1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive
10 // stores that can be put together into vector-stores. Next, it attempts to
11 // construct vectorizable tree using the use-def chains. If a profitable tree
12 // was found, the SLP vectorizer performs vectorization on the tree.
13 //
14 // The pass is inspired by the work described in the paper:
15 //  "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/DenseSet.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/PostOrderIterator.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SetVector.h"
26 #include "llvm/ADT/SmallBitVector.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/ADT/SmallString.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/ADT/iterator.h"
32 #include "llvm/ADT/iterator_range.h"
33 #include "llvm/Analysis/AliasAnalysis.h"
34 #include "llvm/Analysis/AssumptionCache.h"
35 #include "llvm/Analysis/CodeMetrics.h"
36 #include "llvm/Analysis/DemandedBits.h"
37 #include "llvm/Analysis/GlobalsModRef.h"
38 #include "llvm/Analysis/IVDescriptors.h"
39 #include "llvm/Analysis/LoopAccessAnalysis.h"
40 #include "llvm/Analysis/LoopInfo.h"
41 #include "llvm/Analysis/MemoryLocation.h"
42 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
43 #include "llvm/Analysis/ScalarEvolution.h"
44 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
45 #include "llvm/Analysis/TargetLibraryInfo.h"
46 #include "llvm/Analysis/TargetTransformInfo.h"
47 #include "llvm/Analysis/ValueTracking.h"
48 #include "llvm/Analysis/VectorUtils.h"
49 #include "llvm/IR/Attributes.h"
50 #include "llvm/IR/BasicBlock.h"
51 #include "llvm/IR/Constant.h"
52 #include "llvm/IR/Constants.h"
53 #include "llvm/IR/DataLayout.h"
54 #include "llvm/IR/DebugLoc.h"
55 #include "llvm/IR/DerivedTypes.h"
56 #include "llvm/IR/Dominators.h"
57 #include "llvm/IR/Function.h"
58 #include "llvm/IR/IRBuilder.h"
59 #include "llvm/IR/InstrTypes.h"
60 #include "llvm/IR/Instruction.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/IR/IntrinsicInst.h"
63 #include "llvm/IR/Intrinsics.h"
64 #include "llvm/IR/Module.h"
65 #include "llvm/IR/NoFolder.h"
66 #include "llvm/IR/Operator.h"
67 #include "llvm/IR/PatternMatch.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/Use.h"
70 #include "llvm/IR/User.h"
71 #include "llvm/IR/Value.h"
72 #include "llvm/IR/ValueHandle.h"
73 #include "llvm/IR/Verifier.h"
74 #include "llvm/InitializePasses.h"
75 #include "llvm/Pass.h"
76 #include "llvm/Support/Casting.h"
77 #include "llvm/Support/CommandLine.h"
78 #include "llvm/Support/Compiler.h"
79 #include "llvm/Support/DOTGraphTraits.h"
80 #include "llvm/Support/Debug.h"
81 #include "llvm/Support/ErrorHandling.h"
82 #include "llvm/Support/GraphWriter.h"
83 #include "llvm/Support/InstructionCost.h"
84 #include "llvm/Support/KnownBits.h"
85 #include "llvm/Support/MathExtras.h"
86 #include "llvm/Support/raw_ostream.h"
87 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
88 #include "llvm/Transforms/Utils/LoopUtils.h"
89 #include "llvm/Transforms/Vectorize.h"
90 #include <algorithm>
91 #include <cassert>
92 #include <cstdint>
93 #include <iterator>
94 #include <memory>
95 #include <set>
96 #include <string>
97 #include <tuple>
98 #include <utility>
99 #include <vector>
100 
101 using namespace llvm;
102 using namespace llvm::PatternMatch;
103 using namespace slpvectorizer;
104 
105 #define SV_NAME "slp-vectorizer"
106 #define DEBUG_TYPE "SLP"
107 
108 STATISTIC(NumVectorInstructions, "Number of vector instructions generated");
109 
110 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden,
111                                   cl::desc("Run the SLP vectorization passes"));
112 
113 static cl::opt<int>
114     SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
115                      cl::desc("Only vectorize if you gain more than this "
116                               "number "));
117 
118 static cl::opt<bool>
119 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
120                    cl::desc("Attempt to vectorize horizontal reductions"));
121 
122 static cl::opt<bool> ShouldStartVectorizeHorAtStore(
123     "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
124     cl::desc(
125         "Attempt to vectorize horizontal reductions feeding into a store"));
126 
127 static cl::opt<int>
128 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
129     cl::desc("Attempt to vectorize for this register size in bits"));
130 
131 static cl::opt<unsigned>
132 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden,
133     cl::desc("Maximum SLP vectorization factor (0=unlimited)"));
134 
135 static cl::opt<int>
136 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden,
137     cl::desc("Maximum depth of the lookup for consecutive stores."));
138 
139 /// Limits the size of scheduling regions in a block.
140 /// It avoid long compile times for _very_ large blocks where vector
141 /// instructions are spread over a wide range.
142 /// This limit is way higher than needed by real-world functions.
143 static cl::opt<int>
144 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
145     cl::desc("Limit the size of the SLP scheduling region per block"));
146 
147 static cl::opt<int> MinVectorRegSizeOption(
148     "slp-min-reg-size", cl::init(128), cl::Hidden,
149     cl::desc("Attempt to vectorize for this register size in bits"));
150 
151 static cl::opt<unsigned> RecursionMaxDepth(
152     "slp-recursion-max-depth", cl::init(12), cl::Hidden,
153     cl::desc("Limit the recursion depth when building a vectorizable tree"));
154 
155 static cl::opt<unsigned> MinTreeSize(
156     "slp-min-tree-size", cl::init(3), cl::Hidden,
157     cl::desc("Only vectorize small trees if they are fully vectorizable"));
158 
159 // The maximum depth that the look-ahead score heuristic will explore.
160 // The higher this value, the higher the compilation time overhead.
161 static cl::opt<int> LookAheadMaxDepth(
162     "slp-max-look-ahead-depth", cl::init(2), cl::Hidden,
163     cl::desc("The maximum look-ahead depth for operand reordering scores"));
164 
165 // The Look-ahead heuristic goes through the users of the bundle to calculate
166 // the users cost in getExternalUsesCost(). To avoid compilation time increase
167 // we limit the number of users visited to this value.
168 static cl::opt<unsigned> LookAheadUsersBudget(
169     "slp-look-ahead-users-budget", cl::init(2), cl::Hidden,
170     cl::desc("The maximum number of users to visit while visiting the "
171              "predecessors. This prevents compilation time increase."));
172 
173 static cl::opt<bool>
174     ViewSLPTree("view-slp-tree", cl::Hidden,
175                 cl::desc("Display the SLP trees with Graphviz"));
176 
177 // Limit the number of alias checks. The limit is chosen so that
178 // it has no negative effect on the llvm benchmarks.
179 static const unsigned AliasedCheckLimit = 10;
180 
181 // Another limit for the alias checks: The maximum distance between load/store
182 // instructions where alias checks are done.
183 // This limit is useful for very large basic blocks.
184 static const unsigned MaxMemDepDistance = 160;
185 
186 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
187 /// regions to be handled.
188 static const int MinScheduleRegionSize = 16;
189 
190 /// Predicate for the element types that the SLP vectorizer supports.
191 ///
192 /// The most important thing to filter here are types which are invalid in LLVM
193 /// vectors. We also filter target specific types which have absolutely no
194 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
195 /// avoids spending time checking the cost model and realizing that they will
196 /// be inevitably scalarized.
197 static bool isValidElementType(Type *Ty) {
198   return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
199          !Ty->isPPC_FP128Ty();
200 }
201 
202 /// \returns true if all of the instructions in \p VL are in the same block or
203 /// false otherwise.
204 static bool allSameBlock(ArrayRef<Value *> VL) {
205   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
206   if (!I0)
207     return false;
208   BasicBlock *BB = I0->getParent();
209   for (int I = 1, E = VL.size(); I < E; I++) {
210     auto *II = dyn_cast<Instruction>(VL[I]);
211     if (!II)
212       return false;
213 
214     if (BB != II->getParent())
215       return false;
216   }
217   return true;
218 }
219 
220 /// \returns True if all of the values in \p VL are constants (but not
221 /// globals/constant expressions).
222 static bool allConstant(ArrayRef<Value *> VL) {
223   // Constant expressions and globals can't be vectorized like normal integer/FP
224   // constants.
225   for (Value *i : VL)
226     if (!isa<Constant>(i) || isa<ConstantExpr>(i) || isa<GlobalValue>(i))
227       return false;
228   return true;
229 }
230 
231 /// \returns True if all of the values in \p VL are identical.
232 static bool isSplat(ArrayRef<Value *> VL) {
233   for (unsigned i = 1, e = VL.size(); i < e; ++i)
234     if (VL[i] != VL[0])
235       return false;
236   return true;
237 }
238 
239 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator.
240 static bool isCommutative(Instruction *I) {
241   if (auto *Cmp = dyn_cast<CmpInst>(I))
242     return Cmp->isCommutative();
243   if (auto *BO = dyn_cast<BinaryOperator>(I))
244     return BO->isCommutative();
245   // TODO: This should check for generic Instruction::isCommutative(), but
246   //       we need to confirm that the caller code correctly handles Intrinsics
247   //       for example (does not have 2 operands).
248   return false;
249 }
250 
251 /// Checks if the vector of instructions can be represented as a shuffle, like:
252 /// %x0 = extractelement <4 x i8> %x, i32 0
253 /// %x3 = extractelement <4 x i8> %x, i32 3
254 /// %y1 = extractelement <4 x i8> %y, i32 1
255 /// %y2 = extractelement <4 x i8> %y, i32 2
256 /// %x0x0 = mul i8 %x0, %x0
257 /// %x3x3 = mul i8 %x3, %x3
258 /// %y1y1 = mul i8 %y1, %y1
259 /// %y2y2 = mul i8 %y2, %y2
260 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0
261 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1
262 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2
263 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3
264 /// ret <4 x i8> %ins4
265 /// can be transformed into:
266 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5,
267 ///                                                         i32 6>
268 /// %2 = mul <4 x i8> %1, %1
269 /// ret <4 x i8> %2
270 /// We convert this initially to something like:
271 /// %x0 = extractelement <4 x i8> %x, i32 0
272 /// %x3 = extractelement <4 x i8> %x, i32 3
273 /// %y1 = extractelement <4 x i8> %y, i32 1
274 /// %y2 = extractelement <4 x i8> %y, i32 2
275 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0
276 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1
277 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2
278 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3
279 /// %5 = mul <4 x i8> %4, %4
280 /// %6 = extractelement <4 x i8> %5, i32 0
281 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0
282 /// %7 = extractelement <4 x i8> %5, i32 1
283 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1
284 /// %8 = extractelement <4 x i8> %5, i32 2
285 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2
286 /// %9 = extractelement <4 x i8> %5, i32 3
287 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3
288 /// ret <4 x i8> %ins4
289 /// InstCombiner transforms this into a shuffle and vector mul
290 /// Mask will return the Shuffle Mask equivalent to the extracted elements.
291 /// TODO: Can we split off and reuse the shuffle mask detection from
292 /// TargetTransformInfo::getInstructionThroughput?
293 static Optional<TargetTransformInfo::ShuffleKind>
294 isShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) {
295   auto *EI0 = cast<ExtractElementInst>(VL[0]);
296   unsigned Size =
297       cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements();
298   Value *Vec1 = nullptr;
299   Value *Vec2 = nullptr;
300   enum ShuffleMode { Unknown, Select, Permute };
301   ShuffleMode CommonShuffleMode = Unknown;
302   for (unsigned I = 0, E = VL.size(); I < E; ++I) {
303     auto *EI = cast<ExtractElementInst>(VL[I]);
304     auto *Vec = EI->getVectorOperand();
305     // All vector operands must have the same number of vector elements.
306     if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size)
307       return None;
308     auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand());
309     if (!Idx)
310       return None;
311     // Undefined behavior if Idx is negative or >= Size.
312     if (Idx->getValue().uge(Size)) {
313       Mask.push_back(UndefMaskElem);
314       continue;
315     }
316     unsigned IntIdx = Idx->getValue().getZExtValue();
317     Mask.push_back(IntIdx);
318     // We can extractelement from undef or poison vector.
319     if (isa<UndefValue>(Vec))
320       continue;
321     // For correct shuffling we have to have at most 2 different vector operands
322     // in all extractelement instructions.
323     if (!Vec1 || Vec1 == Vec)
324       Vec1 = Vec;
325     else if (!Vec2 || Vec2 == Vec)
326       Vec2 = Vec;
327     else
328       return None;
329     if (CommonShuffleMode == Permute)
330       continue;
331     // If the extract index is not the same as the operation number, it is a
332     // permutation.
333     if (IntIdx != I) {
334       CommonShuffleMode = Permute;
335       continue;
336     }
337     CommonShuffleMode = Select;
338   }
339   // If we're not crossing lanes in different vectors, consider it as blending.
340   if (CommonShuffleMode == Select && Vec2)
341     return TargetTransformInfo::SK_Select;
342   // If Vec2 was never used, we have a permutation of a single vector, otherwise
343   // we have permutation of 2 vectors.
344   return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc
345               : TargetTransformInfo::SK_PermuteSingleSrc;
346 }
347 
348 namespace {
349 
350 /// Main data required for vectorization of instructions.
351 struct InstructionsState {
352   /// The very first instruction in the list with the main opcode.
353   Value *OpValue = nullptr;
354 
355   /// The main/alternate instruction.
356   Instruction *MainOp = nullptr;
357   Instruction *AltOp = nullptr;
358 
359   /// The main/alternate opcodes for the list of instructions.
360   unsigned getOpcode() const {
361     return MainOp ? MainOp->getOpcode() : 0;
362   }
363 
364   unsigned getAltOpcode() const {
365     return AltOp ? AltOp->getOpcode() : 0;
366   }
367 
368   /// Some of the instructions in the list have alternate opcodes.
369   bool isAltShuffle() const { return getOpcode() != getAltOpcode(); }
370 
371   bool isOpcodeOrAlt(Instruction *I) const {
372     unsigned CheckedOpcode = I->getOpcode();
373     return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode;
374   }
375 
376   InstructionsState() = delete;
377   InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp)
378       : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {}
379 };
380 
381 } // end anonymous namespace
382 
383 /// Chooses the correct key for scheduling data. If \p Op has the same (or
384 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p
385 /// OpValue.
386 static Value *isOneOf(const InstructionsState &S, Value *Op) {
387   auto *I = dyn_cast<Instruction>(Op);
388   if (I && S.isOpcodeOrAlt(I))
389     return Op;
390   return S.OpValue;
391 }
392 
393 /// \returns true if \p Opcode is allowed as part of of the main/alternate
394 /// instruction for SLP vectorization.
395 ///
396 /// Example of unsupported opcode is SDIV that can potentially cause UB if the
397 /// "shuffled out" lane would result in division by zero.
398 static bool isValidForAlternation(unsigned Opcode) {
399   if (Instruction::isIntDivRem(Opcode))
400     return false;
401 
402   return true;
403 }
404 
405 /// \returns analysis of the Instructions in \p VL described in
406 /// InstructionsState, the Opcode that we suppose the whole list
407 /// could be vectorized even if its structure is diverse.
408 static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
409                                        unsigned BaseIndex = 0) {
410   // Make sure these are all Instructions.
411   if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); }))
412     return InstructionsState(VL[BaseIndex], nullptr, nullptr);
413 
414   bool IsCastOp = isa<CastInst>(VL[BaseIndex]);
415   bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]);
416   unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode();
417   unsigned AltOpcode = Opcode;
418   unsigned AltIndex = BaseIndex;
419 
420   // Check for one alternate opcode from another BinaryOperator.
421   // TODO - generalize to support all operators (types, calls etc.).
422   for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) {
423     unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode();
424     if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) {
425       if (InstOpcode == Opcode || InstOpcode == AltOpcode)
426         continue;
427       if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) &&
428           isValidForAlternation(Opcode)) {
429         AltOpcode = InstOpcode;
430         AltIndex = Cnt;
431         continue;
432       }
433     } else if (IsCastOp && isa<CastInst>(VL[Cnt])) {
434       Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType();
435       Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType();
436       if (Ty0 == Ty1) {
437         if (InstOpcode == Opcode || InstOpcode == AltOpcode)
438           continue;
439         if (Opcode == AltOpcode) {
440           assert(isValidForAlternation(Opcode) &&
441                  isValidForAlternation(InstOpcode) &&
442                  "Cast isn't safe for alternation, logic needs to be updated!");
443           AltOpcode = InstOpcode;
444           AltIndex = Cnt;
445           continue;
446         }
447       }
448     } else if (InstOpcode == Opcode || InstOpcode == AltOpcode)
449       continue;
450     return InstructionsState(VL[BaseIndex], nullptr, nullptr);
451   }
452 
453   return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]),
454                            cast<Instruction>(VL[AltIndex]));
455 }
456 
457 /// \returns true if all of the values in \p VL have the same type or false
458 /// otherwise.
459 static bool allSameType(ArrayRef<Value *> VL) {
460   Type *Ty = VL[0]->getType();
461   for (int i = 1, e = VL.size(); i < e; i++)
462     if (VL[i]->getType() != Ty)
463       return false;
464 
465   return true;
466 }
467 
468 /// \returns True if Extract{Value,Element} instruction extracts element Idx.
469 static Optional<unsigned> getExtractIndex(Instruction *E) {
470   unsigned Opcode = E->getOpcode();
471   assert((Opcode == Instruction::ExtractElement ||
472           Opcode == Instruction::ExtractValue) &&
473          "Expected extractelement or extractvalue instruction.");
474   if (Opcode == Instruction::ExtractElement) {
475     auto *CI = dyn_cast<ConstantInt>(E->getOperand(1));
476     if (!CI)
477       return None;
478     return CI->getZExtValue();
479   }
480   ExtractValueInst *EI = cast<ExtractValueInst>(E);
481   if (EI->getNumIndices() != 1)
482     return None;
483   return *EI->idx_begin();
484 }
485 
486 /// \returns True if in-tree use also needs extract. This refers to
487 /// possible scalar operand in vectorized instruction.
488 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
489                                     TargetLibraryInfo *TLI) {
490   unsigned Opcode = UserInst->getOpcode();
491   switch (Opcode) {
492   case Instruction::Load: {
493     LoadInst *LI = cast<LoadInst>(UserInst);
494     return (LI->getPointerOperand() == Scalar);
495   }
496   case Instruction::Store: {
497     StoreInst *SI = cast<StoreInst>(UserInst);
498     return (SI->getPointerOperand() == Scalar);
499   }
500   case Instruction::Call: {
501     CallInst *CI = cast<CallInst>(UserInst);
502     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
503     for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
504       if (hasVectorInstrinsicScalarOpd(ID, i))
505         return (CI->getArgOperand(i) == Scalar);
506     }
507     LLVM_FALLTHROUGH;
508   }
509   default:
510     return false;
511   }
512 }
513 
514 /// \returns the AA location that is being access by the instruction.
515 static MemoryLocation getLocation(Instruction *I, AAResults *AA) {
516   if (StoreInst *SI = dyn_cast<StoreInst>(I))
517     return MemoryLocation::get(SI);
518   if (LoadInst *LI = dyn_cast<LoadInst>(I))
519     return MemoryLocation::get(LI);
520   return MemoryLocation();
521 }
522 
523 /// \returns True if the instruction is not a volatile or atomic load/store.
524 static bool isSimple(Instruction *I) {
525   if (LoadInst *LI = dyn_cast<LoadInst>(I))
526     return LI->isSimple();
527   if (StoreInst *SI = dyn_cast<StoreInst>(I))
528     return SI->isSimple();
529   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
530     return !MI->isVolatile();
531   return true;
532 }
533 
534 namespace llvm {
535 
536 static void inversePermutation(ArrayRef<unsigned> Indices,
537                                SmallVectorImpl<int> &Mask) {
538   Mask.clear();
539   const unsigned E = Indices.size();
540   Mask.resize(E, E + 1);
541   for (unsigned I = 0; I < E; ++I)
542     Mask[Indices[I]] = I;
543 }
544 
545 namespace slpvectorizer {
546 
547 /// Bottom Up SLP Vectorizer.
548 class BoUpSLP {
549   struct TreeEntry;
550   struct ScheduleData;
551 
552 public:
553   using ValueList = SmallVector<Value *, 8>;
554   using InstrList = SmallVector<Instruction *, 16>;
555   using ValueSet = SmallPtrSet<Value *, 16>;
556   using StoreList = SmallVector<StoreInst *, 8>;
557   using ExtraValueToDebugLocsMap =
558       MapVector<Value *, SmallVector<Instruction *, 2>>;
559   using OrdersType = SmallVector<unsigned, 4>;
560 
561   BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
562           TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li,
563           DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB,
564           const DataLayout *DL, OptimizationRemarkEmitter *ORE)
565       : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC),
566         DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) {
567     CodeMetrics::collectEphemeralValues(F, AC, EphValues);
568     // Use the vector register size specified by the target unless overridden
569     // by a command-line option.
570     // TODO: It would be better to limit the vectorization factor based on
571     //       data type rather than just register size. For example, x86 AVX has
572     //       256-bit registers, but it does not support integer operations
573     //       at that width (that requires AVX2).
574     if (MaxVectorRegSizeOption.getNumOccurrences())
575       MaxVecRegSize = MaxVectorRegSizeOption;
576     else
577       MaxVecRegSize =
578           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
579               .getFixedSize();
580 
581     if (MinVectorRegSizeOption.getNumOccurrences())
582       MinVecRegSize = MinVectorRegSizeOption;
583     else
584       MinVecRegSize = TTI->getMinVectorRegisterBitWidth();
585   }
586 
587   /// Vectorize the tree that starts with the elements in \p VL.
588   /// Returns the vectorized root.
589   Value *vectorizeTree();
590 
591   /// Vectorize the tree but with the list of externally used values \p
592   /// ExternallyUsedValues. Values in this MapVector can be replaced but the
593   /// generated extractvalue instructions.
594   Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues);
595 
596   /// \returns the cost incurred by unwanted spills and fills, caused by
597   /// holding live values over call sites.
598   InstructionCost getSpillCost() const;
599 
600   /// \returns the vectorization cost of the subtree that starts at \p VL.
601   /// A negative number means that this is profitable.
602   InstructionCost getTreeCost();
603 
604   /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
605   /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
606   void buildTree(ArrayRef<Value *> Roots,
607                  ArrayRef<Value *> UserIgnoreLst = None);
608 
609   /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
610   /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking
611   /// into account (and updating it, if required) list of externally used
612   /// values stored in \p ExternallyUsedValues.
613   void buildTree(ArrayRef<Value *> Roots,
614                  ExtraValueToDebugLocsMap &ExternallyUsedValues,
615                  ArrayRef<Value *> UserIgnoreLst = None);
616 
617   /// Clear the internal data structures that are created by 'buildTree'.
618   void deleteTree() {
619     VectorizableTree.clear();
620     ScalarToTreeEntry.clear();
621     MustGather.clear();
622     ExternalUses.clear();
623     NumOpsWantToKeepOrder.clear();
624     NumOpsWantToKeepOriginalOrder = 0;
625     for (auto &Iter : BlocksSchedules) {
626       BlockScheduling *BS = Iter.second.get();
627       BS->clear();
628     }
629     MinBWs.clear();
630     InstrElementSize.clear();
631   }
632 
633   unsigned getTreeSize() const { return VectorizableTree.size(); }
634 
635   /// Perform LICM and CSE on the newly generated gather sequences.
636   void optimizeGatherSequence();
637 
638   /// \returns The best order of instructions for vectorization.
639   Optional<ArrayRef<unsigned>> bestOrder() const {
640     assert(llvm::all_of(
641                NumOpsWantToKeepOrder,
642                [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) {
643                  return D.getFirst().size() ==
644                         VectorizableTree[0]->Scalars.size();
645                }) &&
646            "All orders must have the same size as number of instructions in "
647            "tree node.");
648     auto I = std::max_element(
649         NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(),
650         [](const decltype(NumOpsWantToKeepOrder)::value_type &D1,
651            const decltype(NumOpsWantToKeepOrder)::value_type &D2) {
652           return D1.second < D2.second;
653         });
654     if (I == NumOpsWantToKeepOrder.end() ||
655         I->getSecond() <= NumOpsWantToKeepOriginalOrder)
656       return None;
657 
658     return makeArrayRef(I->getFirst());
659   }
660 
661   /// Builds the correct order for root instructions.
662   /// If some leaves have the same instructions to be vectorized, we may
663   /// incorrectly evaluate the best order for the root node (it is built for the
664   /// vector of instructions without repeated instructions and, thus, has less
665   /// elements than the root node). This function builds the correct order for
666   /// the root node.
667   /// For example, if the root node is \<a+b, a+c, a+d, f+e\>, then the leaves
668   /// are \<a, a, a, f\> and \<b, c, d, e\>. When we try to vectorize the first
669   /// leaf, it will be shrink to \<a, b\>. If instructions in this leaf should
670   /// be reordered, the best order will be \<1, 0\>. We need to extend this
671   /// order for the root node. For the root node this order should look like
672   /// \<3, 0, 1, 2\>. This function extends the order for the reused
673   /// instructions.
674   void findRootOrder(OrdersType &Order) {
675     // If the leaf has the same number of instructions to vectorize as the root
676     // - order must be set already.
677     unsigned RootSize = VectorizableTree[0]->Scalars.size();
678     if (Order.size() == RootSize)
679       return;
680     SmallVector<unsigned, 4> RealOrder(Order.size());
681     std::swap(Order, RealOrder);
682     SmallVector<int, 4> Mask;
683     inversePermutation(RealOrder, Mask);
684     Order.assign(Mask.begin(), Mask.end());
685     // The leaf has less number of instructions - need to find the true order of
686     // the root.
687     // Scan the nodes starting from the leaf back to the root.
688     const TreeEntry *PNode = VectorizableTree.back().get();
689     SmallVector<const TreeEntry *, 4> Nodes(1, PNode);
690     SmallPtrSet<const TreeEntry *, 4> Visited;
691     while (!Nodes.empty() && Order.size() != RootSize) {
692       const TreeEntry *PNode = Nodes.pop_back_val();
693       if (!Visited.insert(PNode).second)
694         continue;
695       const TreeEntry &Node = *PNode;
696       for (const EdgeInfo &EI : Node.UserTreeIndices)
697         if (EI.UserTE)
698           Nodes.push_back(EI.UserTE);
699       if (Node.ReuseShuffleIndices.empty())
700         continue;
701       // Build the order for the parent node.
702       OrdersType NewOrder(Node.ReuseShuffleIndices.size(), RootSize);
703       SmallVector<unsigned, 4> OrderCounter(Order.size(), 0);
704       // The algorithm of the order extension is:
705       // 1. Calculate the number of the same instructions for the order.
706       // 2. Calculate the index of the new order: total number of instructions
707       // with order less than the order of the current instruction + reuse
708       // number of the current instruction.
709       // 3. The new order is just the index of the instruction in the original
710       // vector of the instructions.
711       for (unsigned I : Node.ReuseShuffleIndices)
712         ++OrderCounter[Order[I]];
713       SmallVector<unsigned, 4> CurrentCounter(Order.size(), 0);
714       for (unsigned I = 0, E = Node.ReuseShuffleIndices.size(); I < E; ++I) {
715         unsigned ReusedIdx = Node.ReuseShuffleIndices[I];
716         unsigned OrderIdx = Order[ReusedIdx];
717         unsigned NewIdx = 0;
718         for (unsigned J = 0; J < OrderIdx; ++J)
719           NewIdx += OrderCounter[J];
720         NewIdx += CurrentCounter[OrderIdx];
721         ++CurrentCounter[OrderIdx];
722         assert(NewOrder[NewIdx] == RootSize &&
723                "The order index should not be written already.");
724         NewOrder[NewIdx] = I;
725       }
726       std::swap(Order, NewOrder);
727     }
728     assert(Order.size() == RootSize &&
729            "Root node is expected or the size of the order must be the same as "
730            "the number of elements in the root node.");
731     assert(llvm::all_of(Order,
732                         [RootSize](unsigned Val) { return Val != RootSize; }) &&
733            "All indices must be initialized");
734   }
735 
736   /// \return The vector element size in bits to use when vectorizing the
737   /// expression tree ending at \p V. If V is a store, the size is the width of
738   /// the stored value. Otherwise, the size is the width of the largest loaded
739   /// value reaching V. This method is used by the vectorizer to calculate
740   /// vectorization factors.
741   unsigned getVectorElementSize(Value *V);
742 
743   /// Compute the minimum type sizes required to represent the entries in a
744   /// vectorizable tree.
745   void computeMinimumValueSizes();
746 
747   // \returns maximum vector register size as set by TTI or overridden by cl::opt.
748   unsigned getMaxVecRegSize() const {
749     return MaxVecRegSize;
750   }
751 
752   // \returns minimum vector register size as set by cl::opt.
753   unsigned getMinVecRegSize() const {
754     return MinVecRegSize;
755   }
756 
757   unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const {
758     unsigned MaxVF = MaxVFOption.getNumOccurrences() ?
759       MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode);
760     return MaxVF ? MaxVF : UINT_MAX;
761   }
762 
763   /// Check if homogeneous aggregate is isomorphic to some VectorType.
764   /// Accepts homogeneous multidimensional aggregate of scalars/vectors like
765   /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> },
766   /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on.
767   ///
768   /// \returns number of elements in vector if isomorphism exists, 0 otherwise.
769   unsigned canMapToVector(Type *T, const DataLayout &DL) const;
770 
771   /// \returns True if the VectorizableTree is both tiny and not fully
772   /// vectorizable. We do not vectorize such trees.
773   bool isTreeTinyAndNotFullyVectorizable() const;
774 
775   /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values
776   /// can be load combined in the backend. Load combining may not be allowed in
777   /// the IR optimizer, so we do not want to alter the pattern. For example,
778   /// partially transforming a scalar bswap() pattern into vector code is
779   /// effectively impossible for the backend to undo.
780   /// TODO: If load combining is allowed in the IR optimizer, this analysis
781   ///       may not be necessary.
782   bool isLoadCombineReductionCandidate(RecurKind RdxKind) const;
783 
784   /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values
785   /// can be load combined in the backend. Load combining may not be allowed in
786   /// the IR optimizer, so we do not want to alter the pattern. For example,
787   /// partially transforming a scalar bswap() pattern into vector code is
788   /// effectively impossible for the backend to undo.
789   /// TODO: If load combining is allowed in the IR optimizer, this analysis
790   ///       may not be necessary.
791   bool isLoadCombineCandidate() const;
792 
793   OptimizationRemarkEmitter *getORE() { return ORE; }
794 
795   /// This structure holds any data we need about the edges being traversed
796   /// during buildTree_rec(). We keep track of:
797   /// (i) the user TreeEntry index, and
798   /// (ii) the index of the edge.
799   struct EdgeInfo {
800     EdgeInfo() = default;
801     EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx)
802         : UserTE(UserTE), EdgeIdx(EdgeIdx) {}
803     /// The user TreeEntry.
804     TreeEntry *UserTE = nullptr;
805     /// The operand index of the use.
806     unsigned EdgeIdx = UINT_MAX;
807 #ifndef NDEBUG
808     friend inline raw_ostream &operator<<(raw_ostream &OS,
809                                           const BoUpSLP::EdgeInfo &EI) {
810       EI.dump(OS);
811       return OS;
812     }
813     /// Debug print.
814     void dump(raw_ostream &OS) const {
815       OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null")
816          << " EdgeIdx:" << EdgeIdx << "}";
817     }
818     LLVM_DUMP_METHOD void dump() const { dump(dbgs()); }
819 #endif
820   };
821 
822   /// A helper data structure to hold the operands of a vector of instructions.
823   /// This supports a fixed vector length for all operand vectors.
824   class VLOperands {
825     /// For each operand we need (i) the value, and (ii) the opcode that it
826     /// would be attached to if the expression was in a left-linearized form.
827     /// This is required to avoid illegal operand reordering.
828     /// For example:
829     /// \verbatim
830     ///                         0 Op1
831     ///                         |/
832     /// Op1 Op2   Linearized    + Op2
833     ///   \ /     ---------->   |/
834     ///    -                    -
835     ///
836     /// Op1 - Op2            (0 + Op1) - Op2
837     /// \endverbatim
838     ///
839     /// Value Op1 is attached to a '+' operation, and Op2 to a '-'.
840     ///
841     /// Another way to think of this is to track all the operations across the
842     /// path from the operand all the way to the root of the tree and to
843     /// calculate the operation that corresponds to this path. For example, the
844     /// path from Op2 to the root crosses the RHS of the '-', therefore the
845     /// corresponding operation is a '-' (which matches the one in the
846     /// linearized tree, as shown above).
847     ///
848     /// For lack of a better term, we refer to this operation as Accumulated
849     /// Path Operation (APO).
850     struct OperandData {
851       OperandData() = default;
852       OperandData(Value *V, bool APO, bool IsUsed)
853           : V(V), APO(APO), IsUsed(IsUsed) {}
854       /// The operand value.
855       Value *V = nullptr;
856       /// TreeEntries only allow a single opcode, or an alternate sequence of
857       /// them (e.g, +, -). Therefore, we can safely use a boolean value for the
858       /// APO. It is set to 'true' if 'V' is attached to an inverse operation
859       /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise
860       /// (e.g., Add/Mul)
861       bool APO = false;
862       /// Helper data for the reordering function.
863       bool IsUsed = false;
864     };
865 
866     /// During operand reordering, we are trying to select the operand at lane
867     /// that matches best with the operand at the neighboring lane. Our
868     /// selection is based on the type of value we are looking for. For example,
869     /// if the neighboring lane has a load, we need to look for a load that is
870     /// accessing a consecutive address. These strategies are summarized in the
871     /// 'ReorderingMode' enumerator.
872     enum class ReorderingMode {
873       Load,     ///< Matching loads to consecutive memory addresses
874       Opcode,   ///< Matching instructions based on opcode (same or alternate)
875       Constant, ///< Matching constants
876       Splat,    ///< Matching the same instruction multiple times (broadcast)
877       Failed,   ///< We failed to create a vectorizable group
878     };
879 
880     using OperandDataVec = SmallVector<OperandData, 2>;
881 
882     /// A vector of operand vectors.
883     SmallVector<OperandDataVec, 4> OpsVec;
884 
885     const DataLayout &DL;
886     ScalarEvolution &SE;
887     const BoUpSLP &R;
888 
889     /// \returns the operand data at \p OpIdx and \p Lane.
890     OperandData &getData(unsigned OpIdx, unsigned Lane) {
891       return OpsVec[OpIdx][Lane];
892     }
893 
894     /// \returns the operand data at \p OpIdx and \p Lane. Const version.
895     const OperandData &getData(unsigned OpIdx, unsigned Lane) const {
896       return OpsVec[OpIdx][Lane];
897     }
898 
899     /// Clears the used flag for all entries.
900     void clearUsed() {
901       for (unsigned OpIdx = 0, NumOperands = getNumOperands();
902            OpIdx != NumOperands; ++OpIdx)
903         for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
904              ++Lane)
905           OpsVec[OpIdx][Lane].IsUsed = false;
906     }
907 
908     /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2.
909     void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) {
910       std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]);
911     }
912 
913     // The hard-coded scores listed here are not very important. When computing
914     // the scores of matching one sub-tree with another, we are basically
915     // counting the number of values that are matching. So even if all scores
916     // are set to 1, we would still get a decent matching result.
917     // However, sometimes we have to break ties. For example we may have to
918     // choose between matching loads vs matching opcodes. This is what these
919     // scores are helping us with: they provide the order of preference.
920 
921     /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]).
922     static const int ScoreConsecutiveLoads = 3;
923     /// ExtractElementInst from same vector and consecutive indexes.
924     static const int ScoreConsecutiveExtracts = 3;
925     /// Constants.
926     static const int ScoreConstants = 2;
927     /// Instructions with the same opcode.
928     static const int ScoreSameOpcode = 2;
929     /// Instructions with alt opcodes (e.g, add + sub).
930     static const int ScoreAltOpcodes = 1;
931     /// Identical instructions (a.k.a. splat or broadcast).
932     static const int ScoreSplat = 1;
933     /// Matching with an undef is preferable to failing.
934     static const int ScoreUndef = 1;
935     /// Score for failing to find a decent match.
936     static const int ScoreFail = 0;
937     /// User exteranl to the vectorized code.
938     static const int ExternalUseCost = 1;
939     /// The user is internal but in a different lane.
940     static const int UserInDiffLaneCost = ExternalUseCost;
941 
942     /// \returns the score of placing \p V1 and \p V2 in consecutive lanes.
943     static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL,
944                                ScalarEvolution &SE) {
945       auto *LI1 = dyn_cast<LoadInst>(V1);
946       auto *LI2 = dyn_cast<LoadInst>(V2);
947       if (LI1 && LI2) {
948         if (LI1->getParent() != LI2->getParent())
949           return VLOperands::ScoreFail;
950 
951         Optional<int> Dist =
952             getPointersDiff(LI1->getPointerOperand(), LI2->getPointerOperand(),
953                             DL, SE, /*StrictCheck=*/true);
954         return (Dist && *Dist == 1) ? VLOperands::ScoreConsecutiveLoads
955                                     : VLOperands::ScoreFail;
956       }
957 
958       auto *C1 = dyn_cast<Constant>(V1);
959       auto *C2 = dyn_cast<Constant>(V2);
960       if (C1 && C2)
961         return VLOperands::ScoreConstants;
962 
963       // Extracts from consecutive indexes of the same vector better score as
964       // the extracts could be optimized away.
965       Value *EV;
966       ConstantInt *Ex1Idx, *Ex2Idx;
967       if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) &&
968           match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) &&
969           Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue())
970         return VLOperands::ScoreConsecutiveExtracts;
971 
972       auto *I1 = dyn_cast<Instruction>(V1);
973       auto *I2 = dyn_cast<Instruction>(V2);
974       if (I1 && I2) {
975         if (I1 == I2)
976           return VLOperands::ScoreSplat;
977         InstructionsState S = getSameOpcode({I1, I2});
978         // Note: Only consider instructions with <= 2 operands to avoid
979         // complexity explosion.
980         if (S.getOpcode() && S.MainOp->getNumOperands() <= 2)
981           return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes
982                                   : VLOperands::ScoreSameOpcode;
983       }
984 
985       if (isa<UndefValue>(V2))
986         return VLOperands::ScoreUndef;
987 
988       return VLOperands::ScoreFail;
989     }
990 
991     /// Holds the values and their lane that are taking part in the look-ahead
992     /// score calculation. This is used in the external uses cost calculation.
993     SmallDenseMap<Value *, int> InLookAheadValues;
994 
995     /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are
996     /// either external to the vectorized code, or require shuffling.
997     int getExternalUsesCost(const std::pair<Value *, int> &LHS,
998                             const std::pair<Value *, int> &RHS) {
999       int Cost = 0;
1000       std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}};
1001       for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) {
1002         Value *V = Values[Idx].first;
1003         if (isa<Constant>(V)) {
1004           // Since this is a function pass, it doesn't make semantic sense to
1005           // walk the users of a subclass of Constant. The users could be in
1006           // another function, or even another module that happens to be in
1007           // the same LLVMContext.
1008           continue;
1009         }
1010 
1011         // Calculate the absolute lane, using the minimum relative lane of LHS
1012         // and RHS as base and Idx as the offset.
1013         int Ln = std::min(LHS.second, RHS.second) + Idx;
1014         assert(Ln >= 0 && "Bad lane calculation");
1015         unsigned UsersBudget = LookAheadUsersBudget;
1016         for (User *U : V->users()) {
1017           if (const TreeEntry *UserTE = R.getTreeEntry(U)) {
1018             // The user is in the VectorizableTree. Check if we need to insert.
1019             auto It = llvm::find(UserTE->Scalars, U);
1020             assert(It != UserTE->Scalars.end() && "U is in UserTE");
1021             int UserLn = std::distance(UserTE->Scalars.begin(), It);
1022             assert(UserLn >= 0 && "Bad lane");
1023             if (UserLn != Ln)
1024               Cost += UserInDiffLaneCost;
1025           } else {
1026             // Check if the user is in the look-ahead code.
1027             auto It2 = InLookAheadValues.find(U);
1028             if (It2 != InLookAheadValues.end()) {
1029               // The user is in the look-ahead code. Check the lane.
1030               if (It2->second != Ln)
1031                 Cost += UserInDiffLaneCost;
1032             } else {
1033               // The user is neither in SLP tree nor in the look-ahead code.
1034               Cost += ExternalUseCost;
1035             }
1036           }
1037           // Limit the number of visited uses to cap compilation time.
1038           if (--UsersBudget == 0)
1039             break;
1040         }
1041       }
1042       return Cost;
1043     }
1044 
1045     /// Go through the operands of \p LHS and \p RHS recursively until \p
1046     /// MaxLevel, and return the cummulative score. For example:
1047     /// \verbatim
1048     ///  A[0]  B[0]  A[1]  B[1]  C[0] D[0]  B[1] A[1]
1049     ///     \ /         \ /         \ /        \ /
1050     ///      +           +           +          +
1051     ///     G1          G2          G3         G4
1052     /// \endverbatim
1053     /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at
1054     /// each level recursively, accumulating the score. It starts from matching
1055     /// the additions at level 0, then moves on to the loads (level 1). The
1056     /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and
1057     /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while
1058     /// {A[0],C[0]} has a score of VLOperands::ScoreFail.
1059     /// Please note that the order of the operands does not matter, as we
1060     /// evaluate the score of all profitable combinations of operands. In
1061     /// other words the score of G1 and G4 is the same as G1 and G2. This
1062     /// heuristic is based on ideas described in:
1063     ///   Look-ahead SLP: Auto-vectorization in the presence of commutative
1064     ///   operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha,
1065     ///   Luís F. W. Góes
1066     int getScoreAtLevelRec(const std::pair<Value *, int> &LHS,
1067                            const std::pair<Value *, int> &RHS, int CurrLevel,
1068                            int MaxLevel) {
1069 
1070       Value *V1 = LHS.first;
1071       Value *V2 = RHS.first;
1072       // Get the shallow score of V1 and V2.
1073       int ShallowScoreAtThisLevel =
1074           std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) -
1075                                        getExternalUsesCost(LHS, RHS));
1076       int Lane1 = LHS.second;
1077       int Lane2 = RHS.second;
1078 
1079       // If reached MaxLevel,
1080       //  or if V1 and V2 are not instructions,
1081       //  or if they are SPLAT,
1082       //  or if they are not consecutive, early return the current cost.
1083       auto *I1 = dyn_cast<Instruction>(V1);
1084       auto *I2 = dyn_cast<Instruction>(V2);
1085       if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 ||
1086           ShallowScoreAtThisLevel == VLOperands::ScoreFail ||
1087           (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel))
1088         return ShallowScoreAtThisLevel;
1089       assert(I1 && I2 && "Should have early exited.");
1090 
1091       // Keep track of in-tree values for determining the external-use cost.
1092       InLookAheadValues[V1] = Lane1;
1093       InLookAheadValues[V2] = Lane2;
1094 
1095       // Contains the I2 operand indexes that got matched with I1 operands.
1096       SmallSet<unsigned, 4> Op2Used;
1097 
1098       // Recursion towards the operands of I1 and I2. We are trying all possbile
1099       // operand pairs, and keeping track of the best score.
1100       for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands();
1101            OpIdx1 != NumOperands1; ++OpIdx1) {
1102         // Try to pair op1I with the best operand of I2.
1103         int MaxTmpScore = 0;
1104         unsigned MaxOpIdx2 = 0;
1105         bool FoundBest = false;
1106         // If I2 is commutative try all combinations.
1107         unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1;
1108         unsigned ToIdx = isCommutative(I2)
1109                              ? I2->getNumOperands()
1110                              : std::min(I2->getNumOperands(), OpIdx1 + 1);
1111         assert(FromIdx <= ToIdx && "Bad index");
1112         for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) {
1113           // Skip operands already paired with OpIdx1.
1114           if (Op2Used.count(OpIdx2))
1115             continue;
1116           // Recursively calculate the cost at each level
1117           int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1},
1118                                             {I2->getOperand(OpIdx2), Lane2},
1119                                             CurrLevel + 1, MaxLevel);
1120           // Look for the best score.
1121           if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) {
1122             MaxTmpScore = TmpScore;
1123             MaxOpIdx2 = OpIdx2;
1124             FoundBest = true;
1125           }
1126         }
1127         if (FoundBest) {
1128           // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it.
1129           Op2Used.insert(MaxOpIdx2);
1130           ShallowScoreAtThisLevel += MaxTmpScore;
1131         }
1132       }
1133       return ShallowScoreAtThisLevel;
1134     }
1135 
1136     /// \Returns the look-ahead score, which tells us how much the sub-trees
1137     /// rooted at \p LHS and \p RHS match, the more they match the higher the
1138     /// score. This helps break ties in an informed way when we cannot decide on
1139     /// the order of the operands by just considering the immediate
1140     /// predecessors.
1141     int getLookAheadScore(const std::pair<Value *, int> &LHS,
1142                           const std::pair<Value *, int> &RHS) {
1143       InLookAheadValues.clear();
1144       return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth);
1145     }
1146 
1147     // Search all operands in Ops[*][Lane] for the one that matches best
1148     // Ops[OpIdx][LastLane] and return its opreand index.
1149     // If no good match can be found, return None.
1150     Optional<unsigned>
1151     getBestOperand(unsigned OpIdx, int Lane, int LastLane,
1152                    ArrayRef<ReorderingMode> ReorderingModes) {
1153       unsigned NumOperands = getNumOperands();
1154 
1155       // The operand of the previous lane at OpIdx.
1156       Value *OpLastLane = getData(OpIdx, LastLane).V;
1157 
1158       // Our strategy mode for OpIdx.
1159       ReorderingMode RMode = ReorderingModes[OpIdx];
1160 
1161       // The linearized opcode of the operand at OpIdx, Lane.
1162       bool OpIdxAPO = getData(OpIdx, Lane).APO;
1163 
1164       // The best operand index and its score.
1165       // Sometimes we have more than one option (e.g., Opcode and Undefs), so we
1166       // are using the score to differentiate between the two.
1167       struct BestOpData {
1168         Optional<unsigned> Idx = None;
1169         unsigned Score = 0;
1170       } BestOp;
1171 
1172       // Iterate through all unused operands and look for the best.
1173       for (unsigned Idx = 0; Idx != NumOperands; ++Idx) {
1174         // Get the operand at Idx and Lane.
1175         OperandData &OpData = getData(Idx, Lane);
1176         Value *Op = OpData.V;
1177         bool OpAPO = OpData.APO;
1178 
1179         // Skip already selected operands.
1180         if (OpData.IsUsed)
1181           continue;
1182 
1183         // Skip if we are trying to move the operand to a position with a
1184         // different opcode in the linearized tree form. This would break the
1185         // semantics.
1186         if (OpAPO != OpIdxAPO)
1187           continue;
1188 
1189         // Look for an operand that matches the current mode.
1190         switch (RMode) {
1191         case ReorderingMode::Load:
1192         case ReorderingMode::Constant:
1193         case ReorderingMode::Opcode: {
1194           bool LeftToRight = Lane > LastLane;
1195           Value *OpLeft = (LeftToRight) ? OpLastLane : Op;
1196           Value *OpRight = (LeftToRight) ? Op : OpLastLane;
1197           unsigned Score =
1198               getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane});
1199           if (Score > BestOp.Score) {
1200             BestOp.Idx = Idx;
1201             BestOp.Score = Score;
1202           }
1203           break;
1204         }
1205         case ReorderingMode::Splat:
1206           if (Op == OpLastLane)
1207             BestOp.Idx = Idx;
1208           break;
1209         case ReorderingMode::Failed:
1210           return None;
1211         }
1212       }
1213 
1214       if (BestOp.Idx) {
1215         getData(BestOp.Idx.getValue(), Lane).IsUsed = true;
1216         return BestOp.Idx;
1217       }
1218       // If we could not find a good match return None.
1219       return None;
1220     }
1221 
1222     /// Helper for reorderOperandVecs. \Returns the lane that we should start
1223     /// reordering from. This is the one which has the least number of operands
1224     /// that can freely move about.
1225     unsigned getBestLaneToStartReordering() const {
1226       unsigned BestLane = 0;
1227       unsigned Min = UINT_MAX;
1228       for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
1229            ++Lane) {
1230         unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane);
1231         if (NumFreeOps < Min) {
1232           Min = NumFreeOps;
1233           BestLane = Lane;
1234         }
1235       }
1236       return BestLane;
1237     }
1238 
1239     /// \Returns the maximum number of operands that are allowed to be reordered
1240     /// for \p Lane. This is used as a heuristic for selecting the first lane to
1241     /// start operand reordering.
1242     unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const {
1243       unsigned CntTrue = 0;
1244       unsigned NumOperands = getNumOperands();
1245       // Operands with the same APO can be reordered. We therefore need to count
1246       // how many of them we have for each APO, like this: Cnt[APO] = x.
1247       // Since we only have two APOs, namely true and false, we can avoid using
1248       // a map. Instead we can simply count the number of operands that
1249       // correspond to one of them (in this case the 'true' APO), and calculate
1250       // the other by subtracting it from the total number of operands.
1251       for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx)
1252         if (getData(OpIdx, Lane).APO)
1253           ++CntTrue;
1254       unsigned CntFalse = NumOperands - CntTrue;
1255       return std::max(CntTrue, CntFalse);
1256     }
1257 
1258     /// Go through the instructions in VL and append their operands.
1259     void appendOperandsOfVL(ArrayRef<Value *> VL) {
1260       assert(!VL.empty() && "Bad VL");
1261       assert((empty() || VL.size() == getNumLanes()) &&
1262              "Expected same number of lanes");
1263       assert(isa<Instruction>(VL[0]) && "Expected instruction");
1264       unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands();
1265       OpsVec.resize(NumOperands);
1266       unsigned NumLanes = VL.size();
1267       for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1268         OpsVec[OpIdx].resize(NumLanes);
1269         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1270           assert(isa<Instruction>(VL[Lane]) && "Expected instruction");
1271           // Our tree has just 3 nodes: the root and two operands.
1272           // It is therefore trivial to get the APO. We only need to check the
1273           // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or
1274           // RHS operand. The LHS operand of both add and sub is never attached
1275           // to an inversese operation in the linearized form, therefore its APO
1276           // is false. The RHS is true only if VL[Lane] is an inverse operation.
1277 
1278           // Since operand reordering is performed on groups of commutative
1279           // operations or alternating sequences (e.g., +, -), we can safely
1280           // tell the inverse operations by checking commutativity.
1281           bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane]));
1282           bool APO = (OpIdx == 0) ? false : IsInverseOperation;
1283           OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx),
1284                                  APO, false};
1285         }
1286       }
1287     }
1288 
1289     /// \returns the number of operands.
1290     unsigned getNumOperands() const { return OpsVec.size(); }
1291 
1292     /// \returns the number of lanes.
1293     unsigned getNumLanes() const { return OpsVec[0].size(); }
1294 
1295     /// \returns the operand value at \p OpIdx and \p Lane.
1296     Value *getValue(unsigned OpIdx, unsigned Lane) const {
1297       return getData(OpIdx, Lane).V;
1298     }
1299 
1300     /// \returns true if the data structure is empty.
1301     bool empty() const { return OpsVec.empty(); }
1302 
1303     /// Clears the data.
1304     void clear() { OpsVec.clear(); }
1305 
1306     /// \Returns true if there are enough operands identical to \p Op to fill
1307     /// the whole vector.
1308     /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow.
1309     bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) {
1310       bool OpAPO = getData(OpIdx, Lane).APO;
1311       for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) {
1312         if (Ln == Lane)
1313           continue;
1314         // This is set to true if we found a candidate for broadcast at Lane.
1315         bool FoundCandidate = false;
1316         for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) {
1317           OperandData &Data = getData(OpI, Ln);
1318           if (Data.APO != OpAPO || Data.IsUsed)
1319             continue;
1320           if (Data.V == Op) {
1321             FoundCandidate = true;
1322             Data.IsUsed = true;
1323             break;
1324           }
1325         }
1326         if (!FoundCandidate)
1327           return false;
1328       }
1329       return true;
1330     }
1331 
1332   public:
1333     /// Initialize with all the operands of the instruction vector \p RootVL.
1334     VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL,
1335                ScalarEvolution &SE, const BoUpSLP &R)
1336         : DL(DL), SE(SE), R(R) {
1337       // Append all the operands of RootVL.
1338       appendOperandsOfVL(RootVL);
1339     }
1340 
1341     /// \Returns a value vector with the operands across all lanes for the
1342     /// opearnd at \p OpIdx.
1343     ValueList getVL(unsigned OpIdx) const {
1344       ValueList OpVL(OpsVec[OpIdx].size());
1345       assert(OpsVec[OpIdx].size() == getNumLanes() &&
1346              "Expected same num of lanes across all operands");
1347       for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane)
1348         OpVL[Lane] = OpsVec[OpIdx][Lane].V;
1349       return OpVL;
1350     }
1351 
1352     // Performs operand reordering for 2 or more operands.
1353     // The original operands are in OrigOps[OpIdx][Lane].
1354     // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'.
1355     void reorder() {
1356       unsigned NumOperands = getNumOperands();
1357       unsigned NumLanes = getNumLanes();
1358       // Each operand has its own mode. We are using this mode to help us select
1359       // the instructions for each lane, so that they match best with the ones
1360       // we have selected so far.
1361       SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands);
1362 
1363       // This is a greedy single-pass algorithm. We are going over each lane
1364       // once and deciding on the best order right away with no back-tracking.
1365       // However, in order to increase its effectiveness, we start with the lane
1366       // that has operands that can move the least. For example, given the
1367       // following lanes:
1368       //  Lane 0 : A[0] = B[0] + C[0]   // Visited 3rd
1369       //  Lane 1 : A[1] = C[1] - B[1]   // Visited 1st
1370       //  Lane 2 : A[2] = B[2] + C[2]   // Visited 2nd
1371       //  Lane 3 : A[3] = C[3] - B[3]   // Visited 4th
1372       // we will start at Lane 1, since the operands of the subtraction cannot
1373       // be reordered. Then we will visit the rest of the lanes in a circular
1374       // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3.
1375 
1376       // Find the first lane that we will start our search from.
1377       unsigned FirstLane = getBestLaneToStartReordering();
1378 
1379       // Initialize the modes.
1380       for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1381         Value *OpLane0 = getValue(OpIdx, FirstLane);
1382         // Keep track if we have instructions with all the same opcode on one
1383         // side.
1384         if (isa<LoadInst>(OpLane0))
1385           ReorderingModes[OpIdx] = ReorderingMode::Load;
1386         else if (isa<Instruction>(OpLane0)) {
1387           // Check if OpLane0 should be broadcast.
1388           if (shouldBroadcast(OpLane0, OpIdx, FirstLane))
1389             ReorderingModes[OpIdx] = ReorderingMode::Splat;
1390           else
1391             ReorderingModes[OpIdx] = ReorderingMode::Opcode;
1392         }
1393         else if (isa<Constant>(OpLane0))
1394           ReorderingModes[OpIdx] = ReorderingMode::Constant;
1395         else if (isa<Argument>(OpLane0))
1396           // Our best hope is a Splat. It may save some cost in some cases.
1397           ReorderingModes[OpIdx] = ReorderingMode::Splat;
1398         else
1399           // NOTE: This should be unreachable.
1400           ReorderingModes[OpIdx] = ReorderingMode::Failed;
1401       }
1402 
1403       // If the initial strategy fails for any of the operand indexes, then we
1404       // perform reordering again in a second pass. This helps avoid assigning
1405       // high priority to the failed strategy, and should improve reordering for
1406       // the non-failed operand indexes.
1407       for (int Pass = 0; Pass != 2; ++Pass) {
1408         // Skip the second pass if the first pass did not fail.
1409         bool StrategyFailed = false;
1410         // Mark all operand data as free to use.
1411         clearUsed();
1412         // We keep the original operand order for the FirstLane, so reorder the
1413         // rest of the lanes. We are visiting the nodes in a circular fashion,
1414         // using FirstLane as the center point and increasing the radius
1415         // distance.
1416         for (unsigned Distance = 1; Distance != NumLanes; ++Distance) {
1417           // Visit the lane on the right and then the lane on the left.
1418           for (int Direction : {+1, -1}) {
1419             int Lane = FirstLane + Direction * Distance;
1420             if (Lane < 0 || Lane >= (int)NumLanes)
1421               continue;
1422             int LastLane = Lane - Direction;
1423             assert(LastLane >= 0 && LastLane < (int)NumLanes &&
1424                    "Out of bounds");
1425             // Look for a good match for each operand.
1426             for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1427               // Search for the operand that matches SortedOps[OpIdx][Lane-1].
1428               Optional<unsigned> BestIdx =
1429                   getBestOperand(OpIdx, Lane, LastLane, ReorderingModes);
1430               // By not selecting a value, we allow the operands that follow to
1431               // select a better matching value. We will get a non-null value in
1432               // the next run of getBestOperand().
1433               if (BestIdx) {
1434                 // Swap the current operand with the one returned by
1435                 // getBestOperand().
1436                 swap(OpIdx, BestIdx.getValue(), Lane);
1437               } else {
1438                 // We failed to find a best operand, set mode to 'Failed'.
1439                 ReorderingModes[OpIdx] = ReorderingMode::Failed;
1440                 // Enable the second pass.
1441                 StrategyFailed = true;
1442               }
1443             }
1444           }
1445         }
1446         // Skip second pass if the strategy did not fail.
1447         if (!StrategyFailed)
1448           break;
1449       }
1450     }
1451 
1452 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1453     LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) {
1454       switch (RMode) {
1455       case ReorderingMode::Load:
1456         return "Load";
1457       case ReorderingMode::Opcode:
1458         return "Opcode";
1459       case ReorderingMode::Constant:
1460         return "Constant";
1461       case ReorderingMode::Splat:
1462         return "Splat";
1463       case ReorderingMode::Failed:
1464         return "Failed";
1465       }
1466       llvm_unreachable("Unimplemented Reordering Type");
1467     }
1468 
1469     LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode,
1470                                                    raw_ostream &OS) {
1471       return OS << getModeStr(RMode);
1472     }
1473 
1474     /// Debug print.
1475     LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) {
1476       printMode(RMode, dbgs());
1477     }
1478 
1479     friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) {
1480       return printMode(RMode, OS);
1481     }
1482 
1483     LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const {
1484       const unsigned Indent = 2;
1485       unsigned Cnt = 0;
1486       for (const OperandDataVec &OpDataVec : OpsVec) {
1487         OS << "Operand " << Cnt++ << "\n";
1488         for (const OperandData &OpData : OpDataVec) {
1489           OS.indent(Indent) << "{";
1490           if (Value *V = OpData.V)
1491             OS << *V;
1492           else
1493             OS << "null";
1494           OS << ", APO:" << OpData.APO << "}\n";
1495         }
1496         OS << "\n";
1497       }
1498       return OS;
1499     }
1500 
1501     /// Debug print.
1502     LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
1503 #endif
1504   };
1505 
1506   /// Checks if the instruction is marked for deletion.
1507   bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); }
1508 
1509   /// Marks values operands for later deletion by replacing them with Undefs.
1510   void eraseInstructions(ArrayRef<Value *> AV);
1511 
1512   ~BoUpSLP();
1513 
1514 private:
1515   /// Checks if all users of \p I are the part of the vectorization tree.
1516   bool areAllUsersVectorized(Instruction *I) const;
1517 
1518   /// \returns the cost of the vectorizable entry.
1519   InstructionCost getEntryCost(TreeEntry *E);
1520 
1521   /// This is the recursive part of buildTree.
1522   void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth,
1523                      const EdgeInfo &EI);
1524 
1525   /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can
1526   /// be vectorized to use the original vector (or aggregate "bitcast" to a
1527   /// vector) and sets \p CurrentOrder to the identity permutation; otherwise
1528   /// returns false, setting \p CurrentOrder to either an empty vector or a
1529   /// non-identity permutation that allows to reuse extract instructions.
1530   bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
1531                        SmallVectorImpl<unsigned> &CurrentOrder) const;
1532 
1533   /// Vectorize a single entry in the tree.
1534   Value *vectorizeTree(TreeEntry *E);
1535 
1536   /// Vectorize a single entry in the tree, starting in \p VL.
1537   Value *vectorizeTree(ArrayRef<Value *> VL);
1538 
1539   /// \returns the scalarization cost for this type. Scalarization in this
1540   /// context means the creation of vectors from a group of scalars.
1541   InstructionCost
1542   getGatherCost(FixedVectorType *Ty,
1543                 const DenseSet<unsigned> &ShuffledIndices) const;
1544 
1545   /// Checks if the gathered \p VL can be represented as shuffle(s) of previous
1546   /// tree entries.
1547   /// \returns ShuffleKind, if gathered values can be represented as shuffles of
1548   /// previous tree entries. \p Mask is filled with the shuffle mask.
1549   Optional<TargetTransformInfo::ShuffleKind>
1550   isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask,
1551                         SmallVectorImpl<const TreeEntry *> &Entries);
1552 
1553   /// \returns the scalarization cost for this list of values. Assuming that
1554   /// this subtree gets vectorized, we may need to extract the values from the
1555   /// roots. This method calculates the cost of extracting the values.
1556   InstructionCost getGatherCost(ArrayRef<Value *> VL) const;
1557 
1558   /// Set the Builder insert point to one after the last instruction in
1559   /// the bundle
1560   void setInsertPointAfterBundle(TreeEntry *E);
1561 
1562   /// \returns a vector from a collection of scalars in \p VL.
1563   Value *gather(ArrayRef<Value *> VL);
1564 
1565   /// \returns whether the VectorizableTree is fully vectorizable and will
1566   /// be beneficial even the tree height is tiny.
1567   bool isFullyVectorizableTinyTree() const;
1568 
1569   /// Reorder commutative or alt operands to get better probability of
1570   /// generating vectorized code.
1571   static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
1572                                              SmallVectorImpl<Value *> &Left,
1573                                              SmallVectorImpl<Value *> &Right,
1574                                              const DataLayout &DL,
1575                                              ScalarEvolution &SE,
1576                                              const BoUpSLP &R);
1577   struct TreeEntry {
1578     using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>;
1579     TreeEntry(VecTreeTy &Container) : Container(Container) {}
1580 
1581     /// \returns true if the scalars in VL are equal to this entry.
1582     bool isSame(ArrayRef<Value *> VL) const {
1583       if (VL.size() == Scalars.size())
1584         return std::equal(VL.begin(), VL.end(), Scalars.begin());
1585       return VL.size() == ReuseShuffleIndices.size() &&
1586              std::equal(
1587                  VL.begin(), VL.end(), ReuseShuffleIndices.begin(),
1588                  [this](Value *V, int Idx) { return V == Scalars[Idx]; });
1589     }
1590 
1591     /// A vector of scalars.
1592     ValueList Scalars;
1593 
1594     /// The Scalars are vectorized into this value. It is initialized to Null.
1595     Value *VectorizedValue = nullptr;
1596 
1597     /// Do we need to gather this sequence or vectorize it
1598     /// (either with vector instruction or with scatter/gather
1599     /// intrinsics for store/load)?
1600     enum EntryState { Vectorize, ScatterVectorize, NeedToGather };
1601     EntryState State;
1602 
1603     /// Does this sequence require some shuffling?
1604     SmallVector<int, 4> ReuseShuffleIndices;
1605 
1606     /// Does this entry require reordering?
1607     SmallVector<unsigned, 4> ReorderIndices;
1608 
1609     /// Points back to the VectorizableTree.
1610     ///
1611     /// Only used for Graphviz right now.  Unfortunately GraphTrait::NodeRef has
1612     /// to be a pointer and needs to be able to initialize the child iterator.
1613     /// Thus we need a reference back to the container to translate the indices
1614     /// to entries.
1615     VecTreeTy &Container;
1616 
1617     /// The TreeEntry index containing the user of this entry.  We can actually
1618     /// have multiple users so the data structure is not truly a tree.
1619     SmallVector<EdgeInfo, 1> UserTreeIndices;
1620 
1621     /// The index of this treeEntry in VectorizableTree.
1622     int Idx = -1;
1623 
1624   private:
1625     /// The operands of each instruction in each lane Operands[op_index][lane].
1626     /// Note: This helps avoid the replication of the code that performs the
1627     /// reordering of operands during buildTree_rec() and vectorizeTree().
1628     SmallVector<ValueList, 2> Operands;
1629 
1630     /// The main/alternate instruction.
1631     Instruction *MainOp = nullptr;
1632     Instruction *AltOp = nullptr;
1633 
1634   public:
1635     /// Set this bundle's \p OpIdx'th operand to \p OpVL.
1636     void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) {
1637       if (Operands.size() < OpIdx + 1)
1638         Operands.resize(OpIdx + 1);
1639       assert(Operands[OpIdx].size() == 0 && "Already resized?");
1640       Operands[OpIdx].resize(Scalars.size());
1641       for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane)
1642         Operands[OpIdx][Lane] = OpVL[Lane];
1643     }
1644 
1645     /// Set the operands of this bundle in their original order.
1646     void setOperandsInOrder() {
1647       assert(Operands.empty() && "Already initialized?");
1648       auto *I0 = cast<Instruction>(Scalars[0]);
1649       Operands.resize(I0->getNumOperands());
1650       unsigned NumLanes = Scalars.size();
1651       for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands();
1652            OpIdx != NumOperands; ++OpIdx) {
1653         Operands[OpIdx].resize(NumLanes);
1654         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1655           auto *I = cast<Instruction>(Scalars[Lane]);
1656           assert(I->getNumOperands() == NumOperands &&
1657                  "Expected same number of operands");
1658           Operands[OpIdx][Lane] = I->getOperand(OpIdx);
1659         }
1660       }
1661     }
1662 
1663     /// \returns the \p OpIdx operand of this TreeEntry.
1664     ValueList &getOperand(unsigned OpIdx) {
1665       assert(OpIdx < Operands.size() && "Off bounds");
1666       return Operands[OpIdx];
1667     }
1668 
1669     /// \returns the number of operands.
1670     unsigned getNumOperands() const { return Operands.size(); }
1671 
1672     /// \return the single \p OpIdx operand.
1673     Value *getSingleOperand(unsigned OpIdx) const {
1674       assert(OpIdx < Operands.size() && "Off bounds");
1675       assert(!Operands[OpIdx].empty() && "No operand available");
1676       return Operands[OpIdx][0];
1677     }
1678 
1679     /// Some of the instructions in the list have alternate opcodes.
1680     bool isAltShuffle() const {
1681       return getOpcode() != getAltOpcode();
1682     }
1683 
1684     bool isOpcodeOrAlt(Instruction *I) const {
1685       unsigned CheckedOpcode = I->getOpcode();
1686       return (getOpcode() == CheckedOpcode ||
1687               getAltOpcode() == CheckedOpcode);
1688     }
1689 
1690     /// Chooses the correct key for scheduling data. If \p Op has the same (or
1691     /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is
1692     /// \p OpValue.
1693     Value *isOneOf(Value *Op) const {
1694       auto *I = dyn_cast<Instruction>(Op);
1695       if (I && isOpcodeOrAlt(I))
1696         return Op;
1697       return MainOp;
1698     }
1699 
1700     void setOperations(const InstructionsState &S) {
1701       MainOp = S.MainOp;
1702       AltOp = S.AltOp;
1703     }
1704 
1705     Instruction *getMainOp() const {
1706       return MainOp;
1707     }
1708 
1709     Instruction *getAltOp() const {
1710       return AltOp;
1711     }
1712 
1713     /// The main/alternate opcodes for the list of instructions.
1714     unsigned getOpcode() const {
1715       return MainOp ? MainOp->getOpcode() : 0;
1716     }
1717 
1718     unsigned getAltOpcode() const {
1719       return AltOp ? AltOp->getOpcode() : 0;
1720     }
1721 
1722     /// Update operations state of this entry if reorder occurred.
1723     bool updateStateIfReorder() {
1724       if (ReorderIndices.empty())
1725         return false;
1726       InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front());
1727       setOperations(S);
1728       return true;
1729     }
1730 
1731 #ifndef NDEBUG
1732     /// Debug printer.
1733     LLVM_DUMP_METHOD void dump() const {
1734       dbgs() << Idx << ".\n";
1735       for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) {
1736         dbgs() << "Operand " << OpI << ":\n";
1737         for (const Value *V : Operands[OpI])
1738           dbgs().indent(2) << *V << "\n";
1739       }
1740       dbgs() << "Scalars: \n";
1741       for (Value *V : Scalars)
1742         dbgs().indent(2) << *V << "\n";
1743       dbgs() << "State: ";
1744       switch (State) {
1745       case Vectorize:
1746         dbgs() << "Vectorize\n";
1747         break;
1748       case ScatterVectorize:
1749         dbgs() << "ScatterVectorize\n";
1750         break;
1751       case NeedToGather:
1752         dbgs() << "NeedToGather\n";
1753         break;
1754       }
1755       dbgs() << "MainOp: ";
1756       if (MainOp)
1757         dbgs() << *MainOp << "\n";
1758       else
1759         dbgs() << "NULL\n";
1760       dbgs() << "AltOp: ";
1761       if (AltOp)
1762         dbgs() << *AltOp << "\n";
1763       else
1764         dbgs() << "NULL\n";
1765       dbgs() << "VectorizedValue: ";
1766       if (VectorizedValue)
1767         dbgs() << *VectorizedValue << "\n";
1768       else
1769         dbgs() << "NULL\n";
1770       dbgs() << "ReuseShuffleIndices: ";
1771       if (ReuseShuffleIndices.empty())
1772         dbgs() << "Empty";
1773       else
1774         for (unsigned ReuseIdx : ReuseShuffleIndices)
1775           dbgs() << ReuseIdx << ", ";
1776       dbgs() << "\n";
1777       dbgs() << "ReorderIndices: ";
1778       for (unsigned ReorderIdx : ReorderIndices)
1779         dbgs() << ReorderIdx << ", ";
1780       dbgs() << "\n";
1781       dbgs() << "UserTreeIndices: ";
1782       for (const auto &EInfo : UserTreeIndices)
1783         dbgs() << EInfo << ", ";
1784       dbgs() << "\n";
1785     }
1786 #endif
1787   };
1788 
1789 #ifndef NDEBUG
1790   void dumpTreeCosts(TreeEntry *E, InstructionCost ReuseShuffleCost,
1791                      InstructionCost VecCost,
1792                      InstructionCost ScalarCost) const {
1793     dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump();
1794     dbgs() << "SLP: Costs:\n";
1795     dbgs() << "SLP:     ReuseShuffleCost = " << ReuseShuffleCost << "\n";
1796     dbgs() << "SLP:     VectorCost = " << VecCost << "\n";
1797     dbgs() << "SLP:     ScalarCost = " << ScalarCost << "\n";
1798     dbgs() << "SLP:     ReuseShuffleCost + VecCost - ScalarCost = " <<
1799                ReuseShuffleCost + VecCost - ScalarCost << "\n";
1800   }
1801 #endif
1802 
1803   /// Create a new VectorizableTree entry.
1804   TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle,
1805                           const InstructionsState &S,
1806                           const EdgeInfo &UserTreeIdx,
1807                           ArrayRef<unsigned> ReuseShuffleIndices = None,
1808                           ArrayRef<unsigned> ReorderIndices = None) {
1809     TreeEntry::EntryState EntryState =
1810         Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather;
1811     return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx,
1812                         ReuseShuffleIndices, ReorderIndices);
1813   }
1814 
1815   TreeEntry *newTreeEntry(ArrayRef<Value *> VL,
1816                           TreeEntry::EntryState EntryState,
1817                           Optional<ScheduleData *> Bundle,
1818                           const InstructionsState &S,
1819                           const EdgeInfo &UserTreeIdx,
1820                           ArrayRef<unsigned> ReuseShuffleIndices = None,
1821                           ArrayRef<unsigned> ReorderIndices = None) {
1822     assert(((!Bundle && EntryState == TreeEntry::NeedToGather) ||
1823             (Bundle && EntryState != TreeEntry::NeedToGather)) &&
1824            "Need to vectorize gather entry?");
1825     VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree));
1826     TreeEntry *Last = VectorizableTree.back().get();
1827     Last->Idx = VectorizableTree.size() - 1;
1828     Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
1829     Last->State = EntryState;
1830     Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(),
1831                                      ReuseShuffleIndices.end());
1832     Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end());
1833     Last->setOperations(S);
1834     if (Last->State != TreeEntry::NeedToGather) {
1835       for (Value *V : VL) {
1836         assert(!getTreeEntry(V) && "Scalar already in tree!");
1837         ScalarToTreeEntry[V] = Last;
1838       }
1839       // Update the scheduler bundle to point to this TreeEntry.
1840       unsigned Lane = 0;
1841       for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember;
1842            BundleMember = BundleMember->NextInBundle) {
1843         BundleMember->TE = Last;
1844         BundleMember->Lane = Lane;
1845         ++Lane;
1846       }
1847       assert((!Bundle.getValue() || Lane == VL.size()) &&
1848              "Bundle and VL out of sync");
1849     } else {
1850       MustGather.insert(VL.begin(), VL.end());
1851     }
1852 
1853     if (UserTreeIdx.UserTE)
1854       Last->UserTreeIndices.push_back(UserTreeIdx);
1855 
1856     return Last;
1857   }
1858 
1859   /// -- Vectorization State --
1860   /// Holds all of the tree entries.
1861   TreeEntry::VecTreeTy VectorizableTree;
1862 
1863 #ifndef NDEBUG
1864   /// Debug printer.
1865   LLVM_DUMP_METHOD void dumpVectorizableTree() const {
1866     for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) {
1867       VectorizableTree[Id]->dump();
1868       dbgs() << "\n";
1869     }
1870   }
1871 #endif
1872 
1873   TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); }
1874 
1875   const TreeEntry *getTreeEntry(Value *V) const {
1876     return ScalarToTreeEntry.lookup(V);
1877   }
1878 
1879   /// Maps a specific scalar to its tree entry.
1880   SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry;
1881 
1882   /// Maps a value to the proposed vectorizable size.
1883   SmallDenseMap<Value *, unsigned> InstrElementSize;
1884 
1885   /// A list of scalars that we found that we need to keep as scalars.
1886   ValueSet MustGather;
1887 
1888   /// This POD struct describes one external user in the vectorized tree.
1889   struct ExternalUser {
1890     ExternalUser(Value *S, llvm::User *U, int L)
1891         : Scalar(S), User(U), Lane(L) {}
1892 
1893     // Which scalar in our function.
1894     Value *Scalar;
1895 
1896     // Which user that uses the scalar.
1897     llvm::User *User;
1898 
1899     // Which lane does the scalar belong to.
1900     int Lane;
1901   };
1902   using UserList = SmallVector<ExternalUser, 16>;
1903 
1904   /// Checks if two instructions may access the same memory.
1905   ///
1906   /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
1907   /// is invariant in the calling loop.
1908   bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
1909                  Instruction *Inst2) {
1910     // First check if the result is already in the cache.
1911     AliasCacheKey key = std::make_pair(Inst1, Inst2);
1912     Optional<bool> &result = AliasCache[key];
1913     if (result.hasValue()) {
1914       return result.getValue();
1915     }
1916     MemoryLocation Loc2 = getLocation(Inst2, AA);
1917     bool aliased = true;
1918     if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) {
1919       // Do the alias check.
1920       aliased = !AA->isNoAlias(Loc1, Loc2);
1921     }
1922     // Store the result in the cache.
1923     result = aliased;
1924     return aliased;
1925   }
1926 
1927   using AliasCacheKey = std::pair<Instruction *, Instruction *>;
1928 
1929   /// Cache for alias results.
1930   /// TODO: consider moving this to the AliasAnalysis itself.
1931   DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
1932 
1933   /// Removes an instruction from its block and eventually deletes it.
1934   /// It's like Instruction::eraseFromParent() except that the actual deletion
1935   /// is delayed until BoUpSLP is destructed.
1936   /// This is required to ensure that there are no incorrect collisions in the
1937   /// AliasCache, which can happen if a new instruction is allocated at the
1938   /// same address as a previously deleted instruction.
1939   void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) {
1940     auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first;
1941     It->getSecond() = It->getSecond() && ReplaceOpsWithUndef;
1942   }
1943 
1944   /// Temporary store for deleted instructions. Instructions will be deleted
1945   /// eventually when the BoUpSLP is destructed.
1946   DenseMap<Instruction *, bool> DeletedInstructions;
1947 
1948   /// A list of values that need to extracted out of the tree.
1949   /// This list holds pairs of (Internal Scalar : External User). External User
1950   /// can be nullptr, it means that this Internal Scalar will be used later,
1951   /// after vectorization.
1952   UserList ExternalUses;
1953 
1954   /// Values used only by @llvm.assume calls.
1955   SmallPtrSet<const Value *, 32> EphValues;
1956 
1957   /// Holds all of the instructions that we gathered.
1958   SetVector<Instruction *> GatherSeq;
1959 
1960   /// A list of blocks that we are going to CSE.
1961   SetVector<BasicBlock *> CSEBlocks;
1962 
1963   /// Contains all scheduling relevant data for an instruction.
1964   /// A ScheduleData either represents a single instruction or a member of an
1965   /// instruction bundle (= a group of instructions which is combined into a
1966   /// vector instruction).
1967   struct ScheduleData {
1968     // The initial value for the dependency counters. It means that the
1969     // dependencies are not calculated yet.
1970     enum { InvalidDeps = -1 };
1971 
1972     ScheduleData() = default;
1973 
1974     void init(int BlockSchedulingRegionID, Value *OpVal) {
1975       FirstInBundle = this;
1976       NextInBundle = nullptr;
1977       NextLoadStore = nullptr;
1978       IsScheduled = false;
1979       SchedulingRegionID = BlockSchedulingRegionID;
1980       UnscheduledDepsInBundle = UnscheduledDeps;
1981       clearDependencies();
1982       OpValue = OpVal;
1983       TE = nullptr;
1984       Lane = -1;
1985     }
1986 
1987     /// Returns true if the dependency information has been calculated.
1988     bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
1989 
1990     /// Returns true for single instructions and for bundle representatives
1991     /// (= the head of a bundle).
1992     bool isSchedulingEntity() const { return FirstInBundle == this; }
1993 
1994     /// Returns true if it represents an instruction bundle and not only a
1995     /// single instruction.
1996     bool isPartOfBundle() const {
1997       return NextInBundle != nullptr || FirstInBundle != this;
1998     }
1999 
2000     /// Returns true if it is ready for scheduling, i.e. it has no more
2001     /// unscheduled depending instructions/bundles.
2002     bool isReady() const {
2003       assert(isSchedulingEntity() &&
2004              "can't consider non-scheduling entity for ready list");
2005       return UnscheduledDepsInBundle == 0 && !IsScheduled;
2006     }
2007 
2008     /// Modifies the number of unscheduled dependencies, also updating it for
2009     /// the whole bundle.
2010     int incrementUnscheduledDeps(int Incr) {
2011       UnscheduledDeps += Incr;
2012       return FirstInBundle->UnscheduledDepsInBundle += Incr;
2013     }
2014 
2015     /// Sets the number of unscheduled dependencies to the number of
2016     /// dependencies.
2017     void resetUnscheduledDeps() {
2018       incrementUnscheduledDeps(Dependencies - UnscheduledDeps);
2019     }
2020 
2021     /// Clears all dependency information.
2022     void clearDependencies() {
2023       Dependencies = InvalidDeps;
2024       resetUnscheduledDeps();
2025       MemoryDependencies.clear();
2026     }
2027 
2028     void dump(raw_ostream &os) const {
2029       if (!isSchedulingEntity()) {
2030         os << "/ " << *Inst;
2031       } else if (NextInBundle) {
2032         os << '[' << *Inst;
2033         ScheduleData *SD = NextInBundle;
2034         while (SD) {
2035           os << ';' << *SD->Inst;
2036           SD = SD->NextInBundle;
2037         }
2038         os << ']';
2039       } else {
2040         os << *Inst;
2041       }
2042     }
2043 
2044     Instruction *Inst = nullptr;
2045 
2046     /// Points to the head in an instruction bundle (and always to this for
2047     /// single instructions).
2048     ScheduleData *FirstInBundle = nullptr;
2049 
2050     /// Single linked list of all instructions in a bundle. Null if it is a
2051     /// single instruction.
2052     ScheduleData *NextInBundle = nullptr;
2053 
2054     /// Single linked list of all memory instructions (e.g. load, store, call)
2055     /// in the block - until the end of the scheduling region.
2056     ScheduleData *NextLoadStore = nullptr;
2057 
2058     /// The dependent memory instructions.
2059     /// This list is derived on demand in calculateDependencies().
2060     SmallVector<ScheduleData *, 4> MemoryDependencies;
2061 
2062     /// This ScheduleData is in the current scheduling region if this matches
2063     /// the current SchedulingRegionID of BlockScheduling.
2064     int SchedulingRegionID = 0;
2065 
2066     /// Used for getting a "good" final ordering of instructions.
2067     int SchedulingPriority = 0;
2068 
2069     /// The number of dependencies. Constitutes of the number of users of the
2070     /// instruction plus the number of dependent memory instructions (if any).
2071     /// This value is calculated on demand.
2072     /// If InvalidDeps, the number of dependencies is not calculated yet.
2073     int Dependencies = InvalidDeps;
2074 
2075     /// The number of dependencies minus the number of dependencies of scheduled
2076     /// instructions. As soon as this is zero, the instruction/bundle gets ready
2077     /// for scheduling.
2078     /// Note that this is negative as long as Dependencies is not calculated.
2079     int UnscheduledDeps = InvalidDeps;
2080 
2081     /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for
2082     /// single instructions.
2083     int UnscheduledDepsInBundle = InvalidDeps;
2084 
2085     /// True if this instruction is scheduled (or considered as scheduled in the
2086     /// dry-run).
2087     bool IsScheduled = false;
2088 
2089     /// Opcode of the current instruction in the schedule data.
2090     Value *OpValue = nullptr;
2091 
2092     /// The TreeEntry that this instruction corresponds to.
2093     TreeEntry *TE = nullptr;
2094 
2095     /// The lane of this node in the TreeEntry.
2096     int Lane = -1;
2097   };
2098 
2099 #ifndef NDEBUG
2100   friend inline raw_ostream &operator<<(raw_ostream &os,
2101                                         const BoUpSLP::ScheduleData &SD) {
2102     SD.dump(os);
2103     return os;
2104   }
2105 #endif
2106 
2107   friend struct GraphTraits<BoUpSLP *>;
2108   friend struct DOTGraphTraits<BoUpSLP *>;
2109 
2110   /// Contains all scheduling data for a basic block.
2111   struct BlockScheduling {
2112     BlockScheduling(BasicBlock *BB)
2113         : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {}
2114 
2115     void clear() {
2116       ReadyInsts.clear();
2117       ScheduleStart = nullptr;
2118       ScheduleEnd = nullptr;
2119       FirstLoadStoreInRegion = nullptr;
2120       LastLoadStoreInRegion = nullptr;
2121 
2122       // Reduce the maximum schedule region size by the size of the
2123       // previous scheduling run.
2124       ScheduleRegionSizeLimit -= ScheduleRegionSize;
2125       if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
2126         ScheduleRegionSizeLimit = MinScheduleRegionSize;
2127       ScheduleRegionSize = 0;
2128 
2129       // Make a new scheduling region, i.e. all existing ScheduleData is not
2130       // in the new region yet.
2131       ++SchedulingRegionID;
2132     }
2133 
2134     ScheduleData *getScheduleData(Value *V) {
2135       ScheduleData *SD = ScheduleDataMap[V];
2136       if (SD && SD->SchedulingRegionID == SchedulingRegionID)
2137         return SD;
2138       return nullptr;
2139     }
2140 
2141     ScheduleData *getScheduleData(Value *V, Value *Key) {
2142       if (V == Key)
2143         return getScheduleData(V);
2144       auto I = ExtraScheduleDataMap.find(V);
2145       if (I != ExtraScheduleDataMap.end()) {
2146         ScheduleData *SD = I->second[Key];
2147         if (SD && SD->SchedulingRegionID == SchedulingRegionID)
2148           return SD;
2149       }
2150       return nullptr;
2151     }
2152 
2153     bool isInSchedulingRegion(ScheduleData *SD) const {
2154       return SD->SchedulingRegionID == SchedulingRegionID;
2155     }
2156 
2157     /// Marks an instruction as scheduled and puts all dependent ready
2158     /// instructions into the ready-list.
2159     template <typename ReadyListType>
2160     void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
2161       SD->IsScheduled = true;
2162       LLVM_DEBUG(dbgs() << "SLP:   schedule " << *SD << "\n");
2163 
2164       ScheduleData *BundleMember = SD;
2165       while (BundleMember) {
2166         if (BundleMember->Inst != BundleMember->OpValue) {
2167           BundleMember = BundleMember->NextInBundle;
2168           continue;
2169         }
2170         // Handle the def-use chain dependencies.
2171 
2172         // Decrement the unscheduled counter and insert to ready list if ready.
2173         auto &&DecrUnsched = [this, &ReadyList](Instruction *I) {
2174           doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) {
2175             if (OpDef && OpDef->hasValidDependencies() &&
2176                 OpDef->incrementUnscheduledDeps(-1) == 0) {
2177               // There are no more unscheduled dependencies after
2178               // decrementing, so we can put the dependent instruction
2179               // into the ready list.
2180               ScheduleData *DepBundle = OpDef->FirstInBundle;
2181               assert(!DepBundle->IsScheduled &&
2182                      "already scheduled bundle gets ready");
2183               ReadyList.insert(DepBundle);
2184               LLVM_DEBUG(dbgs()
2185                          << "SLP:    gets ready (def): " << *DepBundle << "\n");
2186             }
2187           });
2188         };
2189 
2190         // If BundleMember is a vector bundle, its operands may have been
2191         // reordered duiring buildTree(). We therefore need to get its operands
2192         // through the TreeEntry.
2193         if (TreeEntry *TE = BundleMember->TE) {
2194           int Lane = BundleMember->Lane;
2195           assert(Lane >= 0 && "Lane not set");
2196 
2197           // Since vectorization tree is being built recursively this assertion
2198           // ensures that the tree entry has all operands set before reaching
2199           // this code. Couple of exceptions known at the moment are extracts
2200           // where their second (immediate) operand is not added. Since
2201           // immediates do not affect scheduler behavior this is considered
2202           // okay.
2203           auto *In = TE->getMainOp();
2204           assert(In &&
2205                  (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) ||
2206                   In->getNumOperands() == TE->getNumOperands()) &&
2207                  "Missed TreeEntry operands?");
2208           (void)In; // fake use to avoid build failure when assertions disabled
2209 
2210           for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands();
2211                OpIdx != NumOperands; ++OpIdx)
2212             if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane]))
2213               DecrUnsched(I);
2214         } else {
2215           // If BundleMember is a stand-alone instruction, no operand reordering
2216           // has taken place, so we directly access its operands.
2217           for (Use &U : BundleMember->Inst->operands())
2218             if (auto *I = dyn_cast<Instruction>(U.get()))
2219               DecrUnsched(I);
2220         }
2221         // Handle the memory dependencies.
2222         for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
2223           if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
2224             // There are no more unscheduled dependencies after decrementing,
2225             // so we can put the dependent instruction into the ready list.
2226             ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
2227             assert(!DepBundle->IsScheduled &&
2228                    "already scheduled bundle gets ready");
2229             ReadyList.insert(DepBundle);
2230             LLVM_DEBUG(dbgs()
2231                        << "SLP:    gets ready (mem): " << *DepBundle << "\n");
2232           }
2233         }
2234         BundleMember = BundleMember->NextInBundle;
2235       }
2236     }
2237 
2238     void doForAllOpcodes(Value *V,
2239                          function_ref<void(ScheduleData *SD)> Action) {
2240       if (ScheduleData *SD = getScheduleData(V))
2241         Action(SD);
2242       auto I = ExtraScheduleDataMap.find(V);
2243       if (I != ExtraScheduleDataMap.end())
2244         for (auto &P : I->second)
2245           if (P.second->SchedulingRegionID == SchedulingRegionID)
2246             Action(P.second);
2247     }
2248 
2249     /// Put all instructions into the ReadyList which are ready for scheduling.
2250     template <typename ReadyListType>
2251     void initialFillReadyList(ReadyListType &ReadyList) {
2252       for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
2253         doForAllOpcodes(I, [&](ScheduleData *SD) {
2254           if (SD->isSchedulingEntity() && SD->isReady()) {
2255             ReadyList.insert(SD);
2256             LLVM_DEBUG(dbgs()
2257                        << "SLP:    initially in ready list: " << *I << "\n");
2258           }
2259         });
2260       }
2261     }
2262 
2263     /// Checks if a bundle of instructions can be scheduled, i.e. has no
2264     /// cyclic dependencies. This is only a dry-run, no instructions are
2265     /// actually moved at this stage.
2266     /// \returns the scheduling bundle. The returned Optional value is non-None
2267     /// if \p VL is allowed to be scheduled.
2268     Optional<ScheduleData *>
2269     tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
2270                       const InstructionsState &S);
2271 
2272     /// Un-bundles a group of instructions.
2273     void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue);
2274 
2275     /// Allocates schedule data chunk.
2276     ScheduleData *allocateScheduleDataChunks();
2277 
2278     /// Extends the scheduling region so that V is inside the region.
2279     /// \returns true if the region size is within the limit.
2280     bool extendSchedulingRegion(Value *V, const InstructionsState &S);
2281 
2282     /// Initialize the ScheduleData structures for new instructions in the
2283     /// scheduling region.
2284     void initScheduleData(Instruction *FromI, Instruction *ToI,
2285                           ScheduleData *PrevLoadStore,
2286                           ScheduleData *NextLoadStore);
2287 
2288     /// Updates the dependency information of a bundle and of all instructions/
2289     /// bundles which depend on the original bundle.
2290     void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
2291                                BoUpSLP *SLP);
2292 
2293     /// Sets all instruction in the scheduling region to un-scheduled.
2294     void resetSchedule();
2295 
2296     BasicBlock *BB;
2297 
2298     /// Simple memory allocation for ScheduleData.
2299     std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
2300 
2301     /// The size of a ScheduleData array in ScheduleDataChunks.
2302     int ChunkSize;
2303 
2304     /// The allocator position in the current chunk, which is the last entry
2305     /// of ScheduleDataChunks.
2306     int ChunkPos;
2307 
2308     /// Attaches ScheduleData to Instruction.
2309     /// Note that the mapping survives during all vectorization iterations, i.e.
2310     /// ScheduleData structures are recycled.
2311     DenseMap<Value *, ScheduleData *> ScheduleDataMap;
2312 
2313     /// Attaches ScheduleData to Instruction with the leading key.
2314     DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>>
2315         ExtraScheduleDataMap;
2316 
2317     struct ReadyList : SmallVector<ScheduleData *, 8> {
2318       void insert(ScheduleData *SD) { push_back(SD); }
2319     };
2320 
2321     /// The ready-list for scheduling (only used for the dry-run).
2322     ReadyList ReadyInsts;
2323 
2324     /// The first instruction of the scheduling region.
2325     Instruction *ScheduleStart = nullptr;
2326 
2327     /// The first instruction _after_ the scheduling region.
2328     Instruction *ScheduleEnd = nullptr;
2329 
2330     /// The first memory accessing instruction in the scheduling region
2331     /// (can be null).
2332     ScheduleData *FirstLoadStoreInRegion = nullptr;
2333 
2334     /// The last memory accessing instruction in the scheduling region
2335     /// (can be null).
2336     ScheduleData *LastLoadStoreInRegion = nullptr;
2337 
2338     /// The current size of the scheduling region.
2339     int ScheduleRegionSize = 0;
2340 
2341     /// The maximum size allowed for the scheduling region.
2342     int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget;
2343 
2344     /// The ID of the scheduling region. For a new vectorization iteration this
2345     /// is incremented which "removes" all ScheduleData from the region.
2346     // Make sure that the initial SchedulingRegionID is greater than the
2347     // initial SchedulingRegionID in ScheduleData (which is 0).
2348     int SchedulingRegionID = 1;
2349   };
2350 
2351   /// Attaches the BlockScheduling structures to basic blocks.
2352   MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
2353 
2354   /// Performs the "real" scheduling. Done before vectorization is actually
2355   /// performed in a basic block.
2356   void scheduleBlock(BlockScheduling *BS);
2357 
2358   /// List of users to ignore during scheduling and that don't need extracting.
2359   ArrayRef<Value *> UserIgnoreList;
2360 
2361   /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of
2362   /// sorted SmallVectors of unsigned.
2363   struct OrdersTypeDenseMapInfo {
2364     static OrdersType getEmptyKey() {
2365       OrdersType V;
2366       V.push_back(~1U);
2367       return V;
2368     }
2369 
2370     static OrdersType getTombstoneKey() {
2371       OrdersType V;
2372       V.push_back(~2U);
2373       return V;
2374     }
2375 
2376     static unsigned getHashValue(const OrdersType &V) {
2377       return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
2378     }
2379 
2380     static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) {
2381       return LHS == RHS;
2382     }
2383   };
2384 
2385   /// Contains orders of operations along with the number of bundles that have
2386   /// operations in this order. It stores only those orders that require
2387   /// reordering, if reordering is not required it is counted using \a
2388   /// NumOpsWantToKeepOriginalOrder.
2389   DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder;
2390   /// Number of bundles that do not require reordering.
2391   unsigned NumOpsWantToKeepOriginalOrder = 0;
2392 
2393   // Analysis and block reference.
2394   Function *F;
2395   ScalarEvolution *SE;
2396   TargetTransformInfo *TTI;
2397   TargetLibraryInfo *TLI;
2398   AAResults *AA;
2399   LoopInfo *LI;
2400   DominatorTree *DT;
2401   AssumptionCache *AC;
2402   DemandedBits *DB;
2403   const DataLayout *DL;
2404   OptimizationRemarkEmitter *ORE;
2405 
2406   unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
2407   unsigned MinVecRegSize; // Set by cl::opt (default: 128).
2408 
2409   /// Instruction builder to construct the vectorized tree.
2410   IRBuilder<> Builder;
2411 
2412   /// A map of scalar integer values to the smallest bit width with which they
2413   /// can legally be represented. The values map to (width, signed) pairs,
2414   /// where "width" indicates the minimum bit width and "signed" is True if the
2415   /// value must be signed-extended, rather than zero-extended, back to its
2416   /// original width.
2417   MapVector<Value *, std::pair<uint64_t, bool>> MinBWs;
2418 };
2419 
2420 } // end namespace slpvectorizer
2421 
2422 template <> struct GraphTraits<BoUpSLP *> {
2423   using TreeEntry = BoUpSLP::TreeEntry;
2424 
2425   /// NodeRef has to be a pointer per the GraphWriter.
2426   using NodeRef = TreeEntry *;
2427 
2428   using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy;
2429 
2430   /// Add the VectorizableTree to the index iterator to be able to return
2431   /// TreeEntry pointers.
2432   struct ChildIteratorType
2433       : public iterator_adaptor_base<
2434             ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> {
2435     ContainerTy &VectorizableTree;
2436 
2437     ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W,
2438                       ContainerTy &VT)
2439         : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {}
2440 
2441     NodeRef operator*() { return I->UserTE; }
2442   };
2443 
2444   static NodeRef getEntryNode(BoUpSLP &R) {
2445     return R.VectorizableTree[0].get();
2446   }
2447 
2448   static ChildIteratorType child_begin(NodeRef N) {
2449     return {N->UserTreeIndices.begin(), N->Container};
2450   }
2451 
2452   static ChildIteratorType child_end(NodeRef N) {
2453     return {N->UserTreeIndices.end(), N->Container};
2454   }
2455 
2456   /// For the node iterator we just need to turn the TreeEntry iterator into a
2457   /// TreeEntry* iterator so that it dereferences to NodeRef.
2458   class nodes_iterator {
2459     using ItTy = ContainerTy::iterator;
2460     ItTy It;
2461 
2462   public:
2463     nodes_iterator(const ItTy &It2) : It(It2) {}
2464     NodeRef operator*() { return It->get(); }
2465     nodes_iterator operator++() {
2466       ++It;
2467       return *this;
2468     }
2469     bool operator!=(const nodes_iterator &N2) const { return N2.It != It; }
2470   };
2471 
2472   static nodes_iterator nodes_begin(BoUpSLP *R) {
2473     return nodes_iterator(R->VectorizableTree.begin());
2474   }
2475 
2476   static nodes_iterator nodes_end(BoUpSLP *R) {
2477     return nodes_iterator(R->VectorizableTree.end());
2478   }
2479 
2480   static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); }
2481 };
2482 
2483 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits {
2484   using TreeEntry = BoUpSLP::TreeEntry;
2485 
2486   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
2487 
2488   std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) {
2489     std::string Str;
2490     raw_string_ostream OS(Str);
2491     if (isSplat(Entry->Scalars)) {
2492       OS << "<splat> " << *Entry->Scalars[0];
2493       return Str;
2494     }
2495     for (auto V : Entry->Scalars) {
2496       OS << *V;
2497       if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) {
2498             return EU.Scalar == V;
2499           }))
2500         OS << " <extract>";
2501       OS << "\n";
2502     }
2503     return Str;
2504   }
2505 
2506   static std::string getNodeAttributes(const TreeEntry *Entry,
2507                                        const BoUpSLP *) {
2508     if (Entry->State == TreeEntry::NeedToGather)
2509       return "color=red";
2510     return "";
2511   }
2512 };
2513 
2514 } // end namespace llvm
2515 
2516 BoUpSLP::~BoUpSLP() {
2517   for (const auto &Pair : DeletedInstructions) {
2518     // Replace operands of ignored instructions with Undefs in case if they were
2519     // marked for deletion.
2520     if (Pair.getSecond()) {
2521       Value *Undef = UndefValue::get(Pair.getFirst()->getType());
2522       Pair.getFirst()->replaceAllUsesWith(Undef);
2523     }
2524     Pair.getFirst()->dropAllReferences();
2525   }
2526   for (const auto &Pair : DeletedInstructions) {
2527     assert(Pair.getFirst()->use_empty() &&
2528            "trying to erase instruction with users.");
2529     Pair.getFirst()->eraseFromParent();
2530   }
2531 #ifdef EXPENSIVE_CHECKS
2532   // If we could guarantee that this call is not extremely slow, we could
2533   // remove the ifdef limitation (see PR47712).
2534   assert(!verifyFunction(*F, &dbgs()));
2535 #endif
2536 }
2537 
2538 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) {
2539   for (auto *V : AV) {
2540     if (auto *I = dyn_cast<Instruction>(V))
2541       eraseInstruction(I, /*ReplaceOpsWithUndef=*/true);
2542   };
2543 }
2544 
2545 void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
2546                         ArrayRef<Value *> UserIgnoreLst) {
2547   ExtraValueToDebugLocsMap ExternallyUsedValues;
2548   buildTree(Roots, ExternallyUsedValues, UserIgnoreLst);
2549 }
2550 
2551 static int findLaneForValue(ArrayRef<Value *> Scalars,
2552                             ArrayRef<int> ReuseShuffleIndices, Value *V) {
2553   unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V));
2554   assert(FoundLane < Scalars.size() && "Couldn't find extract lane");
2555   if (!ReuseShuffleIndices.empty()) {
2556     FoundLane = std::distance(ReuseShuffleIndices.begin(),
2557                               find(ReuseShuffleIndices, FoundLane));
2558   }
2559   return FoundLane;
2560 }
2561 
2562 void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
2563                         ExtraValueToDebugLocsMap &ExternallyUsedValues,
2564                         ArrayRef<Value *> UserIgnoreLst) {
2565   deleteTree();
2566   UserIgnoreList = UserIgnoreLst;
2567   if (!allSameType(Roots))
2568     return;
2569   buildTree_rec(Roots, 0, EdgeInfo());
2570 
2571   // Collect the values that we need to extract from the tree.
2572   for (auto &TEPtr : VectorizableTree) {
2573     TreeEntry *Entry = TEPtr.get();
2574 
2575     // No need to handle users of gathered values.
2576     if (Entry->State == TreeEntry::NeedToGather)
2577       continue;
2578 
2579     // For each lane:
2580     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
2581       Value *Scalar = Entry->Scalars[Lane];
2582       int FoundLane =
2583           findLaneForValue(Entry->Scalars, Entry->ReuseShuffleIndices, Scalar);
2584 
2585       // Check if the scalar is externally used as an extra arg.
2586       auto ExtI = ExternallyUsedValues.find(Scalar);
2587       if (ExtI != ExternallyUsedValues.end()) {
2588         LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane "
2589                           << Lane << " from " << *Scalar << ".\n");
2590         ExternalUses.emplace_back(Scalar, nullptr, FoundLane);
2591       }
2592       for (User *U : Scalar->users()) {
2593         LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
2594 
2595         Instruction *UserInst = dyn_cast<Instruction>(U);
2596         if (!UserInst)
2597           continue;
2598 
2599         // Skip in-tree scalars that become vectors
2600         if (TreeEntry *UseEntry = getTreeEntry(U)) {
2601           Value *UseScalar = UseEntry->Scalars[0];
2602           // Some in-tree scalars will remain as scalar in vectorized
2603           // instructions. If that is the case, the one in Lane 0 will
2604           // be used.
2605           if (UseScalar != U ||
2606               UseEntry->State == TreeEntry::ScatterVectorize ||
2607               !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
2608             LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
2609                               << ".\n");
2610             assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state");
2611             continue;
2612           }
2613         }
2614 
2615         // Ignore users in the user ignore list.
2616         if (is_contained(UserIgnoreList, UserInst))
2617           continue;
2618 
2619         LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane "
2620                           << Lane << " from " << *Scalar << ".\n");
2621         ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane));
2622       }
2623     }
2624   }
2625 }
2626 
2627 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth,
2628                             const EdgeInfo &UserTreeIdx) {
2629   assert((allConstant(VL) || allSameType(VL)) && "Invalid types!");
2630 
2631   InstructionsState S = getSameOpcode(VL);
2632   if (Depth == RecursionMaxDepth) {
2633     LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
2634     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2635     return;
2636   }
2637 
2638   // Don't handle vectors.
2639   if (S.OpValue->getType()->isVectorTy()) {
2640     LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
2641     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2642     return;
2643   }
2644 
2645   if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
2646     if (SI->getValueOperand()->getType()->isVectorTy()) {
2647       LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
2648       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2649       return;
2650     }
2651 
2652   // If all of the operands are identical or constant we have a simple solution.
2653   if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) {
2654     LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
2655     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2656     return;
2657   }
2658 
2659   // We now know that this is a vector of instructions of the same type from
2660   // the same block.
2661 
2662   // Don't vectorize ephemeral values.
2663   for (Value *V : VL) {
2664     if (EphValues.count(V)) {
2665       LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
2666                         << ") is ephemeral.\n");
2667       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2668       return;
2669     }
2670   }
2671 
2672   // Check if this is a duplicate of another entry.
2673   if (TreeEntry *E = getTreeEntry(S.OpValue)) {
2674     LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n");
2675     if (!E->isSame(VL)) {
2676       LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
2677       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2678       return;
2679     }
2680     // Record the reuse of the tree node.  FIXME, currently this is only used to
2681     // properly draw the graph rather than for the actual vectorization.
2682     E->UserTreeIndices.push_back(UserTreeIdx);
2683     LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue
2684                       << ".\n");
2685     return;
2686   }
2687 
2688   // Check that none of the instructions in the bundle are already in the tree.
2689   for (Value *V : VL) {
2690     auto *I = dyn_cast<Instruction>(V);
2691     if (!I)
2692       continue;
2693     if (getTreeEntry(I)) {
2694       LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
2695                         << ") is already in tree.\n");
2696       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2697       return;
2698     }
2699   }
2700 
2701   // If any of the scalars is marked as a value that needs to stay scalar, then
2702   // we need to gather the scalars.
2703   // The reduction nodes (stored in UserIgnoreList) also should stay scalar.
2704   for (Value *V : VL) {
2705     if (MustGather.count(V) || is_contained(UserIgnoreList, V)) {
2706       LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
2707       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2708       return;
2709     }
2710   }
2711 
2712   // Check that all of the users of the scalars that we want to vectorize are
2713   // schedulable.
2714   auto *VL0 = cast<Instruction>(S.OpValue);
2715   BasicBlock *BB = VL0->getParent();
2716 
2717   if (!DT->isReachableFromEntry(BB)) {
2718     // Don't go into unreachable blocks. They may contain instructions with
2719     // dependency cycles which confuse the final scheduling.
2720     LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
2721     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2722     return;
2723   }
2724 
2725   // Check that every instruction appears once in this bundle.
2726   SmallVector<unsigned, 4> ReuseShuffleIndicies;
2727   SmallVector<Value *, 4> UniqueValues;
2728   DenseMap<Value *, unsigned> UniquePositions;
2729   for (Value *V : VL) {
2730     auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
2731     ReuseShuffleIndicies.emplace_back(Res.first->second);
2732     if (Res.second)
2733       UniqueValues.emplace_back(V);
2734   }
2735   size_t NumUniqueScalarValues = UniqueValues.size();
2736   if (NumUniqueScalarValues == VL.size()) {
2737     ReuseShuffleIndicies.clear();
2738   } else {
2739     LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n");
2740     if (NumUniqueScalarValues <= 1 ||
2741         !llvm::isPowerOf2_32(NumUniqueScalarValues)) {
2742       LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
2743       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2744       return;
2745     }
2746     VL = UniqueValues;
2747   }
2748 
2749   auto &BSRef = BlocksSchedules[BB];
2750   if (!BSRef)
2751     BSRef = std::make_unique<BlockScheduling>(BB);
2752 
2753   BlockScheduling &BS = *BSRef.get();
2754 
2755   Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S);
2756   if (!Bundle) {
2757     LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
2758     assert((!BS.getScheduleData(VL0) ||
2759             !BS.getScheduleData(VL0)->isPartOfBundle()) &&
2760            "tryScheduleBundle should cancelScheduling on failure");
2761     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2762                  ReuseShuffleIndicies);
2763     return;
2764   }
2765   LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
2766 
2767   unsigned ShuffleOrOp = S.isAltShuffle() ?
2768                 (unsigned) Instruction::ShuffleVector : S.getOpcode();
2769   switch (ShuffleOrOp) {
2770     case Instruction::PHI: {
2771       auto *PH = cast<PHINode>(VL0);
2772 
2773       // Check for terminator values (e.g. invoke).
2774       for (Value *V : VL)
2775         for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) {
2776           Instruction *Term = dyn_cast<Instruction>(
2777               cast<PHINode>(V)->getIncomingValueForBlock(
2778                   PH->getIncomingBlock(I)));
2779           if (Term && Term->isTerminator()) {
2780             LLVM_DEBUG(dbgs()
2781                        << "SLP: Need to swizzle PHINodes (terminator use).\n");
2782             BS.cancelScheduling(VL, VL0);
2783             newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2784                          ReuseShuffleIndicies);
2785             return;
2786           }
2787         }
2788 
2789       TreeEntry *TE =
2790           newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies);
2791       LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
2792 
2793       // Keeps the reordered operands to avoid code duplication.
2794       SmallVector<ValueList, 2> OperandsVec;
2795       for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) {
2796         ValueList Operands;
2797         // Prepare the operand vector.
2798         for (Value *V : VL)
2799           Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(
2800               PH->getIncomingBlock(I)));
2801         TE->setOperand(I, Operands);
2802         OperandsVec.push_back(Operands);
2803       }
2804       for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx)
2805         buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx});
2806       return;
2807     }
2808     case Instruction::ExtractValue:
2809     case Instruction::ExtractElement: {
2810       OrdersType CurrentOrder;
2811       bool Reuse = canReuseExtract(VL, VL0, CurrentOrder);
2812       if (Reuse) {
2813         LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n");
2814         ++NumOpsWantToKeepOriginalOrder;
2815         newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2816                      ReuseShuffleIndicies);
2817         // This is a special case, as it does not gather, but at the same time
2818         // we are not extending buildTree_rec() towards the operands.
2819         ValueList Op0;
2820         Op0.assign(VL.size(), VL0->getOperand(0));
2821         VectorizableTree.back()->setOperand(0, Op0);
2822         return;
2823       }
2824       if (!CurrentOrder.empty()) {
2825         LLVM_DEBUG({
2826           dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
2827                     "with order";
2828           for (unsigned Idx : CurrentOrder)
2829             dbgs() << " " << Idx;
2830           dbgs() << "\n";
2831         });
2832         // Insert new order with initial value 0, if it does not exist,
2833         // otherwise return the iterator to the existing one.
2834         newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2835                      ReuseShuffleIndicies, CurrentOrder);
2836         findRootOrder(CurrentOrder);
2837         ++NumOpsWantToKeepOrder[CurrentOrder];
2838         // This is a special case, as it does not gather, but at the same time
2839         // we are not extending buildTree_rec() towards the operands.
2840         ValueList Op0;
2841         Op0.assign(VL.size(), VL0->getOperand(0));
2842         VectorizableTree.back()->setOperand(0, Op0);
2843         return;
2844       }
2845       LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n");
2846       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2847                    ReuseShuffleIndicies);
2848       BS.cancelScheduling(VL, VL0);
2849       return;
2850     }
2851     case Instruction::Load: {
2852       // Check that a vectorized load would load the same memory as a scalar
2853       // load. For example, we don't want to vectorize loads that are smaller
2854       // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
2855       // treats loading/storing it as an i8 struct. If we vectorize loads/stores
2856       // from such a struct, we read/write packed bits disagreeing with the
2857       // unvectorized version.
2858       Type *ScalarTy = VL0->getType();
2859 
2860       if (DL->getTypeSizeInBits(ScalarTy) !=
2861           DL->getTypeAllocSizeInBits(ScalarTy)) {
2862         BS.cancelScheduling(VL, VL0);
2863         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2864                      ReuseShuffleIndicies);
2865         LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n");
2866         return;
2867       }
2868 
2869       // Make sure all loads in the bundle are simple - we can't vectorize
2870       // atomic or volatile loads.
2871       SmallVector<Value *, 4> PointerOps(VL.size());
2872       auto POIter = PointerOps.begin();
2873       for (Value *V : VL) {
2874         auto *L = cast<LoadInst>(V);
2875         if (!L->isSimple()) {
2876           BS.cancelScheduling(VL, VL0);
2877           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2878                        ReuseShuffleIndicies);
2879           LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
2880           return;
2881         }
2882         *POIter = L->getPointerOperand();
2883         ++POIter;
2884       }
2885 
2886       OrdersType CurrentOrder;
2887       // Check the order of pointer operands.
2888       if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) {
2889         Value *Ptr0;
2890         Value *PtrN;
2891         if (CurrentOrder.empty()) {
2892           Ptr0 = PointerOps.front();
2893           PtrN = PointerOps.back();
2894         } else {
2895           Ptr0 = PointerOps[CurrentOrder.front()];
2896           PtrN = PointerOps[CurrentOrder.back()];
2897         }
2898         Optional<int> Diff = getPointersDiff(Ptr0, PtrN, *DL, *SE);
2899         // Check that the sorted loads are consecutive.
2900         if (static_cast<unsigned>(*Diff) == VL.size() - 1) {
2901           if (CurrentOrder.empty()) {
2902             // Original loads are consecutive and does not require reordering.
2903             ++NumOpsWantToKeepOriginalOrder;
2904             TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
2905                                          UserTreeIdx, ReuseShuffleIndicies);
2906             TE->setOperandsInOrder();
2907             LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n");
2908           } else {
2909             // Need to reorder.
2910             TreeEntry *TE =
2911                 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2912                              ReuseShuffleIndicies, CurrentOrder);
2913             TE->setOperandsInOrder();
2914             LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n");
2915             findRootOrder(CurrentOrder);
2916             ++NumOpsWantToKeepOrder[CurrentOrder];
2917           }
2918           return;
2919         }
2920         // Vectorizing non-consecutive loads with `llvm.masked.gather`.
2921         TreeEntry *TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S,
2922                                      UserTreeIdx, ReuseShuffleIndicies);
2923         TE->setOperandsInOrder();
2924         buildTree_rec(PointerOps, Depth + 1, {TE, 0});
2925         LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n");
2926         return;
2927       }
2928 
2929       LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
2930       BS.cancelScheduling(VL, VL0);
2931       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2932                    ReuseShuffleIndicies);
2933       return;
2934     }
2935     case Instruction::ZExt:
2936     case Instruction::SExt:
2937     case Instruction::FPToUI:
2938     case Instruction::FPToSI:
2939     case Instruction::FPExt:
2940     case Instruction::PtrToInt:
2941     case Instruction::IntToPtr:
2942     case Instruction::SIToFP:
2943     case Instruction::UIToFP:
2944     case Instruction::Trunc:
2945     case Instruction::FPTrunc:
2946     case Instruction::BitCast: {
2947       Type *SrcTy = VL0->getOperand(0)->getType();
2948       for (Value *V : VL) {
2949         Type *Ty = cast<Instruction>(V)->getOperand(0)->getType();
2950         if (Ty != SrcTy || !isValidElementType(Ty)) {
2951           BS.cancelScheduling(VL, VL0);
2952           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2953                        ReuseShuffleIndicies);
2954           LLVM_DEBUG(dbgs()
2955                      << "SLP: Gathering casts with different src types.\n");
2956           return;
2957         }
2958       }
2959       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2960                                    ReuseShuffleIndicies);
2961       LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n");
2962 
2963       TE->setOperandsInOrder();
2964       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
2965         ValueList Operands;
2966         // Prepare the operand vector.
2967         for (Value *V : VL)
2968           Operands.push_back(cast<Instruction>(V)->getOperand(i));
2969 
2970         buildTree_rec(Operands, Depth + 1, {TE, i});
2971       }
2972       return;
2973     }
2974     case Instruction::ICmp:
2975     case Instruction::FCmp: {
2976       // Check that all of the compares have the same predicate.
2977       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
2978       CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0);
2979       Type *ComparedTy = VL0->getOperand(0)->getType();
2980       for (Value *V : VL) {
2981         CmpInst *Cmp = cast<CmpInst>(V);
2982         if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) ||
2983             Cmp->getOperand(0)->getType() != ComparedTy) {
2984           BS.cancelScheduling(VL, VL0);
2985           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2986                        ReuseShuffleIndicies);
2987           LLVM_DEBUG(dbgs()
2988                      << "SLP: Gathering cmp with different predicate.\n");
2989           return;
2990         }
2991       }
2992 
2993       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2994                                    ReuseShuffleIndicies);
2995       LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n");
2996 
2997       ValueList Left, Right;
2998       if (cast<CmpInst>(VL0)->isCommutative()) {
2999         // Commutative predicate - collect + sort operands of the instructions
3000         // so that each side is more likely to have the same opcode.
3001         assert(P0 == SwapP0 && "Commutative Predicate mismatch");
3002         reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
3003       } else {
3004         // Collect operands - commute if it uses the swapped predicate.
3005         for (Value *V : VL) {
3006           auto *Cmp = cast<CmpInst>(V);
3007           Value *LHS = Cmp->getOperand(0);
3008           Value *RHS = Cmp->getOperand(1);
3009           if (Cmp->getPredicate() != P0)
3010             std::swap(LHS, RHS);
3011           Left.push_back(LHS);
3012           Right.push_back(RHS);
3013         }
3014       }
3015       TE->setOperand(0, Left);
3016       TE->setOperand(1, Right);
3017       buildTree_rec(Left, Depth + 1, {TE, 0});
3018       buildTree_rec(Right, Depth + 1, {TE, 1});
3019       return;
3020     }
3021     case Instruction::Select:
3022     case Instruction::FNeg:
3023     case Instruction::Add:
3024     case Instruction::FAdd:
3025     case Instruction::Sub:
3026     case Instruction::FSub:
3027     case Instruction::Mul:
3028     case Instruction::FMul:
3029     case Instruction::UDiv:
3030     case Instruction::SDiv:
3031     case Instruction::FDiv:
3032     case Instruction::URem:
3033     case Instruction::SRem:
3034     case Instruction::FRem:
3035     case Instruction::Shl:
3036     case Instruction::LShr:
3037     case Instruction::AShr:
3038     case Instruction::And:
3039     case Instruction::Or:
3040     case Instruction::Xor: {
3041       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3042                                    ReuseShuffleIndicies);
3043       LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n");
3044 
3045       // Sort operands of the instructions so that each side is more likely to
3046       // have the same opcode.
3047       if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
3048         ValueList Left, Right;
3049         reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
3050         TE->setOperand(0, Left);
3051         TE->setOperand(1, Right);
3052         buildTree_rec(Left, Depth + 1, {TE, 0});
3053         buildTree_rec(Right, Depth + 1, {TE, 1});
3054         return;
3055       }
3056 
3057       TE->setOperandsInOrder();
3058       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
3059         ValueList Operands;
3060         // Prepare the operand vector.
3061         for (Value *V : VL)
3062           Operands.push_back(cast<Instruction>(V)->getOperand(i));
3063 
3064         buildTree_rec(Operands, Depth + 1, {TE, i});
3065       }
3066       return;
3067     }
3068     case Instruction::GetElementPtr: {
3069       // We don't combine GEPs with complicated (nested) indexing.
3070       for (Value *V : VL) {
3071         if (cast<Instruction>(V)->getNumOperands() != 2) {
3072           LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
3073           BS.cancelScheduling(VL, VL0);
3074           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3075                        ReuseShuffleIndicies);
3076           return;
3077         }
3078       }
3079 
3080       // We can't combine several GEPs into one vector if they operate on
3081       // different types.
3082       Type *Ty0 = VL0->getOperand(0)->getType();
3083       for (Value *V : VL) {
3084         Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType();
3085         if (Ty0 != CurTy) {
3086           LLVM_DEBUG(dbgs()
3087                      << "SLP: not-vectorizable GEP (different types).\n");
3088           BS.cancelScheduling(VL, VL0);
3089           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3090                        ReuseShuffleIndicies);
3091           return;
3092         }
3093       }
3094 
3095       // We don't combine GEPs with non-constant indexes.
3096       Type *Ty1 = VL0->getOperand(1)->getType();
3097       for (Value *V : VL) {
3098         auto Op = cast<Instruction>(V)->getOperand(1);
3099         if (!isa<ConstantInt>(Op) ||
3100             (Op->getType() != Ty1 &&
3101              Op->getType()->getScalarSizeInBits() >
3102                  DL->getIndexSizeInBits(
3103                      V->getType()->getPointerAddressSpace()))) {
3104           LLVM_DEBUG(dbgs()
3105                      << "SLP: not-vectorizable GEP (non-constant indexes).\n");
3106           BS.cancelScheduling(VL, VL0);
3107           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3108                        ReuseShuffleIndicies);
3109           return;
3110         }
3111       }
3112 
3113       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3114                                    ReuseShuffleIndicies);
3115       LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
3116       TE->setOperandsInOrder();
3117       for (unsigned i = 0, e = 2; i < e; ++i) {
3118         ValueList Operands;
3119         // Prepare the operand vector.
3120         for (Value *V : VL)
3121           Operands.push_back(cast<Instruction>(V)->getOperand(i));
3122 
3123         buildTree_rec(Operands, Depth + 1, {TE, i});
3124       }
3125       return;
3126     }
3127     case Instruction::Store: {
3128       // Check if the stores are consecutive or if we need to swizzle them.
3129       llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType();
3130       // Avoid types that are padded when being allocated as scalars, while
3131       // being packed together in a vector (such as i1).
3132       if (DL->getTypeSizeInBits(ScalarTy) !=
3133           DL->getTypeAllocSizeInBits(ScalarTy)) {
3134         BS.cancelScheduling(VL, VL0);
3135         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3136                      ReuseShuffleIndicies);
3137         LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n");
3138         return;
3139       }
3140       // Make sure all stores in the bundle are simple - we can't vectorize
3141       // atomic or volatile stores.
3142       SmallVector<Value *, 4> PointerOps(VL.size());
3143       ValueList Operands(VL.size());
3144       auto POIter = PointerOps.begin();
3145       auto OIter = Operands.begin();
3146       for (Value *V : VL) {
3147         auto *SI = cast<StoreInst>(V);
3148         if (!SI->isSimple()) {
3149           BS.cancelScheduling(VL, VL0);
3150           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3151                        ReuseShuffleIndicies);
3152           LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n");
3153           return;
3154         }
3155         *POIter = SI->getPointerOperand();
3156         *OIter = SI->getValueOperand();
3157         ++POIter;
3158         ++OIter;
3159       }
3160 
3161       OrdersType CurrentOrder;
3162       // Check the order of pointer operands.
3163       if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) {
3164         Value *Ptr0;
3165         Value *PtrN;
3166         if (CurrentOrder.empty()) {
3167           Ptr0 = PointerOps.front();
3168           PtrN = PointerOps.back();
3169         } else {
3170           Ptr0 = PointerOps[CurrentOrder.front()];
3171           PtrN = PointerOps[CurrentOrder.back()];
3172         }
3173         Optional<int> Dist = getPointersDiff(Ptr0, PtrN, *DL, *SE);
3174         // Check that the sorted pointer operands are consecutive.
3175         if (static_cast<unsigned>(*Dist) == VL.size() - 1) {
3176           if (CurrentOrder.empty()) {
3177             // Original stores are consecutive and does not require reordering.
3178             ++NumOpsWantToKeepOriginalOrder;
3179             TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
3180                                          UserTreeIdx, ReuseShuffleIndicies);
3181             TE->setOperandsInOrder();
3182             buildTree_rec(Operands, Depth + 1, {TE, 0});
3183             LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n");
3184           } else {
3185             TreeEntry *TE =
3186                 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3187                              ReuseShuffleIndicies, CurrentOrder);
3188             TE->setOperandsInOrder();
3189             buildTree_rec(Operands, Depth + 1, {TE, 0});
3190             LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n");
3191             findRootOrder(CurrentOrder);
3192             ++NumOpsWantToKeepOrder[CurrentOrder];
3193           }
3194           return;
3195         }
3196       }
3197 
3198       BS.cancelScheduling(VL, VL0);
3199       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3200                    ReuseShuffleIndicies);
3201       LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
3202       return;
3203     }
3204     case Instruction::Call: {
3205       // Check if the calls are all to the same vectorizable intrinsic or
3206       // library function.
3207       CallInst *CI = cast<CallInst>(VL0);
3208       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3209 
3210       VFShape Shape = VFShape::get(
3211           *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())),
3212           false /*HasGlobalPred*/);
3213       Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3214 
3215       if (!VecFunc && !isTriviallyVectorizable(ID)) {
3216         BS.cancelScheduling(VL, VL0);
3217         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3218                      ReuseShuffleIndicies);
3219         LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
3220         return;
3221       }
3222       Function *F = CI->getCalledFunction();
3223       unsigned NumArgs = CI->getNumArgOperands();
3224       SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr);
3225       for (unsigned j = 0; j != NumArgs; ++j)
3226         if (hasVectorInstrinsicScalarOpd(ID, j))
3227           ScalarArgs[j] = CI->getArgOperand(j);
3228       for (Value *V : VL) {
3229         CallInst *CI2 = dyn_cast<CallInst>(V);
3230         if (!CI2 || CI2->getCalledFunction() != F ||
3231             getVectorIntrinsicIDForCall(CI2, TLI) != ID ||
3232             (VecFunc &&
3233              VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) ||
3234             !CI->hasIdenticalOperandBundleSchema(*CI2)) {
3235           BS.cancelScheduling(VL, VL0);
3236           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3237                        ReuseShuffleIndicies);
3238           LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V
3239                             << "\n");
3240           return;
3241         }
3242         // Some intrinsics have scalar arguments and should be same in order for
3243         // them to be vectorized.
3244         for (unsigned j = 0; j != NumArgs; ++j) {
3245           if (hasVectorInstrinsicScalarOpd(ID, j)) {
3246             Value *A1J = CI2->getArgOperand(j);
3247             if (ScalarArgs[j] != A1J) {
3248               BS.cancelScheduling(VL, VL0);
3249               newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3250                            ReuseShuffleIndicies);
3251               LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
3252                                 << " argument " << ScalarArgs[j] << "!=" << A1J
3253                                 << "\n");
3254               return;
3255             }
3256           }
3257         }
3258         // Verify that the bundle operands are identical between the two calls.
3259         if (CI->hasOperandBundles() &&
3260             !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(),
3261                         CI->op_begin() + CI->getBundleOperandsEndIndex(),
3262                         CI2->op_begin() + CI2->getBundleOperandsStartIndex())) {
3263           BS.cancelScheduling(VL, VL0);
3264           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3265                        ReuseShuffleIndicies);
3266           LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:"
3267                             << *CI << "!=" << *V << '\n');
3268           return;
3269         }
3270       }
3271 
3272       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3273                                    ReuseShuffleIndicies);
3274       TE->setOperandsInOrder();
3275       for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
3276         ValueList Operands;
3277         // Prepare the operand vector.
3278         for (Value *V : VL) {
3279           auto *CI2 = cast<CallInst>(V);
3280           Operands.push_back(CI2->getArgOperand(i));
3281         }
3282         buildTree_rec(Operands, Depth + 1, {TE, i});
3283       }
3284       return;
3285     }
3286     case Instruction::ShuffleVector: {
3287       // If this is not an alternate sequence of opcode like add-sub
3288       // then do not vectorize this instruction.
3289       if (!S.isAltShuffle()) {
3290         BS.cancelScheduling(VL, VL0);
3291         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3292                      ReuseShuffleIndicies);
3293         LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
3294         return;
3295       }
3296       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3297                                    ReuseShuffleIndicies);
3298       LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
3299 
3300       // Reorder operands if reordering would enable vectorization.
3301       if (isa<BinaryOperator>(VL0)) {
3302         ValueList Left, Right;
3303         reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
3304         TE->setOperand(0, Left);
3305         TE->setOperand(1, Right);
3306         buildTree_rec(Left, Depth + 1, {TE, 0});
3307         buildTree_rec(Right, Depth + 1, {TE, 1});
3308         return;
3309       }
3310 
3311       TE->setOperandsInOrder();
3312       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
3313         ValueList Operands;
3314         // Prepare the operand vector.
3315         for (Value *V : VL)
3316           Operands.push_back(cast<Instruction>(V)->getOperand(i));
3317 
3318         buildTree_rec(Operands, Depth + 1, {TE, i});
3319       }
3320       return;
3321     }
3322     default:
3323       BS.cancelScheduling(VL, VL0);
3324       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3325                    ReuseShuffleIndicies);
3326       LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
3327       return;
3328   }
3329 }
3330 
3331 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const {
3332   unsigned N = 1;
3333   Type *EltTy = T;
3334 
3335   while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) ||
3336          isa<VectorType>(EltTy)) {
3337     if (auto *ST = dyn_cast<StructType>(EltTy)) {
3338       // Check that struct is homogeneous.
3339       for (const auto *Ty : ST->elements())
3340         if (Ty != *ST->element_begin())
3341           return 0;
3342       N *= ST->getNumElements();
3343       EltTy = *ST->element_begin();
3344     } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) {
3345       N *= AT->getNumElements();
3346       EltTy = AT->getElementType();
3347     } else {
3348       auto *VT = cast<FixedVectorType>(EltTy);
3349       N *= VT->getNumElements();
3350       EltTy = VT->getElementType();
3351     }
3352   }
3353 
3354   if (!isValidElementType(EltTy))
3355     return 0;
3356   uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N));
3357   if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T))
3358     return 0;
3359   return N;
3360 }
3361 
3362 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
3363                               SmallVectorImpl<unsigned> &CurrentOrder) const {
3364   Instruction *E0 = cast<Instruction>(OpValue);
3365   assert(E0->getOpcode() == Instruction::ExtractElement ||
3366          E0->getOpcode() == Instruction::ExtractValue);
3367   assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode");
3368   // Check if all of the extracts come from the same vector and from the
3369   // correct offset.
3370   Value *Vec = E0->getOperand(0);
3371 
3372   CurrentOrder.clear();
3373 
3374   // We have to extract from a vector/aggregate with the same number of elements.
3375   unsigned NElts;
3376   if (E0->getOpcode() == Instruction::ExtractValue) {
3377     const DataLayout &DL = E0->getModule()->getDataLayout();
3378     NElts = canMapToVector(Vec->getType(), DL);
3379     if (!NElts)
3380       return false;
3381     // Check if load can be rewritten as load of vector.
3382     LoadInst *LI = dyn_cast<LoadInst>(Vec);
3383     if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size()))
3384       return false;
3385   } else {
3386     NElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
3387   }
3388 
3389   if (NElts != VL.size())
3390     return false;
3391 
3392   // Check that all of the indices extract from the correct offset.
3393   bool ShouldKeepOrder = true;
3394   unsigned E = VL.size();
3395   // Assign to all items the initial value E + 1 so we can check if the extract
3396   // instruction index was used already.
3397   // Also, later we can check that all the indices are used and we have a
3398   // consecutive access in the extract instructions, by checking that no
3399   // element of CurrentOrder still has value E + 1.
3400   CurrentOrder.assign(E, E + 1);
3401   unsigned I = 0;
3402   for (; I < E; ++I) {
3403     auto *Inst = cast<Instruction>(VL[I]);
3404     if (Inst->getOperand(0) != Vec)
3405       break;
3406     Optional<unsigned> Idx = getExtractIndex(Inst);
3407     if (!Idx)
3408       break;
3409     const unsigned ExtIdx = *Idx;
3410     if (ExtIdx != I) {
3411       if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1)
3412         break;
3413       ShouldKeepOrder = false;
3414       CurrentOrder[ExtIdx] = I;
3415     } else {
3416       if (CurrentOrder[I] != E + 1)
3417         break;
3418       CurrentOrder[I] = I;
3419     }
3420   }
3421   if (I < E) {
3422     CurrentOrder.clear();
3423     return false;
3424   }
3425 
3426   return ShouldKeepOrder;
3427 }
3428 
3429 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const {
3430   return I->hasOneUse() || llvm::all_of(I->users(), [this](User *U) {
3431            return ScalarToTreeEntry.count(U) > 0;
3432          });
3433 }
3434 
3435 static std::pair<InstructionCost, InstructionCost>
3436 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy,
3437                    TargetTransformInfo *TTI, TargetLibraryInfo *TLI) {
3438   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3439 
3440   // Calculate the cost of the scalar and vector calls.
3441   SmallVector<Type *, 4> VecTys;
3442   for (Use &Arg : CI->args())
3443     VecTys.push_back(
3444         FixedVectorType::get(Arg->getType(), VecTy->getNumElements()));
3445   FastMathFlags FMF;
3446   if (auto *FPCI = dyn_cast<FPMathOperator>(CI))
3447     FMF = FPCI->getFastMathFlags();
3448   SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end());
3449   IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF,
3450                                     dyn_cast<IntrinsicInst>(CI));
3451   auto IntrinsicCost =
3452     TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput);
3453 
3454   auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>(
3455                                      VecTy->getNumElements())),
3456                             false /*HasGlobalPred*/);
3457   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3458   auto LibCost = IntrinsicCost;
3459   if (!CI->isNoBuiltin() && VecFunc) {
3460     // Calculate the cost of the vector library call.
3461     // If the corresponding vector call is cheaper, return its cost.
3462     LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys,
3463                                     TTI::TCK_RecipThroughput);
3464   }
3465   return {IntrinsicCost, LibCost};
3466 }
3467 
3468 /// Compute the cost of creating a vector of type \p VecTy containing the
3469 /// extracted values from \p VL.
3470 static InstructionCost
3471 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy,
3472                    TargetTransformInfo::ShuffleKind ShuffleKind,
3473                    ArrayRef<int> Mask, TargetTransformInfo &TTI) {
3474   unsigned NumOfParts = TTI.getNumberOfParts(VecTy);
3475 
3476   if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts ||
3477       VecTy->getNumElements() < NumOfParts)
3478     return TTI.getShuffleCost(ShuffleKind, VecTy, Mask);
3479 
3480   bool AllConsecutive = true;
3481   unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts;
3482   unsigned Idx = -1;
3483   InstructionCost Cost = 0;
3484 
3485   // Process extracts in blocks of EltsPerVector to check if the source vector
3486   // operand can be re-used directly. If not, add the cost of creating a shuffle
3487   // to extract the values into a vector register.
3488   for (auto *V : VL) {
3489     ++Idx;
3490 
3491     // Reached the start of a new vector registers.
3492     if (Idx % EltsPerVector == 0) {
3493       AllConsecutive = true;
3494       continue;
3495     }
3496 
3497     // Check all extracts for a vector register on the target directly
3498     // extract values in order.
3499     unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V));
3500     unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1]));
3501     AllConsecutive &= PrevIdx + 1 == CurrentIdx &&
3502                       CurrentIdx % EltsPerVector == Idx % EltsPerVector;
3503 
3504     if (AllConsecutive)
3505       continue;
3506 
3507     // Skip all indices, except for the last index per vector block.
3508     if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size())
3509       continue;
3510 
3511     // If we have a series of extracts which are not consecutive and hence
3512     // cannot re-use the source vector register directly, compute the shuffle
3513     // cost to extract the a vector with EltsPerVector elements.
3514     Cost += TTI.getShuffleCost(
3515         TargetTransformInfo::SK_PermuteSingleSrc,
3516         FixedVectorType::get(VecTy->getElementType(), EltsPerVector));
3517   }
3518   return Cost;
3519 }
3520 
3521 InstructionCost BoUpSLP::getEntryCost(TreeEntry *E) {
3522   ArrayRef<Value*> VL = E->Scalars;
3523 
3524   Type *ScalarTy = VL[0]->getType();
3525   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
3526     ScalarTy = SI->getValueOperand()->getType();
3527   else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0]))
3528     ScalarTy = CI->getOperand(0)->getType();
3529   auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
3530   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
3531 
3532   // If we have computed a smaller type for the expression, update VecTy so
3533   // that the costs will be accurate.
3534   if (MinBWs.count(VL[0]))
3535     VecTy = FixedVectorType::get(
3536         IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size());
3537 
3538   unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size();
3539   bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
3540   InstructionCost ReuseShuffleCost = 0;
3541   if (NeedToShuffleReuses) {
3542     ReuseShuffleCost =
3543         TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy,
3544                             E->ReuseShuffleIndices);
3545   }
3546   if (E->State == TreeEntry::NeedToGather) {
3547     if (allConstant(VL))
3548       return 0;
3549     if (isSplat(VL)) {
3550       return ReuseShuffleCost +
3551              TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, None,
3552                                  0);
3553     }
3554     if (E->getOpcode() == Instruction::ExtractElement &&
3555         allSameType(VL) && allSameBlock(VL)) {
3556       SmallVector<int> Mask;
3557       Optional<TargetTransformInfo::ShuffleKind> ShuffleKind =
3558           isShuffle(VL, Mask);
3559       if (ShuffleKind.hasValue()) {
3560         InstructionCost Cost =
3561             computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI);
3562         for (auto *V : VL) {
3563           // If all users of instruction are going to be vectorized and this
3564           // instruction itself is not going to be vectorized, consider this
3565           // instruction as dead and remove its cost from the final cost of the
3566           // vectorized tree.
3567           if (areAllUsersVectorized(cast<Instruction>(V)) &&
3568               !ScalarToTreeEntry.count(V)) {
3569             auto *IO = cast<ConstantInt>(
3570                 cast<ExtractElementInst>(V)->getIndexOperand());
3571             Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy,
3572                                             IO->getZExtValue());
3573           }
3574         }
3575         return ReuseShuffleCost + Cost;
3576       }
3577     }
3578     InstructionCost GatherCost = 0;
3579     SmallVector<int> Mask;
3580     SmallVector<const TreeEntry *> Entries;
3581     Optional<TargetTransformInfo::ShuffleKind> Shuffle =
3582         isGatherShuffledEntry(E, Mask, Entries);
3583     if (Shuffle.hasValue()) {
3584       if (ShuffleVectorInst::isIdentityMask(Mask)) {
3585         LLVM_DEBUG(
3586             dbgs()
3587             << "SLP: perfect diamond match for gather bundle that starts with "
3588             << *VL.front() << ".\n");
3589       } else {
3590         LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size()
3591                           << " entries for bundle that starts with "
3592                           << *VL.front() << ".\n");
3593         GatherCost = TTI->getShuffleCost(*Shuffle, VecTy, Mask);
3594       }
3595     } else {
3596       GatherCost = getGatherCost(VL);
3597     }
3598     return ReuseShuffleCost + GatherCost;
3599   }
3600   assert((E->State == TreeEntry::Vectorize ||
3601           E->State == TreeEntry::ScatterVectorize) &&
3602          "Unhandled state");
3603   assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL");
3604   Instruction *VL0 = E->getMainOp();
3605   unsigned ShuffleOrOp =
3606       E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
3607   switch (ShuffleOrOp) {
3608     case Instruction::PHI:
3609       return 0;
3610 
3611     case Instruction::ExtractValue:
3612     case Instruction::ExtractElement: {
3613       // The common cost of removal ExtractElement/ExtractValue instructions +
3614       // the cost of shuffles, if required to resuffle the original vector.
3615       InstructionCost CommonCost = 0;
3616       if (NeedToShuffleReuses) {
3617         unsigned Idx = 0;
3618         for (unsigned I : E->ReuseShuffleIndices) {
3619           if (ShuffleOrOp == Instruction::ExtractElement) {
3620             auto *IO = cast<ConstantInt>(
3621                 cast<ExtractElementInst>(VL[I])->getIndexOperand());
3622             Idx = IO->getZExtValue();
3623             ReuseShuffleCost -= TTI->getVectorInstrCost(
3624                 Instruction::ExtractElement, VecTy, Idx);
3625           } else {
3626             ReuseShuffleCost -= TTI->getVectorInstrCost(
3627                 Instruction::ExtractElement, VecTy, Idx);
3628             ++Idx;
3629           }
3630         }
3631         Idx = ReuseShuffleNumbers;
3632         for (Value *V : VL) {
3633           if (ShuffleOrOp == Instruction::ExtractElement) {
3634             auto *IO = cast<ConstantInt>(
3635                 cast<ExtractElementInst>(V)->getIndexOperand());
3636             Idx = IO->getZExtValue();
3637           } else {
3638             --Idx;
3639           }
3640           ReuseShuffleCost +=
3641               TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx);
3642         }
3643         CommonCost = ReuseShuffleCost;
3644       } else if (!E->ReorderIndices.empty()) {
3645         SmallVector<int> NewMask;
3646         inversePermutation(E->ReorderIndices, NewMask);
3647         CommonCost = TTI->getShuffleCost(
3648             TargetTransformInfo::SK_PermuteSingleSrc, VecTy, NewMask);
3649       }
3650       for (unsigned I = 0, E = VL.size(); I < E; ++I) {
3651         Instruction *EI = cast<Instruction>(VL[I]);
3652         // If all users are going to be vectorized, instruction can be
3653         // considered as dead.
3654         // The same, if have only one user, it will be vectorized for sure.
3655         if (areAllUsersVectorized(EI)) {
3656           // Take credit for instruction that will become dead.
3657           if (EI->hasOneUse()) {
3658             Instruction *Ext = EI->user_back();
3659             if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
3660                 all_of(Ext->users(),
3661                        [](User *U) { return isa<GetElementPtrInst>(U); })) {
3662               // Use getExtractWithExtendCost() to calculate the cost of
3663               // extractelement/ext pair.
3664               CommonCost -= TTI->getExtractWithExtendCost(
3665                   Ext->getOpcode(), Ext->getType(), VecTy, I);
3666               // Add back the cost of s|zext which is subtracted separately.
3667               CommonCost += TTI->getCastInstrCost(
3668                   Ext->getOpcode(), Ext->getType(), EI->getType(),
3669                   TTI::getCastContextHint(Ext), CostKind, Ext);
3670               continue;
3671             }
3672           }
3673           CommonCost -=
3674               TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I);
3675         }
3676       }
3677       return CommonCost;
3678     }
3679     case Instruction::ZExt:
3680     case Instruction::SExt:
3681     case Instruction::FPToUI:
3682     case Instruction::FPToSI:
3683     case Instruction::FPExt:
3684     case Instruction::PtrToInt:
3685     case Instruction::IntToPtr:
3686     case Instruction::SIToFP:
3687     case Instruction::UIToFP:
3688     case Instruction::Trunc:
3689     case Instruction::FPTrunc:
3690     case Instruction::BitCast: {
3691       Type *SrcTy = VL0->getOperand(0)->getType();
3692       InstructionCost ScalarEltCost =
3693           TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy,
3694                                 TTI::getCastContextHint(VL0), CostKind, VL0);
3695       if (NeedToShuffleReuses) {
3696         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3697       }
3698 
3699       // Calculate the cost of this instruction.
3700       InstructionCost ScalarCost = VL.size() * ScalarEltCost;
3701 
3702       auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size());
3703       InstructionCost VecCost = 0;
3704       // Check if the values are candidates to demote.
3705       if (!MinBWs.count(VL0) || VecTy != SrcVecTy) {
3706         VecCost =
3707             ReuseShuffleCost +
3708             TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy,
3709                                   TTI::getCastContextHint(VL0), CostKind, VL0);
3710       }
3711       LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost));
3712       return VecCost - ScalarCost;
3713     }
3714     case Instruction::FCmp:
3715     case Instruction::ICmp:
3716     case Instruction::Select: {
3717       // Calculate the cost of this instruction.
3718       InstructionCost ScalarEltCost =
3719           TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(),
3720                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0);
3721       if (NeedToShuffleReuses) {
3722         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3723       }
3724       auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size());
3725       InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
3726 
3727       // Check if all entries in VL are either compares or selects with compares
3728       // as condition that have the same predicates.
3729       CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE;
3730       bool First = true;
3731       for (auto *V : VL) {
3732         CmpInst::Predicate CurrentPred;
3733         auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value());
3734         if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) &&
3735              !match(V, MatchCmp)) ||
3736             (!First && VecPred != CurrentPred)) {
3737           VecPred = CmpInst::BAD_ICMP_PREDICATE;
3738           break;
3739         }
3740         First = false;
3741         VecPred = CurrentPred;
3742       }
3743 
3744       InstructionCost VecCost = TTI->getCmpSelInstrCost(
3745           E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0);
3746       // Check if it is possible and profitable to use min/max for selects in
3747       // VL.
3748       //
3749       auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL);
3750       if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) {
3751         IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy,
3752                                           {VecTy, VecTy});
3753         InstructionCost IntrinsicCost =
3754             TTI->getIntrinsicInstrCost(CostAttrs, CostKind);
3755         // If the selects are the only uses of the compares, they will be dead
3756         // and we can adjust the cost by removing their cost.
3757         if (IntrinsicAndUse.second)
3758           IntrinsicCost -=
3759               TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy,
3760                                       CmpInst::BAD_ICMP_PREDICATE, CostKind);
3761         VecCost = std::min(VecCost, IntrinsicCost);
3762       }
3763       LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost));
3764       return ReuseShuffleCost + VecCost - ScalarCost;
3765     }
3766     case Instruction::FNeg:
3767     case Instruction::Add:
3768     case Instruction::FAdd:
3769     case Instruction::Sub:
3770     case Instruction::FSub:
3771     case Instruction::Mul:
3772     case Instruction::FMul:
3773     case Instruction::UDiv:
3774     case Instruction::SDiv:
3775     case Instruction::FDiv:
3776     case Instruction::URem:
3777     case Instruction::SRem:
3778     case Instruction::FRem:
3779     case Instruction::Shl:
3780     case Instruction::LShr:
3781     case Instruction::AShr:
3782     case Instruction::And:
3783     case Instruction::Or:
3784     case Instruction::Xor: {
3785       // Certain instructions can be cheaper to vectorize if they have a
3786       // constant second vector operand.
3787       TargetTransformInfo::OperandValueKind Op1VK =
3788           TargetTransformInfo::OK_AnyValue;
3789       TargetTransformInfo::OperandValueKind Op2VK =
3790           TargetTransformInfo::OK_UniformConstantValue;
3791       TargetTransformInfo::OperandValueProperties Op1VP =
3792           TargetTransformInfo::OP_None;
3793       TargetTransformInfo::OperandValueProperties Op2VP =
3794           TargetTransformInfo::OP_PowerOf2;
3795 
3796       // If all operands are exactly the same ConstantInt then set the
3797       // operand kind to OK_UniformConstantValue.
3798       // If instead not all operands are constants, then set the operand kind
3799       // to OK_AnyValue. If all operands are constants but not the same,
3800       // then set the operand kind to OK_NonUniformConstantValue.
3801       ConstantInt *CInt0 = nullptr;
3802       for (unsigned i = 0, e = VL.size(); i < e; ++i) {
3803         const Instruction *I = cast<Instruction>(VL[i]);
3804         unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0;
3805         ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx));
3806         if (!CInt) {
3807           Op2VK = TargetTransformInfo::OK_AnyValue;
3808           Op2VP = TargetTransformInfo::OP_None;
3809           break;
3810         }
3811         if (Op2VP == TargetTransformInfo::OP_PowerOf2 &&
3812             !CInt->getValue().isPowerOf2())
3813           Op2VP = TargetTransformInfo::OP_None;
3814         if (i == 0) {
3815           CInt0 = CInt;
3816           continue;
3817         }
3818         if (CInt0 != CInt)
3819           Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
3820       }
3821 
3822       SmallVector<const Value *, 4> Operands(VL0->operand_values());
3823       InstructionCost ScalarEltCost =
3824           TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK,
3825                                       Op2VK, Op1VP, Op2VP, Operands, VL0);
3826       if (NeedToShuffleReuses) {
3827         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3828       }
3829       InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
3830       InstructionCost VecCost =
3831           TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK,
3832                                       Op2VK, Op1VP, Op2VP, Operands, VL0);
3833       LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost));
3834       return ReuseShuffleCost + VecCost - ScalarCost;
3835     }
3836     case Instruction::GetElementPtr: {
3837       TargetTransformInfo::OperandValueKind Op1VK =
3838           TargetTransformInfo::OK_AnyValue;
3839       TargetTransformInfo::OperandValueKind Op2VK =
3840           TargetTransformInfo::OK_UniformConstantValue;
3841 
3842       InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost(
3843           Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK);
3844       if (NeedToShuffleReuses) {
3845         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3846       }
3847       InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
3848       InstructionCost VecCost = TTI->getArithmeticInstrCost(
3849           Instruction::Add, VecTy, CostKind, Op1VK, Op2VK);
3850       LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost));
3851       return ReuseShuffleCost + VecCost - ScalarCost;
3852     }
3853     case Instruction::Load: {
3854       // Cost of wide load - cost of scalar loads.
3855       Align alignment = cast<LoadInst>(VL0)->getAlign();
3856       InstructionCost ScalarEltCost = TTI->getMemoryOpCost(
3857           Instruction::Load, ScalarTy, alignment, 0, CostKind, VL0);
3858       if (NeedToShuffleReuses) {
3859         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3860       }
3861       InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost;
3862       InstructionCost VecLdCost;
3863       if (E->State == TreeEntry::Vectorize) {
3864         VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0,
3865                                          CostKind, VL0);
3866       } else {
3867         assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState");
3868         VecLdCost = TTI->getGatherScatterOpCost(
3869             Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(),
3870             /*VariableMask=*/false, alignment, CostKind, VL0);
3871       }
3872       if (!NeedToShuffleReuses && !E->ReorderIndices.empty()) {
3873         SmallVector<int> NewMask;
3874         inversePermutation(E->ReorderIndices, NewMask);
3875         VecLdCost += TTI->getShuffleCost(
3876             TargetTransformInfo::SK_PermuteSingleSrc, VecTy, NewMask);
3877       }
3878       LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecLdCost, ScalarLdCost));
3879       return ReuseShuffleCost + VecLdCost - ScalarLdCost;
3880     }
3881     case Instruction::Store: {
3882       // We know that we can merge the stores. Calculate the cost.
3883       bool IsReorder = !E->ReorderIndices.empty();
3884       auto *SI =
3885           cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0);
3886       Align Alignment = SI->getAlign();
3887       InstructionCost ScalarEltCost = TTI->getMemoryOpCost(
3888           Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0);
3889       InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost;
3890       InstructionCost VecStCost = TTI->getMemoryOpCost(
3891           Instruction::Store, VecTy, Alignment, 0, CostKind, VL0);
3892       if (IsReorder) {
3893         SmallVector<int> NewMask;
3894         inversePermutation(E->ReorderIndices, NewMask);
3895         VecStCost += TTI->getShuffleCost(
3896             TargetTransformInfo::SK_PermuteSingleSrc, VecTy, NewMask);
3897       }
3898       LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecStCost, ScalarStCost));
3899       return VecStCost - ScalarStCost;
3900     }
3901     case Instruction::Call: {
3902       CallInst *CI = cast<CallInst>(VL0);
3903       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3904 
3905       // Calculate the cost of the scalar and vector calls.
3906       IntrinsicCostAttributes CostAttrs(ID, *CI, 1);
3907       InstructionCost ScalarEltCost =
3908           TTI->getIntrinsicInstrCost(CostAttrs, CostKind);
3909       if (NeedToShuffleReuses) {
3910         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3911       }
3912       InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost;
3913 
3914       auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
3915       InstructionCost VecCallCost =
3916           std::min(VecCallCosts.first, VecCallCosts.second);
3917 
3918       LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost
3919                         << " (" << VecCallCost << "-" << ScalarCallCost << ")"
3920                         << " for " << *CI << "\n");
3921 
3922       return ReuseShuffleCost + VecCallCost - ScalarCallCost;
3923     }
3924     case Instruction::ShuffleVector: {
3925       assert(E->isAltShuffle() &&
3926              ((Instruction::isBinaryOp(E->getOpcode()) &&
3927                Instruction::isBinaryOp(E->getAltOpcode())) ||
3928               (Instruction::isCast(E->getOpcode()) &&
3929                Instruction::isCast(E->getAltOpcode()))) &&
3930              "Invalid Shuffle Vector Operand");
3931       InstructionCost ScalarCost = 0;
3932       if (NeedToShuffleReuses) {
3933         for (unsigned Idx : E->ReuseShuffleIndices) {
3934           Instruction *I = cast<Instruction>(VL[Idx]);
3935           ReuseShuffleCost -= TTI->getInstructionCost(I, CostKind);
3936         }
3937         for (Value *V : VL) {
3938           Instruction *I = cast<Instruction>(V);
3939           ReuseShuffleCost += TTI->getInstructionCost(I, CostKind);
3940         }
3941       }
3942       for (Value *V : VL) {
3943         Instruction *I = cast<Instruction>(V);
3944         assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode");
3945         ScalarCost += TTI->getInstructionCost(I, CostKind);
3946       }
3947       // VecCost is equal to sum of the cost of creating 2 vectors
3948       // and the cost of creating shuffle.
3949       InstructionCost VecCost = 0;
3950       if (Instruction::isBinaryOp(E->getOpcode())) {
3951         VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind);
3952         VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy,
3953                                                CostKind);
3954       } else {
3955         Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType();
3956         Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType();
3957         auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size());
3958         auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size());
3959         VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty,
3960                                         TTI::CastContextHint::None, CostKind);
3961         VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty,
3962                                          TTI::CastContextHint::None, CostKind);
3963       }
3964 
3965       SmallVector<int> Mask(E->Scalars.size());
3966       for (unsigned I = 0, End = E->Scalars.size(); I < End; ++I) {
3967         auto *OpInst = cast<Instruction>(E->Scalars[I]);
3968         assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode");
3969         Mask[I] = I + (OpInst->getOpcode() == E->getAltOpcode() ? End : 0);
3970       }
3971       VecCost +=
3972           TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, Mask, 0);
3973       LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost));
3974       return ReuseShuffleCost + VecCost - ScalarCost;
3975     }
3976     default:
3977       llvm_unreachable("Unknown instruction");
3978   }
3979 }
3980 
3981 bool BoUpSLP::isFullyVectorizableTinyTree() const {
3982   LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height "
3983                     << VectorizableTree.size() << " is fully vectorizable .\n");
3984 
3985   // We only handle trees of heights 1 and 2.
3986   if (VectorizableTree.size() == 1 &&
3987       VectorizableTree[0]->State == TreeEntry::Vectorize)
3988     return true;
3989 
3990   if (VectorizableTree.size() != 2)
3991     return false;
3992 
3993   // Handle splat and all-constants stores.
3994   if (VectorizableTree[0]->State == TreeEntry::Vectorize &&
3995       (allConstant(VectorizableTree[1]->Scalars) ||
3996        isSplat(VectorizableTree[1]->Scalars)))
3997     return true;
3998 
3999   // Gathering cost would be too much for tiny trees.
4000   if (VectorizableTree[0]->State == TreeEntry::NeedToGather ||
4001       VectorizableTree[1]->State == TreeEntry::NeedToGather)
4002     return false;
4003 
4004   return true;
4005 }
4006 
4007 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts,
4008                                        TargetTransformInfo *TTI) {
4009   // Look past the root to find a source value. Arbitrarily follow the
4010   // path through operand 0 of any 'or'. Also, peek through optional
4011   // shift-left-by-multiple-of-8-bits.
4012   Value *ZextLoad = Root;
4013   const APInt *ShAmtC;
4014   while (!isa<ConstantExpr>(ZextLoad) &&
4015          (match(ZextLoad, m_Or(m_Value(), m_Value())) ||
4016           (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) &&
4017            ShAmtC->urem(8) == 0)))
4018     ZextLoad = cast<BinaryOperator>(ZextLoad)->getOperand(0);
4019 
4020   // Check if the input is an extended load of the required or/shift expression.
4021   Value *LoadPtr;
4022   if (ZextLoad == Root || !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr)))))
4023     return false;
4024 
4025   // Require that the total load bit width is a legal integer type.
4026   // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target.
4027   // But <16 x i8> --> i128 is not, so the backend probably can't reduce it.
4028   Type *SrcTy = LoadPtr->getType()->getPointerElementType();
4029   unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts;
4030   if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth)))
4031     return false;
4032 
4033   // Everything matched - assume that we can fold the whole sequence using
4034   // load combining.
4035   LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at "
4036              << *(cast<Instruction>(Root)) << "\n");
4037 
4038   return true;
4039 }
4040 
4041 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const {
4042   if (RdxKind != RecurKind::Or)
4043     return false;
4044 
4045   unsigned NumElts = VectorizableTree[0]->Scalars.size();
4046   Value *FirstReduced = VectorizableTree[0]->Scalars[0];
4047   return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI);
4048 }
4049 
4050 bool BoUpSLP::isLoadCombineCandidate() const {
4051   // Peek through a final sequence of stores and check if all operations are
4052   // likely to be load-combined.
4053   unsigned NumElts = VectorizableTree[0]->Scalars.size();
4054   for (Value *Scalar : VectorizableTree[0]->Scalars) {
4055     Value *X;
4056     if (!match(Scalar, m_Store(m_Value(X), m_Value())) ||
4057         !isLoadCombineCandidateImpl(X, NumElts, TTI))
4058       return false;
4059   }
4060   return true;
4061 }
4062 
4063 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const {
4064   // We can vectorize the tree if its size is greater than or equal to the
4065   // minimum size specified by the MinTreeSize command line option.
4066   if (VectorizableTree.size() >= MinTreeSize)
4067     return false;
4068 
4069   // If we have a tiny tree (a tree whose size is less than MinTreeSize), we
4070   // can vectorize it if we can prove it fully vectorizable.
4071   if (isFullyVectorizableTinyTree())
4072     return false;
4073 
4074   assert(VectorizableTree.empty()
4075              ? ExternalUses.empty()
4076              : true && "We shouldn't have any external users");
4077 
4078   // Otherwise, we can't vectorize the tree. It is both tiny and not fully
4079   // vectorizable.
4080   return true;
4081 }
4082 
4083 InstructionCost BoUpSLP::getSpillCost() const {
4084   // Walk from the bottom of the tree to the top, tracking which values are
4085   // live. When we see a call instruction that is not part of our tree,
4086   // query TTI to see if there is a cost to keeping values live over it
4087   // (for example, if spills and fills are required).
4088   unsigned BundleWidth = VectorizableTree.front()->Scalars.size();
4089   InstructionCost Cost = 0;
4090 
4091   SmallPtrSet<Instruction*, 4> LiveValues;
4092   Instruction *PrevInst = nullptr;
4093 
4094   // The entries in VectorizableTree are not necessarily ordered by their
4095   // position in basic blocks. Collect them and order them by dominance so later
4096   // instructions are guaranteed to be visited first. For instructions in
4097   // different basic blocks, we only scan to the beginning of the block, so
4098   // their order does not matter, as long as all instructions in a basic block
4099   // are grouped together. Using dominance ensures a deterministic order.
4100   SmallVector<Instruction *, 16> OrderedScalars;
4101   for (const auto &TEPtr : VectorizableTree) {
4102     Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]);
4103     if (!Inst)
4104       continue;
4105     OrderedScalars.push_back(Inst);
4106   }
4107   llvm::stable_sort(OrderedScalars, [this](Instruction *A, Instruction *B) {
4108     return DT->dominates(B, A);
4109   });
4110 
4111   for (Instruction *Inst : OrderedScalars) {
4112     if (!PrevInst) {
4113       PrevInst = Inst;
4114       continue;
4115     }
4116 
4117     // Update LiveValues.
4118     LiveValues.erase(PrevInst);
4119     for (auto &J : PrevInst->operands()) {
4120       if (isa<Instruction>(&*J) && getTreeEntry(&*J))
4121         LiveValues.insert(cast<Instruction>(&*J));
4122     }
4123 
4124     LLVM_DEBUG({
4125       dbgs() << "SLP: #LV: " << LiveValues.size();
4126       for (auto *X : LiveValues)
4127         dbgs() << " " << X->getName();
4128       dbgs() << ", Looking at ";
4129       Inst->dump();
4130     });
4131 
4132     // Now find the sequence of instructions between PrevInst and Inst.
4133     unsigned NumCalls = 0;
4134     BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(),
4135                                  PrevInstIt =
4136                                      PrevInst->getIterator().getReverse();
4137     while (InstIt != PrevInstIt) {
4138       if (PrevInstIt == PrevInst->getParent()->rend()) {
4139         PrevInstIt = Inst->getParent()->rbegin();
4140         continue;
4141       }
4142 
4143       // Debug information does not impact spill cost.
4144       if ((isa<CallInst>(&*PrevInstIt) &&
4145            !isa<DbgInfoIntrinsic>(&*PrevInstIt)) &&
4146           &*PrevInstIt != PrevInst)
4147         NumCalls++;
4148 
4149       ++PrevInstIt;
4150     }
4151 
4152     if (NumCalls) {
4153       SmallVector<Type*, 4> V;
4154       for (auto *II : LiveValues)
4155         V.push_back(FixedVectorType::get(II->getType(), BundleWidth));
4156       Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V);
4157     }
4158 
4159     PrevInst = Inst;
4160   }
4161 
4162   return Cost;
4163 }
4164 
4165 InstructionCost BoUpSLP::getTreeCost() {
4166   InstructionCost Cost = 0;
4167   LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size "
4168                     << VectorizableTree.size() << ".\n");
4169 
4170   unsigned BundleWidth = VectorizableTree[0]->Scalars.size();
4171 
4172   for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) {
4173     TreeEntry &TE = *VectorizableTree[I].get();
4174 
4175     // We create duplicate tree entries for gather sequences that have multiple
4176     // uses. However, we should not compute the cost of duplicate sequences.
4177     // For example, if we have a build vector (i.e., insertelement sequence)
4178     // that is used by more than one vector instruction, we only need to
4179     // compute the cost of the insertelement instructions once. The redundant
4180     // instructions will be eliminated by CSE.
4181     //
4182     // We should consider not creating duplicate tree entries for gather
4183     // sequences, and instead add additional edges to the tree representing
4184     // their uses. Since such an approach results in fewer total entries,
4185     // existing heuristics based on tree size may yield different results.
4186     //
4187     if (TE.State == TreeEntry::NeedToGather &&
4188         std::any_of(std::next(VectorizableTree.begin(), I + 1),
4189                     VectorizableTree.end(),
4190                     [TE](const std::unique_ptr<TreeEntry> &EntryPtr) {
4191                       return EntryPtr->State == TreeEntry::NeedToGather &&
4192                              EntryPtr->isSame(TE.Scalars);
4193                     }))
4194       continue;
4195 
4196     InstructionCost C = getEntryCost(&TE);
4197     Cost += C;
4198     LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
4199                       << " for bundle that starts with " << *TE.Scalars[0]
4200                       << ".\n"
4201                       << "SLP: Current total cost = " << Cost << "\n");
4202   }
4203 
4204   SmallPtrSet<Value *, 16> ExtractCostCalculated;
4205   InstructionCost ExtractCost = 0;
4206   for (ExternalUser &EU : ExternalUses) {
4207     // We only add extract cost once for the same scalar.
4208     if (!ExtractCostCalculated.insert(EU.Scalar).second)
4209       continue;
4210 
4211     // Uses by ephemeral values are free (because the ephemeral value will be
4212     // removed prior to code generation, and so the extraction will be
4213     // removed as well).
4214     if (EphValues.count(EU.User))
4215       continue;
4216 
4217     // If we plan to rewrite the tree in a smaller type, we will need to sign
4218     // extend the extracted value back to the original type. Here, we account
4219     // for the extract and the added cost of the sign extend if needed.
4220     auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth);
4221     auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
4222     if (MinBWs.count(ScalarRoot)) {
4223       auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
4224       auto Extend =
4225           MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt;
4226       VecTy = FixedVectorType::get(MinTy, BundleWidth);
4227       ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(),
4228                                                    VecTy, EU.Lane);
4229     } else {
4230       ExtractCost +=
4231           TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane);
4232     }
4233   }
4234 
4235   InstructionCost SpillCost = getSpillCost();
4236   Cost += SpillCost + ExtractCost;
4237 
4238 #ifndef NDEBUG
4239   SmallString<256> Str;
4240   {
4241     raw_svector_ostream OS(Str);
4242     OS << "SLP: Spill Cost = " << SpillCost << ".\n"
4243        << "SLP: Extract Cost = " << ExtractCost << ".\n"
4244        << "SLP: Total Cost = " << Cost << ".\n";
4245   }
4246   LLVM_DEBUG(dbgs() << Str);
4247   if (ViewSLPTree)
4248     ViewGraph(this, "SLP" + F->getName(), false, Str);
4249 #endif
4250 
4251   return Cost;
4252 }
4253 
4254 Optional<TargetTransformInfo::ShuffleKind>
4255 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask,
4256                                SmallVectorImpl<const TreeEntry *> &Entries) {
4257   auto *VLIt = find_if(VectorizableTree,
4258                        [TE](const std::unique_ptr<TreeEntry> &EntryPtr) {
4259                          return EntryPtr.get() == TE;
4260                        });
4261   assert(VLIt != VectorizableTree.end() &&
4262          "Gathered values should be in the tree.");
4263   Mask.assign(TE->Scalars.size(), UndefMaskElem);
4264   Entries.clear();
4265   DenseMap<const TreeEntry *, int> Used;
4266   int NumShuffles = 0;
4267   for (int I = 0, E = TE->Scalars.size(); I < E; ++I) {
4268     Value *V = TE->Scalars[I];
4269     const TreeEntry *VTE = getTreeEntry(V);
4270     if (!VTE) {
4271       // Check if it is used in one of the gathered entries.
4272       const auto *It =
4273           find_if(make_range(VectorizableTree.begin(), VLIt),
4274                   [V](const std::unique_ptr<TreeEntry> &EntryPtr) {
4275                     return EntryPtr->State == TreeEntry::NeedToGather &&
4276                            is_contained(EntryPtr->Scalars, V);
4277                   });
4278       if (It != VLIt)
4279         VTE = It->get();
4280     }
4281     if (VTE) {
4282       auto Res = Used.try_emplace(VTE, NumShuffles);
4283       if (Res.second) {
4284         Entries.push_back(VTE);
4285         ++NumShuffles;
4286         if (NumShuffles > 2)
4287           return None;
4288         if (NumShuffles == 2) {
4289           unsigned FirstSz = Entries.front()->Scalars.size();
4290           if (!Entries.front()->ReuseShuffleIndices.empty())
4291             FirstSz = Entries.front()->ReuseShuffleIndices.size();
4292           unsigned SecondSz = Entries.back()->Scalars.size();
4293           if (!Entries.back()->ReuseShuffleIndices.empty())
4294             SecondSz = Entries.back()->ReuseShuffleIndices.size();
4295           if (FirstSz != SecondSz)
4296             return None;
4297         }
4298       }
4299       int FoundLane =
4300           findLaneForValue(VTE->Scalars, VTE->ReuseShuffleIndices, V);
4301       unsigned Sz = VTE->Scalars.size();
4302       if (!VTE->ReuseShuffleIndices.empty())
4303         Sz = VTE->ReuseShuffleIndices.size();
4304       Mask[I] = Res.first->second * Sz + FoundLane;
4305       // Extra check required by isSingleSourceMaskImpl function (called by
4306       // ShuffleVectorInst::isSingleSourceMask).
4307       if (Mask[I] >= 2 * E)
4308         return None;
4309       continue;
4310     }
4311     return None;
4312   }
4313   if (NumShuffles == 1) {
4314     if (ShuffleVectorInst::isReverseMask(Mask))
4315       return TargetTransformInfo::SK_Reverse;
4316     return TargetTransformInfo::SK_PermuteSingleSrc;
4317   }
4318   if (NumShuffles == 2) {
4319     if (ShuffleVectorInst::isSelectMask(Mask))
4320       return TargetTransformInfo::SK_Select;
4321     if (ShuffleVectorInst::isTransposeMask(Mask))
4322       return TargetTransformInfo::SK_Transpose;
4323     return TargetTransformInfo::SK_PermuteTwoSrc;
4324   }
4325   return None;
4326 }
4327 
4328 InstructionCost
4329 BoUpSLP::getGatherCost(FixedVectorType *Ty,
4330                        const DenseSet<unsigned> &ShuffledIndices) const {
4331   unsigned NumElts = Ty->getNumElements();
4332   APInt DemandedElts = APInt::getNullValue(NumElts);
4333   for (unsigned I = 0; I < NumElts; ++I)
4334     if (!ShuffledIndices.count(I))
4335       DemandedElts.setBit(I);
4336   InstructionCost Cost =
4337       TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true,
4338                                     /*Extract*/ false);
4339   if (!ShuffledIndices.empty())
4340     Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty);
4341   return Cost;
4342 }
4343 
4344 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const {
4345   // Find the type of the operands in VL.
4346   Type *ScalarTy = VL[0]->getType();
4347   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
4348     ScalarTy = SI->getValueOperand()->getType();
4349   auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
4350   // Find the cost of inserting/extracting values from the vector.
4351   // Check if the same elements are inserted several times and count them as
4352   // shuffle candidates.
4353   DenseSet<unsigned> ShuffledElements;
4354   DenseSet<Value *> UniqueElements;
4355   // Iterate in reverse order to consider insert elements with the high cost.
4356   for (unsigned I = VL.size(); I > 0; --I) {
4357     unsigned Idx = I - 1;
4358     if (!UniqueElements.insert(VL[Idx]).second)
4359       ShuffledElements.insert(Idx);
4360   }
4361   return getGatherCost(VecTy, ShuffledElements);
4362 }
4363 
4364 // Perform operand reordering on the instructions in VL and return the reordered
4365 // operands in Left and Right.
4366 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
4367                                              SmallVectorImpl<Value *> &Left,
4368                                              SmallVectorImpl<Value *> &Right,
4369                                              const DataLayout &DL,
4370                                              ScalarEvolution &SE,
4371                                              const BoUpSLP &R) {
4372   if (VL.empty())
4373     return;
4374   VLOperands Ops(VL, DL, SE, R);
4375   // Reorder the operands in place.
4376   Ops.reorder();
4377   Left = Ops.getVL(0);
4378   Right = Ops.getVL(1);
4379 }
4380 
4381 void BoUpSLP::setInsertPointAfterBundle(TreeEntry *E) {
4382   // Get the basic block this bundle is in. All instructions in the bundle
4383   // should be in this block.
4384   auto *Front = E->getMainOp();
4385   auto *BB = Front->getParent();
4386   assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool {
4387     auto *I = cast<Instruction>(V);
4388     return !E->isOpcodeOrAlt(I) || I->getParent() == BB;
4389   }));
4390 
4391   // The last instruction in the bundle in program order.
4392   Instruction *LastInst = nullptr;
4393 
4394   // Find the last instruction. The common case should be that BB has been
4395   // scheduled, and the last instruction is VL.back(). So we start with
4396   // VL.back() and iterate over schedule data until we reach the end of the
4397   // bundle. The end of the bundle is marked by null ScheduleData.
4398   if (BlocksSchedules.count(BB)) {
4399     auto *Bundle =
4400         BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back()));
4401     if (Bundle && Bundle->isPartOfBundle())
4402       for (; Bundle; Bundle = Bundle->NextInBundle)
4403         if (Bundle->OpValue == Bundle->Inst)
4404           LastInst = Bundle->Inst;
4405   }
4406 
4407   // LastInst can still be null at this point if there's either not an entry
4408   // for BB in BlocksSchedules or there's no ScheduleData available for
4409   // VL.back(). This can be the case if buildTree_rec aborts for various
4410   // reasons (e.g., the maximum recursion depth is reached, the maximum region
4411   // size is reached, etc.). ScheduleData is initialized in the scheduling
4412   // "dry-run".
4413   //
4414   // If this happens, we can still find the last instruction by brute force. We
4415   // iterate forwards from Front (inclusive) until we either see all
4416   // instructions in the bundle or reach the end of the block. If Front is the
4417   // last instruction in program order, LastInst will be set to Front, and we
4418   // will visit all the remaining instructions in the block.
4419   //
4420   // One of the reasons we exit early from buildTree_rec is to place an upper
4421   // bound on compile-time. Thus, taking an additional compile-time hit here is
4422   // not ideal. However, this should be exceedingly rare since it requires that
4423   // we both exit early from buildTree_rec and that the bundle be out-of-order
4424   // (causing us to iterate all the way to the end of the block).
4425   if (!LastInst) {
4426     SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end());
4427     for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) {
4428       if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I))
4429         LastInst = &I;
4430       if (Bundle.empty())
4431         break;
4432     }
4433   }
4434   assert(LastInst && "Failed to find last instruction in bundle");
4435 
4436   // Set the insertion point after the last instruction in the bundle. Set the
4437   // debug location to Front.
4438   Builder.SetInsertPoint(BB, ++LastInst->getIterator());
4439   Builder.SetCurrentDebugLocation(Front->getDebugLoc());
4440 }
4441 
4442 Value *BoUpSLP::gather(ArrayRef<Value *> VL) {
4443   Value *Val0 =
4444       isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0];
4445   FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size());
4446   Value *Vec = PoisonValue::get(VecTy);
4447   unsigned InsIndex = 0;
4448   for (Value *Val : VL) {
4449     Vec = Builder.CreateInsertElement(Vec, Val, Builder.getInt32(InsIndex++));
4450     auto *InsElt = dyn_cast<InsertElementInst>(Vec);
4451     if (!InsElt)
4452       continue;
4453     GatherSeq.insert(InsElt);
4454     CSEBlocks.insert(InsElt->getParent());
4455     // Add to our 'need-to-extract' list.
4456     if (TreeEntry *Entry = getTreeEntry(Val)) {
4457       // Find which lane we need to extract.
4458       int FoundLane =
4459           findLaneForValue(Entry->Scalars, Entry->ReuseShuffleIndices, Val);
4460       ExternalUses.push_back(ExternalUser(Val, InsElt, FoundLane));
4461     }
4462   }
4463 
4464   return Vec;
4465 }
4466 
4467 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
4468   InstructionsState S = getSameOpcode(VL);
4469   if (S.getOpcode()) {
4470     if (TreeEntry *E = getTreeEntry(S.OpValue)) {
4471       if (E->isSame(VL)) {
4472         Value *V = vectorizeTree(E);
4473         if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) {
4474           // Reshuffle to get only unique values.
4475           // If some of the scalars are duplicated in the vectorization tree
4476           // entry, we do not vectorize them but instead generate a mask for the
4477           // reuses. But if there are several users of the same entry, they may
4478           // have different vectorization factors. This is especially important
4479           // for PHI nodes. In this case, we need to adapt the resulting
4480           // instruction for the user vectorization factor and have to reshuffle
4481           // it again to take only unique elements of the vector. Without this
4482           // code the function incorrectly returns reduced vector instruction
4483           // with the same elements, not with the unique ones.
4484           // block:
4485           // %phi = phi <2 x > { .., %entry} {%shuffle, %block}
4486           // %2 = shuffle <2 x > %phi, %poison, <4 x > <0, 0, 1, 1>
4487           // ... (use %2)
4488           // %shuffle = shuffle <2 x> %2, poison, <2 x> {0, 2}
4489           // br %block
4490           SmallVector<int, 4> UniqueIdxs;
4491           SmallSet<int, 4> UsedIdxs;
4492           int Pos = 0;
4493           for (int Idx : E->ReuseShuffleIndices) {
4494             if (UsedIdxs.insert(Idx).second)
4495               UniqueIdxs.emplace_back(Pos);
4496             ++Pos;
4497           }
4498           V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle");
4499         }
4500         return V;
4501       }
4502     }
4503   }
4504 
4505   // Check that every instruction appears once in this bundle.
4506   SmallVector<int, 4> ReuseShuffleIndicies;
4507   SmallVector<Value *, 4> UniqueValues;
4508   if (VL.size() > 2) {
4509     DenseMap<Value *, unsigned> UniquePositions;
4510     for (Value *V : VL) {
4511       auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
4512       ReuseShuffleIndicies.emplace_back(Res.first->second);
4513       if (Res.second || isa<Constant>(V))
4514         UniqueValues.emplace_back(V);
4515     }
4516     // Do not shuffle single element or if number of unique values is not power
4517     // of 2.
4518     if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 ||
4519         !llvm::isPowerOf2_32(UniqueValues.size()))
4520       ReuseShuffleIndicies.clear();
4521     else
4522       VL = UniqueValues;
4523   }
4524 
4525   Value *Vec = gather(VL);
4526   if (!ReuseShuffleIndicies.empty()) {
4527     Vec = Builder.CreateShuffleVector(Vec, ReuseShuffleIndicies, "shuffle");
4528     if (auto *I = dyn_cast<Instruction>(Vec)) {
4529       GatherSeq.insert(I);
4530       CSEBlocks.insert(I->getParent());
4531     }
4532   }
4533   return Vec;
4534 }
4535 
4536 namespace {
4537 /// Merges shuffle masks and emits final shuffle instruction, if required.
4538 class ShuffleInstructionBuilder {
4539   IRBuilderBase &Builder;
4540   bool IsFinalized = false;
4541   SmallVector<int, 4> Mask;
4542 
4543 public:
4544   ShuffleInstructionBuilder(IRBuilderBase &Builder) : Builder(Builder) {}
4545 
4546   /// Adds a mask, inverting it before applying.
4547   void addInversedMask(ArrayRef<unsigned> SubMask) {
4548     if (SubMask.empty())
4549       return;
4550     SmallVector<int, 4> NewMask;
4551     inversePermutation(SubMask, NewMask);
4552     addMask(NewMask);
4553   }
4554 
4555   /// Functions adds masks, merging them into  single one.
4556   void addMask(ArrayRef<unsigned> SubMask) {
4557     SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end());
4558     addMask(NewMask);
4559   }
4560 
4561   void addMask(ArrayRef<int> SubMask) {
4562     if (SubMask.empty())
4563       return;
4564     if (Mask.empty()) {
4565       Mask.append(SubMask.begin(), SubMask.end());
4566       return;
4567     }
4568     SmallVector<int, 4> NewMask(SubMask.size(), SubMask.size());
4569     int TermValue = std::min(Mask.size(), SubMask.size());
4570     for (int I = 0, E = SubMask.size(); I < E; ++I) {
4571       if (SubMask[I] >= TermValue || Mask[SubMask[I]] >= TermValue) {
4572         NewMask[I] = E;
4573         continue;
4574       }
4575       NewMask[I] = Mask[SubMask[I]];
4576     }
4577     Mask.swap(NewMask);
4578   }
4579 
4580   Value *finalize(Value *V) {
4581     IsFinalized = true;
4582     if (Mask.empty())
4583       return V;
4584     return Builder.CreateShuffleVector(V, Mask, "shuffle");
4585   }
4586 
4587   ~ShuffleInstructionBuilder() {
4588     assert((IsFinalized || Mask.empty()) &&
4589            "Shuffle construction must be finalized.");
4590   }
4591 };
4592 } // namespace
4593 
4594 Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
4595   IRBuilder<>::InsertPointGuard Guard(Builder);
4596 
4597   if (E->VectorizedValue) {
4598     LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
4599     return E->VectorizedValue;
4600   }
4601 
4602   ShuffleInstructionBuilder ShuffleBuilder(Builder);
4603   bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
4604   if (E->State == TreeEntry::NeedToGather) {
4605     setInsertPointAfterBundle(E);
4606     Value *Vec;
4607     SmallVector<int> Mask;
4608     SmallVector<const TreeEntry *> Entries;
4609     Optional<TargetTransformInfo::ShuffleKind> Shuffle =
4610         isGatherShuffledEntry(E, Mask, Entries);
4611     if (Shuffle.hasValue()) {
4612       assert((Entries.size() == 1 || Entries.size() == 2) &&
4613              "Expected shuffle of 1 or 2 entries.");
4614       Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue,
4615                                         Entries.back()->VectorizedValue, Mask);
4616     } else {
4617       Vec = gather(E->Scalars);
4618     }
4619     if (NeedToShuffleReuses) {
4620       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
4621       Vec = ShuffleBuilder.finalize(Vec);
4622       if (auto *I = dyn_cast<Instruction>(Vec)) {
4623         GatherSeq.insert(I);
4624         CSEBlocks.insert(I->getParent());
4625       }
4626     }
4627     E->VectorizedValue = Vec;
4628     return Vec;
4629   }
4630 
4631   assert((E->State == TreeEntry::Vectorize ||
4632           E->State == TreeEntry::ScatterVectorize) &&
4633          "Unhandled state");
4634   unsigned ShuffleOrOp =
4635       E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
4636   Instruction *VL0 = E->getMainOp();
4637   Type *ScalarTy = VL0->getType();
4638   if (auto *Store = dyn_cast<StoreInst>(VL0))
4639     ScalarTy = Store->getValueOperand()->getType();
4640   auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size());
4641   switch (ShuffleOrOp) {
4642     case Instruction::PHI: {
4643       auto *PH = cast<PHINode>(VL0);
4644       Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
4645       Builder.SetCurrentDebugLocation(PH->getDebugLoc());
4646       PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
4647       Value *V = NewPhi;
4648       if (NeedToShuffleReuses)
4649         V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle");
4650 
4651       E->VectorizedValue = V;
4652 
4653       // PHINodes may have multiple entries from the same block. We want to
4654       // visit every block once.
4655       SmallPtrSet<BasicBlock*, 4> VisitedBBs;
4656 
4657       for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
4658         ValueList Operands;
4659         BasicBlock *IBB = PH->getIncomingBlock(i);
4660 
4661         if (!VisitedBBs.insert(IBB).second) {
4662           NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
4663           continue;
4664         }
4665 
4666         Builder.SetInsertPoint(IBB->getTerminator());
4667         Builder.SetCurrentDebugLocation(PH->getDebugLoc());
4668         Value *Vec = vectorizeTree(E->getOperand(i));
4669         NewPhi->addIncoming(Vec, IBB);
4670       }
4671 
4672       assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
4673              "Invalid number of incoming values");
4674       return V;
4675     }
4676 
4677     case Instruction::ExtractElement: {
4678       Value *V = E->getSingleOperand(0);
4679       Builder.SetInsertPoint(VL0);
4680       ShuffleBuilder.addInversedMask(E->ReorderIndices);
4681       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
4682       V = ShuffleBuilder.finalize(V);
4683       E->VectorizedValue = V;
4684       return V;
4685     }
4686     case Instruction::ExtractValue: {
4687       auto *LI = cast<LoadInst>(E->getSingleOperand(0));
4688       Builder.SetInsertPoint(LI);
4689       auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace());
4690       Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy);
4691       LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign());
4692       Value *NewV = propagateMetadata(V, E->Scalars);
4693       ShuffleBuilder.addInversedMask(E->ReorderIndices);
4694       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
4695       NewV = ShuffleBuilder.finalize(NewV);
4696       E->VectorizedValue = NewV;
4697       return NewV;
4698     }
4699     case Instruction::ZExt:
4700     case Instruction::SExt:
4701     case Instruction::FPToUI:
4702     case Instruction::FPToSI:
4703     case Instruction::FPExt:
4704     case Instruction::PtrToInt:
4705     case Instruction::IntToPtr:
4706     case Instruction::SIToFP:
4707     case Instruction::UIToFP:
4708     case Instruction::Trunc:
4709     case Instruction::FPTrunc:
4710     case Instruction::BitCast: {
4711       setInsertPointAfterBundle(E);
4712 
4713       Value *InVec = vectorizeTree(E->getOperand(0));
4714 
4715       if (E->VectorizedValue) {
4716         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
4717         return E->VectorizedValue;
4718       }
4719 
4720       auto *CI = cast<CastInst>(VL0);
4721       Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
4722       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
4723       V = ShuffleBuilder.finalize(V);
4724 
4725       E->VectorizedValue = V;
4726       ++NumVectorInstructions;
4727       return V;
4728     }
4729     case Instruction::FCmp:
4730     case Instruction::ICmp: {
4731       setInsertPointAfterBundle(E);
4732 
4733       Value *L = vectorizeTree(E->getOperand(0));
4734       Value *R = vectorizeTree(E->getOperand(1));
4735 
4736       if (E->VectorizedValue) {
4737         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
4738         return E->VectorizedValue;
4739       }
4740 
4741       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
4742       Value *V = Builder.CreateCmp(P0, L, R);
4743       propagateIRFlags(V, E->Scalars, VL0);
4744       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
4745       V = ShuffleBuilder.finalize(V);
4746 
4747       E->VectorizedValue = V;
4748       ++NumVectorInstructions;
4749       return V;
4750     }
4751     case Instruction::Select: {
4752       setInsertPointAfterBundle(E);
4753 
4754       Value *Cond = vectorizeTree(E->getOperand(0));
4755       Value *True = vectorizeTree(E->getOperand(1));
4756       Value *False = vectorizeTree(E->getOperand(2));
4757 
4758       if (E->VectorizedValue) {
4759         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
4760         return E->VectorizedValue;
4761       }
4762 
4763       Value *V = Builder.CreateSelect(Cond, True, False);
4764       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
4765       V = ShuffleBuilder.finalize(V);
4766 
4767       E->VectorizedValue = V;
4768       ++NumVectorInstructions;
4769       return V;
4770     }
4771     case Instruction::FNeg: {
4772       setInsertPointAfterBundle(E);
4773 
4774       Value *Op = vectorizeTree(E->getOperand(0));
4775 
4776       if (E->VectorizedValue) {
4777         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
4778         return E->VectorizedValue;
4779       }
4780 
4781       Value *V = Builder.CreateUnOp(
4782           static_cast<Instruction::UnaryOps>(E->getOpcode()), Op);
4783       propagateIRFlags(V, E->Scalars, VL0);
4784       if (auto *I = dyn_cast<Instruction>(V))
4785         V = propagateMetadata(I, E->Scalars);
4786 
4787       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
4788       V = ShuffleBuilder.finalize(V);
4789 
4790       E->VectorizedValue = V;
4791       ++NumVectorInstructions;
4792 
4793       return V;
4794     }
4795     case Instruction::Add:
4796     case Instruction::FAdd:
4797     case Instruction::Sub:
4798     case Instruction::FSub:
4799     case Instruction::Mul:
4800     case Instruction::FMul:
4801     case Instruction::UDiv:
4802     case Instruction::SDiv:
4803     case Instruction::FDiv:
4804     case Instruction::URem:
4805     case Instruction::SRem:
4806     case Instruction::FRem:
4807     case Instruction::Shl:
4808     case Instruction::LShr:
4809     case Instruction::AShr:
4810     case Instruction::And:
4811     case Instruction::Or:
4812     case Instruction::Xor: {
4813       setInsertPointAfterBundle(E);
4814 
4815       Value *LHS = vectorizeTree(E->getOperand(0));
4816       Value *RHS = vectorizeTree(E->getOperand(1));
4817 
4818       if (E->VectorizedValue) {
4819         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
4820         return E->VectorizedValue;
4821       }
4822 
4823       Value *V = Builder.CreateBinOp(
4824           static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS,
4825           RHS);
4826       propagateIRFlags(V, E->Scalars, VL0);
4827       if (auto *I = dyn_cast<Instruction>(V))
4828         V = propagateMetadata(I, E->Scalars);
4829 
4830       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
4831       V = ShuffleBuilder.finalize(V);
4832 
4833       E->VectorizedValue = V;
4834       ++NumVectorInstructions;
4835 
4836       return V;
4837     }
4838     case Instruction::Load: {
4839       // Loads are inserted at the head of the tree because we don't want to
4840       // sink them all the way down past store instructions.
4841       bool IsReorder = E->updateStateIfReorder();
4842       if (IsReorder)
4843         VL0 = E->getMainOp();
4844       setInsertPointAfterBundle(E);
4845 
4846       LoadInst *LI = cast<LoadInst>(VL0);
4847       Instruction *NewLI;
4848       unsigned AS = LI->getPointerAddressSpace();
4849       Value *PO = LI->getPointerOperand();
4850       if (E->State == TreeEntry::Vectorize) {
4851 
4852         Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS));
4853 
4854         // The pointer operand uses an in-tree scalar so we add the new BitCast
4855         // to ExternalUses list to make sure that an extract will be generated
4856         // in the future.
4857         if (getTreeEntry(PO))
4858           ExternalUses.emplace_back(PO, cast<User>(VecPtr), 0);
4859 
4860         NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign());
4861       } else {
4862         assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state");
4863         Value *VecPtr = vectorizeTree(E->getOperand(0));
4864         // Use the minimum alignment of the gathered loads.
4865         Align CommonAlignment = LI->getAlign();
4866         for (Value *V : E->Scalars)
4867           CommonAlignment =
4868               commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign());
4869         NewLI = Builder.CreateMaskedGather(VecPtr, CommonAlignment);
4870       }
4871       Value *V = propagateMetadata(NewLI, E->Scalars);
4872 
4873       ShuffleBuilder.addInversedMask(E->ReorderIndices);
4874       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
4875       V = ShuffleBuilder.finalize(V);
4876       E->VectorizedValue = V;
4877       ++NumVectorInstructions;
4878       return V;
4879     }
4880     case Instruction::Store: {
4881       bool IsReorder = !E->ReorderIndices.empty();
4882       auto *SI = cast<StoreInst>(
4883           IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0);
4884       unsigned AS = SI->getPointerAddressSpace();
4885 
4886       setInsertPointAfterBundle(E);
4887 
4888       Value *VecValue = vectorizeTree(E->getOperand(0));
4889       ShuffleBuilder.addMask(E->ReorderIndices);
4890       VecValue = ShuffleBuilder.finalize(VecValue);
4891 
4892       Value *ScalarPtr = SI->getPointerOperand();
4893       Value *VecPtr = Builder.CreateBitCast(
4894           ScalarPtr, VecValue->getType()->getPointerTo(AS));
4895       StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr,
4896                                                  SI->getAlign());
4897 
4898       // The pointer operand uses an in-tree scalar, so add the new BitCast to
4899       // ExternalUses to make sure that an extract will be generated in the
4900       // future.
4901       if (getTreeEntry(ScalarPtr))
4902         ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0));
4903 
4904       Value *V = propagateMetadata(ST, E->Scalars);
4905 
4906       E->VectorizedValue = V;
4907       ++NumVectorInstructions;
4908       return V;
4909     }
4910     case Instruction::GetElementPtr: {
4911       setInsertPointAfterBundle(E);
4912 
4913       Value *Op0 = vectorizeTree(E->getOperand(0));
4914 
4915       std::vector<Value *> OpVecs;
4916       for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e;
4917            ++j) {
4918         ValueList &VL = E->getOperand(j);
4919         // Need to cast all elements to the same type before vectorization to
4920         // avoid crash.
4921         Type *VL0Ty = VL0->getOperand(j)->getType();
4922         Type *Ty = llvm::all_of(
4923                        VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); })
4924                        ? VL0Ty
4925                        : DL->getIndexType(cast<GetElementPtrInst>(VL0)
4926                                               ->getPointerOperandType()
4927                                               ->getScalarType());
4928         for (Value *&V : VL) {
4929           auto *CI = cast<ConstantInt>(V);
4930           V = ConstantExpr::getIntegerCast(CI, Ty,
4931                                            CI->getValue().isSignBitSet());
4932         }
4933         Value *OpVec = vectorizeTree(VL);
4934         OpVecs.push_back(OpVec);
4935       }
4936 
4937       Value *V = Builder.CreateGEP(
4938           cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs);
4939       if (Instruction *I = dyn_cast<Instruction>(V))
4940         V = propagateMetadata(I, E->Scalars);
4941 
4942       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
4943       V = ShuffleBuilder.finalize(V);
4944 
4945       E->VectorizedValue = V;
4946       ++NumVectorInstructions;
4947 
4948       return V;
4949     }
4950     case Instruction::Call: {
4951       CallInst *CI = cast<CallInst>(VL0);
4952       setInsertPointAfterBundle(E);
4953 
4954       Intrinsic::ID IID  = Intrinsic::not_intrinsic;
4955       if (Function *FI = CI->getCalledFunction())
4956         IID = FI->getIntrinsicID();
4957 
4958       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4959 
4960       auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
4961       bool UseIntrinsic = ID != Intrinsic::not_intrinsic &&
4962                           VecCallCosts.first <= VecCallCosts.second;
4963 
4964       Value *ScalarArg = nullptr;
4965       std::vector<Value *> OpVecs;
4966       for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) {
4967         ValueList OpVL;
4968         // Some intrinsics have scalar arguments. This argument should not be
4969         // vectorized.
4970         if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) {
4971           CallInst *CEI = cast<CallInst>(VL0);
4972           ScalarArg = CEI->getArgOperand(j);
4973           OpVecs.push_back(CEI->getArgOperand(j));
4974           continue;
4975         }
4976 
4977         Value *OpVec = vectorizeTree(E->getOperand(j));
4978         LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
4979         OpVecs.push_back(OpVec);
4980       }
4981 
4982       Function *CF;
4983       if (!UseIntrinsic) {
4984         VFShape Shape =
4985             VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>(
4986                                   VecTy->getNumElements())),
4987                          false /*HasGlobalPred*/);
4988         CF = VFDatabase(*CI).getVectorizedFunction(Shape);
4989       } else {
4990         Type *Tys[] = {FixedVectorType::get(CI->getType(), E->Scalars.size())};
4991         CF = Intrinsic::getDeclaration(F->getParent(), ID, Tys);
4992       }
4993 
4994       SmallVector<OperandBundleDef, 1> OpBundles;
4995       CI->getOperandBundlesAsDefs(OpBundles);
4996       Value *V = Builder.CreateCall(CF, OpVecs, OpBundles);
4997 
4998       // The scalar argument uses an in-tree scalar so we add the new vectorized
4999       // call to ExternalUses list to make sure that an extract will be
5000       // generated in the future.
5001       if (ScalarArg && getTreeEntry(ScalarArg))
5002         ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0));
5003 
5004       propagateIRFlags(V, E->Scalars, VL0);
5005       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5006       V = ShuffleBuilder.finalize(V);
5007 
5008       E->VectorizedValue = V;
5009       ++NumVectorInstructions;
5010       return V;
5011     }
5012     case Instruction::ShuffleVector: {
5013       assert(E->isAltShuffle() &&
5014              ((Instruction::isBinaryOp(E->getOpcode()) &&
5015                Instruction::isBinaryOp(E->getAltOpcode())) ||
5016               (Instruction::isCast(E->getOpcode()) &&
5017                Instruction::isCast(E->getAltOpcode()))) &&
5018              "Invalid Shuffle Vector Operand");
5019 
5020       Value *LHS = nullptr, *RHS = nullptr;
5021       if (Instruction::isBinaryOp(E->getOpcode())) {
5022         setInsertPointAfterBundle(E);
5023         LHS = vectorizeTree(E->getOperand(0));
5024         RHS = vectorizeTree(E->getOperand(1));
5025       } else {
5026         setInsertPointAfterBundle(E);
5027         LHS = vectorizeTree(E->getOperand(0));
5028       }
5029 
5030       if (E->VectorizedValue) {
5031         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
5032         return E->VectorizedValue;
5033       }
5034 
5035       Value *V0, *V1;
5036       if (Instruction::isBinaryOp(E->getOpcode())) {
5037         V0 = Builder.CreateBinOp(
5038             static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS);
5039         V1 = Builder.CreateBinOp(
5040             static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS);
5041       } else {
5042         V0 = Builder.CreateCast(
5043             static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy);
5044         V1 = Builder.CreateCast(
5045             static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy);
5046       }
5047 
5048       // Create shuffle to take alternate operations from the vector.
5049       // Also, gather up main and alt scalar ops to propagate IR flags to
5050       // each vector operation.
5051       ValueList OpScalars, AltScalars;
5052       unsigned e = E->Scalars.size();
5053       SmallVector<int, 8> Mask(e);
5054       for (unsigned i = 0; i < e; ++i) {
5055         auto *OpInst = cast<Instruction>(E->Scalars[i]);
5056         assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode");
5057         if (OpInst->getOpcode() == E->getAltOpcode()) {
5058           Mask[i] = e + i;
5059           AltScalars.push_back(E->Scalars[i]);
5060         } else {
5061           Mask[i] = i;
5062           OpScalars.push_back(E->Scalars[i]);
5063         }
5064       }
5065 
5066       propagateIRFlags(V0, OpScalars);
5067       propagateIRFlags(V1, AltScalars);
5068 
5069       Value *V = Builder.CreateShuffleVector(V0, V1, Mask);
5070       if (Instruction *I = dyn_cast<Instruction>(V))
5071         V = propagateMetadata(I, E->Scalars);
5072       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
5073       V = ShuffleBuilder.finalize(V);
5074 
5075       E->VectorizedValue = V;
5076       ++NumVectorInstructions;
5077 
5078       return V;
5079     }
5080     default:
5081     llvm_unreachable("unknown inst");
5082   }
5083   return nullptr;
5084 }
5085 
5086 Value *BoUpSLP::vectorizeTree() {
5087   ExtraValueToDebugLocsMap ExternallyUsedValues;
5088   return vectorizeTree(ExternallyUsedValues);
5089 }
5090 
5091 Value *
5092 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) {
5093   // All blocks must be scheduled before any instructions are inserted.
5094   for (auto &BSIter : BlocksSchedules) {
5095     scheduleBlock(BSIter.second.get());
5096   }
5097 
5098   Builder.SetInsertPoint(&F->getEntryBlock().front());
5099   auto *VectorRoot = vectorizeTree(VectorizableTree[0].get());
5100 
5101   // If the vectorized tree can be rewritten in a smaller type, we truncate the
5102   // vectorized root. InstCombine will then rewrite the entire expression. We
5103   // sign extend the extracted values below.
5104   auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
5105   if (MinBWs.count(ScalarRoot)) {
5106     if (auto *I = dyn_cast<Instruction>(VectorRoot)) {
5107       // If current instr is a phi and not the last phi, insert it after the
5108       // last phi node.
5109       if (isa<PHINode>(I))
5110         Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt());
5111       else
5112         Builder.SetInsertPoint(&*++BasicBlock::iterator(I));
5113     }
5114     auto BundleWidth = VectorizableTree[0]->Scalars.size();
5115     auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
5116     auto *VecTy = FixedVectorType::get(MinTy, BundleWidth);
5117     auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy);
5118     VectorizableTree[0]->VectorizedValue = Trunc;
5119   }
5120 
5121   LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size()
5122                     << " values .\n");
5123 
5124   // If necessary, sign-extend or zero-extend ScalarRoot to the larger type
5125   // specified by ScalarType.
5126   auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) {
5127     if (!MinBWs.count(ScalarRoot))
5128       return Ex;
5129     if (MinBWs[ScalarRoot].second)
5130       return Builder.CreateSExt(Ex, ScalarType);
5131     return Builder.CreateZExt(Ex, ScalarType);
5132   };
5133 
5134   // Extract all of the elements with the external uses.
5135   for (const auto &ExternalUse : ExternalUses) {
5136     Value *Scalar = ExternalUse.Scalar;
5137     llvm::User *User = ExternalUse.User;
5138 
5139     // Skip users that we already RAUW. This happens when one instruction
5140     // has multiple uses of the same value.
5141     if (User && !is_contained(Scalar->users(), User))
5142       continue;
5143     TreeEntry *E = getTreeEntry(Scalar);
5144     assert(E && "Invalid scalar");
5145     assert(E->State != TreeEntry::NeedToGather &&
5146            "Extracting from a gather list");
5147 
5148     Value *Vec = E->VectorizedValue;
5149     assert(Vec && "Can't find vectorizable value");
5150 
5151     Value *Lane = Builder.getInt32(ExternalUse.Lane);
5152     // If User == nullptr, the Scalar is used as extra arg. Generate
5153     // ExtractElement instruction and update the record for this scalar in
5154     // ExternallyUsedValues.
5155     if (!User) {
5156       assert(ExternallyUsedValues.count(Scalar) &&
5157              "Scalar with nullptr as an external user must be registered in "
5158              "ExternallyUsedValues map");
5159       if (auto *VecI = dyn_cast<Instruction>(Vec)) {
5160         Builder.SetInsertPoint(VecI->getParent(),
5161                                std::next(VecI->getIterator()));
5162       } else {
5163         Builder.SetInsertPoint(&F->getEntryBlock().front());
5164       }
5165       Value *Ex = Builder.CreateExtractElement(Vec, Lane);
5166       Ex = extend(ScalarRoot, Ex, Scalar->getType());
5167       CSEBlocks.insert(cast<Instruction>(Scalar)->getParent());
5168       auto &Locs = ExternallyUsedValues[Scalar];
5169       ExternallyUsedValues.insert({Ex, Locs});
5170       ExternallyUsedValues.erase(Scalar);
5171       // Required to update internally referenced instructions.
5172       Scalar->replaceAllUsesWith(Ex);
5173       continue;
5174     }
5175 
5176     // Generate extracts for out-of-tree users.
5177     // Find the insertion point for the extractelement lane.
5178     if (auto *VecI = dyn_cast<Instruction>(Vec)) {
5179       if (PHINode *PH = dyn_cast<PHINode>(User)) {
5180         for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
5181           if (PH->getIncomingValue(i) == Scalar) {
5182             Instruction *IncomingTerminator =
5183                 PH->getIncomingBlock(i)->getTerminator();
5184             if (isa<CatchSwitchInst>(IncomingTerminator)) {
5185               Builder.SetInsertPoint(VecI->getParent(),
5186                                      std::next(VecI->getIterator()));
5187             } else {
5188               Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
5189             }
5190             Value *Ex = Builder.CreateExtractElement(Vec, Lane);
5191             Ex = extend(ScalarRoot, Ex, Scalar->getType());
5192             CSEBlocks.insert(PH->getIncomingBlock(i));
5193             PH->setOperand(i, Ex);
5194           }
5195         }
5196       } else {
5197         Builder.SetInsertPoint(cast<Instruction>(User));
5198         Value *Ex = Builder.CreateExtractElement(Vec, Lane);
5199         Ex = extend(ScalarRoot, Ex, Scalar->getType());
5200         CSEBlocks.insert(cast<Instruction>(User)->getParent());
5201         User->replaceUsesOfWith(Scalar, Ex);
5202       }
5203     } else {
5204       Builder.SetInsertPoint(&F->getEntryBlock().front());
5205       Value *Ex = Builder.CreateExtractElement(Vec, Lane);
5206       Ex = extend(ScalarRoot, Ex, Scalar->getType());
5207       CSEBlocks.insert(&F->getEntryBlock());
5208       User->replaceUsesOfWith(Scalar, Ex);
5209     }
5210 
5211     LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
5212   }
5213 
5214   // For each vectorized value:
5215   for (auto &TEPtr : VectorizableTree) {
5216     TreeEntry *Entry = TEPtr.get();
5217 
5218     // No need to handle users of gathered values.
5219     if (Entry->State == TreeEntry::NeedToGather)
5220       continue;
5221 
5222     assert(Entry->VectorizedValue && "Can't find vectorizable value");
5223 
5224     // For each lane:
5225     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
5226       Value *Scalar = Entry->Scalars[Lane];
5227 
5228 #ifndef NDEBUG
5229       Type *Ty = Scalar->getType();
5230       if (!Ty->isVoidTy()) {
5231         for (User *U : Scalar->users()) {
5232           LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
5233 
5234           // It is legal to delete users in the ignorelist.
5235           assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) &&
5236                  "Deleting out-of-tree value");
5237         }
5238       }
5239 #endif
5240       LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
5241       eraseInstruction(cast<Instruction>(Scalar));
5242     }
5243   }
5244 
5245   Builder.ClearInsertionPoint();
5246   InstrElementSize.clear();
5247 
5248   return VectorizableTree[0]->VectorizedValue;
5249 }
5250 
5251 void BoUpSLP::optimizeGatherSequence() {
5252   LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
5253                     << " gather sequences instructions.\n");
5254   // LICM InsertElementInst sequences.
5255   for (Instruction *I : GatherSeq) {
5256     if (isDeleted(I))
5257       continue;
5258 
5259     // Check if this block is inside a loop.
5260     Loop *L = LI->getLoopFor(I->getParent());
5261     if (!L)
5262       continue;
5263 
5264     // Check if it has a preheader.
5265     BasicBlock *PreHeader = L->getLoopPreheader();
5266     if (!PreHeader)
5267       continue;
5268 
5269     // If the vector or the element that we insert into it are
5270     // instructions that are defined in this basic block then we can't
5271     // hoist this instruction.
5272     auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
5273     auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
5274     if (Op0 && L->contains(Op0))
5275       continue;
5276     if (Op1 && L->contains(Op1))
5277       continue;
5278 
5279     // We can hoist this instruction. Move it to the pre-header.
5280     I->moveBefore(PreHeader->getTerminator());
5281   }
5282 
5283   // Make a list of all reachable blocks in our CSE queue.
5284   SmallVector<const DomTreeNode *, 8> CSEWorkList;
5285   CSEWorkList.reserve(CSEBlocks.size());
5286   for (BasicBlock *BB : CSEBlocks)
5287     if (DomTreeNode *N = DT->getNode(BB)) {
5288       assert(DT->isReachableFromEntry(N));
5289       CSEWorkList.push_back(N);
5290     }
5291 
5292   // Sort blocks by domination. This ensures we visit a block after all blocks
5293   // dominating it are visited.
5294   llvm::stable_sort(CSEWorkList,
5295                     [this](const DomTreeNode *A, const DomTreeNode *B) {
5296                       return DT->properlyDominates(A, B);
5297                     });
5298 
5299   // Perform O(N^2) search over the gather sequences and merge identical
5300   // instructions. TODO: We can further optimize this scan if we split the
5301   // instructions into different buckets based on the insert lane.
5302   SmallVector<Instruction *, 16> Visited;
5303   for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
5304     assert(*I &&
5305            (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
5306            "Worklist not sorted properly!");
5307     BasicBlock *BB = (*I)->getBlock();
5308     // For all instructions in blocks containing gather sequences:
5309     for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
5310       Instruction *In = &*it++;
5311       if (isDeleted(In))
5312         continue;
5313       if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
5314         continue;
5315 
5316       // Check if we can replace this instruction with any of the
5317       // visited instructions.
5318       for (Instruction *v : Visited) {
5319         if (In->isIdenticalTo(v) &&
5320             DT->dominates(v->getParent(), In->getParent())) {
5321           In->replaceAllUsesWith(v);
5322           eraseInstruction(In);
5323           In = nullptr;
5324           break;
5325         }
5326       }
5327       if (In) {
5328         assert(!is_contained(Visited, In));
5329         Visited.push_back(In);
5330       }
5331     }
5332   }
5333   CSEBlocks.clear();
5334   GatherSeq.clear();
5335 }
5336 
5337 // Groups the instructions to a bundle (which is then a single scheduling entity)
5338 // and schedules instructions until the bundle gets ready.
5339 Optional<BoUpSLP::ScheduleData *>
5340 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
5341                                             const InstructionsState &S) {
5342   if (isa<PHINode>(S.OpValue))
5343     return nullptr;
5344 
5345   // Initialize the instruction bundle.
5346   Instruction *OldScheduleEnd = ScheduleEnd;
5347   ScheduleData *PrevInBundle = nullptr;
5348   ScheduleData *Bundle = nullptr;
5349   bool ReSchedule = false;
5350   LLVM_DEBUG(dbgs() << "SLP:  bundle: " << *S.OpValue << "\n");
5351 
5352   auto &&TryScheduleBundle = [this, OldScheduleEnd, SLP](bool ReSchedule,
5353                                                          ScheduleData *Bundle) {
5354     // The scheduling region got new instructions at the lower end (or it is a
5355     // new region for the first bundle). This makes it necessary to
5356     // recalculate all dependencies.
5357     // It is seldom that this needs to be done a second time after adding the
5358     // initial bundle to the region.
5359     if (ScheduleEnd != OldScheduleEnd) {
5360       for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode())
5361         doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); });
5362       ReSchedule = true;
5363     }
5364     if (ReSchedule) {
5365       resetSchedule();
5366       initialFillReadyList(ReadyInsts);
5367     }
5368     if (Bundle) {
5369       LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle
5370                         << " in block " << BB->getName() << "\n");
5371       calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP);
5372     }
5373 
5374     // Now try to schedule the new bundle or (if no bundle) just calculate
5375     // dependencies. As soon as the bundle is "ready" it means that there are no
5376     // cyclic dependencies and we can schedule it. Note that's important that we
5377     // don't "schedule" the bundle yet (see cancelScheduling).
5378     while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) &&
5379            !ReadyInsts.empty()) {
5380       ScheduleData *Picked = ReadyInsts.pop_back_val();
5381       if (Picked->isSchedulingEntity() && Picked->isReady())
5382         schedule(Picked, ReadyInsts);
5383     }
5384   };
5385 
5386   // Make sure that the scheduling region contains all
5387   // instructions of the bundle.
5388   for (Value *V : VL) {
5389     if (!extendSchedulingRegion(V, S)) {
5390       // If the scheduling region got new instructions at the lower end (or it
5391       // is a new region for the first bundle). This makes it necessary to
5392       // recalculate all dependencies.
5393       // Otherwise the compiler may crash trying to incorrectly calculate
5394       // dependencies and emit instruction in the wrong order at the actual
5395       // scheduling.
5396       TryScheduleBundle(/*ReSchedule=*/false, nullptr);
5397       return None;
5398     }
5399   }
5400 
5401   for (Value *V : VL) {
5402     ScheduleData *BundleMember = getScheduleData(V);
5403     assert(BundleMember &&
5404            "no ScheduleData for bundle member (maybe not in same basic block)");
5405     if (BundleMember->IsScheduled) {
5406       // A bundle member was scheduled as single instruction before and now
5407       // needs to be scheduled as part of the bundle. We just get rid of the
5408       // existing schedule.
5409       LLVM_DEBUG(dbgs() << "SLP:  reset schedule because " << *BundleMember
5410                         << " was already scheduled\n");
5411       ReSchedule = true;
5412     }
5413     assert(BundleMember->isSchedulingEntity() &&
5414            "bundle member already part of other bundle");
5415     if (PrevInBundle) {
5416       PrevInBundle->NextInBundle = BundleMember;
5417     } else {
5418       Bundle = BundleMember;
5419     }
5420     BundleMember->UnscheduledDepsInBundle = 0;
5421     Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps;
5422 
5423     // Group the instructions to a bundle.
5424     BundleMember->FirstInBundle = Bundle;
5425     PrevInBundle = BundleMember;
5426   }
5427   assert(Bundle && "Failed to find schedule bundle");
5428   TryScheduleBundle(ReSchedule, Bundle);
5429   if (!Bundle->isReady()) {
5430     cancelScheduling(VL, S.OpValue);
5431     return None;
5432   }
5433   return Bundle;
5434 }
5435 
5436 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL,
5437                                                 Value *OpValue) {
5438   if (isa<PHINode>(OpValue))
5439     return;
5440 
5441   ScheduleData *Bundle = getScheduleData(OpValue);
5442   LLVM_DEBUG(dbgs() << "SLP:  cancel scheduling of " << *Bundle << "\n");
5443   assert(!Bundle->IsScheduled &&
5444          "Can't cancel bundle which is already scheduled");
5445   assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&
5446          "tried to unbundle something which is not a bundle");
5447 
5448   // Un-bundle: make single instructions out of the bundle.
5449   ScheduleData *BundleMember = Bundle;
5450   while (BundleMember) {
5451     assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
5452     BundleMember->FirstInBundle = BundleMember;
5453     ScheduleData *Next = BundleMember->NextInBundle;
5454     BundleMember->NextInBundle = nullptr;
5455     BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps;
5456     if (BundleMember->UnscheduledDepsInBundle == 0) {
5457       ReadyInsts.insert(BundleMember);
5458     }
5459     BundleMember = Next;
5460   }
5461 }
5462 
5463 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() {
5464   // Allocate a new ScheduleData for the instruction.
5465   if (ChunkPos >= ChunkSize) {
5466     ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize));
5467     ChunkPos = 0;
5468   }
5469   return &(ScheduleDataChunks.back()[ChunkPos++]);
5470 }
5471 
5472 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V,
5473                                                       const InstructionsState &S) {
5474   if (getScheduleData(V, isOneOf(S, V)))
5475     return true;
5476   Instruction *I = dyn_cast<Instruction>(V);
5477   assert(I && "bundle member must be an instruction");
5478   assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled");
5479   auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool {
5480     ScheduleData *ISD = getScheduleData(I);
5481     if (!ISD)
5482       return false;
5483     assert(isInSchedulingRegion(ISD) &&
5484            "ScheduleData not in scheduling region");
5485     ScheduleData *SD = allocateScheduleDataChunks();
5486     SD->Inst = I;
5487     SD->init(SchedulingRegionID, S.OpValue);
5488     ExtraScheduleDataMap[I][S.OpValue] = SD;
5489     return true;
5490   };
5491   if (CheckSheduleForI(I))
5492     return true;
5493   if (!ScheduleStart) {
5494     // It's the first instruction in the new region.
5495     initScheduleData(I, I->getNextNode(), nullptr, nullptr);
5496     ScheduleStart = I;
5497     ScheduleEnd = I->getNextNode();
5498     if (isOneOf(S, I) != I)
5499       CheckSheduleForI(I);
5500     assert(ScheduleEnd && "tried to vectorize a terminator?");
5501     LLVM_DEBUG(dbgs() << "SLP:  initialize schedule region to " << *I << "\n");
5502     return true;
5503   }
5504   // Search up and down at the same time, because we don't know if the new
5505   // instruction is above or below the existing scheduling region.
5506   BasicBlock::reverse_iterator UpIter =
5507       ++ScheduleStart->getIterator().getReverse();
5508   BasicBlock::reverse_iterator UpperEnd = BB->rend();
5509   BasicBlock::iterator DownIter = ScheduleEnd->getIterator();
5510   BasicBlock::iterator LowerEnd = BB->end();
5511   while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I &&
5512          &*DownIter != I) {
5513     if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
5514       LLVM_DEBUG(dbgs() << "SLP:  exceeded schedule region size limit\n");
5515       return false;
5516     }
5517 
5518     ++UpIter;
5519     ++DownIter;
5520   }
5521   if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) {
5522     assert(I->getParent() == ScheduleStart->getParent() &&
5523            "Instruction is in wrong basic block.");
5524     initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
5525     ScheduleStart = I;
5526     if (isOneOf(S, I) != I)
5527       CheckSheduleForI(I);
5528     LLVM_DEBUG(dbgs() << "SLP:  extend schedule region start to " << *I
5529                       << "\n");
5530     return true;
5531   }
5532   assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) &&
5533          "Expected to reach top of the basic block or instruction down the "
5534          "lower end.");
5535   assert(I->getParent() == ScheduleEnd->getParent() &&
5536          "Instruction is in wrong basic block.");
5537   initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
5538                    nullptr);
5539   ScheduleEnd = I->getNextNode();
5540   if (isOneOf(S, I) != I)
5541     CheckSheduleForI(I);
5542   assert(ScheduleEnd && "tried to vectorize a terminator?");
5543   LLVM_DEBUG(dbgs() << "SLP:  extend schedule region end to " << *I << "\n");
5544   return true;
5545 }
5546 
5547 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
5548                                                 Instruction *ToI,
5549                                                 ScheduleData *PrevLoadStore,
5550                                                 ScheduleData *NextLoadStore) {
5551   ScheduleData *CurrentLoadStore = PrevLoadStore;
5552   for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
5553     ScheduleData *SD = ScheduleDataMap[I];
5554     if (!SD) {
5555       SD = allocateScheduleDataChunks();
5556       ScheduleDataMap[I] = SD;
5557       SD->Inst = I;
5558     }
5559     assert(!isInSchedulingRegion(SD) &&
5560            "new ScheduleData already in scheduling region");
5561     SD->init(SchedulingRegionID, I);
5562 
5563     if (I->mayReadOrWriteMemory() &&
5564         (!isa<IntrinsicInst>(I) ||
5565          (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect &&
5566           cast<IntrinsicInst>(I)->getIntrinsicID() !=
5567               Intrinsic::pseudoprobe))) {
5568       // Update the linked list of memory accessing instructions.
5569       if (CurrentLoadStore) {
5570         CurrentLoadStore->NextLoadStore = SD;
5571       } else {
5572         FirstLoadStoreInRegion = SD;
5573       }
5574       CurrentLoadStore = SD;
5575     }
5576   }
5577   if (NextLoadStore) {
5578     if (CurrentLoadStore)
5579       CurrentLoadStore->NextLoadStore = NextLoadStore;
5580   } else {
5581     LastLoadStoreInRegion = CurrentLoadStore;
5582   }
5583 }
5584 
5585 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
5586                                                      bool InsertInReadyList,
5587                                                      BoUpSLP *SLP) {
5588   assert(SD->isSchedulingEntity());
5589 
5590   SmallVector<ScheduleData *, 10> WorkList;
5591   WorkList.push_back(SD);
5592 
5593   while (!WorkList.empty()) {
5594     ScheduleData *SD = WorkList.pop_back_val();
5595 
5596     ScheduleData *BundleMember = SD;
5597     while (BundleMember) {
5598       assert(isInSchedulingRegion(BundleMember));
5599       if (!BundleMember->hasValidDependencies()) {
5600 
5601         LLVM_DEBUG(dbgs() << "SLP:       update deps of " << *BundleMember
5602                           << "\n");
5603         BundleMember->Dependencies = 0;
5604         BundleMember->resetUnscheduledDeps();
5605 
5606         // Handle def-use chain dependencies.
5607         if (BundleMember->OpValue != BundleMember->Inst) {
5608           ScheduleData *UseSD = getScheduleData(BundleMember->Inst);
5609           if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
5610             BundleMember->Dependencies++;
5611             ScheduleData *DestBundle = UseSD->FirstInBundle;
5612             if (!DestBundle->IsScheduled)
5613               BundleMember->incrementUnscheduledDeps(1);
5614             if (!DestBundle->hasValidDependencies())
5615               WorkList.push_back(DestBundle);
5616           }
5617         } else {
5618           for (User *U : BundleMember->Inst->users()) {
5619             if (isa<Instruction>(U)) {
5620               ScheduleData *UseSD = getScheduleData(U);
5621               if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
5622                 BundleMember->Dependencies++;
5623                 ScheduleData *DestBundle = UseSD->FirstInBundle;
5624                 if (!DestBundle->IsScheduled)
5625                   BundleMember->incrementUnscheduledDeps(1);
5626                 if (!DestBundle->hasValidDependencies())
5627                   WorkList.push_back(DestBundle);
5628               }
5629             } else {
5630               // I'm not sure if this can ever happen. But we need to be safe.
5631               // This lets the instruction/bundle never be scheduled and
5632               // eventually disable vectorization.
5633               BundleMember->Dependencies++;
5634               BundleMember->incrementUnscheduledDeps(1);
5635             }
5636           }
5637         }
5638 
5639         // Handle the memory dependencies.
5640         ScheduleData *DepDest = BundleMember->NextLoadStore;
5641         if (DepDest) {
5642           Instruction *SrcInst = BundleMember->Inst;
5643           MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA);
5644           bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
5645           unsigned numAliased = 0;
5646           unsigned DistToSrc = 1;
5647 
5648           while (DepDest) {
5649             assert(isInSchedulingRegion(DepDest));
5650 
5651             // We have two limits to reduce the complexity:
5652             // 1) AliasedCheckLimit: It's a small limit to reduce calls to
5653             //    SLP->isAliased (which is the expensive part in this loop).
5654             // 2) MaxMemDepDistance: It's for very large blocks and it aborts
5655             //    the whole loop (even if the loop is fast, it's quadratic).
5656             //    It's important for the loop break condition (see below) to
5657             //    check this limit even between two read-only instructions.
5658             if (DistToSrc >= MaxMemDepDistance ||
5659                     ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
5660                      (numAliased >= AliasedCheckLimit ||
5661                       SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
5662 
5663               // We increment the counter only if the locations are aliased
5664               // (instead of counting all alias checks). This gives a better
5665               // balance between reduced runtime and accurate dependencies.
5666               numAliased++;
5667 
5668               DepDest->MemoryDependencies.push_back(BundleMember);
5669               BundleMember->Dependencies++;
5670               ScheduleData *DestBundle = DepDest->FirstInBundle;
5671               if (!DestBundle->IsScheduled) {
5672                 BundleMember->incrementUnscheduledDeps(1);
5673               }
5674               if (!DestBundle->hasValidDependencies()) {
5675                 WorkList.push_back(DestBundle);
5676               }
5677             }
5678             DepDest = DepDest->NextLoadStore;
5679 
5680             // Example, explaining the loop break condition: Let's assume our
5681             // starting instruction is i0 and MaxMemDepDistance = 3.
5682             //
5683             //                      +--------v--v--v
5684             //             i0,i1,i2,i3,i4,i5,i6,i7,i8
5685             //             +--------^--^--^
5686             //
5687             // MaxMemDepDistance let us stop alias-checking at i3 and we add
5688             // dependencies from i0 to i3,i4,.. (even if they are not aliased).
5689             // Previously we already added dependencies from i3 to i6,i7,i8
5690             // (because of MaxMemDepDistance). As we added a dependency from
5691             // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
5692             // and we can abort this loop at i6.
5693             if (DistToSrc >= 2 * MaxMemDepDistance)
5694               break;
5695             DistToSrc++;
5696           }
5697         }
5698       }
5699       BundleMember = BundleMember->NextInBundle;
5700     }
5701     if (InsertInReadyList && SD->isReady()) {
5702       ReadyInsts.push_back(SD);
5703       LLVM_DEBUG(dbgs() << "SLP:     gets ready on update: " << *SD->Inst
5704                         << "\n");
5705     }
5706   }
5707 }
5708 
5709 void BoUpSLP::BlockScheduling::resetSchedule() {
5710   assert(ScheduleStart &&
5711          "tried to reset schedule on block which has not been scheduled");
5712   for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
5713     doForAllOpcodes(I, [&](ScheduleData *SD) {
5714       assert(isInSchedulingRegion(SD) &&
5715              "ScheduleData not in scheduling region");
5716       SD->IsScheduled = false;
5717       SD->resetUnscheduledDeps();
5718     });
5719   }
5720   ReadyInsts.clear();
5721 }
5722 
5723 void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
5724   if (!BS->ScheduleStart)
5725     return;
5726 
5727   LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n");
5728 
5729   BS->resetSchedule();
5730 
5731   // For the real scheduling we use a more sophisticated ready-list: it is
5732   // sorted by the original instruction location. This lets the final schedule
5733   // be as  close as possible to the original instruction order.
5734   struct ScheduleDataCompare {
5735     bool operator()(ScheduleData *SD1, ScheduleData *SD2) const {
5736       return SD2->SchedulingPriority < SD1->SchedulingPriority;
5737     }
5738   };
5739   std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
5740 
5741   // Ensure that all dependency data is updated and fill the ready-list with
5742   // initial instructions.
5743   int Idx = 0;
5744   int NumToSchedule = 0;
5745   for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
5746        I = I->getNextNode()) {
5747     BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) {
5748       assert(SD->isPartOfBundle() ==
5749                  (getTreeEntry(SD->Inst) != nullptr) &&
5750              "scheduler and vectorizer bundle mismatch");
5751       SD->FirstInBundle->SchedulingPriority = Idx++;
5752       if (SD->isSchedulingEntity()) {
5753         BS->calculateDependencies(SD, false, this);
5754         NumToSchedule++;
5755       }
5756     });
5757   }
5758   BS->initialFillReadyList(ReadyInsts);
5759 
5760   Instruction *LastScheduledInst = BS->ScheduleEnd;
5761 
5762   // Do the "real" scheduling.
5763   while (!ReadyInsts.empty()) {
5764     ScheduleData *picked = *ReadyInsts.begin();
5765     ReadyInsts.erase(ReadyInsts.begin());
5766 
5767     // Move the scheduled instruction(s) to their dedicated places, if not
5768     // there yet.
5769     ScheduleData *BundleMember = picked;
5770     while (BundleMember) {
5771       Instruction *pickedInst = BundleMember->Inst;
5772       if (LastScheduledInst->getNextNode() != pickedInst) {
5773         BS->BB->getInstList().remove(pickedInst);
5774         BS->BB->getInstList().insert(LastScheduledInst->getIterator(),
5775                                      pickedInst);
5776       }
5777       LastScheduledInst = pickedInst;
5778       BundleMember = BundleMember->NextInBundle;
5779     }
5780 
5781     BS->schedule(picked, ReadyInsts);
5782     NumToSchedule--;
5783   }
5784   assert(NumToSchedule == 0 && "could not schedule all instructions");
5785 
5786   // Avoid duplicate scheduling of the block.
5787   BS->ScheduleStart = nullptr;
5788 }
5789 
5790 unsigned BoUpSLP::getVectorElementSize(Value *V) {
5791   // If V is a store, just return the width of the stored value (or value
5792   // truncated just before storing) without traversing the expression tree.
5793   // This is the common case.
5794   if (auto *Store = dyn_cast<StoreInst>(V)) {
5795     if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand()))
5796       return DL->getTypeSizeInBits(Trunc->getSrcTy());
5797     return DL->getTypeSizeInBits(Store->getValueOperand()->getType());
5798   }
5799 
5800   auto E = InstrElementSize.find(V);
5801   if (E != InstrElementSize.end())
5802     return E->second;
5803 
5804   // If V is not a store, we can traverse the expression tree to find loads
5805   // that feed it. The type of the loaded value may indicate a more suitable
5806   // width than V's type. We want to base the vector element size on the width
5807   // of memory operations where possible.
5808   SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist;
5809   SmallPtrSet<Instruction *, 16> Visited;
5810   if (auto *I = dyn_cast<Instruction>(V)) {
5811     Worklist.emplace_back(I, I->getParent());
5812     Visited.insert(I);
5813   }
5814 
5815   // Traverse the expression tree in bottom-up order looking for loads. If we
5816   // encounter an instruction we don't yet handle, we give up.
5817   auto Width = 0u;
5818   while (!Worklist.empty()) {
5819     Instruction *I;
5820     BasicBlock *Parent;
5821     std::tie(I, Parent) = Worklist.pop_back_val();
5822 
5823     // We should only be looking at scalar instructions here. If the current
5824     // instruction has a vector type, skip.
5825     auto *Ty = I->getType();
5826     if (isa<VectorType>(Ty))
5827       continue;
5828 
5829     // If the current instruction is a load, update MaxWidth to reflect the
5830     // width of the loaded value.
5831     if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) ||
5832         isa<ExtractValueInst>(I))
5833       Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty));
5834 
5835     // Otherwise, we need to visit the operands of the instruction. We only
5836     // handle the interesting cases from buildTree here. If an operand is an
5837     // instruction we haven't yet visited and from the same basic block as the
5838     // user or the use is a PHI node, we add it to the worklist.
5839     else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
5840              isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) ||
5841              isa<UnaryOperator>(I)) {
5842       for (Use &U : I->operands())
5843         if (auto *J = dyn_cast<Instruction>(U.get()))
5844           if (Visited.insert(J).second &&
5845               (isa<PHINode>(I) || J->getParent() == Parent))
5846             Worklist.emplace_back(J, J->getParent());
5847     } else {
5848       break;
5849     }
5850   }
5851 
5852   // If we didn't encounter a memory access in the expression tree, or if we
5853   // gave up for some reason, just return the width of V. Otherwise, return the
5854   // maximum width we found.
5855   if (!Width) {
5856     if (auto *CI = dyn_cast<CmpInst>(V))
5857       V = CI->getOperand(0);
5858     Width = DL->getTypeSizeInBits(V->getType());
5859   }
5860 
5861   for (Instruction *I : Visited)
5862     InstrElementSize[I] = Width;
5863 
5864   return Width;
5865 }
5866 
5867 // Determine if a value V in a vectorizable expression Expr can be demoted to a
5868 // smaller type with a truncation. We collect the values that will be demoted
5869 // in ToDemote and additional roots that require investigating in Roots.
5870 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr,
5871                                   SmallVectorImpl<Value *> &ToDemote,
5872                                   SmallVectorImpl<Value *> &Roots) {
5873   // We can always demote constants.
5874   if (isa<Constant>(V)) {
5875     ToDemote.push_back(V);
5876     return true;
5877   }
5878 
5879   // If the value is not an instruction in the expression with only one use, it
5880   // cannot be demoted.
5881   auto *I = dyn_cast<Instruction>(V);
5882   if (!I || !I->hasOneUse() || !Expr.count(I))
5883     return false;
5884 
5885   switch (I->getOpcode()) {
5886 
5887   // We can always demote truncations and extensions. Since truncations can
5888   // seed additional demotion, we save the truncated value.
5889   case Instruction::Trunc:
5890     Roots.push_back(I->getOperand(0));
5891     break;
5892   case Instruction::ZExt:
5893   case Instruction::SExt:
5894     break;
5895 
5896   // We can demote certain binary operations if we can demote both of their
5897   // operands.
5898   case Instruction::Add:
5899   case Instruction::Sub:
5900   case Instruction::Mul:
5901   case Instruction::And:
5902   case Instruction::Or:
5903   case Instruction::Xor:
5904     if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) ||
5905         !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots))
5906       return false;
5907     break;
5908 
5909   // We can demote selects if we can demote their true and false values.
5910   case Instruction::Select: {
5911     SelectInst *SI = cast<SelectInst>(I);
5912     if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) ||
5913         !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots))
5914       return false;
5915     break;
5916   }
5917 
5918   // We can demote phis if we can demote all their incoming operands. Note that
5919   // we don't need to worry about cycles since we ensure single use above.
5920   case Instruction::PHI: {
5921     PHINode *PN = cast<PHINode>(I);
5922     for (Value *IncValue : PN->incoming_values())
5923       if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots))
5924         return false;
5925     break;
5926   }
5927 
5928   // Otherwise, conservatively give up.
5929   default:
5930     return false;
5931   }
5932 
5933   // Record the value that we can demote.
5934   ToDemote.push_back(V);
5935   return true;
5936 }
5937 
5938 void BoUpSLP::computeMinimumValueSizes() {
5939   // If there are no external uses, the expression tree must be rooted by a
5940   // store. We can't demote in-memory values, so there is nothing to do here.
5941   if (ExternalUses.empty())
5942     return;
5943 
5944   // We only attempt to truncate integer expressions.
5945   auto &TreeRoot = VectorizableTree[0]->Scalars;
5946   auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType());
5947   if (!TreeRootIT)
5948     return;
5949 
5950   // If the expression is not rooted by a store, these roots should have
5951   // external uses. We will rely on InstCombine to rewrite the expression in
5952   // the narrower type. However, InstCombine only rewrites single-use values.
5953   // This means that if a tree entry other than a root is used externally, it
5954   // must have multiple uses and InstCombine will not rewrite it. The code
5955   // below ensures that only the roots are used externally.
5956   SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end());
5957   for (auto &EU : ExternalUses)
5958     if (!Expr.erase(EU.Scalar))
5959       return;
5960   if (!Expr.empty())
5961     return;
5962 
5963   // Collect the scalar values of the vectorizable expression. We will use this
5964   // context to determine which values can be demoted. If we see a truncation,
5965   // we mark it as seeding another demotion.
5966   for (auto &EntryPtr : VectorizableTree)
5967     Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end());
5968 
5969   // Ensure the roots of the vectorizable tree don't form a cycle. They must
5970   // have a single external user that is not in the vectorizable tree.
5971   for (auto *Root : TreeRoot)
5972     if (!Root->hasOneUse() || Expr.count(*Root->user_begin()))
5973       return;
5974 
5975   // Conservatively determine if we can actually truncate the roots of the
5976   // expression. Collect the values that can be demoted in ToDemote and
5977   // additional roots that require investigating in Roots.
5978   SmallVector<Value *, 32> ToDemote;
5979   SmallVector<Value *, 4> Roots;
5980   for (auto *Root : TreeRoot)
5981     if (!collectValuesToDemote(Root, Expr, ToDemote, Roots))
5982       return;
5983 
5984   // The maximum bit width required to represent all the values that can be
5985   // demoted without loss of precision. It would be safe to truncate the roots
5986   // of the expression to this width.
5987   auto MaxBitWidth = 8u;
5988 
5989   // We first check if all the bits of the roots are demanded. If they're not,
5990   // we can truncate the roots to this narrower type.
5991   for (auto *Root : TreeRoot) {
5992     auto Mask = DB->getDemandedBits(cast<Instruction>(Root));
5993     MaxBitWidth = std::max<unsigned>(
5994         Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth);
5995   }
5996 
5997   // True if the roots can be zero-extended back to their original type, rather
5998   // than sign-extended. We know that if the leading bits are not demanded, we
5999   // can safely zero-extend. So we initialize IsKnownPositive to True.
6000   bool IsKnownPositive = true;
6001 
6002   // If all the bits of the roots are demanded, we can try a little harder to
6003   // compute a narrower type. This can happen, for example, if the roots are
6004   // getelementptr indices. InstCombine promotes these indices to the pointer
6005   // width. Thus, all their bits are technically demanded even though the
6006   // address computation might be vectorized in a smaller type.
6007   //
6008   // We start by looking at each entry that can be demoted. We compute the
6009   // maximum bit width required to store the scalar by using ValueTracking to
6010   // compute the number of high-order bits we can truncate.
6011   if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) &&
6012       llvm::all_of(TreeRoot, [](Value *R) {
6013         assert(R->hasOneUse() && "Root should have only one use!");
6014         return isa<GetElementPtrInst>(R->user_back());
6015       })) {
6016     MaxBitWidth = 8u;
6017 
6018     // Determine if the sign bit of all the roots is known to be zero. If not,
6019     // IsKnownPositive is set to False.
6020     IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) {
6021       KnownBits Known = computeKnownBits(R, *DL);
6022       return Known.isNonNegative();
6023     });
6024 
6025     // Determine the maximum number of bits required to store the scalar
6026     // values.
6027     for (auto *Scalar : ToDemote) {
6028       auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT);
6029       auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType());
6030       MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth);
6031     }
6032 
6033     // If we can't prove that the sign bit is zero, we must add one to the
6034     // maximum bit width to account for the unknown sign bit. This preserves
6035     // the existing sign bit so we can safely sign-extend the root back to the
6036     // original type. Otherwise, if we know the sign bit is zero, we will
6037     // zero-extend the root instead.
6038     //
6039     // FIXME: This is somewhat suboptimal, as there will be cases where adding
6040     //        one to the maximum bit width will yield a larger-than-necessary
6041     //        type. In general, we need to add an extra bit only if we can't
6042     //        prove that the upper bit of the original type is equal to the
6043     //        upper bit of the proposed smaller type. If these two bits are the
6044     //        same (either zero or one) we know that sign-extending from the
6045     //        smaller type will result in the same value. Here, since we can't
6046     //        yet prove this, we are just making the proposed smaller type
6047     //        larger to ensure correctness.
6048     if (!IsKnownPositive)
6049       ++MaxBitWidth;
6050   }
6051 
6052   // Round MaxBitWidth up to the next power-of-two.
6053   if (!isPowerOf2_64(MaxBitWidth))
6054     MaxBitWidth = NextPowerOf2(MaxBitWidth);
6055 
6056   // If the maximum bit width we compute is less than the with of the roots'
6057   // type, we can proceed with the narrowing. Otherwise, do nothing.
6058   if (MaxBitWidth >= TreeRootIT->getBitWidth())
6059     return;
6060 
6061   // If we can truncate the root, we must collect additional values that might
6062   // be demoted as a result. That is, those seeded by truncations we will
6063   // modify.
6064   while (!Roots.empty())
6065     collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots);
6066 
6067   // Finally, map the values we can demote to the maximum bit with we computed.
6068   for (auto *Scalar : ToDemote)
6069     MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive);
6070 }
6071 
6072 namespace {
6073 
6074 /// The SLPVectorizer Pass.
6075 struct SLPVectorizer : public FunctionPass {
6076   SLPVectorizerPass Impl;
6077 
6078   /// Pass identification, replacement for typeid
6079   static char ID;
6080 
6081   explicit SLPVectorizer() : FunctionPass(ID) {
6082     initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
6083   }
6084 
6085   bool doInitialization(Module &M) override {
6086     return false;
6087   }
6088 
6089   bool runOnFunction(Function &F) override {
6090     if (skipFunction(F))
6091       return false;
6092 
6093     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
6094     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
6095     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
6096     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
6097     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
6098     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
6099     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
6100     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
6101     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
6102     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
6103 
6104     return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
6105   }
6106 
6107   void getAnalysisUsage(AnalysisUsage &AU) const override {
6108     FunctionPass::getAnalysisUsage(AU);
6109     AU.addRequired<AssumptionCacheTracker>();
6110     AU.addRequired<ScalarEvolutionWrapperPass>();
6111     AU.addRequired<AAResultsWrapperPass>();
6112     AU.addRequired<TargetTransformInfoWrapperPass>();
6113     AU.addRequired<LoopInfoWrapperPass>();
6114     AU.addRequired<DominatorTreeWrapperPass>();
6115     AU.addRequired<DemandedBitsWrapperPass>();
6116     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
6117     AU.addRequired<InjectTLIMappingsLegacy>();
6118     AU.addPreserved<LoopInfoWrapperPass>();
6119     AU.addPreserved<DominatorTreeWrapperPass>();
6120     AU.addPreserved<AAResultsWrapperPass>();
6121     AU.addPreserved<GlobalsAAWrapperPass>();
6122     AU.setPreservesCFG();
6123   }
6124 };
6125 
6126 } // end anonymous namespace
6127 
6128 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
6129   auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
6130   auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
6131   auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
6132   auto *AA = &AM.getResult<AAManager>(F);
6133   auto *LI = &AM.getResult<LoopAnalysis>(F);
6134   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
6135   auto *AC = &AM.getResult<AssumptionAnalysis>(F);
6136   auto *DB = &AM.getResult<DemandedBitsAnalysis>(F);
6137   auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
6138 
6139   bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
6140   if (!Changed)
6141     return PreservedAnalyses::all();
6142 
6143   PreservedAnalyses PA;
6144   PA.preserveSet<CFGAnalyses>();
6145   PA.preserve<AAManager>();
6146   PA.preserve<GlobalsAA>();
6147   return PA;
6148 }
6149 
6150 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_,
6151                                 TargetTransformInfo *TTI_,
6152                                 TargetLibraryInfo *TLI_, AAResults *AA_,
6153                                 LoopInfo *LI_, DominatorTree *DT_,
6154                                 AssumptionCache *AC_, DemandedBits *DB_,
6155                                 OptimizationRemarkEmitter *ORE_) {
6156   if (!RunSLPVectorization)
6157     return false;
6158   SE = SE_;
6159   TTI = TTI_;
6160   TLI = TLI_;
6161   AA = AA_;
6162   LI = LI_;
6163   DT = DT_;
6164   AC = AC_;
6165   DB = DB_;
6166   DL = &F.getParent()->getDataLayout();
6167 
6168   Stores.clear();
6169   GEPs.clear();
6170   bool Changed = false;
6171 
6172   // If the target claims to have no vector registers don't attempt
6173   // vectorization.
6174   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)))
6175     return false;
6176 
6177   // Don't vectorize when the attribute NoImplicitFloat is used.
6178   if (F.hasFnAttribute(Attribute::NoImplicitFloat))
6179     return false;
6180 
6181   LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
6182 
6183   // Use the bottom up slp vectorizer to construct chains that start with
6184   // store instructions.
6185   BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_);
6186 
6187   // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
6188   // delete instructions.
6189 
6190   // Scan the blocks in the function in post order.
6191   for (auto BB : post_order(&F.getEntryBlock())) {
6192     collectSeedInstructions(BB);
6193 
6194     // Vectorize trees that end at stores.
6195     if (!Stores.empty()) {
6196       LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size()
6197                         << " underlying objects.\n");
6198       Changed |= vectorizeStoreChains(R);
6199     }
6200 
6201     // Vectorize trees that end at reductions.
6202     Changed |= vectorizeChainsInBlock(BB, R);
6203 
6204     // Vectorize the index computations of getelementptr instructions. This
6205     // is primarily intended to catch gather-like idioms ending at
6206     // non-consecutive loads.
6207     if (!GEPs.empty()) {
6208       LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size()
6209                         << " underlying objects.\n");
6210       Changed |= vectorizeGEPIndices(BB, R);
6211     }
6212   }
6213 
6214   if (Changed) {
6215     R.optimizeGatherSequence();
6216     LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
6217   }
6218   return Changed;
6219 }
6220 
6221 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R,
6222                                             unsigned Idx) {
6223   LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size()
6224                     << "\n");
6225   const unsigned Sz = R.getVectorElementSize(Chain[0]);
6226   const unsigned MinVF = R.getMinVecRegSize() / Sz;
6227   unsigned VF = Chain.size();
6228 
6229   if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF)
6230     return false;
6231 
6232   LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx
6233                     << "\n");
6234 
6235   R.buildTree(Chain);
6236   Optional<ArrayRef<unsigned>> Order = R.bestOrder();
6237   // TODO: Handle orders of size less than number of elements in the vector.
6238   if (Order && Order->size() == Chain.size()) {
6239     // TODO: reorder tree nodes without tree rebuilding.
6240     SmallVector<Value *, 4> ReorderedOps(Chain.rbegin(), Chain.rend());
6241     llvm::transform(*Order, ReorderedOps.begin(),
6242                     [Chain](const unsigned Idx) { return Chain[Idx]; });
6243     R.buildTree(ReorderedOps);
6244   }
6245   if (R.isTreeTinyAndNotFullyVectorizable())
6246     return false;
6247   if (R.isLoadCombineCandidate())
6248     return false;
6249 
6250   R.computeMinimumValueSizes();
6251 
6252   InstructionCost Cost = R.getTreeCost();
6253 
6254   LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n");
6255   if (Cost < -SLPCostThreshold) {
6256     LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n");
6257 
6258     using namespace ore;
6259 
6260     R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized",
6261                                         cast<StoreInst>(Chain[0]))
6262                      << "Stores SLP vectorized with cost " << NV("Cost", Cost)
6263                      << " and with tree size "
6264                      << NV("TreeSize", R.getTreeSize()));
6265 
6266     R.vectorizeTree();
6267     return true;
6268   }
6269 
6270   return false;
6271 }
6272 
6273 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores,
6274                                         BoUpSLP &R) {
6275   // We may run into multiple chains that merge into a single chain. We mark the
6276   // stores that we vectorized so that we don't visit the same store twice.
6277   BoUpSLP::ValueSet VectorizedStores;
6278   bool Changed = false;
6279 
6280   int E = Stores.size();
6281   SmallBitVector Tails(E, false);
6282   int MaxIter = MaxStoreLookup.getValue();
6283   SmallVector<std::pair<int, int>, 16> ConsecutiveChain(
6284       E, std::make_pair(E, INT_MAX));
6285   SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false));
6286   int IterCnt;
6287   auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter,
6288                                   &CheckedPairs,
6289                                   &ConsecutiveChain](int K, int Idx) {
6290     if (IterCnt >= MaxIter)
6291       return true;
6292     if (CheckedPairs[Idx].test(K))
6293       return ConsecutiveChain[K].second == 1 &&
6294              ConsecutiveChain[K].first == Idx;
6295     ++IterCnt;
6296     CheckedPairs[Idx].set(K);
6297     CheckedPairs[K].set(Idx);
6298     Optional<int> Diff = getPointersDiff(Stores[K]->getPointerOperand(),
6299                                          Stores[Idx]->getPointerOperand(), *DL,
6300                                          *SE, /*StrictCheck=*/true);
6301     if (!Diff || *Diff == 0)
6302       return false;
6303     int Val = *Diff;
6304     if (Val < 0) {
6305       if (ConsecutiveChain[Idx].second > -Val) {
6306         Tails.set(K);
6307         ConsecutiveChain[Idx] = std::make_pair(K, -Val);
6308       }
6309       return false;
6310     }
6311     if (ConsecutiveChain[K].second <= Val)
6312       return false;
6313 
6314     Tails.set(Idx);
6315     ConsecutiveChain[K] = std::make_pair(Idx, Val);
6316     return Val == 1;
6317   };
6318   // Do a quadratic search on all of the given stores in reverse order and find
6319   // all of the pairs of stores that follow each other.
6320   for (int Idx = E - 1; Idx >= 0; --Idx) {
6321     // If a store has multiple consecutive store candidates, search according
6322     // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ...
6323     // This is because usually pairing with immediate succeeding or preceding
6324     // candidate create the best chance to find slp vectorization opportunity.
6325     const int MaxLookDepth = std::max(E - Idx, Idx + 1);
6326     IterCnt = 0;
6327     for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset)
6328       if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) ||
6329           (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx)))
6330         break;
6331   }
6332 
6333   // Tracks if we tried to vectorize stores starting from the given tail
6334   // already.
6335   SmallBitVector TriedTails(E, false);
6336   // For stores that start but don't end a link in the chain:
6337   for (int Cnt = E; Cnt > 0; --Cnt) {
6338     int I = Cnt - 1;
6339     if (ConsecutiveChain[I].first == E || Tails.test(I))
6340       continue;
6341     // We found a store instr that starts a chain. Now follow the chain and try
6342     // to vectorize it.
6343     BoUpSLP::ValueList Operands;
6344     // Collect the chain into a list.
6345     while (I != E && !VectorizedStores.count(Stores[I])) {
6346       Operands.push_back(Stores[I]);
6347       Tails.set(I);
6348       if (ConsecutiveChain[I].second != 1) {
6349         // Mark the new end in the chain and go back, if required. It might be
6350         // required if the original stores come in reversed order, for example.
6351         if (ConsecutiveChain[I].first != E &&
6352             Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) &&
6353             !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) {
6354           TriedTails.set(I);
6355           Tails.reset(ConsecutiveChain[I].first);
6356           if (Cnt < ConsecutiveChain[I].first + 2)
6357             Cnt = ConsecutiveChain[I].first + 2;
6358         }
6359         break;
6360       }
6361       // Move to the next value in the chain.
6362       I = ConsecutiveChain[I].first;
6363     }
6364     assert(!Operands.empty() && "Expected non-empty list of stores.");
6365 
6366     unsigned MaxVecRegSize = R.getMaxVecRegSize();
6367     unsigned EltSize = R.getVectorElementSize(Operands[0]);
6368     unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize);
6369 
6370     unsigned MinVF = std::max(2U, R.getMinVecRegSize() / EltSize);
6371     unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store),
6372                               MaxElts);
6373 
6374     // FIXME: Is division-by-2 the correct step? Should we assert that the
6375     // register size is a power-of-2?
6376     unsigned StartIdx = 0;
6377     for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) {
6378       for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) {
6379         ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size);
6380         if (!VectorizedStores.count(Slice.front()) &&
6381             !VectorizedStores.count(Slice.back()) &&
6382             vectorizeStoreChain(Slice, R, Cnt)) {
6383           // Mark the vectorized stores so that we don't vectorize them again.
6384           VectorizedStores.insert(Slice.begin(), Slice.end());
6385           Changed = true;
6386           // If we vectorized initial block, no need to try to vectorize it
6387           // again.
6388           if (Cnt == StartIdx)
6389             StartIdx += Size;
6390           Cnt += Size;
6391           continue;
6392         }
6393         ++Cnt;
6394       }
6395       // Check if the whole array was vectorized already - exit.
6396       if (StartIdx >= Operands.size())
6397         break;
6398     }
6399   }
6400 
6401   return Changed;
6402 }
6403 
6404 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) {
6405   // Initialize the collections. We will make a single pass over the block.
6406   Stores.clear();
6407   GEPs.clear();
6408 
6409   // Visit the store and getelementptr instructions in BB and organize them in
6410   // Stores and GEPs according to the underlying objects of their pointer
6411   // operands.
6412   for (Instruction &I : *BB) {
6413     // Ignore store instructions that are volatile or have a pointer operand
6414     // that doesn't point to a scalar type.
6415     if (auto *SI = dyn_cast<StoreInst>(&I)) {
6416       if (!SI->isSimple())
6417         continue;
6418       if (!isValidElementType(SI->getValueOperand()->getType()))
6419         continue;
6420       Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI);
6421     }
6422 
6423     // Ignore getelementptr instructions that have more than one index, a
6424     // constant index, or a pointer operand that doesn't point to a scalar
6425     // type.
6426     else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
6427       auto Idx = GEP->idx_begin()->get();
6428       if (GEP->getNumIndices() > 1 || isa<Constant>(Idx))
6429         continue;
6430       if (!isValidElementType(Idx->getType()))
6431         continue;
6432       if (GEP->getType()->isVectorTy())
6433         continue;
6434       GEPs[GEP->getPointerOperand()].push_back(GEP);
6435     }
6436   }
6437 }
6438 
6439 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
6440   if (!A || !B)
6441     return false;
6442   Value *VL[] = {A, B};
6443   return tryToVectorizeList(VL, R, /*AllowReorder=*/true);
6444 }
6445 
6446 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
6447                                            bool AllowReorder,
6448                                            ArrayRef<Value *> InsertUses) {
6449   if (VL.size() < 2)
6450     return false;
6451 
6452   LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = "
6453                     << VL.size() << ".\n");
6454 
6455   // Check that all of the parts are instructions of the same type,
6456   // we permit an alternate opcode via InstructionsState.
6457   InstructionsState S = getSameOpcode(VL);
6458   if (!S.getOpcode())
6459     return false;
6460 
6461   Instruction *I0 = cast<Instruction>(S.OpValue);
6462   // Make sure invalid types (including vector type) are rejected before
6463   // determining vectorization factor for scalar instructions.
6464   for (Value *V : VL) {
6465     Type *Ty = V->getType();
6466     if (!isValidElementType(Ty)) {
6467       // NOTE: the following will give user internal llvm type name, which may
6468       // not be useful.
6469       R.getORE()->emit([&]() {
6470         std::string type_str;
6471         llvm::raw_string_ostream rso(type_str);
6472         Ty->print(rso);
6473         return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0)
6474                << "Cannot SLP vectorize list: type "
6475                << rso.str() + " is unsupported by vectorizer";
6476       });
6477       return false;
6478     }
6479   }
6480 
6481   unsigned Sz = R.getVectorElementSize(I0);
6482   unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz);
6483   unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF);
6484   MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF);
6485   if (MaxVF < 2) {
6486     R.getORE()->emit([&]() {
6487       return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0)
6488              << "Cannot SLP vectorize list: vectorization factor "
6489              << "less than 2 is not supported";
6490     });
6491     return false;
6492   }
6493 
6494   bool Changed = false;
6495   bool CandidateFound = false;
6496   InstructionCost MinCost = SLPCostThreshold.getValue();
6497 
6498   bool CompensateUseCost =
6499       !InsertUses.empty() && llvm::all_of(InsertUses, [](const Value *V) {
6500         return V && isa<InsertElementInst>(V);
6501       });
6502   assert((!CompensateUseCost || InsertUses.size() == VL.size()) &&
6503          "Each scalar expected to have an associated InsertElement user.");
6504 
6505   unsigned NextInst = 0, MaxInst = VL.size();
6506   for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) {
6507     // No actual vectorization should happen, if number of parts is the same as
6508     // provided vectorization factor (i.e. the scalar type is used for vector
6509     // code during codegen).
6510     auto *VecTy = FixedVectorType::get(VL[0]->getType(), VF);
6511     if (TTI->getNumberOfParts(VecTy) == VF)
6512       continue;
6513     for (unsigned I = NextInst; I < MaxInst; ++I) {
6514       unsigned OpsWidth = 0;
6515 
6516       if (I + VF > MaxInst)
6517         OpsWidth = MaxInst - I;
6518       else
6519         OpsWidth = VF;
6520 
6521       if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
6522         break;
6523 
6524       ArrayRef<Value *> Ops = VL.slice(I, OpsWidth);
6525       // Check that a previous iteration of this loop did not delete the Value.
6526       if (llvm::any_of(Ops, [&R](Value *V) {
6527             auto *I = dyn_cast<Instruction>(V);
6528             return I && R.isDeleted(I);
6529           }))
6530         continue;
6531 
6532       LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
6533                         << "\n");
6534 
6535       R.buildTree(Ops);
6536       Optional<ArrayRef<unsigned>> Order = R.bestOrder();
6537       // TODO: check if we can allow reordering for more cases.
6538       if (AllowReorder && Order) {
6539         // TODO: reorder tree nodes without tree rebuilding.
6540         // Conceptually, there is nothing actually preventing us from trying to
6541         // reorder a larger list. In fact, we do exactly this when vectorizing
6542         // reductions. However, at this point, we only expect to get here when
6543         // there are exactly two operations.
6544         assert(Ops.size() == 2);
6545         Value *ReorderedOps[] = {Ops[1], Ops[0]};
6546         R.buildTree(ReorderedOps, None);
6547       }
6548       if (R.isTreeTinyAndNotFullyVectorizable())
6549         continue;
6550 
6551       R.computeMinimumValueSizes();
6552       InstructionCost Cost = R.getTreeCost();
6553       CandidateFound = true;
6554       if (CompensateUseCost) {
6555         // TODO: Use TTI's getScalarizationOverhead for sequence of inserts
6556         // rather than sum of single inserts as the latter may overestimate
6557         // cost. This work should imply improving cost estimation for extracts
6558         // that added in for external (for vectorization tree) users,i.e. that
6559         // part should also switch to same interface.
6560         // For example, the following case is projected code after SLP:
6561         //  %4 = extractelement <4 x i64> %3, i32 0
6562         //  %v0 = insertelement <4 x i64> poison, i64 %4, i32 0
6563         //  %5 = extractelement <4 x i64> %3, i32 1
6564         //  %v1 = insertelement <4 x i64> %v0, i64 %5, i32 1
6565         //  %6 = extractelement <4 x i64> %3, i32 2
6566         //  %v2 = insertelement <4 x i64> %v1, i64 %6, i32 2
6567         //  %7 = extractelement <4 x i64> %3, i32 3
6568         //  %v3 = insertelement <4 x i64> %v2, i64 %7, i32 3
6569         //
6570         // Extracts here added by SLP in order to feed users (the inserts) of
6571         // original scalars and contribute to "ExtractCost" at cost evaluation.
6572         // The inserts in turn form sequence to build an aggregate that
6573         // detected by findBuildAggregate routine.
6574         // SLP makes an assumption that such sequence will be optimized away
6575         // later (instcombine) so it tries to compensate ExctractCost with
6576         // cost of insert sequence.
6577         // Current per element cost calculation approach is not quite accurate
6578         // and tends to create bias toward favoring vectorization.
6579         // Switching to the TTI interface might help a bit.
6580         // Alternative solution could be pattern-match to detect a no-op or
6581         // shuffle.
6582         InstructionCost UserCost = 0;
6583         for (unsigned Lane = 0; Lane < OpsWidth; Lane++) {
6584           auto *IE = cast<InsertElementInst>(InsertUses[I + Lane]);
6585           if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2)))
6586             UserCost += TTI->getVectorInstrCost(
6587                 Instruction::InsertElement, IE->getType(), CI->getZExtValue());
6588         }
6589         LLVM_DEBUG(dbgs() << "SLP: Compensate cost of users by: " << UserCost
6590                           << ".\n");
6591         Cost -= UserCost;
6592       }
6593 
6594       MinCost = std::min(MinCost, Cost);
6595 
6596       if (Cost < -SLPCostThreshold) {
6597         LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
6598         R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList",
6599                                                     cast<Instruction>(Ops[0]))
6600                                  << "SLP vectorized with cost " << ore::NV("Cost", Cost)
6601                                  << " and with tree size "
6602                                  << ore::NV("TreeSize", R.getTreeSize()));
6603 
6604         R.vectorizeTree();
6605         // Move to the next bundle.
6606         I += VF - 1;
6607         NextInst = I + 1;
6608         Changed = true;
6609       }
6610     }
6611   }
6612 
6613   if (!Changed && CandidateFound) {
6614     R.getORE()->emit([&]() {
6615       return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0)
6616              << "List vectorization was possible but not beneficial with cost "
6617              << ore::NV("Cost", MinCost) << " >= "
6618              << ore::NV("Treshold", -SLPCostThreshold);
6619     });
6620   } else if (!Changed) {
6621     R.getORE()->emit([&]() {
6622       return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0)
6623              << "Cannot SLP vectorize list: vectorization was impossible"
6624              << " with available vectorization factors";
6625     });
6626   }
6627   return Changed;
6628 }
6629 
6630 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) {
6631   if (!I)
6632     return false;
6633 
6634   if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I))
6635     return false;
6636 
6637   Value *P = I->getParent();
6638 
6639   // Vectorize in current basic block only.
6640   auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
6641   auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
6642   if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P)
6643     return false;
6644 
6645   // Try to vectorize V.
6646   if (tryToVectorizePair(Op0, Op1, R))
6647     return true;
6648 
6649   auto *A = dyn_cast<BinaryOperator>(Op0);
6650   auto *B = dyn_cast<BinaryOperator>(Op1);
6651   // Try to skip B.
6652   if (B && B->hasOneUse()) {
6653     auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
6654     auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
6655     if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R))
6656       return true;
6657     if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R))
6658       return true;
6659   }
6660 
6661   // Try to skip A.
6662   if (A && A->hasOneUse()) {
6663     auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
6664     auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
6665     if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R))
6666       return true;
6667     if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R))
6668       return true;
6669   }
6670   return false;
6671 }
6672 
6673 namespace {
6674 
6675 /// Model horizontal reductions.
6676 ///
6677 /// A horizontal reduction is a tree of reduction instructions that has values
6678 /// that can be put into a vector as its leaves. For example:
6679 ///
6680 /// mul mul mul mul
6681 ///  \  /    \  /
6682 ///   +       +
6683 ///    \     /
6684 ///       +
6685 /// This tree has "mul" as its leaf values and "+" as its reduction
6686 /// instructions. A reduction can feed into a store or a binary operation
6687 /// feeding a phi.
6688 ///    ...
6689 ///    \  /
6690 ///     +
6691 ///     |
6692 ///  phi +=
6693 ///
6694 ///  Or:
6695 ///    ...
6696 ///    \  /
6697 ///     +
6698 ///     |
6699 ///   *p =
6700 ///
6701 class HorizontalReduction {
6702   using ReductionOpsType = SmallVector<Value *, 16>;
6703   using ReductionOpsListType = SmallVector<ReductionOpsType, 2>;
6704   ReductionOpsListType ReductionOps;
6705   SmallVector<Value *, 32> ReducedVals;
6706   // Use map vector to make stable output.
6707   MapVector<Instruction *, Value *> ExtraArgs;
6708   WeakTrackingVH ReductionRoot;
6709   /// The type of reduction operation.
6710   RecurKind RdxKind;
6711 
6712   /// Checks if instruction is associative and can be vectorized.
6713   static bool isVectorizable(RecurKind Kind, Instruction *I) {
6714     if (Kind == RecurKind::None)
6715       return false;
6716     if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind))
6717       return true;
6718 
6719     if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) {
6720       // FP min/max are associative except for NaN and -0.0. We do not
6721       // have to rule out -0.0 here because the intrinsic semantics do not
6722       // specify a fixed result for it.
6723       return I->getFastMathFlags().noNaNs();
6724     }
6725 
6726     return I->isAssociative();
6727   }
6728 
6729   /// Checks if the ParentStackElem.first should be marked as a reduction
6730   /// operation with an extra argument or as extra argument itself.
6731   void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem,
6732                     Value *ExtraArg) {
6733     if (ExtraArgs.count(ParentStackElem.first)) {
6734       ExtraArgs[ParentStackElem.first] = nullptr;
6735       // We ran into something like:
6736       // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg.
6737       // The whole ParentStackElem.first should be considered as an extra value
6738       // in this case.
6739       // Do not perform analysis of remaining operands of ParentStackElem.first
6740       // instruction, this whole instruction is an extra argument.
6741       ParentStackElem.second = getNumberOfOperands(ParentStackElem.first);
6742     } else {
6743       // We ran into something like:
6744       // ParentStackElem.first += ... + ExtraArg + ...
6745       ExtraArgs[ParentStackElem.first] = ExtraArg;
6746     }
6747   }
6748 
6749   /// Creates reduction operation with the current opcode.
6750   static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS,
6751                          Value *RHS, const Twine &Name, bool UseSelect) {
6752     unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind);
6753     switch (Kind) {
6754     case RecurKind::Add:
6755     case RecurKind::Mul:
6756     case RecurKind::Or:
6757     case RecurKind::And:
6758     case RecurKind::Xor:
6759     case RecurKind::FAdd:
6760     case RecurKind::FMul:
6761       return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS,
6762                                  Name);
6763     case RecurKind::FMax:
6764       return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS);
6765     case RecurKind::FMin:
6766       return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS);
6767     case RecurKind::SMax:
6768       if (UseSelect) {
6769         Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name);
6770         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
6771       }
6772       return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS);
6773     case RecurKind::SMin:
6774       if (UseSelect) {
6775         Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name);
6776         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
6777       }
6778       return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS);
6779     case RecurKind::UMax:
6780       if (UseSelect) {
6781         Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name);
6782         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
6783       }
6784       return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS);
6785     case RecurKind::UMin:
6786       if (UseSelect) {
6787         Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name);
6788         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
6789       }
6790       return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS);
6791     default:
6792       llvm_unreachable("Unknown reduction operation.");
6793     }
6794   }
6795 
6796   /// Creates reduction operation with the current opcode with the IR flags
6797   /// from \p ReductionOps.
6798   static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS,
6799                          Value *RHS, const Twine &Name,
6800                          const ReductionOpsListType &ReductionOps) {
6801     bool UseSelect = ReductionOps.size() == 2;
6802     assert((!UseSelect || isa<SelectInst>(ReductionOps[1][0])) &&
6803            "Expected cmp + select pairs for reduction");
6804     Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect);
6805     if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) {
6806       if (auto *Sel = dyn_cast<SelectInst>(Op)) {
6807         propagateIRFlags(Sel->getCondition(), ReductionOps[0]);
6808         propagateIRFlags(Op, ReductionOps[1]);
6809         return Op;
6810       }
6811     }
6812     propagateIRFlags(Op, ReductionOps[0]);
6813     return Op;
6814   }
6815 
6816   /// Creates reduction operation with the current opcode with the IR flags
6817   /// from \p I.
6818   static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS,
6819                          Value *RHS, const Twine &Name, Instruction *I) {
6820     auto *SelI = dyn_cast<SelectInst>(I);
6821     Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr);
6822     if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) {
6823       if (auto *Sel = dyn_cast<SelectInst>(Op))
6824         propagateIRFlags(Sel->getCondition(), SelI->getCondition());
6825     }
6826     propagateIRFlags(Op, I);
6827     return Op;
6828   }
6829 
6830   static RecurKind getRdxKind(Instruction *I) {
6831     assert(I && "Expected instruction for reduction matching");
6832     TargetTransformInfo::ReductionFlags RdxFlags;
6833     if (match(I, m_Add(m_Value(), m_Value())))
6834       return RecurKind::Add;
6835     if (match(I, m_Mul(m_Value(), m_Value())))
6836       return RecurKind::Mul;
6837     if (match(I, m_And(m_Value(), m_Value())))
6838       return RecurKind::And;
6839     if (match(I, m_Or(m_Value(), m_Value())))
6840       return RecurKind::Or;
6841     if (match(I, m_Xor(m_Value(), m_Value())))
6842       return RecurKind::Xor;
6843     if (match(I, m_FAdd(m_Value(), m_Value())))
6844       return RecurKind::FAdd;
6845     if (match(I, m_FMul(m_Value(), m_Value())))
6846       return RecurKind::FMul;
6847 
6848     if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value())))
6849       return RecurKind::FMax;
6850     if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value())))
6851       return RecurKind::FMin;
6852 
6853     // This matches either cmp+select or intrinsics. SLP is expected to handle
6854     // either form.
6855     // TODO: If we are canonicalizing to intrinsics, we can remove several
6856     //       special-case paths that deal with selects.
6857     if (match(I, m_SMax(m_Value(), m_Value())))
6858       return RecurKind::SMax;
6859     if (match(I, m_SMin(m_Value(), m_Value())))
6860       return RecurKind::SMin;
6861     if (match(I, m_UMax(m_Value(), m_Value())))
6862       return RecurKind::UMax;
6863     if (match(I, m_UMin(m_Value(), m_Value())))
6864       return RecurKind::UMin;
6865 
6866     if (auto *Select = dyn_cast<SelectInst>(I)) {
6867       // Try harder: look for min/max pattern based on instructions producing
6868       // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2).
6869       // During the intermediate stages of SLP, it's very common to have
6870       // pattern like this (since optimizeGatherSequence is run only once
6871       // at the end):
6872       // %1 = extractelement <2 x i32> %a, i32 0
6873       // %2 = extractelement <2 x i32> %a, i32 1
6874       // %cond = icmp sgt i32 %1, %2
6875       // %3 = extractelement <2 x i32> %a, i32 0
6876       // %4 = extractelement <2 x i32> %a, i32 1
6877       // %select = select i1 %cond, i32 %3, i32 %4
6878       CmpInst::Predicate Pred;
6879       Instruction *L1;
6880       Instruction *L2;
6881 
6882       Value *LHS = Select->getTrueValue();
6883       Value *RHS = Select->getFalseValue();
6884       Value *Cond = Select->getCondition();
6885 
6886       // TODO: Support inverse predicates.
6887       if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) {
6888         if (!isa<ExtractElementInst>(RHS) ||
6889             !L2->isIdenticalTo(cast<Instruction>(RHS)))
6890           return RecurKind::None;
6891       } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) {
6892         if (!isa<ExtractElementInst>(LHS) ||
6893             !L1->isIdenticalTo(cast<Instruction>(LHS)))
6894           return RecurKind::None;
6895       } else {
6896         if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS))
6897           return RecurKind::None;
6898         if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) ||
6899             !L1->isIdenticalTo(cast<Instruction>(LHS)) ||
6900             !L2->isIdenticalTo(cast<Instruction>(RHS)))
6901           return RecurKind::None;
6902       }
6903 
6904       TargetTransformInfo::ReductionFlags RdxFlags;
6905       switch (Pred) {
6906       default:
6907         return RecurKind::None;
6908       case CmpInst::ICMP_SGT:
6909       case CmpInst::ICMP_SGE:
6910         return RecurKind::SMax;
6911       case CmpInst::ICMP_SLT:
6912       case CmpInst::ICMP_SLE:
6913         return RecurKind::SMin;
6914       case CmpInst::ICMP_UGT:
6915       case CmpInst::ICMP_UGE:
6916         return RecurKind::UMax;
6917       case CmpInst::ICMP_ULT:
6918       case CmpInst::ICMP_ULE:
6919         return RecurKind::UMin;
6920       }
6921     }
6922     return RecurKind::None;
6923   }
6924 
6925   /// Get the index of the first operand.
6926   static unsigned getFirstOperandIndex(Instruction *I) {
6927     return isa<SelectInst>(I) ? 1 : 0;
6928   }
6929 
6930   /// Total number of operands in the reduction operation.
6931   static unsigned getNumberOfOperands(Instruction *I) {
6932     return isa<SelectInst>(I) ? 3 : 2;
6933   }
6934 
6935   /// Checks if the instruction is in basic block \p BB.
6936   /// For a min/max reduction check that both compare and select are in \p BB.
6937   static bool hasSameParent(Instruction *I, BasicBlock *BB, bool IsRedOp) {
6938     auto *Sel = dyn_cast<SelectInst>(I);
6939     if (IsRedOp && Sel) {
6940       auto *Cmp = cast<Instruction>(Sel->getCondition());
6941       return Sel->getParent() == BB && Cmp->getParent() == BB;
6942     }
6943     return I->getParent() == BB;
6944   }
6945 
6946   /// Expected number of uses for reduction operations/reduced values.
6947   static bool hasRequiredNumberOfUses(bool MatchCmpSel, Instruction *I) {
6948     // SelectInst must be used twice while the condition op must have single
6949     // use only.
6950     if (MatchCmpSel) {
6951       if (auto *Sel = dyn_cast<SelectInst>(I))
6952         return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse();
6953       return I->hasNUses(2);
6954     }
6955 
6956     // Arithmetic reduction operation must be used once only.
6957     return I->hasOneUse();
6958   }
6959 
6960   /// Initializes the list of reduction operations.
6961   void initReductionOps(Instruction *I) {
6962     if (isa<SelectInst>(I))
6963       ReductionOps.assign(2, ReductionOpsType());
6964     else
6965       ReductionOps.assign(1, ReductionOpsType());
6966   }
6967 
6968   /// Add all reduction operations for the reduction instruction \p I.
6969   void addReductionOps(Instruction *I) {
6970     if (auto *Sel = dyn_cast<SelectInst>(I)) {
6971       ReductionOps[0].emplace_back(Sel->getCondition());
6972       ReductionOps[1].emplace_back(Sel);
6973     } else {
6974       ReductionOps[0].emplace_back(I);
6975     }
6976   }
6977 
6978   static Value *getLHS(RecurKind Kind, Instruction *I) {
6979     if (Kind == RecurKind::None)
6980       return nullptr;
6981     return I->getOperand(getFirstOperandIndex(I));
6982   }
6983   static Value *getRHS(RecurKind Kind, Instruction *I) {
6984     if (Kind == RecurKind::None)
6985       return nullptr;
6986     return I->getOperand(getFirstOperandIndex(I) + 1);
6987   }
6988 
6989 public:
6990   HorizontalReduction() = default;
6991 
6992   /// Try to find a reduction tree.
6993   bool matchAssociativeReduction(PHINode *Phi, Instruction *B) {
6994     assert((!Phi || is_contained(Phi->operands(), B)) &&
6995            "Phi needs to use the binary operator");
6996 
6997     RdxKind = getRdxKind(B);
6998 
6999     // We could have a initial reductions that is not an add.
7000     //  r *= v1 + v2 + v3 + v4
7001     // In such a case start looking for a tree rooted in the first '+'.
7002     if (Phi) {
7003       if (getLHS(RdxKind, B) == Phi) {
7004         Phi = nullptr;
7005         B = dyn_cast<Instruction>(getRHS(RdxKind, B));
7006         if (!B)
7007           return false;
7008         RdxKind = getRdxKind(B);
7009       } else if (getRHS(RdxKind, B) == Phi) {
7010         Phi = nullptr;
7011         B = dyn_cast<Instruction>(getLHS(RdxKind, B));
7012         if (!B)
7013           return false;
7014         RdxKind = getRdxKind(B);
7015       }
7016     }
7017 
7018     if (!isVectorizable(RdxKind, B))
7019       return false;
7020 
7021     // Analyze "regular" integer/FP types for reductions - no target-specific
7022     // types or pointers.
7023     Type *Ty = B->getType();
7024     if (!isValidElementType(Ty) || Ty->isPointerTy())
7025       return false;
7026 
7027     // Though the ultimate reduction may have multiple uses, its condition must
7028     // have only single use.
7029     if (auto *SI = dyn_cast<SelectInst>(B))
7030       if (!SI->getCondition()->hasOneUse())
7031         return false;
7032 
7033     ReductionRoot = B;
7034 
7035     // The opcode for leaf values that we perform a reduction on.
7036     // For example: load(x) + load(y) + load(z) + fptoui(w)
7037     // The leaf opcode for 'w' does not match, so we don't include it as a
7038     // potential candidate for the reduction.
7039     unsigned LeafOpcode = 0;
7040 
7041     // Post order traverse the reduction tree starting at B. We only handle true
7042     // trees containing only binary operators.
7043     SmallVector<std::pair<Instruction *, unsigned>, 32> Stack;
7044     Stack.push_back(std::make_pair(B, getFirstOperandIndex(B)));
7045     initReductionOps(B);
7046     while (!Stack.empty()) {
7047       Instruction *TreeN = Stack.back().first;
7048       unsigned EdgeToVisit = Stack.back().second++;
7049       const RecurKind TreeRdxKind = getRdxKind(TreeN);
7050       bool IsReducedValue = TreeRdxKind != RdxKind;
7051 
7052       // Postorder visit.
7053       if (IsReducedValue || EdgeToVisit == getNumberOfOperands(TreeN)) {
7054         if (IsReducedValue)
7055           ReducedVals.push_back(TreeN);
7056         else {
7057           auto ExtraArgsIter = ExtraArgs.find(TreeN);
7058           if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) {
7059             // Check if TreeN is an extra argument of its parent operation.
7060             if (Stack.size() <= 1) {
7061               // TreeN can't be an extra argument as it is a root reduction
7062               // operation.
7063               return false;
7064             }
7065             // Yes, TreeN is an extra argument, do not add it to a list of
7066             // reduction operations.
7067             // Stack[Stack.size() - 2] always points to the parent operation.
7068             markExtraArg(Stack[Stack.size() - 2], TreeN);
7069             ExtraArgs.erase(TreeN);
7070           } else
7071             addReductionOps(TreeN);
7072         }
7073         // Retract.
7074         Stack.pop_back();
7075         continue;
7076       }
7077 
7078       // Visit left or right.
7079       Value *EdgeVal = TreeN->getOperand(EdgeToVisit);
7080       auto *EdgeInst = dyn_cast<Instruction>(EdgeVal);
7081       if (!EdgeInst) {
7082         // Edge value is not a reduction instruction or a leaf instruction.
7083         // (It may be a constant, function argument, or something else.)
7084         markExtraArg(Stack.back(), EdgeVal);
7085         continue;
7086       }
7087       RecurKind EdgeRdxKind = getRdxKind(EdgeInst);
7088       // Continue analysis if the next operand is a reduction operation or
7089       // (possibly) a leaf value. If the leaf value opcode is not set,
7090       // the first met operation != reduction operation is considered as the
7091       // leaf opcode.
7092       // Only handle trees in the current basic block.
7093       // Each tree node needs to have minimal number of users except for the
7094       // ultimate reduction.
7095       const bool IsRdxInst = EdgeRdxKind == RdxKind;
7096       if (EdgeInst != Phi && EdgeInst != B &&
7097           hasSameParent(EdgeInst, B->getParent(), IsRdxInst) &&
7098           hasRequiredNumberOfUses(isa<SelectInst>(B), EdgeInst) &&
7099           (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) {
7100         if (IsRdxInst) {
7101           // We need to be able to reassociate the reduction operations.
7102           if (!isVectorizable(EdgeRdxKind, EdgeInst)) {
7103             // I is an extra argument for TreeN (its parent operation).
7104             markExtraArg(Stack.back(), EdgeInst);
7105             continue;
7106           }
7107         } else if (!LeafOpcode) {
7108           LeafOpcode = EdgeInst->getOpcode();
7109         }
7110         Stack.push_back(
7111             std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst)));
7112         continue;
7113       }
7114       // I is an extra argument for TreeN (its parent operation).
7115       markExtraArg(Stack.back(), EdgeInst);
7116     }
7117     return true;
7118   }
7119 
7120   /// Attempt to vectorize the tree found by matchAssociativeReduction.
7121   bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
7122     // If there are a sufficient number of reduction values, reduce
7123     // to a nearby power-of-2. We can safely generate oversized
7124     // vectors and rely on the backend to split them to legal sizes.
7125     unsigned NumReducedVals = ReducedVals.size();
7126     if (NumReducedVals < 4)
7127       return false;
7128 
7129     // Intersect the fast-math-flags from all reduction operations.
7130     FastMathFlags RdxFMF;
7131     RdxFMF.set();
7132     for (ReductionOpsType &RdxOp : ReductionOps) {
7133       for (Value *RdxVal : RdxOp) {
7134         if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal))
7135           RdxFMF &= FPMO->getFastMathFlags();
7136       }
7137     }
7138 
7139     IRBuilder<> Builder(cast<Instruction>(ReductionRoot));
7140     Builder.setFastMathFlags(RdxFMF);
7141 
7142     BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues;
7143     // The same extra argument may be used several times, so log each attempt
7144     // to use it.
7145     for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) {
7146       assert(Pair.first && "DebugLoc must be set.");
7147       ExternallyUsedValues[Pair.second].push_back(Pair.first);
7148     }
7149 
7150     // The compare instruction of a min/max is the insertion point for new
7151     // instructions and may be replaced with a new compare instruction.
7152     auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) {
7153       assert(isa<SelectInst>(RdxRootInst) &&
7154              "Expected min/max reduction to have select root instruction");
7155       Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition();
7156       assert(isa<Instruction>(ScalarCond) &&
7157              "Expected min/max reduction to have compare condition");
7158       return cast<Instruction>(ScalarCond);
7159     };
7160 
7161     // The reduction root is used as the insertion point for new instructions,
7162     // so set it as externally used to prevent it from being deleted.
7163     ExternallyUsedValues[ReductionRoot];
7164     SmallVector<Value *, 16> IgnoreList;
7165     for (ReductionOpsType &RdxOp : ReductionOps)
7166       IgnoreList.append(RdxOp.begin(), RdxOp.end());
7167 
7168     unsigned ReduxWidth = PowerOf2Floor(NumReducedVals);
7169     if (NumReducedVals > ReduxWidth) {
7170       // In the loop below, we are building a tree based on a window of
7171       // 'ReduxWidth' values.
7172       // If the operands of those values have common traits (compare predicate,
7173       // constant operand, etc), then we want to group those together to
7174       // minimize the cost of the reduction.
7175 
7176       // TODO: This should be extended to count common operands for
7177       //       compares and binops.
7178 
7179       // Step 1: Count the number of times each compare predicate occurs.
7180       SmallDenseMap<unsigned, unsigned> PredCountMap;
7181       for (Value *RdxVal : ReducedVals) {
7182         CmpInst::Predicate Pred;
7183         if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value())))
7184           ++PredCountMap[Pred];
7185       }
7186       // Step 2: Sort the values so the most common predicates come first.
7187       stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) {
7188         CmpInst::Predicate PredA, PredB;
7189         if (match(A, m_Cmp(PredA, m_Value(), m_Value())) &&
7190             match(B, m_Cmp(PredB, m_Value(), m_Value()))) {
7191           return PredCountMap[PredA] > PredCountMap[PredB];
7192         }
7193         return false;
7194       });
7195     }
7196 
7197     Value *VectorizedTree = nullptr;
7198     unsigned i = 0;
7199     while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) {
7200       ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth);
7201       V.buildTree(VL, ExternallyUsedValues, IgnoreList);
7202       Optional<ArrayRef<unsigned>> Order = V.bestOrder();
7203       if (Order) {
7204         assert(Order->size() == VL.size() &&
7205                "Order size must be the same as number of vectorized "
7206                "instructions.");
7207         // TODO: reorder tree nodes without tree rebuilding.
7208         SmallVector<Value *, 4> ReorderedOps(VL.size());
7209         llvm::transform(*Order, ReorderedOps.begin(),
7210                         [VL](const unsigned Idx) { return VL[Idx]; });
7211         V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList);
7212       }
7213       if (V.isTreeTinyAndNotFullyVectorizable())
7214         break;
7215       if (V.isLoadCombineReductionCandidate(RdxKind))
7216         break;
7217 
7218       V.computeMinimumValueSizes();
7219 
7220       // Estimate cost.
7221       InstructionCost TreeCost = V.getTreeCost();
7222       InstructionCost ReductionCost =
7223           getReductionCost(TTI, ReducedVals[i], ReduxWidth);
7224       InstructionCost Cost = TreeCost + ReductionCost;
7225       if (!Cost.isValid()) {
7226         LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n");
7227         return false;
7228       }
7229       if (Cost >= -SLPCostThreshold) {
7230         V.getORE()->emit([&]() {
7231           return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial",
7232                                           cast<Instruction>(VL[0]))
7233                  << "Vectorizing horizontal reduction is possible"
7234                  << "but not beneficial with cost " << ore::NV("Cost", Cost)
7235                  << " and threshold "
7236                  << ore::NV("Threshold", -SLPCostThreshold);
7237         });
7238         break;
7239       }
7240 
7241       LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
7242                         << Cost << ". (HorRdx)\n");
7243       V.getORE()->emit([&]() {
7244         return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction",
7245                                   cast<Instruction>(VL[0]))
7246                << "Vectorized horizontal reduction with cost "
7247                << ore::NV("Cost", Cost) << " and with tree size "
7248                << ore::NV("TreeSize", V.getTreeSize());
7249       });
7250 
7251       // Vectorize a tree.
7252       DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
7253       Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues);
7254 
7255       // Emit a reduction. If the root is a select (min/max idiom), the insert
7256       // point is the compare condition of that select.
7257       Instruction *RdxRootInst = cast<Instruction>(ReductionRoot);
7258       if (isa<SelectInst>(RdxRootInst))
7259         Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst));
7260       else
7261         Builder.SetInsertPoint(RdxRootInst);
7262 
7263       Value *ReducedSubTree =
7264           emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI);
7265 
7266       if (!VectorizedTree) {
7267         // Initialize the final value in the reduction.
7268         VectorizedTree = ReducedSubTree;
7269       } else {
7270         // Update the final value in the reduction.
7271         Builder.SetCurrentDebugLocation(Loc);
7272         VectorizedTree = createOp(Builder, RdxKind, VectorizedTree,
7273                                   ReducedSubTree, "op.rdx", ReductionOps);
7274       }
7275       i += ReduxWidth;
7276       ReduxWidth = PowerOf2Floor(NumReducedVals - i);
7277     }
7278 
7279     if (VectorizedTree) {
7280       // Finish the reduction.
7281       for (; i < NumReducedVals; ++i) {
7282         auto *I = cast<Instruction>(ReducedVals[i]);
7283         Builder.SetCurrentDebugLocation(I->getDebugLoc());
7284         VectorizedTree =
7285             createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps);
7286       }
7287       for (auto &Pair : ExternallyUsedValues) {
7288         // Add each externally used value to the final reduction.
7289         for (auto *I : Pair.second) {
7290           Builder.SetCurrentDebugLocation(I->getDebugLoc());
7291           VectorizedTree = createOp(Builder, RdxKind, VectorizedTree,
7292                                     Pair.first, "op.extra", I);
7293         }
7294       }
7295 
7296       ReductionRoot->replaceAllUsesWith(VectorizedTree);
7297 
7298       // Mark all scalar reduction ops for deletion, they are replaced by the
7299       // vector reductions.
7300       V.eraseInstructions(IgnoreList);
7301     }
7302     return VectorizedTree != nullptr;
7303   }
7304 
7305   unsigned numReductionValues() const { return ReducedVals.size(); }
7306 
7307 private:
7308   /// Calculate the cost of a reduction.
7309   InstructionCost getReductionCost(TargetTransformInfo *TTI,
7310                                    Value *FirstReducedVal,
7311                                    unsigned ReduxWidth) {
7312     Type *ScalarTy = FirstReducedVal->getType();
7313     FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth);
7314     InstructionCost VectorCost, ScalarCost;
7315     switch (RdxKind) {
7316     case RecurKind::Add:
7317     case RecurKind::Mul:
7318     case RecurKind::Or:
7319     case RecurKind::And:
7320     case RecurKind::Xor:
7321     case RecurKind::FAdd:
7322     case RecurKind::FMul: {
7323       unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind);
7324       VectorCost = TTI->getArithmeticReductionCost(RdxOpcode, VectorTy,
7325                                                    /*IsPairwiseForm=*/false);
7326       ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy);
7327       break;
7328     }
7329     case RecurKind::FMax:
7330     case RecurKind::FMin: {
7331       auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy));
7332       VectorCost =
7333           TTI->getMinMaxReductionCost(VectorTy, VecCondTy,
7334                                       /*pairwise=*/false, /*unsigned=*/false);
7335       ScalarCost =
7336           TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy) +
7337           TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
7338                                   CmpInst::makeCmpResultType(ScalarTy));
7339       break;
7340     }
7341     case RecurKind::SMax:
7342     case RecurKind::SMin:
7343     case RecurKind::UMax:
7344     case RecurKind::UMin: {
7345       auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy));
7346       bool IsUnsigned =
7347           RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin;
7348       VectorCost =
7349           TTI->getMinMaxReductionCost(VectorTy, VecCondTy,
7350                                       /*IsPairwiseForm=*/false, IsUnsigned);
7351       ScalarCost =
7352           TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy) +
7353           TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
7354                                   CmpInst::makeCmpResultType(ScalarTy));
7355       break;
7356     }
7357     default:
7358       llvm_unreachable("Expected arithmetic or min/max reduction operation");
7359     }
7360 
7361     // Scalar cost is repeated for N-1 elements.
7362     ScalarCost *= (ReduxWidth - 1);
7363     LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost
7364                       << " for reduction that starts with " << *FirstReducedVal
7365                       << " (It is a splitting reduction)\n");
7366     return VectorCost - ScalarCost;
7367   }
7368 
7369   /// Emit a horizontal reduction of the vectorized value.
7370   Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder,
7371                        unsigned ReduxWidth, const TargetTransformInfo *TTI) {
7372     assert(VectorizedValue && "Need to have a vectorized tree node");
7373     assert(isPowerOf2_32(ReduxWidth) &&
7374            "We only handle power-of-two reductions for now");
7375 
7376     return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind,
7377                                        ReductionOps.back());
7378   }
7379 };
7380 
7381 } // end anonymous namespace
7382 
7383 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) {
7384   if (auto *IE = dyn_cast<InsertElementInst>(InsertInst))
7385     return cast<FixedVectorType>(IE->getType())->getNumElements();
7386 
7387   unsigned AggregateSize = 1;
7388   auto *IV = cast<InsertValueInst>(InsertInst);
7389   Type *CurrentType = IV->getType();
7390   do {
7391     if (auto *ST = dyn_cast<StructType>(CurrentType)) {
7392       for (auto *Elt : ST->elements())
7393         if (Elt != ST->getElementType(0)) // check homogeneity
7394           return None;
7395       AggregateSize *= ST->getNumElements();
7396       CurrentType = ST->getElementType(0);
7397     } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) {
7398       AggregateSize *= AT->getNumElements();
7399       CurrentType = AT->getElementType();
7400     } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) {
7401       AggregateSize *= VT->getNumElements();
7402       return AggregateSize;
7403     } else if (CurrentType->isSingleValueType()) {
7404       return AggregateSize;
7405     } else {
7406       return None;
7407     }
7408   } while (true);
7409 }
7410 
7411 static Optional<unsigned> getOperandIndex(Instruction *InsertInst,
7412                                           unsigned OperandOffset) {
7413   unsigned OperandIndex = OperandOffset;
7414   if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) {
7415     if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) {
7416       auto *VT = cast<FixedVectorType>(IE->getType());
7417       OperandIndex *= VT->getNumElements();
7418       OperandIndex += CI->getZExtValue();
7419       return OperandIndex;
7420     }
7421     return None;
7422   }
7423 
7424   auto *IV = cast<InsertValueInst>(InsertInst);
7425   Type *CurrentType = IV->getType();
7426   for (unsigned int Index : IV->indices()) {
7427     if (auto *ST = dyn_cast<StructType>(CurrentType)) {
7428       OperandIndex *= ST->getNumElements();
7429       CurrentType = ST->getElementType(Index);
7430     } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) {
7431       OperandIndex *= AT->getNumElements();
7432       CurrentType = AT->getElementType();
7433     } else {
7434       return None;
7435     }
7436     OperandIndex += Index;
7437   }
7438   return OperandIndex;
7439 }
7440 
7441 static bool findBuildAggregate_rec(Instruction *LastInsertInst,
7442                                    TargetTransformInfo *TTI,
7443                                    SmallVectorImpl<Value *> &BuildVectorOpds,
7444                                    SmallVectorImpl<Value *> &InsertElts,
7445                                    unsigned OperandOffset) {
7446   do {
7447     Value *InsertedOperand = LastInsertInst->getOperand(1);
7448     Optional<unsigned> OperandIndex =
7449         getOperandIndex(LastInsertInst, OperandOffset);
7450     if (!OperandIndex)
7451       return false;
7452     if (isa<InsertElementInst>(InsertedOperand) ||
7453         isa<InsertValueInst>(InsertedOperand)) {
7454       if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI,
7455                                   BuildVectorOpds, InsertElts, *OperandIndex))
7456         return false;
7457     } else {
7458       BuildVectorOpds[*OperandIndex] = InsertedOperand;
7459       InsertElts[*OperandIndex] = LastInsertInst;
7460     }
7461     if (isa<UndefValue>(LastInsertInst->getOperand(0)))
7462       return true;
7463     LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0));
7464   } while (LastInsertInst != nullptr &&
7465            (isa<InsertValueInst>(LastInsertInst) ||
7466             isa<InsertElementInst>(LastInsertInst)) &&
7467            LastInsertInst->hasOneUse());
7468   return false;
7469 }
7470 
7471 /// Recognize construction of vectors like
7472 ///  %ra = insertelement <4 x float> poison, float %s0, i32 0
7473 ///  %rb = insertelement <4 x float> %ra, float %s1, i32 1
7474 ///  %rc = insertelement <4 x float> %rb, float %s2, i32 2
7475 ///  %rd = insertelement <4 x float> %rc, float %s3, i32 3
7476 ///  starting from the last insertelement or insertvalue instruction.
7477 ///
7478 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>},
7479 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on.
7480 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples.
7481 ///
7482 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type.
7483 ///
7484 /// \return true if it matches.
7485 static bool findBuildAggregate(Instruction *LastInsertInst,
7486                                TargetTransformInfo *TTI,
7487                                SmallVectorImpl<Value *> &BuildVectorOpds,
7488                                SmallVectorImpl<Value *> &InsertElts) {
7489 
7490   assert((isa<InsertElementInst>(LastInsertInst) ||
7491           isa<InsertValueInst>(LastInsertInst)) &&
7492          "Expected insertelement or insertvalue instruction!");
7493 
7494   assert((BuildVectorOpds.empty() && InsertElts.empty()) &&
7495          "Expected empty result vectors!");
7496 
7497   Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst);
7498   if (!AggregateSize)
7499     return false;
7500   BuildVectorOpds.resize(*AggregateSize);
7501   InsertElts.resize(*AggregateSize);
7502 
7503   if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts,
7504                              0)) {
7505     llvm::erase_value(BuildVectorOpds, nullptr);
7506     llvm::erase_value(InsertElts, nullptr);
7507     if (BuildVectorOpds.size() >= 2)
7508       return true;
7509   }
7510 
7511   return false;
7512 }
7513 
7514 static bool PhiTypeSorterFunc(Value *V, Value *V2) {
7515   return V->getType() < V2->getType();
7516 }
7517 
7518 /// Try and get a reduction value from a phi node.
7519 ///
7520 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions
7521 /// if they come from either \p ParentBB or a containing loop latch.
7522 ///
7523 /// \returns A candidate reduction value if possible, or \code nullptr \endcode
7524 /// if not possible.
7525 static Value *getReductionValue(const DominatorTree *DT, PHINode *P,
7526                                 BasicBlock *ParentBB, LoopInfo *LI) {
7527   // There are situations where the reduction value is not dominated by the
7528   // reduction phi. Vectorizing such cases has been reported to cause
7529   // miscompiles. See PR25787.
7530   auto DominatedReduxValue = [&](Value *R) {
7531     return isa<Instruction>(R) &&
7532            DT->dominates(P->getParent(), cast<Instruction>(R)->getParent());
7533   };
7534 
7535   Value *Rdx = nullptr;
7536 
7537   // Return the incoming value if it comes from the same BB as the phi node.
7538   if (P->getIncomingBlock(0) == ParentBB) {
7539     Rdx = P->getIncomingValue(0);
7540   } else if (P->getIncomingBlock(1) == ParentBB) {
7541     Rdx = P->getIncomingValue(1);
7542   }
7543 
7544   if (Rdx && DominatedReduxValue(Rdx))
7545     return Rdx;
7546 
7547   // Otherwise, check whether we have a loop latch to look at.
7548   Loop *BBL = LI->getLoopFor(ParentBB);
7549   if (!BBL)
7550     return nullptr;
7551   BasicBlock *BBLatch = BBL->getLoopLatch();
7552   if (!BBLatch)
7553     return nullptr;
7554 
7555   // There is a loop latch, return the incoming value if it comes from
7556   // that. This reduction pattern occasionally turns up.
7557   if (P->getIncomingBlock(0) == BBLatch) {
7558     Rdx = P->getIncomingValue(0);
7559   } else if (P->getIncomingBlock(1) == BBLatch) {
7560     Rdx = P->getIncomingValue(1);
7561   }
7562 
7563   if (Rdx && DominatedReduxValue(Rdx))
7564     return Rdx;
7565 
7566   return nullptr;
7567 }
7568 
7569 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) {
7570   if (match(I, m_BinOp(m_Value(V0), m_Value(V1))))
7571     return true;
7572   if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1))))
7573     return true;
7574   if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1))))
7575     return true;
7576   if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1))))
7577     return true;
7578   if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1))))
7579     return true;
7580   if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1))))
7581     return true;
7582   if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1))))
7583     return true;
7584   return false;
7585 }
7586 
7587 /// Attempt to reduce a horizontal reduction.
7588 /// If it is legal to match a horizontal reduction feeding the phi node \a P
7589 /// with reduction operators \a Root (or one of its operands) in a basic block
7590 /// \a BB, then check if it can be done. If horizontal reduction is not found
7591 /// and root instruction is a binary operation, vectorization of the operands is
7592 /// attempted.
7593 /// \returns true if a horizontal reduction was matched and reduced or operands
7594 /// of one of the binary instruction were vectorized.
7595 /// \returns false if a horizontal reduction was not matched (or not possible)
7596 /// or no vectorization of any binary operation feeding \a Root instruction was
7597 /// performed.
7598 static bool tryToVectorizeHorReductionOrInstOperands(
7599     PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R,
7600     TargetTransformInfo *TTI,
7601     const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) {
7602   if (!ShouldVectorizeHor)
7603     return false;
7604 
7605   if (!Root)
7606     return false;
7607 
7608   if (Root->getParent() != BB || isa<PHINode>(Root))
7609     return false;
7610   // Start analysis starting from Root instruction. If horizontal reduction is
7611   // found, try to vectorize it. If it is not a horizontal reduction or
7612   // vectorization is not possible or not effective, and currently analyzed
7613   // instruction is a binary operation, try to vectorize the operands, using
7614   // pre-order DFS traversal order. If the operands were not vectorized, repeat
7615   // the same procedure considering each operand as a possible root of the
7616   // horizontal reduction.
7617   // Interrupt the process if the Root instruction itself was vectorized or all
7618   // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized.
7619   // Skip the analysis of CmpInsts.Compiler implements postanalysis of the
7620   // CmpInsts so we can skip extra attempts in
7621   // tryToVectorizeHorReductionOrInstOperands and save compile time.
7622   SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0});
7623   SmallPtrSet<Value *, 8> VisitedInstrs;
7624   bool Res = false;
7625   while (!Stack.empty()) {
7626     Instruction *Inst;
7627     unsigned Level;
7628     std::tie(Inst, Level) = Stack.pop_back_val();
7629     Value *B0, *B1;
7630     bool IsBinop = matchRdxBop(Inst, B0, B1);
7631     bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value()));
7632     if (IsBinop || IsSelect) {
7633       HorizontalReduction HorRdx;
7634       if (HorRdx.matchAssociativeReduction(P, Inst)) {
7635         if (HorRdx.tryToReduce(R, TTI)) {
7636           Res = true;
7637           // Set P to nullptr to avoid re-analysis of phi node in
7638           // matchAssociativeReduction function unless this is the root node.
7639           P = nullptr;
7640           continue;
7641         }
7642       }
7643       if (P && IsBinop) {
7644         Inst = dyn_cast<Instruction>(B0);
7645         if (Inst == P)
7646           Inst = dyn_cast<Instruction>(B1);
7647         if (!Inst) {
7648           // Set P to nullptr to avoid re-analysis of phi node in
7649           // matchAssociativeReduction function unless this is the root node.
7650           P = nullptr;
7651           continue;
7652         }
7653       }
7654     }
7655     // Set P to nullptr to avoid re-analysis of phi node in
7656     // matchAssociativeReduction function unless this is the root node.
7657     P = nullptr;
7658     // Do not try to vectorize CmpInst operands, this is done separately.
7659     if (!isa<CmpInst>(Inst) && Vectorize(Inst, R)) {
7660       Res = true;
7661       continue;
7662     }
7663 
7664     // Try to vectorize operands.
7665     // Continue analysis for the instruction from the same basic block only to
7666     // save compile time.
7667     if (++Level < RecursionMaxDepth)
7668       for (auto *Op : Inst->operand_values())
7669         if (VisitedInstrs.insert(Op).second)
7670           if (auto *I = dyn_cast<Instruction>(Op))
7671             // Do not try to vectorize CmpInst operands,  this is done
7672             // separately.
7673             if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) &&
7674                 I->getParent() == BB)
7675               Stack.emplace_back(I, Level);
7676   }
7677   return Res;
7678 }
7679 
7680 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V,
7681                                                  BasicBlock *BB, BoUpSLP &R,
7682                                                  TargetTransformInfo *TTI) {
7683   auto *I = dyn_cast_or_null<Instruction>(V);
7684   if (!I)
7685     return false;
7686 
7687   if (!isa<BinaryOperator>(I))
7688     P = nullptr;
7689   // Try to match and vectorize a horizontal reduction.
7690   auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool {
7691     return tryToVectorize(I, R);
7692   };
7693   return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI,
7694                                                   ExtraVectorization);
7695 }
7696 
7697 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI,
7698                                                  BasicBlock *BB, BoUpSLP &R) {
7699   const DataLayout &DL = BB->getModule()->getDataLayout();
7700   if (!R.canMapToVector(IVI->getType(), DL))
7701     return false;
7702 
7703   SmallVector<Value *, 16> BuildVectorOpds;
7704   SmallVector<Value *, 16> BuildVectorInsts;
7705   if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts))
7706     return false;
7707 
7708   LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n");
7709   // Aggregate value is unlikely to be processed in vector register, we need to
7710   // extract scalars into scalar registers, so NeedExtraction is set true.
7711   return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false,
7712                             BuildVectorInsts);
7713 }
7714 
7715 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI,
7716                                                    BasicBlock *BB, BoUpSLP &R) {
7717   SmallVector<Value *, 16> BuildVectorInsts;
7718   SmallVector<Value *, 16> BuildVectorOpds;
7719   SmallVector<int> Mask;
7720   if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) ||
7721       (llvm::all_of(BuildVectorOpds,
7722                     [](Value *V) { return isa<ExtractElementInst>(V); }) &&
7723        isShuffle(BuildVectorOpds, Mask)))
7724     return false;
7725 
7726   // Vectorize starting with the build vector operands ignoring the BuildVector
7727   // instructions for the purpose of scheduling and user extraction.
7728   return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false,
7729                             BuildVectorInsts);
7730 }
7731 
7732 bool SLPVectorizerPass::vectorizeSimpleInstructions(
7733     SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R,
7734     bool AtTerminator) {
7735   bool OpsChanged = false;
7736   SmallVector<Instruction *, 4> PostponedCmps;
7737   for (auto *I : reverse(Instructions)) {
7738     if (R.isDeleted(I))
7739       continue;
7740     if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I))
7741       OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R);
7742     else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I))
7743       OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R);
7744     else if (isa<CmpInst>(I))
7745       PostponedCmps.push_back(I);
7746   }
7747   if (AtTerminator) {
7748     // Try to find reductions first.
7749     for (Instruction *I : PostponedCmps) {
7750       if (R.isDeleted(I))
7751         continue;
7752       for (Value *Op : I->operands())
7753         OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI);
7754     }
7755     // Try to vectorize operands as vector bundles.
7756     for (Instruction *I : PostponedCmps) {
7757       if (R.isDeleted(I))
7758         continue;
7759       OpsChanged |= tryToVectorize(I, R);
7760     }
7761     Instructions.clear();
7762   } else {
7763     // Insert in reverse order since the PostponedCmps vector was filled in
7764     // reverse order.
7765     Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend());
7766   }
7767   return OpsChanged;
7768 }
7769 
7770 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
7771   bool Changed = false;
7772   SmallVector<Value *, 4> Incoming;
7773   SmallPtrSet<Value *, 16> VisitedInstrs;
7774 
7775   bool HaveVectorizedPhiNodes = true;
7776   while (HaveVectorizedPhiNodes) {
7777     HaveVectorizedPhiNodes = false;
7778 
7779     // Collect the incoming values from the PHIs.
7780     Incoming.clear();
7781     for (Instruction &I : *BB) {
7782       PHINode *P = dyn_cast<PHINode>(&I);
7783       if (!P)
7784         break;
7785 
7786       if (!VisitedInstrs.count(P) && !R.isDeleted(P))
7787         Incoming.push_back(P);
7788     }
7789 
7790     // Sort by type.
7791     llvm::stable_sort(Incoming, PhiTypeSorterFunc);
7792 
7793     // Try to vectorize elements base on their type.
7794     for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
7795                                            E = Incoming.end();
7796          IncIt != E;) {
7797 
7798       // Look for the next elements with the same type.
7799       SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
7800       while (SameTypeIt != E &&
7801              (*SameTypeIt)->getType() == (*IncIt)->getType()) {
7802         VisitedInstrs.insert(*SameTypeIt);
7803         ++SameTypeIt;
7804       }
7805 
7806       // Try to vectorize them.
7807       unsigned NumElts = (SameTypeIt - IncIt);
7808       LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs ("
7809                         << NumElts << ")\n");
7810       // The order in which the phi nodes appear in the program does not matter.
7811       // So allow tryToVectorizeList to reorder them if it is beneficial. This
7812       // is done when there are exactly two elements since tryToVectorizeList
7813       // asserts that there are only two values when AllowReorder is true.
7814       bool AllowReorder = NumElts == 2;
7815       if (NumElts > 1 &&
7816           tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, AllowReorder)) {
7817         // Success start over because instructions might have been changed.
7818         HaveVectorizedPhiNodes = true;
7819         Changed = true;
7820         break;
7821       }
7822 
7823       // Start over at the next instruction of a different type (or the end).
7824       IncIt = SameTypeIt;
7825     }
7826   }
7827 
7828   VisitedInstrs.clear();
7829 
7830   SmallVector<Instruction *, 8> PostProcessInstructions;
7831   SmallDenseSet<Instruction *, 4> KeyNodes;
7832   for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
7833     // Skip instructions with scalable type. The num of elements is unknown at
7834     // compile-time for scalable type.
7835     if (isa<ScalableVectorType>(it->getType()))
7836       continue;
7837 
7838     // Skip instructions marked for the deletion.
7839     if (R.isDeleted(&*it))
7840       continue;
7841     // We may go through BB multiple times so skip the one we have checked.
7842     if (!VisitedInstrs.insert(&*it).second) {
7843       if (it->use_empty() && KeyNodes.contains(&*it) &&
7844           vectorizeSimpleInstructions(PostProcessInstructions, BB, R,
7845                                       it->isTerminator())) {
7846         // We would like to start over since some instructions are deleted
7847         // and the iterator may become invalid value.
7848         Changed = true;
7849         it = BB->begin();
7850         e = BB->end();
7851       }
7852       continue;
7853     }
7854 
7855     if (isa<DbgInfoIntrinsic>(it))
7856       continue;
7857 
7858     // Try to vectorize reductions that use PHINodes.
7859     if (PHINode *P = dyn_cast<PHINode>(it)) {
7860       // Check that the PHI is a reduction PHI.
7861       if (P->getNumIncomingValues() == 2) {
7862         // Try to match and vectorize a horizontal reduction.
7863         if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R,
7864                                      TTI)) {
7865           Changed = true;
7866           it = BB->begin();
7867           e = BB->end();
7868           continue;
7869         }
7870       }
7871       // Try to vectorize the incoming values of the PHI, to catch reductions
7872       // that feed into PHIs.
7873       for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) {
7874         // Skip if the incoming block is the current BB for now. Also, bypass
7875         // unreachable IR for efficiency and to avoid crashing.
7876         // TODO: Collect the skipped incoming values and try to vectorize them
7877         // after processing BB.
7878         if (BB == P->getIncomingBlock(I) ||
7879             !DT->isReachableFromEntry(P->getIncomingBlock(I)))
7880           continue;
7881 
7882         Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I),
7883                                             P->getIncomingBlock(I), R, TTI);
7884       }
7885       continue;
7886     }
7887 
7888     // Ran into an instruction without users, like terminator, or function call
7889     // with ignored return value, store. Ignore unused instructions (basing on
7890     // instruction type, except for CallInst and InvokeInst).
7891     if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) ||
7892                             isa<InvokeInst>(it))) {
7893       KeyNodes.insert(&*it);
7894       bool OpsChanged = false;
7895       if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) {
7896         for (auto *V : it->operand_values()) {
7897           // Try to match and vectorize a horizontal reduction.
7898           OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI);
7899         }
7900       }
7901       // Start vectorization of post-process list of instructions from the
7902       // top-tree instructions to try to vectorize as many instructions as
7903       // possible.
7904       OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R,
7905                                                 it->isTerminator());
7906       if (OpsChanged) {
7907         // We would like to start over since some instructions are deleted
7908         // and the iterator may become invalid value.
7909         Changed = true;
7910         it = BB->begin();
7911         e = BB->end();
7912         continue;
7913       }
7914     }
7915 
7916     if (isa<InsertElementInst>(it) || isa<CmpInst>(it) ||
7917         isa<InsertValueInst>(it))
7918       PostProcessInstructions.push_back(&*it);
7919   }
7920 
7921   return Changed;
7922 }
7923 
7924 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) {
7925   auto Changed = false;
7926   for (auto &Entry : GEPs) {
7927     // If the getelementptr list has fewer than two elements, there's nothing
7928     // to do.
7929     if (Entry.second.size() < 2)
7930       continue;
7931 
7932     LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length "
7933                       << Entry.second.size() << ".\n");
7934 
7935     // Process the GEP list in chunks suitable for the target's supported
7936     // vector size. If a vector register can't hold 1 element, we are done. We
7937     // are trying to vectorize the index computations, so the maximum number of
7938     // elements is based on the size of the index expression, rather than the
7939     // size of the GEP itself (the target's pointer size).
7940     unsigned MaxVecRegSize = R.getMaxVecRegSize();
7941     unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin());
7942     if (MaxVecRegSize < EltSize)
7943       continue;
7944 
7945     unsigned MaxElts = MaxVecRegSize / EltSize;
7946     for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) {
7947       auto Len = std::min<unsigned>(BE - BI, MaxElts);
7948       ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len);
7949 
7950       // Initialize a set a candidate getelementptrs. Note that we use a
7951       // SetVector here to preserve program order. If the index computations
7952       // are vectorizable and begin with loads, we want to minimize the chance
7953       // of having to reorder them later.
7954       SetVector<Value *> Candidates(GEPList.begin(), GEPList.end());
7955 
7956       // Some of the candidates may have already been vectorized after we
7957       // initially collected them. If so, they are marked as deleted, so remove
7958       // them from the set of candidates.
7959       Candidates.remove_if(
7960           [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); });
7961 
7962       // Remove from the set of candidates all pairs of getelementptrs with
7963       // constant differences. Such getelementptrs are likely not good
7964       // candidates for vectorization in a bottom-up phase since one can be
7965       // computed from the other. We also ensure all candidate getelementptr
7966       // indices are unique.
7967       for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) {
7968         auto *GEPI = GEPList[I];
7969         if (!Candidates.count(GEPI))
7970           continue;
7971         auto *SCEVI = SE->getSCEV(GEPList[I]);
7972         for (int J = I + 1; J < E && Candidates.size() > 1; ++J) {
7973           auto *GEPJ = GEPList[J];
7974           auto *SCEVJ = SE->getSCEV(GEPList[J]);
7975           if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) {
7976             Candidates.remove(GEPI);
7977             Candidates.remove(GEPJ);
7978           } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) {
7979             Candidates.remove(GEPJ);
7980           }
7981         }
7982       }
7983 
7984       // We break out of the above computation as soon as we know there are
7985       // fewer than two candidates remaining.
7986       if (Candidates.size() < 2)
7987         continue;
7988 
7989       // Add the single, non-constant index of each candidate to the bundle. We
7990       // ensured the indices met these constraints when we originally collected
7991       // the getelementptrs.
7992       SmallVector<Value *, 16> Bundle(Candidates.size());
7993       auto BundleIndex = 0u;
7994       for (auto *V : Candidates) {
7995         auto *GEP = cast<GetElementPtrInst>(V);
7996         auto *GEPIdx = GEP->idx_begin()->get();
7997         assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx));
7998         Bundle[BundleIndex++] = GEPIdx;
7999       }
8000 
8001       // Try and vectorize the indices. We are currently only interested in
8002       // gather-like cases of the form:
8003       //
8004       // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ...
8005       //
8006       // where the loads of "a", the loads of "b", and the subtractions can be
8007       // performed in parallel. It's likely that detecting this pattern in a
8008       // bottom-up phase will be simpler and less costly than building a
8009       // full-blown top-down phase beginning at the consecutive loads.
8010       Changed |= tryToVectorizeList(Bundle, R);
8011     }
8012   }
8013   return Changed;
8014 }
8015 
8016 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) {
8017   bool Changed = false;
8018   // Attempt to sort and vectorize each of the store-groups.
8019   for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e;
8020        ++it) {
8021     if (it->second.size() < 2)
8022       continue;
8023 
8024     LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
8025                       << it->second.size() << ".\n");
8026 
8027     Changed |= vectorizeStores(it->second, R);
8028   }
8029   return Changed;
8030 }
8031 
8032 char SLPVectorizer::ID = 0;
8033 
8034 static const char lv_name[] = "SLP Vectorizer";
8035 
8036 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
8037 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
8038 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
8039 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
8040 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
8041 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
8042 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
8043 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
8044 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
8045 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
8046 
8047 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); }
8048