1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/PostOrderIterator.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/CodeMetrics.h" 24 #include "llvm/Analysis/GlobalsModRef.h" 25 #include "llvm/Analysis/LoopAccessAnalysis.h" 26 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/Analysis/VectorUtils.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/NoFolder.h" 36 #include "llvm/IR/Type.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/IR/Verifier.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/Vectorize.h" 44 #include <algorithm> 45 #include <memory> 46 47 using namespace llvm; 48 using namespace slpvectorizer; 49 50 #define SV_NAME "slp-vectorizer" 51 #define DEBUG_TYPE "SLP" 52 53 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 54 55 static cl::opt<int> 56 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 57 cl::desc("Only vectorize if you gain more than this " 58 "number ")); 59 60 static cl::opt<bool> 61 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 62 cl::desc("Attempt to vectorize horizontal reductions")); 63 64 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 65 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 66 cl::desc( 67 "Attempt to vectorize horizontal reductions feeding into a store")); 68 69 static cl::opt<int> 70 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 71 cl::desc("Attempt to vectorize for this register size in bits")); 72 73 /// Limits the size of scheduling regions in a block. 74 /// It avoid long compile times for _very_ large blocks where vector 75 /// instructions are spread over a wide range. 76 /// This limit is way higher than needed by real-world functions. 77 static cl::opt<int> 78 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 79 cl::desc("Limit the size of the SLP scheduling region per block")); 80 81 static cl::opt<int> MinVectorRegSizeOption( 82 "slp-min-reg-size", cl::init(128), cl::Hidden, 83 cl::desc("Attempt to vectorize for this register size in bits")); 84 85 static cl::opt<unsigned> RecursionMaxDepth( 86 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 87 cl::desc("Limit the recursion depth when building a vectorizable tree")); 88 89 static cl::opt<unsigned> MinTreeSize( 90 "slp-min-tree-size", cl::init(3), cl::Hidden, 91 cl::desc("Only vectorize small trees if they are fully vectorizable")); 92 93 // Limit the number of alias checks. The limit is chosen so that 94 // it has no negative effect on the llvm benchmarks. 95 static const unsigned AliasedCheckLimit = 10; 96 97 // Another limit for the alias checks: The maximum distance between load/store 98 // instructions where alias checks are done. 99 // This limit is useful for very large basic blocks. 100 static const unsigned MaxMemDepDistance = 160; 101 102 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 103 /// regions to be handled. 104 static const int MinScheduleRegionSize = 16; 105 106 /// \brief Predicate for the element types that the SLP vectorizer supports. 107 /// 108 /// The most important thing to filter here are types which are invalid in LLVM 109 /// vectors. We also filter target specific types which have absolutely no 110 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 111 /// avoids spending time checking the cost model and realizing that they will 112 /// be inevitably scalarized. 113 static bool isValidElementType(Type *Ty) { 114 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 115 !Ty->isPPC_FP128Ty(); 116 } 117 118 /// \returns true if all of the instructions in \p VL are in the same block or 119 /// false otherwise. 120 static bool allSameBlock(ArrayRef<Value *> VL) { 121 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 122 if (!I0) 123 return false; 124 BasicBlock *BB = I0->getParent(); 125 for (int i = 1, e = VL.size(); i < e; i++) { 126 Instruction *I = dyn_cast<Instruction>(VL[i]); 127 if (!I) 128 return false; 129 130 if (BB != I->getParent()) 131 return false; 132 } 133 return true; 134 } 135 136 /// \returns True if all of the values in \p VL are constants. 137 static bool allConstant(ArrayRef<Value *> VL) { 138 for (Value *i : VL) 139 if (!isa<Constant>(i)) 140 return false; 141 return true; 142 } 143 144 /// \returns True if all of the values in \p VL are identical. 145 static bool isSplat(ArrayRef<Value *> VL) { 146 for (unsigned i = 1, e = VL.size(); i < e; ++i) 147 if (VL[i] != VL[0]) 148 return false; 149 return true; 150 } 151 152 ///\returns Opcode that can be clubbed with \p Op to create an alternate 153 /// sequence which can later be merged as a ShuffleVector instruction. 154 static unsigned getAltOpcode(unsigned Op) { 155 switch (Op) { 156 case Instruction::FAdd: 157 return Instruction::FSub; 158 case Instruction::FSub: 159 return Instruction::FAdd; 160 case Instruction::Add: 161 return Instruction::Sub; 162 case Instruction::Sub: 163 return Instruction::Add; 164 default: 165 return 0; 166 } 167 } 168 169 ///\returns bool representing if Opcode \p Op can be part 170 /// of an alternate sequence which can later be merged as 171 /// a ShuffleVector instruction. 172 static bool canCombineAsAltInst(unsigned Op) { 173 return Op == Instruction::FAdd || Op == Instruction::FSub || 174 Op == Instruction::Sub || Op == Instruction::Add; 175 } 176 177 /// \returns ShuffleVector instruction if instructions in \p VL have 178 /// alternate fadd,fsub / fsub,fadd/add,sub/sub,add sequence. 179 /// (i.e. e.g. opcodes of fadd,fsub,fadd,fsub...) 180 static unsigned isAltInst(ArrayRef<Value *> VL) { 181 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 182 unsigned Opcode = I0->getOpcode(); 183 unsigned AltOpcode = getAltOpcode(Opcode); 184 for (int i = 1, e = VL.size(); i < e; i++) { 185 Instruction *I = dyn_cast<Instruction>(VL[i]); 186 if (!I || I->getOpcode() != ((i & 1) ? AltOpcode : Opcode)) 187 return 0; 188 } 189 return Instruction::ShuffleVector; 190 } 191 192 /// \returns The opcode if all of the Instructions in \p VL have the same 193 /// opcode, or zero. 194 static unsigned getSameOpcode(ArrayRef<Value *> VL) { 195 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 196 if (!I0) 197 return 0; 198 unsigned Opcode = I0->getOpcode(); 199 for (int i = 1, e = VL.size(); i < e; i++) { 200 Instruction *I = dyn_cast<Instruction>(VL[i]); 201 if (!I || Opcode != I->getOpcode()) { 202 if (canCombineAsAltInst(Opcode) && i == 1) 203 return isAltInst(VL); 204 return 0; 205 } 206 } 207 return Opcode; 208 } 209 210 /// Get the intersection (logical and) of all of the potential IR flags 211 /// of each scalar operation (VL) that will be converted into a vector (I). 212 /// Flag set: NSW, NUW, exact, and all of fast-math. 213 static void propagateIRFlags(Value *I, ArrayRef<Value *> VL) { 214 if (auto *VecOp = dyn_cast<Instruction>(I)) { 215 if (auto *Intersection = dyn_cast<Instruction>(VL[0])) { 216 // Intersection is initialized to the 0th scalar, 217 // so start counting from index '1'. 218 for (int i = 1, e = VL.size(); i < e; ++i) { 219 if (auto *Scalar = dyn_cast<Instruction>(VL[i])) 220 Intersection->andIRFlags(Scalar); 221 } 222 VecOp->copyIRFlags(Intersection); 223 } 224 } 225 } 226 227 /// \returns true if all of the values in \p VL have the same type or false 228 /// otherwise. 229 static bool allSameType(ArrayRef<Value *> VL) { 230 Type *Ty = VL[0]->getType(); 231 for (int i = 1, e = VL.size(); i < e; i++) 232 if (VL[i]->getType() != Ty) 233 return false; 234 235 return true; 236 } 237 238 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 239 static bool matchExtractIndex(Instruction *E, unsigned Idx, unsigned Opcode) { 240 assert(Opcode == Instruction::ExtractElement || 241 Opcode == Instruction::ExtractValue); 242 if (Opcode == Instruction::ExtractElement) { 243 ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 244 return CI && CI->getZExtValue() == Idx; 245 } else { 246 ExtractValueInst *EI = cast<ExtractValueInst>(E); 247 return EI->getNumIndices() == 1 && *EI->idx_begin() == Idx; 248 } 249 } 250 251 /// \returns True if in-tree use also needs extract. This refers to 252 /// possible scalar operand in vectorized instruction. 253 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 254 TargetLibraryInfo *TLI) { 255 256 unsigned Opcode = UserInst->getOpcode(); 257 switch (Opcode) { 258 case Instruction::Load: { 259 LoadInst *LI = cast<LoadInst>(UserInst); 260 return (LI->getPointerOperand() == Scalar); 261 } 262 case Instruction::Store: { 263 StoreInst *SI = cast<StoreInst>(UserInst); 264 return (SI->getPointerOperand() == Scalar); 265 } 266 case Instruction::Call: { 267 CallInst *CI = cast<CallInst>(UserInst); 268 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 269 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 270 return (CI->getArgOperand(1) == Scalar); 271 } 272 } 273 default: 274 return false; 275 } 276 } 277 278 /// \returns the AA location that is being access by the instruction. 279 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 280 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 281 return MemoryLocation::get(SI); 282 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 283 return MemoryLocation::get(LI); 284 return MemoryLocation(); 285 } 286 287 /// \returns True if the instruction is not a volatile or atomic load/store. 288 static bool isSimple(Instruction *I) { 289 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 290 return LI->isSimple(); 291 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 292 return SI->isSimple(); 293 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 294 return !MI->isVolatile(); 295 return true; 296 } 297 298 namespace llvm { 299 namespace slpvectorizer { 300 /// Bottom Up SLP Vectorizer. 301 class BoUpSLP { 302 public: 303 typedef SmallVector<Value *, 8> ValueList; 304 typedef SmallVector<Instruction *, 16> InstrList; 305 typedef SmallPtrSet<Value *, 16> ValueSet; 306 typedef SmallVector<StoreInst *, 8> StoreList; 307 308 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 309 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 310 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 311 const DataLayout *DL) 312 : NumLoadsWantToKeepOrder(0), NumLoadsWantToChangeOrder(0), F(Func), 313 SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), DB(DB), 314 DL(DL), Builder(Se->getContext()) { 315 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 316 // Use the vector register size specified by the target unless overridden 317 // by a command-line option. 318 // TODO: It would be better to limit the vectorization factor based on 319 // data type rather than just register size. For example, x86 AVX has 320 // 256-bit registers, but it does not support integer operations 321 // at that width (that requires AVX2). 322 if (MaxVectorRegSizeOption.getNumOccurrences()) 323 MaxVecRegSize = MaxVectorRegSizeOption; 324 else 325 MaxVecRegSize = TTI->getRegisterBitWidth(true); 326 327 MinVecRegSize = MinVectorRegSizeOption; 328 } 329 330 /// \brief Vectorize the tree that starts with the elements in \p VL. 331 /// Returns the vectorized root. 332 Value *vectorizeTree(); 333 /// Vectorize the tree but with the list of externally used values \p 334 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 335 /// generated extractvalue instructions. 336 Value *vectorizeTree(MapVector<Value *, DebugLoc> &ExternallyUsedValues); 337 338 /// \returns the cost incurred by unwanted spills and fills, caused by 339 /// holding live values over call sites. 340 int getSpillCost(); 341 342 /// \returns the vectorization cost of the subtree that starts at \p VL. 343 /// A negative number means that this is profitable. 344 int getTreeCost(); 345 346 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 347 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 348 void buildTree(ArrayRef<Value *> Roots, 349 ArrayRef<Value *> UserIgnoreLst = None); 350 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 351 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 352 /// into account (anf updating it, if required) list of externally used 353 /// values stored in \p ExternallyUsedValues. 354 void buildTree(ArrayRef<Value *> Roots, 355 MapVector<Value *, DebugLoc> &ExternallyUsedValues, 356 ArrayRef<Value *> UserIgnoreLst = None); 357 358 /// Clear the internal data structures that are created by 'buildTree'. 359 void deleteTree() { 360 VectorizableTree.clear(); 361 ScalarToTreeEntry.clear(); 362 MustGather.clear(); 363 ExternalUses.clear(); 364 NumLoadsWantToKeepOrder = 0; 365 NumLoadsWantToChangeOrder = 0; 366 for (auto &Iter : BlocksSchedules) { 367 BlockScheduling *BS = Iter.second.get(); 368 BS->clear(); 369 } 370 MinBWs.clear(); 371 } 372 373 /// \brief Perform LICM and CSE on the newly generated gather sequences. 374 void optimizeGatherSequence(); 375 376 /// \returns true if it is beneficial to reverse the vector order. 377 bool shouldReorder() const { 378 return NumLoadsWantToChangeOrder > NumLoadsWantToKeepOrder; 379 } 380 381 /// \return The vector element size in bits to use when vectorizing the 382 /// expression tree ending at \p V. If V is a store, the size is the width of 383 /// the stored value. Otherwise, the size is the width of the largest loaded 384 /// value reaching V. This method is used by the vectorizer to calculate 385 /// vectorization factors. 386 unsigned getVectorElementSize(Value *V); 387 388 /// Compute the minimum type sizes required to represent the entries in a 389 /// vectorizable tree. 390 void computeMinimumValueSizes(); 391 392 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 393 unsigned getMaxVecRegSize() const { 394 return MaxVecRegSize; 395 } 396 397 // \returns minimum vector register size as set by cl::opt. 398 unsigned getMinVecRegSize() const { 399 return MinVecRegSize; 400 } 401 402 /// \brief Check if ArrayType or StructType is isomorphic to some VectorType. 403 /// 404 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 405 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 406 407 /// \returns True if the VectorizableTree is both tiny and not fully 408 /// vectorizable. We do not vectorize such trees. 409 bool isTreeTinyAndNotFullyVectorizable(); 410 411 private: 412 struct TreeEntry; 413 414 /// \returns the cost of the vectorizable entry. 415 int getEntryCost(TreeEntry *E); 416 417 /// This is the recursive part of buildTree. 418 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth); 419 420 /// \returns True if the ExtractElement/ExtractValue instructions in VL can 421 /// be vectorized to use the original vector (or aggregate "bitcast" to a vector). 422 bool canReuseExtract(ArrayRef<Value *> VL, unsigned Opcode) const; 423 424 /// Vectorize a single entry in the tree. VL icontains all isomorphic scalars 425 /// in order of its usage in a user program, for example ADD1, ADD2 and so on 426 /// or LOAD1 , LOAD2 etc. 427 Value *vectorizeTree(ArrayRef<Value *> VL, TreeEntry *E); 428 429 /// Vectorize a single entry in the tree, starting in \p VL. 430 Value *vectorizeTree(ArrayRef<Value *> VL); 431 432 /// \returns the pointer to the vectorized value if \p VL is already 433 /// vectorized, or NULL. They may happen in cycles. 434 Value *alreadyVectorized(ArrayRef<Value *> VL) const; 435 436 /// \returns the scalarization cost for this type. Scalarization in this 437 /// context means the creation of vectors from a group of scalars. 438 int getGatherCost(Type *Ty); 439 440 /// \returns the scalarization cost for this list of values. Assuming that 441 /// this subtree gets vectorized, we may need to extract the values from the 442 /// roots. This method calculates the cost of extracting the values. 443 int getGatherCost(ArrayRef<Value *> VL); 444 445 /// \brief Set the Builder insert point to one after the last instruction in 446 /// the bundle 447 void setInsertPointAfterBundle(ArrayRef<Value *> VL); 448 449 /// \returns a vector from a collection of scalars in \p VL. 450 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 451 452 /// \returns whether the VectorizableTree is fully vectorizable and will 453 /// be beneficial even the tree height is tiny. 454 bool isFullyVectorizableTinyTree(); 455 456 /// \reorder commutative operands in alt shuffle if they result in 457 /// vectorized code. 458 void reorderAltShuffleOperands(ArrayRef<Value *> VL, 459 SmallVectorImpl<Value *> &Left, 460 SmallVectorImpl<Value *> &Right); 461 /// \reorder commutative operands to get better probability of 462 /// generating vectorized code. 463 void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 464 SmallVectorImpl<Value *> &Left, 465 SmallVectorImpl<Value *> &Right); 466 struct TreeEntry { 467 TreeEntry() : Scalars(), VectorizedValue(nullptr), 468 NeedToGather(0), NeedToShuffle(0) {} 469 470 /// \returns true if the scalars in VL are equal to this entry. 471 bool isSame(ArrayRef<Value *> VL) const { 472 assert(VL.size() == Scalars.size() && "Invalid size"); 473 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 474 } 475 476 /// \returns true if the scalars in VL are found in this tree entry. 477 bool isFoundJumbled(ArrayRef<Value *> VL, const DataLayout &DL, 478 ScalarEvolution &SE) const { 479 assert(VL.size() == Scalars.size() && "Invalid size"); 480 SmallVector<Value *, 8> List; 481 if (!sortMemAccesses(VL, DL, SE, List)) 482 return false; 483 484 return std::equal(List.begin(), List.end(), Scalars.begin()); 485 } 486 487 /// A vector of scalars. 488 ValueList Scalars; 489 490 /// The Scalars are vectorized into this value. It is initialized to Null. 491 Value *VectorizedValue; 492 493 /// Do we need to gather this sequence ? 494 bool NeedToGather; 495 496 /// Do we need to shuffle the load ? 497 bool NeedToShuffle; 498 }; 499 500 /// Create a new VectorizableTree entry. 501 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized, 502 bool NeedToShuffle) { 503 VectorizableTree.emplace_back(); 504 int idx = VectorizableTree.size() - 1; 505 TreeEntry *Last = &VectorizableTree[idx]; 506 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 507 Last->NeedToGather = !Vectorized; 508 Last->NeedToShuffle = NeedToShuffle; 509 if (Vectorized) { 510 for (int i = 0, e = VL.size(); i != e; ++i) { 511 assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!"); 512 ScalarToTreeEntry[VL[i]] = idx; 513 } 514 } else { 515 MustGather.insert(VL.begin(), VL.end()); 516 } 517 return Last; 518 } 519 520 /// -- Vectorization State -- 521 /// Holds all of the tree entries. 522 std::vector<TreeEntry> VectorizableTree; 523 524 /// Maps a specific scalar to its tree entry. 525 SmallDenseMap<Value*, int> ScalarToTreeEntry; 526 527 /// A list of scalars that we found that we need to keep as scalars. 528 ValueSet MustGather; 529 530 /// This POD struct describes one external user in the vectorized tree. 531 struct ExternalUser { 532 ExternalUser (Value *S, llvm::User *U, int L) : 533 Scalar(S), User(U), Lane(L){} 534 // Which scalar in our function. 535 Value *Scalar; 536 // Which user that uses the scalar. 537 llvm::User *User; 538 // Which lane does the scalar belong to. 539 int Lane; 540 }; 541 typedef SmallVector<ExternalUser, 16> UserList; 542 543 /// Checks if two instructions may access the same memory. 544 /// 545 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 546 /// is invariant in the calling loop. 547 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 548 Instruction *Inst2) { 549 550 // First check if the result is already in the cache. 551 AliasCacheKey key = std::make_pair(Inst1, Inst2); 552 Optional<bool> &result = AliasCache[key]; 553 if (result.hasValue()) { 554 return result.getValue(); 555 } 556 MemoryLocation Loc2 = getLocation(Inst2, AA); 557 bool aliased = true; 558 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 559 // Do the alias check. 560 aliased = AA->alias(Loc1, Loc2); 561 } 562 // Store the result in the cache. 563 result = aliased; 564 return aliased; 565 } 566 567 typedef std::pair<Instruction *, Instruction *> AliasCacheKey; 568 569 /// Cache for alias results. 570 /// TODO: consider moving this to the AliasAnalysis itself. 571 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 572 573 /// Removes an instruction from its block and eventually deletes it. 574 /// It's like Instruction::eraseFromParent() except that the actual deletion 575 /// is delayed until BoUpSLP is destructed. 576 /// This is required to ensure that there are no incorrect collisions in the 577 /// AliasCache, which can happen if a new instruction is allocated at the 578 /// same address as a previously deleted instruction. 579 void eraseInstruction(Instruction *I) { 580 I->removeFromParent(); 581 I->dropAllReferences(); 582 DeletedInstructions.push_back(std::unique_ptr<Instruction>(I)); 583 } 584 585 /// Temporary store for deleted instructions. Instructions will be deleted 586 /// eventually when the BoUpSLP is destructed. 587 SmallVector<std::unique_ptr<Instruction>, 8> DeletedInstructions; 588 589 /// A list of values that need to extracted out of the tree. 590 /// This list holds pairs of (Internal Scalar : External User). External User 591 /// can be nullptr, it means that this Internal Scalar will be used later, 592 /// after vectorization. 593 UserList ExternalUses; 594 595 /// Values used only by @llvm.assume calls. 596 SmallPtrSet<const Value *, 32> EphValues; 597 598 /// Holds all of the instructions that we gathered. 599 SetVector<Instruction *> GatherSeq; 600 /// A list of blocks that we are going to CSE. 601 SetVector<BasicBlock *> CSEBlocks; 602 603 /// Contains all scheduling relevant data for an instruction. 604 /// A ScheduleData either represents a single instruction or a member of an 605 /// instruction bundle (= a group of instructions which is combined into a 606 /// vector instruction). 607 struct ScheduleData { 608 609 // The initial value for the dependency counters. It means that the 610 // dependencies are not calculated yet. 611 enum { InvalidDeps = -1 }; 612 613 ScheduleData() 614 : Inst(nullptr), FirstInBundle(nullptr), NextInBundle(nullptr), 615 NextLoadStore(nullptr), SchedulingRegionID(0), SchedulingPriority(0), 616 Dependencies(InvalidDeps), UnscheduledDeps(InvalidDeps), 617 UnscheduledDepsInBundle(InvalidDeps), IsScheduled(false) {} 618 619 void init(int BlockSchedulingRegionID) { 620 FirstInBundle = this; 621 NextInBundle = nullptr; 622 NextLoadStore = nullptr; 623 IsScheduled = false; 624 SchedulingRegionID = BlockSchedulingRegionID; 625 UnscheduledDepsInBundle = UnscheduledDeps; 626 clearDependencies(); 627 } 628 629 /// Returns true if the dependency information has been calculated. 630 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 631 632 /// Returns true for single instructions and for bundle representatives 633 /// (= the head of a bundle). 634 bool isSchedulingEntity() const { return FirstInBundle == this; } 635 636 /// Returns true if it represents an instruction bundle and not only a 637 /// single instruction. 638 bool isPartOfBundle() const { 639 return NextInBundle != nullptr || FirstInBundle != this; 640 } 641 642 /// Returns true if it is ready for scheduling, i.e. it has no more 643 /// unscheduled depending instructions/bundles. 644 bool isReady() const { 645 assert(isSchedulingEntity() && 646 "can't consider non-scheduling entity for ready list"); 647 return UnscheduledDepsInBundle == 0 && !IsScheduled; 648 } 649 650 /// Modifies the number of unscheduled dependencies, also updating it for 651 /// the whole bundle. 652 int incrementUnscheduledDeps(int Incr) { 653 UnscheduledDeps += Incr; 654 return FirstInBundle->UnscheduledDepsInBundle += Incr; 655 } 656 657 /// Sets the number of unscheduled dependencies to the number of 658 /// dependencies. 659 void resetUnscheduledDeps() { 660 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 661 } 662 663 /// Clears all dependency information. 664 void clearDependencies() { 665 Dependencies = InvalidDeps; 666 resetUnscheduledDeps(); 667 MemoryDependencies.clear(); 668 } 669 670 void dump(raw_ostream &os) const { 671 if (!isSchedulingEntity()) { 672 os << "/ " << *Inst; 673 } else if (NextInBundle) { 674 os << '[' << *Inst; 675 ScheduleData *SD = NextInBundle; 676 while (SD) { 677 os << ';' << *SD->Inst; 678 SD = SD->NextInBundle; 679 } 680 os << ']'; 681 } else { 682 os << *Inst; 683 } 684 } 685 686 Instruction *Inst; 687 688 /// Points to the head in an instruction bundle (and always to this for 689 /// single instructions). 690 ScheduleData *FirstInBundle; 691 692 /// Single linked list of all instructions in a bundle. Null if it is a 693 /// single instruction. 694 ScheduleData *NextInBundle; 695 696 /// Single linked list of all memory instructions (e.g. load, store, call) 697 /// in the block - until the end of the scheduling region. 698 ScheduleData *NextLoadStore; 699 700 /// The dependent memory instructions. 701 /// This list is derived on demand in calculateDependencies(). 702 SmallVector<ScheduleData *, 4> MemoryDependencies; 703 704 /// This ScheduleData is in the current scheduling region if this matches 705 /// the current SchedulingRegionID of BlockScheduling. 706 int SchedulingRegionID; 707 708 /// Used for getting a "good" final ordering of instructions. 709 int SchedulingPriority; 710 711 /// The number of dependencies. Constitutes of the number of users of the 712 /// instruction plus the number of dependent memory instructions (if any). 713 /// This value is calculated on demand. 714 /// If InvalidDeps, the number of dependencies is not calculated yet. 715 /// 716 int Dependencies; 717 718 /// The number of dependencies minus the number of dependencies of scheduled 719 /// instructions. As soon as this is zero, the instruction/bundle gets ready 720 /// for scheduling. 721 /// Note that this is negative as long as Dependencies is not calculated. 722 int UnscheduledDeps; 723 724 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 725 /// single instructions. 726 int UnscheduledDepsInBundle; 727 728 /// True if this instruction is scheduled (or considered as scheduled in the 729 /// dry-run). 730 bool IsScheduled; 731 }; 732 733 #ifndef NDEBUG 734 friend inline raw_ostream &operator<<(raw_ostream &os, 735 const BoUpSLP::ScheduleData &SD) { 736 SD.dump(os); 737 return os; 738 } 739 #endif 740 741 /// Contains all scheduling data for a basic block. 742 /// 743 struct BlockScheduling { 744 745 BlockScheduling(BasicBlock *BB) 746 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize), 747 ScheduleStart(nullptr), ScheduleEnd(nullptr), 748 FirstLoadStoreInRegion(nullptr), LastLoadStoreInRegion(nullptr), 749 ScheduleRegionSize(0), 750 ScheduleRegionSizeLimit(ScheduleRegionSizeBudget), 751 // Make sure that the initial SchedulingRegionID is greater than the 752 // initial SchedulingRegionID in ScheduleData (which is 0). 753 SchedulingRegionID(1) {} 754 755 void clear() { 756 ReadyInsts.clear(); 757 ScheduleStart = nullptr; 758 ScheduleEnd = nullptr; 759 FirstLoadStoreInRegion = nullptr; 760 LastLoadStoreInRegion = nullptr; 761 762 // Reduce the maximum schedule region size by the size of the 763 // previous scheduling run. 764 ScheduleRegionSizeLimit -= ScheduleRegionSize; 765 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 766 ScheduleRegionSizeLimit = MinScheduleRegionSize; 767 ScheduleRegionSize = 0; 768 769 // Make a new scheduling region, i.e. all existing ScheduleData is not 770 // in the new region yet. 771 ++SchedulingRegionID; 772 } 773 774 ScheduleData *getScheduleData(Value *V) { 775 ScheduleData *SD = ScheduleDataMap[V]; 776 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 777 return SD; 778 return nullptr; 779 } 780 781 bool isInSchedulingRegion(ScheduleData *SD) { 782 return SD->SchedulingRegionID == SchedulingRegionID; 783 } 784 785 /// Marks an instruction as scheduled and puts all dependent ready 786 /// instructions into the ready-list. 787 template <typename ReadyListType> 788 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 789 SD->IsScheduled = true; 790 DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 791 792 ScheduleData *BundleMember = SD; 793 while (BundleMember) { 794 // Handle the def-use chain dependencies. 795 for (Use &U : BundleMember->Inst->operands()) { 796 ScheduleData *OpDef = getScheduleData(U.get()); 797 if (OpDef && OpDef->hasValidDependencies() && 798 OpDef->incrementUnscheduledDeps(-1) == 0) { 799 // There are no more unscheduled dependencies after decrementing, 800 // so we can put the dependent instruction into the ready list. 801 ScheduleData *DepBundle = OpDef->FirstInBundle; 802 assert(!DepBundle->IsScheduled && 803 "already scheduled bundle gets ready"); 804 ReadyList.insert(DepBundle); 805 DEBUG(dbgs() << "SLP: gets ready (def): " << *DepBundle << "\n"); 806 } 807 } 808 // Handle the memory dependencies. 809 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 810 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 811 // There are no more unscheduled dependencies after decrementing, 812 // so we can put the dependent instruction into the ready list. 813 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 814 assert(!DepBundle->IsScheduled && 815 "already scheduled bundle gets ready"); 816 ReadyList.insert(DepBundle); 817 DEBUG(dbgs() << "SLP: gets ready (mem): " << *DepBundle << "\n"); 818 } 819 } 820 BundleMember = BundleMember->NextInBundle; 821 } 822 } 823 824 /// Put all instructions into the ReadyList which are ready for scheduling. 825 template <typename ReadyListType> 826 void initialFillReadyList(ReadyListType &ReadyList) { 827 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 828 ScheduleData *SD = getScheduleData(I); 829 if (SD->isSchedulingEntity() && SD->isReady()) { 830 ReadyList.insert(SD); 831 DEBUG(dbgs() << "SLP: initially in ready list: " << *I << "\n"); 832 } 833 } 834 } 835 836 /// Checks if a bundle of instructions can be scheduled, i.e. has no 837 /// cyclic dependencies. This is only a dry-run, no instructions are 838 /// actually moved at this stage. 839 bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP); 840 841 /// Un-bundles a group of instructions. 842 void cancelScheduling(ArrayRef<Value *> VL); 843 844 /// Extends the scheduling region so that V is inside the region. 845 /// \returns true if the region size is within the limit. 846 bool extendSchedulingRegion(Value *V); 847 848 /// Initialize the ScheduleData structures for new instructions in the 849 /// scheduling region. 850 void initScheduleData(Instruction *FromI, Instruction *ToI, 851 ScheduleData *PrevLoadStore, 852 ScheduleData *NextLoadStore); 853 854 /// Updates the dependency information of a bundle and of all instructions/ 855 /// bundles which depend on the original bundle. 856 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 857 BoUpSLP *SLP); 858 859 /// Sets all instruction in the scheduling region to un-scheduled. 860 void resetSchedule(); 861 862 BasicBlock *BB; 863 864 /// Simple memory allocation for ScheduleData. 865 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 866 867 /// The size of a ScheduleData array in ScheduleDataChunks. 868 int ChunkSize; 869 870 /// The allocator position in the current chunk, which is the last entry 871 /// of ScheduleDataChunks. 872 int ChunkPos; 873 874 /// Attaches ScheduleData to Instruction. 875 /// Note that the mapping survives during all vectorization iterations, i.e. 876 /// ScheduleData structures are recycled. 877 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 878 879 struct ReadyList : SmallVector<ScheduleData *, 8> { 880 void insert(ScheduleData *SD) { push_back(SD); } 881 }; 882 883 /// The ready-list for scheduling (only used for the dry-run). 884 ReadyList ReadyInsts; 885 886 /// The first instruction of the scheduling region. 887 Instruction *ScheduleStart; 888 889 /// The first instruction _after_ the scheduling region. 890 Instruction *ScheduleEnd; 891 892 /// The first memory accessing instruction in the scheduling region 893 /// (can be null). 894 ScheduleData *FirstLoadStoreInRegion; 895 896 /// The last memory accessing instruction in the scheduling region 897 /// (can be null). 898 ScheduleData *LastLoadStoreInRegion; 899 900 /// The current size of the scheduling region. 901 int ScheduleRegionSize; 902 903 /// The maximum size allowed for the scheduling region. 904 int ScheduleRegionSizeLimit; 905 906 /// The ID of the scheduling region. For a new vectorization iteration this 907 /// is incremented which "removes" all ScheduleData from the region. 908 int SchedulingRegionID; 909 }; 910 911 /// Attaches the BlockScheduling structures to basic blocks. 912 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 913 914 /// Performs the "real" scheduling. Done before vectorization is actually 915 /// performed in a basic block. 916 void scheduleBlock(BlockScheduling *BS); 917 918 /// List of users to ignore during scheduling and that don't need extracting. 919 ArrayRef<Value *> UserIgnoreList; 920 921 // Number of load bundles that contain consecutive loads. 922 int NumLoadsWantToKeepOrder; 923 924 // Number of load bundles that contain consecutive loads in reversed order. 925 int NumLoadsWantToChangeOrder; 926 927 // Analysis and block reference. 928 Function *F; 929 ScalarEvolution *SE; 930 TargetTransformInfo *TTI; 931 TargetLibraryInfo *TLI; 932 AliasAnalysis *AA; 933 LoopInfo *LI; 934 DominatorTree *DT; 935 AssumptionCache *AC; 936 DemandedBits *DB; 937 const DataLayout *DL; 938 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 939 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 940 /// Instruction builder to construct the vectorized tree. 941 IRBuilder<> Builder; 942 943 /// A map of scalar integer values to the smallest bit width with which they 944 /// can legally be represented. The values map to (width, signed) pairs, 945 /// where "width" indicates the minimum bit width and "signed" is True if the 946 /// value must be signed-extended, rather than zero-extended, back to its 947 /// original width. 948 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 949 }; 950 951 } // end namespace llvm 952 } // end namespace slpvectorizer 953 954 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 955 ArrayRef<Value *> UserIgnoreLst) { 956 MapVector<Value *, DebugLoc> ExternallyUsedValues; 957 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 958 } 959 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 960 MapVector<Value *, DebugLoc> &ExternallyUsedValues, 961 ArrayRef<Value *> UserIgnoreLst) { 962 deleteTree(); 963 UserIgnoreList = UserIgnoreLst; 964 if (!allSameType(Roots)) 965 return; 966 buildTree_rec(Roots, 0); 967 968 // Collect the values that we need to extract from the tree. 969 for (TreeEntry &EIdx : VectorizableTree) { 970 TreeEntry *Entry = &EIdx; 971 972 // For each lane: 973 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 974 Value *Scalar = Entry->Scalars[Lane]; 975 976 // No need to handle users of gathered values. 977 if (Entry->NeedToGather) 978 continue; 979 980 // Check if the scalar is externally used as an extra arg. 981 auto ExtI = ExternallyUsedValues.find(Scalar); 982 if (ExtI != ExternallyUsedValues.end()) { 983 DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " << 984 Lane << " from " << *Scalar << ".\n"); 985 ExternalUses.emplace_back(Scalar, nullptr, Lane); 986 continue; 987 } 988 for (User *U : Scalar->users()) { 989 DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 990 991 Instruction *UserInst = dyn_cast<Instruction>(U); 992 if (!UserInst) 993 continue; 994 995 // Skip in-tree scalars that become vectors 996 if (ScalarToTreeEntry.count(U)) { 997 int Idx = ScalarToTreeEntry[U]; 998 TreeEntry *UseEntry = &VectorizableTree[Idx]; 999 Value *UseScalar = UseEntry->Scalars[0]; 1000 // Some in-tree scalars will remain as scalar in vectorized 1001 // instructions. If that is the case, the one in Lane 0 will 1002 // be used. 1003 if (UseScalar != U || 1004 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 1005 DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 1006 << ".\n"); 1007 assert(!VectorizableTree[Idx].NeedToGather && "Bad state"); 1008 continue; 1009 } 1010 } 1011 1012 // Ignore users in the user ignore list. 1013 if (is_contained(UserIgnoreList, UserInst)) 1014 continue; 1015 1016 DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " << 1017 Lane << " from " << *Scalar << ".\n"); 1018 ExternalUses.push_back(ExternalUser(Scalar, U, Lane)); 1019 } 1020 } 1021 } 1022 } 1023 1024 1025 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { 1026 bool isAltShuffle = false; 1027 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 1028 1029 if (Depth == RecursionMaxDepth) { 1030 DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 1031 newTreeEntry(VL, false, false); 1032 return; 1033 } 1034 1035 // Don't handle vectors. 1036 if (VL[0]->getType()->isVectorTy()) { 1037 DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 1038 newTreeEntry(VL, false, false); 1039 return; 1040 } 1041 1042 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1043 if (SI->getValueOperand()->getType()->isVectorTy()) { 1044 DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 1045 newTreeEntry(VL, false, false); 1046 return; 1047 } 1048 unsigned Opcode = getSameOpcode(VL); 1049 1050 // Check that this shuffle vector refers to the alternate 1051 // sequence of opcodes. 1052 if (Opcode == Instruction::ShuffleVector) { 1053 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 1054 unsigned Op = I0->getOpcode(); 1055 if (Op != Instruction::ShuffleVector) 1056 isAltShuffle = true; 1057 } 1058 1059 // If all of the operands are identical or constant we have a simple solution. 1060 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !Opcode) { 1061 DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 1062 newTreeEntry(VL, false, false); 1063 return; 1064 } 1065 1066 // We now know that this is a vector of instructions of the same type from 1067 // the same block. 1068 1069 // Don't vectorize ephemeral values. 1070 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1071 if (EphValues.count(VL[i])) { 1072 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1073 ") is ephemeral.\n"); 1074 newTreeEntry(VL, false, false); 1075 return; 1076 } 1077 } 1078 1079 // Check if this is a duplicate of another entry. 1080 if (ScalarToTreeEntry.count(VL[0])) { 1081 int Idx = ScalarToTreeEntry[VL[0]]; 1082 TreeEntry *E = &VectorizableTree[Idx]; 1083 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1084 DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n"); 1085 if (E->Scalars[i] != VL[i]) { 1086 DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 1087 newTreeEntry(VL, false, false); 1088 return; 1089 } 1090 } 1091 DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n"); 1092 return; 1093 } 1094 1095 // Check that none of the instructions in the bundle are already in the tree. 1096 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1097 if (ScalarToTreeEntry.count(VL[i])) { 1098 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1099 ") is already in tree.\n"); 1100 newTreeEntry(VL, false, false); 1101 return; 1102 } 1103 } 1104 1105 // If any of the scalars is marked as a value that needs to stay scalar then 1106 // we need to gather the scalars. 1107 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1108 if (MustGather.count(VL[i])) { 1109 DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 1110 newTreeEntry(VL, false, false); 1111 return; 1112 } 1113 } 1114 1115 // Check that all of the users of the scalars that we want to vectorize are 1116 // schedulable. 1117 Instruction *VL0 = cast<Instruction>(VL[0]); 1118 BasicBlock *BB = cast<Instruction>(VL0)->getParent(); 1119 1120 if (!DT->isReachableFromEntry(BB)) { 1121 // Don't go into unreachable blocks. They may contain instructions with 1122 // dependency cycles which confuse the final scheduling. 1123 DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 1124 newTreeEntry(VL, false, false); 1125 return; 1126 } 1127 1128 // Check that every instructions appears once in this bundle. 1129 for (unsigned i = 0, e = VL.size(); i < e; ++i) 1130 for (unsigned j = i+1; j < e; ++j) 1131 if (VL[i] == VL[j]) { 1132 DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 1133 newTreeEntry(VL, false, false); 1134 return; 1135 } 1136 1137 auto &BSRef = BlocksSchedules[BB]; 1138 if (!BSRef) { 1139 BSRef = llvm::make_unique<BlockScheduling>(BB); 1140 } 1141 BlockScheduling &BS = *BSRef.get(); 1142 1143 if (!BS.tryScheduleBundle(VL, this)) { 1144 DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 1145 assert((!BS.getScheduleData(VL[0]) || 1146 !BS.getScheduleData(VL[0])->isPartOfBundle()) && 1147 "tryScheduleBundle should cancelScheduling on failure"); 1148 newTreeEntry(VL, false, false); 1149 return; 1150 } 1151 DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 1152 1153 switch (Opcode) { 1154 case Instruction::PHI: { 1155 PHINode *PH = dyn_cast<PHINode>(VL0); 1156 1157 // Check for terminator values (e.g. invoke). 1158 for (unsigned j = 0; j < VL.size(); ++j) 1159 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1160 TerminatorInst *Term = dyn_cast<TerminatorInst>( 1161 cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i))); 1162 if (Term) { 1163 DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n"); 1164 BS.cancelScheduling(VL); 1165 newTreeEntry(VL, false, false); 1166 return; 1167 } 1168 } 1169 1170 newTreeEntry(VL, true, false); 1171 DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 1172 1173 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1174 ValueList Operands; 1175 // Prepare the operand vector. 1176 for (Value *j : VL) 1177 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( 1178 PH->getIncomingBlock(i))); 1179 1180 buildTree_rec(Operands, Depth + 1); 1181 } 1182 return; 1183 } 1184 case Instruction::ExtractValue: 1185 case Instruction::ExtractElement: { 1186 bool Reuse = canReuseExtract(VL, Opcode); 1187 if (Reuse) { 1188 DEBUG(dbgs() << "SLP: Reusing extract sequence.\n"); 1189 } else { 1190 BS.cancelScheduling(VL); 1191 } 1192 newTreeEntry(VL, Reuse, false); 1193 return; 1194 } 1195 case Instruction::Load: { 1196 // Check that a vectorized load would load the same memory as a scalar 1197 // load. 1198 // For example we don't want vectorize loads that are smaller than 8 bit. 1199 // Even though we have a packed struct {<i2, i2, i2, i2>} LLVM treats 1200 // loading/storing it as an i8 struct. If we vectorize loads/stores from 1201 // such a struct we read/write packed bits disagreeing with the 1202 // unvectorized version. 1203 Type *ScalarTy = VL[0]->getType(); 1204 1205 if (DL->getTypeSizeInBits(ScalarTy) != 1206 DL->getTypeAllocSizeInBits(ScalarTy)) { 1207 BS.cancelScheduling(VL); 1208 newTreeEntry(VL, false, false); 1209 DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 1210 return; 1211 } 1212 1213 // Make sure all loads in the bundle are simple - we can't vectorize 1214 // atomic or volatile loads. 1215 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { 1216 LoadInst *L = cast<LoadInst>(VL[i]); 1217 if (!L->isSimple()) { 1218 BS.cancelScheduling(VL); 1219 newTreeEntry(VL, false, false); 1220 DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 1221 return; 1222 } 1223 } 1224 1225 // Check if the loads are consecutive, reversed, or neither. 1226 bool Consecutive = true; 1227 bool ReverseConsecutive = true; 1228 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { 1229 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1230 Consecutive = false; 1231 break; 1232 } else { 1233 ReverseConsecutive = false; 1234 } 1235 } 1236 1237 if (Consecutive) { 1238 ++NumLoadsWantToKeepOrder; 1239 newTreeEntry(VL, true, false); 1240 DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 1241 return; 1242 } 1243 1244 // If none of the load pairs were consecutive when checked in order, 1245 // check the reverse order. 1246 if (ReverseConsecutive) 1247 for (unsigned i = VL.size() - 1; i > 0; --i) 1248 if (!isConsecutiveAccess(VL[i], VL[i - 1], *DL, *SE)) { 1249 ReverseConsecutive = false; 1250 break; 1251 } 1252 1253 if (VL.size() > 2 && !ReverseConsecutive) { 1254 bool ShuffledLoads = true; 1255 SmallVector<Value *, 8> Sorted; 1256 if (sortMemAccesses(VL, *DL, *SE, Sorted)) { 1257 auto NewVL = makeArrayRef(Sorted.begin(), Sorted.end()); 1258 for (unsigned i = 0, e = NewVL.size() - 1; i < e; ++i) { 1259 if (!isConsecutiveAccess(NewVL[i], NewVL[i + 1], *DL, *SE)) { 1260 ShuffledLoads = false; 1261 break; 1262 } 1263 } 1264 if (ShuffledLoads) { 1265 newTreeEntry(NewVL, true, true); 1266 return; 1267 } 1268 } 1269 } 1270 1271 BS.cancelScheduling(VL); 1272 newTreeEntry(VL, false, false); 1273 1274 if (ReverseConsecutive) { 1275 ++NumLoadsWantToChangeOrder; 1276 DEBUG(dbgs() << "SLP: Gathering reversed loads.\n"); 1277 } else { 1278 DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 1279 } 1280 return; 1281 } 1282 case Instruction::ZExt: 1283 case Instruction::SExt: 1284 case Instruction::FPToUI: 1285 case Instruction::FPToSI: 1286 case Instruction::FPExt: 1287 case Instruction::PtrToInt: 1288 case Instruction::IntToPtr: 1289 case Instruction::SIToFP: 1290 case Instruction::UIToFP: 1291 case Instruction::Trunc: 1292 case Instruction::FPTrunc: 1293 case Instruction::BitCast: { 1294 Type *SrcTy = VL0->getOperand(0)->getType(); 1295 for (Value *Val : VL) { 1296 Type *Ty = cast<Instruction>(Val)->getOperand(0)->getType(); 1297 if (Ty != SrcTy || !isValidElementType(Ty)) { 1298 BS.cancelScheduling(VL); 1299 newTreeEntry(VL, false, false); 1300 DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n"); 1301 return; 1302 } 1303 } 1304 newTreeEntry(VL, true, false); 1305 DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 1306 1307 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1308 ValueList Operands; 1309 // Prepare the operand vector. 1310 for (Value *j : VL) 1311 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1312 1313 buildTree_rec(Operands, Depth+1); 1314 } 1315 return; 1316 } 1317 case Instruction::ICmp: 1318 case Instruction::FCmp: { 1319 // Check that all of the compares have the same predicate. 1320 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 1321 Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType(); 1322 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1323 CmpInst *Cmp = cast<CmpInst>(VL[i]); 1324 if (Cmp->getPredicate() != P0 || 1325 Cmp->getOperand(0)->getType() != ComparedTy) { 1326 BS.cancelScheduling(VL); 1327 newTreeEntry(VL, false, false); 1328 DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n"); 1329 return; 1330 } 1331 } 1332 1333 newTreeEntry(VL, true, false); 1334 DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 1335 1336 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1337 ValueList Operands; 1338 // Prepare the operand vector. 1339 for (Value *j : VL) 1340 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1341 1342 buildTree_rec(Operands, Depth+1); 1343 } 1344 return; 1345 } 1346 case Instruction::Select: 1347 case Instruction::Add: 1348 case Instruction::FAdd: 1349 case Instruction::Sub: 1350 case Instruction::FSub: 1351 case Instruction::Mul: 1352 case Instruction::FMul: 1353 case Instruction::UDiv: 1354 case Instruction::SDiv: 1355 case Instruction::FDiv: 1356 case Instruction::URem: 1357 case Instruction::SRem: 1358 case Instruction::FRem: 1359 case Instruction::Shl: 1360 case Instruction::LShr: 1361 case Instruction::AShr: 1362 case Instruction::And: 1363 case Instruction::Or: 1364 case Instruction::Xor: { 1365 newTreeEntry(VL, true, false); 1366 DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); 1367 1368 // Sort operands of the instructions so that each side is more likely to 1369 // have the same opcode. 1370 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 1371 ValueList Left, Right; 1372 reorderInputsAccordingToOpcode(VL, Left, Right); 1373 buildTree_rec(Left, Depth + 1); 1374 buildTree_rec(Right, Depth + 1); 1375 return; 1376 } 1377 1378 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1379 ValueList Operands; 1380 // Prepare the operand vector. 1381 for (Value *j : VL) 1382 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1383 1384 buildTree_rec(Operands, Depth+1); 1385 } 1386 return; 1387 } 1388 case Instruction::GetElementPtr: { 1389 // We don't combine GEPs with complicated (nested) indexing. 1390 for (Value *Val : VL) { 1391 if (cast<Instruction>(Val)->getNumOperands() != 2) { 1392 DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 1393 BS.cancelScheduling(VL); 1394 newTreeEntry(VL, false, false); 1395 return; 1396 } 1397 } 1398 1399 // We can't combine several GEPs into one vector if they operate on 1400 // different types. 1401 Type *Ty0 = cast<Instruction>(VL0)->getOperand(0)->getType(); 1402 for (Value *Val : VL) { 1403 Type *CurTy = cast<Instruction>(Val)->getOperand(0)->getType(); 1404 if (Ty0 != CurTy) { 1405 DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n"); 1406 BS.cancelScheduling(VL); 1407 newTreeEntry(VL, false, false); 1408 return; 1409 } 1410 } 1411 1412 // We don't combine GEPs with non-constant indexes. 1413 for (Value *Val : VL) { 1414 auto Op = cast<Instruction>(Val)->getOperand(1); 1415 if (!isa<ConstantInt>(Op)) { 1416 DEBUG( 1417 dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 1418 BS.cancelScheduling(VL); 1419 newTreeEntry(VL, false, false); 1420 return; 1421 } 1422 } 1423 1424 newTreeEntry(VL, true, false); 1425 DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 1426 for (unsigned i = 0, e = 2; i < e; ++i) { 1427 ValueList Operands; 1428 // Prepare the operand vector. 1429 for (Value *j : VL) 1430 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1431 1432 buildTree_rec(Operands, Depth + 1); 1433 } 1434 return; 1435 } 1436 case Instruction::Store: { 1437 // Check if the stores are consecutive or of we need to swizzle them. 1438 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 1439 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1440 BS.cancelScheduling(VL); 1441 newTreeEntry(VL, false, false); 1442 DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 1443 return; 1444 } 1445 1446 newTreeEntry(VL, true, false); 1447 DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 1448 1449 ValueList Operands; 1450 for (Value *j : VL) 1451 Operands.push_back(cast<Instruction>(j)->getOperand(0)); 1452 1453 buildTree_rec(Operands, Depth + 1); 1454 return; 1455 } 1456 case Instruction::Call: { 1457 // Check if the calls are all to the same vectorizable intrinsic. 1458 CallInst *CI = cast<CallInst>(VL[0]); 1459 // Check if this is an Intrinsic call or something that can be 1460 // represented by an intrinsic call 1461 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 1462 if (!isTriviallyVectorizable(ID)) { 1463 BS.cancelScheduling(VL); 1464 newTreeEntry(VL, false, false); 1465 DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 1466 return; 1467 } 1468 Function *Int = CI->getCalledFunction(); 1469 Value *A1I = nullptr; 1470 if (hasVectorInstrinsicScalarOpd(ID, 1)) 1471 A1I = CI->getArgOperand(1); 1472 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 1473 CallInst *CI2 = dyn_cast<CallInst>(VL[i]); 1474 if (!CI2 || CI2->getCalledFunction() != Int || 1475 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 1476 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 1477 BS.cancelScheduling(VL); 1478 newTreeEntry(VL, false, false); 1479 DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] 1480 << "\n"); 1481 return; 1482 } 1483 // ctlz,cttz and powi are special intrinsics whose second argument 1484 // should be same in order for them to be vectorized. 1485 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 1486 Value *A1J = CI2->getArgOperand(1); 1487 if (A1I != A1J) { 1488 BS.cancelScheduling(VL); 1489 newTreeEntry(VL, false, false); 1490 DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 1491 << " argument "<< A1I<<"!=" << A1J 1492 << "\n"); 1493 return; 1494 } 1495 } 1496 // Verify that the bundle operands are identical between the two calls. 1497 if (CI->hasOperandBundles() && 1498 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 1499 CI->op_begin() + CI->getBundleOperandsEndIndex(), 1500 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 1501 BS.cancelScheduling(VL); 1502 newTreeEntry(VL, false, false); 1503 DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" << *CI << "!=" 1504 << *VL[i] << '\n'); 1505 return; 1506 } 1507 } 1508 1509 newTreeEntry(VL, true, false); 1510 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 1511 ValueList Operands; 1512 // Prepare the operand vector. 1513 for (Value *j : VL) { 1514 CallInst *CI2 = dyn_cast<CallInst>(j); 1515 Operands.push_back(CI2->getArgOperand(i)); 1516 } 1517 buildTree_rec(Operands, Depth + 1); 1518 } 1519 return; 1520 } 1521 case Instruction::ShuffleVector: { 1522 // If this is not an alternate sequence of opcode like add-sub 1523 // then do not vectorize this instruction. 1524 if (!isAltShuffle) { 1525 BS.cancelScheduling(VL); 1526 newTreeEntry(VL, false, false); 1527 DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 1528 return; 1529 } 1530 newTreeEntry(VL, true, false); 1531 DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 1532 1533 // Reorder operands if reordering would enable vectorization. 1534 if (isa<BinaryOperator>(VL0)) { 1535 ValueList Left, Right; 1536 reorderAltShuffleOperands(VL, Left, Right); 1537 buildTree_rec(Left, Depth + 1); 1538 buildTree_rec(Right, Depth + 1); 1539 return; 1540 } 1541 1542 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1543 ValueList Operands; 1544 // Prepare the operand vector. 1545 for (Value *j : VL) 1546 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1547 1548 buildTree_rec(Operands, Depth + 1); 1549 } 1550 return; 1551 } 1552 default: 1553 BS.cancelScheduling(VL); 1554 newTreeEntry(VL, false, false); 1555 DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 1556 return; 1557 } 1558 } 1559 1560 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 1561 unsigned N; 1562 Type *EltTy; 1563 auto *ST = dyn_cast<StructType>(T); 1564 if (ST) { 1565 N = ST->getNumElements(); 1566 EltTy = *ST->element_begin(); 1567 } else { 1568 N = cast<ArrayType>(T)->getNumElements(); 1569 EltTy = cast<ArrayType>(T)->getElementType(); 1570 } 1571 if (!isValidElementType(EltTy)) 1572 return 0; 1573 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); 1574 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 1575 return 0; 1576 if (ST) { 1577 // Check that struct is homogeneous. 1578 for (const auto *Ty : ST->elements()) 1579 if (Ty != EltTy) 1580 return 0; 1581 } 1582 return N; 1583 } 1584 1585 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, unsigned Opcode) const { 1586 assert(Opcode == Instruction::ExtractElement || 1587 Opcode == Instruction::ExtractValue); 1588 assert(Opcode == getSameOpcode(VL) && "Invalid opcode"); 1589 // Check if all of the extracts come from the same vector and from the 1590 // correct offset. 1591 Value *VL0 = VL[0]; 1592 Instruction *E0 = cast<Instruction>(VL0); 1593 Value *Vec = E0->getOperand(0); 1594 1595 // We have to extract from a vector/aggregate with the same number of elements. 1596 unsigned NElts; 1597 if (Opcode == Instruction::ExtractValue) { 1598 const DataLayout &DL = E0->getModule()->getDataLayout(); 1599 NElts = canMapToVector(Vec->getType(), DL); 1600 if (!NElts) 1601 return false; 1602 // Check if load can be rewritten as load of vector. 1603 LoadInst *LI = dyn_cast<LoadInst>(Vec); 1604 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 1605 return false; 1606 } else { 1607 NElts = Vec->getType()->getVectorNumElements(); 1608 } 1609 1610 if (NElts != VL.size()) 1611 return false; 1612 1613 // Check that all of the indices extract from the correct offset. 1614 if (!matchExtractIndex(E0, 0, Opcode)) 1615 return false; 1616 1617 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1618 Instruction *E = cast<Instruction>(VL[i]); 1619 if (!matchExtractIndex(E, i, Opcode)) 1620 return false; 1621 if (E->getOperand(0) != Vec) 1622 return false; 1623 } 1624 1625 return true; 1626 } 1627 1628 int BoUpSLP::getEntryCost(TreeEntry *E) { 1629 ArrayRef<Value*> VL = E->Scalars; 1630 1631 Type *ScalarTy = VL[0]->getType(); 1632 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1633 ScalarTy = SI->getValueOperand()->getType(); 1634 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1635 1636 // If we have computed a smaller type for the expression, update VecTy so 1637 // that the costs will be accurate. 1638 if (MinBWs.count(VL[0])) 1639 VecTy = VectorType::get( 1640 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 1641 1642 if (E->NeedToGather) { 1643 if (allConstant(VL)) 1644 return 0; 1645 if (isSplat(VL)) { 1646 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 1647 } 1648 return getGatherCost(E->Scalars); 1649 } 1650 unsigned Opcode = getSameOpcode(VL); 1651 assert(Opcode && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 1652 Instruction *VL0 = cast<Instruction>(VL[0]); 1653 switch (Opcode) { 1654 case Instruction::PHI: { 1655 return 0; 1656 } 1657 case Instruction::ExtractValue: 1658 case Instruction::ExtractElement: { 1659 if (canReuseExtract(VL, Opcode)) { 1660 int DeadCost = 0; 1661 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 1662 Instruction *E = cast<Instruction>(VL[i]); 1663 // If all users are going to be vectorized, instruction can be 1664 // considered as dead. 1665 // The same, if have only one user, it will be vectorized for sure. 1666 if (E->hasOneUse() || 1667 std::all_of(E->user_begin(), E->user_end(), [this](User *U) { 1668 return ScalarToTreeEntry.count(U) > 0; 1669 })) 1670 // Take credit for instruction that will become dead. 1671 DeadCost += 1672 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 1673 } 1674 return -DeadCost; 1675 } 1676 return getGatherCost(VecTy); 1677 } 1678 case Instruction::ZExt: 1679 case Instruction::SExt: 1680 case Instruction::FPToUI: 1681 case Instruction::FPToSI: 1682 case Instruction::FPExt: 1683 case Instruction::PtrToInt: 1684 case Instruction::IntToPtr: 1685 case Instruction::SIToFP: 1686 case Instruction::UIToFP: 1687 case Instruction::Trunc: 1688 case Instruction::FPTrunc: 1689 case Instruction::BitCast: { 1690 Type *SrcTy = VL0->getOperand(0)->getType(); 1691 1692 // Calculate the cost of this instruction. 1693 int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(), 1694 VL0->getType(), SrcTy); 1695 1696 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 1697 int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy); 1698 return VecCost - ScalarCost; 1699 } 1700 case Instruction::FCmp: 1701 case Instruction::ICmp: 1702 case Instruction::Select: { 1703 // Calculate the cost of this instruction. 1704 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 1705 int ScalarCost = VecTy->getNumElements() * 1706 TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty()); 1707 int VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy); 1708 return VecCost - ScalarCost; 1709 } 1710 case Instruction::Add: 1711 case Instruction::FAdd: 1712 case Instruction::Sub: 1713 case Instruction::FSub: 1714 case Instruction::Mul: 1715 case Instruction::FMul: 1716 case Instruction::UDiv: 1717 case Instruction::SDiv: 1718 case Instruction::FDiv: 1719 case Instruction::URem: 1720 case Instruction::SRem: 1721 case Instruction::FRem: 1722 case Instruction::Shl: 1723 case Instruction::LShr: 1724 case Instruction::AShr: 1725 case Instruction::And: 1726 case Instruction::Or: 1727 case Instruction::Xor: { 1728 // Certain instructions can be cheaper to vectorize if they have a 1729 // constant second vector operand. 1730 TargetTransformInfo::OperandValueKind Op1VK = 1731 TargetTransformInfo::OK_AnyValue; 1732 TargetTransformInfo::OperandValueKind Op2VK = 1733 TargetTransformInfo::OK_UniformConstantValue; 1734 TargetTransformInfo::OperandValueProperties Op1VP = 1735 TargetTransformInfo::OP_None; 1736 TargetTransformInfo::OperandValueProperties Op2VP = 1737 TargetTransformInfo::OP_None; 1738 1739 // If all operands are exactly the same ConstantInt then set the 1740 // operand kind to OK_UniformConstantValue. 1741 // If instead not all operands are constants, then set the operand kind 1742 // to OK_AnyValue. If all operands are constants but not the same, 1743 // then set the operand kind to OK_NonUniformConstantValue. 1744 ConstantInt *CInt = nullptr; 1745 for (unsigned i = 0; i < VL.size(); ++i) { 1746 const Instruction *I = cast<Instruction>(VL[i]); 1747 if (!isa<ConstantInt>(I->getOperand(1))) { 1748 Op2VK = TargetTransformInfo::OK_AnyValue; 1749 break; 1750 } 1751 if (i == 0) { 1752 CInt = cast<ConstantInt>(I->getOperand(1)); 1753 continue; 1754 } 1755 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && 1756 CInt != cast<ConstantInt>(I->getOperand(1))) 1757 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 1758 } 1759 // FIXME: Currently cost of model modification for division by power of 1760 // 2 is handled for X86 and AArch64. Add support for other targets. 1761 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt && 1762 CInt->getValue().isPowerOf2()) 1763 Op2VP = TargetTransformInfo::OP_PowerOf2; 1764 1765 int ScalarCost = VecTy->getNumElements() * 1766 TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, 1767 Op2VK, Op1VP, Op2VP); 1768 int VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK, 1769 Op1VP, Op2VP); 1770 return VecCost - ScalarCost; 1771 } 1772 case Instruction::GetElementPtr: { 1773 TargetTransformInfo::OperandValueKind Op1VK = 1774 TargetTransformInfo::OK_AnyValue; 1775 TargetTransformInfo::OperandValueKind Op2VK = 1776 TargetTransformInfo::OK_UniformConstantValue; 1777 1778 int ScalarCost = 1779 VecTy->getNumElements() * 1780 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 1781 int VecCost = 1782 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 1783 1784 return VecCost - ScalarCost; 1785 } 1786 case Instruction::Load: { 1787 // Cost of wide load - cost of scalar loads. 1788 unsigned alignment = dyn_cast<LoadInst>(VL0)->getAlignment(); 1789 int ScalarLdCost = VecTy->getNumElements() * 1790 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0); 1791 int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, 1792 VecTy, alignment, 0); 1793 if (E->NeedToShuffle) { 1794 VecLdCost += TTI->getShuffleCost( 1795 TargetTransformInfo::SK_PermuteSingleSrc, VecTy, 0); 1796 } 1797 return VecLdCost - ScalarLdCost; 1798 } 1799 case Instruction::Store: { 1800 // We know that we can merge the stores. Calculate the cost. 1801 unsigned alignment = dyn_cast<StoreInst>(VL0)->getAlignment(); 1802 int ScalarStCost = VecTy->getNumElements() * 1803 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0); 1804 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, 1805 VecTy, alignment, 0); 1806 return VecStCost - ScalarStCost; 1807 } 1808 case Instruction::Call: { 1809 CallInst *CI = cast<CallInst>(VL0); 1810 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 1811 1812 // Calculate the cost of the scalar and vector calls. 1813 SmallVector<Type*, 4> ScalarTys, VecTys; 1814 for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) { 1815 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 1816 VecTys.push_back(VectorType::get(CI->getArgOperand(op)->getType(), 1817 VecTy->getNumElements())); 1818 } 1819 1820 FastMathFlags FMF; 1821 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 1822 FMF = FPMO->getFastMathFlags(); 1823 1824 int ScalarCallCost = VecTy->getNumElements() * 1825 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 1826 1827 int VecCallCost = TTI->getIntrinsicInstrCost(ID, VecTy, VecTys, FMF); 1828 1829 DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost 1830 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 1831 << " for " << *CI << "\n"); 1832 1833 return VecCallCost - ScalarCallCost; 1834 } 1835 case Instruction::ShuffleVector: { 1836 TargetTransformInfo::OperandValueKind Op1VK = 1837 TargetTransformInfo::OK_AnyValue; 1838 TargetTransformInfo::OperandValueKind Op2VK = 1839 TargetTransformInfo::OK_AnyValue; 1840 int ScalarCost = 0; 1841 int VecCost = 0; 1842 for (Value *i : VL) { 1843 Instruction *I = cast<Instruction>(i); 1844 if (!I) 1845 break; 1846 ScalarCost += 1847 TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK); 1848 } 1849 // VecCost is equal to sum of the cost of creating 2 vectors 1850 // and the cost of creating shuffle. 1851 Instruction *I0 = cast<Instruction>(VL[0]); 1852 VecCost = 1853 TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK); 1854 Instruction *I1 = cast<Instruction>(VL[1]); 1855 VecCost += 1856 TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK); 1857 VecCost += 1858 TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0); 1859 return VecCost - ScalarCost; 1860 } 1861 default: 1862 llvm_unreachable("Unknown instruction"); 1863 } 1864 } 1865 1866 bool BoUpSLP::isFullyVectorizableTinyTree() { 1867 DEBUG(dbgs() << "SLP: Check whether the tree with height " << 1868 VectorizableTree.size() << " is fully vectorizable .\n"); 1869 1870 // We only handle trees of heights 1 and 2. 1871 if (VectorizableTree.size() == 1 && !VectorizableTree[0].NeedToGather) 1872 return true; 1873 1874 if (VectorizableTree.size() != 2) 1875 return false; 1876 1877 // Handle splat and all-constants stores. 1878 if (!VectorizableTree[0].NeedToGather && 1879 (allConstant(VectorizableTree[1].Scalars) || 1880 isSplat(VectorizableTree[1].Scalars))) 1881 return true; 1882 1883 // Gathering cost would be too much for tiny trees. 1884 if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather) 1885 return false; 1886 1887 return true; 1888 } 1889 1890 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() { 1891 1892 // We can vectorize the tree if its size is greater than or equal to the 1893 // minimum size specified by the MinTreeSize command line option. 1894 if (VectorizableTree.size() >= MinTreeSize) 1895 return false; 1896 1897 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 1898 // can vectorize it if we can prove it fully vectorizable. 1899 if (isFullyVectorizableTinyTree()) 1900 return false; 1901 1902 assert(VectorizableTree.empty() 1903 ? ExternalUses.empty() 1904 : true && "We shouldn't have any external users"); 1905 1906 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 1907 // vectorizable. 1908 return true; 1909 } 1910 1911 int BoUpSLP::getSpillCost() { 1912 // Walk from the bottom of the tree to the top, tracking which values are 1913 // live. When we see a call instruction that is not part of our tree, 1914 // query TTI to see if there is a cost to keeping values live over it 1915 // (for example, if spills and fills are required). 1916 unsigned BundleWidth = VectorizableTree.front().Scalars.size(); 1917 int Cost = 0; 1918 1919 SmallPtrSet<Instruction*, 4> LiveValues; 1920 Instruction *PrevInst = nullptr; 1921 1922 for (const auto &N : VectorizableTree) { 1923 Instruction *Inst = dyn_cast<Instruction>(N.Scalars[0]); 1924 if (!Inst) 1925 continue; 1926 1927 if (!PrevInst) { 1928 PrevInst = Inst; 1929 continue; 1930 } 1931 1932 // Update LiveValues. 1933 LiveValues.erase(PrevInst); 1934 for (auto &J : PrevInst->operands()) { 1935 if (isa<Instruction>(&*J) && ScalarToTreeEntry.count(&*J)) 1936 LiveValues.insert(cast<Instruction>(&*J)); 1937 } 1938 1939 DEBUG( 1940 dbgs() << "SLP: #LV: " << LiveValues.size(); 1941 for (auto *X : LiveValues) 1942 dbgs() << " " << X->getName(); 1943 dbgs() << ", Looking at "; 1944 Inst->dump(); 1945 ); 1946 1947 // Now find the sequence of instructions between PrevInst and Inst. 1948 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 1949 PrevInstIt = 1950 PrevInst->getIterator().getReverse(); 1951 while (InstIt != PrevInstIt) { 1952 if (PrevInstIt == PrevInst->getParent()->rend()) { 1953 PrevInstIt = Inst->getParent()->rbegin(); 1954 continue; 1955 } 1956 1957 if (isa<CallInst>(&*PrevInstIt) && &*PrevInstIt != PrevInst) { 1958 SmallVector<Type*, 4> V; 1959 for (auto *II : LiveValues) 1960 V.push_back(VectorType::get(II->getType(), BundleWidth)); 1961 Cost += TTI->getCostOfKeepingLiveOverCall(V); 1962 } 1963 1964 ++PrevInstIt; 1965 } 1966 1967 PrevInst = Inst; 1968 } 1969 1970 return Cost; 1971 } 1972 1973 int BoUpSLP::getTreeCost() { 1974 int Cost = 0; 1975 DEBUG(dbgs() << "SLP: Calculating cost for tree of size " << 1976 VectorizableTree.size() << ".\n"); 1977 1978 unsigned BundleWidth = VectorizableTree[0].Scalars.size(); 1979 1980 for (TreeEntry &TE : VectorizableTree) { 1981 int C = getEntryCost(&TE); 1982 DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with " 1983 << *TE.Scalars[0] << ".\n"); 1984 Cost += C; 1985 } 1986 1987 SmallSet<Value *, 16> ExtractCostCalculated; 1988 int ExtractCost = 0; 1989 for (ExternalUser &EU : ExternalUses) { 1990 // We only add extract cost once for the same scalar. 1991 if (!ExtractCostCalculated.insert(EU.Scalar).second) 1992 continue; 1993 1994 // Uses by ephemeral values are free (because the ephemeral value will be 1995 // removed prior to code generation, and so the extraction will be 1996 // removed as well). 1997 if (EphValues.count(EU.User)) 1998 continue; 1999 2000 // If we plan to rewrite the tree in a smaller type, we will need to sign 2001 // extend the extracted value back to the original type. Here, we account 2002 // for the extract and the added cost of the sign extend if needed. 2003 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); 2004 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 2005 if (MinBWs.count(ScalarRoot)) { 2006 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 2007 auto Extend = 2008 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 2009 VecTy = VectorType::get(MinTy, BundleWidth); 2010 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 2011 VecTy, EU.Lane); 2012 } else { 2013 ExtractCost += 2014 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 2015 } 2016 } 2017 2018 int SpillCost = getSpillCost(); 2019 Cost += SpillCost + ExtractCost; 2020 2021 DEBUG(dbgs() << "SLP: Spill Cost = " << SpillCost << ".\n" 2022 << "SLP: Extract Cost = " << ExtractCost << ".\n" 2023 << "SLP: Total Cost = " << Cost << ".\n"); 2024 return Cost; 2025 } 2026 2027 int BoUpSLP::getGatherCost(Type *Ty) { 2028 int Cost = 0; 2029 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 2030 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 2031 return Cost; 2032 } 2033 2034 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) { 2035 // Find the type of the operands in VL. 2036 Type *ScalarTy = VL[0]->getType(); 2037 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2038 ScalarTy = SI->getValueOperand()->getType(); 2039 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2040 // Find the cost of inserting/extracting values from the vector. 2041 return getGatherCost(VecTy); 2042 } 2043 2044 // Reorder commutative operations in alternate shuffle if the resulting vectors 2045 // are consecutive loads. This would allow us to vectorize the tree. 2046 // If we have something like- 2047 // load a[0] - load b[0] 2048 // load b[1] + load a[1] 2049 // load a[2] - load b[2] 2050 // load a[3] + load b[3] 2051 // Reordering the second load b[1] load a[1] would allow us to vectorize this 2052 // code. 2053 void BoUpSLP::reorderAltShuffleOperands(ArrayRef<Value *> VL, 2054 SmallVectorImpl<Value *> &Left, 2055 SmallVectorImpl<Value *> &Right) { 2056 // Push left and right operands of binary operation into Left and Right 2057 for (Value *i : VL) { 2058 Left.push_back(cast<Instruction>(i)->getOperand(0)); 2059 Right.push_back(cast<Instruction>(i)->getOperand(1)); 2060 } 2061 2062 // Reorder if we have a commutative operation and consecutive access 2063 // are on either side of the alternate instructions. 2064 for (unsigned j = 0; j < VL.size() - 1; ++j) { 2065 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2066 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2067 Instruction *VL1 = cast<Instruction>(VL[j]); 2068 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 2069 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 2070 std::swap(Left[j], Right[j]); 2071 continue; 2072 } else if (VL2->isCommutative() && 2073 isConsecutiveAccess(L, L1, *DL, *SE)) { 2074 std::swap(Left[j + 1], Right[j + 1]); 2075 continue; 2076 } 2077 // else unchanged 2078 } 2079 } 2080 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2081 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2082 Instruction *VL1 = cast<Instruction>(VL[j]); 2083 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 2084 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 2085 std::swap(Left[j], Right[j]); 2086 continue; 2087 } else if (VL2->isCommutative() && 2088 isConsecutiveAccess(L, L1, *DL, *SE)) { 2089 std::swap(Left[j + 1], Right[j + 1]); 2090 continue; 2091 } 2092 // else unchanged 2093 } 2094 } 2095 } 2096 } 2097 2098 // Return true if I should be commuted before adding it's left and right 2099 // operands to the arrays Left and Right. 2100 // 2101 // The vectorizer is trying to either have all elements one side being 2102 // instruction with the same opcode to enable further vectorization, or having 2103 // a splat to lower the vectorizing cost. 2104 static bool shouldReorderOperands(int i, Instruction &I, 2105 SmallVectorImpl<Value *> &Left, 2106 SmallVectorImpl<Value *> &Right, 2107 bool AllSameOpcodeLeft, 2108 bool AllSameOpcodeRight, bool SplatLeft, 2109 bool SplatRight) { 2110 Value *VLeft = I.getOperand(0); 2111 Value *VRight = I.getOperand(1); 2112 // If we have "SplatRight", try to see if commuting is needed to preserve it. 2113 if (SplatRight) { 2114 if (VRight == Right[i - 1]) 2115 // Preserve SplatRight 2116 return false; 2117 if (VLeft == Right[i - 1]) { 2118 // Commuting would preserve SplatRight, but we don't want to break 2119 // SplatLeft either, i.e. preserve the original order if possible. 2120 // (FIXME: why do we care?) 2121 if (SplatLeft && VLeft == Left[i - 1]) 2122 return false; 2123 return true; 2124 } 2125 } 2126 // Symmetrically handle Right side. 2127 if (SplatLeft) { 2128 if (VLeft == Left[i - 1]) 2129 // Preserve SplatLeft 2130 return false; 2131 if (VRight == Left[i - 1]) 2132 return true; 2133 } 2134 2135 Instruction *ILeft = dyn_cast<Instruction>(VLeft); 2136 Instruction *IRight = dyn_cast<Instruction>(VRight); 2137 2138 // If we have "AllSameOpcodeRight", try to see if the left operands preserves 2139 // it and not the right, in this case we want to commute. 2140 if (AllSameOpcodeRight) { 2141 unsigned RightPrevOpcode = cast<Instruction>(Right[i - 1])->getOpcode(); 2142 if (IRight && RightPrevOpcode == IRight->getOpcode()) 2143 // Do not commute, a match on the right preserves AllSameOpcodeRight 2144 return false; 2145 if (ILeft && RightPrevOpcode == ILeft->getOpcode()) { 2146 // We have a match and may want to commute, but first check if there is 2147 // not also a match on the existing operands on the Left to preserve 2148 // AllSameOpcodeLeft, i.e. preserve the original order if possible. 2149 // (FIXME: why do we care?) 2150 if (AllSameOpcodeLeft && ILeft && 2151 cast<Instruction>(Left[i - 1])->getOpcode() == ILeft->getOpcode()) 2152 return false; 2153 return true; 2154 } 2155 } 2156 // Symmetrically handle Left side. 2157 if (AllSameOpcodeLeft) { 2158 unsigned LeftPrevOpcode = cast<Instruction>(Left[i - 1])->getOpcode(); 2159 if (ILeft && LeftPrevOpcode == ILeft->getOpcode()) 2160 return false; 2161 if (IRight && LeftPrevOpcode == IRight->getOpcode()) 2162 return true; 2163 } 2164 return false; 2165 } 2166 2167 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 2168 SmallVectorImpl<Value *> &Left, 2169 SmallVectorImpl<Value *> &Right) { 2170 2171 if (VL.size()) { 2172 // Peel the first iteration out of the loop since there's nothing 2173 // interesting to do anyway and it simplifies the checks in the loop. 2174 auto VLeft = cast<Instruction>(VL[0])->getOperand(0); 2175 auto VRight = cast<Instruction>(VL[0])->getOperand(1); 2176 if (!isa<Instruction>(VRight) && isa<Instruction>(VLeft)) 2177 // Favor having instruction to the right. FIXME: why? 2178 std::swap(VLeft, VRight); 2179 Left.push_back(VLeft); 2180 Right.push_back(VRight); 2181 } 2182 2183 // Keep track if we have instructions with all the same opcode on one side. 2184 bool AllSameOpcodeLeft = isa<Instruction>(Left[0]); 2185 bool AllSameOpcodeRight = isa<Instruction>(Right[0]); 2186 // Keep track if we have one side with all the same value (broadcast). 2187 bool SplatLeft = true; 2188 bool SplatRight = true; 2189 2190 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 2191 Instruction *I = cast<Instruction>(VL[i]); 2192 assert(I->isCommutative() && "Can only process commutative instruction"); 2193 // Commute to favor either a splat or maximizing having the same opcodes on 2194 // one side. 2195 if (shouldReorderOperands(i, *I, Left, Right, AllSameOpcodeLeft, 2196 AllSameOpcodeRight, SplatLeft, SplatRight)) { 2197 Left.push_back(I->getOperand(1)); 2198 Right.push_back(I->getOperand(0)); 2199 } else { 2200 Left.push_back(I->getOperand(0)); 2201 Right.push_back(I->getOperand(1)); 2202 } 2203 // Update Splat* and AllSameOpcode* after the insertion. 2204 SplatRight = SplatRight && (Right[i - 1] == Right[i]); 2205 SplatLeft = SplatLeft && (Left[i - 1] == Left[i]); 2206 AllSameOpcodeLeft = AllSameOpcodeLeft && isa<Instruction>(Left[i]) && 2207 (cast<Instruction>(Left[i - 1])->getOpcode() == 2208 cast<Instruction>(Left[i])->getOpcode()); 2209 AllSameOpcodeRight = AllSameOpcodeRight && isa<Instruction>(Right[i]) && 2210 (cast<Instruction>(Right[i - 1])->getOpcode() == 2211 cast<Instruction>(Right[i])->getOpcode()); 2212 } 2213 2214 // If one operand end up being broadcast, return this operand order. 2215 if (SplatRight || SplatLeft) 2216 return; 2217 2218 // Finally check if we can get longer vectorizable chain by reordering 2219 // without breaking the good operand order detected above. 2220 // E.g. If we have something like- 2221 // load a[0] load b[0] 2222 // load b[1] load a[1] 2223 // load a[2] load b[2] 2224 // load a[3] load b[3] 2225 // Reordering the second load b[1] load a[1] would allow us to vectorize 2226 // this code and we still retain AllSameOpcode property. 2227 // FIXME: This load reordering might break AllSameOpcode in some rare cases 2228 // such as- 2229 // add a[0],c[0] load b[0] 2230 // add a[1],c[2] load b[1] 2231 // b[2] load b[2] 2232 // add a[3],c[3] load b[3] 2233 for (unsigned j = 0; j < VL.size() - 1; ++j) { 2234 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2235 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2236 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2237 std::swap(Left[j + 1], Right[j + 1]); 2238 continue; 2239 } 2240 } 2241 } 2242 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2243 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2244 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2245 std::swap(Left[j + 1], Right[j + 1]); 2246 continue; 2247 } 2248 } 2249 } 2250 // else unchanged 2251 } 2252 } 2253 2254 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) { 2255 2256 // Get the basic block this bundle is in. All instructions in the bundle 2257 // should be in this block. 2258 auto *Front = cast<Instruction>(VL.front()); 2259 auto *BB = Front->getParent(); 2260 assert(all_of(make_range(VL.begin(), VL.end()), [&](Value *V) -> bool { 2261 return cast<Instruction>(V)->getParent() == BB; 2262 })); 2263 2264 // The last instruction in the bundle in program order. 2265 Instruction *LastInst = nullptr; 2266 2267 // Find the last instruction. The common case should be that BB has been 2268 // scheduled, and the last instruction is VL.back(). So we start with 2269 // VL.back() and iterate over schedule data until we reach the end of the 2270 // bundle. The end of the bundle is marked by null ScheduleData. 2271 if (BlocksSchedules.count(BB)) { 2272 auto *Bundle = BlocksSchedules[BB]->getScheduleData(VL.back()); 2273 if (Bundle && Bundle->isPartOfBundle()) 2274 for (; Bundle; Bundle = Bundle->NextInBundle) 2275 LastInst = Bundle->Inst; 2276 } 2277 2278 // LastInst can still be null at this point if there's either not an entry 2279 // for BB in BlocksSchedules or there's no ScheduleData available for 2280 // VL.back(). This can be the case if buildTree_rec aborts for various 2281 // reasons (e.g., the maximum recursion depth is reached, the maximum region 2282 // size is reached, etc.). ScheduleData is initialized in the scheduling 2283 // "dry-run". 2284 // 2285 // If this happens, we can still find the last instruction by brute force. We 2286 // iterate forwards from Front (inclusive) until we either see all 2287 // instructions in the bundle or reach the end of the block. If Front is the 2288 // last instruction in program order, LastInst will be set to Front, and we 2289 // will visit all the remaining instructions in the block. 2290 // 2291 // One of the reasons we exit early from buildTree_rec is to place an upper 2292 // bound on compile-time. Thus, taking an additional compile-time hit here is 2293 // not ideal. However, this should be exceedingly rare since it requires that 2294 // we both exit early from buildTree_rec and that the bundle be out-of-order 2295 // (causing us to iterate all the way to the end of the block). 2296 if (!LastInst) { 2297 SmallPtrSet<Value *, 16> Bundle(VL.begin(), VL.end()); 2298 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 2299 if (Bundle.erase(&I)) 2300 LastInst = &I; 2301 if (Bundle.empty()) 2302 break; 2303 } 2304 } 2305 2306 // Set the insertion point after the last instruction in the bundle. Set the 2307 // debug location to Front. 2308 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 2309 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 2310 } 2311 2312 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 2313 Value *Vec = UndefValue::get(Ty); 2314 // Generate the 'InsertElement' instruction. 2315 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 2316 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 2317 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { 2318 GatherSeq.insert(Insrt); 2319 CSEBlocks.insert(Insrt->getParent()); 2320 2321 // Add to our 'need-to-extract' list. 2322 if (ScalarToTreeEntry.count(VL[i])) { 2323 int Idx = ScalarToTreeEntry[VL[i]]; 2324 TreeEntry *E = &VectorizableTree[Idx]; 2325 // Find which lane we need to extract. 2326 int FoundLane = -1; 2327 for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) { 2328 // Is this the lane of the scalar that we are looking for ? 2329 if (E->Scalars[Lane] == VL[i]) { 2330 FoundLane = Lane; 2331 break; 2332 } 2333 } 2334 assert(FoundLane >= 0 && "Could not find the correct lane"); 2335 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 2336 } 2337 } 2338 } 2339 2340 return Vec; 2341 } 2342 2343 Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) const { 2344 SmallDenseMap<Value*, int>::const_iterator Entry 2345 = ScalarToTreeEntry.find(VL[0]); 2346 if (Entry != ScalarToTreeEntry.end()) { 2347 int Idx = Entry->second; 2348 const TreeEntry *En = &VectorizableTree[Idx]; 2349 if (En->isSame(VL) && En->VectorizedValue) 2350 return En->VectorizedValue; 2351 } 2352 return nullptr; 2353 } 2354 2355 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 2356 if (ScalarToTreeEntry.count(VL[0])) { 2357 int Idx = ScalarToTreeEntry[VL[0]]; 2358 TreeEntry *E = &VectorizableTree[Idx]; 2359 if (E->isSame(VL) || (E->NeedToShuffle && E->isFoundJumbled(VL, *DL, *SE))) 2360 return vectorizeTree(VL, E); 2361 } 2362 2363 Type *ScalarTy = VL[0]->getType(); 2364 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2365 ScalarTy = SI->getValueOperand()->getType(); 2366 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2367 2368 return Gather(VL, VecTy); 2369 } 2370 2371 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL, TreeEntry *E) { 2372 IRBuilder<>::InsertPointGuard Guard(Builder); 2373 2374 if (E->VectorizedValue && !E->NeedToShuffle) { 2375 DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 2376 return E->VectorizedValue; 2377 } 2378 2379 Instruction *VL0 = cast<Instruction>(E->Scalars[0]); 2380 Type *ScalarTy = VL0->getType(); 2381 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 2382 ScalarTy = SI->getValueOperand()->getType(); 2383 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 2384 2385 if (E->NeedToGather) { 2386 setInsertPointAfterBundle(E->Scalars); 2387 auto *V = Gather(E->Scalars, VecTy); 2388 E->VectorizedValue = V; 2389 return V; 2390 } 2391 2392 unsigned Opcode = getSameOpcode(E->Scalars); 2393 2394 switch (Opcode) { 2395 case Instruction::PHI: { 2396 PHINode *PH = dyn_cast<PHINode>(VL0); 2397 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 2398 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 2399 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 2400 E->VectorizedValue = NewPhi; 2401 2402 // PHINodes may have multiple entries from the same block. We want to 2403 // visit every block once. 2404 SmallSet<BasicBlock*, 4> VisitedBBs; 2405 2406 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2407 ValueList Operands; 2408 BasicBlock *IBB = PH->getIncomingBlock(i); 2409 2410 if (!VisitedBBs.insert(IBB).second) { 2411 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 2412 continue; 2413 } 2414 2415 // Prepare the operand vector. 2416 for (Value *V : E->Scalars) 2417 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB)); 2418 2419 Builder.SetInsertPoint(IBB->getTerminator()); 2420 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 2421 Value *Vec = vectorizeTree(Operands); 2422 NewPhi->addIncoming(Vec, IBB); 2423 } 2424 2425 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 2426 "Invalid number of incoming values"); 2427 return NewPhi; 2428 } 2429 2430 case Instruction::ExtractElement: { 2431 if (canReuseExtract(E->Scalars, Instruction::ExtractElement)) { 2432 Value *V = VL0->getOperand(0); 2433 E->VectorizedValue = V; 2434 return V; 2435 } 2436 setInsertPointAfterBundle(E->Scalars); 2437 auto *V = Gather(E->Scalars, VecTy); 2438 E->VectorizedValue = V; 2439 return V; 2440 } 2441 case Instruction::ExtractValue: { 2442 if (canReuseExtract(E->Scalars, Instruction::ExtractValue)) { 2443 LoadInst *LI = cast<LoadInst>(VL0->getOperand(0)); 2444 Builder.SetInsertPoint(LI); 2445 PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 2446 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 2447 LoadInst *V = Builder.CreateAlignedLoad(Ptr, LI->getAlignment()); 2448 E->VectorizedValue = V; 2449 return propagateMetadata(V, E->Scalars); 2450 } 2451 setInsertPointAfterBundle(E->Scalars); 2452 auto *V = Gather(E->Scalars, VecTy); 2453 E->VectorizedValue = V; 2454 return V; 2455 } 2456 case Instruction::ZExt: 2457 case Instruction::SExt: 2458 case Instruction::FPToUI: 2459 case Instruction::FPToSI: 2460 case Instruction::FPExt: 2461 case Instruction::PtrToInt: 2462 case Instruction::IntToPtr: 2463 case Instruction::SIToFP: 2464 case Instruction::UIToFP: 2465 case Instruction::Trunc: 2466 case Instruction::FPTrunc: 2467 case Instruction::BitCast: { 2468 ValueList INVL; 2469 for (Value *V : E->Scalars) 2470 INVL.push_back(cast<Instruction>(V)->getOperand(0)); 2471 2472 setInsertPointAfterBundle(E->Scalars); 2473 2474 Value *InVec = vectorizeTree(INVL); 2475 2476 if (Value *V = alreadyVectorized(E->Scalars)) 2477 return V; 2478 2479 CastInst *CI = dyn_cast<CastInst>(VL0); 2480 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 2481 E->VectorizedValue = V; 2482 ++NumVectorInstructions; 2483 return V; 2484 } 2485 case Instruction::FCmp: 2486 case Instruction::ICmp: { 2487 ValueList LHSV, RHSV; 2488 for (Value *V : E->Scalars) { 2489 LHSV.push_back(cast<Instruction>(V)->getOperand(0)); 2490 RHSV.push_back(cast<Instruction>(V)->getOperand(1)); 2491 } 2492 2493 setInsertPointAfterBundle(E->Scalars); 2494 2495 Value *L = vectorizeTree(LHSV); 2496 Value *R = vectorizeTree(RHSV); 2497 2498 if (Value *V = alreadyVectorized(E->Scalars)) 2499 return V; 2500 2501 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2502 Value *V; 2503 if (Opcode == Instruction::FCmp) 2504 V = Builder.CreateFCmp(P0, L, R); 2505 else 2506 V = Builder.CreateICmp(P0, L, R); 2507 2508 E->VectorizedValue = V; 2509 propagateIRFlags(E->VectorizedValue, E->Scalars); 2510 ++NumVectorInstructions; 2511 return V; 2512 } 2513 case Instruction::Select: { 2514 ValueList TrueVec, FalseVec, CondVec; 2515 for (Value *V : E->Scalars) { 2516 CondVec.push_back(cast<Instruction>(V)->getOperand(0)); 2517 TrueVec.push_back(cast<Instruction>(V)->getOperand(1)); 2518 FalseVec.push_back(cast<Instruction>(V)->getOperand(2)); 2519 } 2520 2521 setInsertPointAfterBundle(E->Scalars); 2522 2523 Value *Cond = vectorizeTree(CondVec); 2524 Value *True = vectorizeTree(TrueVec); 2525 Value *False = vectorizeTree(FalseVec); 2526 2527 if (Value *V = alreadyVectorized(E->Scalars)) 2528 return V; 2529 2530 Value *V = Builder.CreateSelect(Cond, True, False); 2531 E->VectorizedValue = V; 2532 ++NumVectorInstructions; 2533 return V; 2534 } 2535 case Instruction::Add: 2536 case Instruction::FAdd: 2537 case Instruction::Sub: 2538 case Instruction::FSub: 2539 case Instruction::Mul: 2540 case Instruction::FMul: 2541 case Instruction::UDiv: 2542 case Instruction::SDiv: 2543 case Instruction::FDiv: 2544 case Instruction::URem: 2545 case Instruction::SRem: 2546 case Instruction::FRem: 2547 case Instruction::Shl: 2548 case Instruction::LShr: 2549 case Instruction::AShr: 2550 case Instruction::And: 2551 case Instruction::Or: 2552 case Instruction::Xor: { 2553 ValueList LHSVL, RHSVL; 2554 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) 2555 reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL); 2556 else 2557 for (Value *V : E->Scalars) { 2558 LHSVL.push_back(cast<Instruction>(V)->getOperand(0)); 2559 RHSVL.push_back(cast<Instruction>(V)->getOperand(1)); 2560 } 2561 2562 setInsertPointAfterBundle(E->Scalars); 2563 2564 Value *LHS = vectorizeTree(LHSVL); 2565 Value *RHS = vectorizeTree(RHSVL); 2566 2567 if (Value *V = alreadyVectorized(E->Scalars)) 2568 return V; 2569 2570 BinaryOperator *BinOp = cast<BinaryOperator>(VL0); 2571 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS); 2572 E->VectorizedValue = V; 2573 propagateIRFlags(E->VectorizedValue, E->Scalars); 2574 ++NumVectorInstructions; 2575 2576 if (Instruction *I = dyn_cast<Instruction>(V)) 2577 return propagateMetadata(I, E->Scalars); 2578 2579 return V; 2580 } 2581 case Instruction::Load: { 2582 // Loads are inserted at the head of the tree because we don't want to 2583 // sink them all the way down past store instructions. 2584 setInsertPointAfterBundle(E->Scalars); 2585 2586 LoadInst *LI = cast<LoadInst>(VL0); 2587 Type *ScalarLoadTy = LI->getType(); 2588 unsigned AS = LI->getPointerAddressSpace(); 2589 2590 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 2591 VecTy->getPointerTo(AS)); 2592 2593 // The pointer operand uses an in-tree scalar so we add the new BitCast to 2594 // ExternalUses list to make sure that an extract will be generated in the 2595 // future. 2596 if (ScalarToTreeEntry.count(LI->getPointerOperand())) 2597 ExternalUses.push_back( 2598 ExternalUser(LI->getPointerOperand(), cast<User>(VecPtr), 0)); 2599 2600 unsigned Alignment = LI->getAlignment(); 2601 LI = Builder.CreateLoad(VecPtr); 2602 if (!Alignment) { 2603 Alignment = DL->getABITypeAlignment(ScalarLoadTy); 2604 } 2605 LI->setAlignment(Alignment); 2606 E->VectorizedValue = LI; 2607 ++NumVectorInstructions; 2608 propagateMetadata(LI, E->Scalars); 2609 2610 // As program order of scalar loads are jumbled, the vectorized 'load' 2611 // must be followed by a 'shuffle' with the required jumbled mask. 2612 if (!VL.empty() && (E->NeedToShuffle)) { 2613 assert(VL.size() == E->Scalars.size() && 2614 "Equal number of scalars expected"); 2615 SmallVector<Constant *, 8> Mask; 2616 for (Value *Val : VL) { 2617 if (ScalarToTreeEntry.count(Val)) { 2618 int Idx = ScalarToTreeEntry[Val]; 2619 TreeEntry *E = &VectorizableTree[Idx]; 2620 for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) { 2621 if (E->Scalars[Lane] == Val) { 2622 Mask.push_back(Builder.getInt32(Lane)); 2623 break; 2624 } 2625 } 2626 } 2627 } 2628 2629 // Generate shuffle for jumbled memory access 2630 Value *Undef = UndefValue::get(VecTy); 2631 Value *Shuf = Builder.CreateShuffleVector((Value *)LI, Undef, 2632 ConstantVector::get(Mask)); 2633 return Shuf; 2634 } 2635 2636 return LI; 2637 } 2638 case Instruction::Store: { 2639 StoreInst *SI = cast<StoreInst>(VL0); 2640 unsigned Alignment = SI->getAlignment(); 2641 unsigned AS = SI->getPointerAddressSpace(); 2642 2643 ValueList ValueOp; 2644 for (Value *V : E->Scalars) 2645 ValueOp.push_back(cast<StoreInst>(V)->getValueOperand()); 2646 2647 setInsertPointAfterBundle(E->Scalars); 2648 2649 Value *VecValue = vectorizeTree(ValueOp); 2650 Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(), 2651 VecTy->getPointerTo(AS)); 2652 StoreInst *S = Builder.CreateStore(VecValue, VecPtr); 2653 2654 // The pointer operand uses an in-tree scalar so we add the new BitCast to 2655 // ExternalUses list to make sure that an extract will be generated in the 2656 // future. 2657 if (ScalarToTreeEntry.count(SI->getPointerOperand())) 2658 ExternalUses.push_back( 2659 ExternalUser(SI->getPointerOperand(), cast<User>(VecPtr), 0)); 2660 2661 if (!Alignment) { 2662 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); 2663 } 2664 S->setAlignment(Alignment); 2665 E->VectorizedValue = S; 2666 ++NumVectorInstructions; 2667 return propagateMetadata(S, E->Scalars); 2668 } 2669 case Instruction::GetElementPtr: { 2670 setInsertPointAfterBundle(E->Scalars); 2671 2672 ValueList Op0VL; 2673 for (Value *V : E->Scalars) 2674 Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0)); 2675 2676 Value *Op0 = vectorizeTree(Op0VL); 2677 2678 std::vector<Value *> OpVecs; 2679 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 2680 ++j) { 2681 ValueList OpVL; 2682 for (Value *V : E->Scalars) 2683 OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j)); 2684 2685 Value *OpVec = vectorizeTree(OpVL); 2686 OpVecs.push_back(OpVec); 2687 } 2688 2689 Value *V = Builder.CreateGEP( 2690 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 2691 E->VectorizedValue = V; 2692 ++NumVectorInstructions; 2693 2694 if (Instruction *I = dyn_cast<Instruction>(V)) 2695 return propagateMetadata(I, E->Scalars); 2696 2697 return V; 2698 } 2699 case Instruction::Call: { 2700 CallInst *CI = cast<CallInst>(VL0); 2701 setInsertPointAfterBundle(E->Scalars); 2702 Function *FI; 2703 Intrinsic::ID IID = Intrinsic::not_intrinsic; 2704 Value *ScalarArg = nullptr; 2705 if (CI && (FI = CI->getCalledFunction())) { 2706 IID = FI->getIntrinsicID(); 2707 } 2708 std::vector<Value *> OpVecs; 2709 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 2710 ValueList OpVL; 2711 // ctlz,cttz and powi are special intrinsics whose second argument is 2712 // a scalar. This argument should not be vectorized. 2713 if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) { 2714 CallInst *CEI = cast<CallInst>(E->Scalars[0]); 2715 ScalarArg = CEI->getArgOperand(j); 2716 OpVecs.push_back(CEI->getArgOperand(j)); 2717 continue; 2718 } 2719 for (Value *V : E->Scalars) { 2720 CallInst *CEI = cast<CallInst>(V); 2721 OpVL.push_back(CEI->getArgOperand(j)); 2722 } 2723 2724 Value *OpVec = vectorizeTree(OpVL); 2725 DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 2726 OpVecs.push_back(OpVec); 2727 } 2728 2729 Module *M = F->getParent(); 2730 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2731 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 2732 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 2733 SmallVector<OperandBundleDef, 1> OpBundles; 2734 CI->getOperandBundlesAsDefs(OpBundles); 2735 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 2736 2737 // The scalar argument uses an in-tree scalar so we add the new vectorized 2738 // call to ExternalUses list to make sure that an extract will be 2739 // generated in the future. 2740 if (ScalarArg && ScalarToTreeEntry.count(ScalarArg)) 2741 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 2742 2743 E->VectorizedValue = V; 2744 propagateIRFlags(E->VectorizedValue, E->Scalars); 2745 ++NumVectorInstructions; 2746 return V; 2747 } 2748 case Instruction::ShuffleVector: { 2749 ValueList LHSVL, RHSVL; 2750 assert(isa<BinaryOperator>(VL0) && "Invalid Shuffle Vector Operand"); 2751 reorderAltShuffleOperands(E->Scalars, LHSVL, RHSVL); 2752 setInsertPointAfterBundle(E->Scalars); 2753 2754 Value *LHS = vectorizeTree(LHSVL); 2755 Value *RHS = vectorizeTree(RHSVL); 2756 2757 if (Value *V = alreadyVectorized(E->Scalars)) 2758 return V; 2759 2760 // Create a vector of LHS op1 RHS 2761 BinaryOperator *BinOp0 = cast<BinaryOperator>(VL0); 2762 Value *V0 = Builder.CreateBinOp(BinOp0->getOpcode(), LHS, RHS); 2763 2764 // Create a vector of LHS op2 RHS 2765 Instruction *VL1 = cast<Instruction>(E->Scalars[1]); 2766 BinaryOperator *BinOp1 = cast<BinaryOperator>(VL1); 2767 Value *V1 = Builder.CreateBinOp(BinOp1->getOpcode(), LHS, RHS); 2768 2769 // Create shuffle to take alternate operations from the vector. 2770 // Also, gather up odd and even scalar ops to propagate IR flags to 2771 // each vector operation. 2772 ValueList OddScalars, EvenScalars; 2773 unsigned e = E->Scalars.size(); 2774 SmallVector<Constant *, 8> Mask(e); 2775 for (unsigned i = 0; i < e; ++i) { 2776 if (i & 1) { 2777 Mask[i] = Builder.getInt32(e + i); 2778 OddScalars.push_back(E->Scalars[i]); 2779 } else { 2780 Mask[i] = Builder.getInt32(i); 2781 EvenScalars.push_back(E->Scalars[i]); 2782 } 2783 } 2784 2785 Value *ShuffleMask = ConstantVector::get(Mask); 2786 propagateIRFlags(V0, EvenScalars); 2787 propagateIRFlags(V1, OddScalars); 2788 2789 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 2790 E->VectorizedValue = V; 2791 ++NumVectorInstructions; 2792 if (Instruction *I = dyn_cast<Instruction>(V)) 2793 return propagateMetadata(I, E->Scalars); 2794 2795 return V; 2796 } 2797 default: 2798 llvm_unreachable("unknown inst"); 2799 } 2800 return nullptr; 2801 } 2802 2803 Value *BoUpSLP::vectorizeTree() { 2804 MapVector<Value *, DebugLoc> ExternallyUsedValues; 2805 return vectorizeTree(ExternallyUsedValues); 2806 } 2807 2808 Value * 2809 BoUpSLP::vectorizeTree(MapVector<Value *, DebugLoc> &ExternallyUsedValues) { 2810 2811 // All blocks must be scheduled before any instructions are inserted. 2812 for (auto &BSIter : BlocksSchedules) { 2813 scheduleBlock(BSIter.second.get()); 2814 } 2815 2816 Builder.SetInsertPoint(&F->getEntryBlock().front()); 2817 auto *VectorRoot = vectorizeTree(ArrayRef<Value *>(), &VectorizableTree[0]); 2818 2819 // If the vectorized tree can be rewritten in a smaller type, we truncate the 2820 // vectorized root. InstCombine will then rewrite the entire expression. We 2821 // sign extend the extracted values below. 2822 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 2823 if (MinBWs.count(ScalarRoot)) { 2824 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 2825 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 2826 auto BundleWidth = VectorizableTree[0].Scalars.size(); 2827 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 2828 auto *VecTy = VectorType::get(MinTy, BundleWidth); 2829 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 2830 VectorizableTree[0].VectorizedValue = Trunc; 2831 } 2832 2833 DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n"); 2834 2835 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 2836 // specified by ScalarType. 2837 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 2838 if (!MinBWs.count(ScalarRoot)) 2839 return Ex; 2840 if (MinBWs[ScalarRoot].second) 2841 return Builder.CreateSExt(Ex, ScalarType); 2842 return Builder.CreateZExt(Ex, ScalarType); 2843 }; 2844 2845 // Extract all of the elements with the external uses. 2846 for (const auto &ExternalUse : ExternalUses) { 2847 Value *Scalar = ExternalUse.Scalar; 2848 llvm::User *User = ExternalUse.User; 2849 2850 // Skip users that we already RAUW. This happens when one instruction 2851 // has multiple uses of the same value. 2852 if (User && !is_contained(Scalar->users(), User)) 2853 continue; 2854 assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar"); 2855 2856 int Idx = ScalarToTreeEntry[Scalar]; 2857 TreeEntry *E = &VectorizableTree[Idx]; 2858 assert(!E->NeedToGather && "Extracting from a gather list"); 2859 2860 Value *Vec = E->VectorizedValue; 2861 assert(Vec && "Can't find vectorizable value"); 2862 2863 Value *Lane = Builder.getInt32(ExternalUse.Lane); 2864 // If User == nullptr, the Scalar is used as extra arg. Generate 2865 // ExtractElement instruction and update the record for this scalar in 2866 // ExternallyUsedValues. 2867 if (!User) { 2868 assert(ExternallyUsedValues.count(Scalar) && 2869 "Scalar with nullptr as an external user must be registered in " 2870 "ExternallyUsedValues map"); 2871 DebugLoc DL = ExternallyUsedValues[Scalar]; 2872 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 2873 Builder.SetInsertPoint(VecI->getParent(), 2874 std::next(VecI->getIterator())); 2875 } else { 2876 Builder.SetInsertPoint(&F->getEntryBlock().front()); 2877 } 2878 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2879 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 2880 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 2881 ExternallyUsedValues.erase(Scalar); 2882 ExternallyUsedValues[Ex] = DL; 2883 continue; 2884 } 2885 2886 // Generate extracts for out-of-tree users. 2887 // Find the insertion point for the extractelement lane. 2888 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 2889 if (PHINode *PH = dyn_cast<PHINode>(User)) { 2890 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 2891 if (PH->getIncomingValue(i) == Scalar) { 2892 TerminatorInst *IncomingTerminator = 2893 PH->getIncomingBlock(i)->getTerminator(); 2894 if (isa<CatchSwitchInst>(IncomingTerminator)) { 2895 Builder.SetInsertPoint(VecI->getParent(), 2896 std::next(VecI->getIterator())); 2897 } else { 2898 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 2899 } 2900 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2901 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 2902 CSEBlocks.insert(PH->getIncomingBlock(i)); 2903 PH->setOperand(i, Ex); 2904 } 2905 } 2906 } else { 2907 Builder.SetInsertPoint(cast<Instruction>(User)); 2908 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2909 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 2910 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 2911 User->replaceUsesOfWith(Scalar, Ex); 2912 } 2913 } else { 2914 Builder.SetInsertPoint(&F->getEntryBlock().front()); 2915 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2916 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 2917 CSEBlocks.insert(&F->getEntryBlock()); 2918 User->replaceUsesOfWith(Scalar, Ex); 2919 } 2920 2921 DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 2922 } 2923 2924 // For each vectorized value: 2925 for (TreeEntry &EIdx : VectorizableTree) { 2926 TreeEntry *Entry = &EIdx; 2927 2928 // For each lane: 2929 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2930 Value *Scalar = Entry->Scalars[Lane]; 2931 // No need to handle users of gathered values. 2932 if (Entry->NeedToGather) 2933 continue; 2934 2935 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 2936 2937 Type *Ty = Scalar->getType(); 2938 if (!Ty->isVoidTy()) { 2939 #ifndef NDEBUG 2940 for (User *U : Scalar->users()) { 2941 DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 2942 2943 assert((ScalarToTreeEntry.count(U) || 2944 // It is legal to replace users in the ignorelist by undef. 2945 is_contained(UserIgnoreList, U)) && 2946 "Replacing out-of-tree value with undef"); 2947 } 2948 #endif 2949 Value *Undef = UndefValue::get(Ty); 2950 Scalar->replaceAllUsesWith(Undef); 2951 } 2952 DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 2953 eraseInstruction(cast<Instruction>(Scalar)); 2954 } 2955 } 2956 2957 Builder.ClearInsertionPoint(); 2958 2959 return VectorizableTree[0].VectorizedValue; 2960 } 2961 2962 void BoUpSLP::optimizeGatherSequence() { 2963 DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 2964 << " gather sequences instructions.\n"); 2965 // LICM InsertElementInst sequences. 2966 for (Instruction *it : GatherSeq) { 2967 InsertElementInst *Insert = dyn_cast<InsertElementInst>(it); 2968 2969 if (!Insert) 2970 continue; 2971 2972 // Check if this block is inside a loop. 2973 Loop *L = LI->getLoopFor(Insert->getParent()); 2974 if (!L) 2975 continue; 2976 2977 // Check if it has a preheader. 2978 BasicBlock *PreHeader = L->getLoopPreheader(); 2979 if (!PreHeader) 2980 continue; 2981 2982 // If the vector or the element that we insert into it are 2983 // instructions that are defined in this basic block then we can't 2984 // hoist this instruction. 2985 Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0)); 2986 Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1)); 2987 if (CurrVec && L->contains(CurrVec)) 2988 continue; 2989 if (NewElem && L->contains(NewElem)) 2990 continue; 2991 2992 // We can hoist this instruction. Move it to the pre-header. 2993 Insert->moveBefore(PreHeader->getTerminator()); 2994 } 2995 2996 // Make a list of all reachable blocks in our CSE queue. 2997 SmallVector<const DomTreeNode *, 8> CSEWorkList; 2998 CSEWorkList.reserve(CSEBlocks.size()); 2999 for (BasicBlock *BB : CSEBlocks) 3000 if (DomTreeNode *N = DT->getNode(BB)) { 3001 assert(DT->isReachableFromEntry(N)); 3002 CSEWorkList.push_back(N); 3003 } 3004 3005 // Sort blocks by domination. This ensures we visit a block after all blocks 3006 // dominating it are visited. 3007 std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(), 3008 [this](const DomTreeNode *A, const DomTreeNode *B) { 3009 return DT->properlyDominates(A, B); 3010 }); 3011 3012 // Perform O(N^2) search over the gather sequences and merge identical 3013 // instructions. TODO: We can further optimize this scan if we split the 3014 // instructions into different buckets based on the insert lane. 3015 SmallVector<Instruction *, 16> Visited; 3016 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 3017 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 3018 "Worklist not sorted properly!"); 3019 BasicBlock *BB = (*I)->getBlock(); 3020 // For all instructions in blocks containing gather sequences: 3021 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 3022 Instruction *In = &*it++; 3023 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 3024 continue; 3025 3026 // Check if we can replace this instruction with any of the 3027 // visited instructions. 3028 for (Instruction *v : Visited) { 3029 if (In->isIdenticalTo(v) && 3030 DT->dominates(v->getParent(), In->getParent())) { 3031 In->replaceAllUsesWith(v); 3032 eraseInstruction(In); 3033 In = nullptr; 3034 break; 3035 } 3036 } 3037 if (In) { 3038 assert(!is_contained(Visited, In)); 3039 Visited.push_back(In); 3040 } 3041 } 3042 } 3043 CSEBlocks.clear(); 3044 GatherSeq.clear(); 3045 } 3046 3047 // Groups the instructions to a bundle (which is then a single scheduling entity) 3048 // and schedules instructions until the bundle gets ready. 3049 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, 3050 BoUpSLP *SLP) { 3051 if (isa<PHINode>(VL[0])) 3052 return true; 3053 3054 // Initialize the instruction bundle. 3055 Instruction *OldScheduleEnd = ScheduleEnd; 3056 ScheduleData *PrevInBundle = nullptr; 3057 ScheduleData *Bundle = nullptr; 3058 bool ReSchedule = false; 3059 DEBUG(dbgs() << "SLP: bundle: " << *VL[0] << "\n"); 3060 3061 // Make sure that the scheduling region contains all 3062 // instructions of the bundle. 3063 for (Value *V : VL) { 3064 if (!extendSchedulingRegion(V)) 3065 return false; 3066 } 3067 3068 for (Value *V : VL) { 3069 ScheduleData *BundleMember = getScheduleData(V); 3070 assert(BundleMember && 3071 "no ScheduleData for bundle member (maybe not in same basic block)"); 3072 if (BundleMember->IsScheduled) { 3073 // A bundle member was scheduled as single instruction before and now 3074 // needs to be scheduled as part of the bundle. We just get rid of the 3075 // existing schedule. 3076 DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 3077 << " was already scheduled\n"); 3078 ReSchedule = true; 3079 } 3080 assert(BundleMember->isSchedulingEntity() && 3081 "bundle member already part of other bundle"); 3082 if (PrevInBundle) { 3083 PrevInBundle->NextInBundle = BundleMember; 3084 } else { 3085 Bundle = BundleMember; 3086 } 3087 BundleMember->UnscheduledDepsInBundle = 0; 3088 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 3089 3090 // Group the instructions to a bundle. 3091 BundleMember->FirstInBundle = Bundle; 3092 PrevInBundle = BundleMember; 3093 } 3094 if (ScheduleEnd != OldScheduleEnd) { 3095 // The scheduling region got new instructions at the lower end (or it is a 3096 // new region for the first bundle). This makes it necessary to 3097 // recalculate all dependencies. 3098 // It is seldom that this needs to be done a second time after adding the 3099 // initial bundle to the region. 3100 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3101 ScheduleData *SD = getScheduleData(I); 3102 SD->clearDependencies(); 3103 } 3104 ReSchedule = true; 3105 } 3106 if (ReSchedule) { 3107 resetSchedule(); 3108 initialFillReadyList(ReadyInsts); 3109 } 3110 3111 DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 3112 << BB->getName() << "\n"); 3113 3114 calculateDependencies(Bundle, true, SLP); 3115 3116 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 3117 // means that there are no cyclic dependencies and we can schedule it. 3118 // Note that's important that we don't "schedule" the bundle yet (see 3119 // cancelScheduling). 3120 while (!Bundle->isReady() && !ReadyInsts.empty()) { 3121 3122 ScheduleData *pickedSD = ReadyInsts.back(); 3123 ReadyInsts.pop_back(); 3124 3125 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 3126 schedule(pickedSD, ReadyInsts); 3127 } 3128 } 3129 if (!Bundle->isReady()) { 3130 cancelScheduling(VL); 3131 return false; 3132 } 3133 return true; 3134 } 3135 3136 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL) { 3137 if (isa<PHINode>(VL[0])) 3138 return; 3139 3140 ScheduleData *Bundle = getScheduleData(VL[0]); 3141 DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 3142 assert(!Bundle->IsScheduled && 3143 "Can't cancel bundle which is already scheduled"); 3144 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 3145 "tried to unbundle something which is not a bundle"); 3146 3147 // Un-bundle: make single instructions out of the bundle. 3148 ScheduleData *BundleMember = Bundle; 3149 while (BundleMember) { 3150 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 3151 BundleMember->FirstInBundle = BundleMember; 3152 ScheduleData *Next = BundleMember->NextInBundle; 3153 BundleMember->NextInBundle = nullptr; 3154 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 3155 if (BundleMember->UnscheduledDepsInBundle == 0) { 3156 ReadyInsts.insert(BundleMember); 3157 } 3158 BundleMember = Next; 3159 } 3160 } 3161 3162 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V) { 3163 if (getScheduleData(V)) 3164 return true; 3165 Instruction *I = dyn_cast<Instruction>(V); 3166 assert(I && "bundle member must be an instruction"); 3167 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 3168 if (!ScheduleStart) { 3169 // It's the first instruction in the new region. 3170 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 3171 ScheduleStart = I; 3172 ScheduleEnd = I->getNextNode(); 3173 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 3174 DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 3175 return true; 3176 } 3177 // Search up and down at the same time, because we don't know if the new 3178 // instruction is above or below the existing scheduling region. 3179 BasicBlock::reverse_iterator UpIter = 3180 ++ScheduleStart->getIterator().getReverse(); 3181 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 3182 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 3183 BasicBlock::iterator LowerEnd = BB->end(); 3184 for (;;) { 3185 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 3186 DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 3187 return false; 3188 } 3189 3190 if (UpIter != UpperEnd) { 3191 if (&*UpIter == I) { 3192 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 3193 ScheduleStart = I; 3194 DEBUG(dbgs() << "SLP: extend schedule region start to " << *I << "\n"); 3195 return true; 3196 } 3197 UpIter++; 3198 } 3199 if (DownIter != LowerEnd) { 3200 if (&*DownIter == I) { 3201 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 3202 nullptr); 3203 ScheduleEnd = I->getNextNode(); 3204 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 3205 DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 3206 return true; 3207 } 3208 DownIter++; 3209 } 3210 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 3211 "instruction not found in block"); 3212 } 3213 return true; 3214 } 3215 3216 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 3217 Instruction *ToI, 3218 ScheduleData *PrevLoadStore, 3219 ScheduleData *NextLoadStore) { 3220 ScheduleData *CurrentLoadStore = PrevLoadStore; 3221 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 3222 ScheduleData *SD = ScheduleDataMap[I]; 3223 if (!SD) { 3224 // Allocate a new ScheduleData for the instruction. 3225 if (ChunkPos >= ChunkSize) { 3226 ScheduleDataChunks.push_back( 3227 llvm::make_unique<ScheduleData[]>(ChunkSize)); 3228 ChunkPos = 0; 3229 } 3230 SD = &(ScheduleDataChunks.back()[ChunkPos++]); 3231 ScheduleDataMap[I] = SD; 3232 SD->Inst = I; 3233 } 3234 assert(!isInSchedulingRegion(SD) && 3235 "new ScheduleData already in scheduling region"); 3236 SD->init(SchedulingRegionID); 3237 3238 if (I->mayReadOrWriteMemory()) { 3239 // Update the linked list of memory accessing instructions. 3240 if (CurrentLoadStore) { 3241 CurrentLoadStore->NextLoadStore = SD; 3242 } else { 3243 FirstLoadStoreInRegion = SD; 3244 } 3245 CurrentLoadStore = SD; 3246 } 3247 } 3248 if (NextLoadStore) { 3249 if (CurrentLoadStore) 3250 CurrentLoadStore->NextLoadStore = NextLoadStore; 3251 } else { 3252 LastLoadStoreInRegion = CurrentLoadStore; 3253 } 3254 } 3255 3256 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 3257 bool InsertInReadyList, 3258 BoUpSLP *SLP) { 3259 assert(SD->isSchedulingEntity()); 3260 3261 SmallVector<ScheduleData *, 10> WorkList; 3262 WorkList.push_back(SD); 3263 3264 while (!WorkList.empty()) { 3265 ScheduleData *SD = WorkList.back(); 3266 WorkList.pop_back(); 3267 3268 ScheduleData *BundleMember = SD; 3269 while (BundleMember) { 3270 assert(isInSchedulingRegion(BundleMember)); 3271 if (!BundleMember->hasValidDependencies()) { 3272 3273 DEBUG(dbgs() << "SLP: update deps of " << *BundleMember << "\n"); 3274 BundleMember->Dependencies = 0; 3275 BundleMember->resetUnscheduledDeps(); 3276 3277 // Handle def-use chain dependencies. 3278 for (User *U : BundleMember->Inst->users()) { 3279 if (isa<Instruction>(U)) { 3280 ScheduleData *UseSD = getScheduleData(U); 3281 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 3282 BundleMember->Dependencies++; 3283 ScheduleData *DestBundle = UseSD->FirstInBundle; 3284 if (!DestBundle->IsScheduled) { 3285 BundleMember->incrementUnscheduledDeps(1); 3286 } 3287 if (!DestBundle->hasValidDependencies()) { 3288 WorkList.push_back(DestBundle); 3289 } 3290 } 3291 } else { 3292 // I'm not sure if this can ever happen. But we need to be safe. 3293 // This lets the instruction/bundle never be scheduled and 3294 // eventually disable vectorization. 3295 BundleMember->Dependencies++; 3296 BundleMember->incrementUnscheduledDeps(1); 3297 } 3298 } 3299 3300 // Handle the memory dependencies. 3301 ScheduleData *DepDest = BundleMember->NextLoadStore; 3302 if (DepDest) { 3303 Instruction *SrcInst = BundleMember->Inst; 3304 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 3305 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 3306 unsigned numAliased = 0; 3307 unsigned DistToSrc = 1; 3308 3309 while (DepDest) { 3310 assert(isInSchedulingRegion(DepDest)); 3311 3312 // We have two limits to reduce the complexity: 3313 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 3314 // SLP->isAliased (which is the expensive part in this loop). 3315 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 3316 // the whole loop (even if the loop is fast, it's quadratic). 3317 // It's important for the loop break condition (see below) to 3318 // check this limit even between two read-only instructions. 3319 if (DistToSrc >= MaxMemDepDistance || 3320 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 3321 (numAliased >= AliasedCheckLimit || 3322 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 3323 3324 // We increment the counter only if the locations are aliased 3325 // (instead of counting all alias checks). This gives a better 3326 // balance between reduced runtime and accurate dependencies. 3327 numAliased++; 3328 3329 DepDest->MemoryDependencies.push_back(BundleMember); 3330 BundleMember->Dependencies++; 3331 ScheduleData *DestBundle = DepDest->FirstInBundle; 3332 if (!DestBundle->IsScheduled) { 3333 BundleMember->incrementUnscheduledDeps(1); 3334 } 3335 if (!DestBundle->hasValidDependencies()) { 3336 WorkList.push_back(DestBundle); 3337 } 3338 } 3339 DepDest = DepDest->NextLoadStore; 3340 3341 // Example, explaining the loop break condition: Let's assume our 3342 // starting instruction is i0 and MaxMemDepDistance = 3. 3343 // 3344 // +--------v--v--v 3345 // i0,i1,i2,i3,i4,i5,i6,i7,i8 3346 // +--------^--^--^ 3347 // 3348 // MaxMemDepDistance let us stop alias-checking at i3 and we add 3349 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 3350 // Previously we already added dependencies from i3 to i6,i7,i8 3351 // (because of MaxMemDepDistance). As we added a dependency from 3352 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 3353 // and we can abort this loop at i6. 3354 if (DistToSrc >= 2 * MaxMemDepDistance) 3355 break; 3356 DistToSrc++; 3357 } 3358 } 3359 } 3360 BundleMember = BundleMember->NextInBundle; 3361 } 3362 if (InsertInReadyList && SD->isReady()) { 3363 ReadyInsts.push_back(SD); 3364 DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst << "\n"); 3365 } 3366 } 3367 } 3368 3369 void BoUpSLP::BlockScheduling::resetSchedule() { 3370 assert(ScheduleStart && 3371 "tried to reset schedule on block which has not been scheduled"); 3372 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3373 ScheduleData *SD = getScheduleData(I); 3374 assert(isInSchedulingRegion(SD)); 3375 SD->IsScheduled = false; 3376 SD->resetUnscheduledDeps(); 3377 } 3378 ReadyInsts.clear(); 3379 } 3380 3381 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 3382 3383 if (!BS->ScheduleStart) 3384 return; 3385 3386 DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 3387 3388 BS->resetSchedule(); 3389 3390 // For the real scheduling we use a more sophisticated ready-list: it is 3391 // sorted by the original instruction location. This lets the final schedule 3392 // be as close as possible to the original instruction order. 3393 struct ScheduleDataCompare { 3394 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 3395 return SD2->SchedulingPriority < SD1->SchedulingPriority; 3396 } 3397 }; 3398 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 3399 3400 // Ensure that all dependency data is updated and fill the ready-list with 3401 // initial instructions. 3402 int Idx = 0; 3403 int NumToSchedule = 0; 3404 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 3405 I = I->getNextNode()) { 3406 ScheduleData *SD = BS->getScheduleData(I); 3407 assert( 3408 SD->isPartOfBundle() == (ScalarToTreeEntry.count(SD->Inst) != 0) && 3409 "scheduler and vectorizer have different opinion on what is a bundle"); 3410 SD->FirstInBundle->SchedulingPriority = Idx++; 3411 if (SD->isSchedulingEntity()) { 3412 BS->calculateDependencies(SD, false, this); 3413 NumToSchedule++; 3414 } 3415 } 3416 BS->initialFillReadyList(ReadyInsts); 3417 3418 Instruction *LastScheduledInst = BS->ScheduleEnd; 3419 3420 // Do the "real" scheduling. 3421 while (!ReadyInsts.empty()) { 3422 ScheduleData *picked = *ReadyInsts.begin(); 3423 ReadyInsts.erase(ReadyInsts.begin()); 3424 3425 // Move the scheduled instruction(s) to their dedicated places, if not 3426 // there yet. 3427 ScheduleData *BundleMember = picked; 3428 while (BundleMember) { 3429 Instruction *pickedInst = BundleMember->Inst; 3430 if (LastScheduledInst->getNextNode() != pickedInst) { 3431 BS->BB->getInstList().remove(pickedInst); 3432 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 3433 pickedInst); 3434 } 3435 LastScheduledInst = pickedInst; 3436 BundleMember = BundleMember->NextInBundle; 3437 } 3438 3439 BS->schedule(picked, ReadyInsts); 3440 NumToSchedule--; 3441 } 3442 assert(NumToSchedule == 0 && "could not schedule all instructions"); 3443 3444 // Avoid duplicate scheduling of the block. 3445 BS->ScheduleStart = nullptr; 3446 } 3447 3448 unsigned BoUpSLP::getVectorElementSize(Value *V) { 3449 // If V is a store, just return the width of the stored value without 3450 // traversing the expression tree. This is the common case. 3451 if (auto *Store = dyn_cast<StoreInst>(V)) 3452 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 3453 3454 // If V is not a store, we can traverse the expression tree to find loads 3455 // that feed it. The type of the loaded value may indicate a more suitable 3456 // width than V's type. We want to base the vector element size on the width 3457 // of memory operations where possible. 3458 SmallVector<Instruction *, 16> Worklist; 3459 SmallPtrSet<Instruction *, 16> Visited; 3460 if (auto *I = dyn_cast<Instruction>(V)) 3461 Worklist.push_back(I); 3462 3463 // Traverse the expression tree in bottom-up order looking for loads. If we 3464 // encounter an instruciton we don't yet handle, we give up. 3465 auto MaxWidth = 0u; 3466 auto FoundUnknownInst = false; 3467 while (!Worklist.empty() && !FoundUnknownInst) { 3468 auto *I = Worklist.pop_back_val(); 3469 Visited.insert(I); 3470 3471 // We should only be looking at scalar instructions here. If the current 3472 // instruction has a vector type, give up. 3473 auto *Ty = I->getType(); 3474 if (isa<VectorType>(Ty)) 3475 FoundUnknownInst = true; 3476 3477 // If the current instruction is a load, update MaxWidth to reflect the 3478 // width of the loaded value. 3479 else if (isa<LoadInst>(I)) 3480 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 3481 3482 // Otherwise, we need to visit the operands of the instruction. We only 3483 // handle the interesting cases from buildTree here. If an operand is an 3484 // instruction we haven't yet visited, we add it to the worklist. 3485 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 3486 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 3487 for (Use &U : I->operands()) 3488 if (auto *J = dyn_cast<Instruction>(U.get())) 3489 if (!Visited.count(J)) 3490 Worklist.push_back(J); 3491 } 3492 3493 // If we don't yet handle the instruction, give up. 3494 else 3495 FoundUnknownInst = true; 3496 } 3497 3498 // If we didn't encounter a memory access in the expression tree, or if we 3499 // gave up for some reason, just return the width of V. 3500 if (!MaxWidth || FoundUnknownInst) 3501 return DL->getTypeSizeInBits(V->getType()); 3502 3503 // Otherwise, return the maximum width we found. 3504 return MaxWidth; 3505 } 3506 3507 // Determine if a value V in a vectorizable expression Expr can be demoted to a 3508 // smaller type with a truncation. We collect the values that will be demoted 3509 // in ToDemote and additional roots that require investigating in Roots. 3510 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 3511 SmallVectorImpl<Value *> &ToDemote, 3512 SmallVectorImpl<Value *> &Roots) { 3513 3514 // We can always demote constants. 3515 if (isa<Constant>(V)) { 3516 ToDemote.push_back(V); 3517 return true; 3518 } 3519 3520 // If the value is not an instruction in the expression with only one use, it 3521 // cannot be demoted. 3522 auto *I = dyn_cast<Instruction>(V); 3523 if (!I || !I->hasOneUse() || !Expr.count(I)) 3524 return false; 3525 3526 switch (I->getOpcode()) { 3527 3528 // We can always demote truncations and extensions. Since truncations can 3529 // seed additional demotion, we save the truncated value. 3530 case Instruction::Trunc: 3531 Roots.push_back(I->getOperand(0)); 3532 case Instruction::ZExt: 3533 case Instruction::SExt: 3534 break; 3535 3536 // We can demote certain binary operations if we can demote both of their 3537 // operands. 3538 case Instruction::Add: 3539 case Instruction::Sub: 3540 case Instruction::Mul: 3541 case Instruction::And: 3542 case Instruction::Or: 3543 case Instruction::Xor: 3544 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 3545 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 3546 return false; 3547 break; 3548 3549 // We can demote selects if we can demote their true and false values. 3550 case Instruction::Select: { 3551 SelectInst *SI = cast<SelectInst>(I); 3552 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 3553 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 3554 return false; 3555 break; 3556 } 3557 3558 // We can demote phis if we can demote all their incoming operands. Note that 3559 // we don't need to worry about cycles since we ensure single use above. 3560 case Instruction::PHI: { 3561 PHINode *PN = cast<PHINode>(I); 3562 for (Value *IncValue : PN->incoming_values()) 3563 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 3564 return false; 3565 break; 3566 } 3567 3568 // Otherwise, conservatively give up. 3569 default: 3570 return false; 3571 } 3572 3573 // Record the value that we can demote. 3574 ToDemote.push_back(V); 3575 return true; 3576 } 3577 3578 void BoUpSLP::computeMinimumValueSizes() { 3579 // If there are no external uses, the expression tree must be rooted by a 3580 // store. We can't demote in-memory values, so there is nothing to do here. 3581 if (ExternalUses.empty()) 3582 return; 3583 3584 // We only attempt to truncate integer expressions. 3585 auto &TreeRoot = VectorizableTree[0].Scalars; 3586 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 3587 if (!TreeRootIT) 3588 return; 3589 3590 // If the expression is not rooted by a store, these roots should have 3591 // external uses. We will rely on InstCombine to rewrite the expression in 3592 // the narrower type. However, InstCombine only rewrites single-use values. 3593 // This means that if a tree entry other than a root is used externally, it 3594 // must have multiple uses and InstCombine will not rewrite it. The code 3595 // below ensures that only the roots are used externally. 3596 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 3597 for (auto &EU : ExternalUses) 3598 if (!Expr.erase(EU.Scalar)) 3599 return; 3600 if (!Expr.empty()) 3601 return; 3602 3603 // Collect the scalar values of the vectorizable expression. We will use this 3604 // context to determine which values can be demoted. If we see a truncation, 3605 // we mark it as seeding another demotion. 3606 for (auto &Entry : VectorizableTree) 3607 Expr.insert(Entry.Scalars.begin(), Entry.Scalars.end()); 3608 3609 // Ensure the roots of the vectorizable tree don't form a cycle. They must 3610 // have a single external user that is not in the vectorizable tree. 3611 for (auto *Root : TreeRoot) 3612 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 3613 return; 3614 3615 // Conservatively determine if we can actually truncate the roots of the 3616 // expression. Collect the values that can be demoted in ToDemote and 3617 // additional roots that require investigating in Roots. 3618 SmallVector<Value *, 32> ToDemote; 3619 SmallVector<Value *, 4> Roots; 3620 for (auto *Root : TreeRoot) 3621 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 3622 return; 3623 3624 // The maximum bit width required to represent all the values that can be 3625 // demoted without loss of precision. It would be safe to truncate the roots 3626 // of the expression to this width. 3627 auto MaxBitWidth = 8u; 3628 3629 // We first check if all the bits of the roots are demanded. If they're not, 3630 // we can truncate the roots to this narrower type. 3631 for (auto *Root : TreeRoot) { 3632 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 3633 MaxBitWidth = std::max<unsigned>( 3634 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 3635 } 3636 3637 // True if the roots can be zero-extended back to their original type, rather 3638 // than sign-extended. We know that if the leading bits are not demanded, we 3639 // can safely zero-extend. So we initialize IsKnownPositive to True. 3640 bool IsKnownPositive = true; 3641 3642 // If all the bits of the roots are demanded, we can try a little harder to 3643 // compute a narrower type. This can happen, for example, if the roots are 3644 // getelementptr indices. InstCombine promotes these indices to the pointer 3645 // width. Thus, all their bits are technically demanded even though the 3646 // address computation might be vectorized in a smaller type. 3647 // 3648 // We start by looking at each entry that can be demoted. We compute the 3649 // maximum bit width required to store the scalar by using ValueTracking to 3650 // compute the number of high-order bits we can truncate. 3651 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType())) { 3652 MaxBitWidth = 8u; 3653 3654 // Determine if the sign bit of all the roots is known to be zero. If not, 3655 // IsKnownPositive is set to False. 3656 IsKnownPositive = all_of(TreeRoot, [&](Value *R) { 3657 bool KnownZero = false; 3658 bool KnownOne = false; 3659 ComputeSignBit(R, KnownZero, KnownOne, *DL); 3660 return KnownZero; 3661 }); 3662 3663 // Determine the maximum number of bits required to store the scalar 3664 // values. 3665 for (auto *Scalar : ToDemote) { 3666 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, 0, DT); 3667 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 3668 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 3669 } 3670 3671 // If we can't prove that the sign bit is zero, we must add one to the 3672 // maximum bit width to account for the unknown sign bit. This preserves 3673 // the existing sign bit so we can safely sign-extend the root back to the 3674 // original type. Otherwise, if we know the sign bit is zero, we will 3675 // zero-extend the root instead. 3676 // 3677 // FIXME: This is somewhat suboptimal, as there will be cases where adding 3678 // one to the maximum bit width will yield a larger-than-necessary 3679 // type. In general, we need to add an extra bit only if we can't 3680 // prove that the upper bit of the original type is equal to the 3681 // upper bit of the proposed smaller type. If these two bits are the 3682 // same (either zero or one) we know that sign-extending from the 3683 // smaller type will result in the same value. Here, since we can't 3684 // yet prove this, we are just making the proposed smaller type 3685 // larger to ensure correctness. 3686 if (!IsKnownPositive) 3687 ++MaxBitWidth; 3688 } 3689 3690 // Round MaxBitWidth up to the next power-of-two. 3691 if (!isPowerOf2_64(MaxBitWidth)) 3692 MaxBitWidth = NextPowerOf2(MaxBitWidth); 3693 3694 // If the maximum bit width we compute is less than the with of the roots' 3695 // type, we can proceed with the narrowing. Otherwise, do nothing. 3696 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 3697 return; 3698 3699 // If we can truncate the root, we must collect additional values that might 3700 // be demoted as a result. That is, those seeded by truncations we will 3701 // modify. 3702 while (!Roots.empty()) 3703 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 3704 3705 // Finally, map the values we can demote to the maximum bit with we computed. 3706 for (auto *Scalar : ToDemote) 3707 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 3708 } 3709 3710 namespace { 3711 /// The SLPVectorizer Pass. 3712 struct SLPVectorizer : public FunctionPass { 3713 SLPVectorizerPass Impl; 3714 3715 /// Pass identification, replacement for typeid 3716 static char ID; 3717 3718 explicit SLPVectorizer() : FunctionPass(ID) { 3719 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 3720 } 3721 3722 3723 bool doInitialization(Module &M) override { 3724 return false; 3725 } 3726 3727 bool runOnFunction(Function &F) override { 3728 if (skipFunction(F)) 3729 return false; 3730 3731 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 3732 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 3733 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 3734 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 3735 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3736 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 3737 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3738 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 3739 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 3740 3741 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB); 3742 } 3743 3744 void getAnalysisUsage(AnalysisUsage &AU) const override { 3745 FunctionPass::getAnalysisUsage(AU); 3746 AU.addRequired<AssumptionCacheTracker>(); 3747 AU.addRequired<ScalarEvolutionWrapperPass>(); 3748 AU.addRequired<AAResultsWrapperPass>(); 3749 AU.addRequired<TargetTransformInfoWrapperPass>(); 3750 AU.addRequired<LoopInfoWrapperPass>(); 3751 AU.addRequired<DominatorTreeWrapperPass>(); 3752 AU.addRequired<DemandedBitsWrapperPass>(); 3753 AU.addPreserved<LoopInfoWrapperPass>(); 3754 AU.addPreserved<DominatorTreeWrapperPass>(); 3755 AU.addPreserved<AAResultsWrapperPass>(); 3756 AU.addPreserved<GlobalsAAWrapperPass>(); 3757 AU.setPreservesCFG(); 3758 } 3759 }; 3760 } // end anonymous namespace 3761 3762 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 3763 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 3764 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 3765 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 3766 auto *AA = &AM.getResult<AAManager>(F); 3767 auto *LI = &AM.getResult<LoopAnalysis>(F); 3768 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 3769 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 3770 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 3771 3772 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB); 3773 if (!Changed) 3774 return PreservedAnalyses::all(); 3775 3776 PreservedAnalyses PA; 3777 PA.preserveSet<CFGAnalyses>(); 3778 PA.preserve<AAManager>(); 3779 PA.preserve<GlobalsAA>(); 3780 return PA; 3781 } 3782 3783 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 3784 TargetTransformInfo *TTI_, 3785 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 3786 LoopInfo *LI_, DominatorTree *DT_, 3787 AssumptionCache *AC_, DemandedBits *DB_) { 3788 SE = SE_; 3789 TTI = TTI_; 3790 TLI = TLI_; 3791 AA = AA_; 3792 LI = LI_; 3793 DT = DT_; 3794 AC = AC_; 3795 DB = DB_; 3796 DL = &F.getParent()->getDataLayout(); 3797 3798 Stores.clear(); 3799 GEPs.clear(); 3800 bool Changed = false; 3801 3802 // If the target claims to have no vector registers don't attempt 3803 // vectorization. 3804 if (!TTI->getNumberOfRegisters(true)) 3805 return false; 3806 3807 // Don't vectorize when the attribute NoImplicitFloat is used. 3808 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 3809 return false; 3810 3811 DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 3812 3813 // Use the bottom up slp vectorizer to construct chains that start with 3814 // store instructions. 3815 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL); 3816 3817 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 3818 // delete instructions. 3819 3820 // Scan the blocks in the function in post order. 3821 for (auto BB : post_order(&F.getEntryBlock())) { 3822 collectSeedInstructions(BB); 3823 3824 // Vectorize trees that end at stores. 3825 if (!Stores.empty()) { 3826 DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 3827 << " underlying objects.\n"); 3828 Changed |= vectorizeStoreChains(R); 3829 } 3830 3831 // Vectorize trees that end at reductions. 3832 Changed |= vectorizeChainsInBlock(BB, R); 3833 3834 // Vectorize the index computations of getelementptr instructions. This 3835 // is primarily intended to catch gather-like idioms ending at 3836 // non-consecutive loads. 3837 if (!GEPs.empty()) { 3838 DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 3839 << " underlying objects.\n"); 3840 Changed |= vectorizeGEPIndices(BB, R); 3841 } 3842 } 3843 3844 if (Changed) { 3845 R.optimizeGatherSequence(); 3846 DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 3847 DEBUG(verifyFunction(F)); 3848 } 3849 return Changed; 3850 } 3851 3852 /// \brief Check that the Values in the slice in VL array are still existent in 3853 /// the WeakVH array. 3854 /// Vectorization of part of the VL array may cause later values in the VL array 3855 /// to become invalid. We track when this has happened in the WeakVH array. 3856 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, ArrayRef<WeakVH> VH, 3857 unsigned SliceBegin, unsigned SliceSize) { 3858 VL = VL.slice(SliceBegin, SliceSize); 3859 VH = VH.slice(SliceBegin, SliceSize); 3860 return !std::equal(VL.begin(), VL.end(), VH.begin()); 3861 } 3862 3863 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 3864 unsigned VecRegSize) { 3865 unsigned ChainLen = Chain.size(); 3866 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 3867 << "\n"); 3868 unsigned Sz = R.getVectorElementSize(Chain[0]); 3869 unsigned VF = VecRegSize / Sz; 3870 3871 if (!isPowerOf2_32(Sz) || VF < 2) 3872 return false; 3873 3874 // Keep track of values that were deleted by vectorizing in the loop below. 3875 SmallVector<WeakVH, 8> TrackValues(Chain.begin(), Chain.end()); 3876 3877 bool Changed = false; 3878 // Look for profitable vectorizable trees at all offsets, starting at zero. 3879 for (unsigned i = 0, e = ChainLen; i < e; ++i) { 3880 if (i + VF > e) 3881 break; 3882 3883 // Check that a previous iteration of this loop did not delete the Value. 3884 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) 3885 continue; 3886 3887 DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 3888 << "\n"); 3889 ArrayRef<Value *> Operands = Chain.slice(i, VF); 3890 3891 R.buildTree(Operands); 3892 if (R.isTreeTinyAndNotFullyVectorizable()) 3893 continue; 3894 3895 R.computeMinimumValueSizes(); 3896 3897 int Cost = R.getTreeCost(); 3898 3899 DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n"); 3900 if (Cost < -SLPCostThreshold) { 3901 DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 3902 R.vectorizeTree(); 3903 3904 // Move to the next bundle. 3905 i += VF - 1; 3906 Changed = true; 3907 } 3908 } 3909 3910 return Changed; 3911 } 3912 3913 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 3914 BoUpSLP &R) { 3915 SetVector<StoreInst *> Heads, Tails; 3916 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 3917 3918 // We may run into multiple chains that merge into a single chain. We mark the 3919 // stores that we vectorized so that we don't visit the same store twice. 3920 BoUpSLP::ValueSet VectorizedStores; 3921 bool Changed = false; 3922 3923 // Do a quadratic search on all of the given stores and find 3924 // all of the pairs of stores that follow each other. 3925 SmallVector<unsigned, 16> IndexQueue; 3926 for (unsigned i = 0, e = Stores.size(); i < e; ++i) { 3927 IndexQueue.clear(); 3928 // If a store has multiple consecutive store candidates, search Stores 3929 // array according to the sequence: from i+1 to e, then from i-1 to 0. 3930 // This is because usually pairing with immediate succeeding or preceding 3931 // candidate create the best chance to find slp vectorization opportunity. 3932 unsigned j = 0; 3933 for (j = i + 1; j < e; ++j) 3934 IndexQueue.push_back(j); 3935 for (j = i; j > 0; --j) 3936 IndexQueue.push_back(j - 1); 3937 3938 for (auto &k : IndexQueue) { 3939 if (isConsecutiveAccess(Stores[i], Stores[k], *DL, *SE)) { 3940 Tails.insert(Stores[k]); 3941 Heads.insert(Stores[i]); 3942 ConsecutiveChain[Stores[i]] = Stores[k]; 3943 break; 3944 } 3945 } 3946 } 3947 3948 // For stores that start but don't end a link in the chain: 3949 for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end(); 3950 it != e; ++it) { 3951 if (Tails.count(*it)) 3952 continue; 3953 3954 // We found a store instr that starts a chain. Now follow the chain and try 3955 // to vectorize it. 3956 BoUpSLP::ValueList Operands; 3957 StoreInst *I = *it; 3958 // Collect the chain into a list. 3959 while (Tails.count(I) || Heads.count(I)) { 3960 if (VectorizedStores.count(I)) 3961 break; 3962 Operands.push_back(I); 3963 // Move to the next value in the chain. 3964 I = ConsecutiveChain[I]; 3965 } 3966 3967 // FIXME: Is division-by-2 the correct step? Should we assert that the 3968 // register size is a power-of-2? 3969 for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize(); 3970 Size /= 2) { 3971 if (vectorizeStoreChain(Operands, R, Size)) { 3972 // Mark the vectorized stores so that we don't vectorize them again. 3973 VectorizedStores.insert(Operands.begin(), Operands.end()); 3974 Changed = true; 3975 break; 3976 } 3977 } 3978 } 3979 3980 return Changed; 3981 } 3982 3983 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 3984 3985 // Initialize the collections. We will make a single pass over the block. 3986 Stores.clear(); 3987 GEPs.clear(); 3988 3989 // Visit the store and getelementptr instructions in BB and organize them in 3990 // Stores and GEPs according to the underlying objects of their pointer 3991 // operands. 3992 for (Instruction &I : *BB) { 3993 3994 // Ignore store instructions that are volatile or have a pointer operand 3995 // that doesn't point to a scalar type. 3996 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3997 if (!SI->isSimple()) 3998 continue; 3999 if (!isValidElementType(SI->getValueOperand()->getType())) 4000 continue; 4001 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); 4002 } 4003 4004 // Ignore getelementptr instructions that have more than one index, a 4005 // constant index, or a pointer operand that doesn't point to a scalar 4006 // type. 4007 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 4008 auto Idx = GEP->idx_begin()->get(); 4009 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 4010 continue; 4011 if (!isValidElementType(Idx->getType())) 4012 continue; 4013 if (GEP->getType()->isVectorTy()) 4014 continue; 4015 GEPs[GetUnderlyingObject(GEP->getPointerOperand(), *DL)].push_back(GEP); 4016 } 4017 } 4018 } 4019 4020 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 4021 if (!A || !B) 4022 return false; 4023 Value *VL[] = { A, B }; 4024 return tryToVectorizeList(VL, R, None, true); 4025 } 4026 4027 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 4028 ArrayRef<Value *> BuildVector, 4029 bool AllowReorder) { 4030 if (VL.size() < 2) 4031 return false; 4032 4033 DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " << VL.size() 4034 << ".\n"); 4035 4036 // Check that all of the parts are scalar instructions of the same type. 4037 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 4038 if (!I0) 4039 return false; 4040 4041 unsigned Opcode0 = I0->getOpcode(); 4042 4043 unsigned Sz = R.getVectorElementSize(I0); 4044 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 4045 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 4046 if (MaxVF < 2) 4047 return false; 4048 4049 for (Value *V : VL) { 4050 Type *Ty = V->getType(); 4051 if (!isValidElementType(Ty)) 4052 return false; 4053 Instruction *Inst = dyn_cast<Instruction>(V); 4054 if (!Inst || Inst->getOpcode() != Opcode0) 4055 return false; 4056 } 4057 4058 bool Changed = false; 4059 4060 // Keep track of values that were deleted by vectorizing in the loop below. 4061 SmallVector<WeakVH, 8> TrackValues(VL.begin(), VL.end()); 4062 4063 unsigned NextInst = 0, MaxInst = VL.size(); 4064 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; 4065 VF /= 2) { 4066 // No actual vectorization should happen, if number of parts is the same as 4067 // provided vectorization factor (i.e. the scalar type is used for vector 4068 // code during codegen). 4069 auto *VecTy = VectorType::get(VL[0]->getType(), VF); 4070 if (TTI->getNumberOfParts(VecTy) == VF) 4071 continue; 4072 for (unsigned I = NextInst; I < MaxInst; ++I) { 4073 unsigned OpsWidth = 0; 4074 4075 if (I + VF > MaxInst) 4076 OpsWidth = MaxInst - I; 4077 else 4078 OpsWidth = VF; 4079 4080 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 4081 break; 4082 4083 // Check that a previous iteration of this loop did not delete the Value. 4084 if (hasValueBeenRAUWed(VL, TrackValues, I, OpsWidth)) 4085 continue; 4086 4087 DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 4088 << "\n"); 4089 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 4090 4091 ArrayRef<Value *> BuildVectorSlice; 4092 if (!BuildVector.empty()) 4093 BuildVectorSlice = BuildVector.slice(I, OpsWidth); 4094 4095 R.buildTree(Ops, BuildVectorSlice); 4096 // TODO: check if we can allow reordering for more cases. 4097 if (AllowReorder && R.shouldReorder()) { 4098 // Conceptually, there is nothing actually preventing us from trying to 4099 // reorder a larger list. In fact, we do exactly this when vectorizing 4100 // reductions. However, at this point, we only expect to get here from 4101 // tryToVectorizePair(). 4102 assert(Ops.size() == 2); 4103 assert(BuildVectorSlice.empty()); 4104 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 4105 R.buildTree(ReorderedOps, None); 4106 } 4107 if (R.isTreeTinyAndNotFullyVectorizable()) 4108 continue; 4109 4110 R.computeMinimumValueSizes(); 4111 int Cost = R.getTreeCost(); 4112 4113 if (Cost < -SLPCostThreshold) { 4114 DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 4115 Value *VectorizedRoot = R.vectorizeTree(); 4116 4117 // Reconstruct the build vector by extracting the vectorized root. This 4118 // way we handle the case where some elements of the vector are 4119 // undefined. 4120 // (return (inserelt <4 xi32> (insertelt undef (opd0) 0) (opd1) 2)) 4121 if (!BuildVectorSlice.empty()) { 4122 // The insert point is the last build vector instruction. The 4123 // vectorized root will precede it. This guarantees that we get an 4124 // instruction. The vectorized tree could have been constant folded. 4125 Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back()); 4126 unsigned VecIdx = 0; 4127 for (auto &V : BuildVectorSlice) { 4128 IRBuilder<NoFolder> Builder(InsertAfter->getParent(), 4129 ++BasicBlock::iterator(InsertAfter)); 4130 Instruction *I = cast<Instruction>(V); 4131 assert(isa<InsertElementInst>(I) || isa<InsertValueInst>(I)); 4132 Instruction *Extract = 4133 cast<Instruction>(Builder.CreateExtractElement( 4134 VectorizedRoot, Builder.getInt32(VecIdx++))); 4135 I->setOperand(1, Extract); 4136 I->removeFromParent(); 4137 I->insertAfter(Extract); 4138 InsertAfter = I; 4139 } 4140 } 4141 // Move to the next bundle. 4142 I += VF - 1; 4143 NextInst = I + 1; 4144 Changed = true; 4145 } 4146 } 4147 } 4148 4149 return Changed; 4150 } 4151 4152 bool SLPVectorizerPass::tryToVectorize(BinaryOperator *V, BoUpSLP &R) { 4153 if (!V) 4154 return false; 4155 4156 Value *P = V->getParent(); 4157 4158 // Vectorize in current basic block only. 4159 auto *Op0 = dyn_cast<Instruction>(V->getOperand(0)); 4160 auto *Op1 = dyn_cast<Instruction>(V->getOperand(1)); 4161 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 4162 return false; 4163 4164 // Try to vectorize V. 4165 if (tryToVectorizePair(Op0, Op1, R)) 4166 return true; 4167 4168 auto *A = dyn_cast<BinaryOperator>(Op0); 4169 auto *B = dyn_cast<BinaryOperator>(Op1); 4170 // Try to skip B. 4171 if (B && B->hasOneUse()) { 4172 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 4173 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 4174 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 4175 return true; 4176 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 4177 return true; 4178 } 4179 4180 // Try to skip A. 4181 if (A && A->hasOneUse()) { 4182 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 4183 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 4184 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 4185 return true; 4186 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 4187 return true; 4188 } 4189 return false; 4190 } 4191 4192 /// \brief Generate a shuffle mask to be used in a reduction tree. 4193 /// 4194 /// \param VecLen The length of the vector to be reduced. 4195 /// \param NumEltsToRdx The number of elements that should be reduced in the 4196 /// vector. 4197 /// \param IsPairwise Whether the reduction is a pairwise or splitting 4198 /// reduction. A pairwise reduction will generate a mask of 4199 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 4200 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 4201 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 4202 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 4203 bool IsPairwise, bool IsLeft, 4204 IRBuilder<> &Builder) { 4205 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 4206 4207 SmallVector<Constant *, 32> ShuffleMask( 4208 VecLen, UndefValue::get(Builder.getInt32Ty())); 4209 4210 if (IsPairwise) 4211 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 4212 for (unsigned i = 0; i != NumEltsToRdx; ++i) 4213 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 4214 else 4215 // Move the upper half of the vector to the lower half. 4216 for (unsigned i = 0; i != NumEltsToRdx; ++i) 4217 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 4218 4219 return ConstantVector::get(ShuffleMask); 4220 } 4221 4222 namespace { 4223 /// Model horizontal reductions. 4224 /// 4225 /// A horizontal reduction is a tree of reduction operations (currently add and 4226 /// fadd) that has operations that can be put into a vector as its leaf. 4227 /// For example, this tree: 4228 /// 4229 /// mul mul mul mul 4230 /// \ / \ / 4231 /// + + 4232 /// \ / 4233 /// + 4234 /// This tree has "mul" as its reduced values and "+" as its reduction 4235 /// operations. A reduction might be feeding into a store or a binary operation 4236 /// feeding a phi. 4237 /// ... 4238 /// \ / 4239 /// + 4240 /// | 4241 /// phi += 4242 /// 4243 /// Or: 4244 /// ... 4245 /// \ / 4246 /// + 4247 /// | 4248 /// *p = 4249 /// 4250 class HorizontalReduction { 4251 SmallVector<Value *, 16> ReductionOps; 4252 SmallVector<Value *, 32> ReducedVals; 4253 // Use map vector to make stable output. 4254 MapVector<Instruction *, Value *> ExtraArgs; 4255 4256 BinaryOperator *ReductionRoot = nullptr; 4257 // After successfull horizontal reduction vectorization attempt for PHI node 4258 // vectorizer tries to update root binary op by combining vectorized tree and 4259 // the ReductionPHI node. But during vectorization this ReductionPHI can be 4260 // vectorized itself and replaced by the undef value, while the instruction 4261 // itself is marked for deletion. This 'marked for deletion' PHI node then can 4262 // be used in new binary operation, causing "Use still stuck around after Def 4263 // is destroyed" crash upon PHI node deletion. 4264 WeakVH ReductionPHI; 4265 4266 /// The opcode of the reduction. 4267 Instruction::BinaryOps ReductionOpcode = Instruction::BinaryOpsEnd; 4268 /// The opcode of the values we perform a reduction on. 4269 unsigned ReducedValueOpcode = 0; 4270 /// Should we model this reduction as a pairwise reduction tree or a tree that 4271 /// splits the vector in halves and adds those halves. 4272 bool IsPairwiseReduction = false; 4273 4274 /// Checks if the ParentStackElem.first should be marked as a reduction 4275 /// operation with an extra argument or as extra argument itself. 4276 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 4277 Value *ExtraArg) { 4278 if (ExtraArgs.count(ParentStackElem.first)) { 4279 ExtraArgs[ParentStackElem.first] = nullptr; 4280 // We ran into something like: 4281 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 4282 // The whole ParentStackElem.first should be considered as an extra value 4283 // in this case. 4284 // Do not perform analysis of remaining operands of ParentStackElem.first 4285 // instruction, this whole instruction is an extra argument. 4286 ParentStackElem.second = ParentStackElem.first->getNumOperands(); 4287 } else { 4288 // We ran into something like: 4289 // ParentStackElem.first += ... + ExtraArg + ... 4290 ExtraArgs[ParentStackElem.first] = ExtraArg; 4291 } 4292 } 4293 4294 public: 4295 HorizontalReduction() = default; 4296 4297 /// \brief Try to find a reduction tree. 4298 bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B) { 4299 assert((!Phi || is_contained(Phi->operands(), B)) && 4300 "Thi phi needs to use the binary operator"); 4301 4302 // We could have a initial reductions that is not an add. 4303 // r *= v1 + v2 + v3 + v4 4304 // In such a case start looking for a tree rooted in the first '+'. 4305 if (Phi) { 4306 if (B->getOperand(0) == Phi) { 4307 Phi = nullptr; 4308 B = dyn_cast<BinaryOperator>(B->getOperand(1)); 4309 } else if (B->getOperand(1) == Phi) { 4310 Phi = nullptr; 4311 B = dyn_cast<BinaryOperator>(B->getOperand(0)); 4312 } 4313 } 4314 4315 if (!B) 4316 return false; 4317 4318 Type *Ty = B->getType(); 4319 if (!isValidElementType(Ty)) 4320 return false; 4321 4322 ReductionOpcode = B->getOpcode(); 4323 ReducedValueOpcode = 0; 4324 ReductionRoot = B; 4325 ReductionPHI = Phi; 4326 4327 // We currently only support adds. 4328 if ((ReductionOpcode != Instruction::Add && 4329 ReductionOpcode != Instruction::FAdd) || 4330 !B->isAssociative()) 4331 return false; 4332 4333 // Post order traverse the reduction tree starting at B. We only handle true 4334 // trees containing only binary operators or selects. 4335 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 4336 Stack.push_back(std::make_pair(B, 0)); 4337 while (!Stack.empty()) { 4338 Instruction *TreeN = Stack.back().first; 4339 unsigned EdgeToVist = Stack.back().second++; 4340 bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode; 4341 4342 // Postorder vist. 4343 if (EdgeToVist == 2 || IsReducedValue) { 4344 if (IsReducedValue) 4345 ReducedVals.push_back(TreeN); 4346 else { 4347 auto I = ExtraArgs.find(TreeN); 4348 if (I != ExtraArgs.end() && !I->second) { 4349 // Check if TreeN is an extra argument of its parent operation. 4350 if (Stack.size() <= 1) { 4351 // TreeN can't be an extra argument as it is a root reduction 4352 // operation. 4353 return false; 4354 } 4355 // Yes, TreeN is an extra argument, do not add it to a list of 4356 // reduction operations. 4357 // Stack[Stack.size() - 2] always points to the parent operation. 4358 markExtraArg(Stack[Stack.size() - 2], TreeN); 4359 ExtraArgs.erase(TreeN); 4360 } else 4361 ReductionOps.push_back(TreeN); 4362 } 4363 // Retract. 4364 Stack.pop_back(); 4365 continue; 4366 } 4367 4368 // Visit left or right. 4369 Value *NextV = TreeN->getOperand(EdgeToVist); 4370 if (NextV != Phi) { 4371 auto *I = dyn_cast<Instruction>(NextV); 4372 // Continue analysis if the next operand is a reduction operation or 4373 // (possibly) a reduced value. If the reduced value opcode is not set, 4374 // the first met operation != reduction operation is considered as the 4375 // reduced value class. 4376 if (I && (!ReducedValueOpcode || I->getOpcode() == ReducedValueOpcode || 4377 I->getOpcode() == ReductionOpcode)) { 4378 // Only handle trees in the current basic block. 4379 if (I->getParent() != B->getParent()) { 4380 // I is an extra argument for TreeN (its parent operation). 4381 markExtraArg(Stack.back(), I); 4382 continue; 4383 } 4384 4385 // Each tree node needs to have one user except for the ultimate 4386 // reduction. 4387 if (!I->hasOneUse() && I != B) { 4388 // I is an extra argument for TreeN (its parent operation). 4389 markExtraArg(Stack.back(), I); 4390 continue; 4391 } 4392 4393 if (I->getOpcode() == ReductionOpcode) { 4394 // We need to be able to reassociate the reduction operations. 4395 if (!I->isAssociative()) { 4396 // I is an extra argument for TreeN (its parent operation). 4397 markExtraArg(Stack.back(), I); 4398 continue; 4399 } 4400 } else if (ReducedValueOpcode && 4401 ReducedValueOpcode != I->getOpcode()) { 4402 // Make sure that the opcodes of the operations that we are going to 4403 // reduce match. 4404 // I is an extra argument for TreeN (its parent operation). 4405 markExtraArg(Stack.back(), I); 4406 continue; 4407 } else if (!ReducedValueOpcode) 4408 ReducedValueOpcode = I->getOpcode(); 4409 4410 Stack.push_back(std::make_pair(I, 0)); 4411 continue; 4412 } 4413 // NextV is an extra argument for TreeN (its parent operation). 4414 markExtraArg(Stack.back(), NextV); 4415 } 4416 } 4417 return true; 4418 } 4419 4420 /// \brief Attempt to vectorize the tree found by 4421 /// matchAssociativeReduction. 4422 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 4423 if (ReducedVals.empty()) 4424 return false; 4425 4426 // If there is a sufficient number of reduction values, reduce 4427 // to a nearby power-of-2. Can safely generate oversized 4428 // vectors and rely on the backend to split them to legal sizes. 4429 unsigned NumReducedVals = ReducedVals.size(); 4430 if (NumReducedVals < 4) 4431 return false; 4432 4433 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 4434 4435 Value *VectorizedTree = nullptr; 4436 IRBuilder<> Builder(ReductionRoot); 4437 FastMathFlags Unsafe; 4438 Unsafe.setUnsafeAlgebra(); 4439 Builder.setFastMathFlags(Unsafe); 4440 unsigned i = 0; 4441 4442 MapVector<Value *, DebugLoc> ExternallyUsedValues; 4443 for (auto &Pair : ExtraArgs) 4444 ExternallyUsedValues[Pair.second] = Pair.first->getDebugLoc(); 4445 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 4446 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth); 4447 V.buildTree(VL, ExternallyUsedValues, ReductionOps); 4448 if (V.shouldReorder()) { 4449 SmallVector<Value *, 8> Reversed(VL.rbegin(), VL.rend()); 4450 V.buildTree(Reversed, ExternallyUsedValues, ReductionOps); 4451 } 4452 if (V.isTreeTinyAndNotFullyVectorizable()) 4453 break; 4454 4455 V.computeMinimumValueSizes(); 4456 4457 // Estimate cost. 4458 int Cost = 4459 V.getTreeCost() + getReductionCost(TTI, ReducedVals[i], ReduxWidth); 4460 if (Cost >= -SLPCostThreshold) 4461 break; 4462 4463 DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost 4464 << ". (HorRdx)\n"); 4465 4466 // Vectorize a tree. 4467 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 4468 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 4469 4470 // Emit a reduction. 4471 Value *ReducedSubTree = 4472 emitReduction(VectorizedRoot, Builder, ReduxWidth); 4473 if (VectorizedTree) { 4474 Builder.SetCurrentDebugLocation(Loc); 4475 VectorizedTree = Builder.CreateBinOp(ReductionOpcode, VectorizedTree, 4476 ReducedSubTree, "bin.rdx"); 4477 } else 4478 VectorizedTree = ReducedSubTree; 4479 i += ReduxWidth; 4480 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 4481 } 4482 4483 if (VectorizedTree) { 4484 // Finish the reduction. 4485 for (; i < NumReducedVals; ++i) { 4486 auto *I = cast<Instruction>(ReducedVals[i]); 4487 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 4488 VectorizedTree = 4489 Builder.CreateBinOp(ReductionOpcode, VectorizedTree, I); 4490 } 4491 for (auto &Pair : ExternallyUsedValues) { 4492 Builder.SetCurrentDebugLocation(Pair.second); 4493 VectorizedTree = Builder.CreateBinOp(ReductionOpcode, VectorizedTree, 4494 Pair.first, "bin.extra"); 4495 } 4496 // Update users. 4497 if (ReductionPHI && !isa<UndefValue>(ReductionPHI)) { 4498 assert(ReductionRoot && "Need a reduction operation"); 4499 ReductionRoot->setOperand(0, VectorizedTree); 4500 ReductionRoot->setOperand(1, ReductionPHI); 4501 } else 4502 ReductionRoot->replaceAllUsesWith(VectorizedTree); 4503 } 4504 return VectorizedTree != nullptr; 4505 } 4506 4507 unsigned numReductionValues() const { 4508 return ReducedVals.size(); 4509 } 4510 4511 private: 4512 /// \brief Calculate the cost of a reduction. 4513 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 4514 unsigned ReduxWidth) { 4515 Type *ScalarTy = FirstReducedVal->getType(); 4516 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 4517 4518 int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true); 4519 int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false); 4520 4521 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 4522 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 4523 4524 int ScalarReduxCost = 4525 (ReduxWidth - 1) * 4526 TTI->getArithmeticInstrCost(ReductionOpcode, ScalarTy); 4527 4528 DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 4529 << " for reduction that starts with " << *FirstReducedVal 4530 << " (It is a " 4531 << (IsPairwiseReduction ? "pairwise" : "splitting") 4532 << " reduction)\n"); 4533 4534 return VecReduxCost - ScalarReduxCost; 4535 } 4536 4537 /// \brief Emit a horizontal reduction of the vectorized value. 4538 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 4539 unsigned ReduxWidth) { 4540 assert(VectorizedValue && "Need to have a vectorized tree node"); 4541 assert(isPowerOf2_32(ReduxWidth) && 4542 "We only handle power-of-two reductions for now"); 4543 4544 Value *TmpVec = VectorizedValue; 4545 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 4546 if (IsPairwiseReduction) { 4547 Value *LeftMask = 4548 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 4549 Value *RightMask = 4550 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 4551 4552 Value *LeftShuf = Builder.CreateShuffleVector( 4553 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 4554 Value *RightShuf = Builder.CreateShuffleVector( 4555 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 4556 "rdx.shuf.r"); 4557 TmpVec = Builder.CreateBinOp(ReductionOpcode, LeftShuf, RightShuf, 4558 "bin.rdx"); 4559 } else { 4560 Value *UpperHalf = 4561 createRdxShuffleMask(ReduxWidth, i, false, false, Builder); 4562 Value *Shuf = Builder.CreateShuffleVector( 4563 TmpVec, UndefValue::get(TmpVec->getType()), UpperHalf, "rdx.shuf"); 4564 TmpVec = Builder.CreateBinOp(ReductionOpcode, TmpVec, Shuf, "bin.rdx"); 4565 } 4566 } 4567 4568 // The result is in the first element of the vector. 4569 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 4570 } 4571 }; 4572 } // end anonymous namespace 4573 4574 /// \brief Recognize construction of vectors like 4575 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 4576 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 4577 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 4578 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 4579 /// 4580 /// Returns true if it matches 4581 /// 4582 static bool findBuildVector(InsertElementInst *FirstInsertElem, 4583 SmallVectorImpl<Value *> &BuildVector, 4584 SmallVectorImpl<Value *> &BuildVectorOpds) { 4585 if (!isa<UndefValue>(FirstInsertElem->getOperand(0))) 4586 return false; 4587 4588 InsertElementInst *IE = FirstInsertElem; 4589 while (true) { 4590 BuildVector.push_back(IE); 4591 BuildVectorOpds.push_back(IE->getOperand(1)); 4592 4593 if (IE->use_empty()) 4594 return false; 4595 4596 InsertElementInst *NextUse = dyn_cast<InsertElementInst>(IE->user_back()); 4597 if (!NextUse) 4598 return true; 4599 4600 // If this isn't the final use, make sure the next insertelement is the only 4601 // use. It's OK if the final constructed vector is used multiple times 4602 if (!IE->hasOneUse()) 4603 return false; 4604 4605 IE = NextUse; 4606 } 4607 4608 return false; 4609 } 4610 4611 /// \brief Like findBuildVector, but looks backwards for construction of aggregate. 4612 /// 4613 /// \return true if it matches. 4614 static bool findBuildAggregate(InsertValueInst *IV, 4615 SmallVectorImpl<Value *> &BuildVector, 4616 SmallVectorImpl<Value *> &BuildVectorOpds) { 4617 Value *V = nullptr; 4618 do { 4619 BuildVector.push_back(IV); 4620 BuildVectorOpds.push_back(IV->getInsertedValueOperand()); 4621 V = IV->getAggregateOperand(); 4622 if (isa<UndefValue>(V)) 4623 break; 4624 IV = dyn_cast<InsertValueInst>(V); 4625 if (!IV || !IV->hasOneUse()) 4626 return false; 4627 } while (true); 4628 std::reverse(BuildVector.begin(), BuildVector.end()); 4629 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 4630 return true; 4631 } 4632 4633 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 4634 return V->getType() < V2->getType(); 4635 } 4636 4637 /// \brief Try and get a reduction value from a phi node. 4638 /// 4639 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 4640 /// if they come from either \p ParentBB or a containing loop latch. 4641 /// 4642 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 4643 /// if not possible. 4644 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 4645 BasicBlock *ParentBB, LoopInfo *LI) { 4646 // There are situations where the reduction value is not dominated by the 4647 // reduction phi. Vectorizing such cases has been reported to cause 4648 // miscompiles. See PR25787. 4649 auto DominatedReduxValue = [&](Value *R) { 4650 return ( 4651 dyn_cast<Instruction>(R) && 4652 DT->dominates(P->getParent(), dyn_cast<Instruction>(R)->getParent())); 4653 }; 4654 4655 Value *Rdx = nullptr; 4656 4657 // Return the incoming value if it comes from the same BB as the phi node. 4658 if (P->getIncomingBlock(0) == ParentBB) { 4659 Rdx = P->getIncomingValue(0); 4660 } else if (P->getIncomingBlock(1) == ParentBB) { 4661 Rdx = P->getIncomingValue(1); 4662 } 4663 4664 if (Rdx && DominatedReduxValue(Rdx)) 4665 return Rdx; 4666 4667 // Otherwise, check whether we have a loop latch to look at. 4668 Loop *BBL = LI->getLoopFor(ParentBB); 4669 if (!BBL) 4670 return nullptr; 4671 BasicBlock *BBLatch = BBL->getLoopLatch(); 4672 if (!BBLatch) 4673 return nullptr; 4674 4675 // There is a loop latch, return the incoming value if it comes from 4676 // that. This reduction pattern occasionally turns up. 4677 if (P->getIncomingBlock(0) == BBLatch) { 4678 Rdx = P->getIncomingValue(0); 4679 } else if (P->getIncomingBlock(1) == BBLatch) { 4680 Rdx = P->getIncomingValue(1); 4681 } 4682 4683 if (Rdx && DominatedReduxValue(Rdx)) 4684 return Rdx; 4685 4686 return nullptr; 4687 } 4688 4689 namespace { 4690 /// Tracks instructons and its children. 4691 class WeakVHWithLevel final : public CallbackVH { 4692 /// Operand index of the instruction currently beeing analized. 4693 unsigned Level = 0; 4694 /// Is this the instruction that should be vectorized, or are we now 4695 /// processing children (i.e. operands of this instruction) for potential 4696 /// vectorization? 4697 bool IsInitial = true; 4698 4699 public: 4700 explicit WeakVHWithLevel() = default; 4701 WeakVHWithLevel(Value *V) : CallbackVH(V){}; 4702 /// Restart children analysis each time it is repaced by the new instruction. 4703 void allUsesReplacedWith(Value *New) override { 4704 setValPtr(New); 4705 Level = 0; 4706 IsInitial = true; 4707 } 4708 /// Check if the instruction was not deleted during vectorization. 4709 bool isValid() const { return !getValPtr(); } 4710 /// Is the istruction itself must be vectorized? 4711 bool isInitial() const { return IsInitial; } 4712 /// Try to vectorize children. 4713 void clearInitial() { IsInitial = false; } 4714 /// Are all children processed already? 4715 bool isFinal() const { 4716 assert(getValPtr() && 4717 (isa<Instruction>(getValPtr()) && 4718 cast<Instruction>(getValPtr())->getNumOperands() >= Level)); 4719 return getValPtr() && 4720 cast<Instruction>(getValPtr())->getNumOperands() == Level; 4721 } 4722 /// Get next child operation. 4723 Value *nextOperand() { 4724 assert(getValPtr() && isa<Instruction>(getValPtr()) && 4725 cast<Instruction>(getValPtr())->getNumOperands() > Level); 4726 return cast<Instruction>(getValPtr())->getOperand(Level++); 4727 } 4728 virtual ~WeakVHWithLevel() = default; 4729 }; 4730 } // namespace 4731 4732 /// \brief Attempt to reduce a horizontal reduction. 4733 /// If it is legal to match a horizontal reduction feeding 4734 /// the phi node P with reduction operators Root in a basic block BB, then check 4735 /// if it can be done. 4736 /// \returns true if a horizontal reduction was matched and reduced. 4737 /// \returns false if a horizontal reduction was not matched. 4738 static bool canBeVectorized( 4739 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 4740 TargetTransformInfo *TTI, 4741 const function_ref<bool(BinaryOperator *, BoUpSLP &)> Vectorize) { 4742 if (!ShouldVectorizeHor) 4743 return false; 4744 4745 if (!Root) 4746 return false; 4747 4748 if (Root->getParent() != BB) 4749 return false; 4750 SmallVector<WeakVHWithLevel, 8> Stack(1, Root); 4751 SmallSet<Value *, 8> VisitedInstrs; 4752 bool Res = false; 4753 while (!Stack.empty()) { 4754 Value *V = Stack.back(); 4755 if (!V) { 4756 Stack.pop_back(); 4757 continue; 4758 } 4759 auto *Inst = dyn_cast<Instruction>(V); 4760 if (!Inst || isa<PHINode>(Inst)) { 4761 Stack.pop_back(); 4762 continue; 4763 } 4764 if (Stack.back().isInitial()) { 4765 Stack.back().clearInitial(); 4766 if (auto *BI = dyn_cast<BinaryOperator>(Inst)) { 4767 HorizontalReduction HorRdx; 4768 if (HorRdx.matchAssociativeReduction(P, BI)) { 4769 if (HorRdx.tryToReduce(R, TTI)) { 4770 Res = true; 4771 P = nullptr; 4772 continue; 4773 } 4774 } 4775 if (P) { 4776 Inst = dyn_cast<Instruction>(BI->getOperand(0)); 4777 if (Inst == P) 4778 Inst = dyn_cast<Instruction>(BI->getOperand(1)); 4779 if (!Inst) { 4780 P = nullptr; 4781 continue; 4782 } 4783 } 4784 } 4785 P = nullptr; 4786 if (Vectorize(dyn_cast<BinaryOperator>(Inst), R)) { 4787 Res = true; 4788 continue; 4789 } 4790 } 4791 if (Stack.back().isFinal()) { 4792 Stack.pop_back(); 4793 continue; 4794 } 4795 4796 if (auto *NextV = dyn_cast<Instruction>(Stack.back().nextOperand())) 4797 if (NextV->getParent() == BB && VisitedInstrs.insert(NextV).second && 4798 Stack.size() < RecursionMaxDepth) 4799 Stack.push_back(NextV); 4800 } 4801 return Res; 4802 } 4803 4804 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 4805 BasicBlock *BB, BoUpSLP &R, 4806 TargetTransformInfo *TTI) { 4807 if (!V) 4808 return false; 4809 auto *I = dyn_cast<Instruction>(V); 4810 if (!I) 4811 return false; 4812 4813 if (!isa<BinaryOperator>(I)) 4814 P = nullptr; 4815 // Try to match and vectorize a horizontal reduction. 4816 return canBeVectorized(P, I, BB, R, TTI, 4817 [this](BinaryOperator *BI, BoUpSLP &R) -> bool { 4818 return tryToVectorize(BI, R); 4819 }); 4820 } 4821 4822 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 4823 bool Changed = false; 4824 SmallVector<Value *, 4> Incoming; 4825 SmallSet<Value *, 16> VisitedInstrs; 4826 4827 bool HaveVectorizedPhiNodes = true; 4828 while (HaveVectorizedPhiNodes) { 4829 HaveVectorizedPhiNodes = false; 4830 4831 // Collect the incoming values from the PHIs. 4832 Incoming.clear(); 4833 for (Instruction &I : *BB) { 4834 PHINode *P = dyn_cast<PHINode>(&I); 4835 if (!P) 4836 break; 4837 4838 if (!VisitedInstrs.count(P)) 4839 Incoming.push_back(P); 4840 } 4841 4842 // Sort by type. 4843 std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc); 4844 4845 // Try to vectorize elements base on their type. 4846 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 4847 E = Incoming.end(); 4848 IncIt != E;) { 4849 4850 // Look for the next elements with the same type. 4851 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 4852 while (SameTypeIt != E && 4853 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 4854 VisitedInstrs.insert(*SameTypeIt); 4855 ++SameTypeIt; 4856 } 4857 4858 // Try to vectorize them. 4859 unsigned NumElts = (SameTypeIt - IncIt); 4860 DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n"); 4861 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R)) { 4862 // Success start over because instructions might have been changed. 4863 HaveVectorizedPhiNodes = true; 4864 Changed = true; 4865 break; 4866 } 4867 4868 // Start over at the next instruction of a different type (or the end). 4869 IncIt = SameTypeIt; 4870 } 4871 } 4872 4873 VisitedInstrs.clear(); 4874 4875 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) { 4876 // We may go through BB multiple times so skip the one we have checked. 4877 if (!VisitedInstrs.insert(&*it).second) 4878 continue; 4879 4880 if (isa<DbgInfoIntrinsic>(it)) 4881 continue; 4882 4883 // Try to vectorize reductions that use PHINodes. 4884 if (PHINode *P = dyn_cast<PHINode>(it)) { 4885 // Check that the PHI is a reduction PHI. 4886 if (P->getNumIncomingValues() != 2) 4887 return Changed; 4888 4889 // Try to match and vectorize a horizontal reduction. 4890 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 4891 TTI)) { 4892 Changed = true; 4893 it = BB->begin(); 4894 e = BB->end(); 4895 continue; 4896 } 4897 continue; 4898 } 4899 4900 if (ShouldStartVectorizeHorAtStore) { 4901 if (StoreInst *SI = dyn_cast<StoreInst>(it)) { 4902 // Try to match and vectorize a horizontal reduction. 4903 if (vectorizeRootInstruction(nullptr, SI->getValueOperand(), BB, R, 4904 TTI)) { 4905 Changed = true; 4906 it = BB->begin(); 4907 e = BB->end(); 4908 continue; 4909 } 4910 } 4911 } 4912 4913 // Try to vectorize horizontal reductions feeding into a return. 4914 if (ReturnInst *RI = dyn_cast<ReturnInst>(it)) { 4915 if (RI->getNumOperands() != 0) { 4916 // Try to match and vectorize a horizontal reduction. 4917 if (vectorizeRootInstruction(nullptr, RI->getOperand(0), BB, R, TTI)) { 4918 Changed = true; 4919 it = BB->begin(); 4920 e = BB->end(); 4921 continue; 4922 } 4923 } 4924 } 4925 4926 // Try to vectorize trees that start at compare instructions. 4927 if (CmpInst *CI = dyn_cast<CmpInst>(it)) { 4928 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) { 4929 Changed = true; 4930 // We would like to start over since some instructions are deleted 4931 // and the iterator may become invalid value. 4932 it = BB->begin(); 4933 e = BB->end(); 4934 continue; 4935 } 4936 4937 for (int I = 0; I < 2; ++I) { 4938 if (vectorizeRootInstruction(nullptr, CI->getOperand(I), BB, R, TTI)) { 4939 Changed = true; 4940 // We would like to start over since some instructions are deleted 4941 // and the iterator may become invalid value. 4942 it = BB->begin(); 4943 e = BB->end(); 4944 break; 4945 } 4946 } 4947 continue; 4948 } 4949 4950 // Try to vectorize trees that start at insertelement instructions. 4951 if (InsertElementInst *FirstInsertElem = dyn_cast<InsertElementInst>(it)) { 4952 SmallVector<Value *, 16> BuildVector; 4953 SmallVector<Value *, 16> BuildVectorOpds; 4954 if (!findBuildVector(FirstInsertElem, BuildVector, BuildVectorOpds)) 4955 continue; 4956 4957 // Vectorize starting with the build vector operands ignoring the 4958 // BuildVector instructions for the purpose of scheduling and user 4959 // extraction. 4960 if (tryToVectorizeList(BuildVectorOpds, R, BuildVector)) { 4961 Changed = true; 4962 it = BB->begin(); 4963 e = BB->end(); 4964 } 4965 4966 continue; 4967 } 4968 4969 // Try to vectorize trees that start at insertvalue instructions feeding into 4970 // a store. 4971 if (StoreInst *SI = dyn_cast<StoreInst>(it)) { 4972 if (InsertValueInst *LastInsertValue = dyn_cast<InsertValueInst>(SI->getValueOperand())) { 4973 const DataLayout &DL = BB->getModule()->getDataLayout(); 4974 if (R.canMapToVector(SI->getValueOperand()->getType(), DL)) { 4975 SmallVector<Value *, 16> BuildVector; 4976 SmallVector<Value *, 16> BuildVectorOpds; 4977 if (!findBuildAggregate(LastInsertValue, BuildVector, BuildVectorOpds)) 4978 continue; 4979 4980 DEBUG(dbgs() << "SLP: store of array mappable to vector: " << *SI << "\n"); 4981 if (tryToVectorizeList(BuildVectorOpds, R, BuildVector, false)) { 4982 Changed = true; 4983 it = BB->begin(); 4984 e = BB->end(); 4985 } 4986 continue; 4987 } 4988 } 4989 } 4990 } 4991 4992 return Changed; 4993 } 4994 4995 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 4996 auto Changed = false; 4997 for (auto &Entry : GEPs) { 4998 4999 // If the getelementptr list has fewer than two elements, there's nothing 5000 // to do. 5001 if (Entry.second.size() < 2) 5002 continue; 5003 5004 DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 5005 << Entry.second.size() << ".\n"); 5006 5007 // We process the getelementptr list in chunks of 16 (like we do for 5008 // stores) to minimize compile-time. 5009 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) { 5010 auto Len = std::min<unsigned>(BE - BI, 16); 5011 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 5012 5013 // Initialize a set a candidate getelementptrs. Note that we use a 5014 // SetVector here to preserve program order. If the index computations 5015 // are vectorizable and begin with loads, we want to minimize the chance 5016 // of having to reorder them later. 5017 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 5018 5019 // Some of the candidates may have already been vectorized after we 5020 // initially collected them. If so, the WeakVHs will have nullified the 5021 // values, so remove them from the set of candidates. 5022 Candidates.remove(nullptr); 5023 5024 // Remove from the set of candidates all pairs of getelementptrs with 5025 // constant differences. Such getelementptrs are likely not good 5026 // candidates for vectorization in a bottom-up phase since one can be 5027 // computed from the other. We also ensure all candidate getelementptr 5028 // indices are unique. 5029 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 5030 auto *GEPI = cast<GetElementPtrInst>(GEPList[I]); 5031 if (!Candidates.count(GEPI)) 5032 continue; 5033 auto *SCEVI = SE->getSCEV(GEPList[I]); 5034 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 5035 auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]); 5036 auto *SCEVJ = SE->getSCEV(GEPList[J]); 5037 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 5038 Candidates.remove(GEPList[I]); 5039 Candidates.remove(GEPList[J]); 5040 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 5041 Candidates.remove(GEPList[J]); 5042 } 5043 } 5044 } 5045 5046 // We break out of the above computation as soon as we know there are 5047 // fewer than two candidates remaining. 5048 if (Candidates.size() < 2) 5049 continue; 5050 5051 // Add the single, non-constant index of each candidate to the bundle. We 5052 // ensured the indices met these constraints when we originally collected 5053 // the getelementptrs. 5054 SmallVector<Value *, 16> Bundle(Candidates.size()); 5055 auto BundleIndex = 0u; 5056 for (auto *V : Candidates) { 5057 auto *GEP = cast<GetElementPtrInst>(V); 5058 auto *GEPIdx = GEP->idx_begin()->get(); 5059 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 5060 Bundle[BundleIndex++] = GEPIdx; 5061 } 5062 5063 // Try and vectorize the indices. We are currently only interested in 5064 // gather-like cases of the form: 5065 // 5066 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 5067 // 5068 // where the loads of "a", the loads of "b", and the subtractions can be 5069 // performed in parallel. It's likely that detecting this pattern in a 5070 // bottom-up phase will be simpler and less costly than building a 5071 // full-blown top-down phase beginning at the consecutive loads. 5072 Changed |= tryToVectorizeList(Bundle, R); 5073 } 5074 } 5075 return Changed; 5076 } 5077 5078 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 5079 bool Changed = false; 5080 // Attempt to sort and vectorize each of the store-groups. 5081 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 5082 ++it) { 5083 if (it->second.size() < 2) 5084 continue; 5085 5086 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 5087 << it->second.size() << ".\n"); 5088 5089 // Process the stores in chunks of 16. 5090 // TODO: The limit of 16 inhibits greater vectorization factors. 5091 // For example, AVX2 supports v32i8. Increasing this limit, however, 5092 // may cause a significant compile-time increase. 5093 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) { 5094 unsigned Len = std::min<unsigned>(CE - CI, 16); 5095 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R); 5096 } 5097 } 5098 return Changed; 5099 } 5100 5101 char SLPVectorizer::ID = 0; 5102 static const char lv_name[] = "SLP Vectorizer"; 5103 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 5104 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 5105 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5106 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 5107 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 5108 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5109 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 5110 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 5111 5112 namespace llvm { 5113 Pass *createSLPVectorizerPass() { return new SLPVectorizer(); } 5114 } 5115