1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SetVector.h" 26 #include "llvm/ADT/SmallBitVector.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/ADT/SmallString.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/ADT/iterator.h" 32 #include "llvm/ADT/iterator_range.h" 33 #include "llvm/Analysis/AliasAnalysis.h" 34 #include "llvm/Analysis/AssumptionCache.h" 35 #include "llvm/Analysis/CodeMetrics.h" 36 #include "llvm/Analysis/DemandedBits.h" 37 #include "llvm/Analysis/GlobalsModRef.h" 38 #include "llvm/Analysis/IVDescriptors.h" 39 #include "llvm/Analysis/LoopAccessAnalysis.h" 40 #include "llvm/Analysis/LoopInfo.h" 41 #include "llvm/Analysis/MemoryLocation.h" 42 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 43 #include "llvm/Analysis/ScalarEvolution.h" 44 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 45 #include "llvm/Analysis/TargetLibraryInfo.h" 46 #include "llvm/Analysis/TargetTransformInfo.h" 47 #include "llvm/Analysis/ValueTracking.h" 48 #include "llvm/Analysis/VectorUtils.h" 49 #include "llvm/IR/Attributes.h" 50 #include "llvm/IR/BasicBlock.h" 51 #include "llvm/IR/Constant.h" 52 #include "llvm/IR/Constants.h" 53 #include "llvm/IR/DataLayout.h" 54 #include "llvm/IR/DebugLoc.h" 55 #include "llvm/IR/DerivedTypes.h" 56 #include "llvm/IR/Dominators.h" 57 #include "llvm/IR/Function.h" 58 #include "llvm/IR/IRBuilder.h" 59 #include "llvm/IR/InstrTypes.h" 60 #include "llvm/IR/Instruction.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/IR/IntrinsicInst.h" 63 #include "llvm/IR/Intrinsics.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/NoFolder.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/IR/Verifier.h" 74 #include "llvm/InitializePasses.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/Casting.h" 77 #include "llvm/Support/CommandLine.h" 78 #include "llvm/Support/Compiler.h" 79 #include "llvm/Support/DOTGraphTraits.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/ErrorHandling.h" 82 #include "llvm/Support/GraphWriter.h" 83 #include "llvm/Support/InstructionCost.h" 84 #include "llvm/Support/KnownBits.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 88 #include "llvm/Transforms/Utils/LoopUtils.h" 89 #include "llvm/Transforms/Vectorize.h" 90 #include <algorithm> 91 #include <cassert> 92 #include <cstdint> 93 #include <iterator> 94 #include <memory> 95 #include <set> 96 #include <string> 97 #include <tuple> 98 #include <utility> 99 #include <vector> 100 101 using namespace llvm; 102 using namespace llvm::PatternMatch; 103 using namespace slpvectorizer; 104 105 #define SV_NAME "slp-vectorizer" 106 #define DEBUG_TYPE "SLP" 107 108 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 109 110 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 111 cl::desc("Run the SLP vectorization passes")); 112 113 static cl::opt<int> 114 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 115 cl::desc("Only vectorize if you gain more than this " 116 "number ")); 117 118 static cl::opt<bool> 119 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 120 cl::desc("Attempt to vectorize horizontal reductions")); 121 122 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 123 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 124 cl::desc( 125 "Attempt to vectorize horizontal reductions feeding into a store")); 126 127 static cl::opt<int> 128 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 129 cl::desc("Attempt to vectorize for this register size in bits")); 130 131 static cl::opt<unsigned> 132 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 133 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 134 135 static cl::opt<int> 136 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 137 cl::desc("Maximum depth of the lookup for consecutive stores.")); 138 139 /// Limits the size of scheduling regions in a block. 140 /// It avoid long compile times for _very_ large blocks where vector 141 /// instructions are spread over a wide range. 142 /// This limit is way higher than needed by real-world functions. 143 static cl::opt<int> 144 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 145 cl::desc("Limit the size of the SLP scheduling region per block")); 146 147 static cl::opt<int> MinVectorRegSizeOption( 148 "slp-min-reg-size", cl::init(128), cl::Hidden, 149 cl::desc("Attempt to vectorize for this register size in bits")); 150 151 static cl::opt<unsigned> RecursionMaxDepth( 152 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 153 cl::desc("Limit the recursion depth when building a vectorizable tree")); 154 155 static cl::opt<unsigned> MinTreeSize( 156 "slp-min-tree-size", cl::init(3), cl::Hidden, 157 cl::desc("Only vectorize small trees if they are fully vectorizable")); 158 159 // The maximum depth that the look-ahead score heuristic will explore. 160 // The higher this value, the higher the compilation time overhead. 161 static cl::opt<int> LookAheadMaxDepth( 162 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 163 cl::desc("The maximum look-ahead depth for operand reordering scores")); 164 165 // The Look-ahead heuristic goes through the users of the bundle to calculate 166 // the users cost in getExternalUsesCost(). To avoid compilation time increase 167 // we limit the number of users visited to this value. 168 static cl::opt<unsigned> LookAheadUsersBudget( 169 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, 170 cl::desc("The maximum number of users to visit while visiting the " 171 "predecessors. This prevents compilation time increase.")); 172 173 static cl::opt<bool> 174 ViewSLPTree("view-slp-tree", cl::Hidden, 175 cl::desc("Display the SLP trees with Graphviz")); 176 177 // Limit the number of alias checks. The limit is chosen so that 178 // it has no negative effect on the llvm benchmarks. 179 static const unsigned AliasedCheckLimit = 10; 180 181 // Another limit for the alias checks: The maximum distance between load/store 182 // instructions where alias checks are done. 183 // This limit is useful for very large basic blocks. 184 static const unsigned MaxMemDepDistance = 160; 185 186 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 187 /// regions to be handled. 188 static const int MinScheduleRegionSize = 16; 189 190 /// Predicate for the element types that the SLP vectorizer supports. 191 /// 192 /// The most important thing to filter here are types which are invalid in LLVM 193 /// vectors. We also filter target specific types which have absolutely no 194 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 195 /// avoids spending time checking the cost model and realizing that they will 196 /// be inevitably scalarized. 197 static bool isValidElementType(Type *Ty) { 198 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 199 !Ty->isPPC_FP128Ty(); 200 } 201 202 /// \returns true if all of the instructions in \p VL are in the same block or 203 /// false otherwise. 204 static bool allSameBlock(ArrayRef<Value *> VL) { 205 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 206 if (!I0) 207 return false; 208 BasicBlock *BB = I0->getParent(); 209 for (int I = 1, E = VL.size(); I < E; I++) { 210 auto *II = dyn_cast<Instruction>(VL[I]); 211 if (!II) 212 return false; 213 214 if (BB != II->getParent()) 215 return false; 216 } 217 return true; 218 } 219 220 /// \returns True if all of the values in \p VL are constants (but not 221 /// globals/constant expressions). 222 static bool allConstant(ArrayRef<Value *> VL) { 223 // Constant expressions and globals can't be vectorized like normal integer/FP 224 // constants. 225 for (Value *i : VL) 226 if (!isa<Constant>(i) || isa<ConstantExpr>(i) || isa<GlobalValue>(i)) 227 return false; 228 return true; 229 } 230 231 /// \returns True if all of the values in \p VL are identical. 232 static bool isSplat(ArrayRef<Value *> VL) { 233 for (unsigned i = 1, e = VL.size(); i < e; ++i) 234 if (VL[i] != VL[0]) 235 return false; 236 return true; 237 } 238 239 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 240 static bool isCommutative(Instruction *I) { 241 if (auto *Cmp = dyn_cast<CmpInst>(I)) 242 return Cmp->isCommutative(); 243 if (auto *BO = dyn_cast<BinaryOperator>(I)) 244 return BO->isCommutative(); 245 // TODO: This should check for generic Instruction::isCommutative(), but 246 // we need to confirm that the caller code correctly handles Intrinsics 247 // for example (does not have 2 operands). 248 return false; 249 } 250 251 /// Checks if the vector of instructions can be represented as a shuffle, like: 252 /// %x0 = extractelement <4 x i8> %x, i32 0 253 /// %x3 = extractelement <4 x i8> %x, i32 3 254 /// %y1 = extractelement <4 x i8> %y, i32 1 255 /// %y2 = extractelement <4 x i8> %y, i32 2 256 /// %x0x0 = mul i8 %x0, %x0 257 /// %x3x3 = mul i8 %x3, %x3 258 /// %y1y1 = mul i8 %y1, %y1 259 /// %y2y2 = mul i8 %y2, %y2 260 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 261 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 262 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 263 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 264 /// ret <4 x i8> %ins4 265 /// can be transformed into: 266 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 267 /// i32 6> 268 /// %2 = mul <4 x i8> %1, %1 269 /// ret <4 x i8> %2 270 /// We convert this initially to something like: 271 /// %x0 = extractelement <4 x i8> %x, i32 0 272 /// %x3 = extractelement <4 x i8> %x, i32 3 273 /// %y1 = extractelement <4 x i8> %y, i32 1 274 /// %y2 = extractelement <4 x i8> %y, i32 2 275 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 276 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 277 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 278 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 279 /// %5 = mul <4 x i8> %4, %4 280 /// %6 = extractelement <4 x i8> %5, i32 0 281 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 282 /// %7 = extractelement <4 x i8> %5, i32 1 283 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 284 /// %8 = extractelement <4 x i8> %5, i32 2 285 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 286 /// %9 = extractelement <4 x i8> %5, i32 3 287 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 288 /// ret <4 x i8> %ins4 289 /// InstCombiner transforms this into a shuffle and vector mul 290 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 291 /// TODO: Can we split off and reuse the shuffle mask detection from 292 /// TargetTransformInfo::getInstructionThroughput? 293 static Optional<TargetTransformInfo::ShuffleKind> 294 isShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 295 auto *EI0 = cast<ExtractElementInst>(VL[0]); 296 unsigned Size = 297 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 298 Value *Vec1 = nullptr; 299 Value *Vec2 = nullptr; 300 enum ShuffleMode { Unknown, Select, Permute }; 301 ShuffleMode CommonShuffleMode = Unknown; 302 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 303 auto *EI = cast<ExtractElementInst>(VL[I]); 304 auto *Vec = EI->getVectorOperand(); 305 // All vector operands must have the same number of vector elements. 306 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 307 return None; 308 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 309 if (!Idx) 310 return None; 311 // Undefined behavior if Idx is negative or >= Size. 312 if (Idx->getValue().uge(Size)) { 313 Mask.push_back(UndefMaskElem); 314 continue; 315 } 316 unsigned IntIdx = Idx->getValue().getZExtValue(); 317 Mask.push_back(IntIdx); 318 // We can extractelement from undef or poison vector. 319 if (isa<UndefValue>(Vec)) 320 continue; 321 // For correct shuffling we have to have at most 2 different vector operands 322 // in all extractelement instructions. 323 if (!Vec1 || Vec1 == Vec) 324 Vec1 = Vec; 325 else if (!Vec2 || Vec2 == Vec) 326 Vec2 = Vec; 327 else 328 return None; 329 if (CommonShuffleMode == Permute) 330 continue; 331 // If the extract index is not the same as the operation number, it is a 332 // permutation. 333 if (IntIdx != I) { 334 CommonShuffleMode = Permute; 335 continue; 336 } 337 CommonShuffleMode = Select; 338 } 339 // If we're not crossing lanes in different vectors, consider it as blending. 340 if (CommonShuffleMode == Select && Vec2) 341 return TargetTransformInfo::SK_Select; 342 // If Vec2 was never used, we have a permutation of a single vector, otherwise 343 // we have permutation of 2 vectors. 344 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 345 : TargetTransformInfo::SK_PermuteSingleSrc; 346 } 347 348 namespace { 349 350 /// Main data required for vectorization of instructions. 351 struct InstructionsState { 352 /// The very first instruction in the list with the main opcode. 353 Value *OpValue = nullptr; 354 355 /// The main/alternate instruction. 356 Instruction *MainOp = nullptr; 357 Instruction *AltOp = nullptr; 358 359 /// The main/alternate opcodes for the list of instructions. 360 unsigned getOpcode() const { 361 return MainOp ? MainOp->getOpcode() : 0; 362 } 363 364 unsigned getAltOpcode() const { 365 return AltOp ? AltOp->getOpcode() : 0; 366 } 367 368 /// Some of the instructions in the list have alternate opcodes. 369 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 370 371 bool isOpcodeOrAlt(Instruction *I) const { 372 unsigned CheckedOpcode = I->getOpcode(); 373 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 374 } 375 376 InstructionsState() = delete; 377 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 378 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 379 }; 380 381 } // end anonymous namespace 382 383 /// Chooses the correct key for scheduling data. If \p Op has the same (or 384 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 385 /// OpValue. 386 static Value *isOneOf(const InstructionsState &S, Value *Op) { 387 auto *I = dyn_cast<Instruction>(Op); 388 if (I && S.isOpcodeOrAlt(I)) 389 return Op; 390 return S.OpValue; 391 } 392 393 /// \returns true if \p Opcode is allowed as part of of the main/alternate 394 /// instruction for SLP vectorization. 395 /// 396 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 397 /// "shuffled out" lane would result in division by zero. 398 static bool isValidForAlternation(unsigned Opcode) { 399 if (Instruction::isIntDivRem(Opcode)) 400 return false; 401 402 return true; 403 } 404 405 /// \returns analysis of the Instructions in \p VL described in 406 /// InstructionsState, the Opcode that we suppose the whole list 407 /// could be vectorized even if its structure is diverse. 408 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 409 unsigned BaseIndex = 0) { 410 // Make sure these are all Instructions. 411 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 412 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 413 414 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 415 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 416 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 417 unsigned AltOpcode = Opcode; 418 unsigned AltIndex = BaseIndex; 419 420 // Check for one alternate opcode from another BinaryOperator. 421 // TODO - generalize to support all operators (types, calls etc.). 422 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 423 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 424 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 425 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 426 continue; 427 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 428 isValidForAlternation(Opcode)) { 429 AltOpcode = InstOpcode; 430 AltIndex = Cnt; 431 continue; 432 } 433 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 434 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 435 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 436 if (Ty0 == Ty1) { 437 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 438 continue; 439 if (Opcode == AltOpcode) { 440 assert(isValidForAlternation(Opcode) && 441 isValidForAlternation(InstOpcode) && 442 "Cast isn't safe for alternation, logic needs to be updated!"); 443 AltOpcode = InstOpcode; 444 AltIndex = Cnt; 445 continue; 446 } 447 } 448 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 449 continue; 450 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 451 } 452 453 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 454 cast<Instruction>(VL[AltIndex])); 455 } 456 457 /// \returns true if all of the values in \p VL have the same type or false 458 /// otherwise. 459 static bool allSameType(ArrayRef<Value *> VL) { 460 Type *Ty = VL[0]->getType(); 461 for (int i = 1, e = VL.size(); i < e; i++) 462 if (VL[i]->getType() != Ty) 463 return false; 464 465 return true; 466 } 467 468 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 469 static Optional<unsigned> getExtractIndex(Instruction *E) { 470 unsigned Opcode = E->getOpcode(); 471 assert((Opcode == Instruction::ExtractElement || 472 Opcode == Instruction::ExtractValue) && 473 "Expected extractelement or extractvalue instruction."); 474 if (Opcode == Instruction::ExtractElement) { 475 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 476 if (!CI) 477 return None; 478 return CI->getZExtValue(); 479 } 480 ExtractValueInst *EI = cast<ExtractValueInst>(E); 481 if (EI->getNumIndices() != 1) 482 return None; 483 return *EI->idx_begin(); 484 } 485 486 /// \returns True if in-tree use also needs extract. This refers to 487 /// possible scalar operand in vectorized instruction. 488 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 489 TargetLibraryInfo *TLI) { 490 unsigned Opcode = UserInst->getOpcode(); 491 switch (Opcode) { 492 case Instruction::Load: { 493 LoadInst *LI = cast<LoadInst>(UserInst); 494 return (LI->getPointerOperand() == Scalar); 495 } 496 case Instruction::Store: { 497 StoreInst *SI = cast<StoreInst>(UserInst); 498 return (SI->getPointerOperand() == Scalar); 499 } 500 case Instruction::Call: { 501 CallInst *CI = cast<CallInst>(UserInst); 502 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 503 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 504 if (hasVectorInstrinsicScalarOpd(ID, i)) 505 return (CI->getArgOperand(i) == Scalar); 506 } 507 LLVM_FALLTHROUGH; 508 } 509 default: 510 return false; 511 } 512 } 513 514 /// \returns the AA location that is being access by the instruction. 515 static MemoryLocation getLocation(Instruction *I, AAResults *AA) { 516 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 517 return MemoryLocation::get(SI); 518 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 519 return MemoryLocation::get(LI); 520 return MemoryLocation(); 521 } 522 523 /// \returns True if the instruction is not a volatile or atomic load/store. 524 static bool isSimple(Instruction *I) { 525 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 526 return LI->isSimple(); 527 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 528 return SI->isSimple(); 529 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 530 return !MI->isVolatile(); 531 return true; 532 } 533 534 namespace llvm { 535 536 static void inversePermutation(ArrayRef<unsigned> Indices, 537 SmallVectorImpl<int> &Mask) { 538 Mask.clear(); 539 const unsigned E = Indices.size(); 540 Mask.resize(E, E + 1); 541 for (unsigned I = 0; I < E; ++I) 542 Mask[Indices[I]] = I; 543 } 544 545 namespace slpvectorizer { 546 547 /// Bottom Up SLP Vectorizer. 548 class BoUpSLP { 549 struct TreeEntry; 550 struct ScheduleData; 551 552 public: 553 using ValueList = SmallVector<Value *, 8>; 554 using InstrList = SmallVector<Instruction *, 16>; 555 using ValueSet = SmallPtrSet<Value *, 16>; 556 using StoreList = SmallVector<StoreInst *, 8>; 557 using ExtraValueToDebugLocsMap = 558 MapVector<Value *, SmallVector<Instruction *, 2>>; 559 using OrdersType = SmallVector<unsigned, 4>; 560 561 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 562 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 563 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 564 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 565 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 566 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 567 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 568 // Use the vector register size specified by the target unless overridden 569 // by a command-line option. 570 // TODO: It would be better to limit the vectorization factor based on 571 // data type rather than just register size. For example, x86 AVX has 572 // 256-bit registers, but it does not support integer operations 573 // at that width (that requires AVX2). 574 if (MaxVectorRegSizeOption.getNumOccurrences()) 575 MaxVecRegSize = MaxVectorRegSizeOption; 576 else 577 MaxVecRegSize = 578 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 579 .getFixedSize(); 580 581 if (MinVectorRegSizeOption.getNumOccurrences()) 582 MinVecRegSize = MinVectorRegSizeOption; 583 else 584 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 585 } 586 587 /// Vectorize the tree that starts with the elements in \p VL. 588 /// Returns the vectorized root. 589 Value *vectorizeTree(); 590 591 /// Vectorize the tree but with the list of externally used values \p 592 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 593 /// generated extractvalue instructions. 594 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 595 596 /// \returns the cost incurred by unwanted spills and fills, caused by 597 /// holding live values over call sites. 598 InstructionCost getSpillCost() const; 599 600 /// \returns the vectorization cost of the subtree that starts at \p VL. 601 /// A negative number means that this is profitable. 602 InstructionCost getTreeCost(); 603 604 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 605 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 606 void buildTree(ArrayRef<Value *> Roots, 607 ArrayRef<Value *> UserIgnoreLst = None); 608 609 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 610 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 611 /// into account (and updating it, if required) list of externally used 612 /// values stored in \p ExternallyUsedValues. 613 void buildTree(ArrayRef<Value *> Roots, 614 ExtraValueToDebugLocsMap &ExternallyUsedValues, 615 ArrayRef<Value *> UserIgnoreLst = None); 616 617 /// Clear the internal data structures that are created by 'buildTree'. 618 void deleteTree() { 619 VectorizableTree.clear(); 620 ScalarToTreeEntry.clear(); 621 MustGather.clear(); 622 ExternalUses.clear(); 623 NumOpsWantToKeepOrder.clear(); 624 NumOpsWantToKeepOriginalOrder = 0; 625 for (auto &Iter : BlocksSchedules) { 626 BlockScheduling *BS = Iter.second.get(); 627 BS->clear(); 628 } 629 MinBWs.clear(); 630 InstrElementSize.clear(); 631 } 632 633 unsigned getTreeSize() const { return VectorizableTree.size(); } 634 635 /// Perform LICM and CSE on the newly generated gather sequences. 636 void optimizeGatherSequence(); 637 638 /// \returns The best order of instructions for vectorization. 639 Optional<ArrayRef<unsigned>> bestOrder() const { 640 assert(llvm::all_of( 641 NumOpsWantToKeepOrder, 642 [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { 643 return D.getFirst().size() == 644 VectorizableTree[0]->Scalars.size(); 645 }) && 646 "All orders must have the same size as number of instructions in " 647 "tree node."); 648 auto I = std::max_element( 649 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 650 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 651 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 652 return D1.second < D2.second; 653 }); 654 if (I == NumOpsWantToKeepOrder.end() || 655 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 656 return None; 657 658 return makeArrayRef(I->getFirst()); 659 } 660 661 /// Builds the correct order for root instructions. 662 /// If some leaves have the same instructions to be vectorized, we may 663 /// incorrectly evaluate the best order for the root node (it is built for the 664 /// vector of instructions without repeated instructions and, thus, has less 665 /// elements than the root node). This function builds the correct order for 666 /// the root node. 667 /// For example, if the root node is \<a+b, a+c, a+d, f+e\>, then the leaves 668 /// are \<a, a, a, f\> and \<b, c, d, e\>. When we try to vectorize the first 669 /// leaf, it will be shrink to \<a, b\>. If instructions in this leaf should 670 /// be reordered, the best order will be \<1, 0\>. We need to extend this 671 /// order for the root node. For the root node this order should look like 672 /// \<3, 0, 1, 2\>. This function extends the order for the reused 673 /// instructions. 674 void findRootOrder(OrdersType &Order) { 675 // If the leaf has the same number of instructions to vectorize as the root 676 // - order must be set already. 677 unsigned RootSize = VectorizableTree[0]->Scalars.size(); 678 if (Order.size() == RootSize) 679 return; 680 SmallVector<unsigned, 4> RealOrder(Order.size()); 681 std::swap(Order, RealOrder); 682 SmallVector<int, 4> Mask; 683 inversePermutation(RealOrder, Mask); 684 Order.assign(Mask.begin(), Mask.end()); 685 // The leaf has less number of instructions - need to find the true order of 686 // the root. 687 // Scan the nodes starting from the leaf back to the root. 688 const TreeEntry *PNode = VectorizableTree.back().get(); 689 SmallVector<const TreeEntry *, 4> Nodes(1, PNode); 690 SmallPtrSet<const TreeEntry *, 4> Visited; 691 while (!Nodes.empty() && Order.size() != RootSize) { 692 const TreeEntry *PNode = Nodes.pop_back_val(); 693 if (!Visited.insert(PNode).second) 694 continue; 695 const TreeEntry &Node = *PNode; 696 for (const EdgeInfo &EI : Node.UserTreeIndices) 697 if (EI.UserTE) 698 Nodes.push_back(EI.UserTE); 699 if (Node.ReuseShuffleIndices.empty()) 700 continue; 701 // Build the order for the parent node. 702 OrdersType NewOrder(Node.ReuseShuffleIndices.size(), RootSize); 703 SmallVector<unsigned, 4> OrderCounter(Order.size(), 0); 704 // The algorithm of the order extension is: 705 // 1. Calculate the number of the same instructions for the order. 706 // 2. Calculate the index of the new order: total number of instructions 707 // with order less than the order of the current instruction + reuse 708 // number of the current instruction. 709 // 3. The new order is just the index of the instruction in the original 710 // vector of the instructions. 711 for (unsigned I : Node.ReuseShuffleIndices) 712 ++OrderCounter[Order[I]]; 713 SmallVector<unsigned, 4> CurrentCounter(Order.size(), 0); 714 for (unsigned I = 0, E = Node.ReuseShuffleIndices.size(); I < E; ++I) { 715 unsigned ReusedIdx = Node.ReuseShuffleIndices[I]; 716 unsigned OrderIdx = Order[ReusedIdx]; 717 unsigned NewIdx = 0; 718 for (unsigned J = 0; J < OrderIdx; ++J) 719 NewIdx += OrderCounter[J]; 720 NewIdx += CurrentCounter[OrderIdx]; 721 ++CurrentCounter[OrderIdx]; 722 assert(NewOrder[NewIdx] == RootSize && 723 "The order index should not be written already."); 724 NewOrder[NewIdx] = I; 725 } 726 std::swap(Order, NewOrder); 727 } 728 assert(Order.size() == RootSize && 729 "Root node is expected or the size of the order must be the same as " 730 "the number of elements in the root node."); 731 assert(llvm::all_of(Order, 732 [RootSize](unsigned Val) { return Val != RootSize; }) && 733 "All indices must be initialized"); 734 } 735 736 /// \return The vector element size in bits to use when vectorizing the 737 /// expression tree ending at \p V. If V is a store, the size is the width of 738 /// the stored value. Otherwise, the size is the width of the largest loaded 739 /// value reaching V. This method is used by the vectorizer to calculate 740 /// vectorization factors. 741 unsigned getVectorElementSize(Value *V); 742 743 /// Compute the minimum type sizes required to represent the entries in a 744 /// vectorizable tree. 745 void computeMinimumValueSizes(); 746 747 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 748 unsigned getMaxVecRegSize() const { 749 return MaxVecRegSize; 750 } 751 752 // \returns minimum vector register size as set by cl::opt. 753 unsigned getMinVecRegSize() const { 754 return MinVecRegSize; 755 } 756 757 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 758 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 759 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 760 return MaxVF ? MaxVF : UINT_MAX; 761 } 762 763 /// Check if homogeneous aggregate is isomorphic to some VectorType. 764 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 765 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 766 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 767 /// 768 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 769 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 770 771 /// \returns True if the VectorizableTree is both tiny and not fully 772 /// vectorizable. We do not vectorize such trees. 773 bool isTreeTinyAndNotFullyVectorizable() const; 774 775 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 776 /// can be load combined in the backend. Load combining may not be allowed in 777 /// the IR optimizer, so we do not want to alter the pattern. For example, 778 /// partially transforming a scalar bswap() pattern into vector code is 779 /// effectively impossible for the backend to undo. 780 /// TODO: If load combining is allowed in the IR optimizer, this analysis 781 /// may not be necessary. 782 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 783 784 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 785 /// can be load combined in the backend. Load combining may not be allowed in 786 /// the IR optimizer, so we do not want to alter the pattern. For example, 787 /// partially transforming a scalar bswap() pattern into vector code is 788 /// effectively impossible for the backend to undo. 789 /// TODO: If load combining is allowed in the IR optimizer, this analysis 790 /// may not be necessary. 791 bool isLoadCombineCandidate() const; 792 793 OptimizationRemarkEmitter *getORE() { return ORE; } 794 795 /// This structure holds any data we need about the edges being traversed 796 /// during buildTree_rec(). We keep track of: 797 /// (i) the user TreeEntry index, and 798 /// (ii) the index of the edge. 799 struct EdgeInfo { 800 EdgeInfo() = default; 801 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 802 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 803 /// The user TreeEntry. 804 TreeEntry *UserTE = nullptr; 805 /// The operand index of the use. 806 unsigned EdgeIdx = UINT_MAX; 807 #ifndef NDEBUG 808 friend inline raw_ostream &operator<<(raw_ostream &OS, 809 const BoUpSLP::EdgeInfo &EI) { 810 EI.dump(OS); 811 return OS; 812 } 813 /// Debug print. 814 void dump(raw_ostream &OS) const { 815 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 816 << " EdgeIdx:" << EdgeIdx << "}"; 817 } 818 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 819 #endif 820 }; 821 822 /// A helper data structure to hold the operands of a vector of instructions. 823 /// This supports a fixed vector length for all operand vectors. 824 class VLOperands { 825 /// For each operand we need (i) the value, and (ii) the opcode that it 826 /// would be attached to if the expression was in a left-linearized form. 827 /// This is required to avoid illegal operand reordering. 828 /// For example: 829 /// \verbatim 830 /// 0 Op1 831 /// |/ 832 /// Op1 Op2 Linearized + Op2 833 /// \ / ----------> |/ 834 /// - - 835 /// 836 /// Op1 - Op2 (0 + Op1) - Op2 837 /// \endverbatim 838 /// 839 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 840 /// 841 /// Another way to think of this is to track all the operations across the 842 /// path from the operand all the way to the root of the tree and to 843 /// calculate the operation that corresponds to this path. For example, the 844 /// path from Op2 to the root crosses the RHS of the '-', therefore the 845 /// corresponding operation is a '-' (which matches the one in the 846 /// linearized tree, as shown above). 847 /// 848 /// For lack of a better term, we refer to this operation as Accumulated 849 /// Path Operation (APO). 850 struct OperandData { 851 OperandData() = default; 852 OperandData(Value *V, bool APO, bool IsUsed) 853 : V(V), APO(APO), IsUsed(IsUsed) {} 854 /// The operand value. 855 Value *V = nullptr; 856 /// TreeEntries only allow a single opcode, or an alternate sequence of 857 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 858 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 859 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 860 /// (e.g., Add/Mul) 861 bool APO = false; 862 /// Helper data for the reordering function. 863 bool IsUsed = false; 864 }; 865 866 /// During operand reordering, we are trying to select the operand at lane 867 /// that matches best with the operand at the neighboring lane. Our 868 /// selection is based on the type of value we are looking for. For example, 869 /// if the neighboring lane has a load, we need to look for a load that is 870 /// accessing a consecutive address. These strategies are summarized in the 871 /// 'ReorderingMode' enumerator. 872 enum class ReorderingMode { 873 Load, ///< Matching loads to consecutive memory addresses 874 Opcode, ///< Matching instructions based on opcode (same or alternate) 875 Constant, ///< Matching constants 876 Splat, ///< Matching the same instruction multiple times (broadcast) 877 Failed, ///< We failed to create a vectorizable group 878 }; 879 880 using OperandDataVec = SmallVector<OperandData, 2>; 881 882 /// A vector of operand vectors. 883 SmallVector<OperandDataVec, 4> OpsVec; 884 885 const DataLayout &DL; 886 ScalarEvolution &SE; 887 const BoUpSLP &R; 888 889 /// \returns the operand data at \p OpIdx and \p Lane. 890 OperandData &getData(unsigned OpIdx, unsigned Lane) { 891 return OpsVec[OpIdx][Lane]; 892 } 893 894 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 895 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 896 return OpsVec[OpIdx][Lane]; 897 } 898 899 /// Clears the used flag for all entries. 900 void clearUsed() { 901 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 902 OpIdx != NumOperands; ++OpIdx) 903 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 904 ++Lane) 905 OpsVec[OpIdx][Lane].IsUsed = false; 906 } 907 908 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 909 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 910 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 911 } 912 913 // The hard-coded scores listed here are not very important. When computing 914 // the scores of matching one sub-tree with another, we are basically 915 // counting the number of values that are matching. So even if all scores 916 // are set to 1, we would still get a decent matching result. 917 // However, sometimes we have to break ties. For example we may have to 918 // choose between matching loads vs matching opcodes. This is what these 919 // scores are helping us with: they provide the order of preference. 920 921 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 922 static const int ScoreConsecutiveLoads = 3; 923 /// ExtractElementInst from same vector and consecutive indexes. 924 static const int ScoreConsecutiveExtracts = 3; 925 /// Constants. 926 static const int ScoreConstants = 2; 927 /// Instructions with the same opcode. 928 static const int ScoreSameOpcode = 2; 929 /// Instructions with alt opcodes (e.g, add + sub). 930 static const int ScoreAltOpcodes = 1; 931 /// Identical instructions (a.k.a. splat or broadcast). 932 static const int ScoreSplat = 1; 933 /// Matching with an undef is preferable to failing. 934 static const int ScoreUndef = 1; 935 /// Score for failing to find a decent match. 936 static const int ScoreFail = 0; 937 /// User exteranl to the vectorized code. 938 static const int ExternalUseCost = 1; 939 /// The user is internal but in a different lane. 940 static const int UserInDiffLaneCost = ExternalUseCost; 941 942 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 943 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 944 ScalarEvolution &SE) { 945 auto *LI1 = dyn_cast<LoadInst>(V1); 946 auto *LI2 = dyn_cast<LoadInst>(V2); 947 if (LI1 && LI2) { 948 if (LI1->getParent() != LI2->getParent()) 949 return VLOperands::ScoreFail; 950 951 Optional<int> Dist = 952 getPointersDiff(LI1->getPointerOperand(), LI2->getPointerOperand(), 953 DL, SE, /*StrictCheck=*/true); 954 return (Dist && *Dist == 1) ? VLOperands::ScoreConsecutiveLoads 955 : VLOperands::ScoreFail; 956 } 957 958 auto *C1 = dyn_cast<Constant>(V1); 959 auto *C2 = dyn_cast<Constant>(V2); 960 if (C1 && C2) 961 return VLOperands::ScoreConstants; 962 963 // Extracts from consecutive indexes of the same vector better score as 964 // the extracts could be optimized away. 965 Value *EV; 966 ConstantInt *Ex1Idx, *Ex2Idx; 967 if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) && 968 match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) && 969 Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue()) 970 return VLOperands::ScoreConsecutiveExtracts; 971 972 auto *I1 = dyn_cast<Instruction>(V1); 973 auto *I2 = dyn_cast<Instruction>(V2); 974 if (I1 && I2) { 975 if (I1 == I2) 976 return VLOperands::ScoreSplat; 977 InstructionsState S = getSameOpcode({I1, I2}); 978 // Note: Only consider instructions with <= 2 operands to avoid 979 // complexity explosion. 980 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) 981 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 982 : VLOperands::ScoreSameOpcode; 983 } 984 985 if (isa<UndefValue>(V2)) 986 return VLOperands::ScoreUndef; 987 988 return VLOperands::ScoreFail; 989 } 990 991 /// Holds the values and their lane that are taking part in the look-ahead 992 /// score calculation. This is used in the external uses cost calculation. 993 SmallDenseMap<Value *, int> InLookAheadValues; 994 995 /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are 996 /// either external to the vectorized code, or require shuffling. 997 int getExternalUsesCost(const std::pair<Value *, int> &LHS, 998 const std::pair<Value *, int> &RHS) { 999 int Cost = 0; 1000 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}}; 1001 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { 1002 Value *V = Values[Idx].first; 1003 if (isa<Constant>(V)) { 1004 // Since this is a function pass, it doesn't make semantic sense to 1005 // walk the users of a subclass of Constant. The users could be in 1006 // another function, or even another module that happens to be in 1007 // the same LLVMContext. 1008 continue; 1009 } 1010 1011 // Calculate the absolute lane, using the minimum relative lane of LHS 1012 // and RHS as base and Idx as the offset. 1013 int Ln = std::min(LHS.second, RHS.second) + Idx; 1014 assert(Ln >= 0 && "Bad lane calculation"); 1015 unsigned UsersBudget = LookAheadUsersBudget; 1016 for (User *U : V->users()) { 1017 if (const TreeEntry *UserTE = R.getTreeEntry(U)) { 1018 // The user is in the VectorizableTree. Check if we need to insert. 1019 auto It = llvm::find(UserTE->Scalars, U); 1020 assert(It != UserTE->Scalars.end() && "U is in UserTE"); 1021 int UserLn = std::distance(UserTE->Scalars.begin(), It); 1022 assert(UserLn >= 0 && "Bad lane"); 1023 if (UserLn != Ln) 1024 Cost += UserInDiffLaneCost; 1025 } else { 1026 // Check if the user is in the look-ahead code. 1027 auto It2 = InLookAheadValues.find(U); 1028 if (It2 != InLookAheadValues.end()) { 1029 // The user is in the look-ahead code. Check the lane. 1030 if (It2->second != Ln) 1031 Cost += UserInDiffLaneCost; 1032 } else { 1033 // The user is neither in SLP tree nor in the look-ahead code. 1034 Cost += ExternalUseCost; 1035 } 1036 } 1037 // Limit the number of visited uses to cap compilation time. 1038 if (--UsersBudget == 0) 1039 break; 1040 } 1041 } 1042 return Cost; 1043 } 1044 1045 /// Go through the operands of \p LHS and \p RHS recursively until \p 1046 /// MaxLevel, and return the cummulative score. For example: 1047 /// \verbatim 1048 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1049 /// \ / \ / \ / \ / 1050 /// + + + + 1051 /// G1 G2 G3 G4 1052 /// \endverbatim 1053 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1054 /// each level recursively, accumulating the score. It starts from matching 1055 /// the additions at level 0, then moves on to the loads (level 1). The 1056 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1057 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1058 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1059 /// Please note that the order of the operands does not matter, as we 1060 /// evaluate the score of all profitable combinations of operands. In 1061 /// other words the score of G1 and G4 is the same as G1 and G2. This 1062 /// heuristic is based on ideas described in: 1063 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1064 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1065 /// Luís F. W. Góes 1066 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS, 1067 const std::pair<Value *, int> &RHS, int CurrLevel, 1068 int MaxLevel) { 1069 1070 Value *V1 = LHS.first; 1071 Value *V2 = RHS.first; 1072 // Get the shallow score of V1 and V2. 1073 int ShallowScoreAtThisLevel = 1074 std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) - 1075 getExternalUsesCost(LHS, RHS)); 1076 int Lane1 = LHS.second; 1077 int Lane2 = RHS.second; 1078 1079 // If reached MaxLevel, 1080 // or if V1 and V2 are not instructions, 1081 // or if they are SPLAT, 1082 // or if they are not consecutive, early return the current cost. 1083 auto *I1 = dyn_cast<Instruction>(V1); 1084 auto *I2 = dyn_cast<Instruction>(V2); 1085 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1086 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1087 (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel)) 1088 return ShallowScoreAtThisLevel; 1089 assert(I1 && I2 && "Should have early exited."); 1090 1091 // Keep track of in-tree values for determining the external-use cost. 1092 InLookAheadValues[V1] = Lane1; 1093 InLookAheadValues[V2] = Lane2; 1094 1095 // Contains the I2 operand indexes that got matched with I1 operands. 1096 SmallSet<unsigned, 4> Op2Used; 1097 1098 // Recursion towards the operands of I1 and I2. We are trying all possbile 1099 // operand pairs, and keeping track of the best score. 1100 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1101 OpIdx1 != NumOperands1; ++OpIdx1) { 1102 // Try to pair op1I with the best operand of I2. 1103 int MaxTmpScore = 0; 1104 unsigned MaxOpIdx2 = 0; 1105 bool FoundBest = false; 1106 // If I2 is commutative try all combinations. 1107 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1108 unsigned ToIdx = isCommutative(I2) 1109 ? I2->getNumOperands() 1110 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1111 assert(FromIdx <= ToIdx && "Bad index"); 1112 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1113 // Skip operands already paired with OpIdx1. 1114 if (Op2Used.count(OpIdx2)) 1115 continue; 1116 // Recursively calculate the cost at each level 1117 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, 1118 {I2->getOperand(OpIdx2), Lane2}, 1119 CurrLevel + 1, MaxLevel); 1120 // Look for the best score. 1121 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1122 MaxTmpScore = TmpScore; 1123 MaxOpIdx2 = OpIdx2; 1124 FoundBest = true; 1125 } 1126 } 1127 if (FoundBest) { 1128 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1129 Op2Used.insert(MaxOpIdx2); 1130 ShallowScoreAtThisLevel += MaxTmpScore; 1131 } 1132 } 1133 return ShallowScoreAtThisLevel; 1134 } 1135 1136 /// \Returns the look-ahead score, which tells us how much the sub-trees 1137 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1138 /// score. This helps break ties in an informed way when we cannot decide on 1139 /// the order of the operands by just considering the immediate 1140 /// predecessors. 1141 int getLookAheadScore(const std::pair<Value *, int> &LHS, 1142 const std::pair<Value *, int> &RHS) { 1143 InLookAheadValues.clear(); 1144 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); 1145 } 1146 1147 // Search all operands in Ops[*][Lane] for the one that matches best 1148 // Ops[OpIdx][LastLane] and return its opreand index. 1149 // If no good match can be found, return None. 1150 Optional<unsigned> 1151 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1152 ArrayRef<ReorderingMode> ReorderingModes) { 1153 unsigned NumOperands = getNumOperands(); 1154 1155 // The operand of the previous lane at OpIdx. 1156 Value *OpLastLane = getData(OpIdx, LastLane).V; 1157 1158 // Our strategy mode for OpIdx. 1159 ReorderingMode RMode = ReorderingModes[OpIdx]; 1160 1161 // The linearized opcode of the operand at OpIdx, Lane. 1162 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1163 1164 // The best operand index and its score. 1165 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1166 // are using the score to differentiate between the two. 1167 struct BestOpData { 1168 Optional<unsigned> Idx = None; 1169 unsigned Score = 0; 1170 } BestOp; 1171 1172 // Iterate through all unused operands and look for the best. 1173 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1174 // Get the operand at Idx and Lane. 1175 OperandData &OpData = getData(Idx, Lane); 1176 Value *Op = OpData.V; 1177 bool OpAPO = OpData.APO; 1178 1179 // Skip already selected operands. 1180 if (OpData.IsUsed) 1181 continue; 1182 1183 // Skip if we are trying to move the operand to a position with a 1184 // different opcode in the linearized tree form. This would break the 1185 // semantics. 1186 if (OpAPO != OpIdxAPO) 1187 continue; 1188 1189 // Look for an operand that matches the current mode. 1190 switch (RMode) { 1191 case ReorderingMode::Load: 1192 case ReorderingMode::Constant: 1193 case ReorderingMode::Opcode: { 1194 bool LeftToRight = Lane > LastLane; 1195 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1196 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1197 unsigned Score = 1198 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); 1199 if (Score > BestOp.Score) { 1200 BestOp.Idx = Idx; 1201 BestOp.Score = Score; 1202 } 1203 break; 1204 } 1205 case ReorderingMode::Splat: 1206 if (Op == OpLastLane) 1207 BestOp.Idx = Idx; 1208 break; 1209 case ReorderingMode::Failed: 1210 return None; 1211 } 1212 } 1213 1214 if (BestOp.Idx) { 1215 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 1216 return BestOp.Idx; 1217 } 1218 // If we could not find a good match return None. 1219 return None; 1220 } 1221 1222 /// Helper for reorderOperandVecs. \Returns the lane that we should start 1223 /// reordering from. This is the one which has the least number of operands 1224 /// that can freely move about. 1225 unsigned getBestLaneToStartReordering() const { 1226 unsigned BestLane = 0; 1227 unsigned Min = UINT_MAX; 1228 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1229 ++Lane) { 1230 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 1231 if (NumFreeOps < Min) { 1232 Min = NumFreeOps; 1233 BestLane = Lane; 1234 } 1235 } 1236 return BestLane; 1237 } 1238 1239 /// \Returns the maximum number of operands that are allowed to be reordered 1240 /// for \p Lane. This is used as a heuristic for selecting the first lane to 1241 /// start operand reordering. 1242 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1243 unsigned CntTrue = 0; 1244 unsigned NumOperands = getNumOperands(); 1245 // Operands with the same APO can be reordered. We therefore need to count 1246 // how many of them we have for each APO, like this: Cnt[APO] = x. 1247 // Since we only have two APOs, namely true and false, we can avoid using 1248 // a map. Instead we can simply count the number of operands that 1249 // correspond to one of them (in this case the 'true' APO), and calculate 1250 // the other by subtracting it from the total number of operands. 1251 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 1252 if (getData(OpIdx, Lane).APO) 1253 ++CntTrue; 1254 unsigned CntFalse = NumOperands - CntTrue; 1255 return std::max(CntTrue, CntFalse); 1256 } 1257 1258 /// Go through the instructions in VL and append their operands. 1259 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1260 assert(!VL.empty() && "Bad VL"); 1261 assert((empty() || VL.size() == getNumLanes()) && 1262 "Expected same number of lanes"); 1263 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1264 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1265 OpsVec.resize(NumOperands); 1266 unsigned NumLanes = VL.size(); 1267 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1268 OpsVec[OpIdx].resize(NumLanes); 1269 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1270 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1271 // Our tree has just 3 nodes: the root and two operands. 1272 // It is therefore trivial to get the APO. We only need to check the 1273 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1274 // RHS operand. The LHS operand of both add and sub is never attached 1275 // to an inversese operation in the linearized form, therefore its APO 1276 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1277 1278 // Since operand reordering is performed on groups of commutative 1279 // operations or alternating sequences (e.g., +, -), we can safely 1280 // tell the inverse operations by checking commutativity. 1281 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1282 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1283 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1284 APO, false}; 1285 } 1286 } 1287 } 1288 1289 /// \returns the number of operands. 1290 unsigned getNumOperands() const { return OpsVec.size(); } 1291 1292 /// \returns the number of lanes. 1293 unsigned getNumLanes() const { return OpsVec[0].size(); } 1294 1295 /// \returns the operand value at \p OpIdx and \p Lane. 1296 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1297 return getData(OpIdx, Lane).V; 1298 } 1299 1300 /// \returns true if the data structure is empty. 1301 bool empty() const { return OpsVec.empty(); } 1302 1303 /// Clears the data. 1304 void clear() { OpsVec.clear(); } 1305 1306 /// \Returns true if there are enough operands identical to \p Op to fill 1307 /// the whole vector. 1308 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1309 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1310 bool OpAPO = getData(OpIdx, Lane).APO; 1311 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1312 if (Ln == Lane) 1313 continue; 1314 // This is set to true if we found a candidate for broadcast at Lane. 1315 bool FoundCandidate = false; 1316 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1317 OperandData &Data = getData(OpI, Ln); 1318 if (Data.APO != OpAPO || Data.IsUsed) 1319 continue; 1320 if (Data.V == Op) { 1321 FoundCandidate = true; 1322 Data.IsUsed = true; 1323 break; 1324 } 1325 } 1326 if (!FoundCandidate) 1327 return false; 1328 } 1329 return true; 1330 } 1331 1332 public: 1333 /// Initialize with all the operands of the instruction vector \p RootVL. 1334 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1335 ScalarEvolution &SE, const BoUpSLP &R) 1336 : DL(DL), SE(SE), R(R) { 1337 // Append all the operands of RootVL. 1338 appendOperandsOfVL(RootVL); 1339 } 1340 1341 /// \Returns a value vector with the operands across all lanes for the 1342 /// opearnd at \p OpIdx. 1343 ValueList getVL(unsigned OpIdx) const { 1344 ValueList OpVL(OpsVec[OpIdx].size()); 1345 assert(OpsVec[OpIdx].size() == getNumLanes() && 1346 "Expected same num of lanes across all operands"); 1347 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1348 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1349 return OpVL; 1350 } 1351 1352 // Performs operand reordering for 2 or more operands. 1353 // The original operands are in OrigOps[OpIdx][Lane]. 1354 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1355 void reorder() { 1356 unsigned NumOperands = getNumOperands(); 1357 unsigned NumLanes = getNumLanes(); 1358 // Each operand has its own mode. We are using this mode to help us select 1359 // the instructions for each lane, so that they match best with the ones 1360 // we have selected so far. 1361 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1362 1363 // This is a greedy single-pass algorithm. We are going over each lane 1364 // once and deciding on the best order right away with no back-tracking. 1365 // However, in order to increase its effectiveness, we start with the lane 1366 // that has operands that can move the least. For example, given the 1367 // following lanes: 1368 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1369 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1370 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1371 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1372 // we will start at Lane 1, since the operands of the subtraction cannot 1373 // be reordered. Then we will visit the rest of the lanes in a circular 1374 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1375 1376 // Find the first lane that we will start our search from. 1377 unsigned FirstLane = getBestLaneToStartReordering(); 1378 1379 // Initialize the modes. 1380 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1381 Value *OpLane0 = getValue(OpIdx, FirstLane); 1382 // Keep track if we have instructions with all the same opcode on one 1383 // side. 1384 if (isa<LoadInst>(OpLane0)) 1385 ReorderingModes[OpIdx] = ReorderingMode::Load; 1386 else if (isa<Instruction>(OpLane0)) { 1387 // Check if OpLane0 should be broadcast. 1388 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1389 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1390 else 1391 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1392 } 1393 else if (isa<Constant>(OpLane0)) 1394 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1395 else if (isa<Argument>(OpLane0)) 1396 // Our best hope is a Splat. It may save some cost in some cases. 1397 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1398 else 1399 // NOTE: This should be unreachable. 1400 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1401 } 1402 1403 // If the initial strategy fails for any of the operand indexes, then we 1404 // perform reordering again in a second pass. This helps avoid assigning 1405 // high priority to the failed strategy, and should improve reordering for 1406 // the non-failed operand indexes. 1407 for (int Pass = 0; Pass != 2; ++Pass) { 1408 // Skip the second pass if the first pass did not fail. 1409 bool StrategyFailed = false; 1410 // Mark all operand data as free to use. 1411 clearUsed(); 1412 // We keep the original operand order for the FirstLane, so reorder the 1413 // rest of the lanes. We are visiting the nodes in a circular fashion, 1414 // using FirstLane as the center point and increasing the radius 1415 // distance. 1416 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1417 // Visit the lane on the right and then the lane on the left. 1418 for (int Direction : {+1, -1}) { 1419 int Lane = FirstLane + Direction * Distance; 1420 if (Lane < 0 || Lane >= (int)NumLanes) 1421 continue; 1422 int LastLane = Lane - Direction; 1423 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1424 "Out of bounds"); 1425 // Look for a good match for each operand. 1426 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1427 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1428 Optional<unsigned> BestIdx = 1429 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1430 // By not selecting a value, we allow the operands that follow to 1431 // select a better matching value. We will get a non-null value in 1432 // the next run of getBestOperand(). 1433 if (BestIdx) { 1434 // Swap the current operand with the one returned by 1435 // getBestOperand(). 1436 swap(OpIdx, BestIdx.getValue(), Lane); 1437 } else { 1438 // We failed to find a best operand, set mode to 'Failed'. 1439 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1440 // Enable the second pass. 1441 StrategyFailed = true; 1442 } 1443 } 1444 } 1445 } 1446 // Skip second pass if the strategy did not fail. 1447 if (!StrategyFailed) 1448 break; 1449 } 1450 } 1451 1452 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1453 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1454 switch (RMode) { 1455 case ReorderingMode::Load: 1456 return "Load"; 1457 case ReorderingMode::Opcode: 1458 return "Opcode"; 1459 case ReorderingMode::Constant: 1460 return "Constant"; 1461 case ReorderingMode::Splat: 1462 return "Splat"; 1463 case ReorderingMode::Failed: 1464 return "Failed"; 1465 } 1466 llvm_unreachable("Unimplemented Reordering Type"); 1467 } 1468 1469 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1470 raw_ostream &OS) { 1471 return OS << getModeStr(RMode); 1472 } 1473 1474 /// Debug print. 1475 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1476 printMode(RMode, dbgs()); 1477 } 1478 1479 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1480 return printMode(RMode, OS); 1481 } 1482 1483 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1484 const unsigned Indent = 2; 1485 unsigned Cnt = 0; 1486 for (const OperandDataVec &OpDataVec : OpsVec) { 1487 OS << "Operand " << Cnt++ << "\n"; 1488 for (const OperandData &OpData : OpDataVec) { 1489 OS.indent(Indent) << "{"; 1490 if (Value *V = OpData.V) 1491 OS << *V; 1492 else 1493 OS << "null"; 1494 OS << ", APO:" << OpData.APO << "}\n"; 1495 } 1496 OS << "\n"; 1497 } 1498 return OS; 1499 } 1500 1501 /// Debug print. 1502 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1503 #endif 1504 }; 1505 1506 /// Checks if the instruction is marked for deletion. 1507 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1508 1509 /// Marks values operands for later deletion by replacing them with Undefs. 1510 void eraseInstructions(ArrayRef<Value *> AV); 1511 1512 ~BoUpSLP(); 1513 1514 private: 1515 /// Checks if all users of \p I are the part of the vectorization tree. 1516 bool areAllUsersVectorized(Instruction *I) const; 1517 1518 /// \returns the cost of the vectorizable entry. 1519 InstructionCost getEntryCost(TreeEntry *E); 1520 1521 /// This is the recursive part of buildTree. 1522 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1523 const EdgeInfo &EI); 1524 1525 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1526 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1527 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1528 /// returns false, setting \p CurrentOrder to either an empty vector or a 1529 /// non-identity permutation that allows to reuse extract instructions. 1530 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1531 SmallVectorImpl<unsigned> &CurrentOrder) const; 1532 1533 /// Vectorize a single entry in the tree. 1534 Value *vectorizeTree(TreeEntry *E); 1535 1536 /// Vectorize a single entry in the tree, starting in \p VL. 1537 Value *vectorizeTree(ArrayRef<Value *> VL); 1538 1539 /// \returns the scalarization cost for this type. Scalarization in this 1540 /// context means the creation of vectors from a group of scalars. 1541 InstructionCost 1542 getGatherCost(FixedVectorType *Ty, 1543 const DenseSet<unsigned> &ShuffledIndices) const; 1544 1545 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 1546 /// tree entries. 1547 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 1548 /// previous tree entries. \p Mask is filled with the shuffle mask. 1549 Optional<TargetTransformInfo::ShuffleKind> 1550 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 1551 SmallVectorImpl<const TreeEntry *> &Entries); 1552 1553 /// \returns the scalarization cost for this list of values. Assuming that 1554 /// this subtree gets vectorized, we may need to extract the values from the 1555 /// roots. This method calculates the cost of extracting the values. 1556 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 1557 1558 /// Set the Builder insert point to one after the last instruction in 1559 /// the bundle 1560 void setInsertPointAfterBundle(TreeEntry *E); 1561 1562 /// \returns a vector from a collection of scalars in \p VL. 1563 Value *gather(ArrayRef<Value *> VL); 1564 1565 /// \returns whether the VectorizableTree is fully vectorizable and will 1566 /// be beneficial even the tree height is tiny. 1567 bool isFullyVectorizableTinyTree() const; 1568 1569 /// Reorder commutative or alt operands to get better probability of 1570 /// generating vectorized code. 1571 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1572 SmallVectorImpl<Value *> &Left, 1573 SmallVectorImpl<Value *> &Right, 1574 const DataLayout &DL, 1575 ScalarEvolution &SE, 1576 const BoUpSLP &R); 1577 struct TreeEntry { 1578 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1579 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1580 1581 /// \returns true if the scalars in VL are equal to this entry. 1582 bool isSame(ArrayRef<Value *> VL) const { 1583 if (VL.size() == Scalars.size()) 1584 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1585 return VL.size() == ReuseShuffleIndices.size() && 1586 std::equal( 1587 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 1588 [this](Value *V, int Idx) { return V == Scalars[Idx]; }); 1589 } 1590 1591 /// A vector of scalars. 1592 ValueList Scalars; 1593 1594 /// The Scalars are vectorized into this value. It is initialized to Null. 1595 Value *VectorizedValue = nullptr; 1596 1597 /// Do we need to gather this sequence or vectorize it 1598 /// (either with vector instruction or with scatter/gather 1599 /// intrinsics for store/load)? 1600 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 1601 EntryState State; 1602 1603 /// Does this sequence require some shuffling? 1604 SmallVector<int, 4> ReuseShuffleIndices; 1605 1606 /// Does this entry require reordering? 1607 SmallVector<unsigned, 4> ReorderIndices; 1608 1609 /// Points back to the VectorizableTree. 1610 /// 1611 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1612 /// to be a pointer and needs to be able to initialize the child iterator. 1613 /// Thus we need a reference back to the container to translate the indices 1614 /// to entries. 1615 VecTreeTy &Container; 1616 1617 /// The TreeEntry index containing the user of this entry. We can actually 1618 /// have multiple users so the data structure is not truly a tree. 1619 SmallVector<EdgeInfo, 1> UserTreeIndices; 1620 1621 /// The index of this treeEntry in VectorizableTree. 1622 int Idx = -1; 1623 1624 private: 1625 /// The operands of each instruction in each lane Operands[op_index][lane]. 1626 /// Note: This helps avoid the replication of the code that performs the 1627 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1628 SmallVector<ValueList, 2> Operands; 1629 1630 /// The main/alternate instruction. 1631 Instruction *MainOp = nullptr; 1632 Instruction *AltOp = nullptr; 1633 1634 public: 1635 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1636 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1637 if (Operands.size() < OpIdx + 1) 1638 Operands.resize(OpIdx + 1); 1639 assert(Operands[OpIdx].size() == 0 && "Already resized?"); 1640 Operands[OpIdx].resize(Scalars.size()); 1641 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1642 Operands[OpIdx][Lane] = OpVL[Lane]; 1643 } 1644 1645 /// Set the operands of this bundle in their original order. 1646 void setOperandsInOrder() { 1647 assert(Operands.empty() && "Already initialized?"); 1648 auto *I0 = cast<Instruction>(Scalars[0]); 1649 Operands.resize(I0->getNumOperands()); 1650 unsigned NumLanes = Scalars.size(); 1651 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1652 OpIdx != NumOperands; ++OpIdx) { 1653 Operands[OpIdx].resize(NumLanes); 1654 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1655 auto *I = cast<Instruction>(Scalars[Lane]); 1656 assert(I->getNumOperands() == NumOperands && 1657 "Expected same number of operands"); 1658 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1659 } 1660 } 1661 } 1662 1663 /// \returns the \p OpIdx operand of this TreeEntry. 1664 ValueList &getOperand(unsigned OpIdx) { 1665 assert(OpIdx < Operands.size() && "Off bounds"); 1666 return Operands[OpIdx]; 1667 } 1668 1669 /// \returns the number of operands. 1670 unsigned getNumOperands() const { return Operands.size(); } 1671 1672 /// \return the single \p OpIdx operand. 1673 Value *getSingleOperand(unsigned OpIdx) const { 1674 assert(OpIdx < Operands.size() && "Off bounds"); 1675 assert(!Operands[OpIdx].empty() && "No operand available"); 1676 return Operands[OpIdx][0]; 1677 } 1678 1679 /// Some of the instructions in the list have alternate opcodes. 1680 bool isAltShuffle() const { 1681 return getOpcode() != getAltOpcode(); 1682 } 1683 1684 bool isOpcodeOrAlt(Instruction *I) const { 1685 unsigned CheckedOpcode = I->getOpcode(); 1686 return (getOpcode() == CheckedOpcode || 1687 getAltOpcode() == CheckedOpcode); 1688 } 1689 1690 /// Chooses the correct key for scheduling data. If \p Op has the same (or 1691 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 1692 /// \p OpValue. 1693 Value *isOneOf(Value *Op) const { 1694 auto *I = dyn_cast<Instruction>(Op); 1695 if (I && isOpcodeOrAlt(I)) 1696 return Op; 1697 return MainOp; 1698 } 1699 1700 void setOperations(const InstructionsState &S) { 1701 MainOp = S.MainOp; 1702 AltOp = S.AltOp; 1703 } 1704 1705 Instruction *getMainOp() const { 1706 return MainOp; 1707 } 1708 1709 Instruction *getAltOp() const { 1710 return AltOp; 1711 } 1712 1713 /// The main/alternate opcodes for the list of instructions. 1714 unsigned getOpcode() const { 1715 return MainOp ? MainOp->getOpcode() : 0; 1716 } 1717 1718 unsigned getAltOpcode() const { 1719 return AltOp ? AltOp->getOpcode() : 0; 1720 } 1721 1722 /// Update operations state of this entry if reorder occurred. 1723 bool updateStateIfReorder() { 1724 if (ReorderIndices.empty()) 1725 return false; 1726 InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front()); 1727 setOperations(S); 1728 return true; 1729 } 1730 1731 #ifndef NDEBUG 1732 /// Debug printer. 1733 LLVM_DUMP_METHOD void dump() const { 1734 dbgs() << Idx << ".\n"; 1735 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1736 dbgs() << "Operand " << OpI << ":\n"; 1737 for (const Value *V : Operands[OpI]) 1738 dbgs().indent(2) << *V << "\n"; 1739 } 1740 dbgs() << "Scalars: \n"; 1741 for (Value *V : Scalars) 1742 dbgs().indent(2) << *V << "\n"; 1743 dbgs() << "State: "; 1744 switch (State) { 1745 case Vectorize: 1746 dbgs() << "Vectorize\n"; 1747 break; 1748 case ScatterVectorize: 1749 dbgs() << "ScatterVectorize\n"; 1750 break; 1751 case NeedToGather: 1752 dbgs() << "NeedToGather\n"; 1753 break; 1754 } 1755 dbgs() << "MainOp: "; 1756 if (MainOp) 1757 dbgs() << *MainOp << "\n"; 1758 else 1759 dbgs() << "NULL\n"; 1760 dbgs() << "AltOp: "; 1761 if (AltOp) 1762 dbgs() << *AltOp << "\n"; 1763 else 1764 dbgs() << "NULL\n"; 1765 dbgs() << "VectorizedValue: "; 1766 if (VectorizedValue) 1767 dbgs() << *VectorizedValue << "\n"; 1768 else 1769 dbgs() << "NULL\n"; 1770 dbgs() << "ReuseShuffleIndices: "; 1771 if (ReuseShuffleIndices.empty()) 1772 dbgs() << "Empty"; 1773 else 1774 for (unsigned ReuseIdx : ReuseShuffleIndices) 1775 dbgs() << ReuseIdx << ", "; 1776 dbgs() << "\n"; 1777 dbgs() << "ReorderIndices: "; 1778 for (unsigned ReorderIdx : ReorderIndices) 1779 dbgs() << ReorderIdx << ", "; 1780 dbgs() << "\n"; 1781 dbgs() << "UserTreeIndices: "; 1782 for (const auto &EInfo : UserTreeIndices) 1783 dbgs() << EInfo << ", "; 1784 dbgs() << "\n"; 1785 } 1786 #endif 1787 }; 1788 1789 #ifndef NDEBUG 1790 void dumpTreeCosts(TreeEntry *E, InstructionCost ReuseShuffleCost, 1791 InstructionCost VecCost, 1792 InstructionCost ScalarCost) const { 1793 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 1794 dbgs() << "SLP: Costs:\n"; 1795 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 1796 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 1797 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 1798 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 1799 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 1800 } 1801 #endif 1802 1803 /// Create a new VectorizableTree entry. 1804 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 1805 const InstructionsState &S, 1806 const EdgeInfo &UserTreeIdx, 1807 ArrayRef<unsigned> ReuseShuffleIndices = None, 1808 ArrayRef<unsigned> ReorderIndices = None) { 1809 TreeEntry::EntryState EntryState = 1810 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 1811 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 1812 ReuseShuffleIndices, ReorderIndices); 1813 } 1814 1815 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 1816 TreeEntry::EntryState EntryState, 1817 Optional<ScheduleData *> Bundle, 1818 const InstructionsState &S, 1819 const EdgeInfo &UserTreeIdx, 1820 ArrayRef<unsigned> ReuseShuffleIndices = None, 1821 ArrayRef<unsigned> ReorderIndices = None) { 1822 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 1823 (Bundle && EntryState != TreeEntry::NeedToGather)) && 1824 "Need to vectorize gather entry?"); 1825 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 1826 TreeEntry *Last = VectorizableTree.back().get(); 1827 Last->Idx = VectorizableTree.size() - 1; 1828 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 1829 Last->State = EntryState; 1830 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1831 ReuseShuffleIndices.end()); 1832 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 1833 Last->setOperations(S); 1834 if (Last->State != TreeEntry::NeedToGather) { 1835 for (Value *V : VL) { 1836 assert(!getTreeEntry(V) && "Scalar already in tree!"); 1837 ScalarToTreeEntry[V] = Last; 1838 } 1839 // Update the scheduler bundle to point to this TreeEntry. 1840 unsigned Lane = 0; 1841 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 1842 BundleMember = BundleMember->NextInBundle) { 1843 BundleMember->TE = Last; 1844 BundleMember->Lane = Lane; 1845 ++Lane; 1846 } 1847 assert((!Bundle.getValue() || Lane == VL.size()) && 1848 "Bundle and VL out of sync"); 1849 } else { 1850 MustGather.insert(VL.begin(), VL.end()); 1851 } 1852 1853 if (UserTreeIdx.UserTE) 1854 Last->UserTreeIndices.push_back(UserTreeIdx); 1855 1856 return Last; 1857 } 1858 1859 /// -- Vectorization State -- 1860 /// Holds all of the tree entries. 1861 TreeEntry::VecTreeTy VectorizableTree; 1862 1863 #ifndef NDEBUG 1864 /// Debug printer. 1865 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 1866 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 1867 VectorizableTree[Id]->dump(); 1868 dbgs() << "\n"; 1869 } 1870 } 1871 #endif 1872 1873 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 1874 1875 const TreeEntry *getTreeEntry(Value *V) const { 1876 return ScalarToTreeEntry.lookup(V); 1877 } 1878 1879 /// Maps a specific scalar to its tree entry. 1880 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 1881 1882 /// Maps a value to the proposed vectorizable size. 1883 SmallDenseMap<Value *, unsigned> InstrElementSize; 1884 1885 /// A list of scalars that we found that we need to keep as scalars. 1886 ValueSet MustGather; 1887 1888 /// This POD struct describes one external user in the vectorized tree. 1889 struct ExternalUser { 1890 ExternalUser(Value *S, llvm::User *U, int L) 1891 : Scalar(S), User(U), Lane(L) {} 1892 1893 // Which scalar in our function. 1894 Value *Scalar; 1895 1896 // Which user that uses the scalar. 1897 llvm::User *User; 1898 1899 // Which lane does the scalar belong to. 1900 int Lane; 1901 }; 1902 using UserList = SmallVector<ExternalUser, 16>; 1903 1904 /// Checks if two instructions may access the same memory. 1905 /// 1906 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 1907 /// is invariant in the calling loop. 1908 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 1909 Instruction *Inst2) { 1910 // First check if the result is already in the cache. 1911 AliasCacheKey key = std::make_pair(Inst1, Inst2); 1912 Optional<bool> &result = AliasCache[key]; 1913 if (result.hasValue()) { 1914 return result.getValue(); 1915 } 1916 MemoryLocation Loc2 = getLocation(Inst2, AA); 1917 bool aliased = true; 1918 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 1919 // Do the alias check. 1920 aliased = !AA->isNoAlias(Loc1, Loc2); 1921 } 1922 // Store the result in the cache. 1923 result = aliased; 1924 return aliased; 1925 } 1926 1927 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 1928 1929 /// Cache for alias results. 1930 /// TODO: consider moving this to the AliasAnalysis itself. 1931 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 1932 1933 /// Removes an instruction from its block and eventually deletes it. 1934 /// It's like Instruction::eraseFromParent() except that the actual deletion 1935 /// is delayed until BoUpSLP is destructed. 1936 /// This is required to ensure that there are no incorrect collisions in the 1937 /// AliasCache, which can happen if a new instruction is allocated at the 1938 /// same address as a previously deleted instruction. 1939 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 1940 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 1941 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 1942 } 1943 1944 /// Temporary store for deleted instructions. Instructions will be deleted 1945 /// eventually when the BoUpSLP is destructed. 1946 DenseMap<Instruction *, bool> DeletedInstructions; 1947 1948 /// A list of values that need to extracted out of the tree. 1949 /// This list holds pairs of (Internal Scalar : External User). External User 1950 /// can be nullptr, it means that this Internal Scalar will be used later, 1951 /// after vectorization. 1952 UserList ExternalUses; 1953 1954 /// Values used only by @llvm.assume calls. 1955 SmallPtrSet<const Value *, 32> EphValues; 1956 1957 /// Holds all of the instructions that we gathered. 1958 SetVector<Instruction *> GatherSeq; 1959 1960 /// A list of blocks that we are going to CSE. 1961 SetVector<BasicBlock *> CSEBlocks; 1962 1963 /// Contains all scheduling relevant data for an instruction. 1964 /// A ScheduleData either represents a single instruction or a member of an 1965 /// instruction bundle (= a group of instructions which is combined into a 1966 /// vector instruction). 1967 struct ScheduleData { 1968 // The initial value for the dependency counters. It means that the 1969 // dependencies are not calculated yet. 1970 enum { InvalidDeps = -1 }; 1971 1972 ScheduleData() = default; 1973 1974 void init(int BlockSchedulingRegionID, Value *OpVal) { 1975 FirstInBundle = this; 1976 NextInBundle = nullptr; 1977 NextLoadStore = nullptr; 1978 IsScheduled = false; 1979 SchedulingRegionID = BlockSchedulingRegionID; 1980 UnscheduledDepsInBundle = UnscheduledDeps; 1981 clearDependencies(); 1982 OpValue = OpVal; 1983 TE = nullptr; 1984 Lane = -1; 1985 } 1986 1987 /// Returns true if the dependency information has been calculated. 1988 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 1989 1990 /// Returns true for single instructions and for bundle representatives 1991 /// (= the head of a bundle). 1992 bool isSchedulingEntity() const { return FirstInBundle == this; } 1993 1994 /// Returns true if it represents an instruction bundle and not only a 1995 /// single instruction. 1996 bool isPartOfBundle() const { 1997 return NextInBundle != nullptr || FirstInBundle != this; 1998 } 1999 2000 /// Returns true if it is ready for scheduling, i.e. it has no more 2001 /// unscheduled depending instructions/bundles. 2002 bool isReady() const { 2003 assert(isSchedulingEntity() && 2004 "can't consider non-scheduling entity for ready list"); 2005 return UnscheduledDepsInBundle == 0 && !IsScheduled; 2006 } 2007 2008 /// Modifies the number of unscheduled dependencies, also updating it for 2009 /// the whole bundle. 2010 int incrementUnscheduledDeps(int Incr) { 2011 UnscheduledDeps += Incr; 2012 return FirstInBundle->UnscheduledDepsInBundle += Incr; 2013 } 2014 2015 /// Sets the number of unscheduled dependencies to the number of 2016 /// dependencies. 2017 void resetUnscheduledDeps() { 2018 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 2019 } 2020 2021 /// Clears all dependency information. 2022 void clearDependencies() { 2023 Dependencies = InvalidDeps; 2024 resetUnscheduledDeps(); 2025 MemoryDependencies.clear(); 2026 } 2027 2028 void dump(raw_ostream &os) const { 2029 if (!isSchedulingEntity()) { 2030 os << "/ " << *Inst; 2031 } else if (NextInBundle) { 2032 os << '[' << *Inst; 2033 ScheduleData *SD = NextInBundle; 2034 while (SD) { 2035 os << ';' << *SD->Inst; 2036 SD = SD->NextInBundle; 2037 } 2038 os << ']'; 2039 } else { 2040 os << *Inst; 2041 } 2042 } 2043 2044 Instruction *Inst = nullptr; 2045 2046 /// Points to the head in an instruction bundle (and always to this for 2047 /// single instructions). 2048 ScheduleData *FirstInBundle = nullptr; 2049 2050 /// Single linked list of all instructions in a bundle. Null if it is a 2051 /// single instruction. 2052 ScheduleData *NextInBundle = nullptr; 2053 2054 /// Single linked list of all memory instructions (e.g. load, store, call) 2055 /// in the block - until the end of the scheduling region. 2056 ScheduleData *NextLoadStore = nullptr; 2057 2058 /// The dependent memory instructions. 2059 /// This list is derived on demand in calculateDependencies(). 2060 SmallVector<ScheduleData *, 4> MemoryDependencies; 2061 2062 /// This ScheduleData is in the current scheduling region if this matches 2063 /// the current SchedulingRegionID of BlockScheduling. 2064 int SchedulingRegionID = 0; 2065 2066 /// Used for getting a "good" final ordering of instructions. 2067 int SchedulingPriority = 0; 2068 2069 /// The number of dependencies. Constitutes of the number of users of the 2070 /// instruction plus the number of dependent memory instructions (if any). 2071 /// This value is calculated on demand. 2072 /// If InvalidDeps, the number of dependencies is not calculated yet. 2073 int Dependencies = InvalidDeps; 2074 2075 /// The number of dependencies minus the number of dependencies of scheduled 2076 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2077 /// for scheduling. 2078 /// Note that this is negative as long as Dependencies is not calculated. 2079 int UnscheduledDeps = InvalidDeps; 2080 2081 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 2082 /// single instructions. 2083 int UnscheduledDepsInBundle = InvalidDeps; 2084 2085 /// True if this instruction is scheduled (or considered as scheduled in the 2086 /// dry-run). 2087 bool IsScheduled = false; 2088 2089 /// Opcode of the current instruction in the schedule data. 2090 Value *OpValue = nullptr; 2091 2092 /// The TreeEntry that this instruction corresponds to. 2093 TreeEntry *TE = nullptr; 2094 2095 /// The lane of this node in the TreeEntry. 2096 int Lane = -1; 2097 }; 2098 2099 #ifndef NDEBUG 2100 friend inline raw_ostream &operator<<(raw_ostream &os, 2101 const BoUpSLP::ScheduleData &SD) { 2102 SD.dump(os); 2103 return os; 2104 } 2105 #endif 2106 2107 friend struct GraphTraits<BoUpSLP *>; 2108 friend struct DOTGraphTraits<BoUpSLP *>; 2109 2110 /// Contains all scheduling data for a basic block. 2111 struct BlockScheduling { 2112 BlockScheduling(BasicBlock *BB) 2113 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2114 2115 void clear() { 2116 ReadyInsts.clear(); 2117 ScheduleStart = nullptr; 2118 ScheduleEnd = nullptr; 2119 FirstLoadStoreInRegion = nullptr; 2120 LastLoadStoreInRegion = nullptr; 2121 2122 // Reduce the maximum schedule region size by the size of the 2123 // previous scheduling run. 2124 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2125 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2126 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2127 ScheduleRegionSize = 0; 2128 2129 // Make a new scheduling region, i.e. all existing ScheduleData is not 2130 // in the new region yet. 2131 ++SchedulingRegionID; 2132 } 2133 2134 ScheduleData *getScheduleData(Value *V) { 2135 ScheduleData *SD = ScheduleDataMap[V]; 2136 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2137 return SD; 2138 return nullptr; 2139 } 2140 2141 ScheduleData *getScheduleData(Value *V, Value *Key) { 2142 if (V == Key) 2143 return getScheduleData(V); 2144 auto I = ExtraScheduleDataMap.find(V); 2145 if (I != ExtraScheduleDataMap.end()) { 2146 ScheduleData *SD = I->second[Key]; 2147 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2148 return SD; 2149 } 2150 return nullptr; 2151 } 2152 2153 bool isInSchedulingRegion(ScheduleData *SD) const { 2154 return SD->SchedulingRegionID == SchedulingRegionID; 2155 } 2156 2157 /// Marks an instruction as scheduled and puts all dependent ready 2158 /// instructions into the ready-list. 2159 template <typename ReadyListType> 2160 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2161 SD->IsScheduled = true; 2162 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2163 2164 ScheduleData *BundleMember = SD; 2165 while (BundleMember) { 2166 if (BundleMember->Inst != BundleMember->OpValue) { 2167 BundleMember = BundleMember->NextInBundle; 2168 continue; 2169 } 2170 // Handle the def-use chain dependencies. 2171 2172 // Decrement the unscheduled counter and insert to ready list if ready. 2173 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2174 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2175 if (OpDef && OpDef->hasValidDependencies() && 2176 OpDef->incrementUnscheduledDeps(-1) == 0) { 2177 // There are no more unscheduled dependencies after 2178 // decrementing, so we can put the dependent instruction 2179 // into the ready list. 2180 ScheduleData *DepBundle = OpDef->FirstInBundle; 2181 assert(!DepBundle->IsScheduled && 2182 "already scheduled bundle gets ready"); 2183 ReadyList.insert(DepBundle); 2184 LLVM_DEBUG(dbgs() 2185 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2186 } 2187 }); 2188 }; 2189 2190 // If BundleMember is a vector bundle, its operands may have been 2191 // reordered duiring buildTree(). We therefore need to get its operands 2192 // through the TreeEntry. 2193 if (TreeEntry *TE = BundleMember->TE) { 2194 int Lane = BundleMember->Lane; 2195 assert(Lane >= 0 && "Lane not set"); 2196 2197 // Since vectorization tree is being built recursively this assertion 2198 // ensures that the tree entry has all operands set before reaching 2199 // this code. Couple of exceptions known at the moment are extracts 2200 // where their second (immediate) operand is not added. Since 2201 // immediates do not affect scheduler behavior this is considered 2202 // okay. 2203 auto *In = TE->getMainOp(); 2204 assert(In && 2205 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2206 In->getNumOperands() == TE->getNumOperands()) && 2207 "Missed TreeEntry operands?"); 2208 (void)In; // fake use to avoid build failure when assertions disabled 2209 2210 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2211 OpIdx != NumOperands; ++OpIdx) 2212 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2213 DecrUnsched(I); 2214 } else { 2215 // If BundleMember is a stand-alone instruction, no operand reordering 2216 // has taken place, so we directly access its operands. 2217 for (Use &U : BundleMember->Inst->operands()) 2218 if (auto *I = dyn_cast<Instruction>(U.get())) 2219 DecrUnsched(I); 2220 } 2221 // Handle the memory dependencies. 2222 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2223 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2224 // There are no more unscheduled dependencies after decrementing, 2225 // so we can put the dependent instruction into the ready list. 2226 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2227 assert(!DepBundle->IsScheduled && 2228 "already scheduled bundle gets ready"); 2229 ReadyList.insert(DepBundle); 2230 LLVM_DEBUG(dbgs() 2231 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2232 } 2233 } 2234 BundleMember = BundleMember->NextInBundle; 2235 } 2236 } 2237 2238 void doForAllOpcodes(Value *V, 2239 function_ref<void(ScheduleData *SD)> Action) { 2240 if (ScheduleData *SD = getScheduleData(V)) 2241 Action(SD); 2242 auto I = ExtraScheduleDataMap.find(V); 2243 if (I != ExtraScheduleDataMap.end()) 2244 for (auto &P : I->second) 2245 if (P.second->SchedulingRegionID == SchedulingRegionID) 2246 Action(P.second); 2247 } 2248 2249 /// Put all instructions into the ReadyList which are ready for scheduling. 2250 template <typename ReadyListType> 2251 void initialFillReadyList(ReadyListType &ReadyList) { 2252 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2253 doForAllOpcodes(I, [&](ScheduleData *SD) { 2254 if (SD->isSchedulingEntity() && SD->isReady()) { 2255 ReadyList.insert(SD); 2256 LLVM_DEBUG(dbgs() 2257 << "SLP: initially in ready list: " << *I << "\n"); 2258 } 2259 }); 2260 } 2261 } 2262 2263 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2264 /// cyclic dependencies. This is only a dry-run, no instructions are 2265 /// actually moved at this stage. 2266 /// \returns the scheduling bundle. The returned Optional value is non-None 2267 /// if \p VL is allowed to be scheduled. 2268 Optional<ScheduleData *> 2269 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2270 const InstructionsState &S); 2271 2272 /// Un-bundles a group of instructions. 2273 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2274 2275 /// Allocates schedule data chunk. 2276 ScheduleData *allocateScheduleDataChunks(); 2277 2278 /// Extends the scheduling region so that V is inside the region. 2279 /// \returns true if the region size is within the limit. 2280 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2281 2282 /// Initialize the ScheduleData structures for new instructions in the 2283 /// scheduling region. 2284 void initScheduleData(Instruction *FromI, Instruction *ToI, 2285 ScheduleData *PrevLoadStore, 2286 ScheduleData *NextLoadStore); 2287 2288 /// Updates the dependency information of a bundle and of all instructions/ 2289 /// bundles which depend on the original bundle. 2290 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2291 BoUpSLP *SLP); 2292 2293 /// Sets all instruction in the scheduling region to un-scheduled. 2294 void resetSchedule(); 2295 2296 BasicBlock *BB; 2297 2298 /// Simple memory allocation for ScheduleData. 2299 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2300 2301 /// The size of a ScheduleData array in ScheduleDataChunks. 2302 int ChunkSize; 2303 2304 /// The allocator position in the current chunk, which is the last entry 2305 /// of ScheduleDataChunks. 2306 int ChunkPos; 2307 2308 /// Attaches ScheduleData to Instruction. 2309 /// Note that the mapping survives during all vectorization iterations, i.e. 2310 /// ScheduleData structures are recycled. 2311 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2312 2313 /// Attaches ScheduleData to Instruction with the leading key. 2314 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2315 ExtraScheduleDataMap; 2316 2317 struct ReadyList : SmallVector<ScheduleData *, 8> { 2318 void insert(ScheduleData *SD) { push_back(SD); } 2319 }; 2320 2321 /// The ready-list for scheduling (only used for the dry-run). 2322 ReadyList ReadyInsts; 2323 2324 /// The first instruction of the scheduling region. 2325 Instruction *ScheduleStart = nullptr; 2326 2327 /// The first instruction _after_ the scheduling region. 2328 Instruction *ScheduleEnd = nullptr; 2329 2330 /// The first memory accessing instruction in the scheduling region 2331 /// (can be null). 2332 ScheduleData *FirstLoadStoreInRegion = nullptr; 2333 2334 /// The last memory accessing instruction in the scheduling region 2335 /// (can be null). 2336 ScheduleData *LastLoadStoreInRegion = nullptr; 2337 2338 /// The current size of the scheduling region. 2339 int ScheduleRegionSize = 0; 2340 2341 /// The maximum size allowed for the scheduling region. 2342 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2343 2344 /// The ID of the scheduling region. For a new vectorization iteration this 2345 /// is incremented which "removes" all ScheduleData from the region. 2346 // Make sure that the initial SchedulingRegionID is greater than the 2347 // initial SchedulingRegionID in ScheduleData (which is 0). 2348 int SchedulingRegionID = 1; 2349 }; 2350 2351 /// Attaches the BlockScheduling structures to basic blocks. 2352 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2353 2354 /// Performs the "real" scheduling. Done before vectorization is actually 2355 /// performed in a basic block. 2356 void scheduleBlock(BlockScheduling *BS); 2357 2358 /// List of users to ignore during scheduling and that don't need extracting. 2359 ArrayRef<Value *> UserIgnoreList; 2360 2361 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2362 /// sorted SmallVectors of unsigned. 2363 struct OrdersTypeDenseMapInfo { 2364 static OrdersType getEmptyKey() { 2365 OrdersType V; 2366 V.push_back(~1U); 2367 return V; 2368 } 2369 2370 static OrdersType getTombstoneKey() { 2371 OrdersType V; 2372 V.push_back(~2U); 2373 return V; 2374 } 2375 2376 static unsigned getHashValue(const OrdersType &V) { 2377 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2378 } 2379 2380 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2381 return LHS == RHS; 2382 } 2383 }; 2384 2385 /// Contains orders of operations along with the number of bundles that have 2386 /// operations in this order. It stores only those orders that require 2387 /// reordering, if reordering is not required it is counted using \a 2388 /// NumOpsWantToKeepOriginalOrder. 2389 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 2390 /// Number of bundles that do not require reordering. 2391 unsigned NumOpsWantToKeepOriginalOrder = 0; 2392 2393 // Analysis and block reference. 2394 Function *F; 2395 ScalarEvolution *SE; 2396 TargetTransformInfo *TTI; 2397 TargetLibraryInfo *TLI; 2398 AAResults *AA; 2399 LoopInfo *LI; 2400 DominatorTree *DT; 2401 AssumptionCache *AC; 2402 DemandedBits *DB; 2403 const DataLayout *DL; 2404 OptimizationRemarkEmitter *ORE; 2405 2406 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2407 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2408 2409 /// Instruction builder to construct the vectorized tree. 2410 IRBuilder<> Builder; 2411 2412 /// A map of scalar integer values to the smallest bit width with which they 2413 /// can legally be represented. The values map to (width, signed) pairs, 2414 /// where "width" indicates the minimum bit width and "signed" is True if the 2415 /// value must be signed-extended, rather than zero-extended, back to its 2416 /// original width. 2417 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2418 }; 2419 2420 } // end namespace slpvectorizer 2421 2422 template <> struct GraphTraits<BoUpSLP *> { 2423 using TreeEntry = BoUpSLP::TreeEntry; 2424 2425 /// NodeRef has to be a pointer per the GraphWriter. 2426 using NodeRef = TreeEntry *; 2427 2428 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2429 2430 /// Add the VectorizableTree to the index iterator to be able to return 2431 /// TreeEntry pointers. 2432 struct ChildIteratorType 2433 : public iterator_adaptor_base< 2434 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2435 ContainerTy &VectorizableTree; 2436 2437 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2438 ContainerTy &VT) 2439 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2440 2441 NodeRef operator*() { return I->UserTE; } 2442 }; 2443 2444 static NodeRef getEntryNode(BoUpSLP &R) { 2445 return R.VectorizableTree[0].get(); 2446 } 2447 2448 static ChildIteratorType child_begin(NodeRef N) { 2449 return {N->UserTreeIndices.begin(), N->Container}; 2450 } 2451 2452 static ChildIteratorType child_end(NodeRef N) { 2453 return {N->UserTreeIndices.end(), N->Container}; 2454 } 2455 2456 /// For the node iterator we just need to turn the TreeEntry iterator into a 2457 /// TreeEntry* iterator so that it dereferences to NodeRef. 2458 class nodes_iterator { 2459 using ItTy = ContainerTy::iterator; 2460 ItTy It; 2461 2462 public: 2463 nodes_iterator(const ItTy &It2) : It(It2) {} 2464 NodeRef operator*() { return It->get(); } 2465 nodes_iterator operator++() { 2466 ++It; 2467 return *this; 2468 } 2469 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2470 }; 2471 2472 static nodes_iterator nodes_begin(BoUpSLP *R) { 2473 return nodes_iterator(R->VectorizableTree.begin()); 2474 } 2475 2476 static nodes_iterator nodes_end(BoUpSLP *R) { 2477 return nodes_iterator(R->VectorizableTree.end()); 2478 } 2479 2480 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2481 }; 2482 2483 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2484 using TreeEntry = BoUpSLP::TreeEntry; 2485 2486 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2487 2488 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2489 std::string Str; 2490 raw_string_ostream OS(Str); 2491 if (isSplat(Entry->Scalars)) { 2492 OS << "<splat> " << *Entry->Scalars[0]; 2493 return Str; 2494 } 2495 for (auto V : Entry->Scalars) { 2496 OS << *V; 2497 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 2498 return EU.Scalar == V; 2499 })) 2500 OS << " <extract>"; 2501 OS << "\n"; 2502 } 2503 return Str; 2504 } 2505 2506 static std::string getNodeAttributes(const TreeEntry *Entry, 2507 const BoUpSLP *) { 2508 if (Entry->State == TreeEntry::NeedToGather) 2509 return "color=red"; 2510 return ""; 2511 } 2512 }; 2513 2514 } // end namespace llvm 2515 2516 BoUpSLP::~BoUpSLP() { 2517 for (const auto &Pair : DeletedInstructions) { 2518 // Replace operands of ignored instructions with Undefs in case if they were 2519 // marked for deletion. 2520 if (Pair.getSecond()) { 2521 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2522 Pair.getFirst()->replaceAllUsesWith(Undef); 2523 } 2524 Pair.getFirst()->dropAllReferences(); 2525 } 2526 for (const auto &Pair : DeletedInstructions) { 2527 assert(Pair.getFirst()->use_empty() && 2528 "trying to erase instruction with users."); 2529 Pair.getFirst()->eraseFromParent(); 2530 } 2531 #ifdef EXPENSIVE_CHECKS 2532 // If we could guarantee that this call is not extremely slow, we could 2533 // remove the ifdef limitation (see PR47712). 2534 assert(!verifyFunction(*F, &dbgs())); 2535 #endif 2536 } 2537 2538 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2539 for (auto *V : AV) { 2540 if (auto *I = dyn_cast<Instruction>(V)) 2541 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 2542 }; 2543 } 2544 2545 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2546 ArrayRef<Value *> UserIgnoreLst) { 2547 ExtraValueToDebugLocsMap ExternallyUsedValues; 2548 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 2549 } 2550 2551 static int findLaneForValue(ArrayRef<Value *> Scalars, 2552 ArrayRef<int> ReuseShuffleIndices, Value *V) { 2553 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 2554 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2555 if (!ReuseShuffleIndices.empty()) { 2556 FoundLane = std::distance(ReuseShuffleIndices.begin(), 2557 find(ReuseShuffleIndices, FoundLane)); 2558 } 2559 return FoundLane; 2560 } 2561 2562 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2563 ExtraValueToDebugLocsMap &ExternallyUsedValues, 2564 ArrayRef<Value *> UserIgnoreLst) { 2565 deleteTree(); 2566 UserIgnoreList = UserIgnoreLst; 2567 if (!allSameType(Roots)) 2568 return; 2569 buildTree_rec(Roots, 0, EdgeInfo()); 2570 2571 // Collect the values that we need to extract from the tree. 2572 for (auto &TEPtr : VectorizableTree) { 2573 TreeEntry *Entry = TEPtr.get(); 2574 2575 // No need to handle users of gathered values. 2576 if (Entry->State == TreeEntry::NeedToGather) 2577 continue; 2578 2579 // For each lane: 2580 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2581 Value *Scalar = Entry->Scalars[Lane]; 2582 int FoundLane = 2583 findLaneForValue(Entry->Scalars, Entry->ReuseShuffleIndices, Scalar); 2584 2585 // Check if the scalar is externally used as an extra arg. 2586 auto ExtI = ExternallyUsedValues.find(Scalar); 2587 if (ExtI != ExternallyUsedValues.end()) { 2588 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 2589 << Lane << " from " << *Scalar << ".\n"); 2590 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 2591 } 2592 for (User *U : Scalar->users()) { 2593 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 2594 2595 Instruction *UserInst = dyn_cast<Instruction>(U); 2596 if (!UserInst) 2597 continue; 2598 2599 // Skip in-tree scalars that become vectors 2600 if (TreeEntry *UseEntry = getTreeEntry(U)) { 2601 Value *UseScalar = UseEntry->Scalars[0]; 2602 // Some in-tree scalars will remain as scalar in vectorized 2603 // instructions. If that is the case, the one in Lane 0 will 2604 // be used. 2605 if (UseScalar != U || 2606 UseEntry->State == TreeEntry::ScatterVectorize || 2607 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 2608 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 2609 << ".\n"); 2610 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 2611 continue; 2612 } 2613 } 2614 2615 // Ignore users in the user ignore list. 2616 if (is_contained(UserIgnoreList, UserInst)) 2617 continue; 2618 2619 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 2620 << Lane << " from " << *Scalar << ".\n"); 2621 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 2622 } 2623 } 2624 } 2625 } 2626 2627 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 2628 const EdgeInfo &UserTreeIdx) { 2629 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 2630 2631 InstructionsState S = getSameOpcode(VL); 2632 if (Depth == RecursionMaxDepth) { 2633 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 2634 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2635 return; 2636 } 2637 2638 // Don't handle vectors. 2639 if (S.OpValue->getType()->isVectorTy()) { 2640 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 2641 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2642 return; 2643 } 2644 2645 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2646 if (SI->getValueOperand()->getType()->isVectorTy()) { 2647 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 2648 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2649 return; 2650 } 2651 2652 // If all of the operands are identical or constant we have a simple solution. 2653 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 2654 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 2655 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2656 return; 2657 } 2658 2659 // We now know that this is a vector of instructions of the same type from 2660 // the same block. 2661 2662 // Don't vectorize ephemeral values. 2663 for (Value *V : VL) { 2664 if (EphValues.count(V)) { 2665 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2666 << ") is ephemeral.\n"); 2667 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2668 return; 2669 } 2670 } 2671 2672 // Check if this is a duplicate of another entry. 2673 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2674 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 2675 if (!E->isSame(VL)) { 2676 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 2677 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2678 return; 2679 } 2680 // Record the reuse of the tree node. FIXME, currently this is only used to 2681 // properly draw the graph rather than for the actual vectorization. 2682 E->UserTreeIndices.push_back(UserTreeIdx); 2683 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 2684 << ".\n"); 2685 return; 2686 } 2687 2688 // Check that none of the instructions in the bundle are already in the tree. 2689 for (Value *V : VL) { 2690 auto *I = dyn_cast<Instruction>(V); 2691 if (!I) 2692 continue; 2693 if (getTreeEntry(I)) { 2694 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2695 << ") is already in tree.\n"); 2696 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2697 return; 2698 } 2699 } 2700 2701 // If any of the scalars is marked as a value that needs to stay scalar, then 2702 // we need to gather the scalars. 2703 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 2704 for (Value *V : VL) { 2705 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) { 2706 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 2707 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2708 return; 2709 } 2710 } 2711 2712 // Check that all of the users of the scalars that we want to vectorize are 2713 // schedulable. 2714 auto *VL0 = cast<Instruction>(S.OpValue); 2715 BasicBlock *BB = VL0->getParent(); 2716 2717 if (!DT->isReachableFromEntry(BB)) { 2718 // Don't go into unreachable blocks. They may contain instructions with 2719 // dependency cycles which confuse the final scheduling. 2720 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 2721 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2722 return; 2723 } 2724 2725 // Check that every instruction appears once in this bundle. 2726 SmallVector<unsigned, 4> ReuseShuffleIndicies; 2727 SmallVector<Value *, 4> UniqueValues; 2728 DenseMap<Value *, unsigned> UniquePositions; 2729 for (Value *V : VL) { 2730 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 2731 ReuseShuffleIndicies.emplace_back(Res.first->second); 2732 if (Res.second) 2733 UniqueValues.emplace_back(V); 2734 } 2735 size_t NumUniqueScalarValues = UniqueValues.size(); 2736 if (NumUniqueScalarValues == VL.size()) { 2737 ReuseShuffleIndicies.clear(); 2738 } else { 2739 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 2740 if (NumUniqueScalarValues <= 1 || 2741 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 2742 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 2743 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2744 return; 2745 } 2746 VL = UniqueValues; 2747 } 2748 2749 auto &BSRef = BlocksSchedules[BB]; 2750 if (!BSRef) 2751 BSRef = std::make_unique<BlockScheduling>(BB); 2752 2753 BlockScheduling &BS = *BSRef.get(); 2754 2755 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 2756 if (!Bundle) { 2757 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 2758 assert((!BS.getScheduleData(VL0) || 2759 !BS.getScheduleData(VL0)->isPartOfBundle()) && 2760 "tryScheduleBundle should cancelScheduling on failure"); 2761 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2762 ReuseShuffleIndicies); 2763 return; 2764 } 2765 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 2766 2767 unsigned ShuffleOrOp = S.isAltShuffle() ? 2768 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2769 switch (ShuffleOrOp) { 2770 case Instruction::PHI: { 2771 auto *PH = cast<PHINode>(VL0); 2772 2773 // Check for terminator values (e.g. invoke). 2774 for (Value *V : VL) 2775 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 2776 Instruction *Term = dyn_cast<Instruction>( 2777 cast<PHINode>(V)->getIncomingValueForBlock( 2778 PH->getIncomingBlock(I))); 2779 if (Term && Term->isTerminator()) { 2780 LLVM_DEBUG(dbgs() 2781 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 2782 BS.cancelScheduling(VL, VL0); 2783 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2784 ReuseShuffleIndicies); 2785 return; 2786 } 2787 } 2788 2789 TreeEntry *TE = 2790 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 2791 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 2792 2793 // Keeps the reordered operands to avoid code duplication. 2794 SmallVector<ValueList, 2> OperandsVec; 2795 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 2796 ValueList Operands; 2797 // Prepare the operand vector. 2798 for (Value *V : VL) 2799 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 2800 PH->getIncomingBlock(I))); 2801 TE->setOperand(I, Operands); 2802 OperandsVec.push_back(Operands); 2803 } 2804 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 2805 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 2806 return; 2807 } 2808 case Instruction::ExtractValue: 2809 case Instruction::ExtractElement: { 2810 OrdersType CurrentOrder; 2811 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 2812 if (Reuse) { 2813 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 2814 ++NumOpsWantToKeepOriginalOrder; 2815 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2816 ReuseShuffleIndicies); 2817 // This is a special case, as it does not gather, but at the same time 2818 // we are not extending buildTree_rec() towards the operands. 2819 ValueList Op0; 2820 Op0.assign(VL.size(), VL0->getOperand(0)); 2821 VectorizableTree.back()->setOperand(0, Op0); 2822 return; 2823 } 2824 if (!CurrentOrder.empty()) { 2825 LLVM_DEBUG({ 2826 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 2827 "with order"; 2828 for (unsigned Idx : CurrentOrder) 2829 dbgs() << " " << Idx; 2830 dbgs() << "\n"; 2831 }); 2832 // Insert new order with initial value 0, if it does not exist, 2833 // otherwise return the iterator to the existing one. 2834 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2835 ReuseShuffleIndicies, CurrentOrder); 2836 findRootOrder(CurrentOrder); 2837 ++NumOpsWantToKeepOrder[CurrentOrder]; 2838 // This is a special case, as it does not gather, but at the same time 2839 // we are not extending buildTree_rec() towards the operands. 2840 ValueList Op0; 2841 Op0.assign(VL.size(), VL0->getOperand(0)); 2842 VectorizableTree.back()->setOperand(0, Op0); 2843 return; 2844 } 2845 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 2846 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2847 ReuseShuffleIndicies); 2848 BS.cancelScheduling(VL, VL0); 2849 return; 2850 } 2851 case Instruction::Load: { 2852 // Check that a vectorized load would load the same memory as a scalar 2853 // load. For example, we don't want to vectorize loads that are smaller 2854 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 2855 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 2856 // from such a struct, we read/write packed bits disagreeing with the 2857 // unvectorized version. 2858 Type *ScalarTy = VL0->getType(); 2859 2860 if (DL->getTypeSizeInBits(ScalarTy) != 2861 DL->getTypeAllocSizeInBits(ScalarTy)) { 2862 BS.cancelScheduling(VL, VL0); 2863 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2864 ReuseShuffleIndicies); 2865 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 2866 return; 2867 } 2868 2869 // Make sure all loads in the bundle are simple - we can't vectorize 2870 // atomic or volatile loads. 2871 SmallVector<Value *, 4> PointerOps(VL.size()); 2872 auto POIter = PointerOps.begin(); 2873 for (Value *V : VL) { 2874 auto *L = cast<LoadInst>(V); 2875 if (!L->isSimple()) { 2876 BS.cancelScheduling(VL, VL0); 2877 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2878 ReuseShuffleIndicies); 2879 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 2880 return; 2881 } 2882 *POIter = L->getPointerOperand(); 2883 ++POIter; 2884 } 2885 2886 OrdersType CurrentOrder; 2887 // Check the order of pointer operands. 2888 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 2889 Value *Ptr0; 2890 Value *PtrN; 2891 if (CurrentOrder.empty()) { 2892 Ptr0 = PointerOps.front(); 2893 PtrN = PointerOps.back(); 2894 } else { 2895 Ptr0 = PointerOps[CurrentOrder.front()]; 2896 PtrN = PointerOps[CurrentOrder.back()]; 2897 } 2898 Optional<int> Diff = getPointersDiff(Ptr0, PtrN, *DL, *SE); 2899 // Check that the sorted loads are consecutive. 2900 if (static_cast<unsigned>(*Diff) == VL.size() - 1) { 2901 if (CurrentOrder.empty()) { 2902 // Original loads are consecutive and does not require reordering. 2903 ++NumOpsWantToKeepOriginalOrder; 2904 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 2905 UserTreeIdx, ReuseShuffleIndicies); 2906 TE->setOperandsInOrder(); 2907 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 2908 } else { 2909 // Need to reorder. 2910 TreeEntry *TE = 2911 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2912 ReuseShuffleIndicies, CurrentOrder); 2913 TE->setOperandsInOrder(); 2914 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 2915 findRootOrder(CurrentOrder); 2916 ++NumOpsWantToKeepOrder[CurrentOrder]; 2917 } 2918 return; 2919 } 2920 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 2921 TreeEntry *TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 2922 UserTreeIdx, ReuseShuffleIndicies); 2923 TE->setOperandsInOrder(); 2924 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 2925 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 2926 return; 2927 } 2928 2929 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 2930 BS.cancelScheduling(VL, VL0); 2931 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2932 ReuseShuffleIndicies); 2933 return; 2934 } 2935 case Instruction::ZExt: 2936 case Instruction::SExt: 2937 case Instruction::FPToUI: 2938 case Instruction::FPToSI: 2939 case Instruction::FPExt: 2940 case Instruction::PtrToInt: 2941 case Instruction::IntToPtr: 2942 case Instruction::SIToFP: 2943 case Instruction::UIToFP: 2944 case Instruction::Trunc: 2945 case Instruction::FPTrunc: 2946 case Instruction::BitCast: { 2947 Type *SrcTy = VL0->getOperand(0)->getType(); 2948 for (Value *V : VL) { 2949 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 2950 if (Ty != SrcTy || !isValidElementType(Ty)) { 2951 BS.cancelScheduling(VL, VL0); 2952 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2953 ReuseShuffleIndicies); 2954 LLVM_DEBUG(dbgs() 2955 << "SLP: Gathering casts with different src types.\n"); 2956 return; 2957 } 2958 } 2959 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2960 ReuseShuffleIndicies); 2961 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 2962 2963 TE->setOperandsInOrder(); 2964 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2965 ValueList Operands; 2966 // Prepare the operand vector. 2967 for (Value *V : VL) 2968 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2969 2970 buildTree_rec(Operands, Depth + 1, {TE, i}); 2971 } 2972 return; 2973 } 2974 case Instruction::ICmp: 2975 case Instruction::FCmp: { 2976 // Check that all of the compares have the same predicate. 2977 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2978 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 2979 Type *ComparedTy = VL0->getOperand(0)->getType(); 2980 for (Value *V : VL) { 2981 CmpInst *Cmp = cast<CmpInst>(V); 2982 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 2983 Cmp->getOperand(0)->getType() != ComparedTy) { 2984 BS.cancelScheduling(VL, VL0); 2985 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2986 ReuseShuffleIndicies); 2987 LLVM_DEBUG(dbgs() 2988 << "SLP: Gathering cmp with different predicate.\n"); 2989 return; 2990 } 2991 } 2992 2993 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2994 ReuseShuffleIndicies); 2995 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 2996 2997 ValueList Left, Right; 2998 if (cast<CmpInst>(VL0)->isCommutative()) { 2999 // Commutative predicate - collect + sort operands of the instructions 3000 // so that each side is more likely to have the same opcode. 3001 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 3002 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3003 } else { 3004 // Collect operands - commute if it uses the swapped predicate. 3005 for (Value *V : VL) { 3006 auto *Cmp = cast<CmpInst>(V); 3007 Value *LHS = Cmp->getOperand(0); 3008 Value *RHS = Cmp->getOperand(1); 3009 if (Cmp->getPredicate() != P0) 3010 std::swap(LHS, RHS); 3011 Left.push_back(LHS); 3012 Right.push_back(RHS); 3013 } 3014 } 3015 TE->setOperand(0, Left); 3016 TE->setOperand(1, Right); 3017 buildTree_rec(Left, Depth + 1, {TE, 0}); 3018 buildTree_rec(Right, Depth + 1, {TE, 1}); 3019 return; 3020 } 3021 case Instruction::Select: 3022 case Instruction::FNeg: 3023 case Instruction::Add: 3024 case Instruction::FAdd: 3025 case Instruction::Sub: 3026 case Instruction::FSub: 3027 case Instruction::Mul: 3028 case Instruction::FMul: 3029 case Instruction::UDiv: 3030 case Instruction::SDiv: 3031 case Instruction::FDiv: 3032 case Instruction::URem: 3033 case Instruction::SRem: 3034 case Instruction::FRem: 3035 case Instruction::Shl: 3036 case Instruction::LShr: 3037 case Instruction::AShr: 3038 case Instruction::And: 3039 case Instruction::Or: 3040 case Instruction::Xor: { 3041 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3042 ReuseShuffleIndicies); 3043 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 3044 3045 // Sort operands of the instructions so that each side is more likely to 3046 // have the same opcode. 3047 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 3048 ValueList Left, Right; 3049 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3050 TE->setOperand(0, Left); 3051 TE->setOperand(1, Right); 3052 buildTree_rec(Left, Depth + 1, {TE, 0}); 3053 buildTree_rec(Right, Depth + 1, {TE, 1}); 3054 return; 3055 } 3056 3057 TE->setOperandsInOrder(); 3058 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3059 ValueList Operands; 3060 // Prepare the operand vector. 3061 for (Value *V : VL) 3062 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3063 3064 buildTree_rec(Operands, Depth + 1, {TE, i}); 3065 } 3066 return; 3067 } 3068 case Instruction::GetElementPtr: { 3069 // We don't combine GEPs with complicated (nested) indexing. 3070 for (Value *V : VL) { 3071 if (cast<Instruction>(V)->getNumOperands() != 2) { 3072 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 3073 BS.cancelScheduling(VL, VL0); 3074 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3075 ReuseShuffleIndicies); 3076 return; 3077 } 3078 } 3079 3080 // We can't combine several GEPs into one vector if they operate on 3081 // different types. 3082 Type *Ty0 = VL0->getOperand(0)->getType(); 3083 for (Value *V : VL) { 3084 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 3085 if (Ty0 != CurTy) { 3086 LLVM_DEBUG(dbgs() 3087 << "SLP: not-vectorizable GEP (different types).\n"); 3088 BS.cancelScheduling(VL, VL0); 3089 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3090 ReuseShuffleIndicies); 3091 return; 3092 } 3093 } 3094 3095 // We don't combine GEPs with non-constant indexes. 3096 Type *Ty1 = VL0->getOperand(1)->getType(); 3097 for (Value *V : VL) { 3098 auto Op = cast<Instruction>(V)->getOperand(1); 3099 if (!isa<ConstantInt>(Op) || 3100 (Op->getType() != Ty1 && 3101 Op->getType()->getScalarSizeInBits() > 3102 DL->getIndexSizeInBits( 3103 V->getType()->getPointerAddressSpace()))) { 3104 LLVM_DEBUG(dbgs() 3105 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 3106 BS.cancelScheduling(VL, VL0); 3107 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3108 ReuseShuffleIndicies); 3109 return; 3110 } 3111 } 3112 3113 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3114 ReuseShuffleIndicies); 3115 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 3116 TE->setOperandsInOrder(); 3117 for (unsigned i = 0, e = 2; i < e; ++i) { 3118 ValueList Operands; 3119 // Prepare the operand vector. 3120 for (Value *V : VL) 3121 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3122 3123 buildTree_rec(Operands, Depth + 1, {TE, i}); 3124 } 3125 return; 3126 } 3127 case Instruction::Store: { 3128 // Check if the stores are consecutive or if we need to swizzle them. 3129 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 3130 // Avoid types that are padded when being allocated as scalars, while 3131 // being packed together in a vector (such as i1). 3132 if (DL->getTypeSizeInBits(ScalarTy) != 3133 DL->getTypeAllocSizeInBits(ScalarTy)) { 3134 BS.cancelScheduling(VL, VL0); 3135 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3136 ReuseShuffleIndicies); 3137 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 3138 return; 3139 } 3140 // Make sure all stores in the bundle are simple - we can't vectorize 3141 // atomic or volatile stores. 3142 SmallVector<Value *, 4> PointerOps(VL.size()); 3143 ValueList Operands(VL.size()); 3144 auto POIter = PointerOps.begin(); 3145 auto OIter = Operands.begin(); 3146 for (Value *V : VL) { 3147 auto *SI = cast<StoreInst>(V); 3148 if (!SI->isSimple()) { 3149 BS.cancelScheduling(VL, VL0); 3150 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3151 ReuseShuffleIndicies); 3152 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 3153 return; 3154 } 3155 *POIter = SI->getPointerOperand(); 3156 *OIter = SI->getValueOperand(); 3157 ++POIter; 3158 ++OIter; 3159 } 3160 3161 OrdersType CurrentOrder; 3162 // Check the order of pointer operands. 3163 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 3164 Value *Ptr0; 3165 Value *PtrN; 3166 if (CurrentOrder.empty()) { 3167 Ptr0 = PointerOps.front(); 3168 PtrN = PointerOps.back(); 3169 } else { 3170 Ptr0 = PointerOps[CurrentOrder.front()]; 3171 PtrN = PointerOps[CurrentOrder.back()]; 3172 } 3173 Optional<int> Dist = getPointersDiff(Ptr0, PtrN, *DL, *SE); 3174 // Check that the sorted pointer operands are consecutive. 3175 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 3176 if (CurrentOrder.empty()) { 3177 // Original stores are consecutive and does not require reordering. 3178 ++NumOpsWantToKeepOriginalOrder; 3179 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 3180 UserTreeIdx, ReuseShuffleIndicies); 3181 TE->setOperandsInOrder(); 3182 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3183 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 3184 } else { 3185 TreeEntry *TE = 3186 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3187 ReuseShuffleIndicies, CurrentOrder); 3188 TE->setOperandsInOrder(); 3189 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3190 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 3191 findRootOrder(CurrentOrder); 3192 ++NumOpsWantToKeepOrder[CurrentOrder]; 3193 } 3194 return; 3195 } 3196 } 3197 3198 BS.cancelScheduling(VL, VL0); 3199 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3200 ReuseShuffleIndicies); 3201 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 3202 return; 3203 } 3204 case Instruction::Call: { 3205 // Check if the calls are all to the same vectorizable intrinsic or 3206 // library function. 3207 CallInst *CI = cast<CallInst>(VL0); 3208 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3209 3210 VFShape Shape = VFShape::get( 3211 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 3212 false /*HasGlobalPred*/); 3213 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3214 3215 if (!VecFunc && !isTriviallyVectorizable(ID)) { 3216 BS.cancelScheduling(VL, VL0); 3217 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3218 ReuseShuffleIndicies); 3219 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 3220 return; 3221 } 3222 Function *F = CI->getCalledFunction(); 3223 unsigned NumArgs = CI->getNumArgOperands(); 3224 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 3225 for (unsigned j = 0; j != NumArgs; ++j) 3226 if (hasVectorInstrinsicScalarOpd(ID, j)) 3227 ScalarArgs[j] = CI->getArgOperand(j); 3228 for (Value *V : VL) { 3229 CallInst *CI2 = dyn_cast<CallInst>(V); 3230 if (!CI2 || CI2->getCalledFunction() != F || 3231 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 3232 (VecFunc && 3233 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 3234 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 3235 BS.cancelScheduling(VL, VL0); 3236 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3237 ReuseShuffleIndicies); 3238 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 3239 << "\n"); 3240 return; 3241 } 3242 // Some intrinsics have scalar arguments and should be same in order for 3243 // them to be vectorized. 3244 for (unsigned j = 0; j != NumArgs; ++j) { 3245 if (hasVectorInstrinsicScalarOpd(ID, j)) { 3246 Value *A1J = CI2->getArgOperand(j); 3247 if (ScalarArgs[j] != A1J) { 3248 BS.cancelScheduling(VL, VL0); 3249 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3250 ReuseShuffleIndicies); 3251 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 3252 << " argument " << ScalarArgs[j] << "!=" << A1J 3253 << "\n"); 3254 return; 3255 } 3256 } 3257 } 3258 // Verify that the bundle operands are identical between the two calls. 3259 if (CI->hasOperandBundles() && 3260 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 3261 CI->op_begin() + CI->getBundleOperandsEndIndex(), 3262 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 3263 BS.cancelScheduling(VL, VL0); 3264 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3265 ReuseShuffleIndicies); 3266 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 3267 << *CI << "!=" << *V << '\n'); 3268 return; 3269 } 3270 } 3271 3272 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3273 ReuseShuffleIndicies); 3274 TE->setOperandsInOrder(); 3275 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 3276 ValueList Operands; 3277 // Prepare the operand vector. 3278 for (Value *V : VL) { 3279 auto *CI2 = cast<CallInst>(V); 3280 Operands.push_back(CI2->getArgOperand(i)); 3281 } 3282 buildTree_rec(Operands, Depth + 1, {TE, i}); 3283 } 3284 return; 3285 } 3286 case Instruction::ShuffleVector: { 3287 // If this is not an alternate sequence of opcode like add-sub 3288 // then do not vectorize this instruction. 3289 if (!S.isAltShuffle()) { 3290 BS.cancelScheduling(VL, VL0); 3291 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3292 ReuseShuffleIndicies); 3293 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 3294 return; 3295 } 3296 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3297 ReuseShuffleIndicies); 3298 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 3299 3300 // Reorder operands if reordering would enable vectorization. 3301 if (isa<BinaryOperator>(VL0)) { 3302 ValueList Left, Right; 3303 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3304 TE->setOperand(0, Left); 3305 TE->setOperand(1, Right); 3306 buildTree_rec(Left, Depth + 1, {TE, 0}); 3307 buildTree_rec(Right, Depth + 1, {TE, 1}); 3308 return; 3309 } 3310 3311 TE->setOperandsInOrder(); 3312 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3313 ValueList Operands; 3314 // Prepare the operand vector. 3315 for (Value *V : VL) 3316 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3317 3318 buildTree_rec(Operands, Depth + 1, {TE, i}); 3319 } 3320 return; 3321 } 3322 default: 3323 BS.cancelScheduling(VL, VL0); 3324 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3325 ReuseShuffleIndicies); 3326 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 3327 return; 3328 } 3329 } 3330 3331 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 3332 unsigned N = 1; 3333 Type *EltTy = T; 3334 3335 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 3336 isa<VectorType>(EltTy)) { 3337 if (auto *ST = dyn_cast<StructType>(EltTy)) { 3338 // Check that struct is homogeneous. 3339 for (const auto *Ty : ST->elements()) 3340 if (Ty != *ST->element_begin()) 3341 return 0; 3342 N *= ST->getNumElements(); 3343 EltTy = *ST->element_begin(); 3344 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 3345 N *= AT->getNumElements(); 3346 EltTy = AT->getElementType(); 3347 } else { 3348 auto *VT = cast<FixedVectorType>(EltTy); 3349 N *= VT->getNumElements(); 3350 EltTy = VT->getElementType(); 3351 } 3352 } 3353 3354 if (!isValidElementType(EltTy)) 3355 return 0; 3356 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 3357 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 3358 return 0; 3359 return N; 3360 } 3361 3362 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 3363 SmallVectorImpl<unsigned> &CurrentOrder) const { 3364 Instruction *E0 = cast<Instruction>(OpValue); 3365 assert(E0->getOpcode() == Instruction::ExtractElement || 3366 E0->getOpcode() == Instruction::ExtractValue); 3367 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 3368 // Check if all of the extracts come from the same vector and from the 3369 // correct offset. 3370 Value *Vec = E0->getOperand(0); 3371 3372 CurrentOrder.clear(); 3373 3374 // We have to extract from a vector/aggregate with the same number of elements. 3375 unsigned NElts; 3376 if (E0->getOpcode() == Instruction::ExtractValue) { 3377 const DataLayout &DL = E0->getModule()->getDataLayout(); 3378 NElts = canMapToVector(Vec->getType(), DL); 3379 if (!NElts) 3380 return false; 3381 // Check if load can be rewritten as load of vector. 3382 LoadInst *LI = dyn_cast<LoadInst>(Vec); 3383 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 3384 return false; 3385 } else { 3386 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 3387 } 3388 3389 if (NElts != VL.size()) 3390 return false; 3391 3392 // Check that all of the indices extract from the correct offset. 3393 bool ShouldKeepOrder = true; 3394 unsigned E = VL.size(); 3395 // Assign to all items the initial value E + 1 so we can check if the extract 3396 // instruction index was used already. 3397 // Also, later we can check that all the indices are used and we have a 3398 // consecutive access in the extract instructions, by checking that no 3399 // element of CurrentOrder still has value E + 1. 3400 CurrentOrder.assign(E, E + 1); 3401 unsigned I = 0; 3402 for (; I < E; ++I) { 3403 auto *Inst = cast<Instruction>(VL[I]); 3404 if (Inst->getOperand(0) != Vec) 3405 break; 3406 Optional<unsigned> Idx = getExtractIndex(Inst); 3407 if (!Idx) 3408 break; 3409 const unsigned ExtIdx = *Idx; 3410 if (ExtIdx != I) { 3411 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 3412 break; 3413 ShouldKeepOrder = false; 3414 CurrentOrder[ExtIdx] = I; 3415 } else { 3416 if (CurrentOrder[I] != E + 1) 3417 break; 3418 CurrentOrder[I] = I; 3419 } 3420 } 3421 if (I < E) { 3422 CurrentOrder.clear(); 3423 return false; 3424 } 3425 3426 return ShouldKeepOrder; 3427 } 3428 3429 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 3430 return I->hasOneUse() || llvm::all_of(I->users(), [this](User *U) { 3431 return ScalarToTreeEntry.count(U) > 0; 3432 }); 3433 } 3434 3435 static std::pair<InstructionCost, InstructionCost> 3436 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 3437 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 3438 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3439 3440 // Calculate the cost of the scalar and vector calls. 3441 SmallVector<Type *, 4> VecTys; 3442 for (Use &Arg : CI->args()) 3443 VecTys.push_back( 3444 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 3445 FastMathFlags FMF; 3446 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 3447 FMF = FPCI->getFastMathFlags(); 3448 SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end()); 3449 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 3450 dyn_cast<IntrinsicInst>(CI)); 3451 auto IntrinsicCost = 3452 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 3453 3454 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 3455 VecTy->getNumElements())), 3456 false /*HasGlobalPred*/); 3457 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3458 auto LibCost = IntrinsicCost; 3459 if (!CI->isNoBuiltin() && VecFunc) { 3460 // Calculate the cost of the vector library call. 3461 // If the corresponding vector call is cheaper, return its cost. 3462 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 3463 TTI::TCK_RecipThroughput); 3464 } 3465 return {IntrinsicCost, LibCost}; 3466 } 3467 3468 /// Compute the cost of creating a vector of type \p VecTy containing the 3469 /// extracted values from \p VL. 3470 static InstructionCost 3471 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 3472 TargetTransformInfo::ShuffleKind ShuffleKind, 3473 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 3474 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 3475 3476 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 3477 VecTy->getNumElements() < NumOfParts) 3478 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 3479 3480 bool AllConsecutive = true; 3481 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 3482 unsigned Idx = -1; 3483 InstructionCost Cost = 0; 3484 3485 // Process extracts in blocks of EltsPerVector to check if the source vector 3486 // operand can be re-used directly. If not, add the cost of creating a shuffle 3487 // to extract the values into a vector register. 3488 for (auto *V : VL) { 3489 ++Idx; 3490 3491 // Reached the start of a new vector registers. 3492 if (Idx % EltsPerVector == 0) { 3493 AllConsecutive = true; 3494 continue; 3495 } 3496 3497 // Check all extracts for a vector register on the target directly 3498 // extract values in order. 3499 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 3500 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 3501 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 3502 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 3503 3504 if (AllConsecutive) 3505 continue; 3506 3507 // Skip all indices, except for the last index per vector block. 3508 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 3509 continue; 3510 3511 // If we have a series of extracts which are not consecutive and hence 3512 // cannot re-use the source vector register directly, compute the shuffle 3513 // cost to extract the a vector with EltsPerVector elements. 3514 Cost += TTI.getShuffleCost( 3515 TargetTransformInfo::SK_PermuteSingleSrc, 3516 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 3517 } 3518 return Cost; 3519 } 3520 3521 InstructionCost BoUpSLP::getEntryCost(TreeEntry *E) { 3522 ArrayRef<Value*> VL = E->Scalars; 3523 3524 Type *ScalarTy = VL[0]->getType(); 3525 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 3526 ScalarTy = SI->getValueOperand()->getType(); 3527 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 3528 ScalarTy = CI->getOperand(0)->getType(); 3529 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 3530 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 3531 3532 // If we have computed a smaller type for the expression, update VecTy so 3533 // that the costs will be accurate. 3534 if (MinBWs.count(VL[0])) 3535 VecTy = FixedVectorType::get( 3536 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 3537 3538 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 3539 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3540 InstructionCost ReuseShuffleCost = 0; 3541 if (NeedToShuffleReuses) { 3542 ReuseShuffleCost = 3543 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy, 3544 E->ReuseShuffleIndices); 3545 } 3546 if (E->State == TreeEntry::NeedToGather) { 3547 if (allConstant(VL)) 3548 return 0; 3549 if (isSplat(VL)) { 3550 return ReuseShuffleCost + 3551 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, None, 3552 0); 3553 } 3554 if (E->getOpcode() == Instruction::ExtractElement && 3555 allSameType(VL) && allSameBlock(VL)) { 3556 SmallVector<int> Mask; 3557 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 3558 isShuffle(VL, Mask); 3559 if (ShuffleKind.hasValue()) { 3560 InstructionCost Cost = 3561 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 3562 for (auto *V : VL) { 3563 // If all users of instruction are going to be vectorized and this 3564 // instruction itself is not going to be vectorized, consider this 3565 // instruction as dead and remove its cost from the final cost of the 3566 // vectorized tree. 3567 if (areAllUsersVectorized(cast<Instruction>(V)) && 3568 !ScalarToTreeEntry.count(V)) { 3569 auto *IO = cast<ConstantInt>( 3570 cast<ExtractElementInst>(V)->getIndexOperand()); 3571 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 3572 IO->getZExtValue()); 3573 } 3574 } 3575 return ReuseShuffleCost + Cost; 3576 } 3577 } 3578 InstructionCost GatherCost = 0; 3579 SmallVector<int> Mask; 3580 SmallVector<const TreeEntry *> Entries; 3581 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 3582 isGatherShuffledEntry(E, Mask, Entries); 3583 if (Shuffle.hasValue()) { 3584 if (ShuffleVectorInst::isIdentityMask(Mask)) { 3585 LLVM_DEBUG( 3586 dbgs() 3587 << "SLP: perfect diamond match for gather bundle that starts with " 3588 << *VL.front() << ".\n"); 3589 } else { 3590 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 3591 << " entries for bundle that starts with " 3592 << *VL.front() << ".\n"); 3593 GatherCost = TTI->getShuffleCost(*Shuffle, VecTy, Mask); 3594 } 3595 } else { 3596 GatherCost = getGatherCost(VL); 3597 } 3598 return ReuseShuffleCost + GatherCost; 3599 } 3600 assert((E->State == TreeEntry::Vectorize || 3601 E->State == TreeEntry::ScatterVectorize) && 3602 "Unhandled state"); 3603 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 3604 Instruction *VL0 = E->getMainOp(); 3605 unsigned ShuffleOrOp = 3606 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 3607 switch (ShuffleOrOp) { 3608 case Instruction::PHI: 3609 return 0; 3610 3611 case Instruction::ExtractValue: 3612 case Instruction::ExtractElement: { 3613 // The common cost of removal ExtractElement/ExtractValue instructions + 3614 // the cost of shuffles, if required to resuffle the original vector. 3615 InstructionCost CommonCost = 0; 3616 if (NeedToShuffleReuses) { 3617 unsigned Idx = 0; 3618 for (unsigned I : E->ReuseShuffleIndices) { 3619 if (ShuffleOrOp == Instruction::ExtractElement) { 3620 auto *IO = cast<ConstantInt>( 3621 cast<ExtractElementInst>(VL[I])->getIndexOperand()); 3622 Idx = IO->getZExtValue(); 3623 ReuseShuffleCost -= TTI->getVectorInstrCost( 3624 Instruction::ExtractElement, VecTy, Idx); 3625 } else { 3626 ReuseShuffleCost -= TTI->getVectorInstrCost( 3627 Instruction::ExtractElement, VecTy, Idx); 3628 ++Idx; 3629 } 3630 } 3631 Idx = ReuseShuffleNumbers; 3632 for (Value *V : VL) { 3633 if (ShuffleOrOp == Instruction::ExtractElement) { 3634 auto *IO = cast<ConstantInt>( 3635 cast<ExtractElementInst>(V)->getIndexOperand()); 3636 Idx = IO->getZExtValue(); 3637 } else { 3638 --Idx; 3639 } 3640 ReuseShuffleCost += 3641 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); 3642 } 3643 CommonCost = ReuseShuffleCost; 3644 } else if (!E->ReorderIndices.empty()) { 3645 SmallVector<int> NewMask; 3646 inversePermutation(E->ReorderIndices, NewMask); 3647 CommonCost = TTI->getShuffleCost( 3648 TargetTransformInfo::SK_PermuteSingleSrc, VecTy, NewMask); 3649 } 3650 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 3651 Instruction *EI = cast<Instruction>(VL[I]); 3652 // If all users are going to be vectorized, instruction can be 3653 // considered as dead. 3654 // The same, if have only one user, it will be vectorized for sure. 3655 if (areAllUsersVectorized(EI)) { 3656 // Take credit for instruction that will become dead. 3657 if (EI->hasOneUse()) { 3658 Instruction *Ext = EI->user_back(); 3659 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3660 all_of(Ext->users(), 3661 [](User *U) { return isa<GetElementPtrInst>(U); })) { 3662 // Use getExtractWithExtendCost() to calculate the cost of 3663 // extractelement/ext pair. 3664 CommonCost -= TTI->getExtractWithExtendCost( 3665 Ext->getOpcode(), Ext->getType(), VecTy, I); 3666 // Add back the cost of s|zext which is subtracted separately. 3667 CommonCost += TTI->getCastInstrCost( 3668 Ext->getOpcode(), Ext->getType(), EI->getType(), 3669 TTI::getCastContextHint(Ext), CostKind, Ext); 3670 continue; 3671 } 3672 } 3673 CommonCost -= 3674 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 3675 } 3676 } 3677 return CommonCost; 3678 } 3679 case Instruction::ZExt: 3680 case Instruction::SExt: 3681 case Instruction::FPToUI: 3682 case Instruction::FPToSI: 3683 case Instruction::FPExt: 3684 case Instruction::PtrToInt: 3685 case Instruction::IntToPtr: 3686 case Instruction::SIToFP: 3687 case Instruction::UIToFP: 3688 case Instruction::Trunc: 3689 case Instruction::FPTrunc: 3690 case Instruction::BitCast: { 3691 Type *SrcTy = VL0->getOperand(0)->getType(); 3692 InstructionCost ScalarEltCost = 3693 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 3694 TTI::getCastContextHint(VL0), CostKind, VL0); 3695 if (NeedToShuffleReuses) { 3696 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3697 } 3698 3699 // Calculate the cost of this instruction. 3700 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 3701 3702 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 3703 InstructionCost VecCost = 0; 3704 // Check if the values are candidates to demote. 3705 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 3706 VecCost = 3707 ReuseShuffleCost + 3708 TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy, 3709 TTI::getCastContextHint(VL0), CostKind, VL0); 3710 } 3711 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3712 return VecCost - ScalarCost; 3713 } 3714 case Instruction::FCmp: 3715 case Instruction::ICmp: 3716 case Instruction::Select: { 3717 // Calculate the cost of this instruction. 3718 InstructionCost ScalarEltCost = 3719 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 3720 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 3721 if (NeedToShuffleReuses) { 3722 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3723 } 3724 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 3725 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3726 3727 // Check if all entries in VL are either compares or selects with compares 3728 // as condition that have the same predicates. 3729 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 3730 bool First = true; 3731 for (auto *V : VL) { 3732 CmpInst::Predicate CurrentPred; 3733 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 3734 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 3735 !match(V, MatchCmp)) || 3736 (!First && VecPred != CurrentPred)) { 3737 VecPred = CmpInst::BAD_ICMP_PREDICATE; 3738 break; 3739 } 3740 First = false; 3741 VecPred = CurrentPred; 3742 } 3743 3744 InstructionCost VecCost = TTI->getCmpSelInstrCost( 3745 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 3746 // Check if it is possible and profitable to use min/max for selects in 3747 // VL. 3748 // 3749 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 3750 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 3751 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 3752 {VecTy, VecTy}); 3753 InstructionCost IntrinsicCost = 3754 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 3755 // If the selects are the only uses of the compares, they will be dead 3756 // and we can adjust the cost by removing their cost. 3757 if (IntrinsicAndUse.second) 3758 IntrinsicCost -= 3759 TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy, 3760 CmpInst::BAD_ICMP_PREDICATE, CostKind); 3761 VecCost = std::min(VecCost, IntrinsicCost); 3762 } 3763 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3764 return ReuseShuffleCost + VecCost - ScalarCost; 3765 } 3766 case Instruction::FNeg: 3767 case Instruction::Add: 3768 case Instruction::FAdd: 3769 case Instruction::Sub: 3770 case Instruction::FSub: 3771 case Instruction::Mul: 3772 case Instruction::FMul: 3773 case Instruction::UDiv: 3774 case Instruction::SDiv: 3775 case Instruction::FDiv: 3776 case Instruction::URem: 3777 case Instruction::SRem: 3778 case Instruction::FRem: 3779 case Instruction::Shl: 3780 case Instruction::LShr: 3781 case Instruction::AShr: 3782 case Instruction::And: 3783 case Instruction::Or: 3784 case Instruction::Xor: { 3785 // Certain instructions can be cheaper to vectorize if they have a 3786 // constant second vector operand. 3787 TargetTransformInfo::OperandValueKind Op1VK = 3788 TargetTransformInfo::OK_AnyValue; 3789 TargetTransformInfo::OperandValueKind Op2VK = 3790 TargetTransformInfo::OK_UniformConstantValue; 3791 TargetTransformInfo::OperandValueProperties Op1VP = 3792 TargetTransformInfo::OP_None; 3793 TargetTransformInfo::OperandValueProperties Op2VP = 3794 TargetTransformInfo::OP_PowerOf2; 3795 3796 // If all operands are exactly the same ConstantInt then set the 3797 // operand kind to OK_UniformConstantValue. 3798 // If instead not all operands are constants, then set the operand kind 3799 // to OK_AnyValue. If all operands are constants but not the same, 3800 // then set the operand kind to OK_NonUniformConstantValue. 3801 ConstantInt *CInt0 = nullptr; 3802 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3803 const Instruction *I = cast<Instruction>(VL[i]); 3804 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 3805 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 3806 if (!CInt) { 3807 Op2VK = TargetTransformInfo::OK_AnyValue; 3808 Op2VP = TargetTransformInfo::OP_None; 3809 break; 3810 } 3811 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 3812 !CInt->getValue().isPowerOf2()) 3813 Op2VP = TargetTransformInfo::OP_None; 3814 if (i == 0) { 3815 CInt0 = CInt; 3816 continue; 3817 } 3818 if (CInt0 != CInt) 3819 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 3820 } 3821 3822 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 3823 InstructionCost ScalarEltCost = 3824 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 3825 Op2VK, Op1VP, Op2VP, Operands, VL0); 3826 if (NeedToShuffleReuses) { 3827 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3828 } 3829 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3830 InstructionCost VecCost = 3831 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 3832 Op2VK, Op1VP, Op2VP, Operands, VL0); 3833 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3834 return ReuseShuffleCost + VecCost - ScalarCost; 3835 } 3836 case Instruction::GetElementPtr: { 3837 TargetTransformInfo::OperandValueKind Op1VK = 3838 TargetTransformInfo::OK_AnyValue; 3839 TargetTransformInfo::OperandValueKind Op2VK = 3840 TargetTransformInfo::OK_UniformConstantValue; 3841 3842 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 3843 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 3844 if (NeedToShuffleReuses) { 3845 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3846 } 3847 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3848 InstructionCost VecCost = TTI->getArithmeticInstrCost( 3849 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 3850 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3851 return ReuseShuffleCost + VecCost - ScalarCost; 3852 } 3853 case Instruction::Load: { 3854 // Cost of wide load - cost of scalar loads. 3855 Align alignment = cast<LoadInst>(VL0)->getAlign(); 3856 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 3857 Instruction::Load, ScalarTy, alignment, 0, CostKind, VL0); 3858 if (NeedToShuffleReuses) { 3859 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3860 } 3861 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 3862 InstructionCost VecLdCost; 3863 if (E->State == TreeEntry::Vectorize) { 3864 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, 3865 CostKind, VL0); 3866 } else { 3867 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 3868 VecLdCost = TTI->getGatherScatterOpCost( 3869 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 3870 /*VariableMask=*/false, alignment, CostKind, VL0); 3871 } 3872 if (!NeedToShuffleReuses && !E->ReorderIndices.empty()) { 3873 SmallVector<int> NewMask; 3874 inversePermutation(E->ReorderIndices, NewMask); 3875 VecLdCost += TTI->getShuffleCost( 3876 TargetTransformInfo::SK_PermuteSingleSrc, VecTy, NewMask); 3877 } 3878 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecLdCost, ScalarLdCost)); 3879 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 3880 } 3881 case Instruction::Store: { 3882 // We know that we can merge the stores. Calculate the cost. 3883 bool IsReorder = !E->ReorderIndices.empty(); 3884 auto *SI = 3885 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 3886 Align Alignment = SI->getAlign(); 3887 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 3888 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 3889 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 3890 InstructionCost VecStCost = TTI->getMemoryOpCost( 3891 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 3892 if (IsReorder) { 3893 SmallVector<int> NewMask; 3894 inversePermutation(E->ReorderIndices, NewMask); 3895 VecStCost += TTI->getShuffleCost( 3896 TargetTransformInfo::SK_PermuteSingleSrc, VecTy, NewMask); 3897 } 3898 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecStCost, ScalarStCost)); 3899 return VecStCost - ScalarStCost; 3900 } 3901 case Instruction::Call: { 3902 CallInst *CI = cast<CallInst>(VL0); 3903 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3904 3905 // Calculate the cost of the scalar and vector calls. 3906 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 3907 InstructionCost ScalarEltCost = 3908 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 3909 if (NeedToShuffleReuses) { 3910 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3911 } 3912 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 3913 3914 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 3915 InstructionCost VecCallCost = 3916 std::min(VecCallCosts.first, VecCallCosts.second); 3917 3918 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 3919 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 3920 << " for " << *CI << "\n"); 3921 3922 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 3923 } 3924 case Instruction::ShuffleVector: { 3925 assert(E->isAltShuffle() && 3926 ((Instruction::isBinaryOp(E->getOpcode()) && 3927 Instruction::isBinaryOp(E->getAltOpcode())) || 3928 (Instruction::isCast(E->getOpcode()) && 3929 Instruction::isCast(E->getAltOpcode()))) && 3930 "Invalid Shuffle Vector Operand"); 3931 InstructionCost ScalarCost = 0; 3932 if (NeedToShuffleReuses) { 3933 for (unsigned Idx : E->ReuseShuffleIndices) { 3934 Instruction *I = cast<Instruction>(VL[Idx]); 3935 ReuseShuffleCost -= TTI->getInstructionCost(I, CostKind); 3936 } 3937 for (Value *V : VL) { 3938 Instruction *I = cast<Instruction>(V); 3939 ReuseShuffleCost += TTI->getInstructionCost(I, CostKind); 3940 } 3941 } 3942 for (Value *V : VL) { 3943 Instruction *I = cast<Instruction>(V); 3944 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 3945 ScalarCost += TTI->getInstructionCost(I, CostKind); 3946 } 3947 // VecCost is equal to sum of the cost of creating 2 vectors 3948 // and the cost of creating shuffle. 3949 InstructionCost VecCost = 0; 3950 if (Instruction::isBinaryOp(E->getOpcode())) { 3951 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 3952 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 3953 CostKind); 3954 } else { 3955 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 3956 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 3957 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 3958 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 3959 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 3960 TTI::CastContextHint::None, CostKind); 3961 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 3962 TTI::CastContextHint::None, CostKind); 3963 } 3964 3965 SmallVector<int> Mask(E->Scalars.size()); 3966 for (unsigned I = 0, End = E->Scalars.size(); I < End; ++I) { 3967 auto *OpInst = cast<Instruction>(E->Scalars[I]); 3968 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 3969 Mask[I] = I + (OpInst->getOpcode() == E->getAltOpcode() ? End : 0); 3970 } 3971 VecCost += 3972 TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, Mask, 0); 3973 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3974 return ReuseShuffleCost + VecCost - ScalarCost; 3975 } 3976 default: 3977 llvm_unreachable("Unknown instruction"); 3978 } 3979 } 3980 3981 bool BoUpSLP::isFullyVectorizableTinyTree() const { 3982 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 3983 << VectorizableTree.size() << " is fully vectorizable .\n"); 3984 3985 // We only handle trees of heights 1 and 2. 3986 if (VectorizableTree.size() == 1 && 3987 VectorizableTree[0]->State == TreeEntry::Vectorize) 3988 return true; 3989 3990 if (VectorizableTree.size() != 2) 3991 return false; 3992 3993 // Handle splat and all-constants stores. 3994 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 3995 (allConstant(VectorizableTree[1]->Scalars) || 3996 isSplat(VectorizableTree[1]->Scalars))) 3997 return true; 3998 3999 // Gathering cost would be too much for tiny trees. 4000 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 4001 VectorizableTree[1]->State == TreeEntry::NeedToGather) 4002 return false; 4003 4004 return true; 4005 } 4006 4007 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 4008 TargetTransformInfo *TTI) { 4009 // Look past the root to find a source value. Arbitrarily follow the 4010 // path through operand 0 of any 'or'. Also, peek through optional 4011 // shift-left-by-multiple-of-8-bits. 4012 Value *ZextLoad = Root; 4013 const APInt *ShAmtC; 4014 while (!isa<ConstantExpr>(ZextLoad) && 4015 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 4016 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 4017 ShAmtC->urem(8) == 0))) 4018 ZextLoad = cast<BinaryOperator>(ZextLoad)->getOperand(0); 4019 4020 // Check if the input is an extended load of the required or/shift expression. 4021 Value *LoadPtr; 4022 if (ZextLoad == Root || !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr))))) 4023 return false; 4024 4025 // Require that the total load bit width is a legal integer type. 4026 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 4027 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 4028 Type *SrcTy = LoadPtr->getType()->getPointerElementType(); 4029 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 4030 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 4031 return false; 4032 4033 // Everything matched - assume that we can fold the whole sequence using 4034 // load combining. 4035 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 4036 << *(cast<Instruction>(Root)) << "\n"); 4037 4038 return true; 4039 } 4040 4041 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 4042 if (RdxKind != RecurKind::Or) 4043 return false; 4044 4045 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 4046 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 4047 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI); 4048 } 4049 4050 bool BoUpSLP::isLoadCombineCandidate() const { 4051 // Peek through a final sequence of stores and check if all operations are 4052 // likely to be load-combined. 4053 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 4054 for (Value *Scalar : VectorizableTree[0]->Scalars) { 4055 Value *X; 4056 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 4057 !isLoadCombineCandidateImpl(X, NumElts, TTI)) 4058 return false; 4059 } 4060 return true; 4061 } 4062 4063 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const { 4064 // We can vectorize the tree if its size is greater than or equal to the 4065 // minimum size specified by the MinTreeSize command line option. 4066 if (VectorizableTree.size() >= MinTreeSize) 4067 return false; 4068 4069 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 4070 // can vectorize it if we can prove it fully vectorizable. 4071 if (isFullyVectorizableTinyTree()) 4072 return false; 4073 4074 assert(VectorizableTree.empty() 4075 ? ExternalUses.empty() 4076 : true && "We shouldn't have any external users"); 4077 4078 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 4079 // vectorizable. 4080 return true; 4081 } 4082 4083 InstructionCost BoUpSLP::getSpillCost() const { 4084 // Walk from the bottom of the tree to the top, tracking which values are 4085 // live. When we see a call instruction that is not part of our tree, 4086 // query TTI to see if there is a cost to keeping values live over it 4087 // (for example, if spills and fills are required). 4088 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 4089 InstructionCost Cost = 0; 4090 4091 SmallPtrSet<Instruction*, 4> LiveValues; 4092 Instruction *PrevInst = nullptr; 4093 4094 // The entries in VectorizableTree are not necessarily ordered by their 4095 // position in basic blocks. Collect them and order them by dominance so later 4096 // instructions are guaranteed to be visited first. For instructions in 4097 // different basic blocks, we only scan to the beginning of the block, so 4098 // their order does not matter, as long as all instructions in a basic block 4099 // are grouped together. Using dominance ensures a deterministic order. 4100 SmallVector<Instruction *, 16> OrderedScalars; 4101 for (const auto &TEPtr : VectorizableTree) { 4102 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 4103 if (!Inst) 4104 continue; 4105 OrderedScalars.push_back(Inst); 4106 } 4107 llvm::stable_sort(OrderedScalars, [this](Instruction *A, Instruction *B) { 4108 return DT->dominates(B, A); 4109 }); 4110 4111 for (Instruction *Inst : OrderedScalars) { 4112 if (!PrevInst) { 4113 PrevInst = Inst; 4114 continue; 4115 } 4116 4117 // Update LiveValues. 4118 LiveValues.erase(PrevInst); 4119 for (auto &J : PrevInst->operands()) { 4120 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 4121 LiveValues.insert(cast<Instruction>(&*J)); 4122 } 4123 4124 LLVM_DEBUG({ 4125 dbgs() << "SLP: #LV: " << LiveValues.size(); 4126 for (auto *X : LiveValues) 4127 dbgs() << " " << X->getName(); 4128 dbgs() << ", Looking at "; 4129 Inst->dump(); 4130 }); 4131 4132 // Now find the sequence of instructions between PrevInst and Inst. 4133 unsigned NumCalls = 0; 4134 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 4135 PrevInstIt = 4136 PrevInst->getIterator().getReverse(); 4137 while (InstIt != PrevInstIt) { 4138 if (PrevInstIt == PrevInst->getParent()->rend()) { 4139 PrevInstIt = Inst->getParent()->rbegin(); 4140 continue; 4141 } 4142 4143 // Debug information does not impact spill cost. 4144 if ((isa<CallInst>(&*PrevInstIt) && 4145 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 4146 &*PrevInstIt != PrevInst) 4147 NumCalls++; 4148 4149 ++PrevInstIt; 4150 } 4151 4152 if (NumCalls) { 4153 SmallVector<Type*, 4> V; 4154 for (auto *II : LiveValues) 4155 V.push_back(FixedVectorType::get(II->getType(), BundleWidth)); 4156 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 4157 } 4158 4159 PrevInst = Inst; 4160 } 4161 4162 return Cost; 4163 } 4164 4165 InstructionCost BoUpSLP::getTreeCost() { 4166 InstructionCost Cost = 0; 4167 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 4168 << VectorizableTree.size() << ".\n"); 4169 4170 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 4171 4172 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 4173 TreeEntry &TE = *VectorizableTree[I].get(); 4174 4175 // We create duplicate tree entries for gather sequences that have multiple 4176 // uses. However, we should not compute the cost of duplicate sequences. 4177 // For example, if we have a build vector (i.e., insertelement sequence) 4178 // that is used by more than one vector instruction, we only need to 4179 // compute the cost of the insertelement instructions once. The redundant 4180 // instructions will be eliminated by CSE. 4181 // 4182 // We should consider not creating duplicate tree entries for gather 4183 // sequences, and instead add additional edges to the tree representing 4184 // their uses. Since such an approach results in fewer total entries, 4185 // existing heuristics based on tree size may yield different results. 4186 // 4187 if (TE.State == TreeEntry::NeedToGather && 4188 std::any_of(std::next(VectorizableTree.begin(), I + 1), 4189 VectorizableTree.end(), 4190 [TE](const std::unique_ptr<TreeEntry> &EntryPtr) { 4191 return EntryPtr->State == TreeEntry::NeedToGather && 4192 EntryPtr->isSame(TE.Scalars); 4193 })) 4194 continue; 4195 4196 InstructionCost C = getEntryCost(&TE); 4197 Cost += C; 4198 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 4199 << " for bundle that starts with " << *TE.Scalars[0] 4200 << ".\n" 4201 << "SLP: Current total cost = " << Cost << "\n"); 4202 } 4203 4204 SmallPtrSet<Value *, 16> ExtractCostCalculated; 4205 InstructionCost ExtractCost = 0; 4206 for (ExternalUser &EU : ExternalUses) { 4207 // We only add extract cost once for the same scalar. 4208 if (!ExtractCostCalculated.insert(EU.Scalar).second) 4209 continue; 4210 4211 // Uses by ephemeral values are free (because the ephemeral value will be 4212 // removed prior to code generation, and so the extraction will be 4213 // removed as well). 4214 if (EphValues.count(EU.User)) 4215 continue; 4216 4217 // If we plan to rewrite the tree in a smaller type, we will need to sign 4218 // extend the extracted value back to the original type. Here, we account 4219 // for the extract and the added cost of the sign extend if needed. 4220 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 4221 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4222 if (MinBWs.count(ScalarRoot)) { 4223 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4224 auto Extend = 4225 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 4226 VecTy = FixedVectorType::get(MinTy, BundleWidth); 4227 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 4228 VecTy, EU.Lane); 4229 } else { 4230 ExtractCost += 4231 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 4232 } 4233 } 4234 4235 InstructionCost SpillCost = getSpillCost(); 4236 Cost += SpillCost + ExtractCost; 4237 4238 #ifndef NDEBUG 4239 SmallString<256> Str; 4240 { 4241 raw_svector_ostream OS(Str); 4242 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 4243 << "SLP: Extract Cost = " << ExtractCost << ".\n" 4244 << "SLP: Total Cost = " << Cost << ".\n"; 4245 } 4246 LLVM_DEBUG(dbgs() << Str); 4247 if (ViewSLPTree) 4248 ViewGraph(this, "SLP" + F->getName(), false, Str); 4249 #endif 4250 4251 return Cost; 4252 } 4253 4254 Optional<TargetTransformInfo::ShuffleKind> 4255 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 4256 SmallVectorImpl<const TreeEntry *> &Entries) { 4257 auto *VLIt = find_if(VectorizableTree, 4258 [TE](const std::unique_ptr<TreeEntry> &EntryPtr) { 4259 return EntryPtr.get() == TE; 4260 }); 4261 assert(VLIt != VectorizableTree.end() && 4262 "Gathered values should be in the tree."); 4263 Mask.assign(TE->Scalars.size(), UndefMaskElem); 4264 Entries.clear(); 4265 DenseMap<const TreeEntry *, int> Used; 4266 int NumShuffles = 0; 4267 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 4268 Value *V = TE->Scalars[I]; 4269 const TreeEntry *VTE = getTreeEntry(V); 4270 if (!VTE) { 4271 // Check if it is used in one of the gathered entries. 4272 const auto *It = 4273 find_if(make_range(VectorizableTree.begin(), VLIt), 4274 [V](const std::unique_ptr<TreeEntry> &EntryPtr) { 4275 return EntryPtr->State == TreeEntry::NeedToGather && 4276 is_contained(EntryPtr->Scalars, V); 4277 }); 4278 if (It != VLIt) 4279 VTE = It->get(); 4280 } 4281 if (VTE) { 4282 auto Res = Used.try_emplace(VTE, NumShuffles); 4283 if (Res.second) { 4284 Entries.push_back(VTE); 4285 ++NumShuffles; 4286 if (NumShuffles > 2) 4287 return None; 4288 if (NumShuffles == 2) { 4289 unsigned FirstSz = Entries.front()->Scalars.size(); 4290 if (!Entries.front()->ReuseShuffleIndices.empty()) 4291 FirstSz = Entries.front()->ReuseShuffleIndices.size(); 4292 unsigned SecondSz = Entries.back()->Scalars.size(); 4293 if (!Entries.back()->ReuseShuffleIndices.empty()) 4294 SecondSz = Entries.back()->ReuseShuffleIndices.size(); 4295 if (FirstSz != SecondSz) 4296 return None; 4297 } 4298 } 4299 int FoundLane = 4300 findLaneForValue(VTE->Scalars, VTE->ReuseShuffleIndices, V); 4301 unsigned Sz = VTE->Scalars.size(); 4302 if (!VTE->ReuseShuffleIndices.empty()) 4303 Sz = VTE->ReuseShuffleIndices.size(); 4304 Mask[I] = Res.first->second * Sz + FoundLane; 4305 // Extra check required by isSingleSourceMaskImpl function (called by 4306 // ShuffleVectorInst::isSingleSourceMask). 4307 if (Mask[I] >= 2 * E) 4308 return None; 4309 continue; 4310 } 4311 return None; 4312 } 4313 if (NumShuffles == 1) { 4314 if (ShuffleVectorInst::isReverseMask(Mask)) 4315 return TargetTransformInfo::SK_Reverse; 4316 return TargetTransformInfo::SK_PermuteSingleSrc; 4317 } 4318 if (NumShuffles == 2) { 4319 if (ShuffleVectorInst::isSelectMask(Mask)) 4320 return TargetTransformInfo::SK_Select; 4321 if (ShuffleVectorInst::isTransposeMask(Mask)) 4322 return TargetTransformInfo::SK_Transpose; 4323 return TargetTransformInfo::SK_PermuteTwoSrc; 4324 } 4325 return None; 4326 } 4327 4328 InstructionCost 4329 BoUpSLP::getGatherCost(FixedVectorType *Ty, 4330 const DenseSet<unsigned> &ShuffledIndices) const { 4331 unsigned NumElts = Ty->getNumElements(); 4332 APInt DemandedElts = APInt::getNullValue(NumElts); 4333 for (unsigned I = 0; I < NumElts; ++I) 4334 if (!ShuffledIndices.count(I)) 4335 DemandedElts.setBit(I); 4336 InstructionCost Cost = 4337 TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true, 4338 /*Extract*/ false); 4339 if (!ShuffledIndices.empty()) 4340 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 4341 return Cost; 4342 } 4343 4344 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 4345 // Find the type of the operands in VL. 4346 Type *ScalarTy = VL[0]->getType(); 4347 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4348 ScalarTy = SI->getValueOperand()->getType(); 4349 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4350 // Find the cost of inserting/extracting values from the vector. 4351 // Check if the same elements are inserted several times and count them as 4352 // shuffle candidates. 4353 DenseSet<unsigned> ShuffledElements; 4354 DenseSet<Value *> UniqueElements; 4355 // Iterate in reverse order to consider insert elements with the high cost. 4356 for (unsigned I = VL.size(); I > 0; --I) { 4357 unsigned Idx = I - 1; 4358 if (!UniqueElements.insert(VL[Idx]).second) 4359 ShuffledElements.insert(Idx); 4360 } 4361 return getGatherCost(VecTy, ShuffledElements); 4362 } 4363 4364 // Perform operand reordering on the instructions in VL and return the reordered 4365 // operands in Left and Right. 4366 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 4367 SmallVectorImpl<Value *> &Left, 4368 SmallVectorImpl<Value *> &Right, 4369 const DataLayout &DL, 4370 ScalarEvolution &SE, 4371 const BoUpSLP &R) { 4372 if (VL.empty()) 4373 return; 4374 VLOperands Ops(VL, DL, SE, R); 4375 // Reorder the operands in place. 4376 Ops.reorder(); 4377 Left = Ops.getVL(0); 4378 Right = Ops.getVL(1); 4379 } 4380 4381 void BoUpSLP::setInsertPointAfterBundle(TreeEntry *E) { 4382 // Get the basic block this bundle is in. All instructions in the bundle 4383 // should be in this block. 4384 auto *Front = E->getMainOp(); 4385 auto *BB = Front->getParent(); 4386 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 4387 auto *I = cast<Instruction>(V); 4388 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 4389 })); 4390 4391 // The last instruction in the bundle in program order. 4392 Instruction *LastInst = nullptr; 4393 4394 // Find the last instruction. The common case should be that BB has been 4395 // scheduled, and the last instruction is VL.back(). So we start with 4396 // VL.back() and iterate over schedule data until we reach the end of the 4397 // bundle. The end of the bundle is marked by null ScheduleData. 4398 if (BlocksSchedules.count(BB)) { 4399 auto *Bundle = 4400 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 4401 if (Bundle && Bundle->isPartOfBundle()) 4402 for (; Bundle; Bundle = Bundle->NextInBundle) 4403 if (Bundle->OpValue == Bundle->Inst) 4404 LastInst = Bundle->Inst; 4405 } 4406 4407 // LastInst can still be null at this point if there's either not an entry 4408 // for BB in BlocksSchedules or there's no ScheduleData available for 4409 // VL.back(). This can be the case if buildTree_rec aborts for various 4410 // reasons (e.g., the maximum recursion depth is reached, the maximum region 4411 // size is reached, etc.). ScheduleData is initialized in the scheduling 4412 // "dry-run". 4413 // 4414 // If this happens, we can still find the last instruction by brute force. We 4415 // iterate forwards from Front (inclusive) until we either see all 4416 // instructions in the bundle or reach the end of the block. If Front is the 4417 // last instruction in program order, LastInst will be set to Front, and we 4418 // will visit all the remaining instructions in the block. 4419 // 4420 // One of the reasons we exit early from buildTree_rec is to place an upper 4421 // bound on compile-time. Thus, taking an additional compile-time hit here is 4422 // not ideal. However, this should be exceedingly rare since it requires that 4423 // we both exit early from buildTree_rec and that the bundle be out-of-order 4424 // (causing us to iterate all the way to the end of the block). 4425 if (!LastInst) { 4426 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 4427 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 4428 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 4429 LastInst = &I; 4430 if (Bundle.empty()) 4431 break; 4432 } 4433 } 4434 assert(LastInst && "Failed to find last instruction in bundle"); 4435 4436 // Set the insertion point after the last instruction in the bundle. Set the 4437 // debug location to Front. 4438 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 4439 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 4440 } 4441 4442 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 4443 Value *Val0 = 4444 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 4445 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 4446 Value *Vec = PoisonValue::get(VecTy); 4447 unsigned InsIndex = 0; 4448 for (Value *Val : VL) { 4449 Vec = Builder.CreateInsertElement(Vec, Val, Builder.getInt32(InsIndex++)); 4450 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 4451 if (!InsElt) 4452 continue; 4453 GatherSeq.insert(InsElt); 4454 CSEBlocks.insert(InsElt->getParent()); 4455 // Add to our 'need-to-extract' list. 4456 if (TreeEntry *Entry = getTreeEntry(Val)) { 4457 // Find which lane we need to extract. 4458 int FoundLane = 4459 findLaneForValue(Entry->Scalars, Entry->ReuseShuffleIndices, Val); 4460 ExternalUses.push_back(ExternalUser(Val, InsElt, FoundLane)); 4461 } 4462 } 4463 4464 return Vec; 4465 } 4466 4467 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 4468 InstructionsState S = getSameOpcode(VL); 4469 if (S.getOpcode()) { 4470 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 4471 if (E->isSame(VL)) { 4472 Value *V = vectorizeTree(E); 4473 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 4474 // Reshuffle to get only unique values. 4475 // If some of the scalars are duplicated in the vectorization tree 4476 // entry, we do not vectorize them but instead generate a mask for the 4477 // reuses. But if there are several users of the same entry, they may 4478 // have different vectorization factors. This is especially important 4479 // for PHI nodes. In this case, we need to adapt the resulting 4480 // instruction for the user vectorization factor and have to reshuffle 4481 // it again to take only unique elements of the vector. Without this 4482 // code the function incorrectly returns reduced vector instruction 4483 // with the same elements, not with the unique ones. 4484 // block: 4485 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 4486 // %2 = shuffle <2 x > %phi, %poison, <4 x > <0, 0, 1, 1> 4487 // ... (use %2) 4488 // %shuffle = shuffle <2 x> %2, poison, <2 x> {0, 2} 4489 // br %block 4490 SmallVector<int, 4> UniqueIdxs; 4491 SmallSet<int, 4> UsedIdxs; 4492 int Pos = 0; 4493 for (int Idx : E->ReuseShuffleIndices) { 4494 if (UsedIdxs.insert(Idx).second) 4495 UniqueIdxs.emplace_back(Pos); 4496 ++Pos; 4497 } 4498 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 4499 } 4500 return V; 4501 } 4502 } 4503 } 4504 4505 // Check that every instruction appears once in this bundle. 4506 SmallVector<int, 4> ReuseShuffleIndicies; 4507 SmallVector<Value *, 4> UniqueValues; 4508 if (VL.size() > 2) { 4509 DenseMap<Value *, unsigned> UniquePositions; 4510 for (Value *V : VL) { 4511 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 4512 ReuseShuffleIndicies.emplace_back(Res.first->second); 4513 if (Res.second || isa<Constant>(V)) 4514 UniqueValues.emplace_back(V); 4515 } 4516 // Do not shuffle single element or if number of unique values is not power 4517 // of 2. 4518 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 4519 !llvm::isPowerOf2_32(UniqueValues.size())) 4520 ReuseShuffleIndicies.clear(); 4521 else 4522 VL = UniqueValues; 4523 } 4524 4525 Value *Vec = gather(VL); 4526 if (!ReuseShuffleIndicies.empty()) { 4527 Vec = Builder.CreateShuffleVector(Vec, ReuseShuffleIndicies, "shuffle"); 4528 if (auto *I = dyn_cast<Instruction>(Vec)) { 4529 GatherSeq.insert(I); 4530 CSEBlocks.insert(I->getParent()); 4531 } 4532 } 4533 return Vec; 4534 } 4535 4536 namespace { 4537 /// Merges shuffle masks and emits final shuffle instruction, if required. 4538 class ShuffleInstructionBuilder { 4539 IRBuilderBase &Builder; 4540 bool IsFinalized = false; 4541 SmallVector<int, 4> Mask; 4542 4543 public: 4544 ShuffleInstructionBuilder(IRBuilderBase &Builder) : Builder(Builder) {} 4545 4546 /// Adds a mask, inverting it before applying. 4547 void addInversedMask(ArrayRef<unsigned> SubMask) { 4548 if (SubMask.empty()) 4549 return; 4550 SmallVector<int, 4> NewMask; 4551 inversePermutation(SubMask, NewMask); 4552 addMask(NewMask); 4553 } 4554 4555 /// Functions adds masks, merging them into single one. 4556 void addMask(ArrayRef<unsigned> SubMask) { 4557 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 4558 addMask(NewMask); 4559 } 4560 4561 void addMask(ArrayRef<int> SubMask) { 4562 if (SubMask.empty()) 4563 return; 4564 if (Mask.empty()) { 4565 Mask.append(SubMask.begin(), SubMask.end()); 4566 return; 4567 } 4568 SmallVector<int, 4> NewMask(SubMask.size(), SubMask.size()); 4569 int TermValue = std::min(Mask.size(), SubMask.size()); 4570 for (int I = 0, E = SubMask.size(); I < E; ++I) { 4571 if (SubMask[I] >= TermValue || Mask[SubMask[I]] >= TermValue) { 4572 NewMask[I] = E; 4573 continue; 4574 } 4575 NewMask[I] = Mask[SubMask[I]]; 4576 } 4577 Mask.swap(NewMask); 4578 } 4579 4580 Value *finalize(Value *V) { 4581 IsFinalized = true; 4582 if (Mask.empty()) 4583 return V; 4584 return Builder.CreateShuffleVector(V, Mask, "shuffle"); 4585 } 4586 4587 ~ShuffleInstructionBuilder() { 4588 assert((IsFinalized || Mask.empty()) && 4589 "Shuffle construction must be finalized."); 4590 } 4591 }; 4592 } // namespace 4593 4594 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 4595 IRBuilder<>::InsertPointGuard Guard(Builder); 4596 4597 if (E->VectorizedValue) { 4598 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 4599 return E->VectorizedValue; 4600 } 4601 4602 ShuffleInstructionBuilder ShuffleBuilder(Builder); 4603 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4604 if (E->State == TreeEntry::NeedToGather) { 4605 setInsertPointAfterBundle(E); 4606 Value *Vec; 4607 SmallVector<int> Mask; 4608 SmallVector<const TreeEntry *> Entries; 4609 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 4610 isGatherShuffledEntry(E, Mask, Entries); 4611 if (Shuffle.hasValue()) { 4612 assert((Entries.size() == 1 || Entries.size() == 2) && 4613 "Expected shuffle of 1 or 2 entries."); 4614 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 4615 Entries.back()->VectorizedValue, Mask); 4616 } else { 4617 Vec = gather(E->Scalars); 4618 } 4619 if (NeedToShuffleReuses) { 4620 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4621 Vec = ShuffleBuilder.finalize(Vec); 4622 if (auto *I = dyn_cast<Instruction>(Vec)) { 4623 GatherSeq.insert(I); 4624 CSEBlocks.insert(I->getParent()); 4625 } 4626 } 4627 E->VectorizedValue = Vec; 4628 return Vec; 4629 } 4630 4631 assert((E->State == TreeEntry::Vectorize || 4632 E->State == TreeEntry::ScatterVectorize) && 4633 "Unhandled state"); 4634 unsigned ShuffleOrOp = 4635 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 4636 Instruction *VL0 = E->getMainOp(); 4637 Type *ScalarTy = VL0->getType(); 4638 if (auto *Store = dyn_cast<StoreInst>(VL0)) 4639 ScalarTy = Store->getValueOperand()->getType(); 4640 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 4641 switch (ShuffleOrOp) { 4642 case Instruction::PHI: { 4643 auto *PH = cast<PHINode>(VL0); 4644 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 4645 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4646 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 4647 Value *V = NewPhi; 4648 if (NeedToShuffleReuses) 4649 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4650 4651 E->VectorizedValue = V; 4652 4653 // PHINodes may have multiple entries from the same block. We want to 4654 // visit every block once. 4655 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 4656 4657 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 4658 ValueList Operands; 4659 BasicBlock *IBB = PH->getIncomingBlock(i); 4660 4661 if (!VisitedBBs.insert(IBB).second) { 4662 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 4663 continue; 4664 } 4665 4666 Builder.SetInsertPoint(IBB->getTerminator()); 4667 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4668 Value *Vec = vectorizeTree(E->getOperand(i)); 4669 NewPhi->addIncoming(Vec, IBB); 4670 } 4671 4672 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 4673 "Invalid number of incoming values"); 4674 return V; 4675 } 4676 4677 case Instruction::ExtractElement: { 4678 Value *V = E->getSingleOperand(0); 4679 Builder.SetInsertPoint(VL0); 4680 ShuffleBuilder.addInversedMask(E->ReorderIndices); 4681 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4682 V = ShuffleBuilder.finalize(V); 4683 E->VectorizedValue = V; 4684 return V; 4685 } 4686 case Instruction::ExtractValue: { 4687 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 4688 Builder.SetInsertPoint(LI); 4689 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 4690 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 4691 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 4692 Value *NewV = propagateMetadata(V, E->Scalars); 4693 ShuffleBuilder.addInversedMask(E->ReorderIndices); 4694 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4695 NewV = ShuffleBuilder.finalize(NewV); 4696 E->VectorizedValue = NewV; 4697 return NewV; 4698 } 4699 case Instruction::ZExt: 4700 case Instruction::SExt: 4701 case Instruction::FPToUI: 4702 case Instruction::FPToSI: 4703 case Instruction::FPExt: 4704 case Instruction::PtrToInt: 4705 case Instruction::IntToPtr: 4706 case Instruction::SIToFP: 4707 case Instruction::UIToFP: 4708 case Instruction::Trunc: 4709 case Instruction::FPTrunc: 4710 case Instruction::BitCast: { 4711 setInsertPointAfterBundle(E); 4712 4713 Value *InVec = vectorizeTree(E->getOperand(0)); 4714 4715 if (E->VectorizedValue) { 4716 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4717 return E->VectorizedValue; 4718 } 4719 4720 auto *CI = cast<CastInst>(VL0); 4721 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 4722 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4723 V = ShuffleBuilder.finalize(V); 4724 4725 E->VectorizedValue = V; 4726 ++NumVectorInstructions; 4727 return V; 4728 } 4729 case Instruction::FCmp: 4730 case Instruction::ICmp: { 4731 setInsertPointAfterBundle(E); 4732 4733 Value *L = vectorizeTree(E->getOperand(0)); 4734 Value *R = vectorizeTree(E->getOperand(1)); 4735 4736 if (E->VectorizedValue) { 4737 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4738 return E->VectorizedValue; 4739 } 4740 4741 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4742 Value *V = Builder.CreateCmp(P0, L, R); 4743 propagateIRFlags(V, E->Scalars, VL0); 4744 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4745 V = ShuffleBuilder.finalize(V); 4746 4747 E->VectorizedValue = V; 4748 ++NumVectorInstructions; 4749 return V; 4750 } 4751 case Instruction::Select: { 4752 setInsertPointAfterBundle(E); 4753 4754 Value *Cond = vectorizeTree(E->getOperand(0)); 4755 Value *True = vectorizeTree(E->getOperand(1)); 4756 Value *False = vectorizeTree(E->getOperand(2)); 4757 4758 if (E->VectorizedValue) { 4759 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4760 return E->VectorizedValue; 4761 } 4762 4763 Value *V = Builder.CreateSelect(Cond, True, False); 4764 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4765 V = ShuffleBuilder.finalize(V); 4766 4767 E->VectorizedValue = V; 4768 ++NumVectorInstructions; 4769 return V; 4770 } 4771 case Instruction::FNeg: { 4772 setInsertPointAfterBundle(E); 4773 4774 Value *Op = vectorizeTree(E->getOperand(0)); 4775 4776 if (E->VectorizedValue) { 4777 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4778 return E->VectorizedValue; 4779 } 4780 4781 Value *V = Builder.CreateUnOp( 4782 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 4783 propagateIRFlags(V, E->Scalars, VL0); 4784 if (auto *I = dyn_cast<Instruction>(V)) 4785 V = propagateMetadata(I, E->Scalars); 4786 4787 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4788 V = ShuffleBuilder.finalize(V); 4789 4790 E->VectorizedValue = V; 4791 ++NumVectorInstructions; 4792 4793 return V; 4794 } 4795 case Instruction::Add: 4796 case Instruction::FAdd: 4797 case Instruction::Sub: 4798 case Instruction::FSub: 4799 case Instruction::Mul: 4800 case Instruction::FMul: 4801 case Instruction::UDiv: 4802 case Instruction::SDiv: 4803 case Instruction::FDiv: 4804 case Instruction::URem: 4805 case Instruction::SRem: 4806 case Instruction::FRem: 4807 case Instruction::Shl: 4808 case Instruction::LShr: 4809 case Instruction::AShr: 4810 case Instruction::And: 4811 case Instruction::Or: 4812 case Instruction::Xor: { 4813 setInsertPointAfterBundle(E); 4814 4815 Value *LHS = vectorizeTree(E->getOperand(0)); 4816 Value *RHS = vectorizeTree(E->getOperand(1)); 4817 4818 if (E->VectorizedValue) { 4819 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4820 return E->VectorizedValue; 4821 } 4822 4823 Value *V = Builder.CreateBinOp( 4824 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 4825 RHS); 4826 propagateIRFlags(V, E->Scalars, VL0); 4827 if (auto *I = dyn_cast<Instruction>(V)) 4828 V = propagateMetadata(I, E->Scalars); 4829 4830 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4831 V = ShuffleBuilder.finalize(V); 4832 4833 E->VectorizedValue = V; 4834 ++NumVectorInstructions; 4835 4836 return V; 4837 } 4838 case Instruction::Load: { 4839 // Loads are inserted at the head of the tree because we don't want to 4840 // sink them all the way down past store instructions. 4841 bool IsReorder = E->updateStateIfReorder(); 4842 if (IsReorder) 4843 VL0 = E->getMainOp(); 4844 setInsertPointAfterBundle(E); 4845 4846 LoadInst *LI = cast<LoadInst>(VL0); 4847 Instruction *NewLI; 4848 unsigned AS = LI->getPointerAddressSpace(); 4849 Value *PO = LI->getPointerOperand(); 4850 if (E->State == TreeEntry::Vectorize) { 4851 4852 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 4853 4854 // The pointer operand uses an in-tree scalar so we add the new BitCast 4855 // to ExternalUses list to make sure that an extract will be generated 4856 // in the future. 4857 if (getTreeEntry(PO)) 4858 ExternalUses.emplace_back(PO, cast<User>(VecPtr), 0); 4859 4860 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 4861 } else { 4862 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 4863 Value *VecPtr = vectorizeTree(E->getOperand(0)); 4864 // Use the minimum alignment of the gathered loads. 4865 Align CommonAlignment = LI->getAlign(); 4866 for (Value *V : E->Scalars) 4867 CommonAlignment = 4868 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 4869 NewLI = Builder.CreateMaskedGather(VecPtr, CommonAlignment); 4870 } 4871 Value *V = propagateMetadata(NewLI, E->Scalars); 4872 4873 ShuffleBuilder.addInversedMask(E->ReorderIndices); 4874 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4875 V = ShuffleBuilder.finalize(V); 4876 E->VectorizedValue = V; 4877 ++NumVectorInstructions; 4878 return V; 4879 } 4880 case Instruction::Store: { 4881 bool IsReorder = !E->ReorderIndices.empty(); 4882 auto *SI = cast<StoreInst>( 4883 IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0); 4884 unsigned AS = SI->getPointerAddressSpace(); 4885 4886 setInsertPointAfterBundle(E); 4887 4888 Value *VecValue = vectorizeTree(E->getOperand(0)); 4889 ShuffleBuilder.addMask(E->ReorderIndices); 4890 VecValue = ShuffleBuilder.finalize(VecValue); 4891 4892 Value *ScalarPtr = SI->getPointerOperand(); 4893 Value *VecPtr = Builder.CreateBitCast( 4894 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 4895 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 4896 SI->getAlign()); 4897 4898 // The pointer operand uses an in-tree scalar, so add the new BitCast to 4899 // ExternalUses to make sure that an extract will be generated in the 4900 // future. 4901 if (getTreeEntry(ScalarPtr)) 4902 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 4903 4904 Value *V = propagateMetadata(ST, E->Scalars); 4905 4906 E->VectorizedValue = V; 4907 ++NumVectorInstructions; 4908 return V; 4909 } 4910 case Instruction::GetElementPtr: { 4911 setInsertPointAfterBundle(E); 4912 4913 Value *Op0 = vectorizeTree(E->getOperand(0)); 4914 4915 std::vector<Value *> OpVecs; 4916 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 4917 ++j) { 4918 ValueList &VL = E->getOperand(j); 4919 // Need to cast all elements to the same type before vectorization to 4920 // avoid crash. 4921 Type *VL0Ty = VL0->getOperand(j)->getType(); 4922 Type *Ty = llvm::all_of( 4923 VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); }) 4924 ? VL0Ty 4925 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4926 ->getPointerOperandType() 4927 ->getScalarType()); 4928 for (Value *&V : VL) { 4929 auto *CI = cast<ConstantInt>(V); 4930 V = ConstantExpr::getIntegerCast(CI, Ty, 4931 CI->getValue().isSignBitSet()); 4932 } 4933 Value *OpVec = vectorizeTree(VL); 4934 OpVecs.push_back(OpVec); 4935 } 4936 4937 Value *V = Builder.CreateGEP( 4938 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 4939 if (Instruction *I = dyn_cast<Instruction>(V)) 4940 V = propagateMetadata(I, E->Scalars); 4941 4942 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4943 V = ShuffleBuilder.finalize(V); 4944 4945 E->VectorizedValue = V; 4946 ++NumVectorInstructions; 4947 4948 return V; 4949 } 4950 case Instruction::Call: { 4951 CallInst *CI = cast<CallInst>(VL0); 4952 setInsertPointAfterBundle(E); 4953 4954 Intrinsic::ID IID = Intrinsic::not_intrinsic; 4955 if (Function *FI = CI->getCalledFunction()) 4956 IID = FI->getIntrinsicID(); 4957 4958 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4959 4960 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 4961 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 4962 VecCallCosts.first <= VecCallCosts.second; 4963 4964 Value *ScalarArg = nullptr; 4965 std::vector<Value *> OpVecs; 4966 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 4967 ValueList OpVL; 4968 // Some intrinsics have scalar arguments. This argument should not be 4969 // vectorized. 4970 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 4971 CallInst *CEI = cast<CallInst>(VL0); 4972 ScalarArg = CEI->getArgOperand(j); 4973 OpVecs.push_back(CEI->getArgOperand(j)); 4974 continue; 4975 } 4976 4977 Value *OpVec = vectorizeTree(E->getOperand(j)); 4978 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 4979 OpVecs.push_back(OpVec); 4980 } 4981 4982 Function *CF; 4983 if (!UseIntrinsic) { 4984 VFShape Shape = 4985 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4986 VecTy->getNumElements())), 4987 false /*HasGlobalPred*/); 4988 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 4989 } else { 4990 Type *Tys[] = {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 4991 CF = Intrinsic::getDeclaration(F->getParent(), ID, Tys); 4992 } 4993 4994 SmallVector<OperandBundleDef, 1> OpBundles; 4995 CI->getOperandBundlesAsDefs(OpBundles); 4996 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 4997 4998 // The scalar argument uses an in-tree scalar so we add the new vectorized 4999 // call to ExternalUses list to make sure that an extract will be 5000 // generated in the future. 5001 if (ScalarArg && getTreeEntry(ScalarArg)) 5002 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 5003 5004 propagateIRFlags(V, E->Scalars, VL0); 5005 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5006 V = ShuffleBuilder.finalize(V); 5007 5008 E->VectorizedValue = V; 5009 ++NumVectorInstructions; 5010 return V; 5011 } 5012 case Instruction::ShuffleVector: { 5013 assert(E->isAltShuffle() && 5014 ((Instruction::isBinaryOp(E->getOpcode()) && 5015 Instruction::isBinaryOp(E->getAltOpcode())) || 5016 (Instruction::isCast(E->getOpcode()) && 5017 Instruction::isCast(E->getAltOpcode()))) && 5018 "Invalid Shuffle Vector Operand"); 5019 5020 Value *LHS = nullptr, *RHS = nullptr; 5021 if (Instruction::isBinaryOp(E->getOpcode())) { 5022 setInsertPointAfterBundle(E); 5023 LHS = vectorizeTree(E->getOperand(0)); 5024 RHS = vectorizeTree(E->getOperand(1)); 5025 } else { 5026 setInsertPointAfterBundle(E); 5027 LHS = vectorizeTree(E->getOperand(0)); 5028 } 5029 5030 if (E->VectorizedValue) { 5031 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 5032 return E->VectorizedValue; 5033 } 5034 5035 Value *V0, *V1; 5036 if (Instruction::isBinaryOp(E->getOpcode())) { 5037 V0 = Builder.CreateBinOp( 5038 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 5039 V1 = Builder.CreateBinOp( 5040 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 5041 } else { 5042 V0 = Builder.CreateCast( 5043 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 5044 V1 = Builder.CreateCast( 5045 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 5046 } 5047 5048 // Create shuffle to take alternate operations from the vector. 5049 // Also, gather up main and alt scalar ops to propagate IR flags to 5050 // each vector operation. 5051 ValueList OpScalars, AltScalars; 5052 unsigned e = E->Scalars.size(); 5053 SmallVector<int, 8> Mask(e); 5054 for (unsigned i = 0; i < e; ++i) { 5055 auto *OpInst = cast<Instruction>(E->Scalars[i]); 5056 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 5057 if (OpInst->getOpcode() == E->getAltOpcode()) { 5058 Mask[i] = e + i; 5059 AltScalars.push_back(E->Scalars[i]); 5060 } else { 5061 Mask[i] = i; 5062 OpScalars.push_back(E->Scalars[i]); 5063 } 5064 } 5065 5066 propagateIRFlags(V0, OpScalars); 5067 propagateIRFlags(V1, AltScalars); 5068 5069 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 5070 if (Instruction *I = dyn_cast<Instruction>(V)) 5071 V = propagateMetadata(I, E->Scalars); 5072 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5073 V = ShuffleBuilder.finalize(V); 5074 5075 E->VectorizedValue = V; 5076 ++NumVectorInstructions; 5077 5078 return V; 5079 } 5080 default: 5081 llvm_unreachable("unknown inst"); 5082 } 5083 return nullptr; 5084 } 5085 5086 Value *BoUpSLP::vectorizeTree() { 5087 ExtraValueToDebugLocsMap ExternallyUsedValues; 5088 return vectorizeTree(ExternallyUsedValues); 5089 } 5090 5091 Value * 5092 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 5093 // All blocks must be scheduled before any instructions are inserted. 5094 for (auto &BSIter : BlocksSchedules) { 5095 scheduleBlock(BSIter.second.get()); 5096 } 5097 5098 Builder.SetInsertPoint(&F->getEntryBlock().front()); 5099 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 5100 5101 // If the vectorized tree can be rewritten in a smaller type, we truncate the 5102 // vectorized root. InstCombine will then rewrite the entire expression. We 5103 // sign extend the extracted values below. 5104 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 5105 if (MinBWs.count(ScalarRoot)) { 5106 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 5107 // If current instr is a phi and not the last phi, insert it after the 5108 // last phi node. 5109 if (isa<PHINode>(I)) 5110 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 5111 else 5112 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 5113 } 5114 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 5115 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 5116 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 5117 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 5118 VectorizableTree[0]->VectorizedValue = Trunc; 5119 } 5120 5121 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 5122 << " values .\n"); 5123 5124 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 5125 // specified by ScalarType. 5126 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 5127 if (!MinBWs.count(ScalarRoot)) 5128 return Ex; 5129 if (MinBWs[ScalarRoot].second) 5130 return Builder.CreateSExt(Ex, ScalarType); 5131 return Builder.CreateZExt(Ex, ScalarType); 5132 }; 5133 5134 // Extract all of the elements with the external uses. 5135 for (const auto &ExternalUse : ExternalUses) { 5136 Value *Scalar = ExternalUse.Scalar; 5137 llvm::User *User = ExternalUse.User; 5138 5139 // Skip users that we already RAUW. This happens when one instruction 5140 // has multiple uses of the same value. 5141 if (User && !is_contained(Scalar->users(), User)) 5142 continue; 5143 TreeEntry *E = getTreeEntry(Scalar); 5144 assert(E && "Invalid scalar"); 5145 assert(E->State != TreeEntry::NeedToGather && 5146 "Extracting from a gather list"); 5147 5148 Value *Vec = E->VectorizedValue; 5149 assert(Vec && "Can't find vectorizable value"); 5150 5151 Value *Lane = Builder.getInt32(ExternalUse.Lane); 5152 // If User == nullptr, the Scalar is used as extra arg. Generate 5153 // ExtractElement instruction and update the record for this scalar in 5154 // ExternallyUsedValues. 5155 if (!User) { 5156 assert(ExternallyUsedValues.count(Scalar) && 5157 "Scalar with nullptr as an external user must be registered in " 5158 "ExternallyUsedValues map"); 5159 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 5160 Builder.SetInsertPoint(VecI->getParent(), 5161 std::next(VecI->getIterator())); 5162 } else { 5163 Builder.SetInsertPoint(&F->getEntryBlock().front()); 5164 } 5165 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 5166 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 5167 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 5168 auto &Locs = ExternallyUsedValues[Scalar]; 5169 ExternallyUsedValues.insert({Ex, Locs}); 5170 ExternallyUsedValues.erase(Scalar); 5171 // Required to update internally referenced instructions. 5172 Scalar->replaceAllUsesWith(Ex); 5173 continue; 5174 } 5175 5176 // Generate extracts for out-of-tree users. 5177 // Find the insertion point for the extractelement lane. 5178 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 5179 if (PHINode *PH = dyn_cast<PHINode>(User)) { 5180 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 5181 if (PH->getIncomingValue(i) == Scalar) { 5182 Instruction *IncomingTerminator = 5183 PH->getIncomingBlock(i)->getTerminator(); 5184 if (isa<CatchSwitchInst>(IncomingTerminator)) { 5185 Builder.SetInsertPoint(VecI->getParent(), 5186 std::next(VecI->getIterator())); 5187 } else { 5188 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 5189 } 5190 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 5191 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 5192 CSEBlocks.insert(PH->getIncomingBlock(i)); 5193 PH->setOperand(i, Ex); 5194 } 5195 } 5196 } else { 5197 Builder.SetInsertPoint(cast<Instruction>(User)); 5198 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 5199 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 5200 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 5201 User->replaceUsesOfWith(Scalar, Ex); 5202 } 5203 } else { 5204 Builder.SetInsertPoint(&F->getEntryBlock().front()); 5205 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 5206 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 5207 CSEBlocks.insert(&F->getEntryBlock()); 5208 User->replaceUsesOfWith(Scalar, Ex); 5209 } 5210 5211 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 5212 } 5213 5214 // For each vectorized value: 5215 for (auto &TEPtr : VectorizableTree) { 5216 TreeEntry *Entry = TEPtr.get(); 5217 5218 // No need to handle users of gathered values. 5219 if (Entry->State == TreeEntry::NeedToGather) 5220 continue; 5221 5222 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 5223 5224 // For each lane: 5225 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 5226 Value *Scalar = Entry->Scalars[Lane]; 5227 5228 #ifndef NDEBUG 5229 Type *Ty = Scalar->getType(); 5230 if (!Ty->isVoidTy()) { 5231 for (User *U : Scalar->users()) { 5232 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 5233 5234 // It is legal to delete users in the ignorelist. 5235 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 5236 "Deleting out-of-tree value"); 5237 } 5238 } 5239 #endif 5240 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 5241 eraseInstruction(cast<Instruction>(Scalar)); 5242 } 5243 } 5244 5245 Builder.ClearInsertionPoint(); 5246 InstrElementSize.clear(); 5247 5248 return VectorizableTree[0]->VectorizedValue; 5249 } 5250 5251 void BoUpSLP::optimizeGatherSequence() { 5252 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 5253 << " gather sequences instructions.\n"); 5254 // LICM InsertElementInst sequences. 5255 for (Instruction *I : GatherSeq) { 5256 if (isDeleted(I)) 5257 continue; 5258 5259 // Check if this block is inside a loop. 5260 Loop *L = LI->getLoopFor(I->getParent()); 5261 if (!L) 5262 continue; 5263 5264 // Check if it has a preheader. 5265 BasicBlock *PreHeader = L->getLoopPreheader(); 5266 if (!PreHeader) 5267 continue; 5268 5269 // If the vector or the element that we insert into it are 5270 // instructions that are defined in this basic block then we can't 5271 // hoist this instruction. 5272 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 5273 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 5274 if (Op0 && L->contains(Op0)) 5275 continue; 5276 if (Op1 && L->contains(Op1)) 5277 continue; 5278 5279 // We can hoist this instruction. Move it to the pre-header. 5280 I->moveBefore(PreHeader->getTerminator()); 5281 } 5282 5283 // Make a list of all reachable blocks in our CSE queue. 5284 SmallVector<const DomTreeNode *, 8> CSEWorkList; 5285 CSEWorkList.reserve(CSEBlocks.size()); 5286 for (BasicBlock *BB : CSEBlocks) 5287 if (DomTreeNode *N = DT->getNode(BB)) { 5288 assert(DT->isReachableFromEntry(N)); 5289 CSEWorkList.push_back(N); 5290 } 5291 5292 // Sort blocks by domination. This ensures we visit a block after all blocks 5293 // dominating it are visited. 5294 llvm::stable_sort(CSEWorkList, 5295 [this](const DomTreeNode *A, const DomTreeNode *B) { 5296 return DT->properlyDominates(A, B); 5297 }); 5298 5299 // Perform O(N^2) search over the gather sequences and merge identical 5300 // instructions. TODO: We can further optimize this scan if we split the 5301 // instructions into different buckets based on the insert lane. 5302 SmallVector<Instruction *, 16> Visited; 5303 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 5304 assert(*I && 5305 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 5306 "Worklist not sorted properly!"); 5307 BasicBlock *BB = (*I)->getBlock(); 5308 // For all instructions in blocks containing gather sequences: 5309 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 5310 Instruction *In = &*it++; 5311 if (isDeleted(In)) 5312 continue; 5313 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 5314 continue; 5315 5316 // Check if we can replace this instruction with any of the 5317 // visited instructions. 5318 for (Instruction *v : Visited) { 5319 if (In->isIdenticalTo(v) && 5320 DT->dominates(v->getParent(), In->getParent())) { 5321 In->replaceAllUsesWith(v); 5322 eraseInstruction(In); 5323 In = nullptr; 5324 break; 5325 } 5326 } 5327 if (In) { 5328 assert(!is_contained(Visited, In)); 5329 Visited.push_back(In); 5330 } 5331 } 5332 } 5333 CSEBlocks.clear(); 5334 GatherSeq.clear(); 5335 } 5336 5337 // Groups the instructions to a bundle (which is then a single scheduling entity) 5338 // and schedules instructions until the bundle gets ready. 5339 Optional<BoUpSLP::ScheduleData *> 5340 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 5341 const InstructionsState &S) { 5342 if (isa<PHINode>(S.OpValue)) 5343 return nullptr; 5344 5345 // Initialize the instruction bundle. 5346 Instruction *OldScheduleEnd = ScheduleEnd; 5347 ScheduleData *PrevInBundle = nullptr; 5348 ScheduleData *Bundle = nullptr; 5349 bool ReSchedule = false; 5350 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 5351 5352 auto &&TryScheduleBundle = [this, OldScheduleEnd, SLP](bool ReSchedule, 5353 ScheduleData *Bundle) { 5354 // The scheduling region got new instructions at the lower end (or it is a 5355 // new region for the first bundle). This makes it necessary to 5356 // recalculate all dependencies. 5357 // It is seldom that this needs to be done a second time after adding the 5358 // initial bundle to the region. 5359 if (ScheduleEnd != OldScheduleEnd) { 5360 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 5361 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 5362 ReSchedule = true; 5363 } 5364 if (ReSchedule) { 5365 resetSchedule(); 5366 initialFillReadyList(ReadyInsts); 5367 } 5368 if (Bundle) { 5369 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 5370 << " in block " << BB->getName() << "\n"); 5371 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 5372 } 5373 5374 // Now try to schedule the new bundle or (if no bundle) just calculate 5375 // dependencies. As soon as the bundle is "ready" it means that there are no 5376 // cyclic dependencies and we can schedule it. Note that's important that we 5377 // don't "schedule" the bundle yet (see cancelScheduling). 5378 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 5379 !ReadyInsts.empty()) { 5380 ScheduleData *Picked = ReadyInsts.pop_back_val(); 5381 if (Picked->isSchedulingEntity() && Picked->isReady()) 5382 schedule(Picked, ReadyInsts); 5383 } 5384 }; 5385 5386 // Make sure that the scheduling region contains all 5387 // instructions of the bundle. 5388 for (Value *V : VL) { 5389 if (!extendSchedulingRegion(V, S)) { 5390 // If the scheduling region got new instructions at the lower end (or it 5391 // is a new region for the first bundle). This makes it necessary to 5392 // recalculate all dependencies. 5393 // Otherwise the compiler may crash trying to incorrectly calculate 5394 // dependencies and emit instruction in the wrong order at the actual 5395 // scheduling. 5396 TryScheduleBundle(/*ReSchedule=*/false, nullptr); 5397 return None; 5398 } 5399 } 5400 5401 for (Value *V : VL) { 5402 ScheduleData *BundleMember = getScheduleData(V); 5403 assert(BundleMember && 5404 "no ScheduleData for bundle member (maybe not in same basic block)"); 5405 if (BundleMember->IsScheduled) { 5406 // A bundle member was scheduled as single instruction before and now 5407 // needs to be scheduled as part of the bundle. We just get rid of the 5408 // existing schedule. 5409 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 5410 << " was already scheduled\n"); 5411 ReSchedule = true; 5412 } 5413 assert(BundleMember->isSchedulingEntity() && 5414 "bundle member already part of other bundle"); 5415 if (PrevInBundle) { 5416 PrevInBundle->NextInBundle = BundleMember; 5417 } else { 5418 Bundle = BundleMember; 5419 } 5420 BundleMember->UnscheduledDepsInBundle = 0; 5421 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 5422 5423 // Group the instructions to a bundle. 5424 BundleMember->FirstInBundle = Bundle; 5425 PrevInBundle = BundleMember; 5426 } 5427 assert(Bundle && "Failed to find schedule bundle"); 5428 TryScheduleBundle(ReSchedule, Bundle); 5429 if (!Bundle->isReady()) { 5430 cancelScheduling(VL, S.OpValue); 5431 return None; 5432 } 5433 return Bundle; 5434 } 5435 5436 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 5437 Value *OpValue) { 5438 if (isa<PHINode>(OpValue)) 5439 return; 5440 5441 ScheduleData *Bundle = getScheduleData(OpValue); 5442 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 5443 assert(!Bundle->IsScheduled && 5444 "Can't cancel bundle which is already scheduled"); 5445 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 5446 "tried to unbundle something which is not a bundle"); 5447 5448 // Un-bundle: make single instructions out of the bundle. 5449 ScheduleData *BundleMember = Bundle; 5450 while (BundleMember) { 5451 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 5452 BundleMember->FirstInBundle = BundleMember; 5453 ScheduleData *Next = BundleMember->NextInBundle; 5454 BundleMember->NextInBundle = nullptr; 5455 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 5456 if (BundleMember->UnscheduledDepsInBundle == 0) { 5457 ReadyInsts.insert(BundleMember); 5458 } 5459 BundleMember = Next; 5460 } 5461 } 5462 5463 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 5464 // Allocate a new ScheduleData for the instruction. 5465 if (ChunkPos >= ChunkSize) { 5466 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 5467 ChunkPos = 0; 5468 } 5469 return &(ScheduleDataChunks.back()[ChunkPos++]); 5470 } 5471 5472 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 5473 const InstructionsState &S) { 5474 if (getScheduleData(V, isOneOf(S, V))) 5475 return true; 5476 Instruction *I = dyn_cast<Instruction>(V); 5477 assert(I && "bundle member must be an instruction"); 5478 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 5479 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 5480 ScheduleData *ISD = getScheduleData(I); 5481 if (!ISD) 5482 return false; 5483 assert(isInSchedulingRegion(ISD) && 5484 "ScheduleData not in scheduling region"); 5485 ScheduleData *SD = allocateScheduleDataChunks(); 5486 SD->Inst = I; 5487 SD->init(SchedulingRegionID, S.OpValue); 5488 ExtraScheduleDataMap[I][S.OpValue] = SD; 5489 return true; 5490 }; 5491 if (CheckSheduleForI(I)) 5492 return true; 5493 if (!ScheduleStart) { 5494 // It's the first instruction in the new region. 5495 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 5496 ScheduleStart = I; 5497 ScheduleEnd = I->getNextNode(); 5498 if (isOneOf(S, I) != I) 5499 CheckSheduleForI(I); 5500 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5501 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 5502 return true; 5503 } 5504 // Search up and down at the same time, because we don't know if the new 5505 // instruction is above or below the existing scheduling region. 5506 BasicBlock::reverse_iterator UpIter = 5507 ++ScheduleStart->getIterator().getReverse(); 5508 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 5509 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 5510 BasicBlock::iterator LowerEnd = BB->end(); 5511 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 5512 &*DownIter != I) { 5513 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 5514 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 5515 return false; 5516 } 5517 5518 ++UpIter; 5519 ++DownIter; 5520 } 5521 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 5522 assert(I->getParent() == ScheduleStart->getParent() && 5523 "Instruction is in wrong basic block."); 5524 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 5525 ScheduleStart = I; 5526 if (isOneOf(S, I) != I) 5527 CheckSheduleForI(I); 5528 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 5529 << "\n"); 5530 return true; 5531 } 5532 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 5533 "Expected to reach top of the basic block or instruction down the " 5534 "lower end."); 5535 assert(I->getParent() == ScheduleEnd->getParent() && 5536 "Instruction is in wrong basic block."); 5537 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 5538 nullptr); 5539 ScheduleEnd = I->getNextNode(); 5540 if (isOneOf(S, I) != I) 5541 CheckSheduleForI(I); 5542 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5543 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 5544 return true; 5545 } 5546 5547 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 5548 Instruction *ToI, 5549 ScheduleData *PrevLoadStore, 5550 ScheduleData *NextLoadStore) { 5551 ScheduleData *CurrentLoadStore = PrevLoadStore; 5552 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 5553 ScheduleData *SD = ScheduleDataMap[I]; 5554 if (!SD) { 5555 SD = allocateScheduleDataChunks(); 5556 ScheduleDataMap[I] = SD; 5557 SD->Inst = I; 5558 } 5559 assert(!isInSchedulingRegion(SD) && 5560 "new ScheduleData already in scheduling region"); 5561 SD->init(SchedulingRegionID, I); 5562 5563 if (I->mayReadOrWriteMemory() && 5564 (!isa<IntrinsicInst>(I) || 5565 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 5566 cast<IntrinsicInst>(I)->getIntrinsicID() != 5567 Intrinsic::pseudoprobe))) { 5568 // Update the linked list of memory accessing instructions. 5569 if (CurrentLoadStore) { 5570 CurrentLoadStore->NextLoadStore = SD; 5571 } else { 5572 FirstLoadStoreInRegion = SD; 5573 } 5574 CurrentLoadStore = SD; 5575 } 5576 } 5577 if (NextLoadStore) { 5578 if (CurrentLoadStore) 5579 CurrentLoadStore->NextLoadStore = NextLoadStore; 5580 } else { 5581 LastLoadStoreInRegion = CurrentLoadStore; 5582 } 5583 } 5584 5585 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 5586 bool InsertInReadyList, 5587 BoUpSLP *SLP) { 5588 assert(SD->isSchedulingEntity()); 5589 5590 SmallVector<ScheduleData *, 10> WorkList; 5591 WorkList.push_back(SD); 5592 5593 while (!WorkList.empty()) { 5594 ScheduleData *SD = WorkList.pop_back_val(); 5595 5596 ScheduleData *BundleMember = SD; 5597 while (BundleMember) { 5598 assert(isInSchedulingRegion(BundleMember)); 5599 if (!BundleMember->hasValidDependencies()) { 5600 5601 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 5602 << "\n"); 5603 BundleMember->Dependencies = 0; 5604 BundleMember->resetUnscheduledDeps(); 5605 5606 // Handle def-use chain dependencies. 5607 if (BundleMember->OpValue != BundleMember->Inst) { 5608 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 5609 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5610 BundleMember->Dependencies++; 5611 ScheduleData *DestBundle = UseSD->FirstInBundle; 5612 if (!DestBundle->IsScheduled) 5613 BundleMember->incrementUnscheduledDeps(1); 5614 if (!DestBundle->hasValidDependencies()) 5615 WorkList.push_back(DestBundle); 5616 } 5617 } else { 5618 for (User *U : BundleMember->Inst->users()) { 5619 if (isa<Instruction>(U)) { 5620 ScheduleData *UseSD = getScheduleData(U); 5621 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5622 BundleMember->Dependencies++; 5623 ScheduleData *DestBundle = UseSD->FirstInBundle; 5624 if (!DestBundle->IsScheduled) 5625 BundleMember->incrementUnscheduledDeps(1); 5626 if (!DestBundle->hasValidDependencies()) 5627 WorkList.push_back(DestBundle); 5628 } 5629 } else { 5630 // I'm not sure if this can ever happen. But we need to be safe. 5631 // This lets the instruction/bundle never be scheduled and 5632 // eventually disable vectorization. 5633 BundleMember->Dependencies++; 5634 BundleMember->incrementUnscheduledDeps(1); 5635 } 5636 } 5637 } 5638 5639 // Handle the memory dependencies. 5640 ScheduleData *DepDest = BundleMember->NextLoadStore; 5641 if (DepDest) { 5642 Instruction *SrcInst = BundleMember->Inst; 5643 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 5644 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 5645 unsigned numAliased = 0; 5646 unsigned DistToSrc = 1; 5647 5648 while (DepDest) { 5649 assert(isInSchedulingRegion(DepDest)); 5650 5651 // We have two limits to reduce the complexity: 5652 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 5653 // SLP->isAliased (which is the expensive part in this loop). 5654 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 5655 // the whole loop (even if the loop is fast, it's quadratic). 5656 // It's important for the loop break condition (see below) to 5657 // check this limit even between two read-only instructions. 5658 if (DistToSrc >= MaxMemDepDistance || 5659 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 5660 (numAliased >= AliasedCheckLimit || 5661 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 5662 5663 // We increment the counter only if the locations are aliased 5664 // (instead of counting all alias checks). This gives a better 5665 // balance between reduced runtime and accurate dependencies. 5666 numAliased++; 5667 5668 DepDest->MemoryDependencies.push_back(BundleMember); 5669 BundleMember->Dependencies++; 5670 ScheduleData *DestBundle = DepDest->FirstInBundle; 5671 if (!DestBundle->IsScheduled) { 5672 BundleMember->incrementUnscheduledDeps(1); 5673 } 5674 if (!DestBundle->hasValidDependencies()) { 5675 WorkList.push_back(DestBundle); 5676 } 5677 } 5678 DepDest = DepDest->NextLoadStore; 5679 5680 // Example, explaining the loop break condition: Let's assume our 5681 // starting instruction is i0 and MaxMemDepDistance = 3. 5682 // 5683 // +--------v--v--v 5684 // i0,i1,i2,i3,i4,i5,i6,i7,i8 5685 // +--------^--^--^ 5686 // 5687 // MaxMemDepDistance let us stop alias-checking at i3 and we add 5688 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 5689 // Previously we already added dependencies from i3 to i6,i7,i8 5690 // (because of MaxMemDepDistance). As we added a dependency from 5691 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 5692 // and we can abort this loop at i6. 5693 if (DistToSrc >= 2 * MaxMemDepDistance) 5694 break; 5695 DistToSrc++; 5696 } 5697 } 5698 } 5699 BundleMember = BundleMember->NextInBundle; 5700 } 5701 if (InsertInReadyList && SD->isReady()) { 5702 ReadyInsts.push_back(SD); 5703 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 5704 << "\n"); 5705 } 5706 } 5707 } 5708 5709 void BoUpSLP::BlockScheduling::resetSchedule() { 5710 assert(ScheduleStart && 5711 "tried to reset schedule on block which has not been scheduled"); 5712 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 5713 doForAllOpcodes(I, [&](ScheduleData *SD) { 5714 assert(isInSchedulingRegion(SD) && 5715 "ScheduleData not in scheduling region"); 5716 SD->IsScheduled = false; 5717 SD->resetUnscheduledDeps(); 5718 }); 5719 } 5720 ReadyInsts.clear(); 5721 } 5722 5723 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 5724 if (!BS->ScheduleStart) 5725 return; 5726 5727 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 5728 5729 BS->resetSchedule(); 5730 5731 // For the real scheduling we use a more sophisticated ready-list: it is 5732 // sorted by the original instruction location. This lets the final schedule 5733 // be as close as possible to the original instruction order. 5734 struct ScheduleDataCompare { 5735 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 5736 return SD2->SchedulingPriority < SD1->SchedulingPriority; 5737 } 5738 }; 5739 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 5740 5741 // Ensure that all dependency data is updated and fill the ready-list with 5742 // initial instructions. 5743 int Idx = 0; 5744 int NumToSchedule = 0; 5745 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 5746 I = I->getNextNode()) { 5747 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 5748 assert(SD->isPartOfBundle() == 5749 (getTreeEntry(SD->Inst) != nullptr) && 5750 "scheduler and vectorizer bundle mismatch"); 5751 SD->FirstInBundle->SchedulingPriority = Idx++; 5752 if (SD->isSchedulingEntity()) { 5753 BS->calculateDependencies(SD, false, this); 5754 NumToSchedule++; 5755 } 5756 }); 5757 } 5758 BS->initialFillReadyList(ReadyInsts); 5759 5760 Instruction *LastScheduledInst = BS->ScheduleEnd; 5761 5762 // Do the "real" scheduling. 5763 while (!ReadyInsts.empty()) { 5764 ScheduleData *picked = *ReadyInsts.begin(); 5765 ReadyInsts.erase(ReadyInsts.begin()); 5766 5767 // Move the scheduled instruction(s) to their dedicated places, if not 5768 // there yet. 5769 ScheduleData *BundleMember = picked; 5770 while (BundleMember) { 5771 Instruction *pickedInst = BundleMember->Inst; 5772 if (LastScheduledInst->getNextNode() != pickedInst) { 5773 BS->BB->getInstList().remove(pickedInst); 5774 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 5775 pickedInst); 5776 } 5777 LastScheduledInst = pickedInst; 5778 BundleMember = BundleMember->NextInBundle; 5779 } 5780 5781 BS->schedule(picked, ReadyInsts); 5782 NumToSchedule--; 5783 } 5784 assert(NumToSchedule == 0 && "could not schedule all instructions"); 5785 5786 // Avoid duplicate scheduling of the block. 5787 BS->ScheduleStart = nullptr; 5788 } 5789 5790 unsigned BoUpSLP::getVectorElementSize(Value *V) { 5791 // If V is a store, just return the width of the stored value (or value 5792 // truncated just before storing) without traversing the expression tree. 5793 // This is the common case. 5794 if (auto *Store = dyn_cast<StoreInst>(V)) { 5795 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 5796 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 5797 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 5798 } 5799 5800 auto E = InstrElementSize.find(V); 5801 if (E != InstrElementSize.end()) 5802 return E->second; 5803 5804 // If V is not a store, we can traverse the expression tree to find loads 5805 // that feed it. The type of the loaded value may indicate a more suitable 5806 // width than V's type. We want to base the vector element size on the width 5807 // of memory operations where possible. 5808 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 5809 SmallPtrSet<Instruction *, 16> Visited; 5810 if (auto *I = dyn_cast<Instruction>(V)) { 5811 Worklist.emplace_back(I, I->getParent()); 5812 Visited.insert(I); 5813 } 5814 5815 // Traverse the expression tree in bottom-up order looking for loads. If we 5816 // encounter an instruction we don't yet handle, we give up. 5817 auto Width = 0u; 5818 while (!Worklist.empty()) { 5819 Instruction *I; 5820 BasicBlock *Parent; 5821 std::tie(I, Parent) = Worklist.pop_back_val(); 5822 5823 // We should only be looking at scalar instructions here. If the current 5824 // instruction has a vector type, skip. 5825 auto *Ty = I->getType(); 5826 if (isa<VectorType>(Ty)) 5827 continue; 5828 5829 // If the current instruction is a load, update MaxWidth to reflect the 5830 // width of the loaded value. 5831 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 5832 isa<ExtractValueInst>(I)) 5833 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 5834 5835 // Otherwise, we need to visit the operands of the instruction. We only 5836 // handle the interesting cases from buildTree here. If an operand is an 5837 // instruction we haven't yet visited and from the same basic block as the 5838 // user or the use is a PHI node, we add it to the worklist. 5839 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 5840 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 5841 isa<UnaryOperator>(I)) { 5842 for (Use &U : I->operands()) 5843 if (auto *J = dyn_cast<Instruction>(U.get())) 5844 if (Visited.insert(J).second && 5845 (isa<PHINode>(I) || J->getParent() == Parent)) 5846 Worklist.emplace_back(J, J->getParent()); 5847 } else { 5848 break; 5849 } 5850 } 5851 5852 // If we didn't encounter a memory access in the expression tree, or if we 5853 // gave up for some reason, just return the width of V. Otherwise, return the 5854 // maximum width we found. 5855 if (!Width) { 5856 if (auto *CI = dyn_cast<CmpInst>(V)) 5857 V = CI->getOperand(0); 5858 Width = DL->getTypeSizeInBits(V->getType()); 5859 } 5860 5861 for (Instruction *I : Visited) 5862 InstrElementSize[I] = Width; 5863 5864 return Width; 5865 } 5866 5867 // Determine if a value V in a vectorizable expression Expr can be demoted to a 5868 // smaller type with a truncation. We collect the values that will be demoted 5869 // in ToDemote and additional roots that require investigating in Roots. 5870 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 5871 SmallVectorImpl<Value *> &ToDemote, 5872 SmallVectorImpl<Value *> &Roots) { 5873 // We can always demote constants. 5874 if (isa<Constant>(V)) { 5875 ToDemote.push_back(V); 5876 return true; 5877 } 5878 5879 // If the value is not an instruction in the expression with only one use, it 5880 // cannot be demoted. 5881 auto *I = dyn_cast<Instruction>(V); 5882 if (!I || !I->hasOneUse() || !Expr.count(I)) 5883 return false; 5884 5885 switch (I->getOpcode()) { 5886 5887 // We can always demote truncations and extensions. Since truncations can 5888 // seed additional demotion, we save the truncated value. 5889 case Instruction::Trunc: 5890 Roots.push_back(I->getOperand(0)); 5891 break; 5892 case Instruction::ZExt: 5893 case Instruction::SExt: 5894 break; 5895 5896 // We can demote certain binary operations if we can demote both of their 5897 // operands. 5898 case Instruction::Add: 5899 case Instruction::Sub: 5900 case Instruction::Mul: 5901 case Instruction::And: 5902 case Instruction::Or: 5903 case Instruction::Xor: 5904 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 5905 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 5906 return false; 5907 break; 5908 5909 // We can demote selects if we can demote their true and false values. 5910 case Instruction::Select: { 5911 SelectInst *SI = cast<SelectInst>(I); 5912 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 5913 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 5914 return false; 5915 break; 5916 } 5917 5918 // We can demote phis if we can demote all their incoming operands. Note that 5919 // we don't need to worry about cycles since we ensure single use above. 5920 case Instruction::PHI: { 5921 PHINode *PN = cast<PHINode>(I); 5922 for (Value *IncValue : PN->incoming_values()) 5923 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 5924 return false; 5925 break; 5926 } 5927 5928 // Otherwise, conservatively give up. 5929 default: 5930 return false; 5931 } 5932 5933 // Record the value that we can demote. 5934 ToDemote.push_back(V); 5935 return true; 5936 } 5937 5938 void BoUpSLP::computeMinimumValueSizes() { 5939 // If there are no external uses, the expression tree must be rooted by a 5940 // store. We can't demote in-memory values, so there is nothing to do here. 5941 if (ExternalUses.empty()) 5942 return; 5943 5944 // We only attempt to truncate integer expressions. 5945 auto &TreeRoot = VectorizableTree[0]->Scalars; 5946 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 5947 if (!TreeRootIT) 5948 return; 5949 5950 // If the expression is not rooted by a store, these roots should have 5951 // external uses. We will rely on InstCombine to rewrite the expression in 5952 // the narrower type. However, InstCombine only rewrites single-use values. 5953 // This means that if a tree entry other than a root is used externally, it 5954 // must have multiple uses and InstCombine will not rewrite it. The code 5955 // below ensures that only the roots are used externally. 5956 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 5957 for (auto &EU : ExternalUses) 5958 if (!Expr.erase(EU.Scalar)) 5959 return; 5960 if (!Expr.empty()) 5961 return; 5962 5963 // Collect the scalar values of the vectorizable expression. We will use this 5964 // context to determine which values can be demoted. If we see a truncation, 5965 // we mark it as seeding another demotion. 5966 for (auto &EntryPtr : VectorizableTree) 5967 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 5968 5969 // Ensure the roots of the vectorizable tree don't form a cycle. They must 5970 // have a single external user that is not in the vectorizable tree. 5971 for (auto *Root : TreeRoot) 5972 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 5973 return; 5974 5975 // Conservatively determine if we can actually truncate the roots of the 5976 // expression. Collect the values that can be demoted in ToDemote and 5977 // additional roots that require investigating in Roots. 5978 SmallVector<Value *, 32> ToDemote; 5979 SmallVector<Value *, 4> Roots; 5980 for (auto *Root : TreeRoot) 5981 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 5982 return; 5983 5984 // The maximum bit width required to represent all the values that can be 5985 // demoted without loss of precision. It would be safe to truncate the roots 5986 // of the expression to this width. 5987 auto MaxBitWidth = 8u; 5988 5989 // We first check if all the bits of the roots are demanded. If they're not, 5990 // we can truncate the roots to this narrower type. 5991 for (auto *Root : TreeRoot) { 5992 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 5993 MaxBitWidth = std::max<unsigned>( 5994 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 5995 } 5996 5997 // True if the roots can be zero-extended back to their original type, rather 5998 // than sign-extended. We know that if the leading bits are not demanded, we 5999 // can safely zero-extend. So we initialize IsKnownPositive to True. 6000 bool IsKnownPositive = true; 6001 6002 // If all the bits of the roots are demanded, we can try a little harder to 6003 // compute a narrower type. This can happen, for example, if the roots are 6004 // getelementptr indices. InstCombine promotes these indices to the pointer 6005 // width. Thus, all their bits are technically demanded even though the 6006 // address computation might be vectorized in a smaller type. 6007 // 6008 // We start by looking at each entry that can be demoted. We compute the 6009 // maximum bit width required to store the scalar by using ValueTracking to 6010 // compute the number of high-order bits we can truncate. 6011 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 6012 llvm::all_of(TreeRoot, [](Value *R) { 6013 assert(R->hasOneUse() && "Root should have only one use!"); 6014 return isa<GetElementPtrInst>(R->user_back()); 6015 })) { 6016 MaxBitWidth = 8u; 6017 6018 // Determine if the sign bit of all the roots is known to be zero. If not, 6019 // IsKnownPositive is set to False. 6020 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 6021 KnownBits Known = computeKnownBits(R, *DL); 6022 return Known.isNonNegative(); 6023 }); 6024 6025 // Determine the maximum number of bits required to store the scalar 6026 // values. 6027 for (auto *Scalar : ToDemote) { 6028 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 6029 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 6030 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 6031 } 6032 6033 // If we can't prove that the sign bit is zero, we must add one to the 6034 // maximum bit width to account for the unknown sign bit. This preserves 6035 // the existing sign bit so we can safely sign-extend the root back to the 6036 // original type. Otherwise, if we know the sign bit is zero, we will 6037 // zero-extend the root instead. 6038 // 6039 // FIXME: This is somewhat suboptimal, as there will be cases where adding 6040 // one to the maximum bit width will yield a larger-than-necessary 6041 // type. In general, we need to add an extra bit only if we can't 6042 // prove that the upper bit of the original type is equal to the 6043 // upper bit of the proposed smaller type. If these two bits are the 6044 // same (either zero or one) we know that sign-extending from the 6045 // smaller type will result in the same value. Here, since we can't 6046 // yet prove this, we are just making the proposed smaller type 6047 // larger to ensure correctness. 6048 if (!IsKnownPositive) 6049 ++MaxBitWidth; 6050 } 6051 6052 // Round MaxBitWidth up to the next power-of-two. 6053 if (!isPowerOf2_64(MaxBitWidth)) 6054 MaxBitWidth = NextPowerOf2(MaxBitWidth); 6055 6056 // If the maximum bit width we compute is less than the with of the roots' 6057 // type, we can proceed with the narrowing. Otherwise, do nothing. 6058 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 6059 return; 6060 6061 // If we can truncate the root, we must collect additional values that might 6062 // be demoted as a result. That is, those seeded by truncations we will 6063 // modify. 6064 while (!Roots.empty()) 6065 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 6066 6067 // Finally, map the values we can demote to the maximum bit with we computed. 6068 for (auto *Scalar : ToDemote) 6069 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 6070 } 6071 6072 namespace { 6073 6074 /// The SLPVectorizer Pass. 6075 struct SLPVectorizer : public FunctionPass { 6076 SLPVectorizerPass Impl; 6077 6078 /// Pass identification, replacement for typeid 6079 static char ID; 6080 6081 explicit SLPVectorizer() : FunctionPass(ID) { 6082 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 6083 } 6084 6085 bool doInitialization(Module &M) override { 6086 return false; 6087 } 6088 6089 bool runOnFunction(Function &F) override { 6090 if (skipFunction(F)) 6091 return false; 6092 6093 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 6094 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 6095 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 6096 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 6097 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 6098 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 6099 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 6100 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 6101 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 6102 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 6103 6104 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 6105 } 6106 6107 void getAnalysisUsage(AnalysisUsage &AU) const override { 6108 FunctionPass::getAnalysisUsage(AU); 6109 AU.addRequired<AssumptionCacheTracker>(); 6110 AU.addRequired<ScalarEvolutionWrapperPass>(); 6111 AU.addRequired<AAResultsWrapperPass>(); 6112 AU.addRequired<TargetTransformInfoWrapperPass>(); 6113 AU.addRequired<LoopInfoWrapperPass>(); 6114 AU.addRequired<DominatorTreeWrapperPass>(); 6115 AU.addRequired<DemandedBitsWrapperPass>(); 6116 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 6117 AU.addRequired<InjectTLIMappingsLegacy>(); 6118 AU.addPreserved<LoopInfoWrapperPass>(); 6119 AU.addPreserved<DominatorTreeWrapperPass>(); 6120 AU.addPreserved<AAResultsWrapperPass>(); 6121 AU.addPreserved<GlobalsAAWrapperPass>(); 6122 AU.setPreservesCFG(); 6123 } 6124 }; 6125 6126 } // end anonymous namespace 6127 6128 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 6129 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 6130 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 6131 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 6132 auto *AA = &AM.getResult<AAManager>(F); 6133 auto *LI = &AM.getResult<LoopAnalysis>(F); 6134 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 6135 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 6136 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 6137 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 6138 6139 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 6140 if (!Changed) 6141 return PreservedAnalyses::all(); 6142 6143 PreservedAnalyses PA; 6144 PA.preserveSet<CFGAnalyses>(); 6145 PA.preserve<AAManager>(); 6146 PA.preserve<GlobalsAA>(); 6147 return PA; 6148 } 6149 6150 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 6151 TargetTransformInfo *TTI_, 6152 TargetLibraryInfo *TLI_, AAResults *AA_, 6153 LoopInfo *LI_, DominatorTree *DT_, 6154 AssumptionCache *AC_, DemandedBits *DB_, 6155 OptimizationRemarkEmitter *ORE_) { 6156 if (!RunSLPVectorization) 6157 return false; 6158 SE = SE_; 6159 TTI = TTI_; 6160 TLI = TLI_; 6161 AA = AA_; 6162 LI = LI_; 6163 DT = DT_; 6164 AC = AC_; 6165 DB = DB_; 6166 DL = &F.getParent()->getDataLayout(); 6167 6168 Stores.clear(); 6169 GEPs.clear(); 6170 bool Changed = false; 6171 6172 // If the target claims to have no vector registers don't attempt 6173 // vectorization. 6174 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) 6175 return false; 6176 6177 // Don't vectorize when the attribute NoImplicitFloat is used. 6178 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 6179 return false; 6180 6181 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 6182 6183 // Use the bottom up slp vectorizer to construct chains that start with 6184 // store instructions. 6185 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 6186 6187 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 6188 // delete instructions. 6189 6190 // Scan the blocks in the function in post order. 6191 for (auto BB : post_order(&F.getEntryBlock())) { 6192 collectSeedInstructions(BB); 6193 6194 // Vectorize trees that end at stores. 6195 if (!Stores.empty()) { 6196 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 6197 << " underlying objects.\n"); 6198 Changed |= vectorizeStoreChains(R); 6199 } 6200 6201 // Vectorize trees that end at reductions. 6202 Changed |= vectorizeChainsInBlock(BB, R); 6203 6204 // Vectorize the index computations of getelementptr instructions. This 6205 // is primarily intended to catch gather-like idioms ending at 6206 // non-consecutive loads. 6207 if (!GEPs.empty()) { 6208 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 6209 << " underlying objects.\n"); 6210 Changed |= vectorizeGEPIndices(BB, R); 6211 } 6212 } 6213 6214 if (Changed) { 6215 R.optimizeGatherSequence(); 6216 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 6217 } 6218 return Changed; 6219 } 6220 6221 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 6222 unsigned Idx) { 6223 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 6224 << "\n"); 6225 const unsigned Sz = R.getVectorElementSize(Chain[0]); 6226 const unsigned MinVF = R.getMinVecRegSize() / Sz; 6227 unsigned VF = Chain.size(); 6228 6229 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 6230 return false; 6231 6232 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 6233 << "\n"); 6234 6235 R.buildTree(Chain); 6236 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 6237 // TODO: Handle orders of size less than number of elements in the vector. 6238 if (Order && Order->size() == Chain.size()) { 6239 // TODO: reorder tree nodes without tree rebuilding. 6240 SmallVector<Value *, 4> ReorderedOps(Chain.rbegin(), Chain.rend()); 6241 llvm::transform(*Order, ReorderedOps.begin(), 6242 [Chain](const unsigned Idx) { return Chain[Idx]; }); 6243 R.buildTree(ReorderedOps); 6244 } 6245 if (R.isTreeTinyAndNotFullyVectorizable()) 6246 return false; 6247 if (R.isLoadCombineCandidate()) 6248 return false; 6249 6250 R.computeMinimumValueSizes(); 6251 6252 InstructionCost Cost = R.getTreeCost(); 6253 6254 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 6255 if (Cost < -SLPCostThreshold) { 6256 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 6257 6258 using namespace ore; 6259 6260 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 6261 cast<StoreInst>(Chain[0])) 6262 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 6263 << " and with tree size " 6264 << NV("TreeSize", R.getTreeSize())); 6265 6266 R.vectorizeTree(); 6267 return true; 6268 } 6269 6270 return false; 6271 } 6272 6273 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 6274 BoUpSLP &R) { 6275 // We may run into multiple chains that merge into a single chain. We mark the 6276 // stores that we vectorized so that we don't visit the same store twice. 6277 BoUpSLP::ValueSet VectorizedStores; 6278 bool Changed = false; 6279 6280 int E = Stores.size(); 6281 SmallBitVector Tails(E, false); 6282 int MaxIter = MaxStoreLookup.getValue(); 6283 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 6284 E, std::make_pair(E, INT_MAX)); 6285 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 6286 int IterCnt; 6287 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 6288 &CheckedPairs, 6289 &ConsecutiveChain](int K, int Idx) { 6290 if (IterCnt >= MaxIter) 6291 return true; 6292 if (CheckedPairs[Idx].test(K)) 6293 return ConsecutiveChain[K].second == 1 && 6294 ConsecutiveChain[K].first == Idx; 6295 ++IterCnt; 6296 CheckedPairs[Idx].set(K); 6297 CheckedPairs[K].set(Idx); 6298 Optional<int> Diff = getPointersDiff(Stores[K]->getPointerOperand(), 6299 Stores[Idx]->getPointerOperand(), *DL, 6300 *SE, /*StrictCheck=*/true); 6301 if (!Diff || *Diff == 0) 6302 return false; 6303 int Val = *Diff; 6304 if (Val < 0) { 6305 if (ConsecutiveChain[Idx].second > -Val) { 6306 Tails.set(K); 6307 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 6308 } 6309 return false; 6310 } 6311 if (ConsecutiveChain[K].second <= Val) 6312 return false; 6313 6314 Tails.set(Idx); 6315 ConsecutiveChain[K] = std::make_pair(Idx, Val); 6316 return Val == 1; 6317 }; 6318 // Do a quadratic search on all of the given stores in reverse order and find 6319 // all of the pairs of stores that follow each other. 6320 for (int Idx = E - 1; Idx >= 0; --Idx) { 6321 // If a store has multiple consecutive store candidates, search according 6322 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 6323 // This is because usually pairing with immediate succeeding or preceding 6324 // candidate create the best chance to find slp vectorization opportunity. 6325 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 6326 IterCnt = 0; 6327 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 6328 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 6329 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 6330 break; 6331 } 6332 6333 // Tracks if we tried to vectorize stores starting from the given tail 6334 // already. 6335 SmallBitVector TriedTails(E, false); 6336 // For stores that start but don't end a link in the chain: 6337 for (int Cnt = E; Cnt > 0; --Cnt) { 6338 int I = Cnt - 1; 6339 if (ConsecutiveChain[I].first == E || Tails.test(I)) 6340 continue; 6341 // We found a store instr that starts a chain. Now follow the chain and try 6342 // to vectorize it. 6343 BoUpSLP::ValueList Operands; 6344 // Collect the chain into a list. 6345 while (I != E && !VectorizedStores.count(Stores[I])) { 6346 Operands.push_back(Stores[I]); 6347 Tails.set(I); 6348 if (ConsecutiveChain[I].second != 1) { 6349 // Mark the new end in the chain and go back, if required. It might be 6350 // required if the original stores come in reversed order, for example. 6351 if (ConsecutiveChain[I].first != E && 6352 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 6353 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 6354 TriedTails.set(I); 6355 Tails.reset(ConsecutiveChain[I].first); 6356 if (Cnt < ConsecutiveChain[I].first + 2) 6357 Cnt = ConsecutiveChain[I].first + 2; 6358 } 6359 break; 6360 } 6361 // Move to the next value in the chain. 6362 I = ConsecutiveChain[I].first; 6363 } 6364 assert(!Operands.empty() && "Expected non-empty list of stores."); 6365 6366 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 6367 unsigned EltSize = R.getVectorElementSize(Operands[0]); 6368 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 6369 6370 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / EltSize); 6371 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 6372 MaxElts); 6373 6374 // FIXME: Is division-by-2 the correct step? Should we assert that the 6375 // register size is a power-of-2? 6376 unsigned StartIdx = 0; 6377 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 6378 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 6379 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 6380 if (!VectorizedStores.count(Slice.front()) && 6381 !VectorizedStores.count(Slice.back()) && 6382 vectorizeStoreChain(Slice, R, Cnt)) { 6383 // Mark the vectorized stores so that we don't vectorize them again. 6384 VectorizedStores.insert(Slice.begin(), Slice.end()); 6385 Changed = true; 6386 // If we vectorized initial block, no need to try to vectorize it 6387 // again. 6388 if (Cnt == StartIdx) 6389 StartIdx += Size; 6390 Cnt += Size; 6391 continue; 6392 } 6393 ++Cnt; 6394 } 6395 // Check if the whole array was vectorized already - exit. 6396 if (StartIdx >= Operands.size()) 6397 break; 6398 } 6399 } 6400 6401 return Changed; 6402 } 6403 6404 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 6405 // Initialize the collections. We will make a single pass over the block. 6406 Stores.clear(); 6407 GEPs.clear(); 6408 6409 // Visit the store and getelementptr instructions in BB and organize them in 6410 // Stores and GEPs according to the underlying objects of their pointer 6411 // operands. 6412 for (Instruction &I : *BB) { 6413 // Ignore store instructions that are volatile or have a pointer operand 6414 // that doesn't point to a scalar type. 6415 if (auto *SI = dyn_cast<StoreInst>(&I)) { 6416 if (!SI->isSimple()) 6417 continue; 6418 if (!isValidElementType(SI->getValueOperand()->getType())) 6419 continue; 6420 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 6421 } 6422 6423 // Ignore getelementptr instructions that have more than one index, a 6424 // constant index, or a pointer operand that doesn't point to a scalar 6425 // type. 6426 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 6427 auto Idx = GEP->idx_begin()->get(); 6428 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 6429 continue; 6430 if (!isValidElementType(Idx->getType())) 6431 continue; 6432 if (GEP->getType()->isVectorTy()) 6433 continue; 6434 GEPs[GEP->getPointerOperand()].push_back(GEP); 6435 } 6436 } 6437 } 6438 6439 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 6440 if (!A || !B) 6441 return false; 6442 Value *VL[] = {A, B}; 6443 return tryToVectorizeList(VL, R, /*AllowReorder=*/true); 6444 } 6445 6446 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 6447 bool AllowReorder, 6448 ArrayRef<Value *> InsertUses) { 6449 if (VL.size() < 2) 6450 return false; 6451 6452 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 6453 << VL.size() << ".\n"); 6454 6455 // Check that all of the parts are instructions of the same type, 6456 // we permit an alternate opcode via InstructionsState. 6457 InstructionsState S = getSameOpcode(VL); 6458 if (!S.getOpcode()) 6459 return false; 6460 6461 Instruction *I0 = cast<Instruction>(S.OpValue); 6462 // Make sure invalid types (including vector type) are rejected before 6463 // determining vectorization factor for scalar instructions. 6464 for (Value *V : VL) { 6465 Type *Ty = V->getType(); 6466 if (!isValidElementType(Ty)) { 6467 // NOTE: the following will give user internal llvm type name, which may 6468 // not be useful. 6469 R.getORE()->emit([&]() { 6470 std::string type_str; 6471 llvm::raw_string_ostream rso(type_str); 6472 Ty->print(rso); 6473 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 6474 << "Cannot SLP vectorize list: type " 6475 << rso.str() + " is unsupported by vectorizer"; 6476 }); 6477 return false; 6478 } 6479 } 6480 6481 unsigned Sz = R.getVectorElementSize(I0); 6482 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 6483 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 6484 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 6485 if (MaxVF < 2) { 6486 R.getORE()->emit([&]() { 6487 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 6488 << "Cannot SLP vectorize list: vectorization factor " 6489 << "less than 2 is not supported"; 6490 }); 6491 return false; 6492 } 6493 6494 bool Changed = false; 6495 bool CandidateFound = false; 6496 InstructionCost MinCost = SLPCostThreshold.getValue(); 6497 6498 bool CompensateUseCost = 6499 !InsertUses.empty() && llvm::all_of(InsertUses, [](const Value *V) { 6500 return V && isa<InsertElementInst>(V); 6501 }); 6502 assert((!CompensateUseCost || InsertUses.size() == VL.size()) && 6503 "Each scalar expected to have an associated InsertElement user."); 6504 6505 unsigned NextInst = 0, MaxInst = VL.size(); 6506 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 6507 // No actual vectorization should happen, if number of parts is the same as 6508 // provided vectorization factor (i.e. the scalar type is used for vector 6509 // code during codegen). 6510 auto *VecTy = FixedVectorType::get(VL[0]->getType(), VF); 6511 if (TTI->getNumberOfParts(VecTy) == VF) 6512 continue; 6513 for (unsigned I = NextInst; I < MaxInst; ++I) { 6514 unsigned OpsWidth = 0; 6515 6516 if (I + VF > MaxInst) 6517 OpsWidth = MaxInst - I; 6518 else 6519 OpsWidth = VF; 6520 6521 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 6522 break; 6523 6524 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 6525 // Check that a previous iteration of this loop did not delete the Value. 6526 if (llvm::any_of(Ops, [&R](Value *V) { 6527 auto *I = dyn_cast<Instruction>(V); 6528 return I && R.isDeleted(I); 6529 })) 6530 continue; 6531 6532 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 6533 << "\n"); 6534 6535 R.buildTree(Ops); 6536 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 6537 // TODO: check if we can allow reordering for more cases. 6538 if (AllowReorder && Order) { 6539 // TODO: reorder tree nodes without tree rebuilding. 6540 // Conceptually, there is nothing actually preventing us from trying to 6541 // reorder a larger list. In fact, we do exactly this when vectorizing 6542 // reductions. However, at this point, we only expect to get here when 6543 // there are exactly two operations. 6544 assert(Ops.size() == 2); 6545 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 6546 R.buildTree(ReorderedOps, None); 6547 } 6548 if (R.isTreeTinyAndNotFullyVectorizable()) 6549 continue; 6550 6551 R.computeMinimumValueSizes(); 6552 InstructionCost Cost = R.getTreeCost(); 6553 CandidateFound = true; 6554 if (CompensateUseCost) { 6555 // TODO: Use TTI's getScalarizationOverhead for sequence of inserts 6556 // rather than sum of single inserts as the latter may overestimate 6557 // cost. This work should imply improving cost estimation for extracts 6558 // that added in for external (for vectorization tree) users,i.e. that 6559 // part should also switch to same interface. 6560 // For example, the following case is projected code after SLP: 6561 // %4 = extractelement <4 x i64> %3, i32 0 6562 // %v0 = insertelement <4 x i64> poison, i64 %4, i32 0 6563 // %5 = extractelement <4 x i64> %3, i32 1 6564 // %v1 = insertelement <4 x i64> %v0, i64 %5, i32 1 6565 // %6 = extractelement <4 x i64> %3, i32 2 6566 // %v2 = insertelement <4 x i64> %v1, i64 %6, i32 2 6567 // %7 = extractelement <4 x i64> %3, i32 3 6568 // %v3 = insertelement <4 x i64> %v2, i64 %7, i32 3 6569 // 6570 // Extracts here added by SLP in order to feed users (the inserts) of 6571 // original scalars and contribute to "ExtractCost" at cost evaluation. 6572 // The inserts in turn form sequence to build an aggregate that 6573 // detected by findBuildAggregate routine. 6574 // SLP makes an assumption that such sequence will be optimized away 6575 // later (instcombine) so it tries to compensate ExctractCost with 6576 // cost of insert sequence. 6577 // Current per element cost calculation approach is not quite accurate 6578 // and tends to create bias toward favoring vectorization. 6579 // Switching to the TTI interface might help a bit. 6580 // Alternative solution could be pattern-match to detect a no-op or 6581 // shuffle. 6582 InstructionCost UserCost = 0; 6583 for (unsigned Lane = 0; Lane < OpsWidth; Lane++) { 6584 auto *IE = cast<InsertElementInst>(InsertUses[I + Lane]); 6585 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) 6586 UserCost += TTI->getVectorInstrCost( 6587 Instruction::InsertElement, IE->getType(), CI->getZExtValue()); 6588 } 6589 LLVM_DEBUG(dbgs() << "SLP: Compensate cost of users by: " << UserCost 6590 << ".\n"); 6591 Cost -= UserCost; 6592 } 6593 6594 MinCost = std::min(MinCost, Cost); 6595 6596 if (Cost < -SLPCostThreshold) { 6597 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 6598 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 6599 cast<Instruction>(Ops[0])) 6600 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 6601 << " and with tree size " 6602 << ore::NV("TreeSize", R.getTreeSize())); 6603 6604 R.vectorizeTree(); 6605 // Move to the next bundle. 6606 I += VF - 1; 6607 NextInst = I + 1; 6608 Changed = true; 6609 } 6610 } 6611 } 6612 6613 if (!Changed && CandidateFound) { 6614 R.getORE()->emit([&]() { 6615 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 6616 << "List vectorization was possible but not beneficial with cost " 6617 << ore::NV("Cost", MinCost) << " >= " 6618 << ore::NV("Treshold", -SLPCostThreshold); 6619 }); 6620 } else if (!Changed) { 6621 R.getORE()->emit([&]() { 6622 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 6623 << "Cannot SLP vectorize list: vectorization was impossible" 6624 << " with available vectorization factors"; 6625 }); 6626 } 6627 return Changed; 6628 } 6629 6630 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 6631 if (!I) 6632 return false; 6633 6634 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 6635 return false; 6636 6637 Value *P = I->getParent(); 6638 6639 // Vectorize in current basic block only. 6640 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 6641 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 6642 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 6643 return false; 6644 6645 // Try to vectorize V. 6646 if (tryToVectorizePair(Op0, Op1, R)) 6647 return true; 6648 6649 auto *A = dyn_cast<BinaryOperator>(Op0); 6650 auto *B = dyn_cast<BinaryOperator>(Op1); 6651 // Try to skip B. 6652 if (B && B->hasOneUse()) { 6653 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 6654 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 6655 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 6656 return true; 6657 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 6658 return true; 6659 } 6660 6661 // Try to skip A. 6662 if (A && A->hasOneUse()) { 6663 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 6664 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 6665 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 6666 return true; 6667 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 6668 return true; 6669 } 6670 return false; 6671 } 6672 6673 namespace { 6674 6675 /// Model horizontal reductions. 6676 /// 6677 /// A horizontal reduction is a tree of reduction instructions that has values 6678 /// that can be put into a vector as its leaves. For example: 6679 /// 6680 /// mul mul mul mul 6681 /// \ / \ / 6682 /// + + 6683 /// \ / 6684 /// + 6685 /// This tree has "mul" as its leaf values and "+" as its reduction 6686 /// instructions. A reduction can feed into a store or a binary operation 6687 /// feeding a phi. 6688 /// ... 6689 /// \ / 6690 /// + 6691 /// | 6692 /// phi += 6693 /// 6694 /// Or: 6695 /// ... 6696 /// \ / 6697 /// + 6698 /// | 6699 /// *p = 6700 /// 6701 class HorizontalReduction { 6702 using ReductionOpsType = SmallVector<Value *, 16>; 6703 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 6704 ReductionOpsListType ReductionOps; 6705 SmallVector<Value *, 32> ReducedVals; 6706 // Use map vector to make stable output. 6707 MapVector<Instruction *, Value *> ExtraArgs; 6708 WeakTrackingVH ReductionRoot; 6709 /// The type of reduction operation. 6710 RecurKind RdxKind; 6711 6712 /// Checks if instruction is associative and can be vectorized. 6713 static bool isVectorizable(RecurKind Kind, Instruction *I) { 6714 if (Kind == RecurKind::None) 6715 return false; 6716 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind)) 6717 return true; 6718 6719 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 6720 // FP min/max are associative except for NaN and -0.0. We do not 6721 // have to rule out -0.0 here because the intrinsic semantics do not 6722 // specify a fixed result for it. 6723 return I->getFastMathFlags().noNaNs(); 6724 } 6725 6726 return I->isAssociative(); 6727 } 6728 6729 /// Checks if the ParentStackElem.first should be marked as a reduction 6730 /// operation with an extra argument or as extra argument itself. 6731 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 6732 Value *ExtraArg) { 6733 if (ExtraArgs.count(ParentStackElem.first)) { 6734 ExtraArgs[ParentStackElem.first] = nullptr; 6735 // We ran into something like: 6736 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 6737 // The whole ParentStackElem.first should be considered as an extra value 6738 // in this case. 6739 // Do not perform analysis of remaining operands of ParentStackElem.first 6740 // instruction, this whole instruction is an extra argument. 6741 ParentStackElem.second = getNumberOfOperands(ParentStackElem.first); 6742 } else { 6743 // We ran into something like: 6744 // ParentStackElem.first += ... + ExtraArg + ... 6745 ExtraArgs[ParentStackElem.first] = ExtraArg; 6746 } 6747 } 6748 6749 /// Creates reduction operation with the current opcode. 6750 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 6751 Value *RHS, const Twine &Name, bool UseSelect) { 6752 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 6753 switch (Kind) { 6754 case RecurKind::Add: 6755 case RecurKind::Mul: 6756 case RecurKind::Or: 6757 case RecurKind::And: 6758 case RecurKind::Xor: 6759 case RecurKind::FAdd: 6760 case RecurKind::FMul: 6761 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 6762 Name); 6763 case RecurKind::FMax: 6764 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 6765 case RecurKind::FMin: 6766 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 6767 case RecurKind::SMax: 6768 if (UseSelect) { 6769 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 6770 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6771 } 6772 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 6773 case RecurKind::SMin: 6774 if (UseSelect) { 6775 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 6776 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6777 } 6778 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 6779 case RecurKind::UMax: 6780 if (UseSelect) { 6781 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 6782 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6783 } 6784 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 6785 case RecurKind::UMin: 6786 if (UseSelect) { 6787 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 6788 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6789 } 6790 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 6791 default: 6792 llvm_unreachable("Unknown reduction operation."); 6793 } 6794 } 6795 6796 /// Creates reduction operation with the current opcode with the IR flags 6797 /// from \p ReductionOps. 6798 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 6799 Value *RHS, const Twine &Name, 6800 const ReductionOpsListType &ReductionOps) { 6801 bool UseSelect = ReductionOps.size() == 2; 6802 assert((!UseSelect || isa<SelectInst>(ReductionOps[1][0])) && 6803 "Expected cmp + select pairs for reduction"); 6804 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 6805 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 6806 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 6807 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 6808 propagateIRFlags(Op, ReductionOps[1]); 6809 return Op; 6810 } 6811 } 6812 propagateIRFlags(Op, ReductionOps[0]); 6813 return Op; 6814 } 6815 6816 /// Creates reduction operation with the current opcode with the IR flags 6817 /// from \p I. 6818 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 6819 Value *RHS, const Twine &Name, Instruction *I) { 6820 auto *SelI = dyn_cast<SelectInst>(I); 6821 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 6822 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 6823 if (auto *Sel = dyn_cast<SelectInst>(Op)) 6824 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 6825 } 6826 propagateIRFlags(Op, I); 6827 return Op; 6828 } 6829 6830 static RecurKind getRdxKind(Instruction *I) { 6831 assert(I && "Expected instruction for reduction matching"); 6832 TargetTransformInfo::ReductionFlags RdxFlags; 6833 if (match(I, m_Add(m_Value(), m_Value()))) 6834 return RecurKind::Add; 6835 if (match(I, m_Mul(m_Value(), m_Value()))) 6836 return RecurKind::Mul; 6837 if (match(I, m_And(m_Value(), m_Value()))) 6838 return RecurKind::And; 6839 if (match(I, m_Or(m_Value(), m_Value()))) 6840 return RecurKind::Or; 6841 if (match(I, m_Xor(m_Value(), m_Value()))) 6842 return RecurKind::Xor; 6843 if (match(I, m_FAdd(m_Value(), m_Value()))) 6844 return RecurKind::FAdd; 6845 if (match(I, m_FMul(m_Value(), m_Value()))) 6846 return RecurKind::FMul; 6847 6848 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 6849 return RecurKind::FMax; 6850 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 6851 return RecurKind::FMin; 6852 6853 // This matches either cmp+select or intrinsics. SLP is expected to handle 6854 // either form. 6855 // TODO: If we are canonicalizing to intrinsics, we can remove several 6856 // special-case paths that deal with selects. 6857 if (match(I, m_SMax(m_Value(), m_Value()))) 6858 return RecurKind::SMax; 6859 if (match(I, m_SMin(m_Value(), m_Value()))) 6860 return RecurKind::SMin; 6861 if (match(I, m_UMax(m_Value(), m_Value()))) 6862 return RecurKind::UMax; 6863 if (match(I, m_UMin(m_Value(), m_Value()))) 6864 return RecurKind::UMin; 6865 6866 if (auto *Select = dyn_cast<SelectInst>(I)) { 6867 // Try harder: look for min/max pattern based on instructions producing 6868 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 6869 // During the intermediate stages of SLP, it's very common to have 6870 // pattern like this (since optimizeGatherSequence is run only once 6871 // at the end): 6872 // %1 = extractelement <2 x i32> %a, i32 0 6873 // %2 = extractelement <2 x i32> %a, i32 1 6874 // %cond = icmp sgt i32 %1, %2 6875 // %3 = extractelement <2 x i32> %a, i32 0 6876 // %4 = extractelement <2 x i32> %a, i32 1 6877 // %select = select i1 %cond, i32 %3, i32 %4 6878 CmpInst::Predicate Pred; 6879 Instruction *L1; 6880 Instruction *L2; 6881 6882 Value *LHS = Select->getTrueValue(); 6883 Value *RHS = Select->getFalseValue(); 6884 Value *Cond = Select->getCondition(); 6885 6886 // TODO: Support inverse predicates. 6887 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 6888 if (!isa<ExtractElementInst>(RHS) || 6889 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6890 return RecurKind::None; 6891 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 6892 if (!isa<ExtractElementInst>(LHS) || 6893 !L1->isIdenticalTo(cast<Instruction>(LHS))) 6894 return RecurKind::None; 6895 } else { 6896 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 6897 return RecurKind::None; 6898 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 6899 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 6900 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6901 return RecurKind::None; 6902 } 6903 6904 TargetTransformInfo::ReductionFlags RdxFlags; 6905 switch (Pred) { 6906 default: 6907 return RecurKind::None; 6908 case CmpInst::ICMP_SGT: 6909 case CmpInst::ICMP_SGE: 6910 return RecurKind::SMax; 6911 case CmpInst::ICMP_SLT: 6912 case CmpInst::ICMP_SLE: 6913 return RecurKind::SMin; 6914 case CmpInst::ICMP_UGT: 6915 case CmpInst::ICMP_UGE: 6916 return RecurKind::UMax; 6917 case CmpInst::ICMP_ULT: 6918 case CmpInst::ICMP_ULE: 6919 return RecurKind::UMin; 6920 } 6921 } 6922 return RecurKind::None; 6923 } 6924 6925 /// Get the index of the first operand. 6926 static unsigned getFirstOperandIndex(Instruction *I) { 6927 return isa<SelectInst>(I) ? 1 : 0; 6928 } 6929 6930 /// Total number of operands in the reduction operation. 6931 static unsigned getNumberOfOperands(Instruction *I) { 6932 return isa<SelectInst>(I) ? 3 : 2; 6933 } 6934 6935 /// Checks if the instruction is in basic block \p BB. 6936 /// For a min/max reduction check that both compare and select are in \p BB. 6937 static bool hasSameParent(Instruction *I, BasicBlock *BB, bool IsRedOp) { 6938 auto *Sel = dyn_cast<SelectInst>(I); 6939 if (IsRedOp && Sel) { 6940 auto *Cmp = cast<Instruction>(Sel->getCondition()); 6941 return Sel->getParent() == BB && Cmp->getParent() == BB; 6942 } 6943 return I->getParent() == BB; 6944 } 6945 6946 /// Expected number of uses for reduction operations/reduced values. 6947 static bool hasRequiredNumberOfUses(bool MatchCmpSel, Instruction *I) { 6948 // SelectInst must be used twice while the condition op must have single 6949 // use only. 6950 if (MatchCmpSel) { 6951 if (auto *Sel = dyn_cast<SelectInst>(I)) 6952 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 6953 return I->hasNUses(2); 6954 } 6955 6956 // Arithmetic reduction operation must be used once only. 6957 return I->hasOneUse(); 6958 } 6959 6960 /// Initializes the list of reduction operations. 6961 void initReductionOps(Instruction *I) { 6962 if (isa<SelectInst>(I)) 6963 ReductionOps.assign(2, ReductionOpsType()); 6964 else 6965 ReductionOps.assign(1, ReductionOpsType()); 6966 } 6967 6968 /// Add all reduction operations for the reduction instruction \p I. 6969 void addReductionOps(Instruction *I) { 6970 if (auto *Sel = dyn_cast<SelectInst>(I)) { 6971 ReductionOps[0].emplace_back(Sel->getCondition()); 6972 ReductionOps[1].emplace_back(Sel); 6973 } else { 6974 ReductionOps[0].emplace_back(I); 6975 } 6976 } 6977 6978 static Value *getLHS(RecurKind Kind, Instruction *I) { 6979 if (Kind == RecurKind::None) 6980 return nullptr; 6981 return I->getOperand(getFirstOperandIndex(I)); 6982 } 6983 static Value *getRHS(RecurKind Kind, Instruction *I) { 6984 if (Kind == RecurKind::None) 6985 return nullptr; 6986 return I->getOperand(getFirstOperandIndex(I) + 1); 6987 } 6988 6989 public: 6990 HorizontalReduction() = default; 6991 6992 /// Try to find a reduction tree. 6993 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 6994 assert((!Phi || is_contained(Phi->operands(), B)) && 6995 "Phi needs to use the binary operator"); 6996 6997 RdxKind = getRdxKind(B); 6998 6999 // We could have a initial reductions that is not an add. 7000 // r *= v1 + v2 + v3 + v4 7001 // In such a case start looking for a tree rooted in the first '+'. 7002 if (Phi) { 7003 if (getLHS(RdxKind, B) == Phi) { 7004 Phi = nullptr; 7005 B = dyn_cast<Instruction>(getRHS(RdxKind, B)); 7006 if (!B) 7007 return false; 7008 RdxKind = getRdxKind(B); 7009 } else if (getRHS(RdxKind, B) == Phi) { 7010 Phi = nullptr; 7011 B = dyn_cast<Instruction>(getLHS(RdxKind, B)); 7012 if (!B) 7013 return false; 7014 RdxKind = getRdxKind(B); 7015 } 7016 } 7017 7018 if (!isVectorizable(RdxKind, B)) 7019 return false; 7020 7021 // Analyze "regular" integer/FP types for reductions - no target-specific 7022 // types or pointers. 7023 Type *Ty = B->getType(); 7024 if (!isValidElementType(Ty) || Ty->isPointerTy()) 7025 return false; 7026 7027 // Though the ultimate reduction may have multiple uses, its condition must 7028 // have only single use. 7029 if (auto *SI = dyn_cast<SelectInst>(B)) 7030 if (!SI->getCondition()->hasOneUse()) 7031 return false; 7032 7033 ReductionRoot = B; 7034 7035 // The opcode for leaf values that we perform a reduction on. 7036 // For example: load(x) + load(y) + load(z) + fptoui(w) 7037 // The leaf opcode for 'w' does not match, so we don't include it as a 7038 // potential candidate for the reduction. 7039 unsigned LeafOpcode = 0; 7040 7041 // Post order traverse the reduction tree starting at B. We only handle true 7042 // trees containing only binary operators. 7043 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 7044 Stack.push_back(std::make_pair(B, getFirstOperandIndex(B))); 7045 initReductionOps(B); 7046 while (!Stack.empty()) { 7047 Instruction *TreeN = Stack.back().first; 7048 unsigned EdgeToVisit = Stack.back().second++; 7049 const RecurKind TreeRdxKind = getRdxKind(TreeN); 7050 bool IsReducedValue = TreeRdxKind != RdxKind; 7051 7052 // Postorder visit. 7053 if (IsReducedValue || EdgeToVisit == getNumberOfOperands(TreeN)) { 7054 if (IsReducedValue) 7055 ReducedVals.push_back(TreeN); 7056 else { 7057 auto ExtraArgsIter = ExtraArgs.find(TreeN); 7058 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) { 7059 // Check if TreeN is an extra argument of its parent operation. 7060 if (Stack.size() <= 1) { 7061 // TreeN can't be an extra argument as it is a root reduction 7062 // operation. 7063 return false; 7064 } 7065 // Yes, TreeN is an extra argument, do not add it to a list of 7066 // reduction operations. 7067 // Stack[Stack.size() - 2] always points to the parent operation. 7068 markExtraArg(Stack[Stack.size() - 2], TreeN); 7069 ExtraArgs.erase(TreeN); 7070 } else 7071 addReductionOps(TreeN); 7072 } 7073 // Retract. 7074 Stack.pop_back(); 7075 continue; 7076 } 7077 7078 // Visit left or right. 7079 Value *EdgeVal = TreeN->getOperand(EdgeToVisit); 7080 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 7081 if (!EdgeInst) { 7082 // Edge value is not a reduction instruction or a leaf instruction. 7083 // (It may be a constant, function argument, or something else.) 7084 markExtraArg(Stack.back(), EdgeVal); 7085 continue; 7086 } 7087 RecurKind EdgeRdxKind = getRdxKind(EdgeInst); 7088 // Continue analysis if the next operand is a reduction operation or 7089 // (possibly) a leaf value. If the leaf value opcode is not set, 7090 // the first met operation != reduction operation is considered as the 7091 // leaf opcode. 7092 // Only handle trees in the current basic block. 7093 // Each tree node needs to have minimal number of users except for the 7094 // ultimate reduction. 7095 const bool IsRdxInst = EdgeRdxKind == RdxKind; 7096 if (EdgeInst != Phi && EdgeInst != B && 7097 hasSameParent(EdgeInst, B->getParent(), IsRdxInst) && 7098 hasRequiredNumberOfUses(isa<SelectInst>(B), EdgeInst) && 7099 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) { 7100 if (IsRdxInst) { 7101 // We need to be able to reassociate the reduction operations. 7102 if (!isVectorizable(EdgeRdxKind, EdgeInst)) { 7103 // I is an extra argument for TreeN (its parent operation). 7104 markExtraArg(Stack.back(), EdgeInst); 7105 continue; 7106 } 7107 } else if (!LeafOpcode) { 7108 LeafOpcode = EdgeInst->getOpcode(); 7109 } 7110 Stack.push_back( 7111 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst))); 7112 continue; 7113 } 7114 // I is an extra argument for TreeN (its parent operation). 7115 markExtraArg(Stack.back(), EdgeInst); 7116 } 7117 return true; 7118 } 7119 7120 /// Attempt to vectorize the tree found by matchAssociativeReduction. 7121 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 7122 // If there are a sufficient number of reduction values, reduce 7123 // to a nearby power-of-2. We can safely generate oversized 7124 // vectors and rely on the backend to split them to legal sizes. 7125 unsigned NumReducedVals = ReducedVals.size(); 7126 if (NumReducedVals < 4) 7127 return false; 7128 7129 // Intersect the fast-math-flags from all reduction operations. 7130 FastMathFlags RdxFMF; 7131 RdxFMF.set(); 7132 for (ReductionOpsType &RdxOp : ReductionOps) { 7133 for (Value *RdxVal : RdxOp) { 7134 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 7135 RdxFMF &= FPMO->getFastMathFlags(); 7136 } 7137 } 7138 7139 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 7140 Builder.setFastMathFlags(RdxFMF); 7141 7142 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 7143 // The same extra argument may be used several times, so log each attempt 7144 // to use it. 7145 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 7146 assert(Pair.first && "DebugLoc must be set."); 7147 ExternallyUsedValues[Pair.second].push_back(Pair.first); 7148 } 7149 7150 // The compare instruction of a min/max is the insertion point for new 7151 // instructions and may be replaced with a new compare instruction. 7152 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 7153 assert(isa<SelectInst>(RdxRootInst) && 7154 "Expected min/max reduction to have select root instruction"); 7155 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 7156 assert(isa<Instruction>(ScalarCond) && 7157 "Expected min/max reduction to have compare condition"); 7158 return cast<Instruction>(ScalarCond); 7159 }; 7160 7161 // The reduction root is used as the insertion point for new instructions, 7162 // so set it as externally used to prevent it from being deleted. 7163 ExternallyUsedValues[ReductionRoot]; 7164 SmallVector<Value *, 16> IgnoreList; 7165 for (ReductionOpsType &RdxOp : ReductionOps) 7166 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 7167 7168 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 7169 if (NumReducedVals > ReduxWidth) { 7170 // In the loop below, we are building a tree based on a window of 7171 // 'ReduxWidth' values. 7172 // If the operands of those values have common traits (compare predicate, 7173 // constant operand, etc), then we want to group those together to 7174 // minimize the cost of the reduction. 7175 7176 // TODO: This should be extended to count common operands for 7177 // compares and binops. 7178 7179 // Step 1: Count the number of times each compare predicate occurs. 7180 SmallDenseMap<unsigned, unsigned> PredCountMap; 7181 for (Value *RdxVal : ReducedVals) { 7182 CmpInst::Predicate Pred; 7183 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 7184 ++PredCountMap[Pred]; 7185 } 7186 // Step 2: Sort the values so the most common predicates come first. 7187 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 7188 CmpInst::Predicate PredA, PredB; 7189 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 7190 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 7191 return PredCountMap[PredA] > PredCountMap[PredB]; 7192 } 7193 return false; 7194 }); 7195 } 7196 7197 Value *VectorizedTree = nullptr; 7198 unsigned i = 0; 7199 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 7200 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 7201 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 7202 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 7203 if (Order) { 7204 assert(Order->size() == VL.size() && 7205 "Order size must be the same as number of vectorized " 7206 "instructions."); 7207 // TODO: reorder tree nodes without tree rebuilding. 7208 SmallVector<Value *, 4> ReorderedOps(VL.size()); 7209 llvm::transform(*Order, ReorderedOps.begin(), 7210 [VL](const unsigned Idx) { return VL[Idx]; }); 7211 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 7212 } 7213 if (V.isTreeTinyAndNotFullyVectorizable()) 7214 break; 7215 if (V.isLoadCombineReductionCandidate(RdxKind)) 7216 break; 7217 7218 V.computeMinimumValueSizes(); 7219 7220 // Estimate cost. 7221 InstructionCost TreeCost = V.getTreeCost(); 7222 InstructionCost ReductionCost = 7223 getReductionCost(TTI, ReducedVals[i], ReduxWidth); 7224 InstructionCost Cost = TreeCost + ReductionCost; 7225 if (!Cost.isValid()) { 7226 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 7227 return false; 7228 } 7229 if (Cost >= -SLPCostThreshold) { 7230 V.getORE()->emit([&]() { 7231 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 7232 cast<Instruction>(VL[0])) 7233 << "Vectorizing horizontal reduction is possible" 7234 << "but not beneficial with cost " << ore::NV("Cost", Cost) 7235 << " and threshold " 7236 << ore::NV("Threshold", -SLPCostThreshold); 7237 }); 7238 break; 7239 } 7240 7241 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 7242 << Cost << ". (HorRdx)\n"); 7243 V.getORE()->emit([&]() { 7244 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 7245 cast<Instruction>(VL[0])) 7246 << "Vectorized horizontal reduction with cost " 7247 << ore::NV("Cost", Cost) << " and with tree size " 7248 << ore::NV("TreeSize", V.getTreeSize()); 7249 }); 7250 7251 // Vectorize a tree. 7252 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 7253 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 7254 7255 // Emit a reduction. If the root is a select (min/max idiom), the insert 7256 // point is the compare condition of that select. 7257 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 7258 if (isa<SelectInst>(RdxRootInst)) 7259 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 7260 else 7261 Builder.SetInsertPoint(RdxRootInst); 7262 7263 Value *ReducedSubTree = 7264 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 7265 7266 if (!VectorizedTree) { 7267 // Initialize the final value in the reduction. 7268 VectorizedTree = ReducedSubTree; 7269 } else { 7270 // Update the final value in the reduction. 7271 Builder.SetCurrentDebugLocation(Loc); 7272 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 7273 ReducedSubTree, "op.rdx", ReductionOps); 7274 } 7275 i += ReduxWidth; 7276 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 7277 } 7278 7279 if (VectorizedTree) { 7280 // Finish the reduction. 7281 for (; i < NumReducedVals; ++i) { 7282 auto *I = cast<Instruction>(ReducedVals[i]); 7283 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 7284 VectorizedTree = 7285 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 7286 } 7287 for (auto &Pair : ExternallyUsedValues) { 7288 // Add each externally used value to the final reduction. 7289 for (auto *I : Pair.second) { 7290 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 7291 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 7292 Pair.first, "op.extra", I); 7293 } 7294 } 7295 7296 ReductionRoot->replaceAllUsesWith(VectorizedTree); 7297 7298 // Mark all scalar reduction ops for deletion, they are replaced by the 7299 // vector reductions. 7300 V.eraseInstructions(IgnoreList); 7301 } 7302 return VectorizedTree != nullptr; 7303 } 7304 7305 unsigned numReductionValues() const { return ReducedVals.size(); } 7306 7307 private: 7308 /// Calculate the cost of a reduction. 7309 InstructionCost getReductionCost(TargetTransformInfo *TTI, 7310 Value *FirstReducedVal, 7311 unsigned ReduxWidth) { 7312 Type *ScalarTy = FirstReducedVal->getType(); 7313 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 7314 InstructionCost VectorCost, ScalarCost; 7315 switch (RdxKind) { 7316 case RecurKind::Add: 7317 case RecurKind::Mul: 7318 case RecurKind::Or: 7319 case RecurKind::And: 7320 case RecurKind::Xor: 7321 case RecurKind::FAdd: 7322 case RecurKind::FMul: { 7323 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 7324 VectorCost = TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, 7325 /*IsPairwiseForm=*/false); 7326 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy); 7327 break; 7328 } 7329 case RecurKind::FMax: 7330 case RecurKind::FMin: { 7331 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 7332 VectorCost = 7333 TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 7334 /*pairwise=*/false, /*unsigned=*/false); 7335 ScalarCost = 7336 TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy) + 7337 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 7338 CmpInst::makeCmpResultType(ScalarTy)); 7339 break; 7340 } 7341 case RecurKind::SMax: 7342 case RecurKind::SMin: 7343 case RecurKind::UMax: 7344 case RecurKind::UMin: { 7345 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 7346 bool IsUnsigned = 7347 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 7348 VectorCost = 7349 TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 7350 /*IsPairwiseForm=*/false, IsUnsigned); 7351 ScalarCost = 7352 TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy) + 7353 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 7354 CmpInst::makeCmpResultType(ScalarTy)); 7355 break; 7356 } 7357 default: 7358 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 7359 } 7360 7361 // Scalar cost is repeated for N-1 elements. 7362 ScalarCost *= (ReduxWidth - 1); 7363 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 7364 << " for reduction that starts with " << *FirstReducedVal 7365 << " (It is a splitting reduction)\n"); 7366 return VectorCost - ScalarCost; 7367 } 7368 7369 /// Emit a horizontal reduction of the vectorized value. 7370 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 7371 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 7372 assert(VectorizedValue && "Need to have a vectorized tree node"); 7373 assert(isPowerOf2_32(ReduxWidth) && 7374 "We only handle power-of-two reductions for now"); 7375 7376 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind, 7377 ReductionOps.back()); 7378 } 7379 }; 7380 7381 } // end anonymous namespace 7382 7383 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 7384 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 7385 return cast<FixedVectorType>(IE->getType())->getNumElements(); 7386 7387 unsigned AggregateSize = 1; 7388 auto *IV = cast<InsertValueInst>(InsertInst); 7389 Type *CurrentType = IV->getType(); 7390 do { 7391 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 7392 for (auto *Elt : ST->elements()) 7393 if (Elt != ST->getElementType(0)) // check homogeneity 7394 return None; 7395 AggregateSize *= ST->getNumElements(); 7396 CurrentType = ST->getElementType(0); 7397 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 7398 AggregateSize *= AT->getNumElements(); 7399 CurrentType = AT->getElementType(); 7400 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 7401 AggregateSize *= VT->getNumElements(); 7402 return AggregateSize; 7403 } else if (CurrentType->isSingleValueType()) { 7404 return AggregateSize; 7405 } else { 7406 return None; 7407 } 7408 } while (true); 7409 } 7410 7411 static Optional<unsigned> getOperandIndex(Instruction *InsertInst, 7412 unsigned OperandOffset) { 7413 unsigned OperandIndex = OperandOffset; 7414 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 7415 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 7416 auto *VT = cast<FixedVectorType>(IE->getType()); 7417 OperandIndex *= VT->getNumElements(); 7418 OperandIndex += CI->getZExtValue(); 7419 return OperandIndex; 7420 } 7421 return None; 7422 } 7423 7424 auto *IV = cast<InsertValueInst>(InsertInst); 7425 Type *CurrentType = IV->getType(); 7426 for (unsigned int Index : IV->indices()) { 7427 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 7428 OperandIndex *= ST->getNumElements(); 7429 CurrentType = ST->getElementType(Index); 7430 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 7431 OperandIndex *= AT->getNumElements(); 7432 CurrentType = AT->getElementType(); 7433 } else { 7434 return None; 7435 } 7436 OperandIndex += Index; 7437 } 7438 return OperandIndex; 7439 } 7440 7441 static bool findBuildAggregate_rec(Instruction *LastInsertInst, 7442 TargetTransformInfo *TTI, 7443 SmallVectorImpl<Value *> &BuildVectorOpds, 7444 SmallVectorImpl<Value *> &InsertElts, 7445 unsigned OperandOffset) { 7446 do { 7447 Value *InsertedOperand = LastInsertInst->getOperand(1); 7448 Optional<unsigned> OperandIndex = 7449 getOperandIndex(LastInsertInst, OperandOffset); 7450 if (!OperandIndex) 7451 return false; 7452 if (isa<InsertElementInst>(InsertedOperand) || 7453 isa<InsertValueInst>(InsertedOperand)) { 7454 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 7455 BuildVectorOpds, InsertElts, *OperandIndex)) 7456 return false; 7457 } else { 7458 BuildVectorOpds[*OperandIndex] = InsertedOperand; 7459 InsertElts[*OperandIndex] = LastInsertInst; 7460 } 7461 if (isa<UndefValue>(LastInsertInst->getOperand(0))) 7462 return true; 7463 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 7464 } while (LastInsertInst != nullptr && 7465 (isa<InsertValueInst>(LastInsertInst) || 7466 isa<InsertElementInst>(LastInsertInst)) && 7467 LastInsertInst->hasOneUse()); 7468 return false; 7469 } 7470 7471 /// Recognize construction of vectors like 7472 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 7473 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 7474 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 7475 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 7476 /// starting from the last insertelement or insertvalue instruction. 7477 /// 7478 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 7479 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 7480 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 7481 /// 7482 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 7483 /// 7484 /// \return true if it matches. 7485 static bool findBuildAggregate(Instruction *LastInsertInst, 7486 TargetTransformInfo *TTI, 7487 SmallVectorImpl<Value *> &BuildVectorOpds, 7488 SmallVectorImpl<Value *> &InsertElts) { 7489 7490 assert((isa<InsertElementInst>(LastInsertInst) || 7491 isa<InsertValueInst>(LastInsertInst)) && 7492 "Expected insertelement or insertvalue instruction!"); 7493 7494 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 7495 "Expected empty result vectors!"); 7496 7497 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 7498 if (!AggregateSize) 7499 return false; 7500 BuildVectorOpds.resize(*AggregateSize); 7501 InsertElts.resize(*AggregateSize); 7502 7503 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 7504 0)) { 7505 llvm::erase_value(BuildVectorOpds, nullptr); 7506 llvm::erase_value(InsertElts, nullptr); 7507 if (BuildVectorOpds.size() >= 2) 7508 return true; 7509 } 7510 7511 return false; 7512 } 7513 7514 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 7515 return V->getType() < V2->getType(); 7516 } 7517 7518 /// Try and get a reduction value from a phi node. 7519 /// 7520 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 7521 /// if they come from either \p ParentBB or a containing loop latch. 7522 /// 7523 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 7524 /// if not possible. 7525 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 7526 BasicBlock *ParentBB, LoopInfo *LI) { 7527 // There are situations where the reduction value is not dominated by the 7528 // reduction phi. Vectorizing such cases has been reported to cause 7529 // miscompiles. See PR25787. 7530 auto DominatedReduxValue = [&](Value *R) { 7531 return isa<Instruction>(R) && 7532 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 7533 }; 7534 7535 Value *Rdx = nullptr; 7536 7537 // Return the incoming value if it comes from the same BB as the phi node. 7538 if (P->getIncomingBlock(0) == ParentBB) { 7539 Rdx = P->getIncomingValue(0); 7540 } else if (P->getIncomingBlock(1) == ParentBB) { 7541 Rdx = P->getIncomingValue(1); 7542 } 7543 7544 if (Rdx && DominatedReduxValue(Rdx)) 7545 return Rdx; 7546 7547 // Otherwise, check whether we have a loop latch to look at. 7548 Loop *BBL = LI->getLoopFor(ParentBB); 7549 if (!BBL) 7550 return nullptr; 7551 BasicBlock *BBLatch = BBL->getLoopLatch(); 7552 if (!BBLatch) 7553 return nullptr; 7554 7555 // There is a loop latch, return the incoming value if it comes from 7556 // that. This reduction pattern occasionally turns up. 7557 if (P->getIncomingBlock(0) == BBLatch) { 7558 Rdx = P->getIncomingValue(0); 7559 } else if (P->getIncomingBlock(1) == BBLatch) { 7560 Rdx = P->getIncomingValue(1); 7561 } 7562 7563 if (Rdx && DominatedReduxValue(Rdx)) 7564 return Rdx; 7565 7566 return nullptr; 7567 } 7568 7569 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 7570 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 7571 return true; 7572 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 7573 return true; 7574 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 7575 return true; 7576 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 7577 return true; 7578 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 7579 return true; 7580 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 7581 return true; 7582 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 7583 return true; 7584 return false; 7585 } 7586 7587 /// Attempt to reduce a horizontal reduction. 7588 /// If it is legal to match a horizontal reduction feeding the phi node \a P 7589 /// with reduction operators \a Root (or one of its operands) in a basic block 7590 /// \a BB, then check if it can be done. If horizontal reduction is not found 7591 /// and root instruction is a binary operation, vectorization of the operands is 7592 /// attempted. 7593 /// \returns true if a horizontal reduction was matched and reduced or operands 7594 /// of one of the binary instruction were vectorized. 7595 /// \returns false if a horizontal reduction was not matched (or not possible) 7596 /// or no vectorization of any binary operation feeding \a Root instruction was 7597 /// performed. 7598 static bool tryToVectorizeHorReductionOrInstOperands( 7599 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 7600 TargetTransformInfo *TTI, 7601 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 7602 if (!ShouldVectorizeHor) 7603 return false; 7604 7605 if (!Root) 7606 return false; 7607 7608 if (Root->getParent() != BB || isa<PHINode>(Root)) 7609 return false; 7610 // Start analysis starting from Root instruction. If horizontal reduction is 7611 // found, try to vectorize it. If it is not a horizontal reduction or 7612 // vectorization is not possible or not effective, and currently analyzed 7613 // instruction is a binary operation, try to vectorize the operands, using 7614 // pre-order DFS traversal order. If the operands were not vectorized, repeat 7615 // the same procedure considering each operand as a possible root of the 7616 // horizontal reduction. 7617 // Interrupt the process if the Root instruction itself was vectorized or all 7618 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 7619 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 7620 // CmpInsts so we can skip extra attempts in 7621 // tryToVectorizeHorReductionOrInstOperands and save compile time. 7622 SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0}); 7623 SmallPtrSet<Value *, 8> VisitedInstrs; 7624 bool Res = false; 7625 while (!Stack.empty()) { 7626 Instruction *Inst; 7627 unsigned Level; 7628 std::tie(Inst, Level) = Stack.pop_back_val(); 7629 Value *B0, *B1; 7630 bool IsBinop = matchRdxBop(Inst, B0, B1); 7631 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 7632 if (IsBinop || IsSelect) { 7633 HorizontalReduction HorRdx; 7634 if (HorRdx.matchAssociativeReduction(P, Inst)) { 7635 if (HorRdx.tryToReduce(R, TTI)) { 7636 Res = true; 7637 // Set P to nullptr to avoid re-analysis of phi node in 7638 // matchAssociativeReduction function unless this is the root node. 7639 P = nullptr; 7640 continue; 7641 } 7642 } 7643 if (P && IsBinop) { 7644 Inst = dyn_cast<Instruction>(B0); 7645 if (Inst == P) 7646 Inst = dyn_cast<Instruction>(B1); 7647 if (!Inst) { 7648 // Set P to nullptr to avoid re-analysis of phi node in 7649 // matchAssociativeReduction function unless this is the root node. 7650 P = nullptr; 7651 continue; 7652 } 7653 } 7654 } 7655 // Set P to nullptr to avoid re-analysis of phi node in 7656 // matchAssociativeReduction function unless this is the root node. 7657 P = nullptr; 7658 // Do not try to vectorize CmpInst operands, this is done separately. 7659 if (!isa<CmpInst>(Inst) && Vectorize(Inst, R)) { 7660 Res = true; 7661 continue; 7662 } 7663 7664 // Try to vectorize operands. 7665 // Continue analysis for the instruction from the same basic block only to 7666 // save compile time. 7667 if (++Level < RecursionMaxDepth) 7668 for (auto *Op : Inst->operand_values()) 7669 if (VisitedInstrs.insert(Op).second) 7670 if (auto *I = dyn_cast<Instruction>(Op)) 7671 // Do not try to vectorize CmpInst operands, this is done 7672 // separately. 7673 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 7674 I->getParent() == BB) 7675 Stack.emplace_back(I, Level); 7676 } 7677 return Res; 7678 } 7679 7680 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 7681 BasicBlock *BB, BoUpSLP &R, 7682 TargetTransformInfo *TTI) { 7683 auto *I = dyn_cast_or_null<Instruction>(V); 7684 if (!I) 7685 return false; 7686 7687 if (!isa<BinaryOperator>(I)) 7688 P = nullptr; 7689 // Try to match and vectorize a horizontal reduction. 7690 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 7691 return tryToVectorize(I, R); 7692 }; 7693 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 7694 ExtraVectorization); 7695 } 7696 7697 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 7698 BasicBlock *BB, BoUpSLP &R) { 7699 const DataLayout &DL = BB->getModule()->getDataLayout(); 7700 if (!R.canMapToVector(IVI->getType(), DL)) 7701 return false; 7702 7703 SmallVector<Value *, 16> BuildVectorOpds; 7704 SmallVector<Value *, 16> BuildVectorInsts; 7705 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 7706 return false; 7707 7708 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 7709 // Aggregate value is unlikely to be processed in vector register, we need to 7710 // extract scalars into scalar registers, so NeedExtraction is set true. 7711 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false, 7712 BuildVectorInsts); 7713 } 7714 7715 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 7716 BasicBlock *BB, BoUpSLP &R) { 7717 SmallVector<Value *, 16> BuildVectorInsts; 7718 SmallVector<Value *, 16> BuildVectorOpds; 7719 SmallVector<int> Mask; 7720 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 7721 (llvm::all_of(BuildVectorOpds, 7722 [](Value *V) { return isa<ExtractElementInst>(V); }) && 7723 isShuffle(BuildVectorOpds, Mask))) 7724 return false; 7725 7726 // Vectorize starting with the build vector operands ignoring the BuildVector 7727 // instructions for the purpose of scheduling and user extraction. 7728 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false, 7729 BuildVectorInsts); 7730 } 7731 7732 bool SLPVectorizerPass::vectorizeSimpleInstructions( 7733 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 7734 bool AtTerminator) { 7735 bool OpsChanged = false; 7736 SmallVector<Instruction *, 4> PostponedCmps; 7737 for (auto *I : reverse(Instructions)) { 7738 if (R.isDeleted(I)) 7739 continue; 7740 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 7741 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 7742 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 7743 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 7744 else if (isa<CmpInst>(I)) 7745 PostponedCmps.push_back(I); 7746 } 7747 if (AtTerminator) { 7748 // Try to find reductions first. 7749 for (Instruction *I : PostponedCmps) { 7750 if (R.isDeleted(I)) 7751 continue; 7752 for (Value *Op : I->operands()) 7753 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 7754 } 7755 // Try to vectorize operands as vector bundles. 7756 for (Instruction *I : PostponedCmps) { 7757 if (R.isDeleted(I)) 7758 continue; 7759 OpsChanged |= tryToVectorize(I, R); 7760 } 7761 Instructions.clear(); 7762 } else { 7763 // Insert in reverse order since the PostponedCmps vector was filled in 7764 // reverse order. 7765 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 7766 } 7767 return OpsChanged; 7768 } 7769 7770 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 7771 bool Changed = false; 7772 SmallVector<Value *, 4> Incoming; 7773 SmallPtrSet<Value *, 16> VisitedInstrs; 7774 7775 bool HaveVectorizedPhiNodes = true; 7776 while (HaveVectorizedPhiNodes) { 7777 HaveVectorizedPhiNodes = false; 7778 7779 // Collect the incoming values from the PHIs. 7780 Incoming.clear(); 7781 for (Instruction &I : *BB) { 7782 PHINode *P = dyn_cast<PHINode>(&I); 7783 if (!P) 7784 break; 7785 7786 if (!VisitedInstrs.count(P) && !R.isDeleted(P)) 7787 Incoming.push_back(P); 7788 } 7789 7790 // Sort by type. 7791 llvm::stable_sort(Incoming, PhiTypeSorterFunc); 7792 7793 // Try to vectorize elements base on their type. 7794 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 7795 E = Incoming.end(); 7796 IncIt != E;) { 7797 7798 // Look for the next elements with the same type. 7799 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 7800 while (SameTypeIt != E && 7801 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 7802 VisitedInstrs.insert(*SameTypeIt); 7803 ++SameTypeIt; 7804 } 7805 7806 // Try to vectorize them. 7807 unsigned NumElts = (SameTypeIt - IncIt); 7808 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 7809 << NumElts << ")\n"); 7810 // The order in which the phi nodes appear in the program does not matter. 7811 // So allow tryToVectorizeList to reorder them if it is beneficial. This 7812 // is done when there are exactly two elements since tryToVectorizeList 7813 // asserts that there are only two values when AllowReorder is true. 7814 bool AllowReorder = NumElts == 2; 7815 if (NumElts > 1 && 7816 tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, AllowReorder)) { 7817 // Success start over because instructions might have been changed. 7818 HaveVectorizedPhiNodes = true; 7819 Changed = true; 7820 break; 7821 } 7822 7823 // Start over at the next instruction of a different type (or the end). 7824 IncIt = SameTypeIt; 7825 } 7826 } 7827 7828 VisitedInstrs.clear(); 7829 7830 SmallVector<Instruction *, 8> PostProcessInstructions; 7831 SmallDenseSet<Instruction *, 4> KeyNodes; 7832 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 7833 // Skip instructions with scalable type. The num of elements is unknown at 7834 // compile-time for scalable type. 7835 if (isa<ScalableVectorType>(it->getType())) 7836 continue; 7837 7838 // Skip instructions marked for the deletion. 7839 if (R.isDeleted(&*it)) 7840 continue; 7841 // We may go through BB multiple times so skip the one we have checked. 7842 if (!VisitedInstrs.insert(&*it).second) { 7843 if (it->use_empty() && KeyNodes.contains(&*it) && 7844 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 7845 it->isTerminator())) { 7846 // We would like to start over since some instructions are deleted 7847 // and the iterator may become invalid value. 7848 Changed = true; 7849 it = BB->begin(); 7850 e = BB->end(); 7851 } 7852 continue; 7853 } 7854 7855 if (isa<DbgInfoIntrinsic>(it)) 7856 continue; 7857 7858 // Try to vectorize reductions that use PHINodes. 7859 if (PHINode *P = dyn_cast<PHINode>(it)) { 7860 // Check that the PHI is a reduction PHI. 7861 if (P->getNumIncomingValues() == 2) { 7862 // Try to match and vectorize a horizontal reduction. 7863 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 7864 TTI)) { 7865 Changed = true; 7866 it = BB->begin(); 7867 e = BB->end(); 7868 continue; 7869 } 7870 } 7871 // Try to vectorize the incoming values of the PHI, to catch reductions 7872 // that feed into PHIs. 7873 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 7874 // Skip if the incoming block is the current BB for now. Also, bypass 7875 // unreachable IR for efficiency and to avoid crashing. 7876 // TODO: Collect the skipped incoming values and try to vectorize them 7877 // after processing BB. 7878 if (BB == P->getIncomingBlock(I) || 7879 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 7880 continue; 7881 7882 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 7883 P->getIncomingBlock(I), R, TTI); 7884 } 7885 continue; 7886 } 7887 7888 // Ran into an instruction without users, like terminator, or function call 7889 // with ignored return value, store. Ignore unused instructions (basing on 7890 // instruction type, except for CallInst and InvokeInst). 7891 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 7892 isa<InvokeInst>(it))) { 7893 KeyNodes.insert(&*it); 7894 bool OpsChanged = false; 7895 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 7896 for (auto *V : it->operand_values()) { 7897 // Try to match and vectorize a horizontal reduction. 7898 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 7899 } 7900 } 7901 // Start vectorization of post-process list of instructions from the 7902 // top-tree instructions to try to vectorize as many instructions as 7903 // possible. 7904 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 7905 it->isTerminator()); 7906 if (OpsChanged) { 7907 // We would like to start over since some instructions are deleted 7908 // and the iterator may become invalid value. 7909 Changed = true; 7910 it = BB->begin(); 7911 e = BB->end(); 7912 continue; 7913 } 7914 } 7915 7916 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 7917 isa<InsertValueInst>(it)) 7918 PostProcessInstructions.push_back(&*it); 7919 } 7920 7921 return Changed; 7922 } 7923 7924 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 7925 auto Changed = false; 7926 for (auto &Entry : GEPs) { 7927 // If the getelementptr list has fewer than two elements, there's nothing 7928 // to do. 7929 if (Entry.second.size() < 2) 7930 continue; 7931 7932 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 7933 << Entry.second.size() << ".\n"); 7934 7935 // Process the GEP list in chunks suitable for the target's supported 7936 // vector size. If a vector register can't hold 1 element, we are done. We 7937 // are trying to vectorize the index computations, so the maximum number of 7938 // elements is based on the size of the index expression, rather than the 7939 // size of the GEP itself (the target's pointer size). 7940 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 7941 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 7942 if (MaxVecRegSize < EltSize) 7943 continue; 7944 7945 unsigned MaxElts = MaxVecRegSize / EltSize; 7946 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 7947 auto Len = std::min<unsigned>(BE - BI, MaxElts); 7948 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 7949 7950 // Initialize a set a candidate getelementptrs. Note that we use a 7951 // SetVector here to preserve program order. If the index computations 7952 // are vectorizable and begin with loads, we want to minimize the chance 7953 // of having to reorder them later. 7954 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 7955 7956 // Some of the candidates may have already been vectorized after we 7957 // initially collected them. If so, they are marked as deleted, so remove 7958 // them from the set of candidates. 7959 Candidates.remove_if( 7960 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 7961 7962 // Remove from the set of candidates all pairs of getelementptrs with 7963 // constant differences. Such getelementptrs are likely not good 7964 // candidates for vectorization in a bottom-up phase since one can be 7965 // computed from the other. We also ensure all candidate getelementptr 7966 // indices are unique. 7967 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 7968 auto *GEPI = GEPList[I]; 7969 if (!Candidates.count(GEPI)) 7970 continue; 7971 auto *SCEVI = SE->getSCEV(GEPList[I]); 7972 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 7973 auto *GEPJ = GEPList[J]; 7974 auto *SCEVJ = SE->getSCEV(GEPList[J]); 7975 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 7976 Candidates.remove(GEPI); 7977 Candidates.remove(GEPJ); 7978 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 7979 Candidates.remove(GEPJ); 7980 } 7981 } 7982 } 7983 7984 // We break out of the above computation as soon as we know there are 7985 // fewer than two candidates remaining. 7986 if (Candidates.size() < 2) 7987 continue; 7988 7989 // Add the single, non-constant index of each candidate to the bundle. We 7990 // ensured the indices met these constraints when we originally collected 7991 // the getelementptrs. 7992 SmallVector<Value *, 16> Bundle(Candidates.size()); 7993 auto BundleIndex = 0u; 7994 for (auto *V : Candidates) { 7995 auto *GEP = cast<GetElementPtrInst>(V); 7996 auto *GEPIdx = GEP->idx_begin()->get(); 7997 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 7998 Bundle[BundleIndex++] = GEPIdx; 7999 } 8000 8001 // Try and vectorize the indices. We are currently only interested in 8002 // gather-like cases of the form: 8003 // 8004 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 8005 // 8006 // where the loads of "a", the loads of "b", and the subtractions can be 8007 // performed in parallel. It's likely that detecting this pattern in a 8008 // bottom-up phase will be simpler and less costly than building a 8009 // full-blown top-down phase beginning at the consecutive loads. 8010 Changed |= tryToVectorizeList(Bundle, R); 8011 } 8012 } 8013 return Changed; 8014 } 8015 8016 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 8017 bool Changed = false; 8018 // Attempt to sort and vectorize each of the store-groups. 8019 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 8020 ++it) { 8021 if (it->second.size() < 2) 8022 continue; 8023 8024 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 8025 << it->second.size() << ".\n"); 8026 8027 Changed |= vectorizeStores(it->second, R); 8028 } 8029 return Changed; 8030 } 8031 8032 char SLPVectorizer::ID = 0; 8033 8034 static const char lv_name[] = "SLP Vectorizer"; 8035 8036 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 8037 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 8038 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 8039 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 8040 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 8041 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 8042 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 8043 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 8044 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 8045 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 8046 8047 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 8048