider that we have another one input 7067 // vector. 7068 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 7069 unsigned Idx = 0; 7070 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 7071 // Do we have a non-empty intersection of previously listed tree entries 7072 // and tree entries using current V? 7073 set_intersect(VToTEs, Set); 7074 if (!VToTEs.empty()) { 7075 // Yes, write the new subset and continue analysis for the next 7076 // scalar. 7077 Set.swap(VToTEs); 7078 break; 7079 } 7080 VToTEs = SavedVToTEs; 7081 ++Idx; 7082 } 7083 // No non-empty intersection found - need to add a second set of possible 7084 // source vectors. 7085 if (Idx == UsedTEs.size()) { 7086 // If the number of input vectors is greater than 2 - not a permutation, 7087 // fallback to the regular gather. 7088 if (UsedTEs.size() == 2) 7089 return None; 7090 UsedTEs.push_back(SavedVToTEs); 7091 Idx = UsedTEs.size() - 1; 7092 } 7093 UsedValuesEntry.try_emplace(V, Idx); 7094 } 7095 } 7096 7097 if (UsedTEs.empty()) { 7098 assert(all_of(TE->Scalars, UndefValue::classof) && 7099 "Expected vector of undefs only."); 7100 return None; 7101 } 7102 7103 unsigned VF = 0; 7104 if (UsedTEs.size() == 1) { 7105 // Try to find the perfect match in another gather node at first. 7106 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 7107 return EntryPtr->isSame(TE->Scalars); 7108 }); 7109 if (It != UsedTEs.front().end()) { 7110 Entries.push_back(*It); 7111 std::iota(Mask.begin(), Mask.end(), 0); 7112 return TargetTransformInfo::SK_PermuteSingleSrc; 7113 } 7114 // No perfect match, just shuffle, so choose the first tree node. 7115 Entries.push_back(*UsedTEs.front().begin()); 7116 } else { 7117 // Try to find nodes with the same vector factor. 7118 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 7119 DenseMap<int, const TreeEntry *> VFToTE; 7120 for (const TreeEntry *TE : UsedTEs.front()) 7121 VFToTE.try_emplace(TE->getVectorFactor(), TE); 7122 for (const TreeEntry *TE : UsedTEs.back()) { 7123 auto It = VFToTE.find(TE->getVectorFactor()); 7124 if (It != VFToTE.end()) { 7125 VF = It->first; 7126 Entries.push_back(It->second); 7127 Entries.push_back(TE); 7128 break; 7129 } 7130 } 7131 // No 2 source vectors with the same vector factor - give up and do regular 7132 // gather. 7133 if (Entries.empty()) 7134 return None; 7135 } 7136 7137 // Build a shuffle mask for better cost estimation and vector emission. 7138 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 7139 Value *V = TE->Scalars[I]; 7140 if (isa<UndefValue>(V)) 7141 continue; 7142 unsigned Idx = UsedValuesEntry.lookup(V); 7143 const TreeEntry *VTE = Entries[Idx]; 7144 int FoundLane = VTE->findLaneForValue(V); 7145 Mask[I] = Idx * VF + FoundLane; 7146 // Extra check required by isSingleSourceMaskImpl function (called by 7147 // ShuffleVectorInst::isSingleSourceMask). 7148 if (Mask[I] >= 2 * E) 7149 return None; 7150 } 7151 switch (Entries.size()) { 7152 case 1: 7153 return TargetTransformInfo::SK_PermuteSingleSrc; 7154 case 2: 7155 return TargetTransformInfo::SK_PermuteTwoSrc; 7156 default: 7157 break; 7158 } 7159 return None; 7160 } 7161 7162 InstructionCost BoUpSLP::getGatherCost(FixedVectorType *Ty, 7163 const APInt &ShuffledIndices, 7164 bool NeedToShuffle) const { 7165 InstructionCost Cost = 7166 TTI->getScalarizationOverhead(Ty, ~ShuffledIndices, /*Insert*/ true, 7167 /*Extract*/ false); 7168 if (NeedToShuffle) 7169 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 7170 return Cost; 7171 } 7172 7173 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 7174 // Find the type of the operands in VL. 7175 Type *ScalarTy = VL[0]->getType(); 7176 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 7177 ScalarTy = SI->getValueOperand()->getType(); 7178 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 7179 bool DuplicateNonConst = false; 7180 // Find the cost of inserting/extracting values from the vector. 7181 // Check if the same elements are inserted several times and count them as 7182 // shuffle candidates. 7183 APInt ShuffledElements = APInt::getZero(VL.size()); 7184 DenseSet<Value *> UniqueElements; 7185 // Iterate in reverse order to consider insert elements with the high cost. 7186 for (unsigned I = VL.size(); I > 0; --I) { 7187 unsigned Idx = I - 1; 7188 // No need to shuffle duplicates for constants. 7189 if (isConstant(VL[Idx])) { 7190 ShuffledElements.setBit(Idx); 7191 continue; 7192 } 7193 if (!UniqueElements.insert(VL[Idx]).second) { 7194 DuplicateNonConst = true; 7195 ShuffledElements.setBit(Idx); 7196 } 7197 } 7198 return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst); 7199 } 7200 7201 // Perform operand reordering on the instructions in VL and return the reordered 7202 // operands in Left and Right. 7203 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 7204 SmallVectorImpl<Value *> &Left, 7205 SmallVectorImpl<Value *> &Right, 7206 const DataLayout &DL, 7207 ScalarEvolution &SE, 7208 const BoUpSLP &R) { 7209 if (VL.empty()) 7210 return; 7211 VLOperands Ops(VL, DL, SE, R); 7212 // Reorder the operands in place. 7213 Ops.reorder(); 7214 Left = Ops.getVL(0); 7215 Right = Ops.getVL(1); 7216 } 7217 7218 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 7219 // Get the basic block this bundle is in. All instructions in the bundle 7220 // should be in this block. 7221 auto *Front = E->getMainOp(); 7222 auto *BB = Front->getParent(); 7223 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 7224 auto *I = cast<Instruction>(V); 7225 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 7226 })); 7227 7228 auto &&FindLastInst = [E, Front]() { 7229 Instruction *LastInst = Front; 7230 for (Value *V : E->Scalars) { 7231 auto *I = dyn_cast<Instruction>(V); 7232 if (!I) 7233 continue; 7234 if (LastInst->comesBefore(I)) 7235 LastInst = I; 7236 } 7237 return LastInst; 7238 }; 7239 7240 auto &&FindFirstInst = [E, Front]() { 7241 Instruction *FirstInst = Front; 7242 for (Value *V : E->Scalars) { 7243 auto *I = dyn_cast<Instruction>(V); 7244 if (!I) 7245 continue; 7246 if (I->comesBefore(FirstInst)) 7247 FirstInst = I; 7248 } 7249 return FirstInst; 7250 }; 7251 7252 // Set the insert point to the beginning of the basic block if the entry 7253 // should not be scheduled. 7254 if (E->State != TreeEntry::NeedToGather && 7255 doesNotNeedToSchedule(E->Scalars)) { 7256 Instruction *InsertInst; 7257 if (all_of(E->Scalars, isUsedOutsideBlock)) 7258 InsertInst = FindLastInst(); 7259 else 7260 InsertInst = FindFirstInst(); 7261 // If the instruction is PHI, set the insert point after all the PHIs. 7262 if (isa<PHINode>(InsertInst)) 7263 InsertInst = BB->getFirstNonPHI(); 7264 BasicBlock::iterator InsertPt = InsertInst->getIterator(); 7265 Builder.SetInsertPoint(BB, InsertPt); 7266 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 7267 return; 7268 } 7269 7270 // The last instruction in the bundle in program order. 7271 Instruction *LastInst = nullptr; 7272 7273 // Find the last instruction. The common case should be that BB has been 7274 // scheduled, and the last instruction is VL.back(). So we start with 7275 // VL.back() and iterate over schedule data until we reach the end of the 7276 // bundle. The end of the bundle is marked by null ScheduleData. 7277 if (BlocksSchedules.count(BB)) { 7278 Value *V = E->isOneOf(E->Scalars.back()); 7279 if (doesNotNeedToBeScheduled(V)) 7280 V = *find_if_not(E->Scalars, doesNotNeedToBeScheduled); 7281 auto *Bundle = BlocksSchedules[BB]->getScheduleData(V); 7282 if (Bundle && Bundle->isPartOfBundle()) 7283 for (; Bundle; Bundle = Bundle->NextInBundle) 7284 if (Bundle->OpValue == Bundle->Inst) 7285 LastInst = Bundle->Inst; 7286 } 7287 7288 // LastInst can still be null at this point if there's either not an entry 7289 // for BB in BlocksSchedules or there's no ScheduleData available for 7290 // VL.back(). This can be the case if buildTree_rec aborts for various 7291 // reasons (e.g., the maximum recursion depth is reached, the maximum region 7292 // size is reached, etc.). ScheduleData is initialized in the scheduling 7293 // "dry-run". 7294 // 7295 // If this happens, we can still find the last instruction by brute force. We 7296 // iterate forwards from Front (inclusive) until we either see all 7297 // instructions in the bundle or reach the end of the block. If Front is the 7298 // last instruction in program order, LastInst will be set to Front, and we 7299 // will visit all the remaining instructions in the block. 7300 // 7301 // One of the reasons we exit early from buildTree_rec is to place an upper 7302 // bound on compile-time. Thus, taking an additional compile-time hit here is 7303 // not ideal. However, this should be exceedingly rare since it requires that 7304 // we both exit early from buildTree_rec and that the bundle be out-of-order 7305 // (causing us to iterate all the way to the end of the block). 7306 if (!LastInst) { 7307 LastInst = FindLastInst(); 7308 // If the instruction is PHI, set the insert point after all the PHIs. 7309 if (isa<PHINode>(LastInst)) 7310 LastInst = BB->getFirstNonPHI()->getPrevNode(); 7311 } 7312 assert(LastInst && "Failed to find last instruction in bundle"); 7313 7314 // Set the insertion point after the last instruction in the bundle. Set the 7315 // debug location to Front. 7316 Builder.SetInsertPoint(BB, std::next(LastInst->getIterator())); 7317 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 7318 } 7319 7320 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 7321 // List of instructions/lanes from current block and/or the blocks which are 7322 // part of the current loop. These instructions will be inserted at the end to 7323 // make it possible to optimize loops and hoist invariant instructions out of 7324 // the loops body with better chances for success. 7325 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 7326 SmallSet<int, 4> PostponedIndices; 7327 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 7328 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 7329 SmallPtrSet<BasicBlock *, 4> Visited; 7330 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 7331 InsertBB = InsertBB->getSinglePredecessor(); 7332 return InsertBB && InsertBB == InstBB; 7333 }; 7334 for (int I = 0, E = VL.size(); I < E; ++I) { 7335 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 7336 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 7337 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 7338 PostponedIndices.insert(I).second) 7339 PostponedInsts.emplace_back(Inst, I); 7340 } 7341 7342 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 7343 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 7344 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 7345 if (!InsElt) 7346 return Vec; 7347 GatherShuffleSeq.insert(InsElt); 7348 CSEBlocks.insert(InsElt->getParent()); 7349 // Add to our 'need-to-extract' list. 7350 if (TreeEntry *Entry = getTreeEntry(V)) { 7351 // Find which lane we need to extract. 7352 unsigned FoundLane = Entry->findLaneForValue(V); 7353 ExternalUses.emplace_back(V, InsElt, FoundLane); 7354 } 7355 return Vec; 7356 }; 7357 Value *Val0 = 7358 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 7359 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 7360 Value *Vec = PoisonValue::get(VecTy); 7361 SmallVector<int> NonConsts; 7362 // Insert constant values at first. 7363 for (int I = 0, E = VL.size(); I < E; ++I) { 7364 if (PostponedIndices.contains(I)) 7365 continue; 7366 if (!isConstant(VL[I])) { 7367 NonConsts.push_back(I); 7368 continue; 7369 } 7370 Vec = CreateInsertElement(Vec, VL[I], I); 7371 } 7372 // Insert non-constant values. 7373 for (int I : NonConsts) 7374 Vec = CreateInsertElement(Vec, VL[I], I); 7375 // Append instructions, which are/may be part of the loop, in the end to make 7376 // it possible to hoist non-loop-based instructions. 7377 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 7378 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 7379 7380 return Vec; 7381 } 7382 7383 namespace { 7384 /// Merges shuffle masks and emits final shuffle instruction, if required. 7385 class ShuffleInstructionBuilder { 7386 IRBuilderBase &Builder; 7387 const unsigned VF = 0; 7388 bool IsFinalized = false; 7389 SmallVector<int, 4> Mask; 7390 /// Holds all of the instructions that we gathered. 7391 SetVector<Instruction *> &GatherShuffleSeq; 7392 /// A list of blocks that we are going to CSE. 7393 SetVector<BasicBlock *> &CSEBlocks; 7394 7395 public: 7396 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF, 7397 SetVector<Instruction *> &GatherShuffleSeq, 7398 SetVector<BasicBlock *> &CSEBlocks) 7399 : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq), 7400 CSEBlocks(CSEBlocks) {} 7401 7402 /// Adds a mask, inverting it before applying. 7403 void addInversedMask(ArrayRef<unsigned> SubMask) { 7404 if (SubMask.empty()) 7405 return; 7406 SmallVector<int, 4> NewMask; 7407 inversePermutation(SubMask, NewMask); 7408 addMask(NewMask); 7409 } 7410 7411 /// Functions adds masks, merging them into single one. 7412 void addMask(ArrayRef<unsigned> SubMask) { 7413 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 7414 addMask(NewMask); 7415 } 7416 7417 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 7418 7419 Value *finalize(Value *V) { 7420 IsFinalized = true; 7421 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 7422 if (VF == ValueVF && Mask.empty()) 7423 return V; 7424 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 7425 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 7426 addMask(NormalizedMask); 7427 7428 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 7429 return V; 7430 Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle"); 7431 if (auto *I = dyn_cast<Instruction>(Vec)) { 7432 GatherShuffleSeq.insert(I); 7433 CSEBlocks.insert(I->getParent()); 7434 } 7435 return Vec; 7436 } 7437 7438 ~ShuffleInstructionBuilder() { 7439 assert((IsFinalized || Mask.empty()) && 7440 "Shuffle construction must be finalized."); 7441 } 7442 }; 7443 } // namespace 7444 7445 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 7446 const unsigned VF = VL.size(); 7447 InstructionsState S = getSameOpcode(VL); 7448 if (S.getOpcode()) { 7449 if (TreeEntry *E = getTreeEntry(S.OpValue)) 7450 if (E->isSame(VL)) { 7451 Value *V = vectorizeTree(E); 7452 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 7453 if (!E->ReuseShuffleIndices.empty()) { 7454 // Reshuffle to get only unique values. 7455 // If some of the scalars are duplicated in the vectorization tree 7456 // entry, we do not vectorize them but instead generate a mask for 7457 // the reuses. But if there are several users of the same entry, 7458 // they may have different vectorization factors. This is especially 7459 // important for PHI nodes. In this case, we need to adapt the 7460 // resulting instruction for the user vectorization factor and have 7461 // to reshuffle it again to take only unique elements of the vector. 7462 // Without this code the function incorrectly returns reduced vector 7463 // instruction with the same elements, not with the unique ones. 7464 7465 // block: 7466 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 7467 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> 7468 // ... (use %2) 7469 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} 7470 // br %block 7471 SmallVector<int> UniqueIdxs(VF, UndefMaskElem); 7472 SmallSet<int, 4> UsedIdxs; 7473 int Pos = 0; 7474 int Sz = VL.size(); 7475 for (int Idx : E->ReuseShuffleIndices) { 7476 if (Idx != Sz && Idx != UndefMaskElem && 7477 UsedIdxs.insert(Idx).second) 7478 UniqueIdxs[Idx] = Pos; 7479 ++Pos; 7480 } 7481 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 7482 "less than original vector size."); 7483 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 7484 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 7485 } else { 7486 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 7487 "Expected vectorization factor less " 7488 "than original vector size."); 7489 SmallVector<int> UniformMask(VF, 0); 7490 std::iota(UniformMask.begin(), UniformMask.end(), 0); 7491 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 7492 } 7493 if (auto *I = dyn_cast<Instruction>(V)) { 7494 GatherShuffleSeq.insert(I); 7495 CSEBlocks.insert(I->getParent()); 7496 } 7497 } 7498 return V; 7499 } 7500 } 7501 7502 // Can't vectorize this, so simply build a new vector with each lane 7503 // corresponding to the requested value. 7504 return createBuildVector(VL); 7505 } 7506 Value *BoUpSLP::createBuildVector(ArrayRef<Value *> VL) { 7507 unsigned VF = VL.size(); 7508 // Exploit possible reuse of values across lanes. 7509 SmallVector<int> ReuseShuffleIndicies; 7510 SmallVector<Value *> UniqueValues; 7511 if (VL.size() > 2) { 7512 DenseMap<Value *, unsigned> UniquePositions; 7513 unsigned NumValues = 7514 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 7515 return !isa<UndefValue>(V); 7516 }).base()); 7517 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 7518 int UniqueVals = 0; 7519 for (Value *V : VL.drop_back(VL.size() - VF)) { 7520 if (isa<UndefValue>(V)) { 7521 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 7522 continue; 7523 } 7524 if (isConstant(V)) { 7525 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 7526 UniqueValues.emplace_back(V); 7527 continue; 7528 } 7529 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 7530 ReuseShuffleIndicies.emplace_back(Res.first->second); 7531 if (Res.second) { 7532 UniqueValues.emplace_back(V); 7533 ++UniqueVals; 7534 } 7535 } 7536 if (UniqueVals == 1 && UniqueValues.size() == 1) { 7537 // Emit pure splat vector. 7538 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 7539 UndefMaskElem); 7540 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 7541 ReuseShuffleIndicies.clear(); 7542 UniqueValues.clear(); 7543 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 7544 } 7545 UniqueValues.append(VF - UniqueValues.size(), 7546 PoisonValue::get(VL[0]->getType())); 7547 VL = UniqueValues; 7548 } 7549 7550 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 7551 CSEBlocks); 7552 Value *Vec = gather(VL); 7553 if (!ReuseShuffleIndicies.empty()) { 7554 ShuffleBuilder.addMask(ReuseShuffleIndicies); 7555 Vec = ShuffleBuilder.finalize(Vec); 7556 } 7557 return Vec; 7558 } 7559 7560 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 7561 IRBuilder<>::InsertPointGuard Guard(Builder); 7562 7563 if (E->VectorizedValue) { 7564 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 7565 return E->VectorizedValue; 7566 } 7567 7568 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 7569 unsigned VF = E->getVectorFactor(); 7570 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 7571 CSEBlocks); 7572 if (E->State == TreeEntry::NeedToGather) { 7573 if (E->getMainOp()) 7574 setInsertPointAfterBundle(E); 7575 Value *Vec; 7576 SmallVector<int> Mask; 7577 SmallVector<const TreeEntry *> Entries; 7578 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 7579 isGatherShuffledEntry(E, Mask, Entries); 7580 if (Shuffle.hasValue()) { 7581 assert((Entries.size() == 1 || Entries.size() == 2) && 7582 "Expected shuffle of 1 or 2 entries."); 7583 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 7584 Entries.back()->VectorizedValue, Mask); 7585 if (auto *I = dyn_cast<Instruction>(Vec)) { 7586 GatherShuffleSeq.insert(I); 7587 CSEBlocks.insert(I->getParent()); 7588 } 7589 } else { 7590 Vec = gather(E->Scalars); 7591 } 7592 if (NeedToShuffleReuses) { 7593 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7594 Vec = ShuffleBuilder.finalize(Vec); 7595 } 7596 E->VectorizedValue = Vec; 7597 return Vec; 7598 } 7599 7600 assert((E->State == TreeEntry::Vectorize || 7601 E->State == TreeEntry::ScatterVectorize) && 7602 "Unhandled state"); 7603 unsigned ShuffleOrOp = 7604 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 7605 Instruction *VL0 = E->getMainOp(); 7606 Type *ScalarTy = VL0->getType(); 7607 if (auto *Store = dyn_cast<StoreInst>(VL0)) 7608 ScalarTy = Store->getValueOperand()->getType(); 7609 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 7610 ScalarTy = IE->getOperand(1)->getType(); 7611 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 7612 switch (ShuffleOrOp) { 7613 case Instruction::PHI: { 7614 assert( 7615 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 7616 "PHI reordering is free."); 7617 auto *PH = cast<PHINode>(VL0); 7618 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 7619 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 7620 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 7621 Value *V = NewPhi; 7622 7623 // Adjust insertion point once all PHI's have been generated. 7624 Builder.SetInsertPoint(&*PH->getParent()->getFirstInsertionPt()); 7625 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 7626 7627 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7628 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7629 V = ShuffleBuilder.finalize(V); 7630 7631 E->VectorizedValue = V; 7632 7633 // PHINodes may have multiple entries from the same block. We want to 7634 // visit every block once. 7635 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 7636 7637 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 7638 ValueList Operands; 7639 BasicBlock *IBB = PH->getIncomingBlock(i); 7640 7641 if (!VisitedBBs.insert(IBB).second) { 7642 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 7643 continue; 7644 } 7645 7646 Builder.SetInsertPoint(IBB->getTerminator()); 7647 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 7648 Value *Vec = vectorizeTree(E->getOperand(i)); 7649 NewPhi->addIncoming(Vec, IBB); 7650 } 7651 7652 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 7653 "Invalid number of incoming values"); 7654 return V; 7655 } 7656 7657 case Instruction::ExtractElement: { 7658 Value *V = E->getSingleOperand(0); 7659 Builder.SetInsertPoint(VL0); 7660 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7661 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7662 V = ShuffleBuilder.finalize(V); 7663 E->VectorizedValue = V; 7664 return V; 7665 } 7666 case Instruction::ExtractValue: { 7667 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 7668 Builder.SetInsertPoint(LI); 7669 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 7670 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 7671 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 7672 Value *NewV = propagateMetadata(V, E->Scalars); 7673 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7674 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7675 NewV = ShuffleBuilder.finalize(NewV); 7676 E->VectorizedValue = NewV; 7677 return NewV; 7678 } 7679 case Instruction::InsertElement: { 7680 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 7681 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 7682 Value *V = vectorizeTree(E->getOperand(1)); 7683 7684 // Create InsertVector shuffle if necessary 7685 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 7686 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 7687 })); 7688 const unsigned NumElts = 7689 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 7690 const unsigned NumScalars = E->Scalars.size(); 7691 7692 unsigned Offset = *getInsertIndex(VL0); 7693 assert(Offset < NumElts && "Failed to find vector index offset"); 7694 7695 // Create shuffle to resize vector 7696 SmallVector<int> Mask; 7697 if (!E->ReorderIndices.empty()) { 7698 inversePermutation(E->ReorderIndices, Mask); 7699 Mask.append(NumElts - NumScalars, UndefMaskElem); 7700 } else { 7701 Mask.assign(NumElts, UndefMaskElem); 7702 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 7703 } 7704 // Create InsertVector shuffle if necessary 7705 bool IsIdentity = true; 7706 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 7707 Mask.swap(PrevMask); 7708 for (unsigned I = 0; I < NumScalars; ++I) { 7709 Value *Scalar = E->Scalars[PrevMask[I]]; 7710 unsigned InsertIdx = *getInsertIndex(Scalar); 7711 IsIdentity &= InsertIdx - Offset == I; 7712 Mask[InsertIdx - Offset] = I; 7713 } 7714 if (!IsIdentity || NumElts != NumScalars) { 7715 V = Builder.CreateShuffleVector(V, Mask); 7716 if (auto *I = dyn_cast<Instruction>(V)) { 7717 GatherShuffleSeq.insert(I); 7718 CSEBlocks.insert(I->getParent()); 7719 } 7720 } 7721 7722 if ((!IsIdentity || Offset != 0 || 7723 !isUndefVector(FirstInsert->getOperand(0))) && 7724 NumElts != NumScalars) { 7725 SmallVector<int> InsertMask(NumElts); 7726 std::iota(InsertMask.begin(), InsertMask.end(), 0); 7727 for (unsigned I = 0; I < NumElts; I++) { 7728 if (Mask[I] != UndefMaskElem) 7729 InsertMask[Offset + I] = NumElts + I; 7730 } 7731 7732 V = Builder.CreateShuffleVector( 7733 FirstInsert->getOperand(0), V, InsertMask, 7734 cast<Instruction>(E->Scalars.back())->getName()); 7735 if (auto *I = dyn_cast<Instruction>(V)) { 7736 GatherShuffleSeq.insert(I); 7737 CSEBlocks.insert(I->getParent()); 7738 } 7739 } 7740 7741 ++NumVectorInstructions; 7742 E->VectorizedValue = V; 7743 return V; 7744 } 7745 case Instruction::ZExt: 7746 case Instruction::SExt: 7747 case Instruction::FPToUI: 7748 case Instruction::FPToSI: 7749 case Instruction::FPExt: 7750 case Instruction::PtrToInt: 7751 case Instruction::IntToPtr: 7752 case Instruction::SIToFP: 7753 case Instruction::UIToFP: 7754 case Instruction::Trunc: 7755 case Instruction::FPTrunc: 7756 case Instruction::BitCast: { 7757 setInsertPointAfterBundle(E); 7758 7759 Value *InVec = vectorizeTree(E->getOperand(0)); 7760 7761 if (E->VectorizedValue) { 7762 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7763 return E->VectorizedValue; 7764 } 7765 7766 auto *CI = cast<CastInst>(VL0); 7767 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 7768 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7769 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7770 V = ShuffleBuilder.finalize(V); 7771 7772 E->VectorizedValue = V; 7773 ++NumVectorInstructions; 7774 return V; 7775 } 7776 case Instruction::FCmp: 7777 case Instruction::ICmp: { 7778 setInsertPointAfterBundle(E); 7779 7780 Value *L = vectorizeTree(E->getOperand(0)); 7781 Value *R = vectorizeTree(E->getOperand(1)); 7782 7783 if (E->VectorizedValue) { 7784 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7785 return E->VectorizedValue; 7786 } 7787 7788 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 7789 Value *V = Builder.CreateCmp(P0, L, R); 7790 propagateIRFlags(V, E->Scalars, VL0); 7791 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7792 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7793 V = ShuffleBuilder.finalize(V); 7794 7795 E->VectorizedValue = V; 7796 ++NumVectorInstructions; 7797 return V; 7798 } 7799 case Instruction::Select: { 7800 setInsertPointAfterBundle(E); 7801 7802 Value *Cond = vectorizeTree(E->getOperand(0)); 7803 Value *True = vectorizeTree(E->getOperand(1)); 7804 Value *False = vectorizeTree(E->getOperand(2)); 7805 7806 if (E->VectorizedValue) { 7807 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7808 return E->VectorizedValue; 7809 } 7810 7811 Value *V = Builder.CreateSelect(Cond, True, False); 7812 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7813 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7814 V = ShuffleBuilder.finalize(V); 7815 7816 E->VectorizedValue = V; 7817 ++NumVectorInstructions; 7818 return V; 7819 } 7820 case Instruction::FNeg: { 7821 setInsertPointAfterBundle(E); 7822 7823 Value *Op = vectorizeTree(E->getOperand(0)); 7824 7825 if (E->VectorizedValue) { 7826 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7827 return E->VectorizedValue; 7828 } 7829 7830 Value *V = Builder.CreateUnOp( 7831 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 7832 propagateIRFlags(V, E->Scalars, VL0); 7833 if (auto *I = dyn_cast<Instruction>(V)) 7834 V = propagateMetadata(I, E->Scalars); 7835 7836 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7837 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7838 V = ShuffleBuilder.finalize(V); 7839 7840 E->VectorizedValue = V; 7841 ++NumVectorInstructions; 7842 7843 return V; 7844 } 7845 case Instruction::Add: 7846 case Instruction::FAdd: 7847 case Instruction::Sub: 7848 case Instruction::FSub: 7849 case Instruction::Mul: 7850 case Instruction::FMul: 7851 case Instruction::UDiv: 7852 case Instruction::SDiv: 7853 case Instruction::FDiv: 7854 case Instruction::URem: 7855 case Instruction::SRem: 7856 case Instruction::FRem: 7857 case Instruction::Shl: 7858 case Instruction::LShr: 7859 case Instruction::AShr: 7860 case Instruction::And: 7861 case Instruction::Or: 7862 case Instruction::Xor: { 7863 setInsertPointAfterBundle(E); 7864 7865 Value *LHS = vectorizeTree(E->getOperand(0)); 7866 Value *RHS = vectorizeTree(E->getOperand(1)); 7867 7868 if (E->VectorizedValue) { 7869 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7870 return E->VectorizedValue; 7871 } 7872 7873 Value *V = Builder.CreateBinOp( 7874 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 7875 RHS); 7876 propagateIRFlags(V, E->Scalars, VL0); 7877 if (auto *I = dyn_cast<Instruction>(V)) 7878 V = propagateMetadata(I, E->Scalars); 7879 7880 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7881 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7882 V = ShuffleBuilder.finalize(V); 7883 7884 E->VectorizedValue = V; 7885 ++NumVectorInstructions; 7886 7887 return V; 7888 } 7889 case Instruction::Load: { 7890 // Loads are inserted at the head of the tree because we don't want to 7891 // sink them all the way down past store instructions. 7892 setInsertPointAfterBundle(E); 7893 7894 LoadInst *LI = cast<LoadInst>(VL0); 7895 Instruction *NewLI; 7896 unsigned AS = LI->getPointerAddressSpace(); 7897 Value *PO = LI->getPointerOperand(); 7898 if (E->State == TreeEntry::Vectorize) { 7899 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 7900 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 7901 7902 // The pointer operand uses an in-tree scalar so we add the new BitCast 7903 // or LoadInst to ExternalUses list to make sure that an extract will 7904 // be generated in the future. 7905 if (TreeEntry *Entry = getTreeEntry(PO)) { 7906 // Find which lane we need to extract. 7907 unsigned FoundLane = Entry->findLaneForValue(PO); 7908 ExternalUses.emplace_back( 7909 PO, PO != VecPtr ? cast<User>(VecPtr) : NewLI, FoundLane); 7910 } 7911 } else { 7912 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 7913 Value *VecPtr = vectorizeTree(E->getOperand(0)); 7914 // Use the minimum alignment of the gathered loads. 7915 Align CommonAlignment = LI->getAlign(); 7916 for (Value *V : E->Scalars) 7917 CommonAlignment = 7918 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 7919 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 7920 } 7921 Value *V = propagateMetadata(NewLI, E->Scalars); 7922 7923 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7924 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7925 V = ShuffleBuilder.finalize(V); 7926 E->VectorizedValue = V; 7927 ++NumVectorInstructions; 7928 return V; 7929 } 7930 case Instruction::Store: { 7931 auto *SI = cast<StoreInst>(VL0); 7932 unsigned AS = SI->getPointerAddressSpace(); 7933 7934 setInsertPointAfterBundle(E); 7935 7936 Value *VecValue = vectorizeTree(E->getOperand(0)); 7937 ShuffleBuilder.addMask(E->ReorderIndices); 7938 VecValue = ShuffleBuilder.finalize(VecValue); 7939 7940 Value *ScalarPtr = SI->getPointerOperand(); 7941 Value *VecPtr = Builder.CreateBitCast( 7942 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 7943 StoreInst *ST = 7944 Builder.CreateAlignedStore(VecValue, VecPtr, SI->getAlign()); 7945 7946 // The pointer operand uses an in-tree scalar, so add the new BitCast or 7947 // StoreInst to ExternalUses to make sure that an extract will be 7948 // generated in the future. 7949 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 7950 // Find which lane we need to extract. 7951 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 7952 ExternalUses.push_back(ExternalUser( 7953 ScalarPtr, ScalarPtr != VecPtr ? cast<User>(VecPtr) : ST, 7954 FoundLane)); 7955 } 7956 7957 Value *V = propagateMetadata(ST, E->Scalars); 7958 7959 E->VectorizedValue = V; 7960 ++NumVectorInstructions; 7961 return V; 7962 } 7963 case Instruction::GetElementPtr: { 7964 auto *GEP0 = cast<GetElementPtrInst>(VL0); 7965 setInsertPointAfterBundle(E); 7966 7967 Value *Op0 = vectorizeTree(E->getOperand(0)); 7968 7969 SmallVector<Value *> OpVecs; 7970 for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) { 7971 Value *OpVec = vectorizeTree(E->getOperand(J)); 7972 OpVecs.push_back(OpVec); 7973 } 7974 7975 Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs); 7976 if (Instruction *I = dyn_cast<Instruction>(V)) 7977 V = propagateMetadata(I, E->Scalars); 7978 7979 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7980 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7981 V = ShuffleBuilder.finalize(V); 7982 7983 E->VectorizedValue = V; 7984 ++NumVectorInstructions; 7985 7986 return V; 7987 } 7988 case Instruction::Call: { 7989 CallInst *CI = cast<CallInst>(VL0); 7990 setInsertPointAfterBundle(E); 7991 7992 Intrinsic::ID IID = Intrinsic::not_intrinsic; 7993 if (Function *FI = CI->getCalledFunction()) 7994 IID = FI->getIntrinsicID(); 7995 7996 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7997 7998 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 7999 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 8000 VecCallCosts.first <= VecCallCosts.second; 8001 8002 Value *ScalarArg = nullptr; 8003 std::vector<Value *> OpVecs; 8004 SmallVector<Type *, 2> TysForDecl = 8005 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 8006 for (int j = 0, e = CI->arg_size(); j < e; ++j) { 8007 ValueList OpVL; 8008 // Some intrinsics have scalar arguments. This argument should not be 8009 // vectorized. 8010 if (UseIntrinsic && isVectorIntrinsicWithScalarOpAtArg(IID, j)) { 8011 CallInst *CEI = cast<CallInst>(VL0); 8012 ScalarArg = CEI->getArgOperand(j); 8013 OpVecs.push_back(CEI->getArgOperand(j)); 8014 if (isVectorIntrinsicWithOverloadTypeAtArg(IID, j)) 8015 TysForDecl.push_back(ScalarArg->getType()); 8016 continue; 8017 } 8018 8019 Value *OpVec = vectorizeTree(E->getOperand(j)); 8020 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 8021 OpVecs.push_back(OpVec); 8022 if (isVectorIntrinsicWithOverloadTypeAtArg(IID, j)) 8023 TysForDecl.push_back(OpVec->getType()); 8024 } 8025 8026 Function *CF; 8027 if (!UseIntrinsic) { 8028 VFShape Shape = 8029 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 8030 VecTy->getNumElements())), 8031 false /*HasGlobalPred*/); 8032 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 8033 } else { 8034 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 8035 } 8036 8037 SmallVector<OperandBundleDef, 1> OpBundles; 8038 CI->getOperandBundlesAsDefs(OpBundles); 8039 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 8040 8041 // The scalar argument uses an in-tree scalar so we add the new vectorized 8042 // call to ExternalUses list to make sure that an extract will be 8043 // generated in the future. 8044 if (ScalarArg) { 8045 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 8046 // Find which lane we need to extract. 8047 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 8048 ExternalUses.push_back( 8049 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 8050 } 8051 } 8052 8053 propagateIRFlags(V, E->Scalars, VL0); 8054 ShuffleBuilder.addInversedMask(E->ReorderIndices); 8055 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 8056 V = ShuffleBuilder.finalize(V); 8057 8058 E->VectorizedValue = V; 8059 ++NumVectorInstructions; 8060 return V; 8061 } 8062 case Instruction::ShuffleVector: { 8063 assert(E->isAltShuffle() && 8064 ((Instruction::isBinaryOp(E->getOpcode()) && 8065 Instruction::isBinaryOp(E->getAltOpcode())) || 8066 (Instruction::isCast(E->getOpcode()) && 8067 Instruction::isCast(E->getAltOpcode())) || 8068 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 8069 "Invalid Shuffle Vector Operand"); 8070 8071 Value *LHS = nullptr, *RHS = nullptr; 8072 if (Instruction::isBinaryOp(E->getOpcode()) || isa<CmpInst>(VL0)) { 8073 setInsertPointAfterBundle(E); 8074 LHS = vectorizeTree(E->getOperand(0)); 8075 RHS = vectorizeTree(E->getOperand(1)); 8076 } else { 8077 setInsertPointAfterBundle(E); 8078 LHS = vectorizeTree(E->getOperand(0)); 8079 } 8080 8081 if (E->VectorizedValue) { 8082 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 8083 return E->VectorizedValue; 8084 } 8085 8086 Value *V0, *V1; 8087 if (Instruction::isBinaryOp(E->getOpcode())) { 8088 V0 = Builder.CreateBinOp( 8089 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 8090 V1 = Builder.CreateBinOp( 8091 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 8092 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 8093 V0 = Builder.CreateCmp(CI0->getPredicate(), LHS, RHS); 8094 auto *AltCI = cast<CmpInst>(E->getAltOp()); 8095 CmpInst::Predicate AltPred = AltCI->getPredicate(); 8096 V1 = Builder.CreateCmp(AltPred, LHS, RHS); 8097 } else { 8098 V0 = Builder.CreateCast( 8099 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 8100 V1 = Builder.CreateCast( 8101 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 8102 } 8103 // Add V0 and V1 to later analysis to try to find and remove matching 8104 // instruction, if any. 8105 for (Value *V : {V0, V1}) { 8106 if (auto *I = dyn_cast<Instruction>(V)) { 8107 GatherShuffleSeq.insert(I); 8108 CSEBlocks.insert(I->getParent()); 8109 } 8110 } 8111 8112 // Create shuffle to take alternate operations from the vector. 8113 // Also, gather up main and alt scalar ops to propagate IR flags to 8114 // each vector operation. 8115 ValueList OpScalars, AltScalars; 8116 SmallVector<int> Mask; 8117 buildShuffleEntryMask( 8118 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 8119 [E](Instruction *I) { 8120 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 8121 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 8122 }, 8123 Mask, &OpScalars, &AltScalars); 8124 8125 propagateIRFlags(V0, OpScalars); 8126 propagateIRFlags(V1, AltScalars); 8127 8128 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 8129 if (auto *I = dyn_cast<Instruction>(V)) { 8130 V = propagateMetadata(I, E->Scalars); 8131 GatherShuffleSeq.insert(I); 8132 CSEBlocks.insert(I->getParent()); 8133 } 8134 V = ShuffleBuilder.finalize(V); 8135 8136 E->VectorizedValue = V; 8137 ++NumVectorInstructions; 8138 8139 return V; 8140 } 8141 default: 8142 llvm_unreachable("unknown inst"); 8143 } 8144 return nullptr; 8145 } 8146 8147 Value *BoUpSLP::vectorizeTree() { 8148 ExtraValueToDebugLocsMap ExternallyUsedValues; 8149 return vectorizeTree(ExternallyUsedValues); 8150 } 8151 8152 namespace { 8153 /// Data type for handling buildvector sequences with the reused scalars from 8154 /// other tree entries. 8155 struct ShuffledInsertData { 8156 /// List of insertelements to be replaced by shuffles. 8157 SmallVector<InsertElementInst *> InsertElements; 8158 /// The parent vectors and shuffle mask for the given list of inserts. 8159 MapVector<Value *, SmallVector<int>> ValueMasks; 8160 }; 8161 } // namespace 8162 8163 Value * 8164 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 8165 // All blocks must be scheduled before any instructions are inserted. 8166 for (auto &BSIter : BlocksSchedules) { 8167 scheduleBlock(BSIter.second.get()); 8168 } 8169 8170 Builder.SetInsertPoint(&F->getEntryBlock().front()); 8171 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 8172 8173 // If the vectorized tree can be rewritten in a smaller type, we truncate the 8174 // vectorized root. InstCombine will then rewrite the entire expression. We 8175 // sign extend the extracted values below. 8176 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 8177 if (MinBWs.count(ScalarRoot)) { 8178 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 8179 // If current instr is a phi and not the last phi, insert it after the 8180 // last phi node. 8181 if (isa<PHINode>(I)) 8182 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 8183 else 8184 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 8185 } 8186 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 8187 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 8188 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 8189 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 8190 VectorizableTree[0]->VectorizedValue = Trunc; 8191 } 8192 8193 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 8194 << " values .\n"); 8195 8196 SmallVector<ShuffledInsertData> ShuffledInserts; 8197 // Maps vector instruction to original insertelement instruction 8198 DenseMap<Value *, InsertElementInst *> VectorToInsertElement; 8199 // Extract all of the elements with the external uses. 8200 for (const auto &ExternalUse : ExternalUses) { 8201 Value *Scalar = ExternalUse.Scalar; 8202 llvm::User *User = ExternalUse.User; 8203 8204 // Skip users that we already RAUW. This happens when one instruction 8205 // has multiple uses of the same value. 8206 if (User && !is_contained(Scalar->users(), User)) 8207 continue; 8208 TreeEntry *E = getTreeEntry(Scalar); 8209 assert(E && "Invalid scalar"); 8210 assert(E->State != TreeEntry::NeedToGather && 8211 "Extracting from a gather list"); 8212 8213 Value *Vec = E->VectorizedValue; 8214 assert(Vec && "Can't find vectorizable value"); 8215 8216 Value *Lane = Builder.getInt32(ExternalUse.Lane); 8217 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 8218 if (Scalar->getType() != Vec->getType()) { 8219 Value *Ex; 8220 // "Reuse" the existing extract to improve final codegen. 8221 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 8222 Ex = Builder.CreateExtractElement(ES->getOperand(0), 8223 ES->getOperand(1)); 8224 } else { 8225 Ex = Builder.CreateExtractElement(Vec, Lane); 8226 } 8227 // If necessary, sign-extend or zero-extend ScalarRoot 8228 // to the larger type. 8229 if (!MinBWs.count(ScalarRoot)) 8230 return Ex; 8231 if (MinBWs[ScalarRoot].second) 8232 return Builder.CreateSExt(Ex, Scalar->getType()); 8233 return Builder.CreateZExt(Ex, Scalar->getType()); 8234 } 8235 assert(isa<FixedVectorType>(Scalar->getType()) && 8236 isa<InsertElementInst>(Scalar) && 8237 "In-tree scalar of vector type is not insertelement?"); 8238 auto *IE = cast<InsertElementInst>(Scalar); 8239 VectorToInsertElement.try_emplace(Vec, IE); 8240 return Vec; 8241 }; 8242 // If User == nullptr, the Scalar is used as extra arg. Generate 8243 // ExtractElement instruction and update the record for this scalar in 8244 // ExternallyUsedValues. 8245 if (!User) { 8246 assert(ExternallyUsedValues.count(Scalar) && 8247 "Scalar with nullptr as an external user must be registered in " 8248 "ExternallyUsedValues map"); 8249 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 8250 Builder.SetInsertPoint(VecI->getParent(), 8251 std::next(VecI->getIterator())); 8252 } else { 8253 Builder.SetInsertPoint(&F->getEntryBlock().front()); 8254 } 8255 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 8256 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 8257 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 8258 auto It = ExternallyUsedValues.find(Scalar); 8259 assert(It != ExternallyUsedValues.end() && 8260 "Externally used scalar is not found in ExternallyUsedValues"); 8261 NewInstLocs.append(It->second); 8262 ExternallyUsedValues.erase(Scalar); 8263 // Required to update internally referenced instructions. 8264 Scalar->replaceAllUsesWith(NewInst); 8265 continue; 8266 } 8267 8268 if (auto *VU = dyn_cast<InsertElementInst>(User)) { 8269 // Skip if the scalar is another vector op or Vec is not an instruction. 8270 if (!Scalar->getType()->isVectorTy() && isa<Instruction>(Vec)) { 8271 if (auto *FTy = dyn_cast<FixedVectorType>(User->getType())) { 8272 Optional<unsigned> InsertIdx = getInsertIndex(VU); 8273 if (InsertIdx) { 8274 auto *It = 8275 find_if(ShuffledInserts, [VU](const ShuffledInsertData &Data) { 8276 // Checks if 2 insertelements are from the same buildvector. 8277 InsertElementInst *VecInsert = Data.InsertElements.front(); 8278 return areTwoInsertFromSameBuildVector(VU, VecInsert); 8279 }); 8280 unsigned Idx = *InsertIdx; 8281 if (It == ShuffledInserts.end()) { 8282 (void)ShuffledInserts.emplace_back(); 8283 It = std::next(ShuffledInserts.begin(), 8284 ShuffledInserts.size() - 1); 8285 SmallVectorImpl<int> &Mask = It->ValueMasks[Vec]; 8286 if (Mask.empty()) 8287 Mask.assign(FTy->getNumElements(), UndefMaskElem); 8288 // Find the insertvector, vectorized in tree, if any. 8289 Value *Base = VU; 8290 while (auto *IEBase = dyn_cast<InsertElementInst>(Base)) { 8291 if (IEBase != User && 8292 (!IEBase->hasOneUse() || 8293 getInsertIndex(IEBase).getValueOr(Idx) == Idx)) 8294 break; 8295 // Build the mask for the vectorized insertelement instructions. 8296 if (const TreeEntry *E = getTreeEntry(IEBase)) { 8297 do { 8298 IEBase = cast<InsertElementInst>(Base); 8299 int IEIdx = *getInsertIndex(IEBase); 8300 assert(Mask[Idx] == UndefMaskElem && 8301 "InsertElementInstruction used already."); 8302 Mask[IEIdx] = IEIdx; 8303 Base = IEBase->getOperand(0); 8304 } while (E == getTreeEntry(Base)); 8305 break; 8306 } 8307 Base = cast<InsertElementInst>(Base)->getOperand(0); 8308 // After the vectorization the def-use chain has changed, need 8309 // to look through original insertelement instructions, if they 8310 // get replaced by vector instructions. 8311 auto It = VectorToInsertElement.find(Base); 8312 if (It != VectorToInsertElement.end()) 8313 Base = It->second; 8314 } 8315 } 8316 SmallVectorImpl<int> &Mask = It->ValueMasks[Vec]; 8317 if (Mask.empty()) 8318 Mask.assign(FTy->getNumElements(), UndefMaskElem); 8319 Mask[Idx] = ExternalUse.Lane; 8320 It->InsertElements.push_back(cast<InsertElementInst>(User)); 8321 continue; 8322 } 8323 } 8324 } 8325 } 8326 8327 // Generate extracts for out-of-tree users. 8328 // Find the insertion point for the extractelement lane. 8329 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 8330 if (PHINode *PH = dyn_cast<PHINode>(User)) { 8331 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 8332 if (PH->getIncomingValue(i) == Scalar) { 8333 Instruction *IncomingTerminator = 8334 PH->getIncomingBlock(i)->getTerminator(); 8335 if (isa<CatchSwitchInst>(IncomingTerminator)) { 8336 Builder.SetInsertPoint(VecI->getParent(), 8337 std::next(VecI->getIterator())); 8338 } else { 8339 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 8340 } 8341 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 8342 CSEBlocks.insert(PH->getIncomingBlock(i)); 8343 PH->setOperand(i, NewInst); 8344 } 8345 } 8346 } else { 8347 Builder.SetInsertPoint(cast<Instruction>(User)); 8348 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 8349 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 8350 User->replaceUsesOfWith(Scalar, NewInst); 8351 } 8352 } else { 8353 Builder.SetInsertPoint(&F->getEntryBlock().front()); 8354 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 8355 CSEBlocks.insert(&F->getEntryBlock()); 8356 User->replaceUsesOfWith(Scalar, NewInst); 8357 } 8358 8359 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 8360 } 8361 8362 // Checks if the mask is an identity mask. 8363 auto &&IsIdentityMask = [](ArrayRef<int> Mask, FixedVectorType *VecTy) { 8364 int Limit = Mask.size(); 8365 return VecTy->getNumElements() == Mask.size() && 8366 all_of(Mask, [Limit](int Idx) { return Idx < Limit; }) && 8367 ShuffleVectorInst::isIdentityMask(Mask); 8368 }; 8369 // Tries to combine 2 different masks into single one. 8370 auto &&CombineMasks = [](SmallVectorImpl<int> &Mask, ArrayRef<int> ExtMask) { 8371 SmallVector<int> NewMask(ExtMask.size(), UndefMaskElem); 8372 for (int I = 0, Sz = ExtMask.size(); I < Sz; ++I) { 8373 if (ExtMask[I] == UndefMaskElem) 8374 continue; 8375 NewMask[I] = Mask[ExtMask[I]]; 8376 } 8377 Mask.swap(NewMask); 8378 }; 8379 // Peek through shuffles, trying to simplify the final shuffle code. 8380 auto &&PeekThroughShuffles = 8381 [&IsIdentityMask, &CombineMasks](Value *&V, SmallVectorImpl<int> &Mask, 8382 bool CheckForLengthChange = false) { 8383 while (auto *SV = dyn_cast<ShuffleVectorInst>(V)) { 8384 // Exit if not a fixed vector type or changing size shuffle. 8385 if (!isa<FixedVectorType>(SV->getType()) || 8386 (CheckForLengthChange && SV->changesLength())) 8387 break; 8388 // Exit if the identity or broadcast mask is found. 8389 if (IsIdentityMask(Mask, cast<FixedVectorType>(SV->getType())) || 8390 SV->isZeroEltSplat()) 8391 break; 8392 bool IsOp1Undef = isUndefVector(SV->getOperand(0)); 8393 bool IsOp2Undef = isUndefVector(SV->getOperand(1)); 8394 if (!IsOp1Undef && !IsOp2Undef) 8395 break; 8396 SmallVector<int> ShuffleMask(SV->getShuffleMask().begin(), 8397 SV->getShuffleMask().end()); 8398 CombineMasks(ShuffleMask, Mask); 8399 Mask.swap(ShuffleMask); 8400 if (IsOp2Undef) 8401 V = SV->getOperand(0); 8402 else 8403 V = SV->getOperand(1); 8404 } 8405 }; 8406 // Smart shuffle instruction emission, walks through shuffles trees and 8407 // tries to find the best matching vector for the actual shuffle 8408 // instruction. 8409 auto &&CreateShuffle = [this, &IsIdentityMask, &PeekThroughShuffles, 8410 &CombineMasks](Value *V1, Value *V2, 8411 ArrayRef<int> Mask) -> Value * { 8412 assert(V1 && "Expected at least one vector value."); 8413 if (V2 && !isUndefVector(V2)) { 8414 // Peek through shuffles. 8415 Value *Op1 = V1; 8416 Value *Op2 = V2; 8417 int VF = 8418 cast<VectorType>(V1->getType())->getElementCount().getKnownMinValue(); 8419 SmallVector<int> CombinedMask1(Mask.size(), UndefMaskElem); 8420 SmallVector<int> CombinedMask2(Mask.size(), UndefMaskElem); 8421 for (int I = 0, E = Mask.size(); I < E; ++I) { 8422 if (Mask[I] < VF) 8423 CombinedMask1[I] = Mask[I]; 8424 else 8425 CombinedMask2[I] = Mask[I] - VF; 8426 } 8427 Value *PrevOp1; 8428 Value *PrevOp2; 8429 do { 8430 PrevOp1 = Op1; 8431 PrevOp2 = Op2; 8432 PeekThroughShuffles(Op1, CombinedMask1, /*CheckForLengthChange=*/true); 8433 PeekThroughShuffles(Op2, CombinedMask2, /*CheckForLengthChange=*/true); 8434 // Check if we have 2 resizing shuffles - need to peek through operands 8435 // again. 8436 if (auto *SV1 = dyn_cast<ShuffleVectorInst>(Op1)) 8437 if (auto *SV2 = dyn_cast<ShuffleVectorInst>(Op2)) 8438 if (SV1->getOperand(0)->getType() == 8439 SV2->getOperand(0)->getType() && 8440 SV1->getOperand(0)->getType() != SV1->getType() && 8441 isUndefVector(SV1->getOperand(1)) && 8442 isUndefVector(SV2->getOperand(1))) { 8443 Op1 = SV1->getOperand(0); 8444 Op2 = SV2->getOperand(0); 8445 SmallVector<int> ShuffleMask1(SV1->getShuffleMask().begin(), 8446 SV1->getShuffleMask().end()); 8447 CombineMasks(ShuffleMask1, CombinedMask1); 8448 CombinedMask1.swap(ShuffleMask1); 8449 SmallVector<int> ShuffleMask2(SV2->getShuffleMask().begin(), 8450 SV2->getShuffleMask().end()); 8451 CombineMasks(ShuffleMask2, CombinedMask2); 8452 CombinedMask2.swap(ShuffleMask2); 8453 } 8454 } while (PrevOp1 != Op1 || PrevOp2 != Op2); 8455 VF = cast<VectorType>(Op1->getType()) 8456 ->getElementCount() 8457 .getKnownMinValue(); 8458 for (int I = 0, E = Mask.size(); I < E; ++I) { 8459 if (CombinedMask2[I] != UndefMaskElem) { 8460 assert(CombinedMask1[I] == UndefMaskElem && 8461 "Expected undefined mask element"); 8462 CombinedMask1[I] = CombinedMask2[I] + (Op1 == Op2 ? 0 : VF); 8463 } 8464 } 8465 Value *Vec = Builder.CreateShuffleVector( 8466 Op1, Op1 == Op2 ? PoisonValue::get(Op1->getType()) : Op2, 8467 CombinedMask1); 8468 if (auto *I = dyn_cast<Instruction>(Vec)) { 8469 GatherShuffleSeq.insert(I); 8470 CSEBlocks.insert(I->getParent()); 8471 } 8472 return Vec; 8473 } 8474 if (isa<PoisonValue>(V1)) 8475 return PoisonValue::get(FixedVectorType::get( 8476 cast<VectorType>(V1->getType())->getElementType(), Mask.size())); 8477 Value *Op = V1; 8478 SmallVector<int> CombinedMask(Mask.begin(), Mask.end()); 8479 PeekThroughShuffles(Op, CombinedMask); 8480 if (!isa<FixedVectorType>(Op->getType()) || 8481 !IsIdentityMask(CombinedMask, cast<FixedVectorType>(Op->getType()))) { 8482 Value *Vec = Builder.CreateShuffleVector(Op, CombinedMask); 8483 if (auto *I = dyn_cast<Instruction>(Vec)) { 8484 GatherShuffleSeq.insert(I); 8485 CSEBlocks.insert(I->getParent()); 8486 } 8487 return Vec; 8488 } 8489 return Op; 8490 }; 8491 8492 auto &&ResizeToVF = [&CreateShuffle](Value *Vec, ArrayRef<int> Mask) { 8493 unsigned VF = Mask.size(); 8494 unsigned VecVF = cast<FixedVectorType>(Vec->getType())->getNumElements(); 8495 if (VF != VecVF) { 8496 if (any_of(Mask, [VF](int Idx) { return Idx >= static_cast<int>(VF); })) { 8497 Vec = CreateShuffle(Vec, nullptr, Mask); 8498 return std::make_pair(Vec, true); 8499 } 8500 SmallVector<int> ResizeMask(VF, UndefMaskElem); 8501 for (unsigned I = 0; I < VF; ++I) { 8502 if (Mask[I] != UndefMaskElem) 8503 ResizeMask[Mask[I]] = Mask[I]; 8504 } 8505 Vec = CreateShuffle(Vec, nullptr, ResizeMask); 8506 } 8507 8508 return std::make_pair(Vec, false); 8509 }; 8510 // Perform shuffling of the vectorize tree entries for better handling of 8511 // external extracts. 8512 for (int I = 0, E = ShuffledInserts.size(); I < E; ++I) { 8513 // Find the first and the last instruction in the list of insertelements. 8514 sort(ShuffledInserts[I].InsertElements, isFirstInsertElement); 8515 InsertElementInst *FirstInsert = ShuffledInserts[I].InsertElements.front(); 8516 InsertElementInst *LastInsert = ShuffledInserts[I].InsertElements.back(); 8517 Builder.SetInsertPoint(LastInsert); 8518 auto Vector = ShuffledInserts[I].ValueMasks.takeVector(); 8519 Value *NewInst = performExtractsShuffleAction<Value>( 8520 makeMutableArrayRef(Vector.data(), Vector.size()), 8521 FirstInsert->getOperand(0), 8522 [](Value *Vec) { 8523 return cast<VectorType>(Vec->getType()) 8524 ->getElementCount() 8525 .getKnownMinValue(); 8526 }, 8527 ResizeToVF, 8528 [FirstInsert, &CreateShuffle](ArrayRef<int> Mask, 8529 ArrayRef<Value *> Vals) { 8530 assert((Vals.size() == 1 || Vals.size() == 2) && 8531 "Expected exactly 1 or 2 input values."); 8532 if (Vals.size() == 1) { 8533 // Do not create shuffle if the mask is a simple identity 8534 // non-resizing mask. 8535 if (Mask.size() != cast<FixedVectorType>(Vals.front()->getType()) 8536 ->getNumElements() || 8537 !ShuffleVectorInst::isIdentityMask(Mask)) 8538 return CreateShuffle(Vals.front(), nullptr, Mask); 8539 return Vals.front(); 8540 } 8541 return CreateShuffle(Vals.front() ? Vals.front() 8542 : FirstInsert->getOperand(0), 8543 Vals.back(), Mask); 8544 }); 8545 auto It = ShuffledInserts[I].InsertElements.rbegin(); 8546 // Rebuild buildvector chain. 8547 InsertElementInst *II = nullptr; 8548 if (It != ShuffledInserts[I].InsertElements.rend()) 8549 II = *It; 8550 SmallVector<Instruction *> Inserts; 8551 while (It != ShuffledInserts[I].InsertElements.rend()) { 8552 assert(II && "Must be an insertelement instruction."); 8553 if (*It == II) 8554 ++It; 8555 else 8556 Inserts.push_back(cast<Instruction>(II)); 8557 II = dyn_cast<InsertElementInst>(II->getOperand(0)); 8558 } 8559 for (Instruction *II : reverse(Inserts)) { 8560 II->replaceUsesOfWith(II->getOperand(0), NewInst); 8561 if (auto *NewI = dyn_cast<Instruction>(NewInst)) 8562 if (II->getParent() == NewI->getParent() && II->comesBefore(NewI)) 8563 II->moveAfter(NewI); 8564 NewInst = II; 8565 } 8566 LastInsert->replaceAllUsesWith(NewInst); 8567 for (InsertElementInst *IE : reverse(ShuffledInserts[I].InsertElements)) { 8568 IE->replaceUsesOfWith(IE->getOperand(1), 8569 PoisonValue::get(IE->getOperand(1)->getType())); 8570 eraseInstruction(IE); 8571 } 8572 CSEBlocks.insert(LastInsert->getParent()); 8573 } 8574 8575 // For each vectorized value: 8576 for (auto &TEPtr : VectorizableTree) { 8577 TreeEntry *Entry = TEPtr.get(); 8578 8579 // No need to handle users of gathered values. 8580 if (Entry->State == TreeEntry::NeedToGather) 8581 continue; 8582 8583 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 8584 8585 // For each lane: 8586 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 8587 Value *Scalar = Entry->Scalars[Lane]; 8588 8589 #ifndef NDEBUG 8590 Type *Ty = Scalar->getType(); 8591 if (!Ty->isVoidTy()) { 8592 for (User *U : Scalar->users()) { 8593 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 8594 8595 // It is legal to delete users in the ignorelist. 8596 assert((getTreeEntry(U) || 8597 (UserIgnoreList && UserIgnoreList->contains(U)) || 8598 (isa_and_nonnull<Instruction>(U) && 8599 isDeleted(cast<Instruction>(U)))) && 8600 "Deleting out-of-tree value"); 8601 } 8602 } 8603 #endif 8604 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 8605 eraseInstruction(cast<Instruction>(Scalar)); 8606 } 8607 } 8608 8609 Builder.ClearInsertionPoint(); 8610 InstrElementSize.clear(); 8611 8612 return VectorizableTree[0]->VectorizedValue; 8613 } 8614 8615 void BoUpSLP::optimizeGatherSequence() { 8616 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size() 8617 << " gather sequences instructions.\n"); 8618 // LICM InsertElementInst sequences. 8619 for (Instruction *I : GatherShuffleSeq) { 8620 if (isDeleted(I)) 8621 continue; 8622 8623 // Check if this block is inside a loop. 8624 Loop *L = LI->getLoopFor(I->getParent()); 8625 if (!L) 8626 continue; 8627 8628 // Check if it has a preheader. 8629 BasicBlock *PreHeader = L->getLoopPreheader(); 8630 if (!PreHeader) 8631 continue; 8632 8633 // If the vector or the element that we insert into it are 8634 // instructions that are defined in this basic block then we can't 8635 // hoist this instruction. 8636 if (any_of(I->operands(), [L](Value *V) { 8637 auto *OpI = dyn_cast<Instruction>(V); 8638 return OpI && L->contains(OpI); 8639 })) 8640 continue; 8641 8642 // We can hoist this instruction. Move it to the pre-header. 8643 I->moveBefore(PreHeader->getTerminator()); 8644 } 8645 8646 // Make a list of all reachable blocks in our CSE queue. 8647 SmallVector<const DomTreeNode *, 8> CSEWorkList; 8648 CSEWorkList.reserve(CSEBlocks.size()); 8649 for (BasicBlock *BB : CSEBlocks) 8650 if (DomTreeNode *N = DT->getNode(BB)) { 8651 assert(DT->isReachableFromEntry(N)); 8652 CSEWorkList.push_back(N); 8653 } 8654 8655 // Sort blocks by domination. This ensures we visit a block after all blocks 8656 // dominating it are visited. 8657 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 8658 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 8659 "Different nodes should have different DFS numbers"); 8660 return A->getDFSNumIn() < B->getDFSNumIn(); 8661 }); 8662 8663 // Less defined shuffles can be replaced by the more defined copies. 8664 // Between two shuffles one is less defined if it has the same vector operands 8665 // and its mask indeces are the same as in the first one or undefs. E.g. 8666 // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0, 8667 // poison, <0, 0, 0, 0>. 8668 auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2, 8669 SmallVectorImpl<int> &NewMask) { 8670 if (I1->getType() != I2->getType()) 8671 return false; 8672 auto *SI1 = dyn_cast<ShuffleVectorInst>(I1); 8673 auto *SI2 = dyn_cast<ShuffleVectorInst>(I2); 8674 if (!SI1 || !SI2) 8675 return I1->isIdenticalTo(I2); 8676 if (SI1->isIdenticalTo(SI2)) 8677 return true; 8678 for (int I = 0, E = SI1->getNumOperands(); I < E; ++I) 8679 if (SI1->getOperand(I) != SI2->getOperand(I)) 8680 return false; 8681 // Check if the second instruction is more defined than the first one. 8682 NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end()); 8683 ArrayRef<int> SM1 = SI1->getShuffleMask(); 8684 // Count trailing undefs in the mask to check the final number of used 8685 // registers. 8686 unsigned LastUndefsCnt = 0; 8687 for (int I = 0, E = NewMask.size(); I < E; ++I) { 8688 if (SM1[I] == UndefMaskElem) 8689 ++LastUndefsCnt; 8690 else 8691 LastUndefsCnt = 0; 8692 if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem && 8693 NewMask[I] != SM1[I]) 8694 return false; 8695 if (NewMask[I] == UndefMaskElem) 8696 NewMask[I] = SM1[I]; 8697 } 8698 // Check if the last undefs actually change the final number of used vector 8699 // registers. 8700 return SM1.size() - LastUndefsCnt > 1 && 8701 TTI->getNumberOfParts(SI1->getType()) == 8702 TTI->getNumberOfParts( 8703 FixedVectorType::get(SI1->getType()->getElementType(), 8704 SM1.size() - LastUndefsCnt)); 8705 }; 8706 // Perform O(N^2) search over the gather/shuffle sequences and merge identical 8707 // instructions. TODO: We can further optimize this scan if we split the 8708 // instructions into different buckets based on the insert lane. 8709 SmallVector<Instruction *, 16> Visited; 8710 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 8711 assert(*I && 8712 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 8713 "Worklist not sorted properly!"); 8714 BasicBlock *BB = (*I)->getBlock(); 8715 // For all instructions in blocks containing gather sequences: 8716 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 8717 if (isDeleted(&In)) 8718 continue; 8719 if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) && 8720 !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In)) 8721 continue; 8722 8723 // Check if we can replace this instruction with any of the 8724 // visited instructions. 8725 bool Replaced = false; 8726 for (Instruction *&V : Visited) { 8727 SmallVector<int> NewMask; 8728 if (IsIdenticalOrLessDefined(&In, V, NewMask) && 8729 DT->dominates(V->getParent(), In.getParent())) { 8730 In.replaceAllUsesWith(V); 8731 eraseInstruction(&In); 8732 if (auto *SI = dyn_cast<ShuffleVectorInst>(V)) 8733 if (!NewMask.empty()) 8734 SI->setShuffleMask(NewMask); 8735 Replaced = true; 8736 break; 8737 } 8738 if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) && 8739 GatherShuffleSeq.contains(V) && 8740 IsIdenticalOrLessDefined(V, &In, NewMask) && 8741 DT->dominates(In.getParent(), V->getParent())) { 8742 In.moveAfter(V); 8743 V->replaceAllUsesWith(&In); 8744 eraseInstruction(V); 8745 if (auto *SI = dyn_cast<ShuffleVectorInst>(&In)) 8746 if (!NewMask.empty()) 8747 SI->setShuffleMask(NewMask); 8748 V = &In; 8749 Replaced = true; 8750 break; 8751 } 8752 } 8753 if (!Replaced) { 8754 assert(!is_contained(Visited, &In)); 8755 Visited.push_back(&In); 8756 } 8757 } 8758 } 8759 CSEBlocks.clear(); 8760 GatherShuffleSeq.clear(); 8761 } 8762 8763 BoUpSLP::ScheduleData * 8764 BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) { 8765 ScheduleData *Bundle = nullptr; 8766 ScheduleData *PrevInBundle = nullptr; 8767 for (Value *V : VL) { 8768 if (doesNotNeedToBeScheduled(V)) 8769 continue; 8770 ScheduleData *BundleMember = getScheduleData(V); 8771 assert(BundleMember && 8772 "no ScheduleData for bundle member " 8773 "(maybe not in same basic block)"); 8774 assert(BundleMember->isSchedulingEntity() && 8775 "bundle member already part of other bundle"); 8776 if (PrevInBundle) { 8777 PrevInBundle->NextInBundle = BundleMember; 8778 } else { 8779 Bundle = BundleMember; 8780 } 8781 8782 // Group the instructions to a bundle. 8783 BundleMember->FirstInBundle = Bundle; 8784 PrevInBundle = BundleMember; 8785 } 8786 assert(Bundle && "Failed to find schedule bundle"); 8787 return Bundle; 8788 } 8789 8790 // Groups the instructions to a bundle (which is then a single scheduling entity) 8791 // and schedules instructions until the bundle gets ready. 8792 Optional<BoUpSLP::ScheduleData *> 8793 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 8794 const InstructionsState &S) { 8795 // No need to schedule PHIs, insertelement, extractelement and extractvalue 8796 // instructions. 8797 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue) || 8798 doesNotNeedToSchedule(VL)) 8799 return nullptr; 8800 8801 // Initialize the instruction bundle. 8802 Instruction *OldScheduleEnd = ScheduleEnd; 8803 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 8804 8805 auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule, 8806 ScheduleData *Bundle) { 8807 // The scheduling region got new instructions at the lower end (or it is a 8808 // new region for the first bundle). This makes it necessary to 8809 // recalculate all dependencies. 8810 // It is seldom that this needs to be done a second time after adding the 8811 // initial bundle to the region. 8812 if (ScheduleEnd != OldScheduleEnd) { 8813 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 8814 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 8815 ReSchedule = true; 8816 } 8817 if (Bundle) { 8818 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 8819 << " in block " << BB->getName() << "\n"); 8820 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 8821 } 8822 8823 if (ReSchedule) { 8824 resetSchedule(); 8825 initialFillReadyList(ReadyInsts); 8826 } 8827 8828 // Now try to schedule the new bundle or (if no bundle) just calculate 8829 // dependencies. As soon as the bundle is "ready" it means that there are no 8830 // cyclic dependencies and we can schedule it. Note that's important that we 8831 // don't "schedule" the bundle yet (see cancelScheduling). 8832 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 8833 !ReadyInsts.empty()) { 8834 ScheduleData *Picked = ReadyInsts.pop_back_val(); 8835 assert(Picked->isSchedulingEntity() && Picked->isReady() && 8836 "must be ready to schedule"); 8837 schedule(Picked, ReadyInsts); 8838 } 8839 }; 8840 8841 // Make sure that the scheduling region contains all 8842 // instructions of the bundle. 8843 for (Value *V : VL) { 8844 if (doesNotNeedToBeScheduled(V)) 8845 continue; 8846 if (!extendSchedulingRegion(V, S)) { 8847 // If the scheduling region got new instructions at the lower end (or it 8848 // is a new region for the first bundle). This makes it necessary to 8849 // recalculate all dependencies. 8850 // Otherwise the compiler may crash trying to incorrectly calculate 8851 // dependencies and emit instruction in the wrong order at the actual 8852 // scheduling. 8853 TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr); 8854 return None; 8855 } 8856 } 8857 8858 bool ReSchedule = false; 8859 for (Value *V : VL) { 8860 if (doesNotNeedToBeScheduled(V)) 8861 continue; 8862 ScheduleData *BundleMember = getScheduleData(V); 8863 assert(BundleMember && 8864 "no ScheduleData for bundle member (maybe not in same basic block)"); 8865 8866 // Make sure we don't leave the pieces of the bundle in the ready list when 8867 // whole bundle might not be ready. 8868 ReadyInsts.remove(BundleMember); 8869 8870 if (!BundleMember->IsScheduled) 8871 continue; 8872 // A bundle member was scheduled as single instruction before and now 8873 // needs to be scheduled as part of the bundle. We just get rid of the 8874 // existing schedule. 8875 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 8876 << " was already scheduled\n"); 8877 ReSchedule = true; 8878 } 8879 8880 auto *Bundle = buildBundle(VL); 8881 TryScheduleBundleImpl(ReSchedule, Bundle); 8882 if (!Bundle->isReady()) { 8883 cancelScheduling(VL, S.OpValue); 8884 return None; 8885 } 8886 return Bundle; 8887 } 8888 8889 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 8890 Value *OpValue) { 8891 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue) || 8892 doesNotNeedToSchedule(VL)) 8893 return; 8894 8895 if (doesNotNeedToBeScheduled(OpValue)) 8896 OpValue = *find_if_not(VL, doesNotNeedToBeScheduled); 8897 ScheduleData *Bundle = getScheduleData(OpValue); 8898 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 8899 assert(!Bundle->IsScheduled && 8900 "Can't cancel bundle which is already scheduled"); 8901 assert(Bundle->isSchedulingEntity() && 8902 (Bundle->isPartOfBundle() || needToScheduleSingleInstruction(VL)) && 8903 "tried to unbundle something which is not a bundle"); 8904 8905 // Remove the bundle from the ready list. 8906 if (Bundle->isReady()) 8907 ReadyInsts.remove(Bundle); 8908 8909 // Un-bundle: make single instructions out of the bundle. 8910 ScheduleData *BundleMember = Bundle; 8911 while (BundleMember) { 8912 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 8913 BundleMember->FirstInBundle = BundleMember; 8914 ScheduleData *Next = BundleMember->NextInBundle; 8915 BundleMember->NextInBundle = nullptr; 8916 BundleMember->TE = nullptr; 8917 if (BundleMember->unscheduledDepsInBundle() == 0) { 8918 ReadyInsts.insert(BundleMember); 8919 } 8920 BundleMember = Next; 8921 } 8922 } 8923 8924 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 8925 // Allocate a new ScheduleData for the instruction. 8926 if (ChunkPos >= ChunkSize) { 8927 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 8928 ChunkPos = 0; 8929 } 8930 return &(ScheduleDataChunks.back()[ChunkPos++]); 8931 } 8932 8933 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 8934 const InstructionsState &S) { 8935 if (getScheduleData(V, isOneOf(S, V))) 8936 return true; 8937 Instruction *I = dyn_cast<Instruction>(V); 8938 assert(I && "bundle member must be an instruction"); 8939 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 8940 !doesNotNeedToBeScheduled(I) && 8941 "phi nodes/insertelements/extractelements/extractvalues don't need to " 8942 "be scheduled"); 8943 auto &&CheckScheduleForI = [this, &S](Instruction *I) -> bool { 8944 ScheduleData *ISD = getScheduleData(I); 8945 if (!ISD) 8946 return false; 8947 assert(isInSchedulingRegion(ISD) && 8948 "ScheduleData not in scheduling region"); 8949 ScheduleData *SD = allocateScheduleDataChunks(); 8950 SD->Inst = I; 8951 SD->init(SchedulingRegionID, S.OpValue); 8952 ExtraScheduleDataMap[I][S.OpValue] = SD; 8953 return true; 8954 }; 8955 if (CheckScheduleForI(I)) 8956 return true; 8957 if (!ScheduleStart) { 8958 // It's the first instruction in the new region. 8959 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 8960 ScheduleStart = I; 8961 ScheduleEnd = I->getNextNode(); 8962 if (isOneOf(S, I) != I) 8963 CheckScheduleForI(I); 8964 assert(ScheduleEnd && "tried to vectorize a terminator?"); 8965 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 8966 return true; 8967 } 8968 // Search up and down at the same time, because we don't know if the new 8969 // instruction is above or below the existing scheduling region. 8970 BasicBlock::reverse_iterator UpIter = 8971 ++ScheduleStart->getIterator().getReverse(); 8972 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 8973 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 8974 BasicBlock::iterator LowerEnd = BB->end(); 8975 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 8976 &*DownIter != I) { 8977 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 8978 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 8979 return false; 8980 } 8981 8982 ++UpIter; 8983 ++DownIter; 8984 } 8985 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 8986 assert(I->getParent() == ScheduleStart->getParent() && 8987 "Instruction is in wrong basic block."); 8988 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 8989 ScheduleStart = I; 8990 if (isOneOf(S, I) != I) 8991 CheckScheduleForI(I); 8992 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 8993 << "\n"); 8994 return true; 8995 } 8996 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 8997 "Expected to reach top of the basic block or instruction down the " 8998 "lower end."); 8999 assert(I->getParent() == ScheduleEnd->getParent() && 9000 "Instruction is in wrong basic block."); 9001 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 9002 nullptr); 9003 ScheduleEnd = I->getNextNode(); 9004 if (isOneOf(S, I) != I) 9005 CheckScheduleForI(I); 9006 assert(ScheduleEnd && "tried to vectorize a terminator?"); 9007 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 9008 return true; 9009 } 9010 9011 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 9012 Instruction *ToI, 9013 ScheduleData *PrevLoadStore, 9014 ScheduleData *NextLoadStore) { 9015 ScheduleData *CurrentLoadStore = PrevLoadStore; 9016 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 9017 // No need to allocate data for non-schedulable instructions. 9018 if (doesNotNeedToBeScheduled(I)) 9019 continue; 9020 ScheduleData *SD = ScheduleDataMap.lookup(I); 9021 if (!SD) { 9022 SD = allocateScheduleDataChunks(); 9023 ScheduleDataMap[I] = SD; 9024 SD->Inst = I; 9025 } 9026 assert(!isInSchedulingRegion(SD) && 9027 "new ScheduleData already in scheduling region"); 9028 SD->init(SchedulingRegionID, I); 9029 9030 if (I->mayReadOrWriteMemory() && 9031 (!isa<IntrinsicInst>(I) || 9032 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 9033 cast<IntrinsicInst>(I)->getIntrinsicID() != 9034 Intrinsic::pseudoprobe))) { 9035 // Update the linked list of memory accessing instructions. 9036 if (CurrentLoadStore) { 9037 CurrentLoadStore->NextLoadStore = SD; 9038 } else { 9039 FirstLoadStoreInRegion = SD; 9040 } 9041 CurrentLoadStore = SD; 9042 } 9043 9044 if (match(I, m_Intrinsic<Intrinsic::stacksave>()) || 9045 match(I, m_Intrinsic<Intrinsic::stackrestore>())) 9046 RegionHasStackSave = true; 9047 } 9048 if (NextLoadStore) { 9049 if (CurrentLoadStore) 9050 CurrentLoadStore->NextLoadStore = NextLoadStore; 9051 } else { 9052 LastLoadStoreInRegion = CurrentLoadStore; 9053 } 9054 } 9055 9056 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 9057 bool InsertInReadyList, 9058 BoUpSLP *SLP) { 9059 assert(SD->isSchedulingEntity()); 9060 9061 SmallVector<ScheduleData *, 10> WorkList; 9062 WorkList.push_back(SD); 9063 9064 while (!WorkList.empty()) { 9065 ScheduleData *SD = WorkList.pop_back_val(); 9066 for (ScheduleData *BundleMember = SD; BundleMember; 9067 BundleMember = BundleMember->NextInBundle) { 9068 assert(isInSchedulingRegion(BundleMember)); 9069 if (BundleMember->hasValidDependencies()) 9070 continue; 9071 9072 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 9073 << "\n"); 9074 BundleMember->Dependencies = 0; 9075 BundleMember->resetUnscheduledDeps(); 9076 9077 // Handle def-use chain dependencies. 9078 if (BundleMember->OpValue != BundleMember->Inst) { 9079 if (ScheduleData *UseSD = getScheduleData(BundleMember->Inst)) { 9080 BundleMember->Dependencies++; 9081 ScheduleData *DestBundle = UseSD->FirstInBundle; 9082 if (!DestBundle->IsScheduled) 9083 BundleMember->incrementUnscheduledDeps(1); 9084 if (!DestBundle->hasValidDependencies()) 9085 WorkList.push_back(DestBundle); 9086 } 9087 } else { 9088 for (User *U : BundleMember->Inst->users()) { 9089 if (ScheduleData *UseSD = getScheduleData(cast<Instruction>(U))) { 9090 BundleMember->Dependencies++; 9091 ScheduleData *DestBundle = UseSD->FirstInBundle; 9092 if (!DestBundle->IsScheduled) 9093 BundleMember->incrementUnscheduledDeps(1); 9094 if (!DestBundle->hasValidDependencies()) 9095 WorkList.push_back(DestBundle); 9096 } 9097 } 9098 } 9099 9100 auto makeControlDependent = [&](Instruction *I) { 9101 auto *DepDest = getScheduleData(I); 9102 assert(DepDest && "must be in schedule window"); 9103 DepDest->ControlDependencies.push_back(BundleMember); 9104 BundleMember->Dependencies++; 9105 ScheduleData *DestBundle = DepDest->FirstInBundle; 9106 if (!DestBundle->IsScheduled) 9107 BundleMember->incrementUnscheduledDeps(1); 9108 if (!DestBundle->hasValidDependencies()) 9109 WorkList.push_back(DestBundle); 9110 }; 9111 9112 // Any instruction which isn't safe to speculate at the begining of the 9113 // block is control dependend on any early exit or non-willreturn call 9114 // which proceeds it. 9115 if (!isGuaranteedToTransferExecutionToSuccessor(BundleMember->Inst)) { 9116 for (Instruction *I = BundleMember->Inst->getNextNode(); 9117 I != ScheduleEnd; I = I->getNextNode()) { 9118 if (isSafeToSpeculativelyExecute(I, &*BB->begin())) 9119 continue; 9120 9121 // Add the dependency 9122 makeControlDependent(I); 9123 9124 if (!isGuaranteedToTransferExecutionToSuccessor(I)) 9125 // Everything past here must be control dependent on I. 9126 break; 9127 } 9128 } 9129 9130 if (RegionHasStackSave) { 9131 // If we have an inalloc alloca instruction, it needs to be scheduled 9132 // after any preceeding stacksave. We also need to prevent any alloca 9133 // from reordering above a preceeding stackrestore. 9134 if (match(BundleMember->Inst, m_Intrinsic<Intrinsic::stacksave>()) || 9135 match(BundleMember->Inst, m_Intrinsic<Intrinsic::stackrestore>())) { 9136 for (Instruction *I = BundleMember->Inst->getNextNode(); 9137 I != ScheduleEnd; I = I->getNextNode()) { 9138 if (match(I, m_Intrinsic<Intrinsic::stacksave>()) || 9139 match(I, m_Intrinsic<Intrinsic::stackrestore>())) 9140 // Any allocas past here must be control dependent on I, and I 9141 // must be memory dependend on BundleMember->Inst. 9142 break; 9143 9144 if (!isa<AllocaInst>(I)) 9145 continue; 9146 9147 // Add the dependency 9148 makeControlDependent(I); 9149 } 9150 } 9151 9152 // In addition to the cases handle just above, we need to prevent 9153 // allocas from moving below a stacksave. The stackrestore case 9154 // is currently thought to be conservatism. 9155 if (isa<AllocaInst>(BundleMember->Inst)) { 9156 for (Instruction *I = BundleMember->Inst->getNextNode(); 9157 I != ScheduleEnd; I = I->getNextNode()) { 9158 if (!match(I, m_Intrinsic<Intrinsic::stacksave>()) && 9159 !match(I, m_Intrinsic<Intrinsic::stackrestore>())) 9160 continue; 9161 9162 // Add the dependency 9163 makeControlDependent(I); 9164 break; 9165 } 9166 } 9167 } 9168 9169 // Handle the memory dependencies (if any). 9170 ScheduleData *DepDest = BundleMember->NextLoadStore; 9171 if (!DepDest) 9172 continue; 9173 Instruction *SrcInst = BundleMember->Inst; 9174 assert(SrcInst->mayReadOrWriteMemory() && 9175 "NextLoadStore list for non memory effecting bundle?"); 9176 MemoryLocation SrcLoc = getLocation(SrcInst); 9177 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 9178 unsigned numAliased = 0; 9179 unsigned DistToSrc = 1; 9180 9181 for ( ; DepDest; DepDest = DepDest->NextLoadStore) { 9182 assert(isInSchedulingRegion(DepDest)); 9183 9184 // We have two limits to reduce the complexity: 9185 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 9186 // SLP->isAliased (which is the expensive part in this loop). 9187 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 9188 // the whole loop (even if the loop is fast, it's quadratic). 9189 // It's important for the loop break condition (see below) to 9190 // check this limit even between two read-only instructions. 9191 if (DistToSrc >= MaxMemDepDistance || 9192 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 9193 (numAliased >= AliasedCheckLimit || 9194 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 9195 9196 // We increment the counter only if the locations are aliased 9197 // (instead of counting all alias checks). This gives a better 9198 // balance between reduced runtime and accurate dependencies. 9199 numAliased++; 9200 9201 DepDest->MemoryDependencies.push_back(BundleMember); 9202 BundleMember->Dependencies++; 9203 ScheduleData *DestBundle = DepDest->FirstInBundle; 9204 if (!DestBundle->IsScheduled) { 9205 BundleMember->incrementUnscheduledDeps(1); 9206 } 9207 if (!DestBundle->hasValidDependencies()) { 9208 WorkList.push_back(DestBundle); 9209 } 9210 } 9211 9212 // Example, explaining the loop break condition: Let's assume our 9213 // starting instruction is i0 and MaxMemDepDistance = 3. 9214 // 9215 // +--------v--v--v 9216 // i0,i1,i2,i3,i4,i5,i6,i7,i8 9217 // +--------^--^--^ 9218 // 9219 // MaxMemDepDistance let us stop alias-checking at i3 and we add 9220 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 9221 // Previously we already added dependencies from i3 to i6,i7,i8 9222 // (because of MaxMemDepDistance). As we added a dependency from 9223 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 9224 // and we can abort this loop at i6. 9225 if (DistToSrc >= 2 * MaxMemDepDistance) 9226 break; 9227 DistToSrc++; 9228 } 9229 } 9230 if (InsertInReadyList && SD->isReady()) { 9231 ReadyInsts.insert(SD); 9232 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 9233 << "\n"); 9234 } 9235 } 9236 } 9237 9238 void BoUpSLP::BlockScheduling::resetSchedule() { 9239 assert(ScheduleStart && 9240 "tried to reset schedule on block which has not been scheduled"); 9241 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 9242 doForAllOpcodes(I, [&](ScheduleData *SD) { 9243 assert(isInSchedulingRegion(SD) && 9244 "ScheduleData not in scheduling region"); 9245 SD->IsScheduled = false; 9246 SD->resetUnscheduledDeps(); 9247 }); 9248 } 9249 ReadyInsts.clear(); 9250 } 9251 9252 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 9253 if (!BS->ScheduleStart) 9254 return; 9255 9256 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 9257 9258 // A key point - if we got here, pre-scheduling was able to find a valid 9259 // scheduling of the sub-graph of the scheduling window which consists 9260 // of all vector bundles and their transitive users. As such, we do not 9261 // need to reschedule anything *outside of* that subgraph. 9262 9263 BS->resetSchedule(); 9264 9265 // For the real scheduling we use a more sophisticated ready-list: it is 9266 // sorted by the original instruction location. This lets the final schedule 9267 // be as close as possible to the original instruction order. 9268 // WARNING: If changing this order causes a correctness issue, that means 9269 // there is some missing dependence edge in the schedule data graph. 9270 struct ScheduleDataCompare { 9271 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 9272 return SD2->SchedulingPriority < SD1->SchedulingPriority; 9273 } 9274 }; 9275 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 9276 9277 // Ensure that all dependency data is updated (for nodes in the sub-graph) 9278 // and fill the ready-list with initial instructions. 9279 int Idx = 0; 9280 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 9281 I = I->getNextNode()) { 9282 BS->doForAllOpcodes(I, [this, &Idx, BS](ScheduleData *SD) { 9283 TreeEntry *SDTE = getTreeEntry(SD->Inst); 9284 (void)SDTE; 9285 assert((isVectorLikeInstWithConstOps(SD->Inst) || 9286 SD->isPartOfBundle() == 9287 (SDTE && !doesNotNeedToSchedule(SDTE->Scalars))) && 9288 "scheduler and vectorizer bundle mismatch"); 9289 SD->FirstInBundle->SchedulingPriority = Idx++; 9290 9291 if (SD->isSchedulingEntity() && SD->isPartOfBundle()) 9292 BS->calculateDependencies(SD, false, this); 9293 }); 9294 } 9295 BS->initialFillReadyList(ReadyInsts); 9296 9297 Instruction *LastScheduledInst = BS->ScheduleEnd; 9298 9299 // Do the "real" scheduling. 9300 while (!ReadyInsts.empty()) { 9301 ScheduleData *picked = *ReadyInsts.begin(); 9302 ReadyInsts.erase(ReadyInsts.begin()); 9303 9304 // Move the scheduled instruction(s) to their dedicated places, if not 9305 // there yet. 9306 for (ScheduleData *BundleMember = picked; BundleMember; 9307 BundleMember = BundleMember->NextInBundle) { 9308 Instruction *pickedInst = BundleMember->Inst; 9309 if (pickedInst->getNextNode() != LastScheduledInst) 9310 pickedInst->moveBefore(LastScheduledInst); 9311 LastScheduledInst = pickedInst; 9312 } 9313 9314 BS->schedule(picked, ReadyInsts); 9315 } 9316 9317 // Check that we didn't break any of our invariants. 9318 #ifdef EXPENSIVE_CHECKS 9319 BS->verify(); 9320 #endif 9321 9322 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS) 9323 // Check that all schedulable entities got scheduled 9324 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; I = I->getNextNode()) { 9325 BS->doForAllOpcodes(I, [&](ScheduleData *SD) { 9326 if (SD->isSchedulingEntity() && SD->hasValidDependencies()) { 9327 assert(SD->IsScheduled && "must be scheduled at this point"); 9328 } 9329 }); 9330 } 9331 #endif 9332 9333 // Avoid duplicate scheduling of the block. 9334 BS->ScheduleStart = nullptr; 9335 } 9336 9337 unsigned BoUpSLP::getVectorElementSize(Value *V) { 9338 // If V is a store, just return the width of the stored value (or value 9339 // truncated just before storing) without traversing the expression tree. 9340 // This is the common case. 9341 if (auto *Store = dyn_cast<StoreInst>(V)) 9342 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 9343 9344 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 9345 return getVectorElementSize(IEI->getOperand(1)); 9346 9347 auto E = InstrElementSize.find(V); 9348 if (E != InstrElementSize.end()) 9349 return E->second; 9350 9351 // If V is not a store, we can traverse the expression tree to find loads 9352 // that feed it. The type of the loaded value may indicate a more suitable 9353 // width than V's type. We want to base the vector element size on the width 9354 // of memory operations where possible. 9355 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 9356 SmallPtrSet<Instruction *, 16> Visited; 9357 if (auto *I = dyn_cast<Instruction>(V)) { 9358 Worklist.emplace_back(I, I->getParent()); 9359 Visited.insert(I); 9360 } 9361 9362 // Traverse the expression tree in bottom-up order looking for loads. If we 9363 // encounter an instruction we don't yet handle, we give up. 9364 auto Width = 0u; 9365 while (!Worklist.empty()) { 9366 Instruction *I; 9367 BasicBlock *Parent; 9368 std::tie(I, Parent) = Worklist.pop_back_val(); 9369 9370 // We should only be looking at scalar instructions here. If the current 9371 // instruction has a vector type, skip. 9372 auto *Ty = I->getType(); 9373 if (isa<VectorType>(Ty)) 9374 continue; 9375 9376 // If the current instruction is a load, update MaxWidth to reflect the 9377 // width of the loaded value. 9378 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 9379 isa<ExtractValueInst>(I)) 9380 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 9381 9382 // Otherwise, we need to visit the operands of the instruction. We only 9383 // handle the interesting cases from buildTree here. If an operand is an 9384 // instruction we haven't yet visited and from the same basic block as the 9385 // user or the use is a PHI node, we add it to the worklist. 9386 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 9387 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 9388 isa<UnaryOperator>(I)) { 9389 for (Use &U : I->operands()) 9390 if (auto *J = dyn_cast<Instruction>(U.get())) 9391 if (Visited.insert(J).second && 9392 (isa<PHINode>(I) || J->getParent() == Parent)) 9393 Worklist.emplace_back(J, J->getParent()); 9394 } else { 9395 break; 9396 } 9397 } 9398 9399 // If we didn't encounter a memory access in the expression tree, or if we 9400 // gave up for some reason, just return the width of V. Otherwise, return the 9401 // maximum width we found. 9402 if (!Width) { 9403 if (auto *CI = dyn_cast<CmpInst>(V)) 9404 V = CI->getOperand(0); 9405 Width = DL->getTypeSizeInBits(V->getType()); 9406 } 9407 9408 for (Instruction *I : Visited) 9409 InstrElementSize[I] = Width; 9410 9411 return Width; 9412 } 9413 9414 // Determine if a value V in a vectorizable expression Expr can be demoted to a 9415 // smaller type with a truncation. We collect the values that will be demoted 9416 // in ToDemote and additional roots that require investigating in Roots. 9417 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 9418 SmallVectorImpl<Value *> &ToDemote, 9419 SmallVectorImpl<Value *> &Roots) { 9420 // We can always demote constants. 9421 if (isa<Constant>(V)) { 9422 ToDemote.push_back(V); 9423 return true; 9424 } 9425 9426 // If the value is not an instruction in the expression with only one use, it 9427 // cannot be demoted. 9428 auto *I = dyn_cast<Instruction>(V); 9429 if (!I || !I->hasOneUse() || !Expr.count(I)) 9430 return false; 9431 9432 switch (I->getOpcode()) { 9433 9434 // We can always demote truncations and extensions. Since truncations can 9435 // seed additional demotion, we save the truncated value. 9436 case Instruction::Trunc: 9437 Roots.push_back(I->getOperand(0)); 9438 break; 9439 case Instruction::ZExt: 9440 case Instruction::SExt: 9441 if (isa<ExtractElementInst>(I->getOperand(0)) || 9442 isa<InsertElementInst>(I->getOperand(0))) 9443 return false; 9444 break; 9445 9446 // We can demote certain binary operations if we can demote both of their 9447 // operands. 9448 case Instruction::Add: 9449 case Instruction::Sub: 9450 case Instruction::Mul: 9451 case Instruction::And: 9452 case Instruction::Or: 9453 case Instruction::Xor: 9454 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 9455 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 9456 return false; 9457 break; 9458 9459 // We can demote selects if we can demote their true and false values. 9460 case Instruction::Select: { 9461 SelectInst *SI = cast<SelectInst>(I); 9462 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 9463 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 9464 return false; 9465 break; 9466 } 9467 9468 // We can demote phis if we can demote all their incoming operands. Note that 9469 // we don't need to worry about cycles since we ensure single use above. 9470 case Instruction::PHI: { 9471 PHINode *PN = cast<PHINode>(I); 9472 for (Value *IncValue : PN->incoming_values()) 9473 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 9474 return false; 9475 break; 9476 } 9477 9478 // Otherwise, conservatively give up. 9479 default: 9480 return false; 9481 } 9482 9483 // Record the value that we can demote. 9484 ToDemote.push_back(V); 9485 return true; 9486 } 9487 9488 void BoUpSLP::computeMinimumValueSizes() { 9489 // If there are no external uses, the expression tree must be rooted by a 9490 // store. We can't demote in-memory values, so there is nothing to do here. 9491 if (ExternalUses.empty()) 9492 return; 9493 9494 // We only attempt to truncate integer expressions. 9495 auto &TreeRoot = VectorizableTree[0]->Scalars; 9496 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 9497 if (!TreeRootIT) 9498 return; 9499 9500 // If the expression is not rooted by a store, these roots should have 9501 // external uses. We will rely on InstCombine to rewrite the expression in 9502 // the narrower type. However, InstCombine only rewrites single-use values. 9503 // This means that if a tree entry other than a root is used externally, it 9504 // must have multiple uses and InstCombine will not rewrite it. The code 9505 // below ensures that only the roots are used externally. 9506 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 9507 for (auto &EU : ExternalUses) 9508 if (!Expr.erase(EU.Scalar)) 9509 return; 9510 if (!Expr.empty()) 9511 return; 9512 9513 // Collect the scalar values of the vectorizable expression. We will use this 9514 // context to determine which values can be demoted. If we see a truncation, 9515 // we mark it as seeding another demotion. 9516 for (auto &EntryPtr : VectorizableTree) 9517 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 9518 9519 // Ensure the roots of the vectorizable tree don't form a cycle. They must 9520 // have a single external user that is not in the vectorizable tree. 9521 for (auto *Root : TreeRoot) 9522 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 9523 return; 9524 9525 // Conservatively determine if we can actually truncate the roots of the 9526 // expression. Collect the values that can be demoted in ToDemote and 9527 // additional roots that require investigating in Roots. 9528 SmallVector<Value *, 32> ToDemote; 9529 SmallVector<Value *, 4> Roots; 9530 for (auto *Root : TreeRoot) 9531 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 9532 return; 9533 9534 // The maximum bit width required to represent all the values that can be 9535 // demoted without loss of precision. It would be safe to truncate the roots 9536 // of the expression to this width. 9537 auto MaxBitWidth = 8u; 9538 9539 // We first check if all the bits of the roots are demanded. If they're not, 9540 // we can truncate the roots to this narrower type. 9541 for (auto *Root : TreeRoot) { 9542 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 9543 MaxBitWidth = std::max<unsigned>( 9544 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 9545 } 9546 9547 // True if the roots can be zero-extended back to their original type, rather 9548 // than sign-extended. We know that if the leading bits are not demanded, we 9549 // can safely zero-extend. So we initialize IsKnownPositive to True. 9550 bool IsKnownPositive = true; 9551 9552 // If all the bits of the roots are demanded, we can try a little harder to 9553 // compute a narrower type. This can happen, for example, if the roots are 9554 // getelementptr indices. InstCombine promotes these indices to the pointer 9555 // width. Thus, all their bits are technically demanded even though the 9556 // address computation might be vectorized in a smaller type. 9557 // 9558 // We start by looking at each entry that can be demoted. We compute the 9559 // maximum bit width required to store the scalar by using ValueTracking to 9560 // compute the number of high-order bits we can truncate. 9561 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 9562 llvm::all_of(TreeRoot, [](Value *R) { 9563 assert(R->hasOneUse() && "Root should have only one use!"); 9564 return isa<GetElementPtrInst>(R->user_back()); 9565 })) { 9566 MaxBitWidth = 8u; 9567 9568 // Determine if the sign bit of all the roots is known to be zero. If not, 9569 // IsKnownPositive is set to False. 9570 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 9571 KnownBits Known = computeKnownBits(R, *DL); 9572 return Known.isNonNegative(); 9573 }); 9574 9575 // Determine the maximum number of bits required to store the scalar 9576 // values. 9577 for (auto *Scalar : ToDemote) { 9578 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 9579 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 9580 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 9581 } 9582 9583 // If we can't prove that the sign bit is zero, we must add one to the 9584 // maximum bit width to account for the unknown sign bit. This preserves 9585 // the existing sign bit so we can safely sign-extend the root back to the 9586 // original type. Otherwise, if we know the sign bit is zero, we will 9587 // zero-extend the root instead. 9588 // 9589 // FIXME: This is somewhat suboptimal, as there will be cases where adding 9590 // one to the maximum bit width will yield a larger-than-necessary 9591 // type. In general, we need to add an extra bit only if we can't 9592 // prove that the upper bit of the original type is equal to the 9593 // upper bit of the proposed smaller type. If these two bits are the 9594 // same (either zero or one) we know that sign-extending from the 9595 // smaller type will result in the same value. Here, since we can't 9596 // yet prove this, we are just making the proposed smaller type 9597 // larger to ensure correctness. 9598 if (!IsKnownPositive) 9599 ++MaxBitWidth; 9600 } 9601 9602 // Round MaxBitWidth up to the next power-of-two. 9603 if (!isPowerOf2_64(MaxBitWidth)) 9604 MaxBitWidth = NextPowerOf2(MaxBitWidth); 9605 9606 // If the maximum bit width we compute is less than the with of the roots' 9607 // type, we can proceed with the narrowing. Otherwise, do nothing. 9608 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 9609 return; 9610 9611 // If we can truncate the root, we must collect additional values that might 9612 // be demoted as a result. That is, those seeded by truncations we will 9613 // modify. 9614 while (!Roots.empty()) 9615 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 9616 9617 // Finally, map the values we can demote to the maximum bit with we computed. 9618 for (auto *Scalar : ToDemote) 9619 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 9620 } 9621 9622 namespace { 9623 9624 /// The SLPVectorizer Pass. 9625 struct SLPVectorizer : public FunctionPass { 9626 SLPVectorizerPass Impl; 9627 9628 /// Pass identification, replacement for typeid 9629 static char ID; 9630 9631 explicit SLPVectorizer() : FunctionPass(ID) { 9632 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 9633 } 9634 9635 bool doInitialization(Module &M) override { return false; } 9636 9637 bool runOnFunction(Function &F) override { 9638 if (skipFunction(F)) 9639 return false; 9640 9641 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 9642 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 9643 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 9644 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 9645 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 9646 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 9647 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 9648 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 9649 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 9650 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 9651 9652 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 9653 } 9654 9655 void getAnalysisUsage(AnalysisUsage &AU) const override { 9656 FunctionPass::getAnalysisUsage(AU); 9657 AU.addRequired<AssumptionCacheTracker>(); 9658 AU.addRequired<ScalarEvolutionWrapperPass>(); 9659 AU.addRequired<AAResultsWrapperPass>(); 9660 AU.addRequired<TargetTransformInfoWrapperPass>(); 9661 AU.addRequired<LoopInfoWrapperPass>(); 9662 AU.addRequired<DominatorTreeWrapperPass>(); 9663 AU.addRequired<DemandedBitsWrapperPass>(); 9664 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 9665 AU.addRequired<InjectTLIMappingsLegacy>(); 9666 AU.addPreserved<LoopInfoWrapperPass>(); 9667 AU.addPreserved<DominatorTreeWrapperPass>(); 9668 AU.addPreserved<AAResultsWrapperPass>(); 9669 AU.addPreserved<GlobalsAAWrapperPass>(); 9670 AU.setPreservesCFG(); 9671 } 9672 }; 9673 9674 } // end anonymous namespace 9675 9676 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 9677 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 9678 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 9679 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 9680 auto *AA = &AM.getResult<AAManager>(F); 9681 auto *LI = &AM.getResult<LoopAnalysis>(F); 9682 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 9683 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 9684 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 9685 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 9686 9687 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 9688 if (!Changed) 9689 return PreservedAnalyses::all(); 9690 9691 PreservedAnalyses PA; 9692 PA.preserveSet<CFGAnalyses>(); 9693 return PA; 9694 } 9695 9696 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 9697 TargetTransformInfo *TTI_, 9698 TargetLibraryInfo *TLI_, AAResults *AA_, 9699 LoopInfo *LI_, DominatorTree *DT_, 9700 AssumptionCache *AC_, DemandedBits *DB_, 9701 OptimizationRemarkEmitter *ORE_) { 9702 if (!RunSLPVectorization) 9703 return false; 9704 SE = SE_; 9705 TTI = TTI_; 9706 TLI = TLI_; 9707 AA = AA_; 9708 LI = LI_; 9709 DT = DT_; 9710 AC = AC_; 9711 DB = DB_; 9712 DL = &F.getParent()->getDataLayout(); 9713 9714 Stores.clear(); 9715 GEPs.clear(); 9716 bool Changed = false; 9717 9718 // If the target claims to have no vector registers don't attempt 9719 // vectorization. 9720 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) { 9721 LLVM_DEBUG( 9722 dbgs() << "SLP: Didn't find any vector registers for target, abort.\n"); 9723 return false; 9724 } 9725 9726 // Don't vectorize when the attribute NoImplicitFloat is used. 9727 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 9728 return false; 9729 9730 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 9731 9732 // Use the bottom up slp vectorizer to construct chains that start with 9733 // store instructions. 9734 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 9735 9736 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 9737 // delete instructions. 9738 9739 // Update DFS numbers now so that we can use them for ordering. 9740 DT->updateDFSNumbers(); 9741 9742 // Scan the blocks in the function in post order. 9743 for (auto BB : post_order(&F.getEntryBlock())) { 9744 // Start new block - clear the list of reduction roots. 9745 R.clearReductionData(); 9746 collectSeedInstructions(BB); 9747 9748 // Vectorize trees that end at stores. 9749 if (!Stores.empty()) { 9750 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 9751 << " underlying objects.\n"); 9752 Changed |= vectorizeStoreChains(R); 9753 } 9754 9755 // Vectorize trees that end at reductions. 9756 Changed |= vectorizeChainsInBlock(BB, R); 9757 9758 // Vectorize the index computations of getelementptr instructions. This 9759 // is primarily intended to catch gather-like idioms ending at 9760 // non-consecutive loads. 9761 if (!GEPs.empty()) { 9762 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 9763 << " underlying objects.\n"); 9764 Changed |= vectorizeGEPIndices(BB, R); 9765 } 9766 } 9767 9768 if (Changed) { 9769 R.optimizeGatherSequence(); 9770 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 9771 } 9772 return Changed; 9773 } 9774 9775 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 9776 unsigned Idx, unsigned MinVF) { 9777 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 9778 << "\n"); 9779 const unsigned Sz = R.getVectorElementSize(Chain[0]); 9780 unsigned VF = Chain.size(); 9781 9782 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 9783 return false; 9784 9785 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 9786 << "\n"); 9787 9788 R.buildTree(Chain); 9789 if (R.isTreeTinyAndNotFullyVectorizable()) 9790 return false; 9791 if (R.isLoadCombineCandidate()) 9792 return false; 9793 R.reorderTopToBottom(); 9794 R.reorderBottomToTop(); 9795 R.buildExternalUses(); 9796 9797 R.computeMinimumValueSizes(); 9798 9799 InstructionCost Cost = R.getTreeCost(); 9800 9801 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 9802 if (Cost < -SLPCostThreshold) { 9803 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 9804 9805 using namespace ore; 9806 9807 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 9808 cast<StoreInst>(Chain[0])) 9809 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 9810 << " and with tree size " 9811 << NV("TreeSize", R.getTreeSize())); 9812 9813 R.vectorizeTree(); 9814 return true; 9815 } 9816 9817 return false; 9818 } 9819 9820 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 9821 BoUpSLP &R) { 9822 // We may run into multiple chains that merge into a single chain. We mark the 9823 // stores that we vectorized so that we don't visit the same store twice. 9824 BoUpSLP::ValueSet VectorizedStores; 9825 bool Changed = false; 9826 9827 int E = Stores.size(); 9828 SmallBitVector Tails(E, false); 9829 int MaxIter = MaxStoreLookup.getValue(); 9830 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 9831 E, std::make_pair(E, INT_MAX)); 9832 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 9833 int IterCnt; 9834 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 9835 &CheckedPairs, 9836 &ConsecutiveChain](int K, int Idx) { 9837 if (IterCnt >= MaxIter) 9838 return true; 9839 if (CheckedPairs[Idx].test(K)) 9840 return ConsecutiveChain[K].second == 1 && 9841 ConsecutiveChain[K].first == Idx; 9842 ++IterCnt; 9843 CheckedPairs[Idx].set(K); 9844 CheckedPairs[K].set(Idx); 9845 Optional<int> Diff = getPointersDiff( 9846 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 9847 Stores[Idx]->getValueOperand()->getType(), 9848 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 9849 if (!Diff || *Diff == 0) 9850 return false; 9851 int Val = *Diff; 9852 if (Val < 0) { 9853 if (ConsecutiveChain[Idx].second > -Val) { 9854 Tails.set(K); 9855 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 9856 } 9857 return false; 9858 } 9859 if (ConsecutiveChain[K].second <= Val) 9860 return false; 9861 9862 Tails.set(Idx); 9863 ConsecutiveChain[K] = std::make_pair(Idx, Val); 9864 return Val == 1; 9865 }; 9866 // Do a quadratic search on all of the given stores in reverse order and find 9867 // all of the pairs of stores that follow each other. 9868 for (int Idx = E - 1; Idx >= 0; --Idx) { 9869 // If a store has multiple consecutive store candidates, search according 9870 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 9871 // This is because usually pairing with immediate succeeding or preceding 9872 // candidate create the best chance to find slp vectorization opportunity. 9873 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 9874 IterCnt = 0; 9875 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 9876 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 9877 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 9878 break; 9879 } 9880 9881 // Tracks if we tried to vectorize stores starting from the given tail 9882 // already. 9883 SmallBitVector TriedTails(E, false); 9884 // For stores that start but don't end a link in the chain: 9885 for (int Cnt = E; Cnt > 0; --Cnt) { 9886 int I = Cnt - 1; 9887 if (ConsecutiveChain[I].first == E || Tails.test(I)) 9888 continue; 9889 // We found a store instr that starts a chain. Now follow the chain and try 9890 // to vectorize it. 9891 BoUpSLP::ValueList Operands; 9892 // Collect the chain into a list. 9893 while (I != E && !VectorizedStores.count(Stores[I])) { 9894 Operands.push_back(Stores[I]); 9895 Tails.set(I); 9896 if (ConsecutiveChain[I].second != 1) { 9897 // Mark the new end in the chain and go back, if required. It might be 9898 // required if the original stores come in reversed order, for example. 9899 if (ConsecutiveChain[I].first != E && 9900 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 9901 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 9902 TriedTails.set(I); 9903 Tails.reset(ConsecutiveChain[I].first); 9904 if (Cnt < ConsecutiveChain[I].first + 2) 9905 Cnt = ConsecutiveChain[I].first + 2; 9906 } 9907 break; 9908 } 9909 // Move to the next value in the chain. 9910 I = ConsecutiveChain[I].first; 9911 } 9912 assert(!Operands.empty() && "Expected non-empty list of stores."); 9913 9914 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 9915 unsigned EltSize = R.getVectorElementSize(Operands[0]); 9916 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 9917 9918 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 9919 MaxElts); 9920 auto *Store = cast<StoreInst>(Operands[0]); 9921 Type *StoreTy = Store->getValueOperand()->getType(); 9922 Type *ValueTy = StoreTy; 9923 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 9924 ValueTy = Trunc->getSrcTy(); 9925 unsigned MinVF = TTI->getStoreMinimumVF( 9926 R.getMinVF(DL->getTypeSizeInBits(ValueTy)), StoreTy, ValueTy); 9927 9928 // FIXME: Is division-by-2 the correct step? Should we assert that the 9929 // register size is a power-of-2? 9930 unsigned StartIdx = 0; 9931 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 9932 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 9933 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 9934 if (!VectorizedStores.count(Slice.front()) && 9935 !VectorizedStores.count(Slice.back()) && 9936 vectorizeStoreChain(Slice, R, Cnt, MinVF)) { 9937 // Mark the vectorized stores so that we don't vectorize them again. 9938 VectorizedStores.insert(Slice.begin(), Slice.end()); 9939 Changed = true; 9940 // If we vectorized initial block, no need to try to vectorize it 9941 // again. 9942 if (Cnt == StartIdx) 9943 StartIdx += Size; 9944 Cnt += Size; 9945 continue; 9946 } 9947 ++Cnt; 9948 } 9949 // Check if the whole array was vectorized already - exit. 9950 if (StartIdx >= Operands.size()) 9951 break; 9952 } 9953 } 9954 9955 return Changed; 9956 } 9957 9958 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 9959 // Initialize the collections. We will make a single pass over the block. 9960 Stores.clear(); 9961 GEPs.clear(); 9962 9963 // Visit the store and getelementptr instructions in BB and organize them in 9964 // Stores and GEPs according to the underlying objects of their pointer 9965 // operands. 9966 for (Instruction &I : *BB) { 9967 // Ignore store instructions that are volatile or have a pointer operand 9968 // that doesn't point to a scalar type. 9969 if (auto *SI = dyn_cast<StoreInst>(&I)) { 9970 if (!SI->isSimple()) 9971 continue; 9972 if (!isValidElementType(SI->getValueOperand()->getType())) 9973 continue; 9974 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 9975 } 9976 9977 // Ignore getelementptr instructions that have more than one index, a 9978 // constant index, or a pointer operand that doesn't point to a scalar 9979 // type. 9980 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 9981 auto Idx = GEP->idx_begin()->get(); 9982 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 9983 continue; 9984 if (!isValidElementType(Idx->getType())) 9985 continue; 9986 if (GEP->getType()->isVectorTy()) 9987 continue; 9988 GEPs[GEP->getPointerOperand()].push_back(GEP); 9989 } 9990 } 9991 } 9992 9993 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 9994 if (!A || !B) 9995 return false; 9996 if (isa<InsertElementInst>(A) || isa<InsertElementInst>(B)) 9997 return false; 9998 Value *VL[] = {A, B}; 9999 return tryToVectorizeList(VL, R); 10000 } 10001 10002 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 10003 bool LimitForRegisterSize) { 10004 if (VL.size() < 2) 10005 return false; 10006 10007 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 10008 << VL.size() << ".\n"); 10009 10010 // Check that all of the parts are instructions of the same type, 10011 // we permit an alternate opcode via InstructionsState. 10012 InstructionsState S = getSameOpcode(VL); 10013 if (!S.getOpcode()) 10014 return false; 10015 10016 Instruction *I0 = cast<Instruction>(S.OpValue); 10017 // Make sure invalid types (including vector type) are rejected before 10018 // determining vectorization factor for scalar instructions. 10019 for (Value *V : VL) { 10020 Type *Ty = V->getType(); 10021 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 10022 // NOTE: the following will give user internal llvm type name, which may 10023 // not be useful. 10024 R.getORE()->emit([&]() { 10025 std::string type_str; 10026 llvm::raw_string_ostream rso(type_str); 10027 Ty->print(rso); 10028 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 10029 << "Cannot SLP vectorize list: type " 10030 << rso.str() + " is unsupported by vectorizer"; 10031 }); 10032 return false; 10033 } 10034 } 10035 10036 unsigned Sz = R.getVectorElementSize(I0); 10037 unsigned MinVF = R.getMinVF(Sz); 10038 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 10039 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 10040 if (MaxVF < 2) { 10041 R.getORE()->emit([&]() { 10042 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 10043 << "Cannot SLP vectorize list: vectorization factor " 10044 << "less than 2 is not supported"; 10045 }); 10046 return false; 10047 } 10048 10049 bool Changed = false; 10050 bool CandidateFound = false; 10051 InstructionCost MinCost = SLPCostThreshold.getValue(); 10052 Type *ScalarTy = VL[0]->getType(); 10053 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 10054 ScalarTy = IE->getOperand(1)->getType(); 10055 10056 unsigned NextInst = 0, MaxInst = VL.size(); 10057 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 10058 // No actual vectorization should happen, if number of parts is the same as 10059 // provided vectorization factor (i.e. the scalar type is used for vector 10060 // code during codegen). 10061 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 10062 if (TTI->getNumberOfParts(VecTy) == VF) 10063 continue; 10064 for (unsigned I = NextInst; I < MaxInst; ++I) { 10065 unsigned OpsWidth = 0; 10066 10067 if (I + VF > MaxInst) 10068 OpsWidth = MaxInst - I; 10069 else 10070 OpsWidth = VF; 10071 10072 if (!isPowerOf2_32(OpsWidth)) 10073 continue; 10074 10075 if ((LimitForRegisterSize && OpsWidth < MaxVF) || 10076 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 10077 break; 10078 10079 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 10080 // Check that a previous iteration of this loop did not delete the Value. 10081 if (llvm::any_of(Ops, [&R](Value *V) { 10082 auto *I = dyn_cast<Instruction>(V); 10083 return I && R.isDeleted(I); 10084 })) 10085 continue; 10086 10087 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 10088 << "\n"); 10089 10090 R.buildTree(Ops); 10091 if (R.isTreeTinyAndNotFullyVectorizable()) 10092 continue; 10093 R.reorderTopToBottom(); 10094 R.reorderBottomToTop(!isa<InsertElementInst>(Ops.front())); 10095 R.buildExternalUses(); 10096 10097 R.computeMinimumValueSizes(); 10098 InstructionCost Cost = R.getTreeCost(); 10099 CandidateFound = true; 10100 MinCost = std::min(MinCost, Cost); 10101 10102 if (Cost < -SLPCostThreshold) { 10103 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 10104 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 10105 cast<Instruction>(Ops[0])) 10106 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 10107 << " and with tree size " 10108 << ore::NV("TreeSize", R.getTreeSize())); 10109 10110 R.vectorizeTree(); 10111 // Move to the next bundle. 10112 I += VF - 1; 10113 NextInst = I + 1; 10114 Changed = true; 10115 } 10116 } 10117 } 10118 10119 if (!Changed && CandidateFound) { 10120 R.getORE()->emit([&]() { 10121 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 10122 << "List vectorization was possible but not beneficial with cost " 10123 << ore::NV("Cost", MinCost) << " >= " 10124 << ore::NV("Treshold", -SLPCostThreshold); 10125 }); 10126 } else if (!Changed) { 10127 R.getORE()->emit([&]() { 10128 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 10129 << "Cannot SLP vectorize list: vectorization was impossible" 10130 << " with available vectorization factors"; 10131 }); 10132 } 10133 return Changed; 10134 } 10135 10136 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 10137 if (!I) 10138 return false; 10139 10140 if ((!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) || 10141 isa<VectorType>(I->getType())) 10142 return false; 10143 10144 Value *P = I->getParent(); 10145 10146 // Vectorize in current basic block only. 10147 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 10148 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 10149 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 10150 return false; 10151 10152 // First collect all possible candidates 10153 SmallVector<std::pair<Value *, Value *>, 4> Candidates; 10154 Candidates.emplace_back(Op0, Op1); 10155 10156 auto *A = dyn_cast<BinaryOperator>(Op0); 10157 auto *B = dyn_cast<BinaryOperator>(Op1); 10158 // Try to skip B. 10159 if (A && B && B->hasOneUse()) { 10160 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 10161 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 10162 if (B0 && B0->getParent() == P) 10163 Candidates.emplace_back(A, B0); 10164 if (B1 && B1->getParent() == P) 10165 Candidates.emplace_back(A, B1); 10166 } 10167 // Try to skip A. 10168 if (B && A && A->hasOneUse()) { 10169 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 10170 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 10171 if (A0 && A0->getParent() == P) 10172 Candidates.emplace_back(A0, B); 10173 if (A1 && A1->getParent() == P) 10174 Candidates.emplace_back(A1, B); 10175 } 10176 10177 if (Candidates.size() == 1) 10178 return tryToVectorizePair(Op0, Op1, R); 10179 10180 // We have multiple options. Try to pick the single best. 10181 Optional<int> BestCandidate = R.findBestRootPair(Candidates); 10182 if (!BestCandidate) 10183 return false; 10184 return tryToVectorizePair(Candidates[*BestCandidate].first, 10185 Candidates[*BestCandidate].second, R); 10186 } 10187 10188 namespace { 10189 10190 /// Model horizontal reductions. 10191 /// 10192 /// A horizontal reduction is a tree of reduction instructions that has values 10193 /// that can be put into a vector as its leaves. For example: 10194 /// 10195 /// mul mul mul mul 10196 /// \ / \ / 10197 /// + + 10198 /// \ / 10199 /// + 10200 /// This tree has "mul" as its leaf values and "+" as its reduction 10201 /// instructions. A reduction can feed into a store or a binary operation 10202 /// feeding a phi. 10203 /// ... 10204 /// \ / 10205 /// + 10206 /// | 10207 /// phi += 10208 /// 10209 /// Or: 10210 /// ... 10211 /// \ / 10212 /// + 10213 /// | 10214 /// *p = 10215 /// 10216 class HorizontalReduction { 10217 using ReductionOpsType = SmallVector<Value *, 16>; 10218 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 10219 ReductionOpsListType ReductionOps; 10220 /// List of possibly reduced values. 10221 SmallVector<SmallVector<Value *>> ReducedVals; 10222 /// Maps reduced value to the corresponding reduction operation. 10223 DenseMap<Value *, SmallVector<Instruction *>> ReducedValsToOps; 10224 // Use map vector to make stable output. 10225 MapVector<Instruction *, Value *> ExtraArgs; 10226 WeakTrackingVH ReductionRoot; 10227 /// The type of reduction operation. 10228 RecurKind RdxKind; 10229 10230 static bool isCmpSelMinMax(Instruction *I) { 10231 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 10232 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 10233 } 10234 10235 // And/or are potentially poison-safe logical patterns like: 10236 // select x, y, false 10237 // select x, true, y 10238 static bool isBoolLogicOp(Instruction *I) { 10239 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 10240 match(I, m_LogicalOr(m_Value(), m_Value())); 10241 } 10242 10243 /// Checks if instruction is associative and can be vectorized. 10244 static bool isVectorizable(RecurKind Kind, Instruction *I) { 10245 if (Kind == RecurKind::None) 10246 return false; 10247 10248 // Integer ops that map to select instructions or intrinsics are fine. 10249 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 10250 isBoolLogicOp(I)) 10251 return true; 10252 10253 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 10254 // FP min/max are associative except for NaN and -0.0. We do not 10255 // have to rule out -0.0 here because the intrinsic semantics do not 10256 // specify a fixed result for it. 10257 return I->getFastMathFlags().noNaNs(); 10258 } 10259 10260 return I->isAssociative(); 10261 } 10262 10263 static Value *getRdxOperand(Instruction *I, unsigned Index) { 10264 // Poison-safe 'or' takes the form: select X, true, Y 10265 // To make that work with the normal operand processing, we skip the 10266 // true value operand. 10267 // TODO: Change the code and data structures to handle this without a hack. 10268 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 10269 return I->getOperand(2); 10270 return I->getOperand(Index); 10271 } 10272 10273 /// Creates reduction operation with the current opcode. 10274 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 10275 Value *RHS, const Twine &Name, bool UseSelect) { 10276 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 10277 switch (Kind) { 10278 case RecurKind::Or: 10279 if (UseSelect && 10280 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 10281 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); 10282 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 10283 Name); 10284 case RecurKind::And: 10285 if (UseSelect && 10286 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 10287 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); 10288 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 10289 Name); 10290 case RecurKind::Add: 10291 case RecurKind::Mul: 10292 case RecurKind::Xor: 10293 case RecurKind::FAdd: 10294 case RecurKind::FMul: 10295 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 10296 Name); 10297 case RecurKind::FMax: 10298 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 10299 case RecurKind::FMin: 10300 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 10301 case RecurKind::SMax: 10302 if (UseSelect) { 10303 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 10304 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 10305 } 10306 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 10307 case RecurKind::SMin: 10308 if (UseSelect) { 10309 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 10310 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 10311 } 10312 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 10313 case RecurKind::UMax: 10314 if (UseSelect) { 10315 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 10316 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 10317 } 10318 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 10319 case RecurKind::UMin: 10320 if (UseSelect) { 10321 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 10322 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 10323 } 10324 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 10325 default: 10326 llvm_unreachable("Unknown reduction operation."); 10327 } 10328 } 10329 10330 /// Creates reduction operation with the current opcode with the IR flags 10331 /// from \p ReductionOps, dropping nuw/nsw flags. 10332 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 10333 Value *RHS, const Twine &Name, 10334 const ReductionOpsListType &ReductionOps) { 10335 bool UseSelect = ReductionOps.size() == 2 || 10336 // Logical or/and. 10337 (ReductionOps.size() == 1 && 10338 isa<SelectInst>(ReductionOps.front().front())); 10339 assert((!UseSelect || ReductionOps.size() != 2 || 10340 isa<SelectInst>(ReductionOps[1][0])) && 10341 "Expected cmp + select pairs for reduction"); 10342 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 10343 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 10344 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 10345 propagateIRFlags(Sel->getCondition(), ReductionOps[0], nullptr, 10346 /*IncludeWrapFlags=*/false); 10347 propagateIRFlags(Op, ReductionOps[1], nullptr, 10348 /*IncludeWrapFlags=*/false); 10349 return Op; 10350 } 10351 } 10352 propagateIRFlags(Op, ReductionOps[0], nullptr, /*IncludeWrapFlags=*/false); 10353 return Op; 10354 } 10355 10356 static RecurKind getRdxKind(Value *V) { 10357 auto *I = dyn_cast<Instruction>(V); 10358 if (!I) 10359 return RecurKind::None; 10360 if (match(I, m_Add(m_Value(), m_Value()))) 10361 return RecurKind::Add; 10362 if (match(I, m_Mul(m_Value(), m_Value()))) 10363 return RecurKind::Mul; 10364 if (match(I, m_And(m_Value(), m_Value())) || 10365 match(I, m_LogicalAnd(m_Value(), m_Value()))) 10366 return RecurKind::And; 10367 if (match(I, m_Or(m_Value(), m_Value())) || 10368 match(I, m_LogicalOr(m_Value(), m_Value()))) 10369 return RecurKind::Or; 10370 if (match(I, m_Xor(m_Value(), m_Value()))) 10371 return RecurKind::Xor; 10372 if (match(I, m_FAdd(m_Value(), m_Value()))) 10373 return RecurKind::FAdd; 10374 if (match(I, m_FMul(m_Value(), m_Value()))) 10375 return RecurKind::FMul; 10376 10377 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 10378 return RecurKind::FMax; 10379 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 10380 return RecurKind::FMin; 10381 10382 // This matches either cmp+select or intrinsics. SLP is expected to handle 10383 // either form. 10384 // TODO: If we are canonicalizing to intrinsics, we can remove several 10385 // special-case paths that deal with selects. 10386 if (match(I, m_SMax(m_Value(), m_Value()))) 10387 return RecurKind::SMax; 10388 if (match(I, m_SMin(m_Value(), m_Value()))) 10389 return RecurKind::SMin; 10390 if (match(I, m_UMax(m_Value(), m_Value()))) 10391 return RecurKind::UMax; 10392 if (match(I, m_UMin(m_Value(), m_Value()))) 10393 return RecurKind::UMin; 10394 10395 if (auto *Select = dyn_cast<SelectInst>(I)) { 10396 // Try harder: look for min/max pattern based on instructions producing 10397 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 10398 // During the intermediate stages of SLP, it's very common to have 10399 // pattern like this (since optimizeGatherSequence is run only once 10400 // at the end): 10401 // %1 = extractelement <2 x i32> %a, i32 0 10402 // %2 = extractelement <2 x i32> %a, i32 1 10403 // %cond = icmp sgt i32 %1, %2 10404 // %3 = extractelement <2 x i32> %a, i32 0 10405 // %4 = extractelement <2 x i32> %a, i32 1 10406 // %select = select i1 %cond, i32 %3, i32 %4 10407 CmpInst::Predicate Pred; 10408 Instruction *L1; 10409 Instruction *L2; 10410 10411 Value *LHS = Select->getTrueValue(); 10412 Value *RHS = Select->getFalseValue(); 10413 Value *Cond = Select->getCondition(); 10414 10415 // TODO: Support inverse predicates. 10416 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 10417 if (!isa<ExtractElementInst>(RHS) || 10418 !L2->isIdenticalTo(cast<Instruction>(RHS))) 10419 return RecurKind::None; 10420 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 10421 if (!isa<ExtractElementInst>(LHS) || 10422 !L1->isIdenticalTo(cast<Instruction>(LHS))) 10423 return RecurKind::None; 10424 } else { 10425 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 10426 return RecurKind::None; 10427 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 10428 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 10429 !L2->isIdenticalTo(cast<Instruction>(RHS))) 10430 return RecurKind::None; 10431 } 10432 10433 switch (Pred) { 10434 default: 10435 return RecurKind::None; 10436 case CmpInst::ICMP_SGT: 10437 case CmpInst::ICMP_SGE: 10438 return RecurKind::SMax; 10439 case CmpInst::ICMP_SLT: 10440 case CmpInst::ICMP_SLE: 10441 return RecurKind::SMin; 10442 case CmpInst::ICMP_UGT: 10443 case CmpInst::ICMP_UGE: 10444 return RecurKind::UMax; 10445 case CmpInst::ICMP_ULT: 10446 case CmpInst::ICMP_ULE: 10447 return RecurKind::UMin; 10448 } 10449 } 10450 return RecurKind::None; 10451 } 10452 10453 /// Get the index of the first operand. 10454 static unsigned getFirstOperandIndex(Instruction *I) { 10455 return isCmpSelMinMax(I) ? 1 : 0; 10456 } 10457 10458 /// Total number of operands in the reduction operation. 10459 static unsigned getNumberOfOperands(Instruction *I) { 10460 return isCmpSelMinMax(I) ? 3 : 2; 10461 } 10462 10463 /// Checks if the instruction is in basic block \p BB. 10464 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 10465 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 10466 if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) { 10467 auto *Sel = cast<SelectInst>(I); 10468 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); 10469 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; 10470 } 10471 return I->getParent() == BB; 10472 } 10473 10474 /// Expected number of uses for reduction operations/reduced values. 10475 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 10476 if (IsCmpSelMinMax) { 10477 // SelectInst must be used twice while the condition op must have single 10478 // use only. 10479 if (auto *Sel = dyn_cast<SelectInst>(I)) 10480 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 10481 return I->hasNUses(2); 10482 } 10483 10484 // Arithmetic reduction operation must be used once only. 10485 return I->hasOneUse(); 10486 } 10487 10488 /// Initializes the list of reduction operations. 10489 void initReductionOps(Instruction *I) { 10490 if (isCmpSelMinMax(I)) 10491 ReductionOps.assign(2, ReductionOpsType()); 10492 else 10493 ReductionOps.assign(1, ReductionOpsType()); 10494 } 10495 10496 /// Add all reduction operations for the reduction instruction \p I. 10497 void addReductionOps(Instruction *I) { 10498 if (isCmpSelMinMax(I)) { 10499 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 10500 ReductionOps[1].emplace_back(I); 10501 } else { 10502 ReductionOps[0].emplace_back(I); 10503 } 10504 } 10505 10506 static Value *getLHS(RecurKind Kind, Instruction *I) { 10507 if (Kind == RecurKind::None) 10508 return nullptr; 10509 return I->getOperand(getFirstOperandIndex(I)); 10510 } 10511 static Value *getRHS(RecurKind Kind, Instruction *I) { 10512 if (Kind == RecurKind::None) 10513 return nullptr; 10514 return I->getOperand(getFirstOperandIndex(I) + 1); 10515 } 10516 10517 public: 10518 HorizontalReduction() = default; 10519 10520 /// Try to find a reduction tree. 10521 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst, 10522 ScalarEvolution &SE, const DataLayout &DL, 10523 const TargetLibraryInfo &TLI) { 10524 assert((!Phi || is_contained(Phi->operands(), Inst)) && 10525 "Phi needs to use the binary operator"); 10526 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 10527 isa<IntrinsicInst>(Inst)) && 10528 "Expected binop, select, or intrinsic for reduction matching"); 10529 RdxKind = getRdxKind(Inst); 10530 10531 // We could have a initial reductions that is not an add. 10532 // r *= v1 + v2 + v3 + v4 10533 // In such a case start looking for a tree rooted in the first '+'. 10534 if (Phi) { 10535 if (getLHS(RdxKind, Inst) == Phi) { 10536 Phi = nullptr; 10537 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 10538 if (!Inst) 10539 return false; 10540 RdxKind = getRdxKind(Inst); 10541 } else if (getRHS(RdxKind, Inst) == Phi) { 10542 Phi = nullptr; 10543 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 10544 if (!Inst) 10545 return false; 10546 RdxKind = getRdxKind(Inst); 10547 } 10548 } 10549 10550 if (!isVectorizable(RdxKind, Inst)) 10551 return false; 10552 10553 // Analyze "regular" integer/FP types for reductions - no target-specific 10554 // types or pointers. 10555 Type *Ty = Inst->getType(); 10556 if (!isValidElementType(Ty) || Ty->isPointerTy()) 10557 return false; 10558 10559 // Though the ultimate reduction may have multiple uses, its condition must 10560 // have only single use. 10561 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 10562 if (!Sel->getCondition()->hasOneUse()) 10563 return false; 10564 10565 ReductionRoot = Inst; 10566 10567 // Iterate through all the operands of the possible reduction tree and 10568 // gather all the reduced values, sorting them by their value id. 10569 BasicBlock *BB = Inst->getParent(); 10570 bool IsCmpSelMinMax = isCmpSelMinMax(Inst); 10571 SmallVector<Instruction *> Worklist(1, Inst); 10572 // Checks if the operands of the \p TreeN instruction are also reduction 10573 // operations or should be treated as reduced values or an extra argument, 10574 // which is not part of the reduction. 10575 auto &&CheckOperands = [this, IsCmpSelMinMax, 10576 BB](Instruction *TreeN, 10577 SmallVectorImpl<Value *> &ExtraArgs, 10578 SmallVectorImpl<Value *> &PossibleReducedVals, 10579 SmallVectorImpl<Instruction *> &ReductionOps) { 10580 for (int I = getFirstOperandIndex(TreeN), 10581 End = getNumberOfOperands(TreeN); 10582 I < End; ++I) { 10583 Value *EdgeVal = getRdxOperand(TreeN, I); 10584 ReducedValsToOps[EdgeVal].push_back(TreeN); 10585 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 10586 // Edge has wrong parent - mark as an extra argument. 10587 if (EdgeInst && !isVectorLikeInstWithConstOps(EdgeInst) && 10588 !hasSameParent(EdgeInst, BB)) { 10589 ExtraArgs.push_back(EdgeVal); 10590 continue; 10591 } 10592 // If the edge is not an instruction, or it is different from the main 10593 // reduction opcode or has too many uses - possible reduced value. 10594 if (!EdgeInst || getRdxKind(EdgeInst) != RdxKind || 10595 IsCmpSelMinMax != isCmpSelMinMax(EdgeInst) || 10596 !hasRequiredNumberOfUses(IsCmpSelMinMax, EdgeInst) || 10597 !isVectorizable(getRdxKind(EdgeInst), EdgeInst)) { 10598 PossibleReducedVals.push_back(EdgeVal); 10599 continue; 10600 } 10601 ReductionOps.push_back(EdgeInst); 10602 } 10603 }; 10604 // Try to regroup reduced values so that it gets more profitable to try to 10605 // reduce them. Values are grouped by their value ids, instructions - by 10606 // instruction op id and/or alternate op id, plus do extra analysis for 10607 // loads (grouping them by the distabce between pointers) and cmp 10608 // instructions (grouping them by the predicate). 10609 MapVector<size_t, MapVector<size_t, MapVector<Value *, unsigned>>> 10610 PossibleReducedVals; 10611 initReductionOps(Inst); 10612 while (!Worklist.empty()) { 10613 Instruction *TreeN = Worklist.pop_back_val(); 10614 SmallVector<Value *> Args; 10615 SmallVector<Value *> PossibleRedVals; 10616 SmallVector<Instruction *> PossibleReductionOps; 10617 CheckOperands(TreeN, Args, PossibleRedVals, PossibleReductionOps); 10618 // If too many extra args - mark the instruction itself as a reduction 10619 // value, not a reduction operation. 10620 if (Args.size() < 2) { 10621 addReductionOps(TreeN); 10622 // Add extra args. 10623 if (!Args.empty()) { 10624 assert(Args.size() == 1 && "Expected only single argument."); 10625 ExtraArgs[TreeN] = Args.front(); 10626 } 10627 // Add reduction values. The values are sorted for better vectorization 10628 // results. 10629 for (Value *V : PossibleRedVals) { 10630 size_t Key, Idx; 10631 std::tie(Key, Idx) = generateKeySubkey( 10632 V, &TLI, 10633 [&PossibleReducedVals, &DL, &SE](size_t Key, LoadInst *LI) { 10634 for (const auto &LoadData : PossibleReducedVals[Key]) { 10635 auto *RLI = cast<LoadInst>(LoadData.second.front().first); 10636 if (getPointersDiff(RLI->getType(), RLI->getPointerOperand(), 10637 LI->getType(), LI->getPointerOperand(), 10638 DL, SE, /*StrictCheck=*/true)) 10639 return hash_value(RLI->getPointerOperand()); 10640 } 10641 return hash_value(LI->getPointerOperand()); 10642 }, 10643 /*AllowAlternate=*/false); 10644 ++PossibleReducedVals[Key][Idx] 10645 .insert(std::make_pair(V, 0)) 10646 .first->second; 10647 } 10648 Worklist.append(PossibleReductionOps.rbegin(), 10649 PossibleReductionOps.rend()); 10650 } else { 10651 size_t Key, Idx; 10652 std::tie(Key, Idx) = generateKeySubkey( 10653 TreeN, &TLI, 10654 [&PossibleReducedVals, &DL, &SE](size_t Key, LoadInst *LI) { 10655 for (const auto &LoadData : PossibleReducedVals[Key]) { 10656 auto *RLI = cast<LoadInst>(LoadData.second.front().first); 10657 if (getPointersDiff(RLI->getType(), RLI->getPointerOperand(), 10658 LI->getType(), LI->getPointerOperand(), DL, 10659 SE, /*StrictCheck=*/true)) 10660 return hash_value(RLI->getPointerOperand()); 10661 } 10662 return hash_value(LI->getPointerOperand()); 10663 }, 10664 /*AllowAlternate=*/false); 10665 ++PossibleReducedVals[Key][Idx] 10666 .insert(std::make_pair(TreeN, 0)) 10667 .first->second; 10668 } 10669 } 10670 auto PossibleReducedValsVect = PossibleReducedVals.takeVector(); 10671 // Sort values by the total number of values kinds to start the reduction 10672 // from the longest possible reduced values sequences. 10673 for (auto &PossibleReducedVals : PossibleReducedValsVect) { 10674 auto PossibleRedVals = PossibleReducedVals.second.takeVector(); 10675 SmallVector<SmallVector<Value *>> PossibleRedValsVect; 10676 for (auto It = PossibleRedVals.begin(), E = PossibleRedVals.end(); 10677 It != E; ++It) { 10678 PossibleRedValsVect.emplace_back(); 10679 auto RedValsVect = It->second.takeVector(); 10680 stable_sort(RedValsVect, [](const auto &P1, const auto &P2) { 10681 return P1.second < P2.second; 10682 }); 10683 for (const std::pair<Value *, unsigned> &Data : RedValsVect) 10684 PossibleRedValsVect.back().append(Data.second, Data.first); 10685 } 10686 stable_sort(PossibleRedValsVect, [](const auto &P1, const auto &P2) { 10687 return P1.size() > P2.size(); 10688 }); 10689 ReducedVals.emplace_back(); 10690 for (ArrayRef<Value *> Data : PossibleRedValsVect) 10691 ReducedVals.back().append(Data.rbegin(), Data.rend()); 10692 } 10693 // Sort the reduced values by number of same/alternate opcode and/or pointer 10694 // operand. 10695 stable_sort(ReducedVals, [](ArrayRef<Value *> P1, ArrayRef<Value *> P2) { 10696 return P1.size() > P2.size(); 10697 }); 10698 return true; 10699 } 10700 10701 /// Attempt to vectorize the tree found by matchAssociativeReduction. 10702 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 10703 constexpr int ReductionLimit = 4; 10704 constexpr unsigned RegMaxNumber = 4; 10705 constexpr unsigned RedValsMaxNumber = 128; 10706 // If there are a sufficient number of reduction values, reduce 10707 // to a nearby power-of-2. We can safely generate oversized 10708 // vectors and rely on the backend to split them to legal sizes. 10709 unsigned NumReducedVals = std::accumulate( 10710 ReducedVals.begin(), ReducedVals.end(), 0, 10711 [](int Num, ArrayRef<Value *> Vals) { return Num + Vals.size(); }); 10712 if (NumReducedVals < ReductionLimit) 10713 return nullptr; 10714 10715 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 10716 10717 // Track the reduced values in case if they are replaced by extractelement 10718 // because of the vectorization. 10719 DenseMap<Value *, WeakTrackingVH> TrackedVals; 10720 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 10721 // The same extra argument may be used several times, so log each attempt 10722 // to use it. 10723 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 10724 assert(Pair.first && "DebugLoc must be set."); 10725 ExternallyUsedValues[Pair.second].push_back(Pair.first); 10726 TrackedVals.try_emplace(Pair.second, Pair.second); 10727 } 10728 10729 // The compare instruction of a min/max is the insertion point for new 10730 // instructions and may be replaced with a new compare instruction. 10731 auto &&GetCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 10732 assert(isa<SelectInst>(RdxRootInst) && 10733 "Expected min/max reduction to have select root instruction"); 10734 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 10735 assert(isa<Instruction>(ScalarCond) && 10736 "Expected min/max reduction to have compare condition"); 10737 return cast<Instruction>(ScalarCond); 10738 }; 10739 10740 // The reduction root is used as the insertion point for new instructions, 10741 // so set it as externally used to prevent it from being deleted. 10742 ExternallyUsedValues[ReductionRoot]; 10743 SmallDenseSet<Value *> IgnoreList; 10744 for (ReductionOpsType &RdxOps : ReductionOps) 10745 for (Value *RdxOp : RdxOps) { 10746 if (!RdxOp) 10747 continue; 10748 IgnoreList.insert(RdxOp); 10749 } 10750 bool IsCmpSelMinMax = isCmpSelMinMax(cast<Instruction>(ReductionRoot)); 10751 10752 // Need to track reduced vals, they may be changed during vectorization of 10753 // subvectors. 10754 for (ArrayRef<Value *> Candidates : ReducedVals) 10755 for (Value *V : Candidates) 10756 TrackedVals.try_emplace(V, V); 10757 10758 DenseMap<Value *, unsigned> VectorizedVals; 10759 Value *VectorizedTree = nullptr; 10760 bool CheckForReusedReductionOps = false; 10761 // Try to vectorize elements based on their type. 10762 for (unsigned I = 0, E = ReducedVals.size(); I < E; ++I) { 10763 ArrayRef<Value *> OrigReducedVals = ReducedVals[I]; 10764 InstructionsState S = getSameOpcode(OrigReducedVals); 10765 SmallVector<Value *> Candidates; 10766 DenseMap<Value *, Value *> TrackedToOrig; 10767 for (unsigned Cnt = 0, Sz = OrigReducedVals.size(); Cnt < Sz; ++Cnt) { 10768 Value *RdxVal = TrackedVals.find(OrigReducedVals[Cnt])->second; 10769 // Check if the reduction value was not overriden by the extractelement 10770 // instruction because of the vectorization and exclude it, if it is not 10771 // compatible with other values. 10772 if (auto *Inst = dyn_cast<Instruction>(RdxVal)) 10773 if (isVectorLikeInstWithConstOps(Inst) && 10774 (!S.getOpcode() || !S.isOpcodeOrAlt(Inst))) 10775 continue; 10776 Candidates.push_back(RdxVal); 10777 TrackedToOrig.try_emplace(RdxVal, OrigReducedVals[Cnt]); 10778 } 10779 bool ShuffledExtracts = false; 10780 // Try to handle shuffled extractelements. 10781 if (S.getOpcode() == Instruction::ExtractElement && !S.isAltShuffle() && 10782 I + 1 < E) { 10783 InstructionsState NextS = getSameOpcode(ReducedVals[I + 1]); 10784 if (NextS.getOpcode() == Instruction::ExtractElement && 10785 !NextS.isAltShuffle()) { 10786 SmallVector<Value *> CommonCandidates(Candidates); 10787 for (Value *RV : ReducedVals[I + 1]) { 10788 Value *RdxVal = TrackedVals.find(RV)->second; 10789 // Check if the reduction value was not overriden by the 10790 // extractelement instruction because of the vectorization and 10791 // exclude it, if it is not compatible with other values. 10792 if (auto *Inst = dyn_cast<Instruction>(RdxVal)) 10793 if (!NextS.getOpcode() || !NextS.isOpcodeOrAlt(Inst)) 10794 continue; 10795 CommonCandidates.push_back(RdxVal); 10796 TrackedToOrig.try_emplace(RdxVal, RV); 10797 } 10798 SmallVector<int> Mask; 10799 if (isFixedVectorShuffle(CommonCandidates, Mask)) { 10800 ++I; 10801 Candidates.swap(CommonCandidates); 10802 ShuffledExtracts = true; 10803 } 10804 } 10805 } 10806 unsigned NumReducedVals = Candidates.size(); 10807 if (NumReducedVals < ReductionLimit) 10808 continue; 10809 10810 unsigned MaxVecRegSize = V.getMaxVecRegSize(); 10811 unsigned EltSize = V.getVectorElementSize(Candidates[0]); 10812 unsigned MaxElts = RegMaxNumber * PowerOf2Floor(MaxVecRegSize / EltSize); 10813 10814 unsigned ReduxWidth = std::min<unsigned>( 10815 PowerOf2Floor(NumReducedVals), std::max(RedValsMaxNumber, MaxElts)); 10816 unsigned Start = 0; 10817 unsigned Pos = Start; 10818 // Restarts vectorization attempt with lower vector factor. 10819 unsigned PrevReduxWidth = ReduxWidth; 10820 bool CheckForReusedReductionOpsLocal = false; 10821 auto &&AdjustReducedVals = [&Pos, &Start, &ReduxWidth, NumReducedVals, 10822 &CheckForReusedReductionOpsLocal, 10823 &PrevReduxWidth, &V, 10824 &IgnoreList](bool IgnoreVL = false) { 10825 bool IsAnyRedOpGathered = !IgnoreVL && V.isAnyGathered(IgnoreList); 10826 if (!CheckForReusedReductionOpsLocal && PrevReduxWidth == ReduxWidth) { 10827 // Check if any of the reduction ops are gathered. If so, worth 10828 // trying again with less number of reduction ops. 10829 CheckForReusedReductionOpsLocal |= IsAnyRedOpGathered; 10830 } 10831 ++Pos; 10832 if (Pos < NumReducedVals - ReduxWidth + 1) 10833 return IsAnyRedOpGathered; 10834 Pos = Start; 10835 ReduxWidth /= 2; 10836 return IsAnyRedOpGathered; 10837 }; 10838 while (Pos < NumReducedVals - ReduxWidth + 1 && 10839 ReduxWidth >= ReductionLimit) { 10840 // Dependency in tree of the reduction ops - drop this attempt, try 10841 // later. 10842 if (CheckForReusedReductionOpsLocal && PrevReduxWidth != ReduxWidth && 10843 Start == 0) { 10844 CheckForReusedReductionOps = true; 10845 break; 10846 } 10847 PrevReduxWidth = ReduxWidth; 10848 ArrayRef<Value *> VL(std::next(Candidates.begin(), Pos), ReduxWidth); 10849 // Beeing analyzed already - skip. 10850 if (V.areAnalyzedReductionVals(VL)) { 10851 (void)AdjustReducedVals(/*IgnoreVL=*/true); 10852 continue; 10853 } 10854 // Early exit if any of the reduction values were deleted during 10855 // previous vectorization attempts. 10856 if (any_of(VL, [&V](Value *RedVal) { 10857 auto *RedValI = dyn_cast<Instruction>(RedVal); 10858 if (!RedValI) 10859 return false; 10860 return V.isDeleted(RedValI); 10861 })) 10862 break; 10863 V.buildTree(VL, IgnoreList); 10864 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) { 10865 if (!AdjustReducedVals()) 10866 V.analyzedReductionVals(VL); 10867 continue; 10868 } 10869 if (V.isLoadCombineReductionCandidate(RdxKind)) { 10870 if (!AdjustReducedVals()) 10871 V.analyzedReductionVals(VL); 10872 continue; 10873 } 10874 V.reorderTopToBottom(); 10875 // No need to reorder the root node at all. 10876 V.reorderBottomToTop(/*IgnoreReorder=*/true); 10877 // Keep extracted other reduction values, if they are used in the 10878 // vectorization trees. 10879 BoUpSLP::ExtraValueToDebugLocsMap LocalExternallyUsedValues( 10880 ExternallyUsedValues); 10881 for (unsigned Cnt = 0, Sz = ReducedVals.size(); Cnt < Sz; ++Cnt) { 10882 if (Cnt == I || (ShuffledExtracts && Cnt == I - 1)) 10883 continue; 10884 for_each(ReducedVals[Cnt], 10885 [&LocalExternallyUsedValues, &TrackedVals](Value *V) { 10886 if (isa<Instruction>(V)) 10887 LocalExternallyUsedValues[TrackedVals[V]]; 10888 }); 10889 } 10890 // Number of uses of the candidates in the vector of values. 10891 SmallDenseMap<Value *, unsigned> NumUses; 10892 for (unsigned Cnt = 0; Cnt < Pos; ++Cnt) { 10893 Value *V = Candidates[Cnt]; 10894 if (NumUses.count(V) > 0) 10895 continue; 10896 NumUses[V] = std::count(VL.begin(), VL.end(), V); 10897 } 10898 for (unsigned Cnt = Pos + ReduxWidth; Cnt < NumReducedVals; ++Cnt) { 10899 Value *V = Candidates[Cnt]; 10900 if (NumUses.count(V) > 0) 10901 continue; 10902 NumUses[V] = std::count(VL.begin(), VL.end(), V); 10903 } 10904 // Gather externally used values. 10905 SmallPtrSet<Value *, 4> Visited; 10906 for (unsigned Cnt = 0; Cnt < Pos; ++Cnt) { 10907 Value *V = Candidates[Cnt]; 10908 if (!Visited.insert(V).second) 10909 continue; 10910 unsigned NumOps = VectorizedVals.lookup(V) + NumUses[V]; 10911 if (NumOps != ReducedValsToOps.find(V)->second.size()) 10912 LocalExternallyUsedValues[V]; 10913 } 10914 for (unsigned Cnt = Pos + ReduxWidth; Cnt < NumReducedVals; ++Cnt) { 10915 Value *V = Candidates[Cnt]; 10916 if (!Visited.insert(V).second) 10917 continue; 10918 unsigned NumOps = VectorizedVals.lookup(V) + NumUses[V]; 10919 if (NumOps != ReducedValsToOps.find(V)->second.size()) 10920 LocalExternallyUsedValues[V]; 10921 } 10922 V.buildExternalUses(LocalExternallyUsedValues); 10923 10924 V.computeMinimumValueSizes(); 10925 10926 // Intersect the fast-math-flags from all reduction operations. 10927 FastMathFlags RdxFMF; 10928 RdxFMF.set(); 10929 for (Value *U : IgnoreList) 10930 if (auto *FPMO = dyn_cast<FPMathOperator>(U)) 10931 RdxFMF &= FPMO->getFastMathFlags(); 10932 // Estimate cost. 10933 InstructionCost TreeCost = V.getTreeCost(VL); 10934 InstructionCost ReductionCost = 10935 getReductionCost(TTI, VL, ReduxWidth, RdxFMF); 10936 InstructionCost Cost = TreeCost + ReductionCost; 10937 if (!Cost.isValid()) { 10938 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 10939 return nullptr; 10940 } 10941 if (Cost >= -SLPCostThreshold) { 10942 V.getORE()->emit([&]() { 10943 return OptimizationRemarkMissed( 10944 SV_NAME, "HorSLPNotBeneficial", 10945 ReducedValsToOps.find(VL[0])->second.front()) 10946 << "Vectorizing horizontal reduction is possible" 10947 << "but not beneficial with cost " << ore::NV("Cost", Cost) 10948 << " and threshold " 10949 << ore::NV("Threshold", -SLPCostThreshold); 10950 }); 10951 if (!AdjustReducedVals()) 10952 V.analyzedReductionVals(VL); 10953 continue; 10954 } 10955 10956 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 10957 << Cost << ". (HorRdx)\n"); 10958 V.getORE()->emit([&]() { 10959 return OptimizationRemark( 10960 SV_NAME, "VectorizedHorizontalReduction", 10961 ReducedValsToOps.find(VL[0])->second.front()) 10962 << "Vectorized horizontal reduction with cost " 10963 << ore::NV("Cost", Cost) << " and with tree size " 10964 << ore::NV("TreeSize", V.getTreeSize()); 10965 }); 10966 10967 Builder.setFastMathFlags(RdxFMF); 10968 10969 // Vectorize a tree. 10970 Value *VectorizedRoot = V.vectorizeTree(LocalExternallyUsedValues); 10971 10972 // Emit a reduction. If the root is a select (min/max idiom), the insert 10973 // point is the compare condition of that select. 10974 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 10975 if (IsCmpSelMinMax) 10976 Builder.SetInsertPoint(GetCmpForMinMaxReduction(RdxRootInst)); 10977 else 10978 Builder.SetInsertPoint(RdxRootInst); 10979 10980 // To prevent poison from leaking across what used to be sequential, 10981 // safe, scalar boolean logic operations, the reduction operand must be 10982 // frozen. 10983 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 10984 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 10985 10986 Value *ReducedSubTree = 10987 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 10988 10989 if (!VectorizedTree) { 10990 // Initialize the final value in the reduction. 10991 VectorizedTree = ReducedSubTree; 10992 } else { 10993 // Update the final value in the reduction. 10994 Builder.SetCurrentDebugLocation( 10995 cast<Instruction>(ReductionOps.front().front())->getDebugLoc()); 10996 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 10997 ReducedSubTree, "op.rdx", ReductionOps); 10998 } 10999 // Count vectorized reduced values to exclude them from final reduction. 11000 for (Value *V : VL) 11001 ++VectorizedVals.try_emplace(TrackedToOrig.find(V)->second, 0) 11002 .first->getSecond(); 11003 Pos += ReduxWidth; 11004 Start = Pos; 11005 ReduxWidth = PowerOf2Floor(NumReducedVals - Pos); 11006 } 11007 } 11008 if (VectorizedTree) { 11009 // Finish the reduction. 11010 // Need to add extra arguments and not vectorized possible reduction 11011 // values. 11012 // Try to avoid dependencies between the scalar remainders after 11013 // reductions. 11014 auto &&FinalGen = 11015 [this, &Builder, 11016 &TrackedVals](ArrayRef<std::pair<Instruction *, Value *>> InstVals) { 11017 unsigned Sz = InstVals.size(); 11018 SmallVector<std::pair<Instruction *, Value *>> ExtraReds(Sz / 2 + 11019 Sz % 2); 11020 for (unsigned I = 0, E = (Sz / 2) * 2; I < E; I += 2) { 11021 Instruction *RedOp = InstVals[I + 1].first; 11022 Builder.SetCurrentDebugLocation(RedOp->getDebugLoc()); 11023 Value *RdxVal1 = InstVals[I].second; 11024 Value *StableRdxVal1 = RdxVal1; 11025 auto It1 = TrackedVals.find(RdxVal1); 11026 if (It1 != TrackedVals.end()) 11027 StableRdxVal1 = It1->second; 11028 Value *RdxVal2 = InstVals[I + 1].second; 11029 Value *StableRdxVal2 = RdxVal2; 11030 auto It2 = TrackedVals.find(RdxVal2); 11031 if (It2 != TrackedVals.end()) 11032 StableRdxVal2 = It2->second; 11033 Value *ExtraRed = createOp(Builder, RdxKind, StableRdxVal1, 11034 StableRdxVal2, "op.rdx", ReductionOps); 11035 ExtraReds[I / 2] = std::make_pair(InstVals[I].first, ExtraRed); 11036 } 11037 if (Sz % 2 == 1) 11038 ExtraReds[Sz / 2] = InstVals.back(); 11039 return ExtraReds; 11040 }; 11041 SmallVector<std::pair<Instruction *, Value *>> ExtraReductions; 11042 SmallPtrSet<Value *, 8> Visited; 11043 for (ArrayRef<Value *> Candidates : ReducedVals) { 11044 for (Value *RdxVal : Candidates) { 11045 if (!Visited.insert(RdxVal).second) 11046 continue; 11047 unsigned NumOps = VectorizedVals.lookup(RdxVal); 11048 for (Instruction *RedOp : 11049 makeArrayRef(ReducedValsToOps.find(RdxVal)->second) 11050 .drop_back(NumOps)) 11051 ExtraReductions.emplace_back(RedOp, RdxVal); 11052 } 11053 } 11054 for (auto &Pair : ExternallyUsedValues) { 11055 // Add each externally used value to the final reduction. 11056 for (auto *I : Pair.second) 11057 ExtraReductions.emplace_back(I, Pair.first); 11058 } 11059 // Iterate through all not-vectorized reduction values/extra arguments. 11060 while (ExtraReductions.size() > 1) { 11061 SmallVector<std::pair<Instruction *, Value *>> NewReds = 11062 FinalGen(ExtraReductions); 11063 ExtraReductions.swap(NewReds); 11064 } 11065 // Final reduction. 11066 if (ExtraReductions.size() == 1) { 11067 Instruction *RedOp = ExtraReductions.back().first; 11068 Builder.SetCurrentDebugLocation(RedOp->getDebugLoc()); 11069 Value *RdxVal = ExtraReductions.back().second; 11070 Value *StableRdxVal = RdxVal; 11071 auto It = TrackedVals.find(RdxVal); 11072 if (It != TrackedVals.end()) 11073 StableRdxVal = It->second; 11074 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 11075 StableRdxVal, "op.rdx", ReductionOps); 11076 } 11077 11078 ReductionRoot->replaceAllUsesWith(VectorizedTree); 11079 11080 // The original scalar reduction is expected to have no remaining 11081 // uses outside the reduction tree itself. Assert that we got this 11082 // correct, replace internal uses with undef, and mark for eventual 11083 // deletion. 11084 #ifndef NDEBUG 11085 SmallSet<Value *, 4> IgnoreSet; 11086 for (ArrayRef<Value *> RdxOps : ReductionOps) 11087 IgnoreSet.insert(RdxOps.begin(), RdxOps.end()); 11088 #endif 11089 for (ArrayRef<Value *> RdxOps : ReductionOps) { 11090 for (Value *Ignore : RdxOps) { 11091 if (!Ignore) 11092 continue; 11093 #ifndef NDEBUG 11094 for (auto *U : Ignore->users()) { 11095 assert(IgnoreSet.count(U) && 11096 "All users must be either in the reduction ops list."); 11097 } 11098 #endif 11099 if (!Ignore->use_empty()) { 11100 Value *Undef = UndefValue::get(Ignore->getType()); 11101 Ignore->replaceAllUsesWith(Undef); 11102 } 11103 V.eraseInstruction(cast<Instruction>(Ignore)); 11104 } 11105 } 11106 } else if (!CheckForReusedReductionOps) { 11107 for (ReductionOpsType &RdxOps : ReductionOps) 11108 for (Value *RdxOp : RdxOps) 11109 V.analyzedReductionRoot(cast<Instruction>(RdxOp)); 11110 } 11111 return VectorizedTree; 11112 } 11113 11114 private: 11115 /// Calculate the cost of a reduction. 11116 InstructionCost getReductionCost(TargetTransformInfo *TTI, 11117 ArrayRef<Value *> ReducedVals, 11118 unsigned ReduxWidth, FastMathFlags FMF) { 11119 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 11120 Value *FirstReducedVal = ReducedVals.front(); 11121 Type *ScalarTy = FirstReducedVal->getType(); 11122 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 11123 InstructionCost VectorCost = 0, ScalarCost; 11124 // If all of the reduced values are constant, the vector cost is 0, since 11125 // the reduction value can be calculated at the compile time. 11126 bool AllConsts = all_of(ReducedVals, isConstant); 11127 switch (RdxKind) { 11128 case RecurKind::Add: 11129 case RecurKind::Mul: 11130 case RecurKind::Or: 11131 case RecurKind::And: 11132 case RecurKind::Xor: 11133 case RecurKind::FAdd: 11134 case RecurKind::FMul: { 11135 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 11136 if (!AllConsts) 11137 VectorCost = 11138 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 11139 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 11140 break; 11141 } 11142 case RecurKind::FMax: 11143 case RecurKind::FMin: { 11144 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 11145 if (!AllConsts) { 11146 auto *VecCondTy = 11147 cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 11148 VectorCost = 11149 TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 11150 /*IsUnsigned=*/false, CostKind); 11151 } 11152 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 11153 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, 11154 SclCondTy, RdxPred, CostKind) + 11155 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 11156 SclCondTy, RdxPred, CostKind); 11157 break; 11158 } 11159 case RecurKind::SMax: 11160 case RecurKind::SMin: 11161 case RecurKind::UMax: 11162 case RecurKind::UMin: { 11163 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 11164 if (!AllConsts) { 11165 auto *VecCondTy = 11166 cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 11167 bool IsUnsigned = 11168 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 11169 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 11170 IsUnsigned, CostKind); 11171 } 11172 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 11173 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, 11174 SclCondTy, RdxPred, CostKind) + 11175 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 11176 SclCondTy, RdxPred, CostKind); 11177 break; 11178 } 11179 default: 11180 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 11181 } 11182 11183 // Scalar cost is repeated for N-1 elements. 11184 ScalarCost *= (ReduxWidth - 1); 11185 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 11186 << " for reduction that starts with " << *FirstReducedVal 11187 << " (It is a splitting reduction)\n"); 11188 return VectorCost - ScalarCost; 11189 } 11190 11191 /// Emit a horizontal reduction of the vectorized value. 11192 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 11193 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 11194 assert(VectorizedValue && "Need to have a vectorized tree node"); 11195 assert(isPowerOf2_32(ReduxWidth) && 11196 "We only handle power-of-two reductions for now"); 11197 assert(RdxKind != RecurKind::FMulAdd && 11198 "A call to the llvm.fmuladd intrinsic is not handled yet"); 11199 11200 ++NumVectorInstructions; 11201 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind); 11202 } 11203 }; 11204 11205 } // end anonymous namespace 11206 11207 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 11208 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 11209 return cast<FixedVectorType>(IE->getType())->getNumElements(); 11210 11211 unsigned AggregateSize = 1; 11212 auto *IV = cast<InsertValueInst>(InsertInst); 11213 Type *CurrentType = IV->getType(); 11214 do { 11215 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 11216 for (auto *Elt : ST->elements()) 11217 if (Elt != ST->getElementType(0)) // check homogeneity 11218 return None; 11219 AggregateSize *= ST->getNumElements(); 11220 CurrentType = ST->getElementType(0); 11221 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 11222 AggregateSize *= AT->getNumElements(); 11223 CurrentType = AT->getElementType(); 11224 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 11225 AggregateSize *= VT->getNumElements(); 11226 return AggregateSize; 11227 } else if (CurrentType->isSingleValueType()) { 11228 return AggregateSize; 11229 } else { 11230 return None; 11231 } 11232 } while (true); 11233 } 11234 11235 static void findBuildAggregate_rec(Instruction *LastInsertInst, 11236 TargetTransformInfo *TTI, 11237 SmallVectorImpl<Value *> &BuildVectorOpds, 11238 SmallVectorImpl<Value *> &InsertElts, 11239 unsigned OperandOffset) { 11240 do { 11241 Value *InsertedOperand = LastInsertInst->getOperand(1); 11242 Optional<unsigned> OperandIndex = 11243 getInsertIndex(LastInsertInst, OperandOffset); 11244 if (!OperandIndex) 11245 return; 11246 if (isa<InsertElementInst>(InsertedOperand) || 11247 isa<InsertValueInst>(InsertedOperand)) { 11248 findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 11249 BuildVectorOpds, InsertElts, *OperandIndex); 11250 11251 } else { 11252 BuildVectorOpds[*OperandIndex] = InsertedOperand; 11253 InsertElts[*OperandIndex] = LastInsertInst; 11254 } 11255 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 11256 } while (LastInsertInst != nullptr && 11257 (isa<InsertValueInst>(LastInsertInst) || 11258 isa<InsertElementInst>(LastInsertInst)) && 11259 LastInsertInst->hasOneUse()); 11260 } 11261 11262 /// Recognize construction of vectors like 11263 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 11264 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 11265 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 11266 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 11267 /// starting from the last insertelement or insertvalue instruction. 11268 /// 11269 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 11270 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 11271 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 11272 /// 11273 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 11274 /// 11275 /// \return true if it matches. 11276 static bool findBuildAggregate(Instruction *LastInsertInst, 11277 TargetTransformInfo *TTI, 11278 SmallVectorImpl<Value *> &BuildVectorOpds, 11279 SmallVectorImpl<Value *> &InsertElts) { 11280 11281 assert((isa<InsertElementInst>(LastInsertInst) || 11282 isa<InsertValueInst>(LastInsertInst)) && 11283 "Expected insertelement or insertvalue instruction!"); 11284 11285 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 11286 "Expected empty result vectors!"); 11287 11288 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 11289 if (!AggregateSize) 11290 return false; 11291 BuildVectorOpds.resize(*AggregateSize); 11292 InsertElts.resize(*AggregateSize); 11293 11294 findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 0); 11295 llvm::erase_value(BuildVectorOpds, nullptr); 11296 llvm::erase_value(InsertElts, nullptr); 11297 if (BuildVectorOpds.size() >= 2) 11298 return true; 11299 11300 return false; 11301 } 11302 11303 /// Try and get a reduction value from a phi node. 11304 /// 11305 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 11306 /// if they come from either \p ParentBB or a containing loop latch. 11307 /// 11308 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 11309 /// if not possible. 11310 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 11311 BasicBlock *ParentBB, LoopInfo *LI) { 11312 // There are situations where the reduction value is not dominated by the 11313 // reduction phi. Vectorizing such cases has been reported to cause 11314 // miscompiles. See PR25787. 11315 auto DominatedReduxValue = [&](Value *R) { 11316 return isa<Instruction>(R) && 11317 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 11318 }; 11319 11320 Value *Rdx = nullptr; 11321 11322 // Return the incoming value if it comes from the same BB as the phi node. 11323 if (P->getIncomingBlock(0) == ParentBB) { 11324 Rdx = P->getIncomingValue(0); 11325 } else if (P->getIncomingBlock(1) == ParentBB) { 11326 Rdx = P->getIncomingValue(1); 11327 } 11328 11329 if (Rdx && DominatedReduxValue(Rdx)) 11330 return Rdx; 11331 11332 // Otherwise, check whether we have a loop latch to look at. 11333 Loop *BBL = LI->getLoopFor(ParentBB); 11334 if (!BBL) 11335 return nullptr; 11336 BasicBlock *BBLatch = BBL->getLoopLatch(); 11337 if (!BBLatch) 11338 return nullptr; 11339 11340 // There is a loop latch, return the incoming value if it comes from 11341 // that. This reduction pattern occasionally turns up. 11342 if (P->getIncomingBlock(0) == BBLatch) { 11343 Rdx = P->getIncomingValue(0); 11344 } else if (P->getIncomingBlock(1) == BBLatch) { 11345 Rdx = P->getIncomingValue(1); 11346 } 11347 11348 if (Rdx && DominatedReduxValue(Rdx)) 11349 return Rdx; 11350 11351 return nullptr; 11352 } 11353 11354 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 11355 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 11356 return true; 11357 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 11358 return true; 11359 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 11360 return true; 11361 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 11362 return true; 11363 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 11364 return true; 11365 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 11366 return true; 11367 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 11368 return true; 11369 return false; 11370 } 11371 11372 /// Attempt to reduce a horizontal reduction. 11373 /// If it is legal to match a horizontal reduction feeding the phi node \a P 11374 /// with reduction operators \a Root (or one of its operands) in a basic block 11375 /// \a BB, then check if it can be done. If horizontal reduction is not found 11376 /// and root instruction is a binary operation, vectorization of the operands is 11377 /// attempted. 11378 /// \returns true if a horizontal reduction was matched and reduced or operands 11379 /// of one of the binary instruction were vectorized. 11380 /// \returns false if a horizontal reduction was not matched (or not possible) 11381 /// or no vectorization of any binary operation feeding \a Root instruction was 11382 /// performed. 11383 static bool tryToVectorizeHorReductionOrInstOperands( 11384 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 11385 TargetTransformInfo *TTI, ScalarEvolution &SE, const DataLayout &DL, 11386 const TargetLibraryInfo &TLI, 11387 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 11388 if (!ShouldVectorizeHor) 11389 return false; 11390 11391 if (!Root) 11392 return false; 11393 11394 if (Root->getParent() != BB || isa<PHINode>(Root)) 11395 return false; 11396 // Start analysis starting from Root instruction. If horizontal reduction is 11397 // found, try to vectorize it. If it is not a horizontal reduction or 11398 // vectorization is not possible or not effective, and currently analyzed 11399 // instruction is a binary operation, try to vectorize the operands, using 11400 // pre-order DFS traversal order. If the operands were not vectorized, repeat 11401 // the same procedure considering each operand as a possible root of the 11402 // horizontal reduction. 11403 // Interrupt the process if the Root instruction itself was vectorized or all 11404 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 11405 // Skip the analysis of CmpInsts. Compiler implements postanalysis of the 11406 // CmpInsts so we can skip extra attempts in 11407 // tryToVectorizeHorReductionOrInstOperands and save compile time. 11408 std::queue<std::pair<Instruction *, unsigned>> Stack; 11409 Stack.emplace(Root, 0); 11410 SmallPtrSet<Value *, 8> VisitedInstrs; 11411 SmallVector<WeakTrackingVH> PostponedInsts; 11412 bool Res = false; 11413 auto &&TryToReduce = [TTI, &SE, &DL, &P, &R, &TLI](Instruction *Inst, 11414 Value *&B0, 11415 Value *&B1) -> Value * { 11416 if (R.isAnalyzedReductionRoot(Inst)) 11417 return nullptr; 11418 bool IsBinop = matchRdxBop(Inst, B0, B1); 11419 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 11420 if (IsBinop || IsSelect) { 11421 HorizontalReduction HorRdx; 11422 if (HorRdx.matchAssociativeReduction(P, Inst, SE, DL, TLI)) 11423 return HorRdx.tryToReduce(R, TTI); 11424 } 11425 return nullptr; 11426 }; 11427 while (!Stack.empty()) { 11428 Instruction *Inst; 11429 unsigned Level; 11430 std::tie(Inst, Level) = Stack.front(); 11431 Stack.pop(); 11432 // Do not try to analyze instruction that has already been vectorized. 11433 // This may happen when we vectorize instruction operands on a previous 11434 // iteration while stack was populated before that happened. 11435 if (R.isDeleted(Inst)) 11436 continue; 11437 Value *B0 = nullptr, *B1 = nullptr; 11438 if (Value *V = TryToReduce(Inst, B0, B1)) { 11439 Res = true; 11440 // Set P to nullptr to avoid re-analysis of phi node in 11441 // matchAssociativeReduction function unless this is the root node. 11442 P = nullptr; 11443 if (auto *I = dyn_cast<Instruction>(V)) { 11444 // Try to find another reduction. 11445 Stack.emplace(I, Level); 11446 continue; 11447 } 11448 } else { 11449 bool IsBinop = B0 && B1; 11450 if (P && IsBinop) { 11451 Inst = dyn_cast<Instruction>(B0); 11452 if (Inst == P) 11453 Inst = dyn_cast<Instruction>(B1); 11454 if (!Inst) { 11455 // Set P to nullptr to avoid re-analysis of phi node in 11456 // matchAssociativeReduction function unless this is the root node. 11457 P = nullptr; 11458 continue; 11459 } 11460 } 11461 // Set P to nullptr to avoid re-analysis of phi node in 11462 // matchAssociativeReduction function unless this is the root node. 11463 P = nullptr; 11464 // Do not try to vectorize CmpInst operands, this is done separately. 11465 // Final attempt for binop args vectorization should happen after the loop 11466 // to try to find reductions. 11467 if (!isa<CmpInst, InsertElementInst, InsertValueInst>(Inst)) 11468 PostponedInsts.push_back(Inst); 11469 } 11470 11471 // Try to vectorize operands. 11472 // Continue analysis for the instruction from the same basic block only to 11473 // save compile time. 11474 if (++Level < RecursionMaxDepth) 11475 for (auto *Op : Inst->operand_values()) 11476 if (VisitedInstrs.insert(Op).second) 11477 if (auto *I = dyn_cast<Instruction>(Op)) 11478 // Do not try to vectorize CmpInst operands, this is done 11479 // separately. 11480 if (!isa<PHINode, CmpInst, InsertElementInst, InsertValueInst>(I) && 11481 !R.isDeleted(I) && I->getParent() == BB) 11482 Stack.emplace(I, Level); 11483 } 11484 // Try to vectorized binops where reductions were not found. 11485 for (Value *V : PostponedInsts) 11486 if (auto *Inst = dyn_cast<Instruction>(V)) 11487 if (!R.isDeleted(Inst)) 11488 Res |= Vectorize(Inst, R); 11489 return Res; 11490 } 11491 11492 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 11493 BasicBlock *BB, BoUpSLP &R, 11494 TargetTransformInfo *TTI) { 11495 auto *I = dyn_cast_or_null<Instruction>(V); 11496 if (!I) 11497 return false; 11498 11499 if (!isa<BinaryOperator>(I)) 11500 P = nullptr; 11501 // Try to match and vectorize a horizontal reduction. 11502 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 11503 return tryToVectorize(I, R); 11504 }; 11505 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, *SE, *DL, 11506 *TLI, ExtraVectorization); 11507 } 11508 11509 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 11510 BasicBlock *BB, BoUpSLP &R) { 11511 const DataLayout &DL = BB->getModule()->getDataLayout(); 11512 if (!R.canMapToVector(IVI->getType(), DL)) 11513 return false; 11514 11515 SmallVector<Value *, 16> BuildVectorOpds; 11516 SmallVector<Value *, 16> BuildVectorInsts; 11517 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 11518 return false; 11519 11520 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 11521 // Aggregate value is unlikely to be processed in vector register. 11522 return tryToVectorizeList(BuildVectorOpds, R); 11523 } 11524 11525 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 11526 BasicBlock *BB, BoUpSLP &R) { 11527 SmallVector<Value *, 16> BuildVectorInsts; 11528 SmallVector<Value *, 16> BuildVectorOpds; 11529 SmallVector<int> Mask; 11530 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 11531 (llvm::all_of( 11532 BuildVectorOpds, 11533 [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) && 11534 isFixedVectorShuffle(BuildVectorOpds, Mask))) 11535 return false; 11536 11537 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 11538 return tryToVectorizeList(BuildVectorInsts, R); 11539 } 11540 11541 template <typename T> 11542 static bool 11543 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, 11544 function_ref<unsigned(T *)> Limit, 11545 function_ref<bool(T *, T *)> Comparator, 11546 function_ref<bool(T *, T *)> AreCompatible, 11547 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper, 11548 bool LimitForRegisterSize) { 11549 bool Changed = false; 11550 // Sort by type, parent, operands. 11551 stable_sort(Incoming, Comparator); 11552 11553 // Try to vectorize elements base on their type. 11554 SmallVector<T *> Candidates; 11555 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { 11556 // Look for the next elements with the same type, parent and operand 11557 // kinds. 11558 auto *SameTypeIt = IncIt; 11559 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) 11560 ++SameTypeIt; 11561 11562 // Try to vectorize them. 11563 unsigned NumElts = (SameTypeIt - IncIt); 11564 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" 11565 << NumElts << ")\n"); 11566 // The vectorization is a 3-state attempt: 11567 // 1. Try to vectorize instructions with the same/alternate opcodes with the 11568 // size of maximal register at first. 11569 // 2. Try to vectorize remaining instructions with the same type, if 11570 // possible. This may result in the better vectorization results rather than 11571 // if we try just to vectorize instructions with the same/alternate opcodes. 11572 // 3. Final attempt to try to vectorize all instructions with the 11573 // same/alternate ops only, this may result in some extra final 11574 // vectorization. 11575 if (NumElts > 1 && 11576 TryToVectorizeHelper(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) { 11577 // Success start over because instructions might have been changed. 11578 Changed = true; 11579 } else if (NumElts < Limit(*IncIt) && 11580 (Candidates.empty() || 11581 Candidates.front()->getType() == (*IncIt)->getType())) { 11582 Candidates.append(IncIt, std::next(IncIt, NumElts)); 11583 } 11584 // Final attempt to vectorize instructions with the same types. 11585 if (Candidates.size() > 1 && 11586 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { 11587 if (TryToVectorizeHelper(Candidates, /*LimitForRegisterSize=*/false)) { 11588 // Success start over because instructions might have been changed. 11589 Changed = true; 11590 } else if (LimitForRegisterSize) { 11591 // Try to vectorize using small vectors. 11592 for (auto *It = Candidates.begin(), *End = Candidates.end(); 11593 It != End;) { 11594 auto *SameTypeIt = It; 11595 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) 11596 ++SameTypeIt; 11597 unsigned NumElts = (SameTypeIt - It); 11598 if (NumElts > 1 && TryToVectorizeHelper(makeArrayRef(It, NumElts), 11599 /*LimitForRegisterSize=*/false)) 11600 Changed = true; 11601 It = SameTypeIt; 11602 } 11603 } 11604 Candidates.clear(); 11605 } 11606 11607 // Start over at the next instruction of a different type (or the end). 11608 IncIt = SameTypeIt; 11609 } 11610 return Changed; 11611 } 11612 11613 /// Compare two cmp instructions. If IsCompatibility is true, function returns 11614 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding 11615 /// operands. If IsCompatibility is false, function implements strict weak 11616 /// ordering relation between two cmp instructions, returning true if the first 11617 /// instruction is "less" than the second, i.e. its predicate is less than the 11618 /// predicate of the second or the operands IDs are less than the operands IDs 11619 /// of the second cmp instruction. 11620 template <bool IsCompatibility> 11621 static bool compareCmp(Value *V, Value *V2, 11622 function_ref<bool(Instruction *)> IsDeleted) { 11623 auto *CI1 = cast<CmpInst>(V); 11624 auto *CI2 = cast<CmpInst>(V2); 11625 if (IsDeleted(CI2) || !isValidElementType(CI2->getType())) 11626 return false; 11627 if (CI1->getOperand(0)->getType()->getTypeID() < 11628 CI2->getOperand(0)->getType()->getTypeID()) 11629 return !IsCompatibility; 11630 if (CI1->getOperand(0)->getType()->getTypeID() > 11631 CI2->getOperand(0)->getType()->getTypeID()) 11632 return false; 11633 CmpInst::Predicate Pred1 = CI1->getPredicate(); 11634 CmpInst::Predicate Pred2 = CI2->getPredicate(); 11635 CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1); 11636 CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2); 11637 CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1); 11638 CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2); 11639 if (BasePred1 < BasePred2) 11640 return !IsCompatibility; 11641 if (BasePred1 > BasePred2) 11642 return false; 11643 // Compare operands. 11644 bool LEPreds = Pred1 <= Pred2; 11645 bool GEPreds = Pred1 >= Pred2; 11646 for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) { 11647 auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1); 11648 auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1); 11649 if (Op1->getValueID() < Op2->getValueID()) 11650 return !IsCompatibility; 11651 if (Op1->getValueID() > Op2->getValueID()) 11652 return false; 11653 if (auto *I1 = dyn_cast<Instruction>(Op1)) 11654 if (auto *I2 = dyn_cast<Instruction>(Op2)) { 11655 if (I1->getParent() != I2->getParent()) 11656 return false; 11657 InstructionsState S = getSameOpcode({I1, I2}); 11658 if (S.getOpcode()) 11659 continue; 11660 return false; 11661 } 11662 } 11663 return IsCompatibility; 11664 } 11665 11666 bool SLPVectorizerPass::vectorizeSimpleInstructions( 11667 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 11668 bool AtTerminator) { 11669 bool OpsChanged = false; 11670 SmallVector<Instruction *, 4> PostponedCmps; 11671 for (auto *I : reverse(Instructions)) { 11672 if (R.isDeleted(I)) 11673 continue; 11674 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) { 11675 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 11676 } else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) { 11677 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 11678 } else if (isa<CmpInst>(I)) { 11679 PostponedCmps.push_back(I); 11680 continue; 11681 } 11682 // Try to find reductions in buildvector sequnces. 11683 OpsChanged |= vectorizeRootInstruction(nullptr, I, BB, R, TTI); 11684 } 11685 if (AtTerminator) { 11686 // Try to find reductions first. 11687 for (Instruction *I : PostponedCmps) { 11688 if (R.isDeleted(I)) 11689 continue; 11690 for (Value *Op : I->operands()) 11691 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 11692 } 11693 // Try to vectorize operands as vector bundles. 11694 for (Instruction *I : PostponedCmps) { 11695 if (R.isDeleted(I)) 11696 continue; 11697 OpsChanged |= tryToVectorize(I, R); 11698 } 11699 // Try to vectorize list of compares. 11700 // Sort by type, compare predicate, etc. 11701 auto &&CompareSorter = [&R](Value *V, Value *V2) { 11702 return compareCmp<false>(V, V2, 11703 [&R](Instruction *I) { return R.isDeleted(I); }); 11704 }; 11705 11706 auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) { 11707 if (V1 == V2) 11708 return true; 11709 return compareCmp<true>(V1, V2, 11710 [&R](Instruction *I) { return R.isDeleted(I); }); 11711 }; 11712 auto Limit = [&R](Value *V) { 11713 unsigned EltSize = R.getVectorElementSize(V); 11714 return std::max(2U, R.getMaxVecRegSize() / EltSize); 11715 }; 11716 11717 SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end()); 11718 OpsChanged |= tryToVectorizeSequence<Value>( 11719 Vals, Limit, CompareSorter, AreCompatibleCompares, 11720 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 11721 // Exclude possible reductions from other blocks. 11722 bool ArePossiblyReducedInOtherBlock = 11723 any_of(Candidates, [](Value *V) { 11724 return any_of(V->users(), [V](User *U) { 11725 return isa<SelectInst>(U) && 11726 cast<SelectInst>(U)->getParent() != 11727 cast<Instruction>(V)->getParent(); 11728 }); 11729 }); 11730 if (ArePossiblyReducedInOtherBlock) 11731 return false; 11732 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 11733 }, 11734 /*LimitForRegisterSize=*/true); 11735 Instructions.clear(); 11736 } else { 11737 // Insert in reverse order since the PostponedCmps vector was filled in 11738 // reverse order. 11739 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 11740 } 11741 return OpsChanged; 11742 } 11743 11744 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 11745 bool Changed = false; 11746 SmallVector<Value *, 4> Incoming; 11747 SmallPtrSet<Value *, 16> VisitedInstrs; 11748 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 11749 // node. Allows better to identify the chains that can be vectorized in the 11750 // better way. 11751 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 11752 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { 11753 assert(isValidElementType(V1->getType()) && 11754 isValidElementType(V2->getType()) && 11755 "Expected vectorizable types only."); 11756 // It is fine to compare type IDs here, since we expect only vectorizable 11757 // types, like ints, floats and pointers, we don't care about other type. 11758 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 11759 return true; 11760 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 11761 return false; 11762 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 11763 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 11764 if (Opcodes1.size() < Opcodes2.size()) 11765 return true; 11766 if (Opcodes1.size() > Opcodes2.size()) 11767 return false; 11768 Optional<bool> ConstOrder; 11769 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 11770 // Undefs are compatible with any other value. 11771 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) { 11772 if (!ConstOrder) 11773 ConstOrder = 11774 !isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]); 11775 continue; 11776 } 11777 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 11778 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 11779 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 11780 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 11781 if (!NodeI1) 11782 return NodeI2 != nullptr; 11783 if (!NodeI2) 11784 return false; 11785 assert((NodeI1 == NodeI2) == 11786 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 11787 "Different nodes should have different DFS numbers"); 11788 if (NodeI1 != NodeI2) 11789 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 11790 InstructionsState S = getSameOpcode({I1, I2}); 11791 if (S.getOpcode()) 11792 continue; 11793 return I1->getOpcode() < I2->getOpcode(); 11794 } 11795 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) { 11796 if (!ConstOrder) 11797 ConstOrder = Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID(); 11798 continue; 11799 } 11800 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 11801 return true; 11802 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 11803 return false; 11804 } 11805 return ConstOrder && *ConstOrder; 11806 }; 11807 auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 11808 if (V1 == V2) 11809 return true; 11810 if (V1->getType() != V2->getType()) 11811 return false; 11812 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 11813 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 11814 if (Opcodes1.size() != Opcodes2.size()) 11815 return false; 11816 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 11817 // Undefs are compatible with any other value. 11818 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 11819 continue; 11820 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 11821 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 11822 if (I1->getParent() != I2->getParent()) 11823 return false; 11824 InstructionsState S = getSameOpcode({I1, I2}); 11825 if (S.getOpcode()) 11826 continue; 11827 return false; 11828 } 11829 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 11830 continue; 11831 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 11832 return false; 11833 } 11834 return true; 11835 }; 11836 auto Limit = [&R](Value *V) { 11837 unsigned EltSize = R.getVectorElementSize(V); 11838 return std::max(2U, R.getMaxVecRegSize() / EltSize); 11839 }; 11840 11841 bool HaveVectorizedPhiNodes = false; 11842 do { 11843 // Collect the incoming values from the PHIs. 11844 Incoming.clear(); 11845 for (Instruction &I : *BB) { 11846 PHINode *P = dyn_cast<PHINode>(&I); 11847 if (!P) 11848 break; 11849 11850 // No need to analyze deleted, vectorized and non-vectorizable 11851 // instructions. 11852 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 11853 isValidElementType(P->getType())) 11854 Incoming.push_back(P); 11855 } 11856 11857 // Find the corresponding non-phi nodes for better matching when trying to 11858 // build the tree. 11859 for (Value *V : Incoming) { 11860 SmallVectorImpl<Value *> &Opcodes = 11861 PHIToOpcodes.try_emplace(V).first->getSecond(); 11862 if (!Opcodes.empty()) 11863 continue; 11864 SmallVector<Value *, 4> Nodes(1, V); 11865 SmallPtrSet<Value *, 4> Visited; 11866 while (!Nodes.empty()) { 11867 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 11868 if (!Visited.insert(PHI).second) 11869 continue; 11870 for (Value *V : PHI->incoming_values()) { 11871 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 11872 Nodes.push_back(PHI1); 11873 continue; 11874 } 11875 Opcodes.emplace_back(V); 11876 } 11877 } 11878 } 11879 11880 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( 11881 Incoming, Limit, PHICompare, AreCompatiblePHIs, 11882 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 11883 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 11884 }, 11885 /*LimitForRegisterSize=*/true); 11886 Changed |= HaveVectorizedPhiNodes; 11887 VisitedInstrs.insert(Incoming.begin(), Incoming.end()); 11888 } while (HaveVectorizedPhiNodes); 11889 11890 VisitedInstrs.clear(); 11891 11892 SmallVector<Instruction *, 8> PostProcessInstructions; 11893 SmallDenseSet<Instruction *, 4> KeyNodes; 11894 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 11895 // Skip instructions with scalable type. The num of elements is unknown at 11896 // compile-time for scalable type. 11897 if (isa<ScalableVectorType>(it->getType())) 11898 continue; 11899 11900 // Skip instructions marked for the deletion. 11901 if (R.isDeleted(&*it)) 11902 continue; 11903 // We may go through BB multiple times so skip the one we have checked. 11904 if (!VisitedInstrs.insert(&*it).second) { 11905 if (it->use_empty() && KeyNodes.contains(&*it) && 11906 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 11907 it->isTerminator())) { 11908 // We would like to start over since some instructions are deleted 11909 // and the iterator may become invalid value. 11910 Changed = true; 11911 it = BB->begin(); 11912 e = BB->end(); 11913 } 11914 continue; 11915 } 11916 11917 if (isa<DbgInfoIntrinsic>(it)) 11918 continue; 11919 11920 // Try to vectorize reductions that use PHINodes. 11921 if (PHINode *P = dyn_cast<PHINode>(it)) { 11922 // Check that the PHI is a reduction PHI. 11923 if (P->getNumIncomingValues() == 2) { 11924 // Try to match and vectorize a horizontal reduction. 11925 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 11926 TTI)) { 11927 Changed = true; 11928 it = BB->begin(); 11929 e = BB->end(); 11930 continue; 11931 } 11932 } 11933 // Try to vectorize the incoming values of the PHI, to catch reductions 11934 // that feed into PHIs. 11935 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 11936 // Skip if the incoming block is the current BB for now. Also, bypass 11937 // unreachable IR for efficiency and to avoid crashing. 11938 // TODO: Collect the skipped incoming values and try to vectorize them 11939 // after processing BB. 11940 if (BB == P->getIncomingBlock(I) || 11941 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 11942 continue; 11943 11944 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 11945 P->getIncomingBlock(I), R, TTI); 11946 } 11947 continue; 11948 } 11949 11950 // Ran into an instruction without users, like terminator, or function call 11951 // with ignored return value, store. Ignore unused instructions (basing on 11952 // instruction type, except for CallInst and InvokeInst). 11953 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 11954 isa<InvokeInst>(it))) { 11955 KeyNodes.insert(&*it); 11956 bool OpsChanged = false; 11957 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 11958 for (auto *V : it->operand_values()) { 11959 // Try to match and vectorize a horizontal reduction. 11960 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 11961 } 11962 } 11963 // Start vectorization of post-process list of instructions from the 11964 // top-tree instructions to try to vectorize as many instructions as 11965 // possible. 11966 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 11967 it->isTerminator()); 11968 if (OpsChanged) { 11969 // We would like to start over since some instructions are deleted 11970 // and the iterator may become invalid value. 11971 Changed = true; 11972 it = BB->begin(); 11973 e = BB->end(); 11974 continue; 11975 } 11976 } 11977 11978 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 11979 isa<InsertValueInst>(it)) 11980 PostProcessInstructions.push_back(&*it); 11981 } 11982 11983 return Changed; 11984 } 11985 11986 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 11987 auto Changed = false; 11988 for (auto &Entry : GEPs) { 11989 // If the getelementptr list has fewer than two elements, there's nothing 11990 // to do. 11991 if (Entry.second.size() < 2) 11992 continue; 11993 11994 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 11995 << Entry.second.size() << ".\n"); 11996 11997 // Process the GEP list in chunks suitable for the target's supported 11998 // vector size. If a vector register can't hold 1 element, we are done. We 11999 // are trying to vectorize the index computations, so the maximum number of 12000 // elements is based on the size of the index expression, rather than the 12001 // size of the GEP itself (the target's pointer size). 12002 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 12003 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 12004 if (MaxVecRegSize < EltSize) 12005 continue; 12006 12007 unsigned MaxElts = MaxVecRegSize / EltSize; 12008 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 12009 auto Len = std::min<unsigned>(BE - BI, MaxElts); 12010 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 12011 12012 // Initialize a set a candidate getelementptrs. Note that we use a 12013 // SetVector here to preserve program order. If the index computations 12014 // are vectorizable and begin with loads, we want to minimize the chance 12015 // of having to reorder them later. 12016 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 12017 12018 // Some of the candidates may have already been vectorized after we 12019 // initially collected them. If so, they are marked as deleted, so remove 12020 // them from the set of candidates. 12021 Candidates.remove_if( 12022 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 12023 12024 // Remove from the set of candidates all pairs of getelementptrs with 12025 // constant differences. Such getelementptrs are likely not good 12026 // candidates for vectorization in a bottom-up phase since one can be 12027 // computed from the other. We also ensure all candidate getelementptr 12028 // indices are unique. 12029 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 12030 auto *GEPI = GEPList[I]; 12031 if (!Candidates.count(GEPI)) 12032 continue; 12033 auto *SCEVI = SE->getSCEV(GEPList[I]); 12034 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 12035 auto *GEPJ = GEPList[J]; 12036 auto *SCEVJ = SE->getSCEV(GEPList[J]); 12037 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 12038 Candidates.remove(GEPI); 12039 Candidates.remove(GEPJ); 12040 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 12041 Candidates.remove(GEPJ); 12042 } 12043 } 12044 } 12045 12046 // We break out of the above computation as soon as we know there are 12047 // fewer than two candidates remaining. 12048 if (Candidates.size() < 2) 12049 continue; 12050 12051 // Add the single, non-constant index of each candidate to the bundle. We 12052 // ensured the indices met these constraints when we originally collected 12053 // the getelementptrs. 12054 SmallVector<Value *, 16> Bundle(Candidates.size()); 12055 auto BundleIndex = 0u; 12056 for (auto *V : Candidates) { 12057 auto *GEP = cast<GetElementPtrInst>(V); 12058 auto *GEPIdx = GEP->idx_begin()->get(); 12059 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 12060 Bundle[BundleIndex++] = GEPIdx; 12061 } 12062 12063 // Try and vectorize the indices. We are currently only interested in 12064 // gather-like cases of the form: 12065 // 12066 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 12067 // 12068 // where the loads of "a", the loads of "b", and the subtractions can be 12069 // performed in parallel. It's likely that detecting this pattern in a 12070 // bottom-up phase will be simpler and less costly than building a 12071 // full-blown top-down phase beginning at the consecutive loads. 12072 Changed |= tryToVectorizeList(Bundle, R); 12073 } 12074 } 12075 return Changed; 12076 } 12077 12078 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 12079 bool Changed = false; 12080 // Sort by type, base pointers and values operand. Value operands must be 12081 // compatible (have the same opcode, same parent), otherwise it is 12082 // definitely not profitable to try to vectorize them. 12083 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 12084 if (V->getPointerOperandType()->getTypeID() < 12085 V2->getPointerOperandType()->getTypeID()) 12086 return true; 12087 if (V->getPointerOperandType()->getTypeID() > 12088 V2->getPointerOperandType()->getTypeID()) 12089 return false; 12090 // UndefValues are compatible with all other values. 12091 if (isa<UndefValue>(V->getValueOperand()) || 12092 isa<UndefValue>(V2->getValueOperand())) 12093 return false; 12094 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 12095 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 12096 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 12097 DT->getNode(I1->getParent()); 12098 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 12099 DT->getNode(I2->getParent()); 12100 assert(NodeI1 && "Should only process reachable instructions"); 12101 assert(NodeI2 && "Should only process reachable instructions"); 12102 assert((NodeI1 == NodeI2) == 12103 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 12104 "Different nodes should have different DFS numbers"); 12105 if (NodeI1 != NodeI2) 12106 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 12107 InstructionsState S = getSameOpcode({I1, I2}); 12108 if (S.getOpcode()) 12109 return false; 12110 return I1->getOpcode() < I2->getOpcode(); 12111 } 12112 if (isa<Constant>(V->getValueOperand()) && 12113 isa<Constant>(V2->getValueOperand())) 12114 return false; 12115 return V->getValueOperand()->getValueID() < 12116 V2->getValueOperand()->getValueID(); 12117 }; 12118 12119 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 12120 if (V1 == V2) 12121 return true; 12122 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 12123 return false; 12124 // Undefs are compatible with any other value. 12125 if (isa<UndefValue>(V1->getValueOperand()) || 12126 isa<UndefValue>(V2->getValueOperand())) 12127 return true; 12128 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 12129 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 12130 if (I1->getParent() != I2->getParent()) 12131 return false; 12132 InstructionsState S = getSameOpcode({I1, I2}); 12133 return S.getOpcode() > 0; 12134 } 12135 if (isa<Constant>(V1->getValueOperand()) && 12136 isa<Constant>(V2->getValueOperand())) 12137 return true; 12138 return V1->getValueOperand()->getValueID() == 12139 V2->getValueOperand()->getValueID(); 12140 }; 12141 auto Limit = [&R, this](StoreInst *SI) { 12142 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 12143 return R.getMinVF(EltSize); 12144 }; 12145 12146 // Attempt to sort and vectorize each of the store-groups. 12147 for (auto &Pair : Stores) { 12148 if (Pair.second.size() < 2) 12149 continue; 12150 12151 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 12152 << Pair.second.size() << ".\n"); 12153 12154 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) 12155 continue; 12156 12157 Changed |= tryToVectorizeSequence<StoreInst>( 12158 Pair.second, Limit, StoreSorter, AreCompatibleStores, 12159 [this, &R](ArrayRef<StoreInst *> Candidates, bool) { 12160 return vectorizeStores(Candidates, R); 12161 }, 12162 /*LimitForRegisterSize=*/false); 12163 } 12164 return Changed; 12165 } 12166 12167 char SLPVectorizer::ID = 0; 12168 12169 static const char lv_name[] = "SLP Vectorizer"; 12170 12171 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 12172 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 12173 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 12174 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 12175 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 12176 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 12177 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 12178 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 12179 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 12180 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 12181 12182 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 12183