1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 #include "llvm/Transforms/Scalar/SLPVectorizer.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/PostOrderIterator.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/CodeMetrics.h" 24 #include "llvm/Analysis/GlobalsModRef.h" 25 #include "llvm/Analysis/LoopAccessAnalysis.h" 26 #include "llvm/Analysis/LoopAccessAnalysis.h" 27 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/Analysis/VectorUtils.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/IRBuilder.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/IR/NoFolder.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/IR/Verifier.h" 40 #include "llvm/Pass.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include "llvm/Transforms/Vectorize.h" 45 #include <algorithm> 46 #include <memory> 47 48 using namespace llvm; 49 using namespace slpvectorizer; 50 51 #define SV_NAME "slp-vectorizer" 52 #define DEBUG_TYPE "SLP" 53 54 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 55 56 static cl::opt<int> 57 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 58 cl::desc("Only vectorize if you gain more than this " 59 "number ")); 60 61 static cl::opt<bool> 62 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 63 cl::desc("Attempt to vectorize horizontal reductions")); 64 65 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 66 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 67 cl::desc( 68 "Attempt to vectorize horizontal reductions feeding into a store")); 69 70 static cl::opt<int> 71 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 72 cl::desc("Attempt to vectorize for this register size in bits")); 73 74 /// Limits the size of scheduling regions in a block. 75 /// It avoid long compile times for _very_ large blocks where vector 76 /// instructions are spread over a wide range. 77 /// This limit is way higher than needed by real-world functions. 78 static cl::opt<int> 79 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 80 cl::desc("Limit the size of the SLP scheduling region per block")); 81 82 static cl::opt<int> MinVectorRegSizeOption( 83 "slp-min-reg-size", cl::init(128), cl::Hidden, 84 cl::desc("Attempt to vectorize for this register size in bits")); 85 86 // FIXME: Set this via cl::opt to allow overriding. 87 static const unsigned RecursionMaxDepth = 12; 88 89 // Limit the number of alias checks. The limit is chosen so that 90 // it has no negative effect on the llvm benchmarks. 91 static const unsigned AliasedCheckLimit = 10; 92 93 // Another limit for the alias checks: The maximum distance between load/store 94 // instructions where alias checks are done. 95 // This limit is useful for very large basic blocks. 96 static const unsigned MaxMemDepDistance = 160; 97 98 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 99 /// regions to be handled. 100 static const int MinScheduleRegionSize = 16; 101 102 /// \brief Predicate for the element types that the SLP vectorizer supports. 103 /// 104 /// The most important thing to filter here are types which are invalid in LLVM 105 /// vectors. We also filter target specific types which have absolutely no 106 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 107 /// avoids spending time checking the cost model and realizing that they will 108 /// be inevitably scalarized. 109 static bool isValidElementType(Type *Ty) { 110 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 111 !Ty->isPPC_FP128Ty(); 112 } 113 114 /// \returns the parent basic block if all of the instructions in \p VL 115 /// are in the same block or null otherwise. 116 static BasicBlock *getSameBlock(ArrayRef<Value *> VL) { 117 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 118 if (!I0) 119 return nullptr; 120 BasicBlock *BB = I0->getParent(); 121 for (int i = 1, e = VL.size(); i < e; i++) { 122 Instruction *I = dyn_cast<Instruction>(VL[i]); 123 if (!I) 124 return nullptr; 125 126 if (BB != I->getParent()) 127 return nullptr; 128 } 129 return BB; 130 } 131 132 /// \returns True if all of the values in \p VL are constants. 133 static bool allConstant(ArrayRef<Value *> VL) { 134 for (Value *i : VL) 135 if (!isa<Constant>(i)) 136 return false; 137 return true; 138 } 139 140 /// \returns True if all of the values in \p VL are identical. 141 static bool isSplat(ArrayRef<Value *> VL) { 142 for (unsigned i = 1, e = VL.size(); i < e; ++i) 143 if (VL[i] != VL[0]) 144 return false; 145 return true; 146 } 147 148 ///\returns Opcode that can be clubbed with \p Op to create an alternate 149 /// sequence which can later be merged as a ShuffleVector instruction. 150 static unsigned getAltOpcode(unsigned Op) { 151 switch (Op) { 152 case Instruction::FAdd: 153 return Instruction::FSub; 154 case Instruction::FSub: 155 return Instruction::FAdd; 156 case Instruction::Add: 157 return Instruction::Sub; 158 case Instruction::Sub: 159 return Instruction::Add; 160 default: 161 return 0; 162 } 163 } 164 165 ///\returns bool representing if Opcode \p Op can be part 166 /// of an alternate sequence which can later be merged as 167 /// a ShuffleVector instruction. 168 static bool canCombineAsAltInst(unsigned Op) { 169 return Op == Instruction::FAdd || Op == Instruction::FSub || 170 Op == Instruction::Sub || Op == Instruction::Add; 171 } 172 173 /// \returns ShuffleVector instruction if instructions in \p VL have 174 /// alternate fadd,fsub / fsub,fadd/add,sub/sub,add sequence. 175 /// (i.e. e.g. opcodes of fadd,fsub,fadd,fsub...) 176 static unsigned isAltInst(ArrayRef<Value *> VL) { 177 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 178 unsigned Opcode = I0->getOpcode(); 179 unsigned AltOpcode = getAltOpcode(Opcode); 180 for (int i = 1, e = VL.size(); i < e; i++) { 181 Instruction *I = dyn_cast<Instruction>(VL[i]); 182 if (!I || I->getOpcode() != ((i & 1) ? AltOpcode : Opcode)) 183 return 0; 184 } 185 return Instruction::ShuffleVector; 186 } 187 188 /// \returns The opcode if all of the Instructions in \p VL have the same 189 /// opcode, or zero. 190 static unsigned getSameOpcode(ArrayRef<Value *> VL) { 191 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 192 if (!I0) 193 return 0; 194 unsigned Opcode = I0->getOpcode(); 195 for (int i = 1, e = VL.size(); i < e; i++) { 196 Instruction *I = dyn_cast<Instruction>(VL[i]); 197 if (!I || Opcode != I->getOpcode()) { 198 if (canCombineAsAltInst(Opcode) && i == 1) 199 return isAltInst(VL); 200 return 0; 201 } 202 } 203 return Opcode; 204 } 205 206 /// Get the intersection (logical and) of all of the potential IR flags 207 /// of each scalar operation (VL) that will be converted into a vector (I). 208 /// Flag set: NSW, NUW, exact, and all of fast-math. 209 static void propagateIRFlags(Value *I, ArrayRef<Value *> VL) { 210 if (auto *VecOp = dyn_cast<BinaryOperator>(I)) { 211 if (auto *Intersection = dyn_cast<BinaryOperator>(VL[0])) { 212 // Intersection is initialized to the 0th scalar, 213 // so start counting from index '1'. 214 for (int i = 1, e = VL.size(); i < e; ++i) { 215 if (auto *Scalar = dyn_cast<BinaryOperator>(VL[i])) 216 Intersection->andIRFlags(Scalar); 217 } 218 VecOp->copyIRFlags(Intersection); 219 } 220 } 221 } 222 223 /// \returns \p I after propagating metadata from \p VL. 224 static Instruction *propagateMetadata(Instruction *I, ArrayRef<Value *> VL) { 225 Instruction *I0 = cast<Instruction>(VL[0]); 226 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 227 I0->getAllMetadataOtherThanDebugLoc(Metadata); 228 229 for (unsigned i = 0, n = Metadata.size(); i != n; ++i) { 230 unsigned Kind = Metadata[i].first; 231 MDNode *MD = Metadata[i].second; 232 233 for (int i = 1, e = VL.size(); MD && i != e; i++) { 234 Instruction *I = cast<Instruction>(VL[i]); 235 MDNode *IMD = I->getMetadata(Kind); 236 237 switch (Kind) { 238 default: 239 MD = nullptr; // Remove unknown metadata 240 break; 241 case LLVMContext::MD_tbaa: 242 MD = MDNode::getMostGenericTBAA(MD, IMD); 243 break; 244 case LLVMContext::MD_alias_scope: 245 MD = MDNode::getMostGenericAliasScope(MD, IMD); 246 break; 247 case LLVMContext::MD_noalias: 248 MD = MDNode::intersect(MD, IMD); 249 break; 250 case LLVMContext::MD_fpmath: 251 MD = MDNode::getMostGenericFPMath(MD, IMD); 252 break; 253 case LLVMContext::MD_nontemporal: 254 MD = MDNode::intersect(MD, IMD); 255 break; 256 } 257 } 258 I->setMetadata(Kind, MD); 259 } 260 return I; 261 } 262 263 /// \returns The type that all of the values in \p VL have or null if there 264 /// are different types. 265 static Type* getSameType(ArrayRef<Value *> VL) { 266 Type *Ty = VL[0]->getType(); 267 for (int i = 1, e = VL.size(); i < e; i++) 268 if (VL[i]->getType() != Ty) 269 return nullptr; 270 271 return Ty; 272 } 273 274 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 275 static bool matchExtractIndex(Instruction *E, unsigned Idx, unsigned Opcode) { 276 assert(Opcode == Instruction::ExtractElement || 277 Opcode == Instruction::ExtractValue); 278 if (Opcode == Instruction::ExtractElement) { 279 ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 280 return CI && CI->getZExtValue() == Idx; 281 } else { 282 ExtractValueInst *EI = cast<ExtractValueInst>(E); 283 return EI->getNumIndices() == 1 && *EI->idx_begin() == Idx; 284 } 285 } 286 287 /// \returns True if in-tree use also needs extract. This refers to 288 /// possible scalar operand in vectorized instruction. 289 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 290 TargetLibraryInfo *TLI) { 291 292 unsigned Opcode = UserInst->getOpcode(); 293 switch (Opcode) { 294 case Instruction::Load: { 295 LoadInst *LI = cast<LoadInst>(UserInst); 296 return (LI->getPointerOperand() == Scalar); 297 } 298 case Instruction::Store: { 299 StoreInst *SI = cast<StoreInst>(UserInst); 300 return (SI->getPointerOperand() == Scalar); 301 } 302 case Instruction::Call: { 303 CallInst *CI = cast<CallInst>(UserInst); 304 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 305 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 306 return (CI->getArgOperand(1) == Scalar); 307 } 308 } 309 default: 310 return false; 311 } 312 } 313 314 /// \returns the AA location that is being access by the instruction. 315 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 316 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 317 return MemoryLocation::get(SI); 318 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 319 return MemoryLocation::get(LI); 320 return MemoryLocation(); 321 } 322 323 /// \returns True if the instruction is not a volatile or atomic load/store. 324 static bool isSimple(Instruction *I) { 325 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 326 return LI->isSimple(); 327 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 328 return SI->isSimple(); 329 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 330 return !MI->isVolatile(); 331 return true; 332 } 333 334 namespace llvm { 335 namespace slpvectorizer { 336 /// Bottom Up SLP Vectorizer. 337 class BoUpSLP { 338 public: 339 typedef SmallVector<Value *, 8> ValueList; 340 typedef SmallVector<Instruction *, 16> InstrList; 341 typedef SmallPtrSet<Value *, 16> ValueSet; 342 typedef SmallVector<StoreInst *, 8> StoreList; 343 344 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 345 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 346 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 347 const DataLayout *DL) 348 : NumLoadsWantToKeepOrder(0), NumLoadsWantToChangeOrder(0), F(Func), 349 SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), DB(DB), 350 DL(DL), Builder(Se->getContext()) { 351 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 352 // Use the vector register size specified by the target unless overridden 353 // by a command-line option. 354 // TODO: It would be better to limit the vectorization factor based on 355 // data type rather than just register size. For example, x86 AVX has 356 // 256-bit registers, but it does not support integer operations 357 // at that width (that requires AVX2). 358 if (MaxVectorRegSizeOption.getNumOccurrences()) 359 MaxVecRegSize = MaxVectorRegSizeOption; 360 else 361 MaxVecRegSize = TTI->getRegisterBitWidth(true); 362 363 MinVecRegSize = MinVectorRegSizeOption; 364 } 365 366 /// \brief Vectorize the tree that starts with the elements in \p VL. 367 /// Returns the vectorized root. 368 Value *vectorizeTree(); 369 370 /// \returns the cost incurred by unwanted spills and fills, caused by 371 /// holding live values over call sites. 372 int getSpillCost(); 373 374 /// \returns the vectorization cost of the subtree that starts at \p VL. 375 /// A negative number means that this is profitable. 376 int getTreeCost(); 377 378 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 379 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 380 void buildTree(ArrayRef<Value *> Roots, 381 ArrayRef<Value *> UserIgnoreLst = None); 382 383 /// Clear the internal data structures that are created by 'buildTree'. 384 void deleteTree() { 385 VectorizableTree.clear(); 386 ScalarToTreeEntry.clear(); 387 MustGather.clear(); 388 ExternalUses.clear(); 389 NumLoadsWantToKeepOrder = 0; 390 NumLoadsWantToChangeOrder = 0; 391 for (auto &Iter : BlocksSchedules) { 392 BlockScheduling *BS = Iter.second.get(); 393 BS->clear(); 394 } 395 MinBWs.clear(); 396 } 397 398 /// \brief Perform LICM and CSE on the newly generated gather sequences. 399 void optimizeGatherSequence(); 400 401 /// \returns true if it is beneficial to reverse the vector order. 402 bool shouldReorder() const { 403 return NumLoadsWantToChangeOrder > NumLoadsWantToKeepOrder; 404 } 405 406 /// \return The vector element size in bits to use when vectorizing the 407 /// expression tree ending at \p V. If V is a store, the size is the width of 408 /// the stored value. Otherwise, the size is the width of the largest loaded 409 /// value reaching V. This method is used by the vectorizer to calculate 410 /// vectorization factors. 411 unsigned getVectorElementSize(Value *V); 412 413 /// Compute the minimum type sizes required to represent the entries in a 414 /// vectorizable tree. 415 void computeMinimumValueSizes(); 416 417 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 418 unsigned getMaxVecRegSize() const { 419 return MaxVecRegSize; 420 } 421 422 // \returns minimum vector register size as set by cl::opt. 423 unsigned getMinVecRegSize() const { 424 return MinVecRegSize; 425 } 426 427 /// \brief Check if ArrayType or StructType is isomorphic to some VectorType. 428 /// 429 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 430 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 431 432 private: 433 struct TreeEntry; 434 435 /// \returns the cost of the vectorizable entry. 436 int getEntryCost(TreeEntry *E); 437 438 /// This is the recursive part of buildTree. 439 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth); 440 441 /// \returns True if the ExtractElement/ExtractValue instructions in VL can 442 /// be vectorized to use the original vector (or aggregate "bitcast" to a vector). 443 bool canReuseExtract(ArrayRef<Value *> VL, unsigned Opcode) const; 444 445 /// Vectorize a single entry in the tree. 446 Value *vectorizeTree(TreeEntry *E); 447 448 /// Vectorize a single entry in the tree, starting in \p VL. 449 Value *vectorizeTree(ArrayRef<Value *> VL); 450 451 /// \returns the pointer to the vectorized value if \p VL is already 452 /// vectorized, or NULL. They may happen in cycles. 453 Value *alreadyVectorized(ArrayRef<Value *> VL) const; 454 455 /// \returns the scalarization cost for this type. Scalarization in this 456 /// context means the creation of vectors from a group of scalars. 457 int getGatherCost(Type *Ty); 458 459 /// \returns the scalarization cost for this list of values. Assuming that 460 /// this subtree gets vectorized, we may need to extract the values from the 461 /// roots. This method calculates the cost of extracting the values. 462 int getGatherCost(ArrayRef<Value *> VL); 463 464 /// \brief Set the Builder insert point to one after the last instruction in 465 /// the bundle 466 void setInsertPointAfterBundle(ArrayRef<Value *> VL); 467 468 /// \returns a vector from a collection of scalars in \p VL. 469 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 470 471 /// \returns whether the VectorizableTree is fully vectorizable and will 472 /// be beneficial even the tree height is tiny. 473 bool isFullyVectorizableTinyTree(); 474 475 /// \reorder commutative operands in alt shuffle if they result in 476 /// vectorized code. 477 void reorderAltShuffleOperands(ArrayRef<Value *> VL, 478 SmallVectorImpl<Value *> &Left, 479 SmallVectorImpl<Value *> &Right); 480 /// \reorder commutative operands to get better probability of 481 /// generating vectorized code. 482 void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 483 SmallVectorImpl<Value *> &Left, 484 SmallVectorImpl<Value *> &Right); 485 struct TreeEntry { 486 TreeEntry() : Scalars(), VectorizedValue(nullptr), 487 NeedToGather(0) {} 488 489 /// \returns true if the scalars in VL are equal to this entry. 490 bool isSame(ArrayRef<Value *> VL) const { 491 assert(VL.size() == Scalars.size() && "Invalid size"); 492 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 493 } 494 495 /// A vector of scalars. 496 ValueList Scalars; 497 498 /// The Scalars are vectorized into this value. It is initialized to Null. 499 Value *VectorizedValue; 500 501 /// Do we need to gather this sequence ? 502 bool NeedToGather; 503 }; 504 505 /// Create a new VectorizableTree entry. 506 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized) { 507 VectorizableTree.emplace_back(); 508 int idx = VectorizableTree.size() - 1; 509 TreeEntry *Last = &VectorizableTree[idx]; 510 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 511 Last->NeedToGather = !Vectorized; 512 if (Vectorized) { 513 for (int i = 0, e = VL.size(); i != e; ++i) { 514 assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!"); 515 ScalarToTreeEntry[VL[i]] = idx; 516 } 517 } else { 518 MustGather.insert(VL.begin(), VL.end()); 519 } 520 return Last; 521 } 522 523 /// -- Vectorization State -- 524 /// Holds all of the tree entries. 525 std::vector<TreeEntry> VectorizableTree; 526 527 /// Maps a specific scalar to its tree entry. 528 SmallDenseMap<Value*, int> ScalarToTreeEntry; 529 530 /// A list of scalars that we found that we need to keep as scalars. 531 ValueSet MustGather; 532 533 /// This POD struct describes one external user in the vectorized tree. 534 struct ExternalUser { 535 ExternalUser (Value *S, llvm::User *U, int L) : 536 Scalar(S), User(U), Lane(L){} 537 // Which scalar in our function. 538 Value *Scalar; 539 // Which user that uses the scalar. 540 llvm::User *User; 541 // Which lane does the scalar belong to. 542 int Lane; 543 }; 544 typedef SmallVector<ExternalUser, 16> UserList; 545 546 /// Checks if two instructions may access the same memory. 547 /// 548 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 549 /// is invariant in the calling loop. 550 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 551 Instruction *Inst2) { 552 553 // First check if the result is already in the cache. 554 AliasCacheKey key = std::make_pair(Inst1, Inst2); 555 Optional<bool> &result = AliasCache[key]; 556 if (result.hasValue()) { 557 return result.getValue(); 558 } 559 MemoryLocation Loc2 = getLocation(Inst2, AA); 560 bool aliased = true; 561 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 562 // Do the alias check. 563 aliased = AA->alias(Loc1, Loc2); 564 } 565 // Store the result in the cache. 566 result = aliased; 567 return aliased; 568 } 569 570 typedef std::pair<Instruction *, Instruction *> AliasCacheKey; 571 572 /// Cache for alias results. 573 /// TODO: consider moving this to the AliasAnalysis itself. 574 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 575 576 /// Removes an instruction from its block and eventually deletes it. 577 /// It's like Instruction::eraseFromParent() except that the actual deletion 578 /// is delayed until BoUpSLP is destructed. 579 /// This is required to ensure that there are no incorrect collisions in the 580 /// AliasCache, which can happen if a new instruction is allocated at the 581 /// same address as a previously deleted instruction. 582 void eraseInstruction(Instruction *I) { 583 I->removeFromParent(); 584 I->dropAllReferences(); 585 DeletedInstructions.push_back(std::unique_ptr<Instruction>(I)); 586 } 587 588 /// Temporary store for deleted instructions. Instructions will be deleted 589 /// eventually when the BoUpSLP is destructed. 590 SmallVector<std::unique_ptr<Instruction>, 8> DeletedInstructions; 591 592 /// A list of values that need to extracted out of the tree. 593 /// This list holds pairs of (Internal Scalar : External User). 594 UserList ExternalUses; 595 596 /// Values used only by @llvm.assume calls. 597 SmallPtrSet<const Value *, 32> EphValues; 598 599 /// Holds all of the instructions that we gathered. 600 SetVector<Instruction *> GatherSeq; 601 /// A list of blocks that we are going to CSE. 602 SetVector<BasicBlock *> CSEBlocks; 603 604 /// Contains all scheduling relevant data for an instruction. 605 /// A ScheduleData either represents a single instruction or a member of an 606 /// instruction bundle (= a group of instructions which is combined into a 607 /// vector instruction). 608 struct ScheduleData { 609 610 // The initial value for the dependency counters. It means that the 611 // dependencies are not calculated yet. 612 enum { InvalidDeps = -1 }; 613 614 ScheduleData() 615 : Inst(nullptr), FirstInBundle(nullptr), NextInBundle(nullptr), 616 NextLoadStore(nullptr), SchedulingRegionID(0), SchedulingPriority(0), 617 Dependencies(InvalidDeps), UnscheduledDeps(InvalidDeps), 618 UnscheduledDepsInBundle(InvalidDeps), IsScheduled(false) {} 619 620 void init(int BlockSchedulingRegionID) { 621 FirstInBundle = this; 622 NextInBundle = nullptr; 623 NextLoadStore = nullptr; 624 IsScheduled = false; 625 SchedulingRegionID = BlockSchedulingRegionID; 626 UnscheduledDepsInBundle = UnscheduledDeps; 627 clearDependencies(); 628 } 629 630 /// Returns true if the dependency information has been calculated. 631 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 632 633 /// Returns true for single instructions and for bundle representatives 634 /// (= the head of a bundle). 635 bool isSchedulingEntity() const { return FirstInBundle == this; } 636 637 /// Returns true if it represents an instruction bundle and not only a 638 /// single instruction. 639 bool isPartOfBundle() const { 640 return NextInBundle != nullptr || FirstInBundle != this; 641 } 642 643 /// Returns true if it is ready for scheduling, i.e. it has no more 644 /// unscheduled depending instructions/bundles. 645 bool isReady() const { 646 assert(isSchedulingEntity() && 647 "can't consider non-scheduling entity for ready list"); 648 return UnscheduledDepsInBundle == 0 && !IsScheduled; 649 } 650 651 /// Modifies the number of unscheduled dependencies, also updating it for 652 /// the whole bundle. 653 int incrementUnscheduledDeps(int Incr) { 654 UnscheduledDeps += Incr; 655 return FirstInBundle->UnscheduledDepsInBundle += Incr; 656 } 657 658 /// Sets the number of unscheduled dependencies to the number of 659 /// dependencies. 660 void resetUnscheduledDeps() { 661 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 662 } 663 664 /// Clears all dependency information. 665 void clearDependencies() { 666 Dependencies = InvalidDeps; 667 resetUnscheduledDeps(); 668 MemoryDependencies.clear(); 669 } 670 671 void dump(raw_ostream &os) const { 672 if (!isSchedulingEntity()) { 673 os << "/ " << *Inst; 674 } else if (NextInBundle) { 675 os << '[' << *Inst; 676 ScheduleData *SD = NextInBundle; 677 while (SD) { 678 os << ';' << *SD->Inst; 679 SD = SD->NextInBundle; 680 } 681 os << ']'; 682 } else { 683 os << *Inst; 684 } 685 } 686 687 Instruction *Inst; 688 689 /// Points to the head in an instruction bundle (and always to this for 690 /// single instructions). 691 ScheduleData *FirstInBundle; 692 693 /// Single linked list of all instructions in a bundle. Null if it is a 694 /// single instruction. 695 ScheduleData *NextInBundle; 696 697 /// Single linked list of all memory instructions (e.g. load, store, call) 698 /// in the block - until the end of the scheduling region. 699 ScheduleData *NextLoadStore; 700 701 /// The dependent memory instructions. 702 /// This list is derived on demand in calculateDependencies(). 703 SmallVector<ScheduleData *, 4> MemoryDependencies; 704 705 /// This ScheduleData is in the current scheduling region if this matches 706 /// the current SchedulingRegionID of BlockScheduling. 707 int SchedulingRegionID; 708 709 /// Used for getting a "good" final ordering of instructions. 710 int SchedulingPriority; 711 712 /// The number of dependencies. Constitutes of the number of users of the 713 /// instruction plus the number of dependent memory instructions (if any). 714 /// This value is calculated on demand. 715 /// If InvalidDeps, the number of dependencies is not calculated yet. 716 /// 717 int Dependencies; 718 719 /// The number of dependencies minus the number of dependencies of scheduled 720 /// instructions. As soon as this is zero, the instruction/bundle gets ready 721 /// for scheduling. 722 /// Note that this is negative as long as Dependencies is not calculated. 723 int UnscheduledDeps; 724 725 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 726 /// single instructions. 727 int UnscheduledDepsInBundle; 728 729 /// True if this instruction is scheduled (or considered as scheduled in the 730 /// dry-run). 731 bool IsScheduled; 732 }; 733 734 #ifndef NDEBUG 735 friend inline raw_ostream &operator<<(raw_ostream &os, 736 const BoUpSLP::ScheduleData &SD) { 737 SD.dump(os); 738 return os; 739 } 740 #endif 741 742 /// Contains all scheduling data for a basic block. 743 /// 744 struct BlockScheduling { 745 746 BlockScheduling(BasicBlock *BB) 747 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize), 748 ScheduleStart(nullptr), ScheduleEnd(nullptr), 749 FirstLoadStoreInRegion(nullptr), LastLoadStoreInRegion(nullptr), 750 ScheduleRegionSize(0), 751 ScheduleRegionSizeLimit(ScheduleRegionSizeBudget), 752 // Make sure that the initial SchedulingRegionID is greater than the 753 // initial SchedulingRegionID in ScheduleData (which is 0). 754 SchedulingRegionID(1) {} 755 756 void clear() { 757 ReadyInsts.clear(); 758 ScheduleStart = nullptr; 759 ScheduleEnd = nullptr; 760 FirstLoadStoreInRegion = nullptr; 761 LastLoadStoreInRegion = nullptr; 762 763 // Reduce the maximum schedule region size by the size of the 764 // previous scheduling run. 765 ScheduleRegionSizeLimit -= ScheduleRegionSize; 766 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 767 ScheduleRegionSizeLimit = MinScheduleRegionSize; 768 ScheduleRegionSize = 0; 769 770 // Make a new scheduling region, i.e. all existing ScheduleData is not 771 // in the new region yet. 772 ++SchedulingRegionID; 773 } 774 775 ScheduleData *getScheduleData(Value *V) { 776 ScheduleData *SD = ScheduleDataMap[V]; 777 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 778 return SD; 779 return nullptr; 780 } 781 782 bool isInSchedulingRegion(ScheduleData *SD) { 783 return SD->SchedulingRegionID == SchedulingRegionID; 784 } 785 786 /// Marks an instruction as scheduled and puts all dependent ready 787 /// instructions into the ready-list. 788 template <typename ReadyListType> 789 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 790 SD->IsScheduled = true; 791 DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 792 793 ScheduleData *BundleMember = SD; 794 while (BundleMember) { 795 // Handle the def-use chain dependencies. 796 for (Use &U : BundleMember->Inst->operands()) { 797 ScheduleData *OpDef = getScheduleData(U.get()); 798 if (OpDef && OpDef->hasValidDependencies() && 799 OpDef->incrementUnscheduledDeps(-1) == 0) { 800 // There are no more unscheduled dependencies after decrementing, 801 // so we can put the dependent instruction into the ready list. 802 ScheduleData *DepBundle = OpDef->FirstInBundle; 803 assert(!DepBundle->IsScheduled && 804 "already scheduled bundle gets ready"); 805 ReadyList.insert(DepBundle); 806 DEBUG(dbgs() << "SLP: gets ready (def): " << *DepBundle << "\n"); 807 } 808 } 809 // Handle the memory dependencies. 810 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 811 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 812 // There are no more unscheduled dependencies after decrementing, 813 // so we can put the dependent instruction into the ready list. 814 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 815 assert(!DepBundle->IsScheduled && 816 "already scheduled bundle gets ready"); 817 ReadyList.insert(DepBundle); 818 DEBUG(dbgs() << "SLP: gets ready (mem): " << *DepBundle << "\n"); 819 } 820 } 821 BundleMember = BundleMember->NextInBundle; 822 } 823 } 824 825 /// Put all instructions into the ReadyList which are ready for scheduling. 826 template <typename ReadyListType> 827 void initialFillReadyList(ReadyListType &ReadyList) { 828 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 829 ScheduleData *SD = getScheduleData(I); 830 if (SD->isSchedulingEntity() && SD->isReady()) { 831 ReadyList.insert(SD); 832 DEBUG(dbgs() << "SLP: initially in ready list: " << *I << "\n"); 833 } 834 } 835 } 836 837 /// Checks if a bundle of instructions can be scheduled, i.e. has no 838 /// cyclic dependencies. This is only a dry-run, no instructions are 839 /// actually moved at this stage. 840 bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP); 841 842 /// Un-bundles a group of instructions. 843 void cancelScheduling(ArrayRef<Value *> VL); 844 845 /// Extends the scheduling region so that V is inside the region. 846 /// \returns true if the region size is within the limit. 847 bool extendSchedulingRegion(Value *V); 848 849 /// Initialize the ScheduleData structures for new instructions in the 850 /// scheduling region. 851 void initScheduleData(Instruction *FromI, Instruction *ToI, 852 ScheduleData *PrevLoadStore, 853 ScheduleData *NextLoadStore); 854 855 /// Updates the dependency information of a bundle and of all instructions/ 856 /// bundles which depend on the original bundle. 857 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 858 BoUpSLP *SLP); 859 860 /// Sets all instruction in the scheduling region to un-scheduled. 861 void resetSchedule(); 862 863 BasicBlock *BB; 864 865 /// Simple memory allocation for ScheduleData. 866 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 867 868 /// The size of a ScheduleData array in ScheduleDataChunks. 869 int ChunkSize; 870 871 /// The allocator position in the current chunk, which is the last entry 872 /// of ScheduleDataChunks. 873 int ChunkPos; 874 875 /// Attaches ScheduleData to Instruction. 876 /// Note that the mapping survives during all vectorization iterations, i.e. 877 /// ScheduleData structures are recycled. 878 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 879 880 struct ReadyList : SmallVector<ScheduleData *, 8> { 881 void insert(ScheduleData *SD) { push_back(SD); } 882 }; 883 884 /// The ready-list for scheduling (only used for the dry-run). 885 ReadyList ReadyInsts; 886 887 /// The first instruction of the scheduling region. 888 Instruction *ScheduleStart; 889 890 /// The first instruction _after_ the scheduling region. 891 Instruction *ScheduleEnd; 892 893 /// The first memory accessing instruction in the scheduling region 894 /// (can be null). 895 ScheduleData *FirstLoadStoreInRegion; 896 897 /// The last memory accessing instruction in the scheduling region 898 /// (can be null). 899 ScheduleData *LastLoadStoreInRegion; 900 901 /// The current size of the scheduling region. 902 int ScheduleRegionSize; 903 904 /// The maximum size allowed for the scheduling region. 905 int ScheduleRegionSizeLimit; 906 907 /// The ID of the scheduling region. For a new vectorization iteration this 908 /// is incremented which "removes" all ScheduleData from the region. 909 int SchedulingRegionID; 910 }; 911 912 /// Attaches the BlockScheduling structures to basic blocks. 913 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 914 915 /// Performs the "real" scheduling. Done before vectorization is actually 916 /// performed in a basic block. 917 void scheduleBlock(BlockScheduling *BS); 918 919 /// List of users to ignore during scheduling and that don't need extracting. 920 ArrayRef<Value *> UserIgnoreList; 921 922 // Number of load-bundles, which contain consecutive loads. 923 int NumLoadsWantToKeepOrder; 924 925 // Number of load-bundles of size 2, which are consecutive loads if reversed. 926 int NumLoadsWantToChangeOrder; 927 928 // Analysis and block reference. 929 Function *F; 930 ScalarEvolution *SE; 931 TargetTransformInfo *TTI; 932 TargetLibraryInfo *TLI; 933 AliasAnalysis *AA; 934 LoopInfo *LI; 935 DominatorTree *DT; 936 AssumptionCache *AC; 937 DemandedBits *DB; 938 const DataLayout *DL; 939 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 940 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 941 /// Instruction builder to construct the vectorized tree. 942 IRBuilder<> Builder; 943 944 /// A map of scalar integer values to the smallest bit width with which they 945 /// can legally be represented. 946 MapVector<Value *, uint64_t> MinBWs; 947 }; 948 949 } // end namespace llvm 950 } // end namespace slpvectorizer 951 952 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 953 ArrayRef<Value *> UserIgnoreLst) { 954 deleteTree(); 955 UserIgnoreList = UserIgnoreLst; 956 if (!getSameType(Roots)) 957 return; 958 buildTree_rec(Roots, 0); 959 960 // Collect the values that we need to extract from the tree. 961 for (TreeEntry &EIdx : VectorizableTree) { 962 TreeEntry *Entry = &EIdx; 963 964 // For each lane: 965 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 966 Value *Scalar = Entry->Scalars[Lane]; 967 968 // No need to handle users of gathered values. 969 if (Entry->NeedToGather) 970 continue; 971 972 for (User *U : Scalar->users()) { 973 DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 974 975 Instruction *UserInst = dyn_cast<Instruction>(U); 976 if (!UserInst) 977 continue; 978 979 // Skip in-tree scalars that become vectors 980 if (ScalarToTreeEntry.count(U)) { 981 int Idx = ScalarToTreeEntry[U]; 982 TreeEntry *UseEntry = &VectorizableTree[Idx]; 983 Value *UseScalar = UseEntry->Scalars[0]; 984 // Some in-tree scalars will remain as scalar in vectorized 985 // instructions. If that is the case, the one in Lane 0 will 986 // be used. 987 if (UseScalar != U || 988 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 989 DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 990 << ".\n"); 991 assert(!VectorizableTree[Idx].NeedToGather && "Bad state"); 992 continue; 993 } 994 } 995 996 // Ignore users in the user ignore list. 997 if (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), UserInst) != 998 UserIgnoreList.end()) 999 continue; 1000 1001 DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " << 1002 Lane << " from " << *Scalar << ".\n"); 1003 ExternalUses.push_back(ExternalUser(Scalar, U, Lane)); 1004 } 1005 } 1006 } 1007 } 1008 1009 1010 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { 1011 bool SameTy = allConstant(VL) || getSameType(VL); (void)SameTy; 1012 bool isAltShuffle = false; 1013 assert(SameTy && "Invalid types!"); 1014 1015 if (Depth == RecursionMaxDepth) { 1016 DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 1017 newTreeEntry(VL, false); 1018 return; 1019 } 1020 1021 // Don't handle vectors. 1022 if (VL[0]->getType()->isVectorTy()) { 1023 DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 1024 newTreeEntry(VL, false); 1025 return; 1026 } 1027 1028 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1029 if (SI->getValueOperand()->getType()->isVectorTy()) { 1030 DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 1031 newTreeEntry(VL, false); 1032 return; 1033 } 1034 unsigned Opcode = getSameOpcode(VL); 1035 1036 // Check that this shuffle vector refers to the alternate 1037 // sequence of opcodes. 1038 if (Opcode == Instruction::ShuffleVector) { 1039 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 1040 unsigned Op = I0->getOpcode(); 1041 if (Op != Instruction::ShuffleVector) 1042 isAltShuffle = true; 1043 } 1044 1045 // If all of the operands are identical or constant we have a simple solution. 1046 if (allConstant(VL) || isSplat(VL) || !getSameBlock(VL) || !Opcode) { 1047 DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 1048 newTreeEntry(VL, false); 1049 return; 1050 } 1051 1052 // We now know that this is a vector of instructions of the same type from 1053 // the same block. 1054 1055 // Don't vectorize ephemeral values. 1056 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1057 if (EphValues.count(VL[i])) { 1058 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1059 ") is ephemeral.\n"); 1060 newTreeEntry(VL, false); 1061 return; 1062 } 1063 } 1064 1065 // Check if this is a duplicate of another entry. 1066 if (ScalarToTreeEntry.count(VL[0])) { 1067 int Idx = ScalarToTreeEntry[VL[0]]; 1068 TreeEntry *E = &VectorizableTree[Idx]; 1069 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1070 DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n"); 1071 if (E->Scalars[i] != VL[i]) { 1072 DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 1073 newTreeEntry(VL, false); 1074 return; 1075 } 1076 } 1077 DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n"); 1078 return; 1079 } 1080 1081 // Check that none of the instructions in the bundle are already in the tree. 1082 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1083 if (ScalarToTreeEntry.count(VL[i])) { 1084 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1085 ") is already in tree.\n"); 1086 newTreeEntry(VL, false); 1087 return; 1088 } 1089 } 1090 1091 // If any of the scalars is marked as a value that needs to stay scalar then 1092 // we need to gather the scalars. 1093 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1094 if (MustGather.count(VL[i])) { 1095 DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 1096 newTreeEntry(VL, false); 1097 return; 1098 } 1099 } 1100 1101 // Check that all of the users of the scalars that we want to vectorize are 1102 // schedulable. 1103 Instruction *VL0 = cast<Instruction>(VL[0]); 1104 BasicBlock *BB = cast<Instruction>(VL0)->getParent(); 1105 1106 if (!DT->isReachableFromEntry(BB)) { 1107 // Don't go into unreachable blocks. They may contain instructions with 1108 // dependency cycles which confuse the final scheduling. 1109 DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 1110 newTreeEntry(VL, false); 1111 return; 1112 } 1113 1114 // Check that every instructions appears once in this bundle. 1115 for (unsigned i = 0, e = VL.size(); i < e; ++i) 1116 for (unsigned j = i+1; j < e; ++j) 1117 if (VL[i] == VL[j]) { 1118 DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 1119 newTreeEntry(VL, false); 1120 return; 1121 } 1122 1123 auto &BSRef = BlocksSchedules[BB]; 1124 if (!BSRef) { 1125 BSRef = llvm::make_unique<BlockScheduling>(BB); 1126 } 1127 BlockScheduling &BS = *BSRef.get(); 1128 1129 if (!BS.tryScheduleBundle(VL, this)) { 1130 DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 1131 assert((!BS.getScheduleData(VL[0]) || 1132 !BS.getScheduleData(VL[0])->isPartOfBundle()) && 1133 "tryScheduleBundle should cancelScheduling on failure"); 1134 newTreeEntry(VL, false); 1135 return; 1136 } 1137 DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 1138 1139 switch (Opcode) { 1140 case Instruction::PHI: { 1141 PHINode *PH = dyn_cast<PHINode>(VL0); 1142 1143 // Check for terminator values (e.g. invoke). 1144 for (unsigned j = 0; j < VL.size(); ++j) 1145 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1146 TerminatorInst *Term = dyn_cast<TerminatorInst>( 1147 cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i))); 1148 if (Term) { 1149 DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n"); 1150 BS.cancelScheduling(VL); 1151 newTreeEntry(VL, false); 1152 return; 1153 } 1154 } 1155 1156 newTreeEntry(VL, true); 1157 DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 1158 1159 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1160 ValueList Operands; 1161 // Prepare the operand vector. 1162 for (Value *j : VL) 1163 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( 1164 PH->getIncomingBlock(i))); 1165 1166 buildTree_rec(Operands, Depth + 1); 1167 } 1168 return; 1169 } 1170 case Instruction::ExtractValue: 1171 case Instruction::ExtractElement: { 1172 bool Reuse = canReuseExtract(VL, Opcode); 1173 if (Reuse) { 1174 DEBUG(dbgs() << "SLP: Reusing extract sequence.\n"); 1175 } else { 1176 BS.cancelScheduling(VL); 1177 } 1178 newTreeEntry(VL, Reuse); 1179 return; 1180 } 1181 case Instruction::Load: { 1182 // Check that a vectorized load would load the same memory as a scalar 1183 // load. 1184 // For example we don't want vectorize loads that are smaller than 8 bit. 1185 // Even though we have a packed struct {<i2, i2, i2, i2>} LLVM treats 1186 // loading/storing it as an i8 struct. If we vectorize loads/stores from 1187 // such a struct we read/write packed bits disagreeing with the 1188 // unvectorized version. 1189 Type *ScalarTy = VL[0]->getType(); 1190 1191 if (DL->getTypeSizeInBits(ScalarTy) != 1192 DL->getTypeAllocSizeInBits(ScalarTy)) { 1193 BS.cancelScheduling(VL); 1194 newTreeEntry(VL, false); 1195 DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 1196 return; 1197 } 1198 // Check if the loads are consecutive or of we need to swizzle them. 1199 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { 1200 LoadInst *L = cast<LoadInst>(VL[i]); 1201 if (!L->isSimple()) { 1202 BS.cancelScheduling(VL); 1203 newTreeEntry(VL, false); 1204 DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 1205 return; 1206 } 1207 1208 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1209 if (VL.size() == 2 && isConsecutiveAccess(VL[1], VL[0], *DL, *SE)) { 1210 ++NumLoadsWantToChangeOrder; 1211 } 1212 BS.cancelScheduling(VL); 1213 newTreeEntry(VL, false); 1214 DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 1215 return; 1216 } 1217 } 1218 ++NumLoadsWantToKeepOrder; 1219 newTreeEntry(VL, true); 1220 DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 1221 return; 1222 } 1223 case Instruction::ZExt: 1224 case Instruction::SExt: 1225 case Instruction::FPToUI: 1226 case Instruction::FPToSI: 1227 case Instruction::FPExt: 1228 case Instruction::PtrToInt: 1229 case Instruction::IntToPtr: 1230 case Instruction::SIToFP: 1231 case Instruction::UIToFP: 1232 case Instruction::Trunc: 1233 case Instruction::FPTrunc: 1234 case Instruction::BitCast: { 1235 Type *SrcTy = VL0->getOperand(0)->getType(); 1236 for (unsigned i = 0; i < VL.size(); ++i) { 1237 Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType(); 1238 if (Ty != SrcTy || !isValidElementType(Ty)) { 1239 BS.cancelScheduling(VL); 1240 newTreeEntry(VL, false); 1241 DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n"); 1242 return; 1243 } 1244 } 1245 newTreeEntry(VL, true); 1246 DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 1247 1248 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1249 ValueList Operands; 1250 // Prepare the operand vector. 1251 for (Value *j : VL) 1252 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1253 1254 buildTree_rec(Operands, Depth+1); 1255 } 1256 return; 1257 } 1258 case Instruction::ICmp: 1259 case Instruction::FCmp: { 1260 // Check that all of the compares have the same predicate. 1261 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 1262 Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType(); 1263 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1264 CmpInst *Cmp = cast<CmpInst>(VL[i]); 1265 if (Cmp->getPredicate() != P0 || 1266 Cmp->getOperand(0)->getType() != ComparedTy) { 1267 BS.cancelScheduling(VL); 1268 newTreeEntry(VL, false); 1269 DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n"); 1270 return; 1271 } 1272 } 1273 1274 newTreeEntry(VL, true); 1275 DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 1276 1277 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1278 ValueList Operands; 1279 // Prepare the operand vector. 1280 for (Value *j : VL) 1281 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1282 1283 buildTree_rec(Operands, Depth+1); 1284 } 1285 return; 1286 } 1287 case Instruction::Select: 1288 case Instruction::Add: 1289 case Instruction::FAdd: 1290 case Instruction::Sub: 1291 case Instruction::FSub: 1292 case Instruction::Mul: 1293 case Instruction::FMul: 1294 case Instruction::UDiv: 1295 case Instruction::SDiv: 1296 case Instruction::FDiv: 1297 case Instruction::URem: 1298 case Instruction::SRem: 1299 case Instruction::FRem: 1300 case Instruction::Shl: 1301 case Instruction::LShr: 1302 case Instruction::AShr: 1303 case Instruction::And: 1304 case Instruction::Or: 1305 case Instruction::Xor: { 1306 newTreeEntry(VL, true); 1307 DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); 1308 1309 // Sort operands of the instructions so that each side is more likely to 1310 // have the same opcode. 1311 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 1312 ValueList Left, Right; 1313 reorderInputsAccordingToOpcode(VL, Left, Right); 1314 buildTree_rec(Left, Depth + 1); 1315 buildTree_rec(Right, Depth + 1); 1316 return; 1317 } 1318 1319 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1320 ValueList Operands; 1321 // Prepare the operand vector. 1322 for (Value *j : VL) 1323 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1324 1325 buildTree_rec(Operands, Depth+1); 1326 } 1327 return; 1328 } 1329 case Instruction::GetElementPtr: { 1330 // We don't combine GEPs with complicated (nested) indexing. 1331 for (unsigned j = 0; j < VL.size(); ++j) { 1332 if (cast<Instruction>(VL[j])->getNumOperands() != 2) { 1333 DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 1334 BS.cancelScheduling(VL); 1335 newTreeEntry(VL, false); 1336 return; 1337 } 1338 } 1339 1340 // We can't combine several GEPs into one vector if they operate on 1341 // different types. 1342 Type *Ty0 = cast<Instruction>(VL0)->getOperand(0)->getType(); 1343 for (unsigned j = 0; j < VL.size(); ++j) { 1344 Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType(); 1345 if (Ty0 != CurTy) { 1346 DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n"); 1347 BS.cancelScheduling(VL); 1348 newTreeEntry(VL, false); 1349 return; 1350 } 1351 } 1352 1353 // We don't combine GEPs with non-constant indexes. 1354 for (unsigned j = 0; j < VL.size(); ++j) { 1355 auto Op = cast<Instruction>(VL[j])->getOperand(1); 1356 if (!isa<ConstantInt>(Op)) { 1357 DEBUG( 1358 dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 1359 BS.cancelScheduling(VL); 1360 newTreeEntry(VL, false); 1361 return; 1362 } 1363 } 1364 1365 newTreeEntry(VL, true); 1366 DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 1367 for (unsigned i = 0, e = 2; i < e; ++i) { 1368 ValueList Operands; 1369 // Prepare the operand vector. 1370 for (Value *j : VL) 1371 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1372 1373 buildTree_rec(Operands, Depth + 1); 1374 } 1375 return; 1376 } 1377 case Instruction::Store: { 1378 // Check if the stores are consecutive or of we need to swizzle them. 1379 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 1380 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1381 BS.cancelScheduling(VL); 1382 newTreeEntry(VL, false); 1383 DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 1384 return; 1385 } 1386 1387 newTreeEntry(VL, true); 1388 DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 1389 1390 ValueList Operands; 1391 for (Value *j : VL) 1392 Operands.push_back(cast<Instruction>(j)->getOperand(0)); 1393 1394 buildTree_rec(Operands, Depth + 1); 1395 return; 1396 } 1397 case Instruction::Call: { 1398 // Check if the calls are all to the same vectorizable intrinsic. 1399 CallInst *CI = cast<CallInst>(VL[0]); 1400 // Check if this is an Intrinsic call or something that can be 1401 // represented by an intrinsic call 1402 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 1403 if (!isTriviallyVectorizable(ID)) { 1404 BS.cancelScheduling(VL); 1405 newTreeEntry(VL, false); 1406 DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 1407 return; 1408 } 1409 Function *Int = CI->getCalledFunction(); 1410 Value *A1I = nullptr; 1411 if (hasVectorInstrinsicScalarOpd(ID, 1)) 1412 A1I = CI->getArgOperand(1); 1413 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 1414 CallInst *CI2 = dyn_cast<CallInst>(VL[i]); 1415 if (!CI2 || CI2->getCalledFunction() != Int || 1416 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 1417 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 1418 BS.cancelScheduling(VL); 1419 newTreeEntry(VL, false); 1420 DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] 1421 << "\n"); 1422 return; 1423 } 1424 // ctlz,cttz and powi are special intrinsics whose second argument 1425 // should be same in order for them to be vectorized. 1426 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 1427 Value *A1J = CI2->getArgOperand(1); 1428 if (A1I != A1J) { 1429 BS.cancelScheduling(VL); 1430 newTreeEntry(VL, false); 1431 DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 1432 << " argument "<< A1I<<"!=" << A1J 1433 << "\n"); 1434 return; 1435 } 1436 } 1437 // Verify that the bundle operands are identical between the two calls. 1438 if (CI->hasOperandBundles() && 1439 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 1440 CI->op_begin() + CI->getBundleOperandsEndIndex(), 1441 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 1442 BS.cancelScheduling(VL); 1443 newTreeEntry(VL, false); 1444 DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" << *CI << "!=" 1445 << *VL[i] << '\n'); 1446 return; 1447 } 1448 } 1449 1450 newTreeEntry(VL, true); 1451 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 1452 ValueList Operands; 1453 // Prepare the operand vector. 1454 for (Value *j : VL) { 1455 CallInst *CI2 = dyn_cast<CallInst>(j); 1456 Operands.push_back(CI2->getArgOperand(i)); 1457 } 1458 buildTree_rec(Operands, Depth + 1); 1459 } 1460 return; 1461 } 1462 case Instruction::ShuffleVector: { 1463 // If this is not an alternate sequence of opcode like add-sub 1464 // then do not vectorize this instruction. 1465 if (!isAltShuffle) { 1466 BS.cancelScheduling(VL); 1467 newTreeEntry(VL, false); 1468 DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 1469 return; 1470 } 1471 newTreeEntry(VL, true); 1472 DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 1473 1474 // Reorder operands if reordering would enable vectorization. 1475 if (isa<BinaryOperator>(VL0)) { 1476 ValueList Left, Right; 1477 reorderAltShuffleOperands(VL, Left, Right); 1478 buildTree_rec(Left, Depth + 1); 1479 buildTree_rec(Right, Depth + 1); 1480 return; 1481 } 1482 1483 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1484 ValueList Operands; 1485 // Prepare the operand vector. 1486 for (Value *j : VL) 1487 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1488 1489 buildTree_rec(Operands, Depth + 1); 1490 } 1491 return; 1492 } 1493 default: 1494 BS.cancelScheduling(VL); 1495 newTreeEntry(VL, false); 1496 DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 1497 return; 1498 } 1499 } 1500 1501 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 1502 unsigned N; 1503 Type *EltTy; 1504 auto *ST = dyn_cast<StructType>(T); 1505 if (ST) { 1506 N = ST->getNumElements(); 1507 EltTy = *ST->element_begin(); 1508 } else { 1509 N = cast<ArrayType>(T)->getNumElements(); 1510 EltTy = cast<ArrayType>(T)->getElementType(); 1511 } 1512 if (!isValidElementType(EltTy)) 1513 return 0; 1514 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); 1515 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 1516 return 0; 1517 if (ST) { 1518 // Check that struct is homogeneous. 1519 for (const auto *Ty : ST->elements()) 1520 if (Ty != EltTy) 1521 return 0; 1522 } 1523 return N; 1524 } 1525 1526 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, unsigned Opcode) const { 1527 assert(Opcode == Instruction::ExtractElement || 1528 Opcode == Instruction::ExtractValue); 1529 assert(Opcode == getSameOpcode(VL) && "Invalid opcode"); 1530 // Check if all of the extracts come from the same vector and from the 1531 // correct offset. 1532 Value *VL0 = VL[0]; 1533 Instruction *E0 = cast<Instruction>(VL0); 1534 Value *Vec = E0->getOperand(0); 1535 1536 // We have to extract from a vector/aggregate with the same number of elements. 1537 unsigned NElts; 1538 if (Opcode == Instruction::ExtractValue) { 1539 const DataLayout &DL = E0->getModule()->getDataLayout(); 1540 NElts = canMapToVector(Vec->getType(), DL); 1541 if (!NElts) 1542 return false; 1543 // Check if load can be rewritten as load of vector. 1544 LoadInst *LI = dyn_cast<LoadInst>(Vec); 1545 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 1546 return false; 1547 } else { 1548 NElts = Vec->getType()->getVectorNumElements(); 1549 } 1550 1551 if (NElts != VL.size()) 1552 return false; 1553 1554 // Check that all of the indices extract from the correct offset. 1555 if (!matchExtractIndex(E0, 0, Opcode)) 1556 return false; 1557 1558 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1559 Instruction *E = cast<Instruction>(VL[i]); 1560 if (!matchExtractIndex(E, i, Opcode)) 1561 return false; 1562 if (E->getOperand(0) != Vec) 1563 return false; 1564 } 1565 1566 return true; 1567 } 1568 1569 int BoUpSLP::getEntryCost(TreeEntry *E) { 1570 ArrayRef<Value*> VL = E->Scalars; 1571 1572 Type *ScalarTy = VL[0]->getType(); 1573 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1574 ScalarTy = SI->getValueOperand()->getType(); 1575 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1576 1577 // If we have computed a smaller type for the expression, update VecTy so 1578 // that the costs will be accurate. 1579 if (MinBWs.count(VL[0])) 1580 VecTy = VectorType::get(IntegerType::get(F->getContext(), MinBWs[VL[0]]), 1581 VL.size()); 1582 1583 if (E->NeedToGather) { 1584 if (allConstant(VL)) 1585 return 0; 1586 if (isSplat(VL)) { 1587 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 1588 } 1589 return getGatherCost(E->Scalars); 1590 } 1591 unsigned Opcode = getSameOpcode(VL); 1592 assert(Opcode && getSameType(VL) && getSameBlock(VL) && "Invalid VL"); 1593 Instruction *VL0 = cast<Instruction>(VL[0]); 1594 switch (Opcode) { 1595 case Instruction::PHI: { 1596 return 0; 1597 } 1598 case Instruction::ExtractValue: 1599 case Instruction::ExtractElement: { 1600 if (canReuseExtract(VL, Opcode)) { 1601 int DeadCost = 0; 1602 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 1603 Instruction *E = cast<Instruction>(VL[i]); 1604 if (E->hasOneUse()) 1605 // Take credit for instruction that will become dead. 1606 DeadCost += 1607 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 1608 } 1609 return -DeadCost; 1610 } 1611 return getGatherCost(VecTy); 1612 } 1613 case Instruction::ZExt: 1614 case Instruction::SExt: 1615 case Instruction::FPToUI: 1616 case Instruction::FPToSI: 1617 case Instruction::FPExt: 1618 case Instruction::PtrToInt: 1619 case Instruction::IntToPtr: 1620 case Instruction::SIToFP: 1621 case Instruction::UIToFP: 1622 case Instruction::Trunc: 1623 case Instruction::FPTrunc: 1624 case Instruction::BitCast: { 1625 Type *SrcTy = VL0->getOperand(0)->getType(); 1626 1627 // Calculate the cost of this instruction. 1628 int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(), 1629 VL0->getType(), SrcTy); 1630 1631 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 1632 int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy); 1633 return VecCost - ScalarCost; 1634 } 1635 case Instruction::FCmp: 1636 case Instruction::ICmp: 1637 case Instruction::Select: { 1638 // Calculate the cost of this instruction. 1639 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 1640 int ScalarCost = VecTy->getNumElements() * 1641 TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty()); 1642 int VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy); 1643 return VecCost - ScalarCost; 1644 } 1645 case Instruction::Add: 1646 case Instruction::FAdd: 1647 case Instruction::Sub: 1648 case Instruction::FSub: 1649 case Instruction::Mul: 1650 case Instruction::FMul: 1651 case Instruction::UDiv: 1652 case Instruction::SDiv: 1653 case Instruction::FDiv: 1654 case Instruction::URem: 1655 case Instruction::SRem: 1656 case Instruction::FRem: 1657 case Instruction::Shl: 1658 case Instruction::LShr: 1659 case Instruction::AShr: 1660 case Instruction::And: 1661 case Instruction::Or: 1662 case Instruction::Xor: { 1663 // Certain instructions can be cheaper to vectorize if they have a 1664 // constant second vector operand. 1665 TargetTransformInfo::OperandValueKind Op1VK = 1666 TargetTransformInfo::OK_AnyValue; 1667 TargetTransformInfo::OperandValueKind Op2VK = 1668 TargetTransformInfo::OK_UniformConstantValue; 1669 TargetTransformInfo::OperandValueProperties Op1VP = 1670 TargetTransformInfo::OP_None; 1671 TargetTransformInfo::OperandValueProperties Op2VP = 1672 TargetTransformInfo::OP_None; 1673 1674 // If all operands are exactly the same ConstantInt then set the 1675 // operand kind to OK_UniformConstantValue. 1676 // If instead not all operands are constants, then set the operand kind 1677 // to OK_AnyValue. If all operands are constants but not the same, 1678 // then set the operand kind to OK_NonUniformConstantValue. 1679 ConstantInt *CInt = nullptr; 1680 for (unsigned i = 0; i < VL.size(); ++i) { 1681 const Instruction *I = cast<Instruction>(VL[i]); 1682 if (!isa<ConstantInt>(I->getOperand(1))) { 1683 Op2VK = TargetTransformInfo::OK_AnyValue; 1684 break; 1685 } 1686 if (i == 0) { 1687 CInt = cast<ConstantInt>(I->getOperand(1)); 1688 continue; 1689 } 1690 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && 1691 CInt != cast<ConstantInt>(I->getOperand(1))) 1692 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 1693 } 1694 // FIXME: Currently cost of model modification for division by power of 1695 // 2 is handled for X86 and AArch64. Add support for other targets. 1696 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt && 1697 CInt->getValue().isPowerOf2()) 1698 Op2VP = TargetTransformInfo::OP_PowerOf2; 1699 1700 int ScalarCost = VecTy->getNumElements() * 1701 TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, 1702 Op2VK, Op1VP, Op2VP); 1703 int VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK, 1704 Op1VP, Op2VP); 1705 return VecCost - ScalarCost; 1706 } 1707 case Instruction::GetElementPtr: { 1708 TargetTransformInfo::OperandValueKind Op1VK = 1709 TargetTransformInfo::OK_AnyValue; 1710 TargetTransformInfo::OperandValueKind Op2VK = 1711 TargetTransformInfo::OK_UniformConstantValue; 1712 1713 int ScalarCost = 1714 VecTy->getNumElements() * 1715 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 1716 int VecCost = 1717 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 1718 1719 return VecCost - ScalarCost; 1720 } 1721 case Instruction::Load: { 1722 // Cost of wide load - cost of scalar loads. 1723 unsigned alignment = dyn_cast<LoadInst>(VL0)->getAlignment(); 1724 int ScalarLdCost = VecTy->getNumElements() * 1725 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0); 1726 int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, 1727 VecTy, alignment, 0); 1728 return VecLdCost - ScalarLdCost; 1729 } 1730 case Instruction::Store: { 1731 // We know that we can merge the stores. Calculate the cost. 1732 unsigned alignment = dyn_cast<StoreInst>(VL0)->getAlignment(); 1733 int ScalarStCost = VecTy->getNumElements() * 1734 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0); 1735 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, 1736 VecTy, alignment, 0); 1737 return VecStCost - ScalarStCost; 1738 } 1739 case Instruction::Call: { 1740 CallInst *CI = cast<CallInst>(VL0); 1741 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 1742 1743 // Calculate the cost of the scalar and vector calls. 1744 SmallVector<Type*, 4> ScalarTys, VecTys; 1745 for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) { 1746 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 1747 VecTys.push_back(VectorType::get(CI->getArgOperand(op)->getType(), 1748 VecTy->getNumElements())); 1749 } 1750 1751 FastMathFlags FMF; 1752 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 1753 FMF = FPMO->getFastMathFlags(); 1754 1755 int ScalarCallCost = VecTy->getNumElements() * 1756 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 1757 1758 int VecCallCost = TTI->getIntrinsicInstrCost(ID, VecTy, VecTys, FMF); 1759 1760 DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost 1761 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 1762 << " for " << *CI << "\n"); 1763 1764 return VecCallCost - ScalarCallCost; 1765 } 1766 case Instruction::ShuffleVector: { 1767 TargetTransformInfo::OperandValueKind Op1VK = 1768 TargetTransformInfo::OK_AnyValue; 1769 TargetTransformInfo::OperandValueKind Op2VK = 1770 TargetTransformInfo::OK_AnyValue; 1771 int ScalarCost = 0; 1772 int VecCost = 0; 1773 for (Value *i : VL) { 1774 Instruction *I = cast<Instruction>(i); 1775 if (!I) 1776 break; 1777 ScalarCost += 1778 TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK); 1779 } 1780 // VecCost is equal to sum of the cost of creating 2 vectors 1781 // and the cost of creating shuffle. 1782 Instruction *I0 = cast<Instruction>(VL[0]); 1783 VecCost = 1784 TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK); 1785 Instruction *I1 = cast<Instruction>(VL[1]); 1786 VecCost += 1787 TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK); 1788 VecCost += 1789 TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0); 1790 return VecCost - ScalarCost; 1791 } 1792 default: 1793 llvm_unreachable("Unknown instruction"); 1794 } 1795 } 1796 1797 bool BoUpSLP::isFullyVectorizableTinyTree() { 1798 DEBUG(dbgs() << "SLP: Check whether the tree with height " << 1799 VectorizableTree.size() << " is fully vectorizable .\n"); 1800 1801 // We only handle trees of height 2. 1802 if (VectorizableTree.size() != 2) 1803 return false; 1804 1805 // Handle splat and all-constants stores. 1806 if (!VectorizableTree[0].NeedToGather && 1807 (allConstant(VectorizableTree[1].Scalars) || 1808 isSplat(VectorizableTree[1].Scalars))) 1809 return true; 1810 1811 // Gathering cost would be too much for tiny trees. 1812 if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather) 1813 return false; 1814 1815 return true; 1816 } 1817 1818 int BoUpSLP::getSpillCost() { 1819 // Walk from the bottom of the tree to the top, tracking which values are 1820 // live. When we see a call instruction that is not part of our tree, 1821 // query TTI to see if there is a cost to keeping values live over it 1822 // (for example, if spills and fills are required). 1823 unsigned BundleWidth = VectorizableTree.front().Scalars.size(); 1824 int Cost = 0; 1825 1826 SmallPtrSet<Instruction*, 4> LiveValues; 1827 Instruction *PrevInst = nullptr; 1828 1829 for (const auto &N : VectorizableTree) { 1830 Instruction *Inst = dyn_cast<Instruction>(N.Scalars[0]); 1831 if (!Inst) 1832 continue; 1833 1834 if (!PrevInst) { 1835 PrevInst = Inst; 1836 continue; 1837 } 1838 1839 // Update LiveValues. 1840 LiveValues.erase(PrevInst); 1841 for (auto &J : PrevInst->operands()) { 1842 if (isa<Instruction>(&*J) && ScalarToTreeEntry.count(&*J)) 1843 LiveValues.insert(cast<Instruction>(&*J)); 1844 } 1845 1846 DEBUG( 1847 dbgs() << "SLP: #LV: " << LiveValues.size(); 1848 for (auto *X : LiveValues) 1849 dbgs() << " " << X->getName(); 1850 dbgs() << ", Looking at "; 1851 Inst->dump(); 1852 ); 1853 1854 // Now find the sequence of instructions between PrevInst and Inst. 1855 BasicBlock::reverse_iterator InstIt(Inst->getIterator()), 1856 PrevInstIt(PrevInst->getIterator()); 1857 --PrevInstIt; 1858 while (InstIt != PrevInstIt) { 1859 if (PrevInstIt == PrevInst->getParent()->rend()) { 1860 PrevInstIt = Inst->getParent()->rbegin(); 1861 continue; 1862 } 1863 1864 if (isa<CallInst>(&*PrevInstIt) && &*PrevInstIt != PrevInst) { 1865 SmallVector<Type*, 4> V; 1866 for (auto *II : LiveValues) 1867 V.push_back(VectorType::get(II->getType(), BundleWidth)); 1868 Cost += TTI->getCostOfKeepingLiveOverCall(V); 1869 } 1870 1871 ++PrevInstIt; 1872 } 1873 1874 PrevInst = Inst; 1875 } 1876 1877 return Cost; 1878 } 1879 1880 int BoUpSLP::getTreeCost() { 1881 int Cost = 0; 1882 DEBUG(dbgs() << "SLP: Calculating cost for tree of size " << 1883 VectorizableTree.size() << ".\n"); 1884 1885 // We only vectorize tiny trees if it is fully vectorizable. 1886 if (VectorizableTree.size() < 3 && !isFullyVectorizableTinyTree()) { 1887 if (VectorizableTree.empty()) { 1888 assert(!ExternalUses.size() && "We should not have any external users"); 1889 } 1890 return INT_MAX; 1891 } 1892 1893 unsigned BundleWidth = VectorizableTree[0].Scalars.size(); 1894 1895 for (TreeEntry &TE : VectorizableTree) { 1896 int C = getEntryCost(&TE); 1897 DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with " 1898 << *TE.Scalars[0] << ".\n"); 1899 Cost += C; 1900 } 1901 1902 SmallSet<Value *, 16> ExtractCostCalculated; 1903 int ExtractCost = 0; 1904 for (ExternalUser &EU : ExternalUses) { 1905 // We only add extract cost once for the same scalar. 1906 if (!ExtractCostCalculated.insert(EU.Scalar).second) 1907 continue; 1908 1909 // Uses by ephemeral values are free (because the ephemeral value will be 1910 // removed prior to code generation, and so the extraction will be 1911 // removed as well). 1912 if (EphValues.count(EU.User)) 1913 continue; 1914 1915 // If we plan to rewrite the tree in a smaller type, we will need to sign 1916 // extend the extracted value back to the original type. Here, we account 1917 // for the extract and the added cost of the sign extend if needed. 1918 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); 1919 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 1920 if (MinBWs.count(ScalarRoot)) { 1921 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot]); 1922 VecTy = VectorType::get(MinTy, BundleWidth); 1923 ExtractCost += TTI->getExtractWithExtendCost( 1924 Instruction::SExt, EU.Scalar->getType(), VecTy, EU.Lane); 1925 } else { 1926 ExtractCost += 1927 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 1928 } 1929 } 1930 1931 int SpillCost = getSpillCost(); 1932 Cost += SpillCost + ExtractCost; 1933 1934 DEBUG(dbgs() << "SLP: Spill Cost = " << SpillCost << ".\n" 1935 << "SLP: Extract Cost = " << ExtractCost << ".\n" 1936 << "SLP: Total Cost = " << Cost << ".\n"); 1937 return Cost; 1938 } 1939 1940 int BoUpSLP::getGatherCost(Type *Ty) { 1941 int Cost = 0; 1942 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 1943 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 1944 return Cost; 1945 } 1946 1947 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) { 1948 // Find the type of the operands in VL. 1949 Type *ScalarTy = VL[0]->getType(); 1950 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1951 ScalarTy = SI->getValueOperand()->getType(); 1952 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1953 // Find the cost of inserting/extracting values from the vector. 1954 return getGatherCost(VecTy); 1955 } 1956 1957 // Reorder commutative operations in alternate shuffle if the resulting vectors 1958 // are consecutive loads. This would allow us to vectorize the tree. 1959 // If we have something like- 1960 // load a[0] - load b[0] 1961 // load b[1] + load a[1] 1962 // load a[2] - load b[2] 1963 // load a[3] + load b[3] 1964 // Reordering the second load b[1] load a[1] would allow us to vectorize this 1965 // code. 1966 void BoUpSLP::reorderAltShuffleOperands(ArrayRef<Value *> VL, 1967 SmallVectorImpl<Value *> &Left, 1968 SmallVectorImpl<Value *> &Right) { 1969 // Push left and right operands of binary operation into Left and Right 1970 for (Value *i : VL) { 1971 Left.push_back(cast<Instruction>(i)->getOperand(0)); 1972 Right.push_back(cast<Instruction>(i)->getOperand(1)); 1973 } 1974 1975 // Reorder if we have a commutative operation and consecutive access 1976 // are on either side of the alternate instructions. 1977 for (unsigned j = 0; j < VL.size() - 1; ++j) { 1978 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 1979 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 1980 Instruction *VL1 = cast<Instruction>(VL[j]); 1981 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 1982 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 1983 std::swap(Left[j], Right[j]); 1984 continue; 1985 } else if (VL2->isCommutative() && 1986 isConsecutiveAccess(L, L1, *DL, *SE)) { 1987 std::swap(Left[j + 1], Right[j + 1]); 1988 continue; 1989 } 1990 // else unchanged 1991 } 1992 } 1993 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 1994 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 1995 Instruction *VL1 = cast<Instruction>(VL[j]); 1996 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 1997 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 1998 std::swap(Left[j], Right[j]); 1999 continue; 2000 } else if (VL2->isCommutative() && 2001 isConsecutiveAccess(L, L1, *DL, *SE)) { 2002 std::swap(Left[j + 1], Right[j + 1]); 2003 continue; 2004 } 2005 // else unchanged 2006 } 2007 } 2008 } 2009 } 2010 2011 // Return true if I should be commuted before adding it's left and right 2012 // operands to the arrays Left and Right. 2013 // 2014 // The vectorizer is trying to either have all elements one side being 2015 // instruction with the same opcode to enable further vectorization, or having 2016 // a splat to lower the vectorizing cost. 2017 static bool shouldReorderOperands(int i, Instruction &I, 2018 SmallVectorImpl<Value *> &Left, 2019 SmallVectorImpl<Value *> &Right, 2020 bool AllSameOpcodeLeft, 2021 bool AllSameOpcodeRight, bool SplatLeft, 2022 bool SplatRight) { 2023 Value *VLeft = I.getOperand(0); 2024 Value *VRight = I.getOperand(1); 2025 // If we have "SplatRight", try to see if commuting is needed to preserve it. 2026 if (SplatRight) { 2027 if (VRight == Right[i - 1]) 2028 // Preserve SplatRight 2029 return false; 2030 if (VLeft == Right[i - 1]) { 2031 // Commuting would preserve SplatRight, but we don't want to break 2032 // SplatLeft either, i.e. preserve the original order if possible. 2033 // (FIXME: why do we care?) 2034 if (SplatLeft && VLeft == Left[i - 1]) 2035 return false; 2036 return true; 2037 } 2038 } 2039 // Symmetrically handle Right side. 2040 if (SplatLeft) { 2041 if (VLeft == Left[i - 1]) 2042 // Preserve SplatLeft 2043 return false; 2044 if (VRight == Left[i - 1]) 2045 return true; 2046 } 2047 2048 Instruction *ILeft = dyn_cast<Instruction>(VLeft); 2049 Instruction *IRight = dyn_cast<Instruction>(VRight); 2050 2051 // If we have "AllSameOpcodeRight", try to see if the left operands preserves 2052 // it and not the right, in this case we want to commute. 2053 if (AllSameOpcodeRight) { 2054 unsigned RightPrevOpcode = cast<Instruction>(Right[i - 1])->getOpcode(); 2055 if (IRight && RightPrevOpcode == IRight->getOpcode()) 2056 // Do not commute, a match on the right preserves AllSameOpcodeRight 2057 return false; 2058 if (ILeft && RightPrevOpcode == ILeft->getOpcode()) { 2059 // We have a match and may want to commute, but first check if there is 2060 // not also a match on the existing operands on the Left to preserve 2061 // AllSameOpcodeLeft, i.e. preserve the original order if possible. 2062 // (FIXME: why do we care?) 2063 if (AllSameOpcodeLeft && ILeft && 2064 cast<Instruction>(Left[i - 1])->getOpcode() == ILeft->getOpcode()) 2065 return false; 2066 return true; 2067 } 2068 } 2069 // Symmetrically handle Left side. 2070 if (AllSameOpcodeLeft) { 2071 unsigned LeftPrevOpcode = cast<Instruction>(Left[i - 1])->getOpcode(); 2072 if (ILeft && LeftPrevOpcode == ILeft->getOpcode()) 2073 return false; 2074 if (IRight && LeftPrevOpcode == IRight->getOpcode()) 2075 return true; 2076 } 2077 return false; 2078 } 2079 2080 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 2081 SmallVectorImpl<Value *> &Left, 2082 SmallVectorImpl<Value *> &Right) { 2083 2084 if (VL.size()) { 2085 // Peel the first iteration out of the loop since there's nothing 2086 // interesting to do anyway and it simplifies the checks in the loop. 2087 auto VLeft = cast<Instruction>(VL[0])->getOperand(0); 2088 auto VRight = cast<Instruction>(VL[0])->getOperand(1); 2089 if (!isa<Instruction>(VRight) && isa<Instruction>(VLeft)) 2090 // Favor having instruction to the right. FIXME: why? 2091 std::swap(VLeft, VRight); 2092 Left.push_back(VLeft); 2093 Right.push_back(VRight); 2094 } 2095 2096 // Keep track if we have instructions with all the same opcode on one side. 2097 bool AllSameOpcodeLeft = isa<Instruction>(Left[0]); 2098 bool AllSameOpcodeRight = isa<Instruction>(Right[0]); 2099 // Keep track if we have one side with all the same value (broadcast). 2100 bool SplatLeft = true; 2101 bool SplatRight = true; 2102 2103 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 2104 Instruction *I = cast<Instruction>(VL[i]); 2105 assert(I->isCommutative() && "Can only process commutative instruction"); 2106 // Commute to favor either a splat or maximizing having the same opcodes on 2107 // one side. 2108 if (shouldReorderOperands(i, *I, Left, Right, AllSameOpcodeLeft, 2109 AllSameOpcodeRight, SplatLeft, SplatRight)) { 2110 Left.push_back(I->getOperand(1)); 2111 Right.push_back(I->getOperand(0)); 2112 } else { 2113 Left.push_back(I->getOperand(0)); 2114 Right.push_back(I->getOperand(1)); 2115 } 2116 // Update Splat* and AllSameOpcode* after the insertion. 2117 SplatRight = SplatRight && (Right[i - 1] == Right[i]); 2118 SplatLeft = SplatLeft && (Left[i - 1] == Left[i]); 2119 AllSameOpcodeLeft = AllSameOpcodeLeft && isa<Instruction>(Left[i]) && 2120 (cast<Instruction>(Left[i - 1])->getOpcode() == 2121 cast<Instruction>(Left[i])->getOpcode()); 2122 AllSameOpcodeRight = AllSameOpcodeRight && isa<Instruction>(Right[i]) && 2123 (cast<Instruction>(Right[i - 1])->getOpcode() == 2124 cast<Instruction>(Right[i])->getOpcode()); 2125 } 2126 2127 // If one operand end up being broadcast, return this operand order. 2128 if (SplatRight || SplatLeft) 2129 return; 2130 2131 // Finally check if we can get longer vectorizable chain by reordering 2132 // without breaking the good operand order detected above. 2133 // E.g. If we have something like- 2134 // load a[0] load b[0] 2135 // load b[1] load a[1] 2136 // load a[2] load b[2] 2137 // load a[3] load b[3] 2138 // Reordering the second load b[1] load a[1] would allow us to vectorize 2139 // this code and we still retain AllSameOpcode property. 2140 // FIXME: This load reordering might break AllSameOpcode in some rare cases 2141 // such as- 2142 // add a[0],c[0] load b[0] 2143 // add a[1],c[2] load b[1] 2144 // b[2] load b[2] 2145 // add a[3],c[3] load b[3] 2146 for (unsigned j = 0; j < VL.size() - 1; ++j) { 2147 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2148 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2149 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2150 std::swap(Left[j + 1], Right[j + 1]); 2151 continue; 2152 } 2153 } 2154 } 2155 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2156 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2157 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2158 std::swap(Left[j + 1], Right[j + 1]); 2159 continue; 2160 } 2161 } 2162 } 2163 // else unchanged 2164 } 2165 } 2166 2167 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) { 2168 Instruction *VL0 = cast<Instruction>(VL[0]); 2169 BasicBlock::iterator NextInst(VL0); 2170 ++NextInst; 2171 Builder.SetInsertPoint(VL0->getParent(), NextInst); 2172 Builder.SetCurrentDebugLocation(VL0->getDebugLoc()); 2173 } 2174 2175 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 2176 Value *Vec = UndefValue::get(Ty); 2177 // Generate the 'InsertElement' instruction. 2178 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 2179 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 2180 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { 2181 GatherSeq.insert(Insrt); 2182 CSEBlocks.insert(Insrt->getParent()); 2183 2184 // Add to our 'need-to-extract' list. 2185 if (ScalarToTreeEntry.count(VL[i])) { 2186 int Idx = ScalarToTreeEntry[VL[i]]; 2187 TreeEntry *E = &VectorizableTree[Idx]; 2188 // Find which lane we need to extract. 2189 int FoundLane = -1; 2190 for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) { 2191 // Is this the lane of the scalar that we are looking for ? 2192 if (E->Scalars[Lane] == VL[i]) { 2193 FoundLane = Lane; 2194 break; 2195 } 2196 } 2197 assert(FoundLane >= 0 && "Could not find the correct lane"); 2198 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 2199 } 2200 } 2201 } 2202 2203 return Vec; 2204 } 2205 2206 Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) const { 2207 SmallDenseMap<Value*, int>::const_iterator Entry 2208 = ScalarToTreeEntry.find(VL[0]); 2209 if (Entry != ScalarToTreeEntry.end()) { 2210 int Idx = Entry->second; 2211 const TreeEntry *En = &VectorizableTree[Idx]; 2212 if (En->isSame(VL) && En->VectorizedValue) 2213 return En->VectorizedValue; 2214 } 2215 return nullptr; 2216 } 2217 2218 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 2219 if (ScalarToTreeEntry.count(VL[0])) { 2220 int Idx = ScalarToTreeEntry[VL[0]]; 2221 TreeEntry *E = &VectorizableTree[Idx]; 2222 if (E->isSame(VL)) 2223 return vectorizeTree(E); 2224 } 2225 2226 Type *ScalarTy = VL[0]->getType(); 2227 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2228 ScalarTy = SI->getValueOperand()->getType(); 2229 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2230 2231 return Gather(VL, VecTy); 2232 } 2233 2234 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 2235 IRBuilder<>::InsertPointGuard Guard(Builder); 2236 2237 if (E->VectorizedValue) { 2238 DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 2239 return E->VectorizedValue; 2240 } 2241 2242 Instruction *VL0 = cast<Instruction>(E->Scalars[0]); 2243 Type *ScalarTy = VL0->getType(); 2244 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 2245 ScalarTy = SI->getValueOperand()->getType(); 2246 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 2247 2248 if (E->NeedToGather) { 2249 setInsertPointAfterBundle(E->Scalars); 2250 return Gather(E->Scalars, VecTy); 2251 } 2252 2253 unsigned Opcode = getSameOpcode(E->Scalars); 2254 2255 switch (Opcode) { 2256 case Instruction::PHI: { 2257 PHINode *PH = dyn_cast<PHINode>(VL0); 2258 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 2259 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 2260 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 2261 E->VectorizedValue = NewPhi; 2262 2263 // PHINodes may have multiple entries from the same block. We want to 2264 // visit every block once. 2265 SmallSet<BasicBlock*, 4> VisitedBBs; 2266 2267 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2268 ValueList Operands; 2269 BasicBlock *IBB = PH->getIncomingBlock(i); 2270 2271 if (!VisitedBBs.insert(IBB).second) { 2272 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 2273 continue; 2274 } 2275 2276 // Prepare the operand vector. 2277 for (Value *V : E->Scalars) 2278 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB)); 2279 2280 Builder.SetInsertPoint(IBB->getTerminator()); 2281 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 2282 Value *Vec = vectorizeTree(Operands); 2283 NewPhi->addIncoming(Vec, IBB); 2284 } 2285 2286 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 2287 "Invalid number of incoming values"); 2288 return NewPhi; 2289 } 2290 2291 case Instruction::ExtractElement: { 2292 if (canReuseExtract(E->Scalars, Instruction::ExtractElement)) { 2293 Value *V = VL0->getOperand(0); 2294 E->VectorizedValue = V; 2295 return V; 2296 } 2297 return Gather(E->Scalars, VecTy); 2298 } 2299 case Instruction::ExtractValue: { 2300 if (canReuseExtract(E->Scalars, Instruction::ExtractValue)) { 2301 LoadInst *LI = cast<LoadInst>(VL0->getOperand(0)); 2302 Builder.SetInsertPoint(LI); 2303 PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 2304 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 2305 LoadInst *V = Builder.CreateAlignedLoad(Ptr, LI->getAlignment()); 2306 E->VectorizedValue = V; 2307 return propagateMetadata(V, E->Scalars); 2308 } 2309 return Gather(E->Scalars, VecTy); 2310 } 2311 case Instruction::ZExt: 2312 case Instruction::SExt: 2313 case Instruction::FPToUI: 2314 case Instruction::FPToSI: 2315 case Instruction::FPExt: 2316 case Instruction::PtrToInt: 2317 case Instruction::IntToPtr: 2318 case Instruction::SIToFP: 2319 case Instruction::UIToFP: 2320 case Instruction::Trunc: 2321 case Instruction::FPTrunc: 2322 case Instruction::BitCast: { 2323 ValueList INVL; 2324 for (Value *V : E->Scalars) 2325 INVL.push_back(cast<Instruction>(V)->getOperand(0)); 2326 2327 setInsertPointAfterBundle(E->Scalars); 2328 2329 Value *InVec = vectorizeTree(INVL); 2330 2331 if (Value *V = alreadyVectorized(E->Scalars)) 2332 return V; 2333 2334 CastInst *CI = dyn_cast<CastInst>(VL0); 2335 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 2336 E->VectorizedValue = V; 2337 ++NumVectorInstructions; 2338 return V; 2339 } 2340 case Instruction::FCmp: 2341 case Instruction::ICmp: { 2342 ValueList LHSV, RHSV; 2343 for (Value *V : E->Scalars) { 2344 LHSV.push_back(cast<Instruction>(V)->getOperand(0)); 2345 RHSV.push_back(cast<Instruction>(V)->getOperand(1)); 2346 } 2347 2348 setInsertPointAfterBundle(E->Scalars); 2349 2350 Value *L = vectorizeTree(LHSV); 2351 Value *R = vectorizeTree(RHSV); 2352 2353 if (Value *V = alreadyVectorized(E->Scalars)) 2354 return V; 2355 2356 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2357 Value *V; 2358 if (Opcode == Instruction::FCmp) 2359 V = Builder.CreateFCmp(P0, L, R); 2360 else 2361 V = Builder.CreateICmp(P0, L, R); 2362 2363 E->VectorizedValue = V; 2364 ++NumVectorInstructions; 2365 return V; 2366 } 2367 case Instruction::Select: { 2368 ValueList TrueVec, FalseVec, CondVec; 2369 for (Value *V : E->Scalars) { 2370 CondVec.push_back(cast<Instruction>(V)->getOperand(0)); 2371 TrueVec.push_back(cast<Instruction>(V)->getOperand(1)); 2372 FalseVec.push_back(cast<Instruction>(V)->getOperand(2)); 2373 } 2374 2375 setInsertPointAfterBundle(E->Scalars); 2376 2377 Value *Cond = vectorizeTree(CondVec); 2378 Value *True = vectorizeTree(TrueVec); 2379 Value *False = vectorizeTree(FalseVec); 2380 2381 if (Value *V = alreadyVectorized(E->Scalars)) 2382 return V; 2383 2384 Value *V = Builder.CreateSelect(Cond, True, False); 2385 E->VectorizedValue = V; 2386 ++NumVectorInstructions; 2387 return V; 2388 } 2389 case Instruction::Add: 2390 case Instruction::FAdd: 2391 case Instruction::Sub: 2392 case Instruction::FSub: 2393 case Instruction::Mul: 2394 case Instruction::FMul: 2395 case Instruction::UDiv: 2396 case Instruction::SDiv: 2397 case Instruction::FDiv: 2398 case Instruction::URem: 2399 case Instruction::SRem: 2400 case Instruction::FRem: 2401 case Instruction::Shl: 2402 case Instruction::LShr: 2403 case Instruction::AShr: 2404 case Instruction::And: 2405 case Instruction::Or: 2406 case Instruction::Xor: { 2407 ValueList LHSVL, RHSVL; 2408 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) 2409 reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL); 2410 else 2411 for (Value *V : E->Scalars) { 2412 LHSVL.push_back(cast<Instruction>(V)->getOperand(0)); 2413 RHSVL.push_back(cast<Instruction>(V)->getOperand(1)); 2414 } 2415 2416 setInsertPointAfterBundle(E->Scalars); 2417 2418 Value *LHS = vectorizeTree(LHSVL); 2419 Value *RHS = vectorizeTree(RHSVL); 2420 2421 if (LHS == RHS && isa<Instruction>(LHS)) { 2422 assert((VL0->getOperand(0) == VL0->getOperand(1)) && "Invalid order"); 2423 } 2424 2425 if (Value *V = alreadyVectorized(E->Scalars)) 2426 return V; 2427 2428 BinaryOperator *BinOp = cast<BinaryOperator>(VL0); 2429 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS); 2430 E->VectorizedValue = V; 2431 propagateIRFlags(E->VectorizedValue, E->Scalars); 2432 ++NumVectorInstructions; 2433 2434 if (Instruction *I = dyn_cast<Instruction>(V)) 2435 return propagateMetadata(I, E->Scalars); 2436 2437 return V; 2438 } 2439 case Instruction::Load: { 2440 // Loads are inserted at the head of the tree because we don't want to 2441 // sink them all the way down past store instructions. 2442 setInsertPointAfterBundle(E->Scalars); 2443 2444 LoadInst *LI = cast<LoadInst>(VL0); 2445 Type *ScalarLoadTy = LI->getType(); 2446 unsigned AS = LI->getPointerAddressSpace(); 2447 2448 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 2449 VecTy->getPointerTo(AS)); 2450 2451 // The pointer operand uses an in-tree scalar so we add the new BitCast to 2452 // ExternalUses list to make sure that an extract will be generated in the 2453 // future. 2454 if (ScalarToTreeEntry.count(LI->getPointerOperand())) 2455 ExternalUses.push_back( 2456 ExternalUser(LI->getPointerOperand(), cast<User>(VecPtr), 0)); 2457 2458 unsigned Alignment = LI->getAlignment(); 2459 LI = Builder.CreateLoad(VecPtr); 2460 if (!Alignment) { 2461 Alignment = DL->getABITypeAlignment(ScalarLoadTy); 2462 } 2463 LI->setAlignment(Alignment); 2464 E->VectorizedValue = LI; 2465 ++NumVectorInstructions; 2466 return propagateMetadata(LI, E->Scalars); 2467 } 2468 case Instruction::Store: { 2469 StoreInst *SI = cast<StoreInst>(VL0); 2470 unsigned Alignment = SI->getAlignment(); 2471 unsigned AS = SI->getPointerAddressSpace(); 2472 2473 ValueList ValueOp; 2474 for (Value *V : E->Scalars) 2475 ValueOp.push_back(cast<StoreInst>(V)->getValueOperand()); 2476 2477 setInsertPointAfterBundle(E->Scalars); 2478 2479 Value *VecValue = vectorizeTree(ValueOp); 2480 Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(), 2481 VecTy->getPointerTo(AS)); 2482 StoreInst *S = Builder.CreateStore(VecValue, VecPtr); 2483 2484 // The pointer operand uses an in-tree scalar so we add the new BitCast to 2485 // ExternalUses list to make sure that an extract will be generated in the 2486 // future. 2487 if (ScalarToTreeEntry.count(SI->getPointerOperand())) 2488 ExternalUses.push_back( 2489 ExternalUser(SI->getPointerOperand(), cast<User>(VecPtr), 0)); 2490 2491 if (!Alignment) { 2492 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); 2493 } 2494 S->setAlignment(Alignment); 2495 E->VectorizedValue = S; 2496 ++NumVectorInstructions; 2497 return propagateMetadata(S, E->Scalars); 2498 } 2499 case Instruction::GetElementPtr: { 2500 setInsertPointAfterBundle(E->Scalars); 2501 2502 ValueList Op0VL; 2503 for (Value *V : E->Scalars) 2504 Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0)); 2505 2506 Value *Op0 = vectorizeTree(Op0VL); 2507 2508 std::vector<Value *> OpVecs; 2509 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 2510 ++j) { 2511 ValueList OpVL; 2512 for (Value *V : E->Scalars) 2513 OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j)); 2514 2515 Value *OpVec = vectorizeTree(OpVL); 2516 OpVecs.push_back(OpVec); 2517 } 2518 2519 Value *V = Builder.CreateGEP( 2520 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 2521 E->VectorizedValue = V; 2522 ++NumVectorInstructions; 2523 2524 if (Instruction *I = dyn_cast<Instruction>(V)) 2525 return propagateMetadata(I, E->Scalars); 2526 2527 return V; 2528 } 2529 case Instruction::Call: { 2530 CallInst *CI = cast<CallInst>(VL0); 2531 setInsertPointAfterBundle(E->Scalars); 2532 Function *FI; 2533 Intrinsic::ID IID = Intrinsic::not_intrinsic; 2534 Value *ScalarArg = nullptr; 2535 if (CI && (FI = CI->getCalledFunction())) { 2536 IID = FI->getIntrinsicID(); 2537 } 2538 std::vector<Value *> OpVecs; 2539 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 2540 ValueList OpVL; 2541 // ctlz,cttz and powi are special intrinsics whose second argument is 2542 // a scalar. This argument should not be vectorized. 2543 if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) { 2544 CallInst *CEI = cast<CallInst>(E->Scalars[0]); 2545 ScalarArg = CEI->getArgOperand(j); 2546 OpVecs.push_back(CEI->getArgOperand(j)); 2547 continue; 2548 } 2549 for (Value *V : E->Scalars) { 2550 CallInst *CEI = cast<CallInst>(V); 2551 OpVL.push_back(CEI->getArgOperand(j)); 2552 } 2553 2554 Value *OpVec = vectorizeTree(OpVL); 2555 DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 2556 OpVecs.push_back(OpVec); 2557 } 2558 2559 Module *M = F->getParent(); 2560 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2561 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 2562 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 2563 SmallVector<OperandBundleDef, 1> OpBundles; 2564 CI->getOperandBundlesAsDefs(OpBundles); 2565 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 2566 2567 // The scalar argument uses an in-tree scalar so we add the new vectorized 2568 // call to ExternalUses list to make sure that an extract will be 2569 // generated in the future. 2570 if (ScalarArg && ScalarToTreeEntry.count(ScalarArg)) 2571 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 2572 2573 E->VectorizedValue = V; 2574 ++NumVectorInstructions; 2575 return V; 2576 } 2577 case Instruction::ShuffleVector: { 2578 ValueList LHSVL, RHSVL; 2579 assert(isa<BinaryOperator>(VL0) && "Invalid Shuffle Vector Operand"); 2580 reorderAltShuffleOperands(E->Scalars, LHSVL, RHSVL); 2581 setInsertPointAfterBundle(E->Scalars); 2582 2583 Value *LHS = vectorizeTree(LHSVL); 2584 Value *RHS = vectorizeTree(RHSVL); 2585 2586 if (Value *V = alreadyVectorized(E->Scalars)) 2587 return V; 2588 2589 // Create a vector of LHS op1 RHS 2590 BinaryOperator *BinOp0 = cast<BinaryOperator>(VL0); 2591 Value *V0 = Builder.CreateBinOp(BinOp0->getOpcode(), LHS, RHS); 2592 2593 // Create a vector of LHS op2 RHS 2594 Instruction *VL1 = cast<Instruction>(E->Scalars[1]); 2595 BinaryOperator *BinOp1 = cast<BinaryOperator>(VL1); 2596 Value *V1 = Builder.CreateBinOp(BinOp1->getOpcode(), LHS, RHS); 2597 2598 // Create shuffle to take alternate operations from the vector. 2599 // Also, gather up odd and even scalar ops to propagate IR flags to 2600 // each vector operation. 2601 ValueList OddScalars, EvenScalars; 2602 unsigned e = E->Scalars.size(); 2603 SmallVector<Constant *, 8> Mask(e); 2604 for (unsigned i = 0; i < e; ++i) { 2605 if (i & 1) { 2606 Mask[i] = Builder.getInt32(e + i); 2607 OddScalars.push_back(E->Scalars[i]); 2608 } else { 2609 Mask[i] = Builder.getInt32(i); 2610 EvenScalars.push_back(E->Scalars[i]); 2611 } 2612 } 2613 2614 Value *ShuffleMask = ConstantVector::get(Mask); 2615 propagateIRFlags(V0, EvenScalars); 2616 propagateIRFlags(V1, OddScalars); 2617 2618 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 2619 E->VectorizedValue = V; 2620 ++NumVectorInstructions; 2621 if (Instruction *I = dyn_cast<Instruction>(V)) 2622 return propagateMetadata(I, E->Scalars); 2623 2624 return V; 2625 } 2626 default: 2627 llvm_unreachable("unknown inst"); 2628 } 2629 return nullptr; 2630 } 2631 2632 Value *BoUpSLP::vectorizeTree() { 2633 2634 // All blocks must be scheduled before any instructions are inserted. 2635 for (auto &BSIter : BlocksSchedules) { 2636 scheduleBlock(BSIter.second.get()); 2637 } 2638 2639 Builder.SetInsertPoint(&F->getEntryBlock().front()); 2640 auto *VectorRoot = vectorizeTree(&VectorizableTree[0]); 2641 2642 // If the vectorized tree can be rewritten in a smaller type, we truncate the 2643 // vectorized root. InstCombine will then rewrite the entire expression. We 2644 // sign extend the extracted values below. 2645 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 2646 if (MinBWs.count(ScalarRoot)) { 2647 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 2648 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 2649 auto BundleWidth = VectorizableTree[0].Scalars.size(); 2650 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot]); 2651 auto *VecTy = VectorType::get(MinTy, BundleWidth); 2652 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 2653 VectorizableTree[0].VectorizedValue = Trunc; 2654 } 2655 2656 DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n"); 2657 2658 // Extract all of the elements with the external uses. 2659 for (const auto &ExternalUse : ExternalUses) { 2660 Value *Scalar = ExternalUse.Scalar; 2661 llvm::User *User = ExternalUse.User; 2662 2663 // Skip users that we already RAUW. This happens when one instruction 2664 // has multiple uses of the same value. 2665 if (std::find(Scalar->user_begin(), Scalar->user_end(), User) == 2666 Scalar->user_end()) 2667 continue; 2668 assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar"); 2669 2670 int Idx = ScalarToTreeEntry[Scalar]; 2671 TreeEntry *E = &VectorizableTree[Idx]; 2672 assert(!E->NeedToGather && "Extracting from a gather list"); 2673 2674 Value *Vec = E->VectorizedValue; 2675 assert(Vec && "Can't find vectorizable value"); 2676 2677 Value *Lane = Builder.getInt32(ExternalUse.Lane); 2678 // Generate extracts for out-of-tree users. 2679 // Find the insertion point for the extractelement lane. 2680 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 2681 if (PHINode *PH = dyn_cast<PHINode>(User)) { 2682 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 2683 if (PH->getIncomingValue(i) == Scalar) { 2684 TerminatorInst *IncomingTerminator = 2685 PH->getIncomingBlock(i)->getTerminator(); 2686 if (isa<CatchSwitchInst>(IncomingTerminator)) { 2687 Builder.SetInsertPoint(VecI->getParent(), 2688 std::next(VecI->getIterator())); 2689 } else { 2690 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 2691 } 2692 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2693 if (MinBWs.count(ScalarRoot)) 2694 Ex = Builder.CreateSExt(Ex, Scalar->getType()); 2695 CSEBlocks.insert(PH->getIncomingBlock(i)); 2696 PH->setOperand(i, Ex); 2697 } 2698 } 2699 } else { 2700 Builder.SetInsertPoint(cast<Instruction>(User)); 2701 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2702 if (MinBWs.count(ScalarRoot)) 2703 Ex = Builder.CreateSExt(Ex, Scalar->getType()); 2704 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 2705 User->replaceUsesOfWith(Scalar, Ex); 2706 } 2707 } else { 2708 Builder.SetInsertPoint(&F->getEntryBlock().front()); 2709 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2710 if (MinBWs.count(ScalarRoot)) 2711 Ex = Builder.CreateSExt(Ex, Scalar->getType()); 2712 CSEBlocks.insert(&F->getEntryBlock()); 2713 User->replaceUsesOfWith(Scalar, Ex); 2714 } 2715 2716 DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 2717 } 2718 2719 // For each vectorized value: 2720 for (TreeEntry &EIdx : VectorizableTree) { 2721 TreeEntry *Entry = &EIdx; 2722 2723 // For each lane: 2724 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2725 Value *Scalar = Entry->Scalars[Lane]; 2726 // No need to handle users of gathered values. 2727 if (Entry->NeedToGather) 2728 continue; 2729 2730 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 2731 2732 Type *Ty = Scalar->getType(); 2733 if (!Ty->isVoidTy()) { 2734 #ifndef NDEBUG 2735 for (User *U : Scalar->users()) { 2736 DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 2737 2738 assert((ScalarToTreeEntry.count(U) || 2739 // It is legal to replace users in the ignorelist by undef. 2740 (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), U) != 2741 UserIgnoreList.end())) && 2742 "Replacing out-of-tree value with undef"); 2743 } 2744 #endif 2745 Value *Undef = UndefValue::get(Ty); 2746 Scalar->replaceAllUsesWith(Undef); 2747 } 2748 DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 2749 eraseInstruction(cast<Instruction>(Scalar)); 2750 } 2751 } 2752 2753 Builder.ClearInsertionPoint(); 2754 2755 return VectorizableTree[0].VectorizedValue; 2756 } 2757 2758 void BoUpSLP::optimizeGatherSequence() { 2759 DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 2760 << " gather sequences instructions.\n"); 2761 // LICM InsertElementInst sequences. 2762 for (Instruction *it : GatherSeq) { 2763 InsertElementInst *Insert = dyn_cast<InsertElementInst>(it); 2764 2765 if (!Insert) 2766 continue; 2767 2768 // Check if this block is inside a loop. 2769 Loop *L = LI->getLoopFor(Insert->getParent()); 2770 if (!L) 2771 continue; 2772 2773 // Check if it has a preheader. 2774 BasicBlock *PreHeader = L->getLoopPreheader(); 2775 if (!PreHeader) 2776 continue; 2777 2778 // If the vector or the element that we insert into it are 2779 // instructions that are defined in this basic block then we can't 2780 // hoist this instruction. 2781 Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0)); 2782 Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1)); 2783 if (CurrVec && L->contains(CurrVec)) 2784 continue; 2785 if (NewElem && L->contains(NewElem)) 2786 continue; 2787 2788 // We can hoist this instruction. Move it to the pre-header. 2789 Insert->moveBefore(PreHeader->getTerminator()); 2790 } 2791 2792 // Make a list of all reachable blocks in our CSE queue. 2793 SmallVector<const DomTreeNode *, 8> CSEWorkList; 2794 CSEWorkList.reserve(CSEBlocks.size()); 2795 for (BasicBlock *BB : CSEBlocks) 2796 if (DomTreeNode *N = DT->getNode(BB)) { 2797 assert(DT->isReachableFromEntry(N)); 2798 CSEWorkList.push_back(N); 2799 } 2800 2801 // Sort blocks by domination. This ensures we visit a block after all blocks 2802 // dominating it are visited. 2803 std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(), 2804 [this](const DomTreeNode *A, const DomTreeNode *B) { 2805 return DT->properlyDominates(A, B); 2806 }); 2807 2808 // Perform O(N^2) search over the gather sequences and merge identical 2809 // instructions. TODO: We can further optimize this scan if we split the 2810 // instructions into different buckets based on the insert lane. 2811 SmallVector<Instruction *, 16> Visited; 2812 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 2813 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 2814 "Worklist not sorted properly!"); 2815 BasicBlock *BB = (*I)->getBlock(); 2816 // For all instructions in blocks containing gather sequences: 2817 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 2818 Instruction *In = &*it++; 2819 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 2820 continue; 2821 2822 // Check if we can replace this instruction with any of the 2823 // visited instructions. 2824 for (Instruction *v : Visited) { 2825 if (In->isIdenticalTo(v) && 2826 DT->dominates(v->getParent(), In->getParent())) { 2827 In->replaceAllUsesWith(v); 2828 eraseInstruction(In); 2829 In = nullptr; 2830 break; 2831 } 2832 } 2833 if (In) { 2834 assert(std::find(Visited.begin(), Visited.end(), In) == Visited.end()); 2835 Visited.push_back(In); 2836 } 2837 } 2838 } 2839 CSEBlocks.clear(); 2840 GatherSeq.clear(); 2841 } 2842 2843 // Groups the instructions to a bundle (which is then a single scheduling entity) 2844 // and schedules instructions until the bundle gets ready. 2845 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, 2846 BoUpSLP *SLP) { 2847 if (isa<PHINode>(VL[0])) 2848 return true; 2849 2850 // Initialize the instruction bundle. 2851 Instruction *OldScheduleEnd = ScheduleEnd; 2852 ScheduleData *PrevInBundle = nullptr; 2853 ScheduleData *Bundle = nullptr; 2854 bool ReSchedule = false; 2855 DEBUG(dbgs() << "SLP: bundle: " << *VL[0] << "\n"); 2856 2857 // Make sure that the scheduling region contains all 2858 // instructions of the bundle. 2859 for (Value *V : VL) { 2860 if (!extendSchedulingRegion(V)) 2861 return false; 2862 } 2863 2864 for (Value *V : VL) { 2865 ScheduleData *BundleMember = getScheduleData(V); 2866 assert(BundleMember && 2867 "no ScheduleData for bundle member (maybe not in same basic block)"); 2868 if (BundleMember->IsScheduled) { 2869 // A bundle member was scheduled as single instruction before and now 2870 // needs to be scheduled as part of the bundle. We just get rid of the 2871 // existing schedule. 2872 DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 2873 << " was already scheduled\n"); 2874 ReSchedule = true; 2875 } 2876 assert(BundleMember->isSchedulingEntity() && 2877 "bundle member already part of other bundle"); 2878 if (PrevInBundle) { 2879 PrevInBundle->NextInBundle = BundleMember; 2880 } else { 2881 Bundle = BundleMember; 2882 } 2883 BundleMember->UnscheduledDepsInBundle = 0; 2884 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 2885 2886 // Group the instructions to a bundle. 2887 BundleMember->FirstInBundle = Bundle; 2888 PrevInBundle = BundleMember; 2889 } 2890 if (ScheduleEnd != OldScheduleEnd) { 2891 // The scheduling region got new instructions at the lower end (or it is a 2892 // new region for the first bundle). This makes it necessary to 2893 // recalculate all dependencies. 2894 // It is seldom that this needs to be done a second time after adding the 2895 // initial bundle to the region. 2896 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2897 ScheduleData *SD = getScheduleData(I); 2898 SD->clearDependencies(); 2899 } 2900 ReSchedule = true; 2901 } 2902 if (ReSchedule) { 2903 resetSchedule(); 2904 initialFillReadyList(ReadyInsts); 2905 } 2906 2907 DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 2908 << BB->getName() << "\n"); 2909 2910 calculateDependencies(Bundle, true, SLP); 2911 2912 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 2913 // means that there are no cyclic dependencies and we can schedule it. 2914 // Note that's important that we don't "schedule" the bundle yet (see 2915 // cancelScheduling). 2916 while (!Bundle->isReady() && !ReadyInsts.empty()) { 2917 2918 ScheduleData *pickedSD = ReadyInsts.back(); 2919 ReadyInsts.pop_back(); 2920 2921 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 2922 schedule(pickedSD, ReadyInsts); 2923 } 2924 } 2925 if (!Bundle->isReady()) { 2926 cancelScheduling(VL); 2927 return false; 2928 } 2929 return true; 2930 } 2931 2932 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL) { 2933 if (isa<PHINode>(VL[0])) 2934 return; 2935 2936 ScheduleData *Bundle = getScheduleData(VL[0]); 2937 DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 2938 assert(!Bundle->IsScheduled && 2939 "Can't cancel bundle which is already scheduled"); 2940 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 2941 "tried to unbundle something which is not a bundle"); 2942 2943 // Un-bundle: make single instructions out of the bundle. 2944 ScheduleData *BundleMember = Bundle; 2945 while (BundleMember) { 2946 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 2947 BundleMember->FirstInBundle = BundleMember; 2948 ScheduleData *Next = BundleMember->NextInBundle; 2949 BundleMember->NextInBundle = nullptr; 2950 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 2951 if (BundleMember->UnscheduledDepsInBundle == 0) { 2952 ReadyInsts.insert(BundleMember); 2953 } 2954 BundleMember = Next; 2955 } 2956 } 2957 2958 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V) { 2959 if (getScheduleData(V)) 2960 return true; 2961 Instruction *I = dyn_cast<Instruction>(V); 2962 assert(I && "bundle member must be an instruction"); 2963 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 2964 if (!ScheduleStart) { 2965 // It's the first instruction in the new region. 2966 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 2967 ScheduleStart = I; 2968 ScheduleEnd = I->getNextNode(); 2969 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 2970 DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 2971 return true; 2972 } 2973 // Search up and down at the same time, because we don't know if the new 2974 // instruction is above or below the existing scheduling region. 2975 BasicBlock::reverse_iterator UpIter(ScheduleStart->getIterator()); 2976 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 2977 BasicBlock::iterator DownIter(ScheduleEnd); 2978 BasicBlock::iterator LowerEnd = BB->end(); 2979 for (;;) { 2980 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 2981 DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 2982 return false; 2983 } 2984 2985 if (UpIter != UpperEnd) { 2986 if (&*UpIter == I) { 2987 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 2988 ScheduleStart = I; 2989 DEBUG(dbgs() << "SLP: extend schedule region start to " << *I << "\n"); 2990 return true; 2991 } 2992 UpIter++; 2993 } 2994 if (DownIter != LowerEnd) { 2995 if (&*DownIter == I) { 2996 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 2997 nullptr); 2998 ScheduleEnd = I->getNextNode(); 2999 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 3000 DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 3001 return true; 3002 } 3003 DownIter++; 3004 } 3005 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 3006 "instruction not found in block"); 3007 } 3008 return true; 3009 } 3010 3011 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 3012 Instruction *ToI, 3013 ScheduleData *PrevLoadStore, 3014 ScheduleData *NextLoadStore) { 3015 ScheduleData *CurrentLoadStore = PrevLoadStore; 3016 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 3017 ScheduleData *SD = ScheduleDataMap[I]; 3018 if (!SD) { 3019 // Allocate a new ScheduleData for the instruction. 3020 if (ChunkPos >= ChunkSize) { 3021 ScheduleDataChunks.push_back( 3022 llvm::make_unique<ScheduleData[]>(ChunkSize)); 3023 ChunkPos = 0; 3024 } 3025 SD = &(ScheduleDataChunks.back()[ChunkPos++]); 3026 ScheduleDataMap[I] = SD; 3027 SD->Inst = I; 3028 } 3029 assert(!isInSchedulingRegion(SD) && 3030 "new ScheduleData already in scheduling region"); 3031 SD->init(SchedulingRegionID); 3032 3033 if (I->mayReadOrWriteMemory()) { 3034 // Update the linked list of memory accessing instructions. 3035 if (CurrentLoadStore) { 3036 CurrentLoadStore->NextLoadStore = SD; 3037 } else { 3038 FirstLoadStoreInRegion = SD; 3039 } 3040 CurrentLoadStore = SD; 3041 } 3042 } 3043 if (NextLoadStore) { 3044 if (CurrentLoadStore) 3045 CurrentLoadStore->NextLoadStore = NextLoadStore; 3046 } else { 3047 LastLoadStoreInRegion = CurrentLoadStore; 3048 } 3049 } 3050 3051 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 3052 bool InsertInReadyList, 3053 BoUpSLP *SLP) { 3054 assert(SD->isSchedulingEntity()); 3055 3056 SmallVector<ScheduleData *, 10> WorkList; 3057 WorkList.push_back(SD); 3058 3059 while (!WorkList.empty()) { 3060 ScheduleData *SD = WorkList.back(); 3061 WorkList.pop_back(); 3062 3063 ScheduleData *BundleMember = SD; 3064 while (BundleMember) { 3065 assert(isInSchedulingRegion(BundleMember)); 3066 if (!BundleMember->hasValidDependencies()) { 3067 3068 DEBUG(dbgs() << "SLP: update deps of " << *BundleMember << "\n"); 3069 BundleMember->Dependencies = 0; 3070 BundleMember->resetUnscheduledDeps(); 3071 3072 // Handle def-use chain dependencies. 3073 for (User *U : BundleMember->Inst->users()) { 3074 if (isa<Instruction>(U)) { 3075 ScheduleData *UseSD = getScheduleData(U); 3076 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 3077 BundleMember->Dependencies++; 3078 ScheduleData *DestBundle = UseSD->FirstInBundle; 3079 if (!DestBundle->IsScheduled) { 3080 BundleMember->incrementUnscheduledDeps(1); 3081 } 3082 if (!DestBundle->hasValidDependencies()) { 3083 WorkList.push_back(DestBundle); 3084 } 3085 } 3086 } else { 3087 // I'm not sure if this can ever happen. But we need to be safe. 3088 // This lets the instruction/bundle never be scheduled and 3089 // eventually disable vectorization. 3090 BundleMember->Dependencies++; 3091 BundleMember->incrementUnscheduledDeps(1); 3092 } 3093 } 3094 3095 // Handle the memory dependencies. 3096 ScheduleData *DepDest = BundleMember->NextLoadStore; 3097 if (DepDest) { 3098 Instruction *SrcInst = BundleMember->Inst; 3099 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 3100 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 3101 unsigned numAliased = 0; 3102 unsigned DistToSrc = 1; 3103 3104 while (DepDest) { 3105 assert(isInSchedulingRegion(DepDest)); 3106 3107 // We have two limits to reduce the complexity: 3108 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 3109 // SLP->isAliased (which is the expensive part in this loop). 3110 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 3111 // the whole loop (even if the loop is fast, it's quadratic). 3112 // It's important for the loop break condition (see below) to 3113 // check this limit even between two read-only instructions. 3114 if (DistToSrc >= MaxMemDepDistance || 3115 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 3116 (numAliased >= AliasedCheckLimit || 3117 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 3118 3119 // We increment the counter only if the locations are aliased 3120 // (instead of counting all alias checks). This gives a better 3121 // balance between reduced runtime and accurate dependencies. 3122 numAliased++; 3123 3124 DepDest->MemoryDependencies.push_back(BundleMember); 3125 BundleMember->Dependencies++; 3126 ScheduleData *DestBundle = DepDest->FirstInBundle; 3127 if (!DestBundle->IsScheduled) { 3128 BundleMember->incrementUnscheduledDeps(1); 3129 } 3130 if (!DestBundle->hasValidDependencies()) { 3131 WorkList.push_back(DestBundle); 3132 } 3133 } 3134 DepDest = DepDest->NextLoadStore; 3135 3136 // Example, explaining the loop break condition: Let's assume our 3137 // starting instruction is i0 and MaxMemDepDistance = 3. 3138 // 3139 // +--------v--v--v 3140 // i0,i1,i2,i3,i4,i5,i6,i7,i8 3141 // +--------^--^--^ 3142 // 3143 // MaxMemDepDistance let us stop alias-checking at i3 and we add 3144 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 3145 // Previously we already added dependencies from i3 to i6,i7,i8 3146 // (because of MaxMemDepDistance). As we added a dependency from 3147 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 3148 // and we can abort this loop at i6. 3149 if (DistToSrc >= 2 * MaxMemDepDistance) 3150 break; 3151 DistToSrc++; 3152 } 3153 } 3154 } 3155 BundleMember = BundleMember->NextInBundle; 3156 } 3157 if (InsertInReadyList && SD->isReady()) { 3158 ReadyInsts.push_back(SD); 3159 DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst << "\n"); 3160 } 3161 } 3162 } 3163 3164 void BoUpSLP::BlockScheduling::resetSchedule() { 3165 assert(ScheduleStart && 3166 "tried to reset schedule on block which has not been scheduled"); 3167 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3168 ScheduleData *SD = getScheduleData(I); 3169 assert(isInSchedulingRegion(SD)); 3170 SD->IsScheduled = false; 3171 SD->resetUnscheduledDeps(); 3172 } 3173 ReadyInsts.clear(); 3174 } 3175 3176 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 3177 3178 if (!BS->ScheduleStart) 3179 return; 3180 3181 DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 3182 3183 BS->resetSchedule(); 3184 3185 // For the real scheduling we use a more sophisticated ready-list: it is 3186 // sorted by the original instruction location. This lets the final schedule 3187 // be as close as possible to the original instruction order. 3188 struct ScheduleDataCompare { 3189 bool operator()(ScheduleData *SD1, ScheduleData *SD2) { 3190 return SD2->SchedulingPriority < SD1->SchedulingPriority; 3191 } 3192 }; 3193 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 3194 3195 // Ensure that all dependency data is updated and fill the ready-list with 3196 // initial instructions. 3197 int Idx = 0; 3198 int NumToSchedule = 0; 3199 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 3200 I = I->getNextNode()) { 3201 ScheduleData *SD = BS->getScheduleData(I); 3202 assert( 3203 SD->isPartOfBundle() == (ScalarToTreeEntry.count(SD->Inst) != 0) && 3204 "scheduler and vectorizer have different opinion on what is a bundle"); 3205 SD->FirstInBundle->SchedulingPriority = Idx++; 3206 if (SD->isSchedulingEntity()) { 3207 BS->calculateDependencies(SD, false, this); 3208 NumToSchedule++; 3209 } 3210 } 3211 BS->initialFillReadyList(ReadyInsts); 3212 3213 Instruction *LastScheduledInst = BS->ScheduleEnd; 3214 3215 // Do the "real" scheduling. 3216 while (!ReadyInsts.empty()) { 3217 ScheduleData *picked = *ReadyInsts.begin(); 3218 ReadyInsts.erase(ReadyInsts.begin()); 3219 3220 // Move the scheduled instruction(s) to their dedicated places, if not 3221 // there yet. 3222 ScheduleData *BundleMember = picked; 3223 while (BundleMember) { 3224 Instruction *pickedInst = BundleMember->Inst; 3225 if (LastScheduledInst->getNextNode() != pickedInst) { 3226 BS->BB->getInstList().remove(pickedInst); 3227 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 3228 pickedInst); 3229 } 3230 LastScheduledInst = pickedInst; 3231 BundleMember = BundleMember->NextInBundle; 3232 } 3233 3234 BS->schedule(picked, ReadyInsts); 3235 NumToSchedule--; 3236 } 3237 assert(NumToSchedule == 0 && "could not schedule all instructions"); 3238 3239 // Avoid duplicate scheduling of the block. 3240 BS->ScheduleStart = nullptr; 3241 } 3242 3243 unsigned BoUpSLP::getVectorElementSize(Value *V) { 3244 // If V is a store, just return the width of the stored value without 3245 // traversing the expression tree. This is the common case. 3246 if (auto *Store = dyn_cast<StoreInst>(V)) 3247 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 3248 3249 // If V is not a store, we can traverse the expression tree to find loads 3250 // that feed it. The type of the loaded value may indicate a more suitable 3251 // width than V's type. We want to base the vector element size on the width 3252 // of memory operations where possible. 3253 SmallVector<Instruction *, 16> Worklist; 3254 SmallPtrSet<Instruction *, 16> Visited; 3255 if (auto *I = dyn_cast<Instruction>(V)) 3256 Worklist.push_back(I); 3257 3258 // Traverse the expression tree in bottom-up order looking for loads. If we 3259 // encounter an instruciton we don't yet handle, we give up. 3260 auto MaxWidth = 0u; 3261 auto FoundUnknownInst = false; 3262 while (!Worklist.empty() && !FoundUnknownInst) { 3263 auto *I = Worklist.pop_back_val(); 3264 Visited.insert(I); 3265 3266 // We should only be looking at scalar instructions here. If the current 3267 // instruction has a vector type, give up. 3268 auto *Ty = I->getType(); 3269 if (isa<VectorType>(Ty)) 3270 FoundUnknownInst = true; 3271 3272 // If the current instruction is a load, update MaxWidth to reflect the 3273 // width of the loaded value. 3274 else if (isa<LoadInst>(I)) 3275 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 3276 3277 // Otherwise, we need to visit the operands of the instruction. We only 3278 // handle the interesting cases from buildTree here. If an operand is an 3279 // instruction we haven't yet visited, we add it to the worklist. 3280 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 3281 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 3282 for (Use &U : I->operands()) 3283 if (auto *J = dyn_cast<Instruction>(U.get())) 3284 if (!Visited.count(J)) 3285 Worklist.push_back(J); 3286 } 3287 3288 // If we don't yet handle the instruction, give up. 3289 else 3290 FoundUnknownInst = true; 3291 } 3292 3293 // If we didn't encounter a memory access in the expression tree, or if we 3294 // gave up for some reason, just return the width of V. 3295 if (!MaxWidth || FoundUnknownInst) 3296 return DL->getTypeSizeInBits(V->getType()); 3297 3298 // Otherwise, return the maximum width we found. 3299 return MaxWidth; 3300 } 3301 3302 // Determine if a value V in a vectorizable expression Expr can be demoted to a 3303 // smaller type with a truncation. We collect the values that will be demoted 3304 // in ToDemote and additional roots that require investigating in Roots. 3305 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 3306 SmallVectorImpl<Value *> &ToDemote, 3307 SmallVectorImpl<Value *> &Roots) { 3308 3309 // We can always demote constants. 3310 if (isa<Constant>(V)) { 3311 ToDemote.push_back(V); 3312 return true; 3313 } 3314 3315 // If the value is not an instruction in the expression with only one use, it 3316 // cannot be demoted. 3317 auto *I = dyn_cast<Instruction>(V); 3318 if (!I || !I->hasOneUse() || !Expr.count(I)) 3319 return false; 3320 3321 switch (I->getOpcode()) { 3322 3323 // We can always demote truncations and extensions. Since truncations can 3324 // seed additional demotion, we save the truncated value. 3325 case Instruction::Trunc: 3326 Roots.push_back(I->getOperand(0)); 3327 case Instruction::ZExt: 3328 case Instruction::SExt: 3329 break; 3330 3331 // We can demote certain binary operations if we can demote both of their 3332 // operands. 3333 case Instruction::Add: 3334 case Instruction::Sub: 3335 case Instruction::Mul: 3336 case Instruction::And: 3337 case Instruction::Or: 3338 case Instruction::Xor: 3339 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 3340 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 3341 return false; 3342 break; 3343 3344 // We can demote selects if we can demote their true and false values. 3345 case Instruction::Select: { 3346 SelectInst *SI = cast<SelectInst>(I); 3347 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 3348 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 3349 return false; 3350 break; 3351 } 3352 3353 // We can demote phis if we can demote all their incoming operands. Note that 3354 // we don't need to worry about cycles since we ensure single use above. 3355 case Instruction::PHI: { 3356 PHINode *PN = cast<PHINode>(I); 3357 for (Value *IncValue : PN->incoming_values()) 3358 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 3359 return false; 3360 break; 3361 } 3362 3363 // Otherwise, conservatively give up. 3364 default: 3365 return false; 3366 } 3367 3368 // Record the value that we can demote. 3369 ToDemote.push_back(V); 3370 return true; 3371 } 3372 3373 void BoUpSLP::computeMinimumValueSizes() { 3374 // If there are no external uses, the expression tree must be rooted by a 3375 // store. We can't demote in-memory values, so there is nothing to do here. 3376 if (ExternalUses.empty()) 3377 return; 3378 3379 // We only attempt to truncate integer expressions. 3380 auto &TreeRoot = VectorizableTree[0].Scalars; 3381 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 3382 if (!TreeRootIT) 3383 return; 3384 3385 // If the expression is not rooted by a store, these roots should have 3386 // external uses. We will rely on InstCombine to rewrite the expression in 3387 // the narrower type. However, InstCombine only rewrites single-use values. 3388 // This means that if a tree entry other than a root is used externally, it 3389 // must have multiple uses and InstCombine will not rewrite it. The code 3390 // below ensures that only the roots are used externally. 3391 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 3392 for (auto &EU : ExternalUses) 3393 if (!Expr.erase(EU.Scalar)) 3394 return; 3395 if (!Expr.empty()) 3396 return; 3397 3398 // Collect the scalar values of the vectorizable expression. We will use this 3399 // context to determine which values can be demoted. If we see a truncation, 3400 // we mark it as seeding another demotion. 3401 for (auto &Entry : VectorizableTree) 3402 Expr.insert(Entry.Scalars.begin(), Entry.Scalars.end()); 3403 3404 // Ensure the roots of the vectorizable tree don't form a cycle. They must 3405 // have a single external user that is not in the vectorizable tree. 3406 for (auto *Root : TreeRoot) 3407 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 3408 return; 3409 3410 // Conservatively determine if we can actually truncate the roots of the 3411 // expression. Collect the values that can be demoted in ToDemote and 3412 // additional roots that require investigating in Roots. 3413 SmallVector<Value *, 32> ToDemote; 3414 SmallVector<Value *, 4> Roots; 3415 for (auto *Root : TreeRoot) 3416 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 3417 return; 3418 3419 // The maximum bit width required to represent all the values that can be 3420 // demoted without loss of precision. It would be safe to truncate the roots 3421 // of the expression to this width. 3422 auto MaxBitWidth = 8u; 3423 3424 // We first check if all the bits of the roots are demanded. If they're not, 3425 // we can truncate the roots to this narrower type. 3426 for (auto *Root : TreeRoot) { 3427 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 3428 MaxBitWidth = std::max<unsigned>( 3429 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 3430 } 3431 3432 // If all the bits of the roots are demanded, we can try a little harder to 3433 // compute a narrower type. This can happen, for example, if the roots are 3434 // getelementptr indices. InstCombine promotes these indices to the pointer 3435 // width. Thus, all their bits are technically demanded even though the 3436 // address computation might be vectorized in a smaller type. 3437 // 3438 // We start by looking at each entry that can be demoted. We compute the 3439 // maximum bit width required to store the scalar by using ValueTracking to 3440 // compute the number of high-order bits we can truncate. 3441 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType())) { 3442 MaxBitWidth = 8u; 3443 for (auto *Scalar : ToDemote) { 3444 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, 0, DT); 3445 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 3446 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 3447 } 3448 } 3449 3450 // Round MaxBitWidth up to the next power-of-two. 3451 if (!isPowerOf2_64(MaxBitWidth)) 3452 MaxBitWidth = NextPowerOf2(MaxBitWidth); 3453 3454 // If the maximum bit width we compute is less than the with of the roots' 3455 // type, we can proceed with the narrowing. Otherwise, do nothing. 3456 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 3457 return; 3458 3459 // If we can truncate the root, we must collect additional values that might 3460 // be demoted as a result. That is, those seeded by truncations we will 3461 // modify. 3462 while (!Roots.empty()) 3463 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 3464 3465 // Finally, map the values we can demote to the maximum bit with we computed. 3466 for (auto *Scalar : ToDemote) 3467 MinBWs[Scalar] = MaxBitWidth; 3468 } 3469 3470 /// The SLPVectorizer Pass. 3471 struct SLPVectorizer : public FunctionPass { 3472 SLPVectorizerPass Impl; 3473 3474 /// Pass identification, replacement for typeid 3475 static char ID; 3476 3477 explicit SLPVectorizer() : FunctionPass(ID) { 3478 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 3479 } 3480 3481 3482 bool doInitialization(Module &M) override { 3483 return false; 3484 } 3485 3486 bool runOnFunction(Function &F) override { 3487 if (skipFunction(F)) 3488 return false; 3489 3490 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 3491 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 3492 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 3493 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 3494 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3495 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 3496 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3497 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 3498 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 3499 3500 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB); 3501 } 3502 3503 void getAnalysisUsage(AnalysisUsage &AU) const override { 3504 FunctionPass::getAnalysisUsage(AU); 3505 AU.addRequired<AssumptionCacheTracker>(); 3506 AU.addRequired<ScalarEvolutionWrapperPass>(); 3507 AU.addRequired<AAResultsWrapperPass>(); 3508 AU.addRequired<TargetTransformInfoWrapperPass>(); 3509 AU.addRequired<LoopInfoWrapperPass>(); 3510 AU.addRequired<DominatorTreeWrapperPass>(); 3511 AU.addRequired<DemandedBitsWrapperPass>(); 3512 AU.addPreserved<LoopInfoWrapperPass>(); 3513 AU.addPreserved<DominatorTreeWrapperPass>(); 3514 AU.addPreserved<AAResultsWrapperPass>(); 3515 AU.addPreserved<GlobalsAAWrapperPass>(); 3516 AU.setPreservesCFG(); 3517 } 3518 }; 3519 3520 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 3521 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 3522 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 3523 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 3524 auto *AA = &AM.getResult<AAManager>(F); 3525 auto *LI = &AM.getResult<LoopAnalysis>(F); 3526 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 3527 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 3528 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 3529 3530 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB); 3531 if (!Changed) 3532 return PreservedAnalyses::all(); 3533 PreservedAnalyses PA; 3534 PA.preserve<LoopAnalysis>(); 3535 PA.preserve<DominatorTreeAnalysis>(); 3536 PA.preserve<AAManager>(); 3537 PA.preserve<GlobalsAA>(); 3538 return PA; 3539 } 3540 3541 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 3542 TargetTransformInfo *TTI_, 3543 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 3544 LoopInfo *LI_, DominatorTree *DT_, 3545 AssumptionCache *AC_, DemandedBits *DB_) { 3546 SE = SE_; 3547 TTI = TTI_; 3548 TLI = TLI_; 3549 AA = AA_; 3550 LI = LI_; 3551 DT = DT_; 3552 AC = AC_; 3553 DB = DB_; 3554 DL = &F.getParent()->getDataLayout(); 3555 3556 Stores.clear(); 3557 GEPs.clear(); 3558 bool Changed = false; 3559 3560 // If the target claims to have no vector registers don't attempt 3561 // vectorization. 3562 if (!TTI->getNumberOfRegisters(true)) 3563 return false; 3564 3565 // Don't vectorize when the attribute NoImplicitFloat is used. 3566 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 3567 return false; 3568 3569 DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 3570 3571 // Use the bottom up slp vectorizer to construct chains that start with 3572 // store instructions. 3573 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL); 3574 3575 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 3576 // delete instructions. 3577 3578 // Scan the blocks in the function in post order. 3579 for (auto BB : post_order(&F.getEntryBlock())) { 3580 collectSeedInstructions(BB); 3581 3582 // Vectorize trees that end at stores. 3583 if (!Stores.empty()) { 3584 DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 3585 << " underlying objects.\n"); 3586 Changed |= vectorizeStoreChains(R); 3587 } 3588 3589 // Vectorize trees that end at reductions. 3590 Changed |= vectorizeChainsInBlock(BB, R); 3591 3592 // Vectorize the index computations of getelementptr instructions. This 3593 // is primarily intended to catch gather-like idioms ending at 3594 // non-consecutive loads. 3595 if (!GEPs.empty()) { 3596 DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 3597 << " underlying objects.\n"); 3598 Changed |= vectorizeGEPIndices(BB, R); 3599 } 3600 } 3601 3602 if (Changed) { 3603 R.optimizeGatherSequence(); 3604 DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 3605 DEBUG(verifyFunction(F)); 3606 } 3607 return Changed; 3608 } 3609 3610 /// \brief Check that the Values in the slice in VL array are still existent in 3611 /// the WeakVH array. 3612 /// Vectorization of part of the VL array may cause later values in the VL array 3613 /// to become invalid. We track when this has happened in the WeakVH array. 3614 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, ArrayRef<WeakVH> VH, 3615 unsigned SliceBegin, unsigned SliceSize) { 3616 VL = VL.slice(SliceBegin, SliceSize); 3617 VH = VH.slice(SliceBegin, SliceSize); 3618 return !std::equal(VL.begin(), VL.end(), VH.begin()); 3619 } 3620 3621 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, 3622 int CostThreshold, BoUpSLP &R, 3623 unsigned VecRegSize) { 3624 unsigned ChainLen = Chain.size(); 3625 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 3626 << "\n"); 3627 unsigned Sz = R.getVectorElementSize(Chain[0]); 3628 unsigned VF = VecRegSize / Sz; 3629 3630 if (!isPowerOf2_32(Sz) || VF < 2) 3631 return false; 3632 3633 // Keep track of values that were deleted by vectorizing in the loop below. 3634 SmallVector<WeakVH, 8> TrackValues(Chain.begin(), Chain.end()); 3635 3636 bool Changed = false; 3637 // Look for profitable vectorizable trees at all offsets, starting at zero. 3638 for (unsigned i = 0, e = ChainLen; i < e; ++i) { 3639 if (i + VF > e) 3640 break; 3641 3642 // Check that a previous iteration of this loop did not delete the Value. 3643 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) 3644 continue; 3645 3646 DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 3647 << "\n"); 3648 ArrayRef<Value *> Operands = Chain.slice(i, VF); 3649 3650 R.buildTree(Operands); 3651 R.computeMinimumValueSizes(); 3652 3653 int Cost = R.getTreeCost(); 3654 3655 DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n"); 3656 if (Cost < CostThreshold) { 3657 DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 3658 R.vectorizeTree(); 3659 3660 // Move to the next bundle. 3661 i += VF - 1; 3662 Changed = true; 3663 } 3664 } 3665 3666 return Changed; 3667 } 3668 3669 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 3670 int costThreshold, BoUpSLP &R) { 3671 SetVector<StoreInst *> Heads, Tails; 3672 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 3673 3674 // We may run into multiple chains that merge into a single chain. We mark the 3675 // stores that we vectorized so that we don't visit the same store twice. 3676 BoUpSLP::ValueSet VectorizedStores; 3677 bool Changed = false; 3678 3679 // Do a quadratic search on all of the given stores and find 3680 // all of the pairs of stores that follow each other. 3681 SmallVector<unsigned, 16> IndexQueue; 3682 for (unsigned i = 0, e = Stores.size(); i < e; ++i) { 3683 IndexQueue.clear(); 3684 // If a store has multiple consecutive store candidates, search Stores 3685 // array according to the sequence: from i+1 to e, then from i-1 to 0. 3686 // This is because usually pairing with immediate succeeding or preceding 3687 // candidate create the best chance to find slp vectorization opportunity. 3688 unsigned j = 0; 3689 for (j = i + 1; j < e; ++j) 3690 IndexQueue.push_back(j); 3691 for (j = i; j > 0; --j) 3692 IndexQueue.push_back(j - 1); 3693 3694 for (auto &k : IndexQueue) { 3695 if (isConsecutiveAccess(Stores[i], Stores[k], *DL, *SE)) { 3696 Tails.insert(Stores[k]); 3697 Heads.insert(Stores[i]); 3698 ConsecutiveChain[Stores[i]] = Stores[k]; 3699 break; 3700 } 3701 } 3702 } 3703 3704 // For stores that start but don't end a link in the chain: 3705 for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end(); 3706 it != e; ++it) { 3707 if (Tails.count(*it)) 3708 continue; 3709 3710 // We found a store instr that starts a chain. Now follow the chain and try 3711 // to vectorize it. 3712 BoUpSLP::ValueList Operands; 3713 StoreInst *I = *it; 3714 // Collect the chain into a list. 3715 while (Tails.count(I) || Heads.count(I)) { 3716 if (VectorizedStores.count(I)) 3717 break; 3718 Operands.push_back(I); 3719 // Move to the next value in the chain. 3720 I = ConsecutiveChain[I]; 3721 } 3722 3723 // FIXME: Is division-by-2 the correct step? Should we assert that the 3724 // register size is a power-of-2? 3725 for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize(); Size /= 2) { 3726 if (vectorizeStoreChain(Operands, costThreshold, R, Size)) { 3727 // Mark the vectorized stores so that we don't vectorize them again. 3728 VectorizedStores.insert(Operands.begin(), Operands.end()); 3729 Changed = true; 3730 break; 3731 } 3732 } 3733 } 3734 3735 return Changed; 3736 } 3737 3738 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 3739 3740 // Initialize the collections. We will make a single pass over the block. 3741 Stores.clear(); 3742 GEPs.clear(); 3743 3744 // Visit the store and getelementptr instructions in BB and organize them in 3745 // Stores and GEPs according to the underlying objects of their pointer 3746 // operands. 3747 for (Instruction &I : *BB) { 3748 3749 // Ignore store instructions that are volatile or have a pointer operand 3750 // that doesn't point to a scalar type. 3751 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3752 if (!SI->isSimple()) 3753 continue; 3754 if (!isValidElementType(SI->getValueOperand()->getType())) 3755 continue; 3756 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); 3757 } 3758 3759 // Ignore getelementptr instructions that have more than one index, a 3760 // constant index, or a pointer operand that doesn't point to a scalar 3761 // type. 3762 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 3763 auto Idx = GEP->idx_begin()->get(); 3764 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 3765 continue; 3766 if (!isValidElementType(Idx->getType())) 3767 continue; 3768 GEPs[GetUnderlyingObject(GEP->getPointerOperand(), *DL)].push_back(GEP); 3769 } 3770 } 3771 } 3772 3773 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 3774 if (!A || !B) 3775 return false; 3776 Value *VL[] = { A, B }; 3777 return tryToVectorizeList(VL, R, None, true); 3778 } 3779 3780 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 3781 ArrayRef<Value *> BuildVector, 3782 bool allowReorder) { 3783 if (VL.size() < 2) 3784 return false; 3785 3786 DEBUG(dbgs() << "SLP: Vectorizing a list of length = " << VL.size() << ".\n"); 3787 3788 // Check that all of the parts are scalar instructions of the same type. 3789 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 3790 if (!I0) 3791 return false; 3792 3793 unsigned Opcode0 = I0->getOpcode(); 3794 3795 // FIXME: Register size should be a parameter to this function, so we can 3796 // try different vectorization factors. 3797 unsigned Sz = R.getVectorElementSize(I0); 3798 unsigned VF = R.getMinVecRegSize() / Sz; 3799 3800 for (Value *V : VL) { 3801 Type *Ty = V->getType(); 3802 if (!isValidElementType(Ty)) 3803 return false; 3804 Instruction *Inst = dyn_cast<Instruction>(V); 3805 if (!Inst || Inst->getOpcode() != Opcode0) 3806 return false; 3807 } 3808 3809 bool Changed = false; 3810 3811 // Keep track of values that were deleted by vectorizing in the loop below. 3812 SmallVector<WeakVH, 8> TrackValues(VL.begin(), VL.end()); 3813 3814 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3815 unsigned OpsWidth = 0; 3816 3817 if (i + VF > e) 3818 OpsWidth = e - i; 3819 else 3820 OpsWidth = VF; 3821 3822 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 3823 break; 3824 3825 // Check that a previous iteration of this loop did not delete the Value. 3826 if (hasValueBeenRAUWed(VL, TrackValues, i, OpsWidth)) 3827 continue; 3828 3829 DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 3830 << "\n"); 3831 ArrayRef<Value *> Ops = VL.slice(i, OpsWidth); 3832 3833 ArrayRef<Value *> BuildVectorSlice; 3834 if (!BuildVector.empty()) 3835 BuildVectorSlice = BuildVector.slice(i, OpsWidth); 3836 3837 R.buildTree(Ops, BuildVectorSlice); 3838 // TODO: check if we can allow reordering also for other cases than 3839 // tryToVectorizePair() 3840 if (allowReorder && R.shouldReorder()) { 3841 assert(Ops.size() == 2); 3842 assert(BuildVectorSlice.empty()); 3843 Value *ReorderedOps[] = { Ops[1], Ops[0] }; 3844 R.buildTree(ReorderedOps, None); 3845 } 3846 R.computeMinimumValueSizes(); 3847 int Cost = R.getTreeCost(); 3848 3849 if (Cost < -SLPCostThreshold) { 3850 DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 3851 Value *VectorizedRoot = R.vectorizeTree(); 3852 3853 // Reconstruct the build vector by extracting the vectorized root. This 3854 // way we handle the case where some elements of the vector are undefined. 3855 // (return (inserelt <4 xi32> (insertelt undef (opd0) 0) (opd1) 2)) 3856 if (!BuildVectorSlice.empty()) { 3857 // The insert point is the last build vector instruction. The vectorized 3858 // root will precede it. This guarantees that we get an instruction. The 3859 // vectorized tree could have been constant folded. 3860 Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back()); 3861 unsigned VecIdx = 0; 3862 for (auto &V : BuildVectorSlice) { 3863 IRBuilder<NoFolder> Builder(InsertAfter->getParent(), 3864 ++BasicBlock::iterator(InsertAfter)); 3865 Instruction *I = cast<Instruction>(V); 3866 assert(isa<InsertElementInst>(I) || isa<InsertValueInst>(I)); 3867 Instruction *Extract = cast<Instruction>(Builder.CreateExtractElement( 3868 VectorizedRoot, Builder.getInt32(VecIdx++))); 3869 I->setOperand(1, Extract); 3870 I->removeFromParent(); 3871 I->insertAfter(Extract); 3872 InsertAfter = I; 3873 } 3874 } 3875 // Move to the next bundle. 3876 i += VF - 1; 3877 Changed = true; 3878 } 3879 } 3880 3881 return Changed; 3882 } 3883 3884 bool SLPVectorizerPass::tryToVectorize(BinaryOperator *V, BoUpSLP &R) { 3885 if (!V) 3886 return false; 3887 3888 // Try to vectorize V. 3889 if (tryToVectorizePair(V->getOperand(0), V->getOperand(1), R)) 3890 return true; 3891 3892 BinaryOperator *A = dyn_cast<BinaryOperator>(V->getOperand(0)); 3893 BinaryOperator *B = dyn_cast<BinaryOperator>(V->getOperand(1)); 3894 // Try to skip B. 3895 if (B && B->hasOneUse()) { 3896 BinaryOperator *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 3897 BinaryOperator *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 3898 if (tryToVectorizePair(A, B0, R)) { 3899 return true; 3900 } 3901 if (tryToVectorizePair(A, B1, R)) { 3902 return true; 3903 } 3904 } 3905 3906 // Try to skip A. 3907 if (A && A->hasOneUse()) { 3908 BinaryOperator *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 3909 BinaryOperator *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 3910 if (tryToVectorizePair(A0, B, R)) { 3911 return true; 3912 } 3913 if (tryToVectorizePair(A1, B, R)) { 3914 return true; 3915 } 3916 } 3917 return 0; 3918 } 3919 3920 /// \brief Generate a shuffle mask to be used in a reduction tree. 3921 /// 3922 /// \param VecLen The length of the vector to be reduced. 3923 /// \param NumEltsToRdx The number of elements that should be reduced in the 3924 /// vector. 3925 /// \param IsPairwise Whether the reduction is a pairwise or splitting 3926 /// reduction. A pairwise reduction will generate a mask of 3927 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 3928 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 3929 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 3930 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 3931 bool IsPairwise, bool IsLeft, 3932 IRBuilder<> &Builder) { 3933 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 3934 3935 SmallVector<Constant *, 32> ShuffleMask( 3936 VecLen, UndefValue::get(Builder.getInt32Ty())); 3937 3938 if (IsPairwise) 3939 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 3940 for (unsigned i = 0; i != NumEltsToRdx; ++i) 3941 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 3942 else 3943 // Move the upper half of the vector to the lower half. 3944 for (unsigned i = 0; i != NumEltsToRdx; ++i) 3945 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 3946 3947 return ConstantVector::get(ShuffleMask); 3948 } 3949 3950 3951 /// Model horizontal reductions. 3952 /// 3953 /// A horizontal reduction is a tree of reduction operations (currently add and 3954 /// fadd) that has operations that can be put into a vector as its leaf. 3955 /// For example, this tree: 3956 /// 3957 /// mul mul mul mul 3958 /// \ / \ / 3959 /// + + 3960 /// \ / 3961 /// + 3962 /// This tree has "mul" as its reduced values and "+" as its reduction 3963 /// operations. A reduction might be feeding into a store or a binary operation 3964 /// feeding a phi. 3965 /// ... 3966 /// \ / 3967 /// + 3968 /// | 3969 /// phi += 3970 /// 3971 /// Or: 3972 /// ... 3973 /// \ / 3974 /// + 3975 /// | 3976 /// *p = 3977 /// 3978 class HorizontalReduction { 3979 SmallVector<Value *, 16> ReductionOps; 3980 SmallVector<Value *, 32> ReducedVals; 3981 3982 BinaryOperator *ReductionRoot; 3983 PHINode *ReductionPHI; 3984 3985 /// The opcode of the reduction. 3986 unsigned ReductionOpcode; 3987 /// The opcode of the values we perform a reduction on. 3988 unsigned ReducedValueOpcode; 3989 /// Should we model this reduction as a pairwise reduction tree or a tree that 3990 /// splits the vector in halves and adds those halves. 3991 bool IsPairwiseReduction; 3992 3993 public: 3994 /// The width of one full horizontal reduction operation. 3995 unsigned ReduxWidth; 3996 3997 /// Minimal width of available vector registers. It's used to determine 3998 /// ReduxWidth. 3999 unsigned MinVecRegSize; 4000 4001 HorizontalReduction(unsigned MinVecRegSize) 4002 : ReductionRoot(nullptr), ReductionPHI(nullptr), ReductionOpcode(0), 4003 ReducedValueOpcode(0), IsPairwiseReduction(false), ReduxWidth(0), 4004 MinVecRegSize(MinVecRegSize) {} 4005 4006 /// \brief Try to find a reduction tree. 4007 bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B) { 4008 assert((!Phi || 4009 std::find(Phi->op_begin(), Phi->op_end(), B) != Phi->op_end()) && 4010 "Thi phi needs to use the binary operator"); 4011 4012 // We could have a initial reductions that is not an add. 4013 // r *= v1 + v2 + v3 + v4 4014 // In such a case start looking for a tree rooted in the first '+'. 4015 if (Phi) { 4016 if (B->getOperand(0) == Phi) { 4017 Phi = nullptr; 4018 B = dyn_cast<BinaryOperator>(B->getOperand(1)); 4019 } else if (B->getOperand(1) == Phi) { 4020 Phi = nullptr; 4021 B = dyn_cast<BinaryOperator>(B->getOperand(0)); 4022 } 4023 } 4024 4025 if (!B) 4026 return false; 4027 4028 Type *Ty = B->getType(); 4029 if (!isValidElementType(Ty)) 4030 return false; 4031 4032 const DataLayout &DL = B->getModule()->getDataLayout(); 4033 ReductionOpcode = B->getOpcode(); 4034 ReducedValueOpcode = 0; 4035 // FIXME: Register size should be a parameter to this function, so we can 4036 // try different vectorization factors. 4037 ReduxWidth = MinVecRegSize / DL.getTypeSizeInBits(Ty); 4038 ReductionRoot = B; 4039 ReductionPHI = Phi; 4040 4041 if (ReduxWidth < 4) 4042 return false; 4043 4044 // We currently only support adds. 4045 if (ReductionOpcode != Instruction::Add && 4046 ReductionOpcode != Instruction::FAdd) 4047 return false; 4048 4049 // Post order traverse the reduction tree starting at B. We only handle true 4050 // trees containing only binary operators or selects. 4051 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 4052 Stack.push_back(std::make_pair(B, 0)); 4053 while (!Stack.empty()) { 4054 Instruction *TreeN = Stack.back().first; 4055 unsigned EdgeToVist = Stack.back().second++; 4056 bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode; 4057 4058 // Only handle trees in the current basic block. 4059 if (TreeN->getParent() != B->getParent()) 4060 return false; 4061 4062 // Each tree node needs to have one user except for the ultimate 4063 // reduction. 4064 if (!TreeN->hasOneUse() && TreeN != B) 4065 return false; 4066 4067 // Postorder vist. 4068 if (EdgeToVist == 2 || IsReducedValue) { 4069 if (IsReducedValue) { 4070 // Make sure that the opcodes of the operations that we are going to 4071 // reduce match. 4072 if (!ReducedValueOpcode) 4073 ReducedValueOpcode = TreeN->getOpcode(); 4074 else if (ReducedValueOpcode != TreeN->getOpcode()) 4075 return false; 4076 ReducedVals.push_back(TreeN); 4077 } else { 4078 // We need to be able to reassociate the adds. 4079 if (!TreeN->isAssociative()) 4080 return false; 4081 ReductionOps.push_back(TreeN); 4082 } 4083 // Retract. 4084 Stack.pop_back(); 4085 continue; 4086 } 4087 4088 // Visit left or right. 4089 Value *NextV = TreeN->getOperand(EdgeToVist); 4090 // We currently only allow BinaryOperator's and SelectInst's as reduction 4091 // values in our tree. 4092 if (isa<BinaryOperator>(NextV) || isa<SelectInst>(NextV)) 4093 Stack.push_back(std::make_pair(cast<Instruction>(NextV), 0)); 4094 else if (NextV != Phi) 4095 return false; 4096 } 4097 return true; 4098 } 4099 4100 /// \brief Attempt to vectorize the tree found by 4101 /// matchAssociativeReduction. 4102 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 4103 if (ReducedVals.empty()) 4104 return false; 4105 4106 unsigned NumReducedVals = ReducedVals.size(); 4107 if (NumReducedVals < ReduxWidth) 4108 return false; 4109 4110 Value *VectorizedTree = nullptr; 4111 IRBuilder<> Builder(ReductionRoot); 4112 FastMathFlags Unsafe; 4113 Unsafe.setUnsafeAlgebra(); 4114 Builder.setFastMathFlags(Unsafe); 4115 unsigned i = 0; 4116 4117 for (; i < NumReducedVals - ReduxWidth + 1; i += ReduxWidth) { 4118 V.buildTree(makeArrayRef(&ReducedVals[i], ReduxWidth), ReductionOps); 4119 V.computeMinimumValueSizes(); 4120 4121 // Estimate cost. 4122 int Cost = V.getTreeCost() + getReductionCost(TTI, ReducedVals[i]); 4123 if (Cost >= -SLPCostThreshold) 4124 break; 4125 4126 DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost 4127 << ". (HorRdx)\n"); 4128 4129 // Vectorize a tree. 4130 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 4131 Value *VectorizedRoot = V.vectorizeTree(); 4132 4133 // Emit a reduction. 4134 Value *ReducedSubTree = emitReduction(VectorizedRoot, Builder); 4135 if (VectorizedTree) { 4136 Builder.SetCurrentDebugLocation(Loc); 4137 VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree, 4138 ReducedSubTree, "bin.rdx"); 4139 } else 4140 VectorizedTree = ReducedSubTree; 4141 } 4142 4143 if (VectorizedTree) { 4144 // Finish the reduction. 4145 for (; i < NumReducedVals; ++i) { 4146 Builder.SetCurrentDebugLocation( 4147 cast<Instruction>(ReducedVals[i])->getDebugLoc()); 4148 VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree, 4149 ReducedVals[i]); 4150 } 4151 // Update users. 4152 if (ReductionPHI) { 4153 assert(ReductionRoot && "Need a reduction operation"); 4154 ReductionRoot->setOperand(0, VectorizedTree); 4155 ReductionRoot->setOperand(1, ReductionPHI); 4156 } else 4157 ReductionRoot->replaceAllUsesWith(VectorizedTree); 4158 } 4159 return VectorizedTree != nullptr; 4160 } 4161 4162 unsigned numReductionValues() const { 4163 return ReducedVals.size(); 4164 } 4165 4166 private: 4167 /// \brief Calculate the cost of a reduction. 4168 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal) { 4169 Type *ScalarTy = FirstReducedVal->getType(); 4170 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 4171 4172 int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true); 4173 int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false); 4174 4175 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 4176 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 4177 4178 int ScalarReduxCost = 4179 ReduxWidth * TTI->getArithmeticInstrCost(ReductionOpcode, VecTy); 4180 4181 DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 4182 << " for reduction that starts with " << *FirstReducedVal 4183 << " (It is a " 4184 << (IsPairwiseReduction ? "pairwise" : "splitting") 4185 << " reduction)\n"); 4186 4187 return VecReduxCost - ScalarReduxCost; 4188 } 4189 4190 static Value *createBinOp(IRBuilder<> &Builder, unsigned Opcode, Value *L, 4191 Value *R, const Twine &Name = "") { 4192 if (Opcode == Instruction::FAdd) 4193 return Builder.CreateFAdd(L, R, Name); 4194 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, L, R, Name); 4195 } 4196 4197 /// \brief Emit a horizontal reduction of the vectorized value. 4198 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder) { 4199 assert(VectorizedValue && "Need to have a vectorized tree node"); 4200 assert(isPowerOf2_32(ReduxWidth) && 4201 "We only handle power-of-two reductions for now"); 4202 4203 Value *TmpVec = VectorizedValue; 4204 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 4205 if (IsPairwiseReduction) { 4206 Value *LeftMask = 4207 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 4208 Value *RightMask = 4209 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 4210 4211 Value *LeftShuf = Builder.CreateShuffleVector( 4212 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 4213 Value *RightShuf = Builder.CreateShuffleVector( 4214 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 4215 "rdx.shuf.r"); 4216 TmpVec = createBinOp(Builder, ReductionOpcode, LeftShuf, RightShuf, 4217 "bin.rdx"); 4218 } else { 4219 Value *UpperHalf = 4220 createRdxShuffleMask(ReduxWidth, i, false, false, Builder); 4221 Value *Shuf = Builder.CreateShuffleVector( 4222 TmpVec, UndefValue::get(TmpVec->getType()), UpperHalf, "rdx.shuf"); 4223 TmpVec = createBinOp(Builder, ReductionOpcode, TmpVec, Shuf, "bin.rdx"); 4224 } 4225 } 4226 4227 // The result is in the first element of the vector. 4228 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 4229 } 4230 }; 4231 4232 /// \brief Recognize construction of vectors like 4233 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 4234 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 4235 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 4236 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 4237 /// 4238 /// Returns true if it matches 4239 /// 4240 static bool findBuildVector(InsertElementInst *FirstInsertElem, 4241 SmallVectorImpl<Value *> &BuildVector, 4242 SmallVectorImpl<Value *> &BuildVectorOpds) { 4243 if (!isa<UndefValue>(FirstInsertElem->getOperand(0))) 4244 return false; 4245 4246 InsertElementInst *IE = FirstInsertElem; 4247 while (true) { 4248 BuildVector.push_back(IE); 4249 BuildVectorOpds.push_back(IE->getOperand(1)); 4250 4251 if (IE->use_empty()) 4252 return false; 4253 4254 InsertElementInst *NextUse = dyn_cast<InsertElementInst>(IE->user_back()); 4255 if (!NextUse) 4256 return true; 4257 4258 // If this isn't the final use, make sure the next insertelement is the only 4259 // use. It's OK if the final constructed vector is used multiple times 4260 if (!IE->hasOneUse()) 4261 return false; 4262 4263 IE = NextUse; 4264 } 4265 4266 return false; 4267 } 4268 4269 /// \brief Like findBuildVector, but looks backwards for construction of aggregate. 4270 /// 4271 /// \return true if it matches. 4272 static bool findBuildAggregate(InsertValueInst *IV, 4273 SmallVectorImpl<Value *> &BuildVector, 4274 SmallVectorImpl<Value *> &BuildVectorOpds) { 4275 if (!IV->hasOneUse()) 4276 return false; 4277 Value *V = IV->getAggregateOperand(); 4278 if (!isa<UndefValue>(V)) { 4279 InsertValueInst *I = dyn_cast<InsertValueInst>(V); 4280 if (!I || !findBuildAggregate(I, BuildVector, BuildVectorOpds)) 4281 return false; 4282 } 4283 BuildVector.push_back(IV); 4284 BuildVectorOpds.push_back(IV->getInsertedValueOperand()); 4285 return true; 4286 } 4287 4288 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 4289 return V->getType() < V2->getType(); 4290 } 4291 4292 /// \brief Try and get a reduction value from a phi node. 4293 /// 4294 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 4295 /// if they come from either \p ParentBB or a containing loop latch. 4296 /// 4297 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 4298 /// if not possible. 4299 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 4300 BasicBlock *ParentBB, LoopInfo *LI) { 4301 // There are situations where the reduction value is not dominated by the 4302 // reduction phi. Vectorizing such cases has been reported to cause 4303 // miscompiles. See PR25787. 4304 auto DominatedReduxValue = [&](Value *R) { 4305 return ( 4306 dyn_cast<Instruction>(R) && 4307 DT->dominates(P->getParent(), dyn_cast<Instruction>(R)->getParent())); 4308 }; 4309 4310 Value *Rdx = nullptr; 4311 4312 // Return the incoming value if it comes from the same BB as the phi node. 4313 if (P->getIncomingBlock(0) == ParentBB) { 4314 Rdx = P->getIncomingValue(0); 4315 } else if (P->getIncomingBlock(1) == ParentBB) { 4316 Rdx = P->getIncomingValue(1); 4317 } 4318 4319 if (Rdx && DominatedReduxValue(Rdx)) 4320 return Rdx; 4321 4322 // Otherwise, check whether we have a loop latch to look at. 4323 Loop *BBL = LI->getLoopFor(ParentBB); 4324 if (!BBL) 4325 return nullptr; 4326 BasicBlock *BBLatch = BBL->getLoopLatch(); 4327 if (!BBLatch) 4328 return nullptr; 4329 4330 // There is a loop latch, return the incoming value if it comes from 4331 // that. This reduction pattern occassionaly turns up. 4332 if (P->getIncomingBlock(0) == BBLatch) { 4333 Rdx = P->getIncomingValue(0); 4334 } else if (P->getIncomingBlock(1) == BBLatch) { 4335 Rdx = P->getIncomingValue(1); 4336 } 4337 4338 if (Rdx && DominatedReduxValue(Rdx)) 4339 return Rdx; 4340 4341 return nullptr; 4342 } 4343 4344 /// \brief Attempt to reduce a horizontal reduction. 4345 /// If it is legal to match a horizontal reduction feeding 4346 /// the phi node P with reduction operators BI, then check if it 4347 /// can be done. 4348 /// \returns true if a horizontal reduction was matched and reduced. 4349 /// \returns false if a horizontal reduction was not matched. 4350 static bool canMatchHorizontalReduction(PHINode *P, BinaryOperator *BI, 4351 BoUpSLP &R, TargetTransformInfo *TTI, 4352 unsigned MinRegSize) { 4353 if (!ShouldVectorizeHor) 4354 return false; 4355 4356 HorizontalReduction HorRdx(MinRegSize); 4357 if (!HorRdx.matchAssociativeReduction(P, BI)) 4358 return false; 4359 4360 // If there is a sufficient number of reduction values, reduce 4361 // to a nearby power-of-2. Can safely generate oversized 4362 // vectors and rely on the backend to split them to legal sizes. 4363 HorRdx.ReduxWidth = 4364 std::max((uint64_t)4, PowerOf2Floor(HorRdx.numReductionValues())); 4365 4366 return HorRdx.tryToReduce(R, TTI); 4367 } 4368 4369 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 4370 bool Changed = false; 4371 SmallVector<Value *, 4> Incoming; 4372 SmallSet<Value *, 16> VisitedInstrs; 4373 4374 bool HaveVectorizedPhiNodes = true; 4375 while (HaveVectorizedPhiNodes) { 4376 HaveVectorizedPhiNodes = false; 4377 4378 // Collect the incoming values from the PHIs. 4379 Incoming.clear(); 4380 for (Instruction &I : *BB) { 4381 PHINode *P = dyn_cast<PHINode>(&I); 4382 if (!P) 4383 break; 4384 4385 if (!VisitedInstrs.count(P)) 4386 Incoming.push_back(P); 4387 } 4388 4389 // Sort by type. 4390 std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc); 4391 4392 // Try to vectorize elements base on their type. 4393 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 4394 E = Incoming.end(); 4395 IncIt != E;) { 4396 4397 // Look for the next elements with the same type. 4398 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 4399 while (SameTypeIt != E && 4400 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 4401 VisitedInstrs.insert(*SameTypeIt); 4402 ++SameTypeIt; 4403 } 4404 4405 // Try to vectorize them. 4406 unsigned NumElts = (SameTypeIt - IncIt); 4407 DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n"); 4408 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R)) { 4409 // Success start over because instructions might have been changed. 4410 HaveVectorizedPhiNodes = true; 4411 Changed = true; 4412 break; 4413 } 4414 4415 // Start over at the next instruction of a different type (or the end). 4416 IncIt = SameTypeIt; 4417 } 4418 } 4419 4420 VisitedInstrs.clear(); 4421 4422 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) { 4423 // We may go through BB multiple times so skip the one we have checked. 4424 if (!VisitedInstrs.insert(&*it).second) 4425 continue; 4426 4427 if (isa<DbgInfoIntrinsic>(it)) 4428 continue; 4429 4430 // Try to vectorize reductions that use PHINodes. 4431 if (PHINode *P = dyn_cast<PHINode>(it)) { 4432 // Check that the PHI is a reduction PHI. 4433 if (P->getNumIncomingValues() != 2) 4434 return Changed; 4435 4436 Value *Rdx = getReductionValue(DT, P, BB, LI); 4437 4438 // Check if this is a Binary Operator. 4439 BinaryOperator *BI = dyn_cast_or_null<BinaryOperator>(Rdx); 4440 if (!BI) 4441 continue; 4442 4443 // Try to match and vectorize a horizontal reduction. 4444 if (canMatchHorizontalReduction(P, BI, R, TTI, R.getMinVecRegSize())) { 4445 Changed = true; 4446 it = BB->begin(); 4447 e = BB->end(); 4448 continue; 4449 } 4450 4451 Value *Inst = BI->getOperand(0); 4452 if (Inst == P) 4453 Inst = BI->getOperand(1); 4454 4455 if (tryToVectorize(dyn_cast<BinaryOperator>(Inst), R)) { 4456 // We would like to start over since some instructions are deleted 4457 // and the iterator may become invalid value. 4458 Changed = true; 4459 it = BB->begin(); 4460 e = BB->end(); 4461 continue; 4462 } 4463 4464 continue; 4465 } 4466 4467 if (ShouldStartVectorizeHorAtStore) 4468 if (StoreInst *SI = dyn_cast<StoreInst>(it)) 4469 if (BinaryOperator *BinOp = 4470 dyn_cast<BinaryOperator>(SI->getValueOperand())) { 4471 if (canMatchHorizontalReduction(nullptr, BinOp, R, TTI, 4472 R.getMinVecRegSize()) || 4473 tryToVectorize(BinOp, R)) { 4474 Changed = true; 4475 it = BB->begin(); 4476 e = BB->end(); 4477 continue; 4478 } 4479 } 4480 4481 // Try to vectorize horizontal reductions feeding into a return. 4482 if (ReturnInst *RI = dyn_cast<ReturnInst>(it)) 4483 if (RI->getNumOperands() != 0) 4484 if (BinaryOperator *BinOp = 4485 dyn_cast<BinaryOperator>(RI->getOperand(0))) { 4486 DEBUG(dbgs() << "SLP: Found a return to vectorize.\n"); 4487 if (tryToVectorizePair(BinOp->getOperand(0), 4488 BinOp->getOperand(1), R)) { 4489 Changed = true; 4490 it = BB->begin(); 4491 e = BB->end(); 4492 continue; 4493 } 4494 } 4495 4496 // Try to vectorize trees that start at compare instructions. 4497 if (CmpInst *CI = dyn_cast<CmpInst>(it)) { 4498 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) { 4499 Changed = true; 4500 // We would like to start over since some instructions are deleted 4501 // and the iterator may become invalid value. 4502 it = BB->begin(); 4503 e = BB->end(); 4504 continue; 4505 } 4506 4507 for (int i = 0; i < 2; ++i) { 4508 if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i))) { 4509 if (tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R)) { 4510 Changed = true; 4511 // We would like to start over since some instructions are deleted 4512 // and the iterator may become invalid value. 4513 it = BB->begin(); 4514 e = BB->end(); 4515 break; 4516 } 4517 } 4518 } 4519 continue; 4520 } 4521 4522 // Try to vectorize trees that start at insertelement instructions. 4523 if (InsertElementInst *FirstInsertElem = dyn_cast<InsertElementInst>(it)) { 4524 SmallVector<Value *, 16> BuildVector; 4525 SmallVector<Value *, 16> BuildVectorOpds; 4526 if (!findBuildVector(FirstInsertElem, BuildVector, BuildVectorOpds)) 4527 continue; 4528 4529 // Vectorize starting with the build vector operands ignoring the 4530 // BuildVector instructions for the purpose of scheduling and user 4531 // extraction. 4532 if (tryToVectorizeList(BuildVectorOpds, R, BuildVector)) { 4533 Changed = true; 4534 it = BB->begin(); 4535 e = BB->end(); 4536 } 4537 4538 continue; 4539 } 4540 4541 // Try to vectorize trees that start at insertvalue instructions feeding into 4542 // a store. 4543 if (StoreInst *SI = dyn_cast<StoreInst>(it)) { 4544 if (InsertValueInst *LastInsertValue = dyn_cast<InsertValueInst>(SI->getValueOperand())) { 4545 const DataLayout &DL = BB->getModule()->getDataLayout(); 4546 if (R.canMapToVector(SI->getValueOperand()->getType(), DL)) { 4547 SmallVector<Value *, 16> BuildVector; 4548 SmallVector<Value *, 16> BuildVectorOpds; 4549 if (!findBuildAggregate(LastInsertValue, BuildVector, BuildVectorOpds)) 4550 continue; 4551 4552 DEBUG(dbgs() << "SLP: store of array mappable to vector: " << *SI << "\n"); 4553 if (tryToVectorizeList(BuildVectorOpds, R, BuildVector, false)) { 4554 Changed = true; 4555 it = BB->begin(); 4556 e = BB->end(); 4557 } 4558 continue; 4559 } 4560 } 4561 } 4562 } 4563 4564 return Changed; 4565 } 4566 4567 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 4568 auto Changed = false; 4569 for (auto &Entry : GEPs) { 4570 4571 // If the getelementptr list has fewer than two elements, there's nothing 4572 // to do. 4573 if (Entry.second.size() < 2) 4574 continue; 4575 4576 DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 4577 << Entry.second.size() << ".\n"); 4578 4579 // We process the getelementptr list in chunks of 16 (like we do for 4580 // stores) to minimize compile-time. 4581 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) { 4582 auto Len = std::min<unsigned>(BE - BI, 16); 4583 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 4584 4585 // Initialize a set a candidate getelementptrs. Note that we use a 4586 // SetVector here to preserve program order. If the index computations 4587 // are vectorizable and begin with loads, we want to minimize the chance 4588 // of having to reorder them later. 4589 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 4590 4591 // Some of the candidates may have already been vectorized after we 4592 // initially collected them. If so, the WeakVHs will have nullified the 4593 // values, so remove them from the set of candidates. 4594 Candidates.remove(nullptr); 4595 4596 // Remove from the set of candidates all pairs of getelementptrs with 4597 // constant differences. Such getelementptrs are likely not good 4598 // candidates for vectorization in a bottom-up phase since one can be 4599 // computed from the other. We also ensure all candidate getelementptr 4600 // indices are unique. 4601 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 4602 auto *GEPI = cast<GetElementPtrInst>(GEPList[I]); 4603 if (!Candidates.count(GEPI)) 4604 continue; 4605 auto *SCEVI = SE->getSCEV(GEPList[I]); 4606 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 4607 auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]); 4608 auto *SCEVJ = SE->getSCEV(GEPList[J]); 4609 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 4610 Candidates.remove(GEPList[I]); 4611 Candidates.remove(GEPList[J]); 4612 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 4613 Candidates.remove(GEPList[J]); 4614 } 4615 } 4616 } 4617 4618 // We break out of the above computation as soon as we know there are 4619 // fewer than two candidates remaining. 4620 if (Candidates.size() < 2) 4621 continue; 4622 4623 // Add the single, non-constant index of each candidate to the bundle. We 4624 // ensured the indices met these constraints when we originally collected 4625 // the getelementptrs. 4626 SmallVector<Value *, 16> Bundle(Candidates.size()); 4627 auto BundleIndex = 0u; 4628 for (auto *V : Candidates) { 4629 auto *GEP = cast<GetElementPtrInst>(V); 4630 auto *GEPIdx = GEP->idx_begin()->get(); 4631 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 4632 Bundle[BundleIndex++] = GEPIdx; 4633 } 4634 4635 // Try and vectorize the indices. We are currently only interested in 4636 // gather-like cases of the form: 4637 // 4638 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 4639 // 4640 // where the loads of "a", the loads of "b", and the subtractions can be 4641 // performed in parallel. It's likely that detecting this pattern in a 4642 // bottom-up phase will be simpler and less costly than building a 4643 // full-blown top-down phase beginning at the consecutive loads. 4644 Changed |= tryToVectorizeList(Bundle, R); 4645 } 4646 } 4647 return Changed; 4648 } 4649 4650 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 4651 bool Changed = false; 4652 // Attempt to sort and vectorize each of the store-groups. 4653 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 4654 ++it) { 4655 if (it->second.size() < 2) 4656 continue; 4657 4658 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 4659 << it->second.size() << ".\n"); 4660 4661 // Process the stores in chunks of 16. 4662 // TODO: The limit of 16 inhibits greater vectorization factors. 4663 // For example, AVX2 supports v32i8. Increasing this limit, however, 4664 // may cause a significant compile-time increase. 4665 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) { 4666 unsigned Len = std::min<unsigned>(CE - CI, 16); 4667 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), 4668 -SLPCostThreshold, R); 4669 } 4670 } 4671 return Changed; 4672 } 4673 4674 char SLPVectorizer::ID = 0; 4675 static const char lv_name[] = "SLP Vectorizer"; 4676 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 4677 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 4678 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 4679 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 4680 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 4681 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 4682 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 4683 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 4684 4685 namespace llvm { 4686 Pass *createSLPVectorizerPass() { return new SLPVectorizer(); } 4687 } 4688