1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive
10 // stores that can be put together into vector-stores. Next, it attempts to
11 // construct vectorizable tree using the use-def chains. If a profitable tree
12 // was found, the SLP vectorizer performs vectorization on the tree.
13 //
14 // The pass is inspired by the work described in the paper:
15 //  "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/DenseSet.h"
23 #include "llvm/ADT/MapVector.h"
24 #include "llvm/ADT/None.h"
25 #include "llvm/ADT/Optional.h"
26 #include "llvm/ADT/PostOrderIterator.h"
27 #include "llvm/ADT/STLExtras.h"
28 #include "llvm/ADT/SetVector.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/ADT/iterator.h"
34 #include "llvm/ADT/iterator_range.h"
35 #include "llvm/Analysis/AliasAnalysis.h"
36 #include "llvm/Analysis/CodeMetrics.h"
37 #include "llvm/Analysis/DemandedBits.h"
38 #include "llvm/Analysis/GlobalsModRef.h"
39 #include "llvm/Analysis/LoopAccessAnalysis.h"
40 #include "llvm/Analysis/LoopInfo.h"
41 #include "llvm/Analysis/MemoryLocation.h"
42 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
43 #include "llvm/Analysis/ScalarEvolution.h"
44 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
45 #include "llvm/Analysis/TargetLibraryInfo.h"
46 #include "llvm/Analysis/TargetTransformInfo.h"
47 #include "llvm/Analysis/ValueTracking.h"
48 #include "llvm/Analysis/VectorUtils.h"
49 #include "llvm/IR/Attributes.h"
50 #include "llvm/IR/BasicBlock.h"
51 #include "llvm/IR/Constant.h"
52 #include "llvm/IR/Constants.h"
53 #include "llvm/IR/DataLayout.h"
54 #include "llvm/IR/DebugLoc.h"
55 #include "llvm/IR/DerivedTypes.h"
56 #include "llvm/IR/Dominators.h"
57 #include "llvm/IR/Function.h"
58 #include "llvm/IR/IRBuilder.h"
59 #include "llvm/IR/InstrTypes.h"
60 #include "llvm/IR/Instruction.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/IR/IntrinsicInst.h"
63 #include "llvm/IR/Intrinsics.h"
64 #include "llvm/IR/Module.h"
65 #include "llvm/IR/NoFolder.h"
66 #include "llvm/IR/Operator.h"
67 #include "llvm/IR/PassManager.h"
68 #include "llvm/IR/PatternMatch.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/IR/Use.h"
71 #include "llvm/IR/User.h"
72 #include "llvm/IR/Value.h"
73 #include "llvm/IR/ValueHandle.h"
74 #include "llvm/IR/Verifier.h"
75 #include "llvm/Pass.h"
76 #include "llvm/Support/Casting.h"
77 #include "llvm/Support/CommandLine.h"
78 #include "llvm/Support/Compiler.h"
79 #include "llvm/Support/DOTGraphTraits.h"
80 #include "llvm/Support/Debug.h"
81 #include "llvm/Support/ErrorHandling.h"
82 #include "llvm/Support/GraphWriter.h"
83 #include "llvm/Support/KnownBits.h"
84 #include "llvm/Support/MathExtras.h"
85 #include "llvm/Support/raw_ostream.h"
86 #include "llvm/Transforms/Utils/LoopUtils.h"
87 #include "llvm/Transforms/Vectorize.h"
88 #include <algorithm>
89 #include <cassert>
90 #include <cstdint>
91 #include <iterator>
92 #include <memory>
93 #include <set>
94 #include <string>
95 #include <tuple>
96 #include <utility>
97 #include <vector>
98 
99 using namespace llvm;
100 using namespace llvm::PatternMatch;
101 using namespace slpvectorizer;
102 
103 #define SV_NAME "slp-vectorizer"
104 #define DEBUG_TYPE "SLP"
105 
106 STATISTIC(NumVectorInstructions, "Number of vector instructions generated");
107 
108 static cl::opt<int>
109     SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
110                      cl::desc("Only vectorize if you gain more than this "
111                               "number "));
112 
113 static cl::opt<bool>
114 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
115                    cl::desc("Attempt to vectorize horizontal reductions"));
116 
117 static cl::opt<bool> ShouldStartVectorizeHorAtStore(
118     "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
119     cl::desc(
120         "Attempt to vectorize horizontal reductions feeding into a store"));
121 
122 static cl::opt<int>
123 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
124     cl::desc("Attempt to vectorize for this register size in bits"));
125 
126 /// Limits the size of scheduling regions in a block.
127 /// It avoid long compile times for _very_ large blocks where vector
128 /// instructions are spread over a wide range.
129 /// This limit is way higher than needed by real-world functions.
130 static cl::opt<int>
131 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
132     cl::desc("Limit the size of the SLP scheduling region per block"));
133 
134 static cl::opt<int> MinVectorRegSizeOption(
135     "slp-min-reg-size", cl::init(128), cl::Hidden,
136     cl::desc("Attempt to vectorize for this register size in bits"));
137 
138 static cl::opt<unsigned> RecursionMaxDepth(
139     "slp-recursion-max-depth", cl::init(12), cl::Hidden,
140     cl::desc("Limit the recursion depth when building a vectorizable tree"));
141 
142 static cl::opt<unsigned> MinTreeSize(
143     "slp-min-tree-size", cl::init(3), cl::Hidden,
144     cl::desc("Only vectorize small trees if they are fully vectorizable"));
145 
146 static cl::opt<bool>
147     ViewSLPTree("view-slp-tree", cl::Hidden,
148                 cl::desc("Display the SLP trees with Graphviz"));
149 
150 // Limit the number of alias checks. The limit is chosen so that
151 // it has no negative effect on the llvm benchmarks.
152 static const unsigned AliasedCheckLimit = 10;
153 
154 // Another limit for the alias checks: The maximum distance between load/store
155 // instructions where alias checks are done.
156 // This limit is useful for very large basic blocks.
157 static const unsigned MaxMemDepDistance = 160;
158 
159 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
160 /// regions to be handled.
161 static const int MinScheduleRegionSize = 16;
162 
163 /// Predicate for the element types that the SLP vectorizer supports.
164 ///
165 /// The most important thing to filter here are types which are invalid in LLVM
166 /// vectors. We also filter target specific types which have absolutely no
167 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
168 /// avoids spending time checking the cost model and realizing that they will
169 /// be inevitably scalarized.
170 static bool isValidElementType(Type *Ty) {
171   return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
172          !Ty->isPPC_FP128Ty();
173 }
174 
175 /// \returns true if all of the instructions in \p VL are in the same block or
176 /// false otherwise.
177 static bool allSameBlock(ArrayRef<Value *> VL) {
178   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
179   if (!I0)
180     return false;
181   BasicBlock *BB = I0->getParent();
182   for (int i = 1, e = VL.size(); i < e; i++) {
183     Instruction *I = dyn_cast<Instruction>(VL[i]);
184     if (!I)
185       return false;
186 
187     if (BB != I->getParent())
188       return false;
189   }
190   return true;
191 }
192 
193 /// \returns True if all of the values in \p VL are constants.
194 static bool allConstant(ArrayRef<Value *> VL) {
195   for (Value *i : VL)
196     if (!isa<Constant>(i))
197       return false;
198   return true;
199 }
200 
201 /// \returns True if all of the values in \p VL are identical.
202 static bool isSplat(ArrayRef<Value *> VL) {
203   for (unsigned i = 1, e = VL.size(); i < e; ++i)
204     if (VL[i] != VL[0])
205       return false;
206   return true;
207 }
208 
209 /// Checks if the vector of instructions can be represented as a shuffle, like:
210 /// %x0 = extractelement <4 x i8> %x, i32 0
211 /// %x3 = extractelement <4 x i8> %x, i32 3
212 /// %y1 = extractelement <4 x i8> %y, i32 1
213 /// %y2 = extractelement <4 x i8> %y, i32 2
214 /// %x0x0 = mul i8 %x0, %x0
215 /// %x3x3 = mul i8 %x3, %x3
216 /// %y1y1 = mul i8 %y1, %y1
217 /// %y2y2 = mul i8 %y2, %y2
218 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0
219 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1
220 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2
221 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3
222 /// ret <4 x i8> %ins4
223 /// can be transformed into:
224 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5,
225 ///                                                         i32 6>
226 /// %2 = mul <4 x i8> %1, %1
227 /// ret <4 x i8> %2
228 /// We convert this initially to something like:
229 /// %x0 = extractelement <4 x i8> %x, i32 0
230 /// %x3 = extractelement <4 x i8> %x, i32 3
231 /// %y1 = extractelement <4 x i8> %y, i32 1
232 /// %y2 = extractelement <4 x i8> %y, i32 2
233 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0
234 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1
235 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2
236 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3
237 /// %5 = mul <4 x i8> %4, %4
238 /// %6 = extractelement <4 x i8> %5, i32 0
239 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0
240 /// %7 = extractelement <4 x i8> %5, i32 1
241 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1
242 /// %8 = extractelement <4 x i8> %5, i32 2
243 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2
244 /// %9 = extractelement <4 x i8> %5, i32 3
245 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3
246 /// ret <4 x i8> %ins4
247 /// InstCombiner transforms this into a shuffle and vector mul
248 /// TODO: Can we split off and reuse the shuffle mask detection from
249 /// TargetTransformInfo::getInstructionThroughput?
250 static Optional<TargetTransformInfo::ShuffleKind>
251 isShuffle(ArrayRef<Value *> VL) {
252   auto *EI0 = cast<ExtractElementInst>(VL[0]);
253   unsigned Size = EI0->getVectorOperandType()->getVectorNumElements();
254   Value *Vec1 = nullptr;
255   Value *Vec2 = nullptr;
256   enum ShuffleMode { Unknown, Select, Permute };
257   ShuffleMode CommonShuffleMode = Unknown;
258   for (unsigned I = 0, E = VL.size(); I < E; ++I) {
259     auto *EI = cast<ExtractElementInst>(VL[I]);
260     auto *Vec = EI->getVectorOperand();
261     // All vector operands must have the same number of vector elements.
262     if (Vec->getType()->getVectorNumElements() != Size)
263       return None;
264     auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand());
265     if (!Idx)
266       return None;
267     // Undefined behavior if Idx is negative or >= Size.
268     if (Idx->getValue().uge(Size))
269       continue;
270     unsigned IntIdx = Idx->getValue().getZExtValue();
271     // We can extractelement from undef vector.
272     if (isa<UndefValue>(Vec))
273       continue;
274     // For correct shuffling we have to have at most 2 different vector operands
275     // in all extractelement instructions.
276     if (!Vec1 || Vec1 == Vec)
277       Vec1 = Vec;
278     else if (!Vec2 || Vec2 == Vec)
279       Vec2 = Vec;
280     else
281       return None;
282     if (CommonShuffleMode == Permute)
283       continue;
284     // If the extract index is not the same as the operation number, it is a
285     // permutation.
286     if (IntIdx != I) {
287       CommonShuffleMode = Permute;
288       continue;
289     }
290     CommonShuffleMode = Select;
291   }
292   // If we're not crossing lanes in different vectors, consider it as blending.
293   if (CommonShuffleMode == Select && Vec2)
294     return TargetTransformInfo::SK_Select;
295   // If Vec2 was never used, we have a permutation of a single vector, otherwise
296   // we have permutation of 2 vectors.
297   return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc
298               : TargetTransformInfo::SK_PermuteSingleSrc;
299 }
300 
301 namespace {
302 
303 /// Main data required for vectorization of instructions.
304 struct InstructionsState {
305   /// The very first instruction in the list with the main opcode.
306   Value *OpValue = nullptr;
307 
308   /// The main/alternate instruction.
309   Instruction *MainOp = nullptr;
310   Instruction *AltOp = nullptr;
311 
312   /// The main/alternate opcodes for the list of instructions.
313   unsigned getOpcode() const {
314     return MainOp ? MainOp->getOpcode() : 0;
315   }
316 
317   unsigned getAltOpcode() const {
318     return AltOp ? AltOp->getOpcode() : 0;
319   }
320 
321   /// Some of the instructions in the list have alternate opcodes.
322   bool isAltShuffle() const { return getOpcode() != getAltOpcode(); }
323 
324   bool isOpcodeOrAlt(Instruction *I) const {
325     unsigned CheckedOpcode = I->getOpcode();
326     return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode;
327   }
328 
329   InstructionsState() = delete;
330   InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp)
331       : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {}
332 };
333 
334 } // end anonymous namespace
335 
336 /// Chooses the correct key for scheduling data. If \p Op has the same (or
337 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p
338 /// OpValue.
339 static Value *isOneOf(const InstructionsState &S, Value *Op) {
340   auto *I = dyn_cast<Instruction>(Op);
341   if (I && S.isOpcodeOrAlt(I))
342     return Op;
343   return S.OpValue;
344 }
345 
346 /// \returns analysis of the Instructions in \p VL described in
347 /// InstructionsState, the Opcode that we suppose the whole list
348 /// could be vectorized even if its structure is diverse.
349 static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
350                                        unsigned BaseIndex = 0) {
351   // Make sure these are all Instructions.
352   if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); }))
353     return InstructionsState(VL[BaseIndex], nullptr, nullptr);
354 
355   bool IsCastOp = isa<CastInst>(VL[BaseIndex]);
356   bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]);
357   unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode();
358   unsigned AltOpcode = Opcode;
359   unsigned AltIndex = BaseIndex;
360 
361   // Check for one alternate opcode from another BinaryOperator.
362   // TODO - generalize to support all operators (types, calls etc.).
363   for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) {
364     unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode();
365     if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) {
366       if (InstOpcode == Opcode || InstOpcode == AltOpcode)
367         continue;
368       if (Opcode == AltOpcode) {
369         AltOpcode = InstOpcode;
370         AltIndex = Cnt;
371         continue;
372       }
373     } else if (IsCastOp && isa<CastInst>(VL[Cnt])) {
374       Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType();
375       Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType();
376       if (Ty0 == Ty1) {
377         if (InstOpcode == Opcode || InstOpcode == AltOpcode)
378           continue;
379         if (Opcode == AltOpcode) {
380           AltOpcode = InstOpcode;
381           AltIndex = Cnt;
382           continue;
383         }
384       }
385     } else if (InstOpcode == Opcode || InstOpcode == AltOpcode)
386       continue;
387     return InstructionsState(VL[BaseIndex], nullptr, nullptr);
388   }
389 
390   return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]),
391                            cast<Instruction>(VL[AltIndex]));
392 }
393 
394 /// \returns true if all of the values in \p VL have the same type or false
395 /// otherwise.
396 static bool allSameType(ArrayRef<Value *> VL) {
397   Type *Ty = VL[0]->getType();
398   for (int i = 1, e = VL.size(); i < e; i++)
399     if (VL[i]->getType() != Ty)
400       return false;
401 
402   return true;
403 }
404 
405 /// \returns True if Extract{Value,Element} instruction extracts element Idx.
406 static Optional<unsigned> getExtractIndex(Instruction *E) {
407   unsigned Opcode = E->getOpcode();
408   assert((Opcode == Instruction::ExtractElement ||
409           Opcode == Instruction::ExtractValue) &&
410          "Expected extractelement or extractvalue instruction.");
411   if (Opcode == Instruction::ExtractElement) {
412     auto *CI = dyn_cast<ConstantInt>(E->getOperand(1));
413     if (!CI)
414       return None;
415     return CI->getZExtValue();
416   }
417   ExtractValueInst *EI = cast<ExtractValueInst>(E);
418   if (EI->getNumIndices() != 1)
419     return None;
420   return *EI->idx_begin();
421 }
422 
423 /// \returns True if in-tree use also needs extract. This refers to
424 /// possible scalar operand in vectorized instruction.
425 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
426                                     TargetLibraryInfo *TLI) {
427   unsigned Opcode = UserInst->getOpcode();
428   switch (Opcode) {
429   case Instruction::Load: {
430     LoadInst *LI = cast<LoadInst>(UserInst);
431     return (LI->getPointerOperand() == Scalar);
432   }
433   case Instruction::Store: {
434     StoreInst *SI = cast<StoreInst>(UserInst);
435     return (SI->getPointerOperand() == Scalar);
436   }
437   case Instruction::Call: {
438     CallInst *CI = cast<CallInst>(UserInst);
439     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
440     for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
441       if (hasVectorInstrinsicScalarOpd(ID, i))
442         return (CI->getArgOperand(i) == Scalar);
443     }
444     LLVM_FALLTHROUGH;
445   }
446   default:
447     return false;
448   }
449 }
450 
451 /// \returns the AA location that is being access by the instruction.
452 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) {
453   if (StoreInst *SI = dyn_cast<StoreInst>(I))
454     return MemoryLocation::get(SI);
455   if (LoadInst *LI = dyn_cast<LoadInst>(I))
456     return MemoryLocation::get(LI);
457   return MemoryLocation();
458 }
459 
460 /// \returns True if the instruction is not a volatile or atomic load/store.
461 static bool isSimple(Instruction *I) {
462   if (LoadInst *LI = dyn_cast<LoadInst>(I))
463     return LI->isSimple();
464   if (StoreInst *SI = dyn_cast<StoreInst>(I))
465     return SI->isSimple();
466   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
467     return !MI->isVolatile();
468   return true;
469 }
470 
471 namespace llvm {
472 
473 namespace slpvectorizer {
474 
475 /// Bottom Up SLP Vectorizer.
476 class BoUpSLP {
477 public:
478   using ValueList = SmallVector<Value *, 8>;
479   using InstrList = SmallVector<Instruction *, 16>;
480   using ValueSet = SmallPtrSet<Value *, 16>;
481   using StoreList = SmallVector<StoreInst *, 8>;
482   using ExtraValueToDebugLocsMap =
483       MapVector<Value *, SmallVector<Instruction *, 2>>;
484 
485   BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
486           TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li,
487           DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB,
488           const DataLayout *DL, OptimizationRemarkEmitter *ORE)
489       : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC),
490         DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) {
491     CodeMetrics::collectEphemeralValues(F, AC, EphValues);
492     // Use the vector register size specified by the target unless overridden
493     // by a command-line option.
494     // TODO: It would be better to limit the vectorization factor based on
495     //       data type rather than just register size. For example, x86 AVX has
496     //       256-bit registers, but it does not support integer operations
497     //       at that width (that requires AVX2).
498     if (MaxVectorRegSizeOption.getNumOccurrences())
499       MaxVecRegSize = MaxVectorRegSizeOption;
500     else
501       MaxVecRegSize = TTI->getRegisterBitWidth(true);
502 
503     if (MinVectorRegSizeOption.getNumOccurrences())
504       MinVecRegSize = MinVectorRegSizeOption;
505     else
506       MinVecRegSize = TTI->getMinVectorRegisterBitWidth();
507   }
508 
509   /// Vectorize the tree that starts with the elements in \p VL.
510   /// Returns the vectorized root.
511   Value *vectorizeTree();
512 
513   /// Vectorize the tree but with the list of externally used values \p
514   /// ExternallyUsedValues. Values in this MapVector can be replaced but the
515   /// generated extractvalue instructions.
516   Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues);
517 
518   /// \returns the cost incurred by unwanted spills and fills, caused by
519   /// holding live values over call sites.
520   int getSpillCost();
521 
522   /// \returns the vectorization cost of the subtree that starts at \p VL.
523   /// A negative number means that this is profitable.
524   int getTreeCost();
525 
526   /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
527   /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
528   void buildTree(ArrayRef<Value *> Roots,
529                  ArrayRef<Value *> UserIgnoreLst = None);
530 
531   /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
532   /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking
533   /// into account (anf updating it, if required) list of externally used
534   /// values stored in \p ExternallyUsedValues.
535   void buildTree(ArrayRef<Value *> Roots,
536                  ExtraValueToDebugLocsMap &ExternallyUsedValues,
537                  ArrayRef<Value *> UserIgnoreLst = None);
538 
539   /// Clear the internal data structures that are created by 'buildTree'.
540   void deleteTree() {
541     VectorizableTree.clear();
542     ScalarToTreeEntry.clear();
543     MustGather.clear();
544     ExternalUses.clear();
545     NumOpsWantToKeepOrder.clear();
546     NumOpsWantToKeepOriginalOrder = 0;
547     for (auto &Iter : BlocksSchedules) {
548       BlockScheduling *BS = Iter.second.get();
549       BS->clear();
550     }
551     MinBWs.clear();
552   }
553 
554   unsigned getTreeSize() const { return VectorizableTree.size(); }
555 
556   /// Perform LICM and CSE on the newly generated gather sequences.
557   void optimizeGatherSequence();
558 
559   /// \returns The best order of instructions for vectorization.
560   Optional<ArrayRef<unsigned>> bestOrder() const {
561     auto I = std::max_element(
562         NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(),
563         [](const decltype(NumOpsWantToKeepOrder)::value_type &D1,
564            const decltype(NumOpsWantToKeepOrder)::value_type &D2) {
565           return D1.second < D2.second;
566         });
567     if (I == NumOpsWantToKeepOrder.end() ||
568         I->getSecond() <= NumOpsWantToKeepOriginalOrder)
569       return None;
570 
571     return makeArrayRef(I->getFirst());
572   }
573 
574   /// \return The vector element size in bits to use when vectorizing the
575   /// expression tree ending at \p V. If V is a store, the size is the width of
576   /// the stored value. Otherwise, the size is the width of the largest loaded
577   /// value reaching V. This method is used by the vectorizer to calculate
578   /// vectorization factors.
579   unsigned getVectorElementSize(Value *V);
580 
581   /// Compute the minimum type sizes required to represent the entries in a
582   /// vectorizable tree.
583   void computeMinimumValueSizes();
584 
585   // \returns maximum vector register size as set by TTI or overridden by cl::opt.
586   unsigned getMaxVecRegSize() const {
587     return MaxVecRegSize;
588   }
589 
590   // \returns minimum vector register size as set by cl::opt.
591   unsigned getMinVecRegSize() const {
592     return MinVecRegSize;
593   }
594 
595   /// Check if ArrayType or StructType is isomorphic to some VectorType.
596   ///
597   /// \returns number of elements in vector if isomorphism exists, 0 otherwise.
598   unsigned canMapToVector(Type *T, const DataLayout &DL) const;
599 
600   /// \returns True if the VectorizableTree is both tiny and not fully
601   /// vectorizable. We do not vectorize such trees.
602   bool isTreeTinyAndNotFullyVectorizable();
603 
604   OptimizationRemarkEmitter *getORE() { return ORE; }
605 
606 private:
607   struct TreeEntry;
608 
609   /// Checks if all users of \p I are the part of the vectorization tree.
610   bool areAllUsersVectorized(Instruction *I) const;
611 
612   /// \returns the cost of the vectorizable entry.
613   int getEntryCost(TreeEntry *E);
614 
615   /// This is the recursive part of buildTree.
616   void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, int);
617 
618   /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can
619   /// be vectorized to use the original vector (or aggregate "bitcast" to a
620   /// vector) and sets \p CurrentOrder to the identity permutation; otherwise
621   /// returns false, setting \p CurrentOrder to either an empty vector or a
622   /// non-identity permutation that allows to reuse extract instructions.
623   bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
624                        SmallVectorImpl<unsigned> &CurrentOrder) const;
625 
626   /// Vectorize a single entry in the tree.
627   Value *vectorizeTree(TreeEntry *E);
628 
629   /// Vectorize a single entry in the tree, starting in \p VL.
630   Value *vectorizeTree(ArrayRef<Value *> VL);
631 
632   /// \returns the scalarization cost for this type. Scalarization in this
633   /// context means the creation of vectors from a group of scalars.
634   int getGatherCost(Type *Ty, const DenseSet<unsigned> &ShuffledIndices);
635 
636   /// \returns the scalarization cost for this list of values. Assuming that
637   /// this subtree gets vectorized, we may need to extract the values from the
638   /// roots. This method calculates the cost of extracting the values.
639   int getGatherCost(ArrayRef<Value *> VL);
640 
641   /// Set the Builder insert point to one after the last instruction in
642   /// the bundle
643   void setInsertPointAfterBundle(ArrayRef<Value *> VL,
644                                  const InstructionsState &S);
645 
646   /// \returns a vector from a collection of scalars in \p VL.
647   Value *Gather(ArrayRef<Value *> VL, VectorType *Ty);
648 
649   /// \returns whether the VectorizableTree is fully vectorizable and will
650   /// be beneficial even the tree height is tiny.
651   bool isFullyVectorizableTinyTree();
652 
653   /// \reorder commutative operands in alt shuffle if they result in
654   ///  vectorized code.
655   void reorderAltShuffleOperands(const InstructionsState &S,
656                                  ArrayRef<Value *> VL,
657                                  SmallVectorImpl<Value *> &Left,
658                                  SmallVectorImpl<Value *> &Right);
659 
660   /// \reorder commutative operands to get better probability of
661   /// generating vectorized code.
662   void reorderInputsAccordingToOpcode(unsigned Opcode, ArrayRef<Value *> VL,
663                                       SmallVectorImpl<Value *> &Left,
664                                       SmallVectorImpl<Value *> &Right);
665   struct TreeEntry {
666     TreeEntry(std::vector<TreeEntry> &Container) : Container(Container) {}
667 
668     /// \returns true if the scalars in VL are equal to this entry.
669     bool isSame(ArrayRef<Value *> VL) const {
670       if (VL.size() == Scalars.size())
671         return std::equal(VL.begin(), VL.end(), Scalars.begin());
672       return VL.size() == ReuseShuffleIndices.size() &&
673              std::equal(
674                  VL.begin(), VL.end(), ReuseShuffleIndices.begin(),
675                  [this](Value *V, unsigned Idx) { return V == Scalars[Idx]; });
676     }
677 
678     /// A vector of scalars.
679     ValueList Scalars;
680 
681     /// The Scalars are vectorized into this value. It is initialized to Null.
682     Value *VectorizedValue = nullptr;
683 
684     /// Do we need to gather this sequence ?
685     bool NeedToGather = false;
686 
687     /// Does this sequence require some shuffling?
688     SmallVector<unsigned, 4> ReuseShuffleIndices;
689 
690     /// Does this entry require reordering?
691     ArrayRef<unsigned> ReorderIndices;
692 
693     /// Points back to the VectorizableTree.
694     ///
695     /// Only used for Graphviz right now.  Unfortunately GraphTrait::NodeRef has
696     /// to be a pointer and needs to be able to initialize the child iterator.
697     /// Thus we need a reference back to the container to translate the indices
698     /// to entries.
699     std::vector<TreeEntry> &Container;
700 
701     /// The TreeEntry index containing the user of this entry.  We can actually
702     /// have multiple users so the data structure is not truly a tree.
703     SmallVector<int, 1> UserTreeIndices;
704   };
705 
706   /// Create a new VectorizableTree entry.
707   void newTreeEntry(ArrayRef<Value *> VL, bool Vectorized, int &UserTreeIdx,
708                     ArrayRef<unsigned> ReuseShuffleIndices = None,
709                     ArrayRef<unsigned> ReorderIndices = None) {
710     VectorizableTree.emplace_back(VectorizableTree);
711     int idx = VectorizableTree.size() - 1;
712     TreeEntry *Last = &VectorizableTree[idx];
713     Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
714     Last->NeedToGather = !Vectorized;
715     Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(),
716                                      ReuseShuffleIndices.end());
717     Last->ReorderIndices = ReorderIndices;
718     if (Vectorized) {
719       for (int i = 0, e = VL.size(); i != e; ++i) {
720         assert(!getTreeEntry(VL[i]) && "Scalar already in tree!");
721         ScalarToTreeEntry[VL[i]] = idx;
722       }
723     } else {
724       MustGather.insert(VL.begin(), VL.end());
725     }
726 
727     if (UserTreeIdx >= 0)
728       Last->UserTreeIndices.push_back(UserTreeIdx);
729     UserTreeIdx = idx;
730   }
731 
732   /// -- Vectorization State --
733   /// Holds all of the tree entries.
734   std::vector<TreeEntry> VectorizableTree;
735 
736   TreeEntry *getTreeEntry(Value *V) {
737     auto I = ScalarToTreeEntry.find(V);
738     if (I != ScalarToTreeEntry.end())
739       return &VectorizableTree[I->second];
740     return nullptr;
741   }
742 
743   /// Maps a specific scalar to its tree entry.
744   SmallDenseMap<Value*, int> ScalarToTreeEntry;
745 
746   /// A list of scalars that we found that we need to keep as scalars.
747   ValueSet MustGather;
748 
749   /// This POD struct describes one external user in the vectorized tree.
750   struct ExternalUser {
751     ExternalUser(Value *S, llvm::User *U, int L)
752         : Scalar(S), User(U), Lane(L) {}
753 
754     // Which scalar in our function.
755     Value *Scalar;
756 
757     // Which user that uses the scalar.
758     llvm::User *User;
759 
760     // Which lane does the scalar belong to.
761     int Lane;
762   };
763   using UserList = SmallVector<ExternalUser, 16>;
764 
765   /// Checks if two instructions may access the same memory.
766   ///
767   /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
768   /// is invariant in the calling loop.
769   bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
770                  Instruction *Inst2) {
771     // First check if the result is already in the cache.
772     AliasCacheKey key = std::make_pair(Inst1, Inst2);
773     Optional<bool> &result = AliasCache[key];
774     if (result.hasValue()) {
775       return result.getValue();
776     }
777     MemoryLocation Loc2 = getLocation(Inst2, AA);
778     bool aliased = true;
779     if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) {
780       // Do the alias check.
781       aliased = AA->alias(Loc1, Loc2);
782     }
783     // Store the result in the cache.
784     result = aliased;
785     return aliased;
786   }
787 
788   using AliasCacheKey = std::pair<Instruction *, Instruction *>;
789 
790   /// Cache for alias results.
791   /// TODO: consider moving this to the AliasAnalysis itself.
792   DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
793 
794   /// Removes an instruction from its block and eventually deletes it.
795   /// It's like Instruction::eraseFromParent() except that the actual deletion
796   /// is delayed until BoUpSLP is destructed.
797   /// This is required to ensure that there are no incorrect collisions in the
798   /// AliasCache, which can happen if a new instruction is allocated at the
799   /// same address as a previously deleted instruction.
800   void eraseInstruction(Instruction *I) {
801     I->removeFromParent();
802     I->dropAllReferences();
803     DeletedInstructions.emplace_back(I);
804   }
805 
806   /// Temporary store for deleted instructions. Instructions will be deleted
807   /// eventually when the BoUpSLP is destructed.
808   SmallVector<unique_value, 8> DeletedInstructions;
809 
810   /// A list of values that need to extracted out of the tree.
811   /// This list holds pairs of (Internal Scalar : External User). External User
812   /// can be nullptr, it means that this Internal Scalar will be used later,
813   /// after vectorization.
814   UserList ExternalUses;
815 
816   /// Values used only by @llvm.assume calls.
817   SmallPtrSet<const Value *, 32> EphValues;
818 
819   /// Holds all of the instructions that we gathered.
820   SetVector<Instruction *> GatherSeq;
821 
822   /// A list of blocks that we are going to CSE.
823   SetVector<BasicBlock *> CSEBlocks;
824 
825   /// Contains all scheduling relevant data for an instruction.
826   /// A ScheduleData either represents a single instruction or a member of an
827   /// instruction bundle (= a group of instructions which is combined into a
828   /// vector instruction).
829   struct ScheduleData {
830     // The initial value for the dependency counters. It means that the
831     // dependencies are not calculated yet.
832     enum { InvalidDeps = -1 };
833 
834     ScheduleData() = default;
835 
836     void init(int BlockSchedulingRegionID, Value *OpVal) {
837       FirstInBundle = this;
838       NextInBundle = nullptr;
839       NextLoadStore = nullptr;
840       IsScheduled = false;
841       SchedulingRegionID = BlockSchedulingRegionID;
842       UnscheduledDepsInBundle = UnscheduledDeps;
843       clearDependencies();
844       OpValue = OpVal;
845     }
846 
847     /// Returns true if the dependency information has been calculated.
848     bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
849 
850     /// Returns true for single instructions and for bundle representatives
851     /// (= the head of a bundle).
852     bool isSchedulingEntity() const { return FirstInBundle == this; }
853 
854     /// Returns true if it represents an instruction bundle and not only a
855     /// single instruction.
856     bool isPartOfBundle() const {
857       return NextInBundle != nullptr || FirstInBundle != this;
858     }
859 
860     /// Returns true if it is ready for scheduling, i.e. it has no more
861     /// unscheduled depending instructions/bundles.
862     bool isReady() const {
863       assert(isSchedulingEntity() &&
864              "can't consider non-scheduling entity for ready list");
865       return UnscheduledDepsInBundle == 0 && !IsScheduled;
866     }
867 
868     /// Modifies the number of unscheduled dependencies, also updating it for
869     /// the whole bundle.
870     int incrementUnscheduledDeps(int Incr) {
871       UnscheduledDeps += Incr;
872       return FirstInBundle->UnscheduledDepsInBundle += Incr;
873     }
874 
875     /// Sets the number of unscheduled dependencies to the number of
876     /// dependencies.
877     void resetUnscheduledDeps() {
878       incrementUnscheduledDeps(Dependencies - UnscheduledDeps);
879     }
880 
881     /// Clears all dependency information.
882     void clearDependencies() {
883       Dependencies = InvalidDeps;
884       resetUnscheduledDeps();
885       MemoryDependencies.clear();
886     }
887 
888     void dump(raw_ostream &os) const {
889       if (!isSchedulingEntity()) {
890         os << "/ " << *Inst;
891       } else if (NextInBundle) {
892         os << '[' << *Inst;
893         ScheduleData *SD = NextInBundle;
894         while (SD) {
895           os << ';' << *SD->Inst;
896           SD = SD->NextInBundle;
897         }
898         os << ']';
899       } else {
900         os << *Inst;
901       }
902     }
903 
904     Instruction *Inst = nullptr;
905 
906     /// Points to the head in an instruction bundle (and always to this for
907     /// single instructions).
908     ScheduleData *FirstInBundle = nullptr;
909 
910     /// Single linked list of all instructions in a bundle. Null if it is a
911     /// single instruction.
912     ScheduleData *NextInBundle = nullptr;
913 
914     /// Single linked list of all memory instructions (e.g. load, store, call)
915     /// in the block - until the end of the scheduling region.
916     ScheduleData *NextLoadStore = nullptr;
917 
918     /// The dependent memory instructions.
919     /// This list is derived on demand in calculateDependencies().
920     SmallVector<ScheduleData *, 4> MemoryDependencies;
921 
922     /// This ScheduleData is in the current scheduling region if this matches
923     /// the current SchedulingRegionID of BlockScheduling.
924     int SchedulingRegionID = 0;
925 
926     /// Used for getting a "good" final ordering of instructions.
927     int SchedulingPriority = 0;
928 
929     /// The number of dependencies. Constitutes of the number of users of the
930     /// instruction plus the number of dependent memory instructions (if any).
931     /// This value is calculated on demand.
932     /// If InvalidDeps, the number of dependencies is not calculated yet.
933     int Dependencies = InvalidDeps;
934 
935     /// The number of dependencies minus the number of dependencies of scheduled
936     /// instructions. As soon as this is zero, the instruction/bundle gets ready
937     /// for scheduling.
938     /// Note that this is negative as long as Dependencies is not calculated.
939     int UnscheduledDeps = InvalidDeps;
940 
941     /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for
942     /// single instructions.
943     int UnscheduledDepsInBundle = InvalidDeps;
944 
945     /// True if this instruction is scheduled (or considered as scheduled in the
946     /// dry-run).
947     bool IsScheduled = false;
948 
949     /// Opcode of the current instruction in the schedule data.
950     Value *OpValue = nullptr;
951   };
952 
953 #ifndef NDEBUG
954   friend inline raw_ostream &operator<<(raw_ostream &os,
955                                         const BoUpSLP::ScheduleData &SD) {
956     SD.dump(os);
957     return os;
958   }
959 #endif
960 
961   friend struct GraphTraits<BoUpSLP *>;
962   friend struct DOTGraphTraits<BoUpSLP *>;
963 
964   /// Contains all scheduling data for a basic block.
965   struct BlockScheduling {
966     BlockScheduling(BasicBlock *BB)
967         : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {}
968 
969     void clear() {
970       ReadyInsts.clear();
971       ScheduleStart = nullptr;
972       ScheduleEnd = nullptr;
973       FirstLoadStoreInRegion = nullptr;
974       LastLoadStoreInRegion = nullptr;
975 
976       // Reduce the maximum schedule region size by the size of the
977       // previous scheduling run.
978       ScheduleRegionSizeLimit -= ScheduleRegionSize;
979       if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
980         ScheduleRegionSizeLimit = MinScheduleRegionSize;
981       ScheduleRegionSize = 0;
982 
983       // Make a new scheduling region, i.e. all existing ScheduleData is not
984       // in the new region yet.
985       ++SchedulingRegionID;
986     }
987 
988     ScheduleData *getScheduleData(Value *V) {
989       ScheduleData *SD = ScheduleDataMap[V];
990       if (SD && SD->SchedulingRegionID == SchedulingRegionID)
991         return SD;
992       return nullptr;
993     }
994 
995     ScheduleData *getScheduleData(Value *V, Value *Key) {
996       if (V == Key)
997         return getScheduleData(V);
998       auto I = ExtraScheduleDataMap.find(V);
999       if (I != ExtraScheduleDataMap.end()) {
1000         ScheduleData *SD = I->second[Key];
1001         if (SD && SD->SchedulingRegionID == SchedulingRegionID)
1002           return SD;
1003       }
1004       return nullptr;
1005     }
1006 
1007     bool isInSchedulingRegion(ScheduleData *SD) {
1008       return SD->SchedulingRegionID == SchedulingRegionID;
1009     }
1010 
1011     /// Marks an instruction as scheduled and puts all dependent ready
1012     /// instructions into the ready-list.
1013     template <typename ReadyListType>
1014     void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
1015       SD->IsScheduled = true;
1016       LLVM_DEBUG(dbgs() << "SLP:   schedule " << *SD << "\n");
1017 
1018       ScheduleData *BundleMember = SD;
1019       while (BundleMember) {
1020         if (BundleMember->Inst != BundleMember->OpValue) {
1021           BundleMember = BundleMember->NextInBundle;
1022           continue;
1023         }
1024         // Handle the def-use chain dependencies.
1025         for (Use &U : BundleMember->Inst->operands()) {
1026           auto *I = dyn_cast<Instruction>(U.get());
1027           if (!I)
1028             continue;
1029           doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) {
1030             if (OpDef && OpDef->hasValidDependencies() &&
1031                 OpDef->incrementUnscheduledDeps(-1) == 0) {
1032               // There are no more unscheduled dependencies after
1033               // decrementing, so we can put the dependent instruction
1034               // into the ready list.
1035               ScheduleData *DepBundle = OpDef->FirstInBundle;
1036               assert(!DepBundle->IsScheduled &&
1037                      "already scheduled bundle gets ready");
1038               ReadyList.insert(DepBundle);
1039               LLVM_DEBUG(dbgs()
1040                          << "SLP:    gets ready (def): " << *DepBundle << "\n");
1041             }
1042           });
1043         }
1044         // Handle the memory dependencies.
1045         for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
1046           if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
1047             // There are no more unscheduled dependencies after decrementing,
1048             // so we can put the dependent instruction into the ready list.
1049             ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
1050             assert(!DepBundle->IsScheduled &&
1051                    "already scheduled bundle gets ready");
1052             ReadyList.insert(DepBundle);
1053             LLVM_DEBUG(dbgs()
1054                        << "SLP:    gets ready (mem): " << *DepBundle << "\n");
1055           }
1056         }
1057         BundleMember = BundleMember->NextInBundle;
1058       }
1059     }
1060 
1061     void doForAllOpcodes(Value *V,
1062                          function_ref<void(ScheduleData *SD)> Action) {
1063       if (ScheduleData *SD = getScheduleData(V))
1064         Action(SD);
1065       auto I = ExtraScheduleDataMap.find(V);
1066       if (I != ExtraScheduleDataMap.end())
1067         for (auto &P : I->second)
1068           if (P.second->SchedulingRegionID == SchedulingRegionID)
1069             Action(P.second);
1070     }
1071 
1072     /// Put all instructions into the ReadyList which are ready for scheduling.
1073     template <typename ReadyListType>
1074     void initialFillReadyList(ReadyListType &ReadyList) {
1075       for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
1076         doForAllOpcodes(I, [&](ScheduleData *SD) {
1077           if (SD->isSchedulingEntity() && SD->isReady()) {
1078             ReadyList.insert(SD);
1079             LLVM_DEBUG(dbgs()
1080                        << "SLP:    initially in ready list: " << *I << "\n");
1081           }
1082         });
1083       }
1084     }
1085 
1086     /// Checks if a bundle of instructions can be scheduled, i.e. has no
1087     /// cyclic dependencies. This is only a dry-run, no instructions are
1088     /// actually moved at this stage.
1089     bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
1090                            const InstructionsState &S);
1091 
1092     /// Un-bundles a group of instructions.
1093     void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue);
1094 
1095     /// Allocates schedule data chunk.
1096     ScheduleData *allocateScheduleDataChunks();
1097 
1098     /// Extends the scheduling region so that V is inside the region.
1099     /// \returns true if the region size is within the limit.
1100     bool extendSchedulingRegion(Value *V, const InstructionsState &S);
1101 
1102     /// Initialize the ScheduleData structures for new instructions in the
1103     /// scheduling region.
1104     void initScheduleData(Instruction *FromI, Instruction *ToI,
1105                           ScheduleData *PrevLoadStore,
1106                           ScheduleData *NextLoadStore);
1107 
1108     /// Updates the dependency information of a bundle and of all instructions/
1109     /// bundles which depend on the original bundle.
1110     void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
1111                                BoUpSLP *SLP);
1112 
1113     /// Sets all instruction in the scheduling region to un-scheduled.
1114     void resetSchedule();
1115 
1116     BasicBlock *BB;
1117 
1118     /// Simple memory allocation for ScheduleData.
1119     std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
1120 
1121     /// The size of a ScheduleData array in ScheduleDataChunks.
1122     int ChunkSize;
1123 
1124     /// The allocator position in the current chunk, which is the last entry
1125     /// of ScheduleDataChunks.
1126     int ChunkPos;
1127 
1128     /// Attaches ScheduleData to Instruction.
1129     /// Note that the mapping survives during all vectorization iterations, i.e.
1130     /// ScheduleData structures are recycled.
1131     DenseMap<Value *, ScheduleData *> ScheduleDataMap;
1132 
1133     /// Attaches ScheduleData to Instruction with the leading key.
1134     DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>>
1135         ExtraScheduleDataMap;
1136 
1137     struct ReadyList : SmallVector<ScheduleData *, 8> {
1138       void insert(ScheduleData *SD) { push_back(SD); }
1139     };
1140 
1141     /// The ready-list for scheduling (only used for the dry-run).
1142     ReadyList ReadyInsts;
1143 
1144     /// The first instruction of the scheduling region.
1145     Instruction *ScheduleStart = nullptr;
1146 
1147     /// The first instruction _after_ the scheduling region.
1148     Instruction *ScheduleEnd = nullptr;
1149 
1150     /// The first memory accessing instruction in the scheduling region
1151     /// (can be null).
1152     ScheduleData *FirstLoadStoreInRegion = nullptr;
1153 
1154     /// The last memory accessing instruction in the scheduling region
1155     /// (can be null).
1156     ScheduleData *LastLoadStoreInRegion = nullptr;
1157 
1158     /// The current size of the scheduling region.
1159     int ScheduleRegionSize = 0;
1160 
1161     /// The maximum size allowed for the scheduling region.
1162     int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget;
1163 
1164     /// The ID of the scheduling region. For a new vectorization iteration this
1165     /// is incremented which "removes" all ScheduleData from the region.
1166     // Make sure that the initial SchedulingRegionID is greater than the
1167     // initial SchedulingRegionID in ScheduleData (which is 0).
1168     int SchedulingRegionID = 1;
1169   };
1170 
1171   /// Attaches the BlockScheduling structures to basic blocks.
1172   MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
1173 
1174   /// Performs the "real" scheduling. Done before vectorization is actually
1175   /// performed in a basic block.
1176   void scheduleBlock(BlockScheduling *BS);
1177 
1178   /// List of users to ignore during scheduling and that don't need extracting.
1179   ArrayRef<Value *> UserIgnoreList;
1180 
1181   using OrdersType = SmallVector<unsigned, 4>;
1182   /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of
1183   /// sorted SmallVectors of unsigned.
1184   struct OrdersTypeDenseMapInfo {
1185     static OrdersType getEmptyKey() {
1186       OrdersType V;
1187       V.push_back(~1U);
1188       return V;
1189     }
1190 
1191     static OrdersType getTombstoneKey() {
1192       OrdersType V;
1193       V.push_back(~2U);
1194       return V;
1195     }
1196 
1197     static unsigned getHashValue(const OrdersType &V) {
1198       return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1199     }
1200 
1201     static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) {
1202       return LHS == RHS;
1203     }
1204   };
1205 
1206   /// Contains orders of operations along with the number of bundles that have
1207   /// operations in this order. It stores only those orders that require
1208   /// reordering, if reordering is not required it is counted using \a
1209   /// NumOpsWantToKeepOriginalOrder.
1210   DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder;
1211   /// Number of bundles that do not require reordering.
1212   unsigned NumOpsWantToKeepOriginalOrder = 0;
1213 
1214   // Analysis and block reference.
1215   Function *F;
1216   ScalarEvolution *SE;
1217   TargetTransformInfo *TTI;
1218   TargetLibraryInfo *TLI;
1219   AliasAnalysis *AA;
1220   LoopInfo *LI;
1221   DominatorTree *DT;
1222   AssumptionCache *AC;
1223   DemandedBits *DB;
1224   const DataLayout *DL;
1225   OptimizationRemarkEmitter *ORE;
1226 
1227   unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
1228   unsigned MinVecRegSize; // Set by cl::opt (default: 128).
1229 
1230   /// Instruction builder to construct the vectorized tree.
1231   IRBuilder<> Builder;
1232 
1233   /// A map of scalar integer values to the smallest bit width with which they
1234   /// can legally be represented. The values map to (width, signed) pairs,
1235   /// where "width" indicates the minimum bit width and "signed" is True if the
1236   /// value must be signed-extended, rather than zero-extended, back to its
1237   /// original width.
1238   MapVector<Value *, std::pair<uint64_t, bool>> MinBWs;
1239 };
1240 
1241 } // end namespace slpvectorizer
1242 
1243 template <> struct GraphTraits<BoUpSLP *> {
1244   using TreeEntry = BoUpSLP::TreeEntry;
1245 
1246   /// NodeRef has to be a pointer per the GraphWriter.
1247   using NodeRef = TreeEntry *;
1248 
1249   /// Add the VectorizableTree to the index iterator to be able to return
1250   /// TreeEntry pointers.
1251   struct ChildIteratorType
1252       : public iterator_adaptor_base<ChildIteratorType,
1253                                      SmallVector<int, 1>::iterator> {
1254     std::vector<TreeEntry> &VectorizableTree;
1255 
1256     ChildIteratorType(SmallVector<int, 1>::iterator W,
1257                       std::vector<TreeEntry> &VT)
1258         : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {}
1259 
1260     NodeRef operator*() { return &VectorizableTree[*I]; }
1261   };
1262 
1263   static NodeRef getEntryNode(BoUpSLP &R) { return &R.VectorizableTree[0]; }
1264 
1265   static ChildIteratorType child_begin(NodeRef N) {
1266     return {N->UserTreeIndices.begin(), N->Container};
1267   }
1268 
1269   static ChildIteratorType child_end(NodeRef N) {
1270     return {N->UserTreeIndices.end(), N->Container};
1271   }
1272 
1273   /// For the node iterator we just need to turn the TreeEntry iterator into a
1274   /// TreeEntry* iterator so that it dereferences to NodeRef.
1275   using nodes_iterator = pointer_iterator<std::vector<TreeEntry>::iterator>;
1276 
1277   static nodes_iterator nodes_begin(BoUpSLP *R) {
1278     return nodes_iterator(R->VectorizableTree.begin());
1279   }
1280 
1281   static nodes_iterator nodes_end(BoUpSLP *R) {
1282     return nodes_iterator(R->VectorizableTree.end());
1283   }
1284 
1285   static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); }
1286 };
1287 
1288 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits {
1289   using TreeEntry = BoUpSLP::TreeEntry;
1290 
1291   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
1292 
1293   std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) {
1294     std::string Str;
1295     raw_string_ostream OS(Str);
1296     if (isSplat(Entry->Scalars)) {
1297       OS << "<splat> " << *Entry->Scalars[0];
1298       return Str;
1299     }
1300     for (auto V : Entry->Scalars) {
1301       OS << *V;
1302       if (std::any_of(
1303               R->ExternalUses.begin(), R->ExternalUses.end(),
1304               [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; }))
1305         OS << " <extract>";
1306       OS << "\n";
1307     }
1308     return Str;
1309   }
1310 
1311   static std::string getNodeAttributes(const TreeEntry *Entry,
1312                                        const BoUpSLP *) {
1313     if (Entry->NeedToGather)
1314       return "color=red";
1315     return "";
1316   }
1317 };
1318 
1319 } // end namespace llvm
1320 
1321 void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
1322                         ArrayRef<Value *> UserIgnoreLst) {
1323   ExtraValueToDebugLocsMap ExternallyUsedValues;
1324   buildTree(Roots, ExternallyUsedValues, UserIgnoreLst);
1325 }
1326 
1327 void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
1328                         ExtraValueToDebugLocsMap &ExternallyUsedValues,
1329                         ArrayRef<Value *> UserIgnoreLst) {
1330   deleteTree();
1331   UserIgnoreList = UserIgnoreLst;
1332   if (!allSameType(Roots))
1333     return;
1334   buildTree_rec(Roots, 0, -1);
1335 
1336   // Collect the values that we need to extract from the tree.
1337   for (TreeEntry &EIdx : VectorizableTree) {
1338     TreeEntry *Entry = &EIdx;
1339 
1340     // No need to handle users of gathered values.
1341     if (Entry->NeedToGather)
1342       continue;
1343 
1344     // For each lane:
1345     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
1346       Value *Scalar = Entry->Scalars[Lane];
1347       int FoundLane = Lane;
1348       if (!Entry->ReuseShuffleIndices.empty()) {
1349         FoundLane =
1350             std::distance(Entry->ReuseShuffleIndices.begin(),
1351                           llvm::find(Entry->ReuseShuffleIndices, FoundLane));
1352       }
1353 
1354       // Check if the scalar is externally used as an extra arg.
1355       auto ExtI = ExternallyUsedValues.find(Scalar);
1356       if (ExtI != ExternallyUsedValues.end()) {
1357         LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane "
1358                           << Lane << " from " << *Scalar << ".\n");
1359         ExternalUses.emplace_back(Scalar, nullptr, FoundLane);
1360       }
1361       for (User *U : Scalar->users()) {
1362         LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
1363 
1364         Instruction *UserInst = dyn_cast<Instruction>(U);
1365         if (!UserInst)
1366           continue;
1367 
1368         // Skip in-tree scalars that become vectors
1369         if (TreeEntry *UseEntry = getTreeEntry(U)) {
1370           Value *UseScalar = UseEntry->Scalars[0];
1371           // Some in-tree scalars will remain as scalar in vectorized
1372           // instructions. If that is the case, the one in Lane 0 will
1373           // be used.
1374           if (UseScalar != U ||
1375               !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
1376             LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
1377                               << ".\n");
1378             assert(!UseEntry->NeedToGather && "Bad state");
1379             continue;
1380           }
1381         }
1382 
1383         // Ignore users in the user ignore list.
1384         if (is_contained(UserIgnoreList, UserInst))
1385           continue;
1386 
1387         LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane "
1388                           << Lane << " from " << *Scalar << ".\n");
1389         ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane));
1390       }
1391     }
1392   }
1393 }
1394 
1395 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth,
1396                             int UserTreeIdx) {
1397   assert((allConstant(VL) || allSameType(VL)) && "Invalid types!");
1398 
1399   InstructionsState S = getSameOpcode(VL);
1400   if (Depth == RecursionMaxDepth) {
1401     LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
1402     newTreeEntry(VL, false, UserTreeIdx);
1403     return;
1404   }
1405 
1406   // Don't handle vectors.
1407   if (S.OpValue->getType()->isVectorTy()) {
1408     LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
1409     newTreeEntry(VL, false, UserTreeIdx);
1410     return;
1411   }
1412 
1413   if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
1414     if (SI->getValueOperand()->getType()->isVectorTy()) {
1415       LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
1416       newTreeEntry(VL, false, UserTreeIdx);
1417       return;
1418     }
1419 
1420   // If all of the operands are identical or constant we have a simple solution.
1421   if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) {
1422     LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
1423     newTreeEntry(VL, false, UserTreeIdx);
1424     return;
1425   }
1426 
1427   // We now know that this is a vector of instructions of the same type from
1428   // the same block.
1429 
1430   // Don't vectorize ephemeral values.
1431   for (unsigned i = 0, e = VL.size(); i != e; ++i) {
1432     if (EphValues.count(VL[i])) {
1433       LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *VL[i]
1434                         << ") is ephemeral.\n");
1435       newTreeEntry(VL, false, UserTreeIdx);
1436       return;
1437     }
1438   }
1439 
1440   // Check if this is a duplicate of another entry.
1441   if (TreeEntry *E = getTreeEntry(S.OpValue)) {
1442     LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n");
1443     if (!E->isSame(VL)) {
1444       LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
1445       newTreeEntry(VL, false, UserTreeIdx);
1446       return;
1447     }
1448     // Record the reuse of the tree node.  FIXME, currently this is only used to
1449     // properly draw the graph rather than for the actual vectorization.
1450     E->UserTreeIndices.push_back(UserTreeIdx);
1451     LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue
1452                       << ".\n");
1453     return;
1454   }
1455 
1456   // Check that none of the instructions in the bundle are already in the tree.
1457   for (unsigned i = 0, e = VL.size(); i != e; ++i) {
1458     auto *I = dyn_cast<Instruction>(VL[i]);
1459     if (!I)
1460       continue;
1461     if (getTreeEntry(I)) {
1462       LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *VL[i]
1463                         << ") is already in tree.\n");
1464       newTreeEntry(VL, false, UserTreeIdx);
1465       return;
1466     }
1467   }
1468 
1469   // If any of the scalars is marked as a value that needs to stay scalar, then
1470   // we need to gather the scalars.
1471   // The reduction nodes (stored in UserIgnoreList) also should stay scalar.
1472   for (unsigned i = 0, e = VL.size(); i != e; ++i) {
1473     if (MustGather.count(VL[i]) || is_contained(UserIgnoreList, VL[i])) {
1474       LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
1475       newTreeEntry(VL, false, UserTreeIdx);
1476       return;
1477     }
1478   }
1479 
1480   // Check that all of the users of the scalars that we want to vectorize are
1481   // schedulable.
1482   auto *VL0 = cast<Instruction>(S.OpValue);
1483   BasicBlock *BB = VL0->getParent();
1484 
1485   if (!DT->isReachableFromEntry(BB)) {
1486     // Don't go into unreachable blocks. They may contain instructions with
1487     // dependency cycles which confuse the final scheduling.
1488     LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
1489     newTreeEntry(VL, false, UserTreeIdx);
1490     return;
1491   }
1492 
1493   // Check that every instruction appears once in this bundle.
1494   SmallVector<unsigned, 4> ReuseShuffleIndicies;
1495   SmallVector<Value *, 4> UniqueValues;
1496   DenseMap<Value *, unsigned> UniquePositions;
1497   for (Value *V : VL) {
1498     auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
1499     ReuseShuffleIndicies.emplace_back(Res.first->second);
1500     if (Res.second)
1501       UniqueValues.emplace_back(V);
1502   }
1503   if (UniqueValues.size() == VL.size()) {
1504     ReuseShuffleIndicies.clear();
1505   } else {
1506     LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n");
1507     if (UniqueValues.size() <= 1 || !llvm::isPowerOf2_32(UniqueValues.size())) {
1508       LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
1509       newTreeEntry(VL, false, UserTreeIdx);
1510       return;
1511     }
1512     VL = UniqueValues;
1513   }
1514 
1515   auto &BSRef = BlocksSchedules[BB];
1516   if (!BSRef)
1517     BSRef = llvm::make_unique<BlockScheduling>(BB);
1518 
1519   BlockScheduling &BS = *BSRef.get();
1520 
1521   if (!BS.tryScheduleBundle(VL, this, S)) {
1522     LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
1523     assert((!BS.getScheduleData(VL0) ||
1524             !BS.getScheduleData(VL0)->isPartOfBundle()) &&
1525            "tryScheduleBundle should cancelScheduling on failure");
1526     newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
1527     return;
1528   }
1529   LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
1530 
1531   unsigned ShuffleOrOp = S.isAltShuffle() ?
1532                 (unsigned) Instruction::ShuffleVector : S.getOpcode();
1533   switch (ShuffleOrOp) {
1534     case Instruction::PHI: {
1535       PHINode *PH = dyn_cast<PHINode>(VL0);
1536 
1537       // Check for terminator values (e.g. invoke).
1538       for (unsigned j = 0; j < VL.size(); ++j)
1539         for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
1540           Instruction *Term = dyn_cast<Instruction>(
1541               cast<PHINode>(VL[j])->getIncomingValueForBlock(
1542                   PH->getIncomingBlock(i)));
1543           if (Term && Term->isTerminator()) {
1544             LLVM_DEBUG(dbgs()
1545                        << "SLP: Need to swizzle PHINodes (terminator use).\n");
1546             BS.cancelScheduling(VL, VL0);
1547             newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
1548             return;
1549           }
1550         }
1551 
1552       newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies);
1553       LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
1554 
1555       for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
1556         ValueList Operands;
1557         // Prepare the operand vector.
1558         for (Value *j : VL)
1559           Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock(
1560               PH->getIncomingBlock(i)));
1561 
1562         buildTree_rec(Operands, Depth + 1, UserTreeIdx);
1563       }
1564       return;
1565     }
1566     case Instruction::ExtractValue:
1567     case Instruction::ExtractElement: {
1568       OrdersType CurrentOrder;
1569       bool Reuse = canReuseExtract(VL, VL0, CurrentOrder);
1570       if (Reuse) {
1571         LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n");
1572         ++NumOpsWantToKeepOriginalOrder;
1573         newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx,
1574                      ReuseShuffleIndicies);
1575         return;
1576       }
1577       if (!CurrentOrder.empty()) {
1578         LLVM_DEBUG({
1579           dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
1580                     "with order";
1581           for (unsigned Idx : CurrentOrder)
1582             dbgs() << " " << Idx;
1583           dbgs() << "\n";
1584         });
1585         // Insert new order with initial value 0, if it does not exist,
1586         // otherwise return the iterator to the existing one.
1587         auto StoredCurrentOrderAndNum =
1588             NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first;
1589         ++StoredCurrentOrderAndNum->getSecond();
1590         newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, ReuseShuffleIndicies,
1591                      StoredCurrentOrderAndNum->getFirst());
1592         return;
1593       }
1594       LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n");
1595       newTreeEntry(VL, /*Vectorized=*/false, UserTreeIdx, ReuseShuffleIndicies);
1596       BS.cancelScheduling(VL, VL0);
1597       return;
1598     }
1599     case Instruction::Load: {
1600       // Check that a vectorized load would load the same memory as a scalar
1601       // load. For example, we don't want to vectorize loads that are smaller
1602       // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
1603       // treats loading/storing it as an i8 struct. If we vectorize loads/stores
1604       // from such a struct, we read/write packed bits disagreeing with the
1605       // unvectorized version.
1606       Type *ScalarTy = VL0->getType();
1607 
1608       if (DL->getTypeSizeInBits(ScalarTy) !=
1609           DL->getTypeAllocSizeInBits(ScalarTy)) {
1610         BS.cancelScheduling(VL, VL0);
1611         newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
1612         LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n");
1613         return;
1614       }
1615 
1616       // Make sure all loads in the bundle are simple - we can't vectorize
1617       // atomic or volatile loads.
1618       SmallVector<Value *, 4> PointerOps(VL.size());
1619       auto POIter = PointerOps.begin();
1620       for (Value *V : VL) {
1621         auto *L = cast<LoadInst>(V);
1622         if (!L->isSimple()) {
1623           BS.cancelScheduling(VL, VL0);
1624           newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
1625           LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
1626           return;
1627         }
1628         *POIter = L->getPointerOperand();
1629         ++POIter;
1630       }
1631 
1632       OrdersType CurrentOrder;
1633       // Check the order of pointer operands.
1634       if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) {
1635         Value *Ptr0;
1636         Value *PtrN;
1637         if (CurrentOrder.empty()) {
1638           Ptr0 = PointerOps.front();
1639           PtrN = PointerOps.back();
1640         } else {
1641           Ptr0 = PointerOps[CurrentOrder.front()];
1642           PtrN = PointerOps[CurrentOrder.back()];
1643         }
1644         const SCEV *Scev0 = SE->getSCEV(Ptr0);
1645         const SCEV *ScevN = SE->getSCEV(PtrN);
1646         const auto *Diff =
1647             dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0));
1648         uint64_t Size = DL->getTypeAllocSize(ScalarTy);
1649         // Check that the sorted loads are consecutive.
1650         if (Diff && Diff->getAPInt().getZExtValue() == (VL.size() - 1) * Size) {
1651           if (CurrentOrder.empty()) {
1652             // Original loads are consecutive and does not require reordering.
1653             ++NumOpsWantToKeepOriginalOrder;
1654             newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx,
1655                          ReuseShuffleIndicies);
1656             LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n");
1657           } else {
1658             // Need to reorder.
1659             auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first;
1660             ++I->getSecond();
1661             newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx,
1662                          ReuseShuffleIndicies, I->getFirst());
1663             LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n");
1664           }
1665           return;
1666         }
1667       }
1668 
1669       LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
1670       BS.cancelScheduling(VL, VL0);
1671       newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
1672       return;
1673     }
1674     case Instruction::ZExt:
1675     case Instruction::SExt:
1676     case Instruction::FPToUI:
1677     case Instruction::FPToSI:
1678     case Instruction::FPExt:
1679     case Instruction::PtrToInt:
1680     case Instruction::IntToPtr:
1681     case Instruction::SIToFP:
1682     case Instruction::UIToFP:
1683     case Instruction::Trunc:
1684     case Instruction::FPTrunc:
1685     case Instruction::BitCast: {
1686       Type *SrcTy = VL0->getOperand(0)->getType();
1687       for (unsigned i = 0; i < VL.size(); ++i) {
1688         Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType();
1689         if (Ty != SrcTy || !isValidElementType(Ty)) {
1690           BS.cancelScheduling(VL, VL0);
1691           newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
1692           LLVM_DEBUG(dbgs()
1693                      << "SLP: Gathering casts with different src types.\n");
1694           return;
1695         }
1696       }
1697       newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies);
1698       LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n");
1699 
1700       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
1701         ValueList Operands;
1702         // Prepare the operand vector.
1703         for (Value *j : VL)
1704           Operands.push_back(cast<Instruction>(j)->getOperand(i));
1705 
1706         buildTree_rec(Operands, Depth + 1, UserTreeIdx);
1707       }
1708       return;
1709     }
1710     case Instruction::ICmp:
1711     case Instruction::FCmp: {
1712       // Check that all of the compares have the same predicate.
1713       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
1714       Type *ComparedTy = VL0->getOperand(0)->getType();
1715       for (unsigned i = 1, e = VL.size(); i < e; ++i) {
1716         CmpInst *Cmp = cast<CmpInst>(VL[i]);
1717         if (Cmp->getPredicate() != P0 ||
1718             Cmp->getOperand(0)->getType() != ComparedTy) {
1719           BS.cancelScheduling(VL, VL0);
1720           newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
1721           LLVM_DEBUG(dbgs()
1722                      << "SLP: Gathering cmp with different predicate.\n");
1723           return;
1724         }
1725       }
1726 
1727       newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies);
1728       LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n");
1729 
1730       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
1731         ValueList Operands;
1732         // Prepare the operand vector.
1733         for (Value *j : VL)
1734           Operands.push_back(cast<Instruction>(j)->getOperand(i));
1735 
1736         buildTree_rec(Operands, Depth + 1, UserTreeIdx);
1737       }
1738       return;
1739     }
1740     case Instruction::Select:
1741     case Instruction::Add:
1742     case Instruction::FAdd:
1743     case Instruction::Sub:
1744     case Instruction::FSub:
1745     case Instruction::Mul:
1746     case Instruction::FMul:
1747     case Instruction::UDiv:
1748     case Instruction::SDiv:
1749     case Instruction::FDiv:
1750     case Instruction::URem:
1751     case Instruction::SRem:
1752     case Instruction::FRem:
1753     case Instruction::Shl:
1754     case Instruction::LShr:
1755     case Instruction::AShr:
1756     case Instruction::And:
1757     case Instruction::Or:
1758     case Instruction::Xor:
1759       newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies);
1760       LLVM_DEBUG(dbgs() << "SLP: added a vector of bin op.\n");
1761 
1762       // Sort operands of the instructions so that each side is more likely to
1763       // have the same opcode.
1764       if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
1765         ValueList Left, Right;
1766         reorderInputsAccordingToOpcode(S.getOpcode(), VL, Left, Right);
1767         buildTree_rec(Left, Depth + 1, UserTreeIdx);
1768         buildTree_rec(Right, Depth + 1, UserTreeIdx);
1769         return;
1770       }
1771 
1772       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
1773         ValueList Operands;
1774         // Prepare the operand vector.
1775         for (Value *j : VL)
1776           Operands.push_back(cast<Instruction>(j)->getOperand(i));
1777 
1778         buildTree_rec(Operands, Depth + 1, UserTreeIdx);
1779       }
1780       return;
1781 
1782     case Instruction::GetElementPtr: {
1783       // We don't combine GEPs with complicated (nested) indexing.
1784       for (unsigned j = 0; j < VL.size(); ++j) {
1785         if (cast<Instruction>(VL[j])->getNumOperands() != 2) {
1786           LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
1787           BS.cancelScheduling(VL, VL0);
1788           newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
1789           return;
1790         }
1791       }
1792 
1793       // We can't combine several GEPs into one vector if they operate on
1794       // different types.
1795       Type *Ty0 = VL0->getOperand(0)->getType();
1796       for (unsigned j = 0; j < VL.size(); ++j) {
1797         Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType();
1798         if (Ty0 != CurTy) {
1799           LLVM_DEBUG(dbgs()
1800                      << "SLP: not-vectorizable GEP (different types).\n");
1801           BS.cancelScheduling(VL, VL0);
1802           newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
1803           return;
1804         }
1805       }
1806 
1807       // We don't combine GEPs with non-constant indexes.
1808       for (unsigned j = 0; j < VL.size(); ++j) {
1809         auto Op = cast<Instruction>(VL[j])->getOperand(1);
1810         if (!isa<ConstantInt>(Op)) {
1811           LLVM_DEBUG(dbgs()
1812                      << "SLP: not-vectorizable GEP (non-constant indexes).\n");
1813           BS.cancelScheduling(VL, VL0);
1814           newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
1815           return;
1816         }
1817       }
1818 
1819       newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies);
1820       LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
1821       for (unsigned i = 0, e = 2; i < e; ++i) {
1822         ValueList Operands;
1823         // Prepare the operand vector.
1824         for (Value *j : VL)
1825           Operands.push_back(cast<Instruction>(j)->getOperand(i));
1826 
1827         buildTree_rec(Operands, Depth + 1, UserTreeIdx);
1828       }
1829       return;
1830     }
1831     case Instruction::Store: {
1832       // Check if the stores are consecutive or of we need to swizzle them.
1833       for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
1834         if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) {
1835           BS.cancelScheduling(VL, VL0);
1836           newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
1837           LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
1838           return;
1839         }
1840 
1841       newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies);
1842       LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n");
1843 
1844       ValueList Operands;
1845       for (Value *j : VL)
1846         Operands.push_back(cast<Instruction>(j)->getOperand(0));
1847 
1848       buildTree_rec(Operands, Depth + 1, UserTreeIdx);
1849       return;
1850     }
1851     case Instruction::Call: {
1852       // Check if the calls are all to the same vectorizable intrinsic.
1853       CallInst *CI = cast<CallInst>(VL0);
1854       // Check if this is an Intrinsic call or something that can be
1855       // represented by an intrinsic call
1856       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
1857       if (!isTriviallyVectorizable(ID)) {
1858         BS.cancelScheduling(VL, VL0);
1859         newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
1860         LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
1861         return;
1862       }
1863       Function *Int = CI->getCalledFunction();
1864       unsigned NumArgs = CI->getNumArgOperands();
1865       SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr);
1866       for (unsigned j = 0; j != NumArgs; ++j)
1867         if (hasVectorInstrinsicScalarOpd(ID, j))
1868           ScalarArgs[j] = CI->getArgOperand(j);
1869       for (unsigned i = 1, e = VL.size(); i != e; ++i) {
1870         CallInst *CI2 = dyn_cast<CallInst>(VL[i]);
1871         if (!CI2 || CI2->getCalledFunction() != Int ||
1872             getVectorIntrinsicIDForCall(CI2, TLI) != ID ||
1873             !CI->hasIdenticalOperandBundleSchema(*CI2)) {
1874           BS.cancelScheduling(VL, VL0);
1875           newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
1876           LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i]
1877                             << "\n");
1878           return;
1879         }
1880         // Some intrinsics have scalar arguments and should be same in order for
1881         // them to be vectorized.
1882         for (unsigned j = 0; j != NumArgs; ++j) {
1883           if (hasVectorInstrinsicScalarOpd(ID, j)) {
1884             Value *A1J = CI2->getArgOperand(j);
1885             if (ScalarArgs[j] != A1J) {
1886               BS.cancelScheduling(VL, VL0);
1887               newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
1888               LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
1889                                 << " argument " << ScalarArgs[j] << "!=" << A1J
1890                                 << "\n");
1891               return;
1892             }
1893           }
1894         }
1895         // Verify that the bundle operands are identical between the two calls.
1896         if (CI->hasOperandBundles() &&
1897             !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(),
1898                         CI->op_begin() + CI->getBundleOperandsEndIndex(),
1899                         CI2->op_begin() + CI2->getBundleOperandsStartIndex())) {
1900           BS.cancelScheduling(VL, VL0);
1901           newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
1902           LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:"
1903                             << *CI << "!=" << *VL[i] << '\n');
1904           return;
1905         }
1906       }
1907 
1908       newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies);
1909       for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
1910         ValueList Operands;
1911         // Prepare the operand vector.
1912         for (Value *j : VL) {
1913           CallInst *CI2 = dyn_cast<CallInst>(j);
1914           Operands.push_back(CI2->getArgOperand(i));
1915         }
1916         buildTree_rec(Operands, Depth + 1, UserTreeIdx);
1917       }
1918       return;
1919     }
1920     case Instruction::ShuffleVector:
1921       // If this is not an alternate sequence of opcode like add-sub
1922       // then do not vectorize this instruction.
1923       if (!S.isAltShuffle()) {
1924         BS.cancelScheduling(VL, VL0);
1925         newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
1926         LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
1927         return;
1928       }
1929       newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies);
1930       LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
1931 
1932       // Reorder operands if reordering would enable vectorization.
1933       if (isa<BinaryOperator>(VL0)) {
1934         ValueList Left, Right;
1935         reorderAltShuffleOperands(S, VL, Left, Right);
1936         buildTree_rec(Left, Depth + 1, UserTreeIdx);
1937         buildTree_rec(Right, Depth + 1, UserTreeIdx);
1938         return;
1939       }
1940 
1941       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
1942         ValueList Operands;
1943         // Prepare the operand vector.
1944         for (Value *j : VL)
1945           Operands.push_back(cast<Instruction>(j)->getOperand(i));
1946 
1947         buildTree_rec(Operands, Depth + 1, UserTreeIdx);
1948       }
1949       return;
1950 
1951     default:
1952       BS.cancelScheduling(VL, VL0);
1953       newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
1954       LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
1955       return;
1956   }
1957 }
1958 
1959 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const {
1960   unsigned N;
1961   Type *EltTy;
1962   auto *ST = dyn_cast<StructType>(T);
1963   if (ST) {
1964     N = ST->getNumElements();
1965     EltTy = *ST->element_begin();
1966   } else {
1967     N = cast<ArrayType>(T)->getNumElements();
1968     EltTy = cast<ArrayType>(T)->getElementType();
1969   }
1970   if (!isValidElementType(EltTy))
1971     return 0;
1972   uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N));
1973   if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T))
1974     return 0;
1975   if (ST) {
1976     // Check that struct is homogeneous.
1977     for (const auto *Ty : ST->elements())
1978       if (Ty != EltTy)
1979         return 0;
1980   }
1981   return N;
1982 }
1983 
1984 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
1985                               SmallVectorImpl<unsigned> &CurrentOrder) const {
1986   Instruction *E0 = cast<Instruction>(OpValue);
1987   assert(E0->getOpcode() == Instruction::ExtractElement ||
1988          E0->getOpcode() == Instruction::ExtractValue);
1989   assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode");
1990   // Check if all of the extracts come from the same vector and from the
1991   // correct offset.
1992   Value *Vec = E0->getOperand(0);
1993 
1994   CurrentOrder.clear();
1995 
1996   // We have to extract from a vector/aggregate with the same number of elements.
1997   unsigned NElts;
1998   if (E0->getOpcode() == Instruction::ExtractValue) {
1999     const DataLayout &DL = E0->getModule()->getDataLayout();
2000     NElts = canMapToVector(Vec->getType(), DL);
2001     if (!NElts)
2002       return false;
2003     // Check if load can be rewritten as load of vector.
2004     LoadInst *LI = dyn_cast<LoadInst>(Vec);
2005     if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size()))
2006       return false;
2007   } else {
2008     NElts = Vec->getType()->getVectorNumElements();
2009   }
2010 
2011   if (NElts != VL.size())
2012     return false;
2013 
2014   // Check that all of the indices extract from the correct offset.
2015   bool ShouldKeepOrder = true;
2016   unsigned E = VL.size();
2017   // Assign to all items the initial value E + 1 so we can check if the extract
2018   // instruction index was used already.
2019   // Also, later we can check that all the indices are used and we have a
2020   // consecutive access in the extract instructions, by checking that no
2021   // element of CurrentOrder still has value E + 1.
2022   CurrentOrder.assign(E, E + 1);
2023   unsigned I = 0;
2024   for (; I < E; ++I) {
2025     auto *Inst = cast<Instruction>(VL[I]);
2026     if (Inst->getOperand(0) != Vec)
2027       break;
2028     Optional<unsigned> Idx = getExtractIndex(Inst);
2029     if (!Idx)
2030       break;
2031     const unsigned ExtIdx = *Idx;
2032     if (ExtIdx != I) {
2033       if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1)
2034         break;
2035       ShouldKeepOrder = false;
2036       CurrentOrder[ExtIdx] = I;
2037     } else {
2038       if (CurrentOrder[I] != E + 1)
2039         break;
2040       CurrentOrder[I] = I;
2041     }
2042   }
2043   if (I < E) {
2044     CurrentOrder.clear();
2045     return false;
2046   }
2047 
2048   return ShouldKeepOrder;
2049 }
2050 
2051 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const {
2052   return I->hasOneUse() ||
2053          std::all_of(I->user_begin(), I->user_end(), [this](User *U) {
2054            return ScalarToTreeEntry.count(U) > 0;
2055          });
2056 }
2057 
2058 int BoUpSLP::getEntryCost(TreeEntry *E) {
2059   ArrayRef<Value*> VL = E->Scalars;
2060 
2061   Type *ScalarTy = VL[0]->getType();
2062   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
2063     ScalarTy = SI->getValueOperand()->getType();
2064   else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0]))
2065     ScalarTy = CI->getOperand(0)->getType();
2066   VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
2067 
2068   // If we have computed a smaller type for the expression, update VecTy so
2069   // that the costs will be accurate.
2070   if (MinBWs.count(VL[0]))
2071     VecTy = VectorType::get(
2072         IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size());
2073 
2074   unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size();
2075   bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
2076   int ReuseShuffleCost = 0;
2077   if (NeedToShuffleReuses) {
2078     ReuseShuffleCost =
2079         TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
2080   }
2081   if (E->NeedToGather) {
2082     if (allConstant(VL))
2083       return 0;
2084     if (isSplat(VL)) {
2085       return ReuseShuffleCost +
2086              TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
2087     }
2088     if (getSameOpcode(VL).getOpcode() == Instruction::ExtractElement &&
2089         allSameType(VL) && allSameBlock(VL)) {
2090       Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL);
2091       if (ShuffleKind.hasValue()) {
2092         int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy);
2093         for (auto *V : VL) {
2094           // If all users of instruction are going to be vectorized and this
2095           // instruction itself is not going to be vectorized, consider this
2096           // instruction as dead and remove its cost from the final cost of the
2097           // vectorized tree.
2098           if (areAllUsersVectorized(cast<Instruction>(V)) &&
2099               !ScalarToTreeEntry.count(V)) {
2100             auto *IO = cast<ConstantInt>(
2101                 cast<ExtractElementInst>(V)->getIndexOperand());
2102             Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy,
2103                                             IO->getZExtValue());
2104           }
2105         }
2106         return ReuseShuffleCost + Cost;
2107       }
2108     }
2109     return ReuseShuffleCost + getGatherCost(VL);
2110   }
2111   InstructionsState S = getSameOpcode(VL);
2112   assert(S.getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL");
2113   Instruction *VL0 = cast<Instruction>(S.OpValue);
2114   unsigned ShuffleOrOp = S.isAltShuffle() ?
2115                (unsigned) Instruction::ShuffleVector : S.getOpcode();
2116   switch (ShuffleOrOp) {
2117     case Instruction::PHI:
2118       return 0;
2119 
2120     case Instruction::ExtractValue:
2121     case Instruction::ExtractElement:
2122       if (NeedToShuffleReuses) {
2123         unsigned Idx = 0;
2124         for (unsigned I : E->ReuseShuffleIndices) {
2125           if (ShuffleOrOp == Instruction::ExtractElement) {
2126             auto *IO = cast<ConstantInt>(
2127                 cast<ExtractElementInst>(VL[I])->getIndexOperand());
2128             Idx = IO->getZExtValue();
2129             ReuseShuffleCost -= TTI->getVectorInstrCost(
2130                 Instruction::ExtractElement, VecTy, Idx);
2131           } else {
2132             ReuseShuffleCost -= TTI->getVectorInstrCost(
2133                 Instruction::ExtractElement, VecTy, Idx);
2134             ++Idx;
2135           }
2136         }
2137         Idx = ReuseShuffleNumbers;
2138         for (Value *V : VL) {
2139           if (ShuffleOrOp == Instruction::ExtractElement) {
2140             auto *IO = cast<ConstantInt>(
2141                 cast<ExtractElementInst>(V)->getIndexOperand());
2142             Idx = IO->getZExtValue();
2143           } else {
2144             --Idx;
2145           }
2146           ReuseShuffleCost +=
2147               TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx);
2148         }
2149       }
2150       if (!E->NeedToGather) {
2151         int DeadCost = ReuseShuffleCost;
2152         if (!E->ReorderIndices.empty()) {
2153           // TODO: Merge this shuffle with the ReuseShuffleCost.
2154           DeadCost += TTI->getShuffleCost(
2155               TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
2156         }
2157         for (unsigned i = 0, e = VL.size(); i < e; ++i) {
2158           Instruction *E = cast<Instruction>(VL[i]);
2159           // If all users are going to be vectorized, instruction can be
2160           // considered as dead.
2161           // The same, if have only one user, it will be vectorized for sure.
2162           if (areAllUsersVectorized(E)) {
2163             // Take credit for instruction that will become dead.
2164             if (E->hasOneUse()) {
2165               Instruction *Ext = E->user_back();
2166               if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
2167                   all_of(Ext->users(),
2168                          [](User *U) { return isa<GetElementPtrInst>(U); })) {
2169                 // Use getExtractWithExtendCost() to calculate the cost of
2170                 // extractelement/ext pair.
2171                 DeadCost -= TTI->getExtractWithExtendCost(
2172                     Ext->getOpcode(), Ext->getType(), VecTy, i);
2173                 // Add back the cost of s|zext which is subtracted separately.
2174                 DeadCost += TTI->getCastInstrCost(
2175                     Ext->getOpcode(), Ext->getType(), E->getType(), Ext);
2176                 continue;
2177               }
2178             }
2179             DeadCost -=
2180                 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i);
2181           }
2182         }
2183         return DeadCost;
2184       }
2185       return ReuseShuffleCost + getGatherCost(VL);
2186 
2187     case Instruction::ZExt:
2188     case Instruction::SExt:
2189     case Instruction::FPToUI:
2190     case Instruction::FPToSI:
2191     case Instruction::FPExt:
2192     case Instruction::PtrToInt:
2193     case Instruction::IntToPtr:
2194     case Instruction::SIToFP:
2195     case Instruction::UIToFP:
2196     case Instruction::Trunc:
2197     case Instruction::FPTrunc:
2198     case Instruction::BitCast: {
2199       Type *SrcTy = VL0->getOperand(0)->getType();
2200       int ScalarEltCost =
2201           TTI->getCastInstrCost(S.getOpcode(), ScalarTy, SrcTy, VL0);
2202       if (NeedToShuffleReuses) {
2203         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
2204       }
2205 
2206       // Calculate the cost of this instruction.
2207       int ScalarCost = VL.size() * ScalarEltCost;
2208 
2209       VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size());
2210       int VecCost = 0;
2211       // Check if the values are candidates to demote.
2212       if (!MinBWs.count(VL0) || VecTy != SrcVecTy) {
2213         VecCost = ReuseShuffleCost +
2214                   TTI->getCastInstrCost(S.getOpcode(), VecTy, SrcVecTy, VL0);
2215       }
2216       return VecCost - ScalarCost;
2217     }
2218     case Instruction::FCmp:
2219     case Instruction::ICmp:
2220     case Instruction::Select: {
2221       // Calculate the cost of this instruction.
2222       int ScalarEltCost = TTI->getCmpSelInstrCost(S.getOpcode(), ScalarTy,
2223                                                   Builder.getInt1Ty(), VL0);
2224       if (NeedToShuffleReuses) {
2225         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
2226       }
2227       VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size());
2228       int ScalarCost = VecTy->getNumElements() * ScalarEltCost;
2229       int VecCost = TTI->getCmpSelInstrCost(S.getOpcode(), VecTy, MaskTy, VL0);
2230       return ReuseShuffleCost + VecCost - ScalarCost;
2231     }
2232     case Instruction::Add:
2233     case Instruction::FAdd:
2234     case Instruction::Sub:
2235     case Instruction::FSub:
2236     case Instruction::Mul:
2237     case Instruction::FMul:
2238     case Instruction::UDiv:
2239     case Instruction::SDiv:
2240     case Instruction::FDiv:
2241     case Instruction::URem:
2242     case Instruction::SRem:
2243     case Instruction::FRem:
2244     case Instruction::Shl:
2245     case Instruction::LShr:
2246     case Instruction::AShr:
2247     case Instruction::And:
2248     case Instruction::Or:
2249     case Instruction::Xor: {
2250       // Certain instructions can be cheaper to vectorize if they have a
2251       // constant second vector operand.
2252       TargetTransformInfo::OperandValueKind Op1VK =
2253           TargetTransformInfo::OK_AnyValue;
2254       TargetTransformInfo::OperandValueKind Op2VK =
2255           TargetTransformInfo::OK_UniformConstantValue;
2256       TargetTransformInfo::OperandValueProperties Op1VP =
2257           TargetTransformInfo::OP_None;
2258       TargetTransformInfo::OperandValueProperties Op2VP =
2259           TargetTransformInfo::OP_PowerOf2;
2260 
2261       // If all operands are exactly the same ConstantInt then set the
2262       // operand kind to OK_UniformConstantValue.
2263       // If instead not all operands are constants, then set the operand kind
2264       // to OK_AnyValue. If all operands are constants but not the same,
2265       // then set the operand kind to OK_NonUniformConstantValue.
2266       ConstantInt *CInt0 = nullptr;
2267       for (unsigned i = 0, e = VL.size(); i < e; ++i) {
2268         const Instruction *I = cast<Instruction>(VL[i]);
2269         ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(1));
2270         if (!CInt) {
2271           Op2VK = TargetTransformInfo::OK_AnyValue;
2272           Op2VP = TargetTransformInfo::OP_None;
2273           break;
2274         }
2275         if (Op2VP == TargetTransformInfo::OP_PowerOf2 &&
2276             !CInt->getValue().isPowerOf2())
2277           Op2VP = TargetTransformInfo::OP_None;
2278         if (i == 0) {
2279           CInt0 = CInt;
2280           continue;
2281         }
2282         if (CInt0 != CInt)
2283           Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
2284       }
2285 
2286       SmallVector<const Value *, 4> Operands(VL0->operand_values());
2287       int ScalarEltCost = TTI->getArithmeticInstrCost(
2288           S.getOpcode(), ScalarTy, Op1VK, Op2VK, Op1VP, Op2VP, Operands);
2289       if (NeedToShuffleReuses) {
2290         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
2291       }
2292       int ScalarCost = VecTy->getNumElements() * ScalarEltCost;
2293       int VecCost = TTI->getArithmeticInstrCost(S.getOpcode(), VecTy, Op1VK,
2294                                                 Op2VK, Op1VP, Op2VP, Operands);
2295       return ReuseShuffleCost + VecCost - ScalarCost;
2296     }
2297     case Instruction::GetElementPtr: {
2298       TargetTransformInfo::OperandValueKind Op1VK =
2299           TargetTransformInfo::OK_AnyValue;
2300       TargetTransformInfo::OperandValueKind Op2VK =
2301           TargetTransformInfo::OK_UniformConstantValue;
2302 
2303       int ScalarEltCost =
2304           TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK);
2305       if (NeedToShuffleReuses) {
2306         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
2307       }
2308       int ScalarCost = VecTy->getNumElements() * ScalarEltCost;
2309       int VecCost =
2310           TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK);
2311       return ReuseShuffleCost + VecCost - ScalarCost;
2312     }
2313     case Instruction::Load: {
2314       // Cost of wide load - cost of scalar loads.
2315       unsigned alignment = cast<LoadInst>(VL0)->getAlignment();
2316       int ScalarEltCost =
2317           TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0);
2318       if (NeedToShuffleReuses) {
2319         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
2320       }
2321       int ScalarLdCost = VecTy->getNumElements() * ScalarEltCost;
2322       int VecLdCost =
2323           TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, VL0);
2324       if (!E->ReorderIndices.empty()) {
2325         // TODO: Merge this shuffle with the ReuseShuffleCost.
2326         VecLdCost += TTI->getShuffleCost(
2327             TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
2328       }
2329       return ReuseShuffleCost + VecLdCost - ScalarLdCost;
2330     }
2331     case Instruction::Store: {
2332       // We know that we can merge the stores. Calculate the cost.
2333       unsigned alignment = cast<StoreInst>(VL0)->getAlignment();
2334       int ScalarEltCost =
2335           TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0, VL0);
2336       if (NeedToShuffleReuses) {
2337         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
2338       }
2339       int ScalarStCost = VecTy->getNumElements() * ScalarEltCost;
2340       int VecStCost =
2341           TTI->getMemoryOpCost(Instruction::Store, VecTy, alignment, 0, VL0);
2342       return ReuseShuffleCost + VecStCost - ScalarStCost;
2343     }
2344     case Instruction::Call: {
2345       CallInst *CI = cast<CallInst>(VL0);
2346       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
2347 
2348       // Calculate the cost of the scalar and vector calls.
2349       SmallVector<Type *, 4> ScalarTys;
2350       for (unsigned op = 0, opc = CI->getNumArgOperands(); op != opc; ++op)
2351         ScalarTys.push_back(CI->getArgOperand(op)->getType());
2352 
2353       FastMathFlags FMF;
2354       if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
2355         FMF = FPMO->getFastMathFlags();
2356 
2357       int ScalarEltCost =
2358           TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF);
2359       if (NeedToShuffleReuses) {
2360         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
2361       }
2362       int ScalarCallCost = VecTy->getNumElements() * ScalarEltCost;
2363 
2364       SmallVector<Value *, 4> Args(CI->arg_operands());
2365       int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF,
2366                                                    VecTy->getNumElements());
2367 
2368       LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost
2369                         << " (" << VecCallCost << "-" << ScalarCallCost << ")"
2370                         << " for " << *CI << "\n");
2371 
2372       return ReuseShuffleCost + VecCallCost - ScalarCallCost;
2373     }
2374     case Instruction::ShuffleVector: {
2375       assert(S.isAltShuffle() &&
2376              ((Instruction::isBinaryOp(S.getOpcode()) &&
2377                Instruction::isBinaryOp(S.getAltOpcode())) ||
2378               (Instruction::isCast(S.getOpcode()) &&
2379                Instruction::isCast(S.getAltOpcode()))) &&
2380              "Invalid Shuffle Vector Operand");
2381       int ScalarCost = 0;
2382       if (NeedToShuffleReuses) {
2383         for (unsigned Idx : E->ReuseShuffleIndices) {
2384           Instruction *I = cast<Instruction>(VL[Idx]);
2385           ReuseShuffleCost -= TTI->getInstructionCost(
2386               I, TargetTransformInfo::TCK_RecipThroughput);
2387         }
2388         for (Value *V : VL) {
2389           Instruction *I = cast<Instruction>(V);
2390           ReuseShuffleCost += TTI->getInstructionCost(
2391               I, TargetTransformInfo::TCK_RecipThroughput);
2392         }
2393       }
2394       for (Value *i : VL) {
2395         Instruction *I = cast<Instruction>(i);
2396         assert(S.isOpcodeOrAlt(I) && "Unexpected main/alternate opcode");
2397         ScalarCost += TTI->getInstructionCost(
2398             I, TargetTransformInfo::TCK_RecipThroughput);
2399       }
2400       // VecCost is equal to sum of the cost of creating 2 vectors
2401       // and the cost of creating shuffle.
2402       int VecCost = 0;
2403       if (Instruction::isBinaryOp(S.getOpcode())) {
2404         VecCost = TTI->getArithmeticInstrCost(S.getOpcode(), VecTy);
2405         VecCost += TTI->getArithmeticInstrCost(S.getAltOpcode(), VecTy);
2406       } else {
2407         Type *Src0SclTy = S.MainOp->getOperand(0)->getType();
2408         Type *Src1SclTy = S.AltOp->getOperand(0)->getType();
2409         VectorType *Src0Ty = VectorType::get(Src0SclTy, VL.size());
2410         VectorType *Src1Ty = VectorType::get(Src1SclTy, VL.size());
2411         VecCost = TTI->getCastInstrCost(S.getOpcode(), VecTy, Src0Ty);
2412         VecCost += TTI->getCastInstrCost(S.getAltOpcode(), VecTy, Src1Ty);
2413       }
2414       VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0);
2415       return ReuseShuffleCost + VecCost - ScalarCost;
2416     }
2417     default:
2418       llvm_unreachable("Unknown instruction");
2419   }
2420 }
2421 
2422 bool BoUpSLP::isFullyVectorizableTinyTree() {
2423   LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height "
2424                     << VectorizableTree.size() << " is fully vectorizable .\n");
2425 
2426   // We only handle trees of heights 1 and 2.
2427   if (VectorizableTree.size() == 1 && !VectorizableTree[0].NeedToGather)
2428     return true;
2429 
2430   if (VectorizableTree.size() != 2)
2431     return false;
2432 
2433   // Handle splat and all-constants stores.
2434   if (!VectorizableTree[0].NeedToGather &&
2435       (allConstant(VectorizableTree[1].Scalars) ||
2436        isSplat(VectorizableTree[1].Scalars)))
2437     return true;
2438 
2439   // Gathering cost would be too much for tiny trees.
2440   if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather)
2441     return false;
2442 
2443   return true;
2444 }
2445 
2446 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() {
2447   // We can vectorize the tree if its size is greater than or equal to the
2448   // minimum size specified by the MinTreeSize command line option.
2449   if (VectorizableTree.size() >= MinTreeSize)
2450     return false;
2451 
2452   // If we have a tiny tree (a tree whose size is less than MinTreeSize), we
2453   // can vectorize it if we can prove it fully vectorizable.
2454   if (isFullyVectorizableTinyTree())
2455     return false;
2456 
2457   assert(VectorizableTree.empty()
2458              ? ExternalUses.empty()
2459              : true && "We shouldn't have any external users");
2460 
2461   // Otherwise, we can't vectorize the tree. It is both tiny and not fully
2462   // vectorizable.
2463   return true;
2464 }
2465 
2466 int BoUpSLP::getSpillCost() {
2467   // Walk from the bottom of the tree to the top, tracking which values are
2468   // live. When we see a call instruction that is not part of our tree,
2469   // query TTI to see if there is a cost to keeping values live over it
2470   // (for example, if spills and fills are required).
2471   unsigned BundleWidth = VectorizableTree.front().Scalars.size();
2472   int Cost = 0;
2473 
2474   SmallPtrSet<Instruction*, 4> LiveValues;
2475   Instruction *PrevInst = nullptr;
2476 
2477   for (const auto &N : VectorizableTree) {
2478     Instruction *Inst = dyn_cast<Instruction>(N.Scalars[0]);
2479     if (!Inst)
2480       continue;
2481 
2482     if (!PrevInst) {
2483       PrevInst = Inst;
2484       continue;
2485     }
2486 
2487     // Update LiveValues.
2488     LiveValues.erase(PrevInst);
2489     for (auto &J : PrevInst->operands()) {
2490       if (isa<Instruction>(&*J) && getTreeEntry(&*J))
2491         LiveValues.insert(cast<Instruction>(&*J));
2492     }
2493 
2494     LLVM_DEBUG({
2495       dbgs() << "SLP: #LV: " << LiveValues.size();
2496       for (auto *X : LiveValues)
2497         dbgs() << " " << X->getName();
2498       dbgs() << ", Looking at ";
2499       Inst->dump();
2500     });
2501 
2502     // Now find the sequence of instructions between PrevInst and Inst.
2503     BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(),
2504                                  PrevInstIt =
2505                                      PrevInst->getIterator().getReverse();
2506     while (InstIt != PrevInstIt) {
2507       if (PrevInstIt == PrevInst->getParent()->rend()) {
2508         PrevInstIt = Inst->getParent()->rbegin();
2509         continue;
2510       }
2511 
2512       // Debug informations don't impact spill cost.
2513       if ((isa<CallInst>(&*PrevInstIt) &&
2514            !isa<DbgInfoIntrinsic>(&*PrevInstIt)) &&
2515           &*PrevInstIt != PrevInst) {
2516         SmallVector<Type*, 4> V;
2517         for (auto *II : LiveValues)
2518           V.push_back(VectorType::get(II->getType(), BundleWidth));
2519         Cost += TTI->getCostOfKeepingLiveOverCall(V);
2520       }
2521 
2522       ++PrevInstIt;
2523     }
2524 
2525     PrevInst = Inst;
2526   }
2527 
2528   return Cost;
2529 }
2530 
2531 int BoUpSLP::getTreeCost() {
2532   int Cost = 0;
2533   LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size "
2534                     << VectorizableTree.size() << ".\n");
2535 
2536   unsigned BundleWidth = VectorizableTree[0].Scalars.size();
2537 
2538   for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) {
2539     TreeEntry &TE = VectorizableTree[I];
2540 
2541     // We create duplicate tree entries for gather sequences that have multiple
2542     // uses. However, we should not compute the cost of duplicate sequences.
2543     // For example, if we have a build vector (i.e., insertelement sequence)
2544     // that is used by more than one vector instruction, we only need to
2545     // compute the cost of the insertelement instructions once. The redundant
2546     // instructions will be eliminated by CSE.
2547     //
2548     // We should consider not creating duplicate tree entries for gather
2549     // sequences, and instead add additional edges to the tree representing
2550     // their uses. Since such an approach results in fewer total entries,
2551     // existing heuristics based on tree size may yield different results.
2552     //
2553     if (TE.NeedToGather &&
2554         std::any_of(std::next(VectorizableTree.begin(), I + 1),
2555                     VectorizableTree.end(), [TE](TreeEntry &Entry) {
2556                       return Entry.NeedToGather && Entry.isSame(TE.Scalars);
2557                     }))
2558       continue;
2559 
2560     int C = getEntryCost(&TE);
2561     LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
2562                       << " for bundle that starts with " << *TE.Scalars[0]
2563                       << ".\n");
2564     Cost += C;
2565   }
2566 
2567   SmallPtrSet<Value *, 16> ExtractCostCalculated;
2568   int ExtractCost = 0;
2569   for (ExternalUser &EU : ExternalUses) {
2570     // We only add extract cost once for the same scalar.
2571     if (!ExtractCostCalculated.insert(EU.Scalar).second)
2572       continue;
2573 
2574     // Uses by ephemeral values are free (because the ephemeral value will be
2575     // removed prior to code generation, and so the extraction will be
2576     // removed as well).
2577     if (EphValues.count(EU.User))
2578       continue;
2579 
2580     // If we plan to rewrite the tree in a smaller type, we will need to sign
2581     // extend the extracted value back to the original type. Here, we account
2582     // for the extract and the added cost of the sign extend if needed.
2583     auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth);
2584     auto *ScalarRoot = VectorizableTree[0].Scalars[0];
2585     if (MinBWs.count(ScalarRoot)) {
2586       auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
2587       auto Extend =
2588           MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt;
2589       VecTy = VectorType::get(MinTy, BundleWidth);
2590       ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(),
2591                                                    VecTy, EU.Lane);
2592     } else {
2593       ExtractCost +=
2594           TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane);
2595     }
2596   }
2597 
2598   int SpillCost = getSpillCost();
2599   Cost += SpillCost + ExtractCost;
2600 
2601   std::string Str;
2602   {
2603     raw_string_ostream OS(Str);
2604     OS << "SLP: Spill Cost = " << SpillCost << ".\n"
2605        << "SLP: Extract Cost = " << ExtractCost << ".\n"
2606        << "SLP: Total Cost = " << Cost << ".\n";
2607   }
2608   LLVM_DEBUG(dbgs() << Str);
2609 
2610   if (ViewSLPTree)
2611     ViewGraph(this, "SLP" + F->getName(), false, Str);
2612 
2613   return Cost;
2614 }
2615 
2616 int BoUpSLP::getGatherCost(Type *Ty,
2617                            const DenseSet<unsigned> &ShuffledIndices) {
2618   int Cost = 0;
2619   for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i)
2620     if (!ShuffledIndices.count(i))
2621       Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
2622   if (!ShuffledIndices.empty())
2623       Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty);
2624   return Cost;
2625 }
2626 
2627 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) {
2628   // Find the type of the operands in VL.
2629   Type *ScalarTy = VL[0]->getType();
2630   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
2631     ScalarTy = SI->getValueOperand()->getType();
2632   VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
2633   // Find the cost of inserting/extracting values from the vector.
2634   // Check if the same elements are inserted several times and count them as
2635   // shuffle candidates.
2636   DenseSet<unsigned> ShuffledElements;
2637   DenseSet<Value *> UniqueElements;
2638   // Iterate in reverse order to consider insert elements with the high cost.
2639   for (unsigned I = VL.size(); I > 0; --I) {
2640     unsigned Idx = I - 1;
2641     if (!UniqueElements.insert(VL[Idx]).second)
2642       ShuffledElements.insert(Idx);
2643   }
2644   return getGatherCost(VecTy, ShuffledElements);
2645 }
2646 
2647 // Reorder commutative operations in alternate shuffle if the resulting vectors
2648 // are consecutive loads. This would allow us to vectorize the tree.
2649 // If we have something like-
2650 // load a[0] - load b[0]
2651 // load b[1] + load a[1]
2652 // load a[2] - load b[2]
2653 // load a[3] + load b[3]
2654 // Reordering the second load b[1]  load a[1] would allow us to vectorize this
2655 // code.
2656 void BoUpSLP::reorderAltShuffleOperands(const InstructionsState &S,
2657                                         ArrayRef<Value *> VL,
2658                                         SmallVectorImpl<Value *> &Left,
2659                                         SmallVectorImpl<Value *> &Right) {
2660   // Push left and right operands of binary operation into Left and Right
2661   for (Value *V : VL) {
2662     auto *I = cast<Instruction>(V);
2663     assert(S.isOpcodeOrAlt(I) && "Incorrect instruction in vector");
2664     Left.push_back(I->getOperand(0));
2665     Right.push_back(I->getOperand(1));
2666   }
2667 
2668   // Reorder if we have a commutative operation and consecutive access
2669   // are on either side of the alternate instructions.
2670   for (unsigned j = 0; j < VL.size() - 1; ++j) {
2671     if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) {
2672       if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) {
2673         Instruction *VL1 = cast<Instruction>(VL[j]);
2674         Instruction *VL2 = cast<Instruction>(VL[j + 1]);
2675         if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) {
2676           std::swap(Left[j], Right[j]);
2677           continue;
2678         } else if (VL2->isCommutative() &&
2679                    isConsecutiveAccess(L, L1, *DL, *SE)) {
2680           std::swap(Left[j + 1], Right[j + 1]);
2681           continue;
2682         }
2683         // else unchanged
2684       }
2685     }
2686     if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) {
2687       if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) {
2688         Instruction *VL1 = cast<Instruction>(VL[j]);
2689         Instruction *VL2 = cast<Instruction>(VL[j + 1]);
2690         if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) {
2691           std::swap(Left[j], Right[j]);
2692           continue;
2693         } else if (VL2->isCommutative() &&
2694                    isConsecutiveAccess(L, L1, *DL, *SE)) {
2695           std::swap(Left[j + 1], Right[j + 1]);
2696           continue;
2697         }
2698         // else unchanged
2699       }
2700     }
2701   }
2702 }
2703 
2704 // Return true if I should be commuted before adding it's left and right
2705 // operands to the arrays Left and Right.
2706 //
2707 // The vectorizer is trying to either have all elements one side being
2708 // instruction with the same opcode to enable further vectorization, or having
2709 // a splat to lower the vectorizing cost.
2710 static bool shouldReorderOperands(
2711     int i, unsigned Opcode, Instruction &I, ArrayRef<Value *> Left,
2712     ArrayRef<Value *> Right, bool AllSameOpcodeLeft, bool AllSameOpcodeRight,
2713     bool SplatLeft, bool SplatRight, Value *&VLeft, Value *&VRight) {
2714   VLeft = I.getOperand(0);
2715   VRight = I.getOperand(1);
2716   // If we have "SplatRight", try to see if commuting is needed to preserve it.
2717   if (SplatRight) {
2718     if (VRight == Right[i - 1])
2719       // Preserve SplatRight
2720       return false;
2721     if (VLeft == Right[i - 1]) {
2722       // Commuting would preserve SplatRight, but we don't want to break
2723       // SplatLeft either, i.e. preserve the original order if possible.
2724       // (FIXME: why do we care?)
2725       if (SplatLeft && VLeft == Left[i - 1])
2726         return false;
2727       return true;
2728     }
2729   }
2730   // Symmetrically handle Right side.
2731   if (SplatLeft) {
2732     if (VLeft == Left[i - 1])
2733       // Preserve SplatLeft
2734       return false;
2735     if (VRight == Left[i - 1])
2736       return true;
2737   }
2738 
2739   Instruction *ILeft = dyn_cast<Instruction>(VLeft);
2740   Instruction *IRight = dyn_cast<Instruction>(VRight);
2741 
2742   // If we have "AllSameOpcodeRight", try to see if the left operands preserves
2743   // it and not the right, in this case we want to commute.
2744   if (AllSameOpcodeRight) {
2745     unsigned RightPrevOpcode = cast<Instruction>(Right[i - 1])->getOpcode();
2746     if (IRight && RightPrevOpcode == IRight->getOpcode())
2747       // Do not commute, a match on the right preserves AllSameOpcodeRight
2748       return false;
2749     if (ILeft && RightPrevOpcode == ILeft->getOpcode()) {
2750       // We have a match and may want to commute, but first check if there is
2751       // not also a match on the existing operands on the Left to preserve
2752       // AllSameOpcodeLeft, i.e. preserve the original order if possible.
2753       // (FIXME: why do we care?)
2754       if (AllSameOpcodeLeft && ILeft &&
2755           cast<Instruction>(Left[i - 1])->getOpcode() == ILeft->getOpcode())
2756         return false;
2757       return true;
2758     }
2759   }
2760   // Symmetrically handle Left side.
2761   if (AllSameOpcodeLeft) {
2762     unsigned LeftPrevOpcode = cast<Instruction>(Left[i - 1])->getOpcode();
2763     if (ILeft && LeftPrevOpcode == ILeft->getOpcode())
2764       return false;
2765     if (IRight && LeftPrevOpcode == IRight->getOpcode())
2766       return true;
2767   }
2768   return false;
2769 }
2770 
2771 void BoUpSLP::reorderInputsAccordingToOpcode(unsigned Opcode,
2772                                              ArrayRef<Value *> VL,
2773                                              SmallVectorImpl<Value *> &Left,
2774                                              SmallVectorImpl<Value *> &Right) {
2775   if (!VL.empty()) {
2776     // Peel the first iteration out of the loop since there's nothing
2777     // interesting to do anyway and it simplifies the checks in the loop.
2778     auto *I = cast<Instruction>(VL[0]);
2779     Value *VLeft = I->getOperand(0);
2780     Value *VRight = I->getOperand(1);
2781     if (!isa<Instruction>(VRight) && isa<Instruction>(VLeft))
2782       // Favor having instruction to the right. FIXME: why?
2783       std::swap(VLeft, VRight);
2784     Left.push_back(VLeft);
2785     Right.push_back(VRight);
2786   }
2787 
2788   // Keep track if we have instructions with all the same opcode on one side.
2789   bool AllSameOpcodeLeft = isa<Instruction>(Left[0]);
2790   bool AllSameOpcodeRight = isa<Instruction>(Right[0]);
2791   // Keep track if we have one side with all the same value (broadcast).
2792   bool SplatLeft = true;
2793   bool SplatRight = true;
2794 
2795   for (unsigned i = 1, e = VL.size(); i != e; ++i) {
2796     Instruction *I = cast<Instruction>(VL[i]);
2797     assert(((I->getOpcode() == Opcode && I->isCommutative()) ||
2798             (I->getOpcode() != Opcode && Instruction::isCommutative(Opcode))) &&
2799            "Can only process commutative instruction");
2800     // Commute to favor either a splat or maximizing having the same opcodes on
2801     // one side.
2802     Value *VLeft;
2803     Value *VRight;
2804     if (shouldReorderOperands(i, Opcode, *I, Left, Right, AllSameOpcodeLeft,
2805                               AllSameOpcodeRight, SplatLeft, SplatRight, VLeft,
2806                               VRight)) {
2807       Left.push_back(VRight);
2808       Right.push_back(VLeft);
2809     } else {
2810       Left.push_back(VLeft);
2811       Right.push_back(VRight);
2812     }
2813     // Update Splat* and AllSameOpcode* after the insertion.
2814     SplatRight = SplatRight && (Right[i - 1] == Right[i]);
2815     SplatLeft = SplatLeft && (Left[i - 1] == Left[i]);
2816     AllSameOpcodeLeft = AllSameOpcodeLeft && isa<Instruction>(Left[i]) &&
2817                         (cast<Instruction>(Left[i - 1])->getOpcode() ==
2818                          cast<Instruction>(Left[i])->getOpcode());
2819     AllSameOpcodeRight = AllSameOpcodeRight && isa<Instruction>(Right[i]) &&
2820                          (cast<Instruction>(Right[i - 1])->getOpcode() ==
2821                           cast<Instruction>(Right[i])->getOpcode());
2822   }
2823 
2824   // If one operand end up being broadcast, return this operand order.
2825   if (SplatRight || SplatLeft)
2826     return;
2827 
2828   // Finally check if we can get longer vectorizable chain by reordering
2829   // without breaking the good operand order detected above.
2830   // E.g. If we have something like-
2831   // load a[0]  load b[0]
2832   // load b[1]  load a[1]
2833   // load a[2]  load b[2]
2834   // load a[3]  load b[3]
2835   // Reordering the second load b[1]  load a[1] would allow us to vectorize
2836   // this code and we still retain AllSameOpcode property.
2837   // FIXME: This load reordering might break AllSameOpcode in some rare cases
2838   // such as-
2839   // add a[0],c[0]  load b[0]
2840   // add a[1],c[2]  load b[1]
2841   // b[2]           load b[2]
2842   // add a[3],c[3]  load b[3]
2843   for (unsigned j = 0, e = VL.size() - 1; j < e; ++j) {
2844     if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) {
2845       if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) {
2846         if (isConsecutiveAccess(L, L1, *DL, *SE)) {
2847           std::swap(Left[j + 1], Right[j + 1]);
2848           continue;
2849         }
2850       }
2851     }
2852     if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) {
2853       if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) {
2854         if (isConsecutiveAccess(L, L1, *DL, *SE)) {
2855           std::swap(Left[j + 1], Right[j + 1]);
2856           continue;
2857         }
2858       }
2859     }
2860     // else unchanged
2861   }
2862 }
2863 
2864 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL,
2865                                         const InstructionsState &S) {
2866   // Get the basic block this bundle is in. All instructions in the bundle
2867   // should be in this block.
2868   auto *Front = cast<Instruction>(S.OpValue);
2869   auto *BB = Front->getParent();
2870   assert(llvm::all_of(make_range(VL.begin(), VL.end()), [=](Value *V) -> bool {
2871     auto *I = cast<Instruction>(V);
2872     return !S.isOpcodeOrAlt(I) || I->getParent() == BB;
2873   }));
2874 
2875   // The last instruction in the bundle in program order.
2876   Instruction *LastInst = nullptr;
2877 
2878   // Find the last instruction. The common case should be that BB has been
2879   // scheduled, and the last instruction is VL.back(). So we start with
2880   // VL.back() and iterate over schedule data until we reach the end of the
2881   // bundle. The end of the bundle is marked by null ScheduleData.
2882   if (BlocksSchedules.count(BB)) {
2883     auto *Bundle =
2884         BlocksSchedules[BB]->getScheduleData(isOneOf(S, VL.back()));
2885     if (Bundle && Bundle->isPartOfBundle())
2886       for (; Bundle; Bundle = Bundle->NextInBundle)
2887         if (Bundle->OpValue == Bundle->Inst)
2888           LastInst = Bundle->Inst;
2889   }
2890 
2891   // LastInst can still be null at this point if there's either not an entry
2892   // for BB in BlocksSchedules or there's no ScheduleData available for
2893   // VL.back(). This can be the case if buildTree_rec aborts for various
2894   // reasons (e.g., the maximum recursion depth is reached, the maximum region
2895   // size is reached, etc.). ScheduleData is initialized in the scheduling
2896   // "dry-run".
2897   //
2898   // If this happens, we can still find the last instruction by brute force. We
2899   // iterate forwards from Front (inclusive) until we either see all
2900   // instructions in the bundle or reach the end of the block. If Front is the
2901   // last instruction in program order, LastInst will be set to Front, and we
2902   // will visit all the remaining instructions in the block.
2903   //
2904   // One of the reasons we exit early from buildTree_rec is to place an upper
2905   // bound on compile-time. Thus, taking an additional compile-time hit here is
2906   // not ideal. However, this should be exceedingly rare since it requires that
2907   // we both exit early from buildTree_rec and that the bundle be out-of-order
2908   // (causing us to iterate all the way to the end of the block).
2909   if (!LastInst) {
2910     SmallPtrSet<Value *, 16> Bundle(VL.begin(), VL.end());
2911     for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) {
2912       if (Bundle.erase(&I) && S.isOpcodeOrAlt(&I))
2913         LastInst = &I;
2914       if (Bundle.empty())
2915         break;
2916     }
2917   }
2918 
2919   // Set the insertion point after the last instruction in the bundle. Set the
2920   // debug location to Front.
2921   Builder.SetInsertPoint(BB, ++LastInst->getIterator());
2922   Builder.SetCurrentDebugLocation(Front->getDebugLoc());
2923 }
2924 
2925 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
2926   Value *Vec = UndefValue::get(Ty);
2927   // Generate the 'InsertElement' instruction.
2928   for (unsigned i = 0; i < Ty->getNumElements(); ++i) {
2929     Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
2930     if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) {
2931       GatherSeq.insert(Insrt);
2932       CSEBlocks.insert(Insrt->getParent());
2933 
2934       // Add to our 'need-to-extract' list.
2935       if (TreeEntry *E = getTreeEntry(VL[i])) {
2936         // Find which lane we need to extract.
2937         int FoundLane = -1;
2938         for (unsigned Lane = 0, LE = E->Scalars.size(); Lane != LE; ++Lane) {
2939           // Is this the lane of the scalar that we are looking for ?
2940           if (E->Scalars[Lane] == VL[i]) {
2941             FoundLane = Lane;
2942             break;
2943           }
2944         }
2945         assert(FoundLane >= 0 && "Could not find the correct lane");
2946         if (!E->ReuseShuffleIndices.empty()) {
2947           FoundLane =
2948               std::distance(E->ReuseShuffleIndices.begin(),
2949                             llvm::find(E->ReuseShuffleIndices, FoundLane));
2950         }
2951         ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane));
2952       }
2953     }
2954   }
2955 
2956   return Vec;
2957 }
2958 
2959 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
2960   InstructionsState S = getSameOpcode(VL);
2961   if (S.getOpcode()) {
2962     if (TreeEntry *E = getTreeEntry(S.OpValue)) {
2963       if (E->isSame(VL)) {
2964         Value *V = vectorizeTree(E);
2965         if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) {
2966           // We need to get the vectorized value but without shuffle.
2967           if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) {
2968             V = SV->getOperand(0);
2969           } else {
2970             // Reshuffle to get only unique values.
2971             SmallVector<unsigned, 4> UniqueIdxs;
2972             SmallSet<unsigned, 4> UsedIdxs;
2973             for(unsigned Idx : E->ReuseShuffleIndices)
2974               if (UsedIdxs.insert(Idx).second)
2975                 UniqueIdxs.emplace_back(Idx);
2976             V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
2977                                             UniqueIdxs);
2978           }
2979         }
2980         return V;
2981       }
2982     }
2983   }
2984 
2985   Type *ScalarTy = S.OpValue->getType();
2986   if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
2987     ScalarTy = SI->getValueOperand()->getType();
2988 
2989   // Check that every instruction appears once in this bundle.
2990   SmallVector<unsigned, 4> ReuseShuffleIndicies;
2991   SmallVector<Value *, 4> UniqueValues;
2992   if (VL.size() > 2) {
2993     DenseMap<Value *, unsigned> UniquePositions;
2994     for (Value *V : VL) {
2995       auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
2996       ReuseShuffleIndicies.emplace_back(Res.first->second);
2997       if (Res.second || isa<Constant>(V))
2998         UniqueValues.emplace_back(V);
2999     }
3000     // Do not shuffle single element or if number of unique values is not power
3001     // of 2.
3002     if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 ||
3003         !llvm::isPowerOf2_32(UniqueValues.size()))
3004       ReuseShuffleIndicies.clear();
3005     else
3006       VL = UniqueValues;
3007   }
3008   VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
3009 
3010   Value *V = Gather(VL, VecTy);
3011   if (!ReuseShuffleIndicies.empty()) {
3012     V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3013                                     ReuseShuffleIndicies, "shuffle");
3014     if (auto *I = dyn_cast<Instruction>(V)) {
3015       GatherSeq.insert(I);
3016       CSEBlocks.insert(I->getParent());
3017     }
3018   }
3019   return V;
3020 }
3021 
3022 static void inversePermutation(ArrayRef<unsigned> Indices,
3023                                SmallVectorImpl<unsigned> &Mask) {
3024   Mask.clear();
3025   const unsigned E = Indices.size();
3026   Mask.resize(E);
3027   for (unsigned I = 0; I < E; ++I)
3028     Mask[Indices[I]] = I;
3029 }
3030 
3031 Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
3032   IRBuilder<>::InsertPointGuard Guard(Builder);
3033 
3034   if (E->VectorizedValue) {
3035     LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
3036     return E->VectorizedValue;
3037   }
3038 
3039   InstructionsState S = getSameOpcode(E->Scalars);
3040   Instruction *VL0 = cast<Instruction>(S.OpValue);
3041   Type *ScalarTy = VL0->getType();
3042   if (StoreInst *SI = dyn_cast<StoreInst>(VL0))
3043     ScalarTy = SI->getValueOperand()->getType();
3044   VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size());
3045 
3046   bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
3047 
3048   if (E->NeedToGather) {
3049     setInsertPointAfterBundle(E->Scalars, S);
3050     auto *V = Gather(E->Scalars, VecTy);
3051     if (NeedToShuffleReuses) {
3052       V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3053                                       E->ReuseShuffleIndices, "shuffle");
3054       if (auto *I = dyn_cast<Instruction>(V)) {
3055         GatherSeq.insert(I);
3056         CSEBlocks.insert(I->getParent());
3057       }
3058     }
3059     E->VectorizedValue = V;
3060     return V;
3061   }
3062 
3063   unsigned ShuffleOrOp = S.isAltShuffle() ?
3064            (unsigned) Instruction::ShuffleVector : S.getOpcode();
3065   switch (ShuffleOrOp) {
3066     case Instruction::PHI: {
3067       PHINode *PH = dyn_cast<PHINode>(VL0);
3068       Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
3069       Builder.SetCurrentDebugLocation(PH->getDebugLoc());
3070       PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
3071       Value *V = NewPhi;
3072       if (NeedToShuffleReuses) {
3073         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3074                                         E->ReuseShuffleIndices, "shuffle");
3075       }
3076       E->VectorizedValue = V;
3077 
3078       // PHINodes may have multiple entries from the same block. We want to
3079       // visit every block once.
3080       SmallPtrSet<BasicBlock*, 4> VisitedBBs;
3081 
3082       for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
3083         ValueList Operands;
3084         BasicBlock *IBB = PH->getIncomingBlock(i);
3085 
3086         if (!VisitedBBs.insert(IBB).second) {
3087           NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
3088           continue;
3089         }
3090 
3091         // Prepare the operand vector.
3092         for (Value *V : E->Scalars)
3093           Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB));
3094 
3095         Builder.SetInsertPoint(IBB->getTerminator());
3096         Builder.SetCurrentDebugLocation(PH->getDebugLoc());
3097         Value *Vec = vectorizeTree(Operands);
3098         NewPhi->addIncoming(Vec, IBB);
3099       }
3100 
3101       assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
3102              "Invalid number of incoming values");
3103       return V;
3104     }
3105 
3106     case Instruction::ExtractElement: {
3107       if (!E->NeedToGather) {
3108         Value *V = VL0->getOperand(0);
3109         if (!E->ReorderIndices.empty()) {
3110           OrdersType Mask;
3111           inversePermutation(E->ReorderIndices, Mask);
3112           Builder.SetInsertPoint(VL0);
3113           V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), Mask,
3114                                           "reorder_shuffle");
3115         }
3116         if (NeedToShuffleReuses) {
3117           // TODO: Merge this shuffle with the ReorderShuffleMask.
3118           if (E->ReorderIndices.empty())
3119             Builder.SetInsertPoint(VL0);
3120           V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3121                                           E->ReuseShuffleIndices, "shuffle");
3122         }
3123         E->VectorizedValue = V;
3124         return V;
3125       }
3126       setInsertPointAfterBundle(E->Scalars, S);
3127       auto *V = Gather(E->Scalars, VecTy);
3128       if (NeedToShuffleReuses) {
3129         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3130                                         E->ReuseShuffleIndices, "shuffle");
3131         if (auto *I = dyn_cast<Instruction>(V)) {
3132           GatherSeq.insert(I);
3133           CSEBlocks.insert(I->getParent());
3134         }
3135       }
3136       E->VectorizedValue = V;
3137       return V;
3138     }
3139     case Instruction::ExtractValue: {
3140       if (!E->NeedToGather) {
3141         LoadInst *LI = cast<LoadInst>(VL0->getOperand(0));
3142         Builder.SetInsertPoint(LI);
3143         PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace());
3144         Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy);
3145         LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlignment());
3146         Value *NewV = propagateMetadata(V, E->Scalars);
3147         if (!E->ReorderIndices.empty()) {
3148           OrdersType Mask;
3149           inversePermutation(E->ReorderIndices, Mask);
3150           NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), Mask,
3151                                              "reorder_shuffle");
3152         }
3153         if (NeedToShuffleReuses) {
3154           // TODO: Merge this shuffle with the ReorderShuffleMask.
3155           NewV = Builder.CreateShuffleVector(
3156               NewV, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle");
3157         }
3158         E->VectorizedValue = NewV;
3159         return NewV;
3160       }
3161       setInsertPointAfterBundle(E->Scalars, S);
3162       auto *V = Gather(E->Scalars, VecTy);
3163       if (NeedToShuffleReuses) {
3164         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3165                                         E->ReuseShuffleIndices, "shuffle");
3166         if (auto *I = dyn_cast<Instruction>(V)) {
3167           GatherSeq.insert(I);
3168           CSEBlocks.insert(I->getParent());
3169         }
3170       }
3171       E->VectorizedValue = V;
3172       return V;
3173     }
3174     case Instruction::ZExt:
3175     case Instruction::SExt:
3176     case Instruction::FPToUI:
3177     case Instruction::FPToSI:
3178     case Instruction::FPExt:
3179     case Instruction::PtrToInt:
3180     case Instruction::IntToPtr:
3181     case Instruction::SIToFP:
3182     case Instruction::UIToFP:
3183     case Instruction::Trunc:
3184     case Instruction::FPTrunc:
3185     case Instruction::BitCast: {
3186       ValueList INVL;
3187       for (Value *V : E->Scalars)
3188         INVL.push_back(cast<Instruction>(V)->getOperand(0));
3189 
3190       setInsertPointAfterBundle(E->Scalars, S);
3191 
3192       Value *InVec = vectorizeTree(INVL);
3193 
3194       if (E->VectorizedValue) {
3195         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
3196         return E->VectorizedValue;
3197       }
3198 
3199       CastInst *CI = dyn_cast<CastInst>(VL0);
3200       Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
3201       if (NeedToShuffleReuses) {
3202         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3203                                         E->ReuseShuffleIndices, "shuffle");
3204       }
3205       E->VectorizedValue = V;
3206       ++NumVectorInstructions;
3207       return V;
3208     }
3209     case Instruction::FCmp:
3210     case Instruction::ICmp: {
3211       ValueList LHSV, RHSV;
3212       for (Value *V : E->Scalars) {
3213         LHSV.push_back(cast<Instruction>(V)->getOperand(0));
3214         RHSV.push_back(cast<Instruction>(V)->getOperand(1));
3215       }
3216 
3217       setInsertPointAfterBundle(E->Scalars, S);
3218 
3219       Value *L = vectorizeTree(LHSV);
3220       Value *R = vectorizeTree(RHSV);
3221 
3222       if (E->VectorizedValue) {
3223         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
3224         return E->VectorizedValue;
3225       }
3226 
3227       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
3228       Value *V;
3229       if (S.getOpcode() == Instruction::FCmp)
3230         V = Builder.CreateFCmp(P0, L, R);
3231       else
3232         V = Builder.CreateICmp(P0, L, R);
3233 
3234       propagateIRFlags(V, E->Scalars, VL0);
3235       if (NeedToShuffleReuses) {
3236         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3237                                         E->ReuseShuffleIndices, "shuffle");
3238       }
3239       E->VectorizedValue = V;
3240       ++NumVectorInstructions;
3241       return V;
3242     }
3243     case Instruction::Select: {
3244       ValueList TrueVec, FalseVec, CondVec;
3245       for (Value *V : E->Scalars) {
3246         CondVec.push_back(cast<Instruction>(V)->getOperand(0));
3247         TrueVec.push_back(cast<Instruction>(V)->getOperand(1));
3248         FalseVec.push_back(cast<Instruction>(V)->getOperand(2));
3249       }
3250 
3251       setInsertPointAfterBundle(E->Scalars, S);
3252 
3253       Value *Cond = vectorizeTree(CondVec);
3254       Value *True = vectorizeTree(TrueVec);
3255       Value *False = vectorizeTree(FalseVec);
3256 
3257       if (E->VectorizedValue) {
3258         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
3259         return E->VectorizedValue;
3260       }
3261 
3262       Value *V = Builder.CreateSelect(Cond, True, False);
3263       if (NeedToShuffleReuses) {
3264         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3265                                         E->ReuseShuffleIndices, "shuffle");
3266       }
3267       E->VectorizedValue = V;
3268       ++NumVectorInstructions;
3269       return V;
3270     }
3271     case Instruction::Add:
3272     case Instruction::FAdd:
3273     case Instruction::Sub:
3274     case Instruction::FSub:
3275     case Instruction::Mul:
3276     case Instruction::FMul:
3277     case Instruction::UDiv:
3278     case Instruction::SDiv:
3279     case Instruction::FDiv:
3280     case Instruction::URem:
3281     case Instruction::SRem:
3282     case Instruction::FRem:
3283     case Instruction::Shl:
3284     case Instruction::LShr:
3285     case Instruction::AShr:
3286     case Instruction::And:
3287     case Instruction::Or:
3288     case Instruction::Xor: {
3289       ValueList LHSVL, RHSVL;
3290       if (isa<BinaryOperator>(VL0) && VL0->isCommutative())
3291         reorderInputsAccordingToOpcode(S.getOpcode(), E->Scalars, LHSVL,
3292                                        RHSVL);
3293       else
3294         for (Value *V : E->Scalars) {
3295           auto *I = cast<Instruction>(V);
3296           LHSVL.push_back(I->getOperand(0));
3297           RHSVL.push_back(I->getOperand(1));
3298         }
3299 
3300       setInsertPointAfterBundle(E->Scalars, S);
3301 
3302       Value *LHS = vectorizeTree(LHSVL);
3303       Value *RHS = vectorizeTree(RHSVL);
3304 
3305       if (E->VectorizedValue) {
3306         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
3307         return E->VectorizedValue;
3308       }
3309 
3310       Value *V = Builder.CreateBinOp(
3311           static_cast<Instruction::BinaryOps>(S.getOpcode()), LHS, RHS);
3312       propagateIRFlags(V, E->Scalars, VL0);
3313       if (auto *I = dyn_cast<Instruction>(V))
3314         V = propagateMetadata(I, E->Scalars);
3315 
3316       if (NeedToShuffleReuses) {
3317         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3318                                         E->ReuseShuffleIndices, "shuffle");
3319       }
3320       E->VectorizedValue = V;
3321       ++NumVectorInstructions;
3322 
3323       return V;
3324     }
3325     case Instruction::Load: {
3326       // Loads are inserted at the head of the tree because we don't want to
3327       // sink them all the way down past store instructions.
3328       bool IsReorder = !E->ReorderIndices.empty();
3329       if (IsReorder) {
3330         S = getSameOpcode(E->Scalars, E->ReorderIndices.front());
3331         VL0 = cast<Instruction>(S.OpValue);
3332       }
3333       setInsertPointAfterBundle(E->Scalars, S);
3334 
3335       LoadInst *LI = cast<LoadInst>(VL0);
3336       Type *ScalarLoadTy = LI->getType();
3337       unsigned AS = LI->getPointerAddressSpace();
3338 
3339       Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(),
3340                                             VecTy->getPointerTo(AS));
3341 
3342       // The pointer operand uses an in-tree scalar so we add the new BitCast to
3343       // ExternalUses list to make sure that an extract will be generated in the
3344       // future.
3345       Value *PO = LI->getPointerOperand();
3346       if (getTreeEntry(PO))
3347         ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0));
3348 
3349       unsigned Alignment = LI->getAlignment();
3350       LI = Builder.CreateLoad(VecTy, VecPtr);
3351       if (!Alignment) {
3352         Alignment = DL->getABITypeAlignment(ScalarLoadTy);
3353       }
3354       LI->setAlignment(Alignment);
3355       Value *V = propagateMetadata(LI, E->Scalars);
3356       if (IsReorder) {
3357         OrdersType Mask;
3358         inversePermutation(E->ReorderIndices, Mask);
3359         V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
3360                                         Mask, "reorder_shuffle");
3361       }
3362       if (NeedToShuffleReuses) {
3363         // TODO: Merge this shuffle with the ReorderShuffleMask.
3364         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3365                                         E->ReuseShuffleIndices, "shuffle");
3366       }
3367       E->VectorizedValue = V;
3368       ++NumVectorInstructions;
3369       return V;
3370     }
3371     case Instruction::Store: {
3372       StoreInst *SI = cast<StoreInst>(VL0);
3373       unsigned Alignment = SI->getAlignment();
3374       unsigned AS = SI->getPointerAddressSpace();
3375 
3376       ValueList ScalarStoreValues;
3377       for (Value *V : E->Scalars)
3378         ScalarStoreValues.push_back(cast<StoreInst>(V)->getValueOperand());
3379 
3380       setInsertPointAfterBundle(E->Scalars, S);
3381 
3382       Value *VecValue = vectorizeTree(ScalarStoreValues);
3383       Value *ScalarPtr = SI->getPointerOperand();
3384       Value *VecPtr = Builder.CreateBitCast(ScalarPtr, VecTy->getPointerTo(AS));
3385       StoreInst *ST = Builder.CreateStore(VecValue, VecPtr);
3386 
3387       // The pointer operand uses an in-tree scalar, so add the new BitCast to
3388       // ExternalUses to make sure that an extract will be generated in the
3389       // future.
3390       if (getTreeEntry(ScalarPtr))
3391         ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0));
3392 
3393       if (!Alignment)
3394         Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType());
3395 
3396       ST->setAlignment(Alignment);
3397       Value *V = propagateMetadata(ST, E->Scalars);
3398       if (NeedToShuffleReuses) {
3399         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3400                                         E->ReuseShuffleIndices, "shuffle");
3401       }
3402       E->VectorizedValue = V;
3403       ++NumVectorInstructions;
3404       return V;
3405     }
3406     case Instruction::GetElementPtr: {
3407       setInsertPointAfterBundle(E->Scalars, S);
3408 
3409       ValueList Op0VL;
3410       for (Value *V : E->Scalars)
3411         Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0));
3412 
3413       Value *Op0 = vectorizeTree(Op0VL);
3414 
3415       std::vector<Value *> OpVecs;
3416       for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e;
3417            ++j) {
3418         ValueList OpVL;
3419         for (Value *V : E->Scalars)
3420           OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j));
3421 
3422         Value *OpVec = vectorizeTree(OpVL);
3423         OpVecs.push_back(OpVec);
3424       }
3425 
3426       Value *V = Builder.CreateGEP(
3427           cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs);
3428       if (Instruction *I = dyn_cast<Instruction>(V))
3429         V = propagateMetadata(I, E->Scalars);
3430 
3431       if (NeedToShuffleReuses) {
3432         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3433                                         E->ReuseShuffleIndices, "shuffle");
3434       }
3435       E->VectorizedValue = V;
3436       ++NumVectorInstructions;
3437 
3438       return V;
3439     }
3440     case Instruction::Call: {
3441       CallInst *CI = cast<CallInst>(VL0);
3442       setInsertPointAfterBundle(E->Scalars, S);
3443       Function *FI;
3444       Intrinsic::ID IID  = Intrinsic::not_intrinsic;
3445       Value *ScalarArg = nullptr;
3446       if (CI && (FI = CI->getCalledFunction())) {
3447         IID = FI->getIntrinsicID();
3448       }
3449       std::vector<Value *> OpVecs;
3450       for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) {
3451         ValueList OpVL;
3452         // Some intrinsics have scalar arguments. This argument should not be
3453         // vectorized.
3454         if (hasVectorInstrinsicScalarOpd(IID, j)) {
3455           CallInst *CEI = cast<CallInst>(VL0);
3456           ScalarArg = CEI->getArgOperand(j);
3457           OpVecs.push_back(CEI->getArgOperand(j));
3458           continue;
3459         }
3460         for (Value *V : E->Scalars) {
3461           CallInst *CEI = cast<CallInst>(V);
3462           OpVL.push_back(CEI->getArgOperand(j));
3463         }
3464 
3465         Value *OpVec = vectorizeTree(OpVL);
3466         LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
3467         OpVecs.push_back(OpVec);
3468       }
3469 
3470       Module *M = F->getParent();
3471       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3472       Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) };
3473       Function *CF = Intrinsic::getDeclaration(M, ID, Tys);
3474       SmallVector<OperandBundleDef, 1> OpBundles;
3475       CI->getOperandBundlesAsDefs(OpBundles);
3476       Value *V = Builder.CreateCall(CF, OpVecs, OpBundles);
3477 
3478       // The scalar argument uses an in-tree scalar so we add the new vectorized
3479       // call to ExternalUses list to make sure that an extract will be
3480       // generated in the future.
3481       if (ScalarArg && getTreeEntry(ScalarArg))
3482         ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0));
3483 
3484       propagateIRFlags(V, E->Scalars, VL0);
3485       if (NeedToShuffleReuses) {
3486         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3487                                         E->ReuseShuffleIndices, "shuffle");
3488       }
3489       E->VectorizedValue = V;
3490       ++NumVectorInstructions;
3491       return V;
3492     }
3493     case Instruction::ShuffleVector: {
3494       ValueList LHSVL, RHSVL;
3495       assert(S.isAltShuffle() &&
3496              ((Instruction::isBinaryOp(S.getOpcode()) &&
3497                Instruction::isBinaryOp(S.getAltOpcode())) ||
3498               (Instruction::isCast(S.getOpcode()) &&
3499                Instruction::isCast(S.getAltOpcode()))) &&
3500              "Invalid Shuffle Vector Operand");
3501 
3502       Value *LHS, *RHS;
3503       if (Instruction::isBinaryOp(S.getOpcode())) {
3504         reorderAltShuffleOperands(S, E->Scalars, LHSVL, RHSVL);
3505         setInsertPointAfterBundle(E->Scalars, S);
3506         LHS = vectorizeTree(LHSVL);
3507         RHS = vectorizeTree(RHSVL);
3508       } else {
3509         ValueList INVL;
3510         for (Value *V : E->Scalars)
3511           INVL.push_back(cast<Instruction>(V)->getOperand(0));
3512         setInsertPointAfterBundle(E->Scalars, S);
3513         LHS = vectorizeTree(INVL);
3514       }
3515 
3516       if (E->VectorizedValue) {
3517         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
3518         return E->VectorizedValue;
3519       }
3520 
3521       Value *V0, *V1;
3522       if (Instruction::isBinaryOp(S.getOpcode())) {
3523         V0 = Builder.CreateBinOp(
3524           static_cast<Instruction::BinaryOps>(S.getOpcode()), LHS, RHS);
3525         V1 = Builder.CreateBinOp(
3526           static_cast<Instruction::BinaryOps>(S.getAltOpcode()), LHS, RHS);
3527       } else {
3528         V0 = Builder.CreateCast(
3529             static_cast<Instruction::CastOps>(S.getOpcode()), LHS, VecTy);
3530         V1 = Builder.CreateCast(
3531             static_cast<Instruction::CastOps>(S.getAltOpcode()), LHS, VecTy);
3532       }
3533 
3534       // Create shuffle to take alternate operations from the vector.
3535       // Also, gather up main and alt scalar ops to propagate IR flags to
3536       // each vector operation.
3537       ValueList OpScalars, AltScalars;
3538       unsigned e = E->Scalars.size();
3539       SmallVector<Constant *, 8> Mask(e);
3540       for (unsigned i = 0; i < e; ++i) {
3541         auto *OpInst = cast<Instruction>(E->Scalars[i]);
3542         assert(S.isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode");
3543         if (OpInst->getOpcode() == S.getAltOpcode()) {
3544           Mask[i] = Builder.getInt32(e + i);
3545           AltScalars.push_back(E->Scalars[i]);
3546         } else {
3547           Mask[i] = Builder.getInt32(i);
3548           OpScalars.push_back(E->Scalars[i]);
3549         }
3550       }
3551 
3552       Value *ShuffleMask = ConstantVector::get(Mask);
3553       propagateIRFlags(V0, OpScalars);
3554       propagateIRFlags(V1, AltScalars);
3555 
3556       Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask);
3557       if (Instruction *I = dyn_cast<Instruction>(V))
3558         V = propagateMetadata(I, E->Scalars);
3559       if (NeedToShuffleReuses) {
3560         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3561                                         E->ReuseShuffleIndices, "shuffle");
3562       }
3563       E->VectorizedValue = V;
3564       ++NumVectorInstructions;
3565 
3566       return V;
3567     }
3568     default:
3569     llvm_unreachable("unknown inst");
3570   }
3571   return nullptr;
3572 }
3573 
3574 Value *BoUpSLP::vectorizeTree() {
3575   ExtraValueToDebugLocsMap ExternallyUsedValues;
3576   return vectorizeTree(ExternallyUsedValues);
3577 }
3578 
3579 Value *
3580 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) {
3581   // All blocks must be scheduled before any instructions are inserted.
3582   for (auto &BSIter : BlocksSchedules) {
3583     scheduleBlock(BSIter.second.get());
3584   }
3585 
3586   Builder.SetInsertPoint(&F->getEntryBlock().front());
3587   auto *VectorRoot = vectorizeTree(&VectorizableTree[0]);
3588 
3589   // If the vectorized tree can be rewritten in a smaller type, we truncate the
3590   // vectorized root. InstCombine will then rewrite the entire expression. We
3591   // sign extend the extracted values below.
3592   auto *ScalarRoot = VectorizableTree[0].Scalars[0];
3593   if (MinBWs.count(ScalarRoot)) {
3594     if (auto *I = dyn_cast<Instruction>(VectorRoot))
3595       Builder.SetInsertPoint(&*++BasicBlock::iterator(I));
3596     auto BundleWidth = VectorizableTree[0].Scalars.size();
3597     auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
3598     auto *VecTy = VectorType::get(MinTy, BundleWidth);
3599     auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy);
3600     VectorizableTree[0].VectorizedValue = Trunc;
3601   }
3602 
3603   LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size()
3604                     << " values .\n");
3605 
3606   // If necessary, sign-extend or zero-extend ScalarRoot to the larger type
3607   // specified by ScalarType.
3608   auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) {
3609     if (!MinBWs.count(ScalarRoot))
3610       return Ex;
3611     if (MinBWs[ScalarRoot].second)
3612       return Builder.CreateSExt(Ex, ScalarType);
3613     return Builder.CreateZExt(Ex, ScalarType);
3614   };
3615 
3616   // Extract all of the elements with the external uses.
3617   for (const auto &ExternalUse : ExternalUses) {
3618     Value *Scalar = ExternalUse.Scalar;
3619     llvm::User *User = ExternalUse.User;
3620 
3621     // Skip users that we already RAUW. This happens when one instruction
3622     // has multiple uses of the same value.
3623     if (User && !is_contained(Scalar->users(), User))
3624       continue;
3625     TreeEntry *E = getTreeEntry(Scalar);
3626     assert(E && "Invalid scalar");
3627     assert(!E->NeedToGather && "Extracting from a gather list");
3628 
3629     Value *Vec = E->VectorizedValue;
3630     assert(Vec && "Can't find vectorizable value");
3631 
3632     Value *Lane = Builder.getInt32(ExternalUse.Lane);
3633     // If User == nullptr, the Scalar is used as extra arg. Generate
3634     // ExtractElement instruction and update the record for this scalar in
3635     // ExternallyUsedValues.
3636     if (!User) {
3637       assert(ExternallyUsedValues.count(Scalar) &&
3638              "Scalar with nullptr as an external user must be registered in "
3639              "ExternallyUsedValues map");
3640       if (auto *VecI = dyn_cast<Instruction>(Vec)) {
3641         Builder.SetInsertPoint(VecI->getParent(),
3642                                std::next(VecI->getIterator()));
3643       } else {
3644         Builder.SetInsertPoint(&F->getEntryBlock().front());
3645       }
3646       Value *Ex = Builder.CreateExtractElement(Vec, Lane);
3647       Ex = extend(ScalarRoot, Ex, Scalar->getType());
3648       CSEBlocks.insert(cast<Instruction>(Scalar)->getParent());
3649       auto &Locs = ExternallyUsedValues[Scalar];
3650       ExternallyUsedValues.insert({Ex, Locs});
3651       ExternallyUsedValues.erase(Scalar);
3652       // Required to update internally referenced instructions.
3653       Scalar->replaceAllUsesWith(Ex);
3654       continue;
3655     }
3656 
3657     // Generate extracts for out-of-tree users.
3658     // Find the insertion point for the extractelement lane.
3659     if (auto *VecI = dyn_cast<Instruction>(Vec)) {
3660       if (PHINode *PH = dyn_cast<PHINode>(User)) {
3661         for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
3662           if (PH->getIncomingValue(i) == Scalar) {
3663             Instruction *IncomingTerminator =
3664                 PH->getIncomingBlock(i)->getTerminator();
3665             if (isa<CatchSwitchInst>(IncomingTerminator)) {
3666               Builder.SetInsertPoint(VecI->getParent(),
3667                                      std::next(VecI->getIterator()));
3668             } else {
3669               Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
3670             }
3671             Value *Ex = Builder.CreateExtractElement(Vec, Lane);
3672             Ex = extend(ScalarRoot, Ex, Scalar->getType());
3673             CSEBlocks.insert(PH->getIncomingBlock(i));
3674             PH->setOperand(i, Ex);
3675           }
3676         }
3677       } else {
3678         Builder.SetInsertPoint(cast<Instruction>(User));
3679         Value *Ex = Builder.CreateExtractElement(Vec, Lane);
3680         Ex = extend(ScalarRoot, Ex, Scalar->getType());
3681         CSEBlocks.insert(cast<Instruction>(User)->getParent());
3682         User->replaceUsesOfWith(Scalar, Ex);
3683       }
3684     } else {
3685       Builder.SetInsertPoint(&F->getEntryBlock().front());
3686       Value *Ex = Builder.CreateExtractElement(Vec, Lane);
3687       Ex = extend(ScalarRoot, Ex, Scalar->getType());
3688       CSEBlocks.insert(&F->getEntryBlock());
3689       User->replaceUsesOfWith(Scalar, Ex);
3690     }
3691 
3692     LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
3693   }
3694 
3695   // For each vectorized value:
3696   for (TreeEntry &EIdx : VectorizableTree) {
3697     TreeEntry *Entry = &EIdx;
3698 
3699     // No need to handle users of gathered values.
3700     if (Entry->NeedToGather)
3701       continue;
3702 
3703     assert(Entry->VectorizedValue && "Can't find vectorizable value");
3704 
3705     // For each lane:
3706     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
3707       Value *Scalar = Entry->Scalars[Lane];
3708 
3709       Type *Ty = Scalar->getType();
3710       if (!Ty->isVoidTy()) {
3711 #ifndef NDEBUG
3712         for (User *U : Scalar->users()) {
3713           LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
3714 
3715           // It is legal to replace users in the ignorelist by undef.
3716           assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) &&
3717                  "Replacing out-of-tree value with undef");
3718         }
3719 #endif
3720         Value *Undef = UndefValue::get(Ty);
3721         Scalar->replaceAllUsesWith(Undef);
3722       }
3723       LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
3724       eraseInstruction(cast<Instruction>(Scalar));
3725     }
3726   }
3727 
3728   Builder.ClearInsertionPoint();
3729 
3730   return VectorizableTree[0].VectorizedValue;
3731 }
3732 
3733 void BoUpSLP::optimizeGatherSequence() {
3734   LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
3735                     << " gather sequences instructions.\n");
3736   // LICM InsertElementInst sequences.
3737   for (Instruction *I : GatherSeq) {
3738     if (!isa<InsertElementInst>(I) && !isa<ShuffleVectorInst>(I))
3739       continue;
3740 
3741     // Check if this block is inside a loop.
3742     Loop *L = LI->getLoopFor(I->getParent());
3743     if (!L)
3744       continue;
3745 
3746     // Check if it has a preheader.
3747     BasicBlock *PreHeader = L->getLoopPreheader();
3748     if (!PreHeader)
3749       continue;
3750 
3751     // If the vector or the element that we insert into it are
3752     // instructions that are defined in this basic block then we can't
3753     // hoist this instruction.
3754     auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
3755     auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
3756     if (Op0 && L->contains(Op0))
3757       continue;
3758     if (Op1 && L->contains(Op1))
3759       continue;
3760 
3761     // We can hoist this instruction. Move it to the pre-header.
3762     I->moveBefore(PreHeader->getTerminator());
3763   }
3764 
3765   // Make a list of all reachable blocks in our CSE queue.
3766   SmallVector<const DomTreeNode *, 8> CSEWorkList;
3767   CSEWorkList.reserve(CSEBlocks.size());
3768   for (BasicBlock *BB : CSEBlocks)
3769     if (DomTreeNode *N = DT->getNode(BB)) {
3770       assert(DT->isReachableFromEntry(N));
3771       CSEWorkList.push_back(N);
3772     }
3773 
3774   // Sort blocks by domination. This ensures we visit a block after all blocks
3775   // dominating it are visited.
3776   std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(),
3777                    [this](const DomTreeNode *A, const DomTreeNode *B) {
3778     return DT->properlyDominates(A, B);
3779   });
3780 
3781   // Perform O(N^2) search over the gather sequences and merge identical
3782   // instructions. TODO: We can further optimize this scan if we split the
3783   // instructions into different buckets based on the insert lane.
3784   SmallVector<Instruction *, 16> Visited;
3785   for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
3786     assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
3787            "Worklist not sorted properly!");
3788     BasicBlock *BB = (*I)->getBlock();
3789     // For all instructions in blocks containing gather sequences:
3790     for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
3791       Instruction *In = &*it++;
3792       if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
3793         continue;
3794 
3795       // Check if we can replace this instruction with any of the
3796       // visited instructions.
3797       for (Instruction *v : Visited) {
3798         if (In->isIdenticalTo(v) &&
3799             DT->dominates(v->getParent(), In->getParent())) {
3800           In->replaceAllUsesWith(v);
3801           eraseInstruction(In);
3802           In = nullptr;
3803           break;
3804         }
3805       }
3806       if (In) {
3807         assert(!is_contained(Visited, In));
3808         Visited.push_back(In);
3809       }
3810     }
3811   }
3812   CSEBlocks.clear();
3813   GatherSeq.clear();
3814 }
3815 
3816 // Groups the instructions to a bundle (which is then a single scheduling entity)
3817 // and schedules instructions until the bundle gets ready.
3818 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL,
3819                                                  BoUpSLP *SLP,
3820                                                  const InstructionsState &S) {
3821   if (isa<PHINode>(S.OpValue))
3822     return true;
3823 
3824   // Initialize the instruction bundle.
3825   Instruction *OldScheduleEnd = ScheduleEnd;
3826   ScheduleData *PrevInBundle = nullptr;
3827   ScheduleData *Bundle = nullptr;
3828   bool ReSchedule = false;
3829   LLVM_DEBUG(dbgs() << "SLP:  bundle: " << *S.OpValue << "\n");
3830 
3831   // Make sure that the scheduling region contains all
3832   // instructions of the bundle.
3833   for (Value *V : VL) {
3834     if (!extendSchedulingRegion(V, S))
3835       return false;
3836   }
3837 
3838   for (Value *V : VL) {
3839     ScheduleData *BundleMember = getScheduleData(V);
3840     assert(BundleMember &&
3841            "no ScheduleData for bundle member (maybe not in same basic block)");
3842     if (BundleMember->IsScheduled) {
3843       // A bundle member was scheduled as single instruction before and now
3844       // needs to be scheduled as part of the bundle. We just get rid of the
3845       // existing schedule.
3846       LLVM_DEBUG(dbgs() << "SLP:  reset schedule because " << *BundleMember
3847                         << " was already scheduled\n");
3848       ReSchedule = true;
3849     }
3850     assert(BundleMember->isSchedulingEntity() &&
3851            "bundle member already part of other bundle");
3852     if (PrevInBundle) {
3853       PrevInBundle->NextInBundle = BundleMember;
3854     } else {
3855       Bundle = BundleMember;
3856     }
3857     BundleMember->UnscheduledDepsInBundle = 0;
3858     Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps;
3859 
3860     // Group the instructions to a bundle.
3861     BundleMember->FirstInBundle = Bundle;
3862     PrevInBundle = BundleMember;
3863   }
3864   if (ScheduleEnd != OldScheduleEnd) {
3865     // The scheduling region got new instructions at the lower end (or it is a
3866     // new region for the first bundle). This makes it necessary to
3867     // recalculate all dependencies.
3868     // It is seldom that this needs to be done a second time after adding the
3869     // initial bundle to the region.
3870     for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
3871       doForAllOpcodes(I, [](ScheduleData *SD) {
3872         SD->clearDependencies();
3873       });
3874     }
3875     ReSchedule = true;
3876   }
3877   if (ReSchedule) {
3878     resetSchedule();
3879     initialFillReadyList(ReadyInsts);
3880   }
3881 
3882   LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block "
3883                     << BB->getName() << "\n");
3884 
3885   calculateDependencies(Bundle, true, SLP);
3886 
3887   // Now try to schedule the new bundle. As soon as the bundle is "ready" it
3888   // means that there are no cyclic dependencies and we can schedule it.
3889   // Note that's important that we don't "schedule" the bundle yet (see
3890   // cancelScheduling).
3891   while (!Bundle->isReady() && !ReadyInsts.empty()) {
3892 
3893     ScheduleData *pickedSD = ReadyInsts.back();
3894     ReadyInsts.pop_back();
3895 
3896     if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) {
3897       schedule(pickedSD, ReadyInsts);
3898     }
3899   }
3900   if (!Bundle->isReady()) {
3901     cancelScheduling(VL, S.OpValue);
3902     return false;
3903   }
3904   return true;
3905 }
3906 
3907 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL,
3908                                                 Value *OpValue) {
3909   if (isa<PHINode>(OpValue))
3910     return;
3911 
3912   ScheduleData *Bundle = getScheduleData(OpValue);
3913   LLVM_DEBUG(dbgs() << "SLP:  cancel scheduling of " << *Bundle << "\n");
3914   assert(!Bundle->IsScheduled &&
3915          "Can't cancel bundle which is already scheduled");
3916   assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&
3917          "tried to unbundle something which is not a bundle");
3918 
3919   // Un-bundle: make single instructions out of the bundle.
3920   ScheduleData *BundleMember = Bundle;
3921   while (BundleMember) {
3922     assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
3923     BundleMember->FirstInBundle = BundleMember;
3924     ScheduleData *Next = BundleMember->NextInBundle;
3925     BundleMember->NextInBundle = nullptr;
3926     BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps;
3927     if (BundleMember->UnscheduledDepsInBundle == 0) {
3928       ReadyInsts.insert(BundleMember);
3929     }
3930     BundleMember = Next;
3931   }
3932 }
3933 
3934 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() {
3935   // Allocate a new ScheduleData for the instruction.
3936   if (ChunkPos >= ChunkSize) {
3937     ScheduleDataChunks.push_back(llvm::make_unique<ScheduleData[]>(ChunkSize));
3938     ChunkPos = 0;
3939   }
3940   return &(ScheduleDataChunks.back()[ChunkPos++]);
3941 }
3942 
3943 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V,
3944                                                       const InstructionsState &S) {
3945   if (getScheduleData(V, isOneOf(S, V)))
3946     return true;
3947   Instruction *I = dyn_cast<Instruction>(V);
3948   assert(I && "bundle member must be an instruction");
3949   assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled");
3950   auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool {
3951     ScheduleData *ISD = getScheduleData(I);
3952     if (!ISD)
3953       return false;
3954     assert(isInSchedulingRegion(ISD) &&
3955            "ScheduleData not in scheduling region");
3956     ScheduleData *SD = allocateScheduleDataChunks();
3957     SD->Inst = I;
3958     SD->init(SchedulingRegionID, S.OpValue);
3959     ExtraScheduleDataMap[I][S.OpValue] = SD;
3960     return true;
3961   };
3962   if (CheckSheduleForI(I))
3963     return true;
3964   if (!ScheduleStart) {
3965     // It's the first instruction in the new region.
3966     initScheduleData(I, I->getNextNode(), nullptr, nullptr);
3967     ScheduleStart = I;
3968     ScheduleEnd = I->getNextNode();
3969     if (isOneOf(S, I) != I)
3970       CheckSheduleForI(I);
3971     assert(ScheduleEnd && "tried to vectorize a terminator?");
3972     LLVM_DEBUG(dbgs() << "SLP:  initialize schedule region to " << *I << "\n");
3973     return true;
3974   }
3975   // Search up and down at the same time, because we don't know if the new
3976   // instruction is above or below the existing scheduling region.
3977   BasicBlock::reverse_iterator UpIter =
3978       ++ScheduleStart->getIterator().getReverse();
3979   BasicBlock::reverse_iterator UpperEnd = BB->rend();
3980   BasicBlock::iterator DownIter = ScheduleEnd->getIterator();
3981   BasicBlock::iterator LowerEnd = BB->end();
3982   while (true) {
3983     if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
3984       LLVM_DEBUG(dbgs() << "SLP:  exceeded schedule region size limit\n");
3985       return false;
3986     }
3987 
3988     if (UpIter != UpperEnd) {
3989       if (&*UpIter == I) {
3990         initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
3991         ScheduleStart = I;
3992         if (isOneOf(S, I) != I)
3993           CheckSheduleForI(I);
3994         LLVM_DEBUG(dbgs() << "SLP:  extend schedule region start to " << *I
3995                           << "\n");
3996         return true;
3997       }
3998       UpIter++;
3999     }
4000     if (DownIter != LowerEnd) {
4001       if (&*DownIter == I) {
4002         initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
4003                          nullptr);
4004         ScheduleEnd = I->getNextNode();
4005         if (isOneOf(S, I) != I)
4006           CheckSheduleForI(I);
4007         assert(ScheduleEnd && "tried to vectorize a terminator?");
4008         LLVM_DEBUG(dbgs() << "SLP:  extend schedule region end to " << *I
4009                           << "\n");
4010         return true;
4011       }
4012       DownIter++;
4013     }
4014     assert((UpIter != UpperEnd || DownIter != LowerEnd) &&
4015            "instruction not found in block");
4016   }
4017   return true;
4018 }
4019 
4020 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
4021                                                 Instruction *ToI,
4022                                                 ScheduleData *PrevLoadStore,
4023                                                 ScheduleData *NextLoadStore) {
4024   ScheduleData *CurrentLoadStore = PrevLoadStore;
4025   for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
4026     ScheduleData *SD = ScheduleDataMap[I];
4027     if (!SD) {
4028       SD = allocateScheduleDataChunks();
4029       ScheduleDataMap[I] = SD;
4030       SD->Inst = I;
4031     }
4032     assert(!isInSchedulingRegion(SD) &&
4033            "new ScheduleData already in scheduling region");
4034     SD->init(SchedulingRegionID, I);
4035 
4036     if (I->mayReadOrWriteMemory() &&
4037         (!isa<IntrinsicInst>(I) ||
4038          cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) {
4039       // Update the linked list of memory accessing instructions.
4040       if (CurrentLoadStore) {
4041         CurrentLoadStore->NextLoadStore = SD;
4042       } else {
4043         FirstLoadStoreInRegion = SD;
4044       }
4045       CurrentLoadStore = SD;
4046     }
4047   }
4048   if (NextLoadStore) {
4049     if (CurrentLoadStore)
4050       CurrentLoadStore->NextLoadStore = NextLoadStore;
4051   } else {
4052     LastLoadStoreInRegion = CurrentLoadStore;
4053   }
4054 }
4055 
4056 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
4057                                                      bool InsertInReadyList,
4058                                                      BoUpSLP *SLP) {
4059   assert(SD->isSchedulingEntity());
4060 
4061   SmallVector<ScheduleData *, 10> WorkList;
4062   WorkList.push_back(SD);
4063 
4064   while (!WorkList.empty()) {
4065     ScheduleData *SD = WorkList.back();
4066     WorkList.pop_back();
4067 
4068     ScheduleData *BundleMember = SD;
4069     while (BundleMember) {
4070       assert(isInSchedulingRegion(BundleMember));
4071       if (!BundleMember->hasValidDependencies()) {
4072 
4073         LLVM_DEBUG(dbgs() << "SLP:       update deps of " << *BundleMember
4074                           << "\n");
4075         BundleMember->Dependencies = 0;
4076         BundleMember->resetUnscheduledDeps();
4077 
4078         // Handle def-use chain dependencies.
4079         if (BundleMember->OpValue != BundleMember->Inst) {
4080           ScheduleData *UseSD = getScheduleData(BundleMember->Inst);
4081           if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
4082             BundleMember->Dependencies++;
4083             ScheduleData *DestBundle = UseSD->FirstInBundle;
4084             if (!DestBundle->IsScheduled)
4085               BundleMember->incrementUnscheduledDeps(1);
4086             if (!DestBundle->hasValidDependencies())
4087               WorkList.push_back(DestBundle);
4088           }
4089         } else {
4090           for (User *U : BundleMember->Inst->users()) {
4091             if (isa<Instruction>(U)) {
4092               ScheduleData *UseSD = getScheduleData(U);
4093               if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
4094                 BundleMember->Dependencies++;
4095                 ScheduleData *DestBundle = UseSD->FirstInBundle;
4096                 if (!DestBundle->IsScheduled)
4097                   BundleMember->incrementUnscheduledDeps(1);
4098                 if (!DestBundle->hasValidDependencies())
4099                   WorkList.push_back(DestBundle);
4100               }
4101             } else {
4102               // I'm not sure if this can ever happen. But we need to be safe.
4103               // This lets the instruction/bundle never be scheduled and
4104               // eventually disable vectorization.
4105               BundleMember->Dependencies++;
4106               BundleMember->incrementUnscheduledDeps(1);
4107             }
4108           }
4109         }
4110 
4111         // Handle the memory dependencies.
4112         ScheduleData *DepDest = BundleMember->NextLoadStore;
4113         if (DepDest) {
4114           Instruction *SrcInst = BundleMember->Inst;
4115           MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA);
4116           bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
4117           unsigned numAliased = 0;
4118           unsigned DistToSrc = 1;
4119 
4120           while (DepDest) {
4121             assert(isInSchedulingRegion(DepDest));
4122 
4123             // We have two limits to reduce the complexity:
4124             // 1) AliasedCheckLimit: It's a small limit to reduce calls to
4125             //    SLP->isAliased (which is the expensive part in this loop).
4126             // 2) MaxMemDepDistance: It's for very large blocks and it aborts
4127             //    the whole loop (even if the loop is fast, it's quadratic).
4128             //    It's important for the loop break condition (see below) to
4129             //    check this limit even between two read-only instructions.
4130             if (DistToSrc >= MaxMemDepDistance ||
4131                     ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
4132                      (numAliased >= AliasedCheckLimit ||
4133                       SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
4134 
4135               // We increment the counter only if the locations are aliased
4136               // (instead of counting all alias checks). This gives a better
4137               // balance between reduced runtime and accurate dependencies.
4138               numAliased++;
4139 
4140               DepDest->MemoryDependencies.push_back(BundleMember);
4141               BundleMember->Dependencies++;
4142               ScheduleData *DestBundle = DepDest->FirstInBundle;
4143               if (!DestBundle->IsScheduled) {
4144                 BundleMember->incrementUnscheduledDeps(1);
4145               }
4146               if (!DestBundle->hasValidDependencies()) {
4147                 WorkList.push_back(DestBundle);
4148               }
4149             }
4150             DepDest = DepDest->NextLoadStore;
4151 
4152             // Example, explaining the loop break condition: Let's assume our
4153             // starting instruction is i0 and MaxMemDepDistance = 3.
4154             //
4155             //                      +--------v--v--v
4156             //             i0,i1,i2,i3,i4,i5,i6,i7,i8
4157             //             +--------^--^--^
4158             //
4159             // MaxMemDepDistance let us stop alias-checking at i3 and we add
4160             // dependencies from i0 to i3,i4,.. (even if they are not aliased).
4161             // Previously we already added dependencies from i3 to i6,i7,i8
4162             // (because of MaxMemDepDistance). As we added a dependency from
4163             // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
4164             // and we can abort this loop at i6.
4165             if (DistToSrc >= 2 * MaxMemDepDistance)
4166               break;
4167             DistToSrc++;
4168           }
4169         }
4170       }
4171       BundleMember = BundleMember->NextInBundle;
4172     }
4173     if (InsertInReadyList && SD->isReady()) {
4174       ReadyInsts.push_back(SD);
4175       LLVM_DEBUG(dbgs() << "SLP:     gets ready on update: " << *SD->Inst
4176                         << "\n");
4177     }
4178   }
4179 }
4180 
4181 void BoUpSLP::BlockScheduling::resetSchedule() {
4182   assert(ScheduleStart &&
4183          "tried to reset schedule on block which has not been scheduled");
4184   for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
4185     doForAllOpcodes(I, [&](ScheduleData *SD) {
4186       assert(isInSchedulingRegion(SD) &&
4187              "ScheduleData not in scheduling region");
4188       SD->IsScheduled = false;
4189       SD->resetUnscheduledDeps();
4190     });
4191   }
4192   ReadyInsts.clear();
4193 }
4194 
4195 void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
4196   if (!BS->ScheduleStart)
4197     return;
4198 
4199   LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n");
4200 
4201   BS->resetSchedule();
4202 
4203   // For the real scheduling we use a more sophisticated ready-list: it is
4204   // sorted by the original instruction location. This lets the final schedule
4205   // be as  close as possible to the original instruction order.
4206   struct ScheduleDataCompare {
4207     bool operator()(ScheduleData *SD1, ScheduleData *SD2) const {
4208       return SD2->SchedulingPriority < SD1->SchedulingPriority;
4209     }
4210   };
4211   std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
4212 
4213   // Ensure that all dependency data is updated and fill the ready-list with
4214   // initial instructions.
4215   int Idx = 0;
4216   int NumToSchedule = 0;
4217   for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
4218        I = I->getNextNode()) {
4219     BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) {
4220       assert(SD->isPartOfBundle() ==
4221                  (getTreeEntry(SD->Inst) != nullptr) &&
4222              "scheduler and vectorizer bundle mismatch");
4223       SD->FirstInBundle->SchedulingPriority = Idx++;
4224       if (SD->isSchedulingEntity()) {
4225         BS->calculateDependencies(SD, false, this);
4226         NumToSchedule++;
4227       }
4228     });
4229   }
4230   BS->initialFillReadyList(ReadyInsts);
4231 
4232   Instruction *LastScheduledInst = BS->ScheduleEnd;
4233 
4234   // Do the "real" scheduling.
4235   while (!ReadyInsts.empty()) {
4236     ScheduleData *picked = *ReadyInsts.begin();
4237     ReadyInsts.erase(ReadyInsts.begin());
4238 
4239     // Move the scheduled instruction(s) to their dedicated places, if not
4240     // there yet.
4241     ScheduleData *BundleMember = picked;
4242     while (BundleMember) {
4243       Instruction *pickedInst = BundleMember->Inst;
4244       if (LastScheduledInst->getNextNode() != pickedInst) {
4245         BS->BB->getInstList().remove(pickedInst);
4246         BS->BB->getInstList().insert(LastScheduledInst->getIterator(),
4247                                      pickedInst);
4248       }
4249       LastScheduledInst = pickedInst;
4250       BundleMember = BundleMember->NextInBundle;
4251     }
4252 
4253     BS->schedule(picked, ReadyInsts);
4254     NumToSchedule--;
4255   }
4256   assert(NumToSchedule == 0 && "could not schedule all instructions");
4257 
4258   // Avoid duplicate scheduling of the block.
4259   BS->ScheduleStart = nullptr;
4260 }
4261 
4262 unsigned BoUpSLP::getVectorElementSize(Value *V) {
4263   // If V is a store, just return the width of the stored value without
4264   // traversing the expression tree. This is the common case.
4265   if (auto *Store = dyn_cast<StoreInst>(V))
4266     return DL->getTypeSizeInBits(Store->getValueOperand()->getType());
4267 
4268   // If V is not a store, we can traverse the expression tree to find loads
4269   // that feed it. The type of the loaded value may indicate a more suitable
4270   // width than V's type. We want to base the vector element size on the width
4271   // of memory operations where possible.
4272   SmallVector<Instruction *, 16> Worklist;
4273   SmallPtrSet<Instruction *, 16> Visited;
4274   if (auto *I = dyn_cast<Instruction>(V))
4275     Worklist.push_back(I);
4276 
4277   // Traverse the expression tree in bottom-up order looking for loads. If we
4278   // encounter an instruction we don't yet handle, we give up.
4279   auto MaxWidth = 0u;
4280   auto FoundUnknownInst = false;
4281   while (!Worklist.empty() && !FoundUnknownInst) {
4282     auto *I = Worklist.pop_back_val();
4283     Visited.insert(I);
4284 
4285     // We should only be looking at scalar instructions here. If the current
4286     // instruction has a vector type, give up.
4287     auto *Ty = I->getType();
4288     if (isa<VectorType>(Ty))
4289       FoundUnknownInst = true;
4290 
4291     // If the current instruction is a load, update MaxWidth to reflect the
4292     // width of the loaded value.
4293     else if (isa<LoadInst>(I))
4294       MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty));
4295 
4296     // Otherwise, we need to visit the operands of the instruction. We only
4297     // handle the interesting cases from buildTree here. If an operand is an
4298     // instruction we haven't yet visited, we add it to the worklist.
4299     else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
4300              isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) {
4301       for (Use &U : I->operands())
4302         if (auto *J = dyn_cast<Instruction>(U.get()))
4303           if (!Visited.count(J))
4304             Worklist.push_back(J);
4305     }
4306 
4307     // If we don't yet handle the instruction, give up.
4308     else
4309       FoundUnknownInst = true;
4310   }
4311 
4312   // If we didn't encounter a memory access in the expression tree, or if we
4313   // gave up for some reason, just return the width of V.
4314   if (!MaxWidth || FoundUnknownInst)
4315     return DL->getTypeSizeInBits(V->getType());
4316 
4317   // Otherwise, return the maximum width we found.
4318   return MaxWidth;
4319 }
4320 
4321 // Determine if a value V in a vectorizable expression Expr can be demoted to a
4322 // smaller type with a truncation. We collect the values that will be demoted
4323 // in ToDemote and additional roots that require investigating in Roots.
4324 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr,
4325                                   SmallVectorImpl<Value *> &ToDemote,
4326                                   SmallVectorImpl<Value *> &Roots) {
4327   // We can always demote constants.
4328   if (isa<Constant>(V)) {
4329     ToDemote.push_back(V);
4330     return true;
4331   }
4332 
4333   // If the value is not an instruction in the expression with only one use, it
4334   // cannot be demoted.
4335   auto *I = dyn_cast<Instruction>(V);
4336   if (!I || !I->hasOneUse() || !Expr.count(I))
4337     return false;
4338 
4339   switch (I->getOpcode()) {
4340 
4341   // We can always demote truncations and extensions. Since truncations can
4342   // seed additional demotion, we save the truncated value.
4343   case Instruction::Trunc:
4344     Roots.push_back(I->getOperand(0));
4345     break;
4346   case Instruction::ZExt:
4347   case Instruction::SExt:
4348     break;
4349 
4350   // We can demote certain binary operations if we can demote both of their
4351   // operands.
4352   case Instruction::Add:
4353   case Instruction::Sub:
4354   case Instruction::Mul:
4355   case Instruction::And:
4356   case Instruction::Or:
4357   case Instruction::Xor:
4358     if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) ||
4359         !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots))
4360       return false;
4361     break;
4362 
4363   // We can demote selects if we can demote their true and false values.
4364   case Instruction::Select: {
4365     SelectInst *SI = cast<SelectInst>(I);
4366     if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) ||
4367         !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots))
4368       return false;
4369     break;
4370   }
4371 
4372   // We can demote phis if we can demote all their incoming operands. Note that
4373   // we don't need to worry about cycles since we ensure single use above.
4374   case Instruction::PHI: {
4375     PHINode *PN = cast<PHINode>(I);
4376     for (Value *IncValue : PN->incoming_values())
4377       if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots))
4378         return false;
4379     break;
4380   }
4381 
4382   // Otherwise, conservatively give up.
4383   default:
4384     return false;
4385   }
4386 
4387   // Record the value that we can demote.
4388   ToDemote.push_back(V);
4389   return true;
4390 }
4391 
4392 void BoUpSLP::computeMinimumValueSizes() {
4393   // If there are no external uses, the expression tree must be rooted by a
4394   // store. We can't demote in-memory values, so there is nothing to do here.
4395   if (ExternalUses.empty())
4396     return;
4397 
4398   // We only attempt to truncate integer expressions.
4399   auto &TreeRoot = VectorizableTree[0].Scalars;
4400   auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType());
4401   if (!TreeRootIT)
4402     return;
4403 
4404   // If the expression is not rooted by a store, these roots should have
4405   // external uses. We will rely on InstCombine to rewrite the expression in
4406   // the narrower type. However, InstCombine only rewrites single-use values.
4407   // This means that if a tree entry other than a root is used externally, it
4408   // must have multiple uses and InstCombine will not rewrite it. The code
4409   // below ensures that only the roots are used externally.
4410   SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end());
4411   for (auto &EU : ExternalUses)
4412     if (!Expr.erase(EU.Scalar))
4413       return;
4414   if (!Expr.empty())
4415     return;
4416 
4417   // Collect the scalar values of the vectorizable expression. We will use this
4418   // context to determine which values can be demoted. If we see a truncation,
4419   // we mark it as seeding another demotion.
4420   for (auto &Entry : VectorizableTree)
4421     Expr.insert(Entry.Scalars.begin(), Entry.Scalars.end());
4422 
4423   // Ensure the roots of the vectorizable tree don't form a cycle. They must
4424   // have a single external user that is not in the vectorizable tree.
4425   for (auto *Root : TreeRoot)
4426     if (!Root->hasOneUse() || Expr.count(*Root->user_begin()))
4427       return;
4428 
4429   // Conservatively determine if we can actually truncate the roots of the
4430   // expression. Collect the values that can be demoted in ToDemote and
4431   // additional roots that require investigating in Roots.
4432   SmallVector<Value *, 32> ToDemote;
4433   SmallVector<Value *, 4> Roots;
4434   for (auto *Root : TreeRoot)
4435     if (!collectValuesToDemote(Root, Expr, ToDemote, Roots))
4436       return;
4437 
4438   // The maximum bit width required to represent all the values that can be
4439   // demoted without loss of precision. It would be safe to truncate the roots
4440   // of the expression to this width.
4441   auto MaxBitWidth = 8u;
4442 
4443   // We first check if all the bits of the roots are demanded. If they're not,
4444   // we can truncate the roots to this narrower type.
4445   for (auto *Root : TreeRoot) {
4446     auto Mask = DB->getDemandedBits(cast<Instruction>(Root));
4447     MaxBitWidth = std::max<unsigned>(
4448         Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth);
4449   }
4450 
4451   // True if the roots can be zero-extended back to their original type, rather
4452   // than sign-extended. We know that if the leading bits are not demanded, we
4453   // can safely zero-extend. So we initialize IsKnownPositive to True.
4454   bool IsKnownPositive = true;
4455 
4456   // If all the bits of the roots are demanded, we can try a little harder to
4457   // compute a narrower type. This can happen, for example, if the roots are
4458   // getelementptr indices. InstCombine promotes these indices to the pointer
4459   // width. Thus, all their bits are technically demanded even though the
4460   // address computation might be vectorized in a smaller type.
4461   //
4462   // We start by looking at each entry that can be demoted. We compute the
4463   // maximum bit width required to store the scalar by using ValueTracking to
4464   // compute the number of high-order bits we can truncate.
4465   if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) &&
4466       llvm::all_of(TreeRoot, [](Value *R) {
4467         assert(R->hasOneUse() && "Root should have only one use!");
4468         return isa<GetElementPtrInst>(R->user_back());
4469       })) {
4470     MaxBitWidth = 8u;
4471 
4472     // Determine if the sign bit of all the roots is known to be zero. If not,
4473     // IsKnownPositive is set to False.
4474     IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) {
4475       KnownBits Known = computeKnownBits(R, *DL);
4476       return Known.isNonNegative();
4477     });
4478 
4479     // Determine the maximum number of bits required to store the scalar
4480     // values.
4481     for (auto *Scalar : ToDemote) {
4482       auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT);
4483       auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType());
4484       MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth);
4485     }
4486 
4487     // If we can't prove that the sign bit is zero, we must add one to the
4488     // maximum bit width to account for the unknown sign bit. This preserves
4489     // the existing sign bit so we can safely sign-extend the root back to the
4490     // original type. Otherwise, if we know the sign bit is zero, we will
4491     // zero-extend the root instead.
4492     //
4493     // FIXME: This is somewhat suboptimal, as there will be cases where adding
4494     //        one to the maximum bit width will yield a larger-than-necessary
4495     //        type. In general, we need to add an extra bit only if we can't
4496     //        prove that the upper bit of the original type is equal to the
4497     //        upper bit of the proposed smaller type. If these two bits are the
4498     //        same (either zero or one) we know that sign-extending from the
4499     //        smaller type will result in the same value. Here, since we can't
4500     //        yet prove this, we are just making the proposed smaller type
4501     //        larger to ensure correctness.
4502     if (!IsKnownPositive)
4503       ++MaxBitWidth;
4504   }
4505 
4506   // Round MaxBitWidth up to the next power-of-two.
4507   if (!isPowerOf2_64(MaxBitWidth))
4508     MaxBitWidth = NextPowerOf2(MaxBitWidth);
4509 
4510   // If the maximum bit width we compute is less than the with of the roots'
4511   // type, we can proceed with the narrowing. Otherwise, do nothing.
4512   if (MaxBitWidth >= TreeRootIT->getBitWidth())
4513     return;
4514 
4515   // If we can truncate the root, we must collect additional values that might
4516   // be demoted as a result. That is, those seeded by truncations we will
4517   // modify.
4518   while (!Roots.empty())
4519     collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots);
4520 
4521   // Finally, map the values we can demote to the maximum bit with we computed.
4522   for (auto *Scalar : ToDemote)
4523     MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive);
4524 }
4525 
4526 namespace {
4527 
4528 /// The SLPVectorizer Pass.
4529 struct SLPVectorizer : public FunctionPass {
4530   SLPVectorizerPass Impl;
4531 
4532   /// Pass identification, replacement for typeid
4533   static char ID;
4534 
4535   explicit SLPVectorizer() : FunctionPass(ID) {
4536     initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
4537   }
4538 
4539   bool doInitialization(Module &M) override {
4540     return false;
4541   }
4542 
4543   bool runOnFunction(Function &F) override {
4544     if (skipFunction(F))
4545       return false;
4546 
4547     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
4548     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
4549     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
4550     auto *TLI = TLIP ? &TLIP->getTLI() : nullptr;
4551     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
4552     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
4553     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
4554     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
4555     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
4556     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
4557 
4558     return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
4559   }
4560 
4561   void getAnalysisUsage(AnalysisUsage &AU) const override {
4562     FunctionPass::getAnalysisUsage(AU);
4563     AU.addRequired<AssumptionCacheTracker>();
4564     AU.addRequired<ScalarEvolutionWrapperPass>();
4565     AU.addRequired<AAResultsWrapperPass>();
4566     AU.addRequired<TargetTransformInfoWrapperPass>();
4567     AU.addRequired<LoopInfoWrapperPass>();
4568     AU.addRequired<DominatorTreeWrapperPass>();
4569     AU.addRequired<DemandedBitsWrapperPass>();
4570     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
4571     AU.addPreserved<LoopInfoWrapperPass>();
4572     AU.addPreserved<DominatorTreeWrapperPass>();
4573     AU.addPreserved<AAResultsWrapperPass>();
4574     AU.addPreserved<GlobalsAAWrapperPass>();
4575     AU.setPreservesCFG();
4576   }
4577 };
4578 
4579 } // end anonymous namespace
4580 
4581 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
4582   auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
4583   auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
4584   auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
4585   auto *AA = &AM.getResult<AAManager>(F);
4586   auto *LI = &AM.getResult<LoopAnalysis>(F);
4587   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
4588   auto *AC = &AM.getResult<AssumptionAnalysis>(F);
4589   auto *DB = &AM.getResult<DemandedBitsAnalysis>(F);
4590   auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
4591 
4592   bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
4593   if (!Changed)
4594     return PreservedAnalyses::all();
4595 
4596   PreservedAnalyses PA;
4597   PA.preserveSet<CFGAnalyses>();
4598   PA.preserve<AAManager>();
4599   PA.preserve<GlobalsAA>();
4600   return PA;
4601 }
4602 
4603 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_,
4604                                 TargetTransformInfo *TTI_,
4605                                 TargetLibraryInfo *TLI_, AliasAnalysis *AA_,
4606                                 LoopInfo *LI_, DominatorTree *DT_,
4607                                 AssumptionCache *AC_, DemandedBits *DB_,
4608                                 OptimizationRemarkEmitter *ORE_) {
4609   SE = SE_;
4610   TTI = TTI_;
4611   TLI = TLI_;
4612   AA = AA_;
4613   LI = LI_;
4614   DT = DT_;
4615   AC = AC_;
4616   DB = DB_;
4617   DL = &F.getParent()->getDataLayout();
4618 
4619   Stores.clear();
4620   GEPs.clear();
4621   bool Changed = false;
4622 
4623   // If the target claims to have no vector registers don't attempt
4624   // vectorization.
4625   if (!TTI->getNumberOfRegisters(true))
4626     return false;
4627 
4628   // Don't vectorize when the attribute NoImplicitFloat is used.
4629   if (F.hasFnAttribute(Attribute::NoImplicitFloat))
4630     return false;
4631 
4632   LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
4633 
4634   // Use the bottom up slp vectorizer to construct chains that start with
4635   // store instructions.
4636   BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_);
4637 
4638   // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
4639   // delete instructions.
4640 
4641   // Scan the blocks in the function in post order.
4642   for (auto BB : post_order(&F.getEntryBlock())) {
4643     collectSeedInstructions(BB);
4644 
4645     // Vectorize trees that end at stores.
4646     if (!Stores.empty()) {
4647       LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size()
4648                         << " underlying objects.\n");
4649       Changed |= vectorizeStoreChains(R);
4650     }
4651 
4652     // Vectorize trees that end at reductions.
4653     Changed |= vectorizeChainsInBlock(BB, R);
4654 
4655     // Vectorize the index computations of getelementptr instructions. This
4656     // is primarily intended to catch gather-like idioms ending at
4657     // non-consecutive loads.
4658     if (!GEPs.empty()) {
4659       LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size()
4660                         << " underlying objects.\n");
4661       Changed |= vectorizeGEPIndices(BB, R);
4662     }
4663   }
4664 
4665   if (Changed) {
4666     R.optimizeGatherSequence();
4667     LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
4668     LLVM_DEBUG(verifyFunction(F));
4669   }
4670   return Changed;
4671 }
4672 
4673 /// Check that the Values in the slice in VL array are still existent in
4674 /// the WeakTrackingVH array.
4675 /// Vectorization of part of the VL array may cause later values in the VL array
4676 /// to become invalid. We track when this has happened in the WeakTrackingVH
4677 /// array.
4678 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL,
4679                                ArrayRef<WeakTrackingVH> VH, unsigned SliceBegin,
4680                                unsigned SliceSize) {
4681   VL = VL.slice(SliceBegin, SliceSize);
4682   VH = VH.slice(SliceBegin, SliceSize);
4683   return !std::equal(VL.begin(), VL.end(), VH.begin());
4684 }
4685 
4686 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R,
4687                                             unsigned VecRegSize) {
4688   const unsigned ChainLen = Chain.size();
4689   LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen
4690                     << "\n");
4691   const unsigned Sz = R.getVectorElementSize(Chain[0]);
4692   const unsigned VF = VecRegSize / Sz;
4693 
4694   if (!isPowerOf2_32(Sz) || VF < 2)
4695     return false;
4696 
4697   // Keep track of values that were deleted by vectorizing in the loop below.
4698   const SmallVector<WeakTrackingVH, 8> TrackValues(Chain.begin(), Chain.end());
4699 
4700   bool Changed = false;
4701   // Look for profitable vectorizable trees at all offsets, starting at zero.
4702   for (unsigned i = 0, e = ChainLen; i + VF <= e; ++i) {
4703 
4704     // Check that a previous iteration of this loop did not delete the Value.
4705     if (hasValueBeenRAUWed(Chain, TrackValues, i, VF))
4706       continue;
4707 
4708     LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i
4709                       << "\n");
4710     ArrayRef<Value *> Operands = Chain.slice(i, VF);
4711 
4712     R.buildTree(Operands);
4713     if (R.isTreeTinyAndNotFullyVectorizable())
4714       continue;
4715 
4716     R.computeMinimumValueSizes();
4717 
4718     int Cost = R.getTreeCost();
4719 
4720     LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF
4721                       << "\n");
4722     if (Cost < -SLPCostThreshold) {
4723       LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");
4724 
4725       using namespace ore;
4726 
4727       R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized",
4728                                           cast<StoreInst>(Chain[i]))
4729                        << "Stores SLP vectorized with cost " << NV("Cost", Cost)
4730                        << " and with tree size "
4731                        << NV("TreeSize", R.getTreeSize()));
4732 
4733       R.vectorizeTree();
4734 
4735       // Move to the next bundle.
4736       i += VF - 1;
4737       Changed = true;
4738     }
4739   }
4740 
4741   return Changed;
4742 }
4743 
4744 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores,
4745                                         BoUpSLP &R) {
4746   SetVector<StoreInst *> Heads;
4747   SmallDenseSet<StoreInst *> Tails;
4748   SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
4749 
4750   // We may run into multiple chains that merge into a single chain. We mark the
4751   // stores that we vectorized so that we don't visit the same store twice.
4752   BoUpSLP::ValueSet VectorizedStores;
4753   bool Changed = false;
4754 
4755   auto &&FindConsecutiveAccess =
4756       [this, &Stores, &Heads, &Tails, &ConsecutiveChain] (int K, int Idx) {
4757         if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE))
4758           return false;
4759 
4760         Tails.insert(Stores[Idx]);
4761         Heads.insert(Stores[K]);
4762         ConsecutiveChain[Stores[K]] = Stores[Idx];
4763         return true;
4764       };
4765 
4766   // Do a quadratic search on all of the given stores in reverse order and find
4767   // all of the pairs of stores that follow each other.
4768   int E = Stores.size();
4769   for (int Idx = E - 1; Idx >= 0; --Idx) {
4770     // If a store has multiple consecutive store candidates, search according
4771     // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ...
4772     // This is because usually pairing with immediate succeeding or preceding
4773     // candidate create the best chance to find slp vectorization opportunity.
4774     for (int Offset = 1, F = std::max(E - Idx, Idx + 1); Offset < F; ++Offset)
4775       if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) ||
4776           (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx)))
4777         break;
4778   }
4779 
4780   // For stores that start but don't end a link in the chain:
4781   for (auto *SI : llvm::reverse(Heads)) {
4782     if (Tails.count(SI))
4783       continue;
4784 
4785     // We found a store instr that starts a chain. Now follow the chain and try
4786     // to vectorize it.
4787     BoUpSLP::ValueList Operands;
4788     StoreInst *I = SI;
4789     // Collect the chain into a list.
4790     while ((Tails.count(I) || Heads.count(I)) && !VectorizedStores.count(I)) {
4791       Operands.push_back(I);
4792       // Move to the next value in the chain.
4793       I = ConsecutiveChain[I];
4794     }
4795 
4796     // FIXME: Is division-by-2 the correct step? Should we assert that the
4797     // register size is a power-of-2?
4798     for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize();
4799          Size /= 2) {
4800       if (vectorizeStoreChain(Operands, R, Size)) {
4801         // Mark the vectorized stores so that we don't vectorize them again.
4802         VectorizedStores.insert(Operands.begin(), Operands.end());
4803         Changed = true;
4804         break;
4805       }
4806     }
4807   }
4808 
4809   return Changed;
4810 }
4811 
4812 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) {
4813   // Initialize the collections. We will make a single pass over the block.
4814   Stores.clear();
4815   GEPs.clear();
4816 
4817   // Visit the store and getelementptr instructions in BB and organize them in
4818   // Stores and GEPs according to the underlying objects of their pointer
4819   // operands.
4820   for (Instruction &I : *BB) {
4821     // Ignore store instructions that are volatile or have a pointer operand
4822     // that doesn't point to a scalar type.
4823     if (auto *SI = dyn_cast<StoreInst>(&I)) {
4824       if (!SI->isSimple())
4825         continue;
4826       if (!isValidElementType(SI->getValueOperand()->getType()))
4827         continue;
4828       Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI);
4829     }
4830 
4831     // Ignore getelementptr instructions that have more than one index, a
4832     // constant index, or a pointer operand that doesn't point to a scalar
4833     // type.
4834     else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
4835       auto Idx = GEP->idx_begin()->get();
4836       if (GEP->getNumIndices() > 1 || isa<Constant>(Idx))
4837         continue;
4838       if (!isValidElementType(Idx->getType()))
4839         continue;
4840       if (GEP->getType()->isVectorTy())
4841         continue;
4842       GEPs[GEP->getPointerOperand()].push_back(GEP);
4843     }
4844   }
4845 }
4846 
4847 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
4848   if (!A || !B)
4849     return false;
4850   Value *VL[] = { A, B };
4851   return tryToVectorizeList(VL, R, /*UserCost=*/0, true);
4852 }
4853 
4854 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
4855                                            int UserCost, bool AllowReorder) {
4856   if (VL.size() < 2)
4857     return false;
4858 
4859   LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = "
4860                     << VL.size() << ".\n");
4861 
4862   // Check that all of the parts are scalar instructions of the same type,
4863   // we permit an alternate opcode via InstructionsState.
4864   InstructionsState S = getSameOpcode(VL);
4865   if (!S.getOpcode())
4866     return false;
4867 
4868   Instruction *I0 = cast<Instruction>(S.OpValue);
4869   unsigned Sz = R.getVectorElementSize(I0);
4870   unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz);
4871   unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF);
4872   if (MaxVF < 2) {
4873     R.getORE()->emit([&]() {
4874       return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0)
4875              << "Cannot SLP vectorize list: vectorization factor "
4876              << "less than 2 is not supported";
4877     });
4878     return false;
4879   }
4880 
4881   for (Value *V : VL) {
4882     Type *Ty = V->getType();
4883     if (!isValidElementType(Ty)) {
4884       // NOTE: the following will give user internal llvm type name, which may
4885       // not be useful.
4886       R.getORE()->emit([&]() {
4887         std::string type_str;
4888         llvm::raw_string_ostream rso(type_str);
4889         Ty->print(rso);
4890         return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0)
4891                << "Cannot SLP vectorize list: type "
4892                << rso.str() + " is unsupported by vectorizer";
4893       });
4894       return false;
4895     }
4896   }
4897 
4898   bool Changed = false;
4899   bool CandidateFound = false;
4900   int MinCost = SLPCostThreshold;
4901 
4902   // Keep track of values that were deleted by vectorizing in the loop below.
4903   SmallVector<WeakTrackingVH, 8> TrackValues(VL.begin(), VL.end());
4904 
4905   unsigned NextInst = 0, MaxInst = VL.size();
4906   for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF;
4907        VF /= 2) {
4908     // No actual vectorization should happen, if number of parts is the same as
4909     // provided vectorization factor (i.e. the scalar type is used for vector
4910     // code during codegen).
4911     auto *VecTy = VectorType::get(VL[0]->getType(), VF);
4912     if (TTI->getNumberOfParts(VecTy) == VF)
4913       continue;
4914     for (unsigned I = NextInst; I < MaxInst; ++I) {
4915       unsigned OpsWidth = 0;
4916 
4917       if (I + VF > MaxInst)
4918         OpsWidth = MaxInst - I;
4919       else
4920         OpsWidth = VF;
4921 
4922       if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
4923         break;
4924 
4925       // Check that a previous iteration of this loop did not delete the Value.
4926       if (hasValueBeenRAUWed(VL, TrackValues, I, OpsWidth))
4927         continue;
4928 
4929       LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
4930                         << "\n");
4931       ArrayRef<Value *> Ops = VL.slice(I, OpsWidth);
4932 
4933       R.buildTree(Ops);
4934       Optional<ArrayRef<unsigned>> Order = R.bestOrder();
4935       // TODO: check if we can allow reordering for more cases.
4936       if (AllowReorder && Order) {
4937         // TODO: reorder tree nodes without tree rebuilding.
4938         // Conceptually, there is nothing actually preventing us from trying to
4939         // reorder a larger list. In fact, we do exactly this when vectorizing
4940         // reductions. However, at this point, we only expect to get here when
4941         // there are exactly two operations.
4942         assert(Ops.size() == 2);
4943         Value *ReorderedOps[] = {Ops[1], Ops[0]};
4944         R.buildTree(ReorderedOps, None);
4945       }
4946       if (R.isTreeTinyAndNotFullyVectorizable())
4947         continue;
4948 
4949       R.computeMinimumValueSizes();
4950       int Cost = R.getTreeCost() - UserCost;
4951       CandidateFound = true;
4952       MinCost = std::min(MinCost, Cost);
4953 
4954       if (Cost < -SLPCostThreshold) {
4955         LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
4956         R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList",
4957                                                     cast<Instruction>(Ops[0]))
4958                                  << "SLP vectorized with cost " << ore::NV("Cost", Cost)
4959                                  << " and with tree size "
4960                                  << ore::NV("TreeSize", R.getTreeSize()));
4961 
4962         R.vectorizeTree();
4963         // Move to the next bundle.
4964         I += VF - 1;
4965         NextInst = I + 1;
4966         Changed = true;
4967       }
4968     }
4969   }
4970 
4971   if (!Changed && CandidateFound) {
4972     R.getORE()->emit([&]() {
4973       return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0)
4974              << "List vectorization was possible but not beneficial with cost "
4975              << ore::NV("Cost", MinCost) << " >= "
4976              << ore::NV("Treshold", -SLPCostThreshold);
4977     });
4978   } else if (!Changed) {
4979     R.getORE()->emit([&]() {
4980       return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0)
4981              << "Cannot SLP vectorize list: vectorization was impossible"
4982              << " with available vectorization factors";
4983     });
4984   }
4985   return Changed;
4986 }
4987 
4988 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) {
4989   if (!I)
4990     return false;
4991 
4992   if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I))
4993     return false;
4994 
4995   Value *P = I->getParent();
4996 
4997   // Vectorize in current basic block only.
4998   auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
4999   auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
5000   if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P)
5001     return false;
5002 
5003   // Try to vectorize V.
5004   if (tryToVectorizePair(Op0, Op1, R))
5005     return true;
5006 
5007   auto *A = dyn_cast<BinaryOperator>(Op0);
5008   auto *B = dyn_cast<BinaryOperator>(Op1);
5009   // Try to skip B.
5010   if (B && B->hasOneUse()) {
5011     auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
5012     auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
5013     if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R))
5014       return true;
5015     if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R))
5016       return true;
5017   }
5018 
5019   // Try to skip A.
5020   if (A && A->hasOneUse()) {
5021     auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
5022     auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
5023     if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R))
5024       return true;
5025     if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R))
5026       return true;
5027   }
5028   return false;
5029 }
5030 
5031 /// Generate a shuffle mask to be used in a reduction tree.
5032 ///
5033 /// \param VecLen The length of the vector to be reduced.
5034 /// \param NumEltsToRdx The number of elements that should be reduced in the
5035 ///        vector.
5036 /// \param IsPairwise Whether the reduction is a pairwise or splitting
5037 ///        reduction. A pairwise reduction will generate a mask of
5038 ///        <0,2,...> or <1,3,..> while a splitting reduction will generate
5039 ///        <2,3, undef,undef> for a vector of 4 and NumElts = 2.
5040 /// \param IsLeft True will generate a mask of even elements, odd otherwise.
5041 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx,
5042                                    bool IsPairwise, bool IsLeft,
5043                                    IRBuilder<> &Builder) {
5044   assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask");
5045 
5046   SmallVector<Constant *, 32> ShuffleMask(
5047       VecLen, UndefValue::get(Builder.getInt32Ty()));
5048 
5049   if (IsPairwise)
5050     // Build a mask of 0, 2, ... (left) or 1, 3, ... (right).
5051     for (unsigned i = 0; i != NumEltsToRdx; ++i)
5052       ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft);
5053   else
5054     // Move the upper half of the vector to the lower half.
5055     for (unsigned i = 0; i != NumEltsToRdx; ++i)
5056       ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i);
5057 
5058   return ConstantVector::get(ShuffleMask);
5059 }
5060 
5061 namespace {
5062 
5063 /// Model horizontal reductions.
5064 ///
5065 /// A horizontal reduction is a tree of reduction operations (currently add and
5066 /// fadd) that has operations that can be put into a vector as its leaf.
5067 /// For example, this tree:
5068 ///
5069 /// mul mul mul mul
5070 ///  \  /    \  /
5071 ///   +       +
5072 ///    \     /
5073 ///       +
5074 /// This tree has "mul" as its reduced values and "+" as its reduction
5075 /// operations. A reduction might be feeding into a store or a binary operation
5076 /// feeding a phi.
5077 ///    ...
5078 ///    \  /
5079 ///     +
5080 ///     |
5081 ///  phi +=
5082 ///
5083 ///  Or:
5084 ///    ...
5085 ///    \  /
5086 ///     +
5087 ///     |
5088 ///   *p =
5089 ///
5090 class HorizontalReduction {
5091   using ReductionOpsType = SmallVector<Value *, 16>;
5092   using ReductionOpsListType = SmallVector<ReductionOpsType, 2>;
5093   ReductionOpsListType  ReductionOps;
5094   SmallVector<Value *, 32> ReducedVals;
5095   // Use map vector to make stable output.
5096   MapVector<Instruction *, Value *> ExtraArgs;
5097 
5098   /// Kind of the reduction data.
5099   enum ReductionKind {
5100     RK_None,       /// Not a reduction.
5101     RK_Arithmetic, /// Binary reduction data.
5102     RK_Min,        /// Minimum reduction data.
5103     RK_UMin,       /// Unsigned minimum reduction data.
5104     RK_Max,        /// Maximum reduction data.
5105     RK_UMax,       /// Unsigned maximum reduction data.
5106   };
5107 
5108   /// Contains info about operation, like its opcode, left and right operands.
5109   class OperationData {
5110     /// Opcode of the instruction.
5111     unsigned Opcode = 0;
5112 
5113     /// Left operand of the reduction operation.
5114     Value *LHS = nullptr;
5115 
5116     /// Right operand of the reduction operation.
5117     Value *RHS = nullptr;
5118 
5119     /// Kind of the reduction operation.
5120     ReductionKind Kind = RK_None;
5121 
5122     /// True if float point min/max reduction has no NaNs.
5123     bool NoNaN = false;
5124 
5125     /// Checks if the reduction operation can be vectorized.
5126     bool isVectorizable() const {
5127       return LHS && RHS &&
5128              // We currently only support add/mul/logical && min/max reductions.
5129              ((Kind == RK_Arithmetic &&
5130                (Opcode == Instruction::Add || Opcode == Instruction::FAdd ||
5131                 Opcode == Instruction::Mul || Opcode == Instruction::FMul ||
5132                 Opcode == Instruction::And || Opcode == Instruction::Or ||
5133                 Opcode == Instruction::Xor)) ||
5134               ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
5135                (Kind == RK_Min || Kind == RK_Max)) ||
5136               (Opcode == Instruction::ICmp &&
5137                (Kind == RK_UMin || Kind == RK_UMax)));
5138     }
5139 
5140     /// Creates reduction operation with the current opcode.
5141     Value *createOp(IRBuilder<> &Builder, const Twine &Name) const {
5142       assert(isVectorizable() &&
5143              "Expected add|fadd or min/max reduction operation.");
5144       Value *Cmp;
5145       switch (Kind) {
5146       case RK_Arithmetic:
5147         return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS,
5148                                    Name);
5149       case RK_Min:
5150         Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS)
5151                                           : Builder.CreateFCmpOLT(LHS, RHS);
5152         break;
5153       case RK_Max:
5154         Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS)
5155                                           : Builder.CreateFCmpOGT(LHS, RHS);
5156         break;
5157       case RK_UMin:
5158         assert(Opcode == Instruction::ICmp && "Expected integer types.");
5159         Cmp = Builder.CreateICmpULT(LHS, RHS);
5160         break;
5161       case RK_UMax:
5162         assert(Opcode == Instruction::ICmp && "Expected integer types.");
5163         Cmp = Builder.CreateICmpUGT(LHS, RHS);
5164         break;
5165       case RK_None:
5166         llvm_unreachable("Unknown reduction operation.");
5167       }
5168       return Builder.CreateSelect(Cmp, LHS, RHS, Name);
5169     }
5170 
5171   public:
5172     explicit OperationData() = default;
5173 
5174     /// Construction for reduced values. They are identified by opcode only and
5175     /// don't have associated LHS/RHS values.
5176     explicit OperationData(Value *V) {
5177       if (auto *I = dyn_cast<Instruction>(V))
5178         Opcode = I->getOpcode();
5179     }
5180 
5181     /// Constructor for reduction operations with opcode and its left and
5182     /// right operands.
5183     OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind,
5184                   bool NoNaN = false)
5185         : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) {
5186       assert(Kind != RK_None && "One of the reduction operations is expected.");
5187     }
5188 
5189     explicit operator bool() const { return Opcode; }
5190 
5191     /// Get the index of the first operand.
5192     unsigned getFirstOperandIndex() const {
5193       assert(!!*this && "The opcode is not set.");
5194       switch (Kind) {
5195       case RK_Min:
5196       case RK_UMin:
5197       case RK_Max:
5198       case RK_UMax:
5199         return 1;
5200       case RK_Arithmetic:
5201       case RK_None:
5202         break;
5203       }
5204       return 0;
5205     }
5206 
5207     /// Total number of operands in the reduction operation.
5208     unsigned getNumberOfOperands() const {
5209       assert(Kind != RK_None && !!*this && LHS && RHS &&
5210              "Expected reduction operation.");
5211       switch (Kind) {
5212       case RK_Arithmetic:
5213         return 2;
5214       case RK_Min:
5215       case RK_UMin:
5216       case RK_Max:
5217       case RK_UMax:
5218         return 3;
5219       case RK_None:
5220         break;
5221       }
5222       llvm_unreachable("Reduction kind is not set");
5223     }
5224 
5225     /// Checks if the operation has the same parent as \p P.
5226     bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const {
5227       assert(Kind != RK_None && !!*this && LHS && RHS &&
5228              "Expected reduction operation.");
5229       if (!IsRedOp)
5230         return I->getParent() == P;
5231       switch (Kind) {
5232       case RK_Arithmetic:
5233         // Arithmetic reduction operation must be used once only.
5234         return I->getParent() == P;
5235       case RK_Min:
5236       case RK_UMin:
5237       case RK_Max:
5238       case RK_UMax: {
5239         // SelectInst must be used twice while the condition op must have single
5240         // use only.
5241         auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition());
5242         return I->getParent() == P && Cmp && Cmp->getParent() == P;
5243       }
5244       case RK_None:
5245         break;
5246       }
5247       llvm_unreachable("Reduction kind is not set");
5248     }
5249     /// Expected number of uses for reduction operations/reduced values.
5250     bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const {
5251       assert(Kind != RK_None && !!*this && LHS && RHS &&
5252              "Expected reduction operation.");
5253       switch (Kind) {
5254       case RK_Arithmetic:
5255         return I->hasOneUse();
5256       case RK_Min:
5257       case RK_UMin:
5258       case RK_Max:
5259       case RK_UMax:
5260         return I->hasNUses(2) &&
5261                (!IsReductionOp ||
5262                 cast<SelectInst>(I)->getCondition()->hasOneUse());
5263       case RK_None:
5264         break;
5265       }
5266       llvm_unreachable("Reduction kind is not set");
5267     }
5268 
5269     /// Initializes the list of reduction operations.
5270     void initReductionOps(ReductionOpsListType &ReductionOps) {
5271       assert(Kind != RK_None && !!*this && LHS && RHS &&
5272              "Expected reduction operation.");
5273       switch (Kind) {
5274       case RK_Arithmetic:
5275         ReductionOps.assign(1, ReductionOpsType());
5276         break;
5277       case RK_Min:
5278       case RK_UMin:
5279       case RK_Max:
5280       case RK_UMax:
5281         ReductionOps.assign(2, ReductionOpsType());
5282         break;
5283       case RK_None:
5284         llvm_unreachable("Reduction kind is not set");
5285       }
5286     }
5287     /// Add all reduction operations for the reduction instruction \p I.
5288     void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) {
5289       assert(Kind != RK_None && !!*this && LHS && RHS &&
5290              "Expected reduction operation.");
5291       switch (Kind) {
5292       case RK_Arithmetic:
5293         ReductionOps[0].emplace_back(I);
5294         break;
5295       case RK_Min:
5296       case RK_UMin:
5297       case RK_Max:
5298       case RK_UMax:
5299         ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition());
5300         ReductionOps[1].emplace_back(I);
5301         break;
5302       case RK_None:
5303         llvm_unreachable("Reduction kind is not set");
5304       }
5305     }
5306 
5307     /// Checks if instruction is associative and can be vectorized.
5308     bool isAssociative(Instruction *I) const {
5309       assert(Kind != RK_None && *this && LHS && RHS &&
5310              "Expected reduction operation.");
5311       switch (Kind) {
5312       case RK_Arithmetic:
5313         return I->isAssociative();
5314       case RK_Min:
5315       case RK_Max:
5316         return Opcode == Instruction::ICmp ||
5317                cast<Instruction>(I->getOperand(0))->isFast();
5318       case RK_UMin:
5319       case RK_UMax:
5320         assert(Opcode == Instruction::ICmp &&
5321                "Only integer compare operation is expected.");
5322         return true;
5323       case RK_None:
5324         break;
5325       }
5326       llvm_unreachable("Reduction kind is not set");
5327     }
5328 
5329     /// Checks if the reduction operation can be vectorized.
5330     bool isVectorizable(Instruction *I) const {
5331       return isVectorizable() && isAssociative(I);
5332     }
5333 
5334     /// Checks if two operation data are both a reduction op or both a reduced
5335     /// value.
5336     bool operator==(const OperationData &OD) {
5337       assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) &&
5338              "One of the comparing operations is incorrect.");
5339       return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode);
5340     }
5341     bool operator!=(const OperationData &OD) { return !(*this == OD); }
5342     void clear() {
5343       Opcode = 0;
5344       LHS = nullptr;
5345       RHS = nullptr;
5346       Kind = RK_None;
5347       NoNaN = false;
5348     }
5349 
5350     /// Get the opcode of the reduction operation.
5351     unsigned getOpcode() const {
5352       assert(isVectorizable() && "Expected vectorizable operation.");
5353       return Opcode;
5354     }
5355 
5356     /// Get kind of reduction data.
5357     ReductionKind getKind() const { return Kind; }
5358     Value *getLHS() const { return LHS; }
5359     Value *getRHS() const { return RHS; }
5360     Type *getConditionType() const {
5361       switch (Kind) {
5362       case RK_Arithmetic:
5363         return nullptr;
5364       case RK_Min:
5365       case RK_Max:
5366       case RK_UMin:
5367       case RK_UMax:
5368         return CmpInst::makeCmpResultType(LHS->getType());
5369       case RK_None:
5370         break;
5371       }
5372       llvm_unreachable("Reduction kind is not set");
5373     }
5374 
5375     /// Creates reduction operation with the current opcode with the IR flags
5376     /// from \p ReductionOps.
5377     Value *createOp(IRBuilder<> &Builder, const Twine &Name,
5378                     const ReductionOpsListType &ReductionOps) const {
5379       assert(isVectorizable() &&
5380              "Expected add|fadd or min/max reduction operation.");
5381       auto *Op = createOp(Builder, Name);
5382       switch (Kind) {
5383       case RK_Arithmetic:
5384         propagateIRFlags(Op, ReductionOps[0]);
5385         return Op;
5386       case RK_Min:
5387       case RK_Max:
5388       case RK_UMin:
5389       case RK_UMax:
5390         if (auto *SI = dyn_cast<SelectInst>(Op))
5391           propagateIRFlags(SI->getCondition(), ReductionOps[0]);
5392         propagateIRFlags(Op, ReductionOps[1]);
5393         return Op;
5394       case RK_None:
5395         break;
5396       }
5397       llvm_unreachable("Unknown reduction operation.");
5398     }
5399     /// Creates reduction operation with the current opcode with the IR flags
5400     /// from \p I.
5401     Value *createOp(IRBuilder<> &Builder, const Twine &Name,
5402                     Instruction *I) const {
5403       assert(isVectorizable() &&
5404              "Expected add|fadd or min/max reduction operation.");
5405       auto *Op = createOp(Builder, Name);
5406       switch (Kind) {
5407       case RK_Arithmetic:
5408         propagateIRFlags(Op, I);
5409         return Op;
5410       case RK_Min:
5411       case RK_Max:
5412       case RK_UMin:
5413       case RK_UMax:
5414         if (auto *SI = dyn_cast<SelectInst>(Op)) {
5415           propagateIRFlags(SI->getCondition(),
5416                            cast<SelectInst>(I)->getCondition());
5417         }
5418         propagateIRFlags(Op, I);
5419         return Op;
5420       case RK_None:
5421         break;
5422       }
5423       llvm_unreachable("Unknown reduction operation.");
5424     }
5425 
5426     TargetTransformInfo::ReductionFlags getFlags() const {
5427       TargetTransformInfo::ReductionFlags Flags;
5428       Flags.NoNaN = NoNaN;
5429       switch (Kind) {
5430       case RK_Arithmetic:
5431         break;
5432       case RK_Min:
5433         Flags.IsSigned = Opcode == Instruction::ICmp;
5434         Flags.IsMaxOp = false;
5435         break;
5436       case RK_Max:
5437         Flags.IsSigned = Opcode == Instruction::ICmp;
5438         Flags.IsMaxOp = true;
5439         break;
5440       case RK_UMin:
5441         Flags.IsSigned = false;
5442         Flags.IsMaxOp = false;
5443         break;
5444       case RK_UMax:
5445         Flags.IsSigned = false;
5446         Flags.IsMaxOp = true;
5447         break;
5448       case RK_None:
5449         llvm_unreachable("Reduction kind is not set");
5450       }
5451       return Flags;
5452     }
5453   };
5454 
5455   WeakTrackingVH ReductionRoot;
5456 
5457   /// The operation data of the reduction operation.
5458   OperationData ReductionData;
5459 
5460   /// The operation data of the values we perform a reduction on.
5461   OperationData ReducedValueData;
5462 
5463   /// Should we model this reduction as a pairwise reduction tree or a tree that
5464   /// splits the vector in halves and adds those halves.
5465   bool IsPairwiseReduction = false;
5466 
5467   /// Checks if the ParentStackElem.first should be marked as a reduction
5468   /// operation with an extra argument or as extra argument itself.
5469   void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem,
5470                     Value *ExtraArg) {
5471     if (ExtraArgs.count(ParentStackElem.first)) {
5472       ExtraArgs[ParentStackElem.first] = nullptr;
5473       // We ran into something like:
5474       // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg.
5475       // The whole ParentStackElem.first should be considered as an extra value
5476       // in this case.
5477       // Do not perform analysis of remaining operands of ParentStackElem.first
5478       // instruction, this whole instruction is an extra argument.
5479       ParentStackElem.second = ParentStackElem.first->getNumOperands();
5480     } else {
5481       // We ran into something like:
5482       // ParentStackElem.first += ... + ExtraArg + ...
5483       ExtraArgs[ParentStackElem.first] = ExtraArg;
5484     }
5485   }
5486 
5487   static OperationData getOperationData(Value *V) {
5488     if (!V)
5489       return OperationData();
5490 
5491     Value *LHS;
5492     Value *RHS;
5493     if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) {
5494       return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS,
5495                            RK_Arithmetic);
5496     }
5497     if (auto *Select = dyn_cast<SelectInst>(V)) {
5498       // Look for a min/max pattern.
5499       if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
5500         return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin);
5501       } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
5502         return OperationData(Instruction::ICmp, LHS, RHS, RK_Min);
5503       } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) ||
5504                  m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
5505         return OperationData(
5506             Instruction::FCmp, LHS, RHS, RK_Min,
5507             cast<Instruction>(Select->getCondition())->hasNoNaNs());
5508       } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
5509         return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax);
5510       } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
5511         return OperationData(Instruction::ICmp, LHS, RHS, RK_Max);
5512       } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) ||
5513                  m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
5514         return OperationData(
5515             Instruction::FCmp, LHS, RHS, RK_Max,
5516             cast<Instruction>(Select->getCondition())->hasNoNaNs());
5517       } else {
5518         // Try harder: look for min/max pattern based on instructions producing
5519         // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2).
5520         // During the intermediate stages of SLP, it's very common to have
5521         // pattern like this (since optimizeGatherSequence is run only once
5522         // at the end):
5523         // %1 = extractelement <2 x i32> %a, i32 0
5524         // %2 = extractelement <2 x i32> %a, i32 1
5525         // %cond = icmp sgt i32 %1, %2
5526         // %3 = extractelement <2 x i32> %a, i32 0
5527         // %4 = extractelement <2 x i32> %a, i32 1
5528         // %select = select i1 %cond, i32 %3, i32 %4
5529         CmpInst::Predicate Pred;
5530         Instruction *L1;
5531         Instruction *L2;
5532 
5533         LHS = Select->getTrueValue();
5534         RHS = Select->getFalseValue();
5535         Value *Cond = Select->getCondition();
5536 
5537         // TODO: Support inverse predicates.
5538         if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) {
5539           if (!isa<ExtractElementInst>(RHS) ||
5540               !L2->isIdenticalTo(cast<Instruction>(RHS)))
5541             return OperationData(V);
5542         } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) {
5543           if (!isa<ExtractElementInst>(LHS) ||
5544               !L1->isIdenticalTo(cast<Instruction>(LHS)))
5545             return OperationData(V);
5546         } else {
5547           if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS))
5548             return OperationData(V);
5549           if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) ||
5550               !L1->isIdenticalTo(cast<Instruction>(LHS)) ||
5551               !L2->isIdenticalTo(cast<Instruction>(RHS)))
5552             return OperationData(V);
5553         }
5554         switch (Pred) {
5555         default:
5556           return OperationData(V);
5557 
5558         case CmpInst::ICMP_ULT:
5559         case CmpInst::ICMP_ULE:
5560           return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin);
5561 
5562         case CmpInst::ICMP_SLT:
5563         case CmpInst::ICMP_SLE:
5564           return OperationData(Instruction::ICmp, LHS, RHS, RK_Min);
5565 
5566         case CmpInst::FCMP_OLT:
5567         case CmpInst::FCMP_OLE:
5568         case CmpInst::FCMP_ULT:
5569         case CmpInst::FCMP_ULE:
5570           return OperationData(Instruction::FCmp, LHS, RHS, RK_Min,
5571                                cast<Instruction>(Cond)->hasNoNaNs());
5572 
5573         case CmpInst::ICMP_UGT:
5574         case CmpInst::ICMP_UGE:
5575           return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax);
5576 
5577         case CmpInst::ICMP_SGT:
5578         case CmpInst::ICMP_SGE:
5579           return OperationData(Instruction::ICmp, LHS, RHS, RK_Max);
5580 
5581         case CmpInst::FCMP_OGT:
5582         case CmpInst::FCMP_OGE:
5583         case CmpInst::FCMP_UGT:
5584         case CmpInst::FCMP_UGE:
5585           return OperationData(Instruction::FCmp, LHS, RHS, RK_Max,
5586                                cast<Instruction>(Cond)->hasNoNaNs());
5587         }
5588       }
5589     }
5590     return OperationData(V);
5591   }
5592 
5593 public:
5594   HorizontalReduction() = default;
5595 
5596   /// Try to find a reduction tree.
5597   bool matchAssociativeReduction(PHINode *Phi, Instruction *B) {
5598     assert((!Phi || is_contained(Phi->operands(), B)) &&
5599            "Thi phi needs to use the binary operator");
5600 
5601     ReductionData = getOperationData(B);
5602 
5603     // We could have a initial reductions that is not an add.
5604     //  r *= v1 + v2 + v3 + v4
5605     // In such a case start looking for a tree rooted in the first '+'.
5606     if (Phi) {
5607       if (ReductionData.getLHS() == Phi) {
5608         Phi = nullptr;
5609         B = dyn_cast<Instruction>(ReductionData.getRHS());
5610         ReductionData = getOperationData(B);
5611       } else if (ReductionData.getRHS() == Phi) {
5612         Phi = nullptr;
5613         B = dyn_cast<Instruction>(ReductionData.getLHS());
5614         ReductionData = getOperationData(B);
5615       }
5616     }
5617 
5618     if (!ReductionData.isVectorizable(B))
5619       return false;
5620 
5621     Type *Ty = B->getType();
5622     if (!isValidElementType(Ty))
5623       return false;
5624     if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy())
5625       return false;
5626 
5627     ReducedValueData.clear();
5628     ReductionRoot = B;
5629 
5630     // Post order traverse the reduction tree starting at B. We only handle true
5631     // trees containing only binary operators.
5632     SmallVector<std::pair<Instruction *, unsigned>, 32> Stack;
5633     Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex()));
5634     ReductionData.initReductionOps(ReductionOps);
5635     while (!Stack.empty()) {
5636       Instruction *TreeN = Stack.back().first;
5637       unsigned EdgeToVist = Stack.back().second++;
5638       OperationData OpData = getOperationData(TreeN);
5639       bool IsReducedValue = OpData != ReductionData;
5640 
5641       // Postorder vist.
5642       if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) {
5643         if (IsReducedValue)
5644           ReducedVals.push_back(TreeN);
5645         else {
5646           auto I = ExtraArgs.find(TreeN);
5647           if (I != ExtraArgs.end() && !I->second) {
5648             // Check if TreeN is an extra argument of its parent operation.
5649             if (Stack.size() <= 1) {
5650               // TreeN can't be an extra argument as it is a root reduction
5651               // operation.
5652               return false;
5653             }
5654             // Yes, TreeN is an extra argument, do not add it to a list of
5655             // reduction operations.
5656             // Stack[Stack.size() - 2] always points to the parent operation.
5657             markExtraArg(Stack[Stack.size() - 2], TreeN);
5658             ExtraArgs.erase(TreeN);
5659           } else
5660             ReductionData.addReductionOps(TreeN, ReductionOps);
5661         }
5662         // Retract.
5663         Stack.pop_back();
5664         continue;
5665       }
5666 
5667       // Visit left or right.
5668       Value *NextV = TreeN->getOperand(EdgeToVist);
5669       if (NextV != Phi) {
5670         auto *I = dyn_cast<Instruction>(NextV);
5671         OpData = getOperationData(I);
5672         // Continue analysis if the next operand is a reduction operation or
5673         // (possibly) a reduced value. If the reduced value opcode is not set,
5674         // the first met operation != reduction operation is considered as the
5675         // reduced value class.
5676         if (I && (!ReducedValueData || OpData == ReducedValueData ||
5677                   OpData == ReductionData)) {
5678           const bool IsReductionOperation = OpData == ReductionData;
5679           // Only handle trees in the current basic block.
5680           if (!ReductionData.hasSameParent(I, B->getParent(),
5681                                            IsReductionOperation)) {
5682             // I is an extra argument for TreeN (its parent operation).
5683             markExtraArg(Stack.back(), I);
5684             continue;
5685           }
5686 
5687           // Each tree node needs to have minimal number of users except for the
5688           // ultimate reduction.
5689           if (!ReductionData.hasRequiredNumberOfUses(I,
5690                                                      OpData == ReductionData) &&
5691               I != B) {
5692             // I is an extra argument for TreeN (its parent operation).
5693             markExtraArg(Stack.back(), I);
5694             continue;
5695           }
5696 
5697           if (IsReductionOperation) {
5698             // We need to be able to reassociate the reduction operations.
5699             if (!OpData.isAssociative(I)) {
5700               // I is an extra argument for TreeN (its parent operation).
5701               markExtraArg(Stack.back(), I);
5702               continue;
5703             }
5704           } else if (ReducedValueData &&
5705                      ReducedValueData != OpData) {
5706             // Make sure that the opcodes of the operations that we are going to
5707             // reduce match.
5708             // I is an extra argument for TreeN (its parent operation).
5709             markExtraArg(Stack.back(), I);
5710             continue;
5711           } else if (!ReducedValueData)
5712             ReducedValueData = OpData;
5713 
5714           Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex()));
5715           continue;
5716         }
5717       }
5718       // NextV is an extra argument for TreeN (its parent operation).
5719       markExtraArg(Stack.back(), NextV);
5720     }
5721     return true;
5722   }
5723 
5724   /// Attempt to vectorize the tree found by
5725   /// matchAssociativeReduction.
5726   bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
5727     if (ReducedVals.empty())
5728       return false;
5729 
5730     // If there is a sufficient number of reduction values, reduce
5731     // to a nearby power-of-2. Can safely generate oversized
5732     // vectors and rely on the backend to split them to legal sizes.
5733     unsigned NumReducedVals = ReducedVals.size();
5734     if (NumReducedVals < 4)
5735       return false;
5736 
5737     unsigned ReduxWidth = PowerOf2Floor(NumReducedVals);
5738 
5739     Value *VectorizedTree = nullptr;
5740     IRBuilder<> Builder(cast<Instruction>(ReductionRoot));
5741     FastMathFlags Unsafe;
5742     Unsafe.setFast();
5743     Builder.setFastMathFlags(Unsafe);
5744     unsigned i = 0;
5745 
5746     BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues;
5747     // The same extra argument may be used several time, so log each attempt
5748     // to use it.
5749     for (auto &Pair : ExtraArgs) {
5750       assert(Pair.first && "DebugLoc must be set.");
5751       ExternallyUsedValues[Pair.second].push_back(Pair.first);
5752     }
5753     // The reduction root is used as the insertion point for new instructions,
5754     // so set it as externally used to prevent it from being deleted.
5755     ExternallyUsedValues[ReductionRoot];
5756     SmallVector<Value *, 16> IgnoreList;
5757     for (auto &V : ReductionOps)
5758       IgnoreList.append(V.begin(), V.end());
5759     while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) {
5760       auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth);
5761       V.buildTree(VL, ExternallyUsedValues, IgnoreList);
5762       Optional<ArrayRef<unsigned>> Order = V.bestOrder();
5763       // TODO: Handle orders of size less than number of elements in the vector.
5764       if (Order && Order->size() == VL.size()) {
5765         // TODO: reorder tree nodes without tree rebuilding.
5766         SmallVector<Value *, 4> ReorderedOps(VL.size());
5767         llvm::transform(*Order, ReorderedOps.begin(),
5768                         [VL](const unsigned Idx) { return VL[Idx]; });
5769         V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList);
5770       }
5771       if (V.isTreeTinyAndNotFullyVectorizable())
5772         break;
5773 
5774       V.computeMinimumValueSizes();
5775 
5776       // Estimate cost.
5777       int TreeCost = V.getTreeCost();
5778       int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth);
5779       int Cost = TreeCost + ReductionCost;
5780       if (Cost >= -SLPCostThreshold) {
5781           V.getORE()->emit([&]() {
5782               return OptimizationRemarkMissed(
5783                          SV_NAME, "HorSLPNotBeneficial", cast<Instruction>(VL[0]))
5784                      << "Vectorizing horizontal reduction is possible"
5785                      << "but not beneficial with cost "
5786                      << ore::NV("Cost", Cost) << " and threshold "
5787                      << ore::NV("Threshold", -SLPCostThreshold);
5788           });
5789           break;
5790       }
5791 
5792       LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
5793                         << Cost << ". (HorRdx)\n");
5794       V.getORE()->emit([&]() {
5795           return OptimizationRemark(
5796                      SV_NAME, "VectorizedHorizontalReduction", cast<Instruction>(VL[0]))
5797           << "Vectorized horizontal reduction with cost "
5798           << ore::NV("Cost", Cost) << " and with tree size "
5799           << ore::NV("TreeSize", V.getTreeSize());
5800       });
5801 
5802       // Vectorize a tree.
5803       DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
5804       Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues);
5805 
5806       // Emit a reduction.
5807       Builder.SetInsertPoint(cast<Instruction>(ReductionRoot));
5808       Value *ReducedSubTree =
5809           emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI);
5810       if (VectorizedTree) {
5811         Builder.SetCurrentDebugLocation(Loc);
5812         OperationData VectReductionData(ReductionData.getOpcode(),
5813                                         VectorizedTree, ReducedSubTree,
5814                                         ReductionData.getKind());
5815         VectorizedTree =
5816             VectReductionData.createOp(Builder, "op.rdx", ReductionOps);
5817       } else
5818         VectorizedTree = ReducedSubTree;
5819       i += ReduxWidth;
5820       ReduxWidth = PowerOf2Floor(NumReducedVals - i);
5821     }
5822 
5823     if (VectorizedTree) {
5824       // Finish the reduction.
5825       for (; i < NumReducedVals; ++i) {
5826         auto *I = cast<Instruction>(ReducedVals[i]);
5827         Builder.SetCurrentDebugLocation(I->getDebugLoc());
5828         OperationData VectReductionData(ReductionData.getOpcode(),
5829                                         VectorizedTree, I,
5830                                         ReductionData.getKind());
5831         VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps);
5832       }
5833       for (auto &Pair : ExternallyUsedValues) {
5834         // Add each externally used value to the final reduction.
5835         for (auto *I : Pair.second) {
5836           Builder.SetCurrentDebugLocation(I->getDebugLoc());
5837           OperationData VectReductionData(ReductionData.getOpcode(),
5838                                           VectorizedTree, Pair.first,
5839                                           ReductionData.getKind());
5840           VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I);
5841         }
5842       }
5843       // Update users.
5844       ReductionRoot->replaceAllUsesWith(VectorizedTree);
5845     }
5846     return VectorizedTree != nullptr;
5847   }
5848 
5849   unsigned numReductionValues() const {
5850     return ReducedVals.size();
5851   }
5852 
5853 private:
5854   /// Calculate the cost of a reduction.
5855   int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal,
5856                        unsigned ReduxWidth) {
5857     Type *ScalarTy = FirstReducedVal->getType();
5858     Type *VecTy = VectorType::get(ScalarTy, ReduxWidth);
5859 
5860     int PairwiseRdxCost;
5861     int SplittingRdxCost;
5862     switch (ReductionData.getKind()) {
5863     case RK_Arithmetic:
5864       PairwiseRdxCost =
5865           TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy,
5866                                           /*IsPairwiseForm=*/true);
5867       SplittingRdxCost =
5868           TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy,
5869                                           /*IsPairwiseForm=*/false);
5870       break;
5871     case RK_Min:
5872     case RK_Max:
5873     case RK_UMin:
5874     case RK_UMax: {
5875       Type *VecCondTy = CmpInst::makeCmpResultType(VecTy);
5876       bool IsUnsigned = ReductionData.getKind() == RK_UMin ||
5877                         ReductionData.getKind() == RK_UMax;
5878       PairwiseRdxCost =
5879           TTI->getMinMaxReductionCost(VecTy, VecCondTy,
5880                                       /*IsPairwiseForm=*/true, IsUnsigned);
5881       SplittingRdxCost =
5882           TTI->getMinMaxReductionCost(VecTy, VecCondTy,
5883                                       /*IsPairwiseForm=*/false, IsUnsigned);
5884       break;
5885     }
5886     case RK_None:
5887       llvm_unreachable("Expected arithmetic or min/max reduction operation");
5888     }
5889 
5890     IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost;
5891     int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost;
5892 
5893     int ScalarReduxCost;
5894     switch (ReductionData.getKind()) {
5895     case RK_Arithmetic:
5896       ScalarReduxCost =
5897           TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy);
5898       break;
5899     case RK_Min:
5900     case RK_Max:
5901     case RK_UMin:
5902     case RK_UMax:
5903       ScalarReduxCost =
5904           TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) +
5905           TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
5906                                   CmpInst::makeCmpResultType(ScalarTy));
5907       break;
5908     case RK_None:
5909       llvm_unreachable("Expected arithmetic or min/max reduction operation");
5910     }
5911     ScalarReduxCost *= (ReduxWidth - 1);
5912 
5913     LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost
5914                       << " for reduction that starts with " << *FirstReducedVal
5915                       << " (It is a "
5916                       << (IsPairwiseReduction ? "pairwise" : "splitting")
5917                       << " reduction)\n");
5918 
5919     return VecReduxCost - ScalarReduxCost;
5920   }
5921 
5922   /// Emit a horizontal reduction of the vectorized value.
5923   Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder,
5924                        unsigned ReduxWidth, const TargetTransformInfo *TTI) {
5925     assert(VectorizedValue && "Need to have a vectorized tree node");
5926     assert(isPowerOf2_32(ReduxWidth) &&
5927            "We only handle power-of-two reductions for now");
5928 
5929     if (!IsPairwiseReduction)
5930       return createSimpleTargetReduction(
5931           Builder, TTI, ReductionData.getOpcode(), VectorizedValue,
5932           ReductionData.getFlags(), FastMathFlags::getFast(),
5933           ReductionOps.back());
5934 
5935     Value *TmpVec = VectorizedValue;
5936     for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) {
5937       Value *LeftMask =
5938           createRdxShuffleMask(ReduxWidth, i, true, true, Builder);
5939       Value *RightMask =
5940           createRdxShuffleMask(ReduxWidth, i, true, false, Builder);
5941 
5942       Value *LeftShuf = Builder.CreateShuffleVector(
5943           TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l");
5944       Value *RightShuf = Builder.CreateShuffleVector(
5945           TmpVec, UndefValue::get(TmpVec->getType()), (RightMask),
5946           "rdx.shuf.r");
5947       OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf,
5948                                       RightShuf, ReductionData.getKind());
5949       TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps);
5950     }
5951 
5952     // The result is in the first element of the vector.
5953     return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
5954   }
5955 };
5956 
5957 } // end anonymous namespace
5958 
5959 /// Recognize construction of vectors like
5960 ///  %ra = insertelement <4 x float> undef, float %s0, i32 0
5961 ///  %rb = insertelement <4 x float> %ra, float %s1, i32 1
5962 ///  %rc = insertelement <4 x float> %rb, float %s2, i32 2
5963 ///  %rd = insertelement <4 x float> %rc, float %s3, i32 3
5964 ///  starting from the last insertelement instruction.
5965 ///
5966 /// Returns true if it matches
5967 static bool findBuildVector(InsertElementInst *LastInsertElem,
5968                             TargetTransformInfo *TTI,
5969                             SmallVectorImpl<Value *> &BuildVectorOpds,
5970                             int &UserCost) {
5971   UserCost = 0;
5972   Value *V = nullptr;
5973   do {
5974     if (auto *CI = dyn_cast<ConstantInt>(LastInsertElem->getOperand(2))) {
5975       UserCost += TTI->getVectorInstrCost(Instruction::InsertElement,
5976                                           LastInsertElem->getType(),
5977                                           CI->getZExtValue());
5978     }
5979     BuildVectorOpds.push_back(LastInsertElem->getOperand(1));
5980     V = LastInsertElem->getOperand(0);
5981     if (isa<UndefValue>(V))
5982       break;
5983     LastInsertElem = dyn_cast<InsertElementInst>(V);
5984     if (!LastInsertElem || !LastInsertElem->hasOneUse())
5985       return false;
5986   } while (true);
5987   std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end());
5988   return true;
5989 }
5990 
5991 /// Like findBuildVector, but looks for construction of aggregate.
5992 ///
5993 /// \return true if it matches.
5994 static bool findBuildAggregate(InsertValueInst *IV,
5995                                SmallVectorImpl<Value *> &BuildVectorOpds) {
5996   Value *V;
5997   do {
5998     BuildVectorOpds.push_back(IV->getInsertedValueOperand());
5999     V = IV->getAggregateOperand();
6000     if (isa<UndefValue>(V))
6001       break;
6002     IV = dyn_cast<InsertValueInst>(V);
6003     if (!IV || !IV->hasOneUse())
6004       return false;
6005   } while (true);
6006   std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end());
6007   return true;
6008 }
6009 
6010 static bool PhiTypeSorterFunc(Value *V, Value *V2) {
6011   return V->getType() < V2->getType();
6012 }
6013 
6014 /// Try and get a reduction value from a phi node.
6015 ///
6016 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions
6017 /// if they come from either \p ParentBB or a containing loop latch.
6018 ///
6019 /// \returns A candidate reduction value if possible, or \code nullptr \endcode
6020 /// if not possible.
6021 static Value *getReductionValue(const DominatorTree *DT, PHINode *P,
6022                                 BasicBlock *ParentBB, LoopInfo *LI) {
6023   // There are situations where the reduction value is not dominated by the
6024   // reduction phi. Vectorizing such cases has been reported to cause
6025   // miscompiles. See PR25787.
6026   auto DominatedReduxValue = [&](Value *R) {
6027     return isa<Instruction>(R) &&
6028            DT->dominates(P->getParent(), cast<Instruction>(R)->getParent());
6029   };
6030 
6031   Value *Rdx = nullptr;
6032 
6033   // Return the incoming value if it comes from the same BB as the phi node.
6034   if (P->getIncomingBlock(0) == ParentBB) {
6035     Rdx = P->getIncomingValue(0);
6036   } else if (P->getIncomingBlock(1) == ParentBB) {
6037     Rdx = P->getIncomingValue(1);
6038   }
6039 
6040   if (Rdx && DominatedReduxValue(Rdx))
6041     return Rdx;
6042 
6043   // Otherwise, check whether we have a loop latch to look at.
6044   Loop *BBL = LI->getLoopFor(ParentBB);
6045   if (!BBL)
6046     return nullptr;
6047   BasicBlock *BBLatch = BBL->getLoopLatch();
6048   if (!BBLatch)
6049     return nullptr;
6050 
6051   // There is a loop latch, return the incoming value if it comes from
6052   // that. This reduction pattern occasionally turns up.
6053   if (P->getIncomingBlock(0) == BBLatch) {
6054     Rdx = P->getIncomingValue(0);
6055   } else if (P->getIncomingBlock(1) == BBLatch) {
6056     Rdx = P->getIncomingValue(1);
6057   }
6058 
6059   if (Rdx && DominatedReduxValue(Rdx))
6060     return Rdx;
6061 
6062   return nullptr;
6063 }
6064 
6065 /// Attempt to reduce a horizontal reduction.
6066 /// If it is legal to match a horizontal reduction feeding the phi node \a P
6067 /// with reduction operators \a Root (or one of its operands) in a basic block
6068 /// \a BB, then check if it can be done. If horizontal reduction is not found
6069 /// and root instruction is a binary operation, vectorization of the operands is
6070 /// attempted.
6071 /// \returns true if a horizontal reduction was matched and reduced or operands
6072 /// of one of the binary instruction were vectorized.
6073 /// \returns false if a horizontal reduction was not matched (or not possible)
6074 /// or no vectorization of any binary operation feeding \a Root instruction was
6075 /// performed.
6076 static bool tryToVectorizeHorReductionOrInstOperands(
6077     PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R,
6078     TargetTransformInfo *TTI,
6079     const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) {
6080   if (!ShouldVectorizeHor)
6081     return false;
6082 
6083   if (!Root)
6084     return false;
6085 
6086   if (Root->getParent() != BB || isa<PHINode>(Root))
6087     return false;
6088   // Start analysis starting from Root instruction. If horizontal reduction is
6089   // found, try to vectorize it. If it is not a horizontal reduction or
6090   // vectorization is not possible or not effective, and currently analyzed
6091   // instruction is a binary operation, try to vectorize the operands, using
6092   // pre-order DFS traversal order. If the operands were not vectorized, repeat
6093   // the same procedure considering each operand as a possible root of the
6094   // horizontal reduction.
6095   // Interrupt the process if the Root instruction itself was vectorized or all
6096   // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized.
6097   SmallVector<std::pair<WeakTrackingVH, unsigned>, 8> Stack(1, {Root, 0});
6098   SmallPtrSet<Value *, 8> VisitedInstrs;
6099   bool Res = false;
6100   while (!Stack.empty()) {
6101     Value *V;
6102     unsigned Level;
6103     std::tie(V, Level) = Stack.pop_back_val();
6104     if (!V)
6105       continue;
6106     auto *Inst = dyn_cast<Instruction>(V);
6107     if (!Inst)
6108       continue;
6109     auto *BI = dyn_cast<BinaryOperator>(Inst);
6110     auto *SI = dyn_cast<SelectInst>(Inst);
6111     if (BI || SI) {
6112       HorizontalReduction HorRdx;
6113       if (HorRdx.matchAssociativeReduction(P, Inst)) {
6114         if (HorRdx.tryToReduce(R, TTI)) {
6115           Res = true;
6116           // Set P to nullptr to avoid re-analysis of phi node in
6117           // matchAssociativeReduction function unless this is the root node.
6118           P = nullptr;
6119           continue;
6120         }
6121       }
6122       if (P && BI) {
6123         Inst = dyn_cast<Instruction>(BI->getOperand(0));
6124         if (Inst == P)
6125           Inst = dyn_cast<Instruction>(BI->getOperand(1));
6126         if (!Inst) {
6127           // Set P to nullptr to avoid re-analysis of phi node in
6128           // matchAssociativeReduction function unless this is the root node.
6129           P = nullptr;
6130           continue;
6131         }
6132       }
6133     }
6134     // Set P to nullptr to avoid re-analysis of phi node in
6135     // matchAssociativeReduction function unless this is the root node.
6136     P = nullptr;
6137     if (Vectorize(Inst, R)) {
6138       Res = true;
6139       continue;
6140     }
6141 
6142     // Try to vectorize operands.
6143     // Continue analysis for the instruction from the same basic block only to
6144     // save compile time.
6145     if (++Level < RecursionMaxDepth)
6146       for (auto *Op : Inst->operand_values())
6147         if (VisitedInstrs.insert(Op).second)
6148           if (auto *I = dyn_cast<Instruction>(Op))
6149             if (!isa<PHINode>(I) && I->getParent() == BB)
6150               Stack.emplace_back(Op, Level);
6151   }
6152   return Res;
6153 }
6154 
6155 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V,
6156                                                  BasicBlock *BB, BoUpSLP &R,
6157                                                  TargetTransformInfo *TTI) {
6158   if (!V)
6159     return false;
6160   auto *I = dyn_cast<Instruction>(V);
6161   if (!I)
6162     return false;
6163 
6164   if (!isa<BinaryOperator>(I))
6165     P = nullptr;
6166   // Try to match and vectorize a horizontal reduction.
6167   auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool {
6168     return tryToVectorize(I, R);
6169   };
6170   return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI,
6171                                                   ExtraVectorization);
6172 }
6173 
6174 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI,
6175                                                  BasicBlock *BB, BoUpSLP &R) {
6176   const DataLayout &DL = BB->getModule()->getDataLayout();
6177   if (!R.canMapToVector(IVI->getType(), DL))
6178     return false;
6179 
6180   SmallVector<Value *, 16> BuildVectorOpds;
6181   if (!findBuildAggregate(IVI, BuildVectorOpds))
6182     return false;
6183 
6184   LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n");
6185   // Aggregate value is unlikely to be processed in vector register, we need to
6186   // extract scalars into scalar registers, so NeedExtraction is set true.
6187   return tryToVectorizeList(BuildVectorOpds, R);
6188 }
6189 
6190 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI,
6191                                                    BasicBlock *BB, BoUpSLP &R) {
6192   int UserCost;
6193   SmallVector<Value *, 16> BuildVectorOpds;
6194   if (!findBuildVector(IEI, TTI, BuildVectorOpds, UserCost) ||
6195       (llvm::all_of(BuildVectorOpds,
6196                     [](Value *V) { return isa<ExtractElementInst>(V); }) &&
6197        isShuffle(BuildVectorOpds)))
6198     return false;
6199 
6200   // Vectorize starting with the build vector operands ignoring the BuildVector
6201   // instructions for the purpose of scheduling and user extraction.
6202   return tryToVectorizeList(BuildVectorOpds, R, UserCost);
6203 }
6204 
6205 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB,
6206                                          BoUpSLP &R) {
6207   if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R))
6208     return true;
6209 
6210   bool OpsChanged = false;
6211   for (int Idx = 0; Idx < 2; ++Idx) {
6212     OpsChanged |=
6213         vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI);
6214   }
6215   return OpsChanged;
6216 }
6217 
6218 bool SLPVectorizerPass::vectorizeSimpleInstructions(
6219     SmallVectorImpl<WeakVH> &Instructions, BasicBlock *BB, BoUpSLP &R) {
6220   bool OpsChanged = false;
6221   for (auto &VH : reverse(Instructions)) {
6222     auto *I = dyn_cast_or_null<Instruction>(VH);
6223     if (!I)
6224       continue;
6225     if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I))
6226       OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R);
6227     else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I))
6228       OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R);
6229     else if (auto *CI = dyn_cast<CmpInst>(I))
6230       OpsChanged |= vectorizeCmpInst(CI, BB, R);
6231   }
6232   Instructions.clear();
6233   return OpsChanged;
6234 }
6235 
6236 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
6237   bool Changed = false;
6238   SmallVector<Value *, 4> Incoming;
6239   SmallPtrSet<Value *, 16> VisitedInstrs;
6240 
6241   bool HaveVectorizedPhiNodes = true;
6242   while (HaveVectorizedPhiNodes) {
6243     HaveVectorizedPhiNodes = false;
6244 
6245     // Collect the incoming values from the PHIs.
6246     Incoming.clear();
6247     for (Instruction &I : *BB) {
6248       PHINode *P = dyn_cast<PHINode>(&I);
6249       if (!P)
6250         break;
6251 
6252       if (!VisitedInstrs.count(P))
6253         Incoming.push_back(P);
6254     }
6255 
6256     // Sort by type.
6257     std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc);
6258 
6259     // Try to vectorize elements base on their type.
6260     for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
6261                                            E = Incoming.end();
6262          IncIt != E;) {
6263 
6264       // Look for the next elements with the same type.
6265       SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
6266       while (SameTypeIt != E &&
6267              (*SameTypeIt)->getType() == (*IncIt)->getType()) {
6268         VisitedInstrs.insert(*SameTypeIt);
6269         ++SameTypeIt;
6270       }
6271 
6272       // Try to vectorize them.
6273       unsigned NumElts = (SameTypeIt - IncIt);
6274       LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs ("
6275                         << NumElts << ")\n");
6276       // The order in which the phi nodes appear in the program does not matter.
6277       // So allow tryToVectorizeList to reorder them if it is beneficial. This
6278       // is done when there are exactly two elements since tryToVectorizeList
6279       // asserts that there are only two values when AllowReorder is true.
6280       bool AllowReorder = NumElts == 2;
6281       if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R,
6282                                             /*UserCost=*/0, AllowReorder)) {
6283         // Success start over because instructions might have been changed.
6284         HaveVectorizedPhiNodes = true;
6285         Changed = true;
6286         break;
6287       }
6288 
6289       // Start over at the next instruction of a different type (or the end).
6290       IncIt = SameTypeIt;
6291     }
6292   }
6293 
6294   VisitedInstrs.clear();
6295 
6296   SmallVector<WeakVH, 8> PostProcessInstructions;
6297   SmallDenseSet<Instruction *, 4> KeyNodes;
6298   for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) {
6299     // We may go through BB multiple times so skip the one we have checked.
6300     if (!VisitedInstrs.insert(&*it).second) {
6301       if (it->use_empty() && KeyNodes.count(&*it) > 0 &&
6302           vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) {
6303         // We would like to start over since some instructions are deleted
6304         // and the iterator may become invalid value.
6305         Changed = true;
6306         it = BB->begin();
6307         e = BB->end();
6308       }
6309       continue;
6310     }
6311 
6312     if (isa<DbgInfoIntrinsic>(it))
6313       continue;
6314 
6315     // Try to vectorize reductions that use PHINodes.
6316     if (PHINode *P = dyn_cast<PHINode>(it)) {
6317       // Check that the PHI is a reduction PHI.
6318       if (P->getNumIncomingValues() != 2)
6319         return Changed;
6320 
6321       // Try to match and vectorize a horizontal reduction.
6322       if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R,
6323                                    TTI)) {
6324         Changed = true;
6325         it = BB->begin();
6326         e = BB->end();
6327         continue;
6328       }
6329       continue;
6330     }
6331 
6332     // Ran into an instruction without users, like terminator, or function call
6333     // with ignored return value, store. Ignore unused instructions (basing on
6334     // instruction type, except for CallInst and InvokeInst).
6335     if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) ||
6336                             isa<InvokeInst>(it))) {
6337       KeyNodes.insert(&*it);
6338       bool OpsChanged = false;
6339       if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) {
6340         for (auto *V : it->operand_values()) {
6341           // Try to match and vectorize a horizontal reduction.
6342           OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI);
6343         }
6344       }
6345       // Start vectorization of post-process list of instructions from the
6346       // top-tree instructions to try to vectorize as many instructions as
6347       // possible.
6348       OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R);
6349       if (OpsChanged) {
6350         // We would like to start over since some instructions are deleted
6351         // and the iterator may become invalid value.
6352         Changed = true;
6353         it = BB->begin();
6354         e = BB->end();
6355         continue;
6356       }
6357     }
6358 
6359     if (isa<InsertElementInst>(it) || isa<CmpInst>(it) ||
6360         isa<InsertValueInst>(it))
6361       PostProcessInstructions.push_back(&*it);
6362   }
6363 
6364   return Changed;
6365 }
6366 
6367 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) {
6368   auto Changed = false;
6369   for (auto &Entry : GEPs) {
6370     // If the getelementptr list has fewer than two elements, there's nothing
6371     // to do.
6372     if (Entry.second.size() < 2)
6373       continue;
6374 
6375     LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length "
6376                       << Entry.second.size() << ".\n");
6377 
6378     // We process the getelementptr list in chunks of 16 (like we do for
6379     // stores) to minimize compile-time.
6380     for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) {
6381       auto Len = std::min<unsigned>(BE - BI, 16);
6382       auto GEPList = makeArrayRef(&Entry.second[BI], Len);
6383 
6384       // Initialize a set a candidate getelementptrs. Note that we use a
6385       // SetVector here to preserve program order. If the index computations
6386       // are vectorizable and begin with loads, we want to minimize the chance
6387       // of having to reorder them later.
6388       SetVector<Value *> Candidates(GEPList.begin(), GEPList.end());
6389 
6390       // Some of the candidates may have already been vectorized after we
6391       // initially collected them. If so, the WeakTrackingVHs will have
6392       // nullified the
6393       // values, so remove them from the set of candidates.
6394       Candidates.remove(nullptr);
6395 
6396       // Remove from the set of candidates all pairs of getelementptrs with
6397       // constant differences. Such getelementptrs are likely not good
6398       // candidates for vectorization in a bottom-up phase since one can be
6399       // computed from the other. We also ensure all candidate getelementptr
6400       // indices are unique.
6401       for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) {
6402         auto *GEPI = cast<GetElementPtrInst>(GEPList[I]);
6403         if (!Candidates.count(GEPI))
6404           continue;
6405         auto *SCEVI = SE->getSCEV(GEPList[I]);
6406         for (int J = I + 1; J < E && Candidates.size() > 1; ++J) {
6407           auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]);
6408           auto *SCEVJ = SE->getSCEV(GEPList[J]);
6409           if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) {
6410             Candidates.remove(GEPList[I]);
6411             Candidates.remove(GEPList[J]);
6412           } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) {
6413             Candidates.remove(GEPList[J]);
6414           }
6415         }
6416       }
6417 
6418       // We break out of the above computation as soon as we know there are
6419       // fewer than two candidates remaining.
6420       if (Candidates.size() < 2)
6421         continue;
6422 
6423       // Add the single, non-constant index of each candidate to the bundle. We
6424       // ensured the indices met these constraints when we originally collected
6425       // the getelementptrs.
6426       SmallVector<Value *, 16> Bundle(Candidates.size());
6427       auto BundleIndex = 0u;
6428       for (auto *V : Candidates) {
6429         auto *GEP = cast<GetElementPtrInst>(V);
6430         auto *GEPIdx = GEP->idx_begin()->get();
6431         assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx));
6432         Bundle[BundleIndex++] = GEPIdx;
6433       }
6434 
6435       // Try and vectorize the indices. We are currently only interested in
6436       // gather-like cases of the form:
6437       //
6438       // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ...
6439       //
6440       // where the loads of "a", the loads of "b", and the subtractions can be
6441       // performed in parallel. It's likely that detecting this pattern in a
6442       // bottom-up phase will be simpler and less costly than building a
6443       // full-blown top-down phase beginning at the consecutive loads.
6444       Changed |= tryToVectorizeList(Bundle, R);
6445     }
6446   }
6447   return Changed;
6448 }
6449 
6450 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) {
6451   bool Changed = false;
6452   // Attempt to sort and vectorize each of the store-groups.
6453   for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e;
6454        ++it) {
6455     if (it->second.size() < 2)
6456       continue;
6457 
6458     LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
6459                       << it->second.size() << ".\n");
6460 
6461     // Process the stores in chunks of 16.
6462     // TODO: The limit of 16 inhibits greater vectorization factors.
6463     //       For example, AVX2 supports v32i8. Increasing this limit, however,
6464     //       may cause a significant compile-time increase.
6465     for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI += 16) {
6466       unsigned Len = std::min<unsigned>(CE - CI, 16);
6467       Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R);
6468     }
6469   }
6470   return Changed;
6471 }
6472 
6473 char SLPVectorizer::ID = 0;
6474 
6475 static const char lv_name[] = "SLP Vectorizer";
6476 
6477 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
6478 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
6479 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
6480 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
6481 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
6482 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
6483 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
6484 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
6485 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
6486 
6487 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); }
6488