1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/DenseSet.h" 23 #include "llvm/ADT/MapVector.h" 24 #include "llvm/ADT/None.h" 25 #include "llvm/ADT/Optional.h" 26 #include "llvm/ADT/PostOrderIterator.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SetVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/CodeMetrics.h" 37 #include "llvm/Analysis/DemandedBits.h" 38 #include "llvm/Analysis/GlobalsModRef.h" 39 #include "llvm/Analysis/LoopAccessAnalysis.h" 40 #include "llvm/Analysis/LoopInfo.h" 41 #include "llvm/Analysis/MemoryLocation.h" 42 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 43 #include "llvm/Analysis/ScalarEvolution.h" 44 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 45 #include "llvm/Analysis/TargetLibraryInfo.h" 46 #include "llvm/Analysis/TargetTransformInfo.h" 47 #include "llvm/Analysis/ValueTracking.h" 48 #include "llvm/Analysis/VectorUtils.h" 49 #include "llvm/IR/Attributes.h" 50 #include "llvm/IR/BasicBlock.h" 51 #include "llvm/IR/Constant.h" 52 #include "llvm/IR/Constants.h" 53 #include "llvm/IR/DataLayout.h" 54 #include "llvm/IR/DebugLoc.h" 55 #include "llvm/IR/DerivedTypes.h" 56 #include "llvm/IR/Dominators.h" 57 #include "llvm/IR/Function.h" 58 #include "llvm/IR/IRBuilder.h" 59 #include "llvm/IR/InstrTypes.h" 60 #include "llvm/IR/Instruction.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/IR/IntrinsicInst.h" 63 #include "llvm/IR/Intrinsics.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/NoFolder.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PassManager.h" 68 #include "llvm/IR/PatternMatch.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/IR/Verifier.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/Casting.h" 77 #include "llvm/Support/CommandLine.h" 78 #include "llvm/Support/Compiler.h" 79 #include "llvm/Support/DOTGraphTraits.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/ErrorHandling.h" 82 #include "llvm/Support/GraphWriter.h" 83 #include "llvm/Support/KnownBits.h" 84 #include "llvm/Support/MathExtras.h" 85 #include "llvm/Support/raw_ostream.h" 86 #include "llvm/Transforms/Utils/LoopUtils.h" 87 #include "llvm/Transforms/Vectorize.h" 88 #include <algorithm> 89 #include <cassert> 90 #include <cstdint> 91 #include <iterator> 92 #include <memory> 93 #include <set> 94 #include <string> 95 #include <tuple> 96 #include <utility> 97 #include <vector> 98 99 using namespace llvm; 100 using namespace llvm::PatternMatch; 101 using namespace slpvectorizer; 102 103 #define SV_NAME "slp-vectorizer" 104 #define DEBUG_TYPE "SLP" 105 106 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 107 108 static cl::opt<int> 109 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 110 cl::desc("Only vectorize if you gain more than this " 111 "number ")); 112 113 static cl::opt<bool> 114 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 115 cl::desc("Attempt to vectorize horizontal reductions")); 116 117 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 118 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 119 cl::desc( 120 "Attempt to vectorize horizontal reductions feeding into a store")); 121 122 static cl::opt<int> 123 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 124 cl::desc("Attempt to vectorize for this register size in bits")); 125 126 /// Limits the size of scheduling regions in a block. 127 /// It avoid long compile times for _very_ large blocks where vector 128 /// instructions are spread over a wide range. 129 /// This limit is way higher than needed by real-world functions. 130 static cl::opt<int> 131 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 132 cl::desc("Limit the size of the SLP scheduling region per block")); 133 134 static cl::opt<int> MinVectorRegSizeOption( 135 "slp-min-reg-size", cl::init(128), cl::Hidden, 136 cl::desc("Attempt to vectorize for this register size in bits")); 137 138 static cl::opt<unsigned> RecursionMaxDepth( 139 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 140 cl::desc("Limit the recursion depth when building a vectorizable tree")); 141 142 static cl::opt<unsigned> MinTreeSize( 143 "slp-min-tree-size", cl::init(3), cl::Hidden, 144 cl::desc("Only vectorize small trees if they are fully vectorizable")); 145 146 static cl::opt<bool> 147 ViewSLPTree("view-slp-tree", cl::Hidden, 148 cl::desc("Display the SLP trees with Graphviz")); 149 150 // Limit the number of alias checks. The limit is chosen so that 151 // it has no negative effect on the llvm benchmarks. 152 static const unsigned AliasedCheckLimit = 10; 153 154 // Another limit for the alias checks: The maximum distance between load/store 155 // instructions where alias checks are done. 156 // This limit is useful for very large basic blocks. 157 static const unsigned MaxMemDepDistance = 160; 158 159 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 160 /// regions to be handled. 161 static const int MinScheduleRegionSize = 16; 162 163 /// Predicate for the element types that the SLP vectorizer supports. 164 /// 165 /// The most important thing to filter here are types which are invalid in LLVM 166 /// vectors. We also filter target specific types which have absolutely no 167 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 168 /// avoids spending time checking the cost model and realizing that they will 169 /// be inevitably scalarized. 170 static bool isValidElementType(Type *Ty) { 171 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 172 !Ty->isPPC_FP128Ty(); 173 } 174 175 /// \returns true if all of the instructions in \p VL are in the same block or 176 /// false otherwise. 177 static bool allSameBlock(ArrayRef<Value *> VL) { 178 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 179 if (!I0) 180 return false; 181 BasicBlock *BB = I0->getParent(); 182 for (int i = 1, e = VL.size(); i < e; i++) { 183 Instruction *I = dyn_cast<Instruction>(VL[i]); 184 if (!I) 185 return false; 186 187 if (BB != I->getParent()) 188 return false; 189 } 190 return true; 191 } 192 193 /// \returns True if all of the values in \p VL are constants. 194 static bool allConstant(ArrayRef<Value *> VL) { 195 for (Value *i : VL) 196 if (!isa<Constant>(i)) 197 return false; 198 return true; 199 } 200 201 /// \returns True if all of the values in \p VL are identical. 202 static bool isSplat(ArrayRef<Value *> VL) { 203 for (unsigned i = 1, e = VL.size(); i < e; ++i) 204 if (VL[i] != VL[0]) 205 return false; 206 return true; 207 } 208 209 /// Checks if the vector of instructions can be represented as a shuffle, like: 210 /// %x0 = extractelement <4 x i8> %x, i32 0 211 /// %x3 = extractelement <4 x i8> %x, i32 3 212 /// %y1 = extractelement <4 x i8> %y, i32 1 213 /// %y2 = extractelement <4 x i8> %y, i32 2 214 /// %x0x0 = mul i8 %x0, %x0 215 /// %x3x3 = mul i8 %x3, %x3 216 /// %y1y1 = mul i8 %y1, %y1 217 /// %y2y2 = mul i8 %y2, %y2 218 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0 219 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 220 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 221 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 222 /// ret <4 x i8> %ins4 223 /// can be transformed into: 224 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 225 /// i32 6> 226 /// %2 = mul <4 x i8> %1, %1 227 /// ret <4 x i8> %2 228 /// We convert this initially to something like: 229 /// %x0 = extractelement <4 x i8> %x, i32 0 230 /// %x3 = extractelement <4 x i8> %x, i32 3 231 /// %y1 = extractelement <4 x i8> %y, i32 1 232 /// %y2 = extractelement <4 x i8> %y, i32 2 233 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0 234 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 235 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 236 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 237 /// %5 = mul <4 x i8> %4, %4 238 /// %6 = extractelement <4 x i8> %5, i32 0 239 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0 240 /// %7 = extractelement <4 x i8> %5, i32 1 241 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 242 /// %8 = extractelement <4 x i8> %5, i32 2 243 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 244 /// %9 = extractelement <4 x i8> %5, i32 3 245 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 246 /// ret <4 x i8> %ins4 247 /// InstCombiner transforms this into a shuffle and vector mul 248 /// TODO: Can we split off and reuse the shuffle mask detection from 249 /// TargetTransformInfo::getInstructionThroughput? 250 static Optional<TargetTransformInfo::ShuffleKind> 251 isShuffle(ArrayRef<Value *> VL) { 252 auto *EI0 = cast<ExtractElementInst>(VL[0]); 253 unsigned Size = EI0->getVectorOperandType()->getVectorNumElements(); 254 Value *Vec1 = nullptr; 255 Value *Vec2 = nullptr; 256 enum ShuffleMode { Unknown, Select, Permute }; 257 ShuffleMode CommonShuffleMode = Unknown; 258 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 259 auto *EI = cast<ExtractElementInst>(VL[I]); 260 auto *Vec = EI->getVectorOperand(); 261 // All vector operands must have the same number of vector elements. 262 if (Vec->getType()->getVectorNumElements() != Size) 263 return None; 264 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 265 if (!Idx) 266 return None; 267 // Undefined behavior if Idx is negative or >= Size. 268 if (Idx->getValue().uge(Size)) 269 continue; 270 unsigned IntIdx = Idx->getValue().getZExtValue(); 271 // We can extractelement from undef vector. 272 if (isa<UndefValue>(Vec)) 273 continue; 274 // For correct shuffling we have to have at most 2 different vector operands 275 // in all extractelement instructions. 276 if (!Vec1 || Vec1 == Vec) 277 Vec1 = Vec; 278 else if (!Vec2 || Vec2 == Vec) 279 Vec2 = Vec; 280 else 281 return None; 282 if (CommonShuffleMode == Permute) 283 continue; 284 // If the extract index is not the same as the operation number, it is a 285 // permutation. 286 if (IntIdx != I) { 287 CommonShuffleMode = Permute; 288 continue; 289 } 290 CommonShuffleMode = Select; 291 } 292 // If we're not crossing lanes in different vectors, consider it as blending. 293 if (CommonShuffleMode == Select && Vec2) 294 return TargetTransformInfo::SK_Select; 295 // If Vec2 was never used, we have a permutation of a single vector, otherwise 296 // we have permutation of 2 vectors. 297 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 298 : TargetTransformInfo::SK_PermuteSingleSrc; 299 } 300 301 namespace { 302 303 /// Main data required for vectorization of instructions. 304 struct InstructionsState { 305 /// The very first instruction in the list with the main opcode. 306 Value *OpValue = nullptr; 307 308 /// The main/alternate instruction. 309 Instruction *MainOp = nullptr; 310 Instruction *AltOp = nullptr; 311 312 /// The main/alternate opcodes for the list of instructions. 313 unsigned getOpcode() const { 314 return MainOp ? MainOp->getOpcode() : 0; 315 } 316 317 unsigned getAltOpcode() const { 318 return AltOp ? AltOp->getOpcode() : 0; 319 } 320 321 /// Some of the instructions in the list have alternate opcodes. 322 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 323 324 bool isOpcodeOrAlt(Instruction *I) const { 325 unsigned CheckedOpcode = I->getOpcode(); 326 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 327 } 328 329 InstructionsState() = delete; 330 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 331 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 332 }; 333 334 } // end anonymous namespace 335 336 /// Chooses the correct key for scheduling data. If \p Op has the same (or 337 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 338 /// OpValue. 339 static Value *isOneOf(const InstructionsState &S, Value *Op) { 340 auto *I = dyn_cast<Instruction>(Op); 341 if (I && S.isOpcodeOrAlt(I)) 342 return Op; 343 return S.OpValue; 344 } 345 346 /// \returns analysis of the Instructions in \p VL described in 347 /// InstructionsState, the Opcode that we suppose the whole list 348 /// could be vectorized even if its structure is diverse. 349 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 350 unsigned BaseIndex = 0) { 351 // Make sure these are all Instructions. 352 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 353 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 354 355 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 356 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 357 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 358 unsigned AltOpcode = Opcode; 359 unsigned AltIndex = BaseIndex; 360 361 // Check for one alternate opcode from another BinaryOperator. 362 // TODO - generalize to support all operators (types, calls etc.). 363 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 364 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 365 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 366 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 367 continue; 368 if (Opcode == AltOpcode) { 369 AltOpcode = InstOpcode; 370 AltIndex = Cnt; 371 continue; 372 } 373 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 374 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 375 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 376 if (Ty0 == Ty1) { 377 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 378 continue; 379 if (Opcode == AltOpcode) { 380 AltOpcode = InstOpcode; 381 AltIndex = Cnt; 382 continue; 383 } 384 } 385 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 386 continue; 387 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 388 } 389 390 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 391 cast<Instruction>(VL[AltIndex])); 392 } 393 394 /// \returns true if all of the values in \p VL have the same type or false 395 /// otherwise. 396 static bool allSameType(ArrayRef<Value *> VL) { 397 Type *Ty = VL[0]->getType(); 398 for (int i = 1, e = VL.size(); i < e; i++) 399 if (VL[i]->getType() != Ty) 400 return false; 401 402 return true; 403 } 404 405 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 406 static Optional<unsigned> getExtractIndex(Instruction *E) { 407 unsigned Opcode = E->getOpcode(); 408 assert((Opcode == Instruction::ExtractElement || 409 Opcode == Instruction::ExtractValue) && 410 "Expected extractelement or extractvalue instruction."); 411 if (Opcode == Instruction::ExtractElement) { 412 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 413 if (!CI) 414 return None; 415 return CI->getZExtValue(); 416 } 417 ExtractValueInst *EI = cast<ExtractValueInst>(E); 418 if (EI->getNumIndices() != 1) 419 return None; 420 return *EI->idx_begin(); 421 } 422 423 /// \returns True if in-tree use also needs extract. This refers to 424 /// possible scalar operand in vectorized instruction. 425 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 426 TargetLibraryInfo *TLI) { 427 unsigned Opcode = UserInst->getOpcode(); 428 switch (Opcode) { 429 case Instruction::Load: { 430 LoadInst *LI = cast<LoadInst>(UserInst); 431 return (LI->getPointerOperand() == Scalar); 432 } 433 case Instruction::Store: { 434 StoreInst *SI = cast<StoreInst>(UserInst); 435 return (SI->getPointerOperand() == Scalar); 436 } 437 case Instruction::Call: { 438 CallInst *CI = cast<CallInst>(UserInst); 439 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 440 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 441 if (hasVectorInstrinsicScalarOpd(ID, i)) 442 return (CI->getArgOperand(i) == Scalar); 443 } 444 LLVM_FALLTHROUGH; 445 } 446 default: 447 return false; 448 } 449 } 450 451 /// \returns the AA location that is being access by the instruction. 452 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 453 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 454 return MemoryLocation::get(SI); 455 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 456 return MemoryLocation::get(LI); 457 return MemoryLocation(); 458 } 459 460 /// \returns True if the instruction is not a volatile or atomic load/store. 461 static bool isSimple(Instruction *I) { 462 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 463 return LI->isSimple(); 464 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 465 return SI->isSimple(); 466 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 467 return !MI->isVolatile(); 468 return true; 469 } 470 471 namespace llvm { 472 473 namespace slpvectorizer { 474 475 /// Bottom Up SLP Vectorizer. 476 class BoUpSLP { 477 public: 478 using ValueList = SmallVector<Value *, 8>; 479 using InstrList = SmallVector<Instruction *, 16>; 480 using ValueSet = SmallPtrSet<Value *, 16>; 481 using StoreList = SmallVector<StoreInst *, 8>; 482 using ExtraValueToDebugLocsMap = 483 MapVector<Value *, SmallVector<Instruction *, 2>>; 484 485 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 486 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 487 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 488 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 489 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 490 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 491 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 492 // Use the vector register size specified by the target unless overridden 493 // by a command-line option. 494 // TODO: It would be better to limit the vectorization factor based on 495 // data type rather than just register size. For example, x86 AVX has 496 // 256-bit registers, but it does not support integer operations 497 // at that width (that requires AVX2). 498 if (MaxVectorRegSizeOption.getNumOccurrences()) 499 MaxVecRegSize = MaxVectorRegSizeOption; 500 else 501 MaxVecRegSize = TTI->getRegisterBitWidth(true); 502 503 if (MinVectorRegSizeOption.getNumOccurrences()) 504 MinVecRegSize = MinVectorRegSizeOption; 505 else 506 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 507 } 508 509 /// Vectorize the tree that starts with the elements in \p VL. 510 /// Returns the vectorized root. 511 Value *vectorizeTree(); 512 513 /// Vectorize the tree but with the list of externally used values \p 514 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 515 /// generated extractvalue instructions. 516 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 517 518 /// \returns the cost incurred by unwanted spills and fills, caused by 519 /// holding live values over call sites. 520 int getSpillCost(); 521 522 /// \returns the vectorization cost of the subtree that starts at \p VL. 523 /// A negative number means that this is profitable. 524 int getTreeCost(); 525 526 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 527 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 528 void buildTree(ArrayRef<Value *> Roots, 529 ArrayRef<Value *> UserIgnoreLst = None); 530 531 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 532 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 533 /// into account (anf updating it, if required) list of externally used 534 /// values stored in \p ExternallyUsedValues. 535 void buildTree(ArrayRef<Value *> Roots, 536 ExtraValueToDebugLocsMap &ExternallyUsedValues, 537 ArrayRef<Value *> UserIgnoreLst = None); 538 539 /// Clear the internal data structures that are created by 'buildTree'. 540 void deleteTree() { 541 VectorizableTree.clear(); 542 ScalarToTreeEntry.clear(); 543 MustGather.clear(); 544 ExternalUses.clear(); 545 NumOpsWantToKeepOrder.clear(); 546 NumOpsWantToKeepOriginalOrder = 0; 547 for (auto &Iter : BlocksSchedules) { 548 BlockScheduling *BS = Iter.second.get(); 549 BS->clear(); 550 } 551 MinBWs.clear(); 552 } 553 554 unsigned getTreeSize() const { return VectorizableTree.size(); } 555 556 /// Perform LICM and CSE on the newly generated gather sequences. 557 void optimizeGatherSequence(); 558 559 /// \returns The best order of instructions for vectorization. 560 Optional<ArrayRef<unsigned>> bestOrder() const { 561 auto I = std::max_element( 562 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 563 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 564 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 565 return D1.second < D2.second; 566 }); 567 if (I == NumOpsWantToKeepOrder.end() || 568 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 569 return None; 570 571 return makeArrayRef(I->getFirst()); 572 } 573 574 /// \return The vector element size in bits to use when vectorizing the 575 /// expression tree ending at \p V. If V is a store, the size is the width of 576 /// the stored value. Otherwise, the size is the width of the largest loaded 577 /// value reaching V. This method is used by the vectorizer to calculate 578 /// vectorization factors. 579 unsigned getVectorElementSize(Value *V); 580 581 /// Compute the minimum type sizes required to represent the entries in a 582 /// vectorizable tree. 583 void computeMinimumValueSizes(); 584 585 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 586 unsigned getMaxVecRegSize() const { 587 return MaxVecRegSize; 588 } 589 590 // \returns minimum vector register size as set by cl::opt. 591 unsigned getMinVecRegSize() const { 592 return MinVecRegSize; 593 } 594 595 /// Check if ArrayType or StructType is isomorphic to some VectorType. 596 /// 597 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 598 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 599 600 /// \returns True if the VectorizableTree is both tiny and not fully 601 /// vectorizable. We do not vectorize such trees. 602 bool isTreeTinyAndNotFullyVectorizable(); 603 604 OptimizationRemarkEmitter *getORE() { return ORE; } 605 606 private: 607 struct TreeEntry; 608 609 /// Checks if all users of \p I are the part of the vectorization tree. 610 bool areAllUsersVectorized(Instruction *I) const; 611 612 /// \returns the cost of the vectorizable entry. 613 int getEntryCost(TreeEntry *E); 614 615 /// This is the recursive part of buildTree. 616 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, int); 617 618 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 619 /// be vectorized to use the original vector (or aggregate "bitcast" to a 620 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 621 /// returns false, setting \p CurrentOrder to either an empty vector or a 622 /// non-identity permutation that allows to reuse extract instructions. 623 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 624 SmallVectorImpl<unsigned> &CurrentOrder) const; 625 626 /// Vectorize a single entry in the tree. 627 Value *vectorizeTree(TreeEntry *E); 628 629 /// Vectorize a single entry in the tree, starting in \p VL. 630 Value *vectorizeTree(ArrayRef<Value *> VL); 631 632 /// \returns the scalarization cost for this type. Scalarization in this 633 /// context means the creation of vectors from a group of scalars. 634 int getGatherCost(Type *Ty, const DenseSet<unsigned> &ShuffledIndices); 635 636 /// \returns the scalarization cost for this list of values. Assuming that 637 /// this subtree gets vectorized, we may need to extract the values from the 638 /// roots. This method calculates the cost of extracting the values. 639 int getGatherCost(ArrayRef<Value *> VL); 640 641 /// Set the Builder insert point to one after the last instruction in 642 /// the bundle 643 void setInsertPointAfterBundle(ArrayRef<Value *> VL, 644 const InstructionsState &S); 645 646 /// \returns a vector from a collection of scalars in \p VL. 647 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 648 649 /// \returns whether the VectorizableTree is fully vectorizable and will 650 /// be beneficial even the tree height is tiny. 651 bool isFullyVectorizableTinyTree(); 652 653 /// \reorder commutative operands in alt shuffle if they result in 654 /// vectorized code. 655 void reorderAltShuffleOperands(const InstructionsState &S, 656 ArrayRef<Value *> VL, 657 SmallVectorImpl<Value *> &Left, 658 SmallVectorImpl<Value *> &Right); 659 660 /// \reorder commutative operands to get better probability of 661 /// generating vectorized code. 662 void reorderInputsAccordingToOpcode(unsigned Opcode, ArrayRef<Value *> VL, 663 SmallVectorImpl<Value *> &Left, 664 SmallVectorImpl<Value *> &Right); 665 struct TreeEntry { 666 TreeEntry(std::vector<TreeEntry> &Container) : Container(Container) {} 667 668 /// \returns true if the scalars in VL are equal to this entry. 669 bool isSame(ArrayRef<Value *> VL) const { 670 if (VL.size() == Scalars.size()) 671 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 672 return VL.size() == ReuseShuffleIndices.size() && 673 std::equal( 674 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 675 [this](Value *V, unsigned Idx) { return V == Scalars[Idx]; }); 676 } 677 678 /// A vector of scalars. 679 ValueList Scalars; 680 681 /// The Scalars are vectorized into this value. It is initialized to Null. 682 Value *VectorizedValue = nullptr; 683 684 /// Do we need to gather this sequence ? 685 bool NeedToGather = false; 686 687 /// Does this sequence require some shuffling? 688 SmallVector<unsigned, 4> ReuseShuffleIndices; 689 690 /// Does this entry require reordering? 691 ArrayRef<unsigned> ReorderIndices; 692 693 /// Points back to the VectorizableTree. 694 /// 695 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 696 /// to be a pointer and needs to be able to initialize the child iterator. 697 /// Thus we need a reference back to the container to translate the indices 698 /// to entries. 699 std::vector<TreeEntry> &Container; 700 701 /// The TreeEntry index containing the user of this entry. We can actually 702 /// have multiple users so the data structure is not truly a tree. 703 SmallVector<int, 1> UserTreeIndices; 704 }; 705 706 /// Create a new VectorizableTree entry. 707 void newTreeEntry(ArrayRef<Value *> VL, bool Vectorized, int &UserTreeIdx, 708 ArrayRef<unsigned> ReuseShuffleIndices = None, 709 ArrayRef<unsigned> ReorderIndices = None) { 710 VectorizableTree.emplace_back(VectorizableTree); 711 int idx = VectorizableTree.size() - 1; 712 TreeEntry *Last = &VectorizableTree[idx]; 713 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 714 Last->NeedToGather = !Vectorized; 715 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 716 ReuseShuffleIndices.end()); 717 Last->ReorderIndices = ReorderIndices; 718 if (Vectorized) { 719 for (int i = 0, e = VL.size(); i != e; ++i) { 720 assert(!getTreeEntry(VL[i]) && "Scalar already in tree!"); 721 ScalarToTreeEntry[VL[i]] = idx; 722 } 723 } else { 724 MustGather.insert(VL.begin(), VL.end()); 725 } 726 727 if (UserTreeIdx >= 0) 728 Last->UserTreeIndices.push_back(UserTreeIdx); 729 UserTreeIdx = idx; 730 } 731 732 /// -- Vectorization State -- 733 /// Holds all of the tree entries. 734 std::vector<TreeEntry> VectorizableTree; 735 736 TreeEntry *getTreeEntry(Value *V) { 737 auto I = ScalarToTreeEntry.find(V); 738 if (I != ScalarToTreeEntry.end()) 739 return &VectorizableTree[I->second]; 740 return nullptr; 741 } 742 743 /// Maps a specific scalar to its tree entry. 744 SmallDenseMap<Value*, int> ScalarToTreeEntry; 745 746 /// A list of scalars that we found that we need to keep as scalars. 747 ValueSet MustGather; 748 749 /// This POD struct describes one external user in the vectorized tree. 750 struct ExternalUser { 751 ExternalUser(Value *S, llvm::User *U, int L) 752 : Scalar(S), User(U), Lane(L) {} 753 754 // Which scalar in our function. 755 Value *Scalar; 756 757 // Which user that uses the scalar. 758 llvm::User *User; 759 760 // Which lane does the scalar belong to. 761 int Lane; 762 }; 763 using UserList = SmallVector<ExternalUser, 16>; 764 765 /// Checks if two instructions may access the same memory. 766 /// 767 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 768 /// is invariant in the calling loop. 769 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 770 Instruction *Inst2) { 771 // First check if the result is already in the cache. 772 AliasCacheKey key = std::make_pair(Inst1, Inst2); 773 Optional<bool> &result = AliasCache[key]; 774 if (result.hasValue()) { 775 return result.getValue(); 776 } 777 MemoryLocation Loc2 = getLocation(Inst2, AA); 778 bool aliased = true; 779 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 780 // Do the alias check. 781 aliased = AA->alias(Loc1, Loc2); 782 } 783 // Store the result in the cache. 784 result = aliased; 785 return aliased; 786 } 787 788 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 789 790 /// Cache for alias results. 791 /// TODO: consider moving this to the AliasAnalysis itself. 792 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 793 794 /// Removes an instruction from its block and eventually deletes it. 795 /// It's like Instruction::eraseFromParent() except that the actual deletion 796 /// is delayed until BoUpSLP is destructed. 797 /// This is required to ensure that there are no incorrect collisions in the 798 /// AliasCache, which can happen if a new instruction is allocated at the 799 /// same address as a previously deleted instruction. 800 void eraseInstruction(Instruction *I) { 801 I->removeFromParent(); 802 I->dropAllReferences(); 803 DeletedInstructions.emplace_back(I); 804 } 805 806 /// Temporary store for deleted instructions. Instructions will be deleted 807 /// eventually when the BoUpSLP is destructed. 808 SmallVector<unique_value, 8> DeletedInstructions; 809 810 /// A list of values that need to extracted out of the tree. 811 /// This list holds pairs of (Internal Scalar : External User). External User 812 /// can be nullptr, it means that this Internal Scalar will be used later, 813 /// after vectorization. 814 UserList ExternalUses; 815 816 /// Values used only by @llvm.assume calls. 817 SmallPtrSet<const Value *, 32> EphValues; 818 819 /// Holds all of the instructions that we gathered. 820 SetVector<Instruction *> GatherSeq; 821 822 /// A list of blocks that we are going to CSE. 823 SetVector<BasicBlock *> CSEBlocks; 824 825 /// Contains all scheduling relevant data for an instruction. 826 /// A ScheduleData either represents a single instruction or a member of an 827 /// instruction bundle (= a group of instructions which is combined into a 828 /// vector instruction). 829 struct ScheduleData { 830 // The initial value for the dependency counters. It means that the 831 // dependencies are not calculated yet. 832 enum { InvalidDeps = -1 }; 833 834 ScheduleData() = default; 835 836 void init(int BlockSchedulingRegionID, Value *OpVal) { 837 FirstInBundle = this; 838 NextInBundle = nullptr; 839 NextLoadStore = nullptr; 840 IsScheduled = false; 841 SchedulingRegionID = BlockSchedulingRegionID; 842 UnscheduledDepsInBundle = UnscheduledDeps; 843 clearDependencies(); 844 OpValue = OpVal; 845 } 846 847 /// Returns true if the dependency information has been calculated. 848 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 849 850 /// Returns true for single instructions and for bundle representatives 851 /// (= the head of a bundle). 852 bool isSchedulingEntity() const { return FirstInBundle == this; } 853 854 /// Returns true if it represents an instruction bundle and not only a 855 /// single instruction. 856 bool isPartOfBundle() const { 857 return NextInBundle != nullptr || FirstInBundle != this; 858 } 859 860 /// Returns true if it is ready for scheduling, i.e. it has no more 861 /// unscheduled depending instructions/bundles. 862 bool isReady() const { 863 assert(isSchedulingEntity() && 864 "can't consider non-scheduling entity for ready list"); 865 return UnscheduledDepsInBundle == 0 && !IsScheduled; 866 } 867 868 /// Modifies the number of unscheduled dependencies, also updating it for 869 /// the whole bundle. 870 int incrementUnscheduledDeps(int Incr) { 871 UnscheduledDeps += Incr; 872 return FirstInBundle->UnscheduledDepsInBundle += Incr; 873 } 874 875 /// Sets the number of unscheduled dependencies to the number of 876 /// dependencies. 877 void resetUnscheduledDeps() { 878 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 879 } 880 881 /// Clears all dependency information. 882 void clearDependencies() { 883 Dependencies = InvalidDeps; 884 resetUnscheduledDeps(); 885 MemoryDependencies.clear(); 886 } 887 888 void dump(raw_ostream &os) const { 889 if (!isSchedulingEntity()) { 890 os << "/ " << *Inst; 891 } else if (NextInBundle) { 892 os << '[' << *Inst; 893 ScheduleData *SD = NextInBundle; 894 while (SD) { 895 os << ';' << *SD->Inst; 896 SD = SD->NextInBundle; 897 } 898 os << ']'; 899 } else { 900 os << *Inst; 901 } 902 } 903 904 Instruction *Inst = nullptr; 905 906 /// Points to the head in an instruction bundle (and always to this for 907 /// single instructions). 908 ScheduleData *FirstInBundle = nullptr; 909 910 /// Single linked list of all instructions in a bundle. Null if it is a 911 /// single instruction. 912 ScheduleData *NextInBundle = nullptr; 913 914 /// Single linked list of all memory instructions (e.g. load, store, call) 915 /// in the block - until the end of the scheduling region. 916 ScheduleData *NextLoadStore = nullptr; 917 918 /// The dependent memory instructions. 919 /// This list is derived on demand in calculateDependencies(). 920 SmallVector<ScheduleData *, 4> MemoryDependencies; 921 922 /// This ScheduleData is in the current scheduling region if this matches 923 /// the current SchedulingRegionID of BlockScheduling. 924 int SchedulingRegionID = 0; 925 926 /// Used for getting a "good" final ordering of instructions. 927 int SchedulingPriority = 0; 928 929 /// The number of dependencies. Constitutes of the number of users of the 930 /// instruction plus the number of dependent memory instructions (if any). 931 /// This value is calculated on demand. 932 /// If InvalidDeps, the number of dependencies is not calculated yet. 933 int Dependencies = InvalidDeps; 934 935 /// The number of dependencies minus the number of dependencies of scheduled 936 /// instructions. As soon as this is zero, the instruction/bundle gets ready 937 /// for scheduling. 938 /// Note that this is negative as long as Dependencies is not calculated. 939 int UnscheduledDeps = InvalidDeps; 940 941 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 942 /// single instructions. 943 int UnscheduledDepsInBundle = InvalidDeps; 944 945 /// True if this instruction is scheduled (or considered as scheduled in the 946 /// dry-run). 947 bool IsScheduled = false; 948 949 /// Opcode of the current instruction in the schedule data. 950 Value *OpValue = nullptr; 951 }; 952 953 #ifndef NDEBUG 954 friend inline raw_ostream &operator<<(raw_ostream &os, 955 const BoUpSLP::ScheduleData &SD) { 956 SD.dump(os); 957 return os; 958 } 959 #endif 960 961 friend struct GraphTraits<BoUpSLP *>; 962 friend struct DOTGraphTraits<BoUpSLP *>; 963 964 /// Contains all scheduling data for a basic block. 965 struct BlockScheduling { 966 BlockScheduling(BasicBlock *BB) 967 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 968 969 void clear() { 970 ReadyInsts.clear(); 971 ScheduleStart = nullptr; 972 ScheduleEnd = nullptr; 973 FirstLoadStoreInRegion = nullptr; 974 LastLoadStoreInRegion = nullptr; 975 976 // Reduce the maximum schedule region size by the size of the 977 // previous scheduling run. 978 ScheduleRegionSizeLimit -= ScheduleRegionSize; 979 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 980 ScheduleRegionSizeLimit = MinScheduleRegionSize; 981 ScheduleRegionSize = 0; 982 983 // Make a new scheduling region, i.e. all existing ScheduleData is not 984 // in the new region yet. 985 ++SchedulingRegionID; 986 } 987 988 ScheduleData *getScheduleData(Value *V) { 989 ScheduleData *SD = ScheduleDataMap[V]; 990 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 991 return SD; 992 return nullptr; 993 } 994 995 ScheduleData *getScheduleData(Value *V, Value *Key) { 996 if (V == Key) 997 return getScheduleData(V); 998 auto I = ExtraScheduleDataMap.find(V); 999 if (I != ExtraScheduleDataMap.end()) { 1000 ScheduleData *SD = I->second[Key]; 1001 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1002 return SD; 1003 } 1004 return nullptr; 1005 } 1006 1007 bool isInSchedulingRegion(ScheduleData *SD) { 1008 return SD->SchedulingRegionID == SchedulingRegionID; 1009 } 1010 1011 /// Marks an instruction as scheduled and puts all dependent ready 1012 /// instructions into the ready-list. 1013 template <typename ReadyListType> 1014 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 1015 SD->IsScheduled = true; 1016 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 1017 1018 ScheduleData *BundleMember = SD; 1019 while (BundleMember) { 1020 if (BundleMember->Inst != BundleMember->OpValue) { 1021 BundleMember = BundleMember->NextInBundle; 1022 continue; 1023 } 1024 // Handle the def-use chain dependencies. 1025 for (Use &U : BundleMember->Inst->operands()) { 1026 auto *I = dyn_cast<Instruction>(U.get()); 1027 if (!I) 1028 continue; 1029 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 1030 if (OpDef && OpDef->hasValidDependencies() && 1031 OpDef->incrementUnscheduledDeps(-1) == 0) { 1032 // There are no more unscheduled dependencies after 1033 // decrementing, so we can put the dependent instruction 1034 // into the ready list. 1035 ScheduleData *DepBundle = OpDef->FirstInBundle; 1036 assert(!DepBundle->IsScheduled && 1037 "already scheduled bundle gets ready"); 1038 ReadyList.insert(DepBundle); 1039 LLVM_DEBUG(dbgs() 1040 << "SLP: gets ready (def): " << *DepBundle << "\n"); 1041 } 1042 }); 1043 } 1044 // Handle the memory dependencies. 1045 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 1046 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 1047 // There are no more unscheduled dependencies after decrementing, 1048 // so we can put the dependent instruction into the ready list. 1049 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 1050 assert(!DepBundle->IsScheduled && 1051 "already scheduled bundle gets ready"); 1052 ReadyList.insert(DepBundle); 1053 LLVM_DEBUG(dbgs() 1054 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 1055 } 1056 } 1057 BundleMember = BundleMember->NextInBundle; 1058 } 1059 } 1060 1061 void doForAllOpcodes(Value *V, 1062 function_ref<void(ScheduleData *SD)> Action) { 1063 if (ScheduleData *SD = getScheduleData(V)) 1064 Action(SD); 1065 auto I = ExtraScheduleDataMap.find(V); 1066 if (I != ExtraScheduleDataMap.end()) 1067 for (auto &P : I->second) 1068 if (P.second->SchedulingRegionID == SchedulingRegionID) 1069 Action(P.second); 1070 } 1071 1072 /// Put all instructions into the ReadyList which are ready for scheduling. 1073 template <typename ReadyListType> 1074 void initialFillReadyList(ReadyListType &ReadyList) { 1075 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 1076 doForAllOpcodes(I, [&](ScheduleData *SD) { 1077 if (SD->isSchedulingEntity() && SD->isReady()) { 1078 ReadyList.insert(SD); 1079 LLVM_DEBUG(dbgs() 1080 << "SLP: initially in ready list: " << *I << "\n"); 1081 } 1082 }); 1083 } 1084 } 1085 1086 /// Checks if a bundle of instructions can be scheduled, i.e. has no 1087 /// cyclic dependencies. This is only a dry-run, no instructions are 1088 /// actually moved at this stage. 1089 bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 1090 const InstructionsState &S); 1091 1092 /// Un-bundles a group of instructions. 1093 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 1094 1095 /// Allocates schedule data chunk. 1096 ScheduleData *allocateScheduleDataChunks(); 1097 1098 /// Extends the scheduling region so that V is inside the region. 1099 /// \returns true if the region size is within the limit. 1100 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 1101 1102 /// Initialize the ScheduleData structures for new instructions in the 1103 /// scheduling region. 1104 void initScheduleData(Instruction *FromI, Instruction *ToI, 1105 ScheduleData *PrevLoadStore, 1106 ScheduleData *NextLoadStore); 1107 1108 /// Updates the dependency information of a bundle and of all instructions/ 1109 /// bundles which depend on the original bundle. 1110 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 1111 BoUpSLP *SLP); 1112 1113 /// Sets all instruction in the scheduling region to un-scheduled. 1114 void resetSchedule(); 1115 1116 BasicBlock *BB; 1117 1118 /// Simple memory allocation for ScheduleData. 1119 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 1120 1121 /// The size of a ScheduleData array in ScheduleDataChunks. 1122 int ChunkSize; 1123 1124 /// The allocator position in the current chunk, which is the last entry 1125 /// of ScheduleDataChunks. 1126 int ChunkPos; 1127 1128 /// Attaches ScheduleData to Instruction. 1129 /// Note that the mapping survives during all vectorization iterations, i.e. 1130 /// ScheduleData structures are recycled. 1131 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 1132 1133 /// Attaches ScheduleData to Instruction with the leading key. 1134 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 1135 ExtraScheduleDataMap; 1136 1137 struct ReadyList : SmallVector<ScheduleData *, 8> { 1138 void insert(ScheduleData *SD) { push_back(SD); } 1139 }; 1140 1141 /// The ready-list for scheduling (only used for the dry-run). 1142 ReadyList ReadyInsts; 1143 1144 /// The first instruction of the scheduling region. 1145 Instruction *ScheduleStart = nullptr; 1146 1147 /// The first instruction _after_ the scheduling region. 1148 Instruction *ScheduleEnd = nullptr; 1149 1150 /// The first memory accessing instruction in the scheduling region 1151 /// (can be null). 1152 ScheduleData *FirstLoadStoreInRegion = nullptr; 1153 1154 /// The last memory accessing instruction in the scheduling region 1155 /// (can be null). 1156 ScheduleData *LastLoadStoreInRegion = nullptr; 1157 1158 /// The current size of the scheduling region. 1159 int ScheduleRegionSize = 0; 1160 1161 /// The maximum size allowed for the scheduling region. 1162 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 1163 1164 /// The ID of the scheduling region. For a new vectorization iteration this 1165 /// is incremented which "removes" all ScheduleData from the region. 1166 // Make sure that the initial SchedulingRegionID is greater than the 1167 // initial SchedulingRegionID in ScheduleData (which is 0). 1168 int SchedulingRegionID = 1; 1169 }; 1170 1171 /// Attaches the BlockScheduling structures to basic blocks. 1172 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 1173 1174 /// Performs the "real" scheduling. Done before vectorization is actually 1175 /// performed in a basic block. 1176 void scheduleBlock(BlockScheduling *BS); 1177 1178 /// List of users to ignore during scheduling and that don't need extracting. 1179 ArrayRef<Value *> UserIgnoreList; 1180 1181 using OrdersType = SmallVector<unsigned, 4>; 1182 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 1183 /// sorted SmallVectors of unsigned. 1184 struct OrdersTypeDenseMapInfo { 1185 static OrdersType getEmptyKey() { 1186 OrdersType V; 1187 V.push_back(~1U); 1188 return V; 1189 } 1190 1191 static OrdersType getTombstoneKey() { 1192 OrdersType V; 1193 V.push_back(~2U); 1194 return V; 1195 } 1196 1197 static unsigned getHashValue(const OrdersType &V) { 1198 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1199 } 1200 1201 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 1202 return LHS == RHS; 1203 } 1204 }; 1205 1206 /// Contains orders of operations along with the number of bundles that have 1207 /// operations in this order. It stores only those orders that require 1208 /// reordering, if reordering is not required it is counted using \a 1209 /// NumOpsWantToKeepOriginalOrder. 1210 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 1211 /// Number of bundles that do not require reordering. 1212 unsigned NumOpsWantToKeepOriginalOrder = 0; 1213 1214 // Analysis and block reference. 1215 Function *F; 1216 ScalarEvolution *SE; 1217 TargetTransformInfo *TTI; 1218 TargetLibraryInfo *TLI; 1219 AliasAnalysis *AA; 1220 LoopInfo *LI; 1221 DominatorTree *DT; 1222 AssumptionCache *AC; 1223 DemandedBits *DB; 1224 const DataLayout *DL; 1225 OptimizationRemarkEmitter *ORE; 1226 1227 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 1228 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 1229 1230 /// Instruction builder to construct the vectorized tree. 1231 IRBuilder<> Builder; 1232 1233 /// A map of scalar integer values to the smallest bit width with which they 1234 /// can legally be represented. The values map to (width, signed) pairs, 1235 /// where "width" indicates the minimum bit width and "signed" is True if the 1236 /// value must be signed-extended, rather than zero-extended, back to its 1237 /// original width. 1238 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 1239 }; 1240 1241 } // end namespace slpvectorizer 1242 1243 template <> struct GraphTraits<BoUpSLP *> { 1244 using TreeEntry = BoUpSLP::TreeEntry; 1245 1246 /// NodeRef has to be a pointer per the GraphWriter. 1247 using NodeRef = TreeEntry *; 1248 1249 /// Add the VectorizableTree to the index iterator to be able to return 1250 /// TreeEntry pointers. 1251 struct ChildIteratorType 1252 : public iterator_adaptor_base<ChildIteratorType, 1253 SmallVector<int, 1>::iterator> { 1254 std::vector<TreeEntry> &VectorizableTree; 1255 1256 ChildIteratorType(SmallVector<int, 1>::iterator W, 1257 std::vector<TreeEntry> &VT) 1258 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 1259 1260 NodeRef operator*() { return &VectorizableTree[*I]; } 1261 }; 1262 1263 static NodeRef getEntryNode(BoUpSLP &R) { return &R.VectorizableTree[0]; } 1264 1265 static ChildIteratorType child_begin(NodeRef N) { 1266 return {N->UserTreeIndices.begin(), N->Container}; 1267 } 1268 1269 static ChildIteratorType child_end(NodeRef N) { 1270 return {N->UserTreeIndices.end(), N->Container}; 1271 } 1272 1273 /// For the node iterator we just need to turn the TreeEntry iterator into a 1274 /// TreeEntry* iterator so that it dereferences to NodeRef. 1275 using nodes_iterator = pointer_iterator<std::vector<TreeEntry>::iterator>; 1276 1277 static nodes_iterator nodes_begin(BoUpSLP *R) { 1278 return nodes_iterator(R->VectorizableTree.begin()); 1279 } 1280 1281 static nodes_iterator nodes_end(BoUpSLP *R) { 1282 return nodes_iterator(R->VectorizableTree.end()); 1283 } 1284 1285 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 1286 }; 1287 1288 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 1289 using TreeEntry = BoUpSLP::TreeEntry; 1290 1291 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 1292 1293 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 1294 std::string Str; 1295 raw_string_ostream OS(Str); 1296 if (isSplat(Entry->Scalars)) { 1297 OS << "<splat> " << *Entry->Scalars[0]; 1298 return Str; 1299 } 1300 for (auto V : Entry->Scalars) { 1301 OS << *V; 1302 if (std::any_of( 1303 R->ExternalUses.begin(), R->ExternalUses.end(), 1304 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; })) 1305 OS << " <extract>"; 1306 OS << "\n"; 1307 } 1308 return Str; 1309 } 1310 1311 static std::string getNodeAttributes(const TreeEntry *Entry, 1312 const BoUpSLP *) { 1313 if (Entry->NeedToGather) 1314 return "color=red"; 1315 return ""; 1316 } 1317 }; 1318 1319 } // end namespace llvm 1320 1321 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1322 ArrayRef<Value *> UserIgnoreLst) { 1323 ExtraValueToDebugLocsMap ExternallyUsedValues; 1324 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 1325 } 1326 1327 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 1328 ExtraValueToDebugLocsMap &ExternallyUsedValues, 1329 ArrayRef<Value *> UserIgnoreLst) { 1330 deleteTree(); 1331 UserIgnoreList = UserIgnoreLst; 1332 if (!allSameType(Roots)) 1333 return; 1334 buildTree_rec(Roots, 0, -1); 1335 1336 // Collect the values that we need to extract from the tree. 1337 for (TreeEntry &EIdx : VectorizableTree) { 1338 TreeEntry *Entry = &EIdx; 1339 1340 // No need to handle users of gathered values. 1341 if (Entry->NeedToGather) 1342 continue; 1343 1344 // For each lane: 1345 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 1346 Value *Scalar = Entry->Scalars[Lane]; 1347 int FoundLane = Lane; 1348 if (!Entry->ReuseShuffleIndices.empty()) { 1349 FoundLane = 1350 std::distance(Entry->ReuseShuffleIndices.begin(), 1351 llvm::find(Entry->ReuseShuffleIndices, FoundLane)); 1352 } 1353 1354 // Check if the scalar is externally used as an extra arg. 1355 auto ExtI = ExternallyUsedValues.find(Scalar); 1356 if (ExtI != ExternallyUsedValues.end()) { 1357 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 1358 << Lane << " from " << *Scalar << ".\n"); 1359 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 1360 } 1361 for (User *U : Scalar->users()) { 1362 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 1363 1364 Instruction *UserInst = dyn_cast<Instruction>(U); 1365 if (!UserInst) 1366 continue; 1367 1368 // Skip in-tree scalars that become vectors 1369 if (TreeEntry *UseEntry = getTreeEntry(U)) { 1370 Value *UseScalar = UseEntry->Scalars[0]; 1371 // Some in-tree scalars will remain as scalar in vectorized 1372 // instructions. If that is the case, the one in Lane 0 will 1373 // be used. 1374 if (UseScalar != U || 1375 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 1376 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 1377 << ".\n"); 1378 assert(!UseEntry->NeedToGather && "Bad state"); 1379 continue; 1380 } 1381 } 1382 1383 // Ignore users in the user ignore list. 1384 if (is_contained(UserIgnoreList, UserInst)) 1385 continue; 1386 1387 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 1388 << Lane << " from " << *Scalar << ".\n"); 1389 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 1390 } 1391 } 1392 } 1393 } 1394 1395 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 1396 int UserTreeIdx) { 1397 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 1398 1399 InstructionsState S = getSameOpcode(VL); 1400 if (Depth == RecursionMaxDepth) { 1401 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 1402 newTreeEntry(VL, false, UserTreeIdx); 1403 return; 1404 } 1405 1406 // Don't handle vectors. 1407 if (S.OpValue->getType()->isVectorTy()) { 1408 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 1409 newTreeEntry(VL, false, UserTreeIdx); 1410 return; 1411 } 1412 1413 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 1414 if (SI->getValueOperand()->getType()->isVectorTy()) { 1415 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 1416 newTreeEntry(VL, false, UserTreeIdx); 1417 return; 1418 } 1419 1420 // If all of the operands are identical or constant we have a simple solution. 1421 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 1422 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 1423 newTreeEntry(VL, false, UserTreeIdx); 1424 return; 1425 } 1426 1427 // We now know that this is a vector of instructions of the same type from 1428 // the same block. 1429 1430 // Don't vectorize ephemeral values. 1431 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1432 if (EphValues.count(VL[i])) { 1433 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] 1434 << ") is ephemeral.\n"); 1435 newTreeEntry(VL, false, UserTreeIdx); 1436 return; 1437 } 1438 } 1439 1440 // Check if this is a duplicate of another entry. 1441 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 1442 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 1443 if (!E->isSame(VL)) { 1444 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 1445 newTreeEntry(VL, false, UserTreeIdx); 1446 return; 1447 } 1448 // Record the reuse of the tree node. FIXME, currently this is only used to 1449 // properly draw the graph rather than for the actual vectorization. 1450 E->UserTreeIndices.push_back(UserTreeIdx); 1451 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 1452 << ".\n"); 1453 return; 1454 } 1455 1456 // Check that none of the instructions in the bundle are already in the tree. 1457 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1458 auto *I = dyn_cast<Instruction>(VL[i]); 1459 if (!I) 1460 continue; 1461 if (getTreeEntry(I)) { 1462 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] 1463 << ") is already in tree.\n"); 1464 newTreeEntry(VL, false, UserTreeIdx); 1465 return; 1466 } 1467 } 1468 1469 // If any of the scalars is marked as a value that needs to stay scalar, then 1470 // we need to gather the scalars. 1471 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 1472 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1473 if (MustGather.count(VL[i]) || is_contained(UserIgnoreList, VL[i])) { 1474 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 1475 newTreeEntry(VL, false, UserTreeIdx); 1476 return; 1477 } 1478 } 1479 1480 // Check that all of the users of the scalars that we want to vectorize are 1481 // schedulable. 1482 auto *VL0 = cast<Instruction>(S.OpValue); 1483 BasicBlock *BB = VL0->getParent(); 1484 1485 if (!DT->isReachableFromEntry(BB)) { 1486 // Don't go into unreachable blocks. They may contain instructions with 1487 // dependency cycles which confuse the final scheduling. 1488 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 1489 newTreeEntry(VL, false, UserTreeIdx); 1490 return; 1491 } 1492 1493 // Check that every instruction appears once in this bundle. 1494 SmallVector<unsigned, 4> ReuseShuffleIndicies; 1495 SmallVector<Value *, 4> UniqueValues; 1496 DenseMap<Value *, unsigned> UniquePositions; 1497 for (Value *V : VL) { 1498 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 1499 ReuseShuffleIndicies.emplace_back(Res.first->second); 1500 if (Res.second) 1501 UniqueValues.emplace_back(V); 1502 } 1503 if (UniqueValues.size() == VL.size()) { 1504 ReuseShuffleIndicies.clear(); 1505 } else { 1506 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 1507 if (UniqueValues.size() <= 1 || !llvm::isPowerOf2_32(UniqueValues.size())) { 1508 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 1509 newTreeEntry(VL, false, UserTreeIdx); 1510 return; 1511 } 1512 VL = UniqueValues; 1513 } 1514 1515 auto &BSRef = BlocksSchedules[BB]; 1516 if (!BSRef) 1517 BSRef = llvm::make_unique<BlockScheduling>(BB); 1518 1519 BlockScheduling &BS = *BSRef.get(); 1520 1521 if (!BS.tryScheduleBundle(VL, this, S)) { 1522 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 1523 assert((!BS.getScheduleData(VL0) || 1524 !BS.getScheduleData(VL0)->isPartOfBundle()) && 1525 "tryScheduleBundle should cancelScheduling on failure"); 1526 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1527 return; 1528 } 1529 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 1530 1531 unsigned ShuffleOrOp = S.isAltShuffle() ? 1532 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 1533 switch (ShuffleOrOp) { 1534 case Instruction::PHI: { 1535 PHINode *PH = dyn_cast<PHINode>(VL0); 1536 1537 // Check for terminator values (e.g. invoke). 1538 for (unsigned j = 0; j < VL.size(); ++j) 1539 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1540 Instruction *Term = dyn_cast<Instruction>( 1541 cast<PHINode>(VL[j])->getIncomingValueForBlock( 1542 PH->getIncomingBlock(i))); 1543 if (Term && Term->isTerminator()) { 1544 LLVM_DEBUG(dbgs() 1545 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 1546 BS.cancelScheduling(VL, VL0); 1547 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1548 return; 1549 } 1550 } 1551 1552 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1553 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 1554 1555 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1556 ValueList Operands; 1557 // Prepare the operand vector. 1558 for (Value *j : VL) 1559 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( 1560 PH->getIncomingBlock(i))); 1561 1562 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1563 } 1564 return; 1565 } 1566 case Instruction::ExtractValue: 1567 case Instruction::ExtractElement: { 1568 OrdersType CurrentOrder; 1569 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 1570 if (Reuse) { 1571 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 1572 ++NumOpsWantToKeepOriginalOrder; 1573 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, 1574 ReuseShuffleIndicies); 1575 return; 1576 } 1577 if (!CurrentOrder.empty()) { 1578 LLVM_DEBUG({ 1579 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 1580 "with order"; 1581 for (unsigned Idx : CurrentOrder) 1582 dbgs() << " " << Idx; 1583 dbgs() << "\n"; 1584 }); 1585 // Insert new order with initial value 0, if it does not exist, 1586 // otherwise return the iterator to the existing one. 1587 auto StoredCurrentOrderAndNum = 1588 NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 1589 ++StoredCurrentOrderAndNum->getSecond(); 1590 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, ReuseShuffleIndicies, 1591 StoredCurrentOrderAndNum->getFirst()); 1592 return; 1593 } 1594 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 1595 newTreeEntry(VL, /*Vectorized=*/false, UserTreeIdx, ReuseShuffleIndicies); 1596 BS.cancelScheduling(VL, VL0); 1597 return; 1598 } 1599 case Instruction::Load: { 1600 // Check that a vectorized load would load the same memory as a scalar 1601 // load. For example, we don't want to vectorize loads that are smaller 1602 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 1603 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 1604 // from such a struct, we read/write packed bits disagreeing with the 1605 // unvectorized version. 1606 Type *ScalarTy = VL0->getType(); 1607 1608 if (DL->getTypeSizeInBits(ScalarTy) != 1609 DL->getTypeAllocSizeInBits(ScalarTy)) { 1610 BS.cancelScheduling(VL, VL0); 1611 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1612 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 1613 return; 1614 } 1615 1616 // Make sure all loads in the bundle are simple - we can't vectorize 1617 // atomic or volatile loads. 1618 SmallVector<Value *, 4> PointerOps(VL.size()); 1619 auto POIter = PointerOps.begin(); 1620 for (Value *V : VL) { 1621 auto *L = cast<LoadInst>(V); 1622 if (!L->isSimple()) { 1623 BS.cancelScheduling(VL, VL0); 1624 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1625 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 1626 return; 1627 } 1628 *POIter = L->getPointerOperand(); 1629 ++POIter; 1630 } 1631 1632 OrdersType CurrentOrder; 1633 // Check the order of pointer operands. 1634 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 1635 Value *Ptr0; 1636 Value *PtrN; 1637 if (CurrentOrder.empty()) { 1638 Ptr0 = PointerOps.front(); 1639 PtrN = PointerOps.back(); 1640 } else { 1641 Ptr0 = PointerOps[CurrentOrder.front()]; 1642 PtrN = PointerOps[CurrentOrder.back()]; 1643 } 1644 const SCEV *Scev0 = SE->getSCEV(Ptr0); 1645 const SCEV *ScevN = SE->getSCEV(PtrN); 1646 const auto *Diff = 1647 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 1648 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 1649 // Check that the sorted loads are consecutive. 1650 if (Diff && Diff->getAPInt().getZExtValue() == (VL.size() - 1) * Size) { 1651 if (CurrentOrder.empty()) { 1652 // Original loads are consecutive and does not require reordering. 1653 ++NumOpsWantToKeepOriginalOrder; 1654 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, 1655 ReuseShuffleIndicies); 1656 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 1657 } else { 1658 // Need to reorder. 1659 auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 1660 ++I->getSecond(); 1661 newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, 1662 ReuseShuffleIndicies, I->getFirst()); 1663 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 1664 } 1665 return; 1666 } 1667 } 1668 1669 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 1670 BS.cancelScheduling(VL, VL0); 1671 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1672 return; 1673 } 1674 case Instruction::ZExt: 1675 case Instruction::SExt: 1676 case Instruction::FPToUI: 1677 case Instruction::FPToSI: 1678 case Instruction::FPExt: 1679 case Instruction::PtrToInt: 1680 case Instruction::IntToPtr: 1681 case Instruction::SIToFP: 1682 case Instruction::UIToFP: 1683 case Instruction::Trunc: 1684 case Instruction::FPTrunc: 1685 case Instruction::BitCast: { 1686 Type *SrcTy = VL0->getOperand(0)->getType(); 1687 for (unsigned i = 0; i < VL.size(); ++i) { 1688 Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType(); 1689 if (Ty != SrcTy || !isValidElementType(Ty)) { 1690 BS.cancelScheduling(VL, VL0); 1691 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1692 LLVM_DEBUG(dbgs() 1693 << "SLP: Gathering casts with different src types.\n"); 1694 return; 1695 } 1696 } 1697 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1698 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 1699 1700 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1701 ValueList Operands; 1702 // Prepare the operand vector. 1703 for (Value *j : VL) 1704 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1705 1706 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1707 } 1708 return; 1709 } 1710 case Instruction::ICmp: 1711 case Instruction::FCmp: { 1712 // Check that all of the compares have the same predicate. 1713 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 1714 Type *ComparedTy = VL0->getOperand(0)->getType(); 1715 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1716 CmpInst *Cmp = cast<CmpInst>(VL[i]); 1717 if (Cmp->getPredicate() != P0 || 1718 Cmp->getOperand(0)->getType() != ComparedTy) { 1719 BS.cancelScheduling(VL, VL0); 1720 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1721 LLVM_DEBUG(dbgs() 1722 << "SLP: Gathering cmp with different predicate.\n"); 1723 return; 1724 } 1725 } 1726 1727 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1728 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 1729 1730 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1731 ValueList Operands; 1732 // Prepare the operand vector. 1733 for (Value *j : VL) 1734 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1735 1736 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1737 } 1738 return; 1739 } 1740 case Instruction::Select: 1741 case Instruction::Add: 1742 case Instruction::FAdd: 1743 case Instruction::Sub: 1744 case Instruction::FSub: 1745 case Instruction::Mul: 1746 case Instruction::FMul: 1747 case Instruction::UDiv: 1748 case Instruction::SDiv: 1749 case Instruction::FDiv: 1750 case Instruction::URem: 1751 case Instruction::SRem: 1752 case Instruction::FRem: 1753 case Instruction::Shl: 1754 case Instruction::LShr: 1755 case Instruction::AShr: 1756 case Instruction::And: 1757 case Instruction::Or: 1758 case Instruction::Xor: 1759 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1760 LLVM_DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); 1761 1762 // Sort operands of the instructions so that each side is more likely to 1763 // have the same opcode. 1764 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 1765 ValueList Left, Right; 1766 reorderInputsAccordingToOpcode(S.getOpcode(), VL, Left, Right); 1767 buildTree_rec(Left, Depth + 1, UserTreeIdx); 1768 buildTree_rec(Right, Depth + 1, UserTreeIdx); 1769 return; 1770 } 1771 1772 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1773 ValueList Operands; 1774 // Prepare the operand vector. 1775 for (Value *j : VL) 1776 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1777 1778 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1779 } 1780 return; 1781 1782 case Instruction::GetElementPtr: { 1783 // We don't combine GEPs with complicated (nested) indexing. 1784 for (unsigned j = 0; j < VL.size(); ++j) { 1785 if (cast<Instruction>(VL[j])->getNumOperands() != 2) { 1786 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 1787 BS.cancelScheduling(VL, VL0); 1788 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1789 return; 1790 } 1791 } 1792 1793 // We can't combine several GEPs into one vector if they operate on 1794 // different types. 1795 Type *Ty0 = VL0->getOperand(0)->getType(); 1796 for (unsigned j = 0; j < VL.size(); ++j) { 1797 Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType(); 1798 if (Ty0 != CurTy) { 1799 LLVM_DEBUG(dbgs() 1800 << "SLP: not-vectorizable GEP (different types).\n"); 1801 BS.cancelScheduling(VL, VL0); 1802 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1803 return; 1804 } 1805 } 1806 1807 // We don't combine GEPs with non-constant indexes. 1808 for (unsigned j = 0; j < VL.size(); ++j) { 1809 auto Op = cast<Instruction>(VL[j])->getOperand(1); 1810 if (!isa<ConstantInt>(Op)) { 1811 LLVM_DEBUG(dbgs() 1812 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 1813 BS.cancelScheduling(VL, VL0); 1814 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1815 return; 1816 } 1817 } 1818 1819 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1820 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 1821 for (unsigned i = 0, e = 2; i < e; ++i) { 1822 ValueList Operands; 1823 // Prepare the operand vector. 1824 for (Value *j : VL) 1825 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1826 1827 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1828 } 1829 return; 1830 } 1831 case Instruction::Store: { 1832 // Check if the stores are consecutive or of we need to swizzle them. 1833 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 1834 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1835 BS.cancelScheduling(VL, VL0); 1836 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1837 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 1838 return; 1839 } 1840 1841 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1842 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 1843 1844 ValueList Operands; 1845 for (Value *j : VL) 1846 Operands.push_back(cast<Instruction>(j)->getOperand(0)); 1847 1848 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1849 return; 1850 } 1851 case Instruction::Call: { 1852 // Check if the calls are all to the same vectorizable intrinsic. 1853 CallInst *CI = cast<CallInst>(VL0); 1854 // Check if this is an Intrinsic call or something that can be 1855 // represented by an intrinsic call 1856 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 1857 if (!isTriviallyVectorizable(ID)) { 1858 BS.cancelScheduling(VL, VL0); 1859 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1860 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 1861 return; 1862 } 1863 Function *Int = CI->getCalledFunction(); 1864 unsigned NumArgs = CI->getNumArgOperands(); 1865 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 1866 for (unsigned j = 0; j != NumArgs; ++j) 1867 if (hasVectorInstrinsicScalarOpd(ID, j)) 1868 ScalarArgs[j] = CI->getArgOperand(j); 1869 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 1870 CallInst *CI2 = dyn_cast<CallInst>(VL[i]); 1871 if (!CI2 || CI2->getCalledFunction() != Int || 1872 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 1873 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 1874 BS.cancelScheduling(VL, VL0); 1875 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1876 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] 1877 << "\n"); 1878 return; 1879 } 1880 // Some intrinsics have scalar arguments and should be same in order for 1881 // them to be vectorized. 1882 for (unsigned j = 0; j != NumArgs; ++j) { 1883 if (hasVectorInstrinsicScalarOpd(ID, j)) { 1884 Value *A1J = CI2->getArgOperand(j); 1885 if (ScalarArgs[j] != A1J) { 1886 BS.cancelScheduling(VL, VL0); 1887 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1888 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 1889 << " argument " << ScalarArgs[j] << "!=" << A1J 1890 << "\n"); 1891 return; 1892 } 1893 } 1894 } 1895 // Verify that the bundle operands are identical between the two calls. 1896 if (CI->hasOperandBundles() && 1897 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 1898 CI->op_begin() + CI->getBundleOperandsEndIndex(), 1899 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 1900 BS.cancelScheduling(VL, VL0); 1901 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1902 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 1903 << *CI << "!=" << *VL[i] << '\n'); 1904 return; 1905 } 1906 } 1907 1908 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1909 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 1910 ValueList Operands; 1911 // Prepare the operand vector. 1912 for (Value *j : VL) { 1913 CallInst *CI2 = dyn_cast<CallInst>(j); 1914 Operands.push_back(CI2->getArgOperand(i)); 1915 } 1916 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1917 } 1918 return; 1919 } 1920 case Instruction::ShuffleVector: 1921 // If this is not an alternate sequence of opcode like add-sub 1922 // then do not vectorize this instruction. 1923 if (!S.isAltShuffle()) { 1924 BS.cancelScheduling(VL, VL0); 1925 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1926 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 1927 return; 1928 } 1929 newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies); 1930 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 1931 1932 // Reorder operands if reordering would enable vectorization. 1933 if (isa<BinaryOperator>(VL0)) { 1934 ValueList Left, Right; 1935 reorderAltShuffleOperands(S, VL, Left, Right); 1936 buildTree_rec(Left, Depth + 1, UserTreeIdx); 1937 buildTree_rec(Right, Depth + 1, UserTreeIdx); 1938 return; 1939 } 1940 1941 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1942 ValueList Operands; 1943 // Prepare the operand vector. 1944 for (Value *j : VL) 1945 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1946 1947 buildTree_rec(Operands, Depth + 1, UserTreeIdx); 1948 } 1949 return; 1950 1951 default: 1952 BS.cancelScheduling(VL, VL0); 1953 newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies); 1954 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 1955 return; 1956 } 1957 } 1958 1959 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 1960 unsigned N; 1961 Type *EltTy; 1962 auto *ST = dyn_cast<StructType>(T); 1963 if (ST) { 1964 N = ST->getNumElements(); 1965 EltTy = *ST->element_begin(); 1966 } else { 1967 N = cast<ArrayType>(T)->getNumElements(); 1968 EltTy = cast<ArrayType>(T)->getElementType(); 1969 } 1970 if (!isValidElementType(EltTy)) 1971 return 0; 1972 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); 1973 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 1974 return 0; 1975 if (ST) { 1976 // Check that struct is homogeneous. 1977 for (const auto *Ty : ST->elements()) 1978 if (Ty != EltTy) 1979 return 0; 1980 } 1981 return N; 1982 } 1983 1984 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1985 SmallVectorImpl<unsigned> &CurrentOrder) const { 1986 Instruction *E0 = cast<Instruction>(OpValue); 1987 assert(E0->getOpcode() == Instruction::ExtractElement || 1988 E0->getOpcode() == Instruction::ExtractValue); 1989 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 1990 // Check if all of the extracts come from the same vector and from the 1991 // correct offset. 1992 Value *Vec = E0->getOperand(0); 1993 1994 CurrentOrder.clear(); 1995 1996 // We have to extract from a vector/aggregate with the same number of elements. 1997 unsigned NElts; 1998 if (E0->getOpcode() == Instruction::ExtractValue) { 1999 const DataLayout &DL = E0->getModule()->getDataLayout(); 2000 NElts = canMapToVector(Vec->getType(), DL); 2001 if (!NElts) 2002 return false; 2003 // Check if load can be rewritten as load of vector. 2004 LoadInst *LI = dyn_cast<LoadInst>(Vec); 2005 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 2006 return false; 2007 } else { 2008 NElts = Vec->getType()->getVectorNumElements(); 2009 } 2010 2011 if (NElts != VL.size()) 2012 return false; 2013 2014 // Check that all of the indices extract from the correct offset. 2015 bool ShouldKeepOrder = true; 2016 unsigned E = VL.size(); 2017 // Assign to all items the initial value E + 1 so we can check if the extract 2018 // instruction index was used already. 2019 // Also, later we can check that all the indices are used and we have a 2020 // consecutive access in the extract instructions, by checking that no 2021 // element of CurrentOrder still has value E + 1. 2022 CurrentOrder.assign(E, E + 1); 2023 unsigned I = 0; 2024 for (; I < E; ++I) { 2025 auto *Inst = cast<Instruction>(VL[I]); 2026 if (Inst->getOperand(0) != Vec) 2027 break; 2028 Optional<unsigned> Idx = getExtractIndex(Inst); 2029 if (!Idx) 2030 break; 2031 const unsigned ExtIdx = *Idx; 2032 if (ExtIdx != I) { 2033 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 2034 break; 2035 ShouldKeepOrder = false; 2036 CurrentOrder[ExtIdx] = I; 2037 } else { 2038 if (CurrentOrder[I] != E + 1) 2039 break; 2040 CurrentOrder[I] = I; 2041 } 2042 } 2043 if (I < E) { 2044 CurrentOrder.clear(); 2045 return false; 2046 } 2047 2048 return ShouldKeepOrder; 2049 } 2050 2051 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 2052 return I->hasOneUse() || 2053 std::all_of(I->user_begin(), I->user_end(), [this](User *U) { 2054 return ScalarToTreeEntry.count(U) > 0; 2055 }); 2056 } 2057 2058 int BoUpSLP::getEntryCost(TreeEntry *E) { 2059 ArrayRef<Value*> VL = E->Scalars; 2060 2061 Type *ScalarTy = VL[0]->getType(); 2062 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2063 ScalarTy = SI->getValueOperand()->getType(); 2064 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 2065 ScalarTy = CI->getOperand(0)->getType(); 2066 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2067 2068 // If we have computed a smaller type for the expression, update VecTy so 2069 // that the costs will be accurate. 2070 if (MinBWs.count(VL[0])) 2071 VecTy = VectorType::get( 2072 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 2073 2074 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 2075 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 2076 int ReuseShuffleCost = 0; 2077 if (NeedToShuffleReuses) { 2078 ReuseShuffleCost = 2079 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2080 } 2081 if (E->NeedToGather) { 2082 if (allConstant(VL)) 2083 return 0; 2084 if (isSplat(VL)) { 2085 return ReuseShuffleCost + 2086 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 2087 } 2088 if (getSameOpcode(VL).getOpcode() == Instruction::ExtractElement && 2089 allSameType(VL) && allSameBlock(VL)) { 2090 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 2091 if (ShuffleKind.hasValue()) { 2092 int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 2093 for (auto *V : VL) { 2094 // If all users of instruction are going to be vectorized and this 2095 // instruction itself is not going to be vectorized, consider this 2096 // instruction as dead and remove its cost from the final cost of the 2097 // vectorized tree. 2098 if (areAllUsersVectorized(cast<Instruction>(V)) && 2099 !ScalarToTreeEntry.count(V)) { 2100 auto *IO = cast<ConstantInt>( 2101 cast<ExtractElementInst>(V)->getIndexOperand()); 2102 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 2103 IO->getZExtValue()); 2104 } 2105 } 2106 return ReuseShuffleCost + Cost; 2107 } 2108 } 2109 return ReuseShuffleCost + getGatherCost(VL); 2110 } 2111 InstructionsState S = getSameOpcode(VL); 2112 assert(S.getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 2113 Instruction *VL0 = cast<Instruction>(S.OpValue); 2114 unsigned ShuffleOrOp = S.isAltShuffle() ? 2115 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2116 switch (ShuffleOrOp) { 2117 case Instruction::PHI: 2118 return 0; 2119 2120 case Instruction::ExtractValue: 2121 case Instruction::ExtractElement: 2122 if (NeedToShuffleReuses) { 2123 unsigned Idx = 0; 2124 for (unsigned I : E->ReuseShuffleIndices) { 2125 if (ShuffleOrOp == Instruction::ExtractElement) { 2126 auto *IO = cast<ConstantInt>( 2127 cast<ExtractElementInst>(VL[I])->getIndexOperand()); 2128 Idx = IO->getZExtValue(); 2129 ReuseShuffleCost -= TTI->getVectorInstrCost( 2130 Instruction::ExtractElement, VecTy, Idx); 2131 } else { 2132 ReuseShuffleCost -= TTI->getVectorInstrCost( 2133 Instruction::ExtractElement, VecTy, Idx); 2134 ++Idx; 2135 } 2136 } 2137 Idx = ReuseShuffleNumbers; 2138 for (Value *V : VL) { 2139 if (ShuffleOrOp == Instruction::ExtractElement) { 2140 auto *IO = cast<ConstantInt>( 2141 cast<ExtractElementInst>(V)->getIndexOperand()); 2142 Idx = IO->getZExtValue(); 2143 } else { 2144 --Idx; 2145 } 2146 ReuseShuffleCost += 2147 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); 2148 } 2149 } 2150 if (!E->NeedToGather) { 2151 int DeadCost = ReuseShuffleCost; 2152 if (!E->ReorderIndices.empty()) { 2153 // TODO: Merge this shuffle with the ReuseShuffleCost. 2154 DeadCost += TTI->getShuffleCost( 2155 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2156 } 2157 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 2158 Instruction *E = cast<Instruction>(VL[i]); 2159 // If all users are going to be vectorized, instruction can be 2160 // considered as dead. 2161 // The same, if have only one user, it will be vectorized for sure. 2162 if (areAllUsersVectorized(E)) { 2163 // Take credit for instruction that will become dead. 2164 if (E->hasOneUse()) { 2165 Instruction *Ext = E->user_back(); 2166 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 2167 all_of(Ext->users(), 2168 [](User *U) { return isa<GetElementPtrInst>(U); })) { 2169 // Use getExtractWithExtendCost() to calculate the cost of 2170 // extractelement/ext pair. 2171 DeadCost -= TTI->getExtractWithExtendCost( 2172 Ext->getOpcode(), Ext->getType(), VecTy, i); 2173 // Add back the cost of s|zext which is subtracted separately. 2174 DeadCost += TTI->getCastInstrCost( 2175 Ext->getOpcode(), Ext->getType(), E->getType(), Ext); 2176 continue; 2177 } 2178 } 2179 DeadCost -= 2180 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 2181 } 2182 } 2183 return DeadCost; 2184 } 2185 return ReuseShuffleCost + getGatherCost(VL); 2186 2187 case Instruction::ZExt: 2188 case Instruction::SExt: 2189 case Instruction::FPToUI: 2190 case Instruction::FPToSI: 2191 case Instruction::FPExt: 2192 case Instruction::PtrToInt: 2193 case Instruction::IntToPtr: 2194 case Instruction::SIToFP: 2195 case Instruction::UIToFP: 2196 case Instruction::Trunc: 2197 case Instruction::FPTrunc: 2198 case Instruction::BitCast: { 2199 Type *SrcTy = VL0->getOperand(0)->getType(); 2200 int ScalarEltCost = 2201 TTI->getCastInstrCost(S.getOpcode(), ScalarTy, SrcTy, VL0); 2202 if (NeedToShuffleReuses) { 2203 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2204 } 2205 2206 // Calculate the cost of this instruction. 2207 int ScalarCost = VL.size() * ScalarEltCost; 2208 2209 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 2210 int VecCost = 0; 2211 // Check if the values are candidates to demote. 2212 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 2213 VecCost = ReuseShuffleCost + 2214 TTI->getCastInstrCost(S.getOpcode(), VecTy, SrcVecTy, VL0); 2215 } 2216 return VecCost - ScalarCost; 2217 } 2218 case Instruction::FCmp: 2219 case Instruction::ICmp: 2220 case Instruction::Select: { 2221 // Calculate the cost of this instruction. 2222 int ScalarEltCost = TTI->getCmpSelInstrCost(S.getOpcode(), ScalarTy, 2223 Builder.getInt1Ty(), VL0); 2224 if (NeedToShuffleReuses) { 2225 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2226 } 2227 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 2228 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 2229 int VecCost = TTI->getCmpSelInstrCost(S.getOpcode(), VecTy, MaskTy, VL0); 2230 return ReuseShuffleCost + VecCost - ScalarCost; 2231 } 2232 case Instruction::Add: 2233 case Instruction::FAdd: 2234 case Instruction::Sub: 2235 case Instruction::FSub: 2236 case Instruction::Mul: 2237 case Instruction::FMul: 2238 case Instruction::UDiv: 2239 case Instruction::SDiv: 2240 case Instruction::FDiv: 2241 case Instruction::URem: 2242 case Instruction::SRem: 2243 case Instruction::FRem: 2244 case Instruction::Shl: 2245 case Instruction::LShr: 2246 case Instruction::AShr: 2247 case Instruction::And: 2248 case Instruction::Or: 2249 case Instruction::Xor: { 2250 // Certain instructions can be cheaper to vectorize if they have a 2251 // constant second vector operand. 2252 TargetTransformInfo::OperandValueKind Op1VK = 2253 TargetTransformInfo::OK_AnyValue; 2254 TargetTransformInfo::OperandValueKind Op2VK = 2255 TargetTransformInfo::OK_UniformConstantValue; 2256 TargetTransformInfo::OperandValueProperties Op1VP = 2257 TargetTransformInfo::OP_None; 2258 TargetTransformInfo::OperandValueProperties Op2VP = 2259 TargetTransformInfo::OP_PowerOf2; 2260 2261 // If all operands are exactly the same ConstantInt then set the 2262 // operand kind to OK_UniformConstantValue. 2263 // If instead not all operands are constants, then set the operand kind 2264 // to OK_AnyValue. If all operands are constants but not the same, 2265 // then set the operand kind to OK_NonUniformConstantValue. 2266 ConstantInt *CInt0 = nullptr; 2267 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 2268 const Instruction *I = cast<Instruction>(VL[i]); 2269 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(1)); 2270 if (!CInt) { 2271 Op2VK = TargetTransformInfo::OK_AnyValue; 2272 Op2VP = TargetTransformInfo::OP_None; 2273 break; 2274 } 2275 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 2276 !CInt->getValue().isPowerOf2()) 2277 Op2VP = TargetTransformInfo::OP_None; 2278 if (i == 0) { 2279 CInt0 = CInt; 2280 continue; 2281 } 2282 if (CInt0 != CInt) 2283 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 2284 } 2285 2286 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 2287 int ScalarEltCost = TTI->getArithmeticInstrCost( 2288 S.getOpcode(), ScalarTy, Op1VK, Op2VK, Op1VP, Op2VP, Operands); 2289 if (NeedToShuffleReuses) { 2290 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2291 } 2292 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 2293 int VecCost = TTI->getArithmeticInstrCost(S.getOpcode(), VecTy, Op1VK, 2294 Op2VK, Op1VP, Op2VP, Operands); 2295 return ReuseShuffleCost + VecCost - ScalarCost; 2296 } 2297 case Instruction::GetElementPtr: { 2298 TargetTransformInfo::OperandValueKind Op1VK = 2299 TargetTransformInfo::OK_AnyValue; 2300 TargetTransformInfo::OperandValueKind Op2VK = 2301 TargetTransformInfo::OK_UniformConstantValue; 2302 2303 int ScalarEltCost = 2304 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 2305 if (NeedToShuffleReuses) { 2306 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2307 } 2308 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 2309 int VecCost = 2310 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 2311 return ReuseShuffleCost + VecCost - ScalarCost; 2312 } 2313 case Instruction::Load: { 2314 // Cost of wide load - cost of scalar loads. 2315 unsigned alignment = cast<LoadInst>(VL0)->getAlignment(); 2316 int ScalarEltCost = 2317 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0); 2318 if (NeedToShuffleReuses) { 2319 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2320 } 2321 int ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 2322 int VecLdCost = 2323 TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, VL0); 2324 if (!E->ReorderIndices.empty()) { 2325 // TODO: Merge this shuffle with the ReuseShuffleCost. 2326 VecLdCost += TTI->getShuffleCost( 2327 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 2328 } 2329 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 2330 } 2331 case Instruction::Store: { 2332 // We know that we can merge the stores. Calculate the cost. 2333 unsigned alignment = cast<StoreInst>(VL0)->getAlignment(); 2334 int ScalarEltCost = 2335 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0, VL0); 2336 if (NeedToShuffleReuses) { 2337 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2338 } 2339 int ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 2340 int VecStCost = 2341 TTI->getMemoryOpCost(Instruction::Store, VecTy, alignment, 0, VL0); 2342 return ReuseShuffleCost + VecStCost - ScalarStCost; 2343 } 2344 case Instruction::Call: { 2345 CallInst *CI = cast<CallInst>(VL0); 2346 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2347 2348 // Calculate the cost of the scalar and vector calls. 2349 SmallVector<Type *, 4> ScalarTys; 2350 for (unsigned op = 0, opc = CI->getNumArgOperands(); op != opc; ++op) 2351 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 2352 2353 FastMathFlags FMF; 2354 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 2355 FMF = FPMO->getFastMathFlags(); 2356 2357 int ScalarEltCost = 2358 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 2359 if (NeedToShuffleReuses) { 2360 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 2361 } 2362 int ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 2363 2364 SmallVector<Value *, 4> Args(CI->arg_operands()); 2365 int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF, 2366 VecTy->getNumElements()); 2367 2368 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 2369 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 2370 << " for " << *CI << "\n"); 2371 2372 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 2373 } 2374 case Instruction::ShuffleVector: { 2375 assert(S.isAltShuffle() && 2376 ((Instruction::isBinaryOp(S.getOpcode()) && 2377 Instruction::isBinaryOp(S.getAltOpcode())) || 2378 (Instruction::isCast(S.getOpcode()) && 2379 Instruction::isCast(S.getAltOpcode()))) && 2380 "Invalid Shuffle Vector Operand"); 2381 int ScalarCost = 0; 2382 if (NeedToShuffleReuses) { 2383 for (unsigned Idx : E->ReuseShuffleIndices) { 2384 Instruction *I = cast<Instruction>(VL[Idx]); 2385 ReuseShuffleCost -= TTI->getInstructionCost( 2386 I, TargetTransformInfo::TCK_RecipThroughput); 2387 } 2388 for (Value *V : VL) { 2389 Instruction *I = cast<Instruction>(V); 2390 ReuseShuffleCost += TTI->getInstructionCost( 2391 I, TargetTransformInfo::TCK_RecipThroughput); 2392 } 2393 } 2394 for (Value *i : VL) { 2395 Instruction *I = cast<Instruction>(i); 2396 assert(S.isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 2397 ScalarCost += TTI->getInstructionCost( 2398 I, TargetTransformInfo::TCK_RecipThroughput); 2399 } 2400 // VecCost is equal to sum of the cost of creating 2 vectors 2401 // and the cost of creating shuffle. 2402 int VecCost = 0; 2403 if (Instruction::isBinaryOp(S.getOpcode())) { 2404 VecCost = TTI->getArithmeticInstrCost(S.getOpcode(), VecTy); 2405 VecCost += TTI->getArithmeticInstrCost(S.getAltOpcode(), VecTy); 2406 } else { 2407 Type *Src0SclTy = S.MainOp->getOperand(0)->getType(); 2408 Type *Src1SclTy = S.AltOp->getOperand(0)->getType(); 2409 VectorType *Src0Ty = VectorType::get(Src0SclTy, VL.size()); 2410 VectorType *Src1Ty = VectorType::get(Src1SclTy, VL.size()); 2411 VecCost = TTI->getCastInstrCost(S.getOpcode(), VecTy, Src0Ty); 2412 VecCost += TTI->getCastInstrCost(S.getAltOpcode(), VecTy, Src1Ty); 2413 } 2414 VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0); 2415 return ReuseShuffleCost + VecCost - ScalarCost; 2416 } 2417 default: 2418 llvm_unreachable("Unknown instruction"); 2419 } 2420 } 2421 2422 bool BoUpSLP::isFullyVectorizableTinyTree() { 2423 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 2424 << VectorizableTree.size() << " is fully vectorizable .\n"); 2425 2426 // We only handle trees of heights 1 and 2. 2427 if (VectorizableTree.size() == 1 && !VectorizableTree[0].NeedToGather) 2428 return true; 2429 2430 if (VectorizableTree.size() != 2) 2431 return false; 2432 2433 // Handle splat and all-constants stores. 2434 if (!VectorizableTree[0].NeedToGather && 2435 (allConstant(VectorizableTree[1].Scalars) || 2436 isSplat(VectorizableTree[1].Scalars))) 2437 return true; 2438 2439 // Gathering cost would be too much for tiny trees. 2440 if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather) 2441 return false; 2442 2443 return true; 2444 } 2445 2446 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() { 2447 // We can vectorize the tree if its size is greater than or equal to the 2448 // minimum size specified by the MinTreeSize command line option. 2449 if (VectorizableTree.size() >= MinTreeSize) 2450 return false; 2451 2452 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 2453 // can vectorize it if we can prove it fully vectorizable. 2454 if (isFullyVectorizableTinyTree()) 2455 return false; 2456 2457 assert(VectorizableTree.empty() 2458 ? ExternalUses.empty() 2459 : true && "We shouldn't have any external users"); 2460 2461 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 2462 // vectorizable. 2463 return true; 2464 } 2465 2466 int BoUpSLP::getSpillCost() { 2467 // Walk from the bottom of the tree to the top, tracking which values are 2468 // live. When we see a call instruction that is not part of our tree, 2469 // query TTI to see if there is a cost to keeping values live over it 2470 // (for example, if spills and fills are required). 2471 unsigned BundleWidth = VectorizableTree.front().Scalars.size(); 2472 int Cost = 0; 2473 2474 SmallPtrSet<Instruction*, 4> LiveValues; 2475 Instruction *PrevInst = nullptr; 2476 2477 for (const auto &N : VectorizableTree) { 2478 Instruction *Inst = dyn_cast<Instruction>(N.Scalars[0]); 2479 if (!Inst) 2480 continue; 2481 2482 if (!PrevInst) { 2483 PrevInst = Inst; 2484 continue; 2485 } 2486 2487 // Update LiveValues. 2488 LiveValues.erase(PrevInst); 2489 for (auto &J : PrevInst->operands()) { 2490 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 2491 LiveValues.insert(cast<Instruction>(&*J)); 2492 } 2493 2494 LLVM_DEBUG({ 2495 dbgs() << "SLP: #LV: " << LiveValues.size(); 2496 for (auto *X : LiveValues) 2497 dbgs() << " " << X->getName(); 2498 dbgs() << ", Looking at "; 2499 Inst->dump(); 2500 }); 2501 2502 // Now find the sequence of instructions between PrevInst and Inst. 2503 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 2504 PrevInstIt = 2505 PrevInst->getIterator().getReverse(); 2506 while (InstIt != PrevInstIt) { 2507 if (PrevInstIt == PrevInst->getParent()->rend()) { 2508 PrevInstIt = Inst->getParent()->rbegin(); 2509 continue; 2510 } 2511 2512 // Debug informations don't impact spill cost. 2513 if ((isa<CallInst>(&*PrevInstIt) && 2514 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 2515 &*PrevInstIt != PrevInst) { 2516 SmallVector<Type*, 4> V; 2517 for (auto *II : LiveValues) 2518 V.push_back(VectorType::get(II->getType(), BundleWidth)); 2519 Cost += TTI->getCostOfKeepingLiveOverCall(V); 2520 } 2521 2522 ++PrevInstIt; 2523 } 2524 2525 PrevInst = Inst; 2526 } 2527 2528 return Cost; 2529 } 2530 2531 int BoUpSLP::getTreeCost() { 2532 int Cost = 0; 2533 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 2534 << VectorizableTree.size() << ".\n"); 2535 2536 unsigned BundleWidth = VectorizableTree[0].Scalars.size(); 2537 2538 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 2539 TreeEntry &TE = VectorizableTree[I]; 2540 2541 // We create duplicate tree entries for gather sequences that have multiple 2542 // uses. However, we should not compute the cost of duplicate sequences. 2543 // For example, if we have a build vector (i.e., insertelement sequence) 2544 // that is used by more than one vector instruction, we only need to 2545 // compute the cost of the insertelement instructions once. The redundant 2546 // instructions will be eliminated by CSE. 2547 // 2548 // We should consider not creating duplicate tree entries for gather 2549 // sequences, and instead add additional edges to the tree representing 2550 // their uses. Since such an approach results in fewer total entries, 2551 // existing heuristics based on tree size may yield different results. 2552 // 2553 if (TE.NeedToGather && 2554 std::any_of(std::next(VectorizableTree.begin(), I + 1), 2555 VectorizableTree.end(), [TE](TreeEntry &Entry) { 2556 return Entry.NeedToGather && Entry.isSame(TE.Scalars); 2557 })) 2558 continue; 2559 2560 int C = getEntryCost(&TE); 2561 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 2562 << " for bundle that starts with " << *TE.Scalars[0] 2563 << ".\n"); 2564 Cost += C; 2565 } 2566 2567 SmallPtrSet<Value *, 16> ExtractCostCalculated; 2568 int ExtractCost = 0; 2569 for (ExternalUser &EU : ExternalUses) { 2570 // We only add extract cost once for the same scalar. 2571 if (!ExtractCostCalculated.insert(EU.Scalar).second) 2572 continue; 2573 2574 // Uses by ephemeral values are free (because the ephemeral value will be 2575 // removed prior to code generation, and so the extraction will be 2576 // removed as well). 2577 if (EphValues.count(EU.User)) 2578 continue; 2579 2580 // If we plan to rewrite the tree in a smaller type, we will need to sign 2581 // extend the extracted value back to the original type. Here, we account 2582 // for the extract and the added cost of the sign extend if needed. 2583 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); 2584 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 2585 if (MinBWs.count(ScalarRoot)) { 2586 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 2587 auto Extend = 2588 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 2589 VecTy = VectorType::get(MinTy, BundleWidth); 2590 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 2591 VecTy, EU.Lane); 2592 } else { 2593 ExtractCost += 2594 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 2595 } 2596 } 2597 2598 int SpillCost = getSpillCost(); 2599 Cost += SpillCost + ExtractCost; 2600 2601 std::string Str; 2602 { 2603 raw_string_ostream OS(Str); 2604 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 2605 << "SLP: Extract Cost = " << ExtractCost << ".\n" 2606 << "SLP: Total Cost = " << Cost << ".\n"; 2607 } 2608 LLVM_DEBUG(dbgs() << Str); 2609 2610 if (ViewSLPTree) 2611 ViewGraph(this, "SLP" + F->getName(), false, Str); 2612 2613 return Cost; 2614 } 2615 2616 int BoUpSLP::getGatherCost(Type *Ty, 2617 const DenseSet<unsigned> &ShuffledIndices) { 2618 int Cost = 0; 2619 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 2620 if (!ShuffledIndices.count(i)) 2621 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 2622 if (!ShuffledIndices.empty()) 2623 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 2624 return Cost; 2625 } 2626 2627 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) { 2628 // Find the type of the operands in VL. 2629 Type *ScalarTy = VL[0]->getType(); 2630 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2631 ScalarTy = SI->getValueOperand()->getType(); 2632 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2633 // Find the cost of inserting/extracting values from the vector. 2634 // Check if the same elements are inserted several times and count them as 2635 // shuffle candidates. 2636 DenseSet<unsigned> ShuffledElements; 2637 DenseSet<Value *> UniqueElements; 2638 // Iterate in reverse order to consider insert elements with the high cost. 2639 for (unsigned I = VL.size(); I > 0; --I) { 2640 unsigned Idx = I - 1; 2641 if (!UniqueElements.insert(VL[Idx]).second) 2642 ShuffledElements.insert(Idx); 2643 } 2644 return getGatherCost(VecTy, ShuffledElements); 2645 } 2646 2647 // Reorder commutative operations in alternate shuffle if the resulting vectors 2648 // are consecutive loads. This would allow us to vectorize the tree. 2649 // If we have something like- 2650 // load a[0] - load b[0] 2651 // load b[1] + load a[1] 2652 // load a[2] - load b[2] 2653 // load a[3] + load b[3] 2654 // Reordering the second load b[1] load a[1] would allow us to vectorize this 2655 // code. 2656 void BoUpSLP::reorderAltShuffleOperands(const InstructionsState &S, 2657 ArrayRef<Value *> VL, 2658 SmallVectorImpl<Value *> &Left, 2659 SmallVectorImpl<Value *> &Right) { 2660 // Push left and right operands of binary operation into Left and Right 2661 for (Value *V : VL) { 2662 auto *I = cast<Instruction>(V); 2663 assert(S.isOpcodeOrAlt(I) && "Incorrect instruction in vector"); 2664 Left.push_back(I->getOperand(0)); 2665 Right.push_back(I->getOperand(1)); 2666 } 2667 2668 // Reorder if we have a commutative operation and consecutive access 2669 // are on either side of the alternate instructions. 2670 for (unsigned j = 0; j < VL.size() - 1; ++j) { 2671 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2672 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2673 Instruction *VL1 = cast<Instruction>(VL[j]); 2674 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 2675 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 2676 std::swap(Left[j], Right[j]); 2677 continue; 2678 } else if (VL2->isCommutative() && 2679 isConsecutiveAccess(L, L1, *DL, *SE)) { 2680 std::swap(Left[j + 1], Right[j + 1]); 2681 continue; 2682 } 2683 // else unchanged 2684 } 2685 } 2686 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2687 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2688 Instruction *VL1 = cast<Instruction>(VL[j]); 2689 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 2690 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 2691 std::swap(Left[j], Right[j]); 2692 continue; 2693 } else if (VL2->isCommutative() && 2694 isConsecutiveAccess(L, L1, *DL, *SE)) { 2695 std::swap(Left[j + 1], Right[j + 1]); 2696 continue; 2697 } 2698 // else unchanged 2699 } 2700 } 2701 } 2702 } 2703 2704 // Return true if I should be commuted before adding it's left and right 2705 // operands to the arrays Left and Right. 2706 // 2707 // The vectorizer is trying to either have all elements one side being 2708 // instruction with the same opcode to enable further vectorization, or having 2709 // a splat to lower the vectorizing cost. 2710 static bool shouldReorderOperands( 2711 int i, unsigned Opcode, Instruction &I, ArrayRef<Value *> Left, 2712 ArrayRef<Value *> Right, bool AllSameOpcodeLeft, bool AllSameOpcodeRight, 2713 bool SplatLeft, bool SplatRight, Value *&VLeft, Value *&VRight) { 2714 VLeft = I.getOperand(0); 2715 VRight = I.getOperand(1); 2716 // If we have "SplatRight", try to see if commuting is needed to preserve it. 2717 if (SplatRight) { 2718 if (VRight == Right[i - 1]) 2719 // Preserve SplatRight 2720 return false; 2721 if (VLeft == Right[i - 1]) { 2722 // Commuting would preserve SplatRight, but we don't want to break 2723 // SplatLeft either, i.e. preserve the original order if possible. 2724 // (FIXME: why do we care?) 2725 if (SplatLeft && VLeft == Left[i - 1]) 2726 return false; 2727 return true; 2728 } 2729 } 2730 // Symmetrically handle Right side. 2731 if (SplatLeft) { 2732 if (VLeft == Left[i - 1]) 2733 // Preserve SplatLeft 2734 return false; 2735 if (VRight == Left[i - 1]) 2736 return true; 2737 } 2738 2739 Instruction *ILeft = dyn_cast<Instruction>(VLeft); 2740 Instruction *IRight = dyn_cast<Instruction>(VRight); 2741 2742 // If we have "AllSameOpcodeRight", try to see if the left operands preserves 2743 // it and not the right, in this case we want to commute. 2744 if (AllSameOpcodeRight) { 2745 unsigned RightPrevOpcode = cast<Instruction>(Right[i - 1])->getOpcode(); 2746 if (IRight && RightPrevOpcode == IRight->getOpcode()) 2747 // Do not commute, a match on the right preserves AllSameOpcodeRight 2748 return false; 2749 if (ILeft && RightPrevOpcode == ILeft->getOpcode()) { 2750 // We have a match and may want to commute, but first check if there is 2751 // not also a match on the existing operands on the Left to preserve 2752 // AllSameOpcodeLeft, i.e. preserve the original order if possible. 2753 // (FIXME: why do we care?) 2754 if (AllSameOpcodeLeft && ILeft && 2755 cast<Instruction>(Left[i - 1])->getOpcode() == ILeft->getOpcode()) 2756 return false; 2757 return true; 2758 } 2759 } 2760 // Symmetrically handle Left side. 2761 if (AllSameOpcodeLeft) { 2762 unsigned LeftPrevOpcode = cast<Instruction>(Left[i - 1])->getOpcode(); 2763 if (ILeft && LeftPrevOpcode == ILeft->getOpcode()) 2764 return false; 2765 if (IRight && LeftPrevOpcode == IRight->getOpcode()) 2766 return true; 2767 } 2768 return false; 2769 } 2770 2771 void BoUpSLP::reorderInputsAccordingToOpcode(unsigned Opcode, 2772 ArrayRef<Value *> VL, 2773 SmallVectorImpl<Value *> &Left, 2774 SmallVectorImpl<Value *> &Right) { 2775 if (!VL.empty()) { 2776 // Peel the first iteration out of the loop since there's nothing 2777 // interesting to do anyway and it simplifies the checks in the loop. 2778 auto *I = cast<Instruction>(VL[0]); 2779 Value *VLeft = I->getOperand(0); 2780 Value *VRight = I->getOperand(1); 2781 if (!isa<Instruction>(VRight) && isa<Instruction>(VLeft)) 2782 // Favor having instruction to the right. FIXME: why? 2783 std::swap(VLeft, VRight); 2784 Left.push_back(VLeft); 2785 Right.push_back(VRight); 2786 } 2787 2788 // Keep track if we have instructions with all the same opcode on one side. 2789 bool AllSameOpcodeLeft = isa<Instruction>(Left[0]); 2790 bool AllSameOpcodeRight = isa<Instruction>(Right[0]); 2791 // Keep track if we have one side with all the same value (broadcast). 2792 bool SplatLeft = true; 2793 bool SplatRight = true; 2794 2795 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 2796 Instruction *I = cast<Instruction>(VL[i]); 2797 assert(((I->getOpcode() == Opcode && I->isCommutative()) || 2798 (I->getOpcode() != Opcode && Instruction::isCommutative(Opcode))) && 2799 "Can only process commutative instruction"); 2800 // Commute to favor either a splat or maximizing having the same opcodes on 2801 // one side. 2802 Value *VLeft; 2803 Value *VRight; 2804 if (shouldReorderOperands(i, Opcode, *I, Left, Right, AllSameOpcodeLeft, 2805 AllSameOpcodeRight, SplatLeft, SplatRight, VLeft, 2806 VRight)) { 2807 Left.push_back(VRight); 2808 Right.push_back(VLeft); 2809 } else { 2810 Left.push_back(VLeft); 2811 Right.push_back(VRight); 2812 } 2813 // Update Splat* and AllSameOpcode* after the insertion. 2814 SplatRight = SplatRight && (Right[i - 1] == Right[i]); 2815 SplatLeft = SplatLeft && (Left[i - 1] == Left[i]); 2816 AllSameOpcodeLeft = AllSameOpcodeLeft && isa<Instruction>(Left[i]) && 2817 (cast<Instruction>(Left[i - 1])->getOpcode() == 2818 cast<Instruction>(Left[i])->getOpcode()); 2819 AllSameOpcodeRight = AllSameOpcodeRight && isa<Instruction>(Right[i]) && 2820 (cast<Instruction>(Right[i - 1])->getOpcode() == 2821 cast<Instruction>(Right[i])->getOpcode()); 2822 } 2823 2824 // If one operand end up being broadcast, return this operand order. 2825 if (SplatRight || SplatLeft) 2826 return; 2827 2828 // Finally check if we can get longer vectorizable chain by reordering 2829 // without breaking the good operand order detected above. 2830 // E.g. If we have something like- 2831 // load a[0] load b[0] 2832 // load b[1] load a[1] 2833 // load a[2] load b[2] 2834 // load a[3] load b[3] 2835 // Reordering the second load b[1] load a[1] would allow us to vectorize 2836 // this code and we still retain AllSameOpcode property. 2837 // FIXME: This load reordering might break AllSameOpcode in some rare cases 2838 // such as- 2839 // add a[0],c[0] load b[0] 2840 // add a[1],c[2] load b[1] 2841 // b[2] load b[2] 2842 // add a[3],c[3] load b[3] 2843 for (unsigned j = 0, e = VL.size() - 1; j < e; ++j) { 2844 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2845 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2846 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2847 std::swap(Left[j + 1], Right[j + 1]); 2848 continue; 2849 } 2850 } 2851 } 2852 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2853 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2854 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2855 std::swap(Left[j + 1], Right[j + 1]); 2856 continue; 2857 } 2858 } 2859 } 2860 // else unchanged 2861 } 2862 } 2863 2864 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL, 2865 const InstructionsState &S) { 2866 // Get the basic block this bundle is in. All instructions in the bundle 2867 // should be in this block. 2868 auto *Front = cast<Instruction>(S.OpValue); 2869 auto *BB = Front->getParent(); 2870 assert(llvm::all_of(make_range(VL.begin(), VL.end()), [=](Value *V) -> bool { 2871 auto *I = cast<Instruction>(V); 2872 return !S.isOpcodeOrAlt(I) || I->getParent() == BB; 2873 })); 2874 2875 // The last instruction in the bundle in program order. 2876 Instruction *LastInst = nullptr; 2877 2878 // Find the last instruction. The common case should be that BB has been 2879 // scheduled, and the last instruction is VL.back(). So we start with 2880 // VL.back() and iterate over schedule data until we reach the end of the 2881 // bundle. The end of the bundle is marked by null ScheduleData. 2882 if (BlocksSchedules.count(BB)) { 2883 auto *Bundle = 2884 BlocksSchedules[BB]->getScheduleData(isOneOf(S, VL.back())); 2885 if (Bundle && Bundle->isPartOfBundle()) 2886 for (; Bundle; Bundle = Bundle->NextInBundle) 2887 if (Bundle->OpValue == Bundle->Inst) 2888 LastInst = Bundle->Inst; 2889 } 2890 2891 // LastInst can still be null at this point if there's either not an entry 2892 // for BB in BlocksSchedules or there's no ScheduleData available for 2893 // VL.back(). This can be the case if buildTree_rec aborts for various 2894 // reasons (e.g., the maximum recursion depth is reached, the maximum region 2895 // size is reached, etc.). ScheduleData is initialized in the scheduling 2896 // "dry-run". 2897 // 2898 // If this happens, we can still find the last instruction by brute force. We 2899 // iterate forwards from Front (inclusive) until we either see all 2900 // instructions in the bundle or reach the end of the block. If Front is the 2901 // last instruction in program order, LastInst will be set to Front, and we 2902 // will visit all the remaining instructions in the block. 2903 // 2904 // One of the reasons we exit early from buildTree_rec is to place an upper 2905 // bound on compile-time. Thus, taking an additional compile-time hit here is 2906 // not ideal. However, this should be exceedingly rare since it requires that 2907 // we both exit early from buildTree_rec and that the bundle be out-of-order 2908 // (causing us to iterate all the way to the end of the block). 2909 if (!LastInst) { 2910 SmallPtrSet<Value *, 16> Bundle(VL.begin(), VL.end()); 2911 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 2912 if (Bundle.erase(&I) && S.isOpcodeOrAlt(&I)) 2913 LastInst = &I; 2914 if (Bundle.empty()) 2915 break; 2916 } 2917 } 2918 2919 // Set the insertion point after the last instruction in the bundle. Set the 2920 // debug location to Front. 2921 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 2922 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 2923 } 2924 2925 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 2926 Value *Vec = UndefValue::get(Ty); 2927 // Generate the 'InsertElement' instruction. 2928 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 2929 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 2930 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { 2931 GatherSeq.insert(Insrt); 2932 CSEBlocks.insert(Insrt->getParent()); 2933 2934 // Add to our 'need-to-extract' list. 2935 if (TreeEntry *E = getTreeEntry(VL[i])) { 2936 // Find which lane we need to extract. 2937 int FoundLane = -1; 2938 for (unsigned Lane = 0, LE = E->Scalars.size(); Lane != LE; ++Lane) { 2939 // Is this the lane of the scalar that we are looking for ? 2940 if (E->Scalars[Lane] == VL[i]) { 2941 FoundLane = Lane; 2942 break; 2943 } 2944 } 2945 assert(FoundLane >= 0 && "Could not find the correct lane"); 2946 if (!E->ReuseShuffleIndices.empty()) { 2947 FoundLane = 2948 std::distance(E->ReuseShuffleIndices.begin(), 2949 llvm::find(E->ReuseShuffleIndices, FoundLane)); 2950 } 2951 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 2952 } 2953 } 2954 } 2955 2956 return Vec; 2957 } 2958 2959 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 2960 InstructionsState S = getSameOpcode(VL); 2961 if (S.getOpcode()) { 2962 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2963 if (E->isSame(VL)) { 2964 Value *V = vectorizeTree(E); 2965 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 2966 // We need to get the vectorized value but without shuffle. 2967 if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) { 2968 V = SV->getOperand(0); 2969 } else { 2970 // Reshuffle to get only unique values. 2971 SmallVector<unsigned, 4> UniqueIdxs; 2972 SmallSet<unsigned, 4> UsedIdxs; 2973 for(unsigned Idx : E->ReuseShuffleIndices) 2974 if (UsedIdxs.insert(Idx).second) 2975 UniqueIdxs.emplace_back(Idx); 2976 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 2977 UniqueIdxs); 2978 } 2979 } 2980 return V; 2981 } 2982 } 2983 } 2984 2985 Type *ScalarTy = S.OpValue->getType(); 2986 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2987 ScalarTy = SI->getValueOperand()->getType(); 2988 2989 // Check that every instruction appears once in this bundle. 2990 SmallVector<unsigned, 4> ReuseShuffleIndicies; 2991 SmallVector<Value *, 4> UniqueValues; 2992 if (VL.size() > 2) { 2993 DenseMap<Value *, unsigned> UniquePositions; 2994 for (Value *V : VL) { 2995 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 2996 ReuseShuffleIndicies.emplace_back(Res.first->second); 2997 if (Res.second || isa<Constant>(V)) 2998 UniqueValues.emplace_back(V); 2999 } 3000 // Do not shuffle single element or if number of unique values is not power 3001 // of 2. 3002 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 3003 !llvm::isPowerOf2_32(UniqueValues.size())) 3004 ReuseShuffleIndicies.clear(); 3005 else 3006 VL = UniqueValues; 3007 } 3008 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 3009 3010 Value *V = Gather(VL, VecTy); 3011 if (!ReuseShuffleIndicies.empty()) { 3012 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3013 ReuseShuffleIndicies, "shuffle"); 3014 if (auto *I = dyn_cast<Instruction>(V)) { 3015 GatherSeq.insert(I); 3016 CSEBlocks.insert(I->getParent()); 3017 } 3018 } 3019 return V; 3020 } 3021 3022 static void inversePermutation(ArrayRef<unsigned> Indices, 3023 SmallVectorImpl<unsigned> &Mask) { 3024 Mask.clear(); 3025 const unsigned E = Indices.size(); 3026 Mask.resize(E); 3027 for (unsigned I = 0; I < E; ++I) 3028 Mask[Indices[I]] = I; 3029 } 3030 3031 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 3032 IRBuilder<>::InsertPointGuard Guard(Builder); 3033 3034 if (E->VectorizedValue) { 3035 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 3036 return E->VectorizedValue; 3037 } 3038 3039 InstructionsState S = getSameOpcode(E->Scalars); 3040 Instruction *VL0 = cast<Instruction>(S.OpValue); 3041 Type *ScalarTy = VL0->getType(); 3042 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 3043 ScalarTy = SI->getValueOperand()->getType(); 3044 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 3045 3046 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3047 3048 if (E->NeedToGather) { 3049 setInsertPointAfterBundle(E->Scalars, S); 3050 auto *V = Gather(E->Scalars, VecTy); 3051 if (NeedToShuffleReuses) { 3052 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3053 E->ReuseShuffleIndices, "shuffle"); 3054 if (auto *I = dyn_cast<Instruction>(V)) { 3055 GatherSeq.insert(I); 3056 CSEBlocks.insert(I->getParent()); 3057 } 3058 } 3059 E->VectorizedValue = V; 3060 return V; 3061 } 3062 3063 unsigned ShuffleOrOp = S.isAltShuffle() ? 3064 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 3065 switch (ShuffleOrOp) { 3066 case Instruction::PHI: { 3067 PHINode *PH = dyn_cast<PHINode>(VL0); 3068 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 3069 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 3070 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 3071 Value *V = NewPhi; 3072 if (NeedToShuffleReuses) { 3073 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3074 E->ReuseShuffleIndices, "shuffle"); 3075 } 3076 E->VectorizedValue = V; 3077 3078 // PHINodes may have multiple entries from the same block. We want to 3079 // visit every block once. 3080 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 3081 3082 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 3083 ValueList Operands; 3084 BasicBlock *IBB = PH->getIncomingBlock(i); 3085 3086 if (!VisitedBBs.insert(IBB).second) { 3087 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 3088 continue; 3089 } 3090 3091 // Prepare the operand vector. 3092 for (Value *V : E->Scalars) 3093 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB)); 3094 3095 Builder.SetInsertPoint(IBB->getTerminator()); 3096 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 3097 Value *Vec = vectorizeTree(Operands); 3098 NewPhi->addIncoming(Vec, IBB); 3099 } 3100 3101 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 3102 "Invalid number of incoming values"); 3103 return V; 3104 } 3105 3106 case Instruction::ExtractElement: { 3107 if (!E->NeedToGather) { 3108 Value *V = VL0->getOperand(0); 3109 if (!E->ReorderIndices.empty()) { 3110 OrdersType Mask; 3111 inversePermutation(E->ReorderIndices, Mask); 3112 Builder.SetInsertPoint(VL0); 3113 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), Mask, 3114 "reorder_shuffle"); 3115 } 3116 if (NeedToShuffleReuses) { 3117 // TODO: Merge this shuffle with the ReorderShuffleMask. 3118 if (E->ReorderIndices.empty()) 3119 Builder.SetInsertPoint(VL0); 3120 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3121 E->ReuseShuffleIndices, "shuffle"); 3122 } 3123 E->VectorizedValue = V; 3124 return V; 3125 } 3126 setInsertPointAfterBundle(E->Scalars, S); 3127 auto *V = Gather(E->Scalars, VecTy); 3128 if (NeedToShuffleReuses) { 3129 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3130 E->ReuseShuffleIndices, "shuffle"); 3131 if (auto *I = dyn_cast<Instruction>(V)) { 3132 GatherSeq.insert(I); 3133 CSEBlocks.insert(I->getParent()); 3134 } 3135 } 3136 E->VectorizedValue = V; 3137 return V; 3138 } 3139 case Instruction::ExtractValue: { 3140 if (!E->NeedToGather) { 3141 LoadInst *LI = cast<LoadInst>(VL0->getOperand(0)); 3142 Builder.SetInsertPoint(LI); 3143 PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 3144 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 3145 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlignment()); 3146 Value *NewV = propagateMetadata(V, E->Scalars); 3147 if (!E->ReorderIndices.empty()) { 3148 OrdersType Mask; 3149 inversePermutation(E->ReorderIndices, Mask); 3150 NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), Mask, 3151 "reorder_shuffle"); 3152 } 3153 if (NeedToShuffleReuses) { 3154 // TODO: Merge this shuffle with the ReorderShuffleMask. 3155 NewV = Builder.CreateShuffleVector( 3156 NewV, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle"); 3157 } 3158 E->VectorizedValue = NewV; 3159 return NewV; 3160 } 3161 setInsertPointAfterBundle(E->Scalars, S); 3162 auto *V = Gather(E->Scalars, VecTy); 3163 if (NeedToShuffleReuses) { 3164 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3165 E->ReuseShuffleIndices, "shuffle"); 3166 if (auto *I = dyn_cast<Instruction>(V)) { 3167 GatherSeq.insert(I); 3168 CSEBlocks.insert(I->getParent()); 3169 } 3170 } 3171 E->VectorizedValue = V; 3172 return V; 3173 } 3174 case Instruction::ZExt: 3175 case Instruction::SExt: 3176 case Instruction::FPToUI: 3177 case Instruction::FPToSI: 3178 case Instruction::FPExt: 3179 case Instruction::PtrToInt: 3180 case Instruction::IntToPtr: 3181 case Instruction::SIToFP: 3182 case Instruction::UIToFP: 3183 case Instruction::Trunc: 3184 case Instruction::FPTrunc: 3185 case Instruction::BitCast: { 3186 ValueList INVL; 3187 for (Value *V : E->Scalars) 3188 INVL.push_back(cast<Instruction>(V)->getOperand(0)); 3189 3190 setInsertPointAfterBundle(E->Scalars, S); 3191 3192 Value *InVec = vectorizeTree(INVL); 3193 3194 if (E->VectorizedValue) { 3195 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3196 return E->VectorizedValue; 3197 } 3198 3199 CastInst *CI = dyn_cast<CastInst>(VL0); 3200 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 3201 if (NeedToShuffleReuses) { 3202 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3203 E->ReuseShuffleIndices, "shuffle"); 3204 } 3205 E->VectorizedValue = V; 3206 ++NumVectorInstructions; 3207 return V; 3208 } 3209 case Instruction::FCmp: 3210 case Instruction::ICmp: { 3211 ValueList LHSV, RHSV; 3212 for (Value *V : E->Scalars) { 3213 LHSV.push_back(cast<Instruction>(V)->getOperand(0)); 3214 RHSV.push_back(cast<Instruction>(V)->getOperand(1)); 3215 } 3216 3217 setInsertPointAfterBundle(E->Scalars, S); 3218 3219 Value *L = vectorizeTree(LHSV); 3220 Value *R = vectorizeTree(RHSV); 3221 3222 if (E->VectorizedValue) { 3223 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3224 return E->VectorizedValue; 3225 } 3226 3227 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 3228 Value *V; 3229 if (S.getOpcode() == Instruction::FCmp) 3230 V = Builder.CreateFCmp(P0, L, R); 3231 else 3232 V = Builder.CreateICmp(P0, L, R); 3233 3234 propagateIRFlags(V, E->Scalars, VL0); 3235 if (NeedToShuffleReuses) { 3236 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3237 E->ReuseShuffleIndices, "shuffle"); 3238 } 3239 E->VectorizedValue = V; 3240 ++NumVectorInstructions; 3241 return V; 3242 } 3243 case Instruction::Select: { 3244 ValueList TrueVec, FalseVec, CondVec; 3245 for (Value *V : E->Scalars) { 3246 CondVec.push_back(cast<Instruction>(V)->getOperand(0)); 3247 TrueVec.push_back(cast<Instruction>(V)->getOperand(1)); 3248 FalseVec.push_back(cast<Instruction>(V)->getOperand(2)); 3249 } 3250 3251 setInsertPointAfterBundle(E->Scalars, S); 3252 3253 Value *Cond = vectorizeTree(CondVec); 3254 Value *True = vectorizeTree(TrueVec); 3255 Value *False = vectorizeTree(FalseVec); 3256 3257 if (E->VectorizedValue) { 3258 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3259 return E->VectorizedValue; 3260 } 3261 3262 Value *V = Builder.CreateSelect(Cond, True, False); 3263 if (NeedToShuffleReuses) { 3264 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3265 E->ReuseShuffleIndices, "shuffle"); 3266 } 3267 E->VectorizedValue = V; 3268 ++NumVectorInstructions; 3269 return V; 3270 } 3271 case Instruction::Add: 3272 case Instruction::FAdd: 3273 case Instruction::Sub: 3274 case Instruction::FSub: 3275 case Instruction::Mul: 3276 case Instruction::FMul: 3277 case Instruction::UDiv: 3278 case Instruction::SDiv: 3279 case Instruction::FDiv: 3280 case Instruction::URem: 3281 case Instruction::SRem: 3282 case Instruction::FRem: 3283 case Instruction::Shl: 3284 case Instruction::LShr: 3285 case Instruction::AShr: 3286 case Instruction::And: 3287 case Instruction::Or: 3288 case Instruction::Xor: { 3289 ValueList LHSVL, RHSVL; 3290 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) 3291 reorderInputsAccordingToOpcode(S.getOpcode(), E->Scalars, LHSVL, 3292 RHSVL); 3293 else 3294 for (Value *V : E->Scalars) { 3295 auto *I = cast<Instruction>(V); 3296 LHSVL.push_back(I->getOperand(0)); 3297 RHSVL.push_back(I->getOperand(1)); 3298 } 3299 3300 setInsertPointAfterBundle(E->Scalars, S); 3301 3302 Value *LHS = vectorizeTree(LHSVL); 3303 Value *RHS = vectorizeTree(RHSVL); 3304 3305 if (E->VectorizedValue) { 3306 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3307 return E->VectorizedValue; 3308 } 3309 3310 Value *V = Builder.CreateBinOp( 3311 static_cast<Instruction::BinaryOps>(S.getOpcode()), LHS, RHS); 3312 propagateIRFlags(V, E->Scalars, VL0); 3313 if (auto *I = dyn_cast<Instruction>(V)) 3314 V = propagateMetadata(I, E->Scalars); 3315 3316 if (NeedToShuffleReuses) { 3317 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3318 E->ReuseShuffleIndices, "shuffle"); 3319 } 3320 E->VectorizedValue = V; 3321 ++NumVectorInstructions; 3322 3323 return V; 3324 } 3325 case Instruction::Load: { 3326 // Loads are inserted at the head of the tree because we don't want to 3327 // sink them all the way down past store instructions. 3328 bool IsReorder = !E->ReorderIndices.empty(); 3329 if (IsReorder) { 3330 S = getSameOpcode(E->Scalars, E->ReorderIndices.front()); 3331 VL0 = cast<Instruction>(S.OpValue); 3332 } 3333 setInsertPointAfterBundle(E->Scalars, S); 3334 3335 LoadInst *LI = cast<LoadInst>(VL0); 3336 Type *ScalarLoadTy = LI->getType(); 3337 unsigned AS = LI->getPointerAddressSpace(); 3338 3339 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 3340 VecTy->getPointerTo(AS)); 3341 3342 // The pointer operand uses an in-tree scalar so we add the new BitCast to 3343 // ExternalUses list to make sure that an extract will be generated in the 3344 // future. 3345 Value *PO = LI->getPointerOperand(); 3346 if (getTreeEntry(PO)) 3347 ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0)); 3348 3349 unsigned Alignment = LI->getAlignment(); 3350 LI = Builder.CreateLoad(VecTy, VecPtr); 3351 if (!Alignment) { 3352 Alignment = DL->getABITypeAlignment(ScalarLoadTy); 3353 } 3354 LI->setAlignment(Alignment); 3355 Value *V = propagateMetadata(LI, E->Scalars); 3356 if (IsReorder) { 3357 OrdersType Mask; 3358 inversePermutation(E->ReorderIndices, Mask); 3359 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 3360 Mask, "reorder_shuffle"); 3361 } 3362 if (NeedToShuffleReuses) { 3363 // TODO: Merge this shuffle with the ReorderShuffleMask. 3364 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3365 E->ReuseShuffleIndices, "shuffle"); 3366 } 3367 E->VectorizedValue = V; 3368 ++NumVectorInstructions; 3369 return V; 3370 } 3371 case Instruction::Store: { 3372 StoreInst *SI = cast<StoreInst>(VL0); 3373 unsigned Alignment = SI->getAlignment(); 3374 unsigned AS = SI->getPointerAddressSpace(); 3375 3376 ValueList ScalarStoreValues; 3377 for (Value *V : E->Scalars) 3378 ScalarStoreValues.push_back(cast<StoreInst>(V)->getValueOperand()); 3379 3380 setInsertPointAfterBundle(E->Scalars, S); 3381 3382 Value *VecValue = vectorizeTree(ScalarStoreValues); 3383 Value *ScalarPtr = SI->getPointerOperand(); 3384 Value *VecPtr = Builder.CreateBitCast(ScalarPtr, VecTy->getPointerTo(AS)); 3385 StoreInst *ST = Builder.CreateStore(VecValue, VecPtr); 3386 3387 // The pointer operand uses an in-tree scalar, so add the new BitCast to 3388 // ExternalUses to make sure that an extract will be generated in the 3389 // future. 3390 if (getTreeEntry(ScalarPtr)) 3391 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 3392 3393 if (!Alignment) 3394 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); 3395 3396 ST->setAlignment(Alignment); 3397 Value *V = propagateMetadata(ST, E->Scalars); 3398 if (NeedToShuffleReuses) { 3399 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3400 E->ReuseShuffleIndices, "shuffle"); 3401 } 3402 E->VectorizedValue = V; 3403 ++NumVectorInstructions; 3404 return V; 3405 } 3406 case Instruction::GetElementPtr: { 3407 setInsertPointAfterBundle(E->Scalars, S); 3408 3409 ValueList Op0VL; 3410 for (Value *V : E->Scalars) 3411 Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0)); 3412 3413 Value *Op0 = vectorizeTree(Op0VL); 3414 3415 std::vector<Value *> OpVecs; 3416 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 3417 ++j) { 3418 ValueList OpVL; 3419 for (Value *V : E->Scalars) 3420 OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j)); 3421 3422 Value *OpVec = vectorizeTree(OpVL); 3423 OpVecs.push_back(OpVec); 3424 } 3425 3426 Value *V = Builder.CreateGEP( 3427 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 3428 if (Instruction *I = dyn_cast<Instruction>(V)) 3429 V = propagateMetadata(I, E->Scalars); 3430 3431 if (NeedToShuffleReuses) { 3432 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3433 E->ReuseShuffleIndices, "shuffle"); 3434 } 3435 E->VectorizedValue = V; 3436 ++NumVectorInstructions; 3437 3438 return V; 3439 } 3440 case Instruction::Call: { 3441 CallInst *CI = cast<CallInst>(VL0); 3442 setInsertPointAfterBundle(E->Scalars, S); 3443 Function *FI; 3444 Intrinsic::ID IID = Intrinsic::not_intrinsic; 3445 Value *ScalarArg = nullptr; 3446 if (CI && (FI = CI->getCalledFunction())) { 3447 IID = FI->getIntrinsicID(); 3448 } 3449 std::vector<Value *> OpVecs; 3450 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 3451 ValueList OpVL; 3452 // Some intrinsics have scalar arguments. This argument should not be 3453 // vectorized. 3454 if (hasVectorInstrinsicScalarOpd(IID, j)) { 3455 CallInst *CEI = cast<CallInst>(VL0); 3456 ScalarArg = CEI->getArgOperand(j); 3457 OpVecs.push_back(CEI->getArgOperand(j)); 3458 continue; 3459 } 3460 for (Value *V : E->Scalars) { 3461 CallInst *CEI = cast<CallInst>(V); 3462 OpVL.push_back(CEI->getArgOperand(j)); 3463 } 3464 3465 Value *OpVec = vectorizeTree(OpVL); 3466 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 3467 OpVecs.push_back(OpVec); 3468 } 3469 3470 Module *M = F->getParent(); 3471 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3472 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 3473 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 3474 SmallVector<OperandBundleDef, 1> OpBundles; 3475 CI->getOperandBundlesAsDefs(OpBundles); 3476 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 3477 3478 // The scalar argument uses an in-tree scalar so we add the new vectorized 3479 // call to ExternalUses list to make sure that an extract will be 3480 // generated in the future. 3481 if (ScalarArg && getTreeEntry(ScalarArg)) 3482 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 3483 3484 propagateIRFlags(V, E->Scalars, VL0); 3485 if (NeedToShuffleReuses) { 3486 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3487 E->ReuseShuffleIndices, "shuffle"); 3488 } 3489 E->VectorizedValue = V; 3490 ++NumVectorInstructions; 3491 return V; 3492 } 3493 case Instruction::ShuffleVector: { 3494 ValueList LHSVL, RHSVL; 3495 assert(S.isAltShuffle() && 3496 ((Instruction::isBinaryOp(S.getOpcode()) && 3497 Instruction::isBinaryOp(S.getAltOpcode())) || 3498 (Instruction::isCast(S.getOpcode()) && 3499 Instruction::isCast(S.getAltOpcode()))) && 3500 "Invalid Shuffle Vector Operand"); 3501 3502 Value *LHS, *RHS; 3503 if (Instruction::isBinaryOp(S.getOpcode())) { 3504 reorderAltShuffleOperands(S, E->Scalars, LHSVL, RHSVL); 3505 setInsertPointAfterBundle(E->Scalars, S); 3506 LHS = vectorizeTree(LHSVL); 3507 RHS = vectorizeTree(RHSVL); 3508 } else { 3509 ValueList INVL; 3510 for (Value *V : E->Scalars) 3511 INVL.push_back(cast<Instruction>(V)->getOperand(0)); 3512 setInsertPointAfterBundle(E->Scalars, S); 3513 LHS = vectorizeTree(INVL); 3514 } 3515 3516 if (E->VectorizedValue) { 3517 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 3518 return E->VectorizedValue; 3519 } 3520 3521 Value *V0, *V1; 3522 if (Instruction::isBinaryOp(S.getOpcode())) { 3523 V0 = Builder.CreateBinOp( 3524 static_cast<Instruction::BinaryOps>(S.getOpcode()), LHS, RHS); 3525 V1 = Builder.CreateBinOp( 3526 static_cast<Instruction::BinaryOps>(S.getAltOpcode()), LHS, RHS); 3527 } else { 3528 V0 = Builder.CreateCast( 3529 static_cast<Instruction::CastOps>(S.getOpcode()), LHS, VecTy); 3530 V1 = Builder.CreateCast( 3531 static_cast<Instruction::CastOps>(S.getAltOpcode()), LHS, VecTy); 3532 } 3533 3534 // Create shuffle to take alternate operations from the vector. 3535 // Also, gather up main and alt scalar ops to propagate IR flags to 3536 // each vector operation. 3537 ValueList OpScalars, AltScalars; 3538 unsigned e = E->Scalars.size(); 3539 SmallVector<Constant *, 8> Mask(e); 3540 for (unsigned i = 0; i < e; ++i) { 3541 auto *OpInst = cast<Instruction>(E->Scalars[i]); 3542 assert(S.isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 3543 if (OpInst->getOpcode() == S.getAltOpcode()) { 3544 Mask[i] = Builder.getInt32(e + i); 3545 AltScalars.push_back(E->Scalars[i]); 3546 } else { 3547 Mask[i] = Builder.getInt32(i); 3548 OpScalars.push_back(E->Scalars[i]); 3549 } 3550 } 3551 3552 Value *ShuffleMask = ConstantVector::get(Mask); 3553 propagateIRFlags(V0, OpScalars); 3554 propagateIRFlags(V1, AltScalars); 3555 3556 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 3557 if (Instruction *I = dyn_cast<Instruction>(V)) 3558 V = propagateMetadata(I, E->Scalars); 3559 if (NeedToShuffleReuses) { 3560 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 3561 E->ReuseShuffleIndices, "shuffle"); 3562 } 3563 E->VectorizedValue = V; 3564 ++NumVectorInstructions; 3565 3566 return V; 3567 } 3568 default: 3569 llvm_unreachable("unknown inst"); 3570 } 3571 return nullptr; 3572 } 3573 3574 Value *BoUpSLP::vectorizeTree() { 3575 ExtraValueToDebugLocsMap ExternallyUsedValues; 3576 return vectorizeTree(ExternallyUsedValues); 3577 } 3578 3579 Value * 3580 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3581 // All blocks must be scheduled before any instructions are inserted. 3582 for (auto &BSIter : BlocksSchedules) { 3583 scheduleBlock(BSIter.second.get()); 3584 } 3585 3586 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3587 auto *VectorRoot = vectorizeTree(&VectorizableTree[0]); 3588 3589 // If the vectorized tree can be rewritten in a smaller type, we truncate the 3590 // vectorized root. InstCombine will then rewrite the entire expression. We 3591 // sign extend the extracted values below. 3592 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 3593 if (MinBWs.count(ScalarRoot)) { 3594 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 3595 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 3596 auto BundleWidth = VectorizableTree[0].Scalars.size(); 3597 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 3598 auto *VecTy = VectorType::get(MinTy, BundleWidth); 3599 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 3600 VectorizableTree[0].VectorizedValue = Trunc; 3601 } 3602 3603 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 3604 << " values .\n"); 3605 3606 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 3607 // specified by ScalarType. 3608 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 3609 if (!MinBWs.count(ScalarRoot)) 3610 return Ex; 3611 if (MinBWs[ScalarRoot].second) 3612 return Builder.CreateSExt(Ex, ScalarType); 3613 return Builder.CreateZExt(Ex, ScalarType); 3614 }; 3615 3616 // Extract all of the elements with the external uses. 3617 for (const auto &ExternalUse : ExternalUses) { 3618 Value *Scalar = ExternalUse.Scalar; 3619 llvm::User *User = ExternalUse.User; 3620 3621 // Skip users that we already RAUW. This happens when one instruction 3622 // has multiple uses of the same value. 3623 if (User && !is_contained(Scalar->users(), User)) 3624 continue; 3625 TreeEntry *E = getTreeEntry(Scalar); 3626 assert(E && "Invalid scalar"); 3627 assert(!E->NeedToGather && "Extracting from a gather list"); 3628 3629 Value *Vec = E->VectorizedValue; 3630 assert(Vec && "Can't find vectorizable value"); 3631 3632 Value *Lane = Builder.getInt32(ExternalUse.Lane); 3633 // If User == nullptr, the Scalar is used as extra arg. Generate 3634 // ExtractElement instruction and update the record for this scalar in 3635 // ExternallyUsedValues. 3636 if (!User) { 3637 assert(ExternallyUsedValues.count(Scalar) && 3638 "Scalar with nullptr as an external user must be registered in " 3639 "ExternallyUsedValues map"); 3640 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 3641 Builder.SetInsertPoint(VecI->getParent(), 3642 std::next(VecI->getIterator())); 3643 } else { 3644 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3645 } 3646 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3647 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3648 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 3649 auto &Locs = ExternallyUsedValues[Scalar]; 3650 ExternallyUsedValues.insert({Ex, Locs}); 3651 ExternallyUsedValues.erase(Scalar); 3652 // Required to update internally referenced instructions. 3653 Scalar->replaceAllUsesWith(Ex); 3654 continue; 3655 } 3656 3657 // Generate extracts for out-of-tree users. 3658 // Find the insertion point for the extractelement lane. 3659 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 3660 if (PHINode *PH = dyn_cast<PHINode>(User)) { 3661 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 3662 if (PH->getIncomingValue(i) == Scalar) { 3663 Instruction *IncomingTerminator = 3664 PH->getIncomingBlock(i)->getTerminator(); 3665 if (isa<CatchSwitchInst>(IncomingTerminator)) { 3666 Builder.SetInsertPoint(VecI->getParent(), 3667 std::next(VecI->getIterator())); 3668 } else { 3669 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 3670 } 3671 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3672 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3673 CSEBlocks.insert(PH->getIncomingBlock(i)); 3674 PH->setOperand(i, Ex); 3675 } 3676 } 3677 } else { 3678 Builder.SetInsertPoint(cast<Instruction>(User)); 3679 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3680 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3681 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 3682 User->replaceUsesOfWith(Scalar, Ex); 3683 } 3684 } else { 3685 Builder.SetInsertPoint(&F->getEntryBlock().front()); 3686 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 3687 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 3688 CSEBlocks.insert(&F->getEntryBlock()); 3689 User->replaceUsesOfWith(Scalar, Ex); 3690 } 3691 3692 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 3693 } 3694 3695 // For each vectorized value: 3696 for (TreeEntry &EIdx : VectorizableTree) { 3697 TreeEntry *Entry = &EIdx; 3698 3699 // No need to handle users of gathered values. 3700 if (Entry->NeedToGather) 3701 continue; 3702 3703 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 3704 3705 // For each lane: 3706 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3707 Value *Scalar = Entry->Scalars[Lane]; 3708 3709 Type *Ty = Scalar->getType(); 3710 if (!Ty->isVoidTy()) { 3711 #ifndef NDEBUG 3712 for (User *U : Scalar->users()) { 3713 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 3714 3715 // It is legal to replace users in the ignorelist by undef. 3716 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 3717 "Replacing out-of-tree value with undef"); 3718 } 3719 #endif 3720 Value *Undef = UndefValue::get(Ty); 3721 Scalar->replaceAllUsesWith(Undef); 3722 } 3723 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 3724 eraseInstruction(cast<Instruction>(Scalar)); 3725 } 3726 } 3727 3728 Builder.ClearInsertionPoint(); 3729 3730 return VectorizableTree[0].VectorizedValue; 3731 } 3732 3733 void BoUpSLP::optimizeGatherSequence() { 3734 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 3735 << " gather sequences instructions.\n"); 3736 // LICM InsertElementInst sequences. 3737 for (Instruction *I : GatherSeq) { 3738 if (!isa<InsertElementInst>(I) && !isa<ShuffleVectorInst>(I)) 3739 continue; 3740 3741 // Check if this block is inside a loop. 3742 Loop *L = LI->getLoopFor(I->getParent()); 3743 if (!L) 3744 continue; 3745 3746 // Check if it has a preheader. 3747 BasicBlock *PreHeader = L->getLoopPreheader(); 3748 if (!PreHeader) 3749 continue; 3750 3751 // If the vector or the element that we insert into it are 3752 // instructions that are defined in this basic block then we can't 3753 // hoist this instruction. 3754 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 3755 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 3756 if (Op0 && L->contains(Op0)) 3757 continue; 3758 if (Op1 && L->contains(Op1)) 3759 continue; 3760 3761 // We can hoist this instruction. Move it to the pre-header. 3762 I->moveBefore(PreHeader->getTerminator()); 3763 } 3764 3765 // Make a list of all reachable blocks in our CSE queue. 3766 SmallVector<const DomTreeNode *, 8> CSEWorkList; 3767 CSEWorkList.reserve(CSEBlocks.size()); 3768 for (BasicBlock *BB : CSEBlocks) 3769 if (DomTreeNode *N = DT->getNode(BB)) { 3770 assert(DT->isReachableFromEntry(N)); 3771 CSEWorkList.push_back(N); 3772 } 3773 3774 // Sort blocks by domination. This ensures we visit a block after all blocks 3775 // dominating it are visited. 3776 std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(), 3777 [this](const DomTreeNode *A, const DomTreeNode *B) { 3778 return DT->properlyDominates(A, B); 3779 }); 3780 3781 // Perform O(N^2) search over the gather sequences and merge identical 3782 // instructions. TODO: We can further optimize this scan if we split the 3783 // instructions into different buckets based on the insert lane. 3784 SmallVector<Instruction *, 16> Visited; 3785 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 3786 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 3787 "Worklist not sorted properly!"); 3788 BasicBlock *BB = (*I)->getBlock(); 3789 // For all instructions in blocks containing gather sequences: 3790 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 3791 Instruction *In = &*it++; 3792 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 3793 continue; 3794 3795 // Check if we can replace this instruction with any of the 3796 // visited instructions. 3797 for (Instruction *v : Visited) { 3798 if (In->isIdenticalTo(v) && 3799 DT->dominates(v->getParent(), In->getParent())) { 3800 In->replaceAllUsesWith(v); 3801 eraseInstruction(In); 3802 In = nullptr; 3803 break; 3804 } 3805 } 3806 if (In) { 3807 assert(!is_contained(Visited, In)); 3808 Visited.push_back(In); 3809 } 3810 } 3811 } 3812 CSEBlocks.clear(); 3813 GatherSeq.clear(); 3814 } 3815 3816 // Groups the instructions to a bundle (which is then a single scheduling entity) 3817 // and schedules instructions until the bundle gets ready. 3818 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, 3819 BoUpSLP *SLP, 3820 const InstructionsState &S) { 3821 if (isa<PHINode>(S.OpValue)) 3822 return true; 3823 3824 // Initialize the instruction bundle. 3825 Instruction *OldScheduleEnd = ScheduleEnd; 3826 ScheduleData *PrevInBundle = nullptr; 3827 ScheduleData *Bundle = nullptr; 3828 bool ReSchedule = false; 3829 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 3830 3831 // Make sure that the scheduling region contains all 3832 // instructions of the bundle. 3833 for (Value *V : VL) { 3834 if (!extendSchedulingRegion(V, S)) 3835 return false; 3836 } 3837 3838 for (Value *V : VL) { 3839 ScheduleData *BundleMember = getScheduleData(V); 3840 assert(BundleMember && 3841 "no ScheduleData for bundle member (maybe not in same basic block)"); 3842 if (BundleMember->IsScheduled) { 3843 // A bundle member was scheduled as single instruction before and now 3844 // needs to be scheduled as part of the bundle. We just get rid of the 3845 // existing schedule. 3846 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 3847 << " was already scheduled\n"); 3848 ReSchedule = true; 3849 } 3850 assert(BundleMember->isSchedulingEntity() && 3851 "bundle member already part of other bundle"); 3852 if (PrevInBundle) { 3853 PrevInBundle->NextInBundle = BundleMember; 3854 } else { 3855 Bundle = BundleMember; 3856 } 3857 BundleMember->UnscheduledDepsInBundle = 0; 3858 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 3859 3860 // Group the instructions to a bundle. 3861 BundleMember->FirstInBundle = Bundle; 3862 PrevInBundle = BundleMember; 3863 } 3864 if (ScheduleEnd != OldScheduleEnd) { 3865 // The scheduling region got new instructions at the lower end (or it is a 3866 // new region for the first bundle). This makes it necessary to 3867 // recalculate all dependencies. 3868 // It is seldom that this needs to be done a second time after adding the 3869 // initial bundle to the region. 3870 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3871 doForAllOpcodes(I, [](ScheduleData *SD) { 3872 SD->clearDependencies(); 3873 }); 3874 } 3875 ReSchedule = true; 3876 } 3877 if (ReSchedule) { 3878 resetSchedule(); 3879 initialFillReadyList(ReadyInsts); 3880 } 3881 3882 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 3883 << BB->getName() << "\n"); 3884 3885 calculateDependencies(Bundle, true, SLP); 3886 3887 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 3888 // means that there are no cyclic dependencies and we can schedule it. 3889 // Note that's important that we don't "schedule" the bundle yet (see 3890 // cancelScheduling). 3891 while (!Bundle->isReady() && !ReadyInsts.empty()) { 3892 3893 ScheduleData *pickedSD = ReadyInsts.back(); 3894 ReadyInsts.pop_back(); 3895 3896 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 3897 schedule(pickedSD, ReadyInsts); 3898 } 3899 } 3900 if (!Bundle->isReady()) { 3901 cancelScheduling(VL, S.OpValue); 3902 return false; 3903 } 3904 return true; 3905 } 3906 3907 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 3908 Value *OpValue) { 3909 if (isa<PHINode>(OpValue)) 3910 return; 3911 3912 ScheduleData *Bundle = getScheduleData(OpValue); 3913 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 3914 assert(!Bundle->IsScheduled && 3915 "Can't cancel bundle which is already scheduled"); 3916 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 3917 "tried to unbundle something which is not a bundle"); 3918 3919 // Un-bundle: make single instructions out of the bundle. 3920 ScheduleData *BundleMember = Bundle; 3921 while (BundleMember) { 3922 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 3923 BundleMember->FirstInBundle = BundleMember; 3924 ScheduleData *Next = BundleMember->NextInBundle; 3925 BundleMember->NextInBundle = nullptr; 3926 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 3927 if (BundleMember->UnscheduledDepsInBundle == 0) { 3928 ReadyInsts.insert(BundleMember); 3929 } 3930 BundleMember = Next; 3931 } 3932 } 3933 3934 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 3935 // Allocate a new ScheduleData for the instruction. 3936 if (ChunkPos >= ChunkSize) { 3937 ScheduleDataChunks.push_back(llvm::make_unique<ScheduleData[]>(ChunkSize)); 3938 ChunkPos = 0; 3939 } 3940 return &(ScheduleDataChunks.back()[ChunkPos++]); 3941 } 3942 3943 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 3944 const InstructionsState &S) { 3945 if (getScheduleData(V, isOneOf(S, V))) 3946 return true; 3947 Instruction *I = dyn_cast<Instruction>(V); 3948 assert(I && "bundle member must be an instruction"); 3949 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 3950 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 3951 ScheduleData *ISD = getScheduleData(I); 3952 if (!ISD) 3953 return false; 3954 assert(isInSchedulingRegion(ISD) && 3955 "ScheduleData not in scheduling region"); 3956 ScheduleData *SD = allocateScheduleDataChunks(); 3957 SD->Inst = I; 3958 SD->init(SchedulingRegionID, S.OpValue); 3959 ExtraScheduleDataMap[I][S.OpValue] = SD; 3960 return true; 3961 }; 3962 if (CheckSheduleForI(I)) 3963 return true; 3964 if (!ScheduleStart) { 3965 // It's the first instruction in the new region. 3966 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 3967 ScheduleStart = I; 3968 ScheduleEnd = I->getNextNode(); 3969 if (isOneOf(S, I) != I) 3970 CheckSheduleForI(I); 3971 assert(ScheduleEnd && "tried to vectorize a terminator?"); 3972 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 3973 return true; 3974 } 3975 // Search up and down at the same time, because we don't know if the new 3976 // instruction is above or below the existing scheduling region. 3977 BasicBlock::reverse_iterator UpIter = 3978 ++ScheduleStart->getIterator().getReverse(); 3979 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 3980 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 3981 BasicBlock::iterator LowerEnd = BB->end(); 3982 while (true) { 3983 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 3984 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 3985 return false; 3986 } 3987 3988 if (UpIter != UpperEnd) { 3989 if (&*UpIter == I) { 3990 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 3991 ScheduleStart = I; 3992 if (isOneOf(S, I) != I) 3993 CheckSheduleForI(I); 3994 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 3995 << "\n"); 3996 return true; 3997 } 3998 UpIter++; 3999 } 4000 if (DownIter != LowerEnd) { 4001 if (&*DownIter == I) { 4002 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 4003 nullptr); 4004 ScheduleEnd = I->getNextNode(); 4005 if (isOneOf(S, I) != I) 4006 CheckSheduleForI(I); 4007 assert(ScheduleEnd && "tried to vectorize a terminator?"); 4008 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I 4009 << "\n"); 4010 return true; 4011 } 4012 DownIter++; 4013 } 4014 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 4015 "instruction not found in block"); 4016 } 4017 return true; 4018 } 4019 4020 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 4021 Instruction *ToI, 4022 ScheduleData *PrevLoadStore, 4023 ScheduleData *NextLoadStore) { 4024 ScheduleData *CurrentLoadStore = PrevLoadStore; 4025 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 4026 ScheduleData *SD = ScheduleDataMap[I]; 4027 if (!SD) { 4028 SD = allocateScheduleDataChunks(); 4029 ScheduleDataMap[I] = SD; 4030 SD->Inst = I; 4031 } 4032 assert(!isInSchedulingRegion(SD) && 4033 "new ScheduleData already in scheduling region"); 4034 SD->init(SchedulingRegionID, I); 4035 4036 if (I->mayReadOrWriteMemory() && 4037 (!isa<IntrinsicInst>(I) || 4038 cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) { 4039 // Update the linked list of memory accessing instructions. 4040 if (CurrentLoadStore) { 4041 CurrentLoadStore->NextLoadStore = SD; 4042 } else { 4043 FirstLoadStoreInRegion = SD; 4044 } 4045 CurrentLoadStore = SD; 4046 } 4047 } 4048 if (NextLoadStore) { 4049 if (CurrentLoadStore) 4050 CurrentLoadStore->NextLoadStore = NextLoadStore; 4051 } else { 4052 LastLoadStoreInRegion = CurrentLoadStore; 4053 } 4054 } 4055 4056 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 4057 bool InsertInReadyList, 4058 BoUpSLP *SLP) { 4059 assert(SD->isSchedulingEntity()); 4060 4061 SmallVector<ScheduleData *, 10> WorkList; 4062 WorkList.push_back(SD); 4063 4064 while (!WorkList.empty()) { 4065 ScheduleData *SD = WorkList.back(); 4066 WorkList.pop_back(); 4067 4068 ScheduleData *BundleMember = SD; 4069 while (BundleMember) { 4070 assert(isInSchedulingRegion(BundleMember)); 4071 if (!BundleMember->hasValidDependencies()) { 4072 4073 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 4074 << "\n"); 4075 BundleMember->Dependencies = 0; 4076 BundleMember->resetUnscheduledDeps(); 4077 4078 // Handle def-use chain dependencies. 4079 if (BundleMember->OpValue != BundleMember->Inst) { 4080 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 4081 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 4082 BundleMember->Dependencies++; 4083 ScheduleData *DestBundle = UseSD->FirstInBundle; 4084 if (!DestBundle->IsScheduled) 4085 BundleMember->incrementUnscheduledDeps(1); 4086 if (!DestBundle->hasValidDependencies()) 4087 WorkList.push_back(DestBundle); 4088 } 4089 } else { 4090 for (User *U : BundleMember->Inst->users()) { 4091 if (isa<Instruction>(U)) { 4092 ScheduleData *UseSD = getScheduleData(U); 4093 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 4094 BundleMember->Dependencies++; 4095 ScheduleData *DestBundle = UseSD->FirstInBundle; 4096 if (!DestBundle->IsScheduled) 4097 BundleMember->incrementUnscheduledDeps(1); 4098 if (!DestBundle->hasValidDependencies()) 4099 WorkList.push_back(DestBundle); 4100 } 4101 } else { 4102 // I'm not sure if this can ever happen. But we need to be safe. 4103 // This lets the instruction/bundle never be scheduled and 4104 // eventually disable vectorization. 4105 BundleMember->Dependencies++; 4106 BundleMember->incrementUnscheduledDeps(1); 4107 } 4108 } 4109 } 4110 4111 // Handle the memory dependencies. 4112 ScheduleData *DepDest = BundleMember->NextLoadStore; 4113 if (DepDest) { 4114 Instruction *SrcInst = BundleMember->Inst; 4115 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 4116 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 4117 unsigned numAliased = 0; 4118 unsigned DistToSrc = 1; 4119 4120 while (DepDest) { 4121 assert(isInSchedulingRegion(DepDest)); 4122 4123 // We have two limits to reduce the complexity: 4124 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 4125 // SLP->isAliased (which is the expensive part in this loop). 4126 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 4127 // the whole loop (even if the loop is fast, it's quadratic). 4128 // It's important for the loop break condition (see below) to 4129 // check this limit even between two read-only instructions. 4130 if (DistToSrc >= MaxMemDepDistance || 4131 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 4132 (numAliased >= AliasedCheckLimit || 4133 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 4134 4135 // We increment the counter only if the locations are aliased 4136 // (instead of counting all alias checks). This gives a better 4137 // balance between reduced runtime and accurate dependencies. 4138 numAliased++; 4139 4140 DepDest->MemoryDependencies.push_back(BundleMember); 4141 BundleMember->Dependencies++; 4142 ScheduleData *DestBundle = DepDest->FirstInBundle; 4143 if (!DestBundle->IsScheduled) { 4144 BundleMember->incrementUnscheduledDeps(1); 4145 } 4146 if (!DestBundle->hasValidDependencies()) { 4147 WorkList.push_back(DestBundle); 4148 } 4149 } 4150 DepDest = DepDest->NextLoadStore; 4151 4152 // Example, explaining the loop break condition: Let's assume our 4153 // starting instruction is i0 and MaxMemDepDistance = 3. 4154 // 4155 // +--------v--v--v 4156 // i0,i1,i2,i3,i4,i5,i6,i7,i8 4157 // +--------^--^--^ 4158 // 4159 // MaxMemDepDistance let us stop alias-checking at i3 and we add 4160 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 4161 // Previously we already added dependencies from i3 to i6,i7,i8 4162 // (because of MaxMemDepDistance). As we added a dependency from 4163 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 4164 // and we can abort this loop at i6. 4165 if (DistToSrc >= 2 * MaxMemDepDistance) 4166 break; 4167 DistToSrc++; 4168 } 4169 } 4170 } 4171 BundleMember = BundleMember->NextInBundle; 4172 } 4173 if (InsertInReadyList && SD->isReady()) { 4174 ReadyInsts.push_back(SD); 4175 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 4176 << "\n"); 4177 } 4178 } 4179 } 4180 4181 void BoUpSLP::BlockScheduling::resetSchedule() { 4182 assert(ScheduleStart && 4183 "tried to reset schedule on block which has not been scheduled"); 4184 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 4185 doForAllOpcodes(I, [&](ScheduleData *SD) { 4186 assert(isInSchedulingRegion(SD) && 4187 "ScheduleData not in scheduling region"); 4188 SD->IsScheduled = false; 4189 SD->resetUnscheduledDeps(); 4190 }); 4191 } 4192 ReadyInsts.clear(); 4193 } 4194 4195 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 4196 if (!BS->ScheduleStart) 4197 return; 4198 4199 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 4200 4201 BS->resetSchedule(); 4202 4203 // For the real scheduling we use a more sophisticated ready-list: it is 4204 // sorted by the original instruction location. This lets the final schedule 4205 // be as close as possible to the original instruction order. 4206 struct ScheduleDataCompare { 4207 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 4208 return SD2->SchedulingPriority < SD1->SchedulingPriority; 4209 } 4210 }; 4211 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 4212 4213 // Ensure that all dependency data is updated and fill the ready-list with 4214 // initial instructions. 4215 int Idx = 0; 4216 int NumToSchedule = 0; 4217 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 4218 I = I->getNextNode()) { 4219 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 4220 assert(SD->isPartOfBundle() == 4221 (getTreeEntry(SD->Inst) != nullptr) && 4222 "scheduler and vectorizer bundle mismatch"); 4223 SD->FirstInBundle->SchedulingPriority = Idx++; 4224 if (SD->isSchedulingEntity()) { 4225 BS->calculateDependencies(SD, false, this); 4226 NumToSchedule++; 4227 } 4228 }); 4229 } 4230 BS->initialFillReadyList(ReadyInsts); 4231 4232 Instruction *LastScheduledInst = BS->ScheduleEnd; 4233 4234 // Do the "real" scheduling. 4235 while (!ReadyInsts.empty()) { 4236 ScheduleData *picked = *ReadyInsts.begin(); 4237 ReadyInsts.erase(ReadyInsts.begin()); 4238 4239 // Move the scheduled instruction(s) to their dedicated places, if not 4240 // there yet. 4241 ScheduleData *BundleMember = picked; 4242 while (BundleMember) { 4243 Instruction *pickedInst = BundleMember->Inst; 4244 if (LastScheduledInst->getNextNode() != pickedInst) { 4245 BS->BB->getInstList().remove(pickedInst); 4246 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 4247 pickedInst); 4248 } 4249 LastScheduledInst = pickedInst; 4250 BundleMember = BundleMember->NextInBundle; 4251 } 4252 4253 BS->schedule(picked, ReadyInsts); 4254 NumToSchedule--; 4255 } 4256 assert(NumToSchedule == 0 && "could not schedule all instructions"); 4257 4258 // Avoid duplicate scheduling of the block. 4259 BS->ScheduleStart = nullptr; 4260 } 4261 4262 unsigned BoUpSLP::getVectorElementSize(Value *V) { 4263 // If V is a store, just return the width of the stored value without 4264 // traversing the expression tree. This is the common case. 4265 if (auto *Store = dyn_cast<StoreInst>(V)) 4266 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 4267 4268 // If V is not a store, we can traverse the expression tree to find loads 4269 // that feed it. The type of the loaded value may indicate a more suitable 4270 // width than V's type. We want to base the vector element size on the width 4271 // of memory operations where possible. 4272 SmallVector<Instruction *, 16> Worklist; 4273 SmallPtrSet<Instruction *, 16> Visited; 4274 if (auto *I = dyn_cast<Instruction>(V)) 4275 Worklist.push_back(I); 4276 4277 // Traverse the expression tree in bottom-up order looking for loads. If we 4278 // encounter an instruction we don't yet handle, we give up. 4279 auto MaxWidth = 0u; 4280 auto FoundUnknownInst = false; 4281 while (!Worklist.empty() && !FoundUnknownInst) { 4282 auto *I = Worklist.pop_back_val(); 4283 Visited.insert(I); 4284 4285 // We should only be looking at scalar instructions here. If the current 4286 // instruction has a vector type, give up. 4287 auto *Ty = I->getType(); 4288 if (isa<VectorType>(Ty)) 4289 FoundUnknownInst = true; 4290 4291 // If the current instruction is a load, update MaxWidth to reflect the 4292 // width of the loaded value. 4293 else if (isa<LoadInst>(I)) 4294 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 4295 4296 // Otherwise, we need to visit the operands of the instruction. We only 4297 // handle the interesting cases from buildTree here. If an operand is an 4298 // instruction we haven't yet visited, we add it to the worklist. 4299 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 4300 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 4301 for (Use &U : I->operands()) 4302 if (auto *J = dyn_cast<Instruction>(U.get())) 4303 if (!Visited.count(J)) 4304 Worklist.push_back(J); 4305 } 4306 4307 // If we don't yet handle the instruction, give up. 4308 else 4309 FoundUnknownInst = true; 4310 } 4311 4312 // If we didn't encounter a memory access in the expression tree, or if we 4313 // gave up for some reason, just return the width of V. 4314 if (!MaxWidth || FoundUnknownInst) 4315 return DL->getTypeSizeInBits(V->getType()); 4316 4317 // Otherwise, return the maximum width we found. 4318 return MaxWidth; 4319 } 4320 4321 // Determine if a value V in a vectorizable expression Expr can be demoted to a 4322 // smaller type with a truncation. We collect the values that will be demoted 4323 // in ToDemote and additional roots that require investigating in Roots. 4324 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 4325 SmallVectorImpl<Value *> &ToDemote, 4326 SmallVectorImpl<Value *> &Roots) { 4327 // We can always demote constants. 4328 if (isa<Constant>(V)) { 4329 ToDemote.push_back(V); 4330 return true; 4331 } 4332 4333 // If the value is not an instruction in the expression with only one use, it 4334 // cannot be demoted. 4335 auto *I = dyn_cast<Instruction>(V); 4336 if (!I || !I->hasOneUse() || !Expr.count(I)) 4337 return false; 4338 4339 switch (I->getOpcode()) { 4340 4341 // We can always demote truncations and extensions. Since truncations can 4342 // seed additional demotion, we save the truncated value. 4343 case Instruction::Trunc: 4344 Roots.push_back(I->getOperand(0)); 4345 break; 4346 case Instruction::ZExt: 4347 case Instruction::SExt: 4348 break; 4349 4350 // We can demote certain binary operations if we can demote both of their 4351 // operands. 4352 case Instruction::Add: 4353 case Instruction::Sub: 4354 case Instruction::Mul: 4355 case Instruction::And: 4356 case Instruction::Or: 4357 case Instruction::Xor: 4358 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 4359 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 4360 return false; 4361 break; 4362 4363 // We can demote selects if we can demote their true and false values. 4364 case Instruction::Select: { 4365 SelectInst *SI = cast<SelectInst>(I); 4366 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 4367 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 4368 return false; 4369 break; 4370 } 4371 4372 // We can demote phis if we can demote all their incoming operands. Note that 4373 // we don't need to worry about cycles since we ensure single use above. 4374 case Instruction::PHI: { 4375 PHINode *PN = cast<PHINode>(I); 4376 for (Value *IncValue : PN->incoming_values()) 4377 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 4378 return false; 4379 break; 4380 } 4381 4382 // Otherwise, conservatively give up. 4383 default: 4384 return false; 4385 } 4386 4387 // Record the value that we can demote. 4388 ToDemote.push_back(V); 4389 return true; 4390 } 4391 4392 void BoUpSLP::computeMinimumValueSizes() { 4393 // If there are no external uses, the expression tree must be rooted by a 4394 // store. We can't demote in-memory values, so there is nothing to do here. 4395 if (ExternalUses.empty()) 4396 return; 4397 4398 // We only attempt to truncate integer expressions. 4399 auto &TreeRoot = VectorizableTree[0].Scalars; 4400 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 4401 if (!TreeRootIT) 4402 return; 4403 4404 // If the expression is not rooted by a store, these roots should have 4405 // external uses. We will rely on InstCombine to rewrite the expression in 4406 // the narrower type. However, InstCombine only rewrites single-use values. 4407 // This means that if a tree entry other than a root is used externally, it 4408 // must have multiple uses and InstCombine will not rewrite it. The code 4409 // below ensures that only the roots are used externally. 4410 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 4411 for (auto &EU : ExternalUses) 4412 if (!Expr.erase(EU.Scalar)) 4413 return; 4414 if (!Expr.empty()) 4415 return; 4416 4417 // Collect the scalar values of the vectorizable expression. We will use this 4418 // context to determine which values can be demoted. If we see a truncation, 4419 // we mark it as seeding another demotion. 4420 for (auto &Entry : VectorizableTree) 4421 Expr.insert(Entry.Scalars.begin(), Entry.Scalars.end()); 4422 4423 // Ensure the roots of the vectorizable tree don't form a cycle. They must 4424 // have a single external user that is not in the vectorizable tree. 4425 for (auto *Root : TreeRoot) 4426 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 4427 return; 4428 4429 // Conservatively determine if we can actually truncate the roots of the 4430 // expression. Collect the values that can be demoted in ToDemote and 4431 // additional roots that require investigating in Roots. 4432 SmallVector<Value *, 32> ToDemote; 4433 SmallVector<Value *, 4> Roots; 4434 for (auto *Root : TreeRoot) 4435 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 4436 return; 4437 4438 // The maximum bit width required to represent all the values that can be 4439 // demoted without loss of precision. It would be safe to truncate the roots 4440 // of the expression to this width. 4441 auto MaxBitWidth = 8u; 4442 4443 // We first check if all the bits of the roots are demanded. If they're not, 4444 // we can truncate the roots to this narrower type. 4445 for (auto *Root : TreeRoot) { 4446 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 4447 MaxBitWidth = std::max<unsigned>( 4448 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 4449 } 4450 4451 // True if the roots can be zero-extended back to their original type, rather 4452 // than sign-extended. We know that if the leading bits are not demanded, we 4453 // can safely zero-extend. So we initialize IsKnownPositive to True. 4454 bool IsKnownPositive = true; 4455 4456 // If all the bits of the roots are demanded, we can try a little harder to 4457 // compute a narrower type. This can happen, for example, if the roots are 4458 // getelementptr indices. InstCombine promotes these indices to the pointer 4459 // width. Thus, all their bits are technically demanded even though the 4460 // address computation might be vectorized in a smaller type. 4461 // 4462 // We start by looking at each entry that can be demoted. We compute the 4463 // maximum bit width required to store the scalar by using ValueTracking to 4464 // compute the number of high-order bits we can truncate. 4465 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 4466 llvm::all_of(TreeRoot, [](Value *R) { 4467 assert(R->hasOneUse() && "Root should have only one use!"); 4468 return isa<GetElementPtrInst>(R->user_back()); 4469 })) { 4470 MaxBitWidth = 8u; 4471 4472 // Determine if the sign bit of all the roots is known to be zero. If not, 4473 // IsKnownPositive is set to False. 4474 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 4475 KnownBits Known = computeKnownBits(R, *DL); 4476 return Known.isNonNegative(); 4477 }); 4478 4479 // Determine the maximum number of bits required to store the scalar 4480 // values. 4481 for (auto *Scalar : ToDemote) { 4482 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 4483 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 4484 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 4485 } 4486 4487 // If we can't prove that the sign bit is zero, we must add one to the 4488 // maximum bit width to account for the unknown sign bit. This preserves 4489 // the existing sign bit so we can safely sign-extend the root back to the 4490 // original type. Otherwise, if we know the sign bit is zero, we will 4491 // zero-extend the root instead. 4492 // 4493 // FIXME: This is somewhat suboptimal, as there will be cases where adding 4494 // one to the maximum bit width will yield a larger-than-necessary 4495 // type. In general, we need to add an extra bit only if we can't 4496 // prove that the upper bit of the original type is equal to the 4497 // upper bit of the proposed smaller type. If these two bits are the 4498 // same (either zero or one) we know that sign-extending from the 4499 // smaller type will result in the same value. Here, since we can't 4500 // yet prove this, we are just making the proposed smaller type 4501 // larger to ensure correctness. 4502 if (!IsKnownPositive) 4503 ++MaxBitWidth; 4504 } 4505 4506 // Round MaxBitWidth up to the next power-of-two. 4507 if (!isPowerOf2_64(MaxBitWidth)) 4508 MaxBitWidth = NextPowerOf2(MaxBitWidth); 4509 4510 // If the maximum bit width we compute is less than the with of the roots' 4511 // type, we can proceed with the narrowing. Otherwise, do nothing. 4512 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 4513 return; 4514 4515 // If we can truncate the root, we must collect additional values that might 4516 // be demoted as a result. That is, those seeded by truncations we will 4517 // modify. 4518 while (!Roots.empty()) 4519 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 4520 4521 // Finally, map the values we can demote to the maximum bit with we computed. 4522 for (auto *Scalar : ToDemote) 4523 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 4524 } 4525 4526 namespace { 4527 4528 /// The SLPVectorizer Pass. 4529 struct SLPVectorizer : public FunctionPass { 4530 SLPVectorizerPass Impl; 4531 4532 /// Pass identification, replacement for typeid 4533 static char ID; 4534 4535 explicit SLPVectorizer() : FunctionPass(ID) { 4536 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 4537 } 4538 4539 bool doInitialization(Module &M) override { 4540 return false; 4541 } 4542 4543 bool runOnFunction(Function &F) override { 4544 if (skipFunction(F)) 4545 return false; 4546 4547 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 4548 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 4549 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 4550 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 4551 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 4552 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 4553 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 4554 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 4555 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 4556 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 4557 4558 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 4559 } 4560 4561 void getAnalysisUsage(AnalysisUsage &AU) const override { 4562 FunctionPass::getAnalysisUsage(AU); 4563 AU.addRequired<AssumptionCacheTracker>(); 4564 AU.addRequired<ScalarEvolutionWrapperPass>(); 4565 AU.addRequired<AAResultsWrapperPass>(); 4566 AU.addRequired<TargetTransformInfoWrapperPass>(); 4567 AU.addRequired<LoopInfoWrapperPass>(); 4568 AU.addRequired<DominatorTreeWrapperPass>(); 4569 AU.addRequired<DemandedBitsWrapperPass>(); 4570 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 4571 AU.addPreserved<LoopInfoWrapperPass>(); 4572 AU.addPreserved<DominatorTreeWrapperPass>(); 4573 AU.addPreserved<AAResultsWrapperPass>(); 4574 AU.addPreserved<GlobalsAAWrapperPass>(); 4575 AU.setPreservesCFG(); 4576 } 4577 }; 4578 4579 } // end anonymous namespace 4580 4581 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 4582 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 4583 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 4584 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 4585 auto *AA = &AM.getResult<AAManager>(F); 4586 auto *LI = &AM.getResult<LoopAnalysis>(F); 4587 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 4588 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 4589 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 4590 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4591 4592 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 4593 if (!Changed) 4594 return PreservedAnalyses::all(); 4595 4596 PreservedAnalyses PA; 4597 PA.preserveSet<CFGAnalyses>(); 4598 PA.preserve<AAManager>(); 4599 PA.preserve<GlobalsAA>(); 4600 return PA; 4601 } 4602 4603 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 4604 TargetTransformInfo *TTI_, 4605 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 4606 LoopInfo *LI_, DominatorTree *DT_, 4607 AssumptionCache *AC_, DemandedBits *DB_, 4608 OptimizationRemarkEmitter *ORE_) { 4609 SE = SE_; 4610 TTI = TTI_; 4611 TLI = TLI_; 4612 AA = AA_; 4613 LI = LI_; 4614 DT = DT_; 4615 AC = AC_; 4616 DB = DB_; 4617 DL = &F.getParent()->getDataLayout(); 4618 4619 Stores.clear(); 4620 GEPs.clear(); 4621 bool Changed = false; 4622 4623 // If the target claims to have no vector registers don't attempt 4624 // vectorization. 4625 if (!TTI->getNumberOfRegisters(true)) 4626 return false; 4627 4628 // Don't vectorize when the attribute NoImplicitFloat is used. 4629 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 4630 return false; 4631 4632 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 4633 4634 // Use the bottom up slp vectorizer to construct chains that start with 4635 // store instructions. 4636 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 4637 4638 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 4639 // delete instructions. 4640 4641 // Scan the blocks in the function in post order. 4642 for (auto BB : post_order(&F.getEntryBlock())) { 4643 collectSeedInstructions(BB); 4644 4645 // Vectorize trees that end at stores. 4646 if (!Stores.empty()) { 4647 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 4648 << " underlying objects.\n"); 4649 Changed |= vectorizeStoreChains(R); 4650 } 4651 4652 // Vectorize trees that end at reductions. 4653 Changed |= vectorizeChainsInBlock(BB, R); 4654 4655 // Vectorize the index computations of getelementptr instructions. This 4656 // is primarily intended to catch gather-like idioms ending at 4657 // non-consecutive loads. 4658 if (!GEPs.empty()) { 4659 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 4660 << " underlying objects.\n"); 4661 Changed |= vectorizeGEPIndices(BB, R); 4662 } 4663 } 4664 4665 if (Changed) { 4666 R.optimizeGatherSequence(); 4667 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 4668 LLVM_DEBUG(verifyFunction(F)); 4669 } 4670 return Changed; 4671 } 4672 4673 /// Check that the Values in the slice in VL array are still existent in 4674 /// the WeakTrackingVH array. 4675 /// Vectorization of part of the VL array may cause later values in the VL array 4676 /// to become invalid. We track when this has happened in the WeakTrackingVH 4677 /// array. 4678 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, 4679 ArrayRef<WeakTrackingVH> VH, unsigned SliceBegin, 4680 unsigned SliceSize) { 4681 VL = VL.slice(SliceBegin, SliceSize); 4682 VH = VH.slice(SliceBegin, SliceSize); 4683 return !std::equal(VL.begin(), VL.end(), VH.begin()); 4684 } 4685 4686 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 4687 unsigned VecRegSize) { 4688 const unsigned ChainLen = Chain.size(); 4689 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 4690 << "\n"); 4691 const unsigned Sz = R.getVectorElementSize(Chain[0]); 4692 const unsigned VF = VecRegSize / Sz; 4693 4694 if (!isPowerOf2_32(Sz) || VF < 2) 4695 return false; 4696 4697 // Keep track of values that were deleted by vectorizing in the loop below. 4698 const SmallVector<WeakTrackingVH, 8> TrackValues(Chain.begin(), Chain.end()); 4699 4700 bool Changed = false; 4701 // Look for profitable vectorizable trees at all offsets, starting at zero. 4702 for (unsigned i = 0, e = ChainLen; i + VF <= e; ++i) { 4703 4704 // Check that a previous iteration of this loop did not delete the Value. 4705 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) 4706 continue; 4707 4708 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 4709 << "\n"); 4710 ArrayRef<Value *> Operands = Chain.slice(i, VF); 4711 4712 R.buildTree(Operands); 4713 if (R.isTreeTinyAndNotFullyVectorizable()) 4714 continue; 4715 4716 R.computeMinimumValueSizes(); 4717 4718 int Cost = R.getTreeCost(); 4719 4720 LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF 4721 << "\n"); 4722 if (Cost < -SLPCostThreshold) { 4723 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 4724 4725 using namespace ore; 4726 4727 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 4728 cast<StoreInst>(Chain[i])) 4729 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 4730 << " and with tree size " 4731 << NV("TreeSize", R.getTreeSize())); 4732 4733 R.vectorizeTree(); 4734 4735 // Move to the next bundle. 4736 i += VF - 1; 4737 Changed = true; 4738 } 4739 } 4740 4741 return Changed; 4742 } 4743 4744 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 4745 BoUpSLP &R) { 4746 SetVector<StoreInst *> Heads; 4747 SmallDenseSet<StoreInst *> Tails; 4748 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 4749 4750 // We may run into multiple chains that merge into a single chain. We mark the 4751 // stores that we vectorized so that we don't visit the same store twice. 4752 BoUpSLP::ValueSet VectorizedStores; 4753 bool Changed = false; 4754 4755 auto &&FindConsecutiveAccess = 4756 [this, &Stores, &Heads, &Tails, &ConsecutiveChain] (int K, int Idx) { 4757 if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) 4758 return false; 4759 4760 Tails.insert(Stores[Idx]); 4761 Heads.insert(Stores[K]); 4762 ConsecutiveChain[Stores[K]] = Stores[Idx]; 4763 return true; 4764 }; 4765 4766 // Do a quadratic search on all of the given stores in reverse order and find 4767 // all of the pairs of stores that follow each other. 4768 int E = Stores.size(); 4769 for (int Idx = E - 1; Idx >= 0; --Idx) { 4770 // If a store has multiple consecutive store candidates, search according 4771 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 4772 // This is because usually pairing with immediate succeeding or preceding 4773 // candidate create the best chance to find slp vectorization opportunity. 4774 for (int Offset = 1, F = std::max(E - Idx, Idx + 1); Offset < F; ++Offset) 4775 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 4776 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 4777 break; 4778 } 4779 4780 // For stores that start but don't end a link in the chain: 4781 for (auto *SI : llvm::reverse(Heads)) { 4782 if (Tails.count(SI)) 4783 continue; 4784 4785 // We found a store instr that starts a chain. Now follow the chain and try 4786 // to vectorize it. 4787 BoUpSLP::ValueList Operands; 4788 StoreInst *I = SI; 4789 // Collect the chain into a list. 4790 while ((Tails.count(I) || Heads.count(I)) && !VectorizedStores.count(I)) { 4791 Operands.push_back(I); 4792 // Move to the next value in the chain. 4793 I = ConsecutiveChain[I]; 4794 } 4795 4796 // FIXME: Is division-by-2 the correct step? Should we assert that the 4797 // register size is a power-of-2? 4798 for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize(); 4799 Size /= 2) { 4800 if (vectorizeStoreChain(Operands, R, Size)) { 4801 // Mark the vectorized stores so that we don't vectorize them again. 4802 VectorizedStores.insert(Operands.begin(), Operands.end()); 4803 Changed = true; 4804 break; 4805 } 4806 } 4807 } 4808 4809 return Changed; 4810 } 4811 4812 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 4813 // Initialize the collections. We will make a single pass over the block. 4814 Stores.clear(); 4815 GEPs.clear(); 4816 4817 // Visit the store and getelementptr instructions in BB and organize them in 4818 // Stores and GEPs according to the underlying objects of their pointer 4819 // operands. 4820 for (Instruction &I : *BB) { 4821 // Ignore store instructions that are volatile or have a pointer operand 4822 // that doesn't point to a scalar type. 4823 if (auto *SI = dyn_cast<StoreInst>(&I)) { 4824 if (!SI->isSimple()) 4825 continue; 4826 if (!isValidElementType(SI->getValueOperand()->getType())) 4827 continue; 4828 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); 4829 } 4830 4831 // Ignore getelementptr instructions that have more than one index, a 4832 // constant index, or a pointer operand that doesn't point to a scalar 4833 // type. 4834 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 4835 auto Idx = GEP->idx_begin()->get(); 4836 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 4837 continue; 4838 if (!isValidElementType(Idx->getType())) 4839 continue; 4840 if (GEP->getType()->isVectorTy()) 4841 continue; 4842 GEPs[GEP->getPointerOperand()].push_back(GEP); 4843 } 4844 } 4845 } 4846 4847 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 4848 if (!A || !B) 4849 return false; 4850 Value *VL[] = { A, B }; 4851 return tryToVectorizeList(VL, R, /*UserCost=*/0, true); 4852 } 4853 4854 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 4855 int UserCost, bool AllowReorder) { 4856 if (VL.size() < 2) 4857 return false; 4858 4859 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 4860 << VL.size() << ".\n"); 4861 4862 // Check that all of the parts are scalar instructions of the same type, 4863 // we permit an alternate opcode via InstructionsState. 4864 InstructionsState S = getSameOpcode(VL); 4865 if (!S.getOpcode()) 4866 return false; 4867 4868 Instruction *I0 = cast<Instruction>(S.OpValue); 4869 unsigned Sz = R.getVectorElementSize(I0); 4870 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 4871 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 4872 if (MaxVF < 2) { 4873 R.getORE()->emit([&]() { 4874 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 4875 << "Cannot SLP vectorize list: vectorization factor " 4876 << "less than 2 is not supported"; 4877 }); 4878 return false; 4879 } 4880 4881 for (Value *V : VL) { 4882 Type *Ty = V->getType(); 4883 if (!isValidElementType(Ty)) { 4884 // NOTE: the following will give user internal llvm type name, which may 4885 // not be useful. 4886 R.getORE()->emit([&]() { 4887 std::string type_str; 4888 llvm::raw_string_ostream rso(type_str); 4889 Ty->print(rso); 4890 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 4891 << "Cannot SLP vectorize list: type " 4892 << rso.str() + " is unsupported by vectorizer"; 4893 }); 4894 return false; 4895 } 4896 } 4897 4898 bool Changed = false; 4899 bool CandidateFound = false; 4900 int MinCost = SLPCostThreshold; 4901 4902 // Keep track of values that were deleted by vectorizing in the loop below. 4903 SmallVector<WeakTrackingVH, 8> TrackValues(VL.begin(), VL.end()); 4904 4905 unsigned NextInst = 0, MaxInst = VL.size(); 4906 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; 4907 VF /= 2) { 4908 // No actual vectorization should happen, if number of parts is the same as 4909 // provided vectorization factor (i.e. the scalar type is used for vector 4910 // code during codegen). 4911 auto *VecTy = VectorType::get(VL[0]->getType(), VF); 4912 if (TTI->getNumberOfParts(VecTy) == VF) 4913 continue; 4914 for (unsigned I = NextInst; I < MaxInst; ++I) { 4915 unsigned OpsWidth = 0; 4916 4917 if (I + VF > MaxInst) 4918 OpsWidth = MaxInst - I; 4919 else 4920 OpsWidth = VF; 4921 4922 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 4923 break; 4924 4925 // Check that a previous iteration of this loop did not delete the Value. 4926 if (hasValueBeenRAUWed(VL, TrackValues, I, OpsWidth)) 4927 continue; 4928 4929 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 4930 << "\n"); 4931 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 4932 4933 R.buildTree(Ops); 4934 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 4935 // TODO: check if we can allow reordering for more cases. 4936 if (AllowReorder && Order) { 4937 // TODO: reorder tree nodes without tree rebuilding. 4938 // Conceptually, there is nothing actually preventing us from trying to 4939 // reorder a larger list. In fact, we do exactly this when vectorizing 4940 // reductions. However, at this point, we only expect to get here when 4941 // there are exactly two operations. 4942 assert(Ops.size() == 2); 4943 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 4944 R.buildTree(ReorderedOps, None); 4945 } 4946 if (R.isTreeTinyAndNotFullyVectorizable()) 4947 continue; 4948 4949 R.computeMinimumValueSizes(); 4950 int Cost = R.getTreeCost() - UserCost; 4951 CandidateFound = true; 4952 MinCost = std::min(MinCost, Cost); 4953 4954 if (Cost < -SLPCostThreshold) { 4955 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 4956 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 4957 cast<Instruction>(Ops[0])) 4958 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 4959 << " and with tree size " 4960 << ore::NV("TreeSize", R.getTreeSize())); 4961 4962 R.vectorizeTree(); 4963 // Move to the next bundle. 4964 I += VF - 1; 4965 NextInst = I + 1; 4966 Changed = true; 4967 } 4968 } 4969 } 4970 4971 if (!Changed && CandidateFound) { 4972 R.getORE()->emit([&]() { 4973 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 4974 << "List vectorization was possible but not beneficial with cost " 4975 << ore::NV("Cost", MinCost) << " >= " 4976 << ore::NV("Treshold", -SLPCostThreshold); 4977 }); 4978 } else if (!Changed) { 4979 R.getORE()->emit([&]() { 4980 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 4981 << "Cannot SLP vectorize list: vectorization was impossible" 4982 << " with available vectorization factors"; 4983 }); 4984 } 4985 return Changed; 4986 } 4987 4988 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 4989 if (!I) 4990 return false; 4991 4992 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 4993 return false; 4994 4995 Value *P = I->getParent(); 4996 4997 // Vectorize in current basic block only. 4998 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 4999 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 5000 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 5001 return false; 5002 5003 // Try to vectorize V. 5004 if (tryToVectorizePair(Op0, Op1, R)) 5005 return true; 5006 5007 auto *A = dyn_cast<BinaryOperator>(Op0); 5008 auto *B = dyn_cast<BinaryOperator>(Op1); 5009 // Try to skip B. 5010 if (B && B->hasOneUse()) { 5011 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 5012 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 5013 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 5014 return true; 5015 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 5016 return true; 5017 } 5018 5019 // Try to skip A. 5020 if (A && A->hasOneUse()) { 5021 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 5022 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 5023 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 5024 return true; 5025 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 5026 return true; 5027 } 5028 return false; 5029 } 5030 5031 /// Generate a shuffle mask to be used in a reduction tree. 5032 /// 5033 /// \param VecLen The length of the vector to be reduced. 5034 /// \param NumEltsToRdx The number of elements that should be reduced in the 5035 /// vector. 5036 /// \param IsPairwise Whether the reduction is a pairwise or splitting 5037 /// reduction. A pairwise reduction will generate a mask of 5038 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 5039 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 5040 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 5041 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 5042 bool IsPairwise, bool IsLeft, 5043 IRBuilder<> &Builder) { 5044 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 5045 5046 SmallVector<Constant *, 32> ShuffleMask( 5047 VecLen, UndefValue::get(Builder.getInt32Ty())); 5048 5049 if (IsPairwise) 5050 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 5051 for (unsigned i = 0; i != NumEltsToRdx; ++i) 5052 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 5053 else 5054 // Move the upper half of the vector to the lower half. 5055 for (unsigned i = 0; i != NumEltsToRdx; ++i) 5056 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 5057 5058 return ConstantVector::get(ShuffleMask); 5059 } 5060 5061 namespace { 5062 5063 /// Model horizontal reductions. 5064 /// 5065 /// A horizontal reduction is a tree of reduction operations (currently add and 5066 /// fadd) that has operations that can be put into a vector as its leaf. 5067 /// For example, this tree: 5068 /// 5069 /// mul mul mul mul 5070 /// \ / \ / 5071 /// + + 5072 /// \ / 5073 /// + 5074 /// This tree has "mul" as its reduced values and "+" as its reduction 5075 /// operations. A reduction might be feeding into a store or a binary operation 5076 /// feeding a phi. 5077 /// ... 5078 /// \ / 5079 /// + 5080 /// | 5081 /// phi += 5082 /// 5083 /// Or: 5084 /// ... 5085 /// \ / 5086 /// + 5087 /// | 5088 /// *p = 5089 /// 5090 class HorizontalReduction { 5091 using ReductionOpsType = SmallVector<Value *, 16>; 5092 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 5093 ReductionOpsListType ReductionOps; 5094 SmallVector<Value *, 32> ReducedVals; 5095 // Use map vector to make stable output. 5096 MapVector<Instruction *, Value *> ExtraArgs; 5097 5098 /// Kind of the reduction data. 5099 enum ReductionKind { 5100 RK_None, /// Not a reduction. 5101 RK_Arithmetic, /// Binary reduction data. 5102 RK_Min, /// Minimum reduction data. 5103 RK_UMin, /// Unsigned minimum reduction data. 5104 RK_Max, /// Maximum reduction data. 5105 RK_UMax, /// Unsigned maximum reduction data. 5106 }; 5107 5108 /// Contains info about operation, like its opcode, left and right operands. 5109 class OperationData { 5110 /// Opcode of the instruction. 5111 unsigned Opcode = 0; 5112 5113 /// Left operand of the reduction operation. 5114 Value *LHS = nullptr; 5115 5116 /// Right operand of the reduction operation. 5117 Value *RHS = nullptr; 5118 5119 /// Kind of the reduction operation. 5120 ReductionKind Kind = RK_None; 5121 5122 /// True if float point min/max reduction has no NaNs. 5123 bool NoNaN = false; 5124 5125 /// Checks if the reduction operation can be vectorized. 5126 bool isVectorizable() const { 5127 return LHS && RHS && 5128 // We currently only support add/mul/logical && min/max reductions. 5129 ((Kind == RK_Arithmetic && 5130 (Opcode == Instruction::Add || Opcode == Instruction::FAdd || 5131 Opcode == Instruction::Mul || Opcode == Instruction::FMul || 5132 Opcode == Instruction::And || Opcode == Instruction::Or || 5133 Opcode == Instruction::Xor)) || 5134 ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 5135 (Kind == RK_Min || Kind == RK_Max)) || 5136 (Opcode == Instruction::ICmp && 5137 (Kind == RK_UMin || Kind == RK_UMax))); 5138 } 5139 5140 /// Creates reduction operation with the current opcode. 5141 Value *createOp(IRBuilder<> &Builder, const Twine &Name) const { 5142 assert(isVectorizable() && 5143 "Expected add|fadd or min/max reduction operation."); 5144 Value *Cmp; 5145 switch (Kind) { 5146 case RK_Arithmetic: 5147 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS, 5148 Name); 5149 case RK_Min: 5150 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS) 5151 : Builder.CreateFCmpOLT(LHS, RHS); 5152 break; 5153 case RK_Max: 5154 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS) 5155 : Builder.CreateFCmpOGT(LHS, RHS); 5156 break; 5157 case RK_UMin: 5158 assert(Opcode == Instruction::ICmp && "Expected integer types."); 5159 Cmp = Builder.CreateICmpULT(LHS, RHS); 5160 break; 5161 case RK_UMax: 5162 assert(Opcode == Instruction::ICmp && "Expected integer types."); 5163 Cmp = Builder.CreateICmpUGT(LHS, RHS); 5164 break; 5165 case RK_None: 5166 llvm_unreachable("Unknown reduction operation."); 5167 } 5168 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 5169 } 5170 5171 public: 5172 explicit OperationData() = default; 5173 5174 /// Construction for reduced values. They are identified by opcode only and 5175 /// don't have associated LHS/RHS values. 5176 explicit OperationData(Value *V) { 5177 if (auto *I = dyn_cast<Instruction>(V)) 5178 Opcode = I->getOpcode(); 5179 } 5180 5181 /// Constructor for reduction operations with opcode and its left and 5182 /// right operands. 5183 OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind, 5184 bool NoNaN = false) 5185 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) { 5186 assert(Kind != RK_None && "One of the reduction operations is expected."); 5187 } 5188 5189 explicit operator bool() const { return Opcode; } 5190 5191 /// Get the index of the first operand. 5192 unsigned getFirstOperandIndex() const { 5193 assert(!!*this && "The opcode is not set."); 5194 switch (Kind) { 5195 case RK_Min: 5196 case RK_UMin: 5197 case RK_Max: 5198 case RK_UMax: 5199 return 1; 5200 case RK_Arithmetic: 5201 case RK_None: 5202 break; 5203 } 5204 return 0; 5205 } 5206 5207 /// Total number of operands in the reduction operation. 5208 unsigned getNumberOfOperands() const { 5209 assert(Kind != RK_None && !!*this && LHS && RHS && 5210 "Expected reduction operation."); 5211 switch (Kind) { 5212 case RK_Arithmetic: 5213 return 2; 5214 case RK_Min: 5215 case RK_UMin: 5216 case RK_Max: 5217 case RK_UMax: 5218 return 3; 5219 case RK_None: 5220 break; 5221 } 5222 llvm_unreachable("Reduction kind is not set"); 5223 } 5224 5225 /// Checks if the operation has the same parent as \p P. 5226 bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const { 5227 assert(Kind != RK_None && !!*this && LHS && RHS && 5228 "Expected reduction operation."); 5229 if (!IsRedOp) 5230 return I->getParent() == P; 5231 switch (Kind) { 5232 case RK_Arithmetic: 5233 // Arithmetic reduction operation must be used once only. 5234 return I->getParent() == P; 5235 case RK_Min: 5236 case RK_UMin: 5237 case RK_Max: 5238 case RK_UMax: { 5239 // SelectInst must be used twice while the condition op must have single 5240 // use only. 5241 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition()); 5242 return I->getParent() == P && Cmp && Cmp->getParent() == P; 5243 } 5244 case RK_None: 5245 break; 5246 } 5247 llvm_unreachable("Reduction kind is not set"); 5248 } 5249 /// Expected number of uses for reduction operations/reduced values. 5250 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const { 5251 assert(Kind != RK_None && !!*this && LHS && RHS && 5252 "Expected reduction operation."); 5253 switch (Kind) { 5254 case RK_Arithmetic: 5255 return I->hasOneUse(); 5256 case RK_Min: 5257 case RK_UMin: 5258 case RK_Max: 5259 case RK_UMax: 5260 return I->hasNUses(2) && 5261 (!IsReductionOp || 5262 cast<SelectInst>(I)->getCondition()->hasOneUse()); 5263 case RK_None: 5264 break; 5265 } 5266 llvm_unreachable("Reduction kind is not set"); 5267 } 5268 5269 /// Initializes the list of reduction operations. 5270 void initReductionOps(ReductionOpsListType &ReductionOps) { 5271 assert(Kind != RK_None && !!*this && LHS && RHS && 5272 "Expected reduction operation."); 5273 switch (Kind) { 5274 case RK_Arithmetic: 5275 ReductionOps.assign(1, ReductionOpsType()); 5276 break; 5277 case RK_Min: 5278 case RK_UMin: 5279 case RK_Max: 5280 case RK_UMax: 5281 ReductionOps.assign(2, ReductionOpsType()); 5282 break; 5283 case RK_None: 5284 llvm_unreachable("Reduction kind is not set"); 5285 } 5286 } 5287 /// Add all reduction operations for the reduction instruction \p I. 5288 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) { 5289 assert(Kind != RK_None && !!*this && LHS && RHS && 5290 "Expected reduction operation."); 5291 switch (Kind) { 5292 case RK_Arithmetic: 5293 ReductionOps[0].emplace_back(I); 5294 break; 5295 case RK_Min: 5296 case RK_UMin: 5297 case RK_Max: 5298 case RK_UMax: 5299 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 5300 ReductionOps[1].emplace_back(I); 5301 break; 5302 case RK_None: 5303 llvm_unreachable("Reduction kind is not set"); 5304 } 5305 } 5306 5307 /// Checks if instruction is associative and can be vectorized. 5308 bool isAssociative(Instruction *I) const { 5309 assert(Kind != RK_None && *this && LHS && RHS && 5310 "Expected reduction operation."); 5311 switch (Kind) { 5312 case RK_Arithmetic: 5313 return I->isAssociative(); 5314 case RK_Min: 5315 case RK_Max: 5316 return Opcode == Instruction::ICmp || 5317 cast<Instruction>(I->getOperand(0))->isFast(); 5318 case RK_UMin: 5319 case RK_UMax: 5320 assert(Opcode == Instruction::ICmp && 5321 "Only integer compare operation is expected."); 5322 return true; 5323 case RK_None: 5324 break; 5325 } 5326 llvm_unreachable("Reduction kind is not set"); 5327 } 5328 5329 /// Checks if the reduction operation can be vectorized. 5330 bool isVectorizable(Instruction *I) const { 5331 return isVectorizable() && isAssociative(I); 5332 } 5333 5334 /// Checks if two operation data are both a reduction op or both a reduced 5335 /// value. 5336 bool operator==(const OperationData &OD) { 5337 assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) && 5338 "One of the comparing operations is incorrect."); 5339 return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode); 5340 } 5341 bool operator!=(const OperationData &OD) { return !(*this == OD); } 5342 void clear() { 5343 Opcode = 0; 5344 LHS = nullptr; 5345 RHS = nullptr; 5346 Kind = RK_None; 5347 NoNaN = false; 5348 } 5349 5350 /// Get the opcode of the reduction operation. 5351 unsigned getOpcode() const { 5352 assert(isVectorizable() && "Expected vectorizable operation."); 5353 return Opcode; 5354 } 5355 5356 /// Get kind of reduction data. 5357 ReductionKind getKind() const { return Kind; } 5358 Value *getLHS() const { return LHS; } 5359 Value *getRHS() const { return RHS; } 5360 Type *getConditionType() const { 5361 switch (Kind) { 5362 case RK_Arithmetic: 5363 return nullptr; 5364 case RK_Min: 5365 case RK_Max: 5366 case RK_UMin: 5367 case RK_UMax: 5368 return CmpInst::makeCmpResultType(LHS->getType()); 5369 case RK_None: 5370 break; 5371 } 5372 llvm_unreachable("Reduction kind is not set"); 5373 } 5374 5375 /// Creates reduction operation with the current opcode with the IR flags 5376 /// from \p ReductionOps. 5377 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 5378 const ReductionOpsListType &ReductionOps) const { 5379 assert(isVectorizable() && 5380 "Expected add|fadd or min/max reduction operation."); 5381 auto *Op = createOp(Builder, Name); 5382 switch (Kind) { 5383 case RK_Arithmetic: 5384 propagateIRFlags(Op, ReductionOps[0]); 5385 return Op; 5386 case RK_Min: 5387 case RK_Max: 5388 case RK_UMin: 5389 case RK_UMax: 5390 if (auto *SI = dyn_cast<SelectInst>(Op)) 5391 propagateIRFlags(SI->getCondition(), ReductionOps[0]); 5392 propagateIRFlags(Op, ReductionOps[1]); 5393 return Op; 5394 case RK_None: 5395 break; 5396 } 5397 llvm_unreachable("Unknown reduction operation."); 5398 } 5399 /// Creates reduction operation with the current opcode with the IR flags 5400 /// from \p I. 5401 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 5402 Instruction *I) const { 5403 assert(isVectorizable() && 5404 "Expected add|fadd or min/max reduction operation."); 5405 auto *Op = createOp(Builder, Name); 5406 switch (Kind) { 5407 case RK_Arithmetic: 5408 propagateIRFlags(Op, I); 5409 return Op; 5410 case RK_Min: 5411 case RK_Max: 5412 case RK_UMin: 5413 case RK_UMax: 5414 if (auto *SI = dyn_cast<SelectInst>(Op)) { 5415 propagateIRFlags(SI->getCondition(), 5416 cast<SelectInst>(I)->getCondition()); 5417 } 5418 propagateIRFlags(Op, I); 5419 return Op; 5420 case RK_None: 5421 break; 5422 } 5423 llvm_unreachable("Unknown reduction operation."); 5424 } 5425 5426 TargetTransformInfo::ReductionFlags getFlags() const { 5427 TargetTransformInfo::ReductionFlags Flags; 5428 Flags.NoNaN = NoNaN; 5429 switch (Kind) { 5430 case RK_Arithmetic: 5431 break; 5432 case RK_Min: 5433 Flags.IsSigned = Opcode == Instruction::ICmp; 5434 Flags.IsMaxOp = false; 5435 break; 5436 case RK_Max: 5437 Flags.IsSigned = Opcode == Instruction::ICmp; 5438 Flags.IsMaxOp = true; 5439 break; 5440 case RK_UMin: 5441 Flags.IsSigned = false; 5442 Flags.IsMaxOp = false; 5443 break; 5444 case RK_UMax: 5445 Flags.IsSigned = false; 5446 Flags.IsMaxOp = true; 5447 break; 5448 case RK_None: 5449 llvm_unreachable("Reduction kind is not set"); 5450 } 5451 return Flags; 5452 } 5453 }; 5454 5455 WeakTrackingVH ReductionRoot; 5456 5457 /// The operation data of the reduction operation. 5458 OperationData ReductionData; 5459 5460 /// The operation data of the values we perform a reduction on. 5461 OperationData ReducedValueData; 5462 5463 /// Should we model this reduction as a pairwise reduction tree or a tree that 5464 /// splits the vector in halves and adds those halves. 5465 bool IsPairwiseReduction = false; 5466 5467 /// Checks if the ParentStackElem.first should be marked as a reduction 5468 /// operation with an extra argument or as extra argument itself. 5469 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 5470 Value *ExtraArg) { 5471 if (ExtraArgs.count(ParentStackElem.first)) { 5472 ExtraArgs[ParentStackElem.first] = nullptr; 5473 // We ran into something like: 5474 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 5475 // The whole ParentStackElem.first should be considered as an extra value 5476 // in this case. 5477 // Do not perform analysis of remaining operands of ParentStackElem.first 5478 // instruction, this whole instruction is an extra argument. 5479 ParentStackElem.second = ParentStackElem.first->getNumOperands(); 5480 } else { 5481 // We ran into something like: 5482 // ParentStackElem.first += ... + ExtraArg + ... 5483 ExtraArgs[ParentStackElem.first] = ExtraArg; 5484 } 5485 } 5486 5487 static OperationData getOperationData(Value *V) { 5488 if (!V) 5489 return OperationData(); 5490 5491 Value *LHS; 5492 Value *RHS; 5493 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) { 5494 return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS, 5495 RK_Arithmetic); 5496 } 5497 if (auto *Select = dyn_cast<SelectInst>(V)) { 5498 // Look for a min/max pattern. 5499 if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5500 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 5501 } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5502 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 5503 } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) || 5504 m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 5505 return OperationData( 5506 Instruction::FCmp, LHS, RHS, RK_Min, 5507 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 5508 } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5509 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 5510 } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5511 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 5512 } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) || 5513 m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 5514 return OperationData( 5515 Instruction::FCmp, LHS, RHS, RK_Max, 5516 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 5517 } else { 5518 // Try harder: look for min/max pattern based on instructions producing 5519 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 5520 // During the intermediate stages of SLP, it's very common to have 5521 // pattern like this (since optimizeGatherSequence is run only once 5522 // at the end): 5523 // %1 = extractelement <2 x i32> %a, i32 0 5524 // %2 = extractelement <2 x i32> %a, i32 1 5525 // %cond = icmp sgt i32 %1, %2 5526 // %3 = extractelement <2 x i32> %a, i32 0 5527 // %4 = extractelement <2 x i32> %a, i32 1 5528 // %select = select i1 %cond, i32 %3, i32 %4 5529 CmpInst::Predicate Pred; 5530 Instruction *L1; 5531 Instruction *L2; 5532 5533 LHS = Select->getTrueValue(); 5534 RHS = Select->getFalseValue(); 5535 Value *Cond = Select->getCondition(); 5536 5537 // TODO: Support inverse predicates. 5538 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 5539 if (!isa<ExtractElementInst>(RHS) || 5540 !L2->isIdenticalTo(cast<Instruction>(RHS))) 5541 return OperationData(V); 5542 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 5543 if (!isa<ExtractElementInst>(LHS) || 5544 !L1->isIdenticalTo(cast<Instruction>(LHS))) 5545 return OperationData(V); 5546 } else { 5547 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 5548 return OperationData(V); 5549 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 5550 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 5551 !L2->isIdenticalTo(cast<Instruction>(RHS))) 5552 return OperationData(V); 5553 } 5554 switch (Pred) { 5555 default: 5556 return OperationData(V); 5557 5558 case CmpInst::ICMP_ULT: 5559 case CmpInst::ICMP_ULE: 5560 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 5561 5562 case CmpInst::ICMP_SLT: 5563 case CmpInst::ICMP_SLE: 5564 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 5565 5566 case CmpInst::FCMP_OLT: 5567 case CmpInst::FCMP_OLE: 5568 case CmpInst::FCMP_ULT: 5569 case CmpInst::FCMP_ULE: 5570 return OperationData(Instruction::FCmp, LHS, RHS, RK_Min, 5571 cast<Instruction>(Cond)->hasNoNaNs()); 5572 5573 case CmpInst::ICMP_UGT: 5574 case CmpInst::ICMP_UGE: 5575 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 5576 5577 case CmpInst::ICMP_SGT: 5578 case CmpInst::ICMP_SGE: 5579 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 5580 5581 case CmpInst::FCMP_OGT: 5582 case CmpInst::FCMP_OGE: 5583 case CmpInst::FCMP_UGT: 5584 case CmpInst::FCMP_UGE: 5585 return OperationData(Instruction::FCmp, LHS, RHS, RK_Max, 5586 cast<Instruction>(Cond)->hasNoNaNs()); 5587 } 5588 } 5589 } 5590 return OperationData(V); 5591 } 5592 5593 public: 5594 HorizontalReduction() = default; 5595 5596 /// Try to find a reduction tree. 5597 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 5598 assert((!Phi || is_contained(Phi->operands(), B)) && 5599 "Thi phi needs to use the binary operator"); 5600 5601 ReductionData = getOperationData(B); 5602 5603 // We could have a initial reductions that is not an add. 5604 // r *= v1 + v2 + v3 + v4 5605 // In such a case start looking for a tree rooted in the first '+'. 5606 if (Phi) { 5607 if (ReductionData.getLHS() == Phi) { 5608 Phi = nullptr; 5609 B = dyn_cast<Instruction>(ReductionData.getRHS()); 5610 ReductionData = getOperationData(B); 5611 } else if (ReductionData.getRHS() == Phi) { 5612 Phi = nullptr; 5613 B = dyn_cast<Instruction>(ReductionData.getLHS()); 5614 ReductionData = getOperationData(B); 5615 } 5616 } 5617 5618 if (!ReductionData.isVectorizable(B)) 5619 return false; 5620 5621 Type *Ty = B->getType(); 5622 if (!isValidElementType(Ty)) 5623 return false; 5624 if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy()) 5625 return false; 5626 5627 ReducedValueData.clear(); 5628 ReductionRoot = B; 5629 5630 // Post order traverse the reduction tree starting at B. We only handle true 5631 // trees containing only binary operators. 5632 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 5633 Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex())); 5634 ReductionData.initReductionOps(ReductionOps); 5635 while (!Stack.empty()) { 5636 Instruction *TreeN = Stack.back().first; 5637 unsigned EdgeToVist = Stack.back().second++; 5638 OperationData OpData = getOperationData(TreeN); 5639 bool IsReducedValue = OpData != ReductionData; 5640 5641 // Postorder vist. 5642 if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) { 5643 if (IsReducedValue) 5644 ReducedVals.push_back(TreeN); 5645 else { 5646 auto I = ExtraArgs.find(TreeN); 5647 if (I != ExtraArgs.end() && !I->second) { 5648 // Check if TreeN is an extra argument of its parent operation. 5649 if (Stack.size() <= 1) { 5650 // TreeN can't be an extra argument as it is a root reduction 5651 // operation. 5652 return false; 5653 } 5654 // Yes, TreeN is an extra argument, do not add it to a list of 5655 // reduction operations. 5656 // Stack[Stack.size() - 2] always points to the parent operation. 5657 markExtraArg(Stack[Stack.size() - 2], TreeN); 5658 ExtraArgs.erase(TreeN); 5659 } else 5660 ReductionData.addReductionOps(TreeN, ReductionOps); 5661 } 5662 // Retract. 5663 Stack.pop_back(); 5664 continue; 5665 } 5666 5667 // Visit left or right. 5668 Value *NextV = TreeN->getOperand(EdgeToVist); 5669 if (NextV != Phi) { 5670 auto *I = dyn_cast<Instruction>(NextV); 5671 OpData = getOperationData(I); 5672 // Continue analysis if the next operand is a reduction operation or 5673 // (possibly) a reduced value. If the reduced value opcode is not set, 5674 // the first met operation != reduction operation is considered as the 5675 // reduced value class. 5676 if (I && (!ReducedValueData || OpData == ReducedValueData || 5677 OpData == ReductionData)) { 5678 const bool IsReductionOperation = OpData == ReductionData; 5679 // Only handle trees in the current basic block. 5680 if (!ReductionData.hasSameParent(I, B->getParent(), 5681 IsReductionOperation)) { 5682 // I is an extra argument for TreeN (its parent operation). 5683 markExtraArg(Stack.back(), I); 5684 continue; 5685 } 5686 5687 // Each tree node needs to have minimal number of users except for the 5688 // ultimate reduction. 5689 if (!ReductionData.hasRequiredNumberOfUses(I, 5690 OpData == ReductionData) && 5691 I != B) { 5692 // I is an extra argument for TreeN (its parent operation). 5693 markExtraArg(Stack.back(), I); 5694 continue; 5695 } 5696 5697 if (IsReductionOperation) { 5698 // We need to be able to reassociate the reduction operations. 5699 if (!OpData.isAssociative(I)) { 5700 // I is an extra argument for TreeN (its parent operation). 5701 markExtraArg(Stack.back(), I); 5702 continue; 5703 } 5704 } else if (ReducedValueData && 5705 ReducedValueData != OpData) { 5706 // Make sure that the opcodes of the operations that we are going to 5707 // reduce match. 5708 // I is an extra argument for TreeN (its parent operation). 5709 markExtraArg(Stack.back(), I); 5710 continue; 5711 } else if (!ReducedValueData) 5712 ReducedValueData = OpData; 5713 5714 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex())); 5715 continue; 5716 } 5717 } 5718 // NextV is an extra argument for TreeN (its parent operation). 5719 markExtraArg(Stack.back(), NextV); 5720 } 5721 return true; 5722 } 5723 5724 /// Attempt to vectorize the tree found by 5725 /// matchAssociativeReduction. 5726 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 5727 if (ReducedVals.empty()) 5728 return false; 5729 5730 // If there is a sufficient number of reduction values, reduce 5731 // to a nearby power-of-2. Can safely generate oversized 5732 // vectors and rely on the backend to split them to legal sizes. 5733 unsigned NumReducedVals = ReducedVals.size(); 5734 if (NumReducedVals < 4) 5735 return false; 5736 5737 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 5738 5739 Value *VectorizedTree = nullptr; 5740 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 5741 FastMathFlags Unsafe; 5742 Unsafe.setFast(); 5743 Builder.setFastMathFlags(Unsafe); 5744 unsigned i = 0; 5745 5746 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 5747 // The same extra argument may be used several time, so log each attempt 5748 // to use it. 5749 for (auto &Pair : ExtraArgs) { 5750 assert(Pair.first && "DebugLoc must be set."); 5751 ExternallyUsedValues[Pair.second].push_back(Pair.first); 5752 } 5753 // The reduction root is used as the insertion point for new instructions, 5754 // so set it as externally used to prevent it from being deleted. 5755 ExternallyUsedValues[ReductionRoot]; 5756 SmallVector<Value *, 16> IgnoreList; 5757 for (auto &V : ReductionOps) 5758 IgnoreList.append(V.begin(), V.end()); 5759 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 5760 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth); 5761 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 5762 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 5763 // TODO: Handle orders of size less than number of elements in the vector. 5764 if (Order && Order->size() == VL.size()) { 5765 // TODO: reorder tree nodes without tree rebuilding. 5766 SmallVector<Value *, 4> ReorderedOps(VL.size()); 5767 llvm::transform(*Order, ReorderedOps.begin(), 5768 [VL](const unsigned Idx) { return VL[Idx]; }); 5769 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 5770 } 5771 if (V.isTreeTinyAndNotFullyVectorizable()) 5772 break; 5773 5774 V.computeMinimumValueSizes(); 5775 5776 // Estimate cost. 5777 int TreeCost = V.getTreeCost(); 5778 int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth); 5779 int Cost = TreeCost + ReductionCost; 5780 if (Cost >= -SLPCostThreshold) { 5781 V.getORE()->emit([&]() { 5782 return OptimizationRemarkMissed( 5783 SV_NAME, "HorSLPNotBeneficial", cast<Instruction>(VL[0])) 5784 << "Vectorizing horizontal reduction is possible" 5785 << "but not beneficial with cost " 5786 << ore::NV("Cost", Cost) << " and threshold " 5787 << ore::NV("Threshold", -SLPCostThreshold); 5788 }); 5789 break; 5790 } 5791 5792 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 5793 << Cost << ". (HorRdx)\n"); 5794 V.getORE()->emit([&]() { 5795 return OptimizationRemark( 5796 SV_NAME, "VectorizedHorizontalReduction", cast<Instruction>(VL[0])) 5797 << "Vectorized horizontal reduction with cost " 5798 << ore::NV("Cost", Cost) << " and with tree size " 5799 << ore::NV("TreeSize", V.getTreeSize()); 5800 }); 5801 5802 // Vectorize a tree. 5803 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 5804 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 5805 5806 // Emit a reduction. 5807 Builder.SetInsertPoint(cast<Instruction>(ReductionRoot)); 5808 Value *ReducedSubTree = 5809 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 5810 if (VectorizedTree) { 5811 Builder.SetCurrentDebugLocation(Loc); 5812 OperationData VectReductionData(ReductionData.getOpcode(), 5813 VectorizedTree, ReducedSubTree, 5814 ReductionData.getKind()); 5815 VectorizedTree = 5816 VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 5817 } else 5818 VectorizedTree = ReducedSubTree; 5819 i += ReduxWidth; 5820 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 5821 } 5822 5823 if (VectorizedTree) { 5824 // Finish the reduction. 5825 for (; i < NumReducedVals; ++i) { 5826 auto *I = cast<Instruction>(ReducedVals[i]); 5827 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 5828 OperationData VectReductionData(ReductionData.getOpcode(), 5829 VectorizedTree, I, 5830 ReductionData.getKind()); 5831 VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps); 5832 } 5833 for (auto &Pair : ExternallyUsedValues) { 5834 // Add each externally used value to the final reduction. 5835 for (auto *I : Pair.second) { 5836 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 5837 OperationData VectReductionData(ReductionData.getOpcode(), 5838 VectorizedTree, Pair.first, 5839 ReductionData.getKind()); 5840 VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I); 5841 } 5842 } 5843 // Update users. 5844 ReductionRoot->replaceAllUsesWith(VectorizedTree); 5845 } 5846 return VectorizedTree != nullptr; 5847 } 5848 5849 unsigned numReductionValues() const { 5850 return ReducedVals.size(); 5851 } 5852 5853 private: 5854 /// Calculate the cost of a reduction. 5855 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 5856 unsigned ReduxWidth) { 5857 Type *ScalarTy = FirstReducedVal->getType(); 5858 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 5859 5860 int PairwiseRdxCost; 5861 int SplittingRdxCost; 5862 switch (ReductionData.getKind()) { 5863 case RK_Arithmetic: 5864 PairwiseRdxCost = 5865 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 5866 /*IsPairwiseForm=*/true); 5867 SplittingRdxCost = 5868 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 5869 /*IsPairwiseForm=*/false); 5870 break; 5871 case RK_Min: 5872 case RK_Max: 5873 case RK_UMin: 5874 case RK_UMax: { 5875 Type *VecCondTy = CmpInst::makeCmpResultType(VecTy); 5876 bool IsUnsigned = ReductionData.getKind() == RK_UMin || 5877 ReductionData.getKind() == RK_UMax; 5878 PairwiseRdxCost = 5879 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 5880 /*IsPairwiseForm=*/true, IsUnsigned); 5881 SplittingRdxCost = 5882 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 5883 /*IsPairwiseForm=*/false, IsUnsigned); 5884 break; 5885 } 5886 case RK_None: 5887 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 5888 } 5889 5890 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 5891 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 5892 5893 int ScalarReduxCost; 5894 switch (ReductionData.getKind()) { 5895 case RK_Arithmetic: 5896 ScalarReduxCost = 5897 TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy); 5898 break; 5899 case RK_Min: 5900 case RK_Max: 5901 case RK_UMin: 5902 case RK_UMax: 5903 ScalarReduxCost = 5904 TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) + 5905 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 5906 CmpInst::makeCmpResultType(ScalarTy)); 5907 break; 5908 case RK_None: 5909 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 5910 } 5911 ScalarReduxCost *= (ReduxWidth - 1); 5912 5913 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 5914 << " for reduction that starts with " << *FirstReducedVal 5915 << " (It is a " 5916 << (IsPairwiseReduction ? "pairwise" : "splitting") 5917 << " reduction)\n"); 5918 5919 return VecReduxCost - ScalarReduxCost; 5920 } 5921 5922 /// Emit a horizontal reduction of the vectorized value. 5923 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 5924 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 5925 assert(VectorizedValue && "Need to have a vectorized tree node"); 5926 assert(isPowerOf2_32(ReduxWidth) && 5927 "We only handle power-of-two reductions for now"); 5928 5929 if (!IsPairwiseReduction) 5930 return createSimpleTargetReduction( 5931 Builder, TTI, ReductionData.getOpcode(), VectorizedValue, 5932 ReductionData.getFlags(), FastMathFlags::getFast(), 5933 ReductionOps.back()); 5934 5935 Value *TmpVec = VectorizedValue; 5936 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 5937 Value *LeftMask = 5938 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 5939 Value *RightMask = 5940 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 5941 5942 Value *LeftShuf = Builder.CreateShuffleVector( 5943 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 5944 Value *RightShuf = Builder.CreateShuffleVector( 5945 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 5946 "rdx.shuf.r"); 5947 OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf, 5948 RightShuf, ReductionData.getKind()); 5949 TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 5950 } 5951 5952 // The result is in the first element of the vector. 5953 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 5954 } 5955 }; 5956 5957 } // end anonymous namespace 5958 5959 /// Recognize construction of vectors like 5960 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 5961 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 5962 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 5963 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 5964 /// starting from the last insertelement instruction. 5965 /// 5966 /// Returns true if it matches 5967 static bool findBuildVector(InsertElementInst *LastInsertElem, 5968 TargetTransformInfo *TTI, 5969 SmallVectorImpl<Value *> &BuildVectorOpds, 5970 int &UserCost) { 5971 UserCost = 0; 5972 Value *V = nullptr; 5973 do { 5974 if (auto *CI = dyn_cast<ConstantInt>(LastInsertElem->getOperand(2))) { 5975 UserCost += TTI->getVectorInstrCost(Instruction::InsertElement, 5976 LastInsertElem->getType(), 5977 CI->getZExtValue()); 5978 } 5979 BuildVectorOpds.push_back(LastInsertElem->getOperand(1)); 5980 V = LastInsertElem->getOperand(0); 5981 if (isa<UndefValue>(V)) 5982 break; 5983 LastInsertElem = dyn_cast<InsertElementInst>(V); 5984 if (!LastInsertElem || !LastInsertElem->hasOneUse()) 5985 return false; 5986 } while (true); 5987 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 5988 return true; 5989 } 5990 5991 /// Like findBuildVector, but looks for construction of aggregate. 5992 /// 5993 /// \return true if it matches. 5994 static bool findBuildAggregate(InsertValueInst *IV, 5995 SmallVectorImpl<Value *> &BuildVectorOpds) { 5996 Value *V; 5997 do { 5998 BuildVectorOpds.push_back(IV->getInsertedValueOperand()); 5999 V = IV->getAggregateOperand(); 6000 if (isa<UndefValue>(V)) 6001 break; 6002 IV = dyn_cast<InsertValueInst>(V); 6003 if (!IV || !IV->hasOneUse()) 6004 return false; 6005 } while (true); 6006 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 6007 return true; 6008 } 6009 6010 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 6011 return V->getType() < V2->getType(); 6012 } 6013 6014 /// Try and get a reduction value from a phi node. 6015 /// 6016 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 6017 /// if they come from either \p ParentBB or a containing loop latch. 6018 /// 6019 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 6020 /// if not possible. 6021 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 6022 BasicBlock *ParentBB, LoopInfo *LI) { 6023 // There are situations where the reduction value is not dominated by the 6024 // reduction phi. Vectorizing such cases has been reported to cause 6025 // miscompiles. See PR25787. 6026 auto DominatedReduxValue = [&](Value *R) { 6027 return isa<Instruction>(R) && 6028 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 6029 }; 6030 6031 Value *Rdx = nullptr; 6032 6033 // Return the incoming value if it comes from the same BB as the phi node. 6034 if (P->getIncomingBlock(0) == ParentBB) { 6035 Rdx = P->getIncomingValue(0); 6036 } else if (P->getIncomingBlock(1) == ParentBB) { 6037 Rdx = P->getIncomingValue(1); 6038 } 6039 6040 if (Rdx && DominatedReduxValue(Rdx)) 6041 return Rdx; 6042 6043 // Otherwise, check whether we have a loop latch to look at. 6044 Loop *BBL = LI->getLoopFor(ParentBB); 6045 if (!BBL) 6046 return nullptr; 6047 BasicBlock *BBLatch = BBL->getLoopLatch(); 6048 if (!BBLatch) 6049 return nullptr; 6050 6051 // There is a loop latch, return the incoming value if it comes from 6052 // that. This reduction pattern occasionally turns up. 6053 if (P->getIncomingBlock(0) == BBLatch) { 6054 Rdx = P->getIncomingValue(0); 6055 } else if (P->getIncomingBlock(1) == BBLatch) { 6056 Rdx = P->getIncomingValue(1); 6057 } 6058 6059 if (Rdx && DominatedReduxValue(Rdx)) 6060 return Rdx; 6061 6062 return nullptr; 6063 } 6064 6065 /// Attempt to reduce a horizontal reduction. 6066 /// If it is legal to match a horizontal reduction feeding the phi node \a P 6067 /// with reduction operators \a Root (or one of its operands) in a basic block 6068 /// \a BB, then check if it can be done. If horizontal reduction is not found 6069 /// and root instruction is a binary operation, vectorization of the operands is 6070 /// attempted. 6071 /// \returns true if a horizontal reduction was matched and reduced or operands 6072 /// of one of the binary instruction were vectorized. 6073 /// \returns false if a horizontal reduction was not matched (or not possible) 6074 /// or no vectorization of any binary operation feeding \a Root instruction was 6075 /// performed. 6076 static bool tryToVectorizeHorReductionOrInstOperands( 6077 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 6078 TargetTransformInfo *TTI, 6079 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 6080 if (!ShouldVectorizeHor) 6081 return false; 6082 6083 if (!Root) 6084 return false; 6085 6086 if (Root->getParent() != BB || isa<PHINode>(Root)) 6087 return false; 6088 // Start analysis starting from Root instruction. If horizontal reduction is 6089 // found, try to vectorize it. If it is not a horizontal reduction or 6090 // vectorization is not possible or not effective, and currently analyzed 6091 // instruction is a binary operation, try to vectorize the operands, using 6092 // pre-order DFS traversal order. If the operands were not vectorized, repeat 6093 // the same procedure considering each operand as a possible root of the 6094 // horizontal reduction. 6095 // Interrupt the process if the Root instruction itself was vectorized or all 6096 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 6097 SmallVector<std::pair<WeakTrackingVH, unsigned>, 8> Stack(1, {Root, 0}); 6098 SmallPtrSet<Value *, 8> VisitedInstrs; 6099 bool Res = false; 6100 while (!Stack.empty()) { 6101 Value *V; 6102 unsigned Level; 6103 std::tie(V, Level) = Stack.pop_back_val(); 6104 if (!V) 6105 continue; 6106 auto *Inst = dyn_cast<Instruction>(V); 6107 if (!Inst) 6108 continue; 6109 auto *BI = dyn_cast<BinaryOperator>(Inst); 6110 auto *SI = dyn_cast<SelectInst>(Inst); 6111 if (BI || SI) { 6112 HorizontalReduction HorRdx; 6113 if (HorRdx.matchAssociativeReduction(P, Inst)) { 6114 if (HorRdx.tryToReduce(R, TTI)) { 6115 Res = true; 6116 // Set P to nullptr to avoid re-analysis of phi node in 6117 // matchAssociativeReduction function unless this is the root node. 6118 P = nullptr; 6119 continue; 6120 } 6121 } 6122 if (P && BI) { 6123 Inst = dyn_cast<Instruction>(BI->getOperand(0)); 6124 if (Inst == P) 6125 Inst = dyn_cast<Instruction>(BI->getOperand(1)); 6126 if (!Inst) { 6127 // Set P to nullptr to avoid re-analysis of phi node in 6128 // matchAssociativeReduction function unless this is the root node. 6129 P = nullptr; 6130 continue; 6131 } 6132 } 6133 } 6134 // Set P to nullptr to avoid re-analysis of phi node in 6135 // matchAssociativeReduction function unless this is the root node. 6136 P = nullptr; 6137 if (Vectorize(Inst, R)) { 6138 Res = true; 6139 continue; 6140 } 6141 6142 // Try to vectorize operands. 6143 // Continue analysis for the instruction from the same basic block only to 6144 // save compile time. 6145 if (++Level < RecursionMaxDepth) 6146 for (auto *Op : Inst->operand_values()) 6147 if (VisitedInstrs.insert(Op).second) 6148 if (auto *I = dyn_cast<Instruction>(Op)) 6149 if (!isa<PHINode>(I) && I->getParent() == BB) 6150 Stack.emplace_back(Op, Level); 6151 } 6152 return Res; 6153 } 6154 6155 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 6156 BasicBlock *BB, BoUpSLP &R, 6157 TargetTransformInfo *TTI) { 6158 if (!V) 6159 return false; 6160 auto *I = dyn_cast<Instruction>(V); 6161 if (!I) 6162 return false; 6163 6164 if (!isa<BinaryOperator>(I)) 6165 P = nullptr; 6166 // Try to match and vectorize a horizontal reduction. 6167 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 6168 return tryToVectorize(I, R); 6169 }; 6170 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 6171 ExtraVectorization); 6172 } 6173 6174 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 6175 BasicBlock *BB, BoUpSLP &R) { 6176 const DataLayout &DL = BB->getModule()->getDataLayout(); 6177 if (!R.canMapToVector(IVI->getType(), DL)) 6178 return false; 6179 6180 SmallVector<Value *, 16> BuildVectorOpds; 6181 if (!findBuildAggregate(IVI, BuildVectorOpds)) 6182 return false; 6183 6184 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 6185 // Aggregate value is unlikely to be processed in vector register, we need to 6186 // extract scalars into scalar registers, so NeedExtraction is set true. 6187 return tryToVectorizeList(BuildVectorOpds, R); 6188 } 6189 6190 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 6191 BasicBlock *BB, BoUpSLP &R) { 6192 int UserCost; 6193 SmallVector<Value *, 16> BuildVectorOpds; 6194 if (!findBuildVector(IEI, TTI, BuildVectorOpds, UserCost) || 6195 (llvm::all_of(BuildVectorOpds, 6196 [](Value *V) { return isa<ExtractElementInst>(V); }) && 6197 isShuffle(BuildVectorOpds))) 6198 return false; 6199 6200 // Vectorize starting with the build vector operands ignoring the BuildVector 6201 // instructions for the purpose of scheduling and user extraction. 6202 return tryToVectorizeList(BuildVectorOpds, R, UserCost); 6203 } 6204 6205 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 6206 BoUpSLP &R) { 6207 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 6208 return true; 6209 6210 bool OpsChanged = false; 6211 for (int Idx = 0; Idx < 2; ++Idx) { 6212 OpsChanged |= 6213 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 6214 } 6215 return OpsChanged; 6216 } 6217 6218 bool SLPVectorizerPass::vectorizeSimpleInstructions( 6219 SmallVectorImpl<WeakVH> &Instructions, BasicBlock *BB, BoUpSLP &R) { 6220 bool OpsChanged = false; 6221 for (auto &VH : reverse(Instructions)) { 6222 auto *I = dyn_cast_or_null<Instruction>(VH); 6223 if (!I) 6224 continue; 6225 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 6226 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 6227 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 6228 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 6229 else if (auto *CI = dyn_cast<CmpInst>(I)) 6230 OpsChanged |= vectorizeCmpInst(CI, BB, R); 6231 } 6232 Instructions.clear(); 6233 return OpsChanged; 6234 } 6235 6236 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 6237 bool Changed = false; 6238 SmallVector<Value *, 4> Incoming; 6239 SmallPtrSet<Value *, 16> VisitedInstrs; 6240 6241 bool HaveVectorizedPhiNodes = true; 6242 while (HaveVectorizedPhiNodes) { 6243 HaveVectorizedPhiNodes = false; 6244 6245 // Collect the incoming values from the PHIs. 6246 Incoming.clear(); 6247 for (Instruction &I : *BB) { 6248 PHINode *P = dyn_cast<PHINode>(&I); 6249 if (!P) 6250 break; 6251 6252 if (!VisitedInstrs.count(P)) 6253 Incoming.push_back(P); 6254 } 6255 6256 // Sort by type. 6257 std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc); 6258 6259 // Try to vectorize elements base on their type. 6260 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 6261 E = Incoming.end(); 6262 IncIt != E;) { 6263 6264 // Look for the next elements with the same type. 6265 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 6266 while (SameTypeIt != E && 6267 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 6268 VisitedInstrs.insert(*SameTypeIt); 6269 ++SameTypeIt; 6270 } 6271 6272 // Try to vectorize them. 6273 unsigned NumElts = (SameTypeIt - IncIt); 6274 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 6275 << NumElts << ")\n"); 6276 // The order in which the phi nodes appear in the program does not matter. 6277 // So allow tryToVectorizeList to reorder them if it is beneficial. This 6278 // is done when there are exactly two elements since tryToVectorizeList 6279 // asserts that there are only two values when AllowReorder is true. 6280 bool AllowReorder = NumElts == 2; 6281 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, 6282 /*UserCost=*/0, AllowReorder)) { 6283 // Success start over because instructions might have been changed. 6284 HaveVectorizedPhiNodes = true; 6285 Changed = true; 6286 break; 6287 } 6288 6289 // Start over at the next instruction of a different type (or the end). 6290 IncIt = SameTypeIt; 6291 } 6292 } 6293 6294 VisitedInstrs.clear(); 6295 6296 SmallVector<WeakVH, 8> PostProcessInstructions; 6297 SmallDenseSet<Instruction *, 4> KeyNodes; 6298 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) { 6299 // We may go through BB multiple times so skip the one we have checked. 6300 if (!VisitedInstrs.insert(&*it).second) { 6301 if (it->use_empty() && KeyNodes.count(&*it) > 0 && 6302 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 6303 // We would like to start over since some instructions are deleted 6304 // and the iterator may become invalid value. 6305 Changed = true; 6306 it = BB->begin(); 6307 e = BB->end(); 6308 } 6309 continue; 6310 } 6311 6312 if (isa<DbgInfoIntrinsic>(it)) 6313 continue; 6314 6315 // Try to vectorize reductions that use PHINodes. 6316 if (PHINode *P = dyn_cast<PHINode>(it)) { 6317 // Check that the PHI is a reduction PHI. 6318 if (P->getNumIncomingValues() != 2) 6319 return Changed; 6320 6321 // Try to match and vectorize a horizontal reduction. 6322 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 6323 TTI)) { 6324 Changed = true; 6325 it = BB->begin(); 6326 e = BB->end(); 6327 continue; 6328 } 6329 continue; 6330 } 6331 6332 // Ran into an instruction without users, like terminator, or function call 6333 // with ignored return value, store. Ignore unused instructions (basing on 6334 // instruction type, except for CallInst and InvokeInst). 6335 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 6336 isa<InvokeInst>(it))) { 6337 KeyNodes.insert(&*it); 6338 bool OpsChanged = false; 6339 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 6340 for (auto *V : it->operand_values()) { 6341 // Try to match and vectorize a horizontal reduction. 6342 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 6343 } 6344 } 6345 // Start vectorization of post-process list of instructions from the 6346 // top-tree instructions to try to vectorize as many instructions as 6347 // possible. 6348 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 6349 if (OpsChanged) { 6350 // We would like to start over since some instructions are deleted 6351 // and the iterator may become invalid value. 6352 Changed = true; 6353 it = BB->begin(); 6354 e = BB->end(); 6355 continue; 6356 } 6357 } 6358 6359 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 6360 isa<InsertValueInst>(it)) 6361 PostProcessInstructions.push_back(&*it); 6362 } 6363 6364 return Changed; 6365 } 6366 6367 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 6368 auto Changed = false; 6369 for (auto &Entry : GEPs) { 6370 // If the getelementptr list has fewer than two elements, there's nothing 6371 // to do. 6372 if (Entry.second.size() < 2) 6373 continue; 6374 6375 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 6376 << Entry.second.size() << ".\n"); 6377 6378 // We process the getelementptr list in chunks of 16 (like we do for 6379 // stores) to minimize compile-time. 6380 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) { 6381 auto Len = std::min<unsigned>(BE - BI, 16); 6382 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 6383 6384 // Initialize a set a candidate getelementptrs. Note that we use a 6385 // SetVector here to preserve program order. If the index computations 6386 // are vectorizable and begin with loads, we want to minimize the chance 6387 // of having to reorder them later. 6388 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 6389 6390 // Some of the candidates may have already been vectorized after we 6391 // initially collected them. If so, the WeakTrackingVHs will have 6392 // nullified the 6393 // values, so remove them from the set of candidates. 6394 Candidates.remove(nullptr); 6395 6396 // Remove from the set of candidates all pairs of getelementptrs with 6397 // constant differences. Such getelementptrs are likely not good 6398 // candidates for vectorization in a bottom-up phase since one can be 6399 // computed from the other. We also ensure all candidate getelementptr 6400 // indices are unique. 6401 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 6402 auto *GEPI = cast<GetElementPtrInst>(GEPList[I]); 6403 if (!Candidates.count(GEPI)) 6404 continue; 6405 auto *SCEVI = SE->getSCEV(GEPList[I]); 6406 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 6407 auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]); 6408 auto *SCEVJ = SE->getSCEV(GEPList[J]); 6409 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 6410 Candidates.remove(GEPList[I]); 6411 Candidates.remove(GEPList[J]); 6412 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 6413 Candidates.remove(GEPList[J]); 6414 } 6415 } 6416 } 6417 6418 // We break out of the above computation as soon as we know there are 6419 // fewer than two candidates remaining. 6420 if (Candidates.size() < 2) 6421 continue; 6422 6423 // Add the single, non-constant index of each candidate to the bundle. We 6424 // ensured the indices met these constraints when we originally collected 6425 // the getelementptrs. 6426 SmallVector<Value *, 16> Bundle(Candidates.size()); 6427 auto BundleIndex = 0u; 6428 for (auto *V : Candidates) { 6429 auto *GEP = cast<GetElementPtrInst>(V); 6430 auto *GEPIdx = GEP->idx_begin()->get(); 6431 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 6432 Bundle[BundleIndex++] = GEPIdx; 6433 } 6434 6435 // Try and vectorize the indices. We are currently only interested in 6436 // gather-like cases of the form: 6437 // 6438 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 6439 // 6440 // where the loads of "a", the loads of "b", and the subtractions can be 6441 // performed in parallel. It's likely that detecting this pattern in a 6442 // bottom-up phase will be simpler and less costly than building a 6443 // full-blown top-down phase beginning at the consecutive loads. 6444 Changed |= tryToVectorizeList(Bundle, R); 6445 } 6446 } 6447 return Changed; 6448 } 6449 6450 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 6451 bool Changed = false; 6452 // Attempt to sort and vectorize each of the store-groups. 6453 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 6454 ++it) { 6455 if (it->second.size() < 2) 6456 continue; 6457 6458 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 6459 << it->second.size() << ".\n"); 6460 6461 // Process the stores in chunks of 16. 6462 // TODO: The limit of 16 inhibits greater vectorization factors. 6463 // For example, AVX2 supports v32i8. Increasing this limit, however, 6464 // may cause a significant compile-time increase. 6465 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI += 16) { 6466 unsigned Len = std::min<unsigned>(CE - CI, 16); 6467 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R); 6468 } 6469 } 6470 return Changed; 6471 } 6472 6473 char SLPVectorizer::ID = 0; 6474 6475 static const char lv_name[] = "SLP Vectorizer"; 6476 6477 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 6478 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6479 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6480 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6481 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6482 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 6483 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6484 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6485 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 6486 6487 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 6488