1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 45 #include "llvm/Analysis/ScalarEvolution.h" 46 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/Analysis/VectorUtils.h" 51 #include "llvm/IR/Attributes.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DebugLoc.h" 57 #include "llvm/IR/DerivedTypes.h" 58 #include "llvm/IR/Dominators.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/IRBuilder.h" 61 #include "llvm/IR/InstrTypes.h" 62 #include "llvm/IR/Instruction.h" 63 #include "llvm/IR/Instructions.h" 64 #include "llvm/IR/IntrinsicInst.h" 65 #include "llvm/IR/Intrinsics.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/NoFolder.h" 68 #include "llvm/IR/Operator.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/Verifier.h" 76 #include "llvm/InitializePasses.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/DOTGraphTraits.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/GraphWriter.h" 85 #include "llvm/Support/InstructionCost.h" 86 #include "llvm/Support/KnownBits.h" 87 #include "llvm/Support/MathExtras.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 90 #include "llvm/Transforms/Utils/LoopUtils.h" 91 #include "llvm/Transforms/Vectorize.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <memory> 97 #include <set> 98 #include <string> 99 #include <tuple> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 using namespace slpvectorizer; 106 107 #define SV_NAME "slp-vectorizer" 108 #define DEBUG_TYPE "SLP" 109 110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 111 112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 113 cl::desc("Run the SLP vectorization passes")); 114 115 static cl::opt<int> 116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 117 cl::desc("Only vectorize if you gain more than this " 118 "number ")); 119 120 static cl::opt<bool> 121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 122 cl::desc("Attempt to vectorize horizontal reductions")); 123 124 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 126 cl::desc( 127 "Attempt to vectorize horizontal reductions feeding into a store")); 128 129 static cl::opt<int> 130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 131 cl::desc("Attempt to vectorize for this register size in bits")); 132 133 static cl::opt<unsigned> 134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 135 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 136 137 static cl::opt<int> 138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 139 cl::desc("Maximum depth of the lookup for consecutive stores.")); 140 141 /// Limits the size of scheduling regions in a block. 142 /// It avoid long compile times for _very_ large blocks where vector 143 /// instructions are spread over a wide range. 144 /// This limit is way higher than needed by real-world functions. 145 static cl::opt<int> 146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 147 cl::desc("Limit the size of the SLP scheduling region per block")); 148 149 static cl::opt<int> MinVectorRegSizeOption( 150 "slp-min-reg-size", cl::init(128), cl::Hidden, 151 cl::desc("Attempt to vectorize for this register size in bits")); 152 153 static cl::opt<unsigned> RecursionMaxDepth( 154 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 155 cl::desc("Limit the recursion depth when building a vectorizable tree")); 156 157 static cl::opt<unsigned> MinTreeSize( 158 "slp-min-tree-size", cl::init(3), cl::Hidden, 159 cl::desc("Only vectorize small trees if they are fully vectorizable")); 160 161 // The maximum depth that the look-ahead score heuristic will explore. 162 // The higher this value, the higher the compilation time overhead. 163 static cl::opt<int> LookAheadMaxDepth( 164 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 165 cl::desc("The maximum look-ahead depth for operand reordering scores")); 166 167 static cl::opt<bool> 168 ViewSLPTree("view-slp-tree", cl::Hidden, 169 cl::desc("Display the SLP trees with Graphviz")); 170 171 // Limit the number of alias checks. The limit is chosen so that 172 // it has no negative effect on the llvm benchmarks. 173 static const unsigned AliasedCheckLimit = 10; 174 175 // Another limit for the alias checks: The maximum distance between load/store 176 // instructions where alias checks are done. 177 // This limit is useful for very large basic blocks. 178 static const unsigned MaxMemDepDistance = 160; 179 180 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 181 /// regions to be handled. 182 static const int MinScheduleRegionSize = 16; 183 184 /// Predicate for the element types that the SLP vectorizer supports. 185 /// 186 /// The most important thing to filter here are types which are invalid in LLVM 187 /// vectors. We also filter target specific types which have absolutely no 188 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 189 /// avoids spending time checking the cost model and realizing that they will 190 /// be inevitably scalarized. 191 static bool isValidElementType(Type *Ty) { 192 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 193 !Ty->isPPC_FP128Ty(); 194 } 195 196 /// \returns True if the value is a constant (but not globals/constant 197 /// expressions). 198 static bool isConstant(Value *V) { 199 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 200 } 201 202 /// Checks if \p V is one of vector-like instructions, i.e. undef, 203 /// insertelement/extractelement with constant indices for fixed vector type or 204 /// extractvalue instruction. 205 static bool isVectorLikeInstWithConstOps(Value *V) { 206 if (!isa<InsertElementInst, ExtractElementInst>(V) && 207 !isa<ExtractValueInst, UndefValue>(V)) 208 return false; 209 auto *I = dyn_cast<Instruction>(V); 210 if (!I || isa<ExtractValueInst>(I)) 211 return true; 212 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 213 return false; 214 if (isa<ExtractElementInst>(I)) 215 return isConstant(I->getOperand(1)); 216 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 217 return isConstant(I->getOperand(2)); 218 } 219 220 /// \returns true if all of the instructions in \p VL are in the same block or 221 /// false otherwise. 222 static bool allSameBlock(ArrayRef<Value *> VL) { 223 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 224 if (!I0) 225 return false; 226 if (all_of(VL, isVectorLikeInstWithConstOps)) 227 return true; 228 229 BasicBlock *BB = I0->getParent(); 230 for (int I = 1, E = VL.size(); I < E; I++) { 231 auto *II = dyn_cast<Instruction>(VL[I]); 232 if (!II) 233 return false; 234 235 if (BB != II->getParent()) 236 return false; 237 } 238 return true; 239 } 240 241 /// \returns True if all of the values in \p VL are constants (but not 242 /// globals/constant expressions). 243 static bool allConstant(ArrayRef<Value *> VL) { 244 // Constant expressions and globals can't be vectorized like normal integer/FP 245 // constants. 246 return all_of(VL, isConstant); 247 } 248 249 /// \returns True if all of the values in \p VL are identical or some of them 250 /// are UndefValue. 251 static bool isSplat(ArrayRef<Value *> VL) { 252 Value *FirstNonUndef = nullptr; 253 for (Value *V : VL) { 254 if (isa<UndefValue>(V)) 255 continue; 256 if (!FirstNonUndef) { 257 FirstNonUndef = V; 258 continue; 259 } 260 if (V != FirstNonUndef) 261 return false; 262 } 263 return FirstNonUndef != nullptr; 264 } 265 266 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 267 static bool isCommutative(Instruction *I) { 268 if (auto *Cmp = dyn_cast<CmpInst>(I)) 269 return Cmp->isCommutative(); 270 if (auto *BO = dyn_cast<BinaryOperator>(I)) 271 return BO->isCommutative(); 272 // TODO: This should check for generic Instruction::isCommutative(), but 273 // we need to confirm that the caller code correctly handles Intrinsics 274 // for example (does not have 2 operands). 275 return false; 276 } 277 278 /// Checks if the given value is actually an undefined constant vector. 279 static bool isUndefVector(const Value *V) { 280 if (isa<UndefValue>(V)) 281 return true; 282 auto *C = dyn_cast<Constant>(V); 283 if (!C) 284 return false; 285 if (!C->containsUndefOrPoisonElement()) 286 return false; 287 auto *VecTy = dyn_cast<FixedVectorType>(C->getType()); 288 if (!VecTy) 289 return false; 290 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { 291 if (Constant *Elem = C->getAggregateElement(I)) 292 if (!isa<UndefValue>(Elem)) 293 return false; 294 } 295 return true; 296 } 297 298 /// Checks if the vector of instructions can be represented as a shuffle, like: 299 /// %x0 = extractelement <4 x i8> %x, i32 0 300 /// %x3 = extractelement <4 x i8> %x, i32 3 301 /// %y1 = extractelement <4 x i8> %y, i32 1 302 /// %y2 = extractelement <4 x i8> %y, i32 2 303 /// %x0x0 = mul i8 %x0, %x0 304 /// %x3x3 = mul i8 %x3, %x3 305 /// %y1y1 = mul i8 %y1, %y1 306 /// %y2y2 = mul i8 %y2, %y2 307 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 308 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 309 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 310 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 311 /// ret <4 x i8> %ins4 312 /// can be transformed into: 313 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 314 /// i32 6> 315 /// %2 = mul <4 x i8> %1, %1 316 /// ret <4 x i8> %2 317 /// We convert this initially to something like: 318 /// %x0 = extractelement <4 x i8> %x, i32 0 319 /// %x3 = extractelement <4 x i8> %x, i32 3 320 /// %y1 = extractelement <4 x i8> %y, i32 1 321 /// %y2 = extractelement <4 x i8> %y, i32 2 322 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 323 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 324 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 325 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 326 /// %5 = mul <4 x i8> %4, %4 327 /// %6 = extractelement <4 x i8> %5, i32 0 328 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 329 /// %7 = extractelement <4 x i8> %5, i32 1 330 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 331 /// %8 = extractelement <4 x i8> %5, i32 2 332 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 333 /// %9 = extractelement <4 x i8> %5, i32 3 334 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 335 /// ret <4 x i8> %ins4 336 /// InstCombiner transforms this into a shuffle and vector mul 337 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 338 /// TODO: Can we split off and reuse the shuffle mask detection from 339 /// TargetTransformInfo::getInstructionThroughput? 340 static Optional<TargetTransformInfo::ShuffleKind> 341 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 342 const auto *It = 343 find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); }); 344 if (It == VL.end()) 345 return None; 346 auto *EI0 = cast<ExtractElementInst>(*It); 347 if (isa<ScalableVectorType>(EI0->getVectorOperandType())) 348 return None; 349 unsigned Size = 350 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 351 Value *Vec1 = nullptr; 352 Value *Vec2 = nullptr; 353 enum ShuffleMode { Unknown, Select, Permute }; 354 ShuffleMode CommonShuffleMode = Unknown; 355 Mask.assign(VL.size(), UndefMaskElem); 356 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 357 // Undef can be represented as an undef element in a vector. 358 if (isa<UndefValue>(VL[I])) 359 continue; 360 auto *EI = cast<ExtractElementInst>(VL[I]); 361 if (isa<ScalableVectorType>(EI->getVectorOperandType())) 362 return None; 363 auto *Vec = EI->getVectorOperand(); 364 // We can extractelement from undef or poison vector. 365 if (isUndefVector(Vec)) 366 continue; 367 // All vector operands must have the same number of vector elements. 368 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 369 return None; 370 if (isa<UndefValue>(EI->getIndexOperand())) 371 continue; 372 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 373 if (!Idx) 374 return None; 375 // Undefined behavior if Idx is negative or >= Size. 376 if (Idx->getValue().uge(Size)) 377 continue; 378 unsigned IntIdx = Idx->getValue().getZExtValue(); 379 Mask[I] = IntIdx; 380 // For correct shuffling we have to have at most 2 different vector operands 381 // in all extractelement instructions. 382 if (!Vec1 || Vec1 == Vec) { 383 Vec1 = Vec; 384 } else if (!Vec2 || Vec2 == Vec) { 385 Vec2 = Vec; 386 Mask[I] += Size; 387 } else { 388 return None; 389 } 390 if (CommonShuffleMode == Permute) 391 continue; 392 // If the extract index is not the same as the operation number, it is a 393 // permutation. 394 if (IntIdx != I) { 395 CommonShuffleMode = Permute; 396 continue; 397 } 398 CommonShuffleMode = Select; 399 } 400 // If we're not crossing lanes in different vectors, consider it as blending. 401 if (CommonShuffleMode == Select && Vec2) 402 return TargetTransformInfo::SK_Select; 403 // If Vec2 was never used, we have a permutation of a single vector, otherwise 404 // we have permutation of 2 vectors. 405 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 406 : TargetTransformInfo::SK_PermuteSingleSrc; 407 } 408 409 namespace { 410 411 /// Main data required for vectorization of instructions. 412 struct InstructionsState { 413 /// The very first instruction in the list with the main opcode. 414 Value *OpValue = nullptr; 415 416 /// The main/alternate instruction. 417 Instruction *MainOp = nullptr; 418 Instruction *AltOp = nullptr; 419 420 /// The main/alternate opcodes for the list of instructions. 421 unsigned getOpcode() const { 422 return MainOp ? MainOp->getOpcode() : 0; 423 } 424 425 unsigned getAltOpcode() const { 426 return AltOp ? AltOp->getOpcode() : 0; 427 } 428 429 /// Some of the instructions in the list have alternate opcodes. 430 bool isAltShuffle() const { return AltOp != MainOp; } 431 432 bool isOpcodeOrAlt(Instruction *I) const { 433 unsigned CheckedOpcode = I->getOpcode(); 434 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 435 } 436 437 InstructionsState() = delete; 438 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 439 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 440 }; 441 442 } // end anonymous namespace 443 444 /// Chooses the correct key for scheduling data. If \p Op has the same (or 445 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 446 /// OpValue. 447 static Value *isOneOf(const InstructionsState &S, Value *Op) { 448 auto *I = dyn_cast<Instruction>(Op); 449 if (I && S.isOpcodeOrAlt(I)) 450 return Op; 451 return S.OpValue; 452 } 453 454 /// \returns true if \p Opcode is allowed as part of of the main/alternate 455 /// instruction for SLP vectorization. 456 /// 457 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 458 /// "shuffled out" lane would result in division by zero. 459 static bool isValidForAlternation(unsigned Opcode) { 460 if (Instruction::isIntDivRem(Opcode)) 461 return false; 462 463 return true; 464 } 465 466 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 467 unsigned BaseIndex = 0); 468 469 /// Checks if the provided operands of 2 cmp instructions are compatible, i.e. 470 /// compatible instructions or constants, or just some other regular values. 471 static bool areCompatibleCmpOps(Value *BaseOp0, Value *BaseOp1, Value *Op0, 472 Value *Op1) { 473 return (isConstant(BaseOp0) && isConstant(Op0)) || 474 (isConstant(BaseOp1) && isConstant(Op1)) || 475 (!isa<Instruction>(BaseOp0) && !isa<Instruction>(Op0) && 476 !isa<Instruction>(BaseOp1) && !isa<Instruction>(Op1)) || 477 getSameOpcode({BaseOp0, Op0}).getOpcode() || 478 getSameOpcode({BaseOp1, Op1}).getOpcode(); 479 } 480 481 /// \returns analysis of the Instructions in \p VL described in 482 /// InstructionsState, the Opcode that we suppose the whole list 483 /// could be vectorized even if its structure is diverse. 484 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 485 unsigned BaseIndex) { 486 // Make sure these are all Instructions. 487 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 488 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 489 490 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 491 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 492 bool IsCmpOp = isa<CmpInst>(VL[BaseIndex]); 493 CmpInst::Predicate BasePred = 494 IsCmpOp ? cast<CmpInst>(VL[BaseIndex])->getPredicate() 495 : CmpInst::BAD_ICMP_PREDICATE; 496 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 497 unsigned AltOpcode = Opcode; 498 unsigned AltIndex = BaseIndex; 499 500 // Check for one alternate opcode from another BinaryOperator. 501 // TODO - generalize to support all operators (types, calls etc.). 502 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 503 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 504 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 505 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 506 continue; 507 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 508 isValidForAlternation(Opcode)) { 509 AltOpcode = InstOpcode; 510 AltIndex = Cnt; 511 continue; 512 } 513 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 514 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 515 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 516 if (Ty0 == Ty1) { 517 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 518 continue; 519 if (Opcode == AltOpcode) { 520 assert(isValidForAlternation(Opcode) && 521 isValidForAlternation(InstOpcode) && 522 "Cast isn't safe for alternation, logic needs to be updated!"); 523 AltOpcode = InstOpcode; 524 AltIndex = Cnt; 525 continue; 526 } 527 } 528 } else if (IsCmpOp && isa<CmpInst>(VL[Cnt])) { 529 auto *BaseInst = cast<Instruction>(VL[BaseIndex]); 530 auto *Inst = cast<Instruction>(VL[Cnt]); 531 Type *Ty0 = BaseInst->getOperand(0)->getType(); 532 Type *Ty1 = Inst->getOperand(0)->getType(); 533 if (Ty0 == Ty1) { 534 Value *BaseOp0 = BaseInst->getOperand(0); 535 Value *BaseOp1 = BaseInst->getOperand(1); 536 Value *Op0 = Inst->getOperand(0); 537 Value *Op1 = Inst->getOperand(1); 538 CmpInst::Predicate CurrentPred = 539 cast<CmpInst>(VL[Cnt])->getPredicate(); 540 CmpInst::Predicate SwappedCurrentPred = 541 CmpInst::getSwappedPredicate(CurrentPred); 542 // Check for compatible operands. If the corresponding operands are not 543 // compatible - need to perform alternate vectorization. 544 if (InstOpcode == Opcode) { 545 if (BasePred == CurrentPred && 546 areCompatibleCmpOps(BaseOp0, BaseOp1, Op0, Op1)) 547 continue; 548 if (BasePred == SwappedCurrentPred && 549 areCompatibleCmpOps(BaseOp0, BaseOp1, Op1, Op0)) 550 continue; 551 if (E == 2 && 552 (BasePred == CurrentPred || BasePred == SwappedCurrentPred)) 553 continue; 554 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 555 CmpInst::Predicate AltPred = AltInst->getPredicate(); 556 Value *AltOp0 = AltInst->getOperand(0); 557 Value *AltOp1 = AltInst->getOperand(1); 558 // Check if operands are compatible with alternate operands. 559 if (AltPred == CurrentPred && 560 areCompatibleCmpOps(AltOp0, AltOp1, Op0, Op1)) 561 continue; 562 if (AltPred == SwappedCurrentPred && 563 areCompatibleCmpOps(AltOp0, AltOp1, Op1, Op0)) 564 continue; 565 } 566 if (BaseIndex == AltIndex && BasePred != CurrentPred) { 567 assert(isValidForAlternation(Opcode) && 568 isValidForAlternation(InstOpcode) && 569 "Cast isn't safe for alternation, logic needs to be updated!"); 570 AltIndex = Cnt; 571 continue; 572 } 573 auto *AltInst = cast<CmpInst>(VL[AltIndex]); 574 CmpInst::Predicate AltPred = AltInst->getPredicate(); 575 if (BasePred == CurrentPred || BasePred == SwappedCurrentPred || 576 AltPred == CurrentPred || AltPred == SwappedCurrentPred) 577 continue; 578 } 579 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 580 continue; 581 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 582 } 583 584 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 585 cast<Instruction>(VL[AltIndex])); 586 } 587 588 /// \returns true if all of the values in \p VL have the same type or false 589 /// otherwise. 590 static bool allSameType(ArrayRef<Value *> VL) { 591 Type *Ty = VL[0]->getType(); 592 for (int i = 1, e = VL.size(); i < e; i++) 593 if (VL[i]->getType() != Ty) 594 return false; 595 596 return true; 597 } 598 599 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 600 static Optional<unsigned> getExtractIndex(Instruction *E) { 601 unsigned Opcode = E->getOpcode(); 602 assert((Opcode == Instruction::ExtractElement || 603 Opcode == Instruction::ExtractValue) && 604 "Expected extractelement or extractvalue instruction."); 605 if (Opcode == Instruction::ExtractElement) { 606 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 607 if (!CI) 608 return None; 609 return CI->getZExtValue(); 610 } 611 ExtractValueInst *EI = cast<ExtractValueInst>(E); 612 if (EI->getNumIndices() != 1) 613 return None; 614 return *EI->idx_begin(); 615 } 616 617 /// \returns True if in-tree use also needs extract. This refers to 618 /// possible scalar operand in vectorized instruction. 619 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 620 TargetLibraryInfo *TLI) { 621 unsigned Opcode = UserInst->getOpcode(); 622 switch (Opcode) { 623 case Instruction::Load: { 624 LoadInst *LI = cast<LoadInst>(UserInst); 625 return (LI->getPointerOperand() == Scalar); 626 } 627 case Instruction::Store: { 628 StoreInst *SI = cast<StoreInst>(UserInst); 629 return (SI->getPointerOperand() == Scalar); 630 } 631 case Instruction::Call: { 632 CallInst *CI = cast<CallInst>(UserInst); 633 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 634 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 635 if (hasVectorInstrinsicScalarOpd(ID, i)) 636 return (CI->getArgOperand(i) == Scalar); 637 } 638 LLVM_FALLTHROUGH; 639 } 640 default: 641 return false; 642 } 643 } 644 645 /// \returns the AA location that is being access by the instruction. 646 static MemoryLocation getLocation(Instruction *I) { 647 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 648 return MemoryLocation::get(SI); 649 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 650 return MemoryLocation::get(LI); 651 return MemoryLocation(); 652 } 653 654 /// \returns True if the instruction is not a volatile or atomic load/store. 655 static bool isSimple(Instruction *I) { 656 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 657 return LI->isSimple(); 658 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 659 return SI->isSimple(); 660 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 661 return !MI->isVolatile(); 662 return true; 663 } 664 665 /// Shuffles \p Mask in accordance with the given \p SubMask. 666 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 667 if (SubMask.empty()) 668 return; 669 if (Mask.empty()) { 670 Mask.append(SubMask.begin(), SubMask.end()); 671 return; 672 } 673 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 674 int TermValue = std::min(Mask.size(), SubMask.size()); 675 for (int I = 0, E = SubMask.size(); I < E; ++I) { 676 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 677 Mask[SubMask[I]] >= TermValue) 678 continue; 679 NewMask[I] = Mask[SubMask[I]]; 680 } 681 Mask.swap(NewMask); 682 } 683 684 /// Order may have elements assigned special value (size) which is out of 685 /// bounds. Such indices only appear on places which correspond to undef values 686 /// (see canReuseExtract for details) and used in order to avoid undef values 687 /// have effect on operands ordering. 688 /// The first loop below simply finds all unused indices and then the next loop 689 /// nest assigns these indices for undef values positions. 690 /// As an example below Order has two undef positions and they have assigned 691 /// values 3 and 7 respectively: 692 /// before: 6 9 5 4 9 2 1 0 693 /// after: 6 3 5 4 7 2 1 0 694 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 695 const unsigned Sz = Order.size(); 696 SmallBitVector UnusedIndices(Sz, /*t=*/true); 697 SmallBitVector MaskedIndices(Sz); 698 for (unsigned I = 0; I < Sz; ++I) { 699 if (Order[I] < Sz) 700 UnusedIndices.reset(Order[I]); 701 else 702 MaskedIndices.set(I); 703 } 704 if (MaskedIndices.none()) 705 return; 706 assert(UnusedIndices.count() == MaskedIndices.count() && 707 "Non-synced masked/available indices."); 708 int Idx = UnusedIndices.find_first(); 709 int MIdx = MaskedIndices.find_first(); 710 while (MIdx >= 0) { 711 assert(Idx >= 0 && "Indices must be synced."); 712 Order[MIdx] = Idx; 713 Idx = UnusedIndices.find_next(Idx); 714 MIdx = MaskedIndices.find_next(MIdx); 715 } 716 } 717 718 namespace llvm { 719 720 static void inversePermutation(ArrayRef<unsigned> Indices, 721 SmallVectorImpl<int> &Mask) { 722 Mask.clear(); 723 const unsigned E = Indices.size(); 724 Mask.resize(E, UndefMaskElem); 725 for (unsigned I = 0; I < E; ++I) 726 Mask[Indices[I]] = I; 727 } 728 729 /// \returns inserting index of InsertElement or InsertValue instruction, 730 /// using Offset as base offset for index. 731 static Optional<unsigned> getInsertIndex(Value *InsertInst, 732 unsigned Offset = 0) { 733 int Index = Offset; 734 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 735 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 736 auto *VT = cast<FixedVectorType>(IE->getType()); 737 if (CI->getValue().uge(VT->getNumElements())) 738 return None; 739 Index *= VT->getNumElements(); 740 Index += CI->getZExtValue(); 741 return Index; 742 } 743 return None; 744 } 745 746 auto *IV = cast<InsertValueInst>(InsertInst); 747 Type *CurrentType = IV->getType(); 748 for (unsigned I : IV->indices()) { 749 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 750 Index *= ST->getNumElements(); 751 CurrentType = ST->getElementType(I); 752 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 753 Index *= AT->getNumElements(); 754 CurrentType = AT->getElementType(); 755 } else { 756 return None; 757 } 758 Index += I; 759 } 760 return Index; 761 } 762 763 /// Reorders the list of scalars in accordance with the given \p Mask. 764 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 765 ArrayRef<int> Mask) { 766 assert(!Mask.empty() && "Expected non-empty mask."); 767 SmallVector<Value *> Prev(Scalars.size(), 768 UndefValue::get(Scalars.front()->getType())); 769 Prev.swap(Scalars); 770 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 771 if (Mask[I] != UndefMaskElem) 772 Scalars[Mask[I]] = Prev[I]; 773 } 774 775 namespace slpvectorizer { 776 777 /// Bottom Up SLP Vectorizer. 778 class BoUpSLP { 779 struct TreeEntry; 780 struct ScheduleData; 781 782 public: 783 using ValueList = SmallVector<Value *, 8>; 784 using InstrList = SmallVector<Instruction *, 16>; 785 using ValueSet = SmallPtrSet<Value *, 16>; 786 using StoreList = SmallVector<StoreInst *, 8>; 787 using ExtraValueToDebugLocsMap = 788 MapVector<Value *, SmallVector<Instruction *, 2>>; 789 using OrdersType = SmallVector<unsigned, 4>; 790 791 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 792 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 793 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 794 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 795 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 796 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 797 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 798 // Use the vector register size specified by the target unless overridden 799 // by a command-line option. 800 // TODO: It would be better to limit the vectorization factor based on 801 // data type rather than just register size. For example, x86 AVX has 802 // 256-bit registers, but it does not support integer operations 803 // at that width (that requires AVX2). 804 if (MaxVectorRegSizeOption.getNumOccurrences()) 805 MaxVecRegSize = MaxVectorRegSizeOption; 806 else 807 MaxVecRegSize = 808 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 809 .getFixedSize(); 810 811 if (MinVectorRegSizeOption.getNumOccurrences()) 812 MinVecRegSize = MinVectorRegSizeOption; 813 else 814 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 815 } 816 817 /// Vectorize the tree that starts with the elements in \p VL. 818 /// Returns the vectorized root. 819 Value *vectorizeTree(); 820 821 /// Vectorize the tree but with the list of externally used values \p 822 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 823 /// generated extractvalue instructions. 824 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 825 826 /// \returns the cost incurred by unwanted spills and fills, caused by 827 /// holding live values over call sites. 828 InstructionCost getSpillCost() const; 829 830 /// \returns the vectorization cost of the subtree that starts at \p VL. 831 /// A negative number means that this is profitable. 832 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 833 834 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 835 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 836 void buildTree(ArrayRef<Value *> Roots, 837 ArrayRef<Value *> UserIgnoreLst = None); 838 839 /// Builds external uses of the vectorized scalars, i.e. the list of 840 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 841 /// ExternallyUsedValues contains additional list of external uses to handle 842 /// vectorization of reductions. 843 void 844 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 845 846 /// Clear the internal data structures that are created by 'buildTree'. 847 void deleteTree() { 848 VectorizableTree.clear(); 849 ScalarToTreeEntry.clear(); 850 MustGather.clear(); 851 ExternalUses.clear(); 852 for (auto &Iter : BlocksSchedules) { 853 BlockScheduling *BS = Iter.second.get(); 854 BS->clear(); 855 } 856 MinBWs.clear(); 857 InstrElementSize.clear(); 858 } 859 860 unsigned getTreeSize() const { return VectorizableTree.size(); } 861 862 /// Perform LICM and CSE on the newly generated gather sequences. 863 void optimizeGatherSequence(); 864 865 /// Checks if the specified gather tree entry \p TE can be represented as a 866 /// shuffled vector entry + (possibly) permutation with other gathers. It 867 /// implements the checks only for possibly ordered scalars (Loads, 868 /// ExtractElement, ExtractValue), which can be part of the graph. 869 Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); 870 871 /// Gets reordering data for the given tree entry. If the entry is vectorized 872 /// - just return ReorderIndices, otherwise check if the scalars can be 873 /// reordered and return the most optimal order. 874 /// \param TopToBottom If true, include the order of vectorized stores and 875 /// insertelement nodes, otherwise skip them. 876 Optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom); 877 878 /// Reorders the current graph to the most profitable order starting from the 879 /// root node to the leaf nodes. The best order is chosen only from the nodes 880 /// of the same size (vectorization factor). Smaller nodes are considered 881 /// parts of subgraph with smaller VF and they are reordered independently. We 882 /// can make it because we still need to extend smaller nodes to the wider VF 883 /// and we can merge reordering shuffles with the widening shuffles. 884 void reorderTopToBottom(); 885 886 /// Reorders the current graph to the most profitable order starting from 887 /// leaves to the root. It allows to rotate small subgraphs and reduce the 888 /// number of reshuffles if the leaf nodes use the same order. In this case we 889 /// can merge the orders and just shuffle user node instead of shuffling its 890 /// operands. Plus, even the leaf nodes have different orders, it allows to 891 /// sink reordering in the graph closer to the root node and merge it later 892 /// during analysis. 893 void reorderBottomToTop(bool IgnoreReorder = false); 894 895 /// \return The vector element size in bits to use when vectorizing the 896 /// expression tree ending at \p V. If V is a store, the size is the width of 897 /// the stored value. Otherwise, the size is the width of the largest loaded 898 /// value reaching V. This method is used by the vectorizer to calculate 899 /// vectorization factors. 900 unsigned getVectorElementSize(Value *V); 901 902 /// Compute the minimum type sizes required to represent the entries in a 903 /// vectorizable tree. 904 void computeMinimumValueSizes(); 905 906 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 907 unsigned getMaxVecRegSize() const { 908 return MaxVecRegSize; 909 } 910 911 // \returns minimum vector register size as set by cl::opt. 912 unsigned getMinVecRegSize() const { 913 return MinVecRegSize; 914 } 915 916 unsigned getMinVF(unsigned Sz) const { 917 return std::max(2U, getMinVecRegSize() / Sz); 918 } 919 920 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 921 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 922 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 923 return MaxVF ? MaxVF : UINT_MAX; 924 } 925 926 /// Check if homogeneous aggregate is isomorphic to some VectorType. 927 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 928 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 929 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 930 /// 931 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 932 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 933 934 /// \returns True if the VectorizableTree is both tiny and not fully 935 /// vectorizable. We do not vectorize such trees. 936 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; 937 938 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 939 /// can be load combined in the backend. Load combining may not be allowed in 940 /// the IR optimizer, so we do not want to alter the pattern. For example, 941 /// partially transforming a scalar bswap() pattern into vector code is 942 /// effectively impossible for the backend to undo. 943 /// TODO: If load combining is allowed in the IR optimizer, this analysis 944 /// may not be necessary. 945 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 946 947 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 948 /// can be load combined in the backend. Load combining may not be allowed in 949 /// the IR optimizer, so we do not want to alter the pattern. For example, 950 /// partially transforming a scalar bswap() pattern into vector code is 951 /// effectively impossible for the backend to undo. 952 /// TODO: If load combining is allowed in the IR optimizer, this analysis 953 /// may not be necessary. 954 bool isLoadCombineCandidate() const; 955 956 OptimizationRemarkEmitter *getORE() { return ORE; } 957 958 /// This structure holds any data we need about the edges being traversed 959 /// during buildTree_rec(). We keep track of: 960 /// (i) the user TreeEntry index, and 961 /// (ii) the index of the edge. 962 struct EdgeInfo { 963 EdgeInfo() = default; 964 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 965 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 966 /// The user TreeEntry. 967 TreeEntry *UserTE = nullptr; 968 /// The operand index of the use. 969 unsigned EdgeIdx = UINT_MAX; 970 #ifndef NDEBUG 971 friend inline raw_ostream &operator<<(raw_ostream &OS, 972 const BoUpSLP::EdgeInfo &EI) { 973 EI.dump(OS); 974 return OS; 975 } 976 /// Debug print. 977 void dump(raw_ostream &OS) const { 978 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 979 << " EdgeIdx:" << EdgeIdx << "}"; 980 } 981 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 982 #endif 983 }; 984 985 /// A helper data structure to hold the operands of a vector of instructions. 986 /// This supports a fixed vector length for all operand vectors. 987 class VLOperands { 988 /// For each operand we need (i) the value, and (ii) the opcode that it 989 /// would be attached to if the expression was in a left-linearized form. 990 /// This is required to avoid illegal operand reordering. 991 /// For example: 992 /// \verbatim 993 /// 0 Op1 994 /// |/ 995 /// Op1 Op2 Linearized + Op2 996 /// \ / ----------> |/ 997 /// - - 998 /// 999 /// Op1 - Op2 (0 + Op1) - Op2 1000 /// \endverbatim 1001 /// 1002 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 1003 /// 1004 /// Another way to think of this is to track all the operations across the 1005 /// path from the operand all the way to the root of the tree and to 1006 /// calculate the operation that corresponds to this path. For example, the 1007 /// path from Op2 to the root crosses the RHS of the '-', therefore the 1008 /// corresponding operation is a '-' (which matches the one in the 1009 /// linearized tree, as shown above). 1010 /// 1011 /// For lack of a better term, we refer to this operation as Accumulated 1012 /// Path Operation (APO). 1013 struct OperandData { 1014 OperandData() = default; 1015 OperandData(Value *V, bool APO, bool IsUsed) 1016 : V(V), APO(APO), IsUsed(IsUsed) {} 1017 /// The operand value. 1018 Value *V = nullptr; 1019 /// TreeEntries only allow a single opcode, or an alternate sequence of 1020 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 1021 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 1022 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 1023 /// (e.g., Add/Mul) 1024 bool APO = false; 1025 /// Helper data for the reordering function. 1026 bool IsUsed = false; 1027 }; 1028 1029 /// During operand reordering, we are trying to select the operand at lane 1030 /// that matches best with the operand at the neighboring lane. Our 1031 /// selection is based on the type of value we are looking for. For example, 1032 /// if the neighboring lane has a load, we need to look for a load that is 1033 /// accessing a consecutive address. These strategies are summarized in the 1034 /// 'ReorderingMode' enumerator. 1035 enum class ReorderingMode { 1036 Load, ///< Matching loads to consecutive memory addresses 1037 Opcode, ///< Matching instructions based on opcode (same or alternate) 1038 Constant, ///< Matching constants 1039 Splat, ///< Matching the same instruction multiple times (broadcast) 1040 Failed, ///< We failed to create a vectorizable group 1041 }; 1042 1043 using OperandDataVec = SmallVector<OperandData, 2>; 1044 1045 /// A vector of operand vectors. 1046 SmallVector<OperandDataVec, 4> OpsVec; 1047 1048 const DataLayout &DL; 1049 ScalarEvolution &SE; 1050 const BoUpSLP &R; 1051 1052 /// \returns the operand data at \p OpIdx and \p Lane. 1053 OperandData &getData(unsigned OpIdx, unsigned Lane) { 1054 return OpsVec[OpIdx][Lane]; 1055 } 1056 1057 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 1058 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 1059 return OpsVec[OpIdx][Lane]; 1060 } 1061 1062 /// Clears the used flag for all entries. 1063 void clearUsed() { 1064 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 1065 OpIdx != NumOperands; ++OpIdx) 1066 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1067 ++Lane) 1068 OpsVec[OpIdx][Lane].IsUsed = false; 1069 } 1070 1071 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 1072 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 1073 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 1074 } 1075 1076 // The hard-coded scores listed here are not very important, though it shall 1077 // be higher for better matches to improve the resulting cost. When 1078 // computing the scores of matching one sub-tree with another, we are 1079 // basically counting the number of values that are matching. So even if all 1080 // scores are set to 1, we would still get a decent matching result. 1081 // However, sometimes we have to break ties. For example we may have to 1082 // choose between matching loads vs matching opcodes. This is what these 1083 // scores are helping us with: they provide the order of preference. Also, 1084 // this is important if the scalar is externally used or used in another 1085 // tree entry node in the different lane. 1086 1087 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 1088 static const int ScoreConsecutiveLoads = 4; 1089 /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]). 1090 static const int ScoreReversedLoads = 3; 1091 /// ExtractElementInst from same vector and consecutive indexes. 1092 static const int ScoreConsecutiveExtracts = 4; 1093 /// ExtractElementInst from same vector and reversed indices. 1094 static const int ScoreReversedExtracts = 3; 1095 /// Constants. 1096 static const int ScoreConstants = 2; 1097 /// Instructions with the same opcode. 1098 static const int ScoreSameOpcode = 2; 1099 /// Instructions with alt opcodes (e.g, add + sub). 1100 static const int ScoreAltOpcodes = 1; 1101 /// Identical instructions (a.k.a. splat or broadcast). 1102 static const int ScoreSplat = 1; 1103 /// Matching with an undef is preferable to failing. 1104 static const int ScoreUndef = 1; 1105 /// Score for failing to find a decent match. 1106 static const int ScoreFail = 0; 1107 /// Score if all users are vectorized. 1108 static const int ScoreAllUserVectorized = 1; 1109 1110 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 1111 /// Also, checks if \p V1 and \p V2 are compatible with instructions in \p 1112 /// MainAltOps. 1113 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 1114 ScalarEvolution &SE, int NumLanes, 1115 ArrayRef<Value *> MainAltOps) { 1116 if (V1 == V2) 1117 return VLOperands::ScoreSplat; 1118 1119 auto *LI1 = dyn_cast<LoadInst>(V1); 1120 auto *LI2 = dyn_cast<LoadInst>(V2); 1121 if (LI1 && LI2) { 1122 if (LI1->getParent() != LI2->getParent()) 1123 return VLOperands::ScoreFail; 1124 1125 Optional<int> Dist = getPointersDiff( 1126 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1127 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1128 if (!Dist || *Dist == 0) 1129 return VLOperands::ScoreFail; 1130 // The distance is too large - still may be profitable to use masked 1131 // loads/gathers. 1132 if (std::abs(*Dist) > NumLanes / 2) 1133 return VLOperands::ScoreAltOpcodes; 1134 // This still will detect consecutive loads, but we might have "holes" 1135 // in some cases. It is ok for non-power-2 vectorization and may produce 1136 // better results. It should not affect current vectorization. 1137 return (*Dist > 0) ? VLOperands::ScoreConsecutiveLoads 1138 : VLOperands::ScoreReversedLoads; 1139 } 1140 1141 auto *C1 = dyn_cast<Constant>(V1); 1142 auto *C2 = dyn_cast<Constant>(V2); 1143 if (C1 && C2) 1144 return VLOperands::ScoreConstants; 1145 1146 // Extracts from consecutive indexes of the same vector better score as 1147 // the extracts could be optimized away. 1148 Value *EV1; 1149 ConstantInt *Ex1Idx; 1150 if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) { 1151 // Undefs are always profitable for extractelements. 1152 if (isa<UndefValue>(V2)) 1153 return VLOperands::ScoreConsecutiveExtracts; 1154 Value *EV2 = nullptr; 1155 ConstantInt *Ex2Idx = nullptr; 1156 if (match(V2, 1157 m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx), 1158 m_Undef())))) { 1159 // Undefs are always profitable for extractelements. 1160 if (!Ex2Idx) 1161 return VLOperands::ScoreConsecutiveExtracts; 1162 if (isUndefVector(EV2) && EV2->getType() == EV1->getType()) 1163 return VLOperands::ScoreConsecutiveExtracts; 1164 if (EV2 == EV1) { 1165 int Idx1 = Ex1Idx->getZExtValue(); 1166 int Idx2 = Ex2Idx->getZExtValue(); 1167 int Dist = Idx2 - Idx1; 1168 // The distance is too large - still may be profitable to use 1169 // shuffles. 1170 if (std::abs(Dist) == 0) 1171 return VLOperands::ScoreSplat; 1172 if (std::abs(Dist) > NumLanes / 2) 1173 return VLOperands::ScoreSameOpcode; 1174 return (Dist > 0) ? VLOperands::ScoreConsecutiveExtracts 1175 : VLOperands::ScoreReversedExtracts; 1176 } 1177 return VLOperands::ScoreAltOpcodes; 1178 } 1179 return VLOperands::ScoreFail; 1180 } 1181 1182 auto *I1 = dyn_cast<Instruction>(V1); 1183 auto *I2 = dyn_cast<Instruction>(V2); 1184 if (I1 && I2) { 1185 if (I1->getParent() != I2->getParent()) 1186 return VLOperands::ScoreFail; 1187 SmallVector<Value *, 4> Ops(MainAltOps.begin(), MainAltOps.end()); 1188 Ops.push_back(I1); 1189 Ops.push_back(I2); 1190 InstructionsState S = getSameOpcode(Ops); 1191 // Note: Only consider instructions with <= 2 operands to avoid 1192 // complexity explosion. 1193 if (S.getOpcode() && 1194 (S.MainOp->getNumOperands() <= 2 || !MainAltOps.empty() || 1195 !S.isAltShuffle()) && 1196 all_of(Ops, [&S](Value *V) { 1197 return cast<Instruction>(V)->getNumOperands() == 1198 S.MainOp->getNumOperands(); 1199 })) 1200 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 1201 : VLOperands::ScoreSameOpcode; 1202 } 1203 1204 if (isa<UndefValue>(V2)) 1205 return VLOperands::ScoreUndef; 1206 1207 return VLOperands::ScoreFail; 1208 } 1209 1210 /// \param Lane lane of the operands under analysis. 1211 /// \param OpIdx operand index in \p Lane lane we're looking the best 1212 /// candidate for. 1213 /// \param Idx operand index of the current candidate value. 1214 /// \returns The additional score due to possible broadcasting of the 1215 /// elements in the lane. It is more profitable to have power-of-2 unique 1216 /// elements in the lane, it will be vectorized with higher probability 1217 /// after removing duplicates. Currently the SLP vectorizer supports only 1218 /// vectorization of the power-of-2 number of unique scalars. 1219 int getSplatScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1220 Value *IdxLaneV = getData(Idx, Lane).V; 1221 if (!isa<Instruction>(IdxLaneV) || IdxLaneV == getData(OpIdx, Lane).V) 1222 return 0; 1223 SmallPtrSet<Value *, 4> Uniques; 1224 for (unsigned Ln = 0, E = getNumLanes(); Ln < E; ++Ln) { 1225 if (Ln == Lane) 1226 continue; 1227 Value *OpIdxLnV = getData(OpIdx, Ln).V; 1228 if (!isa<Instruction>(OpIdxLnV)) 1229 return 0; 1230 Uniques.insert(OpIdxLnV); 1231 } 1232 int UniquesCount = Uniques.size(); 1233 int UniquesCntWithIdxLaneV = 1234 Uniques.contains(IdxLaneV) ? UniquesCount : UniquesCount + 1; 1235 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1236 int UniquesCntWithOpIdxLaneV = 1237 Uniques.contains(OpIdxLaneV) ? UniquesCount : UniquesCount + 1; 1238 if (UniquesCntWithIdxLaneV == UniquesCntWithOpIdxLaneV) 1239 return 0; 1240 return (PowerOf2Ceil(UniquesCntWithOpIdxLaneV) - 1241 UniquesCntWithOpIdxLaneV) - 1242 (PowerOf2Ceil(UniquesCntWithIdxLaneV) - UniquesCntWithIdxLaneV); 1243 } 1244 1245 /// \param Lane lane of the operands under analysis. 1246 /// \param OpIdx operand index in \p Lane lane we're looking the best 1247 /// candidate for. 1248 /// \param Idx operand index of the current candidate value. 1249 /// \returns The additional score for the scalar which users are all 1250 /// vectorized. 1251 int getExternalUseScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { 1252 Value *IdxLaneV = getData(Idx, Lane).V; 1253 Value *OpIdxLaneV = getData(OpIdx, Lane).V; 1254 // Do not care about number of uses for vector-like instructions 1255 // (extractelement/extractvalue with constant indices), they are extracts 1256 // themselves and already externally used. Vectorization of such 1257 // instructions does not add extra extractelement instruction, just may 1258 // remove it. 1259 if (isVectorLikeInstWithConstOps(IdxLaneV) && 1260 isVectorLikeInstWithConstOps(OpIdxLaneV)) 1261 return VLOperands::ScoreAllUserVectorized; 1262 auto *IdxLaneI = dyn_cast<Instruction>(IdxLaneV); 1263 if (!IdxLaneI || !isa<Instruction>(OpIdxLaneV)) 1264 return 0; 1265 return R.areAllUsersVectorized(IdxLaneI, None) 1266 ? VLOperands::ScoreAllUserVectorized 1267 : 0; 1268 } 1269 1270 /// Go through the operands of \p LHS and \p RHS recursively until \p 1271 /// MaxLevel, and return the cummulative score. For example: 1272 /// \verbatim 1273 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1274 /// \ / \ / \ / \ / 1275 /// + + + + 1276 /// G1 G2 G3 G4 1277 /// \endverbatim 1278 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1279 /// each level recursively, accumulating the score. It starts from matching 1280 /// the additions at level 0, then moves on to the loads (level 1). The 1281 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1282 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1283 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1284 /// Please note that the order of the operands does not matter, as we 1285 /// evaluate the score of all profitable combinations of operands. In 1286 /// other words the score of G1 and G4 is the same as G1 and G2. This 1287 /// heuristic is based on ideas described in: 1288 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1289 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1290 /// Luís F. W. Góes 1291 int getScoreAtLevelRec(Value *LHS, Value *RHS, int CurrLevel, int MaxLevel, 1292 ArrayRef<Value *> MainAltOps) { 1293 1294 // Get the shallow score of V1 and V2. 1295 int ShallowScoreAtThisLevel = 1296 getShallowScore(LHS, RHS, DL, SE, getNumLanes(), MainAltOps); 1297 1298 // If reached MaxLevel, 1299 // or if V1 and V2 are not instructions, 1300 // or if they are SPLAT, 1301 // or if they are not consecutive, 1302 // or if profitable to vectorize loads or extractelements, early return 1303 // the current cost. 1304 auto *I1 = dyn_cast<Instruction>(LHS); 1305 auto *I2 = dyn_cast<Instruction>(RHS); 1306 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1307 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1308 (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) || 1309 (I1->getNumOperands() > 2 && I2->getNumOperands() > 2) || 1310 (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) && 1311 ShallowScoreAtThisLevel)) 1312 return ShallowScoreAtThisLevel; 1313 assert(I1 && I2 && "Should have early exited."); 1314 1315 // Contains the I2 operand indexes that got matched with I1 operands. 1316 SmallSet<unsigned, 4> Op2Used; 1317 1318 // Recursion towards the operands of I1 and I2. We are trying all possible 1319 // operand pairs, and keeping track of the best score. 1320 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1321 OpIdx1 != NumOperands1; ++OpIdx1) { 1322 // Try to pair op1I with the best operand of I2. 1323 int MaxTmpScore = 0; 1324 unsigned MaxOpIdx2 = 0; 1325 bool FoundBest = false; 1326 // If I2 is commutative try all combinations. 1327 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1328 unsigned ToIdx = isCommutative(I2) 1329 ? I2->getNumOperands() 1330 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1331 assert(FromIdx <= ToIdx && "Bad index"); 1332 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1333 // Skip operands already paired with OpIdx1. 1334 if (Op2Used.count(OpIdx2)) 1335 continue; 1336 // Recursively calculate the cost at each level 1337 int TmpScore = 1338 getScoreAtLevelRec(I1->getOperand(OpIdx1), I2->getOperand(OpIdx2), 1339 CurrLevel + 1, MaxLevel, None); 1340 // Look for the best score. 1341 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1342 MaxTmpScore = TmpScore; 1343 MaxOpIdx2 = OpIdx2; 1344 FoundBest = true; 1345 } 1346 } 1347 if (FoundBest) { 1348 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1349 Op2Used.insert(MaxOpIdx2); 1350 ShallowScoreAtThisLevel += MaxTmpScore; 1351 } 1352 } 1353 return ShallowScoreAtThisLevel; 1354 } 1355 1356 /// Score scaling factor for fully compatible instructions but with 1357 /// different number of external uses. Allows better selection of the 1358 /// instructions with less external uses. 1359 static const int ScoreScaleFactor = 10; 1360 1361 /// \Returns the look-ahead score, which tells us how much the sub-trees 1362 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1363 /// score. This helps break ties in an informed way when we cannot decide on 1364 /// the order of the operands by just considering the immediate 1365 /// predecessors. 1366 int getLookAheadScore(Value *LHS, Value *RHS, ArrayRef<Value *> MainAltOps, 1367 int Lane, unsigned OpIdx, unsigned Idx, 1368 bool &IsUsed) { 1369 int Score = 1370 getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth, MainAltOps); 1371 if (Score) { 1372 int SplatScore = getSplatScore(Lane, OpIdx, Idx); 1373 if (Score <= -SplatScore) { 1374 // Set the minimum score for splat-like sequence to avoid setting 1375 // failed state. 1376 Score = 1; 1377 } else { 1378 Score += SplatScore; 1379 // Scale score to see the difference between different operands 1380 // and similar operands but all vectorized/not all vectorized 1381 // uses. It does not affect actual selection of the best 1382 // compatible operand in general, just allows to select the 1383 // operand with all vectorized uses. 1384 Score *= ScoreScaleFactor; 1385 Score += getExternalUseScore(Lane, OpIdx, Idx); 1386 IsUsed = true; 1387 } 1388 } 1389 return Score; 1390 } 1391 1392 /// Best defined scores per lanes between the passes. Used to choose the 1393 /// best operand (with the highest score) between the passes. 1394 /// The key - {Operand Index, Lane}. 1395 /// The value - the best score between the passes for the lane and the 1396 /// operand. 1397 SmallDenseMap<std::pair<unsigned, unsigned>, unsigned, 8> 1398 BestScoresPerLanes; 1399 1400 // Search all operands in Ops[*][Lane] for the one that matches best 1401 // Ops[OpIdx][LastLane] and return its opreand index. 1402 // If no good match can be found, return None. 1403 Optional<unsigned> getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1404 ArrayRef<ReorderingMode> ReorderingModes, 1405 ArrayRef<Value *> MainAltOps) { 1406 unsigned NumOperands = getNumOperands(); 1407 1408 // The operand of the previous lane at OpIdx. 1409 Value *OpLastLane = getData(OpIdx, LastLane).V; 1410 1411 // Our strategy mode for OpIdx. 1412 ReorderingMode RMode = ReorderingModes[OpIdx]; 1413 if (RMode == ReorderingMode::Failed) 1414 return None; 1415 1416 // The linearized opcode of the operand at OpIdx, Lane. 1417 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1418 1419 // The best operand index and its score. 1420 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1421 // are using the score to differentiate between the two. 1422 struct BestOpData { 1423 Optional<unsigned> Idx = None; 1424 unsigned Score = 0; 1425 } BestOp; 1426 BestOp.Score = 1427 BestScoresPerLanes.try_emplace(std::make_pair(OpIdx, Lane), 0) 1428 .first->second; 1429 1430 // Track if the operand must be marked as used. If the operand is set to 1431 // Score 1 explicitly (because of non power-of-2 unique scalars, we may 1432 // want to reestimate the operands again on the following iterations). 1433 bool IsUsed = 1434 RMode == ReorderingMode::Splat || RMode == ReorderingMode::Constant; 1435 // Iterate through all unused operands and look for the best. 1436 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1437 // Get the operand at Idx and Lane. 1438 OperandData &OpData = getData(Idx, Lane); 1439 Value *Op = OpData.V; 1440 bool OpAPO = OpData.APO; 1441 1442 // Skip already selected operands. 1443 if (OpData.IsUsed) 1444 continue; 1445 1446 // Skip if we are trying to move the operand to a position with a 1447 // different opcode in the linearized tree form. This would break the 1448 // semantics. 1449 if (OpAPO != OpIdxAPO) 1450 continue; 1451 1452 // Look for an operand that matches the current mode. 1453 switch (RMode) { 1454 case ReorderingMode::Load: 1455 case ReorderingMode::Constant: 1456 case ReorderingMode::Opcode: { 1457 bool LeftToRight = Lane > LastLane; 1458 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1459 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1460 int Score = getLookAheadScore(OpLeft, OpRight, MainAltOps, Lane, 1461 OpIdx, Idx, IsUsed); 1462 if (Score > static_cast<int>(BestOp.Score)) { 1463 BestOp.Idx = Idx; 1464 BestOp.Score = Score; 1465 BestScoresPerLanes[std::make_pair(OpIdx, Lane)] = Score; 1466 } 1467 break; 1468 } 1469 case ReorderingMode::Splat: 1470 if (Op == OpLastLane) 1471 BestOp.Idx = Idx; 1472 break; 1473 case ReorderingMode::Failed: 1474 llvm_unreachable("Not expected Failed reordering mode."); 1475 } 1476 } 1477 1478 if (BestOp.Idx) { 1479 getData(BestOp.Idx.getValue(), Lane).IsUsed = IsUsed; 1480 return BestOp.Idx; 1481 } 1482 // If we could not find a good match return None. 1483 return None; 1484 } 1485 1486 /// Helper for reorderOperandVecs. 1487 /// \returns the lane that we should start reordering from. This is the one 1488 /// which has the least number of operands that can freely move about or 1489 /// less profitable because it already has the most optimal set of operands. 1490 unsigned getBestLaneToStartReordering() const { 1491 unsigned Min = UINT_MAX; 1492 unsigned SameOpNumber = 0; 1493 // std::pair<unsigned, unsigned> is used to implement a simple voting 1494 // algorithm and choose the lane with the least number of operands that 1495 // can freely move about or less profitable because it already has the 1496 // most optimal set of operands. The first unsigned is a counter for 1497 // voting, the second unsigned is the counter of lanes with instructions 1498 // with same/alternate opcodes and same parent basic block. 1499 MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap; 1500 // Try to be closer to the original results, if we have multiple lanes 1501 // with same cost. If 2 lanes have the same cost, use the one with the 1502 // lowest index. 1503 for (int I = getNumLanes(); I > 0; --I) { 1504 unsigned Lane = I - 1; 1505 OperandsOrderData NumFreeOpsHash = 1506 getMaxNumOperandsThatCanBeReordered(Lane); 1507 // Compare the number of operands that can move and choose the one with 1508 // the least number. 1509 if (NumFreeOpsHash.NumOfAPOs < Min) { 1510 Min = NumFreeOpsHash.NumOfAPOs; 1511 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1512 HashMap.clear(); 1513 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1514 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1515 NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) { 1516 // Select the most optimal lane in terms of number of operands that 1517 // should be moved around. 1518 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1519 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1520 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1521 NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) { 1522 auto It = HashMap.find(NumFreeOpsHash.Hash); 1523 if (It == HashMap.end()) 1524 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1525 else 1526 ++It->second.first; 1527 } 1528 } 1529 // Select the lane with the minimum counter. 1530 unsigned BestLane = 0; 1531 unsigned CntMin = UINT_MAX; 1532 for (const auto &Data : reverse(HashMap)) { 1533 if (Data.second.first < CntMin) { 1534 CntMin = Data.second.first; 1535 BestLane = Data.second.second; 1536 } 1537 } 1538 return BestLane; 1539 } 1540 1541 /// Data structure that helps to reorder operands. 1542 struct OperandsOrderData { 1543 /// The best number of operands with the same APOs, which can be 1544 /// reordered. 1545 unsigned NumOfAPOs = UINT_MAX; 1546 /// Number of operands with the same/alternate instruction opcode and 1547 /// parent. 1548 unsigned NumOpsWithSameOpcodeParent = 0; 1549 /// Hash for the actual operands ordering. 1550 /// Used to count operands, actually their position id and opcode 1551 /// value. It is used in the voting mechanism to find the lane with the 1552 /// least number of operands that can freely move about or less profitable 1553 /// because it already has the most optimal set of operands. Can be 1554 /// replaced with SmallVector<unsigned> instead but hash code is faster 1555 /// and requires less memory. 1556 unsigned Hash = 0; 1557 }; 1558 /// \returns the maximum number of operands that are allowed to be reordered 1559 /// for \p Lane and the number of compatible instructions(with the same 1560 /// parent/opcode). This is used as a heuristic for selecting the first lane 1561 /// to start operand reordering. 1562 OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1563 unsigned CntTrue = 0; 1564 unsigned NumOperands = getNumOperands(); 1565 // Operands with the same APO can be reordered. We therefore need to count 1566 // how many of them we have for each APO, like this: Cnt[APO] = x. 1567 // Since we only have two APOs, namely true and false, we can avoid using 1568 // a map. Instead we can simply count the number of operands that 1569 // correspond to one of them (in this case the 'true' APO), and calculate 1570 // the other by subtracting it from the total number of operands. 1571 // Operands with the same instruction opcode and parent are more 1572 // profitable since we don't need to move them in many cases, with a high 1573 // probability such lane already can be vectorized effectively. 1574 bool AllUndefs = true; 1575 unsigned NumOpsWithSameOpcodeParent = 0; 1576 Instruction *OpcodeI = nullptr; 1577 BasicBlock *Parent = nullptr; 1578 unsigned Hash = 0; 1579 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1580 const OperandData &OpData = getData(OpIdx, Lane); 1581 if (OpData.APO) 1582 ++CntTrue; 1583 // Use Boyer-Moore majority voting for finding the majority opcode and 1584 // the number of times it occurs. 1585 if (auto *I = dyn_cast<Instruction>(OpData.V)) { 1586 if (!OpcodeI || !getSameOpcode({OpcodeI, I}).getOpcode() || 1587 I->getParent() != Parent) { 1588 if (NumOpsWithSameOpcodeParent == 0) { 1589 NumOpsWithSameOpcodeParent = 1; 1590 OpcodeI = I; 1591 Parent = I->getParent(); 1592 } else { 1593 --NumOpsWithSameOpcodeParent; 1594 } 1595 } else { 1596 ++NumOpsWithSameOpcodeParent; 1597 } 1598 } 1599 Hash = hash_combine( 1600 Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1))); 1601 AllUndefs = AllUndefs && isa<UndefValue>(OpData.V); 1602 } 1603 if (AllUndefs) 1604 return {}; 1605 OperandsOrderData Data; 1606 Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue); 1607 Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent; 1608 Data.Hash = Hash; 1609 return Data; 1610 } 1611 1612 /// Go through the instructions in VL and append their operands. 1613 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1614 assert(!VL.empty() && "Bad VL"); 1615 assert((empty() || VL.size() == getNumLanes()) && 1616 "Expected same number of lanes"); 1617 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1618 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1619 OpsVec.resize(NumOperands); 1620 unsigned NumLanes = VL.size(); 1621 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1622 OpsVec[OpIdx].resize(NumLanes); 1623 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1624 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1625 // Our tree has just 3 nodes: the root and two operands. 1626 // It is therefore trivial to get the APO. We only need to check the 1627 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1628 // RHS operand. The LHS operand of both add and sub is never attached 1629 // to an inversese operation in the linearized form, therefore its APO 1630 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1631 1632 // Since operand reordering is performed on groups of commutative 1633 // operations or alternating sequences (e.g., +, -), we can safely 1634 // tell the inverse operations by checking commutativity. 1635 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1636 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1637 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1638 APO, false}; 1639 } 1640 } 1641 } 1642 1643 /// \returns the number of operands. 1644 unsigned getNumOperands() const { return OpsVec.size(); } 1645 1646 /// \returns the number of lanes. 1647 unsigned getNumLanes() const { return OpsVec[0].size(); } 1648 1649 /// \returns the operand value at \p OpIdx and \p Lane. 1650 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1651 return getData(OpIdx, Lane).V; 1652 } 1653 1654 /// \returns true if the data structure is empty. 1655 bool empty() const { return OpsVec.empty(); } 1656 1657 /// Clears the data. 1658 void clear() { OpsVec.clear(); } 1659 1660 /// \Returns true if there are enough operands identical to \p Op to fill 1661 /// the whole vector. 1662 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1663 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1664 bool OpAPO = getData(OpIdx, Lane).APO; 1665 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1666 if (Ln == Lane) 1667 continue; 1668 // This is set to true if we found a candidate for broadcast at Lane. 1669 bool FoundCandidate = false; 1670 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1671 OperandData &Data = getData(OpI, Ln); 1672 if (Data.APO != OpAPO || Data.IsUsed) 1673 continue; 1674 if (Data.V == Op) { 1675 FoundCandidate = true; 1676 Data.IsUsed = true; 1677 break; 1678 } 1679 } 1680 if (!FoundCandidate) 1681 return false; 1682 } 1683 return true; 1684 } 1685 1686 public: 1687 /// Initialize with all the operands of the instruction vector \p RootVL. 1688 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1689 ScalarEvolution &SE, const BoUpSLP &R) 1690 : DL(DL), SE(SE), R(R) { 1691 // Append all the operands of RootVL. 1692 appendOperandsOfVL(RootVL); 1693 } 1694 1695 /// \Returns a value vector with the operands across all lanes for the 1696 /// opearnd at \p OpIdx. 1697 ValueList getVL(unsigned OpIdx) const { 1698 ValueList OpVL(OpsVec[OpIdx].size()); 1699 assert(OpsVec[OpIdx].size() == getNumLanes() && 1700 "Expected same num of lanes across all operands"); 1701 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1702 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1703 return OpVL; 1704 } 1705 1706 // Performs operand reordering for 2 or more operands. 1707 // The original operands are in OrigOps[OpIdx][Lane]. 1708 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1709 void reorder() { 1710 unsigned NumOperands = getNumOperands(); 1711 unsigned NumLanes = getNumLanes(); 1712 // Each operand has its own mode. We are using this mode to help us select 1713 // the instructions for each lane, so that they match best with the ones 1714 // we have selected so far. 1715 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1716 1717 // This is a greedy single-pass algorithm. We are going over each lane 1718 // once and deciding on the best order right away with no back-tracking. 1719 // However, in order to increase its effectiveness, we start with the lane 1720 // that has operands that can move the least. For example, given the 1721 // following lanes: 1722 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1723 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1724 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1725 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1726 // we will start at Lane 1, since the operands of the subtraction cannot 1727 // be reordered. Then we will visit the rest of the lanes in a circular 1728 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1729 1730 // Find the first lane that we will start our search from. 1731 unsigned FirstLane = getBestLaneToStartReordering(); 1732 1733 // Initialize the modes. 1734 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1735 Value *OpLane0 = getValue(OpIdx, FirstLane); 1736 // Keep track if we have instructions with all the same opcode on one 1737 // side. 1738 if (isa<LoadInst>(OpLane0)) 1739 ReorderingModes[OpIdx] = ReorderingMode::Load; 1740 else if (isa<Instruction>(OpLane0)) { 1741 // Check if OpLane0 should be broadcast. 1742 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1743 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1744 else 1745 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1746 } 1747 else if (isa<Constant>(OpLane0)) 1748 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1749 else if (isa<Argument>(OpLane0)) 1750 // Our best hope is a Splat. It may save some cost in some cases. 1751 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1752 else 1753 // NOTE: This should be unreachable. 1754 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1755 } 1756 1757 // Check that we don't have same operands. No need to reorder if operands 1758 // are just perfect diamond or shuffled diamond match. Do not do it only 1759 // for possible broadcasts or non-power of 2 number of scalars (just for 1760 // now). 1761 auto &&SkipReordering = [this]() { 1762 SmallPtrSet<Value *, 4> UniqueValues; 1763 ArrayRef<OperandData> Op0 = OpsVec.front(); 1764 for (const OperandData &Data : Op0) 1765 UniqueValues.insert(Data.V); 1766 for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) { 1767 if (any_of(Op, [&UniqueValues](const OperandData &Data) { 1768 return !UniqueValues.contains(Data.V); 1769 })) 1770 return false; 1771 } 1772 // TODO: Check if we can remove a check for non-power-2 number of 1773 // scalars after full support of non-power-2 vectorization. 1774 return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size()); 1775 }; 1776 1777 // If the initial strategy fails for any of the operand indexes, then we 1778 // perform reordering again in a second pass. This helps avoid assigning 1779 // high priority to the failed strategy, and should improve reordering for 1780 // the non-failed operand indexes. 1781 for (int Pass = 0; Pass != 2; ++Pass) { 1782 // Check if no need to reorder operands since they're are perfect or 1783 // shuffled diamond match. 1784 // Need to to do it to avoid extra external use cost counting for 1785 // shuffled matches, which may cause regressions. 1786 if (SkipReordering()) 1787 break; 1788 // Skip the second pass if the first pass did not fail. 1789 bool StrategyFailed = false; 1790 // Mark all operand data as free to use. 1791 clearUsed(); 1792 // We keep the original operand order for the FirstLane, so reorder the 1793 // rest of the lanes. We are visiting the nodes in a circular fashion, 1794 // using FirstLane as the center point and increasing the radius 1795 // distance. 1796 SmallVector<SmallVector<Value *, 2>> MainAltOps(NumOperands); 1797 for (unsigned I = 0; I < NumOperands; ++I) 1798 MainAltOps[I].push_back(getData(I, FirstLane).V); 1799 1800 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1801 // Visit the lane on the right and then the lane on the left. 1802 for (int Direction : {+1, -1}) { 1803 int Lane = FirstLane + Direction * Distance; 1804 if (Lane < 0 || Lane >= (int)NumLanes) 1805 continue; 1806 int LastLane = Lane - Direction; 1807 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1808 "Out of bounds"); 1809 // Look for a good match for each operand. 1810 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1811 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1812 Optional<unsigned> BestIdx = getBestOperand( 1813 OpIdx, Lane, LastLane, ReorderingModes, MainAltOps[OpIdx]); 1814 // By not selecting a value, we allow the operands that follow to 1815 // select a better matching value. We will get a non-null value in 1816 // the next run of getBestOperand(). 1817 if (BestIdx) { 1818 // Swap the current operand with the one returned by 1819 // getBestOperand(). 1820 swap(OpIdx, BestIdx.getValue(), Lane); 1821 } else { 1822 // We failed to find a best operand, set mode to 'Failed'. 1823 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1824 // Enable the second pass. 1825 StrategyFailed = true; 1826 } 1827 // Try to get the alternate opcode and follow it during analysis. 1828 if (MainAltOps[OpIdx].size() != 2) { 1829 OperandData &AltOp = getData(OpIdx, Lane); 1830 InstructionsState OpS = 1831 getSameOpcode({MainAltOps[OpIdx].front(), AltOp.V}); 1832 if (OpS.getOpcode() && OpS.isAltShuffle()) 1833 MainAltOps[OpIdx].push_back(AltOp.V); 1834 } 1835 } 1836 } 1837 } 1838 // Skip second pass if the strategy did not fail. 1839 if (!StrategyFailed) 1840 break; 1841 } 1842 } 1843 1844 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1845 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1846 switch (RMode) { 1847 case ReorderingMode::Load: 1848 return "Load"; 1849 case ReorderingMode::Opcode: 1850 return "Opcode"; 1851 case ReorderingMode::Constant: 1852 return "Constant"; 1853 case ReorderingMode::Splat: 1854 return "Splat"; 1855 case ReorderingMode::Failed: 1856 return "Failed"; 1857 } 1858 llvm_unreachable("Unimplemented Reordering Type"); 1859 } 1860 1861 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1862 raw_ostream &OS) { 1863 return OS << getModeStr(RMode); 1864 } 1865 1866 /// Debug print. 1867 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1868 printMode(RMode, dbgs()); 1869 } 1870 1871 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1872 return printMode(RMode, OS); 1873 } 1874 1875 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1876 const unsigned Indent = 2; 1877 unsigned Cnt = 0; 1878 for (const OperandDataVec &OpDataVec : OpsVec) { 1879 OS << "Operand " << Cnt++ << "\n"; 1880 for (const OperandData &OpData : OpDataVec) { 1881 OS.indent(Indent) << "{"; 1882 if (Value *V = OpData.V) 1883 OS << *V; 1884 else 1885 OS << "null"; 1886 OS << ", APO:" << OpData.APO << "}\n"; 1887 } 1888 OS << "\n"; 1889 } 1890 return OS; 1891 } 1892 1893 /// Debug print. 1894 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1895 #endif 1896 }; 1897 1898 /// Checks if the instruction is marked for deletion. 1899 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1900 1901 /// Marks values operands for later deletion by replacing them with Undefs. 1902 void eraseInstructions(ArrayRef<Value *> AV); 1903 1904 ~BoUpSLP(); 1905 1906 private: 1907 /// Checks if all users of \p I are the part of the vectorization tree. 1908 bool areAllUsersVectorized(Instruction *I, 1909 ArrayRef<Value *> VectorizedVals) const; 1910 1911 /// \returns the cost of the vectorizable entry. 1912 InstructionCost getEntryCost(const TreeEntry *E, 1913 ArrayRef<Value *> VectorizedVals); 1914 1915 /// This is the recursive part of buildTree. 1916 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1917 const EdgeInfo &EI); 1918 1919 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1920 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1921 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1922 /// returns false, setting \p CurrentOrder to either an empty vector or a 1923 /// non-identity permutation that allows to reuse extract instructions. 1924 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1925 SmallVectorImpl<unsigned> &CurrentOrder) const; 1926 1927 /// Vectorize a single entry in the tree. 1928 Value *vectorizeTree(TreeEntry *E); 1929 1930 /// Vectorize a single entry in the tree, starting in \p VL. 1931 Value *vectorizeTree(ArrayRef<Value *> VL); 1932 1933 /// \returns the scalarization cost for this type. Scalarization in this 1934 /// context means the creation of vectors from a group of scalars. If \p 1935 /// NeedToShuffle is true, need to add a cost of reshuffling some of the 1936 /// vector elements. 1937 InstructionCost getGatherCost(FixedVectorType *Ty, 1938 const APInt &ShuffledIndices, 1939 bool NeedToShuffle) const; 1940 1941 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 1942 /// tree entries. 1943 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 1944 /// previous tree entries. \p Mask is filled with the shuffle mask. 1945 Optional<TargetTransformInfo::ShuffleKind> 1946 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 1947 SmallVectorImpl<const TreeEntry *> &Entries); 1948 1949 /// \returns the scalarization cost for this list of values. Assuming that 1950 /// this subtree gets vectorized, we may need to extract the values from the 1951 /// roots. This method calculates the cost of extracting the values. 1952 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 1953 1954 /// Set the Builder insert point to one after the last instruction in 1955 /// the bundle 1956 void setInsertPointAfterBundle(const TreeEntry *E); 1957 1958 /// \returns a vector from a collection of scalars in \p VL. 1959 Value *gather(ArrayRef<Value *> VL); 1960 1961 /// \returns whether the VectorizableTree is fully vectorizable and will 1962 /// be beneficial even the tree height is tiny. 1963 bool isFullyVectorizableTinyTree(bool ForReduction) const; 1964 1965 /// Reorder commutative or alt operands to get better probability of 1966 /// generating vectorized code. 1967 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1968 SmallVectorImpl<Value *> &Left, 1969 SmallVectorImpl<Value *> &Right, 1970 const DataLayout &DL, 1971 ScalarEvolution &SE, 1972 const BoUpSLP &R); 1973 struct TreeEntry { 1974 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1975 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1976 1977 /// \returns true if the scalars in VL are equal to this entry. 1978 bool isSame(ArrayRef<Value *> VL) const { 1979 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 1980 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 1981 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1982 return VL.size() == Mask.size() && 1983 std::equal(VL.begin(), VL.end(), Mask.begin(), 1984 [Scalars](Value *V, int Idx) { 1985 return (isa<UndefValue>(V) && 1986 Idx == UndefMaskElem) || 1987 (Idx != UndefMaskElem && V == Scalars[Idx]); 1988 }); 1989 }; 1990 if (!ReorderIndices.empty()) { 1991 // TODO: implement matching if the nodes are just reordered, still can 1992 // treat the vector as the same if the list of scalars matches VL 1993 // directly, without reordering. 1994 SmallVector<int> Mask; 1995 inversePermutation(ReorderIndices, Mask); 1996 if (VL.size() == Scalars.size()) 1997 return IsSame(Scalars, Mask); 1998 if (VL.size() == ReuseShuffleIndices.size()) { 1999 ::addMask(Mask, ReuseShuffleIndices); 2000 return IsSame(Scalars, Mask); 2001 } 2002 return false; 2003 } 2004 return IsSame(Scalars, ReuseShuffleIndices); 2005 } 2006 2007 /// \returns true if current entry has same operands as \p TE. 2008 bool hasEqualOperands(const TreeEntry &TE) const { 2009 if (TE.getNumOperands() != getNumOperands()) 2010 return false; 2011 SmallBitVector Used(getNumOperands()); 2012 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 2013 unsigned PrevCount = Used.count(); 2014 for (unsigned K = 0; K < E; ++K) { 2015 if (Used.test(K)) 2016 continue; 2017 if (getOperand(K) == TE.getOperand(I)) { 2018 Used.set(K); 2019 break; 2020 } 2021 } 2022 // Check if we actually found the matching operand. 2023 if (PrevCount == Used.count()) 2024 return false; 2025 } 2026 return true; 2027 } 2028 2029 /// \return Final vectorization factor for the node. Defined by the total 2030 /// number of vectorized scalars, including those, used several times in the 2031 /// entry and counted in the \a ReuseShuffleIndices, if any. 2032 unsigned getVectorFactor() const { 2033 if (!ReuseShuffleIndices.empty()) 2034 return ReuseShuffleIndices.size(); 2035 return Scalars.size(); 2036 }; 2037 2038 /// A vector of scalars. 2039 ValueList Scalars; 2040 2041 /// The Scalars are vectorized into this value. It is initialized to Null. 2042 Value *VectorizedValue = nullptr; 2043 2044 /// Do we need to gather this sequence or vectorize it 2045 /// (either with vector instruction or with scatter/gather 2046 /// intrinsics for store/load)? 2047 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 2048 EntryState State; 2049 2050 /// Does this sequence require some shuffling? 2051 SmallVector<int, 4> ReuseShuffleIndices; 2052 2053 /// Does this entry require reordering? 2054 SmallVector<unsigned, 4> ReorderIndices; 2055 2056 /// Points back to the VectorizableTree. 2057 /// 2058 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 2059 /// to be a pointer and needs to be able to initialize the child iterator. 2060 /// Thus we need a reference back to the container to translate the indices 2061 /// to entries. 2062 VecTreeTy &Container; 2063 2064 /// The TreeEntry index containing the user of this entry. We can actually 2065 /// have multiple users so the data structure is not truly a tree. 2066 SmallVector<EdgeInfo, 1> UserTreeIndices; 2067 2068 /// The index of this treeEntry in VectorizableTree. 2069 int Idx = -1; 2070 2071 private: 2072 /// The operands of each instruction in each lane Operands[op_index][lane]. 2073 /// Note: This helps avoid the replication of the code that performs the 2074 /// reordering of operands during buildTree_rec() and vectorizeTree(). 2075 SmallVector<ValueList, 2> Operands; 2076 2077 /// The main/alternate instruction. 2078 Instruction *MainOp = nullptr; 2079 Instruction *AltOp = nullptr; 2080 2081 public: 2082 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 2083 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 2084 if (Operands.size() < OpIdx + 1) 2085 Operands.resize(OpIdx + 1); 2086 assert(Operands[OpIdx].empty() && "Already resized?"); 2087 assert(OpVL.size() <= Scalars.size() && 2088 "Number of operands is greater than the number of scalars."); 2089 Operands[OpIdx].resize(OpVL.size()); 2090 copy(OpVL, Operands[OpIdx].begin()); 2091 } 2092 2093 /// Set the operands of this bundle in their original order. 2094 void setOperandsInOrder() { 2095 assert(Operands.empty() && "Already initialized?"); 2096 auto *I0 = cast<Instruction>(Scalars[0]); 2097 Operands.resize(I0->getNumOperands()); 2098 unsigned NumLanes = Scalars.size(); 2099 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 2100 OpIdx != NumOperands; ++OpIdx) { 2101 Operands[OpIdx].resize(NumLanes); 2102 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 2103 auto *I = cast<Instruction>(Scalars[Lane]); 2104 assert(I->getNumOperands() == NumOperands && 2105 "Expected same number of operands"); 2106 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 2107 } 2108 } 2109 } 2110 2111 /// Reorders operands of the node to the given mask \p Mask. 2112 void reorderOperands(ArrayRef<int> Mask) { 2113 for (ValueList &Operand : Operands) 2114 reorderScalars(Operand, Mask); 2115 } 2116 2117 /// \returns the \p OpIdx operand of this TreeEntry. 2118 ValueList &getOperand(unsigned OpIdx) { 2119 assert(OpIdx < Operands.size() && "Off bounds"); 2120 return Operands[OpIdx]; 2121 } 2122 2123 /// \returns the \p OpIdx operand of this TreeEntry. 2124 ArrayRef<Value *> getOperand(unsigned OpIdx) const { 2125 assert(OpIdx < Operands.size() && "Off bounds"); 2126 return Operands[OpIdx]; 2127 } 2128 2129 /// \returns the number of operands. 2130 unsigned getNumOperands() const { return Operands.size(); } 2131 2132 /// \return the single \p OpIdx operand. 2133 Value *getSingleOperand(unsigned OpIdx) const { 2134 assert(OpIdx < Operands.size() && "Off bounds"); 2135 assert(!Operands[OpIdx].empty() && "No operand available"); 2136 return Operands[OpIdx][0]; 2137 } 2138 2139 /// Some of the instructions in the list have alternate opcodes. 2140 bool isAltShuffle() const { return MainOp != AltOp; } 2141 2142 bool isOpcodeOrAlt(Instruction *I) const { 2143 unsigned CheckedOpcode = I->getOpcode(); 2144 return (getOpcode() == CheckedOpcode || 2145 getAltOpcode() == CheckedOpcode); 2146 } 2147 2148 /// Chooses the correct key for scheduling data. If \p Op has the same (or 2149 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 2150 /// \p OpValue. 2151 Value *isOneOf(Value *Op) const { 2152 auto *I = dyn_cast<Instruction>(Op); 2153 if (I && isOpcodeOrAlt(I)) 2154 return Op; 2155 return MainOp; 2156 } 2157 2158 void setOperations(const InstructionsState &S) { 2159 MainOp = S.MainOp; 2160 AltOp = S.AltOp; 2161 } 2162 2163 Instruction *getMainOp() const { 2164 return MainOp; 2165 } 2166 2167 Instruction *getAltOp() const { 2168 return AltOp; 2169 } 2170 2171 /// The main/alternate opcodes for the list of instructions. 2172 unsigned getOpcode() const { 2173 return MainOp ? MainOp->getOpcode() : 0; 2174 } 2175 2176 unsigned getAltOpcode() const { 2177 return AltOp ? AltOp->getOpcode() : 0; 2178 } 2179 2180 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 2181 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 2182 int findLaneForValue(Value *V) const { 2183 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 2184 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2185 if (!ReorderIndices.empty()) 2186 FoundLane = ReorderIndices[FoundLane]; 2187 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2188 if (!ReuseShuffleIndices.empty()) { 2189 FoundLane = std::distance(ReuseShuffleIndices.begin(), 2190 find(ReuseShuffleIndices, FoundLane)); 2191 } 2192 return FoundLane; 2193 } 2194 2195 #ifndef NDEBUG 2196 /// Debug printer. 2197 LLVM_DUMP_METHOD void dump() const { 2198 dbgs() << Idx << ".\n"; 2199 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 2200 dbgs() << "Operand " << OpI << ":\n"; 2201 for (const Value *V : Operands[OpI]) 2202 dbgs().indent(2) << *V << "\n"; 2203 } 2204 dbgs() << "Scalars: \n"; 2205 for (Value *V : Scalars) 2206 dbgs().indent(2) << *V << "\n"; 2207 dbgs() << "State: "; 2208 switch (State) { 2209 case Vectorize: 2210 dbgs() << "Vectorize\n"; 2211 break; 2212 case ScatterVectorize: 2213 dbgs() << "ScatterVectorize\n"; 2214 break; 2215 case NeedToGather: 2216 dbgs() << "NeedToGather\n"; 2217 break; 2218 } 2219 dbgs() << "MainOp: "; 2220 if (MainOp) 2221 dbgs() << *MainOp << "\n"; 2222 else 2223 dbgs() << "NULL\n"; 2224 dbgs() << "AltOp: "; 2225 if (AltOp) 2226 dbgs() << *AltOp << "\n"; 2227 else 2228 dbgs() << "NULL\n"; 2229 dbgs() << "VectorizedValue: "; 2230 if (VectorizedValue) 2231 dbgs() << *VectorizedValue << "\n"; 2232 else 2233 dbgs() << "NULL\n"; 2234 dbgs() << "ReuseShuffleIndices: "; 2235 if (ReuseShuffleIndices.empty()) 2236 dbgs() << "Empty"; 2237 else 2238 for (int ReuseIdx : ReuseShuffleIndices) 2239 dbgs() << ReuseIdx << ", "; 2240 dbgs() << "\n"; 2241 dbgs() << "ReorderIndices: "; 2242 for (unsigned ReorderIdx : ReorderIndices) 2243 dbgs() << ReorderIdx << ", "; 2244 dbgs() << "\n"; 2245 dbgs() << "UserTreeIndices: "; 2246 for (const auto &EInfo : UserTreeIndices) 2247 dbgs() << EInfo << ", "; 2248 dbgs() << "\n"; 2249 } 2250 #endif 2251 }; 2252 2253 #ifndef NDEBUG 2254 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 2255 InstructionCost VecCost, 2256 InstructionCost ScalarCost) const { 2257 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 2258 dbgs() << "SLP: Costs:\n"; 2259 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 2260 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 2261 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 2262 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 2263 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 2264 } 2265 #endif 2266 2267 /// Create a new VectorizableTree entry. 2268 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 2269 const InstructionsState &S, 2270 const EdgeInfo &UserTreeIdx, 2271 ArrayRef<int> ReuseShuffleIndices = None, 2272 ArrayRef<unsigned> ReorderIndices = None) { 2273 TreeEntry::EntryState EntryState = 2274 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 2275 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 2276 ReuseShuffleIndices, ReorderIndices); 2277 } 2278 2279 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 2280 TreeEntry::EntryState EntryState, 2281 Optional<ScheduleData *> Bundle, 2282 const InstructionsState &S, 2283 const EdgeInfo &UserTreeIdx, 2284 ArrayRef<int> ReuseShuffleIndices = None, 2285 ArrayRef<unsigned> ReorderIndices = None) { 2286 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 2287 (Bundle && EntryState != TreeEntry::NeedToGather)) && 2288 "Need to vectorize gather entry?"); 2289 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 2290 TreeEntry *Last = VectorizableTree.back().get(); 2291 Last->Idx = VectorizableTree.size() - 1; 2292 Last->State = EntryState; 2293 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 2294 ReuseShuffleIndices.end()); 2295 if (ReorderIndices.empty()) { 2296 Last->Scalars.assign(VL.begin(), VL.end()); 2297 Last->setOperations(S); 2298 } else { 2299 // Reorder scalars and build final mask. 2300 Last->Scalars.assign(VL.size(), nullptr); 2301 transform(ReorderIndices, Last->Scalars.begin(), 2302 [VL](unsigned Idx) -> Value * { 2303 if (Idx >= VL.size()) 2304 return UndefValue::get(VL.front()->getType()); 2305 return VL[Idx]; 2306 }); 2307 InstructionsState S = getSameOpcode(Last->Scalars); 2308 Last->setOperations(S); 2309 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 2310 } 2311 if (Last->State != TreeEntry::NeedToGather) { 2312 for (Value *V : VL) { 2313 assert(!getTreeEntry(V) && "Scalar already in tree!"); 2314 ScalarToTreeEntry[V] = Last; 2315 } 2316 // Update the scheduler bundle to point to this TreeEntry. 2317 unsigned Lane = 0; 2318 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 2319 BundleMember = BundleMember->NextInBundle) { 2320 BundleMember->TE = Last; 2321 BundleMember->Lane = Lane; 2322 ++Lane; 2323 } 2324 assert((!Bundle.getValue() || Lane == VL.size()) && 2325 "Bundle and VL out of sync"); 2326 } else { 2327 MustGather.insert(VL.begin(), VL.end()); 2328 } 2329 2330 if (UserTreeIdx.UserTE) 2331 Last->UserTreeIndices.push_back(UserTreeIdx); 2332 2333 return Last; 2334 } 2335 2336 /// -- Vectorization State -- 2337 /// Holds all of the tree entries. 2338 TreeEntry::VecTreeTy VectorizableTree; 2339 2340 #ifndef NDEBUG 2341 /// Debug printer. 2342 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 2343 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 2344 VectorizableTree[Id]->dump(); 2345 dbgs() << "\n"; 2346 } 2347 } 2348 #endif 2349 2350 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 2351 2352 const TreeEntry *getTreeEntry(Value *V) const { 2353 return ScalarToTreeEntry.lookup(V); 2354 } 2355 2356 /// Maps a specific scalar to its tree entry. 2357 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 2358 2359 /// Maps a value to the proposed vectorizable size. 2360 SmallDenseMap<Value *, unsigned> InstrElementSize; 2361 2362 /// A list of scalars that we found that we need to keep as scalars. 2363 ValueSet MustGather; 2364 2365 /// This POD struct describes one external user in the vectorized tree. 2366 struct ExternalUser { 2367 ExternalUser(Value *S, llvm::User *U, int L) 2368 : Scalar(S), User(U), Lane(L) {} 2369 2370 // Which scalar in our function. 2371 Value *Scalar; 2372 2373 // Which user that uses the scalar. 2374 llvm::User *User; 2375 2376 // Which lane does the scalar belong to. 2377 int Lane; 2378 }; 2379 using UserList = SmallVector<ExternalUser, 16>; 2380 2381 /// Checks if two instructions may access the same memory. 2382 /// 2383 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2384 /// is invariant in the calling loop. 2385 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2386 Instruction *Inst2) { 2387 // First check if the result is already in the cache. 2388 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2389 Optional<bool> &result = AliasCache[key]; 2390 if (result.hasValue()) { 2391 return result.getValue(); 2392 } 2393 bool aliased = true; 2394 if (Loc1.Ptr && isSimple(Inst1)) 2395 aliased = isModOrRefSet(AA->getModRefInfo(Inst2, Loc1)); 2396 // Store the result in the cache. 2397 result = aliased; 2398 return aliased; 2399 } 2400 2401 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2402 2403 /// Cache for alias results. 2404 /// TODO: consider moving this to the AliasAnalysis itself. 2405 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2406 2407 /// Removes an instruction from its block and eventually deletes it. 2408 /// It's like Instruction::eraseFromParent() except that the actual deletion 2409 /// is delayed until BoUpSLP is destructed. 2410 /// This is required to ensure that there are no incorrect collisions in the 2411 /// AliasCache, which can happen if a new instruction is allocated at the 2412 /// same address as a previously deleted instruction. 2413 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 2414 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 2415 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 2416 } 2417 2418 /// Temporary store for deleted instructions. Instructions will be deleted 2419 /// eventually when the BoUpSLP is destructed. 2420 DenseMap<Instruction *, bool> DeletedInstructions; 2421 2422 /// A list of values that need to extracted out of the tree. 2423 /// This list holds pairs of (Internal Scalar : External User). External User 2424 /// can be nullptr, it means that this Internal Scalar will be used later, 2425 /// after vectorization. 2426 UserList ExternalUses; 2427 2428 /// Values used only by @llvm.assume calls. 2429 SmallPtrSet<const Value *, 32> EphValues; 2430 2431 /// Holds all of the instructions that we gathered. 2432 SetVector<Instruction *> GatherShuffleSeq; 2433 2434 /// A list of blocks that we are going to CSE. 2435 SetVector<BasicBlock *> CSEBlocks; 2436 2437 /// Contains all scheduling relevant data for an instruction. 2438 /// A ScheduleData either represents a single instruction or a member of an 2439 /// instruction bundle (= a group of instructions which is combined into a 2440 /// vector instruction). 2441 struct ScheduleData { 2442 // The initial value for the dependency counters. It means that the 2443 // dependencies are not calculated yet. 2444 enum { InvalidDeps = -1 }; 2445 2446 ScheduleData() = default; 2447 2448 void init(int BlockSchedulingRegionID, Value *OpVal) { 2449 FirstInBundle = this; 2450 NextInBundle = nullptr; 2451 NextLoadStore = nullptr; 2452 IsScheduled = false; 2453 SchedulingRegionID = BlockSchedulingRegionID; 2454 clearDependencies(); 2455 OpValue = OpVal; 2456 TE = nullptr; 2457 Lane = -1; 2458 } 2459 2460 /// Verify basic self consistency properties 2461 void verify() { 2462 if (hasValidDependencies()) { 2463 assert(UnscheduledDeps <= Dependencies && "invariant"); 2464 } else { 2465 assert(UnscheduledDeps == Dependencies && "invariant"); 2466 } 2467 2468 if (IsScheduled) { 2469 assert(isSchedulingEntity() && 2470 "unexpected scheduled state"); 2471 for (const ScheduleData *BundleMember = this; BundleMember; 2472 BundleMember = BundleMember->NextInBundle) { 2473 assert(BundleMember->hasValidDependencies() && 2474 BundleMember->UnscheduledDeps == 0 && 2475 "unexpected scheduled state"); 2476 assert((BundleMember == this || !BundleMember->IsScheduled) && 2477 "only bundle is marked scheduled"); 2478 } 2479 } 2480 } 2481 2482 /// Returns true if the dependency information has been calculated. 2483 /// Note that depenendency validity can vary between instructions within 2484 /// a single bundle. 2485 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2486 2487 /// Returns true for single instructions and for bundle representatives 2488 /// (= the head of a bundle). 2489 bool isSchedulingEntity() const { return FirstInBundle == this; } 2490 2491 /// Returns true if it represents an instruction bundle and not only a 2492 /// single instruction. 2493 bool isPartOfBundle() const { 2494 return NextInBundle != nullptr || FirstInBundle != this; 2495 } 2496 2497 /// Returns true if it is ready for scheduling, i.e. it has no more 2498 /// unscheduled depending instructions/bundles. 2499 bool isReady() const { 2500 assert(isSchedulingEntity() && 2501 "can't consider non-scheduling entity for ready list"); 2502 return unscheduledDepsInBundle() == 0 && !IsScheduled; 2503 } 2504 2505 /// Modifies the number of unscheduled dependencies for this instruction, 2506 /// and returns the number of remaining dependencies for the containing 2507 /// bundle. 2508 int incrementUnscheduledDeps(int Incr) { 2509 assert(hasValidDependencies() && 2510 "increment of unscheduled deps would be meaningless"); 2511 UnscheduledDeps += Incr; 2512 return FirstInBundle->unscheduledDepsInBundle(); 2513 } 2514 2515 /// Sets the number of unscheduled dependencies to the number of 2516 /// dependencies. 2517 void resetUnscheduledDeps() { 2518 UnscheduledDeps = Dependencies; 2519 } 2520 2521 /// Clears all dependency information. 2522 void clearDependencies() { 2523 Dependencies = InvalidDeps; 2524 resetUnscheduledDeps(); 2525 MemoryDependencies.clear(); 2526 } 2527 2528 int unscheduledDepsInBundle() const { 2529 assert(isSchedulingEntity() && "only meaningful on the bundle"); 2530 int Sum = 0; 2531 for (const ScheduleData *BundleMember = this; BundleMember; 2532 BundleMember = BundleMember->NextInBundle) { 2533 if (BundleMember->UnscheduledDeps == InvalidDeps) 2534 return InvalidDeps; 2535 Sum += BundleMember->UnscheduledDeps; 2536 } 2537 return Sum; 2538 } 2539 2540 void dump(raw_ostream &os) const { 2541 if (!isSchedulingEntity()) { 2542 os << "/ " << *Inst; 2543 } else if (NextInBundle) { 2544 os << '[' << *Inst; 2545 ScheduleData *SD = NextInBundle; 2546 while (SD) { 2547 os << ';' << *SD->Inst; 2548 SD = SD->NextInBundle; 2549 } 2550 os << ']'; 2551 } else { 2552 os << *Inst; 2553 } 2554 } 2555 2556 Instruction *Inst = nullptr; 2557 2558 /// Opcode of the current instruction in the schedule data. 2559 Value *OpValue = nullptr; 2560 2561 /// The TreeEntry that this instruction corresponds to. 2562 TreeEntry *TE = nullptr; 2563 2564 /// Points to the head in an instruction bundle (and always to this for 2565 /// single instructions). 2566 ScheduleData *FirstInBundle = nullptr; 2567 2568 /// Single linked list of all instructions in a bundle. Null if it is a 2569 /// single instruction. 2570 ScheduleData *NextInBundle = nullptr; 2571 2572 /// Single linked list of all memory instructions (e.g. load, store, call) 2573 /// in the block - until the end of the scheduling region. 2574 ScheduleData *NextLoadStore = nullptr; 2575 2576 /// The dependent memory instructions. 2577 /// This list is derived on demand in calculateDependencies(). 2578 SmallVector<ScheduleData *, 4> MemoryDependencies; 2579 2580 /// This ScheduleData is in the current scheduling region if this matches 2581 /// the current SchedulingRegionID of BlockScheduling. 2582 int SchedulingRegionID = 0; 2583 2584 /// The number of dependencies. Constitutes of the number of users of the 2585 /// instruction plus the number of dependent memory instructions (if any). 2586 /// This value is calculated on demand. 2587 /// If InvalidDeps, the number of dependencies is not calculated yet. 2588 int Dependencies = InvalidDeps; 2589 2590 /// The number of dependencies minus the number of dependencies of scheduled 2591 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2592 /// for scheduling. 2593 /// Note that this is negative as long as Dependencies is not calculated. 2594 int UnscheduledDeps = InvalidDeps; 2595 2596 /// The lane of this node in the TreeEntry. 2597 int Lane = -1; 2598 2599 /// True if this instruction is scheduled (or considered as scheduled in the 2600 /// dry-run). 2601 bool IsScheduled = false; 2602 }; 2603 2604 #ifndef NDEBUG 2605 friend inline raw_ostream &operator<<(raw_ostream &os, 2606 const BoUpSLP::ScheduleData &SD) { 2607 SD.dump(os); 2608 return os; 2609 } 2610 #endif 2611 2612 friend struct GraphTraits<BoUpSLP *>; 2613 friend struct DOTGraphTraits<BoUpSLP *>; 2614 2615 /// Contains all scheduling data for a basic block. 2616 struct BlockScheduling { 2617 BlockScheduling(BasicBlock *BB) 2618 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2619 2620 void clear() { 2621 ReadyInsts.clear(); 2622 ScheduleStart = nullptr; 2623 ScheduleEnd = nullptr; 2624 FirstLoadStoreInRegion = nullptr; 2625 LastLoadStoreInRegion = nullptr; 2626 2627 // Reduce the maximum schedule region size by the size of the 2628 // previous scheduling run. 2629 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2630 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2631 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2632 ScheduleRegionSize = 0; 2633 2634 // Make a new scheduling region, i.e. all existing ScheduleData is not 2635 // in the new region yet. 2636 ++SchedulingRegionID; 2637 } 2638 2639 ScheduleData *getScheduleData(Instruction *I) { 2640 if (BB != I->getParent()) 2641 // Avoid lookup if can't possibly be in map. 2642 return nullptr; 2643 ScheduleData *SD = ScheduleDataMap[I]; 2644 if (SD && isInSchedulingRegion(SD)) 2645 return SD; 2646 return nullptr; 2647 } 2648 2649 ScheduleData *getScheduleData(Value *V) { 2650 if (auto *I = dyn_cast<Instruction>(V)) 2651 return getScheduleData(I); 2652 return nullptr; 2653 } 2654 2655 ScheduleData *getScheduleData(Value *V, Value *Key) { 2656 if (V == Key) 2657 return getScheduleData(V); 2658 auto I = ExtraScheduleDataMap.find(V); 2659 if (I != ExtraScheduleDataMap.end()) { 2660 ScheduleData *SD = I->second[Key]; 2661 if (SD && isInSchedulingRegion(SD)) 2662 return SD; 2663 } 2664 return nullptr; 2665 } 2666 2667 bool isInSchedulingRegion(ScheduleData *SD) const { 2668 return SD->SchedulingRegionID == SchedulingRegionID; 2669 } 2670 2671 /// Marks an instruction as scheduled and puts all dependent ready 2672 /// instructions into the ready-list. 2673 template <typename ReadyListType> 2674 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2675 SD->IsScheduled = true; 2676 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2677 2678 for (ScheduleData *BundleMember = SD; BundleMember; 2679 BundleMember = BundleMember->NextInBundle) { 2680 if (BundleMember->Inst != BundleMember->OpValue) 2681 continue; 2682 2683 // Handle the def-use chain dependencies. 2684 2685 // Decrement the unscheduled counter and insert to ready list if ready. 2686 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2687 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2688 if (OpDef && OpDef->hasValidDependencies() && 2689 OpDef->incrementUnscheduledDeps(-1) == 0) { 2690 // There are no more unscheduled dependencies after 2691 // decrementing, so we can put the dependent instruction 2692 // into the ready list. 2693 ScheduleData *DepBundle = OpDef->FirstInBundle; 2694 assert(!DepBundle->IsScheduled && 2695 "already scheduled bundle gets ready"); 2696 ReadyList.insert(DepBundle); 2697 LLVM_DEBUG(dbgs() 2698 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2699 } 2700 }); 2701 }; 2702 2703 // If BundleMember is a vector bundle, its operands may have been 2704 // reordered during buildTree(). We therefore need to get its operands 2705 // through the TreeEntry. 2706 if (TreeEntry *TE = BundleMember->TE) { 2707 int Lane = BundleMember->Lane; 2708 assert(Lane >= 0 && "Lane not set"); 2709 2710 // Since vectorization tree is being built recursively this assertion 2711 // ensures that the tree entry has all operands set before reaching 2712 // this code. Couple of exceptions known at the moment are extracts 2713 // where their second (immediate) operand is not added. Since 2714 // immediates do not affect scheduler behavior this is considered 2715 // okay. 2716 auto *In = TE->getMainOp(); 2717 assert(In && 2718 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2719 In->getNumOperands() == TE->getNumOperands()) && 2720 "Missed TreeEntry operands?"); 2721 (void)In; // fake use to avoid build failure when assertions disabled 2722 2723 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2724 OpIdx != NumOperands; ++OpIdx) 2725 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2726 DecrUnsched(I); 2727 } else { 2728 // If BundleMember is a stand-alone instruction, no operand reordering 2729 // has taken place, so we directly access its operands. 2730 for (Use &U : BundleMember->Inst->operands()) 2731 if (auto *I = dyn_cast<Instruction>(U.get())) 2732 DecrUnsched(I); 2733 } 2734 // Handle the memory dependencies. 2735 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2736 if (MemoryDepSD->hasValidDependencies() && 2737 MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2738 // There are no more unscheduled dependencies after decrementing, 2739 // so we can put the dependent instruction into the ready list. 2740 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2741 assert(!DepBundle->IsScheduled && 2742 "already scheduled bundle gets ready"); 2743 ReadyList.insert(DepBundle); 2744 LLVM_DEBUG(dbgs() 2745 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2746 } 2747 } 2748 } 2749 } 2750 2751 /// Verify basic self consistency properties of the data structure. 2752 void verify() { 2753 if (!ScheduleStart) 2754 return; 2755 2756 assert(ScheduleStart->getParent() == ScheduleEnd->getParent() && 2757 ScheduleStart->comesBefore(ScheduleEnd) && 2758 "Not a valid scheduling region?"); 2759 2760 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2761 auto *SD = getScheduleData(I); 2762 assert(SD && "primary scheduledata must exist in window"); 2763 assert(isInSchedulingRegion(SD) && 2764 "primary schedule data not in window?"); 2765 assert(isInSchedulingRegion(SD->FirstInBundle) && 2766 "entire bundle in window!"); 2767 (void)SD; 2768 doForAllOpcodes(I, [](ScheduleData *SD) { SD->verify(); }); 2769 } 2770 2771 for (auto *SD : ReadyInsts) { 2772 assert(SD->isSchedulingEntity() && SD->isReady() && 2773 "item in ready list not ready?"); 2774 (void)SD; 2775 } 2776 } 2777 2778 void doForAllOpcodes(Value *V, 2779 function_ref<void(ScheduleData *SD)> Action) { 2780 if (ScheduleData *SD = getScheduleData(V)) 2781 Action(SD); 2782 auto I = ExtraScheduleDataMap.find(V); 2783 if (I != ExtraScheduleDataMap.end()) 2784 for (auto &P : I->second) 2785 if (isInSchedulingRegion(P.second)) 2786 Action(P.second); 2787 } 2788 2789 /// Put all instructions into the ReadyList which are ready for scheduling. 2790 template <typename ReadyListType> 2791 void initialFillReadyList(ReadyListType &ReadyList) { 2792 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2793 doForAllOpcodes(I, [&](ScheduleData *SD) { 2794 if (SD->isSchedulingEntity() && SD->hasValidDependencies() && 2795 SD->isReady()) { 2796 ReadyList.insert(SD); 2797 LLVM_DEBUG(dbgs() 2798 << "SLP: initially in ready list: " << *SD << "\n"); 2799 } 2800 }); 2801 } 2802 } 2803 2804 /// Build a bundle from the ScheduleData nodes corresponding to the 2805 /// scalar instruction for each lane. 2806 ScheduleData *buildBundle(ArrayRef<Value *> VL); 2807 2808 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2809 /// cyclic dependencies. This is only a dry-run, no instructions are 2810 /// actually moved at this stage. 2811 /// \returns the scheduling bundle. The returned Optional value is non-None 2812 /// if \p VL is allowed to be scheduled. 2813 Optional<ScheduleData *> 2814 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2815 const InstructionsState &S); 2816 2817 /// Un-bundles a group of instructions. 2818 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2819 2820 /// Allocates schedule data chunk. 2821 ScheduleData *allocateScheduleDataChunks(); 2822 2823 /// Extends the scheduling region so that V is inside the region. 2824 /// \returns true if the region size is within the limit. 2825 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2826 2827 /// Initialize the ScheduleData structures for new instructions in the 2828 /// scheduling region. 2829 void initScheduleData(Instruction *FromI, Instruction *ToI, 2830 ScheduleData *PrevLoadStore, 2831 ScheduleData *NextLoadStore); 2832 2833 /// Updates the dependency information of a bundle and of all instructions/ 2834 /// bundles which depend on the original bundle. 2835 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2836 BoUpSLP *SLP); 2837 2838 /// Sets all instruction in the scheduling region to un-scheduled. 2839 void resetSchedule(); 2840 2841 BasicBlock *BB; 2842 2843 /// Simple memory allocation for ScheduleData. 2844 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2845 2846 /// The size of a ScheduleData array in ScheduleDataChunks. 2847 int ChunkSize; 2848 2849 /// The allocator position in the current chunk, which is the last entry 2850 /// of ScheduleDataChunks. 2851 int ChunkPos; 2852 2853 /// Attaches ScheduleData to Instruction. 2854 /// Note that the mapping survives during all vectorization iterations, i.e. 2855 /// ScheduleData structures are recycled. 2856 DenseMap<Instruction *, ScheduleData *> ScheduleDataMap; 2857 2858 /// Attaches ScheduleData to Instruction with the leading key. 2859 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2860 ExtraScheduleDataMap; 2861 2862 /// The ready-list for scheduling (only used for the dry-run). 2863 SetVector<ScheduleData *> ReadyInsts; 2864 2865 /// The first instruction of the scheduling region. 2866 Instruction *ScheduleStart = nullptr; 2867 2868 /// The first instruction _after_ the scheduling region. 2869 Instruction *ScheduleEnd = nullptr; 2870 2871 /// The first memory accessing instruction in the scheduling region 2872 /// (can be null). 2873 ScheduleData *FirstLoadStoreInRegion = nullptr; 2874 2875 /// The last memory accessing instruction in the scheduling region 2876 /// (can be null). 2877 ScheduleData *LastLoadStoreInRegion = nullptr; 2878 2879 /// The current size of the scheduling region. 2880 int ScheduleRegionSize = 0; 2881 2882 /// The maximum size allowed for the scheduling region. 2883 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2884 2885 /// The ID of the scheduling region. For a new vectorization iteration this 2886 /// is incremented which "removes" all ScheduleData from the region. 2887 /// Make sure that the initial SchedulingRegionID is greater than the 2888 /// initial SchedulingRegionID in ScheduleData (which is 0). 2889 int SchedulingRegionID = 1; 2890 }; 2891 2892 /// Attaches the BlockScheduling structures to basic blocks. 2893 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2894 2895 /// Performs the "real" scheduling. Done before vectorization is actually 2896 /// performed in a basic block. 2897 void scheduleBlock(BlockScheduling *BS); 2898 2899 /// List of users to ignore during scheduling and that don't need extracting. 2900 ArrayRef<Value *> UserIgnoreList; 2901 2902 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2903 /// sorted SmallVectors of unsigned. 2904 struct OrdersTypeDenseMapInfo { 2905 static OrdersType getEmptyKey() { 2906 OrdersType V; 2907 V.push_back(~1U); 2908 return V; 2909 } 2910 2911 static OrdersType getTombstoneKey() { 2912 OrdersType V; 2913 V.push_back(~2U); 2914 return V; 2915 } 2916 2917 static unsigned getHashValue(const OrdersType &V) { 2918 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2919 } 2920 2921 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2922 return LHS == RHS; 2923 } 2924 }; 2925 2926 // Analysis and block reference. 2927 Function *F; 2928 ScalarEvolution *SE; 2929 TargetTransformInfo *TTI; 2930 TargetLibraryInfo *TLI; 2931 AAResults *AA; 2932 LoopInfo *LI; 2933 DominatorTree *DT; 2934 AssumptionCache *AC; 2935 DemandedBits *DB; 2936 const DataLayout *DL; 2937 OptimizationRemarkEmitter *ORE; 2938 2939 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2940 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2941 2942 /// Instruction builder to construct the vectorized tree. 2943 IRBuilder<> Builder; 2944 2945 /// A map of scalar integer values to the smallest bit width with which they 2946 /// can legally be represented. The values map to (width, signed) pairs, 2947 /// where "width" indicates the minimum bit width and "signed" is True if the 2948 /// value must be signed-extended, rather than zero-extended, back to its 2949 /// original width. 2950 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2951 }; 2952 2953 } // end namespace slpvectorizer 2954 2955 template <> struct GraphTraits<BoUpSLP *> { 2956 using TreeEntry = BoUpSLP::TreeEntry; 2957 2958 /// NodeRef has to be a pointer per the GraphWriter. 2959 using NodeRef = TreeEntry *; 2960 2961 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2962 2963 /// Add the VectorizableTree to the index iterator to be able to return 2964 /// TreeEntry pointers. 2965 struct ChildIteratorType 2966 : public iterator_adaptor_base< 2967 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2968 ContainerTy &VectorizableTree; 2969 2970 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2971 ContainerTy &VT) 2972 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2973 2974 NodeRef operator*() { return I->UserTE; } 2975 }; 2976 2977 static NodeRef getEntryNode(BoUpSLP &R) { 2978 return R.VectorizableTree[0].get(); 2979 } 2980 2981 static ChildIteratorType child_begin(NodeRef N) { 2982 return {N->UserTreeIndices.begin(), N->Container}; 2983 } 2984 2985 static ChildIteratorType child_end(NodeRef N) { 2986 return {N->UserTreeIndices.end(), N->Container}; 2987 } 2988 2989 /// For the node iterator we just need to turn the TreeEntry iterator into a 2990 /// TreeEntry* iterator so that it dereferences to NodeRef. 2991 class nodes_iterator { 2992 using ItTy = ContainerTy::iterator; 2993 ItTy It; 2994 2995 public: 2996 nodes_iterator(const ItTy &It2) : It(It2) {} 2997 NodeRef operator*() { return It->get(); } 2998 nodes_iterator operator++() { 2999 ++It; 3000 return *this; 3001 } 3002 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 3003 }; 3004 3005 static nodes_iterator nodes_begin(BoUpSLP *R) { 3006 return nodes_iterator(R->VectorizableTree.begin()); 3007 } 3008 3009 static nodes_iterator nodes_end(BoUpSLP *R) { 3010 return nodes_iterator(R->VectorizableTree.end()); 3011 } 3012 3013 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 3014 }; 3015 3016 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 3017 using TreeEntry = BoUpSLP::TreeEntry; 3018 3019 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3020 3021 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 3022 std::string Str; 3023 raw_string_ostream OS(Str); 3024 if (isSplat(Entry->Scalars)) 3025 OS << "<splat> "; 3026 for (auto V : Entry->Scalars) { 3027 OS << *V; 3028 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 3029 return EU.Scalar == V; 3030 })) 3031 OS << " <extract>"; 3032 OS << "\n"; 3033 } 3034 return Str; 3035 } 3036 3037 static std::string getNodeAttributes(const TreeEntry *Entry, 3038 const BoUpSLP *) { 3039 if (Entry->State == TreeEntry::NeedToGather) 3040 return "color=red"; 3041 return ""; 3042 } 3043 }; 3044 3045 } // end namespace llvm 3046 3047 BoUpSLP::~BoUpSLP() { 3048 for (const auto &Pair : DeletedInstructions) { 3049 // Replace operands of ignored instructions with Undefs in case if they were 3050 // marked for deletion. 3051 if (Pair.getSecond()) { 3052 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 3053 Pair.getFirst()->replaceAllUsesWith(Undef); 3054 } 3055 Pair.getFirst()->dropAllReferences(); 3056 } 3057 for (const auto &Pair : DeletedInstructions) { 3058 assert(Pair.getFirst()->use_empty() && 3059 "trying to erase instruction with users."); 3060 Pair.getFirst()->eraseFromParent(); 3061 } 3062 #ifdef EXPENSIVE_CHECKS 3063 // If we could guarantee that this call is not extremely slow, we could 3064 // remove the ifdef limitation (see PR47712). 3065 assert(!verifyFunction(*F, &dbgs())); 3066 #endif 3067 } 3068 3069 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 3070 for (auto *V : AV) { 3071 if (auto *I = dyn_cast<Instruction>(V)) 3072 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 3073 }; 3074 } 3075 3076 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 3077 /// contains original mask for the scalars reused in the node. Procedure 3078 /// transform this mask in accordance with the given \p Mask. 3079 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 3080 assert(!Mask.empty() && Reuses.size() == Mask.size() && 3081 "Expected non-empty mask."); 3082 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 3083 Prev.swap(Reuses); 3084 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 3085 if (Mask[I] != UndefMaskElem) 3086 Reuses[Mask[I]] = Prev[I]; 3087 } 3088 3089 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 3090 /// the original order of the scalars. Procedure transforms the provided order 3091 /// in accordance with the given \p Mask. If the resulting \p Order is just an 3092 /// identity order, \p Order is cleared. 3093 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 3094 assert(!Mask.empty() && "Expected non-empty mask."); 3095 SmallVector<int> MaskOrder; 3096 if (Order.empty()) { 3097 MaskOrder.resize(Mask.size()); 3098 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 3099 } else { 3100 inversePermutation(Order, MaskOrder); 3101 } 3102 reorderReuses(MaskOrder, Mask); 3103 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 3104 Order.clear(); 3105 return; 3106 } 3107 Order.assign(Mask.size(), Mask.size()); 3108 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 3109 if (MaskOrder[I] != UndefMaskElem) 3110 Order[MaskOrder[I]] = I; 3111 fixupOrderingIndices(Order); 3112 } 3113 3114 Optional<BoUpSLP::OrdersType> 3115 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { 3116 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 3117 unsigned NumScalars = TE.Scalars.size(); 3118 OrdersType CurrentOrder(NumScalars, NumScalars); 3119 SmallVector<int> Positions; 3120 SmallBitVector UsedPositions(NumScalars); 3121 const TreeEntry *STE = nullptr; 3122 // Try to find all gathered scalars that are gets vectorized in other 3123 // vectorize node. Here we can have only one single tree vector node to 3124 // correctly identify order of the gathered scalars. 3125 for (unsigned I = 0; I < NumScalars; ++I) { 3126 Value *V = TE.Scalars[I]; 3127 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) 3128 continue; 3129 if (const auto *LocalSTE = getTreeEntry(V)) { 3130 if (!STE) 3131 STE = LocalSTE; 3132 else if (STE != LocalSTE) 3133 // Take the order only from the single vector node. 3134 return None; 3135 unsigned Lane = 3136 std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); 3137 if (Lane >= NumScalars) 3138 return None; 3139 if (CurrentOrder[Lane] != NumScalars) { 3140 if (Lane != I) 3141 continue; 3142 UsedPositions.reset(CurrentOrder[Lane]); 3143 } 3144 // The partial identity (where only some elements of the gather node are 3145 // in the identity order) is good. 3146 CurrentOrder[Lane] = I; 3147 UsedPositions.set(I); 3148 } 3149 } 3150 // Need to keep the order if we have a vector entry and at least 2 scalars or 3151 // the vectorized entry has just 2 scalars. 3152 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { 3153 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { 3154 for (unsigned I = 0; I < NumScalars; ++I) 3155 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) 3156 return false; 3157 return true; 3158 }; 3159 if (IsIdentityOrder(CurrentOrder)) { 3160 CurrentOrder.clear(); 3161 return CurrentOrder; 3162 } 3163 auto *It = CurrentOrder.begin(); 3164 for (unsigned I = 0; I < NumScalars;) { 3165 if (UsedPositions.test(I)) { 3166 ++I; 3167 continue; 3168 } 3169 if (*It == NumScalars) { 3170 *It = I; 3171 ++I; 3172 } 3173 ++It; 3174 } 3175 return CurrentOrder; 3176 } 3177 return None; 3178 } 3179 3180 Optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE, 3181 bool TopToBottom) { 3182 // No need to reorder if need to shuffle reuses, still need to shuffle the 3183 // node. 3184 if (!TE.ReuseShuffleIndices.empty()) 3185 return None; 3186 if (TE.State == TreeEntry::Vectorize && 3187 (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) || 3188 (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) && 3189 !TE.isAltShuffle()) 3190 return TE.ReorderIndices; 3191 if (TE.State == TreeEntry::NeedToGather) { 3192 // TODO: add analysis of other gather nodes with extractelement 3193 // instructions and other values/instructions, not only undefs. 3194 if (((TE.getOpcode() == Instruction::ExtractElement && 3195 !TE.isAltShuffle()) || 3196 (all_of(TE.Scalars, 3197 [](Value *V) { 3198 return isa<UndefValue, ExtractElementInst>(V); 3199 }) && 3200 any_of(TE.Scalars, 3201 [](Value *V) { return isa<ExtractElementInst>(V); }))) && 3202 all_of(TE.Scalars, 3203 [](Value *V) { 3204 auto *EE = dyn_cast<ExtractElementInst>(V); 3205 return !EE || isa<FixedVectorType>(EE->getVectorOperandType()); 3206 }) && 3207 allSameType(TE.Scalars)) { 3208 // Check that gather of extractelements can be represented as 3209 // just a shuffle of a single vector. 3210 OrdersType CurrentOrder; 3211 bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder); 3212 if (Reuse || !CurrentOrder.empty()) { 3213 if (!CurrentOrder.empty()) 3214 fixupOrderingIndices(CurrentOrder); 3215 return CurrentOrder; 3216 } 3217 } 3218 if (Optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE)) 3219 return CurrentOrder; 3220 } 3221 return None; 3222 } 3223 3224 void BoUpSLP::reorderTopToBottom() { 3225 // Maps VF to the graph nodes. 3226 DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries; 3227 // ExtractElement gather nodes which can be vectorized and need to handle 3228 // their ordering. 3229 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3230 // Find all reorderable nodes with the given VF. 3231 // Currently the are vectorized stores,loads,extracts + some gathering of 3232 // extracts. 3233 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders]( 3234 const std::unique_ptr<TreeEntry> &TE) { 3235 if (Optional<OrdersType> CurrentOrder = 3236 getReorderingData(*TE.get(), /*TopToBottom=*/true)) { 3237 // Do not include ordering for nodes used in the alt opcode vectorization, 3238 // better to reorder them during bottom-to-top stage. If follow the order 3239 // here, it causes reordering of the whole graph though actually it is 3240 // profitable just to reorder the subgraph that starts from the alternate 3241 // opcode vectorization node. Such nodes already end-up with the shuffle 3242 // instruction and it is just enough to change this shuffle rather than 3243 // rotate the scalars for the whole graph. 3244 unsigned Cnt = 0; 3245 const TreeEntry *UserTE = TE.get(); 3246 while (UserTE && Cnt < RecursionMaxDepth) { 3247 if (UserTE->UserTreeIndices.size() != 1) 3248 break; 3249 if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) { 3250 return EI.UserTE->State == TreeEntry::Vectorize && 3251 EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0; 3252 })) 3253 return; 3254 if (UserTE->UserTreeIndices.empty()) 3255 UserTE = nullptr; 3256 else 3257 UserTE = UserTE->UserTreeIndices.back().UserTE; 3258 ++Cnt; 3259 } 3260 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 3261 if (TE->State != TreeEntry::Vectorize) 3262 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3263 } 3264 }); 3265 3266 // Reorder the graph nodes according to their vectorization factor. 3267 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 3268 VF /= 2) { 3269 auto It = VFToOrderedEntries.find(VF); 3270 if (It == VFToOrderedEntries.end()) 3271 continue; 3272 // Try to find the most profitable order. We just are looking for the most 3273 // used order and reorder scalar elements in the nodes according to this 3274 // mostly used order. 3275 ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef(); 3276 // All operands are reordered and used only in this node - propagate the 3277 // most used order to the user node. 3278 MapVector<OrdersType, unsigned, 3279 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3280 OrdersUses; 3281 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3282 for (const TreeEntry *OpTE : OrderedEntries) { 3283 // No need to reorder this nodes, still need to extend and to use shuffle, 3284 // just need to merge reordering shuffle and the reuse shuffle. 3285 if (!OpTE->ReuseShuffleIndices.empty()) 3286 continue; 3287 // Count number of orders uses. 3288 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3289 if (OpTE->State == TreeEntry::NeedToGather) 3290 return GathersToOrders.find(OpTE)->second; 3291 return OpTE->ReorderIndices; 3292 }(); 3293 // Stores actually store the mask, not the order, need to invert. 3294 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3295 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3296 SmallVector<int> Mask; 3297 inversePermutation(Order, Mask); 3298 unsigned E = Order.size(); 3299 OrdersType CurrentOrder(E, E); 3300 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3301 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3302 }); 3303 fixupOrderingIndices(CurrentOrder); 3304 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3305 } else { 3306 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3307 } 3308 } 3309 // Set order of the user node. 3310 if (OrdersUses.empty()) 3311 continue; 3312 // Choose the most used order. 3313 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3314 unsigned Cnt = OrdersUses.front().second; 3315 for (const auto &Pair : drop_begin(OrdersUses)) { 3316 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3317 BestOrder = Pair.first; 3318 Cnt = Pair.second; 3319 } 3320 } 3321 // Set order of the user node. 3322 if (BestOrder.empty()) 3323 continue; 3324 SmallVector<int> Mask; 3325 inversePermutation(BestOrder, Mask); 3326 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3327 unsigned E = BestOrder.size(); 3328 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3329 return I < E ? static_cast<int>(I) : UndefMaskElem; 3330 }); 3331 // Do an actual reordering, if profitable. 3332 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 3333 // Just do the reordering for the nodes with the given VF. 3334 if (TE->Scalars.size() != VF) { 3335 if (TE->ReuseShuffleIndices.size() == VF) { 3336 // Need to reorder the reuses masks of the operands with smaller VF to 3337 // be able to find the match between the graph nodes and scalar 3338 // operands of the given node during vectorization/cost estimation. 3339 assert(all_of(TE->UserTreeIndices, 3340 [VF, &TE](const EdgeInfo &EI) { 3341 return EI.UserTE->Scalars.size() == VF || 3342 EI.UserTE->Scalars.size() == 3343 TE->Scalars.size(); 3344 }) && 3345 "All users must be of VF size."); 3346 // Update ordering of the operands with the smaller VF than the given 3347 // one. 3348 reorderReuses(TE->ReuseShuffleIndices, Mask); 3349 } 3350 continue; 3351 } 3352 if (TE->State == TreeEntry::Vectorize && 3353 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 3354 InsertElementInst>(TE->getMainOp()) && 3355 !TE->isAltShuffle()) { 3356 // Build correct orders for extract{element,value}, loads and 3357 // stores. 3358 reorderOrder(TE->ReorderIndices, Mask); 3359 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 3360 TE->reorderOperands(Mask); 3361 } else { 3362 // Reorder the node and its operands. 3363 TE->reorderOperands(Mask); 3364 assert(TE->ReorderIndices.empty() && 3365 "Expected empty reorder sequence."); 3366 reorderScalars(TE->Scalars, Mask); 3367 } 3368 if (!TE->ReuseShuffleIndices.empty()) { 3369 // Apply reversed order to keep the original ordering of the reused 3370 // elements to avoid extra reorder indices shuffling. 3371 OrdersType CurrentOrder; 3372 reorderOrder(CurrentOrder, MaskOrder); 3373 SmallVector<int> NewReuses; 3374 inversePermutation(CurrentOrder, NewReuses); 3375 addMask(NewReuses, TE->ReuseShuffleIndices); 3376 TE->ReuseShuffleIndices.swap(NewReuses); 3377 } 3378 } 3379 } 3380 } 3381 3382 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { 3383 SetVector<TreeEntry *> OrderedEntries; 3384 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3385 // Find all reorderable leaf nodes with the given VF. 3386 // Currently the are vectorized loads,extracts without alternate operands + 3387 // some gathering of extracts. 3388 SmallVector<TreeEntry *> NonVectorized; 3389 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 3390 &NonVectorized]( 3391 const std::unique_ptr<TreeEntry> &TE) { 3392 if (TE->State != TreeEntry::Vectorize) 3393 NonVectorized.push_back(TE.get()); 3394 if (Optional<OrdersType> CurrentOrder = 3395 getReorderingData(*TE.get(), /*TopToBottom=*/false)) { 3396 OrderedEntries.insert(TE.get()); 3397 if (TE->State != TreeEntry::Vectorize) 3398 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3399 } 3400 }); 3401 3402 // Checks if the operands of the users are reordarable and have only single 3403 // use. 3404 auto &&CheckOperands = 3405 [this, &NonVectorized](const auto &Data, 3406 SmallVectorImpl<TreeEntry *> &GatherOps) { 3407 for (unsigned I = 0, E = Data.first->getNumOperands(); I < E; ++I) { 3408 if (any_of(Data.second, 3409 [I](const std::pair<unsigned, TreeEntry *> &OpData) { 3410 return OpData.first == I && 3411 OpData.second->State == TreeEntry::Vectorize; 3412 })) 3413 continue; 3414 ArrayRef<Value *> VL = Data.first->getOperand(I); 3415 const TreeEntry *TE = nullptr; 3416 const auto *It = find_if(VL, [this, &TE](Value *V) { 3417 TE = getTreeEntry(V); 3418 return TE; 3419 }); 3420 if (It != VL.end() && TE->isSame(VL)) 3421 return false; 3422 TreeEntry *Gather = nullptr; 3423 if (count_if(NonVectorized, [VL, &Gather](TreeEntry *TE) { 3424 assert(TE->State != TreeEntry::Vectorize && 3425 "Only non-vectorized nodes are expected."); 3426 if (TE->isSame(VL)) { 3427 Gather = TE; 3428 return true; 3429 } 3430 return false; 3431 }) > 1) 3432 return false; 3433 if (Gather) 3434 GatherOps.push_back(Gather); 3435 } 3436 return true; 3437 }; 3438 // 1. Propagate order to the graph nodes, which use only reordered nodes. 3439 // I.e., if the node has operands, that are reordered, try to make at least 3440 // one operand order in the natural order and reorder others + reorder the 3441 // user node itself. 3442 SmallPtrSet<const TreeEntry *, 4> Visited; 3443 while (!OrderedEntries.empty()) { 3444 // 1. Filter out only reordered nodes. 3445 // 2. If the entry has multiple uses - skip it and jump to the next node. 3446 MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 3447 SmallVector<TreeEntry *> Filtered; 3448 for (TreeEntry *TE : OrderedEntries) { 3449 if (!(TE->State == TreeEntry::Vectorize || 3450 (TE->State == TreeEntry::NeedToGather && 3451 GathersToOrders.count(TE))) || 3452 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3453 !all_of(drop_begin(TE->UserTreeIndices), 3454 [TE](const EdgeInfo &EI) { 3455 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 3456 }) || 3457 !Visited.insert(TE).second) { 3458 Filtered.push_back(TE); 3459 continue; 3460 } 3461 // Build a map between user nodes and their operands order to speedup 3462 // search. The graph currently does not provide this dependency directly. 3463 for (EdgeInfo &EI : TE->UserTreeIndices) { 3464 TreeEntry *UserTE = EI.UserTE; 3465 auto It = Users.find(UserTE); 3466 if (It == Users.end()) 3467 It = Users.insert({UserTE, {}}).first; 3468 It->second.emplace_back(EI.EdgeIdx, TE); 3469 } 3470 } 3471 // Erase filtered entries. 3472 for_each(Filtered, 3473 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 3474 for (const auto &Data : Users) { 3475 // Check that operands are used only in the User node. 3476 SmallVector<TreeEntry *> GatherOps; 3477 if (!CheckOperands(Data, GatherOps)) { 3478 for_each(Data.second, 3479 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3480 OrderedEntries.remove(Op.second); 3481 }); 3482 continue; 3483 } 3484 // All operands are reordered and used only in this node - propagate the 3485 // most used order to the user node. 3486 MapVector<OrdersType, unsigned, 3487 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3488 OrdersUses; 3489 // Do the analysis for each tree entry only once, otherwise the order of 3490 // the same node my be considered several times, though might be not 3491 // profitable. 3492 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3493 for (const auto &Op : Data.second) { 3494 TreeEntry *OpTE = Op.second; 3495 if (!VisitedOps.insert(OpTE).second) 3496 continue; 3497 if (!OpTE->ReuseShuffleIndices.empty() || 3498 (IgnoreReorder && OpTE == VectorizableTree.front().get())) 3499 continue; 3500 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3501 if (OpTE->State == TreeEntry::NeedToGather) 3502 return GathersToOrders.find(OpTE)->second; 3503 return OpTE->ReorderIndices; 3504 }(); 3505 // Stores actually store the mask, not the order, need to invert. 3506 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3507 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3508 SmallVector<int> Mask; 3509 inversePermutation(Order, Mask); 3510 unsigned E = Order.size(); 3511 OrdersType CurrentOrder(E, E); 3512 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3513 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3514 }); 3515 fixupOrderingIndices(CurrentOrder); 3516 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3517 } else { 3518 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3519 } 3520 OrdersUses.insert(std::make_pair(OrdersType(), 0)).first->second += 3521 OpTE->UserTreeIndices.size(); 3522 assert(OrdersUses[{}] > 0 && "Counter cannot be less than 0."); 3523 --OrdersUses[{}]; 3524 } 3525 // If no orders - skip current nodes and jump to the next one, if any. 3526 if (OrdersUses.empty()) { 3527 for_each(Data.second, 3528 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3529 OrderedEntries.remove(Op.second); 3530 }); 3531 continue; 3532 } 3533 // Choose the best order. 3534 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3535 unsigned Cnt = OrdersUses.front().second; 3536 for (const auto &Pair : drop_begin(OrdersUses)) { 3537 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3538 BestOrder = Pair.first; 3539 Cnt = Pair.second; 3540 } 3541 } 3542 // Set order of the user node (reordering of operands and user nodes). 3543 if (BestOrder.empty()) { 3544 for_each(Data.second, 3545 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3546 OrderedEntries.remove(Op.second); 3547 }); 3548 continue; 3549 } 3550 // Erase operands from OrderedEntries list and adjust their orders. 3551 VisitedOps.clear(); 3552 SmallVector<int> Mask; 3553 inversePermutation(BestOrder, Mask); 3554 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3555 unsigned E = BestOrder.size(); 3556 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3557 return I < E ? static_cast<int>(I) : UndefMaskElem; 3558 }); 3559 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 3560 TreeEntry *TE = Op.second; 3561 OrderedEntries.remove(TE); 3562 if (!VisitedOps.insert(TE).second) 3563 continue; 3564 if (!TE->ReuseShuffleIndices.empty() && TE->ReorderIndices.empty()) { 3565 // Just reorder reuses indices. 3566 reorderReuses(TE->ReuseShuffleIndices, Mask); 3567 continue; 3568 } 3569 // Gathers are processed separately. 3570 if (TE->State != TreeEntry::Vectorize) 3571 continue; 3572 assert((BestOrder.size() == TE->ReorderIndices.size() || 3573 TE->ReorderIndices.empty()) && 3574 "Non-matching sizes of user/operand entries."); 3575 reorderOrder(TE->ReorderIndices, Mask); 3576 } 3577 // For gathers just need to reorder its scalars. 3578 for (TreeEntry *Gather : GatherOps) { 3579 assert(Gather->ReorderIndices.empty() && 3580 "Unexpected reordering of gathers."); 3581 if (!Gather->ReuseShuffleIndices.empty()) { 3582 // Just reorder reuses indices. 3583 reorderReuses(Gather->ReuseShuffleIndices, Mask); 3584 continue; 3585 } 3586 reorderScalars(Gather->Scalars, Mask); 3587 OrderedEntries.remove(Gather); 3588 } 3589 // Reorder operands of the user node and set the ordering for the user 3590 // node itself. 3591 if (Data.first->State != TreeEntry::Vectorize || 3592 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 3593 Data.first->getMainOp()) || 3594 Data.first->isAltShuffle()) 3595 Data.first->reorderOperands(Mask); 3596 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 3597 Data.first->isAltShuffle()) { 3598 reorderScalars(Data.first->Scalars, Mask); 3599 reorderOrder(Data.first->ReorderIndices, MaskOrder); 3600 if (Data.first->ReuseShuffleIndices.empty() && 3601 !Data.first->ReorderIndices.empty() && 3602 !Data.first->isAltShuffle()) { 3603 // Insert user node to the list to try to sink reordering deeper in 3604 // the graph. 3605 OrderedEntries.insert(Data.first); 3606 } 3607 } else { 3608 reorderOrder(Data.first->ReorderIndices, Mask); 3609 } 3610 } 3611 } 3612 // If the reordering is unnecessary, just remove the reorder. 3613 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && 3614 VectorizableTree.front()->ReuseShuffleIndices.empty()) 3615 VectorizableTree.front()->ReorderIndices.clear(); 3616 } 3617 3618 void BoUpSLP::buildExternalUses( 3619 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3620 // Collect the values that we need to extract from the tree. 3621 for (auto &TEPtr : VectorizableTree) { 3622 TreeEntry *Entry = TEPtr.get(); 3623 3624 // No need to handle users of gathered values. 3625 if (Entry->State == TreeEntry::NeedToGather) 3626 continue; 3627 3628 // For each lane: 3629 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3630 Value *Scalar = Entry->Scalars[Lane]; 3631 int FoundLane = Entry->findLaneForValue(Scalar); 3632 3633 // Check if the scalar is externally used as an extra arg. 3634 auto ExtI = ExternallyUsedValues.find(Scalar); 3635 if (ExtI != ExternallyUsedValues.end()) { 3636 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 3637 << Lane << " from " << *Scalar << ".\n"); 3638 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 3639 } 3640 for (User *U : Scalar->users()) { 3641 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 3642 3643 Instruction *UserInst = dyn_cast<Instruction>(U); 3644 if (!UserInst) 3645 continue; 3646 3647 if (isDeleted(UserInst)) 3648 continue; 3649 3650 // Skip in-tree scalars that become vectors 3651 if (TreeEntry *UseEntry = getTreeEntry(U)) { 3652 Value *UseScalar = UseEntry->Scalars[0]; 3653 // Some in-tree scalars will remain as scalar in vectorized 3654 // instructions. If that is the case, the one in Lane 0 will 3655 // be used. 3656 if (UseScalar != U || 3657 UseEntry->State == TreeEntry::ScatterVectorize || 3658 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 3659 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 3660 << ".\n"); 3661 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 3662 continue; 3663 } 3664 } 3665 3666 // Ignore users in the user ignore list. 3667 if (is_contained(UserIgnoreList, UserInst)) 3668 continue; 3669 3670 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 3671 << Lane << " from " << *Scalar << ".\n"); 3672 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 3673 } 3674 } 3675 } 3676 } 3677 3678 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 3679 ArrayRef<Value *> UserIgnoreLst) { 3680 deleteTree(); 3681 UserIgnoreList = UserIgnoreLst; 3682 if (!allSameType(Roots)) 3683 return; 3684 buildTree_rec(Roots, 0, EdgeInfo()); 3685 } 3686 3687 namespace { 3688 /// Tracks the state we can represent the loads in the given sequence. 3689 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 3690 } // anonymous namespace 3691 3692 /// Checks if the given array of loads can be represented as a vectorized, 3693 /// scatter or just simple gather. 3694 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 3695 const TargetTransformInfo &TTI, 3696 const DataLayout &DL, ScalarEvolution &SE, 3697 SmallVectorImpl<unsigned> &Order, 3698 SmallVectorImpl<Value *> &PointerOps) { 3699 // Check that a vectorized load would load the same memory as a scalar 3700 // load. For example, we don't want to vectorize loads that are smaller 3701 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3702 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3703 // from such a struct, we read/write packed bits disagreeing with the 3704 // unvectorized version. 3705 Type *ScalarTy = VL0->getType(); 3706 3707 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 3708 return LoadsState::Gather; 3709 3710 // Make sure all loads in the bundle are simple - we can't vectorize 3711 // atomic or volatile loads. 3712 PointerOps.clear(); 3713 PointerOps.resize(VL.size()); 3714 auto *POIter = PointerOps.begin(); 3715 for (Value *V : VL) { 3716 auto *L = cast<LoadInst>(V); 3717 if (!L->isSimple()) 3718 return LoadsState::Gather; 3719 *POIter = L->getPointerOperand(); 3720 ++POIter; 3721 } 3722 3723 Order.clear(); 3724 // Check the order of pointer operands. 3725 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 3726 Value *Ptr0; 3727 Value *PtrN; 3728 if (Order.empty()) { 3729 Ptr0 = PointerOps.front(); 3730 PtrN = PointerOps.back(); 3731 } else { 3732 Ptr0 = PointerOps[Order.front()]; 3733 PtrN = PointerOps[Order.back()]; 3734 } 3735 Optional<int> Diff = 3736 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 3737 // Check that the sorted loads are consecutive. 3738 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 3739 return LoadsState::Vectorize; 3740 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 3741 for (Value *V : VL) 3742 CommonAlignment = 3743 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 3744 if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()), 3745 CommonAlignment)) 3746 return LoadsState::ScatterVectorize; 3747 } 3748 3749 return LoadsState::Gather; 3750 } 3751 3752 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 3753 const EdgeInfo &UserTreeIdx) { 3754 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 3755 3756 SmallVector<int> ReuseShuffleIndicies; 3757 SmallVector<Value *> UniqueValues; 3758 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, 3759 &UserTreeIdx, 3760 this](const InstructionsState &S) { 3761 // Check that every instruction appears once in this bundle. 3762 DenseMap<Value *, unsigned> UniquePositions; 3763 for (Value *V : VL) { 3764 if (isConstant(V)) { 3765 ReuseShuffleIndicies.emplace_back( 3766 isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size()); 3767 UniqueValues.emplace_back(V); 3768 continue; 3769 } 3770 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3771 ReuseShuffleIndicies.emplace_back(Res.first->second); 3772 if (Res.second) 3773 UniqueValues.emplace_back(V); 3774 } 3775 size_t NumUniqueScalarValues = UniqueValues.size(); 3776 if (NumUniqueScalarValues == VL.size()) { 3777 ReuseShuffleIndicies.clear(); 3778 } else { 3779 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 3780 if (NumUniqueScalarValues <= 1 || 3781 (UniquePositions.size() == 1 && all_of(UniqueValues, 3782 [](Value *V) { 3783 return isa<UndefValue>(V) || 3784 !isConstant(V); 3785 })) || 3786 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 3787 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 3788 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3789 return false; 3790 } 3791 VL = UniqueValues; 3792 } 3793 return true; 3794 }; 3795 3796 InstructionsState S = getSameOpcode(VL); 3797 if (Depth == RecursionMaxDepth) { 3798 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 3799 if (TryToFindDuplicates(S)) 3800 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3801 ReuseShuffleIndicies); 3802 return; 3803 } 3804 3805 // Don't handle scalable vectors 3806 if (S.getOpcode() == Instruction::ExtractElement && 3807 isa<ScalableVectorType>( 3808 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 3809 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 3810 if (TryToFindDuplicates(S)) 3811 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3812 ReuseShuffleIndicies); 3813 return; 3814 } 3815 3816 // Don't handle vectors. 3817 if (S.OpValue->getType()->isVectorTy() && 3818 !isa<InsertElementInst>(S.OpValue)) { 3819 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 3820 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3821 return; 3822 } 3823 3824 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 3825 if (SI->getValueOperand()->getType()->isVectorTy()) { 3826 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 3827 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3828 return; 3829 } 3830 3831 // If all of the operands are identical or constant we have a simple solution. 3832 // If we deal with insert/extract instructions, they all must have constant 3833 // indices, otherwise we should gather them, not try to vectorize. 3834 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() || 3835 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) && 3836 !all_of(VL, isVectorLikeInstWithConstOps))) { 3837 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 3838 if (TryToFindDuplicates(S)) 3839 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3840 ReuseShuffleIndicies); 3841 return; 3842 } 3843 3844 // We now know that this is a vector of instructions of the same type from 3845 // the same block. 3846 3847 // Don't vectorize ephemeral values. 3848 for (Value *V : VL) { 3849 if (EphValues.count(V)) { 3850 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3851 << ") is ephemeral.\n"); 3852 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3853 return; 3854 } 3855 } 3856 3857 // Check if this is a duplicate of another entry. 3858 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 3859 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 3860 if (!E->isSame(VL)) { 3861 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 3862 if (TryToFindDuplicates(S)) 3863 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3864 ReuseShuffleIndicies); 3865 return; 3866 } 3867 // Record the reuse of the tree node. FIXME, currently this is only used to 3868 // properly draw the graph rather than for the actual vectorization. 3869 E->UserTreeIndices.push_back(UserTreeIdx); 3870 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 3871 << ".\n"); 3872 return; 3873 } 3874 3875 // Check that none of the instructions in the bundle are already in the tree. 3876 for (Value *V : VL) { 3877 auto *I = dyn_cast<Instruction>(V); 3878 if (!I) 3879 continue; 3880 if (getTreeEntry(I)) { 3881 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3882 << ") is already in tree.\n"); 3883 if (TryToFindDuplicates(S)) 3884 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3885 ReuseShuffleIndicies); 3886 return; 3887 } 3888 } 3889 3890 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 3891 for (Value *V : VL) { 3892 if (is_contained(UserIgnoreList, V)) { 3893 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 3894 if (TryToFindDuplicates(S)) 3895 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3896 ReuseShuffleIndicies); 3897 return; 3898 } 3899 } 3900 3901 // Check that all of the users of the scalars that we want to vectorize are 3902 // schedulable. 3903 auto *VL0 = cast<Instruction>(S.OpValue); 3904 BasicBlock *BB = VL0->getParent(); 3905 3906 if (!DT->isReachableFromEntry(BB)) { 3907 // Don't go into unreachable blocks. They may contain instructions with 3908 // dependency cycles which confuse the final scheduling. 3909 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 3910 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3911 return; 3912 } 3913 3914 // Check that every instruction appears once in this bundle. 3915 if (!TryToFindDuplicates(S)) 3916 return; 3917 3918 auto &BSRef = BlocksSchedules[BB]; 3919 if (!BSRef) 3920 BSRef = std::make_unique<BlockScheduling>(BB); 3921 3922 BlockScheduling &BS = *BSRef.get(); 3923 3924 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 3925 #ifdef EXPENSIVE_CHECKS 3926 // Make sure we didn't break any internal invariants 3927 BS.verify(); 3928 #endif 3929 if (!Bundle) { 3930 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 3931 assert((!BS.getScheduleData(VL0) || 3932 !BS.getScheduleData(VL0)->isPartOfBundle()) && 3933 "tryScheduleBundle should cancelScheduling on failure"); 3934 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3935 ReuseShuffleIndicies); 3936 return; 3937 } 3938 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 3939 3940 unsigned ShuffleOrOp = S.isAltShuffle() ? 3941 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 3942 switch (ShuffleOrOp) { 3943 case Instruction::PHI: { 3944 auto *PH = cast<PHINode>(VL0); 3945 3946 // Check for terminator values (e.g. invoke). 3947 for (Value *V : VL) 3948 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 3949 Instruction *Term = dyn_cast<Instruction>( 3950 cast<PHINode>(V)->getIncomingValueForBlock( 3951 PH->getIncomingBlock(I))); 3952 if (Term && Term->isTerminator()) { 3953 LLVM_DEBUG(dbgs() 3954 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 3955 BS.cancelScheduling(VL, VL0); 3956 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3957 ReuseShuffleIndicies); 3958 return; 3959 } 3960 } 3961 3962 TreeEntry *TE = 3963 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 3964 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 3965 3966 // Keeps the reordered operands to avoid code duplication. 3967 SmallVector<ValueList, 2> OperandsVec; 3968 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 3969 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 3970 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 3971 TE->setOperand(I, Operands); 3972 OperandsVec.push_back(Operands); 3973 continue; 3974 } 3975 ValueList Operands; 3976 // Prepare the operand vector. 3977 for (Value *V : VL) 3978 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 3979 PH->getIncomingBlock(I))); 3980 TE->setOperand(I, Operands); 3981 OperandsVec.push_back(Operands); 3982 } 3983 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 3984 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 3985 return; 3986 } 3987 case Instruction::ExtractValue: 3988 case Instruction::ExtractElement: { 3989 OrdersType CurrentOrder; 3990 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 3991 if (Reuse) { 3992 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 3993 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3994 ReuseShuffleIndicies); 3995 // This is a special case, as it does not gather, but at the same time 3996 // we are not extending buildTree_rec() towards the operands. 3997 ValueList Op0; 3998 Op0.assign(VL.size(), VL0->getOperand(0)); 3999 VectorizableTree.back()->setOperand(0, Op0); 4000 return; 4001 } 4002 if (!CurrentOrder.empty()) { 4003 LLVM_DEBUG({ 4004 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 4005 "with order"; 4006 for (unsigned Idx : CurrentOrder) 4007 dbgs() << " " << Idx; 4008 dbgs() << "\n"; 4009 }); 4010 fixupOrderingIndices(CurrentOrder); 4011 // Insert new order with initial value 0, if it does not exist, 4012 // otherwise return the iterator to the existing one. 4013 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4014 ReuseShuffleIndicies, CurrentOrder); 4015 // This is a special case, as it does not gather, but at the same time 4016 // we are not extending buildTree_rec() towards the operands. 4017 ValueList Op0; 4018 Op0.assign(VL.size(), VL0->getOperand(0)); 4019 VectorizableTree.back()->setOperand(0, Op0); 4020 return; 4021 } 4022 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 4023 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4024 ReuseShuffleIndicies); 4025 BS.cancelScheduling(VL, VL0); 4026 return; 4027 } 4028 case Instruction::InsertElement: { 4029 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 4030 4031 // Check that we have a buildvector and not a shuffle of 2 or more 4032 // different vectors. 4033 ValueSet SourceVectors; 4034 for (Value *V : VL) { 4035 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 4036 assert(getInsertIndex(V) != None && "Non-constant or undef index?"); 4037 } 4038 4039 if (count_if(VL, [&SourceVectors](Value *V) { 4040 return !SourceVectors.contains(V); 4041 }) >= 2) { 4042 // Found 2nd source vector - cancel. 4043 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 4044 "different source vectors.\n"); 4045 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 4046 BS.cancelScheduling(VL, VL0); 4047 return; 4048 } 4049 4050 auto OrdCompare = [](const std::pair<int, int> &P1, 4051 const std::pair<int, int> &P2) { 4052 return P1.first > P2.first; 4053 }; 4054 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 4055 decltype(OrdCompare)> 4056 Indices(OrdCompare); 4057 for (int I = 0, E = VL.size(); I < E; ++I) { 4058 unsigned Idx = *getInsertIndex(VL[I]); 4059 Indices.emplace(Idx, I); 4060 } 4061 OrdersType CurrentOrder(VL.size(), VL.size()); 4062 bool IsIdentity = true; 4063 for (int I = 0, E = VL.size(); I < E; ++I) { 4064 CurrentOrder[Indices.top().second] = I; 4065 IsIdentity &= Indices.top().second == I; 4066 Indices.pop(); 4067 } 4068 if (IsIdentity) 4069 CurrentOrder.clear(); 4070 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4071 None, CurrentOrder); 4072 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 4073 4074 constexpr int NumOps = 2; 4075 ValueList VectorOperands[NumOps]; 4076 for (int I = 0; I < NumOps; ++I) { 4077 for (Value *V : VL) 4078 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 4079 4080 TE->setOperand(I, VectorOperands[I]); 4081 } 4082 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 4083 return; 4084 } 4085 case Instruction::Load: { 4086 // Check that a vectorized load would load the same memory as a scalar 4087 // load. For example, we don't want to vectorize loads that are smaller 4088 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 4089 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 4090 // from such a struct, we read/write packed bits disagreeing with the 4091 // unvectorized version. 4092 SmallVector<Value *> PointerOps; 4093 OrdersType CurrentOrder; 4094 TreeEntry *TE = nullptr; 4095 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 4096 PointerOps)) { 4097 case LoadsState::Vectorize: 4098 if (CurrentOrder.empty()) { 4099 // Original loads are consecutive and does not require reordering. 4100 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4101 ReuseShuffleIndicies); 4102 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 4103 } else { 4104 fixupOrderingIndices(CurrentOrder); 4105 // Need to reorder. 4106 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4107 ReuseShuffleIndicies, CurrentOrder); 4108 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 4109 } 4110 TE->setOperandsInOrder(); 4111 break; 4112 case LoadsState::ScatterVectorize: 4113 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 4114 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 4115 UserTreeIdx, ReuseShuffleIndicies); 4116 TE->setOperandsInOrder(); 4117 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 4118 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 4119 break; 4120 case LoadsState::Gather: 4121 BS.cancelScheduling(VL, VL0); 4122 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4123 ReuseShuffleIndicies); 4124 #ifndef NDEBUG 4125 Type *ScalarTy = VL0->getType(); 4126 if (DL->getTypeSizeInBits(ScalarTy) != 4127 DL->getTypeAllocSizeInBits(ScalarTy)) 4128 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 4129 else if (any_of(VL, [](Value *V) { 4130 return !cast<LoadInst>(V)->isSimple(); 4131 })) 4132 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 4133 else 4134 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 4135 #endif // NDEBUG 4136 break; 4137 } 4138 return; 4139 } 4140 case Instruction::ZExt: 4141 case Instruction::SExt: 4142 case Instruction::FPToUI: 4143 case Instruction::FPToSI: 4144 case Instruction::FPExt: 4145 case Instruction::PtrToInt: 4146 case Instruction::IntToPtr: 4147 case Instruction::SIToFP: 4148 case Instruction::UIToFP: 4149 case Instruction::Trunc: 4150 case Instruction::FPTrunc: 4151 case Instruction::BitCast: { 4152 Type *SrcTy = VL0->getOperand(0)->getType(); 4153 for (Value *V : VL) { 4154 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 4155 if (Ty != SrcTy || !isValidElementType(Ty)) { 4156 BS.cancelScheduling(VL, VL0); 4157 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4158 ReuseShuffleIndicies); 4159 LLVM_DEBUG(dbgs() 4160 << "SLP: Gathering casts with different src types.\n"); 4161 return; 4162 } 4163 } 4164 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4165 ReuseShuffleIndicies); 4166 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 4167 4168 TE->setOperandsInOrder(); 4169 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4170 ValueList Operands; 4171 // Prepare the operand vector. 4172 for (Value *V : VL) 4173 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4174 4175 buildTree_rec(Operands, Depth + 1, {TE, i}); 4176 } 4177 return; 4178 } 4179 case Instruction::ICmp: 4180 case Instruction::FCmp: { 4181 // Check that all of the compares have the same predicate. 4182 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4183 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 4184 Type *ComparedTy = VL0->getOperand(0)->getType(); 4185 for (Value *V : VL) { 4186 CmpInst *Cmp = cast<CmpInst>(V); 4187 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 4188 Cmp->getOperand(0)->getType() != ComparedTy) { 4189 BS.cancelScheduling(VL, VL0); 4190 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4191 ReuseShuffleIndicies); 4192 LLVM_DEBUG(dbgs() 4193 << "SLP: Gathering cmp with different predicate.\n"); 4194 return; 4195 } 4196 } 4197 4198 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4199 ReuseShuffleIndicies); 4200 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 4201 4202 ValueList Left, Right; 4203 if (cast<CmpInst>(VL0)->isCommutative()) { 4204 // Commutative predicate - collect + sort operands of the instructions 4205 // so that each side is more likely to have the same opcode. 4206 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 4207 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4208 } else { 4209 // Collect operands - commute if it uses the swapped predicate. 4210 for (Value *V : VL) { 4211 auto *Cmp = cast<CmpInst>(V); 4212 Value *LHS = Cmp->getOperand(0); 4213 Value *RHS = Cmp->getOperand(1); 4214 if (Cmp->getPredicate() != P0) 4215 std::swap(LHS, RHS); 4216 Left.push_back(LHS); 4217 Right.push_back(RHS); 4218 } 4219 } 4220 TE->setOperand(0, Left); 4221 TE->setOperand(1, Right); 4222 buildTree_rec(Left, Depth + 1, {TE, 0}); 4223 buildTree_rec(Right, Depth + 1, {TE, 1}); 4224 return; 4225 } 4226 case Instruction::Select: 4227 case Instruction::FNeg: 4228 case Instruction::Add: 4229 case Instruction::FAdd: 4230 case Instruction::Sub: 4231 case Instruction::FSub: 4232 case Instruction::Mul: 4233 case Instruction::FMul: 4234 case Instruction::UDiv: 4235 case Instruction::SDiv: 4236 case Instruction::FDiv: 4237 case Instruction::URem: 4238 case Instruction::SRem: 4239 case Instruction::FRem: 4240 case Instruction::Shl: 4241 case Instruction::LShr: 4242 case Instruction::AShr: 4243 case Instruction::And: 4244 case Instruction::Or: 4245 case Instruction::Xor: { 4246 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4247 ReuseShuffleIndicies); 4248 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 4249 4250 // Sort operands of the instructions so that each side is more likely to 4251 // have the same opcode. 4252 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 4253 ValueList Left, Right; 4254 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4255 TE->setOperand(0, Left); 4256 TE->setOperand(1, Right); 4257 buildTree_rec(Left, Depth + 1, {TE, 0}); 4258 buildTree_rec(Right, Depth + 1, {TE, 1}); 4259 return; 4260 } 4261 4262 TE->setOperandsInOrder(); 4263 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4264 ValueList Operands; 4265 // Prepare the operand vector. 4266 for (Value *V : VL) 4267 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4268 4269 buildTree_rec(Operands, Depth + 1, {TE, i}); 4270 } 4271 return; 4272 } 4273 case Instruction::GetElementPtr: { 4274 // We don't combine GEPs with complicated (nested) indexing. 4275 for (Value *V : VL) { 4276 if (cast<Instruction>(V)->getNumOperands() != 2) { 4277 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 4278 BS.cancelScheduling(VL, VL0); 4279 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4280 ReuseShuffleIndicies); 4281 return; 4282 } 4283 } 4284 4285 // We can't combine several GEPs into one vector if they operate on 4286 // different types. 4287 Type *Ty0 = cast<GEPOperator>(VL0)->getSourceElementType(); 4288 for (Value *V : VL) { 4289 Type *CurTy = cast<GEPOperator>(V)->getSourceElementType(); 4290 if (Ty0 != CurTy) { 4291 LLVM_DEBUG(dbgs() 4292 << "SLP: not-vectorizable GEP (different types).\n"); 4293 BS.cancelScheduling(VL, VL0); 4294 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4295 ReuseShuffleIndicies); 4296 return; 4297 } 4298 } 4299 4300 // We don't combine GEPs with non-constant indexes. 4301 Type *Ty1 = VL0->getOperand(1)->getType(); 4302 for (Value *V : VL) { 4303 auto Op = cast<Instruction>(V)->getOperand(1); 4304 if (!isa<ConstantInt>(Op) || 4305 (Op->getType() != Ty1 && 4306 Op->getType()->getScalarSizeInBits() > 4307 DL->getIndexSizeInBits( 4308 V->getType()->getPointerAddressSpace()))) { 4309 LLVM_DEBUG(dbgs() 4310 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 4311 BS.cancelScheduling(VL, VL0); 4312 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4313 ReuseShuffleIndicies); 4314 return; 4315 } 4316 } 4317 4318 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4319 ReuseShuffleIndicies); 4320 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 4321 SmallVector<ValueList, 2> Operands(2); 4322 // Prepare the operand vector for pointer operands. 4323 for (Value *V : VL) 4324 Operands.front().push_back( 4325 cast<GetElementPtrInst>(V)->getPointerOperand()); 4326 TE->setOperand(0, Operands.front()); 4327 // Need to cast all indices to the same type before vectorization to 4328 // avoid crash. 4329 // Required to be able to find correct matches between different gather 4330 // nodes and reuse the vectorized values rather than trying to gather them 4331 // again. 4332 int IndexIdx = 1; 4333 Type *VL0Ty = VL0->getOperand(IndexIdx)->getType(); 4334 Type *Ty = all_of(VL, 4335 [VL0Ty, IndexIdx](Value *V) { 4336 return VL0Ty == cast<GetElementPtrInst>(V) 4337 ->getOperand(IndexIdx) 4338 ->getType(); 4339 }) 4340 ? VL0Ty 4341 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4342 ->getPointerOperandType() 4343 ->getScalarType()); 4344 // Prepare the operand vector. 4345 for (Value *V : VL) { 4346 auto *Op = cast<Instruction>(V)->getOperand(IndexIdx); 4347 auto *CI = cast<ConstantInt>(Op); 4348 Operands.back().push_back(ConstantExpr::getIntegerCast( 4349 CI, Ty, CI->getValue().isSignBitSet())); 4350 } 4351 TE->setOperand(IndexIdx, Operands.back()); 4352 4353 for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I) 4354 buildTree_rec(Operands[I], Depth + 1, {TE, I}); 4355 return; 4356 } 4357 case Instruction::Store: { 4358 // Check if the stores are consecutive or if we need to swizzle them. 4359 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 4360 // Avoid types that are padded when being allocated as scalars, while 4361 // being packed together in a vector (such as i1). 4362 if (DL->getTypeSizeInBits(ScalarTy) != 4363 DL->getTypeAllocSizeInBits(ScalarTy)) { 4364 BS.cancelScheduling(VL, VL0); 4365 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4366 ReuseShuffleIndicies); 4367 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 4368 return; 4369 } 4370 // Make sure all stores in the bundle are simple - we can't vectorize 4371 // atomic or volatile stores. 4372 SmallVector<Value *, 4> PointerOps(VL.size()); 4373 ValueList Operands(VL.size()); 4374 auto POIter = PointerOps.begin(); 4375 auto OIter = Operands.begin(); 4376 for (Value *V : VL) { 4377 auto *SI = cast<StoreInst>(V); 4378 if (!SI->isSimple()) { 4379 BS.cancelScheduling(VL, VL0); 4380 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4381 ReuseShuffleIndicies); 4382 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 4383 return; 4384 } 4385 *POIter = SI->getPointerOperand(); 4386 *OIter = SI->getValueOperand(); 4387 ++POIter; 4388 ++OIter; 4389 } 4390 4391 OrdersType CurrentOrder; 4392 // Check the order of pointer operands. 4393 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 4394 Value *Ptr0; 4395 Value *PtrN; 4396 if (CurrentOrder.empty()) { 4397 Ptr0 = PointerOps.front(); 4398 PtrN = PointerOps.back(); 4399 } else { 4400 Ptr0 = PointerOps[CurrentOrder.front()]; 4401 PtrN = PointerOps[CurrentOrder.back()]; 4402 } 4403 Optional<int> Dist = 4404 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 4405 // Check that the sorted pointer operands are consecutive. 4406 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 4407 if (CurrentOrder.empty()) { 4408 // Original stores are consecutive and does not require reordering. 4409 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 4410 UserTreeIdx, ReuseShuffleIndicies); 4411 TE->setOperandsInOrder(); 4412 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4413 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 4414 } else { 4415 fixupOrderingIndices(CurrentOrder); 4416 TreeEntry *TE = 4417 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4418 ReuseShuffleIndicies, CurrentOrder); 4419 TE->setOperandsInOrder(); 4420 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4421 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 4422 } 4423 return; 4424 } 4425 } 4426 4427 BS.cancelScheduling(VL, VL0); 4428 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4429 ReuseShuffleIndicies); 4430 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 4431 return; 4432 } 4433 case Instruction::Call: { 4434 // Check if the calls are all to the same vectorizable intrinsic or 4435 // library function. 4436 CallInst *CI = cast<CallInst>(VL0); 4437 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4438 4439 VFShape Shape = VFShape::get( 4440 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 4441 false /*HasGlobalPred*/); 4442 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4443 4444 if (!VecFunc && !isTriviallyVectorizable(ID)) { 4445 BS.cancelScheduling(VL, VL0); 4446 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4447 ReuseShuffleIndicies); 4448 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 4449 return; 4450 } 4451 Function *F = CI->getCalledFunction(); 4452 unsigned NumArgs = CI->arg_size(); 4453 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 4454 for (unsigned j = 0; j != NumArgs; ++j) 4455 if (hasVectorInstrinsicScalarOpd(ID, j)) 4456 ScalarArgs[j] = CI->getArgOperand(j); 4457 for (Value *V : VL) { 4458 CallInst *CI2 = dyn_cast<CallInst>(V); 4459 if (!CI2 || CI2->getCalledFunction() != F || 4460 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 4461 (VecFunc && 4462 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 4463 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 4464 BS.cancelScheduling(VL, VL0); 4465 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4466 ReuseShuffleIndicies); 4467 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 4468 << "\n"); 4469 return; 4470 } 4471 // Some intrinsics have scalar arguments and should be same in order for 4472 // them to be vectorized. 4473 for (unsigned j = 0; j != NumArgs; ++j) { 4474 if (hasVectorInstrinsicScalarOpd(ID, j)) { 4475 Value *A1J = CI2->getArgOperand(j); 4476 if (ScalarArgs[j] != A1J) { 4477 BS.cancelScheduling(VL, VL0); 4478 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4479 ReuseShuffleIndicies); 4480 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 4481 << " argument " << ScalarArgs[j] << "!=" << A1J 4482 << "\n"); 4483 return; 4484 } 4485 } 4486 } 4487 // Verify that the bundle operands are identical between the two calls. 4488 if (CI->hasOperandBundles() && 4489 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 4490 CI->op_begin() + CI->getBundleOperandsEndIndex(), 4491 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 4492 BS.cancelScheduling(VL, VL0); 4493 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4494 ReuseShuffleIndicies); 4495 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 4496 << *CI << "!=" << *V << '\n'); 4497 return; 4498 } 4499 } 4500 4501 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4502 ReuseShuffleIndicies); 4503 TE->setOperandsInOrder(); 4504 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 4505 // For scalar operands no need to to create an entry since no need to 4506 // vectorize it. 4507 if (hasVectorInstrinsicScalarOpd(ID, i)) 4508 continue; 4509 ValueList Operands; 4510 // Prepare the operand vector. 4511 for (Value *V : VL) { 4512 auto *CI2 = cast<CallInst>(V); 4513 Operands.push_back(CI2->getArgOperand(i)); 4514 } 4515 buildTree_rec(Operands, Depth + 1, {TE, i}); 4516 } 4517 return; 4518 } 4519 case Instruction::ShuffleVector: { 4520 // If this is not an alternate sequence of opcode like add-sub 4521 // then do not vectorize this instruction. 4522 if (!S.isAltShuffle()) { 4523 BS.cancelScheduling(VL, VL0); 4524 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4525 ReuseShuffleIndicies); 4526 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 4527 return; 4528 } 4529 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4530 ReuseShuffleIndicies); 4531 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 4532 4533 // Reorder operands if reordering would enable vectorization. 4534 auto *CI = dyn_cast<CmpInst>(VL0); 4535 if (isa<BinaryOperator>(VL0) || CI) { 4536 ValueList Left, Right; 4537 if (!CI || all_of(VL, [](Value *V) { 4538 return cast<CmpInst>(V)->isCommutative(); 4539 })) { 4540 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4541 } else { 4542 CmpInst::Predicate P0 = CI->getPredicate(); 4543 CmpInst::Predicate AltP0 = cast<CmpInst>(S.AltOp)->getPredicate(); 4544 assert(P0 != AltP0 && 4545 "Expected different main/alternate predicates."); 4546 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 4547 Value *BaseOp0 = VL0->getOperand(0); 4548 Value *BaseOp1 = VL0->getOperand(1); 4549 // Collect operands - commute if it uses the swapped predicate or 4550 // alternate operation. 4551 for (Value *V : VL) { 4552 auto *Cmp = cast<CmpInst>(V); 4553 Value *LHS = Cmp->getOperand(0); 4554 Value *RHS = Cmp->getOperand(1); 4555 CmpInst::Predicate CurrentPred = Cmp->getPredicate(); 4556 if (P0 == AltP0Swapped) { 4557 if (CI != Cmp && S.AltOp != Cmp && 4558 ((P0 == CurrentPred && 4559 !areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)) || 4560 (AltP0 == CurrentPred && 4561 areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)))) 4562 std::swap(LHS, RHS); 4563 } else if (P0 != CurrentPred && AltP0 != CurrentPred) { 4564 std::swap(LHS, RHS); 4565 } 4566 Left.push_back(LHS); 4567 Right.push_back(RHS); 4568 } 4569 } 4570 TE->setOperand(0, Left); 4571 TE->setOperand(1, Right); 4572 buildTree_rec(Left, Depth + 1, {TE, 0}); 4573 buildTree_rec(Right, Depth + 1, {TE, 1}); 4574 return; 4575 } 4576 4577 TE->setOperandsInOrder(); 4578 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4579 ValueList Operands; 4580 // Prepare the operand vector. 4581 for (Value *V : VL) 4582 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4583 4584 buildTree_rec(Operands, Depth + 1, {TE, i}); 4585 } 4586 return; 4587 } 4588 default: 4589 BS.cancelScheduling(VL, VL0); 4590 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4591 ReuseShuffleIndicies); 4592 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 4593 return; 4594 } 4595 } 4596 4597 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 4598 unsigned N = 1; 4599 Type *EltTy = T; 4600 4601 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 4602 isa<VectorType>(EltTy)) { 4603 if (auto *ST = dyn_cast<StructType>(EltTy)) { 4604 // Check that struct is homogeneous. 4605 for (const auto *Ty : ST->elements()) 4606 if (Ty != *ST->element_begin()) 4607 return 0; 4608 N *= ST->getNumElements(); 4609 EltTy = *ST->element_begin(); 4610 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 4611 N *= AT->getNumElements(); 4612 EltTy = AT->getElementType(); 4613 } else { 4614 auto *VT = cast<FixedVectorType>(EltTy); 4615 N *= VT->getNumElements(); 4616 EltTy = VT->getElementType(); 4617 } 4618 } 4619 4620 if (!isValidElementType(EltTy)) 4621 return 0; 4622 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 4623 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 4624 return 0; 4625 return N; 4626 } 4627 4628 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 4629 SmallVectorImpl<unsigned> &CurrentOrder) const { 4630 const auto *It = find_if(VL, [](Value *V) { 4631 return isa<ExtractElementInst, ExtractValueInst>(V); 4632 }); 4633 assert(It != VL.end() && "Expected at least one extract instruction."); 4634 auto *E0 = cast<Instruction>(*It); 4635 assert(all_of(VL, 4636 [](Value *V) { 4637 return isa<UndefValue, ExtractElementInst, ExtractValueInst>( 4638 V); 4639 }) && 4640 "Invalid opcode"); 4641 // Check if all of the extracts come from the same vector and from the 4642 // correct offset. 4643 Value *Vec = E0->getOperand(0); 4644 4645 CurrentOrder.clear(); 4646 4647 // We have to extract from a vector/aggregate with the same number of elements. 4648 unsigned NElts; 4649 if (E0->getOpcode() == Instruction::ExtractValue) { 4650 const DataLayout &DL = E0->getModule()->getDataLayout(); 4651 NElts = canMapToVector(Vec->getType(), DL); 4652 if (!NElts) 4653 return false; 4654 // Check if load can be rewritten as load of vector. 4655 LoadInst *LI = dyn_cast<LoadInst>(Vec); 4656 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 4657 return false; 4658 } else { 4659 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 4660 } 4661 4662 if (NElts != VL.size()) 4663 return false; 4664 4665 // Check that all of the indices extract from the correct offset. 4666 bool ShouldKeepOrder = true; 4667 unsigned E = VL.size(); 4668 // Assign to all items the initial value E + 1 so we can check if the extract 4669 // instruction index was used already. 4670 // Also, later we can check that all the indices are used and we have a 4671 // consecutive access in the extract instructions, by checking that no 4672 // element of CurrentOrder still has value E + 1. 4673 CurrentOrder.assign(E, E); 4674 unsigned I = 0; 4675 for (; I < E; ++I) { 4676 auto *Inst = dyn_cast<Instruction>(VL[I]); 4677 if (!Inst) 4678 continue; 4679 if (Inst->getOperand(0) != Vec) 4680 break; 4681 if (auto *EE = dyn_cast<ExtractElementInst>(Inst)) 4682 if (isa<UndefValue>(EE->getIndexOperand())) 4683 continue; 4684 Optional<unsigned> Idx = getExtractIndex(Inst); 4685 if (!Idx) 4686 break; 4687 const unsigned ExtIdx = *Idx; 4688 if (ExtIdx != I) { 4689 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E) 4690 break; 4691 ShouldKeepOrder = false; 4692 CurrentOrder[ExtIdx] = I; 4693 } else { 4694 if (CurrentOrder[I] != E) 4695 break; 4696 CurrentOrder[I] = I; 4697 } 4698 } 4699 if (I < E) { 4700 CurrentOrder.clear(); 4701 return false; 4702 } 4703 if (ShouldKeepOrder) 4704 CurrentOrder.clear(); 4705 4706 return ShouldKeepOrder; 4707 } 4708 4709 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 4710 ArrayRef<Value *> VectorizedVals) const { 4711 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 4712 all_of(I->users(), [this](User *U) { 4713 return ScalarToTreeEntry.count(U) > 0 || 4714 isVectorLikeInstWithConstOps(U) || 4715 (isa<ExtractElementInst>(U) && MustGather.contains(U)); 4716 }); 4717 } 4718 4719 static std::pair<InstructionCost, InstructionCost> 4720 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 4721 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 4722 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4723 4724 // Calculate the cost of the scalar and vector calls. 4725 SmallVector<Type *, 4> VecTys; 4726 for (Use &Arg : CI->args()) 4727 VecTys.push_back( 4728 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 4729 FastMathFlags FMF; 4730 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 4731 FMF = FPCI->getFastMathFlags(); 4732 SmallVector<const Value *> Arguments(CI->args()); 4733 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 4734 dyn_cast<IntrinsicInst>(CI)); 4735 auto IntrinsicCost = 4736 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 4737 4738 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4739 VecTy->getNumElements())), 4740 false /*HasGlobalPred*/); 4741 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4742 auto LibCost = IntrinsicCost; 4743 if (!CI->isNoBuiltin() && VecFunc) { 4744 // Calculate the cost of the vector library call. 4745 // If the corresponding vector call is cheaper, return its cost. 4746 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 4747 TTI::TCK_RecipThroughput); 4748 } 4749 return {IntrinsicCost, LibCost}; 4750 } 4751 4752 /// Compute the cost of creating a vector of type \p VecTy containing the 4753 /// extracted values from \p VL. 4754 static InstructionCost 4755 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 4756 TargetTransformInfo::ShuffleKind ShuffleKind, 4757 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 4758 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 4759 4760 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 4761 VecTy->getNumElements() < NumOfParts) 4762 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 4763 4764 bool AllConsecutive = true; 4765 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 4766 unsigned Idx = -1; 4767 InstructionCost Cost = 0; 4768 4769 // Process extracts in blocks of EltsPerVector to check if the source vector 4770 // operand can be re-used directly. If not, add the cost of creating a shuffle 4771 // to extract the values into a vector register. 4772 for (auto *V : VL) { 4773 ++Idx; 4774 4775 // Need to exclude undefs from analysis. 4776 if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem) 4777 continue; 4778 4779 // Reached the start of a new vector registers. 4780 if (Idx % EltsPerVector == 0) { 4781 AllConsecutive = true; 4782 continue; 4783 } 4784 4785 // Check all extracts for a vector register on the target directly 4786 // extract values in order. 4787 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 4788 if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) { 4789 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 4790 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 4791 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 4792 } 4793 4794 if (AllConsecutive) 4795 continue; 4796 4797 // Skip all indices, except for the last index per vector block. 4798 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 4799 continue; 4800 4801 // If we have a series of extracts which are not consecutive and hence 4802 // cannot re-use the source vector register directly, compute the shuffle 4803 // cost to extract the a vector with EltsPerVector elements. 4804 Cost += TTI.getShuffleCost( 4805 TargetTransformInfo::SK_PermuteSingleSrc, 4806 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 4807 } 4808 return Cost; 4809 } 4810 4811 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 4812 /// operations operands. 4813 static void 4814 buildShuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 4815 ArrayRef<int> ReusesIndices, 4816 const function_ref<bool(Instruction *)> IsAltOp, 4817 SmallVectorImpl<int> &Mask, 4818 SmallVectorImpl<Value *> *OpScalars = nullptr, 4819 SmallVectorImpl<Value *> *AltScalars = nullptr) { 4820 unsigned Sz = VL.size(); 4821 Mask.assign(Sz, UndefMaskElem); 4822 SmallVector<int> OrderMask; 4823 if (!ReorderIndices.empty()) 4824 inversePermutation(ReorderIndices, OrderMask); 4825 for (unsigned I = 0; I < Sz; ++I) { 4826 unsigned Idx = I; 4827 if (!ReorderIndices.empty()) 4828 Idx = OrderMask[I]; 4829 auto *OpInst = cast<Instruction>(VL[Idx]); 4830 if (IsAltOp(OpInst)) { 4831 Mask[I] = Sz + Idx; 4832 if (AltScalars) 4833 AltScalars->push_back(OpInst); 4834 } else { 4835 Mask[I] = Idx; 4836 if (OpScalars) 4837 OpScalars->push_back(OpInst); 4838 } 4839 } 4840 if (!ReusesIndices.empty()) { 4841 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 4842 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 4843 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 4844 }); 4845 Mask.swap(NewMask); 4846 } 4847 } 4848 4849 /// Checks if the specified instruction \p I is an alternate operation for the 4850 /// given \p MainOp and \p AltOp instructions. 4851 static bool isAlternateInstruction(const Instruction *I, 4852 const Instruction *MainOp, 4853 const Instruction *AltOp) { 4854 if (auto *CI0 = dyn_cast<CmpInst>(MainOp)) { 4855 auto *AltCI0 = cast<CmpInst>(AltOp); 4856 auto *CI = cast<CmpInst>(I); 4857 CmpInst::Predicate P0 = CI0->getPredicate(); 4858 CmpInst::Predicate AltP0 = AltCI0->getPredicate(); 4859 assert(P0 != AltP0 && "Expected different main/alternate predicates."); 4860 CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0); 4861 CmpInst::Predicate CurrentPred = CI->getPredicate(); 4862 if (P0 == AltP0Swapped) 4863 return I == AltCI0 || 4864 (I != MainOp && 4865 !areCompatibleCmpOps(CI0->getOperand(0), CI0->getOperand(1), 4866 CI->getOperand(0), CI->getOperand(1))); 4867 return AltP0 == CurrentPred || AltP0Swapped == CurrentPred; 4868 } 4869 return I->getOpcode() == AltOp->getOpcode(); 4870 } 4871 4872 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 4873 ArrayRef<Value *> VectorizedVals) { 4874 ArrayRef<Value*> VL = E->Scalars; 4875 4876 Type *ScalarTy = VL[0]->getType(); 4877 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4878 ScalarTy = SI->getValueOperand()->getType(); 4879 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 4880 ScalarTy = CI->getOperand(0)->getType(); 4881 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 4882 ScalarTy = IE->getOperand(1)->getType(); 4883 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4884 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 4885 4886 // If we have computed a smaller type for the expression, update VecTy so 4887 // that the costs will be accurate. 4888 if (MinBWs.count(VL[0])) 4889 VecTy = FixedVectorType::get( 4890 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 4891 unsigned EntryVF = E->getVectorFactor(); 4892 auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF); 4893 4894 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4895 // FIXME: it tries to fix a problem with MSVC buildbots. 4896 TargetTransformInfo &TTIRef = *TTI; 4897 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 4898 VectorizedVals, E](InstructionCost &Cost) { 4899 DenseMap<Value *, int> ExtractVectorsTys; 4900 SmallPtrSet<Value *, 4> CheckedExtracts; 4901 for (auto *V : VL) { 4902 if (isa<UndefValue>(V)) 4903 continue; 4904 // If all users of instruction are going to be vectorized and this 4905 // instruction itself is not going to be vectorized, consider this 4906 // instruction as dead and remove its cost from the final cost of the 4907 // vectorized tree. 4908 // Also, avoid adjusting the cost for extractelements with multiple uses 4909 // in different graph entries. 4910 const TreeEntry *VE = getTreeEntry(V); 4911 if (!CheckedExtracts.insert(V).second || 4912 !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 4913 (VE && VE != E)) 4914 continue; 4915 auto *EE = cast<ExtractElementInst>(V); 4916 Optional<unsigned> EEIdx = getExtractIndex(EE); 4917 if (!EEIdx) 4918 continue; 4919 unsigned Idx = *EEIdx; 4920 if (TTIRef.getNumberOfParts(VecTy) != 4921 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 4922 auto It = 4923 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 4924 It->getSecond() = std::min<int>(It->second, Idx); 4925 } 4926 // Take credit for instruction that will become dead. 4927 if (EE->hasOneUse()) { 4928 Instruction *Ext = EE->user_back(); 4929 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4930 all_of(Ext->users(), 4931 [](User *U) { return isa<GetElementPtrInst>(U); })) { 4932 // Use getExtractWithExtendCost() to calculate the cost of 4933 // extractelement/ext pair. 4934 Cost -= 4935 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 4936 EE->getVectorOperandType(), Idx); 4937 // Add back the cost of s|zext which is subtracted separately. 4938 Cost += TTIRef.getCastInstrCost( 4939 Ext->getOpcode(), Ext->getType(), EE->getType(), 4940 TTI::getCastContextHint(Ext), CostKind, Ext); 4941 continue; 4942 } 4943 } 4944 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 4945 EE->getVectorOperandType(), Idx); 4946 } 4947 // Add a cost for subvector extracts/inserts if required. 4948 for (const auto &Data : ExtractVectorsTys) { 4949 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 4950 unsigned NumElts = VecTy->getNumElements(); 4951 if (Data.second % NumElts == 0) 4952 continue; 4953 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 4954 unsigned Idx = (Data.second / NumElts) * NumElts; 4955 unsigned EENumElts = EEVTy->getNumElements(); 4956 if (Idx + NumElts <= EENumElts) { 4957 Cost += 4958 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 4959 EEVTy, None, Idx, VecTy); 4960 } else { 4961 // Need to round up the subvector type vectorization factor to avoid a 4962 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 4963 // <= EENumElts. 4964 auto *SubVT = 4965 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 4966 Cost += 4967 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 4968 EEVTy, None, Idx, SubVT); 4969 } 4970 } else { 4971 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 4972 VecTy, None, 0, EEVTy); 4973 } 4974 } 4975 }; 4976 if (E->State == TreeEntry::NeedToGather) { 4977 if (allConstant(VL)) 4978 return 0; 4979 if (isa<InsertElementInst>(VL[0])) 4980 return InstructionCost::getInvalid(); 4981 SmallVector<int> Mask; 4982 SmallVector<const TreeEntry *> Entries; 4983 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 4984 isGatherShuffledEntry(E, Mask, Entries); 4985 if (Shuffle.hasValue()) { 4986 InstructionCost GatherCost = 0; 4987 if (ShuffleVectorInst::isIdentityMask(Mask)) { 4988 // Perfect match in the graph, will reuse the previously vectorized 4989 // node. Cost is 0. 4990 LLVM_DEBUG( 4991 dbgs() 4992 << "SLP: perfect diamond match for gather bundle that starts with " 4993 << *VL.front() << ".\n"); 4994 if (NeedToShuffleReuses) 4995 GatherCost = 4996 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 4997 FinalVecTy, E->ReuseShuffleIndices); 4998 } else { 4999 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 5000 << " entries for bundle that starts with " 5001 << *VL.front() << ".\n"); 5002 // Detected that instead of gather we can emit a shuffle of single/two 5003 // previously vectorized nodes. Add the cost of the permutation rather 5004 // than gather. 5005 ::addMask(Mask, E->ReuseShuffleIndices); 5006 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 5007 } 5008 return GatherCost; 5009 } 5010 if ((E->getOpcode() == Instruction::ExtractElement || 5011 all_of(E->Scalars, 5012 [](Value *V) { 5013 return isa<ExtractElementInst, UndefValue>(V); 5014 })) && 5015 allSameType(VL)) { 5016 // Check that gather of extractelements can be represented as just a 5017 // shuffle of a single/two vectors the scalars are extracted from. 5018 SmallVector<int> Mask; 5019 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 5020 isFixedVectorShuffle(VL, Mask); 5021 if (ShuffleKind.hasValue()) { 5022 // Found the bunch of extractelement instructions that must be gathered 5023 // into a vector and can be represented as a permutation elements in a 5024 // single input vector or of 2 input vectors. 5025 InstructionCost Cost = 5026 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 5027 AdjustExtractsCost(Cost); 5028 if (NeedToShuffleReuses) 5029 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 5030 FinalVecTy, E->ReuseShuffleIndices); 5031 return Cost; 5032 } 5033 } 5034 if (isSplat(VL)) { 5035 // Found the broadcasting of the single scalar, calculate the cost as the 5036 // broadcast. 5037 assert(VecTy == FinalVecTy && 5038 "No reused scalars expected for broadcast."); 5039 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy); 5040 } 5041 InstructionCost ReuseShuffleCost = 0; 5042 if (NeedToShuffleReuses) 5043 ReuseShuffleCost = TTI->getShuffleCost( 5044 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 5045 // Improve gather cost for gather of loads, if we can group some of the 5046 // loads into vector loads. 5047 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 5048 !E->isAltShuffle()) { 5049 BoUpSLP::ValueSet VectorizedLoads; 5050 unsigned StartIdx = 0; 5051 unsigned VF = VL.size() / 2; 5052 unsigned VectorizedCnt = 0; 5053 unsigned ScatterVectorizeCnt = 0; 5054 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 5055 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 5056 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 5057 Cnt += VF) { 5058 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 5059 if (!VectorizedLoads.count(Slice.front()) && 5060 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 5061 SmallVector<Value *> PointerOps; 5062 OrdersType CurrentOrder; 5063 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 5064 *SE, CurrentOrder, PointerOps); 5065 switch (LS) { 5066 case LoadsState::Vectorize: 5067 case LoadsState::ScatterVectorize: 5068 // Mark the vectorized loads so that we don't vectorize them 5069 // again. 5070 if (LS == LoadsState::Vectorize) 5071 ++VectorizedCnt; 5072 else 5073 ++ScatterVectorizeCnt; 5074 VectorizedLoads.insert(Slice.begin(), Slice.end()); 5075 // If we vectorized initial block, no need to try to vectorize it 5076 // again. 5077 if (Cnt == StartIdx) 5078 StartIdx += VF; 5079 break; 5080 case LoadsState::Gather: 5081 break; 5082 } 5083 } 5084 } 5085 // Check if the whole array was vectorized already - exit. 5086 if (StartIdx >= VL.size()) 5087 break; 5088 // Found vectorizable parts - exit. 5089 if (!VectorizedLoads.empty()) 5090 break; 5091 } 5092 if (!VectorizedLoads.empty()) { 5093 InstructionCost GatherCost = 0; 5094 unsigned NumParts = TTI->getNumberOfParts(VecTy); 5095 bool NeedInsertSubvectorAnalysis = 5096 !NumParts || (VL.size() / VF) > NumParts; 5097 // Get the cost for gathered loads. 5098 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 5099 if (VectorizedLoads.contains(VL[I])) 5100 continue; 5101 GatherCost += getGatherCost(VL.slice(I, VF)); 5102 } 5103 // The cost for vectorized loads. 5104 InstructionCost ScalarsCost = 0; 5105 for (Value *V : VectorizedLoads) { 5106 auto *LI = cast<LoadInst>(V); 5107 ScalarsCost += TTI->getMemoryOpCost( 5108 Instruction::Load, LI->getType(), LI->getAlign(), 5109 LI->getPointerAddressSpace(), CostKind, LI); 5110 } 5111 auto *LI = cast<LoadInst>(E->getMainOp()); 5112 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 5113 Align Alignment = LI->getAlign(); 5114 GatherCost += 5115 VectorizedCnt * 5116 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 5117 LI->getPointerAddressSpace(), CostKind, LI); 5118 GatherCost += ScatterVectorizeCnt * 5119 TTI->getGatherScatterOpCost( 5120 Instruction::Load, LoadTy, LI->getPointerOperand(), 5121 /*VariableMask=*/false, Alignment, CostKind, LI); 5122 if (NeedInsertSubvectorAnalysis) { 5123 // Add the cost for the subvectors insert. 5124 for (int I = VF, E = VL.size(); I < E; I += VF) 5125 GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy, 5126 None, I, LoadTy); 5127 } 5128 return ReuseShuffleCost + GatherCost - ScalarsCost; 5129 } 5130 } 5131 return ReuseShuffleCost + getGatherCost(VL); 5132 } 5133 InstructionCost CommonCost = 0; 5134 SmallVector<int> Mask; 5135 if (!E->ReorderIndices.empty()) { 5136 SmallVector<int> NewMask; 5137 if (E->getOpcode() == Instruction::Store) { 5138 // For stores the order is actually a mask. 5139 NewMask.resize(E->ReorderIndices.size()); 5140 copy(E->ReorderIndices, NewMask.begin()); 5141 } else { 5142 inversePermutation(E->ReorderIndices, NewMask); 5143 } 5144 ::addMask(Mask, NewMask); 5145 } 5146 if (NeedToShuffleReuses) 5147 ::addMask(Mask, E->ReuseShuffleIndices); 5148 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 5149 CommonCost = 5150 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 5151 assert((E->State == TreeEntry::Vectorize || 5152 E->State == TreeEntry::ScatterVectorize) && 5153 "Unhandled state"); 5154 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 5155 Instruction *VL0 = E->getMainOp(); 5156 unsigned ShuffleOrOp = 5157 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 5158 switch (ShuffleOrOp) { 5159 case Instruction::PHI: 5160 return 0; 5161 5162 case Instruction::ExtractValue: 5163 case Instruction::ExtractElement: { 5164 // The common cost of removal ExtractElement/ExtractValue instructions + 5165 // the cost of shuffles, if required to resuffle the original vector. 5166 if (NeedToShuffleReuses) { 5167 unsigned Idx = 0; 5168 for (unsigned I : E->ReuseShuffleIndices) { 5169 if (ShuffleOrOp == Instruction::ExtractElement) { 5170 auto *EE = cast<ExtractElementInst>(VL[I]); 5171 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5172 EE->getVectorOperandType(), 5173 *getExtractIndex(EE)); 5174 } else { 5175 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 5176 VecTy, Idx); 5177 ++Idx; 5178 } 5179 } 5180 Idx = EntryVF; 5181 for (Value *V : VL) { 5182 if (ShuffleOrOp == Instruction::ExtractElement) { 5183 auto *EE = cast<ExtractElementInst>(V); 5184 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5185 EE->getVectorOperandType(), 5186 *getExtractIndex(EE)); 5187 } else { 5188 --Idx; 5189 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 5190 VecTy, Idx); 5191 } 5192 } 5193 } 5194 if (ShuffleOrOp == Instruction::ExtractValue) { 5195 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 5196 auto *EI = cast<Instruction>(VL[I]); 5197 // Take credit for instruction that will become dead. 5198 if (EI->hasOneUse()) { 5199 Instruction *Ext = EI->user_back(); 5200 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 5201 all_of(Ext->users(), 5202 [](User *U) { return isa<GetElementPtrInst>(U); })) { 5203 // Use getExtractWithExtendCost() to calculate the cost of 5204 // extractelement/ext pair. 5205 CommonCost -= TTI->getExtractWithExtendCost( 5206 Ext->getOpcode(), Ext->getType(), VecTy, I); 5207 // Add back the cost of s|zext which is subtracted separately. 5208 CommonCost += TTI->getCastInstrCost( 5209 Ext->getOpcode(), Ext->getType(), EI->getType(), 5210 TTI::getCastContextHint(Ext), CostKind, Ext); 5211 continue; 5212 } 5213 } 5214 CommonCost -= 5215 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 5216 } 5217 } else { 5218 AdjustExtractsCost(CommonCost); 5219 } 5220 return CommonCost; 5221 } 5222 case Instruction::InsertElement: { 5223 assert(E->ReuseShuffleIndices.empty() && 5224 "Unique insertelements only are expected."); 5225 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 5226 5227 unsigned const NumElts = SrcVecTy->getNumElements(); 5228 unsigned const NumScalars = VL.size(); 5229 APInt DemandedElts = APInt::getZero(NumElts); 5230 // TODO: Add support for Instruction::InsertValue. 5231 SmallVector<int> Mask; 5232 if (!E->ReorderIndices.empty()) { 5233 inversePermutation(E->ReorderIndices, Mask); 5234 Mask.append(NumElts - NumScalars, UndefMaskElem); 5235 } else { 5236 Mask.assign(NumElts, UndefMaskElem); 5237 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 5238 } 5239 unsigned Offset = *getInsertIndex(VL0); 5240 bool IsIdentity = true; 5241 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 5242 Mask.swap(PrevMask); 5243 for (unsigned I = 0; I < NumScalars; ++I) { 5244 unsigned InsertIdx = *getInsertIndex(VL[PrevMask[I]]); 5245 DemandedElts.setBit(InsertIdx); 5246 IsIdentity &= InsertIdx - Offset == I; 5247 Mask[InsertIdx - Offset] = I; 5248 } 5249 assert(Offset < NumElts && "Failed to find vector index offset"); 5250 5251 InstructionCost Cost = 0; 5252 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 5253 /*Insert*/ true, /*Extract*/ false); 5254 5255 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 5256 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 5257 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 5258 Cost += TTI->getShuffleCost( 5259 TargetTransformInfo::SK_PermuteSingleSrc, 5260 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 5261 } else if (!IsIdentity) { 5262 auto *FirstInsert = 5263 cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 5264 return !is_contained(E->Scalars, 5265 cast<Instruction>(V)->getOperand(0)); 5266 })); 5267 if (isUndefVector(FirstInsert->getOperand(0))) { 5268 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask); 5269 } else { 5270 SmallVector<int> InsertMask(NumElts); 5271 std::iota(InsertMask.begin(), InsertMask.end(), 0); 5272 for (unsigned I = 0; I < NumElts; I++) { 5273 if (Mask[I] != UndefMaskElem) 5274 InsertMask[Offset + I] = NumElts + I; 5275 } 5276 Cost += 5277 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask); 5278 } 5279 } 5280 5281 return Cost; 5282 } 5283 case Instruction::ZExt: 5284 case Instruction::SExt: 5285 case Instruction::FPToUI: 5286 case Instruction::FPToSI: 5287 case Instruction::FPExt: 5288 case Instruction::PtrToInt: 5289 case Instruction::IntToPtr: 5290 case Instruction::SIToFP: 5291 case Instruction::UIToFP: 5292 case Instruction::Trunc: 5293 case Instruction::FPTrunc: 5294 case Instruction::BitCast: { 5295 Type *SrcTy = VL0->getOperand(0)->getType(); 5296 InstructionCost ScalarEltCost = 5297 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 5298 TTI::getCastContextHint(VL0), CostKind, VL0); 5299 if (NeedToShuffleReuses) { 5300 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5301 } 5302 5303 // Calculate the cost of this instruction. 5304 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 5305 5306 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 5307 InstructionCost VecCost = 0; 5308 // Check if the values are candidates to demote. 5309 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 5310 VecCost = CommonCost + TTI->getCastInstrCost( 5311 E->getOpcode(), VecTy, SrcVecTy, 5312 TTI::getCastContextHint(VL0), CostKind, VL0); 5313 } 5314 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5315 return VecCost - ScalarCost; 5316 } 5317 case Instruction::FCmp: 5318 case Instruction::ICmp: 5319 case Instruction::Select: { 5320 // Calculate the cost of this instruction. 5321 InstructionCost ScalarEltCost = 5322 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5323 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 5324 if (NeedToShuffleReuses) { 5325 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5326 } 5327 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 5328 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5329 5330 // Check if all entries in VL are either compares or selects with compares 5331 // as condition that have the same predicates. 5332 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 5333 bool First = true; 5334 for (auto *V : VL) { 5335 CmpInst::Predicate CurrentPred; 5336 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 5337 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 5338 !match(V, MatchCmp)) || 5339 (!First && VecPred != CurrentPred)) { 5340 VecPred = CmpInst::BAD_ICMP_PREDICATE; 5341 break; 5342 } 5343 First = false; 5344 VecPred = CurrentPred; 5345 } 5346 5347 InstructionCost VecCost = TTI->getCmpSelInstrCost( 5348 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 5349 // Check if it is possible and profitable to use min/max for selects in 5350 // VL. 5351 // 5352 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 5353 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 5354 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 5355 {VecTy, VecTy}); 5356 InstructionCost IntrinsicCost = 5357 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5358 // If the selects are the only uses of the compares, they will be dead 5359 // and we can adjust the cost by removing their cost. 5360 if (IntrinsicAndUse.second) 5361 IntrinsicCost -= TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, 5362 MaskTy, VecPred, CostKind); 5363 VecCost = std::min(VecCost, IntrinsicCost); 5364 } 5365 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5366 return CommonCost + VecCost - ScalarCost; 5367 } 5368 case Instruction::FNeg: 5369 case Instruction::Add: 5370 case Instruction::FAdd: 5371 case Instruction::Sub: 5372 case Instruction::FSub: 5373 case Instruction::Mul: 5374 case Instruction::FMul: 5375 case Instruction::UDiv: 5376 case Instruction::SDiv: 5377 case Instruction::FDiv: 5378 case Instruction::URem: 5379 case Instruction::SRem: 5380 case Instruction::FRem: 5381 case Instruction::Shl: 5382 case Instruction::LShr: 5383 case Instruction::AShr: 5384 case Instruction::And: 5385 case Instruction::Or: 5386 case Instruction::Xor: { 5387 // Certain instructions can be cheaper to vectorize if they have a 5388 // constant second vector operand. 5389 TargetTransformInfo::OperandValueKind Op1VK = 5390 TargetTransformInfo::OK_AnyValue; 5391 TargetTransformInfo::OperandValueKind Op2VK = 5392 TargetTransformInfo::OK_UniformConstantValue; 5393 TargetTransformInfo::OperandValueProperties Op1VP = 5394 TargetTransformInfo::OP_None; 5395 TargetTransformInfo::OperandValueProperties Op2VP = 5396 TargetTransformInfo::OP_PowerOf2; 5397 5398 // If all operands are exactly the same ConstantInt then set the 5399 // operand kind to OK_UniformConstantValue. 5400 // If instead not all operands are constants, then set the operand kind 5401 // to OK_AnyValue. If all operands are constants but not the same, 5402 // then set the operand kind to OK_NonUniformConstantValue. 5403 ConstantInt *CInt0 = nullptr; 5404 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 5405 const Instruction *I = cast<Instruction>(VL[i]); 5406 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 5407 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 5408 if (!CInt) { 5409 Op2VK = TargetTransformInfo::OK_AnyValue; 5410 Op2VP = TargetTransformInfo::OP_None; 5411 break; 5412 } 5413 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 5414 !CInt->getValue().isPowerOf2()) 5415 Op2VP = TargetTransformInfo::OP_None; 5416 if (i == 0) { 5417 CInt0 = CInt; 5418 continue; 5419 } 5420 if (CInt0 != CInt) 5421 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5422 } 5423 5424 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 5425 InstructionCost ScalarEltCost = 5426 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 5427 Op2VK, Op1VP, Op2VP, Operands, VL0); 5428 if (NeedToShuffleReuses) { 5429 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5430 } 5431 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5432 InstructionCost VecCost = 5433 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 5434 Op2VK, Op1VP, Op2VP, Operands, VL0); 5435 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5436 return CommonCost + VecCost - ScalarCost; 5437 } 5438 case Instruction::GetElementPtr: { 5439 TargetTransformInfo::OperandValueKind Op1VK = 5440 TargetTransformInfo::OK_AnyValue; 5441 TargetTransformInfo::OperandValueKind Op2VK = 5442 TargetTransformInfo::OK_UniformConstantValue; 5443 5444 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 5445 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 5446 if (NeedToShuffleReuses) { 5447 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5448 } 5449 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5450 InstructionCost VecCost = TTI->getArithmeticInstrCost( 5451 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 5452 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5453 return CommonCost + VecCost - ScalarCost; 5454 } 5455 case Instruction::Load: { 5456 // Cost of wide load - cost of scalar loads. 5457 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 5458 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5459 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 5460 if (NeedToShuffleReuses) { 5461 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5462 } 5463 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 5464 InstructionCost VecLdCost; 5465 if (E->State == TreeEntry::Vectorize) { 5466 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 5467 CostKind, VL0); 5468 } else { 5469 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 5470 Align CommonAlignment = Alignment; 5471 for (Value *V : VL) 5472 CommonAlignment = 5473 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 5474 VecLdCost = TTI->getGatherScatterOpCost( 5475 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 5476 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 5477 } 5478 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 5479 return CommonCost + VecLdCost - ScalarLdCost; 5480 } 5481 case Instruction::Store: { 5482 // We know that we can merge the stores. Calculate the cost. 5483 bool IsReorder = !E->ReorderIndices.empty(); 5484 auto *SI = 5485 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 5486 Align Alignment = SI->getAlign(); 5487 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5488 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 5489 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 5490 InstructionCost VecStCost = TTI->getMemoryOpCost( 5491 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 5492 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 5493 return CommonCost + VecStCost - ScalarStCost; 5494 } 5495 case Instruction::Call: { 5496 CallInst *CI = cast<CallInst>(VL0); 5497 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5498 5499 // Calculate the cost of the scalar and vector calls. 5500 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 5501 InstructionCost ScalarEltCost = 5502 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5503 if (NeedToShuffleReuses) { 5504 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5505 } 5506 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 5507 5508 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 5509 InstructionCost VecCallCost = 5510 std::min(VecCallCosts.first, VecCallCosts.second); 5511 5512 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 5513 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 5514 << " for " << *CI << "\n"); 5515 5516 return CommonCost + VecCallCost - ScalarCallCost; 5517 } 5518 case Instruction::ShuffleVector: { 5519 assert(E->isAltShuffle() && 5520 ((Instruction::isBinaryOp(E->getOpcode()) && 5521 Instruction::isBinaryOp(E->getAltOpcode())) || 5522 (Instruction::isCast(E->getOpcode()) && 5523 Instruction::isCast(E->getAltOpcode())) || 5524 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 5525 "Invalid Shuffle Vector Operand"); 5526 InstructionCost ScalarCost = 0; 5527 if (NeedToShuffleReuses) { 5528 for (unsigned Idx : E->ReuseShuffleIndices) { 5529 Instruction *I = cast<Instruction>(VL[Idx]); 5530 CommonCost -= TTI->getInstructionCost(I, CostKind); 5531 } 5532 for (Value *V : VL) { 5533 Instruction *I = cast<Instruction>(V); 5534 CommonCost += TTI->getInstructionCost(I, CostKind); 5535 } 5536 } 5537 for (Value *V : VL) { 5538 Instruction *I = cast<Instruction>(V); 5539 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5540 ScalarCost += TTI->getInstructionCost(I, CostKind); 5541 } 5542 // VecCost is equal to sum of the cost of creating 2 vectors 5543 // and the cost of creating shuffle. 5544 InstructionCost VecCost = 0; 5545 // Try to find the previous shuffle node with the same operands and same 5546 // main/alternate ops. 5547 auto &&TryFindNodeWithEqualOperands = [this, E]() { 5548 for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 5549 if (TE.get() == E) 5550 break; 5551 if (TE->isAltShuffle() && 5552 ((TE->getOpcode() == E->getOpcode() && 5553 TE->getAltOpcode() == E->getAltOpcode()) || 5554 (TE->getOpcode() == E->getAltOpcode() && 5555 TE->getAltOpcode() == E->getOpcode())) && 5556 TE->hasEqualOperands(*E)) 5557 return true; 5558 } 5559 return false; 5560 }; 5561 if (TryFindNodeWithEqualOperands()) { 5562 LLVM_DEBUG({ 5563 dbgs() << "SLP: diamond match for alternate node found.\n"; 5564 E->dump(); 5565 }); 5566 // No need to add new vector costs here since we're going to reuse 5567 // same main/alternate vector ops, just do different shuffling. 5568 } else if (Instruction::isBinaryOp(E->getOpcode())) { 5569 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 5570 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 5571 CostKind); 5572 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 5573 VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 5574 Builder.getInt1Ty(), 5575 CI0->getPredicate(), CostKind, VL0); 5576 VecCost += TTI->getCmpSelInstrCost( 5577 E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5578 cast<CmpInst>(E->getAltOp())->getPredicate(), CostKind, 5579 E->getAltOp()); 5580 } else { 5581 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 5582 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 5583 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 5584 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 5585 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 5586 TTI::CastContextHint::None, CostKind); 5587 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 5588 TTI::CastContextHint::None, CostKind); 5589 } 5590 5591 SmallVector<int> Mask; 5592 buildShuffleEntryMask( 5593 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 5594 [E](Instruction *I) { 5595 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5596 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 5597 }, 5598 Mask); 5599 CommonCost = 5600 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy, Mask); 5601 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5602 return CommonCost + VecCost - ScalarCost; 5603 } 5604 default: 5605 llvm_unreachable("Unknown instruction"); 5606 } 5607 } 5608 5609 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { 5610 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 5611 << VectorizableTree.size() << " is fully vectorizable .\n"); 5612 5613 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { 5614 SmallVector<int> Mask; 5615 return TE->State == TreeEntry::NeedToGather && 5616 !any_of(TE->Scalars, 5617 [this](Value *V) { return EphValues.contains(V); }) && 5618 (allConstant(TE->Scalars) || isSplat(TE->Scalars) || 5619 TE->Scalars.size() < Limit || 5620 ((TE->getOpcode() == Instruction::ExtractElement || 5621 all_of(TE->Scalars, 5622 [](Value *V) { 5623 return isa<ExtractElementInst, UndefValue>(V); 5624 })) && 5625 isFixedVectorShuffle(TE->Scalars, Mask)) || 5626 (TE->State == TreeEntry::NeedToGather && 5627 TE->getOpcode() == Instruction::Load && !TE->isAltShuffle())); 5628 }; 5629 5630 // We only handle trees of heights 1 and 2. 5631 if (VectorizableTree.size() == 1 && 5632 (VectorizableTree[0]->State == TreeEntry::Vectorize || 5633 (ForReduction && 5634 AreVectorizableGathers(VectorizableTree[0].get(), 5635 VectorizableTree[0]->Scalars.size()) && 5636 VectorizableTree[0]->getVectorFactor() > 2))) 5637 return true; 5638 5639 if (VectorizableTree.size() != 2) 5640 return false; 5641 5642 // Handle splat and all-constants stores. Also try to vectorize tiny trees 5643 // with the second gather nodes if they have less scalar operands rather than 5644 // the initial tree element (may be profitable to shuffle the second gather) 5645 // or they are extractelements, which form shuffle. 5646 SmallVector<int> Mask; 5647 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 5648 AreVectorizableGathers(VectorizableTree[1].get(), 5649 VectorizableTree[0]->Scalars.size())) 5650 return true; 5651 5652 // Gathering cost would be too much for tiny trees. 5653 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 5654 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 5655 VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) 5656 return false; 5657 5658 return true; 5659 } 5660 5661 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 5662 TargetTransformInfo *TTI, 5663 bool MustMatchOrInst) { 5664 // Look past the root to find a source value. Arbitrarily follow the 5665 // path through operand 0 of any 'or'. Also, peek through optional 5666 // shift-left-by-multiple-of-8-bits. 5667 Value *ZextLoad = Root; 5668 const APInt *ShAmtC; 5669 bool FoundOr = false; 5670 while (!isa<ConstantExpr>(ZextLoad) && 5671 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 5672 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 5673 ShAmtC->urem(8) == 0))) { 5674 auto *BinOp = cast<BinaryOperator>(ZextLoad); 5675 ZextLoad = BinOp->getOperand(0); 5676 if (BinOp->getOpcode() == Instruction::Or) 5677 FoundOr = true; 5678 } 5679 // Check if the input is an extended load of the required or/shift expression. 5680 Value *Load; 5681 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 5682 !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load)) 5683 return false; 5684 5685 // Require that the total load bit width is a legal integer type. 5686 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 5687 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 5688 Type *SrcTy = Load->getType(); 5689 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 5690 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 5691 return false; 5692 5693 // Everything matched - assume that we can fold the whole sequence using 5694 // load combining. 5695 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 5696 << *(cast<Instruction>(Root)) << "\n"); 5697 5698 return true; 5699 } 5700 5701 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 5702 if (RdxKind != RecurKind::Or) 5703 return false; 5704 5705 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5706 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 5707 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 5708 /* MatchOr */ false); 5709 } 5710 5711 bool BoUpSLP::isLoadCombineCandidate() const { 5712 // Peek through a final sequence of stores and check if all operations are 5713 // likely to be load-combined. 5714 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5715 for (Value *Scalar : VectorizableTree[0]->Scalars) { 5716 Value *X; 5717 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 5718 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 5719 return false; 5720 } 5721 return true; 5722 } 5723 5724 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { 5725 // No need to vectorize inserts of gathered values. 5726 if (VectorizableTree.size() == 2 && 5727 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 5728 VectorizableTree[1]->State == TreeEntry::NeedToGather) 5729 return true; 5730 5731 // We can vectorize the tree if its size is greater than or equal to the 5732 // minimum size specified by the MinTreeSize command line option. 5733 if (VectorizableTree.size() >= MinTreeSize) 5734 return false; 5735 5736 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 5737 // can vectorize it if we can prove it fully vectorizable. 5738 if (isFullyVectorizableTinyTree(ForReduction)) 5739 return false; 5740 5741 assert(VectorizableTree.empty() 5742 ? ExternalUses.empty() 5743 : true && "We shouldn't have any external users"); 5744 5745 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 5746 // vectorizable. 5747 return true; 5748 } 5749 5750 InstructionCost BoUpSLP::getSpillCost() const { 5751 // Walk from the bottom of the tree to the top, tracking which values are 5752 // live. When we see a call instruction that is not part of our tree, 5753 // query TTI to see if there is a cost to keeping values live over it 5754 // (for example, if spills and fills are required). 5755 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 5756 InstructionCost Cost = 0; 5757 5758 SmallPtrSet<Instruction*, 4> LiveValues; 5759 Instruction *PrevInst = nullptr; 5760 5761 // The entries in VectorizableTree are not necessarily ordered by their 5762 // position in basic blocks. Collect them and order them by dominance so later 5763 // instructions are guaranteed to be visited first. For instructions in 5764 // different basic blocks, we only scan to the beginning of the block, so 5765 // their order does not matter, as long as all instructions in a basic block 5766 // are grouped together. Using dominance ensures a deterministic order. 5767 SmallVector<Instruction *, 16> OrderedScalars; 5768 for (const auto &TEPtr : VectorizableTree) { 5769 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 5770 if (!Inst) 5771 continue; 5772 OrderedScalars.push_back(Inst); 5773 } 5774 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 5775 auto *NodeA = DT->getNode(A->getParent()); 5776 auto *NodeB = DT->getNode(B->getParent()); 5777 assert(NodeA && "Should only process reachable instructions"); 5778 assert(NodeB && "Should only process reachable instructions"); 5779 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 5780 "Different nodes should have different DFS numbers"); 5781 if (NodeA != NodeB) 5782 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 5783 return B->comesBefore(A); 5784 }); 5785 5786 for (Instruction *Inst : OrderedScalars) { 5787 if (!PrevInst) { 5788 PrevInst = Inst; 5789 continue; 5790 } 5791 5792 // Update LiveValues. 5793 LiveValues.erase(PrevInst); 5794 for (auto &J : PrevInst->operands()) { 5795 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 5796 LiveValues.insert(cast<Instruction>(&*J)); 5797 } 5798 5799 LLVM_DEBUG({ 5800 dbgs() << "SLP: #LV: " << LiveValues.size(); 5801 for (auto *X : LiveValues) 5802 dbgs() << " " << X->getName(); 5803 dbgs() << ", Looking at "; 5804 Inst->dump(); 5805 }); 5806 5807 // Now find the sequence of instructions between PrevInst and Inst. 5808 unsigned NumCalls = 0; 5809 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 5810 PrevInstIt = 5811 PrevInst->getIterator().getReverse(); 5812 while (InstIt != PrevInstIt) { 5813 if (PrevInstIt == PrevInst->getParent()->rend()) { 5814 PrevInstIt = Inst->getParent()->rbegin(); 5815 continue; 5816 } 5817 5818 // Debug information does not impact spill cost. 5819 if ((isa<CallInst>(&*PrevInstIt) && 5820 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 5821 &*PrevInstIt != PrevInst) 5822 NumCalls++; 5823 5824 ++PrevInstIt; 5825 } 5826 5827 if (NumCalls) { 5828 SmallVector<Type*, 4> V; 5829 for (auto *II : LiveValues) { 5830 auto *ScalarTy = II->getType(); 5831 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 5832 ScalarTy = VectorTy->getElementType(); 5833 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 5834 } 5835 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 5836 } 5837 5838 PrevInst = Inst; 5839 } 5840 5841 return Cost; 5842 } 5843 5844 /// Check if two insertelement instructions are from the same buildvector. 5845 static bool areTwoInsertFromSameBuildVector(InsertElementInst *VU, 5846 InsertElementInst *V) { 5847 // Instructions must be from the same basic blocks. 5848 if (VU->getParent() != V->getParent()) 5849 return false; 5850 // Checks if 2 insertelements are from the same buildvector. 5851 if (VU->getType() != V->getType()) 5852 return false; 5853 // Multiple used inserts are separate nodes. 5854 if (!VU->hasOneUse() && !V->hasOneUse()) 5855 return false; 5856 auto *IE1 = VU; 5857 auto *IE2 = V; 5858 // Go through the vector operand of insertelement instructions trying to find 5859 // either VU as the original vector for IE2 or V as the original vector for 5860 // IE1. 5861 do { 5862 if (IE2 == VU || IE1 == V) 5863 return true; 5864 if (IE1) { 5865 if (IE1 != VU && !IE1->hasOneUse()) 5866 IE1 = nullptr; 5867 else 5868 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 5869 } 5870 if (IE2) { 5871 if (IE2 != V && !IE2->hasOneUse()) 5872 IE2 = nullptr; 5873 else 5874 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 5875 } 5876 } while (IE1 || IE2); 5877 return false; 5878 } 5879 5880 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 5881 InstructionCost Cost = 0; 5882 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 5883 << VectorizableTree.size() << ".\n"); 5884 5885 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 5886 5887 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 5888 TreeEntry &TE = *VectorizableTree[I].get(); 5889 5890 InstructionCost C = getEntryCost(&TE, VectorizedVals); 5891 Cost += C; 5892 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5893 << " for bundle that starts with " << *TE.Scalars[0] 5894 << ".\n" 5895 << "SLP: Current total cost = " << Cost << "\n"); 5896 } 5897 5898 SmallPtrSet<Value *, 16> ExtractCostCalculated; 5899 InstructionCost ExtractCost = 0; 5900 SmallVector<unsigned> VF; 5901 SmallVector<SmallVector<int>> ShuffleMask; 5902 SmallVector<Value *> FirstUsers; 5903 SmallVector<APInt> DemandedElts; 5904 for (ExternalUser &EU : ExternalUses) { 5905 // We only add extract cost once for the same scalar. 5906 if (!isa_and_nonnull<InsertElementInst>(EU.User) && 5907 !ExtractCostCalculated.insert(EU.Scalar).second) 5908 continue; 5909 5910 // Uses by ephemeral values are free (because the ephemeral value will be 5911 // removed prior to code generation, and so the extraction will be 5912 // removed as well). 5913 if (EphValues.count(EU.User)) 5914 continue; 5915 5916 // No extract cost for vector "scalar" 5917 if (isa<FixedVectorType>(EU.Scalar->getType())) 5918 continue; 5919 5920 // Already counted the cost for external uses when tried to adjust the cost 5921 // for extractelements, no need to add it again. 5922 if (isa<ExtractElementInst>(EU.Scalar)) 5923 continue; 5924 5925 // If found user is an insertelement, do not calculate extract cost but try 5926 // to detect it as a final shuffled/identity match. 5927 if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) { 5928 if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) { 5929 Optional<unsigned> InsertIdx = getInsertIndex(VU); 5930 if (InsertIdx) { 5931 auto *It = find_if(FirstUsers, [VU](Value *V) { 5932 return areTwoInsertFromSameBuildVector(VU, 5933 cast<InsertElementInst>(V)); 5934 }); 5935 int VecId = -1; 5936 if (It == FirstUsers.end()) { 5937 VF.push_back(FTy->getNumElements()); 5938 ShuffleMask.emplace_back(VF.back(), UndefMaskElem); 5939 // Find the insertvector, vectorized in tree, if any. 5940 Value *Base = VU; 5941 while (isa<InsertElementInst>(Base)) { 5942 // Build the mask for the vectorized insertelement instructions. 5943 if (const TreeEntry *E = getTreeEntry(Base)) { 5944 VU = cast<InsertElementInst>(Base); 5945 do { 5946 int Idx = E->findLaneForValue(Base); 5947 ShuffleMask.back()[Idx] = Idx; 5948 Base = cast<InsertElementInst>(Base)->getOperand(0); 5949 } while (E == getTreeEntry(Base)); 5950 break; 5951 } 5952 Base = cast<InsertElementInst>(Base)->getOperand(0); 5953 } 5954 FirstUsers.push_back(VU); 5955 DemandedElts.push_back(APInt::getZero(VF.back())); 5956 VecId = FirstUsers.size() - 1; 5957 } else { 5958 VecId = std::distance(FirstUsers.begin(), It); 5959 } 5960 ShuffleMask[VecId][*InsertIdx] = EU.Lane; 5961 DemandedElts[VecId].setBit(*InsertIdx); 5962 continue; 5963 } 5964 } 5965 } 5966 5967 // If we plan to rewrite the tree in a smaller type, we will need to sign 5968 // extend the extracted value back to the original type. Here, we account 5969 // for the extract and the added cost of the sign extend if needed. 5970 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 5971 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 5972 if (MinBWs.count(ScalarRoot)) { 5973 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 5974 auto Extend = 5975 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 5976 VecTy = FixedVectorType::get(MinTy, BundleWidth); 5977 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 5978 VecTy, EU.Lane); 5979 } else { 5980 ExtractCost += 5981 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 5982 } 5983 } 5984 5985 InstructionCost SpillCost = getSpillCost(); 5986 Cost += SpillCost + ExtractCost; 5987 if (FirstUsers.size() == 1) { 5988 int Limit = ShuffleMask.front().size() * 2; 5989 if (all_of(ShuffleMask.front(), [Limit](int Idx) { return Idx < Limit; }) && 5990 !ShuffleVectorInst::isIdentityMask(ShuffleMask.front())) { 5991 InstructionCost C = TTI->getShuffleCost( 5992 TTI::SK_PermuteSingleSrc, 5993 cast<FixedVectorType>(FirstUsers.front()->getType()), 5994 ShuffleMask.front()); 5995 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5996 << " for final shuffle of insertelement external users " 5997 << *VectorizableTree.front()->Scalars.front() << ".\n" 5998 << "SLP: Current total cost = " << Cost << "\n"); 5999 Cost += C; 6000 } 6001 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6002 cast<FixedVectorType>(FirstUsers.front()->getType()), 6003 DemandedElts.front(), /*Insert*/ true, /*Extract*/ false); 6004 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6005 << " for insertelements gather.\n" 6006 << "SLP: Current total cost = " << Cost << "\n"); 6007 Cost -= InsertCost; 6008 } else if (FirstUsers.size() >= 2) { 6009 unsigned MaxVF = *std::max_element(VF.begin(), VF.end()); 6010 // Combined masks of the first 2 vectors. 6011 SmallVector<int> CombinedMask(MaxVF, UndefMaskElem); 6012 copy(ShuffleMask.front(), CombinedMask.begin()); 6013 APInt CombinedDemandedElts = DemandedElts.front().zextOrSelf(MaxVF); 6014 auto *VecTy = FixedVectorType::get( 6015 cast<VectorType>(FirstUsers.front()->getType())->getElementType(), 6016 MaxVF); 6017 for (int I = 0, E = ShuffleMask[1].size(); I < E; ++I) { 6018 if (ShuffleMask[1][I] != UndefMaskElem) { 6019 CombinedMask[I] = ShuffleMask[1][I] + MaxVF; 6020 CombinedDemandedElts.setBit(I); 6021 } 6022 } 6023 InstructionCost C = 6024 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6025 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6026 << " for final shuffle of vector node and external " 6027 "insertelement users " 6028 << *VectorizableTree.front()->Scalars.front() << ".\n" 6029 << "SLP: Current total cost = " << Cost << "\n"); 6030 Cost += C; 6031 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6032 VecTy, CombinedDemandedElts, /*Insert*/ true, /*Extract*/ false); 6033 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6034 << " for insertelements gather.\n" 6035 << "SLP: Current total cost = " << Cost << "\n"); 6036 Cost -= InsertCost; 6037 for (int I = 2, E = FirstUsers.size(); I < E; ++I) { 6038 // Other elements - permutation of 2 vectors (the initial one and the 6039 // next Ith incoming vector). 6040 unsigned VF = ShuffleMask[I].size(); 6041 for (unsigned Idx = 0; Idx < VF; ++Idx) { 6042 int Mask = ShuffleMask[I][Idx]; 6043 if (Mask != UndefMaskElem) 6044 CombinedMask[Idx] = MaxVF + Mask; 6045 else if (CombinedMask[Idx] != UndefMaskElem) 6046 CombinedMask[Idx] = Idx; 6047 } 6048 for (unsigned Idx = VF; Idx < MaxVF; ++Idx) 6049 if (CombinedMask[Idx] != UndefMaskElem) 6050 CombinedMask[Idx] = Idx; 6051 InstructionCost C = 6052 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 6053 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 6054 << " for final shuffle of vector node and external " 6055 "insertelement users " 6056 << *VectorizableTree.front()->Scalars.front() << ".\n" 6057 << "SLP: Current total cost = " << Cost << "\n"); 6058 Cost += C; 6059 InstructionCost InsertCost = TTI->getScalarizationOverhead( 6060 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I], 6061 /*Insert*/ true, /*Extract*/ false); 6062 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 6063 << " for insertelements gather.\n" 6064 << "SLP: Current total cost = " << Cost << "\n"); 6065 Cost -= InsertCost; 6066 } 6067 } 6068 6069 #ifndef NDEBUG 6070 SmallString<256> Str; 6071 { 6072 raw_svector_ostream OS(Str); 6073 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 6074 << "SLP: Extract Cost = " << ExtractCost << ".\n" 6075 << "SLP: Total Cost = " << Cost << ".\n"; 6076 } 6077 LLVM_DEBUG(dbgs() << Str); 6078 if (ViewSLPTree) 6079 ViewGraph(this, "SLP" + F->getName(), false, Str); 6080 #endif 6081 6082 return Cost; 6083 } 6084 6085 Optional<TargetTransformInfo::ShuffleKind> 6086 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 6087 SmallVectorImpl<const TreeEntry *> &Entries) { 6088 // TODO: currently checking only for Scalars in the tree entry, need to count 6089 // reused elements too for better cost estimation. 6090 Mask.assign(TE->Scalars.size(), UndefMaskElem); 6091 Entries.clear(); 6092 // Build a lists of values to tree entries. 6093 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 6094 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 6095 if (EntryPtr.get() == TE) 6096 break; 6097 if (EntryPtr->State != TreeEntry::NeedToGather) 6098 continue; 6099 for (Value *V : EntryPtr->Scalars) 6100 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 6101 } 6102 // Find all tree entries used by the gathered values. If no common entries 6103 // found - not a shuffle. 6104 // Here we build a set of tree nodes for each gathered value and trying to 6105 // find the intersection between these sets. If we have at least one common 6106 // tree node for each gathered value - we have just a permutation of the 6107 // single vector. If we have 2 different sets, we're in situation where we 6108 // have a permutation of 2 input vectors. 6109 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 6110 DenseMap<Value *, int> UsedValuesEntry; 6111 for (Value *V : TE->Scalars) { 6112 if (isa<UndefValue>(V)) 6113 continue; 6114 // Build a list of tree entries where V is used. 6115 SmallPtrSet<const TreeEntry *, 4> VToTEs; 6116 auto It = ValueToTEs.find(V); 6117 if (It != ValueToTEs.end()) 6118 VToTEs = It->second; 6119 if (const TreeEntry *VTE = getTreeEntry(V)) 6120 VToTEs.insert(VTE); 6121 if (VToTEs.empty()) 6122 return None; 6123 if (UsedTEs.empty()) { 6124 // The first iteration, just insert the list of nodes to vector. 6125 UsedTEs.push_back(VToTEs); 6126 } else { 6127 // Need to check if there are any previously used tree nodes which use V. 6128 // If there are no such nodes, consider that we have another one input 6129 // vector. 6130 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 6131 unsigned Idx = 0; 6132 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 6133 // Do we have a non-empty intersection of previously listed tree entries 6134 // and tree entries using current V? 6135 set_intersect(VToTEs, Set); 6136 if (!VToTEs.empty()) { 6137 // Yes, write the new subset and continue analysis for the next 6138 // scalar. 6139 Set.swap(VToTEs); 6140 break; 6141 } 6142 VToTEs = SavedVToTEs; 6143 ++Idx; 6144 } 6145 // No non-empty intersection found - need to add a second set of possible 6146 // source vectors. 6147 if (Idx == UsedTEs.size()) { 6148 // If the number of input vectors is greater than 2 - not a permutation, 6149 // fallback to the regular gather. 6150 if (UsedTEs.size() == 2) 6151 return None; 6152 UsedTEs.push_back(SavedVToTEs); 6153 Idx = UsedTEs.size() - 1; 6154 } 6155 UsedValuesEntry.try_emplace(V, Idx); 6156 } 6157 } 6158 6159 unsigned VF = 0; 6160 if (UsedTEs.size() == 1) { 6161 // Try to find the perfect match in another gather node at first. 6162 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 6163 return EntryPtr->isSame(TE->Scalars); 6164 }); 6165 if (It != UsedTEs.front().end()) { 6166 Entries.push_back(*It); 6167 std::iota(Mask.begin(), Mask.end(), 0); 6168 return TargetTransformInfo::SK_PermuteSingleSrc; 6169 } 6170 // No perfect match, just shuffle, so choose the first tree node. 6171 Entries.push_back(*UsedTEs.front().begin()); 6172 } else { 6173 // Try to find nodes with the same vector factor. 6174 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 6175 DenseMap<int, const TreeEntry *> VFToTE; 6176 for (const TreeEntry *TE : UsedTEs.front()) 6177 VFToTE.try_emplace(TE->getVectorFactor(), TE); 6178 for (const TreeEntry *TE : UsedTEs.back()) { 6179 auto It = VFToTE.find(TE->getVectorFactor()); 6180 if (It != VFToTE.end()) { 6181 VF = It->first; 6182 Entries.push_back(It->second); 6183 Entries.push_back(TE); 6184 break; 6185 } 6186 } 6187 // No 2 source vectors with the same vector factor - give up and do regular 6188 // gather. 6189 if (Entries.empty()) 6190 return None; 6191 } 6192 6193 // Build a shuffle mask for better cost estimation and vector emission. 6194 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 6195 Value *V = TE->Scalars[I]; 6196 if (isa<UndefValue>(V)) 6197 continue; 6198 unsigned Idx = UsedValuesEntry.lookup(V); 6199 const TreeEntry *VTE = Entries[Idx]; 6200 int FoundLane = VTE->findLaneForValue(V); 6201 Mask[I] = Idx * VF + FoundLane; 6202 // Extra check required by isSingleSourceMaskImpl function (called by 6203 // ShuffleVectorInst::isSingleSourceMask). 6204 if (Mask[I] >= 2 * E) 6205 return None; 6206 } 6207 switch (Entries.size()) { 6208 case 1: 6209 return TargetTransformInfo::SK_PermuteSingleSrc; 6210 case 2: 6211 return TargetTransformInfo::SK_PermuteTwoSrc; 6212 default: 6213 break; 6214 } 6215 return None; 6216 } 6217 6218 InstructionCost BoUpSLP::getGatherCost(FixedVectorType *Ty, 6219 const APInt &ShuffledIndices, 6220 bool NeedToShuffle) const { 6221 InstructionCost Cost = 6222 TTI->getScalarizationOverhead(Ty, ~ShuffledIndices, /*Insert*/ true, 6223 /*Extract*/ false); 6224 if (NeedToShuffle) 6225 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 6226 return Cost; 6227 } 6228 6229 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 6230 // Find the type of the operands in VL. 6231 Type *ScalarTy = VL[0]->getType(); 6232 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 6233 ScalarTy = SI->getValueOperand()->getType(); 6234 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 6235 bool DuplicateNonConst = false; 6236 // Find the cost of inserting/extracting values from the vector. 6237 // Check if the same elements are inserted several times and count them as 6238 // shuffle candidates. 6239 APInt ShuffledElements = APInt::getZero(VL.size()); 6240 DenseSet<Value *> UniqueElements; 6241 // Iterate in reverse order to consider insert elements with the high cost. 6242 for (unsigned I = VL.size(); I > 0; --I) { 6243 unsigned Idx = I - 1; 6244 // No need to shuffle duplicates for constants. 6245 if (isConstant(VL[Idx])) { 6246 ShuffledElements.setBit(Idx); 6247 continue; 6248 } 6249 if (!UniqueElements.insert(VL[Idx]).second) { 6250 DuplicateNonConst = true; 6251 ShuffledElements.setBit(Idx); 6252 } 6253 } 6254 return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst); 6255 } 6256 6257 // Perform operand reordering on the instructions in VL and return the reordered 6258 // operands in Left and Right. 6259 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 6260 SmallVectorImpl<Value *> &Left, 6261 SmallVectorImpl<Value *> &Right, 6262 const DataLayout &DL, 6263 ScalarEvolution &SE, 6264 const BoUpSLP &R) { 6265 if (VL.empty()) 6266 return; 6267 VLOperands Ops(VL, DL, SE, R); 6268 // Reorder the operands in place. 6269 Ops.reorder(); 6270 Left = Ops.getVL(0); 6271 Right = Ops.getVL(1); 6272 } 6273 6274 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 6275 // Get the basic block this bundle is in. All instructions in the bundle 6276 // should be in this block. 6277 auto *Front = E->getMainOp(); 6278 auto *BB = Front->getParent(); 6279 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 6280 auto *I = cast<Instruction>(V); 6281 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 6282 })); 6283 6284 // The last instruction in the bundle in program order. 6285 Instruction *LastInst = nullptr; 6286 6287 // Find the last instruction. The common case should be that BB has been 6288 // scheduled, and the last instruction is VL.back(). So we start with 6289 // VL.back() and iterate over schedule data until we reach the end of the 6290 // bundle. The end of the bundle is marked by null ScheduleData. 6291 if (BlocksSchedules.count(BB)) { 6292 auto *Bundle = 6293 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 6294 if (Bundle && Bundle->isPartOfBundle()) 6295 for (; Bundle; Bundle = Bundle->NextInBundle) 6296 if (Bundle->OpValue == Bundle->Inst) 6297 LastInst = Bundle->Inst; 6298 } 6299 6300 // LastInst can still be null at this point if there's either not an entry 6301 // for BB in BlocksSchedules or there's no ScheduleData available for 6302 // VL.back(). This can be the case if buildTree_rec aborts for various 6303 // reasons (e.g., the maximum recursion depth is reached, the maximum region 6304 // size is reached, etc.). ScheduleData is initialized in the scheduling 6305 // "dry-run". 6306 // 6307 // If this happens, we can still find the last instruction by brute force. We 6308 // iterate forwards from Front (inclusive) until we either see all 6309 // instructions in the bundle or reach the end of the block. If Front is the 6310 // last instruction in program order, LastInst will be set to Front, and we 6311 // will visit all the remaining instructions in the block. 6312 // 6313 // One of the reasons we exit early from buildTree_rec is to place an upper 6314 // bound on compile-time. Thus, taking an additional compile-time hit here is 6315 // not ideal. However, this should be exceedingly rare since it requires that 6316 // we both exit early from buildTree_rec and that the bundle be out-of-order 6317 // (causing us to iterate all the way to the end of the block). 6318 if (!LastInst) { 6319 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 6320 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 6321 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 6322 LastInst = &I; 6323 if (Bundle.empty()) 6324 break; 6325 } 6326 } 6327 assert(LastInst && "Failed to find last instruction in bundle"); 6328 6329 // Set the insertion point after the last instruction in the bundle. Set the 6330 // debug location to Front. 6331 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 6332 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 6333 } 6334 6335 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 6336 // List of instructions/lanes from current block and/or the blocks which are 6337 // part of the current loop. These instructions will be inserted at the end to 6338 // make it possible to optimize loops and hoist invariant instructions out of 6339 // the loops body with better chances for success. 6340 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 6341 SmallSet<int, 4> PostponedIndices; 6342 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 6343 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 6344 SmallPtrSet<BasicBlock *, 4> Visited; 6345 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 6346 InsertBB = InsertBB->getSinglePredecessor(); 6347 return InsertBB && InsertBB == InstBB; 6348 }; 6349 for (int I = 0, E = VL.size(); I < E; ++I) { 6350 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 6351 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 6352 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 6353 PostponedIndices.insert(I).second) 6354 PostponedInsts.emplace_back(Inst, I); 6355 } 6356 6357 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 6358 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 6359 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 6360 if (!InsElt) 6361 return Vec; 6362 GatherShuffleSeq.insert(InsElt); 6363 CSEBlocks.insert(InsElt->getParent()); 6364 // Add to our 'need-to-extract' list. 6365 if (TreeEntry *Entry = getTreeEntry(V)) { 6366 // Find which lane we need to extract. 6367 unsigned FoundLane = Entry->findLaneForValue(V); 6368 ExternalUses.emplace_back(V, InsElt, FoundLane); 6369 } 6370 return Vec; 6371 }; 6372 Value *Val0 = 6373 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 6374 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 6375 Value *Vec = PoisonValue::get(VecTy); 6376 SmallVector<int> NonConsts; 6377 // Insert constant values at first. 6378 for (int I = 0, E = VL.size(); I < E; ++I) { 6379 if (PostponedIndices.contains(I)) 6380 continue; 6381 if (!isConstant(VL[I])) { 6382 NonConsts.push_back(I); 6383 continue; 6384 } 6385 Vec = CreateInsertElement(Vec, VL[I], I); 6386 } 6387 // Insert non-constant values. 6388 for (int I : NonConsts) 6389 Vec = CreateInsertElement(Vec, VL[I], I); 6390 // Append instructions, which are/may be part of the loop, in the end to make 6391 // it possible to hoist non-loop-based instructions. 6392 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 6393 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 6394 6395 return Vec; 6396 } 6397 6398 namespace { 6399 /// Merges shuffle masks and emits final shuffle instruction, if required. 6400 class ShuffleInstructionBuilder { 6401 IRBuilderBase &Builder; 6402 const unsigned VF = 0; 6403 bool IsFinalized = false; 6404 SmallVector<int, 4> Mask; 6405 /// Holds all of the instructions that we gathered. 6406 SetVector<Instruction *> &GatherShuffleSeq; 6407 /// A list of blocks that we are going to CSE. 6408 SetVector<BasicBlock *> &CSEBlocks; 6409 6410 public: 6411 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF, 6412 SetVector<Instruction *> &GatherShuffleSeq, 6413 SetVector<BasicBlock *> &CSEBlocks) 6414 : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq), 6415 CSEBlocks(CSEBlocks) {} 6416 6417 /// Adds a mask, inverting it before applying. 6418 void addInversedMask(ArrayRef<unsigned> SubMask) { 6419 if (SubMask.empty()) 6420 return; 6421 SmallVector<int, 4> NewMask; 6422 inversePermutation(SubMask, NewMask); 6423 addMask(NewMask); 6424 } 6425 6426 /// Functions adds masks, merging them into single one. 6427 void addMask(ArrayRef<unsigned> SubMask) { 6428 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 6429 addMask(NewMask); 6430 } 6431 6432 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 6433 6434 Value *finalize(Value *V) { 6435 IsFinalized = true; 6436 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 6437 if (VF == ValueVF && Mask.empty()) 6438 return V; 6439 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 6440 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 6441 addMask(NormalizedMask); 6442 6443 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 6444 return V; 6445 Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle"); 6446 if (auto *I = dyn_cast<Instruction>(Vec)) { 6447 GatherShuffleSeq.insert(I); 6448 CSEBlocks.insert(I->getParent()); 6449 } 6450 return Vec; 6451 } 6452 6453 ~ShuffleInstructionBuilder() { 6454 assert((IsFinalized || Mask.empty()) && 6455 "Shuffle construction must be finalized."); 6456 } 6457 }; 6458 } // namespace 6459 6460 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 6461 unsigned VF = VL.size(); 6462 InstructionsState S = getSameOpcode(VL); 6463 if (S.getOpcode()) { 6464 if (TreeEntry *E = getTreeEntry(S.OpValue)) 6465 if (E->isSame(VL)) { 6466 Value *V = vectorizeTree(E); 6467 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 6468 if (!E->ReuseShuffleIndices.empty()) { 6469 // Reshuffle to get only unique values. 6470 // If some of the scalars are duplicated in the vectorization tree 6471 // entry, we do not vectorize them but instead generate a mask for 6472 // the reuses. But if there are several users of the same entry, 6473 // they may have different vectorization factors. This is especially 6474 // important for PHI nodes. In this case, we need to adapt the 6475 // resulting instruction for the user vectorization factor and have 6476 // to reshuffle it again to take only unique elements of the vector. 6477 // Without this code the function incorrectly returns reduced vector 6478 // instruction with the same elements, not with the unique ones. 6479 6480 // block: 6481 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 6482 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> 6483 // ... (use %2) 6484 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} 6485 // br %block 6486 SmallVector<int> UniqueIdxs(VF, UndefMaskElem); 6487 SmallSet<int, 4> UsedIdxs; 6488 int Pos = 0; 6489 int Sz = VL.size(); 6490 for (int Idx : E->ReuseShuffleIndices) { 6491 if (Idx != Sz && Idx != UndefMaskElem && 6492 UsedIdxs.insert(Idx).second) 6493 UniqueIdxs[Idx] = Pos; 6494 ++Pos; 6495 } 6496 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 6497 "less than original vector size."); 6498 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 6499 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 6500 } else { 6501 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 6502 "Expected vectorization factor less " 6503 "than original vector size."); 6504 SmallVector<int> UniformMask(VF, 0); 6505 std::iota(UniformMask.begin(), UniformMask.end(), 0); 6506 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 6507 } 6508 if (auto *I = dyn_cast<Instruction>(V)) { 6509 GatherShuffleSeq.insert(I); 6510 CSEBlocks.insert(I->getParent()); 6511 } 6512 } 6513 return V; 6514 } 6515 } 6516 6517 // Check that every instruction appears once in this bundle. 6518 SmallVector<int> ReuseShuffleIndicies; 6519 SmallVector<Value *> UniqueValues; 6520 if (VL.size() > 2) { 6521 DenseMap<Value *, unsigned> UniquePositions; 6522 unsigned NumValues = 6523 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 6524 return !isa<UndefValue>(V); 6525 }).base()); 6526 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 6527 int UniqueVals = 0; 6528 for (Value *V : VL.drop_back(VL.size() - VF)) { 6529 if (isa<UndefValue>(V)) { 6530 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 6531 continue; 6532 } 6533 if (isConstant(V)) { 6534 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 6535 UniqueValues.emplace_back(V); 6536 continue; 6537 } 6538 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 6539 ReuseShuffleIndicies.emplace_back(Res.first->second); 6540 if (Res.second) { 6541 UniqueValues.emplace_back(V); 6542 ++UniqueVals; 6543 } 6544 } 6545 if (UniqueVals == 1 && UniqueValues.size() == 1) { 6546 // Emit pure splat vector. 6547 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 6548 UndefMaskElem); 6549 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 6550 ReuseShuffleIndicies.clear(); 6551 UniqueValues.clear(); 6552 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 6553 } 6554 UniqueValues.append(VF - UniqueValues.size(), 6555 PoisonValue::get(VL[0]->getType())); 6556 VL = UniqueValues; 6557 } 6558 6559 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6560 CSEBlocks); 6561 Value *Vec = gather(VL); 6562 if (!ReuseShuffleIndicies.empty()) { 6563 ShuffleBuilder.addMask(ReuseShuffleIndicies); 6564 Vec = ShuffleBuilder.finalize(Vec); 6565 } 6566 return Vec; 6567 } 6568 6569 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 6570 IRBuilder<>::InsertPointGuard Guard(Builder); 6571 6572 if (E->VectorizedValue) { 6573 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 6574 return E->VectorizedValue; 6575 } 6576 6577 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 6578 unsigned VF = E->getVectorFactor(); 6579 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6580 CSEBlocks); 6581 if (E->State == TreeEntry::NeedToGather) { 6582 if (E->getMainOp()) 6583 setInsertPointAfterBundle(E); 6584 Value *Vec; 6585 SmallVector<int> Mask; 6586 SmallVector<const TreeEntry *> Entries; 6587 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 6588 isGatherShuffledEntry(E, Mask, Entries); 6589 if (Shuffle.hasValue()) { 6590 assert((Entries.size() == 1 || Entries.size() == 2) && 6591 "Expected shuffle of 1 or 2 entries."); 6592 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 6593 Entries.back()->VectorizedValue, Mask); 6594 if (auto *I = dyn_cast<Instruction>(Vec)) { 6595 GatherShuffleSeq.insert(I); 6596 CSEBlocks.insert(I->getParent()); 6597 } 6598 } else { 6599 Vec = gather(E->Scalars); 6600 } 6601 if (NeedToShuffleReuses) { 6602 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6603 Vec = ShuffleBuilder.finalize(Vec); 6604 } 6605 E->VectorizedValue = Vec; 6606 return Vec; 6607 } 6608 6609 assert((E->State == TreeEntry::Vectorize || 6610 E->State == TreeEntry::ScatterVectorize) && 6611 "Unhandled state"); 6612 unsigned ShuffleOrOp = 6613 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 6614 Instruction *VL0 = E->getMainOp(); 6615 Type *ScalarTy = VL0->getType(); 6616 if (auto *Store = dyn_cast<StoreInst>(VL0)) 6617 ScalarTy = Store->getValueOperand()->getType(); 6618 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 6619 ScalarTy = IE->getOperand(1)->getType(); 6620 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 6621 switch (ShuffleOrOp) { 6622 case Instruction::PHI: { 6623 assert( 6624 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 6625 "PHI reordering is free."); 6626 auto *PH = cast<PHINode>(VL0); 6627 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 6628 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6629 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 6630 Value *V = NewPhi; 6631 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6632 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6633 V = ShuffleBuilder.finalize(V); 6634 6635 E->VectorizedValue = V; 6636 6637 // PHINodes may have multiple entries from the same block. We want to 6638 // visit every block once. 6639 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 6640 6641 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 6642 ValueList Operands; 6643 BasicBlock *IBB = PH->getIncomingBlock(i); 6644 6645 if (!VisitedBBs.insert(IBB).second) { 6646 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 6647 continue; 6648 } 6649 6650 Builder.SetInsertPoint(IBB->getTerminator()); 6651 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6652 Value *Vec = vectorizeTree(E->getOperand(i)); 6653 NewPhi->addIncoming(Vec, IBB); 6654 } 6655 6656 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 6657 "Invalid number of incoming values"); 6658 return V; 6659 } 6660 6661 case Instruction::ExtractElement: { 6662 Value *V = E->getSingleOperand(0); 6663 Builder.SetInsertPoint(VL0); 6664 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6665 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6666 V = ShuffleBuilder.finalize(V); 6667 E->VectorizedValue = V; 6668 return V; 6669 } 6670 case Instruction::ExtractValue: { 6671 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 6672 Builder.SetInsertPoint(LI); 6673 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 6674 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 6675 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 6676 Value *NewV = propagateMetadata(V, E->Scalars); 6677 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6678 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6679 NewV = ShuffleBuilder.finalize(NewV); 6680 E->VectorizedValue = NewV; 6681 return NewV; 6682 } 6683 case Instruction::InsertElement: { 6684 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 6685 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 6686 Value *V = vectorizeTree(E->getOperand(1)); 6687 6688 // Create InsertVector shuffle if necessary 6689 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 6690 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 6691 })); 6692 const unsigned NumElts = 6693 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 6694 const unsigned NumScalars = E->Scalars.size(); 6695 6696 unsigned Offset = *getInsertIndex(VL0); 6697 assert(Offset < NumElts && "Failed to find vector index offset"); 6698 6699 // Create shuffle to resize vector 6700 SmallVector<int> Mask; 6701 if (!E->ReorderIndices.empty()) { 6702 inversePermutation(E->ReorderIndices, Mask); 6703 Mask.append(NumElts - NumScalars, UndefMaskElem); 6704 } else { 6705 Mask.assign(NumElts, UndefMaskElem); 6706 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 6707 } 6708 // Create InsertVector shuffle if necessary 6709 bool IsIdentity = true; 6710 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 6711 Mask.swap(PrevMask); 6712 for (unsigned I = 0; I < NumScalars; ++I) { 6713 Value *Scalar = E->Scalars[PrevMask[I]]; 6714 unsigned InsertIdx = *getInsertIndex(Scalar); 6715 IsIdentity &= InsertIdx - Offset == I; 6716 Mask[InsertIdx - Offset] = I; 6717 } 6718 if (!IsIdentity || NumElts != NumScalars) { 6719 V = Builder.CreateShuffleVector(V, Mask); 6720 if (auto *I = dyn_cast<Instruction>(V)) { 6721 GatherShuffleSeq.insert(I); 6722 CSEBlocks.insert(I->getParent()); 6723 } 6724 } 6725 6726 if ((!IsIdentity || Offset != 0 || 6727 !isUndefVector(FirstInsert->getOperand(0))) && 6728 NumElts != NumScalars) { 6729 SmallVector<int> InsertMask(NumElts); 6730 std::iota(InsertMask.begin(), InsertMask.end(), 0); 6731 for (unsigned I = 0; I < NumElts; I++) { 6732 if (Mask[I] != UndefMaskElem) 6733 InsertMask[Offset + I] = NumElts + I; 6734 } 6735 6736 V = Builder.CreateShuffleVector( 6737 FirstInsert->getOperand(0), V, InsertMask, 6738 cast<Instruction>(E->Scalars.back())->getName()); 6739 if (auto *I = dyn_cast<Instruction>(V)) { 6740 GatherShuffleSeq.insert(I); 6741 CSEBlocks.insert(I->getParent()); 6742 } 6743 } 6744 6745 ++NumVectorInstructions; 6746 E->VectorizedValue = V; 6747 return V; 6748 } 6749 case Instruction::ZExt: 6750 case Instruction::SExt: 6751 case Instruction::FPToUI: 6752 case Instruction::FPToSI: 6753 case Instruction::FPExt: 6754 case Instruction::PtrToInt: 6755 case Instruction::IntToPtr: 6756 case Instruction::SIToFP: 6757 case Instruction::UIToFP: 6758 case Instruction::Trunc: 6759 case Instruction::FPTrunc: 6760 case Instruction::BitCast: { 6761 setInsertPointAfterBundle(E); 6762 6763 Value *InVec = vectorizeTree(E->getOperand(0)); 6764 6765 if (E->VectorizedValue) { 6766 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6767 return E->VectorizedValue; 6768 } 6769 6770 auto *CI = cast<CastInst>(VL0); 6771 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 6772 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6773 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6774 V = ShuffleBuilder.finalize(V); 6775 6776 E->VectorizedValue = V; 6777 ++NumVectorInstructions; 6778 return V; 6779 } 6780 case Instruction::FCmp: 6781 case Instruction::ICmp: { 6782 setInsertPointAfterBundle(E); 6783 6784 Value *L = vectorizeTree(E->getOperand(0)); 6785 Value *R = vectorizeTree(E->getOperand(1)); 6786 6787 if (E->VectorizedValue) { 6788 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6789 return E->VectorizedValue; 6790 } 6791 6792 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 6793 Value *V = Builder.CreateCmp(P0, L, R); 6794 propagateIRFlags(V, E->Scalars, VL0); 6795 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6796 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6797 V = ShuffleBuilder.finalize(V); 6798 6799 E->VectorizedValue = V; 6800 ++NumVectorInstructions; 6801 return V; 6802 } 6803 case Instruction::Select: { 6804 setInsertPointAfterBundle(E); 6805 6806 Value *Cond = vectorizeTree(E->getOperand(0)); 6807 Value *True = vectorizeTree(E->getOperand(1)); 6808 Value *False = vectorizeTree(E->getOperand(2)); 6809 6810 if (E->VectorizedValue) { 6811 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6812 return E->VectorizedValue; 6813 } 6814 6815 Value *V = Builder.CreateSelect(Cond, True, False); 6816 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6817 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6818 V = ShuffleBuilder.finalize(V); 6819 6820 E->VectorizedValue = V; 6821 ++NumVectorInstructions; 6822 return V; 6823 } 6824 case Instruction::FNeg: { 6825 setInsertPointAfterBundle(E); 6826 6827 Value *Op = vectorizeTree(E->getOperand(0)); 6828 6829 if (E->VectorizedValue) { 6830 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6831 return E->VectorizedValue; 6832 } 6833 6834 Value *V = Builder.CreateUnOp( 6835 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 6836 propagateIRFlags(V, E->Scalars, VL0); 6837 if (auto *I = dyn_cast<Instruction>(V)) 6838 V = propagateMetadata(I, E->Scalars); 6839 6840 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6841 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6842 V = ShuffleBuilder.finalize(V); 6843 6844 E->VectorizedValue = V; 6845 ++NumVectorInstructions; 6846 6847 return V; 6848 } 6849 case Instruction::Add: 6850 case Instruction::FAdd: 6851 case Instruction::Sub: 6852 case Instruction::FSub: 6853 case Instruction::Mul: 6854 case Instruction::FMul: 6855 case Instruction::UDiv: 6856 case Instruction::SDiv: 6857 case Instruction::FDiv: 6858 case Instruction::URem: 6859 case Instruction::SRem: 6860 case Instruction::FRem: 6861 case Instruction::Shl: 6862 case Instruction::LShr: 6863 case Instruction::AShr: 6864 case Instruction::And: 6865 case Instruction::Or: 6866 case Instruction::Xor: { 6867 setInsertPointAfterBundle(E); 6868 6869 Value *LHS = vectorizeTree(E->getOperand(0)); 6870 Value *RHS = vectorizeTree(E->getOperand(1)); 6871 6872 if (E->VectorizedValue) { 6873 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6874 return E->VectorizedValue; 6875 } 6876 6877 Value *V = Builder.CreateBinOp( 6878 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 6879 RHS); 6880 propagateIRFlags(V, E->Scalars, VL0); 6881 if (auto *I = dyn_cast<Instruction>(V)) 6882 V = propagateMetadata(I, E->Scalars); 6883 6884 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6885 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6886 V = ShuffleBuilder.finalize(V); 6887 6888 E->VectorizedValue = V; 6889 ++NumVectorInstructions; 6890 6891 return V; 6892 } 6893 case Instruction::Load: { 6894 // Loads are inserted at the head of the tree because we don't want to 6895 // sink them all the way down past store instructions. 6896 setInsertPointAfterBundle(E); 6897 6898 LoadInst *LI = cast<LoadInst>(VL0); 6899 Instruction *NewLI; 6900 unsigned AS = LI->getPointerAddressSpace(); 6901 Value *PO = LI->getPointerOperand(); 6902 if (E->State == TreeEntry::Vectorize) { 6903 6904 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 6905 6906 // The pointer operand uses an in-tree scalar so we add the new BitCast 6907 // to ExternalUses list to make sure that an extract will be generated 6908 // in the future. 6909 if (TreeEntry *Entry = getTreeEntry(PO)) { 6910 // Find which lane we need to extract. 6911 unsigned FoundLane = Entry->findLaneForValue(PO); 6912 ExternalUses.emplace_back(PO, cast<User>(VecPtr), FoundLane); 6913 } 6914 6915 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 6916 } else { 6917 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 6918 Value *VecPtr = vectorizeTree(E->getOperand(0)); 6919 // Use the minimum alignment of the gathered loads. 6920 Align CommonAlignment = LI->getAlign(); 6921 for (Value *V : E->Scalars) 6922 CommonAlignment = 6923 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 6924 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 6925 } 6926 Value *V = propagateMetadata(NewLI, E->Scalars); 6927 6928 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6929 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6930 V = ShuffleBuilder.finalize(V); 6931 E->VectorizedValue = V; 6932 ++NumVectorInstructions; 6933 return V; 6934 } 6935 case Instruction::Store: { 6936 auto *SI = cast<StoreInst>(VL0); 6937 unsigned AS = SI->getPointerAddressSpace(); 6938 6939 setInsertPointAfterBundle(E); 6940 6941 Value *VecValue = vectorizeTree(E->getOperand(0)); 6942 ShuffleBuilder.addMask(E->ReorderIndices); 6943 VecValue = ShuffleBuilder.finalize(VecValue); 6944 6945 Value *ScalarPtr = SI->getPointerOperand(); 6946 Value *VecPtr = Builder.CreateBitCast( 6947 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 6948 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 6949 SI->getAlign()); 6950 6951 // The pointer operand uses an in-tree scalar, so add the new BitCast to 6952 // ExternalUses to make sure that an extract will be generated in the 6953 // future. 6954 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 6955 // Find which lane we need to extract. 6956 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 6957 ExternalUses.push_back( 6958 ExternalUser(ScalarPtr, cast<User>(VecPtr), FoundLane)); 6959 } 6960 6961 Value *V = propagateMetadata(ST, E->Scalars); 6962 6963 E->VectorizedValue = V; 6964 ++NumVectorInstructions; 6965 return V; 6966 } 6967 case Instruction::GetElementPtr: { 6968 auto *GEP0 = cast<GetElementPtrInst>(VL0); 6969 setInsertPointAfterBundle(E); 6970 6971 Value *Op0 = vectorizeTree(E->getOperand(0)); 6972 6973 SmallVector<Value *> OpVecs; 6974 for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) { 6975 Value *OpVec = vectorizeTree(E->getOperand(J)); 6976 OpVecs.push_back(OpVec); 6977 } 6978 6979 Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs); 6980 if (Instruction *I = dyn_cast<Instruction>(V)) 6981 V = propagateMetadata(I, E->Scalars); 6982 6983 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6984 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6985 V = ShuffleBuilder.finalize(V); 6986 6987 E->VectorizedValue = V; 6988 ++NumVectorInstructions; 6989 6990 return V; 6991 } 6992 case Instruction::Call: { 6993 CallInst *CI = cast<CallInst>(VL0); 6994 setInsertPointAfterBundle(E); 6995 6996 Intrinsic::ID IID = Intrinsic::not_intrinsic; 6997 if (Function *FI = CI->getCalledFunction()) 6998 IID = FI->getIntrinsicID(); 6999 7000 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7001 7002 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 7003 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 7004 VecCallCosts.first <= VecCallCosts.second; 7005 7006 Value *ScalarArg = nullptr; 7007 std::vector<Value *> OpVecs; 7008 SmallVector<Type *, 2> TysForDecl = 7009 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 7010 for (int j = 0, e = CI->arg_size(); j < e; ++j) { 7011 ValueList OpVL; 7012 // Some intrinsics have scalar arguments. This argument should not be 7013 // vectorized. 7014 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 7015 CallInst *CEI = cast<CallInst>(VL0); 7016 ScalarArg = CEI->getArgOperand(j); 7017 OpVecs.push_back(CEI->getArgOperand(j)); 7018 if (hasVectorInstrinsicOverloadedScalarOpd(IID, j)) 7019 TysForDecl.push_back(ScalarArg->getType()); 7020 continue; 7021 } 7022 7023 Value *OpVec = vectorizeTree(E->getOperand(j)); 7024 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 7025 OpVecs.push_back(OpVec); 7026 } 7027 7028 Function *CF; 7029 if (!UseIntrinsic) { 7030 VFShape Shape = 7031 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 7032 VecTy->getNumElements())), 7033 false /*HasGlobalPred*/); 7034 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 7035 } else { 7036 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 7037 } 7038 7039 SmallVector<OperandBundleDef, 1> OpBundles; 7040 CI->getOperandBundlesAsDefs(OpBundles); 7041 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 7042 7043 // The scalar argument uses an in-tree scalar so we add the new vectorized 7044 // call to ExternalUses list to make sure that an extract will be 7045 // generated in the future. 7046 if (ScalarArg) { 7047 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 7048 // Find which lane we need to extract. 7049 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 7050 ExternalUses.push_back( 7051 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 7052 } 7053 } 7054 7055 propagateIRFlags(V, E->Scalars, VL0); 7056 ShuffleBuilder.addInversedMask(E->ReorderIndices); 7057 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 7058 V = ShuffleBuilder.finalize(V); 7059 7060 E->VectorizedValue = V; 7061 ++NumVectorInstructions; 7062 return V; 7063 } 7064 case Instruction::ShuffleVector: { 7065 assert(E->isAltShuffle() && 7066 ((Instruction::isBinaryOp(E->getOpcode()) && 7067 Instruction::isBinaryOp(E->getAltOpcode())) || 7068 (Instruction::isCast(E->getOpcode()) && 7069 Instruction::isCast(E->getAltOpcode())) || 7070 (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && 7071 "Invalid Shuffle Vector Operand"); 7072 7073 Value *LHS = nullptr, *RHS = nullptr; 7074 if (Instruction::isBinaryOp(E->getOpcode()) || isa<CmpInst>(VL0)) { 7075 setInsertPointAfterBundle(E); 7076 LHS = vectorizeTree(E->getOperand(0)); 7077 RHS = vectorizeTree(E->getOperand(1)); 7078 } else { 7079 setInsertPointAfterBundle(E); 7080 LHS = vectorizeTree(E->getOperand(0)); 7081 } 7082 7083 if (E->VectorizedValue) { 7084 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 7085 return E->VectorizedValue; 7086 } 7087 7088 Value *V0, *V1; 7089 if (Instruction::isBinaryOp(E->getOpcode())) { 7090 V0 = Builder.CreateBinOp( 7091 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 7092 V1 = Builder.CreateBinOp( 7093 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 7094 } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { 7095 V0 = Builder.CreateCmp(CI0->getPredicate(), LHS, RHS); 7096 auto *AltCI = cast<CmpInst>(E->getAltOp()); 7097 CmpInst::Predicate AltPred = AltCI->getPredicate(); 7098 V1 = Builder.CreateCmp(AltPred, LHS, RHS); 7099 } else { 7100 V0 = Builder.CreateCast( 7101 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 7102 V1 = Builder.CreateCast( 7103 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 7104 } 7105 // Add V0 and V1 to later analysis to try to find and remove matching 7106 // instruction, if any. 7107 for (Value *V : {V0, V1}) { 7108 if (auto *I = dyn_cast<Instruction>(V)) { 7109 GatherShuffleSeq.insert(I); 7110 CSEBlocks.insert(I->getParent()); 7111 } 7112 } 7113 7114 // Create shuffle to take alternate operations from the vector. 7115 // Also, gather up main and alt scalar ops to propagate IR flags to 7116 // each vector operation. 7117 ValueList OpScalars, AltScalars; 7118 SmallVector<int> Mask; 7119 buildShuffleEntryMask( 7120 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 7121 [E](Instruction *I) { 7122 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 7123 return isAlternateInstruction(I, E->getMainOp(), E->getAltOp()); 7124 }, 7125 Mask, &OpScalars, &AltScalars); 7126 7127 propagateIRFlags(V0, OpScalars); 7128 propagateIRFlags(V1, AltScalars); 7129 7130 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 7131 if (auto *I = dyn_cast<Instruction>(V)) { 7132 V = propagateMetadata(I, E->Scalars); 7133 GatherShuffleSeq.insert(I); 7134 CSEBlocks.insert(I->getParent()); 7135 } 7136 V = ShuffleBuilder.finalize(V); 7137 7138 E->VectorizedValue = V; 7139 ++NumVectorInstructions; 7140 7141 return V; 7142 } 7143 default: 7144 llvm_unreachable("unknown inst"); 7145 } 7146 return nullptr; 7147 } 7148 7149 Value *BoUpSLP::vectorizeTree() { 7150 ExtraValueToDebugLocsMap ExternallyUsedValues; 7151 return vectorizeTree(ExternallyUsedValues); 7152 } 7153 7154 Value * 7155 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 7156 // All blocks must be scheduled before any instructions are inserted. 7157 for (auto &BSIter : BlocksSchedules) { 7158 scheduleBlock(BSIter.second.get()); 7159 } 7160 7161 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7162 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 7163 7164 // If the vectorized tree can be rewritten in a smaller type, we truncate the 7165 // vectorized root. InstCombine will then rewrite the entire expression. We 7166 // sign extend the extracted values below. 7167 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 7168 if (MinBWs.count(ScalarRoot)) { 7169 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 7170 // If current instr is a phi and not the last phi, insert it after the 7171 // last phi node. 7172 if (isa<PHINode>(I)) 7173 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 7174 else 7175 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 7176 } 7177 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 7178 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 7179 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 7180 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 7181 VectorizableTree[0]->VectorizedValue = Trunc; 7182 } 7183 7184 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 7185 << " values .\n"); 7186 7187 // Extract all of the elements with the external uses. 7188 for (const auto &ExternalUse : ExternalUses) { 7189 Value *Scalar = ExternalUse.Scalar; 7190 llvm::User *User = ExternalUse.User; 7191 7192 // Skip users that we already RAUW. This happens when one instruction 7193 // has multiple uses of the same value. 7194 if (User && !is_contained(Scalar->users(), User)) 7195 continue; 7196 TreeEntry *E = getTreeEntry(Scalar); 7197 assert(E && "Invalid scalar"); 7198 assert(E->State != TreeEntry::NeedToGather && 7199 "Extracting from a gather list"); 7200 7201 Value *Vec = E->VectorizedValue; 7202 assert(Vec && "Can't find vectorizable value"); 7203 7204 Value *Lane = Builder.getInt32(ExternalUse.Lane); 7205 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 7206 if (Scalar->getType() != Vec->getType()) { 7207 Value *Ex; 7208 // "Reuse" the existing extract to improve final codegen. 7209 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 7210 Ex = Builder.CreateExtractElement(ES->getOperand(0), 7211 ES->getOperand(1)); 7212 } else { 7213 Ex = Builder.CreateExtractElement(Vec, Lane); 7214 } 7215 // If necessary, sign-extend or zero-extend ScalarRoot 7216 // to the larger type. 7217 if (!MinBWs.count(ScalarRoot)) 7218 return Ex; 7219 if (MinBWs[ScalarRoot].second) 7220 return Builder.CreateSExt(Ex, Scalar->getType()); 7221 return Builder.CreateZExt(Ex, Scalar->getType()); 7222 } 7223 assert(isa<FixedVectorType>(Scalar->getType()) && 7224 isa<InsertElementInst>(Scalar) && 7225 "In-tree scalar of vector type is not insertelement?"); 7226 return Vec; 7227 }; 7228 // If User == nullptr, the Scalar is used as extra arg. Generate 7229 // ExtractElement instruction and update the record for this scalar in 7230 // ExternallyUsedValues. 7231 if (!User) { 7232 assert(ExternallyUsedValues.count(Scalar) && 7233 "Scalar with nullptr as an external user must be registered in " 7234 "ExternallyUsedValues map"); 7235 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7236 Builder.SetInsertPoint(VecI->getParent(), 7237 std::next(VecI->getIterator())); 7238 } else { 7239 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7240 } 7241 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7242 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 7243 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 7244 auto It = ExternallyUsedValues.find(Scalar); 7245 assert(It != ExternallyUsedValues.end() && 7246 "Externally used scalar is not found in ExternallyUsedValues"); 7247 NewInstLocs.append(It->second); 7248 ExternallyUsedValues.erase(Scalar); 7249 // Required to update internally referenced instructions. 7250 Scalar->replaceAllUsesWith(NewInst); 7251 continue; 7252 } 7253 7254 // Generate extracts for out-of-tree users. 7255 // Find the insertion point for the extractelement lane. 7256 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 7257 if (PHINode *PH = dyn_cast<PHINode>(User)) { 7258 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 7259 if (PH->getIncomingValue(i) == Scalar) { 7260 Instruction *IncomingTerminator = 7261 PH->getIncomingBlock(i)->getTerminator(); 7262 if (isa<CatchSwitchInst>(IncomingTerminator)) { 7263 Builder.SetInsertPoint(VecI->getParent(), 7264 std::next(VecI->getIterator())); 7265 } else { 7266 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 7267 } 7268 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7269 CSEBlocks.insert(PH->getIncomingBlock(i)); 7270 PH->setOperand(i, NewInst); 7271 } 7272 } 7273 } else { 7274 Builder.SetInsertPoint(cast<Instruction>(User)); 7275 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7276 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 7277 User->replaceUsesOfWith(Scalar, NewInst); 7278 } 7279 } else { 7280 Builder.SetInsertPoint(&F->getEntryBlock().front()); 7281 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 7282 CSEBlocks.insert(&F->getEntryBlock()); 7283 User->replaceUsesOfWith(Scalar, NewInst); 7284 } 7285 7286 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 7287 } 7288 7289 // For each vectorized value: 7290 for (auto &TEPtr : VectorizableTree) { 7291 TreeEntry *Entry = TEPtr.get(); 7292 7293 // No need to handle users of gathered values. 7294 if (Entry->State == TreeEntry::NeedToGather) 7295 continue; 7296 7297 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 7298 7299 // For each lane: 7300 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 7301 Value *Scalar = Entry->Scalars[Lane]; 7302 7303 #ifndef NDEBUG 7304 Type *Ty = Scalar->getType(); 7305 if (!Ty->isVoidTy()) { 7306 for (User *U : Scalar->users()) { 7307 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 7308 7309 // It is legal to delete users in the ignorelist. 7310 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) || 7311 (isa_and_nonnull<Instruction>(U) && 7312 isDeleted(cast<Instruction>(U)))) && 7313 "Deleting out-of-tree value"); 7314 } 7315 } 7316 #endif 7317 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 7318 eraseInstruction(cast<Instruction>(Scalar)); 7319 } 7320 } 7321 7322 Builder.ClearInsertionPoint(); 7323 InstrElementSize.clear(); 7324 7325 return VectorizableTree[0]->VectorizedValue; 7326 } 7327 7328 void BoUpSLP::optimizeGatherSequence() { 7329 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size() 7330 << " gather sequences instructions.\n"); 7331 // LICM InsertElementInst sequences. 7332 for (Instruction *I : GatherShuffleSeq) { 7333 if (isDeleted(I)) 7334 continue; 7335 7336 // Check if this block is inside a loop. 7337 Loop *L = LI->getLoopFor(I->getParent()); 7338 if (!L) 7339 continue; 7340 7341 // Check if it has a preheader. 7342 BasicBlock *PreHeader = L->getLoopPreheader(); 7343 if (!PreHeader) 7344 continue; 7345 7346 // If the vector or the element that we insert into it are 7347 // instructions that are defined in this basic block then we can't 7348 // hoist this instruction. 7349 if (any_of(I->operands(), [L](Value *V) { 7350 auto *OpI = dyn_cast<Instruction>(V); 7351 return OpI && L->contains(OpI); 7352 })) 7353 continue; 7354 7355 // We can hoist this instruction. Move it to the pre-header. 7356 I->moveBefore(PreHeader->getTerminator()); 7357 } 7358 7359 // Make a list of all reachable blocks in our CSE queue. 7360 SmallVector<const DomTreeNode *, 8> CSEWorkList; 7361 CSEWorkList.reserve(CSEBlocks.size()); 7362 for (BasicBlock *BB : CSEBlocks) 7363 if (DomTreeNode *N = DT->getNode(BB)) { 7364 assert(DT->isReachableFromEntry(N)); 7365 CSEWorkList.push_back(N); 7366 } 7367 7368 // Sort blocks by domination. This ensures we visit a block after all blocks 7369 // dominating it are visited. 7370 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 7371 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 7372 "Different nodes should have different DFS numbers"); 7373 return A->getDFSNumIn() < B->getDFSNumIn(); 7374 }); 7375 7376 // Less defined shuffles can be replaced by the more defined copies. 7377 // Between two shuffles one is less defined if it has the same vector operands 7378 // and its mask indeces are the same as in the first one or undefs. E.g. 7379 // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0, 7380 // poison, <0, 0, 0, 0>. 7381 auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2, 7382 SmallVectorImpl<int> &NewMask) { 7383 if (I1->getType() != I2->getType()) 7384 return false; 7385 auto *SI1 = dyn_cast<ShuffleVectorInst>(I1); 7386 auto *SI2 = dyn_cast<ShuffleVectorInst>(I2); 7387 if (!SI1 || !SI2) 7388 return I1->isIdenticalTo(I2); 7389 if (SI1->isIdenticalTo(SI2)) 7390 return true; 7391 for (int I = 0, E = SI1->getNumOperands(); I < E; ++I) 7392 if (SI1->getOperand(I) != SI2->getOperand(I)) 7393 return false; 7394 // Check if the second instruction is more defined than the first one. 7395 NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end()); 7396 ArrayRef<int> SM1 = SI1->getShuffleMask(); 7397 // Count trailing undefs in the mask to check the final number of used 7398 // registers. 7399 unsigned LastUndefsCnt = 0; 7400 for (int I = 0, E = NewMask.size(); I < E; ++I) { 7401 if (SM1[I] == UndefMaskElem) 7402 ++LastUndefsCnt; 7403 else 7404 LastUndefsCnt = 0; 7405 if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem && 7406 NewMask[I] != SM1[I]) 7407 return false; 7408 if (NewMask[I] == UndefMaskElem) 7409 NewMask[I] = SM1[I]; 7410 } 7411 // Check if the last undefs actually change the final number of used vector 7412 // registers. 7413 return SM1.size() - LastUndefsCnt > 1 && 7414 TTI->getNumberOfParts(SI1->getType()) == 7415 TTI->getNumberOfParts( 7416 FixedVectorType::get(SI1->getType()->getElementType(), 7417 SM1.size() - LastUndefsCnt)); 7418 }; 7419 // Perform O(N^2) search over the gather/shuffle sequences and merge identical 7420 // instructions. TODO: We can further optimize this scan if we split the 7421 // instructions into different buckets based on the insert lane. 7422 SmallVector<Instruction *, 16> Visited; 7423 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 7424 assert(*I && 7425 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 7426 "Worklist not sorted properly!"); 7427 BasicBlock *BB = (*I)->getBlock(); 7428 // For all instructions in blocks containing gather sequences: 7429 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 7430 if (isDeleted(&In)) 7431 continue; 7432 if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) && 7433 !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In)) 7434 continue; 7435 7436 // Check if we can replace this instruction with any of the 7437 // visited instructions. 7438 bool Replaced = false; 7439 for (Instruction *&V : Visited) { 7440 SmallVector<int> NewMask; 7441 if (IsIdenticalOrLessDefined(&In, V, NewMask) && 7442 DT->dominates(V->getParent(), In.getParent())) { 7443 In.replaceAllUsesWith(V); 7444 eraseInstruction(&In); 7445 if (auto *SI = dyn_cast<ShuffleVectorInst>(V)) 7446 if (!NewMask.empty()) 7447 SI->setShuffleMask(NewMask); 7448 Replaced = true; 7449 break; 7450 } 7451 if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) && 7452 GatherShuffleSeq.contains(V) && 7453 IsIdenticalOrLessDefined(V, &In, NewMask) && 7454 DT->dominates(In.getParent(), V->getParent())) { 7455 In.moveAfter(V); 7456 V->replaceAllUsesWith(&In); 7457 eraseInstruction(V); 7458 if (auto *SI = dyn_cast<ShuffleVectorInst>(&In)) 7459 if (!NewMask.empty()) 7460 SI->setShuffleMask(NewMask); 7461 V = &In; 7462 Replaced = true; 7463 break; 7464 } 7465 } 7466 if (!Replaced) { 7467 assert(!is_contained(Visited, &In)); 7468 Visited.push_back(&In); 7469 } 7470 } 7471 } 7472 CSEBlocks.clear(); 7473 GatherShuffleSeq.clear(); 7474 } 7475 7476 BoUpSLP::ScheduleData * 7477 BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) { 7478 ScheduleData *Bundle = nullptr; 7479 ScheduleData *PrevInBundle = nullptr; 7480 for (Value *V : VL) { 7481 ScheduleData *BundleMember = getScheduleData(V); 7482 assert(BundleMember && 7483 "no ScheduleData for bundle member " 7484 "(maybe not in same basic block)"); 7485 assert(BundleMember->isSchedulingEntity() && 7486 "bundle member already part of other bundle"); 7487 if (PrevInBundle) { 7488 PrevInBundle->NextInBundle = BundleMember; 7489 } else { 7490 Bundle = BundleMember; 7491 } 7492 7493 // Group the instructions to a bundle. 7494 BundleMember->FirstInBundle = Bundle; 7495 PrevInBundle = BundleMember; 7496 } 7497 assert(Bundle && "Failed to find schedule bundle"); 7498 return Bundle; 7499 } 7500 7501 // Groups the instructions to a bundle (which is then a single scheduling entity) 7502 // and schedules instructions until the bundle gets ready. 7503 Optional<BoUpSLP::ScheduleData *> 7504 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 7505 const InstructionsState &S) { 7506 // No need to schedule PHIs, insertelement, extractelement and extractvalue 7507 // instructions. 7508 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue)) 7509 return nullptr; 7510 7511 // Initialize the instruction bundle. 7512 Instruction *OldScheduleEnd = ScheduleEnd; 7513 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 7514 7515 auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule, 7516 ScheduleData *Bundle) { 7517 // The scheduling region got new instructions at the lower end (or it is a 7518 // new region for the first bundle). This makes it necessary to 7519 // recalculate all dependencies. 7520 // It is seldom that this needs to be done a second time after adding the 7521 // initial bundle to the region. 7522 if (ScheduleEnd != OldScheduleEnd) { 7523 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 7524 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 7525 ReSchedule = true; 7526 } 7527 if (Bundle) { 7528 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 7529 << " in block " << BB->getName() << "\n"); 7530 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 7531 } 7532 7533 if (ReSchedule) { 7534 resetSchedule(); 7535 initialFillReadyList(ReadyInsts); 7536 } 7537 7538 // Now try to schedule the new bundle or (if no bundle) just calculate 7539 // dependencies. As soon as the bundle is "ready" it means that there are no 7540 // cyclic dependencies and we can schedule it. Note that's important that we 7541 // don't "schedule" the bundle yet (see cancelScheduling). 7542 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 7543 !ReadyInsts.empty()) { 7544 ScheduleData *Picked = ReadyInsts.pop_back_val(); 7545 assert(Picked->isSchedulingEntity() && Picked->isReady() && 7546 "must be ready to schedule"); 7547 schedule(Picked, ReadyInsts); 7548 } 7549 }; 7550 7551 // Make sure that the scheduling region contains all 7552 // instructions of the bundle. 7553 for (Value *V : VL) { 7554 if (!extendSchedulingRegion(V, S)) { 7555 // If the scheduling region got new instructions at the lower end (or it 7556 // is a new region for the first bundle). This makes it necessary to 7557 // recalculate all dependencies. 7558 // Otherwise the compiler may crash trying to incorrectly calculate 7559 // dependencies and emit instruction in the wrong order at the actual 7560 // scheduling. 7561 TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr); 7562 return None; 7563 } 7564 } 7565 7566 bool ReSchedule = false; 7567 for (Value *V : VL) { 7568 ScheduleData *BundleMember = getScheduleData(V); 7569 assert(BundleMember && 7570 "no ScheduleData for bundle member (maybe not in same basic block)"); 7571 7572 // Make sure we don't leave the pieces of the bundle in the ready list when 7573 // whole bundle might not be ready. 7574 ReadyInsts.remove(BundleMember); 7575 7576 if (!BundleMember->IsScheduled) 7577 continue; 7578 // A bundle member was scheduled as single instruction before and now 7579 // needs to be scheduled as part of the bundle. We just get rid of the 7580 // existing schedule. 7581 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 7582 << " was already scheduled\n"); 7583 ReSchedule = true; 7584 } 7585 7586 auto *Bundle = buildBundle(VL); 7587 TryScheduleBundleImpl(ReSchedule, Bundle); 7588 if (!Bundle->isReady()) { 7589 cancelScheduling(VL, S.OpValue); 7590 return None; 7591 } 7592 return Bundle; 7593 } 7594 7595 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 7596 Value *OpValue) { 7597 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue)) 7598 return; 7599 7600 ScheduleData *Bundle = getScheduleData(OpValue); 7601 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 7602 assert(!Bundle->IsScheduled && 7603 "Can't cancel bundle which is already scheduled"); 7604 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 7605 "tried to unbundle something which is not a bundle"); 7606 7607 // Remove the bundle from the ready list. 7608 if (Bundle->isReady()) 7609 ReadyInsts.remove(Bundle); 7610 7611 // Un-bundle: make single instructions out of the bundle. 7612 ScheduleData *BundleMember = Bundle; 7613 while (BundleMember) { 7614 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 7615 BundleMember->FirstInBundle = BundleMember; 7616 ScheduleData *Next = BundleMember->NextInBundle; 7617 BundleMember->NextInBundle = nullptr; 7618 if (BundleMember->unscheduledDepsInBundle() == 0) { 7619 ReadyInsts.insert(BundleMember); 7620 } 7621 BundleMember = Next; 7622 } 7623 } 7624 7625 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 7626 // Allocate a new ScheduleData for the instruction. 7627 if (ChunkPos >= ChunkSize) { 7628 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 7629 ChunkPos = 0; 7630 } 7631 return &(ScheduleDataChunks.back()[ChunkPos++]); 7632 } 7633 7634 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 7635 const InstructionsState &S) { 7636 if (getScheduleData(V, isOneOf(S, V))) 7637 return true; 7638 Instruction *I = dyn_cast<Instruction>(V); 7639 assert(I && "bundle member must be an instruction"); 7640 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 7641 "phi nodes/insertelements/extractelements/extractvalues don't need to " 7642 "be scheduled"); 7643 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 7644 ScheduleData *ISD = getScheduleData(I); 7645 if (!ISD) 7646 return false; 7647 assert(isInSchedulingRegion(ISD) && 7648 "ScheduleData not in scheduling region"); 7649 ScheduleData *SD = allocateScheduleDataChunks(); 7650 SD->Inst = I; 7651 SD->init(SchedulingRegionID, S.OpValue); 7652 ExtraScheduleDataMap[I][S.OpValue] = SD; 7653 return true; 7654 }; 7655 if (CheckSheduleForI(I)) 7656 return true; 7657 if (!ScheduleStart) { 7658 // It's the first instruction in the new region. 7659 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 7660 ScheduleStart = I; 7661 ScheduleEnd = I->getNextNode(); 7662 if (isOneOf(S, I) != I) 7663 CheckSheduleForI(I); 7664 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7665 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 7666 return true; 7667 } 7668 // Search up and down at the same time, because we don't know if the new 7669 // instruction is above or below the existing scheduling region. 7670 BasicBlock::reverse_iterator UpIter = 7671 ++ScheduleStart->getIterator().getReverse(); 7672 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 7673 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 7674 BasicBlock::iterator LowerEnd = BB->end(); 7675 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 7676 &*DownIter != I) { 7677 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 7678 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 7679 return false; 7680 } 7681 7682 ++UpIter; 7683 ++DownIter; 7684 } 7685 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 7686 assert(I->getParent() == ScheduleStart->getParent() && 7687 "Instruction is in wrong basic block."); 7688 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 7689 ScheduleStart = I; 7690 if (isOneOf(S, I) != I) 7691 CheckSheduleForI(I); 7692 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 7693 << "\n"); 7694 return true; 7695 } 7696 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 7697 "Expected to reach top of the basic block or instruction down the " 7698 "lower end."); 7699 assert(I->getParent() == ScheduleEnd->getParent() && 7700 "Instruction is in wrong basic block."); 7701 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 7702 nullptr); 7703 ScheduleEnd = I->getNextNode(); 7704 if (isOneOf(S, I) != I) 7705 CheckSheduleForI(I); 7706 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7707 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 7708 return true; 7709 } 7710 7711 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 7712 Instruction *ToI, 7713 ScheduleData *PrevLoadStore, 7714 ScheduleData *NextLoadStore) { 7715 ScheduleData *CurrentLoadStore = PrevLoadStore; 7716 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 7717 ScheduleData *SD = ScheduleDataMap[I]; 7718 if (!SD) { 7719 SD = allocateScheduleDataChunks(); 7720 ScheduleDataMap[I] = SD; 7721 SD->Inst = I; 7722 } 7723 assert(!isInSchedulingRegion(SD) && 7724 "new ScheduleData already in scheduling region"); 7725 SD->init(SchedulingRegionID, I); 7726 7727 if (I->mayReadOrWriteMemory() && 7728 (!isa<IntrinsicInst>(I) || 7729 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 7730 cast<IntrinsicInst>(I)->getIntrinsicID() != 7731 Intrinsic::pseudoprobe))) { 7732 // Update the linked list of memory accessing instructions. 7733 if (CurrentLoadStore) { 7734 CurrentLoadStore->NextLoadStore = SD; 7735 } else { 7736 FirstLoadStoreInRegion = SD; 7737 } 7738 CurrentLoadStore = SD; 7739 } 7740 } 7741 if (NextLoadStore) { 7742 if (CurrentLoadStore) 7743 CurrentLoadStore->NextLoadStore = NextLoadStore; 7744 } else { 7745 LastLoadStoreInRegion = CurrentLoadStore; 7746 } 7747 } 7748 7749 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 7750 bool InsertInReadyList, 7751 BoUpSLP *SLP) { 7752 assert(SD->isSchedulingEntity()); 7753 7754 SmallVector<ScheduleData *, 10> WorkList; 7755 WorkList.push_back(SD); 7756 7757 while (!WorkList.empty()) { 7758 ScheduleData *SD = WorkList.pop_back_val(); 7759 for (ScheduleData *BundleMember = SD; BundleMember; 7760 BundleMember = BundleMember->NextInBundle) { 7761 assert(isInSchedulingRegion(BundleMember)); 7762 if (BundleMember->hasValidDependencies()) 7763 continue; 7764 7765 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 7766 << "\n"); 7767 BundleMember->Dependencies = 0; 7768 BundleMember->resetUnscheduledDeps(); 7769 7770 // Handle def-use chain dependencies. 7771 if (BundleMember->OpValue != BundleMember->Inst) { 7772 if (ScheduleData *UseSD = getScheduleData(BundleMember->Inst)) { 7773 BundleMember->Dependencies++; 7774 ScheduleData *DestBundle = UseSD->FirstInBundle; 7775 if (!DestBundle->IsScheduled) 7776 BundleMember->incrementUnscheduledDeps(1); 7777 if (!DestBundle->hasValidDependencies()) 7778 WorkList.push_back(DestBundle); 7779 } 7780 } else { 7781 for (User *U : BundleMember->Inst->users()) { 7782 if (ScheduleData *UseSD = getScheduleData(cast<Instruction>(U))) { 7783 BundleMember->Dependencies++; 7784 ScheduleData *DestBundle = UseSD->FirstInBundle; 7785 if (!DestBundle->IsScheduled) 7786 BundleMember->incrementUnscheduledDeps(1); 7787 if (!DestBundle->hasValidDependencies()) 7788 WorkList.push_back(DestBundle); 7789 } 7790 } 7791 } 7792 7793 // Handle the memory dependencies (if any). 7794 ScheduleData *DepDest = BundleMember->NextLoadStore; 7795 if (!DepDest) 7796 continue; 7797 Instruction *SrcInst = BundleMember->Inst; 7798 assert(SrcInst->mayReadOrWriteMemory() && 7799 "NextLoadStore list for non memory effecting bundle?"); 7800 MemoryLocation SrcLoc = getLocation(SrcInst); 7801 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 7802 unsigned numAliased = 0; 7803 unsigned DistToSrc = 1; 7804 7805 for ( ; DepDest; DepDest = DepDest->NextLoadStore) { 7806 assert(isInSchedulingRegion(DepDest)); 7807 7808 // We have two limits to reduce the complexity: 7809 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 7810 // SLP->isAliased (which is the expensive part in this loop). 7811 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 7812 // the whole loop (even if the loop is fast, it's quadratic). 7813 // It's important for the loop break condition (see below) to 7814 // check this limit even between two read-only instructions. 7815 if (DistToSrc >= MaxMemDepDistance || 7816 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 7817 (numAliased >= AliasedCheckLimit || 7818 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 7819 7820 // We increment the counter only if the locations are aliased 7821 // (instead of counting all alias checks). This gives a better 7822 // balance between reduced runtime and accurate dependencies. 7823 numAliased++; 7824 7825 DepDest->MemoryDependencies.push_back(BundleMember); 7826 BundleMember->Dependencies++; 7827 ScheduleData *DestBundle = DepDest->FirstInBundle; 7828 if (!DestBundle->IsScheduled) { 7829 BundleMember->incrementUnscheduledDeps(1); 7830 } 7831 if (!DestBundle->hasValidDependencies()) { 7832 WorkList.push_back(DestBundle); 7833 } 7834 } 7835 7836 // Example, explaining the loop break condition: Let's assume our 7837 // starting instruction is i0 and MaxMemDepDistance = 3. 7838 // 7839 // +--------v--v--v 7840 // i0,i1,i2,i3,i4,i5,i6,i7,i8 7841 // +--------^--^--^ 7842 // 7843 // MaxMemDepDistance let us stop alias-checking at i3 and we add 7844 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 7845 // Previously we already added dependencies from i3 to i6,i7,i8 7846 // (because of MaxMemDepDistance). As we added a dependency from 7847 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 7848 // and we can abort this loop at i6. 7849 if (DistToSrc >= 2 * MaxMemDepDistance) 7850 break; 7851 DistToSrc++; 7852 } 7853 } 7854 if (InsertInReadyList && SD->isReady()) { 7855 ReadyInsts.insert(SD); 7856 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 7857 << "\n"); 7858 } 7859 } 7860 } 7861 7862 void BoUpSLP::BlockScheduling::resetSchedule() { 7863 assert(ScheduleStart && 7864 "tried to reset schedule on block which has not been scheduled"); 7865 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 7866 doForAllOpcodes(I, [&](ScheduleData *SD) { 7867 assert(isInSchedulingRegion(SD) && 7868 "ScheduleData not in scheduling region"); 7869 SD->IsScheduled = false; 7870 SD->resetUnscheduledDeps(); 7871 }); 7872 } 7873 ReadyInsts.clear(); 7874 } 7875 7876 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 7877 if (!BS->ScheduleStart) 7878 return; 7879 7880 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 7881 7882 // A key point - if we got here, pre-scheduling was able to find a valid 7883 // scheduling of the sub-graph of the scheduling window which consists 7884 // of all vector bundles and their transitive users. As such, we do not 7885 // need to reschedule anything *outside of* that subgraph. 7886 7887 BS->resetSchedule(); 7888 7889 // For the real scheduling we use a more sophisticated ready-list: it is 7890 // sorted by the original instruction location. This lets the final schedule 7891 // be as close as possible to the original instruction order. 7892 DenseMap<ScheduleData *, unsigned> OriginalOrder; 7893 auto ScheduleDataCompare = [&](ScheduleData *SD1, ScheduleData *SD2) { 7894 return OriginalOrder[SD2] < OriginalOrder[SD1]; 7895 }; 7896 std::set<ScheduleData *, decltype(ScheduleDataCompare)> 7897 ReadyInsts(ScheduleDataCompare); 7898 7899 // Ensure that all dependency data is updated (for nodes in the sub-graph) 7900 // and fill the ready-list with initial instructions. 7901 int Idx = 0; 7902 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 7903 I = I->getNextNode()) { 7904 BS->doForAllOpcodes(I, [&](ScheduleData *SD) { 7905 assert((isVectorLikeInstWithConstOps(SD->Inst) || 7906 SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr)) && 7907 "scheduler and vectorizer bundle mismatch"); 7908 OriginalOrder[SD->FirstInBundle] = Idx++; 7909 7910 if (SD->isSchedulingEntity() && SD->isPartOfBundle()) 7911 BS->calculateDependencies(SD, false, this); 7912 }); 7913 } 7914 BS->initialFillReadyList(ReadyInsts); 7915 7916 Instruction *LastScheduledInst = BS->ScheduleEnd; 7917 7918 // Do the "real" scheduling. 7919 while (!ReadyInsts.empty()) { 7920 ScheduleData *picked = *ReadyInsts.begin(); 7921 ReadyInsts.erase(ReadyInsts.begin()); 7922 7923 // Move the scheduled instruction(s) to their dedicated places, if not 7924 // there yet. 7925 for (ScheduleData *BundleMember = picked; BundleMember; 7926 BundleMember = BundleMember->NextInBundle) { 7927 Instruction *pickedInst = BundleMember->Inst; 7928 if (pickedInst->getNextNode() != LastScheduledInst) 7929 pickedInst->moveBefore(LastScheduledInst); 7930 LastScheduledInst = pickedInst; 7931 } 7932 7933 BS->schedule(picked, ReadyInsts); 7934 } 7935 7936 // Check that we didn't break any of our invariants. 7937 #ifdef EXPENSIVE_CHECKS 7938 BS->verify(); 7939 #endif 7940 7941 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS) 7942 // Check that all schedulable entities got scheduled 7943 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; I = I->getNextNode()) { 7944 BS->doForAllOpcodes(I, [&](ScheduleData *SD) { 7945 if (SD->isSchedulingEntity() && SD->hasValidDependencies()) { 7946 assert(SD->IsScheduled && "must be scheduled at this point"); 7947 } 7948 }); 7949 } 7950 #endif 7951 7952 // Avoid duplicate scheduling of the block. 7953 BS->ScheduleStart = nullptr; 7954 } 7955 7956 unsigned BoUpSLP::getVectorElementSize(Value *V) { 7957 // If V is a store, just return the width of the stored value (or value 7958 // truncated just before storing) without traversing the expression tree. 7959 // This is the common case. 7960 if (auto *Store = dyn_cast<StoreInst>(V)) { 7961 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 7962 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 7963 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 7964 } 7965 7966 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 7967 return getVectorElementSize(IEI->getOperand(1)); 7968 7969 auto E = InstrElementSize.find(V); 7970 if (E != InstrElementSize.end()) 7971 return E->second; 7972 7973 // If V is not a store, we can traverse the expression tree to find loads 7974 // that feed it. The type of the loaded value may indicate a more suitable 7975 // width than V's type. We want to base the vector element size on the width 7976 // of memory operations where possible. 7977 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 7978 SmallPtrSet<Instruction *, 16> Visited; 7979 if (auto *I = dyn_cast<Instruction>(V)) { 7980 Worklist.emplace_back(I, I->getParent()); 7981 Visited.insert(I); 7982 } 7983 7984 // Traverse the expression tree in bottom-up order looking for loads. If we 7985 // encounter an instruction we don't yet handle, we give up. 7986 auto Width = 0u; 7987 while (!Worklist.empty()) { 7988 Instruction *I; 7989 BasicBlock *Parent; 7990 std::tie(I, Parent) = Worklist.pop_back_val(); 7991 7992 // We should only be looking at scalar instructions here. If the current 7993 // instruction has a vector type, skip. 7994 auto *Ty = I->getType(); 7995 if (isa<VectorType>(Ty)) 7996 continue; 7997 7998 // If the current instruction is a load, update MaxWidth to reflect the 7999 // width of the loaded value. 8000 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 8001 isa<ExtractValueInst>(I)) 8002 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 8003 8004 // Otherwise, we need to visit the operands of the instruction. We only 8005 // handle the interesting cases from buildTree here. If an operand is an 8006 // instruction we haven't yet visited and from the same basic block as the 8007 // user or the use is a PHI node, we add it to the worklist. 8008 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 8009 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 8010 isa<UnaryOperator>(I)) { 8011 for (Use &U : I->operands()) 8012 if (auto *J = dyn_cast<Instruction>(U.get())) 8013 if (Visited.insert(J).second && 8014 (isa<PHINode>(I) || J->getParent() == Parent)) 8015 Worklist.emplace_back(J, J->getParent()); 8016 } else { 8017 break; 8018 } 8019 } 8020 8021 // If we didn't encounter a memory access in the expression tree, or if we 8022 // gave up for some reason, just return the width of V. Otherwise, return the 8023 // maximum width we found. 8024 if (!Width) { 8025 if (auto *CI = dyn_cast<CmpInst>(V)) 8026 V = CI->getOperand(0); 8027 Width = DL->getTypeSizeInBits(V->getType()); 8028 } 8029 8030 for (Instruction *I : Visited) 8031 InstrElementSize[I] = Width; 8032 8033 return Width; 8034 } 8035 8036 // Determine if a value V in a vectorizable expression Expr can be demoted to a 8037 // smaller type with a truncation. We collect the values that will be demoted 8038 // in ToDemote and additional roots that require investigating in Roots. 8039 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 8040 SmallVectorImpl<Value *> &ToDemote, 8041 SmallVectorImpl<Value *> &Roots) { 8042 // We can always demote constants. 8043 if (isa<Constant>(V)) { 8044 ToDemote.push_back(V); 8045 return true; 8046 } 8047 8048 // If the value is not an instruction in the expression with only one use, it 8049 // cannot be demoted. 8050 auto *I = dyn_cast<Instruction>(V); 8051 if (!I || !I->hasOneUse() || !Expr.count(I)) 8052 return false; 8053 8054 switch (I->getOpcode()) { 8055 8056 // We can always demote truncations and extensions. Since truncations can 8057 // seed additional demotion, we save the truncated value. 8058 case Instruction::Trunc: 8059 Roots.push_back(I->getOperand(0)); 8060 break; 8061 case Instruction::ZExt: 8062 case Instruction::SExt: 8063 if (isa<ExtractElementInst>(I->getOperand(0)) || 8064 isa<InsertElementInst>(I->getOperand(0))) 8065 return false; 8066 break; 8067 8068 // We can demote certain binary operations if we can demote both of their 8069 // operands. 8070 case Instruction::Add: 8071 case Instruction::Sub: 8072 case Instruction::Mul: 8073 case Instruction::And: 8074 case Instruction::Or: 8075 case Instruction::Xor: 8076 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 8077 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 8078 return false; 8079 break; 8080 8081 // We can demote selects if we can demote their true and false values. 8082 case Instruction::Select: { 8083 SelectInst *SI = cast<SelectInst>(I); 8084 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 8085 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 8086 return false; 8087 break; 8088 } 8089 8090 // We can demote phis if we can demote all their incoming operands. Note that 8091 // we don't need to worry about cycles since we ensure single use above. 8092 case Instruction::PHI: { 8093 PHINode *PN = cast<PHINode>(I); 8094 for (Value *IncValue : PN->incoming_values()) 8095 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 8096 return false; 8097 break; 8098 } 8099 8100 // Otherwise, conservatively give up. 8101 default: 8102 return false; 8103 } 8104 8105 // Record the value that we can demote. 8106 ToDemote.push_back(V); 8107 return true; 8108 } 8109 8110 void BoUpSLP::computeMinimumValueSizes() { 8111 // If there are no external uses, the expression tree must be rooted by a 8112 // store. We can't demote in-memory values, so there is nothing to do here. 8113 if (ExternalUses.empty()) 8114 return; 8115 8116 // We only attempt to truncate integer expressions. 8117 auto &TreeRoot = VectorizableTree[0]->Scalars; 8118 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 8119 if (!TreeRootIT) 8120 return; 8121 8122 // If the expression is not rooted by a store, these roots should have 8123 // external uses. We will rely on InstCombine to rewrite the expression in 8124 // the narrower type. However, InstCombine only rewrites single-use values. 8125 // This means that if a tree entry other than a root is used externally, it 8126 // must have multiple uses and InstCombine will not rewrite it. The code 8127 // below ensures that only the roots are used externally. 8128 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 8129 for (auto &EU : ExternalUses) 8130 if (!Expr.erase(EU.Scalar)) 8131 return; 8132 if (!Expr.empty()) 8133 return; 8134 8135 // Collect the scalar values of the vectorizable expression. We will use this 8136 // context to determine which values can be demoted. If we see a truncation, 8137 // we mark it as seeding another demotion. 8138 for (auto &EntryPtr : VectorizableTree) 8139 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 8140 8141 // Ensure the roots of the vectorizable tree don't form a cycle. They must 8142 // have a single external user that is not in the vectorizable tree. 8143 for (auto *Root : TreeRoot) 8144 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 8145 return; 8146 8147 // Conservatively determine if we can actually truncate the roots of the 8148 // expression. Collect the values that can be demoted in ToDemote and 8149 // additional roots that require investigating in Roots. 8150 SmallVector<Value *, 32> ToDemote; 8151 SmallVector<Value *, 4> Roots; 8152 for (auto *Root : TreeRoot) 8153 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 8154 return; 8155 8156 // The maximum bit width required to represent all the values that can be 8157 // demoted without loss of precision. It would be safe to truncate the roots 8158 // of the expression to this width. 8159 auto MaxBitWidth = 8u; 8160 8161 // We first check if all the bits of the roots are demanded. If they're not, 8162 // we can truncate the roots to this narrower type. 8163 for (auto *Root : TreeRoot) { 8164 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 8165 MaxBitWidth = std::max<unsigned>( 8166 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 8167 } 8168 8169 // True if the roots can be zero-extended back to their original type, rather 8170 // than sign-extended. We know that if the leading bits are not demanded, we 8171 // can safely zero-extend. So we initialize IsKnownPositive to True. 8172 bool IsKnownPositive = true; 8173 8174 // If all the bits of the roots are demanded, we can try a little harder to 8175 // compute a narrower type. This can happen, for example, if the roots are 8176 // getelementptr indices. InstCombine promotes these indices to the pointer 8177 // width. Thus, all their bits are technically demanded even though the 8178 // address computation might be vectorized in a smaller type. 8179 // 8180 // We start by looking at each entry that can be demoted. We compute the 8181 // maximum bit width required to store the scalar by using ValueTracking to 8182 // compute the number of high-order bits we can truncate. 8183 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 8184 llvm::all_of(TreeRoot, [](Value *R) { 8185 assert(R->hasOneUse() && "Root should have only one use!"); 8186 return isa<GetElementPtrInst>(R->user_back()); 8187 })) { 8188 MaxBitWidth = 8u; 8189 8190 // Determine if the sign bit of all the roots is known to be zero. If not, 8191 // IsKnownPositive is set to False. 8192 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 8193 KnownBits Known = computeKnownBits(R, *DL); 8194 return Known.isNonNegative(); 8195 }); 8196 8197 // Determine the maximum number of bits required to store the scalar 8198 // values. 8199 for (auto *Scalar : ToDemote) { 8200 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 8201 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 8202 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 8203 } 8204 8205 // If we can't prove that the sign bit is zero, we must add one to the 8206 // maximum bit width to account for the unknown sign bit. This preserves 8207 // the existing sign bit so we can safely sign-extend the root back to the 8208 // original type. Otherwise, if we know the sign bit is zero, we will 8209 // zero-extend the root instead. 8210 // 8211 // FIXME: This is somewhat suboptimal, as there will be cases where adding 8212 // one to the maximum bit width will yield a larger-than-necessary 8213 // type. In general, we need to add an extra bit only if we can't 8214 // prove that the upper bit of the original type is equal to the 8215 // upper bit of the proposed smaller type. If these two bits are the 8216 // same (either zero or one) we know that sign-extending from the 8217 // smaller type will result in the same value. Here, since we can't 8218 // yet prove this, we are just making the proposed smaller type 8219 // larger to ensure correctness. 8220 if (!IsKnownPositive) 8221 ++MaxBitWidth; 8222 } 8223 8224 // Round MaxBitWidth up to the next power-of-two. 8225 if (!isPowerOf2_64(MaxBitWidth)) 8226 MaxBitWidth = NextPowerOf2(MaxBitWidth); 8227 8228 // If the maximum bit width we compute is less than the with of the roots' 8229 // type, we can proceed with the narrowing. Otherwise, do nothing. 8230 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 8231 return; 8232 8233 // If we can truncate the root, we must collect additional values that might 8234 // be demoted as a result. That is, those seeded by truncations we will 8235 // modify. 8236 while (!Roots.empty()) 8237 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 8238 8239 // Finally, map the values we can demote to the maximum bit with we computed. 8240 for (auto *Scalar : ToDemote) 8241 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 8242 } 8243 8244 namespace { 8245 8246 /// The SLPVectorizer Pass. 8247 struct SLPVectorizer : public FunctionPass { 8248 SLPVectorizerPass Impl; 8249 8250 /// Pass identification, replacement for typeid 8251 static char ID; 8252 8253 explicit SLPVectorizer() : FunctionPass(ID) { 8254 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 8255 } 8256 8257 bool doInitialization(Module &M) override { return false; } 8258 8259 bool runOnFunction(Function &F) override { 8260 if (skipFunction(F)) 8261 return false; 8262 8263 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 8264 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 8265 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 8266 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 8267 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 8268 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 8269 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 8270 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 8271 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 8272 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 8273 8274 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8275 } 8276 8277 void getAnalysisUsage(AnalysisUsage &AU) const override { 8278 FunctionPass::getAnalysisUsage(AU); 8279 AU.addRequired<AssumptionCacheTracker>(); 8280 AU.addRequired<ScalarEvolutionWrapperPass>(); 8281 AU.addRequired<AAResultsWrapperPass>(); 8282 AU.addRequired<TargetTransformInfoWrapperPass>(); 8283 AU.addRequired<LoopInfoWrapperPass>(); 8284 AU.addRequired<DominatorTreeWrapperPass>(); 8285 AU.addRequired<DemandedBitsWrapperPass>(); 8286 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 8287 AU.addRequired<InjectTLIMappingsLegacy>(); 8288 AU.addPreserved<LoopInfoWrapperPass>(); 8289 AU.addPreserved<DominatorTreeWrapperPass>(); 8290 AU.addPreserved<AAResultsWrapperPass>(); 8291 AU.addPreserved<GlobalsAAWrapperPass>(); 8292 AU.setPreservesCFG(); 8293 } 8294 }; 8295 8296 } // end anonymous namespace 8297 8298 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 8299 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 8300 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 8301 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 8302 auto *AA = &AM.getResult<AAManager>(F); 8303 auto *LI = &AM.getResult<LoopAnalysis>(F); 8304 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 8305 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 8306 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 8307 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8308 8309 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 8310 if (!Changed) 8311 return PreservedAnalyses::all(); 8312 8313 PreservedAnalyses PA; 8314 PA.preserveSet<CFGAnalyses>(); 8315 return PA; 8316 } 8317 8318 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 8319 TargetTransformInfo *TTI_, 8320 TargetLibraryInfo *TLI_, AAResults *AA_, 8321 LoopInfo *LI_, DominatorTree *DT_, 8322 AssumptionCache *AC_, DemandedBits *DB_, 8323 OptimizationRemarkEmitter *ORE_) { 8324 if (!RunSLPVectorization) 8325 return false; 8326 SE = SE_; 8327 TTI = TTI_; 8328 TLI = TLI_; 8329 AA = AA_; 8330 LI = LI_; 8331 DT = DT_; 8332 AC = AC_; 8333 DB = DB_; 8334 DL = &F.getParent()->getDataLayout(); 8335 8336 Stores.clear(); 8337 GEPs.clear(); 8338 bool Changed = false; 8339 8340 // If the target claims to have no vector registers don't attempt 8341 // vectorization. 8342 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) { 8343 LLVM_DEBUG( 8344 dbgs() << "SLP: Didn't find any vector registers for target, abort.\n"); 8345 return false; 8346 } 8347 8348 // Don't vectorize when the attribute NoImplicitFloat is used. 8349 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 8350 return false; 8351 8352 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 8353 8354 // Use the bottom up slp vectorizer to construct chains that start with 8355 // store instructions. 8356 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 8357 8358 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 8359 // delete instructions. 8360 8361 // Update DFS numbers now so that we can use them for ordering. 8362 DT->updateDFSNumbers(); 8363 8364 // Scan the blocks in the function in post order. 8365 for (auto BB : post_order(&F.getEntryBlock())) { 8366 collectSeedInstructions(BB); 8367 8368 // Vectorize trees that end at stores. 8369 if (!Stores.empty()) { 8370 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 8371 << " underlying objects.\n"); 8372 Changed |= vectorizeStoreChains(R); 8373 } 8374 8375 // Vectorize trees that end at reductions. 8376 Changed |= vectorizeChainsInBlock(BB, R); 8377 8378 // Vectorize the index computations of getelementptr instructions. This 8379 // is primarily intended to catch gather-like idioms ending at 8380 // non-consecutive loads. 8381 if (!GEPs.empty()) { 8382 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 8383 << " underlying objects.\n"); 8384 Changed |= vectorizeGEPIndices(BB, R); 8385 } 8386 } 8387 8388 if (Changed) { 8389 R.optimizeGatherSequence(); 8390 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 8391 } 8392 return Changed; 8393 } 8394 8395 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 8396 unsigned Idx) { 8397 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 8398 << "\n"); 8399 const unsigned Sz = R.getVectorElementSize(Chain[0]); 8400 const unsigned MinVF = R.getMinVecRegSize() / Sz; 8401 unsigned VF = Chain.size(); 8402 8403 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 8404 return false; 8405 8406 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 8407 << "\n"); 8408 8409 R.buildTree(Chain); 8410 if (R.isTreeTinyAndNotFullyVectorizable()) 8411 return false; 8412 if (R.isLoadCombineCandidate()) 8413 return false; 8414 R.reorderTopToBottom(); 8415 R.reorderBottomToTop(); 8416 R.buildExternalUses(); 8417 8418 R.computeMinimumValueSizes(); 8419 8420 InstructionCost Cost = R.getTreeCost(); 8421 8422 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 8423 if (Cost < -SLPCostThreshold) { 8424 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 8425 8426 using namespace ore; 8427 8428 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 8429 cast<StoreInst>(Chain[0])) 8430 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 8431 << " and with tree size " 8432 << NV("TreeSize", R.getTreeSize())); 8433 8434 R.vectorizeTree(); 8435 return true; 8436 } 8437 8438 return false; 8439 } 8440 8441 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 8442 BoUpSLP &R) { 8443 // We may run into multiple chains that merge into a single chain. We mark the 8444 // stores that we vectorized so that we don't visit the same store twice. 8445 BoUpSLP::ValueSet VectorizedStores; 8446 bool Changed = false; 8447 8448 int E = Stores.size(); 8449 SmallBitVector Tails(E, false); 8450 int MaxIter = MaxStoreLookup.getValue(); 8451 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 8452 E, std::make_pair(E, INT_MAX)); 8453 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 8454 int IterCnt; 8455 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 8456 &CheckedPairs, 8457 &ConsecutiveChain](int K, int Idx) { 8458 if (IterCnt >= MaxIter) 8459 return true; 8460 if (CheckedPairs[Idx].test(K)) 8461 return ConsecutiveChain[K].second == 1 && 8462 ConsecutiveChain[K].first == Idx; 8463 ++IterCnt; 8464 CheckedPairs[Idx].set(K); 8465 CheckedPairs[K].set(Idx); 8466 Optional<int> Diff = getPointersDiff( 8467 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 8468 Stores[Idx]->getValueOperand()->getType(), 8469 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 8470 if (!Diff || *Diff == 0) 8471 return false; 8472 int Val = *Diff; 8473 if (Val < 0) { 8474 if (ConsecutiveChain[Idx].second > -Val) { 8475 Tails.set(K); 8476 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 8477 } 8478 return false; 8479 } 8480 if (ConsecutiveChain[K].second <= Val) 8481 return false; 8482 8483 Tails.set(Idx); 8484 ConsecutiveChain[K] = std::make_pair(Idx, Val); 8485 return Val == 1; 8486 }; 8487 // Do a quadratic search on all of the given stores in reverse order and find 8488 // all of the pairs of stores that follow each other. 8489 for (int Idx = E - 1; Idx >= 0; --Idx) { 8490 // If a store has multiple consecutive store candidates, search according 8491 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 8492 // This is because usually pairing with immediate succeeding or preceding 8493 // candidate create the best chance to find slp vectorization opportunity. 8494 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 8495 IterCnt = 0; 8496 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 8497 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 8498 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 8499 break; 8500 } 8501 8502 // Tracks if we tried to vectorize stores starting from the given tail 8503 // already. 8504 SmallBitVector TriedTails(E, false); 8505 // For stores that start but don't end a link in the chain: 8506 for (int Cnt = E; Cnt > 0; --Cnt) { 8507 int I = Cnt - 1; 8508 if (ConsecutiveChain[I].first == E || Tails.test(I)) 8509 continue; 8510 // We found a store instr that starts a chain. Now follow the chain and try 8511 // to vectorize it. 8512 BoUpSLP::ValueList Operands; 8513 // Collect the chain into a list. 8514 while (I != E && !VectorizedStores.count(Stores[I])) { 8515 Operands.push_back(Stores[I]); 8516 Tails.set(I); 8517 if (ConsecutiveChain[I].second != 1) { 8518 // Mark the new end in the chain and go back, if required. It might be 8519 // required if the original stores come in reversed order, for example. 8520 if (ConsecutiveChain[I].first != E && 8521 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 8522 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 8523 TriedTails.set(I); 8524 Tails.reset(ConsecutiveChain[I].first); 8525 if (Cnt < ConsecutiveChain[I].first + 2) 8526 Cnt = ConsecutiveChain[I].first + 2; 8527 } 8528 break; 8529 } 8530 // Move to the next value in the chain. 8531 I = ConsecutiveChain[I].first; 8532 } 8533 assert(!Operands.empty() && "Expected non-empty list of stores."); 8534 8535 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 8536 unsigned EltSize = R.getVectorElementSize(Operands[0]); 8537 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 8538 8539 unsigned MinVF = R.getMinVF(EltSize); 8540 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 8541 MaxElts); 8542 8543 // FIXME: Is division-by-2 the correct step? Should we assert that the 8544 // register size is a power-of-2? 8545 unsigned StartIdx = 0; 8546 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 8547 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 8548 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 8549 if (!VectorizedStores.count(Slice.front()) && 8550 !VectorizedStores.count(Slice.back()) && 8551 vectorizeStoreChain(Slice, R, Cnt)) { 8552 // Mark the vectorized stores so that we don't vectorize them again. 8553 VectorizedStores.insert(Slice.begin(), Slice.end()); 8554 Changed = true; 8555 // If we vectorized initial block, no need to try to vectorize it 8556 // again. 8557 if (Cnt == StartIdx) 8558 StartIdx += Size; 8559 Cnt += Size; 8560 continue; 8561 } 8562 ++Cnt; 8563 } 8564 // Check if the whole array was vectorized already - exit. 8565 if (StartIdx >= Operands.size()) 8566 break; 8567 } 8568 } 8569 8570 return Changed; 8571 } 8572 8573 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 8574 // Initialize the collections. We will make a single pass over the block. 8575 Stores.clear(); 8576 GEPs.clear(); 8577 8578 // Visit the store and getelementptr instructions in BB and organize them in 8579 // Stores and GEPs according to the underlying objects of their pointer 8580 // operands. 8581 for (Instruction &I : *BB) { 8582 // Ignore store instructions that are volatile or have a pointer operand 8583 // that doesn't point to a scalar type. 8584 if (auto *SI = dyn_cast<StoreInst>(&I)) { 8585 if (!SI->isSimple()) 8586 continue; 8587 if (!isValidElementType(SI->getValueOperand()->getType())) 8588 continue; 8589 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 8590 } 8591 8592 // Ignore getelementptr instructions that have more than one index, a 8593 // constant index, or a pointer operand that doesn't point to a scalar 8594 // type. 8595 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 8596 auto Idx = GEP->idx_begin()->get(); 8597 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 8598 continue; 8599 if (!isValidElementType(Idx->getType())) 8600 continue; 8601 if (GEP->getType()->isVectorTy()) 8602 continue; 8603 GEPs[GEP->getPointerOperand()].push_back(GEP); 8604 } 8605 } 8606 } 8607 8608 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 8609 if (!A || !B) 8610 return false; 8611 if (isa<InsertElementInst>(A) || isa<InsertElementInst>(B)) 8612 return false; 8613 Value *VL[] = {A, B}; 8614 return tryToVectorizeList(VL, R); 8615 } 8616 8617 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 8618 bool LimitForRegisterSize) { 8619 if (VL.size() < 2) 8620 return false; 8621 8622 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 8623 << VL.size() << ".\n"); 8624 8625 // Check that all of the parts are instructions of the same type, 8626 // we permit an alternate opcode via InstructionsState. 8627 InstructionsState S = getSameOpcode(VL); 8628 if (!S.getOpcode()) 8629 return false; 8630 8631 Instruction *I0 = cast<Instruction>(S.OpValue); 8632 // Make sure invalid types (including vector type) are rejected before 8633 // determining vectorization factor for scalar instructions. 8634 for (Value *V : VL) { 8635 Type *Ty = V->getType(); 8636 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 8637 // NOTE: the following will give user internal llvm type name, which may 8638 // not be useful. 8639 R.getORE()->emit([&]() { 8640 std::string type_str; 8641 llvm::raw_string_ostream rso(type_str); 8642 Ty->print(rso); 8643 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 8644 << "Cannot SLP vectorize list: type " 8645 << rso.str() + " is unsupported by vectorizer"; 8646 }); 8647 return false; 8648 } 8649 } 8650 8651 unsigned Sz = R.getVectorElementSize(I0); 8652 unsigned MinVF = R.getMinVF(Sz); 8653 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 8654 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 8655 if (MaxVF < 2) { 8656 R.getORE()->emit([&]() { 8657 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 8658 << "Cannot SLP vectorize list: vectorization factor " 8659 << "less than 2 is not supported"; 8660 }); 8661 return false; 8662 } 8663 8664 bool Changed = false; 8665 bool CandidateFound = false; 8666 InstructionCost MinCost = SLPCostThreshold.getValue(); 8667 Type *ScalarTy = VL[0]->getType(); 8668 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 8669 ScalarTy = IE->getOperand(1)->getType(); 8670 8671 unsigned NextInst = 0, MaxInst = VL.size(); 8672 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 8673 // No actual vectorization should happen, if number of parts is the same as 8674 // provided vectorization factor (i.e. the scalar type is used for vector 8675 // code during codegen). 8676 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 8677 if (TTI->getNumberOfParts(VecTy) == VF) 8678 continue; 8679 for (unsigned I = NextInst; I < MaxInst; ++I) { 8680 unsigned OpsWidth = 0; 8681 8682 if (I + VF > MaxInst) 8683 OpsWidth = MaxInst - I; 8684 else 8685 OpsWidth = VF; 8686 8687 if (!isPowerOf2_32(OpsWidth)) 8688 continue; 8689 8690 if ((LimitForRegisterSize && OpsWidth < MaxVF) || 8691 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 8692 break; 8693 8694 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 8695 // Check that a previous iteration of this loop did not delete the Value. 8696 if (llvm::any_of(Ops, [&R](Value *V) { 8697 auto *I = dyn_cast<Instruction>(V); 8698 return I && R.isDeleted(I); 8699 })) 8700 continue; 8701 8702 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 8703 << "\n"); 8704 8705 R.buildTree(Ops); 8706 if (R.isTreeTinyAndNotFullyVectorizable()) 8707 continue; 8708 R.reorderTopToBottom(); 8709 R.reorderBottomToTop(!isa<InsertElementInst>(Ops.front())); 8710 R.buildExternalUses(); 8711 8712 R.computeMinimumValueSizes(); 8713 InstructionCost Cost = R.getTreeCost(); 8714 CandidateFound = true; 8715 MinCost = std::min(MinCost, Cost); 8716 8717 if (Cost < -SLPCostThreshold) { 8718 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 8719 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 8720 cast<Instruction>(Ops[0])) 8721 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 8722 << " and with tree size " 8723 << ore::NV("TreeSize", R.getTreeSize())); 8724 8725 R.vectorizeTree(); 8726 // Move to the next bundle. 8727 I += VF - 1; 8728 NextInst = I + 1; 8729 Changed = true; 8730 } 8731 } 8732 } 8733 8734 if (!Changed && CandidateFound) { 8735 R.getORE()->emit([&]() { 8736 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 8737 << "List vectorization was possible but not beneficial with cost " 8738 << ore::NV("Cost", MinCost) << " >= " 8739 << ore::NV("Treshold", -SLPCostThreshold); 8740 }); 8741 } else if (!Changed) { 8742 R.getORE()->emit([&]() { 8743 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 8744 << "Cannot SLP vectorize list: vectorization was impossible" 8745 << " with available vectorization factors"; 8746 }); 8747 } 8748 return Changed; 8749 } 8750 8751 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 8752 if (!I) 8753 return false; 8754 8755 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 8756 return false; 8757 8758 Value *P = I->getParent(); 8759 8760 // Vectorize in current basic block only. 8761 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 8762 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 8763 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 8764 return false; 8765 8766 // Try to vectorize V. 8767 if (tryToVectorizePair(Op0, Op1, R)) 8768 return true; 8769 8770 auto *A = dyn_cast<BinaryOperator>(Op0); 8771 auto *B = dyn_cast<BinaryOperator>(Op1); 8772 // Try to skip B. 8773 if (B && B->hasOneUse()) { 8774 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 8775 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 8776 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 8777 return true; 8778 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 8779 return true; 8780 } 8781 8782 // Try to skip A. 8783 if (A && A->hasOneUse()) { 8784 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 8785 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 8786 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 8787 return true; 8788 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 8789 return true; 8790 } 8791 return false; 8792 } 8793 8794 namespace { 8795 8796 /// Model horizontal reductions. 8797 /// 8798 /// A horizontal reduction is a tree of reduction instructions that has values 8799 /// that can be put into a vector as its leaves. For example: 8800 /// 8801 /// mul mul mul mul 8802 /// \ / \ / 8803 /// + + 8804 /// \ / 8805 /// + 8806 /// This tree has "mul" as its leaf values and "+" as its reduction 8807 /// instructions. A reduction can feed into a store or a binary operation 8808 /// feeding a phi. 8809 /// ... 8810 /// \ / 8811 /// + 8812 /// | 8813 /// phi += 8814 /// 8815 /// Or: 8816 /// ... 8817 /// \ / 8818 /// + 8819 /// | 8820 /// *p = 8821 /// 8822 class HorizontalReduction { 8823 using ReductionOpsType = SmallVector<Value *, 16>; 8824 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 8825 ReductionOpsListType ReductionOps; 8826 SmallVector<Value *, 32> ReducedVals; 8827 // Use map vector to make stable output. 8828 MapVector<Instruction *, Value *> ExtraArgs; 8829 WeakTrackingVH ReductionRoot; 8830 /// The type of reduction operation. 8831 RecurKind RdxKind; 8832 8833 const unsigned INVALID_OPERAND_INDEX = std::numeric_limits<unsigned>::max(); 8834 8835 static bool isCmpSelMinMax(Instruction *I) { 8836 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 8837 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 8838 } 8839 8840 // And/or are potentially poison-safe logical patterns like: 8841 // select x, y, false 8842 // select x, true, y 8843 static bool isBoolLogicOp(Instruction *I) { 8844 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 8845 match(I, m_LogicalOr(m_Value(), m_Value())); 8846 } 8847 8848 /// Checks if instruction is associative and can be vectorized. 8849 static bool isVectorizable(RecurKind Kind, Instruction *I) { 8850 if (Kind == RecurKind::None) 8851 return false; 8852 8853 // Integer ops that map to select instructions or intrinsics are fine. 8854 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 8855 isBoolLogicOp(I)) 8856 return true; 8857 8858 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 8859 // FP min/max are associative except for NaN and -0.0. We do not 8860 // have to rule out -0.0 here because the intrinsic semantics do not 8861 // specify a fixed result for it. 8862 return I->getFastMathFlags().noNaNs(); 8863 } 8864 8865 return I->isAssociative(); 8866 } 8867 8868 static Value *getRdxOperand(Instruction *I, unsigned Index) { 8869 // Poison-safe 'or' takes the form: select X, true, Y 8870 // To make that work with the normal operand processing, we skip the 8871 // true value operand. 8872 // TODO: Change the code and data structures to handle this without a hack. 8873 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 8874 return I->getOperand(2); 8875 return I->getOperand(Index); 8876 } 8877 8878 /// Checks if the ParentStackElem.first should be marked as a reduction 8879 /// operation with an extra argument or as extra argument itself. 8880 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 8881 Value *ExtraArg) { 8882 if (ExtraArgs.count(ParentStackElem.first)) { 8883 ExtraArgs[ParentStackElem.first] = nullptr; 8884 // We ran into something like: 8885 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 8886 // The whole ParentStackElem.first should be considered as an extra value 8887 // in this case. 8888 // Do not perform analysis of remaining operands of ParentStackElem.first 8889 // instruction, this whole instruction is an extra argument. 8890 ParentStackElem.second = INVALID_OPERAND_INDEX; 8891 } else { 8892 // We ran into something like: 8893 // ParentStackElem.first += ... + ExtraArg + ... 8894 ExtraArgs[ParentStackElem.first] = ExtraArg; 8895 } 8896 } 8897 8898 /// Creates reduction operation with the current opcode. 8899 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 8900 Value *RHS, const Twine &Name, bool UseSelect) { 8901 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 8902 switch (Kind) { 8903 case RecurKind::Or: 8904 if (UseSelect && 8905 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 8906 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); 8907 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8908 Name); 8909 case RecurKind::And: 8910 if (UseSelect && 8911 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 8912 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); 8913 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8914 Name); 8915 case RecurKind::Add: 8916 case RecurKind::Mul: 8917 case RecurKind::Xor: 8918 case RecurKind::FAdd: 8919 case RecurKind::FMul: 8920 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8921 Name); 8922 case RecurKind::FMax: 8923 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 8924 case RecurKind::FMin: 8925 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 8926 case RecurKind::SMax: 8927 if (UseSelect) { 8928 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 8929 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8930 } 8931 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 8932 case RecurKind::SMin: 8933 if (UseSelect) { 8934 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 8935 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8936 } 8937 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 8938 case RecurKind::UMax: 8939 if (UseSelect) { 8940 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 8941 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8942 } 8943 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 8944 case RecurKind::UMin: 8945 if (UseSelect) { 8946 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 8947 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8948 } 8949 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 8950 default: 8951 llvm_unreachable("Unknown reduction operation."); 8952 } 8953 } 8954 8955 /// Creates reduction operation with the current opcode with the IR flags 8956 /// from \p ReductionOps. 8957 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 8958 Value *RHS, const Twine &Name, 8959 const ReductionOpsListType &ReductionOps) { 8960 bool UseSelect = ReductionOps.size() == 2 || 8961 // Logical or/and. 8962 (ReductionOps.size() == 1 && 8963 isa<SelectInst>(ReductionOps.front().front())); 8964 assert((!UseSelect || ReductionOps.size() != 2 || 8965 isa<SelectInst>(ReductionOps[1][0])) && 8966 "Expected cmp + select pairs for reduction"); 8967 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 8968 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 8969 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 8970 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 8971 propagateIRFlags(Op, ReductionOps[1]); 8972 return Op; 8973 } 8974 } 8975 propagateIRFlags(Op, ReductionOps[0]); 8976 return Op; 8977 } 8978 8979 /// Creates reduction operation with the current opcode with the IR flags 8980 /// from \p I. 8981 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 8982 Value *RHS, const Twine &Name, Instruction *I) { 8983 auto *SelI = dyn_cast<SelectInst>(I); 8984 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 8985 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 8986 if (auto *Sel = dyn_cast<SelectInst>(Op)) 8987 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 8988 } 8989 propagateIRFlags(Op, I); 8990 return Op; 8991 } 8992 8993 static RecurKind getRdxKind(Instruction *I) { 8994 assert(I && "Expected instruction for reduction matching"); 8995 if (match(I, m_Add(m_Value(), m_Value()))) 8996 return RecurKind::Add; 8997 if (match(I, m_Mul(m_Value(), m_Value()))) 8998 return RecurKind::Mul; 8999 if (match(I, m_And(m_Value(), m_Value())) || 9000 match(I, m_LogicalAnd(m_Value(), m_Value()))) 9001 return RecurKind::And; 9002 if (match(I, m_Or(m_Value(), m_Value())) || 9003 match(I, m_LogicalOr(m_Value(), m_Value()))) 9004 return RecurKind::Or; 9005 if (match(I, m_Xor(m_Value(), m_Value()))) 9006 return RecurKind::Xor; 9007 if (match(I, m_FAdd(m_Value(), m_Value()))) 9008 return RecurKind::FAdd; 9009 if (match(I, m_FMul(m_Value(), m_Value()))) 9010 return RecurKind::FMul; 9011 9012 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 9013 return RecurKind::FMax; 9014 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 9015 return RecurKind::FMin; 9016 9017 // This matches either cmp+select or intrinsics. SLP is expected to handle 9018 // either form. 9019 // TODO: If we are canonicalizing to intrinsics, we can remove several 9020 // special-case paths that deal with selects. 9021 if (match(I, m_SMax(m_Value(), m_Value()))) 9022 return RecurKind::SMax; 9023 if (match(I, m_SMin(m_Value(), m_Value()))) 9024 return RecurKind::SMin; 9025 if (match(I, m_UMax(m_Value(), m_Value()))) 9026 return RecurKind::UMax; 9027 if (match(I, m_UMin(m_Value(), m_Value()))) 9028 return RecurKind::UMin; 9029 9030 if (auto *Select = dyn_cast<SelectInst>(I)) { 9031 // Try harder: look for min/max pattern based on instructions producing 9032 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 9033 // During the intermediate stages of SLP, it's very common to have 9034 // pattern like this (since optimizeGatherSequence is run only once 9035 // at the end): 9036 // %1 = extractelement <2 x i32> %a, i32 0 9037 // %2 = extractelement <2 x i32> %a, i32 1 9038 // %cond = icmp sgt i32 %1, %2 9039 // %3 = extractelement <2 x i32> %a, i32 0 9040 // %4 = extractelement <2 x i32> %a, i32 1 9041 // %select = select i1 %cond, i32 %3, i32 %4 9042 CmpInst::Predicate Pred; 9043 Instruction *L1; 9044 Instruction *L2; 9045 9046 Value *LHS = Select->getTrueValue(); 9047 Value *RHS = Select->getFalseValue(); 9048 Value *Cond = Select->getCondition(); 9049 9050 // TODO: Support inverse predicates. 9051 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 9052 if (!isa<ExtractElementInst>(RHS) || 9053 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9054 return RecurKind::None; 9055 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 9056 if (!isa<ExtractElementInst>(LHS) || 9057 !L1->isIdenticalTo(cast<Instruction>(LHS))) 9058 return RecurKind::None; 9059 } else { 9060 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 9061 return RecurKind::None; 9062 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 9063 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 9064 !L2->isIdenticalTo(cast<Instruction>(RHS))) 9065 return RecurKind::None; 9066 } 9067 9068 switch (Pred) { 9069 default: 9070 return RecurKind::None; 9071 case CmpInst::ICMP_SGT: 9072 case CmpInst::ICMP_SGE: 9073 return RecurKind::SMax; 9074 case CmpInst::ICMP_SLT: 9075 case CmpInst::ICMP_SLE: 9076 return RecurKind::SMin; 9077 case CmpInst::ICMP_UGT: 9078 case CmpInst::ICMP_UGE: 9079 return RecurKind::UMax; 9080 case CmpInst::ICMP_ULT: 9081 case CmpInst::ICMP_ULE: 9082 return RecurKind::UMin; 9083 } 9084 } 9085 return RecurKind::None; 9086 } 9087 9088 /// Get the index of the first operand. 9089 static unsigned getFirstOperandIndex(Instruction *I) { 9090 return isCmpSelMinMax(I) ? 1 : 0; 9091 } 9092 9093 /// Total number of operands in the reduction operation. 9094 static unsigned getNumberOfOperands(Instruction *I) { 9095 return isCmpSelMinMax(I) ? 3 : 2; 9096 } 9097 9098 /// Checks if the instruction is in basic block \p BB. 9099 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 9100 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 9101 if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) { 9102 auto *Sel = cast<SelectInst>(I); 9103 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); 9104 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; 9105 } 9106 return I->getParent() == BB; 9107 } 9108 9109 /// Expected number of uses for reduction operations/reduced values. 9110 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 9111 if (IsCmpSelMinMax) { 9112 // SelectInst must be used twice while the condition op must have single 9113 // use only. 9114 if (auto *Sel = dyn_cast<SelectInst>(I)) 9115 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 9116 return I->hasNUses(2); 9117 } 9118 9119 // Arithmetic reduction operation must be used once only. 9120 return I->hasOneUse(); 9121 } 9122 9123 /// Initializes the list of reduction operations. 9124 void initReductionOps(Instruction *I) { 9125 if (isCmpSelMinMax(I)) 9126 ReductionOps.assign(2, ReductionOpsType()); 9127 else 9128 ReductionOps.assign(1, ReductionOpsType()); 9129 } 9130 9131 /// Add all reduction operations for the reduction instruction \p I. 9132 void addReductionOps(Instruction *I) { 9133 if (isCmpSelMinMax(I)) { 9134 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 9135 ReductionOps[1].emplace_back(I); 9136 } else { 9137 ReductionOps[0].emplace_back(I); 9138 } 9139 } 9140 9141 static Value *getLHS(RecurKind Kind, Instruction *I) { 9142 if (Kind == RecurKind::None) 9143 return nullptr; 9144 return I->getOperand(getFirstOperandIndex(I)); 9145 } 9146 static Value *getRHS(RecurKind Kind, Instruction *I) { 9147 if (Kind == RecurKind::None) 9148 return nullptr; 9149 return I->getOperand(getFirstOperandIndex(I) + 1); 9150 } 9151 9152 public: 9153 HorizontalReduction() = default; 9154 9155 /// Try to find a reduction tree. 9156 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst) { 9157 assert((!Phi || is_contained(Phi->operands(), Inst)) && 9158 "Phi needs to use the binary operator"); 9159 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 9160 isa<IntrinsicInst>(Inst)) && 9161 "Expected binop, select, or intrinsic for reduction matching"); 9162 RdxKind = getRdxKind(Inst); 9163 9164 // We could have a initial reductions that is not an add. 9165 // r *= v1 + v2 + v3 + v4 9166 // In such a case start looking for a tree rooted in the first '+'. 9167 if (Phi) { 9168 if (getLHS(RdxKind, Inst) == Phi) { 9169 Phi = nullptr; 9170 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 9171 if (!Inst) 9172 return false; 9173 RdxKind = getRdxKind(Inst); 9174 } else if (getRHS(RdxKind, Inst) == Phi) { 9175 Phi = nullptr; 9176 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 9177 if (!Inst) 9178 return false; 9179 RdxKind = getRdxKind(Inst); 9180 } 9181 } 9182 9183 if (!isVectorizable(RdxKind, Inst)) 9184 return false; 9185 9186 // Analyze "regular" integer/FP types for reductions - no target-specific 9187 // types or pointers. 9188 Type *Ty = Inst->getType(); 9189 if (!isValidElementType(Ty) || Ty->isPointerTy()) 9190 return false; 9191 9192 // Though the ultimate reduction may have multiple uses, its condition must 9193 // have only single use. 9194 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 9195 if (!Sel->getCondition()->hasOneUse()) 9196 return false; 9197 9198 ReductionRoot = Inst; 9199 9200 // The opcode for leaf values that we perform a reduction on. 9201 // For example: load(x) + load(y) + load(z) + fptoui(w) 9202 // The leaf opcode for 'w' does not match, so we don't include it as a 9203 // potential candidate for the reduction. 9204 unsigned LeafOpcode = 0; 9205 9206 // Post-order traverse the reduction tree starting at Inst. We only handle 9207 // true trees containing binary operators or selects. 9208 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 9209 Stack.push_back(std::make_pair(Inst, getFirstOperandIndex(Inst))); 9210 initReductionOps(Inst); 9211 while (!Stack.empty()) { 9212 Instruction *TreeN = Stack.back().first; 9213 unsigned EdgeToVisit = Stack.back().second++; 9214 const RecurKind TreeRdxKind = getRdxKind(TreeN); 9215 bool IsReducedValue = TreeRdxKind != RdxKind; 9216 9217 // Postorder visit. 9218 if (IsReducedValue || EdgeToVisit >= getNumberOfOperands(TreeN)) { 9219 if (IsReducedValue) 9220 ReducedVals.push_back(TreeN); 9221 else { 9222 auto ExtraArgsIter = ExtraArgs.find(TreeN); 9223 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) { 9224 // Check if TreeN is an extra argument of its parent operation. 9225 if (Stack.size() <= 1) { 9226 // TreeN can't be an extra argument as it is a root reduction 9227 // operation. 9228 return false; 9229 } 9230 // Yes, TreeN is an extra argument, do not add it to a list of 9231 // reduction operations. 9232 // Stack[Stack.size() - 2] always points to the parent operation. 9233 markExtraArg(Stack[Stack.size() - 2], TreeN); 9234 ExtraArgs.erase(TreeN); 9235 } else 9236 addReductionOps(TreeN); 9237 } 9238 // Retract. 9239 Stack.pop_back(); 9240 continue; 9241 } 9242 9243 // Visit operands. 9244 Value *EdgeVal = getRdxOperand(TreeN, EdgeToVisit); 9245 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 9246 if (!EdgeInst) { 9247 // Edge value is not a reduction instruction or a leaf instruction. 9248 // (It may be a constant, function argument, or something else.) 9249 markExtraArg(Stack.back(), EdgeVal); 9250 continue; 9251 } 9252 RecurKind EdgeRdxKind = getRdxKind(EdgeInst); 9253 // Continue analysis if the next operand is a reduction operation or 9254 // (possibly) a leaf value. If the leaf value opcode is not set, 9255 // the first met operation != reduction operation is considered as the 9256 // leaf opcode. 9257 // Only handle trees in the current basic block. 9258 // Each tree node needs to have minimal number of users except for the 9259 // ultimate reduction. 9260 const bool IsRdxInst = EdgeRdxKind == RdxKind; 9261 if (EdgeInst != Phi && EdgeInst != Inst && 9262 hasSameParent(EdgeInst, Inst->getParent()) && 9263 hasRequiredNumberOfUses(isCmpSelMinMax(Inst), EdgeInst) && 9264 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) { 9265 if (IsRdxInst) { 9266 // We need to be able to reassociate the reduction operations. 9267 if (!isVectorizable(EdgeRdxKind, EdgeInst)) { 9268 // I is an extra argument for TreeN (its parent operation). 9269 markExtraArg(Stack.back(), EdgeInst); 9270 continue; 9271 } 9272 } else if (!LeafOpcode) { 9273 LeafOpcode = EdgeInst->getOpcode(); 9274 } 9275 Stack.push_back( 9276 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst))); 9277 continue; 9278 } 9279 // I is an extra argument for TreeN (its parent operation). 9280 markExtraArg(Stack.back(), EdgeInst); 9281 } 9282 return true; 9283 } 9284 9285 /// Attempt to vectorize the tree found by matchAssociativeReduction. 9286 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 9287 // If there are a sufficient number of reduction values, reduce 9288 // to a nearby power-of-2. We can safely generate oversized 9289 // vectors and rely on the backend to split them to legal sizes. 9290 unsigned NumReducedVals = ReducedVals.size(); 9291 if (NumReducedVals < 4) 9292 return nullptr; 9293 9294 // Intersect the fast-math-flags from all reduction operations. 9295 FastMathFlags RdxFMF; 9296 RdxFMF.set(); 9297 for (ReductionOpsType &RdxOp : ReductionOps) { 9298 for (Value *RdxVal : RdxOp) { 9299 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 9300 RdxFMF &= FPMO->getFastMathFlags(); 9301 } 9302 } 9303 9304 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 9305 Builder.setFastMathFlags(RdxFMF); 9306 9307 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 9308 // The same extra argument may be used several times, so log each attempt 9309 // to use it. 9310 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 9311 assert(Pair.first && "DebugLoc must be set."); 9312 ExternallyUsedValues[Pair.second].push_back(Pair.first); 9313 } 9314 9315 // The compare instruction of a min/max is the insertion point for new 9316 // instructions and may be replaced with a new compare instruction. 9317 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 9318 assert(isa<SelectInst>(RdxRootInst) && 9319 "Expected min/max reduction to have select root instruction"); 9320 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 9321 assert(isa<Instruction>(ScalarCond) && 9322 "Expected min/max reduction to have compare condition"); 9323 return cast<Instruction>(ScalarCond); 9324 }; 9325 9326 // The reduction root is used as the insertion point for new instructions, 9327 // so set it as externally used to prevent it from being deleted. 9328 ExternallyUsedValues[ReductionRoot]; 9329 SmallVector<Value *, 16> IgnoreList; 9330 for (ReductionOpsType &RdxOp : ReductionOps) 9331 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 9332 9333 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 9334 if (NumReducedVals > ReduxWidth) { 9335 // In the loop below, we are building a tree based on a window of 9336 // 'ReduxWidth' values. 9337 // If the operands of those values have common traits (compare predicate, 9338 // constant operand, etc), then we want to group those together to 9339 // minimize the cost of the reduction. 9340 9341 // TODO: This should be extended to count common operands for 9342 // compares and binops. 9343 9344 // Step 1: Count the number of times each compare predicate occurs. 9345 SmallDenseMap<unsigned, unsigned> PredCountMap; 9346 for (Value *RdxVal : ReducedVals) { 9347 CmpInst::Predicate Pred; 9348 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 9349 ++PredCountMap[Pred]; 9350 } 9351 // Step 2: Sort the values so the most common predicates come first. 9352 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 9353 CmpInst::Predicate PredA, PredB; 9354 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 9355 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 9356 return PredCountMap[PredA] > PredCountMap[PredB]; 9357 } 9358 return false; 9359 }); 9360 } 9361 9362 Value *VectorizedTree = nullptr; 9363 unsigned i = 0; 9364 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 9365 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 9366 V.buildTree(VL, IgnoreList); 9367 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) 9368 break; 9369 if (V.isLoadCombineReductionCandidate(RdxKind)) 9370 break; 9371 V.reorderTopToBottom(); 9372 V.reorderBottomToTop(/*IgnoreReorder=*/true); 9373 V.buildExternalUses(ExternallyUsedValues); 9374 9375 // For a poison-safe boolean logic reduction, do not replace select 9376 // instructions with logic ops. All reduced values will be frozen (see 9377 // below) to prevent leaking poison. 9378 if (isa<SelectInst>(ReductionRoot) && 9379 isBoolLogicOp(cast<Instruction>(ReductionRoot)) && 9380 NumReducedVals != ReduxWidth) 9381 break; 9382 9383 V.computeMinimumValueSizes(); 9384 9385 // Estimate cost. 9386 InstructionCost TreeCost = 9387 V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth)); 9388 InstructionCost ReductionCost = 9389 getReductionCost(TTI, ReducedVals[i], ReduxWidth, RdxFMF); 9390 InstructionCost Cost = TreeCost + ReductionCost; 9391 if (!Cost.isValid()) { 9392 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 9393 return nullptr; 9394 } 9395 if (Cost >= -SLPCostThreshold) { 9396 V.getORE()->emit([&]() { 9397 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 9398 cast<Instruction>(VL[0])) 9399 << "Vectorizing horizontal reduction is possible" 9400 << "but not beneficial with cost " << ore::NV("Cost", Cost) 9401 << " and threshold " 9402 << ore::NV("Threshold", -SLPCostThreshold); 9403 }); 9404 break; 9405 } 9406 9407 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 9408 << Cost << ". (HorRdx)\n"); 9409 V.getORE()->emit([&]() { 9410 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 9411 cast<Instruction>(VL[0])) 9412 << "Vectorized horizontal reduction with cost " 9413 << ore::NV("Cost", Cost) << " and with tree size " 9414 << ore::NV("TreeSize", V.getTreeSize()); 9415 }); 9416 9417 // Vectorize a tree. 9418 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 9419 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 9420 9421 // Emit a reduction. If the root is a select (min/max idiom), the insert 9422 // point is the compare condition of that select. 9423 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 9424 if (isCmpSelMinMax(RdxRootInst)) 9425 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 9426 else 9427 Builder.SetInsertPoint(RdxRootInst); 9428 9429 // To prevent poison from leaking across what used to be sequential, safe, 9430 // scalar boolean logic operations, the reduction operand must be frozen. 9431 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 9432 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 9433 9434 Value *ReducedSubTree = 9435 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 9436 9437 if (!VectorizedTree) { 9438 // Initialize the final value in the reduction. 9439 VectorizedTree = ReducedSubTree; 9440 } else { 9441 // Update the final value in the reduction. 9442 Builder.SetCurrentDebugLocation(Loc); 9443 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9444 ReducedSubTree, "op.rdx", ReductionOps); 9445 } 9446 i += ReduxWidth; 9447 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 9448 } 9449 9450 if (VectorizedTree) { 9451 // Finish the reduction. 9452 for (; i < NumReducedVals; ++i) { 9453 auto *I = cast<Instruction>(ReducedVals[i]); 9454 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9455 VectorizedTree = 9456 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 9457 } 9458 for (auto &Pair : ExternallyUsedValues) { 9459 // Add each externally used value to the final reduction. 9460 for (auto *I : Pair.second) { 9461 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9462 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9463 Pair.first, "op.extra", I); 9464 } 9465 } 9466 9467 ReductionRoot->replaceAllUsesWith(VectorizedTree); 9468 9469 // Mark all scalar reduction ops for deletion, they are replaced by the 9470 // vector reductions. 9471 V.eraseInstructions(IgnoreList); 9472 } 9473 return VectorizedTree; 9474 } 9475 9476 unsigned numReductionValues() const { return ReducedVals.size(); } 9477 9478 private: 9479 /// Calculate the cost of a reduction. 9480 InstructionCost getReductionCost(TargetTransformInfo *TTI, 9481 Value *FirstReducedVal, unsigned ReduxWidth, 9482 FastMathFlags FMF) { 9483 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 9484 Type *ScalarTy = FirstReducedVal->getType(); 9485 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 9486 InstructionCost VectorCost, ScalarCost; 9487 switch (RdxKind) { 9488 case RecurKind::Add: 9489 case RecurKind::Mul: 9490 case RecurKind::Or: 9491 case RecurKind::And: 9492 case RecurKind::Xor: 9493 case RecurKind::FAdd: 9494 case RecurKind::FMul: { 9495 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 9496 VectorCost = 9497 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 9498 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 9499 break; 9500 } 9501 case RecurKind::FMax: 9502 case RecurKind::FMin: { 9503 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9504 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9505 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 9506 /*IsUnsigned=*/false, CostKind); 9507 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9508 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, 9509 SclCondTy, RdxPred, CostKind) + 9510 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9511 SclCondTy, RdxPred, CostKind); 9512 break; 9513 } 9514 case RecurKind::SMax: 9515 case RecurKind::SMin: 9516 case RecurKind::UMax: 9517 case RecurKind::UMin: { 9518 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9519 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9520 bool IsUnsigned = 9521 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 9522 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned, 9523 CostKind); 9524 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9525 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, 9526 SclCondTy, RdxPred, CostKind) + 9527 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9528 SclCondTy, RdxPred, CostKind); 9529 break; 9530 } 9531 default: 9532 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 9533 } 9534 9535 // Scalar cost is repeated for N-1 elements. 9536 ScalarCost *= (ReduxWidth - 1); 9537 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 9538 << " for reduction that starts with " << *FirstReducedVal 9539 << " (It is a splitting reduction)\n"); 9540 return VectorCost - ScalarCost; 9541 } 9542 9543 /// Emit a horizontal reduction of the vectorized value. 9544 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 9545 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 9546 assert(VectorizedValue && "Need to have a vectorized tree node"); 9547 assert(isPowerOf2_32(ReduxWidth) && 9548 "We only handle power-of-two reductions for now"); 9549 assert(RdxKind != RecurKind::FMulAdd && 9550 "A call to the llvm.fmuladd intrinsic is not handled yet"); 9551 9552 ++NumVectorInstructions; 9553 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind); 9554 } 9555 }; 9556 9557 } // end anonymous namespace 9558 9559 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 9560 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 9561 return cast<FixedVectorType>(IE->getType())->getNumElements(); 9562 9563 unsigned AggregateSize = 1; 9564 auto *IV = cast<InsertValueInst>(InsertInst); 9565 Type *CurrentType = IV->getType(); 9566 do { 9567 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 9568 for (auto *Elt : ST->elements()) 9569 if (Elt != ST->getElementType(0)) // check homogeneity 9570 return None; 9571 AggregateSize *= ST->getNumElements(); 9572 CurrentType = ST->getElementType(0); 9573 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 9574 AggregateSize *= AT->getNumElements(); 9575 CurrentType = AT->getElementType(); 9576 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 9577 AggregateSize *= VT->getNumElements(); 9578 return AggregateSize; 9579 } else if (CurrentType->isSingleValueType()) { 9580 return AggregateSize; 9581 } else { 9582 return None; 9583 } 9584 } while (true); 9585 } 9586 9587 static void findBuildAggregate_rec(Instruction *LastInsertInst, 9588 TargetTransformInfo *TTI, 9589 SmallVectorImpl<Value *> &BuildVectorOpds, 9590 SmallVectorImpl<Value *> &InsertElts, 9591 unsigned OperandOffset) { 9592 do { 9593 Value *InsertedOperand = LastInsertInst->getOperand(1); 9594 Optional<unsigned> OperandIndex = 9595 getInsertIndex(LastInsertInst, OperandOffset); 9596 if (!OperandIndex) 9597 return; 9598 if (isa<InsertElementInst>(InsertedOperand) || 9599 isa<InsertValueInst>(InsertedOperand)) { 9600 findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 9601 BuildVectorOpds, InsertElts, *OperandIndex); 9602 9603 } else { 9604 BuildVectorOpds[*OperandIndex] = InsertedOperand; 9605 InsertElts[*OperandIndex] = LastInsertInst; 9606 } 9607 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 9608 } while (LastInsertInst != nullptr && 9609 (isa<InsertValueInst>(LastInsertInst) || 9610 isa<InsertElementInst>(LastInsertInst)) && 9611 LastInsertInst->hasOneUse()); 9612 } 9613 9614 /// Recognize construction of vectors like 9615 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 9616 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 9617 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 9618 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 9619 /// starting from the last insertelement or insertvalue instruction. 9620 /// 9621 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 9622 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 9623 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 9624 /// 9625 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 9626 /// 9627 /// \return true if it matches. 9628 static bool findBuildAggregate(Instruction *LastInsertInst, 9629 TargetTransformInfo *TTI, 9630 SmallVectorImpl<Value *> &BuildVectorOpds, 9631 SmallVectorImpl<Value *> &InsertElts) { 9632 9633 assert((isa<InsertElementInst>(LastInsertInst) || 9634 isa<InsertValueInst>(LastInsertInst)) && 9635 "Expected insertelement or insertvalue instruction!"); 9636 9637 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 9638 "Expected empty result vectors!"); 9639 9640 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 9641 if (!AggregateSize) 9642 return false; 9643 BuildVectorOpds.resize(*AggregateSize); 9644 InsertElts.resize(*AggregateSize); 9645 9646 findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 0); 9647 llvm::erase_value(BuildVectorOpds, nullptr); 9648 llvm::erase_value(InsertElts, nullptr); 9649 if (BuildVectorOpds.size() >= 2) 9650 return true; 9651 9652 return false; 9653 } 9654 9655 /// Try and get a reduction value from a phi node. 9656 /// 9657 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 9658 /// if they come from either \p ParentBB or a containing loop latch. 9659 /// 9660 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 9661 /// if not possible. 9662 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 9663 BasicBlock *ParentBB, LoopInfo *LI) { 9664 // There are situations where the reduction value is not dominated by the 9665 // reduction phi. Vectorizing such cases has been reported to cause 9666 // miscompiles. See PR25787. 9667 auto DominatedReduxValue = [&](Value *R) { 9668 return isa<Instruction>(R) && 9669 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 9670 }; 9671 9672 Value *Rdx = nullptr; 9673 9674 // Return the incoming value if it comes from the same BB as the phi node. 9675 if (P->getIncomingBlock(0) == ParentBB) { 9676 Rdx = P->getIncomingValue(0); 9677 } else if (P->getIncomingBlock(1) == ParentBB) { 9678 Rdx = P->getIncomingValue(1); 9679 } 9680 9681 if (Rdx && DominatedReduxValue(Rdx)) 9682 return Rdx; 9683 9684 // Otherwise, check whether we have a loop latch to look at. 9685 Loop *BBL = LI->getLoopFor(ParentBB); 9686 if (!BBL) 9687 return nullptr; 9688 BasicBlock *BBLatch = BBL->getLoopLatch(); 9689 if (!BBLatch) 9690 return nullptr; 9691 9692 // There is a loop latch, return the incoming value if it comes from 9693 // that. This reduction pattern occasionally turns up. 9694 if (P->getIncomingBlock(0) == BBLatch) { 9695 Rdx = P->getIncomingValue(0); 9696 } else if (P->getIncomingBlock(1) == BBLatch) { 9697 Rdx = P->getIncomingValue(1); 9698 } 9699 9700 if (Rdx && DominatedReduxValue(Rdx)) 9701 return Rdx; 9702 9703 return nullptr; 9704 } 9705 9706 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 9707 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 9708 return true; 9709 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 9710 return true; 9711 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 9712 return true; 9713 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 9714 return true; 9715 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 9716 return true; 9717 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 9718 return true; 9719 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 9720 return true; 9721 return false; 9722 } 9723 9724 /// Attempt to reduce a horizontal reduction. 9725 /// If it is legal to match a horizontal reduction feeding the phi node \a P 9726 /// with reduction operators \a Root (or one of its operands) in a basic block 9727 /// \a BB, then check if it can be done. If horizontal reduction is not found 9728 /// and root instruction is a binary operation, vectorization of the operands is 9729 /// attempted. 9730 /// \returns true if a horizontal reduction was matched and reduced or operands 9731 /// of one of the binary instruction were vectorized. 9732 /// \returns false if a horizontal reduction was not matched (or not possible) 9733 /// or no vectorization of any binary operation feeding \a Root instruction was 9734 /// performed. 9735 static bool tryToVectorizeHorReductionOrInstOperands( 9736 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 9737 TargetTransformInfo *TTI, 9738 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 9739 if (!ShouldVectorizeHor) 9740 return false; 9741 9742 if (!Root) 9743 return false; 9744 9745 if (Root->getParent() != BB || isa<PHINode>(Root)) 9746 return false; 9747 // Start analysis starting from Root instruction. If horizontal reduction is 9748 // found, try to vectorize it. If it is not a horizontal reduction or 9749 // vectorization is not possible or not effective, and currently analyzed 9750 // instruction is a binary operation, try to vectorize the operands, using 9751 // pre-order DFS traversal order. If the operands were not vectorized, repeat 9752 // the same procedure considering each operand as a possible root of the 9753 // horizontal reduction. 9754 // Interrupt the process if the Root instruction itself was vectorized or all 9755 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 9756 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 9757 // CmpInsts so we can skip extra attempts in 9758 // tryToVectorizeHorReductionOrInstOperands and save compile time. 9759 std::queue<std::pair<Instruction *, unsigned>> Stack; 9760 Stack.emplace(Root, 0); 9761 SmallPtrSet<Value *, 8> VisitedInstrs; 9762 SmallVector<WeakTrackingVH> PostponedInsts; 9763 bool Res = false; 9764 auto &&TryToReduce = [TTI, &P, &R](Instruction *Inst, Value *&B0, 9765 Value *&B1) -> Value * { 9766 bool IsBinop = matchRdxBop(Inst, B0, B1); 9767 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 9768 if (IsBinop || IsSelect) { 9769 HorizontalReduction HorRdx; 9770 if (HorRdx.matchAssociativeReduction(P, Inst)) 9771 return HorRdx.tryToReduce(R, TTI); 9772 } 9773 return nullptr; 9774 }; 9775 while (!Stack.empty()) { 9776 Instruction *Inst; 9777 unsigned Level; 9778 std::tie(Inst, Level) = Stack.front(); 9779 Stack.pop(); 9780 // Do not try to analyze instruction that has already been vectorized. 9781 // This may happen when we vectorize instruction operands on a previous 9782 // iteration while stack was populated before that happened. 9783 if (R.isDeleted(Inst)) 9784 continue; 9785 Value *B0 = nullptr, *B1 = nullptr; 9786 if (Value *V = TryToReduce(Inst, B0, B1)) { 9787 Res = true; 9788 // Set P to nullptr to avoid re-analysis of phi node in 9789 // matchAssociativeReduction function unless this is the root node. 9790 P = nullptr; 9791 if (auto *I = dyn_cast<Instruction>(V)) { 9792 // Try to find another reduction. 9793 Stack.emplace(I, Level); 9794 continue; 9795 } 9796 } else { 9797 bool IsBinop = B0 && B1; 9798 if (P && IsBinop) { 9799 Inst = dyn_cast<Instruction>(B0); 9800 if (Inst == P) 9801 Inst = dyn_cast<Instruction>(B1); 9802 if (!Inst) { 9803 // Set P to nullptr to avoid re-analysis of phi node in 9804 // matchAssociativeReduction function unless this is the root node. 9805 P = nullptr; 9806 continue; 9807 } 9808 } 9809 // Set P to nullptr to avoid re-analysis of phi node in 9810 // matchAssociativeReduction function unless this is the root node. 9811 P = nullptr; 9812 // Do not try to vectorize CmpInst operands, this is done separately. 9813 // Final attempt for binop args vectorization should happen after the loop 9814 // to try to find reductions. 9815 if (!isa<CmpInst>(Inst)) 9816 PostponedInsts.push_back(Inst); 9817 } 9818 9819 // Try to vectorize operands. 9820 // Continue analysis for the instruction from the same basic block only to 9821 // save compile time. 9822 if (++Level < RecursionMaxDepth) 9823 for (auto *Op : Inst->operand_values()) 9824 if (VisitedInstrs.insert(Op).second) 9825 if (auto *I = dyn_cast<Instruction>(Op)) 9826 // Do not try to vectorize CmpInst operands, this is done 9827 // separately. 9828 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 9829 I->getParent() == BB) 9830 Stack.emplace(I, Level); 9831 } 9832 // Try to vectorized binops where reductions were not found. 9833 for (Value *V : PostponedInsts) 9834 if (auto *Inst = dyn_cast<Instruction>(V)) 9835 if (!R.isDeleted(Inst)) 9836 Res |= Vectorize(Inst, R); 9837 return Res; 9838 } 9839 9840 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 9841 BasicBlock *BB, BoUpSLP &R, 9842 TargetTransformInfo *TTI) { 9843 auto *I = dyn_cast_or_null<Instruction>(V); 9844 if (!I) 9845 return false; 9846 9847 if (!isa<BinaryOperator>(I)) 9848 P = nullptr; 9849 // Try to match and vectorize a horizontal reduction. 9850 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 9851 return tryToVectorize(I, R); 9852 }; 9853 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 9854 ExtraVectorization); 9855 } 9856 9857 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 9858 BasicBlock *BB, BoUpSLP &R) { 9859 const DataLayout &DL = BB->getModule()->getDataLayout(); 9860 if (!R.canMapToVector(IVI->getType(), DL)) 9861 return false; 9862 9863 SmallVector<Value *, 16> BuildVectorOpds; 9864 SmallVector<Value *, 16> BuildVectorInsts; 9865 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 9866 return false; 9867 9868 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 9869 // Aggregate value is unlikely to be processed in vector register. 9870 return tryToVectorizeList(BuildVectorOpds, R); 9871 } 9872 9873 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 9874 BasicBlock *BB, BoUpSLP &R) { 9875 SmallVector<Value *, 16> BuildVectorInsts; 9876 SmallVector<Value *, 16> BuildVectorOpds; 9877 SmallVector<int> Mask; 9878 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 9879 (llvm::all_of( 9880 BuildVectorOpds, 9881 [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) && 9882 isFixedVectorShuffle(BuildVectorOpds, Mask))) 9883 return false; 9884 9885 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 9886 return tryToVectorizeList(BuildVectorInsts, R); 9887 } 9888 9889 template <typename T> 9890 static bool 9891 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, 9892 function_ref<unsigned(T *)> Limit, 9893 function_ref<bool(T *, T *)> Comparator, 9894 function_ref<bool(T *, T *)> AreCompatible, 9895 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper, 9896 bool LimitForRegisterSize) { 9897 bool Changed = false; 9898 // Sort by type, parent, operands. 9899 stable_sort(Incoming, Comparator); 9900 9901 // Try to vectorize elements base on their type. 9902 SmallVector<T *> Candidates; 9903 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { 9904 // Look for the next elements with the same type, parent and operand 9905 // kinds. 9906 auto *SameTypeIt = IncIt; 9907 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) 9908 ++SameTypeIt; 9909 9910 // Try to vectorize them. 9911 unsigned NumElts = (SameTypeIt - IncIt); 9912 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" 9913 << NumElts << ")\n"); 9914 // The vectorization is a 3-state attempt: 9915 // 1. Try to vectorize instructions with the same/alternate opcodes with the 9916 // size of maximal register at first. 9917 // 2. Try to vectorize remaining instructions with the same type, if 9918 // possible. This may result in the better vectorization results rather than 9919 // if we try just to vectorize instructions with the same/alternate opcodes. 9920 // 3. Final attempt to try to vectorize all instructions with the 9921 // same/alternate ops only, this may result in some extra final 9922 // vectorization. 9923 if (NumElts > 1 && 9924 TryToVectorizeHelper(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) { 9925 // Success start over because instructions might have been changed. 9926 Changed = true; 9927 } else if (NumElts < Limit(*IncIt) && 9928 (Candidates.empty() || 9929 Candidates.front()->getType() == (*IncIt)->getType())) { 9930 Candidates.append(IncIt, std::next(IncIt, NumElts)); 9931 } 9932 // Final attempt to vectorize instructions with the same types. 9933 if (Candidates.size() > 1 && 9934 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { 9935 if (TryToVectorizeHelper(Candidates, /*LimitForRegisterSize=*/false)) { 9936 // Success start over because instructions might have been changed. 9937 Changed = true; 9938 } else if (LimitForRegisterSize) { 9939 // Try to vectorize using small vectors. 9940 for (auto *It = Candidates.begin(), *End = Candidates.end(); 9941 It != End;) { 9942 auto *SameTypeIt = It; 9943 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) 9944 ++SameTypeIt; 9945 unsigned NumElts = (SameTypeIt - It); 9946 if (NumElts > 1 && TryToVectorizeHelper(makeArrayRef(It, NumElts), 9947 /*LimitForRegisterSize=*/false)) 9948 Changed = true; 9949 It = SameTypeIt; 9950 } 9951 } 9952 Candidates.clear(); 9953 } 9954 9955 // Start over at the next instruction of a different type (or the end). 9956 IncIt = SameTypeIt; 9957 } 9958 return Changed; 9959 } 9960 9961 /// Compare two cmp instructions. If IsCompatibility is true, function returns 9962 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding 9963 /// operands. If IsCompatibility is false, function implements strict weak 9964 /// ordering relation between two cmp instructions, returning true if the first 9965 /// instruction is "less" than the second, i.e. its predicate is less than the 9966 /// predicate of the second or the operands IDs are less than the operands IDs 9967 /// of the second cmp instruction. 9968 template <bool IsCompatibility> 9969 static bool compareCmp(Value *V, Value *V2, 9970 function_ref<bool(Instruction *)> IsDeleted) { 9971 auto *CI1 = cast<CmpInst>(V); 9972 auto *CI2 = cast<CmpInst>(V2); 9973 if (IsDeleted(CI2) || !isValidElementType(CI2->getType())) 9974 return false; 9975 if (CI1->getOperand(0)->getType()->getTypeID() < 9976 CI2->getOperand(0)->getType()->getTypeID()) 9977 return !IsCompatibility; 9978 if (CI1->getOperand(0)->getType()->getTypeID() > 9979 CI2->getOperand(0)->getType()->getTypeID()) 9980 return false; 9981 CmpInst::Predicate Pred1 = CI1->getPredicate(); 9982 CmpInst::Predicate Pred2 = CI2->getPredicate(); 9983 CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1); 9984 CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2); 9985 CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1); 9986 CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2); 9987 if (BasePred1 < BasePred2) 9988 return !IsCompatibility; 9989 if (BasePred1 > BasePred2) 9990 return false; 9991 // Compare operands. 9992 bool LEPreds = Pred1 <= Pred2; 9993 bool GEPreds = Pred1 >= Pred2; 9994 for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) { 9995 auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1); 9996 auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1); 9997 if (Op1->getValueID() < Op2->getValueID()) 9998 return !IsCompatibility; 9999 if (Op1->getValueID() > Op2->getValueID()) 10000 return false; 10001 if (auto *I1 = dyn_cast<Instruction>(Op1)) 10002 if (auto *I2 = dyn_cast<Instruction>(Op2)) { 10003 if (I1->getParent() != I2->getParent()) 10004 return false; 10005 InstructionsState S = getSameOpcode({I1, I2}); 10006 if (S.getOpcode()) 10007 continue; 10008 return false; 10009 } 10010 } 10011 return IsCompatibility; 10012 } 10013 10014 bool SLPVectorizerPass::vectorizeSimpleInstructions( 10015 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 10016 bool AtTerminator) { 10017 bool OpsChanged = false; 10018 SmallVector<Instruction *, 4> PostponedCmps; 10019 for (auto *I : reverse(Instructions)) { 10020 if (R.isDeleted(I)) 10021 continue; 10022 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 10023 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 10024 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 10025 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 10026 else if (isa<CmpInst>(I)) 10027 PostponedCmps.push_back(I); 10028 } 10029 if (AtTerminator) { 10030 // Try to find reductions first. 10031 for (Instruction *I : PostponedCmps) { 10032 if (R.isDeleted(I)) 10033 continue; 10034 for (Value *Op : I->operands()) 10035 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 10036 } 10037 // Try to vectorize operands as vector bundles. 10038 for (Instruction *I : PostponedCmps) { 10039 if (R.isDeleted(I)) 10040 continue; 10041 OpsChanged |= tryToVectorize(I, R); 10042 } 10043 // Try to vectorize list of compares. 10044 // Sort by type, compare predicate, etc. 10045 auto &&CompareSorter = [&R](Value *V, Value *V2) { 10046 return compareCmp<false>(V, V2, 10047 [&R](Instruction *I) { return R.isDeleted(I); }); 10048 }; 10049 10050 auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) { 10051 if (V1 == V2) 10052 return true; 10053 return compareCmp<true>(V1, V2, 10054 [&R](Instruction *I) { return R.isDeleted(I); }); 10055 }; 10056 auto Limit = [&R](Value *V) { 10057 unsigned EltSize = R.getVectorElementSize(V); 10058 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10059 }; 10060 10061 SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end()); 10062 OpsChanged |= tryToVectorizeSequence<Value>( 10063 Vals, Limit, CompareSorter, AreCompatibleCompares, 10064 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10065 // Exclude possible reductions from other blocks. 10066 bool ArePossiblyReducedInOtherBlock = 10067 any_of(Candidates, [](Value *V) { 10068 return any_of(V->users(), [V](User *U) { 10069 return isa<SelectInst>(U) && 10070 cast<SelectInst>(U)->getParent() != 10071 cast<Instruction>(V)->getParent(); 10072 }); 10073 }); 10074 if (ArePossiblyReducedInOtherBlock) 10075 return false; 10076 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10077 }, 10078 /*LimitForRegisterSize=*/true); 10079 Instructions.clear(); 10080 } else { 10081 // Insert in reverse order since the PostponedCmps vector was filled in 10082 // reverse order. 10083 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 10084 } 10085 return OpsChanged; 10086 } 10087 10088 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 10089 bool Changed = false; 10090 SmallVector<Value *, 4> Incoming; 10091 SmallPtrSet<Value *, 16> VisitedInstrs; 10092 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 10093 // node. Allows better to identify the chains that can be vectorized in the 10094 // better way. 10095 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 10096 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { 10097 assert(isValidElementType(V1->getType()) && 10098 isValidElementType(V2->getType()) && 10099 "Expected vectorizable types only."); 10100 // It is fine to compare type IDs here, since we expect only vectorizable 10101 // types, like ints, floats and pointers, we don't care about other type. 10102 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 10103 return true; 10104 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 10105 return false; 10106 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10107 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10108 if (Opcodes1.size() < Opcodes2.size()) 10109 return true; 10110 if (Opcodes1.size() > Opcodes2.size()) 10111 return false; 10112 Optional<bool> ConstOrder; 10113 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10114 // Undefs are compatible with any other value. 10115 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) { 10116 if (!ConstOrder) 10117 ConstOrder = 10118 !isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]); 10119 continue; 10120 } 10121 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10122 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10123 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 10124 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 10125 if (!NodeI1) 10126 return NodeI2 != nullptr; 10127 if (!NodeI2) 10128 return false; 10129 assert((NodeI1 == NodeI2) == 10130 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10131 "Different nodes should have different DFS numbers"); 10132 if (NodeI1 != NodeI2) 10133 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10134 InstructionsState S = getSameOpcode({I1, I2}); 10135 if (S.getOpcode()) 10136 continue; 10137 return I1->getOpcode() < I2->getOpcode(); 10138 } 10139 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) { 10140 if (!ConstOrder) 10141 ConstOrder = Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID(); 10142 continue; 10143 } 10144 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 10145 return true; 10146 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 10147 return false; 10148 } 10149 return ConstOrder && *ConstOrder; 10150 }; 10151 auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 10152 if (V1 == V2) 10153 return true; 10154 if (V1->getType() != V2->getType()) 10155 return false; 10156 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 10157 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 10158 if (Opcodes1.size() != Opcodes2.size()) 10159 return false; 10160 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 10161 // Undefs are compatible with any other value. 10162 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 10163 continue; 10164 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 10165 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 10166 if (I1->getParent() != I2->getParent()) 10167 return false; 10168 InstructionsState S = getSameOpcode({I1, I2}); 10169 if (S.getOpcode()) 10170 continue; 10171 return false; 10172 } 10173 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 10174 continue; 10175 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 10176 return false; 10177 } 10178 return true; 10179 }; 10180 auto Limit = [&R](Value *V) { 10181 unsigned EltSize = R.getVectorElementSize(V); 10182 return std::max(2U, R.getMaxVecRegSize() / EltSize); 10183 }; 10184 10185 bool HaveVectorizedPhiNodes = false; 10186 do { 10187 // Collect the incoming values from the PHIs. 10188 Incoming.clear(); 10189 for (Instruction &I : *BB) { 10190 PHINode *P = dyn_cast<PHINode>(&I); 10191 if (!P) 10192 break; 10193 10194 // No need to analyze deleted, vectorized and non-vectorizable 10195 // instructions. 10196 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 10197 isValidElementType(P->getType())) 10198 Incoming.push_back(P); 10199 } 10200 10201 // Find the corresponding non-phi nodes for better matching when trying to 10202 // build the tree. 10203 for (Value *V : Incoming) { 10204 SmallVectorImpl<Value *> &Opcodes = 10205 PHIToOpcodes.try_emplace(V).first->getSecond(); 10206 if (!Opcodes.empty()) 10207 continue; 10208 SmallVector<Value *, 4> Nodes(1, V); 10209 SmallPtrSet<Value *, 4> Visited; 10210 while (!Nodes.empty()) { 10211 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 10212 if (!Visited.insert(PHI).second) 10213 continue; 10214 for (Value *V : PHI->incoming_values()) { 10215 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 10216 Nodes.push_back(PHI1); 10217 continue; 10218 } 10219 Opcodes.emplace_back(V); 10220 } 10221 } 10222 } 10223 10224 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( 10225 Incoming, Limit, PHICompare, AreCompatiblePHIs, 10226 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 10227 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 10228 }, 10229 /*LimitForRegisterSize=*/true); 10230 Changed |= HaveVectorizedPhiNodes; 10231 VisitedInstrs.insert(Incoming.begin(), Incoming.end()); 10232 } while (HaveVectorizedPhiNodes); 10233 10234 VisitedInstrs.clear(); 10235 10236 SmallVector<Instruction *, 8> PostProcessInstructions; 10237 SmallDenseSet<Instruction *, 4> KeyNodes; 10238 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 10239 // Skip instructions with scalable type. The num of elements is unknown at 10240 // compile-time for scalable type. 10241 if (isa<ScalableVectorType>(it->getType())) 10242 continue; 10243 10244 // Skip instructions marked for the deletion. 10245 if (R.isDeleted(&*it)) 10246 continue; 10247 // We may go through BB multiple times so skip the one we have checked. 10248 if (!VisitedInstrs.insert(&*it).second) { 10249 if (it->use_empty() && KeyNodes.contains(&*it) && 10250 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10251 it->isTerminator())) { 10252 // We would like to start over since some instructions are deleted 10253 // and the iterator may become invalid value. 10254 Changed = true; 10255 it = BB->begin(); 10256 e = BB->end(); 10257 } 10258 continue; 10259 } 10260 10261 if (isa<DbgInfoIntrinsic>(it)) 10262 continue; 10263 10264 // Try to vectorize reductions that use PHINodes. 10265 if (PHINode *P = dyn_cast<PHINode>(it)) { 10266 // Check that the PHI is a reduction PHI. 10267 if (P->getNumIncomingValues() == 2) { 10268 // Try to match and vectorize a horizontal reduction. 10269 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 10270 TTI)) { 10271 Changed = true; 10272 it = BB->begin(); 10273 e = BB->end(); 10274 continue; 10275 } 10276 } 10277 // Try to vectorize the incoming values of the PHI, to catch reductions 10278 // that feed into PHIs. 10279 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 10280 // Skip if the incoming block is the current BB for now. Also, bypass 10281 // unreachable IR for efficiency and to avoid crashing. 10282 // TODO: Collect the skipped incoming values and try to vectorize them 10283 // after processing BB. 10284 if (BB == P->getIncomingBlock(I) || 10285 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 10286 continue; 10287 10288 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 10289 P->getIncomingBlock(I), R, TTI); 10290 } 10291 continue; 10292 } 10293 10294 // Ran into an instruction without users, like terminator, or function call 10295 // with ignored return value, store. Ignore unused instructions (basing on 10296 // instruction type, except for CallInst and InvokeInst). 10297 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 10298 isa<InvokeInst>(it))) { 10299 KeyNodes.insert(&*it); 10300 bool OpsChanged = false; 10301 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 10302 for (auto *V : it->operand_values()) { 10303 // Try to match and vectorize a horizontal reduction. 10304 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 10305 } 10306 } 10307 // Start vectorization of post-process list of instructions from the 10308 // top-tree instructions to try to vectorize as many instructions as 10309 // possible. 10310 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 10311 it->isTerminator()); 10312 if (OpsChanged) { 10313 // We would like to start over since some instructions are deleted 10314 // and the iterator may become invalid value. 10315 Changed = true; 10316 it = BB->begin(); 10317 e = BB->end(); 10318 continue; 10319 } 10320 } 10321 10322 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 10323 isa<InsertValueInst>(it)) 10324 PostProcessInstructions.push_back(&*it); 10325 } 10326 10327 return Changed; 10328 } 10329 10330 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 10331 auto Changed = false; 10332 for (auto &Entry : GEPs) { 10333 // If the getelementptr list has fewer than two elements, there's nothing 10334 // to do. 10335 if (Entry.second.size() < 2) 10336 continue; 10337 10338 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 10339 << Entry.second.size() << ".\n"); 10340 10341 // Process the GEP list in chunks suitable for the target's supported 10342 // vector size. If a vector register can't hold 1 element, we are done. We 10343 // are trying to vectorize the index computations, so the maximum number of 10344 // elements is based on the size of the index expression, rather than the 10345 // size of the GEP itself (the target's pointer size). 10346 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 10347 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 10348 if (MaxVecRegSize < EltSize) 10349 continue; 10350 10351 unsigned MaxElts = MaxVecRegSize / EltSize; 10352 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 10353 auto Len = std::min<unsigned>(BE - BI, MaxElts); 10354 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 10355 10356 // Initialize a set a candidate getelementptrs. Note that we use a 10357 // SetVector here to preserve program order. If the index computations 10358 // are vectorizable and begin with loads, we want to minimize the chance 10359 // of having to reorder them later. 10360 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 10361 10362 // Some of the candidates may have already been vectorized after we 10363 // initially collected them. If so, they are marked as deleted, so remove 10364 // them from the set of candidates. 10365 Candidates.remove_if( 10366 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 10367 10368 // Remove from the set of candidates all pairs of getelementptrs with 10369 // constant differences. Such getelementptrs are likely not good 10370 // candidates for vectorization in a bottom-up phase since one can be 10371 // computed from the other. We also ensure all candidate getelementptr 10372 // indices are unique. 10373 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 10374 auto *GEPI = GEPList[I]; 10375 if (!Candidates.count(GEPI)) 10376 continue; 10377 auto *SCEVI = SE->getSCEV(GEPList[I]); 10378 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 10379 auto *GEPJ = GEPList[J]; 10380 auto *SCEVJ = SE->getSCEV(GEPList[J]); 10381 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 10382 Candidates.remove(GEPI); 10383 Candidates.remove(GEPJ); 10384 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 10385 Candidates.remove(GEPJ); 10386 } 10387 } 10388 } 10389 10390 // We break out of the above computation as soon as we know there are 10391 // fewer than two candidates remaining. 10392 if (Candidates.size() < 2) 10393 continue; 10394 10395 // Add the single, non-constant index of each candidate to the bundle. We 10396 // ensured the indices met these constraints when we originally collected 10397 // the getelementptrs. 10398 SmallVector<Value *, 16> Bundle(Candidates.size()); 10399 auto BundleIndex = 0u; 10400 for (auto *V : Candidates) { 10401 auto *GEP = cast<GetElementPtrInst>(V); 10402 auto *GEPIdx = GEP->idx_begin()->get(); 10403 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 10404 Bundle[BundleIndex++] = GEPIdx; 10405 } 10406 10407 // Try and vectorize the indices. We are currently only interested in 10408 // gather-like cases of the form: 10409 // 10410 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 10411 // 10412 // where the loads of "a", the loads of "b", and the subtractions can be 10413 // performed in parallel. It's likely that detecting this pattern in a 10414 // bottom-up phase will be simpler and less costly than building a 10415 // full-blown top-down phase beginning at the consecutive loads. 10416 Changed |= tryToVectorizeList(Bundle, R); 10417 } 10418 } 10419 return Changed; 10420 } 10421 10422 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 10423 bool Changed = false; 10424 // Sort by type, base pointers and values operand. Value operands must be 10425 // compatible (have the same opcode, same parent), otherwise it is 10426 // definitely not profitable to try to vectorize them. 10427 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 10428 if (V->getPointerOperandType()->getTypeID() < 10429 V2->getPointerOperandType()->getTypeID()) 10430 return true; 10431 if (V->getPointerOperandType()->getTypeID() > 10432 V2->getPointerOperandType()->getTypeID()) 10433 return false; 10434 // UndefValues are compatible with all other values. 10435 if (isa<UndefValue>(V->getValueOperand()) || 10436 isa<UndefValue>(V2->getValueOperand())) 10437 return false; 10438 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 10439 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10440 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 10441 DT->getNode(I1->getParent()); 10442 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 10443 DT->getNode(I2->getParent()); 10444 assert(NodeI1 && "Should only process reachable instructions"); 10445 assert(NodeI1 && "Should only process reachable instructions"); 10446 assert((NodeI1 == NodeI2) == 10447 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10448 "Different nodes should have different DFS numbers"); 10449 if (NodeI1 != NodeI2) 10450 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10451 InstructionsState S = getSameOpcode({I1, I2}); 10452 if (S.getOpcode()) 10453 return false; 10454 return I1->getOpcode() < I2->getOpcode(); 10455 } 10456 if (isa<Constant>(V->getValueOperand()) && 10457 isa<Constant>(V2->getValueOperand())) 10458 return false; 10459 return V->getValueOperand()->getValueID() < 10460 V2->getValueOperand()->getValueID(); 10461 }; 10462 10463 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 10464 if (V1 == V2) 10465 return true; 10466 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 10467 return false; 10468 // Undefs are compatible with any other value. 10469 if (isa<UndefValue>(V1->getValueOperand()) || 10470 isa<UndefValue>(V2->getValueOperand())) 10471 return true; 10472 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 10473 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10474 if (I1->getParent() != I2->getParent()) 10475 return false; 10476 InstructionsState S = getSameOpcode({I1, I2}); 10477 return S.getOpcode() > 0; 10478 } 10479 if (isa<Constant>(V1->getValueOperand()) && 10480 isa<Constant>(V2->getValueOperand())) 10481 return true; 10482 return V1->getValueOperand()->getValueID() == 10483 V2->getValueOperand()->getValueID(); 10484 }; 10485 auto Limit = [&R, this](StoreInst *SI) { 10486 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 10487 return R.getMinVF(EltSize); 10488 }; 10489 10490 // Attempt to sort and vectorize each of the store-groups. 10491 for (auto &Pair : Stores) { 10492 if (Pair.second.size() < 2) 10493 continue; 10494 10495 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 10496 << Pair.second.size() << ".\n"); 10497 10498 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) 10499 continue; 10500 10501 Changed |= tryToVectorizeSequence<StoreInst>( 10502 Pair.second, Limit, StoreSorter, AreCompatibleStores, 10503 [this, &R](ArrayRef<StoreInst *> Candidates, bool) { 10504 return vectorizeStores(Candidates, R); 10505 }, 10506 /*LimitForRegisterSize=*/false); 10507 } 10508 return Changed; 10509 } 10510 10511 char SLPVectorizer::ID = 0; 10512 10513 static const char lv_name[] = "SLP Vectorizer"; 10514 10515 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 10516 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 10517 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 10518 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 10519 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 10520 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 10521 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 10522 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 10523 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 10524 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 10525 10526 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 10527