1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive
10 // stores that can be put together into vector-stores. Next, it attempts to
11 // construct vectorizable tree using the use-def chains. If a profitable tree
12 // was found, the SLP vectorizer performs vectorization on the tree.
13 //
14 // The pass is inspired by the work described in the paper:
15 //  "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/DenseSet.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/PostOrderIterator.h"
24 #include "llvm/ADT/PriorityQueue.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SetOperations.h"
27 #include "llvm/ADT/SetVector.h"
28 #include "llvm/ADT/SmallBitVector.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/SmallString.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/ADT/iterator.h"
34 #include "llvm/ADT/iterator_range.h"
35 #include "llvm/Analysis/AliasAnalysis.h"
36 #include "llvm/Analysis/AssumptionCache.h"
37 #include "llvm/Analysis/CodeMetrics.h"
38 #include "llvm/Analysis/DemandedBits.h"
39 #include "llvm/Analysis/GlobalsModRef.h"
40 #include "llvm/Analysis/IVDescriptors.h"
41 #include "llvm/Analysis/LoopAccessAnalysis.h"
42 #include "llvm/Analysis/LoopInfo.h"
43 #include "llvm/Analysis/MemoryLocation.h"
44 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
45 #include "llvm/Analysis/ScalarEvolution.h"
46 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
47 #include "llvm/Analysis/TargetLibraryInfo.h"
48 #include "llvm/Analysis/TargetTransformInfo.h"
49 #include "llvm/Analysis/ValueTracking.h"
50 #include "llvm/Analysis/VectorUtils.h"
51 #include "llvm/IR/Attributes.h"
52 #include "llvm/IR/BasicBlock.h"
53 #include "llvm/IR/Constant.h"
54 #include "llvm/IR/Constants.h"
55 #include "llvm/IR/DataLayout.h"
56 #include "llvm/IR/DebugLoc.h"
57 #include "llvm/IR/DerivedTypes.h"
58 #include "llvm/IR/Dominators.h"
59 #include "llvm/IR/Function.h"
60 #include "llvm/IR/IRBuilder.h"
61 #include "llvm/IR/InstrTypes.h"
62 #include "llvm/IR/Instruction.h"
63 #include "llvm/IR/Instructions.h"
64 #include "llvm/IR/IntrinsicInst.h"
65 #include "llvm/IR/Intrinsics.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/IR/NoFolder.h"
68 #include "llvm/IR/Operator.h"
69 #include "llvm/IR/PatternMatch.h"
70 #include "llvm/IR/Type.h"
71 #include "llvm/IR/Use.h"
72 #include "llvm/IR/User.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/IR/ValueHandle.h"
75 #include "llvm/IR/Verifier.h"
76 #include "llvm/InitializePasses.h"
77 #include "llvm/Pass.h"
78 #include "llvm/Support/Casting.h"
79 #include "llvm/Support/CommandLine.h"
80 #include "llvm/Support/Compiler.h"
81 #include "llvm/Support/DOTGraphTraits.h"
82 #include "llvm/Support/Debug.h"
83 #include "llvm/Support/ErrorHandling.h"
84 #include "llvm/Support/GraphWriter.h"
85 #include "llvm/Support/InstructionCost.h"
86 #include "llvm/Support/KnownBits.h"
87 #include "llvm/Support/MathExtras.h"
88 #include "llvm/Support/raw_ostream.h"
89 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
90 #include "llvm/Transforms/Utils/LoopUtils.h"
91 #include "llvm/Transforms/Vectorize.h"
92 #include <algorithm>
93 #include <cassert>
94 #include <cstdint>
95 #include <iterator>
96 #include <memory>
97 #include <set>
98 #include <string>
99 #include <tuple>
100 #include <utility>
101 #include <vector>
102 
103 using namespace llvm;
104 using namespace llvm::PatternMatch;
105 using namespace slpvectorizer;
106 
107 #define SV_NAME "slp-vectorizer"
108 #define DEBUG_TYPE "SLP"
109 
110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated");
111 
112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden,
113                                   cl::desc("Run the SLP vectorization passes"));
114 
115 static cl::opt<int>
116     SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
117                      cl::desc("Only vectorize if you gain more than this "
118                               "number "));
119 
120 static cl::opt<bool>
121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
122                    cl::desc("Attempt to vectorize horizontal reductions"));
123 
124 static cl::opt<bool> ShouldStartVectorizeHorAtStore(
125     "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
126     cl::desc(
127         "Attempt to vectorize horizontal reductions feeding into a store"));
128 
129 static cl::opt<int>
130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
131     cl::desc("Attempt to vectorize for this register size in bits"));
132 
133 static cl::opt<unsigned>
134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden,
135     cl::desc("Maximum SLP vectorization factor (0=unlimited)"));
136 
137 static cl::opt<int>
138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden,
139     cl::desc("Maximum depth of the lookup for consecutive stores."));
140 
141 /// Limits the size of scheduling regions in a block.
142 /// It avoid long compile times for _very_ large blocks where vector
143 /// instructions are spread over a wide range.
144 /// This limit is way higher than needed by real-world functions.
145 static cl::opt<int>
146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
147     cl::desc("Limit the size of the SLP scheduling region per block"));
148 
149 static cl::opt<int> MinVectorRegSizeOption(
150     "slp-min-reg-size", cl::init(128), cl::Hidden,
151     cl::desc("Attempt to vectorize for this register size in bits"));
152 
153 static cl::opt<unsigned> RecursionMaxDepth(
154     "slp-recursion-max-depth", cl::init(12), cl::Hidden,
155     cl::desc("Limit the recursion depth when building a vectorizable tree"));
156 
157 static cl::opt<unsigned> MinTreeSize(
158     "slp-min-tree-size", cl::init(3), cl::Hidden,
159     cl::desc("Only vectorize small trees if they are fully vectorizable"));
160 
161 // The maximum depth that the look-ahead score heuristic will explore.
162 // The higher this value, the higher the compilation time overhead.
163 static cl::opt<int> LookAheadMaxDepth(
164     "slp-max-look-ahead-depth", cl::init(2), cl::Hidden,
165     cl::desc("The maximum look-ahead depth for operand reordering scores"));
166 
167 static cl::opt<bool>
168     ViewSLPTree("view-slp-tree", cl::Hidden,
169                 cl::desc("Display the SLP trees with Graphviz"));
170 
171 // Limit the number of alias checks. The limit is chosen so that
172 // it has no negative effect on the llvm benchmarks.
173 static const unsigned AliasedCheckLimit = 10;
174 
175 // Another limit for the alias checks: The maximum distance between load/store
176 // instructions where alias checks are done.
177 // This limit is useful for very large basic blocks.
178 static const unsigned MaxMemDepDistance = 160;
179 
180 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
181 /// regions to be handled.
182 static const int MinScheduleRegionSize = 16;
183 
184 /// Predicate for the element types that the SLP vectorizer supports.
185 ///
186 /// The most important thing to filter here are types which are invalid in LLVM
187 /// vectors. We also filter target specific types which have absolutely no
188 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
189 /// avoids spending time checking the cost model and realizing that they will
190 /// be inevitably scalarized.
191 static bool isValidElementType(Type *Ty) {
192   return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
193          !Ty->isPPC_FP128Ty();
194 }
195 
196 /// \returns True if the value is a constant (but not globals/constant
197 /// expressions).
198 static bool isConstant(Value *V) {
199   return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V);
200 }
201 
202 /// Checks if \p V is one of vector-like instructions, i.e. undef,
203 /// insertelement/extractelement with constant indices for fixed vector type or
204 /// extractvalue instruction.
205 static bool isVectorLikeInstWithConstOps(Value *V) {
206   if (!isa<InsertElementInst, ExtractElementInst>(V) &&
207       !isa<ExtractValueInst, UndefValue>(V))
208     return false;
209   auto *I = dyn_cast<Instruction>(V);
210   if (!I || isa<ExtractValueInst>(I))
211     return true;
212   if (!isa<FixedVectorType>(I->getOperand(0)->getType()))
213     return false;
214   if (isa<ExtractElementInst>(I))
215     return isConstant(I->getOperand(1));
216   assert(isa<InsertElementInst>(V) && "Expected only insertelement.");
217   return isConstant(I->getOperand(2));
218 }
219 
220 /// \returns true if all of the instructions in \p VL are in the same block or
221 /// false otherwise.
222 static bool allSameBlock(ArrayRef<Value *> VL) {
223   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
224   if (!I0)
225     return false;
226   if (all_of(VL, isVectorLikeInstWithConstOps))
227     return true;
228 
229   BasicBlock *BB = I0->getParent();
230   for (int I = 1, E = VL.size(); I < E; I++) {
231     auto *II = dyn_cast<Instruction>(VL[I]);
232     if (!II)
233       return false;
234 
235     if (BB != II->getParent())
236       return false;
237   }
238   return true;
239 }
240 
241 /// \returns True if all of the values in \p VL are constants (but not
242 /// globals/constant expressions).
243 static bool allConstant(ArrayRef<Value *> VL) {
244   // Constant expressions and globals can't be vectorized like normal integer/FP
245   // constants.
246   return all_of(VL, isConstant);
247 }
248 
249 /// \returns True if all of the values in \p VL are identical or some of them
250 /// are UndefValue.
251 static bool isSplat(ArrayRef<Value *> VL) {
252   Value *FirstNonUndef = nullptr;
253   for (Value *V : VL) {
254     if (isa<UndefValue>(V))
255       continue;
256     if (!FirstNonUndef) {
257       FirstNonUndef = V;
258       continue;
259     }
260     if (V != FirstNonUndef)
261       return false;
262   }
263   return FirstNonUndef != nullptr;
264 }
265 
266 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator.
267 static bool isCommutative(Instruction *I) {
268   if (auto *Cmp = dyn_cast<CmpInst>(I))
269     return Cmp->isCommutative();
270   if (auto *BO = dyn_cast<BinaryOperator>(I))
271     return BO->isCommutative();
272   // TODO: This should check for generic Instruction::isCommutative(), but
273   //       we need to confirm that the caller code correctly handles Intrinsics
274   //       for example (does not have 2 operands).
275   return false;
276 }
277 
278 /// Checks if the given value is actually an undefined constant vector.
279 static bool isUndefVector(const Value *V) {
280   if (isa<UndefValue>(V))
281     return true;
282   auto *C = dyn_cast<Constant>(V);
283   if (!C)
284     return false;
285   if (!C->containsUndefOrPoisonElement())
286     return false;
287   auto *VecTy = dyn_cast<FixedVectorType>(C->getType());
288   if (!VecTy)
289     return false;
290   for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) {
291     if (Constant *Elem = C->getAggregateElement(I))
292       if (!isa<UndefValue>(Elem))
293         return false;
294   }
295   return true;
296 }
297 
298 /// Checks if the vector of instructions can be represented as a shuffle, like:
299 /// %x0 = extractelement <4 x i8> %x, i32 0
300 /// %x3 = extractelement <4 x i8> %x, i32 3
301 /// %y1 = extractelement <4 x i8> %y, i32 1
302 /// %y2 = extractelement <4 x i8> %y, i32 2
303 /// %x0x0 = mul i8 %x0, %x0
304 /// %x3x3 = mul i8 %x3, %x3
305 /// %y1y1 = mul i8 %y1, %y1
306 /// %y2y2 = mul i8 %y2, %y2
307 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0
308 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1
309 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2
310 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3
311 /// ret <4 x i8> %ins4
312 /// can be transformed into:
313 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5,
314 ///                                                         i32 6>
315 /// %2 = mul <4 x i8> %1, %1
316 /// ret <4 x i8> %2
317 /// We convert this initially to something like:
318 /// %x0 = extractelement <4 x i8> %x, i32 0
319 /// %x3 = extractelement <4 x i8> %x, i32 3
320 /// %y1 = extractelement <4 x i8> %y, i32 1
321 /// %y2 = extractelement <4 x i8> %y, i32 2
322 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0
323 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1
324 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2
325 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3
326 /// %5 = mul <4 x i8> %4, %4
327 /// %6 = extractelement <4 x i8> %5, i32 0
328 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0
329 /// %7 = extractelement <4 x i8> %5, i32 1
330 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1
331 /// %8 = extractelement <4 x i8> %5, i32 2
332 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2
333 /// %9 = extractelement <4 x i8> %5, i32 3
334 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3
335 /// ret <4 x i8> %ins4
336 /// InstCombiner transforms this into a shuffle and vector mul
337 /// Mask will return the Shuffle Mask equivalent to the extracted elements.
338 /// TODO: Can we split off and reuse the shuffle mask detection from
339 /// TargetTransformInfo::getInstructionThroughput?
340 static Optional<TargetTransformInfo::ShuffleKind>
341 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) {
342   const auto *It =
343       find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); });
344   if (It == VL.end())
345     return None;
346   auto *EI0 = cast<ExtractElementInst>(*It);
347   if (isa<ScalableVectorType>(EI0->getVectorOperandType()))
348     return None;
349   unsigned Size =
350       cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements();
351   Value *Vec1 = nullptr;
352   Value *Vec2 = nullptr;
353   enum ShuffleMode { Unknown, Select, Permute };
354   ShuffleMode CommonShuffleMode = Unknown;
355   Mask.assign(VL.size(), UndefMaskElem);
356   for (unsigned I = 0, E = VL.size(); I < E; ++I) {
357     // Undef can be represented as an undef element in a vector.
358     if (isa<UndefValue>(VL[I]))
359       continue;
360     auto *EI = cast<ExtractElementInst>(VL[I]);
361     if (isa<ScalableVectorType>(EI->getVectorOperandType()))
362       return None;
363     auto *Vec = EI->getVectorOperand();
364     // We can extractelement from undef or poison vector.
365     if (isUndefVector(Vec))
366       continue;
367     // All vector operands must have the same number of vector elements.
368     if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size)
369       return None;
370     if (isa<UndefValue>(EI->getIndexOperand()))
371       continue;
372     auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand());
373     if (!Idx)
374       return None;
375     // Undefined behavior if Idx is negative or >= Size.
376     if (Idx->getValue().uge(Size))
377       continue;
378     unsigned IntIdx = Idx->getValue().getZExtValue();
379     Mask[I] = IntIdx;
380     // For correct shuffling we have to have at most 2 different vector operands
381     // in all extractelement instructions.
382     if (!Vec1 || Vec1 == Vec) {
383       Vec1 = Vec;
384     } else if (!Vec2 || Vec2 == Vec) {
385       Vec2 = Vec;
386       Mask[I] += Size;
387     } else {
388       return None;
389     }
390     if (CommonShuffleMode == Permute)
391       continue;
392     // If the extract index is not the same as the operation number, it is a
393     // permutation.
394     if (IntIdx != I) {
395       CommonShuffleMode = Permute;
396       continue;
397     }
398     CommonShuffleMode = Select;
399   }
400   // If we're not crossing lanes in different vectors, consider it as blending.
401   if (CommonShuffleMode == Select && Vec2)
402     return TargetTransformInfo::SK_Select;
403   // If Vec2 was never used, we have a permutation of a single vector, otherwise
404   // we have permutation of 2 vectors.
405   return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc
406               : TargetTransformInfo::SK_PermuteSingleSrc;
407 }
408 
409 namespace {
410 
411 /// Main data required for vectorization of instructions.
412 struct InstructionsState {
413   /// The very first instruction in the list with the main opcode.
414   Value *OpValue = nullptr;
415 
416   /// The main/alternate instruction.
417   Instruction *MainOp = nullptr;
418   Instruction *AltOp = nullptr;
419 
420   /// The main/alternate opcodes for the list of instructions.
421   unsigned getOpcode() const {
422     return MainOp ? MainOp->getOpcode() : 0;
423   }
424 
425   unsigned getAltOpcode() const {
426     return AltOp ? AltOp->getOpcode() : 0;
427   }
428 
429   /// Some of the instructions in the list have alternate opcodes.
430   bool isAltShuffle() const { return AltOp != MainOp; }
431 
432   bool isOpcodeOrAlt(Instruction *I) const {
433     unsigned CheckedOpcode = I->getOpcode();
434     return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode;
435   }
436 
437   InstructionsState() = delete;
438   InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp)
439       : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {}
440 };
441 
442 } // end anonymous namespace
443 
444 /// Chooses the correct key for scheduling data. If \p Op has the same (or
445 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p
446 /// OpValue.
447 static Value *isOneOf(const InstructionsState &S, Value *Op) {
448   auto *I = dyn_cast<Instruction>(Op);
449   if (I && S.isOpcodeOrAlt(I))
450     return Op;
451   return S.OpValue;
452 }
453 
454 /// \returns true if \p Opcode is allowed as part of of the main/alternate
455 /// instruction for SLP vectorization.
456 ///
457 /// Example of unsupported opcode is SDIV that can potentially cause UB if the
458 /// "shuffled out" lane would result in division by zero.
459 static bool isValidForAlternation(unsigned Opcode) {
460   if (Instruction::isIntDivRem(Opcode))
461     return false;
462 
463   return true;
464 }
465 
466 static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
467                                        unsigned BaseIndex = 0);
468 
469 /// Checks if the provided operands of 2 cmp instructions are compatible, i.e.
470 /// compatible instructions or constants, or just some other regular values.
471 static bool areCompatibleCmpOps(Value *BaseOp0, Value *BaseOp1, Value *Op0,
472                                 Value *Op1) {
473   return (isConstant(BaseOp0) && isConstant(Op0)) ||
474          (isConstant(BaseOp1) && isConstant(Op1)) ||
475          (!isa<Instruction>(BaseOp0) && !isa<Instruction>(Op0) &&
476           !isa<Instruction>(BaseOp1) && !isa<Instruction>(Op1)) ||
477          getSameOpcode({BaseOp0, Op0}).getOpcode() ||
478          getSameOpcode({BaseOp1, Op1}).getOpcode();
479 }
480 
481 /// \returns analysis of the Instructions in \p VL described in
482 /// InstructionsState, the Opcode that we suppose the whole list
483 /// could be vectorized even if its structure is diverse.
484 static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
485                                        unsigned BaseIndex) {
486   // Make sure these are all Instructions.
487   if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); }))
488     return InstructionsState(VL[BaseIndex], nullptr, nullptr);
489 
490   bool IsCastOp = isa<CastInst>(VL[BaseIndex]);
491   bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]);
492   bool IsCmpOp = isa<CmpInst>(VL[BaseIndex]);
493   CmpInst::Predicate BasePred =
494       IsCmpOp ? cast<CmpInst>(VL[BaseIndex])->getPredicate()
495               : CmpInst::BAD_ICMP_PREDICATE;
496   unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode();
497   unsigned AltOpcode = Opcode;
498   unsigned AltIndex = BaseIndex;
499 
500   // Check for one alternate opcode from another BinaryOperator.
501   // TODO - generalize to support all operators (types, calls etc.).
502   for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) {
503     unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode();
504     if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) {
505       if (InstOpcode == Opcode || InstOpcode == AltOpcode)
506         continue;
507       if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) &&
508           isValidForAlternation(Opcode)) {
509         AltOpcode = InstOpcode;
510         AltIndex = Cnt;
511         continue;
512       }
513     } else if (IsCastOp && isa<CastInst>(VL[Cnt])) {
514       Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType();
515       Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType();
516       if (Ty0 == Ty1) {
517         if (InstOpcode == Opcode || InstOpcode == AltOpcode)
518           continue;
519         if (Opcode == AltOpcode) {
520           assert(isValidForAlternation(Opcode) &&
521                  isValidForAlternation(InstOpcode) &&
522                  "Cast isn't safe for alternation, logic needs to be updated!");
523           AltOpcode = InstOpcode;
524           AltIndex = Cnt;
525           continue;
526         }
527       }
528     } else if (IsCmpOp && isa<CmpInst>(VL[Cnt])) {
529       auto *BaseInst = cast<Instruction>(VL[BaseIndex]);
530       auto *Inst = cast<Instruction>(VL[Cnt]);
531       Type *Ty0 = BaseInst->getOperand(0)->getType();
532       Type *Ty1 = Inst->getOperand(0)->getType();
533       if (Ty0 == Ty1) {
534         Value *BaseOp0 = BaseInst->getOperand(0);
535         Value *BaseOp1 = BaseInst->getOperand(1);
536         Value *Op0 = Inst->getOperand(0);
537         Value *Op1 = Inst->getOperand(1);
538         CmpInst::Predicate CurrentPred =
539             cast<CmpInst>(VL[Cnt])->getPredicate();
540         CmpInst::Predicate SwappedCurrentPred =
541             CmpInst::getSwappedPredicate(CurrentPred);
542         // Check for compatible operands. If the corresponding operands are not
543         // compatible - need to perform alternate vectorization.
544         if (InstOpcode == Opcode) {
545           if (BasePred == CurrentPred &&
546               areCompatibleCmpOps(BaseOp0, BaseOp1, Op0, Op1))
547             continue;
548           if (BasePred == SwappedCurrentPred &&
549               areCompatibleCmpOps(BaseOp0, BaseOp1, Op1, Op0))
550             continue;
551           if (E == 2 &&
552               (BasePred == CurrentPred || BasePred == SwappedCurrentPred))
553             continue;
554           auto *AltInst = cast<CmpInst>(VL[AltIndex]);
555           CmpInst::Predicate AltPred = AltInst->getPredicate();
556           Value *AltOp0 = AltInst->getOperand(0);
557           Value *AltOp1 = AltInst->getOperand(1);
558           // Check if operands are compatible with alternate operands.
559           if (AltPred == CurrentPred &&
560               areCompatibleCmpOps(AltOp0, AltOp1, Op0, Op1))
561             continue;
562           if (AltPred == SwappedCurrentPred &&
563               areCompatibleCmpOps(AltOp0, AltOp1, Op1, Op0))
564             continue;
565         }
566         if (BaseIndex == AltIndex && BasePred != CurrentPred) {
567           assert(isValidForAlternation(Opcode) &&
568                  isValidForAlternation(InstOpcode) &&
569                  "Cast isn't safe for alternation, logic needs to be updated!");
570           AltIndex = Cnt;
571           continue;
572         }
573         auto *AltInst = cast<CmpInst>(VL[AltIndex]);
574         CmpInst::Predicate AltPred = AltInst->getPredicate();
575         if (BasePred == CurrentPred || BasePred == SwappedCurrentPred ||
576             AltPred == CurrentPred || AltPred == SwappedCurrentPred)
577           continue;
578       }
579     } else if (InstOpcode == Opcode || InstOpcode == AltOpcode)
580       continue;
581     return InstructionsState(VL[BaseIndex], nullptr, nullptr);
582   }
583 
584   return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]),
585                            cast<Instruction>(VL[AltIndex]));
586 }
587 
588 /// \returns true if all of the values in \p VL have the same type or false
589 /// otherwise.
590 static bool allSameType(ArrayRef<Value *> VL) {
591   Type *Ty = VL[0]->getType();
592   for (int i = 1, e = VL.size(); i < e; i++)
593     if (VL[i]->getType() != Ty)
594       return false;
595 
596   return true;
597 }
598 
599 /// \returns True if Extract{Value,Element} instruction extracts element Idx.
600 static Optional<unsigned> getExtractIndex(Instruction *E) {
601   unsigned Opcode = E->getOpcode();
602   assert((Opcode == Instruction::ExtractElement ||
603           Opcode == Instruction::ExtractValue) &&
604          "Expected extractelement or extractvalue instruction.");
605   if (Opcode == Instruction::ExtractElement) {
606     auto *CI = dyn_cast<ConstantInt>(E->getOperand(1));
607     if (!CI)
608       return None;
609     return CI->getZExtValue();
610   }
611   ExtractValueInst *EI = cast<ExtractValueInst>(E);
612   if (EI->getNumIndices() != 1)
613     return None;
614   return *EI->idx_begin();
615 }
616 
617 /// \returns True if in-tree use also needs extract. This refers to
618 /// possible scalar operand in vectorized instruction.
619 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
620                                     TargetLibraryInfo *TLI) {
621   unsigned Opcode = UserInst->getOpcode();
622   switch (Opcode) {
623   case Instruction::Load: {
624     LoadInst *LI = cast<LoadInst>(UserInst);
625     return (LI->getPointerOperand() == Scalar);
626   }
627   case Instruction::Store: {
628     StoreInst *SI = cast<StoreInst>(UserInst);
629     return (SI->getPointerOperand() == Scalar);
630   }
631   case Instruction::Call: {
632     CallInst *CI = cast<CallInst>(UserInst);
633     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
634     for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) {
635       if (hasVectorInstrinsicScalarOpd(ID, i))
636         return (CI->getArgOperand(i) == Scalar);
637     }
638     LLVM_FALLTHROUGH;
639   }
640   default:
641     return false;
642   }
643 }
644 
645 /// \returns the AA location that is being access by the instruction.
646 static MemoryLocation getLocation(Instruction *I) {
647   if (StoreInst *SI = dyn_cast<StoreInst>(I))
648     return MemoryLocation::get(SI);
649   if (LoadInst *LI = dyn_cast<LoadInst>(I))
650     return MemoryLocation::get(LI);
651   return MemoryLocation();
652 }
653 
654 /// \returns True if the instruction is not a volatile or atomic load/store.
655 static bool isSimple(Instruction *I) {
656   if (LoadInst *LI = dyn_cast<LoadInst>(I))
657     return LI->isSimple();
658   if (StoreInst *SI = dyn_cast<StoreInst>(I))
659     return SI->isSimple();
660   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
661     return !MI->isVolatile();
662   return true;
663 }
664 
665 /// Shuffles \p Mask in accordance with the given \p SubMask.
666 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) {
667   if (SubMask.empty())
668     return;
669   if (Mask.empty()) {
670     Mask.append(SubMask.begin(), SubMask.end());
671     return;
672   }
673   SmallVector<int> NewMask(SubMask.size(), UndefMaskElem);
674   int TermValue = std::min(Mask.size(), SubMask.size());
675   for (int I = 0, E = SubMask.size(); I < E; ++I) {
676     if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem ||
677         Mask[SubMask[I]] >= TermValue)
678       continue;
679     NewMask[I] = Mask[SubMask[I]];
680   }
681   Mask.swap(NewMask);
682 }
683 
684 /// Order may have elements assigned special value (size) which is out of
685 /// bounds. Such indices only appear on places which correspond to undef values
686 /// (see canReuseExtract for details) and used in order to avoid undef values
687 /// have effect on operands ordering.
688 /// The first loop below simply finds all unused indices and then the next loop
689 /// nest assigns these indices for undef values positions.
690 /// As an example below Order has two undef positions and they have assigned
691 /// values 3 and 7 respectively:
692 /// before:  6 9 5 4 9 2 1 0
693 /// after:   6 3 5 4 7 2 1 0
694 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) {
695   const unsigned Sz = Order.size();
696   SmallBitVector UnusedIndices(Sz, /*t=*/true);
697   SmallBitVector MaskedIndices(Sz);
698   for (unsigned I = 0; I < Sz; ++I) {
699     if (Order[I] < Sz)
700       UnusedIndices.reset(Order[I]);
701     else
702       MaskedIndices.set(I);
703   }
704   if (MaskedIndices.none())
705     return;
706   assert(UnusedIndices.count() == MaskedIndices.count() &&
707          "Non-synced masked/available indices.");
708   int Idx = UnusedIndices.find_first();
709   int MIdx = MaskedIndices.find_first();
710   while (MIdx >= 0) {
711     assert(Idx >= 0 && "Indices must be synced.");
712     Order[MIdx] = Idx;
713     Idx = UnusedIndices.find_next(Idx);
714     MIdx = MaskedIndices.find_next(MIdx);
715   }
716 }
717 
718 namespace llvm {
719 
720 static void inversePermutation(ArrayRef<unsigned> Indices,
721                                SmallVectorImpl<int> &Mask) {
722   Mask.clear();
723   const unsigned E = Indices.size();
724   Mask.resize(E, UndefMaskElem);
725   for (unsigned I = 0; I < E; ++I)
726     Mask[Indices[I]] = I;
727 }
728 
729 /// \returns inserting index of InsertElement or InsertValue instruction,
730 /// using Offset as base offset for index.
731 static Optional<unsigned> getInsertIndex(Value *InsertInst,
732                                          unsigned Offset = 0) {
733   int Index = Offset;
734   if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) {
735     if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) {
736       auto *VT = cast<FixedVectorType>(IE->getType());
737       if (CI->getValue().uge(VT->getNumElements()))
738         return None;
739       Index *= VT->getNumElements();
740       Index += CI->getZExtValue();
741       return Index;
742     }
743     return None;
744   }
745 
746   auto *IV = cast<InsertValueInst>(InsertInst);
747   Type *CurrentType = IV->getType();
748   for (unsigned I : IV->indices()) {
749     if (auto *ST = dyn_cast<StructType>(CurrentType)) {
750       Index *= ST->getNumElements();
751       CurrentType = ST->getElementType(I);
752     } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) {
753       Index *= AT->getNumElements();
754       CurrentType = AT->getElementType();
755     } else {
756       return None;
757     }
758     Index += I;
759   }
760   return Index;
761 }
762 
763 /// Reorders the list of scalars in accordance with the given \p Mask.
764 static void reorderScalars(SmallVectorImpl<Value *> &Scalars,
765                            ArrayRef<int> Mask) {
766   assert(!Mask.empty() && "Expected non-empty mask.");
767   SmallVector<Value *> Prev(Scalars.size(),
768                             UndefValue::get(Scalars.front()->getType()));
769   Prev.swap(Scalars);
770   for (unsigned I = 0, E = Prev.size(); I < E; ++I)
771     if (Mask[I] != UndefMaskElem)
772       Scalars[Mask[I]] = Prev[I];
773 }
774 
775 namespace slpvectorizer {
776 
777 /// Bottom Up SLP Vectorizer.
778 class BoUpSLP {
779   struct TreeEntry;
780   struct ScheduleData;
781 
782 public:
783   using ValueList = SmallVector<Value *, 8>;
784   using InstrList = SmallVector<Instruction *, 16>;
785   using ValueSet = SmallPtrSet<Value *, 16>;
786   using StoreList = SmallVector<StoreInst *, 8>;
787   using ExtraValueToDebugLocsMap =
788       MapVector<Value *, SmallVector<Instruction *, 2>>;
789   using OrdersType = SmallVector<unsigned, 4>;
790 
791   BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
792           TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li,
793           DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB,
794           const DataLayout *DL, OptimizationRemarkEmitter *ORE)
795       : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC),
796         DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) {
797     CodeMetrics::collectEphemeralValues(F, AC, EphValues);
798     // Use the vector register size specified by the target unless overridden
799     // by a command-line option.
800     // TODO: It would be better to limit the vectorization factor based on
801     //       data type rather than just register size. For example, x86 AVX has
802     //       256-bit registers, but it does not support integer operations
803     //       at that width (that requires AVX2).
804     if (MaxVectorRegSizeOption.getNumOccurrences())
805       MaxVecRegSize = MaxVectorRegSizeOption;
806     else
807       MaxVecRegSize =
808           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
809               .getFixedSize();
810 
811     if (MinVectorRegSizeOption.getNumOccurrences())
812       MinVecRegSize = MinVectorRegSizeOption;
813     else
814       MinVecRegSize = TTI->getMinVectorRegisterBitWidth();
815   }
816 
817   /// Vectorize the tree that starts with the elements in \p VL.
818   /// Returns the vectorized root.
819   Value *vectorizeTree();
820 
821   /// Vectorize the tree but with the list of externally used values \p
822   /// ExternallyUsedValues. Values in this MapVector can be replaced but the
823   /// generated extractvalue instructions.
824   Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues);
825 
826   /// \returns the cost incurred by unwanted spills and fills, caused by
827   /// holding live values over call sites.
828   InstructionCost getSpillCost() const;
829 
830   /// \returns the vectorization cost of the subtree that starts at \p VL.
831   /// A negative number means that this is profitable.
832   InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None);
833 
834   /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
835   /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
836   void buildTree(ArrayRef<Value *> Roots,
837                  ArrayRef<Value *> UserIgnoreLst = None);
838 
839   /// Builds external uses of the vectorized scalars, i.e. the list of
840   /// vectorized scalars to be extracted, their lanes and their scalar users. \p
841   /// ExternallyUsedValues contains additional list of external uses to handle
842   /// vectorization of reductions.
843   void
844   buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {});
845 
846   /// Clear the internal data structures that are created by 'buildTree'.
847   void deleteTree() {
848     VectorizableTree.clear();
849     ScalarToTreeEntry.clear();
850     MustGather.clear();
851     ExternalUses.clear();
852     for (auto &Iter : BlocksSchedules) {
853       BlockScheduling *BS = Iter.second.get();
854       BS->clear();
855     }
856     MinBWs.clear();
857     InstrElementSize.clear();
858   }
859 
860   unsigned getTreeSize() const { return VectorizableTree.size(); }
861 
862   /// Perform LICM and CSE on the newly generated gather sequences.
863   void optimizeGatherSequence();
864 
865   /// Checks if the specified gather tree entry \p TE can be represented as a
866   /// shuffled vector entry + (possibly) permutation with other gathers. It
867   /// implements the checks only for possibly ordered scalars (Loads,
868   /// ExtractElement, ExtractValue), which can be part of the graph.
869   Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE);
870 
871   /// Gets reordering data for the given tree entry. If the entry is vectorized
872   /// - just return ReorderIndices, otherwise check if the scalars can be
873   /// reordered and return the most optimal order.
874   /// \param TopToBottom If true, include the order of vectorized stores and
875   /// insertelement nodes, otherwise skip them.
876   Optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom);
877 
878   /// Reorders the current graph to the most profitable order starting from the
879   /// root node to the leaf nodes. The best order is chosen only from the nodes
880   /// of the same size (vectorization factor). Smaller nodes are considered
881   /// parts of subgraph with smaller VF and they are reordered independently. We
882   /// can make it because we still need to extend smaller nodes to the wider VF
883   /// and we can merge reordering shuffles with the widening shuffles.
884   void reorderTopToBottom();
885 
886   /// Reorders the current graph to the most profitable order starting from
887   /// leaves to the root. It allows to rotate small subgraphs and reduce the
888   /// number of reshuffles if the leaf nodes use the same order. In this case we
889   /// can merge the orders and just shuffle user node instead of shuffling its
890   /// operands. Plus, even the leaf nodes have different orders, it allows to
891   /// sink reordering in the graph closer to the root node and merge it later
892   /// during analysis.
893   void reorderBottomToTop(bool IgnoreReorder = false);
894 
895   /// \return The vector element size in bits to use when vectorizing the
896   /// expression tree ending at \p V. If V is a store, the size is the width of
897   /// the stored value. Otherwise, the size is the width of the largest loaded
898   /// value reaching V. This method is used by the vectorizer to calculate
899   /// vectorization factors.
900   unsigned getVectorElementSize(Value *V);
901 
902   /// Compute the minimum type sizes required to represent the entries in a
903   /// vectorizable tree.
904   void computeMinimumValueSizes();
905 
906   // \returns maximum vector register size as set by TTI or overridden by cl::opt.
907   unsigned getMaxVecRegSize() const {
908     return MaxVecRegSize;
909   }
910 
911   // \returns minimum vector register size as set by cl::opt.
912   unsigned getMinVecRegSize() const {
913     return MinVecRegSize;
914   }
915 
916   unsigned getMinVF(unsigned Sz) const {
917     return std::max(2U, getMinVecRegSize() / Sz);
918   }
919 
920   unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const {
921     unsigned MaxVF = MaxVFOption.getNumOccurrences() ?
922       MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode);
923     return MaxVF ? MaxVF : UINT_MAX;
924   }
925 
926   /// Check if homogeneous aggregate is isomorphic to some VectorType.
927   /// Accepts homogeneous multidimensional aggregate of scalars/vectors like
928   /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> },
929   /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on.
930   ///
931   /// \returns number of elements in vector if isomorphism exists, 0 otherwise.
932   unsigned canMapToVector(Type *T, const DataLayout &DL) const;
933 
934   /// \returns True if the VectorizableTree is both tiny and not fully
935   /// vectorizable. We do not vectorize such trees.
936   bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const;
937 
938   /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values
939   /// can be load combined in the backend. Load combining may not be allowed in
940   /// the IR optimizer, so we do not want to alter the pattern. For example,
941   /// partially transforming a scalar bswap() pattern into vector code is
942   /// effectively impossible for the backend to undo.
943   /// TODO: If load combining is allowed in the IR optimizer, this analysis
944   ///       may not be necessary.
945   bool isLoadCombineReductionCandidate(RecurKind RdxKind) const;
946 
947   /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values
948   /// can be load combined in the backend. Load combining may not be allowed in
949   /// the IR optimizer, so we do not want to alter the pattern. For example,
950   /// partially transforming a scalar bswap() pattern into vector code is
951   /// effectively impossible for the backend to undo.
952   /// TODO: If load combining is allowed in the IR optimizer, this analysis
953   ///       may not be necessary.
954   bool isLoadCombineCandidate() const;
955 
956   OptimizationRemarkEmitter *getORE() { return ORE; }
957 
958   /// This structure holds any data we need about the edges being traversed
959   /// during buildTree_rec(). We keep track of:
960   /// (i) the user TreeEntry index, and
961   /// (ii) the index of the edge.
962   struct EdgeInfo {
963     EdgeInfo() = default;
964     EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx)
965         : UserTE(UserTE), EdgeIdx(EdgeIdx) {}
966     /// The user TreeEntry.
967     TreeEntry *UserTE = nullptr;
968     /// The operand index of the use.
969     unsigned EdgeIdx = UINT_MAX;
970 #ifndef NDEBUG
971     friend inline raw_ostream &operator<<(raw_ostream &OS,
972                                           const BoUpSLP::EdgeInfo &EI) {
973       EI.dump(OS);
974       return OS;
975     }
976     /// Debug print.
977     void dump(raw_ostream &OS) const {
978       OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null")
979          << " EdgeIdx:" << EdgeIdx << "}";
980     }
981     LLVM_DUMP_METHOD void dump() const { dump(dbgs()); }
982 #endif
983   };
984 
985   /// A helper data structure to hold the operands of a vector of instructions.
986   /// This supports a fixed vector length for all operand vectors.
987   class VLOperands {
988     /// For each operand we need (i) the value, and (ii) the opcode that it
989     /// would be attached to if the expression was in a left-linearized form.
990     /// This is required to avoid illegal operand reordering.
991     /// For example:
992     /// \verbatim
993     ///                         0 Op1
994     ///                         |/
995     /// Op1 Op2   Linearized    + Op2
996     ///   \ /     ---------->   |/
997     ///    -                    -
998     ///
999     /// Op1 - Op2            (0 + Op1) - Op2
1000     /// \endverbatim
1001     ///
1002     /// Value Op1 is attached to a '+' operation, and Op2 to a '-'.
1003     ///
1004     /// Another way to think of this is to track all the operations across the
1005     /// path from the operand all the way to the root of the tree and to
1006     /// calculate the operation that corresponds to this path. For example, the
1007     /// path from Op2 to the root crosses the RHS of the '-', therefore the
1008     /// corresponding operation is a '-' (which matches the one in the
1009     /// linearized tree, as shown above).
1010     ///
1011     /// For lack of a better term, we refer to this operation as Accumulated
1012     /// Path Operation (APO).
1013     struct OperandData {
1014       OperandData() = default;
1015       OperandData(Value *V, bool APO, bool IsUsed)
1016           : V(V), APO(APO), IsUsed(IsUsed) {}
1017       /// The operand value.
1018       Value *V = nullptr;
1019       /// TreeEntries only allow a single opcode, or an alternate sequence of
1020       /// them (e.g, +, -). Therefore, we can safely use a boolean value for the
1021       /// APO. It is set to 'true' if 'V' is attached to an inverse operation
1022       /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise
1023       /// (e.g., Add/Mul)
1024       bool APO = false;
1025       /// Helper data for the reordering function.
1026       bool IsUsed = false;
1027     };
1028 
1029     /// During operand reordering, we are trying to select the operand at lane
1030     /// that matches best with the operand at the neighboring lane. Our
1031     /// selection is based on the type of value we are looking for. For example,
1032     /// if the neighboring lane has a load, we need to look for a load that is
1033     /// accessing a consecutive address. These strategies are summarized in the
1034     /// 'ReorderingMode' enumerator.
1035     enum class ReorderingMode {
1036       Load,     ///< Matching loads to consecutive memory addresses
1037       Opcode,   ///< Matching instructions based on opcode (same or alternate)
1038       Constant, ///< Matching constants
1039       Splat,    ///< Matching the same instruction multiple times (broadcast)
1040       Failed,   ///< We failed to create a vectorizable group
1041     };
1042 
1043     using OperandDataVec = SmallVector<OperandData, 2>;
1044 
1045     /// A vector of operand vectors.
1046     SmallVector<OperandDataVec, 4> OpsVec;
1047 
1048     const DataLayout &DL;
1049     ScalarEvolution &SE;
1050     const BoUpSLP &R;
1051 
1052     /// \returns the operand data at \p OpIdx and \p Lane.
1053     OperandData &getData(unsigned OpIdx, unsigned Lane) {
1054       return OpsVec[OpIdx][Lane];
1055     }
1056 
1057     /// \returns the operand data at \p OpIdx and \p Lane. Const version.
1058     const OperandData &getData(unsigned OpIdx, unsigned Lane) const {
1059       return OpsVec[OpIdx][Lane];
1060     }
1061 
1062     /// Clears the used flag for all entries.
1063     void clearUsed() {
1064       for (unsigned OpIdx = 0, NumOperands = getNumOperands();
1065            OpIdx != NumOperands; ++OpIdx)
1066         for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
1067              ++Lane)
1068           OpsVec[OpIdx][Lane].IsUsed = false;
1069     }
1070 
1071     /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2.
1072     void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) {
1073       std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]);
1074     }
1075 
1076     // The hard-coded scores listed here are not very important, though it shall
1077     // be higher for better matches to improve the resulting cost. When
1078     // computing the scores of matching one sub-tree with another, we are
1079     // basically counting the number of values that are matching. So even if all
1080     // scores are set to 1, we would still get a decent matching result.
1081     // However, sometimes we have to break ties. For example we may have to
1082     // choose between matching loads vs matching opcodes. This is what these
1083     // scores are helping us with: they provide the order of preference. Also,
1084     // this is important if the scalar is externally used or used in another
1085     // tree entry node in the different lane.
1086 
1087     /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]).
1088     static const int ScoreConsecutiveLoads = 4;
1089     /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]).
1090     static const int ScoreReversedLoads = 3;
1091     /// ExtractElementInst from same vector and consecutive indexes.
1092     static const int ScoreConsecutiveExtracts = 4;
1093     /// ExtractElementInst from same vector and reversed indices.
1094     static const int ScoreReversedExtracts = 3;
1095     /// Constants.
1096     static const int ScoreConstants = 2;
1097     /// Instructions with the same opcode.
1098     static const int ScoreSameOpcode = 2;
1099     /// Instructions with alt opcodes (e.g, add + sub).
1100     static const int ScoreAltOpcodes = 1;
1101     /// Identical instructions (a.k.a. splat or broadcast).
1102     static const int ScoreSplat = 1;
1103     /// Matching with an undef is preferable to failing.
1104     static const int ScoreUndef = 1;
1105     /// Score for failing to find a decent match.
1106     static const int ScoreFail = 0;
1107     /// Score if all users are vectorized.
1108     static const int ScoreAllUserVectorized = 1;
1109 
1110     /// \returns the score of placing \p V1 and \p V2 in consecutive lanes.
1111     /// Also, checks if \p V1 and \p V2 are compatible with instructions in \p
1112     /// MainAltOps.
1113     static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL,
1114                                ScalarEvolution &SE, int NumLanes,
1115                                ArrayRef<Value *> MainAltOps) {
1116       if (V1 == V2)
1117         return VLOperands::ScoreSplat;
1118 
1119       auto *LI1 = dyn_cast<LoadInst>(V1);
1120       auto *LI2 = dyn_cast<LoadInst>(V2);
1121       if (LI1 && LI2) {
1122         if (LI1->getParent() != LI2->getParent())
1123           return VLOperands::ScoreFail;
1124 
1125         Optional<int> Dist = getPointersDiff(
1126             LI1->getType(), LI1->getPointerOperand(), LI2->getType(),
1127             LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true);
1128         if (!Dist || *Dist == 0)
1129           return VLOperands::ScoreFail;
1130         // The distance is too large - still may be profitable to use masked
1131         // loads/gathers.
1132         if (std::abs(*Dist) > NumLanes / 2)
1133           return VLOperands::ScoreAltOpcodes;
1134         // This still will detect consecutive loads, but we might have "holes"
1135         // in some cases. It is ok for non-power-2 vectorization and may produce
1136         // better results. It should not affect current vectorization.
1137         return (*Dist > 0) ? VLOperands::ScoreConsecutiveLoads
1138                            : VLOperands::ScoreReversedLoads;
1139       }
1140 
1141       auto *C1 = dyn_cast<Constant>(V1);
1142       auto *C2 = dyn_cast<Constant>(V2);
1143       if (C1 && C2)
1144         return VLOperands::ScoreConstants;
1145 
1146       // Extracts from consecutive indexes of the same vector better score as
1147       // the extracts could be optimized away.
1148       Value *EV1;
1149       ConstantInt *Ex1Idx;
1150       if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) {
1151         // Undefs are always profitable for extractelements.
1152         if (isa<UndefValue>(V2))
1153           return VLOperands::ScoreConsecutiveExtracts;
1154         Value *EV2 = nullptr;
1155         ConstantInt *Ex2Idx = nullptr;
1156         if (match(V2,
1157                   m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx),
1158                                                          m_Undef())))) {
1159           // Undefs are always profitable for extractelements.
1160           if (!Ex2Idx)
1161             return VLOperands::ScoreConsecutiveExtracts;
1162           if (isUndefVector(EV2) && EV2->getType() == EV1->getType())
1163             return VLOperands::ScoreConsecutiveExtracts;
1164           if (EV2 == EV1) {
1165             int Idx1 = Ex1Idx->getZExtValue();
1166             int Idx2 = Ex2Idx->getZExtValue();
1167             int Dist = Idx2 - Idx1;
1168             // The distance is too large - still may be profitable to use
1169             // shuffles.
1170             if (std::abs(Dist) == 0)
1171               return VLOperands::ScoreSplat;
1172             if (std::abs(Dist) > NumLanes / 2)
1173               return VLOperands::ScoreSameOpcode;
1174             return (Dist > 0) ? VLOperands::ScoreConsecutiveExtracts
1175                               : VLOperands::ScoreReversedExtracts;
1176           }
1177           return VLOperands::ScoreAltOpcodes;
1178         }
1179         return VLOperands::ScoreFail;
1180       }
1181 
1182       auto *I1 = dyn_cast<Instruction>(V1);
1183       auto *I2 = dyn_cast<Instruction>(V2);
1184       if (I1 && I2) {
1185         if (I1->getParent() != I2->getParent())
1186           return VLOperands::ScoreFail;
1187         SmallVector<Value *, 4> Ops(MainAltOps.begin(), MainAltOps.end());
1188         Ops.push_back(I1);
1189         Ops.push_back(I2);
1190         InstructionsState S = getSameOpcode(Ops);
1191         // Note: Only consider instructions with <= 2 operands to avoid
1192         // complexity explosion.
1193         if (S.getOpcode() &&
1194             (S.MainOp->getNumOperands() <= 2 || !MainAltOps.empty() ||
1195              !S.isAltShuffle()) &&
1196             all_of(Ops, [&S](Value *V) {
1197               return cast<Instruction>(V)->getNumOperands() ==
1198                      S.MainOp->getNumOperands();
1199             }))
1200           return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes
1201                                   : VLOperands::ScoreSameOpcode;
1202       }
1203 
1204       if (isa<UndefValue>(V2))
1205         return VLOperands::ScoreUndef;
1206 
1207       return VLOperands::ScoreFail;
1208     }
1209 
1210     /// \param Lane lane of the operands under analysis.
1211     /// \param OpIdx operand index in \p Lane lane we're looking the best
1212     /// candidate for.
1213     /// \param Idx operand index of the current candidate value.
1214     /// \returns The additional score due to possible broadcasting of the
1215     /// elements in the lane. It is more profitable to have power-of-2 unique
1216     /// elements in the lane, it will be vectorized with higher probability
1217     /// after removing duplicates. Currently the SLP vectorizer supports only
1218     /// vectorization of the power-of-2 number of unique scalars.
1219     int getSplatScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const {
1220       Value *IdxLaneV = getData(Idx, Lane).V;
1221       if (!isa<Instruction>(IdxLaneV) || IdxLaneV == getData(OpIdx, Lane).V)
1222         return 0;
1223       SmallPtrSet<Value *, 4> Uniques;
1224       for (unsigned Ln = 0, E = getNumLanes(); Ln < E; ++Ln) {
1225         if (Ln == Lane)
1226           continue;
1227         Value *OpIdxLnV = getData(OpIdx, Ln).V;
1228         if (!isa<Instruction>(OpIdxLnV))
1229           return 0;
1230         Uniques.insert(OpIdxLnV);
1231       }
1232       int UniquesCount = Uniques.size();
1233       int UniquesCntWithIdxLaneV =
1234           Uniques.contains(IdxLaneV) ? UniquesCount : UniquesCount + 1;
1235       Value *OpIdxLaneV = getData(OpIdx, Lane).V;
1236       int UniquesCntWithOpIdxLaneV =
1237           Uniques.contains(OpIdxLaneV) ? UniquesCount : UniquesCount + 1;
1238       if (UniquesCntWithIdxLaneV == UniquesCntWithOpIdxLaneV)
1239         return 0;
1240       return (PowerOf2Ceil(UniquesCntWithOpIdxLaneV) -
1241               UniquesCntWithOpIdxLaneV) -
1242              (PowerOf2Ceil(UniquesCntWithIdxLaneV) - UniquesCntWithIdxLaneV);
1243     }
1244 
1245     /// \param Lane lane of the operands under analysis.
1246     /// \param OpIdx operand index in \p Lane lane we're looking the best
1247     /// candidate for.
1248     /// \param Idx operand index of the current candidate value.
1249     /// \returns The additional score for the scalar which users are all
1250     /// vectorized.
1251     int getExternalUseScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const {
1252       Value *IdxLaneV = getData(Idx, Lane).V;
1253       Value *OpIdxLaneV = getData(OpIdx, Lane).V;
1254       // Do not care about number of uses for vector-like instructions
1255       // (extractelement/extractvalue with constant indices), they are extracts
1256       // themselves and already externally used. Vectorization of such
1257       // instructions does not add extra extractelement instruction, just may
1258       // remove it.
1259       if (isVectorLikeInstWithConstOps(IdxLaneV) &&
1260           isVectorLikeInstWithConstOps(OpIdxLaneV))
1261         return VLOperands::ScoreAllUserVectorized;
1262       auto *IdxLaneI = dyn_cast<Instruction>(IdxLaneV);
1263       if (!IdxLaneI || !isa<Instruction>(OpIdxLaneV))
1264         return 0;
1265       return R.areAllUsersVectorized(IdxLaneI, None)
1266                  ? VLOperands::ScoreAllUserVectorized
1267                  : 0;
1268     }
1269 
1270     /// Go through the operands of \p LHS and \p RHS recursively until \p
1271     /// MaxLevel, and return the cummulative score. For example:
1272     /// \verbatim
1273     ///  A[0]  B[0]  A[1]  B[1]  C[0] D[0]  B[1] A[1]
1274     ///     \ /         \ /         \ /        \ /
1275     ///      +           +           +          +
1276     ///     G1          G2          G3         G4
1277     /// \endverbatim
1278     /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at
1279     /// each level recursively, accumulating the score. It starts from matching
1280     /// the additions at level 0, then moves on to the loads (level 1). The
1281     /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and
1282     /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while
1283     /// {A[0],C[0]} has a score of VLOperands::ScoreFail.
1284     /// Please note that the order of the operands does not matter, as we
1285     /// evaluate the score of all profitable combinations of operands. In
1286     /// other words the score of G1 and G4 is the same as G1 and G2. This
1287     /// heuristic is based on ideas described in:
1288     ///   Look-ahead SLP: Auto-vectorization in the presence of commutative
1289     ///   operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha,
1290     ///   Luís F. W. Góes
1291     int getScoreAtLevelRec(Value *LHS, Value *RHS, int CurrLevel, int MaxLevel,
1292                            ArrayRef<Value *> MainAltOps) {
1293 
1294       // Get the shallow score of V1 and V2.
1295       int ShallowScoreAtThisLevel =
1296           getShallowScore(LHS, RHS, DL, SE, getNumLanes(), MainAltOps);
1297 
1298       // If reached MaxLevel,
1299       //  or if V1 and V2 are not instructions,
1300       //  or if they are SPLAT,
1301       //  or if they are not consecutive,
1302       //  or if profitable to vectorize loads or extractelements, early return
1303       //  the current cost.
1304       auto *I1 = dyn_cast<Instruction>(LHS);
1305       auto *I2 = dyn_cast<Instruction>(RHS);
1306       if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 ||
1307           ShallowScoreAtThisLevel == VLOperands::ScoreFail ||
1308           (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) ||
1309             (I1->getNumOperands() > 2 && I2->getNumOperands() > 2) ||
1310             (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) &&
1311            ShallowScoreAtThisLevel))
1312         return ShallowScoreAtThisLevel;
1313       assert(I1 && I2 && "Should have early exited.");
1314 
1315       // Contains the I2 operand indexes that got matched with I1 operands.
1316       SmallSet<unsigned, 4> Op2Used;
1317 
1318       // Recursion towards the operands of I1 and I2. We are trying all possible
1319       // operand pairs, and keeping track of the best score.
1320       for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands();
1321            OpIdx1 != NumOperands1; ++OpIdx1) {
1322         // Try to pair op1I with the best operand of I2.
1323         int MaxTmpScore = 0;
1324         unsigned MaxOpIdx2 = 0;
1325         bool FoundBest = false;
1326         // If I2 is commutative try all combinations.
1327         unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1;
1328         unsigned ToIdx = isCommutative(I2)
1329                              ? I2->getNumOperands()
1330                              : std::min(I2->getNumOperands(), OpIdx1 + 1);
1331         assert(FromIdx <= ToIdx && "Bad index");
1332         for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) {
1333           // Skip operands already paired with OpIdx1.
1334           if (Op2Used.count(OpIdx2))
1335             continue;
1336           // Recursively calculate the cost at each level
1337           int TmpScore =
1338               getScoreAtLevelRec(I1->getOperand(OpIdx1), I2->getOperand(OpIdx2),
1339                                  CurrLevel + 1, MaxLevel, None);
1340           // Look for the best score.
1341           if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) {
1342             MaxTmpScore = TmpScore;
1343             MaxOpIdx2 = OpIdx2;
1344             FoundBest = true;
1345           }
1346         }
1347         if (FoundBest) {
1348           // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it.
1349           Op2Used.insert(MaxOpIdx2);
1350           ShallowScoreAtThisLevel += MaxTmpScore;
1351         }
1352       }
1353       return ShallowScoreAtThisLevel;
1354     }
1355 
1356     /// Score scaling factor for fully compatible instructions but with
1357     /// different number of external uses. Allows better selection of the
1358     /// instructions with less external uses.
1359     static const int ScoreScaleFactor = 10;
1360 
1361     /// \Returns the look-ahead score, which tells us how much the sub-trees
1362     /// rooted at \p LHS and \p RHS match, the more they match the higher the
1363     /// score. This helps break ties in an informed way when we cannot decide on
1364     /// the order of the operands by just considering the immediate
1365     /// predecessors.
1366     int getLookAheadScore(Value *LHS, Value *RHS, ArrayRef<Value *> MainAltOps,
1367                           int Lane, unsigned OpIdx, unsigned Idx,
1368                           bool &IsUsed) {
1369       int Score =
1370           getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth, MainAltOps);
1371       if (Score) {
1372         int SplatScore = getSplatScore(Lane, OpIdx, Idx);
1373         if (Score <= -SplatScore) {
1374           // Set the minimum score for splat-like sequence to avoid setting
1375           // failed state.
1376           Score = 1;
1377         } else {
1378           Score += SplatScore;
1379           // Scale score to see the difference between different operands
1380           // and similar operands but all vectorized/not all vectorized
1381           // uses. It does not affect actual selection of the best
1382           // compatible operand in general, just allows to select the
1383           // operand with all vectorized uses.
1384           Score *= ScoreScaleFactor;
1385           Score += getExternalUseScore(Lane, OpIdx, Idx);
1386           IsUsed = true;
1387         }
1388       }
1389       return Score;
1390     }
1391 
1392     /// Best defined scores per lanes between the passes. Used to choose the
1393     /// best operand (with the highest score) between the passes.
1394     /// The key - {Operand Index, Lane}.
1395     /// The value - the best score between the passes for the lane and the
1396     /// operand.
1397     SmallDenseMap<std::pair<unsigned, unsigned>, unsigned, 8>
1398         BestScoresPerLanes;
1399 
1400     // Search all operands in Ops[*][Lane] for the one that matches best
1401     // Ops[OpIdx][LastLane] and return its opreand index.
1402     // If no good match can be found, return None.
1403     Optional<unsigned> getBestOperand(unsigned OpIdx, int Lane, int LastLane,
1404                                       ArrayRef<ReorderingMode> ReorderingModes,
1405                                       ArrayRef<Value *> MainAltOps) {
1406       unsigned NumOperands = getNumOperands();
1407 
1408       // The operand of the previous lane at OpIdx.
1409       Value *OpLastLane = getData(OpIdx, LastLane).V;
1410 
1411       // Our strategy mode for OpIdx.
1412       ReorderingMode RMode = ReorderingModes[OpIdx];
1413       if (RMode == ReorderingMode::Failed)
1414         return None;
1415 
1416       // The linearized opcode of the operand at OpIdx, Lane.
1417       bool OpIdxAPO = getData(OpIdx, Lane).APO;
1418 
1419       // The best operand index and its score.
1420       // Sometimes we have more than one option (e.g., Opcode and Undefs), so we
1421       // are using the score to differentiate between the two.
1422       struct BestOpData {
1423         Optional<unsigned> Idx = None;
1424         unsigned Score = 0;
1425       } BestOp;
1426       BestOp.Score =
1427           BestScoresPerLanes.try_emplace(std::make_pair(OpIdx, Lane), 0)
1428               .first->second;
1429 
1430       // Track if the operand must be marked as used. If the operand is set to
1431       // Score 1 explicitly (because of non power-of-2 unique scalars, we may
1432       // want to reestimate the operands again on the following iterations).
1433       bool IsUsed =
1434           RMode == ReorderingMode::Splat || RMode == ReorderingMode::Constant;
1435       // Iterate through all unused operands and look for the best.
1436       for (unsigned Idx = 0; Idx != NumOperands; ++Idx) {
1437         // Get the operand at Idx and Lane.
1438         OperandData &OpData = getData(Idx, Lane);
1439         Value *Op = OpData.V;
1440         bool OpAPO = OpData.APO;
1441 
1442         // Skip already selected operands.
1443         if (OpData.IsUsed)
1444           continue;
1445 
1446         // Skip if we are trying to move the operand to a position with a
1447         // different opcode in the linearized tree form. This would break the
1448         // semantics.
1449         if (OpAPO != OpIdxAPO)
1450           continue;
1451 
1452         // Look for an operand that matches the current mode.
1453         switch (RMode) {
1454         case ReorderingMode::Load:
1455         case ReorderingMode::Constant:
1456         case ReorderingMode::Opcode: {
1457           bool LeftToRight = Lane > LastLane;
1458           Value *OpLeft = (LeftToRight) ? OpLastLane : Op;
1459           Value *OpRight = (LeftToRight) ? Op : OpLastLane;
1460           int Score = getLookAheadScore(OpLeft, OpRight, MainAltOps, Lane,
1461                                         OpIdx, Idx, IsUsed);
1462           if (Score > static_cast<int>(BestOp.Score)) {
1463             BestOp.Idx = Idx;
1464             BestOp.Score = Score;
1465             BestScoresPerLanes[std::make_pair(OpIdx, Lane)] = Score;
1466           }
1467           break;
1468         }
1469         case ReorderingMode::Splat:
1470           if (Op == OpLastLane)
1471             BestOp.Idx = Idx;
1472           break;
1473         case ReorderingMode::Failed:
1474           llvm_unreachable("Not expected Failed reordering mode.");
1475         }
1476       }
1477 
1478       if (BestOp.Idx) {
1479         getData(BestOp.Idx.getValue(), Lane).IsUsed = IsUsed;
1480         return BestOp.Idx;
1481       }
1482       // If we could not find a good match return None.
1483       return None;
1484     }
1485 
1486     /// Helper for reorderOperandVecs.
1487     /// \returns the lane that we should start reordering from. This is the one
1488     /// which has the least number of operands that can freely move about or
1489     /// less profitable because it already has the most optimal set of operands.
1490     unsigned getBestLaneToStartReordering() const {
1491       unsigned Min = UINT_MAX;
1492       unsigned SameOpNumber = 0;
1493       // std::pair<unsigned, unsigned> is used to implement a simple voting
1494       // algorithm and choose the lane with the least number of operands that
1495       // can freely move about or less profitable because it already has the
1496       // most optimal set of operands. The first unsigned is a counter for
1497       // voting, the second unsigned is the counter of lanes with instructions
1498       // with same/alternate opcodes and same parent basic block.
1499       MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap;
1500       // Try to be closer to the original results, if we have multiple lanes
1501       // with same cost. If 2 lanes have the same cost, use the one with the
1502       // lowest index.
1503       for (int I = getNumLanes(); I > 0; --I) {
1504         unsigned Lane = I - 1;
1505         OperandsOrderData NumFreeOpsHash =
1506             getMaxNumOperandsThatCanBeReordered(Lane);
1507         // Compare the number of operands that can move and choose the one with
1508         // the least number.
1509         if (NumFreeOpsHash.NumOfAPOs < Min) {
1510           Min = NumFreeOpsHash.NumOfAPOs;
1511           SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent;
1512           HashMap.clear();
1513           HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane);
1514         } else if (NumFreeOpsHash.NumOfAPOs == Min &&
1515                    NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) {
1516           // Select the most optimal lane in terms of number of operands that
1517           // should be moved around.
1518           SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent;
1519           HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane);
1520         } else if (NumFreeOpsHash.NumOfAPOs == Min &&
1521                    NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) {
1522           auto It = HashMap.find(NumFreeOpsHash.Hash);
1523           if (It == HashMap.end())
1524             HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane);
1525           else
1526             ++It->second.first;
1527         }
1528       }
1529       // Select the lane with the minimum counter.
1530       unsigned BestLane = 0;
1531       unsigned CntMin = UINT_MAX;
1532       for (const auto &Data : reverse(HashMap)) {
1533         if (Data.second.first < CntMin) {
1534           CntMin = Data.second.first;
1535           BestLane = Data.second.second;
1536         }
1537       }
1538       return BestLane;
1539     }
1540 
1541     /// Data structure that helps to reorder operands.
1542     struct OperandsOrderData {
1543       /// The best number of operands with the same APOs, which can be
1544       /// reordered.
1545       unsigned NumOfAPOs = UINT_MAX;
1546       /// Number of operands with the same/alternate instruction opcode and
1547       /// parent.
1548       unsigned NumOpsWithSameOpcodeParent = 0;
1549       /// Hash for the actual operands ordering.
1550       /// Used to count operands, actually their position id and opcode
1551       /// value. It is used in the voting mechanism to find the lane with the
1552       /// least number of operands that can freely move about or less profitable
1553       /// because it already has the most optimal set of operands. Can be
1554       /// replaced with SmallVector<unsigned> instead but hash code is faster
1555       /// and requires less memory.
1556       unsigned Hash = 0;
1557     };
1558     /// \returns the maximum number of operands that are allowed to be reordered
1559     /// for \p Lane and the number of compatible instructions(with the same
1560     /// parent/opcode). This is used as a heuristic for selecting the first lane
1561     /// to start operand reordering.
1562     OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const {
1563       unsigned CntTrue = 0;
1564       unsigned NumOperands = getNumOperands();
1565       // Operands with the same APO can be reordered. We therefore need to count
1566       // how many of them we have for each APO, like this: Cnt[APO] = x.
1567       // Since we only have two APOs, namely true and false, we can avoid using
1568       // a map. Instead we can simply count the number of operands that
1569       // correspond to one of them (in this case the 'true' APO), and calculate
1570       // the other by subtracting it from the total number of operands.
1571       // Operands with the same instruction opcode and parent are more
1572       // profitable since we don't need to move them in many cases, with a high
1573       // probability such lane already can be vectorized effectively.
1574       bool AllUndefs = true;
1575       unsigned NumOpsWithSameOpcodeParent = 0;
1576       Instruction *OpcodeI = nullptr;
1577       BasicBlock *Parent = nullptr;
1578       unsigned Hash = 0;
1579       for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1580         const OperandData &OpData = getData(OpIdx, Lane);
1581         if (OpData.APO)
1582           ++CntTrue;
1583         // Use Boyer-Moore majority voting for finding the majority opcode and
1584         // the number of times it occurs.
1585         if (auto *I = dyn_cast<Instruction>(OpData.V)) {
1586           if (!OpcodeI || !getSameOpcode({OpcodeI, I}).getOpcode() ||
1587               I->getParent() != Parent) {
1588             if (NumOpsWithSameOpcodeParent == 0) {
1589               NumOpsWithSameOpcodeParent = 1;
1590               OpcodeI = I;
1591               Parent = I->getParent();
1592             } else {
1593               --NumOpsWithSameOpcodeParent;
1594             }
1595           } else {
1596             ++NumOpsWithSameOpcodeParent;
1597           }
1598         }
1599         Hash = hash_combine(
1600             Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1)));
1601         AllUndefs = AllUndefs && isa<UndefValue>(OpData.V);
1602       }
1603       if (AllUndefs)
1604         return {};
1605       OperandsOrderData Data;
1606       Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue);
1607       Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent;
1608       Data.Hash = Hash;
1609       return Data;
1610     }
1611 
1612     /// Go through the instructions in VL and append their operands.
1613     void appendOperandsOfVL(ArrayRef<Value *> VL) {
1614       assert(!VL.empty() && "Bad VL");
1615       assert((empty() || VL.size() == getNumLanes()) &&
1616              "Expected same number of lanes");
1617       assert(isa<Instruction>(VL[0]) && "Expected instruction");
1618       unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands();
1619       OpsVec.resize(NumOperands);
1620       unsigned NumLanes = VL.size();
1621       for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1622         OpsVec[OpIdx].resize(NumLanes);
1623         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1624           assert(isa<Instruction>(VL[Lane]) && "Expected instruction");
1625           // Our tree has just 3 nodes: the root and two operands.
1626           // It is therefore trivial to get the APO. We only need to check the
1627           // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or
1628           // RHS operand. The LHS operand of both add and sub is never attached
1629           // to an inversese operation in the linearized form, therefore its APO
1630           // is false. The RHS is true only if VL[Lane] is an inverse operation.
1631 
1632           // Since operand reordering is performed on groups of commutative
1633           // operations or alternating sequences (e.g., +, -), we can safely
1634           // tell the inverse operations by checking commutativity.
1635           bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane]));
1636           bool APO = (OpIdx == 0) ? false : IsInverseOperation;
1637           OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx),
1638                                  APO, false};
1639         }
1640       }
1641     }
1642 
1643     /// \returns the number of operands.
1644     unsigned getNumOperands() const { return OpsVec.size(); }
1645 
1646     /// \returns the number of lanes.
1647     unsigned getNumLanes() const { return OpsVec[0].size(); }
1648 
1649     /// \returns the operand value at \p OpIdx and \p Lane.
1650     Value *getValue(unsigned OpIdx, unsigned Lane) const {
1651       return getData(OpIdx, Lane).V;
1652     }
1653 
1654     /// \returns true if the data structure is empty.
1655     bool empty() const { return OpsVec.empty(); }
1656 
1657     /// Clears the data.
1658     void clear() { OpsVec.clear(); }
1659 
1660     /// \Returns true if there are enough operands identical to \p Op to fill
1661     /// the whole vector.
1662     /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow.
1663     bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) {
1664       bool OpAPO = getData(OpIdx, Lane).APO;
1665       for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) {
1666         if (Ln == Lane)
1667           continue;
1668         // This is set to true if we found a candidate for broadcast at Lane.
1669         bool FoundCandidate = false;
1670         for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) {
1671           OperandData &Data = getData(OpI, Ln);
1672           if (Data.APO != OpAPO || Data.IsUsed)
1673             continue;
1674           if (Data.V == Op) {
1675             FoundCandidate = true;
1676             Data.IsUsed = true;
1677             break;
1678           }
1679         }
1680         if (!FoundCandidate)
1681           return false;
1682       }
1683       return true;
1684     }
1685 
1686   public:
1687     /// Initialize with all the operands of the instruction vector \p RootVL.
1688     VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL,
1689                ScalarEvolution &SE, const BoUpSLP &R)
1690         : DL(DL), SE(SE), R(R) {
1691       // Append all the operands of RootVL.
1692       appendOperandsOfVL(RootVL);
1693     }
1694 
1695     /// \Returns a value vector with the operands across all lanes for the
1696     /// opearnd at \p OpIdx.
1697     ValueList getVL(unsigned OpIdx) const {
1698       ValueList OpVL(OpsVec[OpIdx].size());
1699       assert(OpsVec[OpIdx].size() == getNumLanes() &&
1700              "Expected same num of lanes across all operands");
1701       for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane)
1702         OpVL[Lane] = OpsVec[OpIdx][Lane].V;
1703       return OpVL;
1704     }
1705 
1706     // Performs operand reordering for 2 or more operands.
1707     // The original operands are in OrigOps[OpIdx][Lane].
1708     // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'.
1709     void reorder() {
1710       unsigned NumOperands = getNumOperands();
1711       unsigned NumLanes = getNumLanes();
1712       // Each operand has its own mode. We are using this mode to help us select
1713       // the instructions for each lane, so that they match best with the ones
1714       // we have selected so far.
1715       SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands);
1716 
1717       // This is a greedy single-pass algorithm. We are going over each lane
1718       // once and deciding on the best order right away with no back-tracking.
1719       // However, in order to increase its effectiveness, we start with the lane
1720       // that has operands that can move the least. For example, given the
1721       // following lanes:
1722       //  Lane 0 : A[0] = B[0] + C[0]   // Visited 3rd
1723       //  Lane 1 : A[1] = C[1] - B[1]   // Visited 1st
1724       //  Lane 2 : A[2] = B[2] + C[2]   // Visited 2nd
1725       //  Lane 3 : A[3] = C[3] - B[3]   // Visited 4th
1726       // we will start at Lane 1, since the operands of the subtraction cannot
1727       // be reordered. Then we will visit the rest of the lanes in a circular
1728       // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3.
1729 
1730       // Find the first lane that we will start our search from.
1731       unsigned FirstLane = getBestLaneToStartReordering();
1732 
1733       // Initialize the modes.
1734       for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1735         Value *OpLane0 = getValue(OpIdx, FirstLane);
1736         // Keep track if we have instructions with all the same opcode on one
1737         // side.
1738         if (isa<LoadInst>(OpLane0))
1739           ReorderingModes[OpIdx] = ReorderingMode::Load;
1740         else if (isa<Instruction>(OpLane0)) {
1741           // Check if OpLane0 should be broadcast.
1742           if (shouldBroadcast(OpLane0, OpIdx, FirstLane))
1743             ReorderingModes[OpIdx] = ReorderingMode::Splat;
1744           else
1745             ReorderingModes[OpIdx] = ReorderingMode::Opcode;
1746         }
1747         else if (isa<Constant>(OpLane0))
1748           ReorderingModes[OpIdx] = ReorderingMode::Constant;
1749         else if (isa<Argument>(OpLane0))
1750           // Our best hope is a Splat. It may save some cost in some cases.
1751           ReorderingModes[OpIdx] = ReorderingMode::Splat;
1752         else
1753           // NOTE: This should be unreachable.
1754           ReorderingModes[OpIdx] = ReorderingMode::Failed;
1755       }
1756 
1757       // Check that we don't have same operands. No need to reorder if operands
1758       // are just perfect diamond or shuffled diamond match. Do not do it only
1759       // for possible broadcasts or non-power of 2 number of scalars (just for
1760       // now).
1761       auto &&SkipReordering = [this]() {
1762         SmallPtrSet<Value *, 4> UniqueValues;
1763         ArrayRef<OperandData> Op0 = OpsVec.front();
1764         for (const OperandData &Data : Op0)
1765           UniqueValues.insert(Data.V);
1766         for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) {
1767           if (any_of(Op, [&UniqueValues](const OperandData &Data) {
1768                 return !UniqueValues.contains(Data.V);
1769               }))
1770             return false;
1771         }
1772         // TODO: Check if we can remove a check for non-power-2 number of
1773         // scalars after full support of non-power-2 vectorization.
1774         return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size());
1775       };
1776 
1777       // If the initial strategy fails for any of the operand indexes, then we
1778       // perform reordering again in a second pass. This helps avoid assigning
1779       // high priority to the failed strategy, and should improve reordering for
1780       // the non-failed operand indexes.
1781       for (int Pass = 0; Pass != 2; ++Pass) {
1782         // Check if no need to reorder operands since they're are perfect or
1783         // shuffled diamond match.
1784         // Need to to do it to avoid extra external use cost counting for
1785         // shuffled matches, which may cause regressions.
1786         if (SkipReordering())
1787           break;
1788         // Skip the second pass if the first pass did not fail.
1789         bool StrategyFailed = false;
1790         // Mark all operand data as free to use.
1791         clearUsed();
1792         // We keep the original operand order for the FirstLane, so reorder the
1793         // rest of the lanes. We are visiting the nodes in a circular fashion,
1794         // using FirstLane as the center point and increasing the radius
1795         // distance.
1796         SmallVector<SmallVector<Value *, 2>> MainAltOps(NumOperands);
1797         for (unsigned I = 0; I < NumOperands; ++I)
1798           MainAltOps[I].push_back(getData(I, FirstLane).V);
1799 
1800         for (unsigned Distance = 1; Distance != NumLanes; ++Distance) {
1801           // Visit the lane on the right and then the lane on the left.
1802           for (int Direction : {+1, -1}) {
1803             int Lane = FirstLane + Direction * Distance;
1804             if (Lane < 0 || Lane >= (int)NumLanes)
1805               continue;
1806             int LastLane = Lane - Direction;
1807             assert(LastLane >= 0 && LastLane < (int)NumLanes &&
1808                    "Out of bounds");
1809             // Look for a good match for each operand.
1810             for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1811               // Search for the operand that matches SortedOps[OpIdx][Lane-1].
1812               Optional<unsigned> BestIdx = getBestOperand(
1813                   OpIdx, Lane, LastLane, ReorderingModes, MainAltOps[OpIdx]);
1814               // By not selecting a value, we allow the operands that follow to
1815               // select a better matching value. We will get a non-null value in
1816               // the next run of getBestOperand().
1817               if (BestIdx) {
1818                 // Swap the current operand with the one returned by
1819                 // getBestOperand().
1820                 swap(OpIdx, BestIdx.getValue(), Lane);
1821               } else {
1822                 // We failed to find a best operand, set mode to 'Failed'.
1823                 ReorderingModes[OpIdx] = ReorderingMode::Failed;
1824                 // Enable the second pass.
1825                 StrategyFailed = true;
1826               }
1827               // Try to get the alternate opcode and follow it during analysis.
1828               if (MainAltOps[OpIdx].size() != 2) {
1829                 OperandData &AltOp = getData(OpIdx, Lane);
1830                 InstructionsState OpS =
1831                     getSameOpcode({MainAltOps[OpIdx].front(), AltOp.V});
1832                 if (OpS.getOpcode() && OpS.isAltShuffle())
1833                   MainAltOps[OpIdx].push_back(AltOp.V);
1834               }
1835             }
1836           }
1837         }
1838         // Skip second pass if the strategy did not fail.
1839         if (!StrategyFailed)
1840           break;
1841       }
1842     }
1843 
1844 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1845     LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) {
1846       switch (RMode) {
1847       case ReorderingMode::Load:
1848         return "Load";
1849       case ReorderingMode::Opcode:
1850         return "Opcode";
1851       case ReorderingMode::Constant:
1852         return "Constant";
1853       case ReorderingMode::Splat:
1854         return "Splat";
1855       case ReorderingMode::Failed:
1856         return "Failed";
1857       }
1858       llvm_unreachable("Unimplemented Reordering Type");
1859     }
1860 
1861     LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode,
1862                                                    raw_ostream &OS) {
1863       return OS << getModeStr(RMode);
1864     }
1865 
1866     /// Debug print.
1867     LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) {
1868       printMode(RMode, dbgs());
1869     }
1870 
1871     friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) {
1872       return printMode(RMode, OS);
1873     }
1874 
1875     LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const {
1876       const unsigned Indent = 2;
1877       unsigned Cnt = 0;
1878       for (const OperandDataVec &OpDataVec : OpsVec) {
1879         OS << "Operand " << Cnt++ << "\n";
1880         for (const OperandData &OpData : OpDataVec) {
1881           OS.indent(Indent) << "{";
1882           if (Value *V = OpData.V)
1883             OS << *V;
1884           else
1885             OS << "null";
1886           OS << ", APO:" << OpData.APO << "}\n";
1887         }
1888         OS << "\n";
1889       }
1890       return OS;
1891     }
1892 
1893     /// Debug print.
1894     LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
1895 #endif
1896   };
1897 
1898   /// Checks if the instruction is marked for deletion.
1899   bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); }
1900 
1901   /// Marks values operands for later deletion by replacing them with Undefs.
1902   void eraseInstructions(ArrayRef<Value *> AV);
1903 
1904   ~BoUpSLP();
1905 
1906 private:
1907   /// Checks if all users of \p I are the part of the vectorization tree.
1908   bool areAllUsersVectorized(Instruction *I,
1909                              ArrayRef<Value *> VectorizedVals) const;
1910 
1911   /// \returns the cost of the vectorizable entry.
1912   InstructionCost getEntryCost(const TreeEntry *E,
1913                                ArrayRef<Value *> VectorizedVals);
1914 
1915   /// This is the recursive part of buildTree.
1916   void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth,
1917                      const EdgeInfo &EI);
1918 
1919   /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can
1920   /// be vectorized to use the original vector (or aggregate "bitcast" to a
1921   /// vector) and sets \p CurrentOrder to the identity permutation; otherwise
1922   /// returns false, setting \p CurrentOrder to either an empty vector or a
1923   /// non-identity permutation that allows to reuse extract instructions.
1924   bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
1925                        SmallVectorImpl<unsigned> &CurrentOrder) const;
1926 
1927   /// Vectorize a single entry in the tree.
1928   Value *vectorizeTree(TreeEntry *E);
1929 
1930   /// Vectorize a single entry in the tree, starting in \p VL.
1931   Value *vectorizeTree(ArrayRef<Value *> VL);
1932 
1933   /// \returns the scalarization cost for this type. Scalarization in this
1934   /// context means the creation of vectors from a group of scalars. If \p
1935   /// NeedToShuffle is true, need to add a cost of reshuffling some of the
1936   /// vector elements.
1937   InstructionCost getGatherCost(FixedVectorType *Ty,
1938                                 const APInt &ShuffledIndices,
1939                                 bool NeedToShuffle) const;
1940 
1941   /// Checks if the gathered \p VL can be represented as shuffle(s) of previous
1942   /// tree entries.
1943   /// \returns ShuffleKind, if gathered values can be represented as shuffles of
1944   /// previous tree entries. \p Mask is filled with the shuffle mask.
1945   Optional<TargetTransformInfo::ShuffleKind>
1946   isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask,
1947                         SmallVectorImpl<const TreeEntry *> &Entries);
1948 
1949   /// \returns the scalarization cost for this list of values. Assuming that
1950   /// this subtree gets vectorized, we may need to extract the values from the
1951   /// roots. This method calculates the cost of extracting the values.
1952   InstructionCost getGatherCost(ArrayRef<Value *> VL) const;
1953 
1954   /// Set the Builder insert point to one after the last instruction in
1955   /// the bundle
1956   void setInsertPointAfterBundle(const TreeEntry *E);
1957 
1958   /// \returns a vector from a collection of scalars in \p VL.
1959   Value *gather(ArrayRef<Value *> VL);
1960 
1961   /// \returns whether the VectorizableTree is fully vectorizable and will
1962   /// be beneficial even the tree height is tiny.
1963   bool isFullyVectorizableTinyTree(bool ForReduction) const;
1964 
1965   /// Reorder commutative or alt operands to get better probability of
1966   /// generating vectorized code.
1967   static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
1968                                              SmallVectorImpl<Value *> &Left,
1969                                              SmallVectorImpl<Value *> &Right,
1970                                              const DataLayout &DL,
1971                                              ScalarEvolution &SE,
1972                                              const BoUpSLP &R);
1973   struct TreeEntry {
1974     using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>;
1975     TreeEntry(VecTreeTy &Container) : Container(Container) {}
1976 
1977     /// \returns true if the scalars in VL are equal to this entry.
1978     bool isSame(ArrayRef<Value *> VL) const {
1979       auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) {
1980         if (Mask.size() != VL.size() && VL.size() == Scalars.size())
1981           return std::equal(VL.begin(), VL.end(), Scalars.begin());
1982         return VL.size() == Mask.size() &&
1983                std::equal(VL.begin(), VL.end(), Mask.begin(),
1984                           [Scalars](Value *V, int Idx) {
1985                             return (isa<UndefValue>(V) &&
1986                                     Idx == UndefMaskElem) ||
1987                                    (Idx != UndefMaskElem && V == Scalars[Idx]);
1988                           });
1989       };
1990       if (!ReorderIndices.empty()) {
1991         // TODO: implement matching if the nodes are just reordered, still can
1992         // treat the vector as the same if the list of scalars matches VL
1993         // directly, without reordering.
1994         SmallVector<int> Mask;
1995         inversePermutation(ReorderIndices, Mask);
1996         if (VL.size() == Scalars.size())
1997           return IsSame(Scalars, Mask);
1998         if (VL.size() == ReuseShuffleIndices.size()) {
1999           ::addMask(Mask, ReuseShuffleIndices);
2000           return IsSame(Scalars, Mask);
2001         }
2002         return false;
2003       }
2004       return IsSame(Scalars, ReuseShuffleIndices);
2005     }
2006 
2007     /// \returns true if current entry has same operands as \p TE.
2008     bool hasEqualOperands(const TreeEntry &TE) const {
2009       if (TE.getNumOperands() != getNumOperands())
2010         return false;
2011       SmallBitVector Used(getNumOperands());
2012       for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
2013         unsigned PrevCount = Used.count();
2014         for (unsigned K = 0; K < E; ++K) {
2015           if (Used.test(K))
2016             continue;
2017           if (getOperand(K) == TE.getOperand(I)) {
2018             Used.set(K);
2019             break;
2020           }
2021         }
2022         // Check if we actually found the matching operand.
2023         if (PrevCount == Used.count())
2024           return false;
2025       }
2026       return true;
2027     }
2028 
2029     /// \return Final vectorization factor for the node. Defined by the total
2030     /// number of vectorized scalars, including those, used several times in the
2031     /// entry and counted in the \a ReuseShuffleIndices, if any.
2032     unsigned getVectorFactor() const {
2033       if (!ReuseShuffleIndices.empty())
2034         return ReuseShuffleIndices.size();
2035       return Scalars.size();
2036     };
2037 
2038     /// A vector of scalars.
2039     ValueList Scalars;
2040 
2041     /// The Scalars are vectorized into this value. It is initialized to Null.
2042     Value *VectorizedValue = nullptr;
2043 
2044     /// Do we need to gather this sequence or vectorize it
2045     /// (either with vector instruction or with scatter/gather
2046     /// intrinsics for store/load)?
2047     enum EntryState { Vectorize, ScatterVectorize, NeedToGather };
2048     EntryState State;
2049 
2050     /// Does this sequence require some shuffling?
2051     SmallVector<int, 4> ReuseShuffleIndices;
2052 
2053     /// Does this entry require reordering?
2054     SmallVector<unsigned, 4> ReorderIndices;
2055 
2056     /// Points back to the VectorizableTree.
2057     ///
2058     /// Only used for Graphviz right now.  Unfortunately GraphTrait::NodeRef has
2059     /// to be a pointer and needs to be able to initialize the child iterator.
2060     /// Thus we need a reference back to the container to translate the indices
2061     /// to entries.
2062     VecTreeTy &Container;
2063 
2064     /// The TreeEntry index containing the user of this entry.  We can actually
2065     /// have multiple users so the data structure is not truly a tree.
2066     SmallVector<EdgeInfo, 1> UserTreeIndices;
2067 
2068     /// The index of this treeEntry in VectorizableTree.
2069     int Idx = -1;
2070 
2071   private:
2072     /// The operands of each instruction in each lane Operands[op_index][lane].
2073     /// Note: This helps avoid the replication of the code that performs the
2074     /// reordering of operands during buildTree_rec() and vectorizeTree().
2075     SmallVector<ValueList, 2> Operands;
2076 
2077     /// The main/alternate instruction.
2078     Instruction *MainOp = nullptr;
2079     Instruction *AltOp = nullptr;
2080 
2081   public:
2082     /// Set this bundle's \p OpIdx'th operand to \p OpVL.
2083     void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) {
2084       if (Operands.size() < OpIdx + 1)
2085         Operands.resize(OpIdx + 1);
2086       assert(Operands[OpIdx].empty() && "Already resized?");
2087       assert(OpVL.size() <= Scalars.size() &&
2088              "Number of operands is greater than the number of scalars.");
2089       Operands[OpIdx].resize(OpVL.size());
2090       copy(OpVL, Operands[OpIdx].begin());
2091     }
2092 
2093     /// Set the operands of this bundle in their original order.
2094     void setOperandsInOrder() {
2095       assert(Operands.empty() && "Already initialized?");
2096       auto *I0 = cast<Instruction>(Scalars[0]);
2097       Operands.resize(I0->getNumOperands());
2098       unsigned NumLanes = Scalars.size();
2099       for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands();
2100            OpIdx != NumOperands; ++OpIdx) {
2101         Operands[OpIdx].resize(NumLanes);
2102         for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
2103           auto *I = cast<Instruction>(Scalars[Lane]);
2104           assert(I->getNumOperands() == NumOperands &&
2105                  "Expected same number of operands");
2106           Operands[OpIdx][Lane] = I->getOperand(OpIdx);
2107         }
2108       }
2109     }
2110 
2111     /// Reorders operands of the node to the given mask \p Mask.
2112     void reorderOperands(ArrayRef<int> Mask) {
2113       for (ValueList &Operand : Operands)
2114         reorderScalars(Operand, Mask);
2115     }
2116 
2117     /// \returns the \p OpIdx operand of this TreeEntry.
2118     ValueList &getOperand(unsigned OpIdx) {
2119       assert(OpIdx < Operands.size() && "Off bounds");
2120       return Operands[OpIdx];
2121     }
2122 
2123     /// \returns the \p OpIdx operand of this TreeEntry.
2124     ArrayRef<Value *> getOperand(unsigned OpIdx) const {
2125       assert(OpIdx < Operands.size() && "Off bounds");
2126       return Operands[OpIdx];
2127     }
2128 
2129     /// \returns the number of operands.
2130     unsigned getNumOperands() const { return Operands.size(); }
2131 
2132     /// \return the single \p OpIdx operand.
2133     Value *getSingleOperand(unsigned OpIdx) const {
2134       assert(OpIdx < Operands.size() && "Off bounds");
2135       assert(!Operands[OpIdx].empty() && "No operand available");
2136       return Operands[OpIdx][0];
2137     }
2138 
2139     /// Some of the instructions in the list have alternate opcodes.
2140     bool isAltShuffle() const { return MainOp != AltOp; }
2141 
2142     bool isOpcodeOrAlt(Instruction *I) const {
2143       unsigned CheckedOpcode = I->getOpcode();
2144       return (getOpcode() == CheckedOpcode ||
2145               getAltOpcode() == CheckedOpcode);
2146     }
2147 
2148     /// Chooses the correct key for scheduling data. If \p Op has the same (or
2149     /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is
2150     /// \p OpValue.
2151     Value *isOneOf(Value *Op) const {
2152       auto *I = dyn_cast<Instruction>(Op);
2153       if (I && isOpcodeOrAlt(I))
2154         return Op;
2155       return MainOp;
2156     }
2157 
2158     void setOperations(const InstructionsState &S) {
2159       MainOp = S.MainOp;
2160       AltOp = S.AltOp;
2161     }
2162 
2163     Instruction *getMainOp() const {
2164       return MainOp;
2165     }
2166 
2167     Instruction *getAltOp() const {
2168       return AltOp;
2169     }
2170 
2171     /// The main/alternate opcodes for the list of instructions.
2172     unsigned getOpcode() const {
2173       return MainOp ? MainOp->getOpcode() : 0;
2174     }
2175 
2176     unsigned getAltOpcode() const {
2177       return AltOp ? AltOp->getOpcode() : 0;
2178     }
2179 
2180     /// When ReuseReorderShuffleIndices is empty it just returns position of \p
2181     /// V within vector of Scalars. Otherwise, try to remap on its reuse index.
2182     int findLaneForValue(Value *V) const {
2183       unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V));
2184       assert(FoundLane < Scalars.size() && "Couldn't find extract lane");
2185       if (!ReorderIndices.empty())
2186         FoundLane = ReorderIndices[FoundLane];
2187       assert(FoundLane < Scalars.size() && "Couldn't find extract lane");
2188       if (!ReuseShuffleIndices.empty()) {
2189         FoundLane = std::distance(ReuseShuffleIndices.begin(),
2190                                   find(ReuseShuffleIndices, FoundLane));
2191       }
2192       return FoundLane;
2193     }
2194 
2195 #ifndef NDEBUG
2196     /// Debug printer.
2197     LLVM_DUMP_METHOD void dump() const {
2198       dbgs() << Idx << ".\n";
2199       for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) {
2200         dbgs() << "Operand " << OpI << ":\n";
2201         for (const Value *V : Operands[OpI])
2202           dbgs().indent(2) << *V << "\n";
2203       }
2204       dbgs() << "Scalars: \n";
2205       for (Value *V : Scalars)
2206         dbgs().indent(2) << *V << "\n";
2207       dbgs() << "State: ";
2208       switch (State) {
2209       case Vectorize:
2210         dbgs() << "Vectorize\n";
2211         break;
2212       case ScatterVectorize:
2213         dbgs() << "ScatterVectorize\n";
2214         break;
2215       case NeedToGather:
2216         dbgs() << "NeedToGather\n";
2217         break;
2218       }
2219       dbgs() << "MainOp: ";
2220       if (MainOp)
2221         dbgs() << *MainOp << "\n";
2222       else
2223         dbgs() << "NULL\n";
2224       dbgs() << "AltOp: ";
2225       if (AltOp)
2226         dbgs() << *AltOp << "\n";
2227       else
2228         dbgs() << "NULL\n";
2229       dbgs() << "VectorizedValue: ";
2230       if (VectorizedValue)
2231         dbgs() << *VectorizedValue << "\n";
2232       else
2233         dbgs() << "NULL\n";
2234       dbgs() << "ReuseShuffleIndices: ";
2235       if (ReuseShuffleIndices.empty())
2236         dbgs() << "Empty";
2237       else
2238         for (int ReuseIdx : ReuseShuffleIndices)
2239           dbgs() << ReuseIdx << ", ";
2240       dbgs() << "\n";
2241       dbgs() << "ReorderIndices: ";
2242       for (unsigned ReorderIdx : ReorderIndices)
2243         dbgs() << ReorderIdx << ", ";
2244       dbgs() << "\n";
2245       dbgs() << "UserTreeIndices: ";
2246       for (const auto &EInfo : UserTreeIndices)
2247         dbgs() << EInfo << ", ";
2248       dbgs() << "\n";
2249     }
2250 #endif
2251   };
2252 
2253 #ifndef NDEBUG
2254   void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost,
2255                      InstructionCost VecCost,
2256                      InstructionCost ScalarCost) const {
2257     dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump();
2258     dbgs() << "SLP: Costs:\n";
2259     dbgs() << "SLP:     ReuseShuffleCost = " << ReuseShuffleCost << "\n";
2260     dbgs() << "SLP:     VectorCost = " << VecCost << "\n";
2261     dbgs() << "SLP:     ScalarCost = " << ScalarCost << "\n";
2262     dbgs() << "SLP:     ReuseShuffleCost + VecCost - ScalarCost = " <<
2263                ReuseShuffleCost + VecCost - ScalarCost << "\n";
2264   }
2265 #endif
2266 
2267   /// Create a new VectorizableTree entry.
2268   TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle,
2269                           const InstructionsState &S,
2270                           const EdgeInfo &UserTreeIdx,
2271                           ArrayRef<int> ReuseShuffleIndices = None,
2272                           ArrayRef<unsigned> ReorderIndices = None) {
2273     TreeEntry::EntryState EntryState =
2274         Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather;
2275     return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx,
2276                         ReuseShuffleIndices, ReorderIndices);
2277   }
2278 
2279   TreeEntry *newTreeEntry(ArrayRef<Value *> VL,
2280                           TreeEntry::EntryState EntryState,
2281                           Optional<ScheduleData *> Bundle,
2282                           const InstructionsState &S,
2283                           const EdgeInfo &UserTreeIdx,
2284                           ArrayRef<int> ReuseShuffleIndices = None,
2285                           ArrayRef<unsigned> ReorderIndices = None) {
2286     assert(((!Bundle && EntryState == TreeEntry::NeedToGather) ||
2287             (Bundle && EntryState != TreeEntry::NeedToGather)) &&
2288            "Need to vectorize gather entry?");
2289     VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree));
2290     TreeEntry *Last = VectorizableTree.back().get();
2291     Last->Idx = VectorizableTree.size() - 1;
2292     Last->State = EntryState;
2293     Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(),
2294                                      ReuseShuffleIndices.end());
2295     if (ReorderIndices.empty()) {
2296       Last->Scalars.assign(VL.begin(), VL.end());
2297       Last->setOperations(S);
2298     } else {
2299       // Reorder scalars and build final mask.
2300       Last->Scalars.assign(VL.size(), nullptr);
2301       transform(ReorderIndices, Last->Scalars.begin(),
2302                 [VL](unsigned Idx) -> Value * {
2303                   if (Idx >= VL.size())
2304                     return UndefValue::get(VL.front()->getType());
2305                   return VL[Idx];
2306                 });
2307       InstructionsState S = getSameOpcode(Last->Scalars);
2308       Last->setOperations(S);
2309       Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end());
2310     }
2311     if (Last->State != TreeEntry::NeedToGather) {
2312       for (Value *V : VL) {
2313         assert(!getTreeEntry(V) && "Scalar already in tree!");
2314         ScalarToTreeEntry[V] = Last;
2315       }
2316       // Update the scheduler bundle to point to this TreeEntry.
2317       unsigned Lane = 0;
2318       for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember;
2319            BundleMember = BundleMember->NextInBundle) {
2320         BundleMember->TE = Last;
2321         BundleMember->Lane = Lane;
2322         ++Lane;
2323       }
2324       assert((!Bundle.getValue() || Lane == VL.size()) &&
2325              "Bundle and VL out of sync");
2326     } else {
2327       MustGather.insert(VL.begin(), VL.end());
2328     }
2329 
2330     if (UserTreeIdx.UserTE)
2331       Last->UserTreeIndices.push_back(UserTreeIdx);
2332 
2333     return Last;
2334   }
2335 
2336   /// -- Vectorization State --
2337   /// Holds all of the tree entries.
2338   TreeEntry::VecTreeTy VectorizableTree;
2339 
2340 #ifndef NDEBUG
2341   /// Debug printer.
2342   LLVM_DUMP_METHOD void dumpVectorizableTree() const {
2343     for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) {
2344       VectorizableTree[Id]->dump();
2345       dbgs() << "\n";
2346     }
2347   }
2348 #endif
2349 
2350   TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); }
2351 
2352   const TreeEntry *getTreeEntry(Value *V) const {
2353     return ScalarToTreeEntry.lookup(V);
2354   }
2355 
2356   /// Maps a specific scalar to its tree entry.
2357   SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry;
2358 
2359   /// Maps a value to the proposed vectorizable size.
2360   SmallDenseMap<Value *, unsigned> InstrElementSize;
2361 
2362   /// A list of scalars that we found that we need to keep as scalars.
2363   ValueSet MustGather;
2364 
2365   /// This POD struct describes one external user in the vectorized tree.
2366   struct ExternalUser {
2367     ExternalUser(Value *S, llvm::User *U, int L)
2368         : Scalar(S), User(U), Lane(L) {}
2369 
2370     // Which scalar in our function.
2371     Value *Scalar;
2372 
2373     // Which user that uses the scalar.
2374     llvm::User *User;
2375 
2376     // Which lane does the scalar belong to.
2377     int Lane;
2378   };
2379   using UserList = SmallVector<ExternalUser, 16>;
2380 
2381   /// Checks if two instructions may access the same memory.
2382   ///
2383   /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
2384   /// is invariant in the calling loop.
2385   bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
2386                  Instruction *Inst2) {
2387     // First check if the result is already in the cache.
2388     AliasCacheKey key = std::make_pair(Inst1, Inst2);
2389     Optional<bool> &result = AliasCache[key];
2390     if (result.hasValue()) {
2391       return result.getValue();
2392     }
2393     bool aliased = true;
2394     if (Loc1.Ptr && isSimple(Inst1))
2395       aliased = isModOrRefSet(AA->getModRefInfo(Inst2, Loc1));
2396     // Store the result in the cache.
2397     result = aliased;
2398     return aliased;
2399   }
2400 
2401   using AliasCacheKey = std::pair<Instruction *, Instruction *>;
2402 
2403   /// Cache for alias results.
2404   /// TODO: consider moving this to the AliasAnalysis itself.
2405   DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
2406 
2407   /// Removes an instruction from its block and eventually deletes it.
2408   /// It's like Instruction::eraseFromParent() except that the actual deletion
2409   /// is delayed until BoUpSLP is destructed.
2410   /// This is required to ensure that there are no incorrect collisions in the
2411   /// AliasCache, which can happen if a new instruction is allocated at the
2412   /// same address as a previously deleted instruction.
2413   void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) {
2414     auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first;
2415     It->getSecond() = It->getSecond() && ReplaceOpsWithUndef;
2416   }
2417 
2418   /// Temporary store for deleted instructions. Instructions will be deleted
2419   /// eventually when the BoUpSLP is destructed.
2420   DenseMap<Instruction *, bool> DeletedInstructions;
2421 
2422   /// A list of values that need to extracted out of the tree.
2423   /// This list holds pairs of (Internal Scalar : External User). External User
2424   /// can be nullptr, it means that this Internal Scalar will be used later,
2425   /// after vectorization.
2426   UserList ExternalUses;
2427 
2428   /// Values used only by @llvm.assume calls.
2429   SmallPtrSet<const Value *, 32> EphValues;
2430 
2431   /// Holds all of the instructions that we gathered.
2432   SetVector<Instruction *> GatherShuffleSeq;
2433 
2434   /// A list of blocks that we are going to CSE.
2435   SetVector<BasicBlock *> CSEBlocks;
2436 
2437   /// Contains all scheduling relevant data for an instruction.
2438   /// A ScheduleData either represents a single instruction or a member of an
2439   /// instruction bundle (= a group of instructions which is combined into a
2440   /// vector instruction).
2441   struct ScheduleData {
2442     // The initial value for the dependency counters. It means that the
2443     // dependencies are not calculated yet.
2444     enum { InvalidDeps = -1 };
2445 
2446     ScheduleData() = default;
2447 
2448     void init(int BlockSchedulingRegionID, Value *OpVal) {
2449       FirstInBundle = this;
2450       NextInBundle = nullptr;
2451       NextLoadStore = nullptr;
2452       IsScheduled = false;
2453       SchedulingRegionID = BlockSchedulingRegionID;
2454       clearDependencies();
2455       OpValue = OpVal;
2456       TE = nullptr;
2457       Lane = -1;
2458     }
2459 
2460     /// Verify basic self consistency properties
2461     void verify() {
2462       if (hasValidDependencies()) {
2463         assert(UnscheduledDeps <= Dependencies && "invariant");
2464       } else {
2465         assert(UnscheduledDeps == Dependencies && "invariant");
2466       }
2467 
2468       if (IsScheduled) {
2469         assert(isSchedulingEntity() &&
2470                 "unexpected scheduled state");
2471         for (const ScheduleData *BundleMember = this; BundleMember;
2472              BundleMember = BundleMember->NextInBundle) {
2473           assert(BundleMember->hasValidDependencies() &&
2474                  BundleMember->UnscheduledDeps == 0 &&
2475                  "unexpected scheduled state");
2476           assert((BundleMember == this || !BundleMember->IsScheduled) &&
2477                  "only bundle is marked scheduled");
2478         }
2479       }
2480     }
2481 
2482     /// Returns true if the dependency information has been calculated.
2483     /// Note that depenendency validity can vary between instructions within
2484     /// a single bundle.
2485     bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
2486 
2487     /// Returns true for single instructions and for bundle representatives
2488     /// (= the head of a bundle).
2489     bool isSchedulingEntity() const { return FirstInBundle == this; }
2490 
2491     /// Returns true if it represents an instruction bundle and not only a
2492     /// single instruction.
2493     bool isPartOfBundle() const {
2494       return NextInBundle != nullptr || FirstInBundle != this;
2495     }
2496 
2497     /// Returns true if it is ready for scheduling, i.e. it has no more
2498     /// unscheduled depending instructions/bundles.
2499     bool isReady() const {
2500       assert(isSchedulingEntity() &&
2501              "can't consider non-scheduling entity for ready list");
2502       return unscheduledDepsInBundle() == 0 && !IsScheduled;
2503     }
2504 
2505     /// Modifies the number of unscheduled dependencies for this instruction,
2506     /// and returns the number of remaining dependencies for the containing
2507     /// bundle.
2508     int incrementUnscheduledDeps(int Incr) {
2509       assert(hasValidDependencies() &&
2510              "increment of unscheduled deps would be meaningless");
2511       UnscheduledDeps += Incr;
2512       return FirstInBundle->unscheduledDepsInBundle();
2513     }
2514 
2515     /// Sets the number of unscheduled dependencies to the number of
2516     /// dependencies.
2517     void resetUnscheduledDeps() {
2518       UnscheduledDeps = Dependencies;
2519     }
2520 
2521     /// Clears all dependency information.
2522     void clearDependencies() {
2523       Dependencies = InvalidDeps;
2524       resetUnscheduledDeps();
2525       MemoryDependencies.clear();
2526     }
2527 
2528     int unscheduledDepsInBundle() const {
2529       assert(isSchedulingEntity() && "only meaningful on the bundle");
2530       int Sum = 0;
2531       for (const ScheduleData *BundleMember = this; BundleMember;
2532            BundleMember = BundleMember->NextInBundle) {
2533         if (BundleMember->UnscheduledDeps == InvalidDeps)
2534           return InvalidDeps;
2535         Sum += BundleMember->UnscheduledDeps;
2536       }
2537       return Sum;
2538     }
2539 
2540     void dump(raw_ostream &os) const {
2541       if (!isSchedulingEntity()) {
2542         os << "/ " << *Inst;
2543       } else if (NextInBundle) {
2544         os << '[' << *Inst;
2545         ScheduleData *SD = NextInBundle;
2546         while (SD) {
2547           os << ';' << *SD->Inst;
2548           SD = SD->NextInBundle;
2549         }
2550         os << ']';
2551       } else {
2552         os << *Inst;
2553       }
2554     }
2555 
2556     Instruction *Inst = nullptr;
2557 
2558     /// Opcode of the current instruction in the schedule data.
2559     Value *OpValue = nullptr;
2560 
2561     /// The TreeEntry that this instruction corresponds to.
2562     TreeEntry *TE = nullptr;
2563 
2564     /// Points to the head in an instruction bundle (and always to this for
2565     /// single instructions).
2566     ScheduleData *FirstInBundle = nullptr;
2567 
2568     /// Single linked list of all instructions in a bundle. Null if it is a
2569     /// single instruction.
2570     ScheduleData *NextInBundle = nullptr;
2571 
2572     /// Single linked list of all memory instructions (e.g. load, store, call)
2573     /// in the block - until the end of the scheduling region.
2574     ScheduleData *NextLoadStore = nullptr;
2575 
2576     /// The dependent memory instructions.
2577     /// This list is derived on demand in calculateDependencies().
2578     SmallVector<ScheduleData *, 4> MemoryDependencies;
2579 
2580     /// This ScheduleData is in the current scheduling region if this matches
2581     /// the current SchedulingRegionID of BlockScheduling.
2582     int SchedulingRegionID = 0;
2583 
2584     /// The number of dependencies. Constitutes of the number of users of the
2585     /// instruction plus the number of dependent memory instructions (if any).
2586     /// This value is calculated on demand.
2587     /// If InvalidDeps, the number of dependencies is not calculated yet.
2588     int Dependencies = InvalidDeps;
2589 
2590     /// The number of dependencies minus the number of dependencies of scheduled
2591     /// instructions. As soon as this is zero, the instruction/bundle gets ready
2592     /// for scheduling.
2593     /// Note that this is negative as long as Dependencies is not calculated.
2594     int UnscheduledDeps = InvalidDeps;
2595 
2596     /// The lane of this node in the TreeEntry.
2597     int Lane = -1;
2598 
2599     /// True if this instruction is scheduled (or considered as scheduled in the
2600     /// dry-run).
2601     bool IsScheduled = false;
2602   };
2603 
2604 #ifndef NDEBUG
2605   friend inline raw_ostream &operator<<(raw_ostream &os,
2606                                         const BoUpSLP::ScheduleData &SD) {
2607     SD.dump(os);
2608     return os;
2609   }
2610 #endif
2611 
2612   friend struct GraphTraits<BoUpSLP *>;
2613   friend struct DOTGraphTraits<BoUpSLP *>;
2614 
2615   /// Contains all scheduling data for a basic block.
2616   struct BlockScheduling {
2617     BlockScheduling(BasicBlock *BB)
2618         : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {}
2619 
2620     void clear() {
2621       ReadyInsts.clear();
2622       ScheduleStart = nullptr;
2623       ScheduleEnd = nullptr;
2624       FirstLoadStoreInRegion = nullptr;
2625       LastLoadStoreInRegion = nullptr;
2626 
2627       // Reduce the maximum schedule region size by the size of the
2628       // previous scheduling run.
2629       ScheduleRegionSizeLimit -= ScheduleRegionSize;
2630       if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
2631         ScheduleRegionSizeLimit = MinScheduleRegionSize;
2632       ScheduleRegionSize = 0;
2633 
2634       // Make a new scheduling region, i.e. all existing ScheduleData is not
2635       // in the new region yet.
2636       ++SchedulingRegionID;
2637     }
2638 
2639     ScheduleData *getScheduleData(Instruction *I) {
2640       if (BB != I->getParent())
2641         // Avoid lookup if can't possibly be in map.
2642         return nullptr;
2643       ScheduleData *SD = ScheduleDataMap[I];
2644       if (SD && isInSchedulingRegion(SD))
2645         return SD;
2646       return nullptr;
2647     }
2648 
2649     ScheduleData *getScheduleData(Value *V) {
2650       if (auto *I = dyn_cast<Instruction>(V))
2651         return getScheduleData(I);
2652       return nullptr;
2653     }
2654 
2655     ScheduleData *getScheduleData(Value *V, Value *Key) {
2656       if (V == Key)
2657         return getScheduleData(V);
2658       auto I = ExtraScheduleDataMap.find(V);
2659       if (I != ExtraScheduleDataMap.end()) {
2660         ScheduleData *SD = I->second[Key];
2661         if (SD && isInSchedulingRegion(SD))
2662           return SD;
2663       }
2664       return nullptr;
2665     }
2666 
2667     bool isInSchedulingRegion(ScheduleData *SD) const {
2668       return SD->SchedulingRegionID == SchedulingRegionID;
2669     }
2670 
2671     /// Marks an instruction as scheduled and puts all dependent ready
2672     /// instructions into the ready-list.
2673     template <typename ReadyListType>
2674     void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
2675       SD->IsScheduled = true;
2676       LLVM_DEBUG(dbgs() << "SLP:   schedule " << *SD << "\n");
2677 
2678       for (ScheduleData *BundleMember = SD; BundleMember;
2679            BundleMember = BundleMember->NextInBundle) {
2680         if (BundleMember->Inst != BundleMember->OpValue)
2681           continue;
2682 
2683         // Handle the def-use chain dependencies.
2684 
2685         // Decrement the unscheduled counter and insert to ready list if ready.
2686         auto &&DecrUnsched = [this, &ReadyList](Instruction *I) {
2687           doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) {
2688             if (OpDef && OpDef->hasValidDependencies() &&
2689                 OpDef->incrementUnscheduledDeps(-1) == 0) {
2690               // There are no more unscheduled dependencies after
2691               // decrementing, so we can put the dependent instruction
2692               // into the ready list.
2693               ScheduleData *DepBundle = OpDef->FirstInBundle;
2694               assert(!DepBundle->IsScheduled &&
2695                      "already scheduled bundle gets ready");
2696               ReadyList.insert(DepBundle);
2697               LLVM_DEBUG(dbgs()
2698                          << "SLP:    gets ready (def): " << *DepBundle << "\n");
2699             }
2700           });
2701         };
2702 
2703         // If BundleMember is a vector bundle, its operands may have been
2704         // reordered during buildTree(). We therefore need to get its operands
2705         // through the TreeEntry.
2706         if (TreeEntry *TE = BundleMember->TE) {
2707           int Lane = BundleMember->Lane;
2708           assert(Lane >= 0 && "Lane not set");
2709 
2710           // Since vectorization tree is being built recursively this assertion
2711           // ensures that the tree entry has all operands set before reaching
2712           // this code. Couple of exceptions known at the moment are extracts
2713           // where their second (immediate) operand is not added. Since
2714           // immediates do not affect scheduler behavior this is considered
2715           // okay.
2716           auto *In = TE->getMainOp();
2717           assert(In &&
2718                  (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) ||
2719                   In->getNumOperands() == TE->getNumOperands()) &&
2720                  "Missed TreeEntry operands?");
2721           (void)In; // fake use to avoid build failure when assertions disabled
2722 
2723           for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands();
2724                OpIdx != NumOperands; ++OpIdx)
2725             if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane]))
2726               DecrUnsched(I);
2727         } else {
2728           // If BundleMember is a stand-alone instruction, no operand reordering
2729           // has taken place, so we directly access its operands.
2730           for (Use &U : BundleMember->Inst->operands())
2731             if (auto *I = dyn_cast<Instruction>(U.get()))
2732               DecrUnsched(I);
2733         }
2734         // Handle the memory dependencies.
2735         for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
2736           if (MemoryDepSD->hasValidDependencies() &&
2737               MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
2738             // There are no more unscheduled dependencies after decrementing,
2739             // so we can put the dependent instruction into the ready list.
2740             ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
2741             assert(!DepBundle->IsScheduled &&
2742                    "already scheduled bundle gets ready");
2743             ReadyList.insert(DepBundle);
2744             LLVM_DEBUG(dbgs()
2745                        << "SLP:    gets ready (mem): " << *DepBundle << "\n");
2746           }
2747         }
2748       }
2749     }
2750 
2751     /// Verify basic self consistency properties of the data structure.
2752     void verify() {
2753       if (!ScheduleStart)
2754         return;
2755 
2756       assert(ScheduleStart->getParent() == ScheduleEnd->getParent() &&
2757              ScheduleStart->comesBefore(ScheduleEnd) &&
2758              "Not a valid scheduling region?");
2759 
2760       for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
2761         auto *SD = getScheduleData(I);
2762         assert(SD && "primary scheduledata must exist in window");
2763         assert(isInSchedulingRegion(SD) &&
2764                "primary schedule data not in window?");
2765         assert(isInSchedulingRegion(SD->FirstInBundle) &&
2766                "entire bundle in window!");
2767         (void)SD;
2768         doForAllOpcodes(I, [](ScheduleData *SD) { SD->verify(); });
2769       }
2770 
2771       for (auto *SD : ReadyInsts) {
2772         assert(SD->isSchedulingEntity() && SD->isReady() &&
2773                "item in ready list not ready?");
2774         (void)SD;
2775       }
2776     }
2777 
2778     void doForAllOpcodes(Value *V,
2779                          function_ref<void(ScheduleData *SD)> Action) {
2780       if (ScheduleData *SD = getScheduleData(V))
2781         Action(SD);
2782       auto I = ExtraScheduleDataMap.find(V);
2783       if (I != ExtraScheduleDataMap.end())
2784         for (auto &P : I->second)
2785           if (isInSchedulingRegion(P.second))
2786             Action(P.second);
2787     }
2788 
2789     /// Put all instructions into the ReadyList which are ready for scheduling.
2790     template <typename ReadyListType>
2791     void initialFillReadyList(ReadyListType &ReadyList) {
2792       for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
2793         doForAllOpcodes(I, [&](ScheduleData *SD) {
2794           if (SD->isSchedulingEntity() && SD->hasValidDependencies() &&
2795               SD->isReady()) {
2796             ReadyList.insert(SD);
2797             LLVM_DEBUG(dbgs()
2798                        << "SLP:    initially in ready list: " << *SD << "\n");
2799           }
2800         });
2801       }
2802     }
2803 
2804     /// Build a bundle from the ScheduleData nodes corresponding to the
2805     /// scalar instruction for each lane.
2806     ScheduleData *buildBundle(ArrayRef<Value *> VL);
2807 
2808     /// Checks if a bundle of instructions can be scheduled, i.e. has no
2809     /// cyclic dependencies. This is only a dry-run, no instructions are
2810     /// actually moved at this stage.
2811     /// \returns the scheduling bundle. The returned Optional value is non-None
2812     /// if \p VL is allowed to be scheduled.
2813     Optional<ScheduleData *>
2814     tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
2815                       const InstructionsState &S);
2816 
2817     /// Un-bundles a group of instructions.
2818     void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue);
2819 
2820     /// Allocates schedule data chunk.
2821     ScheduleData *allocateScheduleDataChunks();
2822 
2823     /// Extends the scheduling region so that V is inside the region.
2824     /// \returns true if the region size is within the limit.
2825     bool extendSchedulingRegion(Value *V, const InstructionsState &S);
2826 
2827     /// Initialize the ScheduleData structures for new instructions in the
2828     /// scheduling region.
2829     void initScheduleData(Instruction *FromI, Instruction *ToI,
2830                           ScheduleData *PrevLoadStore,
2831                           ScheduleData *NextLoadStore);
2832 
2833     /// Updates the dependency information of a bundle and of all instructions/
2834     /// bundles which depend on the original bundle.
2835     void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
2836                                BoUpSLP *SLP);
2837 
2838     /// Sets all instruction in the scheduling region to un-scheduled.
2839     void resetSchedule();
2840 
2841     BasicBlock *BB;
2842 
2843     /// Simple memory allocation for ScheduleData.
2844     std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
2845 
2846     /// The size of a ScheduleData array in ScheduleDataChunks.
2847     int ChunkSize;
2848 
2849     /// The allocator position in the current chunk, which is the last entry
2850     /// of ScheduleDataChunks.
2851     int ChunkPos;
2852 
2853     /// Attaches ScheduleData to Instruction.
2854     /// Note that the mapping survives during all vectorization iterations, i.e.
2855     /// ScheduleData structures are recycled.
2856     DenseMap<Instruction *, ScheduleData *> ScheduleDataMap;
2857 
2858     /// Attaches ScheduleData to Instruction with the leading key.
2859     DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>>
2860         ExtraScheduleDataMap;
2861 
2862     /// The ready-list for scheduling (only used for the dry-run).
2863     SetVector<ScheduleData *> ReadyInsts;
2864 
2865     /// The first instruction of the scheduling region.
2866     Instruction *ScheduleStart = nullptr;
2867 
2868     /// The first instruction _after_ the scheduling region.
2869     Instruction *ScheduleEnd = nullptr;
2870 
2871     /// The first memory accessing instruction in the scheduling region
2872     /// (can be null).
2873     ScheduleData *FirstLoadStoreInRegion = nullptr;
2874 
2875     /// The last memory accessing instruction in the scheduling region
2876     /// (can be null).
2877     ScheduleData *LastLoadStoreInRegion = nullptr;
2878 
2879     /// The current size of the scheduling region.
2880     int ScheduleRegionSize = 0;
2881 
2882     /// The maximum size allowed for the scheduling region.
2883     int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget;
2884 
2885     /// The ID of the scheduling region. For a new vectorization iteration this
2886     /// is incremented which "removes" all ScheduleData from the region.
2887     /// Make sure that the initial SchedulingRegionID is greater than the
2888     /// initial SchedulingRegionID in ScheduleData (which is 0).
2889     int SchedulingRegionID = 1;
2890   };
2891 
2892   /// Attaches the BlockScheduling structures to basic blocks.
2893   MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
2894 
2895   /// Performs the "real" scheduling. Done before vectorization is actually
2896   /// performed in a basic block.
2897   void scheduleBlock(BlockScheduling *BS);
2898 
2899   /// List of users to ignore during scheduling and that don't need extracting.
2900   ArrayRef<Value *> UserIgnoreList;
2901 
2902   /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of
2903   /// sorted SmallVectors of unsigned.
2904   struct OrdersTypeDenseMapInfo {
2905     static OrdersType getEmptyKey() {
2906       OrdersType V;
2907       V.push_back(~1U);
2908       return V;
2909     }
2910 
2911     static OrdersType getTombstoneKey() {
2912       OrdersType V;
2913       V.push_back(~2U);
2914       return V;
2915     }
2916 
2917     static unsigned getHashValue(const OrdersType &V) {
2918       return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
2919     }
2920 
2921     static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) {
2922       return LHS == RHS;
2923     }
2924   };
2925 
2926   // Analysis and block reference.
2927   Function *F;
2928   ScalarEvolution *SE;
2929   TargetTransformInfo *TTI;
2930   TargetLibraryInfo *TLI;
2931   AAResults *AA;
2932   LoopInfo *LI;
2933   DominatorTree *DT;
2934   AssumptionCache *AC;
2935   DemandedBits *DB;
2936   const DataLayout *DL;
2937   OptimizationRemarkEmitter *ORE;
2938 
2939   unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
2940   unsigned MinVecRegSize; // Set by cl::opt (default: 128).
2941 
2942   /// Instruction builder to construct the vectorized tree.
2943   IRBuilder<> Builder;
2944 
2945   /// A map of scalar integer values to the smallest bit width with which they
2946   /// can legally be represented. The values map to (width, signed) pairs,
2947   /// where "width" indicates the minimum bit width and "signed" is True if the
2948   /// value must be signed-extended, rather than zero-extended, back to its
2949   /// original width.
2950   MapVector<Value *, std::pair<uint64_t, bool>> MinBWs;
2951 };
2952 
2953 } // end namespace slpvectorizer
2954 
2955 template <> struct GraphTraits<BoUpSLP *> {
2956   using TreeEntry = BoUpSLP::TreeEntry;
2957 
2958   /// NodeRef has to be a pointer per the GraphWriter.
2959   using NodeRef = TreeEntry *;
2960 
2961   using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy;
2962 
2963   /// Add the VectorizableTree to the index iterator to be able to return
2964   /// TreeEntry pointers.
2965   struct ChildIteratorType
2966       : public iterator_adaptor_base<
2967             ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> {
2968     ContainerTy &VectorizableTree;
2969 
2970     ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W,
2971                       ContainerTy &VT)
2972         : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {}
2973 
2974     NodeRef operator*() { return I->UserTE; }
2975   };
2976 
2977   static NodeRef getEntryNode(BoUpSLP &R) {
2978     return R.VectorizableTree[0].get();
2979   }
2980 
2981   static ChildIteratorType child_begin(NodeRef N) {
2982     return {N->UserTreeIndices.begin(), N->Container};
2983   }
2984 
2985   static ChildIteratorType child_end(NodeRef N) {
2986     return {N->UserTreeIndices.end(), N->Container};
2987   }
2988 
2989   /// For the node iterator we just need to turn the TreeEntry iterator into a
2990   /// TreeEntry* iterator so that it dereferences to NodeRef.
2991   class nodes_iterator {
2992     using ItTy = ContainerTy::iterator;
2993     ItTy It;
2994 
2995   public:
2996     nodes_iterator(const ItTy &It2) : It(It2) {}
2997     NodeRef operator*() { return It->get(); }
2998     nodes_iterator operator++() {
2999       ++It;
3000       return *this;
3001     }
3002     bool operator!=(const nodes_iterator &N2) const { return N2.It != It; }
3003   };
3004 
3005   static nodes_iterator nodes_begin(BoUpSLP *R) {
3006     return nodes_iterator(R->VectorizableTree.begin());
3007   }
3008 
3009   static nodes_iterator nodes_end(BoUpSLP *R) {
3010     return nodes_iterator(R->VectorizableTree.end());
3011   }
3012 
3013   static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); }
3014 };
3015 
3016 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits {
3017   using TreeEntry = BoUpSLP::TreeEntry;
3018 
3019   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
3020 
3021   std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) {
3022     std::string Str;
3023     raw_string_ostream OS(Str);
3024     if (isSplat(Entry->Scalars))
3025       OS << "<splat> ";
3026     for (auto V : Entry->Scalars) {
3027       OS << *V;
3028       if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) {
3029             return EU.Scalar == V;
3030           }))
3031         OS << " <extract>";
3032       OS << "\n";
3033     }
3034     return Str;
3035   }
3036 
3037   static std::string getNodeAttributes(const TreeEntry *Entry,
3038                                        const BoUpSLP *) {
3039     if (Entry->State == TreeEntry::NeedToGather)
3040       return "color=red";
3041     return "";
3042   }
3043 };
3044 
3045 } // end namespace llvm
3046 
3047 BoUpSLP::~BoUpSLP() {
3048   for (const auto &Pair : DeletedInstructions) {
3049     // Replace operands of ignored instructions with Undefs in case if they were
3050     // marked for deletion.
3051     if (Pair.getSecond()) {
3052       Value *Undef = UndefValue::get(Pair.getFirst()->getType());
3053       Pair.getFirst()->replaceAllUsesWith(Undef);
3054     }
3055     Pair.getFirst()->dropAllReferences();
3056   }
3057   for (const auto &Pair : DeletedInstructions) {
3058     assert(Pair.getFirst()->use_empty() &&
3059            "trying to erase instruction with users.");
3060     Pair.getFirst()->eraseFromParent();
3061   }
3062 #ifdef EXPENSIVE_CHECKS
3063   // If we could guarantee that this call is not extremely slow, we could
3064   // remove the ifdef limitation (see PR47712).
3065   assert(!verifyFunction(*F, &dbgs()));
3066 #endif
3067 }
3068 
3069 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) {
3070   for (auto *V : AV) {
3071     if (auto *I = dyn_cast<Instruction>(V))
3072       eraseInstruction(I, /*ReplaceOpsWithUndef=*/true);
3073   };
3074 }
3075 
3076 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses
3077 /// contains original mask for the scalars reused in the node. Procedure
3078 /// transform this mask in accordance with the given \p Mask.
3079 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) {
3080   assert(!Mask.empty() && Reuses.size() == Mask.size() &&
3081          "Expected non-empty mask.");
3082   SmallVector<int> Prev(Reuses.begin(), Reuses.end());
3083   Prev.swap(Reuses);
3084   for (unsigned I = 0, E = Prev.size(); I < E; ++I)
3085     if (Mask[I] != UndefMaskElem)
3086       Reuses[Mask[I]] = Prev[I];
3087 }
3088 
3089 /// Reorders the given \p Order according to the given \p Mask. \p Order - is
3090 /// the original order of the scalars. Procedure transforms the provided order
3091 /// in accordance with the given \p Mask. If the resulting \p Order is just an
3092 /// identity order, \p Order is cleared.
3093 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) {
3094   assert(!Mask.empty() && "Expected non-empty mask.");
3095   SmallVector<int> MaskOrder;
3096   if (Order.empty()) {
3097     MaskOrder.resize(Mask.size());
3098     std::iota(MaskOrder.begin(), MaskOrder.end(), 0);
3099   } else {
3100     inversePermutation(Order, MaskOrder);
3101   }
3102   reorderReuses(MaskOrder, Mask);
3103   if (ShuffleVectorInst::isIdentityMask(MaskOrder)) {
3104     Order.clear();
3105     return;
3106   }
3107   Order.assign(Mask.size(), Mask.size());
3108   for (unsigned I = 0, E = Mask.size(); I < E; ++I)
3109     if (MaskOrder[I] != UndefMaskElem)
3110       Order[MaskOrder[I]] = I;
3111   fixupOrderingIndices(Order);
3112 }
3113 
3114 Optional<BoUpSLP::OrdersType>
3115 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) {
3116   assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only.");
3117   unsigned NumScalars = TE.Scalars.size();
3118   OrdersType CurrentOrder(NumScalars, NumScalars);
3119   SmallVector<int> Positions;
3120   SmallBitVector UsedPositions(NumScalars);
3121   const TreeEntry *STE = nullptr;
3122   // Try to find all gathered scalars that are gets vectorized in other
3123   // vectorize node. Here we can have only one single tree vector node to
3124   // correctly identify order of the gathered scalars.
3125   for (unsigned I = 0; I < NumScalars; ++I) {
3126     Value *V = TE.Scalars[I];
3127     if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V))
3128       continue;
3129     if (const auto *LocalSTE = getTreeEntry(V)) {
3130       if (!STE)
3131         STE = LocalSTE;
3132       else if (STE != LocalSTE)
3133         // Take the order only from the single vector node.
3134         return None;
3135       unsigned Lane =
3136           std::distance(STE->Scalars.begin(), find(STE->Scalars, V));
3137       if (Lane >= NumScalars)
3138         return None;
3139       if (CurrentOrder[Lane] != NumScalars) {
3140         if (Lane != I)
3141           continue;
3142         UsedPositions.reset(CurrentOrder[Lane]);
3143       }
3144       // The partial identity (where only some elements of the gather node are
3145       // in the identity order) is good.
3146       CurrentOrder[Lane] = I;
3147       UsedPositions.set(I);
3148     }
3149   }
3150   // Need to keep the order if we have a vector entry and at least 2 scalars or
3151   // the vectorized entry has just 2 scalars.
3152   if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) {
3153     auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) {
3154       for (unsigned I = 0; I < NumScalars; ++I)
3155         if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars)
3156           return false;
3157       return true;
3158     };
3159     if (IsIdentityOrder(CurrentOrder)) {
3160       CurrentOrder.clear();
3161       return CurrentOrder;
3162     }
3163     auto *It = CurrentOrder.begin();
3164     for (unsigned I = 0; I < NumScalars;) {
3165       if (UsedPositions.test(I)) {
3166         ++I;
3167         continue;
3168       }
3169       if (*It == NumScalars) {
3170         *It = I;
3171         ++I;
3172       }
3173       ++It;
3174     }
3175     return CurrentOrder;
3176   }
3177   return None;
3178 }
3179 
3180 Optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE,
3181                                                          bool TopToBottom) {
3182   // No need to reorder if need to shuffle reuses, still need to shuffle the
3183   // node.
3184   if (!TE.ReuseShuffleIndices.empty())
3185     return None;
3186   if (TE.State == TreeEntry::Vectorize &&
3187       (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) ||
3188        (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) &&
3189       !TE.isAltShuffle())
3190     return TE.ReorderIndices;
3191   if (TE.State == TreeEntry::NeedToGather) {
3192     // TODO: add analysis of other gather nodes with extractelement
3193     // instructions and other values/instructions, not only undefs.
3194     if (((TE.getOpcode() == Instruction::ExtractElement &&
3195           !TE.isAltShuffle()) ||
3196          (all_of(TE.Scalars,
3197                  [](Value *V) {
3198                    return isa<UndefValue, ExtractElementInst>(V);
3199                  }) &&
3200           any_of(TE.Scalars,
3201                  [](Value *V) { return isa<ExtractElementInst>(V); }))) &&
3202         all_of(TE.Scalars,
3203                [](Value *V) {
3204                  auto *EE = dyn_cast<ExtractElementInst>(V);
3205                  return !EE || isa<FixedVectorType>(EE->getVectorOperandType());
3206                }) &&
3207         allSameType(TE.Scalars)) {
3208       // Check that gather of extractelements can be represented as
3209       // just a shuffle of a single vector.
3210       OrdersType CurrentOrder;
3211       bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder);
3212       if (Reuse || !CurrentOrder.empty()) {
3213         if (!CurrentOrder.empty())
3214           fixupOrderingIndices(CurrentOrder);
3215         return CurrentOrder;
3216       }
3217     }
3218     if (Optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE))
3219       return CurrentOrder;
3220   }
3221   return None;
3222 }
3223 
3224 void BoUpSLP::reorderTopToBottom() {
3225   // Maps VF to the graph nodes.
3226   DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries;
3227   // ExtractElement gather nodes which can be vectorized and need to handle
3228   // their ordering.
3229   DenseMap<const TreeEntry *, OrdersType> GathersToOrders;
3230   // Find all reorderable nodes with the given VF.
3231   // Currently the are vectorized stores,loads,extracts + some gathering of
3232   // extracts.
3233   for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders](
3234                                  const std::unique_ptr<TreeEntry> &TE) {
3235     if (Optional<OrdersType> CurrentOrder =
3236             getReorderingData(*TE.get(), /*TopToBottom=*/true)) {
3237       // Do not include ordering for nodes used in the alt opcode vectorization,
3238       // better to reorder them during bottom-to-top stage. If follow the order
3239       // here, it causes reordering of the whole graph though actually it is
3240       // profitable just to reorder the subgraph that starts from the alternate
3241       // opcode vectorization node. Such nodes already end-up with the shuffle
3242       // instruction and it is just enough to change this shuffle rather than
3243       // rotate the scalars for the whole graph.
3244       unsigned Cnt = 0;
3245       const TreeEntry *UserTE = TE.get();
3246       while (UserTE && Cnt < RecursionMaxDepth) {
3247         if (UserTE->UserTreeIndices.size() != 1)
3248           break;
3249         if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) {
3250               return EI.UserTE->State == TreeEntry::Vectorize &&
3251                      EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0;
3252             }))
3253           return;
3254         if (UserTE->UserTreeIndices.empty())
3255           UserTE = nullptr;
3256         else
3257           UserTE = UserTE->UserTreeIndices.back().UserTE;
3258         ++Cnt;
3259       }
3260       VFToOrderedEntries[TE->Scalars.size()].insert(TE.get());
3261       if (TE->State != TreeEntry::Vectorize)
3262         GathersToOrders.try_emplace(TE.get(), *CurrentOrder);
3263     }
3264   });
3265 
3266   // Reorder the graph nodes according to their vectorization factor.
3267   for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1;
3268        VF /= 2) {
3269     auto It = VFToOrderedEntries.find(VF);
3270     if (It == VFToOrderedEntries.end())
3271       continue;
3272     // Try to find the most profitable order. We just are looking for the most
3273     // used order and reorder scalar elements in the nodes according to this
3274     // mostly used order.
3275     ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef();
3276     // All operands are reordered and used only in this node - propagate the
3277     // most used order to the user node.
3278     MapVector<OrdersType, unsigned,
3279               DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>>
3280         OrdersUses;
3281     SmallPtrSet<const TreeEntry *, 4> VisitedOps;
3282     for (const TreeEntry *OpTE : OrderedEntries) {
3283       // No need to reorder this nodes, still need to extend and to use shuffle,
3284       // just need to merge reordering shuffle and the reuse shuffle.
3285       if (!OpTE->ReuseShuffleIndices.empty())
3286         continue;
3287       // Count number of orders uses.
3288       const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & {
3289         if (OpTE->State == TreeEntry::NeedToGather)
3290           return GathersToOrders.find(OpTE)->second;
3291         return OpTE->ReorderIndices;
3292       }();
3293       // Stores actually store the mask, not the order, need to invert.
3294       if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() &&
3295           OpTE->getOpcode() == Instruction::Store && !Order.empty()) {
3296         SmallVector<int> Mask;
3297         inversePermutation(Order, Mask);
3298         unsigned E = Order.size();
3299         OrdersType CurrentOrder(E, E);
3300         transform(Mask, CurrentOrder.begin(), [E](int Idx) {
3301           return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx);
3302         });
3303         fixupOrderingIndices(CurrentOrder);
3304         ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second;
3305       } else {
3306         ++OrdersUses.insert(std::make_pair(Order, 0)).first->second;
3307       }
3308     }
3309     // Set order of the user node.
3310     if (OrdersUses.empty())
3311       continue;
3312     // Choose the most used order.
3313     ArrayRef<unsigned> BestOrder = OrdersUses.front().first;
3314     unsigned Cnt = OrdersUses.front().second;
3315     for (const auto &Pair : drop_begin(OrdersUses)) {
3316       if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) {
3317         BestOrder = Pair.first;
3318         Cnt = Pair.second;
3319       }
3320     }
3321     // Set order of the user node.
3322     if (BestOrder.empty())
3323       continue;
3324     SmallVector<int> Mask;
3325     inversePermutation(BestOrder, Mask);
3326     SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem);
3327     unsigned E = BestOrder.size();
3328     transform(BestOrder, MaskOrder.begin(), [E](unsigned I) {
3329       return I < E ? static_cast<int>(I) : UndefMaskElem;
3330     });
3331     // Do an actual reordering, if profitable.
3332     for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) {
3333       // Just do the reordering for the nodes with the given VF.
3334       if (TE->Scalars.size() != VF) {
3335         if (TE->ReuseShuffleIndices.size() == VF) {
3336           // Need to reorder the reuses masks of the operands with smaller VF to
3337           // be able to find the match between the graph nodes and scalar
3338           // operands of the given node during vectorization/cost estimation.
3339           assert(all_of(TE->UserTreeIndices,
3340                         [VF, &TE](const EdgeInfo &EI) {
3341                           return EI.UserTE->Scalars.size() == VF ||
3342                                  EI.UserTE->Scalars.size() ==
3343                                      TE->Scalars.size();
3344                         }) &&
3345                  "All users must be of VF size.");
3346           // Update ordering of the operands with the smaller VF than the given
3347           // one.
3348           reorderReuses(TE->ReuseShuffleIndices, Mask);
3349         }
3350         continue;
3351       }
3352       if (TE->State == TreeEntry::Vectorize &&
3353           isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst,
3354               InsertElementInst>(TE->getMainOp()) &&
3355           !TE->isAltShuffle()) {
3356         // Build correct orders for extract{element,value}, loads and
3357         // stores.
3358         reorderOrder(TE->ReorderIndices, Mask);
3359         if (isa<InsertElementInst, StoreInst>(TE->getMainOp()))
3360           TE->reorderOperands(Mask);
3361       } else {
3362         // Reorder the node and its operands.
3363         TE->reorderOperands(Mask);
3364         assert(TE->ReorderIndices.empty() &&
3365                "Expected empty reorder sequence.");
3366         reorderScalars(TE->Scalars, Mask);
3367       }
3368       if (!TE->ReuseShuffleIndices.empty()) {
3369         // Apply reversed order to keep the original ordering of the reused
3370         // elements to avoid extra reorder indices shuffling.
3371         OrdersType CurrentOrder;
3372         reorderOrder(CurrentOrder, MaskOrder);
3373         SmallVector<int> NewReuses;
3374         inversePermutation(CurrentOrder, NewReuses);
3375         addMask(NewReuses, TE->ReuseShuffleIndices);
3376         TE->ReuseShuffleIndices.swap(NewReuses);
3377       }
3378     }
3379   }
3380 }
3381 
3382 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) {
3383   SetVector<TreeEntry *> OrderedEntries;
3384   DenseMap<const TreeEntry *, OrdersType> GathersToOrders;
3385   // Find all reorderable leaf nodes with the given VF.
3386   // Currently the are vectorized loads,extracts without alternate operands +
3387   // some gathering of extracts.
3388   SmallVector<TreeEntry *> NonVectorized;
3389   for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders,
3390                               &NonVectorized](
3391                                  const std::unique_ptr<TreeEntry> &TE) {
3392     if (TE->State != TreeEntry::Vectorize)
3393       NonVectorized.push_back(TE.get());
3394     if (Optional<OrdersType> CurrentOrder =
3395             getReorderingData(*TE.get(), /*TopToBottom=*/false)) {
3396       OrderedEntries.insert(TE.get());
3397       if (TE->State != TreeEntry::Vectorize)
3398         GathersToOrders.try_emplace(TE.get(), *CurrentOrder);
3399     }
3400   });
3401 
3402   // Checks if the operands of the users are reordarable and have only single
3403   // use.
3404   auto &&CheckOperands =
3405       [this, &NonVectorized](const auto &Data,
3406                              SmallVectorImpl<TreeEntry *> &GatherOps) {
3407         for (unsigned I = 0, E = Data.first->getNumOperands(); I < E; ++I) {
3408           if (any_of(Data.second,
3409                      [I](const std::pair<unsigned, TreeEntry *> &OpData) {
3410                        return OpData.first == I &&
3411                               OpData.second->State == TreeEntry::Vectorize;
3412                      }))
3413             continue;
3414           ArrayRef<Value *> VL = Data.first->getOperand(I);
3415           const TreeEntry *TE = nullptr;
3416           const auto *It = find_if(VL, [this, &TE](Value *V) {
3417             TE = getTreeEntry(V);
3418             return TE;
3419           });
3420           if (It != VL.end() && TE->isSame(VL))
3421             return false;
3422           TreeEntry *Gather = nullptr;
3423           if (count_if(NonVectorized, [VL, &Gather](TreeEntry *TE) {
3424                 assert(TE->State != TreeEntry::Vectorize &&
3425                        "Only non-vectorized nodes are expected.");
3426                 if (TE->isSame(VL)) {
3427                   Gather = TE;
3428                   return true;
3429                 }
3430                 return false;
3431               }) > 1)
3432             return false;
3433           if (Gather)
3434             GatherOps.push_back(Gather);
3435         }
3436         return true;
3437       };
3438   // 1. Propagate order to the graph nodes, which use only reordered nodes.
3439   // I.e., if the node has operands, that are reordered, try to make at least
3440   // one operand order in the natural order and reorder others + reorder the
3441   // user node itself.
3442   SmallPtrSet<const TreeEntry *, 4> Visited;
3443   while (!OrderedEntries.empty()) {
3444     // 1. Filter out only reordered nodes.
3445     // 2. If the entry has multiple uses - skip it and jump to the next node.
3446     MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users;
3447     SmallVector<TreeEntry *> Filtered;
3448     for (TreeEntry *TE : OrderedEntries) {
3449       if (!(TE->State == TreeEntry::Vectorize ||
3450             (TE->State == TreeEntry::NeedToGather &&
3451              GathersToOrders.count(TE))) ||
3452           TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() ||
3453           !all_of(drop_begin(TE->UserTreeIndices),
3454                   [TE](const EdgeInfo &EI) {
3455                     return EI.UserTE == TE->UserTreeIndices.front().UserTE;
3456                   }) ||
3457           !Visited.insert(TE).second) {
3458         Filtered.push_back(TE);
3459         continue;
3460       }
3461       // Build a map between user nodes and their operands order to speedup
3462       // search. The graph currently does not provide this dependency directly.
3463       for (EdgeInfo &EI : TE->UserTreeIndices) {
3464         TreeEntry *UserTE = EI.UserTE;
3465         auto It = Users.find(UserTE);
3466         if (It == Users.end())
3467           It = Users.insert({UserTE, {}}).first;
3468         It->second.emplace_back(EI.EdgeIdx, TE);
3469       }
3470     }
3471     // Erase filtered entries.
3472     for_each(Filtered,
3473              [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); });
3474     for (const auto &Data : Users) {
3475       // Check that operands are used only in the User node.
3476       SmallVector<TreeEntry *> GatherOps;
3477       if (!CheckOperands(Data, GatherOps)) {
3478         for_each(Data.second,
3479                  [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) {
3480                    OrderedEntries.remove(Op.second);
3481                  });
3482         continue;
3483       }
3484       // All operands are reordered and used only in this node - propagate the
3485       // most used order to the user node.
3486       MapVector<OrdersType, unsigned,
3487                 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>>
3488           OrdersUses;
3489       // Do the analysis for each tree entry only once, otherwise the order of
3490       // the same node my be considered several times, though might be not
3491       // profitable.
3492       SmallPtrSet<const TreeEntry *, 4> VisitedOps;
3493       for (const auto &Op : Data.second) {
3494         TreeEntry *OpTE = Op.second;
3495         if (!VisitedOps.insert(OpTE).second)
3496           continue;
3497         if (!OpTE->ReuseShuffleIndices.empty() ||
3498             (IgnoreReorder && OpTE == VectorizableTree.front().get()))
3499           continue;
3500         const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & {
3501           if (OpTE->State == TreeEntry::NeedToGather)
3502             return GathersToOrders.find(OpTE)->second;
3503           return OpTE->ReorderIndices;
3504         }();
3505         // Stores actually store the mask, not the order, need to invert.
3506         if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() &&
3507             OpTE->getOpcode() == Instruction::Store && !Order.empty()) {
3508           SmallVector<int> Mask;
3509           inversePermutation(Order, Mask);
3510           unsigned E = Order.size();
3511           OrdersType CurrentOrder(E, E);
3512           transform(Mask, CurrentOrder.begin(), [E](int Idx) {
3513             return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx);
3514           });
3515           fixupOrderingIndices(CurrentOrder);
3516           ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second;
3517         } else {
3518           ++OrdersUses.insert(std::make_pair(Order, 0)).first->second;
3519         }
3520         OrdersUses.insert(std::make_pair(OrdersType(), 0)).first->second +=
3521             OpTE->UserTreeIndices.size();
3522         assert(OrdersUses[{}] > 0 && "Counter cannot be less than 0.");
3523         --OrdersUses[{}];
3524       }
3525       // If no orders - skip current nodes and jump to the next one, if any.
3526       if (OrdersUses.empty()) {
3527         for_each(Data.second,
3528                  [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) {
3529                    OrderedEntries.remove(Op.second);
3530                  });
3531         continue;
3532       }
3533       // Choose the best order.
3534       ArrayRef<unsigned> BestOrder = OrdersUses.front().first;
3535       unsigned Cnt = OrdersUses.front().second;
3536       for (const auto &Pair : drop_begin(OrdersUses)) {
3537         if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) {
3538           BestOrder = Pair.first;
3539           Cnt = Pair.second;
3540         }
3541       }
3542       // Set order of the user node (reordering of operands and user nodes).
3543       if (BestOrder.empty()) {
3544         for_each(Data.second,
3545                  [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) {
3546                    OrderedEntries.remove(Op.second);
3547                  });
3548         continue;
3549       }
3550       // Erase operands from OrderedEntries list and adjust their orders.
3551       VisitedOps.clear();
3552       SmallVector<int> Mask;
3553       inversePermutation(BestOrder, Mask);
3554       SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem);
3555       unsigned E = BestOrder.size();
3556       transform(BestOrder, MaskOrder.begin(), [E](unsigned I) {
3557         return I < E ? static_cast<int>(I) : UndefMaskElem;
3558       });
3559       for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) {
3560         TreeEntry *TE = Op.second;
3561         OrderedEntries.remove(TE);
3562         if (!VisitedOps.insert(TE).second)
3563           continue;
3564         if (!TE->ReuseShuffleIndices.empty() && TE->ReorderIndices.empty()) {
3565           // Just reorder reuses indices.
3566           reorderReuses(TE->ReuseShuffleIndices, Mask);
3567           continue;
3568         }
3569         // Gathers are processed separately.
3570         if (TE->State != TreeEntry::Vectorize)
3571           continue;
3572         assert((BestOrder.size() == TE->ReorderIndices.size() ||
3573                 TE->ReorderIndices.empty()) &&
3574                "Non-matching sizes of user/operand entries.");
3575         reorderOrder(TE->ReorderIndices, Mask);
3576       }
3577       // For gathers just need to reorder its scalars.
3578       for (TreeEntry *Gather : GatherOps) {
3579         assert(Gather->ReorderIndices.empty() &&
3580                "Unexpected reordering of gathers.");
3581         if (!Gather->ReuseShuffleIndices.empty()) {
3582           // Just reorder reuses indices.
3583           reorderReuses(Gather->ReuseShuffleIndices, Mask);
3584           continue;
3585         }
3586         reorderScalars(Gather->Scalars, Mask);
3587         OrderedEntries.remove(Gather);
3588       }
3589       // Reorder operands of the user node and set the ordering for the user
3590       // node itself.
3591       if (Data.first->State != TreeEntry::Vectorize ||
3592           !isa<ExtractElementInst, ExtractValueInst, LoadInst>(
3593               Data.first->getMainOp()) ||
3594           Data.first->isAltShuffle())
3595         Data.first->reorderOperands(Mask);
3596       if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) ||
3597           Data.first->isAltShuffle()) {
3598         reorderScalars(Data.first->Scalars, Mask);
3599         reorderOrder(Data.first->ReorderIndices, MaskOrder);
3600         if (Data.first->ReuseShuffleIndices.empty() &&
3601             !Data.first->ReorderIndices.empty() &&
3602             !Data.first->isAltShuffle()) {
3603           // Insert user node to the list to try to sink reordering deeper in
3604           // the graph.
3605           OrderedEntries.insert(Data.first);
3606         }
3607       } else {
3608         reorderOrder(Data.first->ReorderIndices, Mask);
3609       }
3610     }
3611   }
3612   // If the reordering is unnecessary, just remove the reorder.
3613   if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() &&
3614       VectorizableTree.front()->ReuseShuffleIndices.empty())
3615     VectorizableTree.front()->ReorderIndices.clear();
3616 }
3617 
3618 void BoUpSLP::buildExternalUses(
3619     const ExtraValueToDebugLocsMap &ExternallyUsedValues) {
3620   // Collect the values that we need to extract from the tree.
3621   for (auto &TEPtr : VectorizableTree) {
3622     TreeEntry *Entry = TEPtr.get();
3623 
3624     // No need to handle users of gathered values.
3625     if (Entry->State == TreeEntry::NeedToGather)
3626       continue;
3627 
3628     // For each lane:
3629     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
3630       Value *Scalar = Entry->Scalars[Lane];
3631       int FoundLane = Entry->findLaneForValue(Scalar);
3632 
3633       // Check if the scalar is externally used as an extra arg.
3634       auto ExtI = ExternallyUsedValues.find(Scalar);
3635       if (ExtI != ExternallyUsedValues.end()) {
3636         LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane "
3637                           << Lane << " from " << *Scalar << ".\n");
3638         ExternalUses.emplace_back(Scalar, nullptr, FoundLane);
3639       }
3640       for (User *U : Scalar->users()) {
3641         LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
3642 
3643         Instruction *UserInst = dyn_cast<Instruction>(U);
3644         if (!UserInst)
3645           continue;
3646 
3647         if (isDeleted(UserInst))
3648           continue;
3649 
3650         // Skip in-tree scalars that become vectors
3651         if (TreeEntry *UseEntry = getTreeEntry(U)) {
3652           Value *UseScalar = UseEntry->Scalars[0];
3653           // Some in-tree scalars will remain as scalar in vectorized
3654           // instructions. If that is the case, the one in Lane 0 will
3655           // be used.
3656           if (UseScalar != U ||
3657               UseEntry->State == TreeEntry::ScatterVectorize ||
3658               !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
3659             LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
3660                               << ".\n");
3661             assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state");
3662             continue;
3663           }
3664         }
3665 
3666         // Ignore users in the user ignore list.
3667         if (is_contained(UserIgnoreList, UserInst))
3668           continue;
3669 
3670         LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane "
3671                           << Lane << " from " << *Scalar << ".\n");
3672         ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane));
3673       }
3674     }
3675   }
3676 }
3677 
3678 void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
3679                         ArrayRef<Value *> UserIgnoreLst) {
3680   deleteTree();
3681   UserIgnoreList = UserIgnoreLst;
3682   if (!allSameType(Roots))
3683     return;
3684   buildTree_rec(Roots, 0, EdgeInfo());
3685 }
3686 
3687 namespace {
3688 /// Tracks the state we can represent the loads in the given sequence.
3689 enum class LoadsState { Gather, Vectorize, ScatterVectorize };
3690 } // anonymous namespace
3691 
3692 /// Checks if the given array of loads can be represented as a vectorized,
3693 /// scatter or just simple gather.
3694 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0,
3695                                     const TargetTransformInfo &TTI,
3696                                     const DataLayout &DL, ScalarEvolution &SE,
3697                                     SmallVectorImpl<unsigned> &Order,
3698                                     SmallVectorImpl<Value *> &PointerOps) {
3699   // Check that a vectorized load would load the same memory as a scalar
3700   // load. For example, we don't want to vectorize loads that are smaller
3701   // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
3702   // treats loading/storing it as an i8 struct. If we vectorize loads/stores
3703   // from such a struct, we read/write packed bits disagreeing with the
3704   // unvectorized version.
3705   Type *ScalarTy = VL0->getType();
3706 
3707   if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy))
3708     return LoadsState::Gather;
3709 
3710   // Make sure all loads in the bundle are simple - we can't vectorize
3711   // atomic or volatile loads.
3712   PointerOps.clear();
3713   PointerOps.resize(VL.size());
3714   auto *POIter = PointerOps.begin();
3715   for (Value *V : VL) {
3716     auto *L = cast<LoadInst>(V);
3717     if (!L->isSimple())
3718       return LoadsState::Gather;
3719     *POIter = L->getPointerOperand();
3720     ++POIter;
3721   }
3722 
3723   Order.clear();
3724   // Check the order of pointer operands.
3725   if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) {
3726     Value *Ptr0;
3727     Value *PtrN;
3728     if (Order.empty()) {
3729       Ptr0 = PointerOps.front();
3730       PtrN = PointerOps.back();
3731     } else {
3732       Ptr0 = PointerOps[Order.front()];
3733       PtrN = PointerOps[Order.back()];
3734     }
3735     Optional<int> Diff =
3736         getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE);
3737     // Check that the sorted loads are consecutive.
3738     if (static_cast<unsigned>(*Diff) == VL.size() - 1)
3739       return LoadsState::Vectorize;
3740     Align CommonAlignment = cast<LoadInst>(VL0)->getAlign();
3741     for (Value *V : VL)
3742       CommonAlignment =
3743           commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign());
3744     if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()),
3745                                 CommonAlignment))
3746       return LoadsState::ScatterVectorize;
3747   }
3748 
3749   return LoadsState::Gather;
3750 }
3751 
3752 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth,
3753                             const EdgeInfo &UserTreeIdx) {
3754   assert((allConstant(VL) || allSameType(VL)) && "Invalid types!");
3755 
3756   SmallVector<int> ReuseShuffleIndicies;
3757   SmallVector<Value *> UniqueValues;
3758   auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues,
3759                                 &UserTreeIdx,
3760                                 this](const InstructionsState &S) {
3761     // Check that every instruction appears once in this bundle.
3762     DenseMap<Value *, unsigned> UniquePositions;
3763     for (Value *V : VL) {
3764       if (isConstant(V)) {
3765         ReuseShuffleIndicies.emplace_back(
3766             isa<UndefValue>(V) ? UndefMaskElem : UniqueValues.size());
3767         UniqueValues.emplace_back(V);
3768         continue;
3769       }
3770       auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
3771       ReuseShuffleIndicies.emplace_back(Res.first->second);
3772       if (Res.second)
3773         UniqueValues.emplace_back(V);
3774     }
3775     size_t NumUniqueScalarValues = UniqueValues.size();
3776     if (NumUniqueScalarValues == VL.size()) {
3777       ReuseShuffleIndicies.clear();
3778     } else {
3779       LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n");
3780       if (NumUniqueScalarValues <= 1 ||
3781           (UniquePositions.size() == 1 && all_of(UniqueValues,
3782                                                  [](Value *V) {
3783                                                    return isa<UndefValue>(V) ||
3784                                                           !isConstant(V);
3785                                                  })) ||
3786           !llvm::isPowerOf2_32(NumUniqueScalarValues)) {
3787         LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
3788         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
3789         return false;
3790       }
3791       VL = UniqueValues;
3792     }
3793     return true;
3794   };
3795 
3796   InstructionsState S = getSameOpcode(VL);
3797   if (Depth == RecursionMaxDepth) {
3798     LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
3799     if (TryToFindDuplicates(S))
3800       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3801                    ReuseShuffleIndicies);
3802     return;
3803   }
3804 
3805   // Don't handle scalable vectors
3806   if (S.getOpcode() == Instruction::ExtractElement &&
3807       isa<ScalableVectorType>(
3808           cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) {
3809     LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n");
3810     if (TryToFindDuplicates(S))
3811       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3812                    ReuseShuffleIndicies);
3813     return;
3814   }
3815 
3816   // Don't handle vectors.
3817   if (S.OpValue->getType()->isVectorTy() &&
3818       !isa<InsertElementInst>(S.OpValue)) {
3819     LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
3820     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
3821     return;
3822   }
3823 
3824   if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
3825     if (SI->getValueOperand()->getType()->isVectorTy()) {
3826       LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
3827       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
3828       return;
3829     }
3830 
3831   // If all of the operands are identical or constant we have a simple solution.
3832   // If we deal with insert/extract instructions, they all must have constant
3833   // indices, otherwise we should gather them, not try to vectorize.
3834   if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() ||
3835       (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) &&
3836        !all_of(VL, isVectorLikeInstWithConstOps))) {
3837     LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
3838     if (TryToFindDuplicates(S))
3839       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3840                    ReuseShuffleIndicies);
3841     return;
3842   }
3843 
3844   // We now know that this is a vector of instructions of the same type from
3845   // the same block.
3846 
3847   // Don't vectorize ephemeral values.
3848   for (Value *V : VL) {
3849     if (EphValues.count(V)) {
3850       LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
3851                         << ") is ephemeral.\n");
3852       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
3853       return;
3854     }
3855   }
3856 
3857   // Check if this is a duplicate of another entry.
3858   if (TreeEntry *E = getTreeEntry(S.OpValue)) {
3859     LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n");
3860     if (!E->isSame(VL)) {
3861       LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
3862       if (TryToFindDuplicates(S))
3863         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3864                      ReuseShuffleIndicies);
3865       return;
3866     }
3867     // Record the reuse of the tree node.  FIXME, currently this is only used to
3868     // properly draw the graph rather than for the actual vectorization.
3869     E->UserTreeIndices.push_back(UserTreeIdx);
3870     LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue
3871                       << ".\n");
3872     return;
3873   }
3874 
3875   // Check that none of the instructions in the bundle are already in the tree.
3876   for (Value *V : VL) {
3877     auto *I = dyn_cast<Instruction>(V);
3878     if (!I)
3879       continue;
3880     if (getTreeEntry(I)) {
3881       LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
3882                         << ") is already in tree.\n");
3883       if (TryToFindDuplicates(S))
3884         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3885                      ReuseShuffleIndicies);
3886       return;
3887     }
3888   }
3889 
3890   // The reduction nodes (stored in UserIgnoreList) also should stay scalar.
3891   for (Value *V : VL) {
3892     if (is_contained(UserIgnoreList, V)) {
3893       LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
3894       if (TryToFindDuplicates(S))
3895         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3896                      ReuseShuffleIndicies);
3897       return;
3898     }
3899   }
3900 
3901   // Check that all of the users of the scalars that we want to vectorize are
3902   // schedulable.
3903   auto *VL0 = cast<Instruction>(S.OpValue);
3904   BasicBlock *BB = VL0->getParent();
3905 
3906   if (!DT->isReachableFromEntry(BB)) {
3907     // Don't go into unreachable blocks. They may contain instructions with
3908     // dependency cycles which confuse the final scheduling.
3909     LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
3910     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
3911     return;
3912   }
3913 
3914   // Check that every instruction appears once in this bundle.
3915   if (!TryToFindDuplicates(S))
3916     return;
3917 
3918   auto &BSRef = BlocksSchedules[BB];
3919   if (!BSRef)
3920     BSRef = std::make_unique<BlockScheduling>(BB);
3921 
3922   BlockScheduling &BS = *BSRef.get();
3923 
3924   Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S);
3925 #ifdef EXPENSIVE_CHECKS
3926   // Make sure we didn't break any internal invariants
3927   BS.verify();
3928 #endif
3929   if (!Bundle) {
3930     LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
3931     assert((!BS.getScheduleData(VL0) ||
3932             !BS.getScheduleData(VL0)->isPartOfBundle()) &&
3933            "tryScheduleBundle should cancelScheduling on failure");
3934     newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3935                  ReuseShuffleIndicies);
3936     return;
3937   }
3938   LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
3939 
3940   unsigned ShuffleOrOp = S.isAltShuffle() ?
3941                 (unsigned) Instruction::ShuffleVector : S.getOpcode();
3942   switch (ShuffleOrOp) {
3943     case Instruction::PHI: {
3944       auto *PH = cast<PHINode>(VL0);
3945 
3946       // Check for terminator values (e.g. invoke).
3947       for (Value *V : VL)
3948         for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) {
3949           Instruction *Term = dyn_cast<Instruction>(
3950               cast<PHINode>(V)->getIncomingValueForBlock(
3951                   PH->getIncomingBlock(I)));
3952           if (Term && Term->isTerminator()) {
3953             LLVM_DEBUG(dbgs()
3954                        << "SLP: Need to swizzle PHINodes (terminator use).\n");
3955             BS.cancelScheduling(VL, VL0);
3956             newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3957                          ReuseShuffleIndicies);
3958             return;
3959           }
3960         }
3961 
3962       TreeEntry *TE =
3963           newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies);
3964       LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
3965 
3966       // Keeps the reordered operands to avoid code duplication.
3967       SmallVector<ValueList, 2> OperandsVec;
3968       for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) {
3969         if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) {
3970           ValueList Operands(VL.size(), PoisonValue::get(PH->getType()));
3971           TE->setOperand(I, Operands);
3972           OperandsVec.push_back(Operands);
3973           continue;
3974         }
3975         ValueList Operands;
3976         // Prepare the operand vector.
3977         for (Value *V : VL)
3978           Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(
3979               PH->getIncomingBlock(I)));
3980         TE->setOperand(I, Operands);
3981         OperandsVec.push_back(Operands);
3982       }
3983       for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx)
3984         buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx});
3985       return;
3986     }
3987     case Instruction::ExtractValue:
3988     case Instruction::ExtractElement: {
3989       OrdersType CurrentOrder;
3990       bool Reuse = canReuseExtract(VL, VL0, CurrentOrder);
3991       if (Reuse) {
3992         LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n");
3993         newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3994                      ReuseShuffleIndicies);
3995         // This is a special case, as it does not gather, but at the same time
3996         // we are not extending buildTree_rec() towards the operands.
3997         ValueList Op0;
3998         Op0.assign(VL.size(), VL0->getOperand(0));
3999         VectorizableTree.back()->setOperand(0, Op0);
4000         return;
4001       }
4002       if (!CurrentOrder.empty()) {
4003         LLVM_DEBUG({
4004           dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
4005                     "with order";
4006           for (unsigned Idx : CurrentOrder)
4007             dbgs() << " " << Idx;
4008           dbgs() << "\n";
4009         });
4010         fixupOrderingIndices(CurrentOrder);
4011         // Insert new order with initial value 0, if it does not exist,
4012         // otherwise return the iterator to the existing one.
4013         newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4014                      ReuseShuffleIndicies, CurrentOrder);
4015         // This is a special case, as it does not gather, but at the same time
4016         // we are not extending buildTree_rec() towards the operands.
4017         ValueList Op0;
4018         Op0.assign(VL.size(), VL0->getOperand(0));
4019         VectorizableTree.back()->setOperand(0, Op0);
4020         return;
4021       }
4022       LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n");
4023       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4024                    ReuseShuffleIndicies);
4025       BS.cancelScheduling(VL, VL0);
4026       return;
4027     }
4028     case Instruction::InsertElement: {
4029       assert(ReuseShuffleIndicies.empty() && "All inserts should be unique");
4030 
4031       // Check that we have a buildvector and not a shuffle of 2 or more
4032       // different vectors.
4033       ValueSet SourceVectors;
4034       for (Value *V : VL) {
4035         SourceVectors.insert(cast<Instruction>(V)->getOperand(0));
4036         assert(getInsertIndex(V) != None && "Non-constant or undef index?");
4037       }
4038 
4039       if (count_if(VL, [&SourceVectors](Value *V) {
4040             return !SourceVectors.contains(V);
4041           }) >= 2) {
4042         // Found 2nd source vector - cancel.
4043         LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with "
4044                              "different source vectors.\n");
4045         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
4046         BS.cancelScheduling(VL, VL0);
4047         return;
4048       }
4049 
4050       auto OrdCompare = [](const std::pair<int, int> &P1,
4051                            const std::pair<int, int> &P2) {
4052         return P1.first > P2.first;
4053       };
4054       PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>,
4055                     decltype(OrdCompare)>
4056           Indices(OrdCompare);
4057       for (int I = 0, E = VL.size(); I < E; ++I) {
4058         unsigned Idx = *getInsertIndex(VL[I]);
4059         Indices.emplace(Idx, I);
4060       }
4061       OrdersType CurrentOrder(VL.size(), VL.size());
4062       bool IsIdentity = true;
4063       for (int I = 0, E = VL.size(); I < E; ++I) {
4064         CurrentOrder[Indices.top().second] = I;
4065         IsIdentity &= Indices.top().second == I;
4066         Indices.pop();
4067       }
4068       if (IsIdentity)
4069         CurrentOrder.clear();
4070       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4071                                    None, CurrentOrder);
4072       LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n");
4073 
4074       constexpr int NumOps = 2;
4075       ValueList VectorOperands[NumOps];
4076       for (int I = 0; I < NumOps; ++I) {
4077         for (Value *V : VL)
4078           VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I));
4079 
4080         TE->setOperand(I, VectorOperands[I]);
4081       }
4082       buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1});
4083       return;
4084     }
4085     case Instruction::Load: {
4086       // Check that a vectorized load would load the same memory as a scalar
4087       // load. For example, we don't want to vectorize loads that are smaller
4088       // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
4089       // treats loading/storing it as an i8 struct. If we vectorize loads/stores
4090       // from such a struct, we read/write packed bits disagreeing with the
4091       // unvectorized version.
4092       SmallVector<Value *> PointerOps;
4093       OrdersType CurrentOrder;
4094       TreeEntry *TE = nullptr;
4095       switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder,
4096                                 PointerOps)) {
4097       case LoadsState::Vectorize:
4098         if (CurrentOrder.empty()) {
4099           // Original loads are consecutive and does not require reordering.
4100           TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4101                             ReuseShuffleIndicies);
4102           LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n");
4103         } else {
4104           fixupOrderingIndices(CurrentOrder);
4105           // Need to reorder.
4106           TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4107                             ReuseShuffleIndicies, CurrentOrder);
4108           LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n");
4109         }
4110         TE->setOperandsInOrder();
4111         break;
4112       case LoadsState::ScatterVectorize:
4113         // Vectorizing non-consecutive loads with `llvm.masked.gather`.
4114         TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S,
4115                           UserTreeIdx, ReuseShuffleIndicies);
4116         TE->setOperandsInOrder();
4117         buildTree_rec(PointerOps, Depth + 1, {TE, 0});
4118         LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n");
4119         break;
4120       case LoadsState::Gather:
4121         BS.cancelScheduling(VL, VL0);
4122         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4123                      ReuseShuffleIndicies);
4124 #ifndef NDEBUG
4125         Type *ScalarTy = VL0->getType();
4126         if (DL->getTypeSizeInBits(ScalarTy) !=
4127             DL->getTypeAllocSizeInBits(ScalarTy))
4128           LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n");
4129         else if (any_of(VL, [](Value *V) {
4130                    return !cast<LoadInst>(V)->isSimple();
4131                  }))
4132           LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
4133         else
4134           LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
4135 #endif // NDEBUG
4136         break;
4137       }
4138       return;
4139     }
4140     case Instruction::ZExt:
4141     case Instruction::SExt:
4142     case Instruction::FPToUI:
4143     case Instruction::FPToSI:
4144     case Instruction::FPExt:
4145     case Instruction::PtrToInt:
4146     case Instruction::IntToPtr:
4147     case Instruction::SIToFP:
4148     case Instruction::UIToFP:
4149     case Instruction::Trunc:
4150     case Instruction::FPTrunc:
4151     case Instruction::BitCast: {
4152       Type *SrcTy = VL0->getOperand(0)->getType();
4153       for (Value *V : VL) {
4154         Type *Ty = cast<Instruction>(V)->getOperand(0)->getType();
4155         if (Ty != SrcTy || !isValidElementType(Ty)) {
4156           BS.cancelScheduling(VL, VL0);
4157           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4158                        ReuseShuffleIndicies);
4159           LLVM_DEBUG(dbgs()
4160                      << "SLP: Gathering casts with different src types.\n");
4161           return;
4162         }
4163       }
4164       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4165                                    ReuseShuffleIndicies);
4166       LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n");
4167 
4168       TE->setOperandsInOrder();
4169       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
4170         ValueList Operands;
4171         // Prepare the operand vector.
4172         for (Value *V : VL)
4173           Operands.push_back(cast<Instruction>(V)->getOperand(i));
4174 
4175         buildTree_rec(Operands, Depth + 1, {TE, i});
4176       }
4177       return;
4178     }
4179     case Instruction::ICmp:
4180     case Instruction::FCmp: {
4181       // Check that all of the compares have the same predicate.
4182       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
4183       CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0);
4184       Type *ComparedTy = VL0->getOperand(0)->getType();
4185       for (Value *V : VL) {
4186         CmpInst *Cmp = cast<CmpInst>(V);
4187         if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) ||
4188             Cmp->getOperand(0)->getType() != ComparedTy) {
4189           BS.cancelScheduling(VL, VL0);
4190           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4191                        ReuseShuffleIndicies);
4192           LLVM_DEBUG(dbgs()
4193                      << "SLP: Gathering cmp with different predicate.\n");
4194           return;
4195         }
4196       }
4197 
4198       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4199                                    ReuseShuffleIndicies);
4200       LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n");
4201 
4202       ValueList Left, Right;
4203       if (cast<CmpInst>(VL0)->isCommutative()) {
4204         // Commutative predicate - collect + sort operands of the instructions
4205         // so that each side is more likely to have the same opcode.
4206         assert(P0 == SwapP0 && "Commutative Predicate mismatch");
4207         reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
4208       } else {
4209         // Collect operands - commute if it uses the swapped predicate.
4210         for (Value *V : VL) {
4211           auto *Cmp = cast<CmpInst>(V);
4212           Value *LHS = Cmp->getOperand(0);
4213           Value *RHS = Cmp->getOperand(1);
4214           if (Cmp->getPredicate() != P0)
4215             std::swap(LHS, RHS);
4216           Left.push_back(LHS);
4217           Right.push_back(RHS);
4218         }
4219       }
4220       TE->setOperand(0, Left);
4221       TE->setOperand(1, Right);
4222       buildTree_rec(Left, Depth + 1, {TE, 0});
4223       buildTree_rec(Right, Depth + 1, {TE, 1});
4224       return;
4225     }
4226     case Instruction::Select:
4227     case Instruction::FNeg:
4228     case Instruction::Add:
4229     case Instruction::FAdd:
4230     case Instruction::Sub:
4231     case Instruction::FSub:
4232     case Instruction::Mul:
4233     case Instruction::FMul:
4234     case Instruction::UDiv:
4235     case Instruction::SDiv:
4236     case Instruction::FDiv:
4237     case Instruction::URem:
4238     case Instruction::SRem:
4239     case Instruction::FRem:
4240     case Instruction::Shl:
4241     case Instruction::LShr:
4242     case Instruction::AShr:
4243     case Instruction::And:
4244     case Instruction::Or:
4245     case Instruction::Xor: {
4246       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4247                                    ReuseShuffleIndicies);
4248       LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n");
4249 
4250       // Sort operands of the instructions so that each side is more likely to
4251       // have the same opcode.
4252       if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
4253         ValueList Left, Right;
4254         reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
4255         TE->setOperand(0, Left);
4256         TE->setOperand(1, Right);
4257         buildTree_rec(Left, Depth + 1, {TE, 0});
4258         buildTree_rec(Right, Depth + 1, {TE, 1});
4259         return;
4260       }
4261 
4262       TE->setOperandsInOrder();
4263       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
4264         ValueList Operands;
4265         // Prepare the operand vector.
4266         for (Value *V : VL)
4267           Operands.push_back(cast<Instruction>(V)->getOperand(i));
4268 
4269         buildTree_rec(Operands, Depth + 1, {TE, i});
4270       }
4271       return;
4272     }
4273     case Instruction::GetElementPtr: {
4274       // We don't combine GEPs with complicated (nested) indexing.
4275       for (Value *V : VL) {
4276         if (cast<Instruction>(V)->getNumOperands() != 2) {
4277           LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
4278           BS.cancelScheduling(VL, VL0);
4279           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4280                        ReuseShuffleIndicies);
4281           return;
4282         }
4283       }
4284 
4285       // We can't combine several GEPs into one vector if they operate on
4286       // different types.
4287       Type *Ty0 = cast<GEPOperator>(VL0)->getSourceElementType();
4288       for (Value *V : VL) {
4289         Type *CurTy = cast<GEPOperator>(V)->getSourceElementType();
4290         if (Ty0 != CurTy) {
4291           LLVM_DEBUG(dbgs()
4292                      << "SLP: not-vectorizable GEP (different types).\n");
4293           BS.cancelScheduling(VL, VL0);
4294           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4295                        ReuseShuffleIndicies);
4296           return;
4297         }
4298       }
4299 
4300       // We don't combine GEPs with non-constant indexes.
4301       Type *Ty1 = VL0->getOperand(1)->getType();
4302       for (Value *V : VL) {
4303         auto Op = cast<Instruction>(V)->getOperand(1);
4304         if (!isa<ConstantInt>(Op) ||
4305             (Op->getType() != Ty1 &&
4306              Op->getType()->getScalarSizeInBits() >
4307                  DL->getIndexSizeInBits(
4308                      V->getType()->getPointerAddressSpace()))) {
4309           LLVM_DEBUG(dbgs()
4310                      << "SLP: not-vectorizable GEP (non-constant indexes).\n");
4311           BS.cancelScheduling(VL, VL0);
4312           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4313                        ReuseShuffleIndicies);
4314           return;
4315         }
4316       }
4317 
4318       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4319                                    ReuseShuffleIndicies);
4320       LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
4321       SmallVector<ValueList, 2> Operands(2);
4322       // Prepare the operand vector for pointer operands.
4323       for (Value *V : VL)
4324         Operands.front().push_back(
4325             cast<GetElementPtrInst>(V)->getPointerOperand());
4326       TE->setOperand(0, Operands.front());
4327       // Need to cast all indices to the same type before vectorization to
4328       // avoid crash.
4329       // Required to be able to find correct matches between different gather
4330       // nodes and reuse the vectorized values rather than trying to gather them
4331       // again.
4332       int IndexIdx = 1;
4333       Type *VL0Ty = VL0->getOperand(IndexIdx)->getType();
4334       Type *Ty = all_of(VL,
4335                         [VL0Ty, IndexIdx](Value *V) {
4336                           return VL0Ty == cast<GetElementPtrInst>(V)
4337                                               ->getOperand(IndexIdx)
4338                                               ->getType();
4339                         })
4340                      ? VL0Ty
4341                      : DL->getIndexType(cast<GetElementPtrInst>(VL0)
4342                                             ->getPointerOperandType()
4343                                             ->getScalarType());
4344       // Prepare the operand vector.
4345       for (Value *V : VL) {
4346         auto *Op = cast<Instruction>(V)->getOperand(IndexIdx);
4347         auto *CI = cast<ConstantInt>(Op);
4348         Operands.back().push_back(ConstantExpr::getIntegerCast(
4349             CI, Ty, CI->getValue().isSignBitSet()));
4350       }
4351       TE->setOperand(IndexIdx, Operands.back());
4352 
4353       for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I)
4354         buildTree_rec(Operands[I], Depth + 1, {TE, I});
4355       return;
4356     }
4357     case Instruction::Store: {
4358       // Check if the stores are consecutive or if we need to swizzle them.
4359       llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType();
4360       // Avoid types that are padded when being allocated as scalars, while
4361       // being packed together in a vector (such as i1).
4362       if (DL->getTypeSizeInBits(ScalarTy) !=
4363           DL->getTypeAllocSizeInBits(ScalarTy)) {
4364         BS.cancelScheduling(VL, VL0);
4365         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4366                      ReuseShuffleIndicies);
4367         LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n");
4368         return;
4369       }
4370       // Make sure all stores in the bundle are simple - we can't vectorize
4371       // atomic or volatile stores.
4372       SmallVector<Value *, 4> PointerOps(VL.size());
4373       ValueList Operands(VL.size());
4374       auto POIter = PointerOps.begin();
4375       auto OIter = Operands.begin();
4376       for (Value *V : VL) {
4377         auto *SI = cast<StoreInst>(V);
4378         if (!SI->isSimple()) {
4379           BS.cancelScheduling(VL, VL0);
4380           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4381                        ReuseShuffleIndicies);
4382           LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n");
4383           return;
4384         }
4385         *POIter = SI->getPointerOperand();
4386         *OIter = SI->getValueOperand();
4387         ++POIter;
4388         ++OIter;
4389       }
4390 
4391       OrdersType CurrentOrder;
4392       // Check the order of pointer operands.
4393       if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) {
4394         Value *Ptr0;
4395         Value *PtrN;
4396         if (CurrentOrder.empty()) {
4397           Ptr0 = PointerOps.front();
4398           PtrN = PointerOps.back();
4399         } else {
4400           Ptr0 = PointerOps[CurrentOrder.front()];
4401           PtrN = PointerOps[CurrentOrder.back()];
4402         }
4403         Optional<int> Dist =
4404             getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE);
4405         // Check that the sorted pointer operands are consecutive.
4406         if (static_cast<unsigned>(*Dist) == VL.size() - 1) {
4407           if (CurrentOrder.empty()) {
4408             // Original stores are consecutive and does not require reordering.
4409             TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
4410                                          UserTreeIdx, ReuseShuffleIndicies);
4411             TE->setOperandsInOrder();
4412             buildTree_rec(Operands, Depth + 1, {TE, 0});
4413             LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n");
4414           } else {
4415             fixupOrderingIndices(CurrentOrder);
4416             TreeEntry *TE =
4417                 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4418                              ReuseShuffleIndicies, CurrentOrder);
4419             TE->setOperandsInOrder();
4420             buildTree_rec(Operands, Depth + 1, {TE, 0});
4421             LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n");
4422           }
4423           return;
4424         }
4425       }
4426 
4427       BS.cancelScheduling(VL, VL0);
4428       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4429                    ReuseShuffleIndicies);
4430       LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
4431       return;
4432     }
4433     case Instruction::Call: {
4434       // Check if the calls are all to the same vectorizable intrinsic or
4435       // library function.
4436       CallInst *CI = cast<CallInst>(VL0);
4437       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4438 
4439       VFShape Shape = VFShape::get(
4440           *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())),
4441           false /*HasGlobalPred*/);
4442       Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
4443 
4444       if (!VecFunc && !isTriviallyVectorizable(ID)) {
4445         BS.cancelScheduling(VL, VL0);
4446         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4447                      ReuseShuffleIndicies);
4448         LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
4449         return;
4450       }
4451       Function *F = CI->getCalledFunction();
4452       unsigned NumArgs = CI->arg_size();
4453       SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr);
4454       for (unsigned j = 0; j != NumArgs; ++j)
4455         if (hasVectorInstrinsicScalarOpd(ID, j))
4456           ScalarArgs[j] = CI->getArgOperand(j);
4457       for (Value *V : VL) {
4458         CallInst *CI2 = dyn_cast<CallInst>(V);
4459         if (!CI2 || CI2->getCalledFunction() != F ||
4460             getVectorIntrinsicIDForCall(CI2, TLI) != ID ||
4461             (VecFunc &&
4462              VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) ||
4463             !CI->hasIdenticalOperandBundleSchema(*CI2)) {
4464           BS.cancelScheduling(VL, VL0);
4465           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4466                        ReuseShuffleIndicies);
4467           LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V
4468                             << "\n");
4469           return;
4470         }
4471         // Some intrinsics have scalar arguments and should be same in order for
4472         // them to be vectorized.
4473         for (unsigned j = 0; j != NumArgs; ++j) {
4474           if (hasVectorInstrinsicScalarOpd(ID, j)) {
4475             Value *A1J = CI2->getArgOperand(j);
4476             if (ScalarArgs[j] != A1J) {
4477               BS.cancelScheduling(VL, VL0);
4478               newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4479                            ReuseShuffleIndicies);
4480               LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
4481                                 << " argument " << ScalarArgs[j] << "!=" << A1J
4482                                 << "\n");
4483               return;
4484             }
4485           }
4486         }
4487         // Verify that the bundle operands are identical between the two calls.
4488         if (CI->hasOperandBundles() &&
4489             !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(),
4490                         CI->op_begin() + CI->getBundleOperandsEndIndex(),
4491                         CI2->op_begin() + CI2->getBundleOperandsStartIndex())) {
4492           BS.cancelScheduling(VL, VL0);
4493           newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4494                        ReuseShuffleIndicies);
4495           LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:"
4496                             << *CI << "!=" << *V << '\n');
4497           return;
4498         }
4499       }
4500 
4501       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4502                                    ReuseShuffleIndicies);
4503       TE->setOperandsInOrder();
4504       for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) {
4505         // For scalar operands no need to to create an entry since no need to
4506         // vectorize it.
4507         if (hasVectorInstrinsicScalarOpd(ID, i))
4508           continue;
4509         ValueList Operands;
4510         // Prepare the operand vector.
4511         for (Value *V : VL) {
4512           auto *CI2 = cast<CallInst>(V);
4513           Operands.push_back(CI2->getArgOperand(i));
4514         }
4515         buildTree_rec(Operands, Depth + 1, {TE, i});
4516       }
4517       return;
4518     }
4519     case Instruction::ShuffleVector: {
4520       // If this is not an alternate sequence of opcode like add-sub
4521       // then do not vectorize this instruction.
4522       if (!S.isAltShuffle()) {
4523         BS.cancelScheduling(VL, VL0);
4524         newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4525                      ReuseShuffleIndicies);
4526         LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
4527         return;
4528       }
4529       TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
4530                                    ReuseShuffleIndicies);
4531       LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
4532 
4533       // Reorder operands if reordering would enable vectorization.
4534       auto *CI = dyn_cast<CmpInst>(VL0);
4535       if (isa<BinaryOperator>(VL0) || CI) {
4536         ValueList Left, Right;
4537         if (!CI || all_of(VL, [](Value *V) {
4538               return cast<CmpInst>(V)->isCommutative();
4539             })) {
4540           reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
4541         } else {
4542           CmpInst::Predicate P0 = CI->getPredicate();
4543           CmpInst::Predicate AltP0 = cast<CmpInst>(S.AltOp)->getPredicate();
4544           assert(P0 != AltP0 &&
4545                  "Expected different main/alternate predicates.");
4546           CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0);
4547           Value *BaseOp0 = VL0->getOperand(0);
4548           Value *BaseOp1 = VL0->getOperand(1);
4549           // Collect operands - commute if it uses the swapped predicate or
4550           // alternate operation.
4551           for (Value *V : VL) {
4552             auto *Cmp = cast<CmpInst>(V);
4553             Value *LHS = Cmp->getOperand(0);
4554             Value *RHS = Cmp->getOperand(1);
4555             CmpInst::Predicate CurrentPred = Cmp->getPredicate();
4556             if (P0 == AltP0Swapped) {
4557               if (CI != Cmp && S.AltOp != Cmp &&
4558                   ((P0 == CurrentPred &&
4559                     !areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS)) ||
4560                    (AltP0 == CurrentPred &&
4561                     areCompatibleCmpOps(BaseOp0, BaseOp1, LHS, RHS))))
4562                 std::swap(LHS, RHS);
4563             } else if (P0 != CurrentPred && AltP0 != CurrentPred) {
4564               std::swap(LHS, RHS);
4565             }
4566             Left.push_back(LHS);
4567             Right.push_back(RHS);
4568           }
4569         }
4570         TE->setOperand(0, Left);
4571         TE->setOperand(1, Right);
4572         buildTree_rec(Left, Depth + 1, {TE, 0});
4573         buildTree_rec(Right, Depth + 1, {TE, 1});
4574         return;
4575       }
4576 
4577       TE->setOperandsInOrder();
4578       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
4579         ValueList Operands;
4580         // Prepare the operand vector.
4581         for (Value *V : VL)
4582           Operands.push_back(cast<Instruction>(V)->getOperand(i));
4583 
4584         buildTree_rec(Operands, Depth + 1, {TE, i});
4585       }
4586       return;
4587     }
4588     default:
4589       BS.cancelScheduling(VL, VL0);
4590       newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
4591                    ReuseShuffleIndicies);
4592       LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
4593       return;
4594   }
4595 }
4596 
4597 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const {
4598   unsigned N = 1;
4599   Type *EltTy = T;
4600 
4601   while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) ||
4602          isa<VectorType>(EltTy)) {
4603     if (auto *ST = dyn_cast<StructType>(EltTy)) {
4604       // Check that struct is homogeneous.
4605       for (const auto *Ty : ST->elements())
4606         if (Ty != *ST->element_begin())
4607           return 0;
4608       N *= ST->getNumElements();
4609       EltTy = *ST->element_begin();
4610     } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) {
4611       N *= AT->getNumElements();
4612       EltTy = AT->getElementType();
4613     } else {
4614       auto *VT = cast<FixedVectorType>(EltTy);
4615       N *= VT->getNumElements();
4616       EltTy = VT->getElementType();
4617     }
4618   }
4619 
4620   if (!isValidElementType(EltTy))
4621     return 0;
4622   uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N));
4623   if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T))
4624     return 0;
4625   return N;
4626 }
4627 
4628 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
4629                               SmallVectorImpl<unsigned> &CurrentOrder) const {
4630   const auto *It = find_if(VL, [](Value *V) {
4631     return isa<ExtractElementInst, ExtractValueInst>(V);
4632   });
4633   assert(It != VL.end() && "Expected at least one extract instruction.");
4634   auto *E0 = cast<Instruction>(*It);
4635   assert(all_of(VL,
4636                 [](Value *V) {
4637                   return isa<UndefValue, ExtractElementInst, ExtractValueInst>(
4638                       V);
4639                 }) &&
4640          "Invalid opcode");
4641   // Check if all of the extracts come from the same vector and from the
4642   // correct offset.
4643   Value *Vec = E0->getOperand(0);
4644 
4645   CurrentOrder.clear();
4646 
4647   // We have to extract from a vector/aggregate with the same number of elements.
4648   unsigned NElts;
4649   if (E0->getOpcode() == Instruction::ExtractValue) {
4650     const DataLayout &DL = E0->getModule()->getDataLayout();
4651     NElts = canMapToVector(Vec->getType(), DL);
4652     if (!NElts)
4653       return false;
4654     // Check if load can be rewritten as load of vector.
4655     LoadInst *LI = dyn_cast<LoadInst>(Vec);
4656     if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size()))
4657       return false;
4658   } else {
4659     NElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
4660   }
4661 
4662   if (NElts != VL.size())
4663     return false;
4664 
4665   // Check that all of the indices extract from the correct offset.
4666   bool ShouldKeepOrder = true;
4667   unsigned E = VL.size();
4668   // Assign to all items the initial value E + 1 so we can check if the extract
4669   // instruction index was used already.
4670   // Also, later we can check that all the indices are used and we have a
4671   // consecutive access in the extract instructions, by checking that no
4672   // element of CurrentOrder still has value E + 1.
4673   CurrentOrder.assign(E, E);
4674   unsigned I = 0;
4675   for (; I < E; ++I) {
4676     auto *Inst = dyn_cast<Instruction>(VL[I]);
4677     if (!Inst)
4678       continue;
4679     if (Inst->getOperand(0) != Vec)
4680       break;
4681     if (auto *EE = dyn_cast<ExtractElementInst>(Inst))
4682       if (isa<UndefValue>(EE->getIndexOperand()))
4683         continue;
4684     Optional<unsigned> Idx = getExtractIndex(Inst);
4685     if (!Idx)
4686       break;
4687     const unsigned ExtIdx = *Idx;
4688     if (ExtIdx != I) {
4689       if (ExtIdx >= E || CurrentOrder[ExtIdx] != E)
4690         break;
4691       ShouldKeepOrder = false;
4692       CurrentOrder[ExtIdx] = I;
4693     } else {
4694       if (CurrentOrder[I] != E)
4695         break;
4696       CurrentOrder[I] = I;
4697     }
4698   }
4699   if (I < E) {
4700     CurrentOrder.clear();
4701     return false;
4702   }
4703   if (ShouldKeepOrder)
4704     CurrentOrder.clear();
4705 
4706   return ShouldKeepOrder;
4707 }
4708 
4709 bool BoUpSLP::areAllUsersVectorized(Instruction *I,
4710                                     ArrayRef<Value *> VectorizedVals) const {
4711   return (I->hasOneUse() && is_contained(VectorizedVals, I)) ||
4712          all_of(I->users(), [this](User *U) {
4713            return ScalarToTreeEntry.count(U) > 0 ||
4714                   isVectorLikeInstWithConstOps(U) ||
4715                   (isa<ExtractElementInst>(U) && MustGather.contains(U));
4716          });
4717 }
4718 
4719 static std::pair<InstructionCost, InstructionCost>
4720 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy,
4721                    TargetTransformInfo *TTI, TargetLibraryInfo *TLI) {
4722   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4723 
4724   // Calculate the cost of the scalar and vector calls.
4725   SmallVector<Type *, 4> VecTys;
4726   for (Use &Arg : CI->args())
4727     VecTys.push_back(
4728         FixedVectorType::get(Arg->getType(), VecTy->getNumElements()));
4729   FastMathFlags FMF;
4730   if (auto *FPCI = dyn_cast<FPMathOperator>(CI))
4731     FMF = FPCI->getFastMathFlags();
4732   SmallVector<const Value *> Arguments(CI->args());
4733   IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF,
4734                                     dyn_cast<IntrinsicInst>(CI));
4735   auto IntrinsicCost =
4736     TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput);
4737 
4738   auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>(
4739                                      VecTy->getNumElements())),
4740                             false /*HasGlobalPred*/);
4741   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
4742   auto LibCost = IntrinsicCost;
4743   if (!CI->isNoBuiltin() && VecFunc) {
4744     // Calculate the cost of the vector library call.
4745     // If the corresponding vector call is cheaper, return its cost.
4746     LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys,
4747                                     TTI::TCK_RecipThroughput);
4748   }
4749   return {IntrinsicCost, LibCost};
4750 }
4751 
4752 /// Compute the cost of creating a vector of type \p VecTy containing the
4753 /// extracted values from \p VL.
4754 static InstructionCost
4755 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy,
4756                    TargetTransformInfo::ShuffleKind ShuffleKind,
4757                    ArrayRef<int> Mask, TargetTransformInfo &TTI) {
4758   unsigned NumOfParts = TTI.getNumberOfParts(VecTy);
4759 
4760   if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts ||
4761       VecTy->getNumElements() < NumOfParts)
4762     return TTI.getShuffleCost(ShuffleKind, VecTy, Mask);
4763 
4764   bool AllConsecutive = true;
4765   unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts;
4766   unsigned Idx = -1;
4767   InstructionCost Cost = 0;
4768 
4769   // Process extracts in blocks of EltsPerVector to check if the source vector
4770   // operand can be re-used directly. If not, add the cost of creating a shuffle
4771   // to extract the values into a vector register.
4772   for (auto *V : VL) {
4773     ++Idx;
4774 
4775     // Need to exclude undefs from analysis.
4776     if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem)
4777       continue;
4778 
4779     // Reached the start of a new vector registers.
4780     if (Idx % EltsPerVector == 0) {
4781       AllConsecutive = true;
4782       continue;
4783     }
4784 
4785     // Check all extracts for a vector register on the target directly
4786     // extract values in order.
4787     unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V));
4788     if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) {
4789       unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1]));
4790       AllConsecutive &= PrevIdx + 1 == CurrentIdx &&
4791                         CurrentIdx % EltsPerVector == Idx % EltsPerVector;
4792     }
4793 
4794     if (AllConsecutive)
4795       continue;
4796 
4797     // Skip all indices, except for the last index per vector block.
4798     if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size())
4799       continue;
4800 
4801     // If we have a series of extracts which are not consecutive and hence
4802     // cannot re-use the source vector register directly, compute the shuffle
4803     // cost to extract the a vector with EltsPerVector elements.
4804     Cost += TTI.getShuffleCost(
4805         TargetTransformInfo::SK_PermuteSingleSrc,
4806         FixedVectorType::get(VecTy->getElementType(), EltsPerVector));
4807   }
4808   return Cost;
4809 }
4810 
4811 /// Build shuffle mask for shuffle graph entries and lists of main and alternate
4812 /// operations operands.
4813 static void
4814 buildShuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices,
4815                       ArrayRef<int> ReusesIndices,
4816                       const function_ref<bool(Instruction *)> IsAltOp,
4817                       SmallVectorImpl<int> &Mask,
4818                       SmallVectorImpl<Value *> *OpScalars = nullptr,
4819                       SmallVectorImpl<Value *> *AltScalars = nullptr) {
4820   unsigned Sz = VL.size();
4821   Mask.assign(Sz, UndefMaskElem);
4822   SmallVector<int> OrderMask;
4823   if (!ReorderIndices.empty())
4824     inversePermutation(ReorderIndices, OrderMask);
4825   for (unsigned I = 0; I < Sz; ++I) {
4826     unsigned Idx = I;
4827     if (!ReorderIndices.empty())
4828       Idx = OrderMask[I];
4829     auto *OpInst = cast<Instruction>(VL[Idx]);
4830     if (IsAltOp(OpInst)) {
4831       Mask[I] = Sz + Idx;
4832       if (AltScalars)
4833         AltScalars->push_back(OpInst);
4834     } else {
4835       Mask[I] = Idx;
4836       if (OpScalars)
4837         OpScalars->push_back(OpInst);
4838     }
4839   }
4840   if (!ReusesIndices.empty()) {
4841     SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem);
4842     transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) {
4843       return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem;
4844     });
4845     Mask.swap(NewMask);
4846   }
4847 }
4848 
4849 /// Checks if the specified instruction \p I is an alternate operation for the
4850 /// given \p MainOp and \p AltOp instructions.
4851 static bool isAlternateInstruction(const Instruction *I,
4852                                    const Instruction *MainOp,
4853                                    const Instruction *AltOp) {
4854   if (auto *CI0 = dyn_cast<CmpInst>(MainOp)) {
4855     auto *AltCI0 = cast<CmpInst>(AltOp);
4856     auto *CI = cast<CmpInst>(I);
4857     CmpInst::Predicate P0 = CI0->getPredicate();
4858     CmpInst::Predicate AltP0 = AltCI0->getPredicate();
4859     assert(P0 != AltP0 && "Expected different main/alternate predicates.");
4860     CmpInst::Predicate AltP0Swapped = CmpInst::getSwappedPredicate(AltP0);
4861     CmpInst::Predicate CurrentPred = CI->getPredicate();
4862     if (P0 == AltP0Swapped)
4863       return I == AltCI0 ||
4864              (I != MainOp &&
4865               !areCompatibleCmpOps(CI0->getOperand(0), CI0->getOperand(1),
4866                                    CI->getOperand(0), CI->getOperand(1)));
4867     return AltP0 == CurrentPred || AltP0Swapped == CurrentPred;
4868   }
4869   return I->getOpcode() == AltOp->getOpcode();
4870 }
4871 
4872 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E,
4873                                       ArrayRef<Value *> VectorizedVals) {
4874   ArrayRef<Value*> VL = E->Scalars;
4875 
4876   Type *ScalarTy = VL[0]->getType();
4877   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
4878     ScalarTy = SI->getValueOperand()->getType();
4879   else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0]))
4880     ScalarTy = CI->getOperand(0)->getType();
4881   else if (auto *IE = dyn_cast<InsertElementInst>(VL[0]))
4882     ScalarTy = IE->getOperand(1)->getType();
4883   auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
4884   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
4885 
4886   // If we have computed a smaller type for the expression, update VecTy so
4887   // that the costs will be accurate.
4888   if (MinBWs.count(VL[0]))
4889     VecTy = FixedVectorType::get(
4890         IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size());
4891   unsigned EntryVF = E->getVectorFactor();
4892   auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF);
4893 
4894   bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
4895   // FIXME: it tries to fix a problem with MSVC buildbots.
4896   TargetTransformInfo &TTIRef = *TTI;
4897   auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy,
4898                                VectorizedVals, E](InstructionCost &Cost) {
4899     DenseMap<Value *, int> ExtractVectorsTys;
4900     SmallPtrSet<Value *, 4> CheckedExtracts;
4901     for (auto *V : VL) {
4902       if (isa<UndefValue>(V))
4903         continue;
4904       // If all users of instruction are going to be vectorized and this
4905       // instruction itself is not going to be vectorized, consider this
4906       // instruction as dead and remove its cost from the final cost of the
4907       // vectorized tree.
4908       // Also, avoid adjusting the cost for extractelements with multiple uses
4909       // in different graph entries.
4910       const TreeEntry *VE = getTreeEntry(V);
4911       if (!CheckedExtracts.insert(V).second ||
4912           !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) ||
4913           (VE && VE != E))
4914         continue;
4915       auto *EE = cast<ExtractElementInst>(V);
4916       Optional<unsigned> EEIdx = getExtractIndex(EE);
4917       if (!EEIdx)
4918         continue;
4919       unsigned Idx = *EEIdx;
4920       if (TTIRef.getNumberOfParts(VecTy) !=
4921           TTIRef.getNumberOfParts(EE->getVectorOperandType())) {
4922         auto It =
4923             ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first;
4924         It->getSecond() = std::min<int>(It->second, Idx);
4925       }
4926       // Take credit for instruction that will become dead.
4927       if (EE->hasOneUse()) {
4928         Instruction *Ext = EE->user_back();
4929         if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
4930             all_of(Ext->users(),
4931                    [](User *U) { return isa<GetElementPtrInst>(U); })) {
4932           // Use getExtractWithExtendCost() to calculate the cost of
4933           // extractelement/ext pair.
4934           Cost -=
4935               TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(),
4936                                               EE->getVectorOperandType(), Idx);
4937           // Add back the cost of s|zext which is subtracted separately.
4938           Cost += TTIRef.getCastInstrCost(
4939               Ext->getOpcode(), Ext->getType(), EE->getType(),
4940               TTI::getCastContextHint(Ext), CostKind, Ext);
4941           continue;
4942         }
4943       }
4944       Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement,
4945                                         EE->getVectorOperandType(), Idx);
4946     }
4947     // Add a cost for subvector extracts/inserts if required.
4948     for (const auto &Data : ExtractVectorsTys) {
4949       auto *EEVTy = cast<FixedVectorType>(Data.first->getType());
4950       unsigned NumElts = VecTy->getNumElements();
4951       if (Data.second % NumElts == 0)
4952         continue;
4953       if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) {
4954         unsigned Idx = (Data.second / NumElts) * NumElts;
4955         unsigned EENumElts = EEVTy->getNumElements();
4956         if (Idx + NumElts <= EENumElts) {
4957           Cost +=
4958               TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
4959                                     EEVTy, None, Idx, VecTy);
4960         } else {
4961           // Need to round up the subvector type vectorization factor to avoid a
4962           // crash in cost model functions. Make SubVT so that Idx + VF of SubVT
4963           // <= EENumElts.
4964           auto *SubVT =
4965               FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx);
4966           Cost +=
4967               TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
4968                                     EEVTy, None, Idx, SubVT);
4969         }
4970       } else {
4971         Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector,
4972                                       VecTy, None, 0, EEVTy);
4973       }
4974     }
4975   };
4976   if (E->State == TreeEntry::NeedToGather) {
4977     if (allConstant(VL))
4978       return 0;
4979     if (isa<InsertElementInst>(VL[0]))
4980       return InstructionCost::getInvalid();
4981     SmallVector<int> Mask;
4982     SmallVector<const TreeEntry *> Entries;
4983     Optional<TargetTransformInfo::ShuffleKind> Shuffle =
4984         isGatherShuffledEntry(E, Mask, Entries);
4985     if (Shuffle.hasValue()) {
4986       InstructionCost GatherCost = 0;
4987       if (ShuffleVectorInst::isIdentityMask(Mask)) {
4988         // Perfect match in the graph, will reuse the previously vectorized
4989         // node. Cost is 0.
4990         LLVM_DEBUG(
4991             dbgs()
4992             << "SLP: perfect diamond match for gather bundle that starts with "
4993             << *VL.front() << ".\n");
4994         if (NeedToShuffleReuses)
4995           GatherCost =
4996               TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc,
4997                                   FinalVecTy, E->ReuseShuffleIndices);
4998       } else {
4999         LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size()
5000                           << " entries for bundle that starts with "
5001                           << *VL.front() << ".\n");
5002         // Detected that instead of gather we can emit a shuffle of single/two
5003         // previously vectorized nodes. Add the cost of the permutation rather
5004         // than gather.
5005         ::addMask(Mask, E->ReuseShuffleIndices);
5006         GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask);
5007       }
5008       return GatherCost;
5009     }
5010     if ((E->getOpcode() == Instruction::ExtractElement ||
5011          all_of(E->Scalars,
5012                 [](Value *V) {
5013                   return isa<ExtractElementInst, UndefValue>(V);
5014                 })) &&
5015         allSameType(VL)) {
5016       // Check that gather of extractelements can be represented as just a
5017       // shuffle of a single/two vectors the scalars are extracted from.
5018       SmallVector<int> Mask;
5019       Optional<TargetTransformInfo::ShuffleKind> ShuffleKind =
5020           isFixedVectorShuffle(VL, Mask);
5021       if (ShuffleKind.hasValue()) {
5022         // Found the bunch of extractelement instructions that must be gathered
5023         // into a vector and can be represented as a permutation elements in a
5024         // single input vector or of 2 input vectors.
5025         InstructionCost Cost =
5026             computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI);
5027         AdjustExtractsCost(Cost);
5028         if (NeedToShuffleReuses)
5029           Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc,
5030                                       FinalVecTy, E->ReuseShuffleIndices);
5031         return Cost;
5032       }
5033     }
5034     if (isSplat(VL)) {
5035       // Found the broadcasting of the single scalar, calculate the cost as the
5036       // broadcast.
5037       assert(VecTy == FinalVecTy &&
5038              "No reused scalars expected for broadcast.");
5039       return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy);
5040     }
5041     InstructionCost ReuseShuffleCost = 0;
5042     if (NeedToShuffleReuses)
5043       ReuseShuffleCost = TTI->getShuffleCost(
5044           TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices);
5045     // Improve gather cost for gather of loads, if we can group some of the
5046     // loads into vector loads.
5047     if (VL.size() > 2 && E->getOpcode() == Instruction::Load &&
5048         !E->isAltShuffle()) {
5049       BoUpSLP::ValueSet VectorizedLoads;
5050       unsigned StartIdx = 0;
5051       unsigned VF = VL.size() / 2;
5052       unsigned VectorizedCnt = 0;
5053       unsigned ScatterVectorizeCnt = 0;
5054       const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType());
5055       for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) {
5056         for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End;
5057              Cnt += VF) {
5058           ArrayRef<Value *> Slice = VL.slice(Cnt, VF);
5059           if (!VectorizedLoads.count(Slice.front()) &&
5060               !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) {
5061             SmallVector<Value *> PointerOps;
5062             OrdersType CurrentOrder;
5063             LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL,
5064                                               *SE, CurrentOrder, PointerOps);
5065             switch (LS) {
5066             case LoadsState::Vectorize:
5067             case LoadsState::ScatterVectorize:
5068               // Mark the vectorized loads so that we don't vectorize them
5069               // again.
5070               if (LS == LoadsState::Vectorize)
5071                 ++VectorizedCnt;
5072               else
5073                 ++ScatterVectorizeCnt;
5074               VectorizedLoads.insert(Slice.begin(), Slice.end());
5075               // If we vectorized initial block, no need to try to vectorize it
5076               // again.
5077               if (Cnt == StartIdx)
5078                 StartIdx += VF;
5079               break;
5080             case LoadsState::Gather:
5081               break;
5082             }
5083           }
5084         }
5085         // Check if the whole array was vectorized already - exit.
5086         if (StartIdx >= VL.size())
5087           break;
5088         // Found vectorizable parts - exit.
5089         if (!VectorizedLoads.empty())
5090           break;
5091       }
5092       if (!VectorizedLoads.empty()) {
5093         InstructionCost GatherCost = 0;
5094         unsigned NumParts = TTI->getNumberOfParts(VecTy);
5095         bool NeedInsertSubvectorAnalysis =
5096             !NumParts || (VL.size() / VF) > NumParts;
5097         // Get the cost for gathered loads.
5098         for (unsigned I = 0, End = VL.size(); I < End; I += VF) {
5099           if (VectorizedLoads.contains(VL[I]))
5100             continue;
5101           GatherCost += getGatherCost(VL.slice(I, VF));
5102         }
5103         // The cost for vectorized loads.
5104         InstructionCost ScalarsCost = 0;
5105         for (Value *V : VectorizedLoads) {
5106           auto *LI = cast<LoadInst>(V);
5107           ScalarsCost += TTI->getMemoryOpCost(
5108               Instruction::Load, LI->getType(), LI->getAlign(),
5109               LI->getPointerAddressSpace(), CostKind, LI);
5110         }
5111         auto *LI = cast<LoadInst>(E->getMainOp());
5112         auto *LoadTy = FixedVectorType::get(LI->getType(), VF);
5113         Align Alignment = LI->getAlign();
5114         GatherCost +=
5115             VectorizedCnt *
5116             TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment,
5117                                  LI->getPointerAddressSpace(), CostKind, LI);
5118         GatherCost += ScatterVectorizeCnt *
5119                       TTI->getGatherScatterOpCost(
5120                           Instruction::Load, LoadTy, LI->getPointerOperand(),
5121                           /*VariableMask=*/false, Alignment, CostKind, LI);
5122         if (NeedInsertSubvectorAnalysis) {
5123           // Add the cost for the subvectors insert.
5124           for (int I = VF, E = VL.size(); I < E; I += VF)
5125             GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy,
5126                                               None, I, LoadTy);
5127         }
5128         return ReuseShuffleCost + GatherCost - ScalarsCost;
5129       }
5130     }
5131     return ReuseShuffleCost + getGatherCost(VL);
5132   }
5133   InstructionCost CommonCost = 0;
5134   SmallVector<int> Mask;
5135   if (!E->ReorderIndices.empty()) {
5136     SmallVector<int> NewMask;
5137     if (E->getOpcode() == Instruction::Store) {
5138       // For stores the order is actually a mask.
5139       NewMask.resize(E->ReorderIndices.size());
5140       copy(E->ReorderIndices, NewMask.begin());
5141     } else {
5142       inversePermutation(E->ReorderIndices, NewMask);
5143     }
5144     ::addMask(Mask, NewMask);
5145   }
5146   if (NeedToShuffleReuses)
5147     ::addMask(Mask, E->ReuseShuffleIndices);
5148   if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask))
5149     CommonCost =
5150         TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask);
5151   assert((E->State == TreeEntry::Vectorize ||
5152           E->State == TreeEntry::ScatterVectorize) &&
5153          "Unhandled state");
5154   assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL");
5155   Instruction *VL0 = E->getMainOp();
5156   unsigned ShuffleOrOp =
5157       E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
5158   switch (ShuffleOrOp) {
5159     case Instruction::PHI:
5160       return 0;
5161 
5162     case Instruction::ExtractValue:
5163     case Instruction::ExtractElement: {
5164       // The common cost of removal ExtractElement/ExtractValue instructions +
5165       // the cost of shuffles, if required to resuffle the original vector.
5166       if (NeedToShuffleReuses) {
5167         unsigned Idx = 0;
5168         for (unsigned I : E->ReuseShuffleIndices) {
5169           if (ShuffleOrOp == Instruction::ExtractElement) {
5170             auto *EE = cast<ExtractElementInst>(VL[I]);
5171             CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement,
5172                                                   EE->getVectorOperandType(),
5173                                                   *getExtractIndex(EE));
5174           } else {
5175             CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement,
5176                                                   VecTy, Idx);
5177             ++Idx;
5178           }
5179         }
5180         Idx = EntryVF;
5181         for (Value *V : VL) {
5182           if (ShuffleOrOp == Instruction::ExtractElement) {
5183             auto *EE = cast<ExtractElementInst>(V);
5184             CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement,
5185                                                   EE->getVectorOperandType(),
5186                                                   *getExtractIndex(EE));
5187           } else {
5188             --Idx;
5189             CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement,
5190                                                   VecTy, Idx);
5191           }
5192         }
5193       }
5194       if (ShuffleOrOp == Instruction::ExtractValue) {
5195         for (unsigned I = 0, E = VL.size(); I < E; ++I) {
5196           auto *EI = cast<Instruction>(VL[I]);
5197           // Take credit for instruction that will become dead.
5198           if (EI->hasOneUse()) {
5199             Instruction *Ext = EI->user_back();
5200             if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
5201                 all_of(Ext->users(),
5202                        [](User *U) { return isa<GetElementPtrInst>(U); })) {
5203               // Use getExtractWithExtendCost() to calculate the cost of
5204               // extractelement/ext pair.
5205               CommonCost -= TTI->getExtractWithExtendCost(
5206                   Ext->getOpcode(), Ext->getType(), VecTy, I);
5207               // Add back the cost of s|zext which is subtracted separately.
5208               CommonCost += TTI->getCastInstrCost(
5209                   Ext->getOpcode(), Ext->getType(), EI->getType(),
5210                   TTI::getCastContextHint(Ext), CostKind, Ext);
5211               continue;
5212             }
5213           }
5214           CommonCost -=
5215               TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I);
5216         }
5217       } else {
5218         AdjustExtractsCost(CommonCost);
5219       }
5220       return CommonCost;
5221     }
5222     case Instruction::InsertElement: {
5223       assert(E->ReuseShuffleIndices.empty() &&
5224              "Unique insertelements only are expected.");
5225       auto *SrcVecTy = cast<FixedVectorType>(VL0->getType());
5226 
5227       unsigned const NumElts = SrcVecTy->getNumElements();
5228       unsigned const NumScalars = VL.size();
5229       APInt DemandedElts = APInt::getZero(NumElts);
5230       // TODO: Add support for Instruction::InsertValue.
5231       SmallVector<int> Mask;
5232       if (!E->ReorderIndices.empty()) {
5233         inversePermutation(E->ReorderIndices, Mask);
5234         Mask.append(NumElts - NumScalars, UndefMaskElem);
5235       } else {
5236         Mask.assign(NumElts, UndefMaskElem);
5237         std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0);
5238       }
5239       unsigned Offset = *getInsertIndex(VL0);
5240       bool IsIdentity = true;
5241       SmallVector<int> PrevMask(NumElts, UndefMaskElem);
5242       Mask.swap(PrevMask);
5243       for (unsigned I = 0; I < NumScalars; ++I) {
5244         unsigned InsertIdx = *getInsertIndex(VL[PrevMask[I]]);
5245         DemandedElts.setBit(InsertIdx);
5246         IsIdentity &= InsertIdx - Offset == I;
5247         Mask[InsertIdx - Offset] = I;
5248       }
5249       assert(Offset < NumElts && "Failed to find vector index offset");
5250 
5251       InstructionCost Cost = 0;
5252       Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts,
5253                                             /*Insert*/ true, /*Extract*/ false);
5254 
5255       if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) {
5256         // FIXME: Replace with SK_InsertSubvector once it is properly supported.
5257         unsigned Sz = PowerOf2Ceil(Offset + NumScalars);
5258         Cost += TTI->getShuffleCost(
5259             TargetTransformInfo::SK_PermuteSingleSrc,
5260             FixedVectorType::get(SrcVecTy->getElementType(), Sz));
5261       } else if (!IsIdentity) {
5262         auto *FirstInsert =
5263             cast<Instruction>(*find_if(E->Scalars, [E](Value *V) {
5264               return !is_contained(E->Scalars,
5265                                    cast<Instruction>(V)->getOperand(0));
5266             }));
5267         if (isUndefVector(FirstInsert->getOperand(0))) {
5268           Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask);
5269         } else {
5270           SmallVector<int> InsertMask(NumElts);
5271           std::iota(InsertMask.begin(), InsertMask.end(), 0);
5272           for (unsigned I = 0; I < NumElts; I++) {
5273             if (Mask[I] != UndefMaskElem)
5274               InsertMask[Offset + I] = NumElts + I;
5275           }
5276           Cost +=
5277               TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask);
5278         }
5279       }
5280 
5281       return Cost;
5282     }
5283     case Instruction::ZExt:
5284     case Instruction::SExt:
5285     case Instruction::FPToUI:
5286     case Instruction::FPToSI:
5287     case Instruction::FPExt:
5288     case Instruction::PtrToInt:
5289     case Instruction::IntToPtr:
5290     case Instruction::SIToFP:
5291     case Instruction::UIToFP:
5292     case Instruction::Trunc:
5293     case Instruction::FPTrunc:
5294     case Instruction::BitCast: {
5295       Type *SrcTy = VL0->getOperand(0)->getType();
5296       InstructionCost ScalarEltCost =
5297           TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy,
5298                                 TTI::getCastContextHint(VL0), CostKind, VL0);
5299       if (NeedToShuffleReuses) {
5300         CommonCost -= (EntryVF - VL.size()) * ScalarEltCost;
5301       }
5302 
5303       // Calculate the cost of this instruction.
5304       InstructionCost ScalarCost = VL.size() * ScalarEltCost;
5305 
5306       auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size());
5307       InstructionCost VecCost = 0;
5308       // Check if the values are candidates to demote.
5309       if (!MinBWs.count(VL0) || VecTy != SrcVecTy) {
5310         VecCost = CommonCost + TTI->getCastInstrCost(
5311                                    E->getOpcode(), VecTy, SrcVecTy,
5312                                    TTI::getCastContextHint(VL0), CostKind, VL0);
5313       }
5314       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
5315       return VecCost - ScalarCost;
5316     }
5317     case Instruction::FCmp:
5318     case Instruction::ICmp:
5319     case Instruction::Select: {
5320       // Calculate the cost of this instruction.
5321       InstructionCost ScalarEltCost =
5322           TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(),
5323                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0);
5324       if (NeedToShuffleReuses) {
5325         CommonCost -= (EntryVF - VL.size()) * ScalarEltCost;
5326       }
5327       auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size());
5328       InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
5329 
5330       // Check if all entries in VL are either compares or selects with compares
5331       // as condition that have the same predicates.
5332       CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE;
5333       bool First = true;
5334       for (auto *V : VL) {
5335         CmpInst::Predicate CurrentPred;
5336         auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value());
5337         if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) &&
5338              !match(V, MatchCmp)) ||
5339             (!First && VecPred != CurrentPred)) {
5340           VecPred = CmpInst::BAD_ICMP_PREDICATE;
5341           break;
5342         }
5343         First = false;
5344         VecPred = CurrentPred;
5345       }
5346 
5347       InstructionCost VecCost = TTI->getCmpSelInstrCost(
5348           E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0);
5349       // Check if it is possible and profitable to use min/max for selects in
5350       // VL.
5351       //
5352       auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL);
5353       if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) {
5354         IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy,
5355                                           {VecTy, VecTy});
5356         InstructionCost IntrinsicCost =
5357             TTI->getIntrinsicInstrCost(CostAttrs, CostKind);
5358         // If the selects are the only uses of the compares, they will be dead
5359         // and we can adjust the cost by removing their cost.
5360         if (IntrinsicAndUse.second)
5361           IntrinsicCost -= TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy,
5362                                                    MaskTy, VecPred, CostKind);
5363         VecCost = std::min(VecCost, IntrinsicCost);
5364       }
5365       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
5366       return CommonCost + VecCost - ScalarCost;
5367     }
5368     case Instruction::FNeg:
5369     case Instruction::Add:
5370     case Instruction::FAdd:
5371     case Instruction::Sub:
5372     case Instruction::FSub:
5373     case Instruction::Mul:
5374     case Instruction::FMul:
5375     case Instruction::UDiv:
5376     case Instruction::SDiv:
5377     case Instruction::FDiv:
5378     case Instruction::URem:
5379     case Instruction::SRem:
5380     case Instruction::FRem:
5381     case Instruction::Shl:
5382     case Instruction::LShr:
5383     case Instruction::AShr:
5384     case Instruction::And:
5385     case Instruction::Or:
5386     case Instruction::Xor: {
5387       // Certain instructions can be cheaper to vectorize if they have a
5388       // constant second vector operand.
5389       TargetTransformInfo::OperandValueKind Op1VK =
5390           TargetTransformInfo::OK_AnyValue;
5391       TargetTransformInfo::OperandValueKind Op2VK =
5392           TargetTransformInfo::OK_UniformConstantValue;
5393       TargetTransformInfo::OperandValueProperties Op1VP =
5394           TargetTransformInfo::OP_None;
5395       TargetTransformInfo::OperandValueProperties Op2VP =
5396           TargetTransformInfo::OP_PowerOf2;
5397 
5398       // If all operands are exactly the same ConstantInt then set the
5399       // operand kind to OK_UniformConstantValue.
5400       // If instead not all operands are constants, then set the operand kind
5401       // to OK_AnyValue. If all operands are constants but not the same,
5402       // then set the operand kind to OK_NonUniformConstantValue.
5403       ConstantInt *CInt0 = nullptr;
5404       for (unsigned i = 0, e = VL.size(); i < e; ++i) {
5405         const Instruction *I = cast<Instruction>(VL[i]);
5406         unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0;
5407         ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx));
5408         if (!CInt) {
5409           Op2VK = TargetTransformInfo::OK_AnyValue;
5410           Op2VP = TargetTransformInfo::OP_None;
5411           break;
5412         }
5413         if (Op2VP == TargetTransformInfo::OP_PowerOf2 &&
5414             !CInt->getValue().isPowerOf2())
5415           Op2VP = TargetTransformInfo::OP_None;
5416         if (i == 0) {
5417           CInt0 = CInt;
5418           continue;
5419         }
5420         if (CInt0 != CInt)
5421           Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
5422       }
5423 
5424       SmallVector<const Value *, 4> Operands(VL0->operand_values());
5425       InstructionCost ScalarEltCost =
5426           TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK,
5427                                       Op2VK, Op1VP, Op2VP, Operands, VL0);
5428       if (NeedToShuffleReuses) {
5429         CommonCost -= (EntryVF - VL.size()) * ScalarEltCost;
5430       }
5431       InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
5432       InstructionCost VecCost =
5433           TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK,
5434                                       Op2VK, Op1VP, Op2VP, Operands, VL0);
5435       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
5436       return CommonCost + VecCost - ScalarCost;
5437     }
5438     case Instruction::GetElementPtr: {
5439       TargetTransformInfo::OperandValueKind Op1VK =
5440           TargetTransformInfo::OK_AnyValue;
5441       TargetTransformInfo::OperandValueKind Op2VK =
5442           TargetTransformInfo::OK_UniformConstantValue;
5443 
5444       InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost(
5445           Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK);
5446       if (NeedToShuffleReuses) {
5447         CommonCost -= (EntryVF - VL.size()) * ScalarEltCost;
5448       }
5449       InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost;
5450       InstructionCost VecCost = TTI->getArithmeticInstrCost(
5451           Instruction::Add, VecTy, CostKind, Op1VK, Op2VK);
5452       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
5453       return CommonCost + VecCost - ScalarCost;
5454     }
5455     case Instruction::Load: {
5456       // Cost of wide load - cost of scalar loads.
5457       Align Alignment = cast<LoadInst>(VL0)->getAlign();
5458       InstructionCost ScalarEltCost = TTI->getMemoryOpCost(
5459           Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0);
5460       if (NeedToShuffleReuses) {
5461         CommonCost -= (EntryVF - VL.size()) * ScalarEltCost;
5462       }
5463       InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost;
5464       InstructionCost VecLdCost;
5465       if (E->State == TreeEntry::Vectorize) {
5466         VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0,
5467                                          CostKind, VL0);
5468       } else {
5469         assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState");
5470         Align CommonAlignment = Alignment;
5471         for (Value *V : VL)
5472           CommonAlignment =
5473               commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign());
5474         VecLdCost = TTI->getGatherScatterOpCost(
5475             Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(),
5476             /*VariableMask=*/false, CommonAlignment, CostKind, VL0);
5477       }
5478       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost));
5479       return CommonCost + VecLdCost - ScalarLdCost;
5480     }
5481     case Instruction::Store: {
5482       // We know that we can merge the stores. Calculate the cost.
5483       bool IsReorder = !E->ReorderIndices.empty();
5484       auto *SI =
5485           cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0);
5486       Align Alignment = SI->getAlign();
5487       InstructionCost ScalarEltCost = TTI->getMemoryOpCost(
5488           Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0);
5489       InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost;
5490       InstructionCost VecStCost = TTI->getMemoryOpCost(
5491           Instruction::Store, VecTy, Alignment, 0, CostKind, VL0);
5492       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost));
5493       return CommonCost + VecStCost - ScalarStCost;
5494     }
5495     case Instruction::Call: {
5496       CallInst *CI = cast<CallInst>(VL0);
5497       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
5498 
5499       // Calculate the cost of the scalar and vector calls.
5500       IntrinsicCostAttributes CostAttrs(ID, *CI, 1);
5501       InstructionCost ScalarEltCost =
5502           TTI->getIntrinsicInstrCost(CostAttrs, CostKind);
5503       if (NeedToShuffleReuses) {
5504         CommonCost -= (EntryVF - VL.size()) * ScalarEltCost;
5505       }
5506       InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost;
5507 
5508       auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
5509       InstructionCost VecCallCost =
5510           std::min(VecCallCosts.first, VecCallCosts.second);
5511 
5512       LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost
5513                         << " (" << VecCallCost << "-" << ScalarCallCost << ")"
5514                         << " for " << *CI << "\n");
5515 
5516       return CommonCost + VecCallCost - ScalarCallCost;
5517     }
5518     case Instruction::ShuffleVector: {
5519       assert(E->isAltShuffle() &&
5520              ((Instruction::isBinaryOp(E->getOpcode()) &&
5521                Instruction::isBinaryOp(E->getAltOpcode())) ||
5522               (Instruction::isCast(E->getOpcode()) &&
5523                Instruction::isCast(E->getAltOpcode())) ||
5524               (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) &&
5525              "Invalid Shuffle Vector Operand");
5526       InstructionCost ScalarCost = 0;
5527       if (NeedToShuffleReuses) {
5528         for (unsigned Idx : E->ReuseShuffleIndices) {
5529           Instruction *I = cast<Instruction>(VL[Idx]);
5530           CommonCost -= TTI->getInstructionCost(I, CostKind);
5531         }
5532         for (Value *V : VL) {
5533           Instruction *I = cast<Instruction>(V);
5534           CommonCost += TTI->getInstructionCost(I, CostKind);
5535         }
5536       }
5537       for (Value *V : VL) {
5538         Instruction *I = cast<Instruction>(V);
5539         assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode");
5540         ScalarCost += TTI->getInstructionCost(I, CostKind);
5541       }
5542       // VecCost is equal to sum of the cost of creating 2 vectors
5543       // and the cost of creating shuffle.
5544       InstructionCost VecCost = 0;
5545       // Try to find the previous shuffle node with the same operands and same
5546       // main/alternate ops.
5547       auto &&TryFindNodeWithEqualOperands = [this, E]() {
5548         for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) {
5549           if (TE.get() == E)
5550             break;
5551           if (TE->isAltShuffle() &&
5552               ((TE->getOpcode() == E->getOpcode() &&
5553                 TE->getAltOpcode() == E->getAltOpcode()) ||
5554                (TE->getOpcode() == E->getAltOpcode() &&
5555                 TE->getAltOpcode() == E->getOpcode())) &&
5556               TE->hasEqualOperands(*E))
5557             return true;
5558         }
5559         return false;
5560       };
5561       if (TryFindNodeWithEqualOperands()) {
5562         LLVM_DEBUG({
5563           dbgs() << "SLP: diamond match for alternate node found.\n";
5564           E->dump();
5565         });
5566         // No need to add new vector costs here since we're going to reuse
5567         // same main/alternate vector ops, just do different shuffling.
5568       } else if (Instruction::isBinaryOp(E->getOpcode())) {
5569         VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind);
5570         VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy,
5571                                                CostKind);
5572       } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) {
5573         VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy,
5574                                           Builder.getInt1Ty(),
5575                                           CI0->getPredicate(), CostKind, VL0);
5576         VecCost += TTI->getCmpSelInstrCost(
5577             E->getOpcode(), ScalarTy, Builder.getInt1Ty(),
5578             cast<CmpInst>(E->getAltOp())->getPredicate(), CostKind,
5579             E->getAltOp());
5580       } else {
5581         Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType();
5582         Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType();
5583         auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size());
5584         auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size());
5585         VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty,
5586                                         TTI::CastContextHint::None, CostKind);
5587         VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty,
5588                                          TTI::CastContextHint::None, CostKind);
5589       }
5590 
5591       SmallVector<int> Mask;
5592       buildShuffleEntryMask(
5593           E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices,
5594           [E](Instruction *I) {
5595             assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode");
5596             return isAlternateInstruction(I, E->getMainOp(), E->getAltOp());
5597           },
5598           Mask);
5599       CommonCost =
5600           TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy, Mask);
5601       LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost));
5602       return CommonCost + VecCost - ScalarCost;
5603     }
5604     default:
5605       llvm_unreachable("Unknown instruction");
5606   }
5607 }
5608 
5609 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const {
5610   LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height "
5611                     << VectorizableTree.size() << " is fully vectorizable .\n");
5612 
5613   auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) {
5614     SmallVector<int> Mask;
5615     return TE->State == TreeEntry::NeedToGather &&
5616            !any_of(TE->Scalars,
5617                    [this](Value *V) { return EphValues.contains(V); }) &&
5618            (allConstant(TE->Scalars) || isSplat(TE->Scalars) ||
5619             TE->Scalars.size() < Limit ||
5620             ((TE->getOpcode() == Instruction::ExtractElement ||
5621               all_of(TE->Scalars,
5622                      [](Value *V) {
5623                        return isa<ExtractElementInst, UndefValue>(V);
5624                      })) &&
5625              isFixedVectorShuffle(TE->Scalars, Mask)) ||
5626             (TE->State == TreeEntry::NeedToGather &&
5627              TE->getOpcode() == Instruction::Load && !TE->isAltShuffle()));
5628   };
5629 
5630   // We only handle trees of heights 1 and 2.
5631   if (VectorizableTree.size() == 1 &&
5632       (VectorizableTree[0]->State == TreeEntry::Vectorize ||
5633        (ForReduction &&
5634         AreVectorizableGathers(VectorizableTree[0].get(),
5635                                VectorizableTree[0]->Scalars.size()) &&
5636         VectorizableTree[0]->getVectorFactor() > 2)))
5637     return true;
5638 
5639   if (VectorizableTree.size() != 2)
5640     return false;
5641 
5642   // Handle splat and all-constants stores. Also try to vectorize tiny trees
5643   // with the second gather nodes if they have less scalar operands rather than
5644   // the initial tree element (may be profitable to shuffle the second gather)
5645   // or they are extractelements, which form shuffle.
5646   SmallVector<int> Mask;
5647   if (VectorizableTree[0]->State == TreeEntry::Vectorize &&
5648       AreVectorizableGathers(VectorizableTree[1].get(),
5649                              VectorizableTree[0]->Scalars.size()))
5650     return true;
5651 
5652   // Gathering cost would be too much for tiny trees.
5653   if (VectorizableTree[0]->State == TreeEntry::NeedToGather ||
5654       (VectorizableTree[1]->State == TreeEntry::NeedToGather &&
5655        VectorizableTree[0]->State != TreeEntry::ScatterVectorize))
5656     return false;
5657 
5658   return true;
5659 }
5660 
5661 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts,
5662                                        TargetTransformInfo *TTI,
5663                                        bool MustMatchOrInst) {
5664   // Look past the root to find a source value. Arbitrarily follow the
5665   // path through operand 0 of any 'or'. Also, peek through optional
5666   // shift-left-by-multiple-of-8-bits.
5667   Value *ZextLoad = Root;
5668   const APInt *ShAmtC;
5669   bool FoundOr = false;
5670   while (!isa<ConstantExpr>(ZextLoad) &&
5671          (match(ZextLoad, m_Or(m_Value(), m_Value())) ||
5672           (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) &&
5673            ShAmtC->urem(8) == 0))) {
5674     auto *BinOp = cast<BinaryOperator>(ZextLoad);
5675     ZextLoad = BinOp->getOperand(0);
5676     if (BinOp->getOpcode() == Instruction::Or)
5677       FoundOr = true;
5678   }
5679   // Check if the input is an extended load of the required or/shift expression.
5680   Value *Load;
5681   if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root ||
5682       !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load))
5683     return false;
5684 
5685   // Require that the total load bit width is a legal integer type.
5686   // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target.
5687   // But <16 x i8> --> i128 is not, so the backend probably can't reduce it.
5688   Type *SrcTy = Load->getType();
5689   unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts;
5690   if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth)))
5691     return false;
5692 
5693   // Everything matched - assume that we can fold the whole sequence using
5694   // load combining.
5695   LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at "
5696              << *(cast<Instruction>(Root)) << "\n");
5697 
5698   return true;
5699 }
5700 
5701 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const {
5702   if (RdxKind != RecurKind::Or)
5703     return false;
5704 
5705   unsigned NumElts = VectorizableTree[0]->Scalars.size();
5706   Value *FirstReduced = VectorizableTree[0]->Scalars[0];
5707   return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI,
5708                                     /* MatchOr */ false);
5709 }
5710 
5711 bool BoUpSLP::isLoadCombineCandidate() const {
5712   // Peek through a final sequence of stores and check if all operations are
5713   // likely to be load-combined.
5714   unsigned NumElts = VectorizableTree[0]->Scalars.size();
5715   for (Value *Scalar : VectorizableTree[0]->Scalars) {
5716     Value *X;
5717     if (!match(Scalar, m_Store(m_Value(X), m_Value())) ||
5718         !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true))
5719       return false;
5720   }
5721   return true;
5722 }
5723 
5724 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const {
5725   // No need to vectorize inserts of gathered values.
5726   if (VectorizableTree.size() == 2 &&
5727       isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) &&
5728       VectorizableTree[1]->State == TreeEntry::NeedToGather)
5729     return true;
5730 
5731   // We can vectorize the tree if its size is greater than or equal to the
5732   // minimum size specified by the MinTreeSize command line option.
5733   if (VectorizableTree.size() >= MinTreeSize)
5734     return false;
5735 
5736   // If we have a tiny tree (a tree whose size is less than MinTreeSize), we
5737   // can vectorize it if we can prove it fully vectorizable.
5738   if (isFullyVectorizableTinyTree(ForReduction))
5739     return false;
5740 
5741   assert(VectorizableTree.empty()
5742              ? ExternalUses.empty()
5743              : true && "We shouldn't have any external users");
5744 
5745   // Otherwise, we can't vectorize the tree. It is both tiny and not fully
5746   // vectorizable.
5747   return true;
5748 }
5749 
5750 InstructionCost BoUpSLP::getSpillCost() const {
5751   // Walk from the bottom of the tree to the top, tracking which values are
5752   // live. When we see a call instruction that is not part of our tree,
5753   // query TTI to see if there is a cost to keeping values live over it
5754   // (for example, if spills and fills are required).
5755   unsigned BundleWidth = VectorizableTree.front()->Scalars.size();
5756   InstructionCost Cost = 0;
5757 
5758   SmallPtrSet<Instruction*, 4> LiveValues;
5759   Instruction *PrevInst = nullptr;
5760 
5761   // The entries in VectorizableTree are not necessarily ordered by their
5762   // position in basic blocks. Collect them and order them by dominance so later
5763   // instructions are guaranteed to be visited first. For instructions in
5764   // different basic blocks, we only scan to the beginning of the block, so
5765   // their order does not matter, as long as all instructions in a basic block
5766   // are grouped together. Using dominance ensures a deterministic order.
5767   SmallVector<Instruction *, 16> OrderedScalars;
5768   for (const auto &TEPtr : VectorizableTree) {
5769     Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]);
5770     if (!Inst)
5771       continue;
5772     OrderedScalars.push_back(Inst);
5773   }
5774   llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) {
5775     auto *NodeA = DT->getNode(A->getParent());
5776     auto *NodeB = DT->getNode(B->getParent());
5777     assert(NodeA && "Should only process reachable instructions");
5778     assert(NodeB && "Should only process reachable instructions");
5779     assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) &&
5780            "Different nodes should have different DFS numbers");
5781     if (NodeA != NodeB)
5782       return NodeA->getDFSNumIn() < NodeB->getDFSNumIn();
5783     return B->comesBefore(A);
5784   });
5785 
5786   for (Instruction *Inst : OrderedScalars) {
5787     if (!PrevInst) {
5788       PrevInst = Inst;
5789       continue;
5790     }
5791 
5792     // Update LiveValues.
5793     LiveValues.erase(PrevInst);
5794     for (auto &J : PrevInst->operands()) {
5795       if (isa<Instruction>(&*J) && getTreeEntry(&*J))
5796         LiveValues.insert(cast<Instruction>(&*J));
5797     }
5798 
5799     LLVM_DEBUG({
5800       dbgs() << "SLP: #LV: " << LiveValues.size();
5801       for (auto *X : LiveValues)
5802         dbgs() << " " << X->getName();
5803       dbgs() << ", Looking at ";
5804       Inst->dump();
5805     });
5806 
5807     // Now find the sequence of instructions between PrevInst and Inst.
5808     unsigned NumCalls = 0;
5809     BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(),
5810                                  PrevInstIt =
5811                                      PrevInst->getIterator().getReverse();
5812     while (InstIt != PrevInstIt) {
5813       if (PrevInstIt == PrevInst->getParent()->rend()) {
5814         PrevInstIt = Inst->getParent()->rbegin();
5815         continue;
5816       }
5817 
5818       // Debug information does not impact spill cost.
5819       if ((isa<CallInst>(&*PrevInstIt) &&
5820            !isa<DbgInfoIntrinsic>(&*PrevInstIt)) &&
5821           &*PrevInstIt != PrevInst)
5822         NumCalls++;
5823 
5824       ++PrevInstIt;
5825     }
5826 
5827     if (NumCalls) {
5828       SmallVector<Type*, 4> V;
5829       for (auto *II : LiveValues) {
5830         auto *ScalarTy = II->getType();
5831         if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy))
5832           ScalarTy = VectorTy->getElementType();
5833         V.push_back(FixedVectorType::get(ScalarTy, BundleWidth));
5834       }
5835       Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V);
5836     }
5837 
5838     PrevInst = Inst;
5839   }
5840 
5841   return Cost;
5842 }
5843 
5844 /// Check if two insertelement instructions are from the same buildvector.
5845 static bool areTwoInsertFromSameBuildVector(InsertElementInst *VU,
5846                                             InsertElementInst *V) {
5847   // Instructions must be from the same basic blocks.
5848   if (VU->getParent() != V->getParent())
5849     return false;
5850   // Checks if 2 insertelements are from the same buildvector.
5851   if (VU->getType() != V->getType())
5852     return false;
5853   // Multiple used inserts are separate nodes.
5854   if (!VU->hasOneUse() && !V->hasOneUse())
5855     return false;
5856   auto *IE1 = VU;
5857   auto *IE2 = V;
5858   // Go through the vector operand of insertelement instructions trying to find
5859   // either VU as the original vector for IE2 or V as the original vector for
5860   // IE1.
5861   do {
5862     if (IE2 == VU || IE1 == V)
5863       return true;
5864     if (IE1) {
5865       if (IE1 != VU && !IE1->hasOneUse())
5866         IE1 = nullptr;
5867       else
5868         IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0));
5869     }
5870     if (IE2) {
5871       if (IE2 != V && !IE2->hasOneUse())
5872         IE2 = nullptr;
5873       else
5874         IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0));
5875     }
5876   } while (IE1 || IE2);
5877   return false;
5878 }
5879 
5880 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) {
5881   InstructionCost Cost = 0;
5882   LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size "
5883                     << VectorizableTree.size() << ".\n");
5884 
5885   unsigned BundleWidth = VectorizableTree[0]->Scalars.size();
5886 
5887   for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) {
5888     TreeEntry &TE = *VectorizableTree[I].get();
5889 
5890     InstructionCost C = getEntryCost(&TE, VectorizedVals);
5891     Cost += C;
5892     LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
5893                       << " for bundle that starts with " << *TE.Scalars[0]
5894                       << ".\n"
5895                       << "SLP: Current total cost = " << Cost << "\n");
5896   }
5897 
5898   SmallPtrSet<Value *, 16> ExtractCostCalculated;
5899   InstructionCost ExtractCost = 0;
5900   SmallVector<unsigned> VF;
5901   SmallVector<SmallVector<int>> ShuffleMask;
5902   SmallVector<Value *> FirstUsers;
5903   SmallVector<APInt> DemandedElts;
5904   for (ExternalUser &EU : ExternalUses) {
5905     // We only add extract cost once for the same scalar.
5906     if (!isa_and_nonnull<InsertElementInst>(EU.User) &&
5907         !ExtractCostCalculated.insert(EU.Scalar).second)
5908       continue;
5909 
5910     // Uses by ephemeral values are free (because the ephemeral value will be
5911     // removed prior to code generation, and so the extraction will be
5912     // removed as well).
5913     if (EphValues.count(EU.User))
5914       continue;
5915 
5916     // No extract cost for vector "scalar"
5917     if (isa<FixedVectorType>(EU.Scalar->getType()))
5918       continue;
5919 
5920     // Already counted the cost for external uses when tried to adjust the cost
5921     // for extractelements, no need to add it again.
5922     if (isa<ExtractElementInst>(EU.Scalar))
5923       continue;
5924 
5925     // If found user is an insertelement, do not calculate extract cost but try
5926     // to detect it as a final shuffled/identity match.
5927     if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) {
5928       if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) {
5929         Optional<unsigned> InsertIdx = getInsertIndex(VU);
5930         if (InsertIdx) {
5931           auto *It = find_if(FirstUsers, [VU](Value *V) {
5932             return areTwoInsertFromSameBuildVector(VU,
5933                                                    cast<InsertElementInst>(V));
5934           });
5935           int VecId = -1;
5936           if (It == FirstUsers.end()) {
5937             VF.push_back(FTy->getNumElements());
5938             ShuffleMask.emplace_back(VF.back(), UndefMaskElem);
5939             // Find the insertvector, vectorized in tree, if any.
5940             Value *Base = VU;
5941             while (isa<InsertElementInst>(Base)) {
5942               // Build the mask for the vectorized insertelement instructions.
5943               if (const TreeEntry *E = getTreeEntry(Base)) {
5944                 VU = cast<InsertElementInst>(Base);
5945                 do {
5946                   int Idx = E->findLaneForValue(Base);
5947                   ShuffleMask.back()[Idx] = Idx;
5948                   Base = cast<InsertElementInst>(Base)->getOperand(0);
5949                 } while (E == getTreeEntry(Base));
5950                 break;
5951               }
5952               Base = cast<InsertElementInst>(Base)->getOperand(0);
5953             }
5954             FirstUsers.push_back(VU);
5955             DemandedElts.push_back(APInt::getZero(VF.back()));
5956             VecId = FirstUsers.size() - 1;
5957           } else {
5958             VecId = std::distance(FirstUsers.begin(), It);
5959           }
5960           ShuffleMask[VecId][*InsertIdx] = EU.Lane;
5961           DemandedElts[VecId].setBit(*InsertIdx);
5962           continue;
5963         }
5964       }
5965     }
5966 
5967     // If we plan to rewrite the tree in a smaller type, we will need to sign
5968     // extend the extracted value back to the original type. Here, we account
5969     // for the extract and the added cost of the sign extend if needed.
5970     auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth);
5971     auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
5972     if (MinBWs.count(ScalarRoot)) {
5973       auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
5974       auto Extend =
5975           MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt;
5976       VecTy = FixedVectorType::get(MinTy, BundleWidth);
5977       ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(),
5978                                                    VecTy, EU.Lane);
5979     } else {
5980       ExtractCost +=
5981           TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane);
5982     }
5983   }
5984 
5985   InstructionCost SpillCost = getSpillCost();
5986   Cost += SpillCost + ExtractCost;
5987   if (FirstUsers.size() == 1) {
5988     int Limit = ShuffleMask.front().size() * 2;
5989     if (all_of(ShuffleMask.front(), [Limit](int Idx) { return Idx < Limit; }) &&
5990         !ShuffleVectorInst::isIdentityMask(ShuffleMask.front())) {
5991       InstructionCost C = TTI->getShuffleCost(
5992           TTI::SK_PermuteSingleSrc,
5993           cast<FixedVectorType>(FirstUsers.front()->getType()),
5994           ShuffleMask.front());
5995       LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
5996                         << " for final shuffle of insertelement external users "
5997                         << *VectorizableTree.front()->Scalars.front() << ".\n"
5998                         << "SLP: Current total cost = " << Cost << "\n");
5999       Cost += C;
6000     }
6001     InstructionCost InsertCost = TTI->getScalarizationOverhead(
6002         cast<FixedVectorType>(FirstUsers.front()->getType()),
6003         DemandedElts.front(), /*Insert*/ true, /*Extract*/ false);
6004     LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost
6005                       << " for insertelements gather.\n"
6006                       << "SLP: Current total cost = " << Cost << "\n");
6007     Cost -= InsertCost;
6008   } else if (FirstUsers.size() >= 2) {
6009     unsigned MaxVF = *std::max_element(VF.begin(), VF.end());
6010     // Combined masks of the first 2 vectors.
6011     SmallVector<int> CombinedMask(MaxVF, UndefMaskElem);
6012     copy(ShuffleMask.front(), CombinedMask.begin());
6013     APInt CombinedDemandedElts = DemandedElts.front().zextOrSelf(MaxVF);
6014     auto *VecTy = FixedVectorType::get(
6015         cast<VectorType>(FirstUsers.front()->getType())->getElementType(),
6016         MaxVF);
6017     for (int I = 0, E = ShuffleMask[1].size(); I < E; ++I) {
6018       if (ShuffleMask[1][I] != UndefMaskElem) {
6019         CombinedMask[I] = ShuffleMask[1][I] + MaxVF;
6020         CombinedDemandedElts.setBit(I);
6021       }
6022     }
6023     InstructionCost C =
6024         TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask);
6025     LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
6026                       << " for final shuffle of vector node and external "
6027                          "insertelement users "
6028                       << *VectorizableTree.front()->Scalars.front() << ".\n"
6029                       << "SLP: Current total cost = " << Cost << "\n");
6030     Cost += C;
6031     InstructionCost InsertCost = TTI->getScalarizationOverhead(
6032         VecTy, CombinedDemandedElts, /*Insert*/ true, /*Extract*/ false);
6033     LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost
6034                       << " for insertelements gather.\n"
6035                       << "SLP: Current total cost = " << Cost << "\n");
6036     Cost -= InsertCost;
6037     for (int I = 2, E = FirstUsers.size(); I < E; ++I) {
6038       // Other elements - permutation of 2 vectors (the initial one and the
6039       // next Ith incoming vector).
6040       unsigned VF = ShuffleMask[I].size();
6041       for (unsigned Idx = 0; Idx < VF; ++Idx) {
6042         int Mask = ShuffleMask[I][Idx];
6043         if (Mask != UndefMaskElem)
6044           CombinedMask[Idx] = MaxVF + Mask;
6045         else if (CombinedMask[Idx] != UndefMaskElem)
6046           CombinedMask[Idx] = Idx;
6047       }
6048       for (unsigned Idx = VF; Idx < MaxVF; ++Idx)
6049         if (CombinedMask[Idx] != UndefMaskElem)
6050           CombinedMask[Idx] = Idx;
6051       InstructionCost C =
6052           TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask);
6053       LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
6054                         << " for final shuffle of vector node and external "
6055                            "insertelement users "
6056                         << *VectorizableTree.front()->Scalars.front() << ".\n"
6057                         << "SLP: Current total cost = " << Cost << "\n");
6058       Cost += C;
6059       InstructionCost InsertCost = TTI->getScalarizationOverhead(
6060           cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I],
6061           /*Insert*/ true, /*Extract*/ false);
6062       LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost
6063                         << " for insertelements gather.\n"
6064                         << "SLP: Current total cost = " << Cost << "\n");
6065       Cost -= InsertCost;
6066     }
6067   }
6068 
6069 #ifndef NDEBUG
6070   SmallString<256> Str;
6071   {
6072     raw_svector_ostream OS(Str);
6073     OS << "SLP: Spill Cost = " << SpillCost << ".\n"
6074        << "SLP: Extract Cost = " << ExtractCost << ".\n"
6075        << "SLP: Total Cost = " << Cost << ".\n";
6076   }
6077   LLVM_DEBUG(dbgs() << Str);
6078   if (ViewSLPTree)
6079     ViewGraph(this, "SLP" + F->getName(), false, Str);
6080 #endif
6081 
6082   return Cost;
6083 }
6084 
6085 Optional<TargetTransformInfo::ShuffleKind>
6086 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask,
6087                                SmallVectorImpl<const TreeEntry *> &Entries) {
6088   // TODO: currently checking only for Scalars in the tree entry, need to count
6089   // reused elements too for better cost estimation.
6090   Mask.assign(TE->Scalars.size(), UndefMaskElem);
6091   Entries.clear();
6092   // Build a lists of values to tree entries.
6093   DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs;
6094   for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) {
6095     if (EntryPtr.get() == TE)
6096       break;
6097     if (EntryPtr->State != TreeEntry::NeedToGather)
6098       continue;
6099     for (Value *V : EntryPtr->Scalars)
6100       ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get());
6101   }
6102   // Find all tree entries used by the gathered values. If no common entries
6103   // found - not a shuffle.
6104   // Here we build a set of tree nodes for each gathered value and trying to
6105   // find the intersection between these sets. If we have at least one common
6106   // tree node for each gathered value - we have just a permutation of the
6107   // single vector. If we have 2 different sets, we're in situation where we
6108   // have a permutation of 2 input vectors.
6109   SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs;
6110   DenseMap<Value *, int> UsedValuesEntry;
6111   for (Value *V : TE->Scalars) {
6112     if (isa<UndefValue>(V))
6113       continue;
6114     // Build a list of tree entries where V is used.
6115     SmallPtrSet<const TreeEntry *, 4> VToTEs;
6116     auto It = ValueToTEs.find(V);
6117     if (It != ValueToTEs.end())
6118       VToTEs = It->second;
6119     if (const TreeEntry *VTE = getTreeEntry(V))
6120       VToTEs.insert(VTE);
6121     if (VToTEs.empty())
6122       return None;
6123     if (UsedTEs.empty()) {
6124       // The first iteration, just insert the list of nodes to vector.
6125       UsedTEs.push_back(VToTEs);
6126     } else {
6127       // Need to check if there are any previously used tree nodes which use V.
6128       // If there are no such nodes, consider that we have another one input
6129       // vector.
6130       SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs);
6131       unsigned Idx = 0;
6132       for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) {
6133         // Do we have a non-empty intersection of previously listed tree entries
6134         // and tree entries using current V?
6135         set_intersect(VToTEs, Set);
6136         if (!VToTEs.empty()) {
6137           // Yes, write the new subset and continue analysis for the next
6138           // scalar.
6139           Set.swap(VToTEs);
6140           break;
6141         }
6142         VToTEs = SavedVToTEs;
6143         ++Idx;
6144       }
6145       // No non-empty intersection found - need to add a second set of possible
6146       // source vectors.
6147       if (Idx == UsedTEs.size()) {
6148         // If the number of input vectors is greater than 2 - not a permutation,
6149         // fallback to the regular gather.
6150         if (UsedTEs.size() == 2)
6151           return None;
6152         UsedTEs.push_back(SavedVToTEs);
6153         Idx = UsedTEs.size() - 1;
6154       }
6155       UsedValuesEntry.try_emplace(V, Idx);
6156     }
6157   }
6158 
6159   unsigned VF = 0;
6160   if (UsedTEs.size() == 1) {
6161     // Try to find the perfect match in another gather node at first.
6162     auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) {
6163       return EntryPtr->isSame(TE->Scalars);
6164     });
6165     if (It != UsedTEs.front().end()) {
6166       Entries.push_back(*It);
6167       std::iota(Mask.begin(), Mask.end(), 0);
6168       return TargetTransformInfo::SK_PermuteSingleSrc;
6169     }
6170     // No perfect match, just shuffle, so choose the first tree node.
6171     Entries.push_back(*UsedTEs.front().begin());
6172   } else {
6173     // Try to find nodes with the same vector factor.
6174     assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries.");
6175     DenseMap<int, const TreeEntry *> VFToTE;
6176     for (const TreeEntry *TE : UsedTEs.front())
6177       VFToTE.try_emplace(TE->getVectorFactor(), TE);
6178     for (const TreeEntry *TE : UsedTEs.back()) {
6179       auto It = VFToTE.find(TE->getVectorFactor());
6180       if (It != VFToTE.end()) {
6181         VF = It->first;
6182         Entries.push_back(It->second);
6183         Entries.push_back(TE);
6184         break;
6185       }
6186     }
6187     // No 2 source vectors with the same vector factor - give up and do regular
6188     // gather.
6189     if (Entries.empty())
6190       return None;
6191   }
6192 
6193   // Build a shuffle mask for better cost estimation and vector emission.
6194   for (int I = 0, E = TE->Scalars.size(); I < E; ++I) {
6195     Value *V = TE->Scalars[I];
6196     if (isa<UndefValue>(V))
6197       continue;
6198     unsigned Idx = UsedValuesEntry.lookup(V);
6199     const TreeEntry *VTE = Entries[Idx];
6200     int FoundLane = VTE->findLaneForValue(V);
6201     Mask[I] = Idx * VF + FoundLane;
6202     // Extra check required by isSingleSourceMaskImpl function (called by
6203     // ShuffleVectorInst::isSingleSourceMask).
6204     if (Mask[I] >= 2 * E)
6205       return None;
6206   }
6207   switch (Entries.size()) {
6208   case 1:
6209     return TargetTransformInfo::SK_PermuteSingleSrc;
6210   case 2:
6211     return TargetTransformInfo::SK_PermuteTwoSrc;
6212   default:
6213     break;
6214   }
6215   return None;
6216 }
6217 
6218 InstructionCost BoUpSLP::getGatherCost(FixedVectorType *Ty,
6219                                        const APInt &ShuffledIndices,
6220                                        bool NeedToShuffle) const {
6221   InstructionCost Cost =
6222       TTI->getScalarizationOverhead(Ty, ~ShuffledIndices, /*Insert*/ true,
6223                                     /*Extract*/ false);
6224   if (NeedToShuffle)
6225     Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty);
6226   return Cost;
6227 }
6228 
6229 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const {
6230   // Find the type of the operands in VL.
6231   Type *ScalarTy = VL[0]->getType();
6232   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
6233     ScalarTy = SI->getValueOperand()->getType();
6234   auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
6235   bool DuplicateNonConst = false;
6236   // Find the cost of inserting/extracting values from the vector.
6237   // Check if the same elements are inserted several times and count them as
6238   // shuffle candidates.
6239   APInt ShuffledElements = APInt::getZero(VL.size());
6240   DenseSet<Value *> UniqueElements;
6241   // Iterate in reverse order to consider insert elements with the high cost.
6242   for (unsigned I = VL.size(); I > 0; --I) {
6243     unsigned Idx = I - 1;
6244     // No need to shuffle duplicates for constants.
6245     if (isConstant(VL[Idx])) {
6246       ShuffledElements.setBit(Idx);
6247       continue;
6248     }
6249     if (!UniqueElements.insert(VL[Idx]).second) {
6250       DuplicateNonConst = true;
6251       ShuffledElements.setBit(Idx);
6252     }
6253   }
6254   return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst);
6255 }
6256 
6257 // Perform operand reordering on the instructions in VL and return the reordered
6258 // operands in Left and Right.
6259 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
6260                                              SmallVectorImpl<Value *> &Left,
6261                                              SmallVectorImpl<Value *> &Right,
6262                                              const DataLayout &DL,
6263                                              ScalarEvolution &SE,
6264                                              const BoUpSLP &R) {
6265   if (VL.empty())
6266     return;
6267   VLOperands Ops(VL, DL, SE, R);
6268   // Reorder the operands in place.
6269   Ops.reorder();
6270   Left = Ops.getVL(0);
6271   Right = Ops.getVL(1);
6272 }
6273 
6274 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) {
6275   // Get the basic block this bundle is in. All instructions in the bundle
6276   // should be in this block.
6277   auto *Front = E->getMainOp();
6278   auto *BB = Front->getParent();
6279   assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool {
6280     auto *I = cast<Instruction>(V);
6281     return !E->isOpcodeOrAlt(I) || I->getParent() == BB;
6282   }));
6283 
6284   // The last instruction in the bundle in program order.
6285   Instruction *LastInst = nullptr;
6286 
6287   // Find the last instruction. The common case should be that BB has been
6288   // scheduled, and the last instruction is VL.back(). So we start with
6289   // VL.back() and iterate over schedule data until we reach the end of the
6290   // bundle. The end of the bundle is marked by null ScheduleData.
6291   if (BlocksSchedules.count(BB)) {
6292     auto *Bundle =
6293         BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back()));
6294     if (Bundle && Bundle->isPartOfBundle())
6295       for (; Bundle; Bundle = Bundle->NextInBundle)
6296         if (Bundle->OpValue == Bundle->Inst)
6297           LastInst = Bundle->Inst;
6298   }
6299 
6300   // LastInst can still be null at this point if there's either not an entry
6301   // for BB in BlocksSchedules or there's no ScheduleData available for
6302   // VL.back(). This can be the case if buildTree_rec aborts for various
6303   // reasons (e.g., the maximum recursion depth is reached, the maximum region
6304   // size is reached, etc.). ScheduleData is initialized in the scheduling
6305   // "dry-run".
6306   //
6307   // If this happens, we can still find the last instruction by brute force. We
6308   // iterate forwards from Front (inclusive) until we either see all
6309   // instructions in the bundle or reach the end of the block. If Front is the
6310   // last instruction in program order, LastInst will be set to Front, and we
6311   // will visit all the remaining instructions in the block.
6312   //
6313   // One of the reasons we exit early from buildTree_rec is to place an upper
6314   // bound on compile-time. Thus, taking an additional compile-time hit here is
6315   // not ideal. However, this should be exceedingly rare since it requires that
6316   // we both exit early from buildTree_rec and that the bundle be out-of-order
6317   // (causing us to iterate all the way to the end of the block).
6318   if (!LastInst) {
6319     SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end());
6320     for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) {
6321       if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I))
6322         LastInst = &I;
6323       if (Bundle.empty())
6324         break;
6325     }
6326   }
6327   assert(LastInst && "Failed to find last instruction in bundle");
6328 
6329   // Set the insertion point after the last instruction in the bundle. Set the
6330   // debug location to Front.
6331   Builder.SetInsertPoint(BB, ++LastInst->getIterator());
6332   Builder.SetCurrentDebugLocation(Front->getDebugLoc());
6333 }
6334 
6335 Value *BoUpSLP::gather(ArrayRef<Value *> VL) {
6336   // List of instructions/lanes from current block and/or the blocks which are
6337   // part of the current loop. These instructions will be inserted at the end to
6338   // make it possible to optimize loops and hoist invariant instructions out of
6339   // the loops body with better chances for success.
6340   SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts;
6341   SmallSet<int, 4> PostponedIndices;
6342   Loop *L = LI->getLoopFor(Builder.GetInsertBlock());
6343   auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) {
6344     SmallPtrSet<BasicBlock *, 4> Visited;
6345     while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second)
6346       InsertBB = InsertBB->getSinglePredecessor();
6347     return InsertBB && InsertBB == InstBB;
6348   };
6349   for (int I = 0, E = VL.size(); I < E; ++I) {
6350     if (auto *Inst = dyn_cast<Instruction>(VL[I]))
6351       if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) ||
6352            getTreeEntry(Inst) || (L && (L->contains(Inst)))) &&
6353           PostponedIndices.insert(I).second)
6354         PostponedInsts.emplace_back(Inst, I);
6355   }
6356 
6357   auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) {
6358     Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos));
6359     auto *InsElt = dyn_cast<InsertElementInst>(Vec);
6360     if (!InsElt)
6361       return Vec;
6362     GatherShuffleSeq.insert(InsElt);
6363     CSEBlocks.insert(InsElt->getParent());
6364     // Add to our 'need-to-extract' list.
6365     if (TreeEntry *Entry = getTreeEntry(V)) {
6366       // Find which lane we need to extract.
6367       unsigned FoundLane = Entry->findLaneForValue(V);
6368       ExternalUses.emplace_back(V, InsElt, FoundLane);
6369     }
6370     return Vec;
6371   };
6372   Value *Val0 =
6373       isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0];
6374   FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size());
6375   Value *Vec = PoisonValue::get(VecTy);
6376   SmallVector<int> NonConsts;
6377   // Insert constant values at first.
6378   for (int I = 0, E = VL.size(); I < E; ++I) {
6379     if (PostponedIndices.contains(I))
6380       continue;
6381     if (!isConstant(VL[I])) {
6382       NonConsts.push_back(I);
6383       continue;
6384     }
6385     Vec = CreateInsertElement(Vec, VL[I], I);
6386   }
6387   // Insert non-constant values.
6388   for (int I : NonConsts)
6389     Vec = CreateInsertElement(Vec, VL[I], I);
6390   // Append instructions, which are/may be part of the loop, in the end to make
6391   // it possible to hoist non-loop-based instructions.
6392   for (const std::pair<Value *, unsigned> &Pair : PostponedInsts)
6393     Vec = CreateInsertElement(Vec, Pair.first, Pair.second);
6394 
6395   return Vec;
6396 }
6397 
6398 namespace {
6399 /// Merges shuffle masks and emits final shuffle instruction, if required.
6400 class ShuffleInstructionBuilder {
6401   IRBuilderBase &Builder;
6402   const unsigned VF = 0;
6403   bool IsFinalized = false;
6404   SmallVector<int, 4> Mask;
6405   /// Holds all of the instructions that we gathered.
6406   SetVector<Instruction *> &GatherShuffleSeq;
6407   /// A list of blocks that we are going to CSE.
6408   SetVector<BasicBlock *> &CSEBlocks;
6409 
6410 public:
6411   ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF,
6412                             SetVector<Instruction *> &GatherShuffleSeq,
6413                             SetVector<BasicBlock *> &CSEBlocks)
6414       : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq),
6415         CSEBlocks(CSEBlocks) {}
6416 
6417   /// Adds a mask, inverting it before applying.
6418   void addInversedMask(ArrayRef<unsigned> SubMask) {
6419     if (SubMask.empty())
6420       return;
6421     SmallVector<int, 4> NewMask;
6422     inversePermutation(SubMask, NewMask);
6423     addMask(NewMask);
6424   }
6425 
6426   /// Functions adds masks, merging them into  single one.
6427   void addMask(ArrayRef<unsigned> SubMask) {
6428     SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end());
6429     addMask(NewMask);
6430   }
6431 
6432   void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); }
6433 
6434   Value *finalize(Value *V) {
6435     IsFinalized = true;
6436     unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements();
6437     if (VF == ValueVF && Mask.empty())
6438       return V;
6439     SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem);
6440     std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0);
6441     addMask(NormalizedMask);
6442 
6443     if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask))
6444       return V;
6445     Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle");
6446     if (auto *I = dyn_cast<Instruction>(Vec)) {
6447       GatherShuffleSeq.insert(I);
6448       CSEBlocks.insert(I->getParent());
6449     }
6450     return Vec;
6451   }
6452 
6453   ~ShuffleInstructionBuilder() {
6454     assert((IsFinalized || Mask.empty()) &&
6455            "Shuffle construction must be finalized.");
6456   }
6457 };
6458 } // namespace
6459 
6460 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
6461   unsigned VF = VL.size();
6462   InstructionsState S = getSameOpcode(VL);
6463   if (S.getOpcode()) {
6464     if (TreeEntry *E = getTreeEntry(S.OpValue))
6465       if (E->isSame(VL)) {
6466         Value *V = vectorizeTree(E);
6467         if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) {
6468           if (!E->ReuseShuffleIndices.empty()) {
6469             // Reshuffle to get only unique values.
6470             // If some of the scalars are duplicated in the vectorization tree
6471             // entry, we do not vectorize them but instead generate a mask for
6472             // the reuses. But if there are several users of the same entry,
6473             // they may have different vectorization factors. This is especially
6474             // important for PHI nodes. In this case, we need to adapt the
6475             // resulting instruction for the user vectorization factor and have
6476             // to reshuffle it again to take only unique elements of the vector.
6477             // Without this code the function incorrectly returns reduced vector
6478             // instruction with the same elements, not with the unique ones.
6479 
6480             // block:
6481             // %phi = phi <2 x > { .., %entry} {%shuffle, %block}
6482             // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0>
6483             // ... (use %2)
6484             // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0}
6485             // br %block
6486             SmallVector<int> UniqueIdxs(VF, UndefMaskElem);
6487             SmallSet<int, 4> UsedIdxs;
6488             int Pos = 0;
6489             int Sz = VL.size();
6490             for (int Idx : E->ReuseShuffleIndices) {
6491               if (Idx != Sz && Idx != UndefMaskElem &&
6492                   UsedIdxs.insert(Idx).second)
6493                 UniqueIdxs[Idx] = Pos;
6494               ++Pos;
6495             }
6496             assert(VF >= UsedIdxs.size() && "Expected vectorization factor "
6497                                             "less than original vector size.");
6498             UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem);
6499             V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle");
6500           } else {
6501             assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() &&
6502                    "Expected vectorization factor less "
6503                    "than original vector size.");
6504             SmallVector<int> UniformMask(VF, 0);
6505             std::iota(UniformMask.begin(), UniformMask.end(), 0);
6506             V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle");
6507           }
6508           if (auto *I = dyn_cast<Instruction>(V)) {
6509             GatherShuffleSeq.insert(I);
6510             CSEBlocks.insert(I->getParent());
6511           }
6512         }
6513         return V;
6514       }
6515   }
6516 
6517   // Check that every instruction appears once in this bundle.
6518   SmallVector<int> ReuseShuffleIndicies;
6519   SmallVector<Value *> UniqueValues;
6520   if (VL.size() > 2) {
6521     DenseMap<Value *, unsigned> UniquePositions;
6522     unsigned NumValues =
6523         std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) {
6524                                     return !isa<UndefValue>(V);
6525                                   }).base());
6526     VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues));
6527     int UniqueVals = 0;
6528     for (Value *V : VL.drop_back(VL.size() - VF)) {
6529       if (isa<UndefValue>(V)) {
6530         ReuseShuffleIndicies.emplace_back(UndefMaskElem);
6531         continue;
6532       }
6533       if (isConstant(V)) {
6534         ReuseShuffleIndicies.emplace_back(UniqueValues.size());
6535         UniqueValues.emplace_back(V);
6536         continue;
6537       }
6538       auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
6539       ReuseShuffleIndicies.emplace_back(Res.first->second);
6540       if (Res.second) {
6541         UniqueValues.emplace_back(V);
6542         ++UniqueVals;
6543       }
6544     }
6545     if (UniqueVals == 1 && UniqueValues.size() == 1) {
6546       // Emit pure splat vector.
6547       ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(),
6548                                   UndefMaskElem);
6549     } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) {
6550       ReuseShuffleIndicies.clear();
6551       UniqueValues.clear();
6552       UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues));
6553     }
6554     UniqueValues.append(VF - UniqueValues.size(),
6555                         PoisonValue::get(VL[0]->getType()));
6556     VL = UniqueValues;
6557   }
6558 
6559   ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq,
6560                                            CSEBlocks);
6561   Value *Vec = gather(VL);
6562   if (!ReuseShuffleIndicies.empty()) {
6563     ShuffleBuilder.addMask(ReuseShuffleIndicies);
6564     Vec = ShuffleBuilder.finalize(Vec);
6565   }
6566   return Vec;
6567 }
6568 
6569 Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
6570   IRBuilder<>::InsertPointGuard Guard(Builder);
6571 
6572   if (E->VectorizedValue) {
6573     LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
6574     return E->VectorizedValue;
6575   }
6576 
6577   bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
6578   unsigned VF = E->getVectorFactor();
6579   ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq,
6580                                            CSEBlocks);
6581   if (E->State == TreeEntry::NeedToGather) {
6582     if (E->getMainOp())
6583       setInsertPointAfterBundle(E);
6584     Value *Vec;
6585     SmallVector<int> Mask;
6586     SmallVector<const TreeEntry *> Entries;
6587     Optional<TargetTransformInfo::ShuffleKind> Shuffle =
6588         isGatherShuffledEntry(E, Mask, Entries);
6589     if (Shuffle.hasValue()) {
6590       assert((Entries.size() == 1 || Entries.size() == 2) &&
6591              "Expected shuffle of 1 or 2 entries.");
6592       Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue,
6593                                         Entries.back()->VectorizedValue, Mask);
6594       if (auto *I = dyn_cast<Instruction>(Vec)) {
6595         GatherShuffleSeq.insert(I);
6596         CSEBlocks.insert(I->getParent());
6597       }
6598     } else {
6599       Vec = gather(E->Scalars);
6600     }
6601     if (NeedToShuffleReuses) {
6602       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
6603       Vec = ShuffleBuilder.finalize(Vec);
6604     }
6605     E->VectorizedValue = Vec;
6606     return Vec;
6607   }
6608 
6609   assert((E->State == TreeEntry::Vectorize ||
6610           E->State == TreeEntry::ScatterVectorize) &&
6611          "Unhandled state");
6612   unsigned ShuffleOrOp =
6613       E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
6614   Instruction *VL0 = E->getMainOp();
6615   Type *ScalarTy = VL0->getType();
6616   if (auto *Store = dyn_cast<StoreInst>(VL0))
6617     ScalarTy = Store->getValueOperand()->getType();
6618   else if (auto *IE = dyn_cast<InsertElementInst>(VL0))
6619     ScalarTy = IE->getOperand(1)->getType();
6620   auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size());
6621   switch (ShuffleOrOp) {
6622     case Instruction::PHI: {
6623       assert(
6624           (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) &&
6625           "PHI reordering is free.");
6626       auto *PH = cast<PHINode>(VL0);
6627       Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
6628       Builder.SetCurrentDebugLocation(PH->getDebugLoc());
6629       PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
6630       Value *V = NewPhi;
6631       ShuffleBuilder.addInversedMask(E->ReorderIndices);
6632       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
6633       V = ShuffleBuilder.finalize(V);
6634 
6635       E->VectorizedValue = V;
6636 
6637       // PHINodes may have multiple entries from the same block. We want to
6638       // visit every block once.
6639       SmallPtrSet<BasicBlock*, 4> VisitedBBs;
6640 
6641       for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
6642         ValueList Operands;
6643         BasicBlock *IBB = PH->getIncomingBlock(i);
6644 
6645         if (!VisitedBBs.insert(IBB).second) {
6646           NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
6647           continue;
6648         }
6649 
6650         Builder.SetInsertPoint(IBB->getTerminator());
6651         Builder.SetCurrentDebugLocation(PH->getDebugLoc());
6652         Value *Vec = vectorizeTree(E->getOperand(i));
6653         NewPhi->addIncoming(Vec, IBB);
6654       }
6655 
6656       assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
6657              "Invalid number of incoming values");
6658       return V;
6659     }
6660 
6661     case Instruction::ExtractElement: {
6662       Value *V = E->getSingleOperand(0);
6663       Builder.SetInsertPoint(VL0);
6664       ShuffleBuilder.addInversedMask(E->ReorderIndices);
6665       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
6666       V = ShuffleBuilder.finalize(V);
6667       E->VectorizedValue = V;
6668       return V;
6669     }
6670     case Instruction::ExtractValue: {
6671       auto *LI = cast<LoadInst>(E->getSingleOperand(0));
6672       Builder.SetInsertPoint(LI);
6673       auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace());
6674       Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy);
6675       LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign());
6676       Value *NewV = propagateMetadata(V, E->Scalars);
6677       ShuffleBuilder.addInversedMask(E->ReorderIndices);
6678       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
6679       NewV = ShuffleBuilder.finalize(NewV);
6680       E->VectorizedValue = NewV;
6681       return NewV;
6682     }
6683     case Instruction::InsertElement: {
6684       assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique");
6685       Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back()));
6686       Value *V = vectorizeTree(E->getOperand(1));
6687 
6688       // Create InsertVector shuffle if necessary
6689       auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) {
6690         return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0));
6691       }));
6692       const unsigned NumElts =
6693           cast<FixedVectorType>(FirstInsert->getType())->getNumElements();
6694       const unsigned NumScalars = E->Scalars.size();
6695 
6696       unsigned Offset = *getInsertIndex(VL0);
6697       assert(Offset < NumElts && "Failed to find vector index offset");
6698 
6699       // Create shuffle to resize vector
6700       SmallVector<int> Mask;
6701       if (!E->ReorderIndices.empty()) {
6702         inversePermutation(E->ReorderIndices, Mask);
6703         Mask.append(NumElts - NumScalars, UndefMaskElem);
6704       } else {
6705         Mask.assign(NumElts, UndefMaskElem);
6706         std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0);
6707       }
6708       // Create InsertVector shuffle if necessary
6709       bool IsIdentity = true;
6710       SmallVector<int> PrevMask(NumElts, UndefMaskElem);
6711       Mask.swap(PrevMask);
6712       for (unsigned I = 0; I < NumScalars; ++I) {
6713         Value *Scalar = E->Scalars[PrevMask[I]];
6714         unsigned InsertIdx = *getInsertIndex(Scalar);
6715         IsIdentity &= InsertIdx - Offset == I;
6716         Mask[InsertIdx - Offset] = I;
6717       }
6718       if (!IsIdentity || NumElts != NumScalars) {
6719         V = Builder.CreateShuffleVector(V, Mask);
6720         if (auto *I = dyn_cast<Instruction>(V)) {
6721           GatherShuffleSeq.insert(I);
6722           CSEBlocks.insert(I->getParent());
6723         }
6724       }
6725 
6726       if ((!IsIdentity || Offset != 0 ||
6727            !isUndefVector(FirstInsert->getOperand(0))) &&
6728           NumElts != NumScalars) {
6729         SmallVector<int> InsertMask(NumElts);
6730         std::iota(InsertMask.begin(), InsertMask.end(), 0);
6731         for (unsigned I = 0; I < NumElts; I++) {
6732           if (Mask[I] != UndefMaskElem)
6733             InsertMask[Offset + I] = NumElts + I;
6734         }
6735 
6736         V = Builder.CreateShuffleVector(
6737             FirstInsert->getOperand(0), V, InsertMask,
6738             cast<Instruction>(E->Scalars.back())->getName());
6739         if (auto *I = dyn_cast<Instruction>(V)) {
6740           GatherShuffleSeq.insert(I);
6741           CSEBlocks.insert(I->getParent());
6742         }
6743       }
6744 
6745       ++NumVectorInstructions;
6746       E->VectorizedValue = V;
6747       return V;
6748     }
6749     case Instruction::ZExt:
6750     case Instruction::SExt:
6751     case Instruction::FPToUI:
6752     case Instruction::FPToSI:
6753     case Instruction::FPExt:
6754     case Instruction::PtrToInt:
6755     case Instruction::IntToPtr:
6756     case Instruction::SIToFP:
6757     case Instruction::UIToFP:
6758     case Instruction::Trunc:
6759     case Instruction::FPTrunc:
6760     case Instruction::BitCast: {
6761       setInsertPointAfterBundle(E);
6762 
6763       Value *InVec = vectorizeTree(E->getOperand(0));
6764 
6765       if (E->VectorizedValue) {
6766         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
6767         return E->VectorizedValue;
6768       }
6769 
6770       auto *CI = cast<CastInst>(VL0);
6771       Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
6772       ShuffleBuilder.addInversedMask(E->ReorderIndices);
6773       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
6774       V = ShuffleBuilder.finalize(V);
6775 
6776       E->VectorizedValue = V;
6777       ++NumVectorInstructions;
6778       return V;
6779     }
6780     case Instruction::FCmp:
6781     case Instruction::ICmp: {
6782       setInsertPointAfterBundle(E);
6783 
6784       Value *L = vectorizeTree(E->getOperand(0));
6785       Value *R = vectorizeTree(E->getOperand(1));
6786 
6787       if (E->VectorizedValue) {
6788         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
6789         return E->VectorizedValue;
6790       }
6791 
6792       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
6793       Value *V = Builder.CreateCmp(P0, L, R);
6794       propagateIRFlags(V, E->Scalars, VL0);
6795       ShuffleBuilder.addInversedMask(E->ReorderIndices);
6796       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
6797       V = ShuffleBuilder.finalize(V);
6798 
6799       E->VectorizedValue = V;
6800       ++NumVectorInstructions;
6801       return V;
6802     }
6803     case Instruction::Select: {
6804       setInsertPointAfterBundle(E);
6805 
6806       Value *Cond = vectorizeTree(E->getOperand(0));
6807       Value *True = vectorizeTree(E->getOperand(1));
6808       Value *False = vectorizeTree(E->getOperand(2));
6809 
6810       if (E->VectorizedValue) {
6811         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
6812         return E->VectorizedValue;
6813       }
6814 
6815       Value *V = Builder.CreateSelect(Cond, True, False);
6816       ShuffleBuilder.addInversedMask(E->ReorderIndices);
6817       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
6818       V = ShuffleBuilder.finalize(V);
6819 
6820       E->VectorizedValue = V;
6821       ++NumVectorInstructions;
6822       return V;
6823     }
6824     case Instruction::FNeg: {
6825       setInsertPointAfterBundle(E);
6826 
6827       Value *Op = vectorizeTree(E->getOperand(0));
6828 
6829       if (E->VectorizedValue) {
6830         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
6831         return E->VectorizedValue;
6832       }
6833 
6834       Value *V = Builder.CreateUnOp(
6835           static_cast<Instruction::UnaryOps>(E->getOpcode()), Op);
6836       propagateIRFlags(V, E->Scalars, VL0);
6837       if (auto *I = dyn_cast<Instruction>(V))
6838         V = propagateMetadata(I, E->Scalars);
6839 
6840       ShuffleBuilder.addInversedMask(E->ReorderIndices);
6841       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
6842       V = ShuffleBuilder.finalize(V);
6843 
6844       E->VectorizedValue = V;
6845       ++NumVectorInstructions;
6846 
6847       return V;
6848     }
6849     case Instruction::Add:
6850     case Instruction::FAdd:
6851     case Instruction::Sub:
6852     case Instruction::FSub:
6853     case Instruction::Mul:
6854     case Instruction::FMul:
6855     case Instruction::UDiv:
6856     case Instruction::SDiv:
6857     case Instruction::FDiv:
6858     case Instruction::URem:
6859     case Instruction::SRem:
6860     case Instruction::FRem:
6861     case Instruction::Shl:
6862     case Instruction::LShr:
6863     case Instruction::AShr:
6864     case Instruction::And:
6865     case Instruction::Or:
6866     case Instruction::Xor: {
6867       setInsertPointAfterBundle(E);
6868 
6869       Value *LHS = vectorizeTree(E->getOperand(0));
6870       Value *RHS = vectorizeTree(E->getOperand(1));
6871 
6872       if (E->VectorizedValue) {
6873         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
6874         return E->VectorizedValue;
6875       }
6876 
6877       Value *V = Builder.CreateBinOp(
6878           static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS,
6879           RHS);
6880       propagateIRFlags(V, E->Scalars, VL0);
6881       if (auto *I = dyn_cast<Instruction>(V))
6882         V = propagateMetadata(I, E->Scalars);
6883 
6884       ShuffleBuilder.addInversedMask(E->ReorderIndices);
6885       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
6886       V = ShuffleBuilder.finalize(V);
6887 
6888       E->VectorizedValue = V;
6889       ++NumVectorInstructions;
6890 
6891       return V;
6892     }
6893     case Instruction::Load: {
6894       // Loads are inserted at the head of the tree because we don't want to
6895       // sink them all the way down past store instructions.
6896       setInsertPointAfterBundle(E);
6897 
6898       LoadInst *LI = cast<LoadInst>(VL0);
6899       Instruction *NewLI;
6900       unsigned AS = LI->getPointerAddressSpace();
6901       Value *PO = LI->getPointerOperand();
6902       if (E->State == TreeEntry::Vectorize) {
6903 
6904         Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS));
6905 
6906         // The pointer operand uses an in-tree scalar so we add the new BitCast
6907         // to ExternalUses list to make sure that an extract will be generated
6908         // in the future.
6909         if (TreeEntry *Entry = getTreeEntry(PO)) {
6910           // Find which lane we need to extract.
6911           unsigned FoundLane = Entry->findLaneForValue(PO);
6912           ExternalUses.emplace_back(PO, cast<User>(VecPtr), FoundLane);
6913         }
6914 
6915         NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign());
6916       } else {
6917         assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state");
6918         Value *VecPtr = vectorizeTree(E->getOperand(0));
6919         // Use the minimum alignment of the gathered loads.
6920         Align CommonAlignment = LI->getAlign();
6921         for (Value *V : E->Scalars)
6922           CommonAlignment =
6923               commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign());
6924         NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment);
6925       }
6926       Value *V = propagateMetadata(NewLI, E->Scalars);
6927 
6928       ShuffleBuilder.addInversedMask(E->ReorderIndices);
6929       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
6930       V = ShuffleBuilder.finalize(V);
6931       E->VectorizedValue = V;
6932       ++NumVectorInstructions;
6933       return V;
6934     }
6935     case Instruction::Store: {
6936       auto *SI = cast<StoreInst>(VL0);
6937       unsigned AS = SI->getPointerAddressSpace();
6938 
6939       setInsertPointAfterBundle(E);
6940 
6941       Value *VecValue = vectorizeTree(E->getOperand(0));
6942       ShuffleBuilder.addMask(E->ReorderIndices);
6943       VecValue = ShuffleBuilder.finalize(VecValue);
6944 
6945       Value *ScalarPtr = SI->getPointerOperand();
6946       Value *VecPtr = Builder.CreateBitCast(
6947           ScalarPtr, VecValue->getType()->getPointerTo(AS));
6948       StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr,
6949                                                  SI->getAlign());
6950 
6951       // The pointer operand uses an in-tree scalar, so add the new BitCast to
6952       // ExternalUses to make sure that an extract will be generated in the
6953       // future.
6954       if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) {
6955         // Find which lane we need to extract.
6956         unsigned FoundLane = Entry->findLaneForValue(ScalarPtr);
6957         ExternalUses.push_back(
6958             ExternalUser(ScalarPtr, cast<User>(VecPtr), FoundLane));
6959       }
6960 
6961       Value *V = propagateMetadata(ST, E->Scalars);
6962 
6963       E->VectorizedValue = V;
6964       ++NumVectorInstructions;
6965       return V;
6966     }
6967     case Instruction::GetElementPtr: {
6968       auto *GEP0 = cast<GetElementPtrInst>(VL0);
6969       setInsertPointAfterBundle(E);
6970 
6971       Value *Op0 = vectorizeTree(E->getOperand(0));
6972 
6973       SmallVector<Value *> OpVecs;
6974       for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) {
6975         Value *OpVec = vectorizeTree(E->getOperand(J));
6976         OpVecs.push_back(OpVec);
6977       }
6978 
6979       Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs);
6980       if (Instruction *I = dyn_cast<Instruction>(V))
6981         V = propagateMetadata(I, E->Scalars);
6982 
6983       ShuffleBuilder.addInversedMask(E->ReorderIndices);
6984       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
6985       V = ShuffleBuilder.finalize(V);
6986 
6987       E->VectorizedValue = V;
6988       ++NumVectorInstructions;
6989 
6990       return V;
6991     }
6992     case Instruction::Call: {
6993       CallInst *CI = cast<CallInst>(VL0);
6994       setInsertPointAfterBundle(E);
6995 
6996       Intrinsic::ID IID  = Intrinsic::not_intrinsic;
6997       if (Function *FI = CI->getCalledFunction())
6998         IID = FI->getIntrinsicID();
6999 
7000       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
7001 
7002       auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
7003       bool UseIntrinsic = ID != Intrinsic::not_intrinsic &&
7004                           VecCallCosts.first <= VecCallCosts.second;
7005 
7006       Value *ScalarArg = nullptr;
7007       std::vector<Value *> OpVecs;
7008       SmallVector<Type *, 2> TysForDecl =
7009           {FixedVectorType::get(CI->getType(), E->Scalars.size())};
7010       for (int j = 0, e = CI->arg_size(); j < e; ++j) {
7011         ValueList OpVL;
7012         // Some intrinsics have scalar arguments. This argument should not be
7013         // vectorized.
7014         if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) {
7015           CallInst *CEI = cast<CallInst>(VL0);
7016           ScalarArg = CEI->getArgOperand(j);
7017           OpVecs.push_back(CEI->getArgOperand(j));
7018           if (hasVectorInstrinsicOverloadedScalarOpd(IID, j))
7019             TysForDecl.push_back(ScalarArg->getType());
7020           continue;
7021         }
7022 
7023         Value *OpVec = vectorizeTree(E->getOperand(j));
7024         LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
7025         OpVecs.push_back(OpVec);
7026       }
7027 
7028       Function *CF;
7029       if (!UseIntrinsic) {
7030         VFShape Shape =
7031             VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>(
7032                                   VecTy->getNumElements())),
7033                          false /*HasGlobalPred*/);
7034         CF = VFDatabase(*CI).getVectorizedFunction(Shape);
7035       } else {
7036         CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl);
7037       }
7038 
7039       SmallVector<OperandBundleDef, 1> OpBundles;
7040       CI->getOperandBundlesAsDefs(OpBundles);
7041       Value *V = Builder.CreateCall(CF, OpVecs, OpBundles);
7042 
7043       // The scalar argument uses an in-tree scalar so we add the new vectorized
7044       // call to ExternalUses list to make sure that an extract will be
7045       // generated in the future.
7046       if (ScalarArg) {
7047         if (TreeEntry *Entry = getTreeEntry(ScalarArg)) {
7048           // Find which lane we need to extract.
7049           unsigned FoundLane = Entry->findLaneForValue(ScalarArg);
7050           ExternalUses.push_back(
7051               ExternalUser(ScalarArg, cast<User>(V), FoundLane));
7052         }
7053       }
7054 
7055       propagateIRFlags(V, E->Scalars, VL0);
7056       ShuffleBuilder.addInversedMask(E->ReorderIndices);
7057       ShuffleBuilder.addMask(E->ReuseShuffleIndices);
7058       V = ShuffleBuilder.finalize(V);
7059 
7060       E->VectorizedValue = V;
7061       ++NumVectorInstructions;
7062       return V;
7063     }
7064     case Instruction::ShuffleVector: {
7065       assert(E->isAltShuffle() &&
7066              ((Instruction::isBinaryOp(E->getOpcode()) &&
7067                Instruction::isBinaryOp(E->getAltOpcode())) ||
7068               (Instruction::isCast(E->getOpcode()) &&
7069                Instruction::isCast(E->getAltOpcode())) ||
7070               (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) &&
7071              "Invalid Shuffle Vector Operand");
7072 
7073       Value *LHS = nullptr, *RHS = nullptr;
7074       if (Instruction::isBinaryOp(E->getOpcode()) || isa<CmpInst>(VL0)) {
7075         setInsertPointAfterBundle(E);
7076         LHS = vectorizeTree(E->getOperand(0));
7077         RHS = vectorizeTree(E->getOperand(1));
7078       } else {
7079         setInsertPointAfterBundle(E);
7080         LHS = vectorizeTree(E->getOperand(0));
7081       }
7082 
7083       if (E->VectorizedValue) {
7084         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
7085         return E->VectorizedValue;
7086       }
7087 
7088       Value *V0, *V1;
7089       if (Instruction::isBinaryOp(E->getOpcode())) {
7090         V0 = Builder.CreateBinOp(
7091             static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS);
7092         V1 = Builder.CreateBinOp(
7093             static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS);
7094       } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) {
7095         V0 = Builder.CreateCmp(CI0->getPredicate(), LHS, RHS);
7096         auto *AltCI = cast<CmpInst>(E->getAltOp());
7097         CmpInst::Predicate AltPred = AltCI->getPredicate();
7098         V1 = Builder.CreateCmp(AltPred, LHS, RHS);
7099       } else {
7100         V0 = Builder.CreateCast(
7101             static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy);
7102         V1 = Builder.CreateCast(
7103             static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy);
7104       }
7105       // Add V0 and V1 to later analysis to try to find and remove matching
7106       // instruction, if any.
7107       for (Value *V : {V0, V1}) {
7108         if (auto *I = dyn_cast<Instruction>(V)) {
7109           GatherShuffleSeq.insert(I);
7110           CSEBlocks.insert(I->getParent());
7111         }
7112       }
7113 
7114       // Create shuffle to take alternate operations from the vector.
7115       // Also, gather up main and alt scalar ops to propagate IR flags to
7116       // each vector operation.
7117       ValueList OpScalars, AltScalars;
7118       SmallVector<int> Mask;
7119       buildShuffleEntryMask(
7120           E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices,
7121           [E](Instruction *I) {
7122             assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode");
7123             return isAlternateInstruction(I, E->getMainOp(), E->getAltOp());
7124           },
7125           Mask, &OpScalars, &AltScalars);
7126 
7127       propagateIRFlags(V0, OpScalars);
7128       propagateIRFlags(V1, AltScalars);
7129 
7130       Value *V = Builder.CreateShuffleVector(V0, V1, Mask);
7131       if (auto *I = dyn_cast<Instruction>(V)) {
7132         V = propagateMetadata(I, E->Scalars);
7133         GatherShuffleSeq.insert(I);
7134         CSEBlocks.insert(I->getParent());
7135       }
7136       V = ShuffleBuilder.finalize(V);
7137 
7138       E->VectorizedValue = V;
7139       ++NumVectorInstructions;
7140 
7141       return V;
7142     }
7143     default:
7144     llvm_unreachable("unknown inst");
7145   }
7146   return nullptr;
7147 }
7148 
7149 Value *BoUpSLP::vectorizeTree() {
7150   ExtraValueToDebugLocsMap ExternallyUsedValues;
7151   return vectorizeTree(ExternallyUsedValues);
7152 }
7153 
7154 Value *
7155 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) {
7156   // All blocks must be scheduled before any instructions are inserted.
7157   for (auto &BSIter : BlocksSchedules) {
7158     scheduleBlock(BSIter.second.get());
7159   }
7160 
7161   Builder.SetInsertPoint(&F->getEntryBlock().front());
7162   auto *VectorRoot = vectorizeTree(VectorizableTree[0].get());
7163 
7164   // If the vectorized tree can be rewritten in a smaller type, we truncate the
7165   // vectorized root. InstCombine will then rewrite the entire expression. We
7166   // sign extend the extracted values below.
7167   auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
7168   if (MinBWs.count(ScalarRoot)) {
7169     if (auto *I = dyn_cast<Instruction>(VectorRoot)) {
7170       // If current instr is a phi and not the last phi, insert it after the
7171       // last phi node.
7172       if (isa<PHINode>(I))
7173         Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt());
7174       else
7175         Builder.SetInsertPoint(&*++BasicBlock::iterator(I));
7176     }
7177     auto BundleWidth = VectorizableTree[0]->Scalars.size();
7178     auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
7179     auto *VecTy = FixedVectorType::get(MinTy, BundleWidth);
7180     auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy);
7181     VectorizableTree[0]->VectorizedValue = Trunc;
7182   }
7183 
7184   LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size()
7185                     << " values .\n");
7186 
7187   // Extract all of the elements with the external uses.
7188   for (const auto &ExternalUse : ExternalUses) {
7189     Value *Scalar = ExternalUse.Scalar;
7190     llvm::User *User = ExternalUse.User;
7191 
7192     // Skip users that we already RAUW. This happens when one instruction
7193     // has multiple uses of the same value.
7194     if (User && !is_contained(Scalar->users(), User))
7195       continue;
7196     TreeEntry *E = getTreeEntry(Scalar);
7197     assert(E && "Invalid scalar");
7198     assert(E->State != TreeEntry::NeedToGather &&
7199            "Extracting from a gather list");
7200 
7201     Value *Vec = E->VectorizedValue;
7202     assert(Vec && "Can't find vectorizable value");
7203 
7204     Value *Lane = Builder.getInt32(ExternalUse.Lane);
7205     auto ExtractAndExtendIfNeeded = [&](Value *Vec) {
7206       if (Scalar->getType() != Vec->getType()) {
7207         Value *Ex;
7208         // "Reuse" the existing extract to improve final codegen.
7209         if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) {
7210           Ex = Builder.CreateExtractElement(ES->getOperand(0),
7211                                             ES->getOperand(1));
7212         } else {
7213           Ex = Builder.CreateExtractElement(Vec, Lane);
7214         }
7215         // If necessary, sign-extend or zero-extend ScalarRoot
7216         // to the larger type.
7217         if (!MinBWs.count(ScalarRoot))
7218           return Ex;
7219         if (MinBWs[ScalarRoot].second)
7220           return Builder.CreateSExt(Ex, Scalar->getType());
7221         return Builder.CreateZExt(Ex, Scalar->getType());
7222       }
7223       assert(isa<FixedVectorType>(Scalar->getType()) &&
7224              isa<InsertElementInst>(Scalar) &&
7225              "In-tree scalar of vector type is not insertelement?");
7226       return Vec;
7227     };
7228     // If User == nullptr, the Scalar is used as extra arg. Generate
7229     // ExtractElement instruction and update the record for this scalar in
7230     // ExternallyUsedValues.
7231     if (!User) {
7232       assert(ExternallyUsedValues.count(Scalar) &&
7233              "Scalar with nullptr as an external user must be registered in "
7234              "ExternallyUsedValues map");
7235       if (auto *VecI = dyn_cast<Instruction>(Vec)) {
7236         Builder.SetInsertPoint(VecI->getParent(),
7237                                std::next(VecI->getIterator()));
7238       } else {
7239         Builder.SetInsertPoint(&F->getEntryBlock().front());
7240       }
7241       Value *NewInst = ExtractAndExtendIfNeeded(Vec);
7242       CSEBlocks.insert(cast<Instruction>(Scalar)->getParent());
7243       auto &NewInstLocs = ExternallyUsedValues[NewInst];
7244       auto It = ExternallyUsedValues.find(Scalar);
7245       assert(It != ExternallyUsedValues.end() &&
7246              "Externally used scalar is not found in ExternallyUsedValues");
7247       NewInstLocs.append(It->second);
7248       ExternallyUsedValues.erase(Scalar);
7249       // Required to update internally referenced instructions.
7250       Scalar->replaceAllUsesWith(NewInst);
7251       continue;
7252     }
7253 
7254     // Generate extracts for out-of-tree users.
7255     // Find the insertion point for the extractelement lane.
7256     if (auto *VecI = dyn_cast<Instruction>(Vec)) {
7257       if (PHINode *PH = dyn_cast<PHINode>(User)) {
7258         for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
7259           if (PH->getIncomingValue(i) == Scalar) {
7260             Instruction *IncomingTerminator =
7261                 PH->getIncomingBlock(i)->getTerminator();
7262             if (isa<CatchSwitchInst>(IncomingTerminator)) {
7263               Builder.SetInsertPoint(VecI->getParent(),
7264                                      std::next(VecI->getIterator()));
7265             } else {
7266               Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
7267             }
7268             Value *NewInst = ExtractAndExtendIfNeeded(Vec);
7269             CSEBlocks.insert(PH->getIncomingBlock(i));
7270             PH->setOperand(i, NewInst);
7271           }
7272         }
7273       } else {
7274         Builder.SetInsertPoint(cast<Instruction>(User));
7275         Value *NewInst = ExtractAndExtendIfNeeded(Vec);
7276         CSEBlocks.insert(cast<Instruction>(User)->getParent());
7277         User->replaceUsesOfWith(Scalar, NewInst);
7278       }
7279     } else {
7280       Builder.SetInsertPoint(&F->getEntryBlock().front());
7281       Value *NewInst = ExtractAndExtendIfNeeded(Vec);
7282       CSEBlocks.insert(&F->getEntryBlock());
7283       User->replaceUsesOfWith(Scalar, NewInst);
7284     }
7285 
7286     LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
7287   }
7288 
7289   // For each vectorized value:
7290   for (auto &TEPtr : VectorizableTree) {
7291     TreeEntry *Entry = TEPtr.get();
7292 
7293     // No need to handle users of gathered values.
7294     if (Entry->State == TreeEntry::NeedToGather)
7295       continue;
7296 
7297     assert(Entry->VectorizedValue && "Can't find vectorizable value");
7298 
7299     // For each lane:
7300     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
7301       Value *Scalar = Entry->Scalars[Lane];
7302 
7303 #ifndef NDEBUG
7304       Type *Ty = Scalar->getType();
7305       if (!Ty->isVoidTy()) {
7306         for (User *U : Scalar->users()) {
7307           LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
7308 
7309           // It is legal to delete users in the ignorelist.
7310           assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) ||
7311                   (isa_and_nonnull<Instruction>(U) &&
7312                    isDeleted(cast<Instruction>(U)))) &&
7313                  "Deleting out-of-tree value");
7314         }
7315       }
7316 #endif
7317       LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
7318       eraseInstruction(cast<Instruction>(Scalar));
7319     }
7320   }
7321 
7322   Builder.ClearInsertionPoint();
7323   InstrElementSize.clear();
7324 
7325   return VectorizableTree[0]->VectorizedValue;
7326 }
7327 
7328 void BoUpSLP::optimizeGatherSequence() {
7329   LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size()
7330                     << " gather sequences instructions.\n");
7331   // LICM InsertElementInst sequences.
7332   for (Instruction *I : GatherShuffleSeq) {
7333     if (isDeleted(I))
7334       continue;
7335 
7336     // Check if this block is inside a loop.
7337     Loop *L = LI->getLoopFor(I->getParent());
7338     if (!L)
7339       continue;
7340 
7341     // Check if it has a preheader.
7342     BasicBlock *PreHeader = L->getLoopPreheader();
7343     if (!PreHeader)
7344       continue;
7345 
7346     // If the vector or the element that we insert into it are
7347     // instructions that are defined in this basic block then we can't
7348     // hoist this instruction.
7349     if (any_of(I->operands(), [L](Value *V) {
7350           auto *OpI = dyn_cast<Instruction>(V);
7351           return OpI && L->contains(OpI);
7352         }))
7353       continue;
7354 
7355     // We can hoist this instruction. Move it to the pre-header.
7356     I->moveBefore(PreHeader->getTerminator());
7357   }
7358 
7359   // Make a list of all reachable blocks in our CSE queue.
7360   SmallVector<const DomTreeNode *, 8> CSEWorkList;
7361   CSEWorkList.reserve(CSEBlocks.size());
7362   for (BasicBlock *BB : CSEBlocks)
7363     if (DomTreeNode *N = DT->getNode(BB)) {
7364       assert(DT->isReachableFromEntry(N));
7365       CSEWorkList.push_back(N);
7366     }
7367 
7368   // Sort blocks by domination. This ensures we visit a block after all blocks
7369   // dominating it are visited.
7370   llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) {
7371     assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) &&
7372            "Different nodes should have different DFS numbers");
7373     return A->getDFSNumIn() < B->getDFSNumIn();
7374   });
7375 
7376   // Less defined shuffles can be replaced by the more defined copies.
7377   // Between two shuffles one is less defined if it has the same vector operands
7378   // and its mask indeces are the same as in the first one or undefs. E.g.
7379   // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0,
7380   // poison, <0, 0, 0, 0>.
7381   auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2,
7382                                            SmallVectorImpl<int> &NewMask) {
7383     if (I1->getType() != I2->getType())
7384       return false;
7385     auto *SI1 = dyn_cast<ShuffleVectorInst>(I1);
7386     auto *SI2 = dyn_cast<ShuffleVectorInst>(I2);
7387     if (!SI1 || !SI2)
7388       return I1->isIdenticalTo(I2);
7389     if (SI1->isIdenticalTo(SI2))
7390       return true;
7391     for (int I = 0, E = SI1->getNumOperands(); I < E; ++I)
7392       if (SI1->getOperand(I) != SI2->getOperand(I))
7393         return false;
7394     // Check if the second instruction is more defined than the first one.
7395     NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end());
7396     ArrayRef<int> SM1 = SI1->getShuffleMask();
7397     // Count trailing undefs in the mask to check the final number of used
7398     // registers.
7399     unsigned LastUndefsCnt = 0;
7400     for (int I = 0, E = NewMask.size(); I < E; ++I) {
7401       if (SM1[I] == UndefMaskElem)
7402         ++LastUndefsCnt;
7403       else
7404         LastUndefsCnt = 0;
7405       if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem &&
7406           NewMask[I] != SM1[I])
7407         return false;
7408       if (NewMask[I] == UndefMaskElem)
7409         NewMask[I] = SM1[I];
7410     }
7411     // Check if the last undefs actually change the final number of used vector
7412     // registers.
7413     return SM1.size() - LastUndefsCnt > 1 &&
7414            TTI->getNumberOfParts(SI1->getType()) ==
7415                TTI->getNumberOfParts(
7416                    FixedVectorType::get(SI1->getType()->getElementType(),
7417                                         SM1.size() - LastUndefsCnt));
7418   };
7419   // Perform O(N^2) search over the gather/shuffle sequences and merge identical
7420   // instructions. TODO: We can further optimize this scan if we split the
7421   // instructions into different buckets based on the insert lane.
7422   SmallVector<Instruction *, 16> Visited;
7423   for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
7424     assert(*I &&
7425            (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
7426            "Worklist not sorted properly!");
7427     BasicBlock *BB = (*I)->getBlock();
7428     // For all instructions in blocks containing gather sequences:
7429     for (Instruction &In : llvm::make_early_inc_range(*BB)) {
7430       if (isDeleted(&In))
7431         continue;
7432       if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) &&
7433           !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In))
7434         continue;
7435 
7436       // Check if we can replace this instruction with any of the
7437       // visited instructions.
7438       bool Replaced = false;
7439       for (Instruction *&V : Visited) {
7440         SmallVector<int> NewMask;
7441         if (IsIdenticalOrLessDefined(&In, V, NewMask) &&
7442             DT->dominates(V->getParent(), In.getParent())) {
7443           In.replaceAllUsesWith(V);
7444           eraseInstruction(&In);
7445           if (auto *SI = dyn_cast<ShuffleVectorInst>(V))
7446             if (!NewMask.empty())
7447               SI->setShuffleMask(NewMask);
7448           Replaced = true;
7449           break;
7450         }
7451         if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) &&
7452             GatherShuffleSeq.contains(V) &&
7453             IsIdenticalOrLessDefined(V, &In, NewMask) &&
7454             DT->dominates(In.getParent(), V->getParent())) {
7455           In.moveAfter(V);
7456           V->replaceAllUsesWith(&In);
7457           eraseInstruction(V);
7458           if (auto *SI = dyn_cast<ShuffleVectorInst>(&In))
7459             if (!NewMask.empty())
7460               SI->setShuffleMask(NewMask);
7461           V = &In;
7462           Replaced = true;
7463           break;
7464         }
7465       }
7466       if (!Replaced) {
7467         assert(!is_contained(Visited, &In));
7468         Visited.push_back(&In);
7469       }
7470     }
7471   }
7472   CSEBlocks.clear();
7473   GatherShuffleSeq.clear();
7474 }
7475 
7476 BoUpSLP::ScheduleData *
7477 BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) {
7478   ScheduleData *Bundle = nullptr;
7479   ScheduleData *PrevInBundle = nullptr;
7480   for (Value *V : VL) {
7481     ScheduleData *BundleMember = getScheduleData(V);
7482     assert(BundleMember &&
7483            "no ScheduleData for bundle member "
7484            "(maybe not in same basic block)");
7485     assert(BundleMember->isSchedulingEntity() &&
7486            "bundle member already part of other bundle");
7487     if (PrevInBundle) {
7488       PrevInBundle->NextInBundle = BundleMember;
7489     } else {
7490       Bundle = BundleMember;
7491     }
7492 
7493     // Group the instructions to a bundle.
7494     BundleMember->FirstInBundle = Bundle;
7495     PrevInBundle = BundleMember;
7496   }
7497   assert(Bundle && "Failed to find schedule bundle");
7498   return Bundle;
7499 }
7500 
7501 // Groups the instructions to a bundle (which is then a single scheduling entity)
7502 // and schedules instructions until the bundle gets ready.
7503 Optional<BoUpSLP::ScheduleData *>
7504 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
7505                                             const InstructionsState &S) {
7506   // No need to schedule PHIs, insertelement, extractelement and extractvalue
7507   // instructions.
7508   if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue))
7509     return nullptr;
7510 
7511   // Initialize the instruction bundle.
7512   Instruction *OldScheduleEnd = ScheduleEnd;
7513   LLVM_DEBUG(dbgs() << "SLP:  bundle: " << *S.OpValue << "\n");
7514 
7515   auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule,
7516                                                          ScheduleData *Bundle) {
7517     // The scheduling region got new instructions at the lower end (or it is a
7518     // new region for the first bundle). This makes it necessary to
7519     // recalculate all dependencies.
7520     // It is seldom that this needs to be done a second time after adding the
7521     // initial bundle to the region.
7522     if (ScheduleEnd != OldScheduleEnd) {
7523       for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode())
7524         doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); });
7525       ReSchedule = true;
7526     }
7527     if (Bundle) {
7528       LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle
7529                         << " in block " << BB->getName() << "\n");
7530       calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP);
7531     }
7532 
7533     if (ReSchedule) {
7534       resetSchedule();
7535       initialFillReadyList(ReadyInsts);
7536     }
7537 
7538     // Now try to schedule the new bundle or (if no bundle) just calculate
7539     // dependencies. As soon as the bundle is "ready" it means that there are no
7540     // cyclic dependencies and we can schedule it. Note that's important that we
7541     // don't "schedule" the bundle yet (see cancelScheduling).
7542     while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) &&
7543            !ReadyInsts.empty()) {
7544       ScheduleData *Picked = ReadyInsts.pop_back_val();
7545       assert(Picked->isSchedulingEntity() && Picked->isReady() &&
7546              "must be ready to schedule");
7547       schedule(Picked, ReadyInsts);
7548     }
7549   };
7550 
7551   // Make sure that the scheduling region contains all
7552   // instructions of the bundle.
7553   for (Value *V : VL) {
7554     if (!extendSchedulingRegion(V, S)) {
7555       // If the scheduling region got new instructions at the lower end (or it
7556       // is a new region for the first bundle). This makes it necessary to
7557       // recalculate all dependencies.
7558       // Otherwise the compiler may crash trying to incorrectly calculate
7559       // dependencies and emit instruction in the wrong order at the actual
7560       // scheduling.
7561       TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr);
7562       return None;
7563     }
7564   }
7565 
7566   bool ReSchedule = false;
7567   for (Value *V : VL) {
7568     ScheduleData *BundleMember = getScheduleData(V);
7569     assert(BundleMember &&
7570            "no ScheduleData for bundle member (maybe not in same basic block)");
7571 
7572     // Make sure we don't leave the pieces of the bundle in the ready list when
7573     // whole bundle might not be ready.
7574     ReadyInsts.remove(BundleMember);
7575 
7576     if (!BundleMember->IsScheduled)
7577       continue;
7578     // A bundle member was scheduled as single instruction before and now
7579     // needs to be scheduled as part of the bundle. We just get rid of the
7580     // existing schedule.
7581     LLVM_DEBUG(dbgs() << "SLP:  reset schedule because " << *BundleMember
7582                       << " was already scheduled\n");
7583     ReSchedule = true;
7584   }
7585 
7586   auto *Bundle = buildBundle(VL);
7587   TryScheduleBundleImpl(ReSchedule, Bundle);
7588   if (!Bundle->isReady()) {
7589     cancelScheduling(VL, S.OpValue);
7590     return None;
7591   }
7592   return Bundle;
7593 }
7594 
7595 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL,
7596                                                 Value *OpValue) {
7597   if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue))
7598     return;
7599 
7600   ScheduleData *Bundle = getScheduleData(OpValue);
7601   LLVM_DEBUG(dbgs() << "SLP:  cancel scheduling of " << *Bundle << "\n");
7602   assert(!Bundle->IsScheduled &&
7603          "Can't cancel bundle which is already scheduled");
7604   assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&
7605          "tried to unbundle something which is not a bundle");
7606 
7607   // Remove the bundle from the ready list.
7608   if (Bundle->isReady())
7609     ReadyInsts.remove(Bundle);
7610 
7611   // Un-bundle: make single instructions out of the bundle.
7612   ScheduleData *BundleMember = Bundle;
7613   while (BundleMember) {
7614     assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
7615     BundleMember->FirstInBundle = BundleMember;
7616     ScheduleData *Next = BundleMember->NextInBundle;
7617     BundleMember->NextInBundle = nullptr;
7618     if (BundleMember->unscheduledDepsInBundle() == 0) {
7619       ReadyInsts.insert(BundleMember);
7620     }
7621     BundleMember = Next;
7622   }
7623 }
7624 
7625 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() {
7626   // Allocate a new ScheduleData for the instruction.
7627   if (ChunkPos >= ChunkSize) {
7628     ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize));
7629     ChunkPos = 0;
7630   }
7631   return &(ScheduleDataChunks.back()[ChunkPos++]);
7632 }
7633 
7634 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V,
7635                                                       const InstructionsState &S) {
7636   if (getScheduleData(V, isOneOf(S, V)))
7637     return true;
7638   Instruction *I = dyn_cast<Instruction>(V);
7639   assert(I && "bundle member must be an instruction");
7640   assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) &&
7641          "phi nodes/insertelements/extractelements/extractvalues don't need to "
7642          "be scheduled");
7643   auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool {
7644     ScheduleData *ISD = getScheduleData(I);
7645     if (!ISD)
7646       return false;
7647     assert(isInSchedulingRegion(ISD) &&
7648            "ScheduleData not in scheduling region");
7649     ScheduleData *SD = allocateScheduleDataChunks();
7650     SD->Inst = I;
7651     SD->init(SchedulingRegionID, S.OpValue);
7652     ExtraScheduleDataMap[I][S.OpValue] = SD;
7653     return true;
7654   };
7655   if (CheckSheduleForI(I))
7656     return true;
7657   if (!ScheduleStart) {
7658     // It's the first instruction in the new region.
7659     initScheduleData(I, I->getNextNode(), nullptr, nullptr);
7660     ScheduleStart = I;
7661     ScheduleEnd = I->getNextNode();
7662     if (isOneOf(S, I) != I)
7663       CheckSheduleForI(I);
7664     assert(ScheduleEnd && "tried to vectorize a terminator?");
7665     LLVM_DEBUG(dbgs() << "SLP:  initialize schedule region to " << *I << "\n");
7666     return true;
7667   }
7668   // Search up and down at the same time, because we don't know if the new
7669   // instruction is above or below the existing scheduling region.
7670   BasicBlock::reverse_iterator UpIter =
7671       ++ScheduleStart->getIterator().getReverse();
7672   BasicBlock::reverse_iterator UpperEnd = BB->rend();
7673   BasicBlock::iterator DownIter = ScheduleEnd->getIterator();
7674   BasicBlock::iterator LowerEnd = BB->end();
7675   while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I &&
7676          &*DownIter != I) {
7677     if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
7678       LLVM_DEBUG(dbgs() << "SLP:  exceeded schedule region size limit\n");
7679       return false;
7680     }
7681 
7682     ++UpIter;
7683     ++DownIter;
7684   }
7685   if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) {
7686     assert(I->getParent() == ScheduleStart->getParent() &&
7687            "Instruction is in wrong basic block.");
7688     initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
7689     ScheduleStart = I;
7690     if (isOneOf(S, I) != I)
7691       CheckSheduleForI(I);
7692     LLVM_DEBUG(dbgs() << "SLP:  extend schedule region start to " << *I
7693                       << "\n");
7694     return true;
7695   }
7696   assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) &&
7697          "Expected to reach top of the basic block or instruction down the "
7698          "lower end.");
7699   assert(I->getParent() == ScheduleEnd->getParent() &&
7700          "Instruction is in wrong basic block.");
7701   initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
7702                    nullptr);
7703   ScheduleEnd = I->getNextNode();
7704   if (isOneOf(S, I) != I)
7705     CheckSheduleForI(I);
7706   assert(ScheduleEnd && "tried to vectorize a terminator?");
7707   LLVM_DEBUG(dbgs() << "SLP:  extend schedule region end to " << *I << "\n");
7708   return true;
7709 }
7710 
7711 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
7712                                                 Instruction *ToI,
7713                                                 ScheduleData *PrevLoadStore,
7714                                                 ScheduleData *NextLoadStore) {
7715   ScheduleData *CurrentLoadStore = PrevLoadStore;
7716   for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
7717     ScheduleData *SD = ScheduleDataMap[I];
7718     if (!SD) {
7719       SD = allocateScheduleDataChunks();
7720       ScheduleDataMap[I] = SD;
7721       SD->Inst = I;
7722     }
7723     assert(!isInSchedulingRegion(SD) &&
7724            "new ScheduleData already in scheduling region");
7725     SD->init(SchedulingRegionID, I);
7726 
7727     if (I->mayReadOrWriteMemory() &&
7728         (!isa<IntrinsicInst>(I) ||
7729          (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect &&
7730           cast<IntrinsicInst>(I)->getIntrinsicID() !=
7731               Intrinsic::pseudoprobe))) {
7732       // Update the linked list of memory accessing instructions.
7733       if (CurrentLoadStore) {
7734         CurrentLoadStore->NextLoadStore = SD;
7735       } else {
7736         FirstLoadStoreInRegion = SD;
7737       }
7738       CurrentLoadStore = SD;
7739     }
7740   }
7741   if (NextLoadStore) {
7742     if (CurrentLoadStore)
7743       CurrentLoadStore->NextLoadStore = NextLoadStore;
7744   } else {
7745     LastLoadStoreInRegion = CurrentLoadStore;
7746   }
7747 }
7748 
7749 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
7750                                                      bool InsertInReadyList,
7751                                                      BoUpSLP *SLP) {
7752   assert(SD->isSchedulingEntity());
7753 
7754   SmallVector<ScheduleData *, 10> WorkList;
7755   WorkList.push_back(SD);
7756 
7757   while (!WorkList.empty()) {
7758     ScheduleData *SD = WorkList.pop_back_val();
7759     for (ScheduleData *BundleMember = SD; BundleMember;
7760          BundleMember = BundleMember->NextInBundle) {
7761       assert(isInSchedulingRegion(BundleMember));
7762       if (BundleMember->hasValidDependencies())
7763         continue;
7764 
7765       LLVM_DEBUG(dbgs() << "SLP:       update deps of " << *BundleMember
7766                  << "\n");
7767       BundleMember->Dependencies = 0;
7768       BundleMember->resetUnscheduledDeps();
7769 
7770       // Handle def-use chain dependencies.
7771       if (BundleMember->OpValue != BundleMember->Inst) {
7772         if (ScheduleData *UseSD = getScheduleData(BundleMember->Inst)) {
7773           BundleMember->Dependencies++;
7774           ScheduleData *DestBundle = UseSD->FirstInBundle;
7775           if (!DestBundle->IsScheduled)
7776             BundleMember->incrementUnscheduledDeps(1);
7777           if (!DestBundle->hasValidDependencies())
7778             WorkList.push_back(DestBundle);
7779         }
7780       } else {
7781         for (User *U : BundleMember->Inst->users()) {
7782           if (ScheduleData *UseSD = getScheduleData(cast<Instruction>(U))) {
7783             BundleMember->Dependencies++;
7784             ScheduleData *DestBundle = UseSD->FirstInBundle;
7785             if (!DestBundle->IsScheduled)
7786               BundleMember->incrementUnscheduledDeps(1);
7787             if (!DestBundle->hasValidDependencies())
7788               WorkList.push_back(DestBundle);
7789           }
7790         }
7791       }
7792 
7793       // Handle the memory dependencies (if any).
7794       ScheduleData *DepDest = BundleMember->NextLoadStore;
7795       if (!DepDest)
7796         continue;
7797       Instruction *SrcInst = BundleMember->Inst;
7798       assert(SrcInst->mayReadOrWriteMemory() &&
7799              "NextLoadStore list for non memory effecting bundle?");
7800       MemoryLocation SrcLoc = getLocation(SrcInst);
7801       bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
7802       unsigned numAliased = 0;
7803       unsigned DistToSrc = 1;
7804 
7805       for ( ; DepDest; DepDest = DepDest->NextLoadStore) {
7806         assert(isInSchedulingRegion(DepDest));
7807 
7808         // We have two limits to reduce the complexity:
7809         // 1) AliasedCheckLimit: It's a small limit to reduce calls to
7810         //    SLP->isAliased (which is the expensive part in this loop).
7811         // 2) MaxMemDepDistance: It's for very large blocks and it aborts
7812         //    the whole loop (even if the loop is fast, it's quadratic).
7813         //    It's important for the loop break condition (see below) to
7814         //    check this limit even between two read-only instructions.
7815         if (DistToSrc >= MaxMemDepDistance ||
7816             ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
7817              (numAliased >= AliasedCheckLimit ||
7818               SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
7819 
7820           // We increment the counter only if the locations are aliased
7821           // (instead of counting all alias checks). This gives a better
7822           // balance between reduced runtime and accurate dependencies.
7823           numAliased++;
7824 
7825           DepDest->MemoryDependencies.push_back(BundleMember);
7826           BundleMember->Dependencies++;
7827           ScheduleData *DestBundle = DepDest->FirstInBundle;
7828           if (!DestBundle->IsScheduled) {
7829             BundleMember->incrementUnscheduledDeps(1);
7830           }
7831           if (!DestBundle->hasValidDependencies()) {
7832             WorkList.push_back(DestBundle);
7833           }
7834         }
7835 
7836         // Example, explaining the loop break condition: Let's assume our
7837         // starting instruction is i0 and MaxMemDepDistance = 3.
7838         //
7839         //                      +--------v--v--v
7840         //             i0,i1,i2,i3,i4,i5,i6,i7,i8
7841         //             +--------^--^--^
7842         //
7843         // MaxMemDepDistance let us stop alias-checking at i3 and we add
7844         // dependencies from i0 to i3,i4,.. (even if they are not aliased).
7845         // Previously we already added dependencies from i3 to i6,i7,i8
7846         // (because of MaxMemDepDistance). As we added a dependency from
7847         // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
7848         // and we can abort this loop at i6.
7849         if (DistToSrc >= 2 * MaxMemDepDistance)
7850           break;
7851         DistToSrc++;
7852       }
7853     }
7854     if (InsertInReadyList && SD->isReady()) {
7855       ReadyInsts.insert(SD);
7856       LLVM_DEBUG(dbgs() << "SLP:     gets ready on update: " << *SD->Inst
7857                         << "\n");
7858     }
7859   }
7860 }
7861 
7862 void BoUpSLP::BlockScheduling::resetSchedule() {
7863   assert(ScheduleStart &&
7864          "tried to reset schedule on block which has not been scheduled");
7865   for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
7866     doForAllOpcodes(I, [&](ScheduleData *SD) {
7867       assert(isInSchedulingRegion(SD) &&
7868              "ScheduleData not in scheduling region");
7869       SD->IsScheduled = false;
7870       SD->resetUnscheduledDeps();
7871     });
7872   }
7873   ReadyInsts.clear();
7874 }
7875 
7876 void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
7877   if (!BS->ScheduleStart)
7878     return;
7879 
7880   LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n");
7881 
7882   // A key point - if we got here, pre-scheduling was able to find a valid
7883   // scheduling of the sub-graph of the scheduling window which consists
7884   // of all vector bundles and their transitive users.  As such, we do not
7885   // need to reschedule anything *outside of* that subgraph.
7886 
7887   BS->resetSchedule();
7888 
7889   // For the real scheduling we use a more sophisticated ready-list: it is
7890   // sorted by the original instruction location. This lets the final schedule
7891   // be as  close as possible to the original instruction order.
7892   DenseMap<ScheduleData *, unsigned> OriginalOrder;
7893   auto ScheduleDataCompare = [&](ScheduleData *SD1, ScheduleData *SD2) {
7894     return OriginalOrder[SD2] < OriginalOrder[SD1];
7895   };
7896   std::set<ScheduleData *, decltype(ScheduleDataCompare)>
7897     ReadyInsts(ScheduleDataCompare);
7898 
7899   // Ensure that all dependency data is updated (for nodes in the sub-graph)
7900   // and fill the ready-list with initial instructions.
7901   int Idx = 0;
7902   for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
7903        I = I->getNextNode()) {
7904     BS->doForAllOpcodes(I, [&](ScheduleData *SD) {
7905       assert((isVectorLikeInstWithConstOps(SD->Inst) ||
7906               SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr)) &&
7907              "scheduler and vectorizer bundle mismatch");
7908       OriginalOrder[SD->FirstInBundle] = Idx++;
7909 
7910       if (SD->isSchedulingEntity() && SD->isPartOfBundle())
7911         BS->calculateDependencies(SD, false, this);
7912     });
7913   }
7914   BS->initialFillReadyList(ReadyInsts);
7915 
7916   Instruction *LastScheduledInst = BS->ScheduleEnd;
7917 
7918   // Do the "real" scheduling.
7919   while (!ReadyInsts.empty()) {
7920     ScheduleData *picked = *ReadyInsts.begin();
7921     ReadyInsts.erase(ReadyInsts.begin());
7922 
7923     // Move the scheduled instruction(s) to their dedicated places, if not
7924     // there yet.
7925     for (ScheduleData *BundleMember = picked; BundleMember;
7926          BundleMember = BundleMember->NextInBundle) {
7927       Instruction *pickedInst = BundleMember->Inst;
7928       if (pickedInst->getNextNode() != LastScheduledInst)
7929         pickedInst->moveBefore(LastScheduledInst);
7930       LastScheduledInst = pickedInst;
7931     }
7932 
7933     BS->schedule(picked, ReadyInsts);
7934   }
7935 
7936   // Check that we didn't break any of our invariants.
7937 #ifdef EXPENSIVE_CHECKS
7938   BS->verify();
7939 #endif
7940 
7941 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS)
7942   // Check that all schedulable entities got scheduled
7943   for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; I = I->getNextNode()) {
7944     BS->doForAllOpcodes(I, [&](ScheduleData *SD) {
7945       if (SD->isSchedulingEntity() && SD->hasValidDependencies()) {
7946         assert(SD->IsScheduled && "must be scheduled at this point");
7947       }
7948     });
7949   }
7950 #endif
7951 
7952   // Avoid duplicate scheduling of the block.
7953   BS->ScheduleStart = nullptr;
7954 }
7955 
7956 unsigned BoUpSLP::getVectorElementSize(Value *V) {
7957   // If V is a store, just return the width of the stored value (or value
7958   // truncated just before storing) without traversing the expression tree.
7959   // This is the common case.
7960   if (auto *Store = dyn_cast<StoreInst>(V)) {
7961     if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand()))
7962       return DL->getTypeSizeInBits(Trunc->getSrcTy());
7963     return DL->getTypeSizeInBits(Store->getValueOperand()->getType());
7964   }
7965 
7966   if (auto *IEI = dyn_cast<InsertElementInst>(V))
7967     return getVectorElementSize(IEI->getOperand(1));
7968 
7969   auto E = InstrElementSize.find(V);
7970   if (E != InstrElementSize.end())
7971     return E->second;
7972 
7973   // If V is not a store, we can traverse the expression tree to find loads
7974   // that feed it. The type of the loaded value may indicate a more suitable
7975   // width than V's type. We want to base the vector element size on the width
7976   // of memory operations where possible.
7977   SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist;
7978   SmallPtrSet<Instruction *, 16> Visited;
7979   if (auto *I = dyn_cast<Instruction>(V)) {
7980     Worklist.emplace_back(I, I->getParent());
7981     Visited.insert(I);
7982   }
7983 
7984   // Traverse the expression tree in bottom-up order looking for loads. If we
7985   // encounter an instruction we don't yet handle, we give up.
7986   auto Width = 0u;
7987   while (!Worklist.empty()) {
7988     Instruction *I;
7989     BasicBlock *Parent;
7990     std::tie(I, Parent) = Worklist.pop_back_val();
7991 
7992     // We should only be looking at scalar instructions here. If the current
7993     // instruction has a vector type, skip.
7994     auto *Ty = I->getType();
7995     if (isa<VectorType>(Ty))
7996       continue;
7997 
7998     // If the current instruction is a load, update MaxWidth to reflect the
7999     // width of the loaded value.
8000     if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) ||
8001         isa<ExtractValueInst>(I))
8002       Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty));
8003 
8004     // Otherwise, we need to visit the operands of the instruction. We only
8005     // handle the interesting cases from buildTree here. If an operand is an
8006     // instruction we haven't yet visited and from the same basic block as the
8007     // user or the use is a PHI node, we add it to the worklist.
8008     else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
8009              isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) ||
8010              isa<UnaryOperator>(I)) {
8011       for (Use &U : I->operands())
8012         if (auto *J = dyn_cast<Instruction>(U.get()))
8013           if (Visited.insert(J).second &&
8014               (isa<PHINode>(I) || J->getParent() == Parent))
8015             Worklist.emplace_back(J, J->getParent());
8016     } else {
8017       break;
8018     }
8019   }
8020 
8021   // If we didn't encounter a memory access in the expression tree, or if we
8022   // gave up for some reason, just return the width of V. Otherwise, return the
8023   // maximum width we found.
8024   if (!Width) {
8025     if (auto *CI = dyn_cast<CmpInst>(V))
8026       V = CI->getOperand(0);
8027     Width = DL->getTypeSizeInBits(V->getType());
8028   }
8029 
8030   for (Instruction *I : Visited)
8031     InstrElementSize[I] = Width;
8032 
8033   return Width;
8034 }
8035 
8036 // Determine if a value V in a vectorizable expression Expr can be demoted to a
8037 // smaller type with a truncation. We collect the values that will be demoted
8038 // in ToDemote and additional roots that require investigating in Roots.
8039 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr,
8040                                   SmallVectorImpl<Value *> &ToDemote,
8041                                   SmallVectorImpl<Value *> &Roots) {
8042   // We can always demote constants.
8043   if (isa<Constant>(V)) {
8044     ToDemote.push_back(V);
8045     return true;
8046   }
8047 
8048   // If the value is not an instruction in the expression with only one use, it
8049   // cannot be demoted.
8050   auto *I = dyn_cast<Instruction>(V);
8051   if (!I || !I->hasOneUse() || !Expr.count(I))
8052     return false;
8053 
8054   switch (I->getOpcode()) {
8055 
8056   // We can always demote truncations and extensions. Since truncations can
8057   // seed additional demotion, we save the truncated value.
8058   case Instruction::Trunc:
8059     Roots.push_back(I->getOperand(0));
8060     break;
8061   case Instruction::ZExt:
8062   case Instruction::SExt:
8063     if (isa<ExtractElementInst>(I->getOperand(0)) ||
8064         isa<InsertElementInst>(I->getOperand(0)))
8065       return false;
8066     break;
8067 
8068   // We can demote certain binary operations if we can demote both of their
8069   // operands.
8070   case Instruction::Add:
8071   case Instruction::Sub:
8072   case Instruction::Mul:
8073   case Instruction::And:
8074   case Instruction::Or:
8075   case Instruction::Xor:
8076     if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) ||
8077         !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots))
8078       return false;
8079     break;
8080 
8081   // We can demote selects if we can demote their true and false values.
8082   case Instruction::Select: {
8083     SelectInst *SI = cast<SelectInst>(I);
8084     if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) ||
8085         !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots))
8086       return false;
8087     break;
8088   }
8089 
8090   // We can demote phis if we can demote all their incoming operands. Note that
8091   // we don't need to worry about cycles since we ensure single use above.
8092   case Instruction::PHI: {
8093     PHINode *PN = cast<PHINode>(I);
8094     for (Value *IncValue : PN->incoming_values())
8095       if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots))
8096         return false;
8097     break;
8098   }
8099 
8100   // Otherwise, conservatively give up.
8101   default:
8102     return false;
8103   }
8104 
8105   // Record the value that we can demote.
8106   ToDemote.push_back(V);
8107   return true;
8108 }
8109 
8110 void BoUpSLP::computeMinimumValueSizes() {
8111   // If there are no external uses, the expression tree must be rooted by a
8112   // store. We can't demote in-memory values, so there is nothing to do here.
8113   if (ExternalUses.empty())
8114     return;
8115 
8116   // We only attempt to truncate integer expressions.
8117   auto &TreeRoot = VectorizableTree[0]->Scalars;
8118   auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType());
8119   if (!TreeRootIT)
8120     return;
8121 
8122   // If the expression is not rooted by a store, these roots should have
8123   // external uses. We will rely on InstCombine to rewrite the expression in
8124   // the narrower type. However, InstCombine only rewrites single-use values.
8125   // This means that if a tree entry other than a root is used externally, it
8126   // must have multiple uses and InstCombine will not rewrite it. The code
8127   // below ensures that only the roots are used externally.
8128   SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end());
8129   for (auto &EU : ExternalUses)
8130     if (!Expr.erase(EU.Scalar))
8131       return;
8132   if (!Expr.empty())
8133     return;
8134 
8135   // Collect the scalar values of the vectorizable expression. We will use this
8136   // context to determine which values can be demoted. If we see a truncation,
8137   // we mark it as seeding another demotion.
8138   for (auto &EntryPtr : VectorizableTree)
8139     Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end());
8140 
8141   // Ensure the roots of the vectorizable tree don't form a cycle. They must
8142   // have a single external user that is not in the vectorizable tree.
8143   for (auto *Root : TreeRoot)
8144     if (!Root->hasOneUse() || Expr.count(*Root->user_begin()))
8145       return;
8146 
8147   // Conservatively determine if we can actually truncate the roots of the
8148   // expression. Collect the values that can be demoted in ToDemote and
8149   // additional roots that require investigating in Roots.
8150   SmallVector<Value *, 32> ToDemote;
8151   SmallVector<Value *, 4> Roots;
8152   for (auto *Root : TreeRoot)
8153     if (!collectValuesToDemote(Root, Expr, ToDemote, Roots))
8154       return;
8155 
8156   // The maximum bit width required to represent all the values that can be
8157   // demoted without loss of precision. It would be safe to truncate the roots
8158   // of the expression to this width.
8159   auto MaxBitWidth = 8u;
8160 
8161   // We first check if all the bits of the roots are demanded. If they're not,
8162   // we can truncate the roots to this narrower type.
8163   for (auto *Root : TreeRoot) {
8164     auto Mask = DB->getDemandedBits(cast<Instruction>(Root));
8165     MaxBitWidth = std::max<unsigned>(
8166         Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth);
8167   }
8168 
8169   // True if the roots can be zero-extended back to their original type, rather
8170   // than sign-extended. We know that if the leading bits are not demanded, we
8171   // can safely zero-extend. So we initialize IsKnownPositive to True.
8172   bool IsKnownPositive = true;
8173 
8174   // If all the bits of the roots are demanded, we can try a little harder to
8175   // compute a narrower type. This can happen, for example, if the roots are
8176   // getelementptr indices. InstCombine promotes these indices to the pointer
8177   // width. Thus, all their bits are technically demanded even though the
8178   // address computation might be vectorized in a smaller type.
8179   //
8180   // We start by looking at each entry that can be demoted. We compute the
8181   // maximum bit width required to store the scalar by using ValueTracking to
8182   // compute the number of high-order bits we can truncate.
8183   if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) &&
8184       llvm::all_of(TreeRoot, [](Value *R) {
8185         assert(R->hasOneUse() && "Root should have only one use!");
8186         return isa<GetElementPtrInst>(R->user_back());
8187       })) {
8188     MaxBitWidth = 8u;
8189 
8190     // Determine if the sign bit of all the roots is known to be zero. If not,
8191     // IsKnownPositive is set to False.
8192     IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) {
8193       KnownBits Known = computeKnownBits(R, *DL);
8194       return Known.isNonNegative();
8195     });
8196 
8197     // Determine the maximum number of bits required to store the scalar
8198     // values.
8199     for (auto *Scalar : ToDemote) {
8200       auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT);
8201       auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType());
8202       MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth);
8203     }
8204 
8205     // If we can't prove that the sign bit is zero, we must add one to the
8206     // maximum bit width to account for the unknown sign bit. This preserves
8207     // the existing sign bit so we can safely sign-extend the root back to the
8208     // original type. Otherwise, if we know the sign bit is zero, we will
8209     // zero-extend the root instead.
8210     //
8211     // FIXME: This is somewhat suboptimal, as there will be cases where adding
8212     //        one to the maximum bit width will yield a larger-than-necessary
8213     //        type. In general, we need to add an extra bit only if we can't
8214     //        prove that the upper bit of the original type is equal to the
8215     //        upper bit of the proposed smaller type. If these two bits are the
8216     //        same (either zero or one) we know that sign-extending from the
8217     //        smaller type will result in the same value. Here, since we can't
8218     //        yet prove this, we are just making the proposed smaller type
8219     //        larger to ensure correctness.
8220     if (!IsKnownPositive)
8221       ++MaxBitWidth;
8222   }
8223 
8224   // Round MaxBitWidth up to the next power-of-two.
8225   if (!isPowerOf2_64(MaxBitWidth))
8226     MaxBitWidth = NextPowerOf2(MaxBitWidth);
8227 
8228   // If the maximum bit width we compute is less than the with of the roots'
8229   // type, we can proceed with the narrowing. Otherwise, do nothing.
8230   if (MaxBitWidth >= TreeRootIT->getBitWidth())
8231     return;
8232 
8233   // If we can truncate the root, we must collect additional values that might
8234   // be demoted as a result. That is, those seeded by truncations we will
8235   // modify.
8236   while (!Roots.empty())
8237     collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots);
8238 
8239   // Finally, map the values we can demote to the maximum bit with we computed.
8240   for (auto *Scalar : ToDemote)
8241     MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive);
8242 }
8243 
8244 namespace {
8245 
8246 /// The SLPVectorizer Pass.
8247 struct SLPVectorizer : public FunctionPass {
8248   SLPVectorizerPass Impl;
8249 
8250   /// Pass identification, replacement for typeid
8251   static char ID;
8252 
8253   explicit SLPVectorizer() : FunctionPass(ID) {
8254     initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
8255   }
8256 
8257   bool doInitialization(Module &M) override { return false; }
8258 
8259   bool runOnFunction(Function &F) override {
8260     if (skipFunction(F))
8261       return false;
8262 
8263     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
8264     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
8265     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
8266     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
8267     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
8268     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
8269     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
8270     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
8271     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
8272     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
8273 
8274     return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
8275   }
8276 
8277   void getAnalysisUsage(AnalysisUsage &AU) const override {
8278     FunctionPass::getAnalysisUsage(AU);
8279     AU.addRequired<AssumptionCacheTracker>();
8280     AU.addRequired<ScalarEvolutionWrapperPass>();
8281     AU.addRequired<AAResultsWrapperPass>();
8282     AU.addRequired<TargetTransformInfoWrapperPass>();
8283     AU.addRequired<LoopInfoWrapperPass>();
8284     AU.addRequired<DominatorTreeWrapperPass>();
8285     AU.addRequired<DemandedBitsWrapperPass>();
8286     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
8287     AU.addRequired<InjectTLIMappingsLegacy>();
8288     AU.addPreserved<LoopInfoWrapperPass>();
8289     AU.addPreserved<DominatorTreeWrapperPass>();
8290     AU.addPreserved<AAResultsWrapperPass>();
8291     AU.addPreserved<GlobalsAAWrapperPass>();
8292     AU.setPreservesCFG();
8293   }
8294 };
8295 
8296 } // end anonymous namespace
8297 
8298 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
8299   auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
8300   auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
8301   auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
8302   auto *AA = &AM.getResult<AAManager>(F);
8303   auto *LI = &AM.getResult<LoopAnalysis>(F);
8304   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
8305   auto *AC = &AM.getResult<AssumptionAnalysis>(F);
8306   auto *DB = &AM.getResult<DemandedBitsAnalysis>(F);
8307   auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
8308 
8309   bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
8310   if (!Changed)
8311     return PreservedAnalyses::all();
8312 
8313   PreservedAnalyses PA;
8314   PA.preserveSet<CFGAnalyses>();
8315   return PA;
8316 }
8317 
8318 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_,
8319                                 TargetTransformInfo *TTI_,
8320                                 TargetLibraryInfo *TLI_, AAResults *AA_,
8321                                 LoopInfo *LI_, DominatorTree *DT_,
8322                                 AssumptionCache *AC_, DemandedBits *DB_,
8323                                 OptimizationRemarkEmitter *ORE_) {
8324   if (!RunSLPVectorization)
8325     return false;
8326   SE = SE_;
8327   TTI = TTI_;
8328   TLI = TLI_;
8329   AA = AA_;
8330   LI = LI_;
8331   DT = DT_;
8332   AC = AC_;
8333   DB = DB_;
8334   DL = &F.getParent()->getDataLayout();
8335 
8336   Stores.clear();
8337   GEPs.clear();
8338   bool Changed = false;
8339 
8340   // If the target claims to have no vector registers don't attempt
8341   // vectorization.
8342   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) {
8343     LLVM_DEBUG(
8344         dbgs() << "SLP: Didn't find any vector registers for target, abort.\n");
8345     return false;
8346   }
8347 
8348   // Don't vectorize when the attribute NoImplicitFloat is used.
8349   if (F.hasFnAttribute(Attribute::NoImplicitFloat))
8350     return false;
8351 
8352   LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
8353 
8354   // Use the bottom up slp vectorizer to construct chains that start with
8355   // store instructions.
8356   BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_);
8357 
8358   // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
8359   // delete instructions.
8360 
8361   // Update DFS numbers now so that we can use them for ordering.
8362   DT->updateDFSNumbers();
8363 
8364   // Scan the blocks in the function in post order.
8365   for (auto BB : post_order(&F.getEntryBlock())) {
8366     collectSeedInstructions(BB);
8367 
8368     // Vectorize trees that end at stores.
8369     if (!Stores.empty()) {
8370       LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size()
8371                         << " underlying objects.\n");
8372       Changed |= vectorizeStoreChains(R);
8373     }
8374 
8375     // Vectorize trees that end at reductions.
8376     Changed |= vectorizeChainsInBlock(BB, R);
8377 
8378     // Vectorize the index computations of getelementptr instructions. This
8379     // is primarily intended to catch gather-like idioms ending at
8380     // non-consecutive loads.
8381     if (!GEPs.empty()) {
8382       LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size()
8383                         << " underlying objects.\n");
8384       Changed |= vectorizeGEPIndices(BB, R);
8385     }
8386   }
8387 
8388   if (Changed) {
8389     R.optimizeGatherSequence();
8390     LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
8391   }
8392   return Changed;
8393 }
8394 
8395 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R,
8396                                             unsigned Idx) {
8397   LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size()
8398                     << "\n");
8399   const unsigned Sz = R.getVectorElementSize(Chain[0]);
8400   const unsigned MinVF = R.getMinVecRegSize() / Sz;
8401   unsigned VF = Chain.size();
8402 
8403   if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF)
8404     return false;
8405 
8406   LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx
8407                     << "\n");
8408 
8409   R.buildTree(Chain);
8410   if (R.isTreeTinyAndNotFullyVectorizable())
8411     return false;
8412   if (R.isLoadCombineCandidate())
8413     return false;
8414   R.reorderTopToBottom();
8415   R.reorderBottomToTop();
8416   R.buildExternalUses();
8417 
8418   R.computeMinimumValueSizes();
8419 
8420   InstructionCost Cost = R.getTreeCost();
8421 
8422   LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n");
8423   if (Cost < -SLPCostThreshold) {
8424     LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n");
8425 
8426     using namespace ore;
8427 
8428     R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized",
8429                                         cast<StoreInst>(Chain[0]))
8430                      << "Stores SLP vectorized with cost " << NV("Cost", Cost)
8431                      << " and with tree size "
8432                      << NV("TreeSize", R.getTreeSize()));
8433 
8434     R.vectorizeTree();
8435     return true;
8436   }
8437 
8438   return false;
8439 }
8440 
8441 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores,
8442                                         BoUpSLP &R) {
8443   // We may run into multiple chains that merge into a single chain. We mark the
8444   // stores that we vectorized so that we don't visit the same store twice.
8445   BoUpSLP::ValueSet VectorizedStores;
8446   bool Changed = false;
8447 
8448   int E = Stores.size();
8449   SmallBitVector Tails(E, false);
8450   int MaxIter = MaxStoreLookup.getValue();
8451   SmallVector<std::pair<int, int>, 16> ConsecutiveChain(
8452       E, std::make_pair(E, INT_MAX));
8453   SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false));
8454   int IterCnt;
8455   auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter,
8456                                   &CheckedPairs,
8457                                   &ConsecutiveChain](int K, int Idx) {
8458     if (IterCnt >= MaxIter)
8459       return true;
8460     if (CheckedPairs[Idx].test(K))
8461       return ConsecutiveChain[K].second == 1 &&
8462              ConsecutiveChain[K].first == Idx;
8463     ++IterCnt;
8464     CheckedPairs[Idx].set(K);
8465     CheckedPairs[K].set(Idx);
8466     Optional<int> Diff = getPointersDiff(
8467         Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(),
8468         Stores[Idx]->getValueOperand()->getType(),
8469         Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true);
8470     if (!Diff || *Diff == 0)
8471       return false;
8472     int Val = *Diff;
8473     if (Val < 0) {
8474       if (ConsecutiveChain[Idx].second > -Val) {
8475         Tails.set(K);
8476         ConsecutiveChain[Idx] = std::make_pair(K, -Val);
8477       }
8478       return false;
8479     }
8480     if (ConsecutiveChain[K].second <= Val)
8481       return false;
8482 
8483     Tails.set(Idx);
8484     ConsecutiveChain[K] = std::make_pair(Idx, Val);
8485     return Val == 1;
8486   };
8487   // Do a quadratic search on all of the given stores in reverse order and find
8488   // all of the pairs of stores that follow each other.
8489   for (int Idx = E - 1; Idx >= 0; --Idx) {
8490     // If a store has multiple consecutive store candidates, search according
8491     // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ...
8492     // This is because usually pairing with immediate succeeding or preceding
8493     // candidate create the best chance to find slp vectorization opportunity.
8494     const int MaxLookDepth = std::max(E - Idx, Idx + 1);
8495     IterCnt = 0;
8496     for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset)
8497       if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) ||
8498           (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx)))
8499         break;
8500   }
8501 
8502   // Tracks if we tried to vectorize stores starting from the given tail
8503   // already.
8504   SmallBitVector TriedTails(E, false);
8505   // For stores that start but don't end a link in the chain:
8506   for (int Cnt = E; Cnt > 0; --Cnt) {
8507     int I = Cnt - 1;
8508     if (ConsecutiveChain[I].first == E || Tails.test(I))
8509       continue;
8510     // We found a store instr that starts a chain. Now follow the chain and try
8511     // to vectorize it.
8512     BoUpSLP::ValueList Operands;
8513     // Collect the chain into a list.
8514     while (I != E && !VectorizedStores.count(Stores[I])) {
8515       Operands.push_back(Stores[I]);
8516       Tails.set(I);
8517       if (ConsecutiveChain[I].second != 1) {
8518         // Mark the new end in the chain and go back, if required. It might be
8519         // required if the original stores come in reversed order, for example.
8520         if (ConsecutiveChain[I].first != E &&
8521             Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) &&
8522             !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) {
8523           TriedTails.set(I);
8524           Tails.reset(ConsecutiveChain[I].first);
8525           if (Cnt < ConsecutiveChain[I].first + 2)
8526             Cnt = ConsecutiveChain[I].first + 2;
8527         }
8528         break;
8529       }
8530       // Move to the next value in the chain.
8531       I = ConsecutiveChain[I].first;
8532     }
8533     assert(!Operands.empty() && "Expected non-empty list of stores.");
8534 
8535     unsigned MaxVecRegSize = R.getMaxVecRegSize();
8536     unsigned EltSize = R.getVectorElementSize(Operands[0]);
8537     unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize);
8538 
8539     unsigned MinVF = R.getMinVF(EltSize);
8540     unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store),
8541                               MaxElts);
8542 
8543     // FIXME: Is division-by-2 the correct step? Should we assert that the
8544     // register size is a power-of-2?
8545     unsigned StartIdx = 0;
8546     for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) {
8547       for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) {
8548         ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size);
8549         if (!VectorizedStores.count(Slice.front()) &&
8550             !VectorizedStores.count(Slice.back()) &&
8551             vectorizeStoreChain(Slice, R, Cnt)) {
8552           // Mark the vectorized stores so that we don't vectorize them again.
8553           VectorizedStores.insert(Slice.begin(), Slice.end());
8554           Changed = true;
8555           // If we vectorized initial block, no need to try to vectorize it
8556           // again.
8557           if (Cnt == StartIdx)
8558             StartIdx += Size;
8559           Cnt += Size;
8560           continue;
8561         }
8562         ++Cnt;
8563       }
8564       // Check if the whole array was vectorized already - exit.
8565       if (StartIdx >= Operands.size())
8566         break;
8567     }
8568   }
8569 
8570   return Changed;
8571 }
8572 
8573 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) {
8574   // Initialize the collections. We will make a single pass over the block.
8575   Stores.clear();
8576   GEPs.clear();
8577 
8578   // Visit the store and getelementptr instructions in BB and organize them in
8579   // Stores and GEPs according to the underlying objects of their pointer
8580   // operands.
8581   for (Instruction &I : *BB) {
8582     // Ignore store instructions that are volatile or have a pointer operand
8583     // that doesn't point to a scalar type.
8584     if (auto *SI = dyn_cast<StoreInst>(&I)) {
8585       if (!SI->isSimple())
8586         continue;
8587       if (!isValidElementType(SI->getValueOperand()->getType()))
8588         continue;
8589       Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI);
8590     }
8591 
8592     // Ignore getelementptr instructions that have more than one index, a
8593     // constant index, or a pointer operand that doesn't point to a scalar
8594     // type.
8595     else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
8596       auto Idx = GEP->idx_begin()->get();
8597       if (GEP->getNumIndices() > 1 || isa<Constant>(Idx))
8598         continue;
8599       if (!isValidElementType(Idx->getType()))
8600         continue;
8601       if (GEP->getType()->isVectorTy())
8602         continue;
8603       GEPs[GEP->getPointerOperand()].push_back(GEP);
8604     }
8605   }
8606 }
8607 
8608 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
8609   if (!A || !B)
8610     return false;
8611   if (isa<InsertElementInst>(A) || isa<InsertElementInst>(B))
8612     return false;
8613   Value *VL[] = {A, B};
8614   return tryToVectorizeList(VL, R);
8615 }
8616 
8617 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
8618                                            bool LimitForRegisterSize) {
8619   if (VL.size() < 2)
8620     return false;
8621 
8622   LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = "
8623                     << VL.size() << ".\n");
8624 
8625   // Check that all of the parts are instructions of the same type,
8626   // we permit an alternate opcode via InstructionsState.
8627   InstructionsState S = getSameOpcode(VL);
8628   if (!S.getOpcode())
8629     return false;
8630 
8631   Instruction *I0 = cast<Instruction>(S.OpValue);
8632   // Make sure invalid types (including vector type) are rejected before
8633   // determining vectorization factor for scalar instructions.
8634   for (Value *V : VL) {
8635     Type *Ty = V->getType();
8636     if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) {
8637       // NOTE: the following will give user internal llvm type name, which may
8638       // not be useful.
8639       R.getORE()->emit([&]() {
8640         std::string type_str;
8641         llvm::raw_string_ostream rso(type_str);
8642         Ty->print(rso);
8643         return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0)
8644                << "Cannot SLP vectorize list: type "
8645                << rso.str() + " is unsupported by vectorizer";
8646       });
8647       return false;
8648     }
8649   }
8650 
8651   unsigned Sz = R.getVectorElementSize(I0);
8652   unsigned MinVF = R.getMinVF(Sz);
8653   unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF);
8654   MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF);
8655   if (MaxVF < 2) {
8656     R.getORE()->emit([&]() {
8657       return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0)
8658              << "Cannot SLP vectorize list: vectorization factor "
8659              << "less than 2 is not supported";
8660     });
8661     return false;
8662   }
8663 
8664   bool Changed = false;
8665   bool CandidateFound = false;
8666   InstructionCost MinCost = SLPCostThreshold.getValue();
8667   Type *ScalarTy = VL[0]->getType();
8668   if (auto *IE = dyn_cast<InsertElementInst>(VL[0]))
8669     ScalarTy = IE->getOperand(1)->getType();
8670 
8671   unsigned NextInst = 0, MaxInst = VL.size();
8672   for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) {
8673     // No actual vectorization should happen, if number of parts is the same as
8674     // provided vectorization factor (i.e. the scalar type is used for vector
8675     // code during codegen).
8676     auto *VecTy = FixedVectorType::get(ScalarTy, VF);
8677     if (TTI->getNumberOfParts(VecTy) == VF)
8678       continue;
8679     for (unsigned I = NextInst; I < MaxInst; ++I) {
8680       unsigned OpsWidth = 0;
8681 
8682       if (I + VF > MaxInst)
8683         OpsWidth = MaxInst - I;
8684       else
8685         OpsWidth = VF;
8686 
8687       if (!isPowerOf2_32(OpsWidth))
8688         continue;
8689 
8690       if ((LimitForRegisterSize && OpsWidth < MaxVF) ||
8691           (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2))
8692         break;
8693 
8694       ArrayRef<Value *> Ops = VL.slice(I, OpsWidth);
8695       // Check that a previous iteration of this loop did not delete the Value.
8696       if (llvm::any_of(Ops, [&R](Value *V) {
8697             auto *I = dyn_cast<Instruction>(V);
8698             return I && R.isDeleted(I);
8699           }))
8700         continue;
8701 
8702       LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
8703                         << "\n");
8704 
8705       R.buildTree(Ops);
8706       if (R.isTreeTinyAndNotFullyVectorizable())
8707         continue;
8708       R.reorderTopToBottom();
8709       R.reorderBottomToTop(!isa<InsertElementInst>(Ops.front()));
8710       R.buildExternalUses();
8711 
8712       R.computeMinimumValueSizes();
8713       InstructionCost Cost = R.getTreeCost();
8714       CandidateFound = true;
8715       MinCost = std::min(MinCost, Cost);
8716 
8717       if (Cost < -SLPCostThreshold) {
8718         LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
8719         R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList",
8720                                                     cast<Instruction>(Ops[0]))
8721                                  << "SLP vectorized with cost " << ore::NV("Cost", Cost)
8722                                  << " and with tree size "
8723                                  << ore::NV("TreeSize", R.getTreeSize()));
8724 
8725         R.vectorizeTree();
8726         // Move to the next bundle.
8727         I += VF - 1;
8728         NextInst = I + 1;
8729         Changed = true;
8730       }
8731     }
8732   }
8733 
8734   if (!Changed && CandidateFound) {
8735     R.getORE()->emit([&]() {
8736       return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0)
8737              << "List vectorization was possible but not beneficial with cost "
8738              << ore::NV("Cost", MinCost) << " >= "
8739              << ore::NV("Treshold", -SLPCostThreshold);
8740     });
8741   } else if (!Changed) {
8742     R.getORE()->emit([&]() {
8743       return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0)
8744              << "Cannot SLP vectorize list: vectorization was impossible"
8745              << " with available vectorization factors";
8746     });
8747   }
8748   return Changed;
8749 }
8750 
8751 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) {
8752   if (!I)
8753     return false;
8754 
8755   if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I))
8756     return false;
8757 
8758   Value *P = I->getParent();
8759 
8760   // Vectorize in current basic block only.
8761   auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
8762   auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
8763   if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P)
8764     return false;
8765 
8766   // Try to vectorize V.
8767   if (tryToVectorizePair(Op0, Op1, R))
8768     return true;
8769 
8770   auto *A = dyn_cast<BinaryOperator>(Op0);
8771   auto *B = dyn_cast<BinaryOperator>(Op1);
8772   // Try to skip B.
8773   if (B && B->hasOneUse()) {
8774     auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
8775     auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
8776     if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R))
8777       return true;
8778     if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R))
8779       return true;
8780   }
8781 
8782   // Try to skip A.
8783   if (A && A->hasOneUse()) {
8784     auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
8785     auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
8786     if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R))
8787       return true;
8788     if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R))
8789       return true;
8790   }
8791   return false;
8792 }
8793 
8794 namespace {
8795 
8796 /// Model horizontal reductions.
8797 ///
8798 /// A horizontal reduction is a tree of reduction instructions that has values
8799 /// that can be put into a vector as its leaves. For example:
8800 ///
8801 /// mul mul mul mul
8802 ///  \  /    \  /
8803 ///   +       +
8804 ///    \     /
8805 ///       +
8806 /// This tree has "mul" as its leaf values and "+" as its reduction
8807 /// instructions. A reduction can feed into a store or a binary operation
8808 /// feeding a phi.
8809 ///    ...
8810 ///    \  /
8811 ///     +
8812 ///     |
8813 ///  phi +=
8814 ///
8815 ///  Or:
8816 ///    ...
8817 ///    \  /
8818 ///     +
8819 ///     |
8820 ///   *p =
8821 ///
8822 class HorizontalReduction {
8823   using ReductionOpsType = SmallVector<Value *, 16>;
8824   using ReductionOpsListType = SmallVector<ReductionOpsType, 2>;
8825   ReductionOpsListType ReductionOps;
8826   SmallVector<Value *, 32> ReducedVals;
8827   // Use map vector to make stable output.
8828   MapVector<Instruction *, Value *> ExtraArgs;
8829   WeakTrackingVH ReductionRoot;
8830   /// The type of reduction operation.
8831   RecurKind RdxKind;
8832 
8833   const unsigned INVALID_OPERAND_INDEX = std::numeric_limits<unsigned>::max();
8834 
8835   static bool isCmpSelMinMax(Instruction *I) {
8836     return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) &&
8837            RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I));
8838   }
8839 
8840   // And/or are potentially poison-safe logical patterns like:
8841   // select x, y, false
8842   // select x, true, y
8843   static bool isBoolLogicOp(Instruction *I) {
8844     return match(I, m_LogicalAnd(m_Value(), m_Value())) ||
8845            match(I, m_LogicalOr(m_Value(), m_Value()));
8846   }
8847 
8848   /// Checks if instruction is associative and can be vectorized.
8849   static bool isVectorizable(RecurKind Kind, Instruction *I) {
8850     if (Kind == RecurKind::None)
8851       return false;
8852 
8853     // Integer ops that map to select instructions or intrinsics are fine.
8854     if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) ||
8855         isBoolLogicOp(I))
8856       return true;
8857 
8858     if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) {
8859       // FP min/max are associative except for NaN and -0.0. We do not
8860       // have to rule out -0.0 here because the intrinsic semantics do not
8861       // specify a fixed result for it.
8862       return I->getFastMathFlags().noNaNs();
8863     }
8864 
8865     return I->isAssociative();
8866   }
8867 
8868   static Value *getRdxOperand(Instruction *I, unsigned Index) {
8869     // Poison-safe 'or' takes the form: select X, true, Y
8870     // To make that work with the normal operand processing, we skip the
8871     // true value operand.
8872     // TODO: Change the code and data structures to handle this without a hack.
8873     if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1)
8874       return I->getOperand(2);
8875     return I->getOperand(Index);
8876   }
8877 
8878   /// Checks if the ParentStackElem.first should be marked as a reduction
8879   /// operation with an extra argument or as extra argument itself.
8880   void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem,
8881                     Value *ExtraArg) {
8882     if (ExtraArgs.count(ParentStackElem.first)) {
8883       ExtraArgs[ParentStackElem.first] = nullptr;
8884       // We ran into something like:
8885       // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg.
8886       // The whole ParentStackElem.first should be considered as an extra value
8887       // in this case.
8888       // Do not perform analysis of remaining operands of ParentStackElem.first
8889       // instruction, this whole instruction is an extra argument.
8890       ParentStackElem.second = INVALID_OPERAND_INDEX;
8891     } else {
8892       // We ran into something like:
8893       // ParentStackElem.first += ... + ExtraArg + ...
8894       ExtraArgs[ParentStackElem.first] = ExtraArg;
8895     }
8896   }
8897 
8898   /// Creates reduction operation with the current opcode.
8899   static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS,
8900                          Value *RHS, const Twine &Name, bool UseSelect) {
8901     unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind);
8902     switch (Kind) {
8903     case RecurKind::Or:
8904       if (UseSelect &&
8905           LHS->getType() == CmpInst::makeCmpResultType(LHS->getType()))
8906         return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name);
8907       return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS,
8908                                  Name);
8909     case RecurKind::And:
8910       if (UseSelect &&
8911           LHS->getType() == CmpInst::makeCmpResultType(LHS->getType()))
8912         return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name);
8913       return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS,
8914                                  Name);
8915     case RecurKind::Add:
8916     case RecurKind::Mul:
8917     case RecurKind::Xor:
8918     case RecurKind::FAdd:
8919     case RecurKind::FMul:
8920       return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS,
8921                                  Name);
8922     case RecurKind::FMax:
8923       return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS);
8924     case RecurKind::FMin:
8925       return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS);
8926     case RecurKind::SMax:
8927       if (UseSelect) {
8928         Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name);
8929         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
8930       }
8931       return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS);
8932     case RecurKind::SMin:
8933       if (UseSelect) {
8934         Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name);
8935         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
8936       }
8937       return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS);
8938     case RecurKind::UMax:
8939       if (UseSelect) {
8940         Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name);
8941         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
8942       }
8943       return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS);
8944     case RecurKind::UMin:
8945       if (UseSelect) {
8946         Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name);
8947         return Builder.CreateSelect(Cmp, LHS, RHS, Name);
8948       }
8949       return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS);
8950     default:
8951       llvm_unreachable("Unknown reduction operation.");
8952     }
8953   }
8954 
8955   /// Creates reduction operation with the current opcode with the IR flags
8956   /// from \p ReductionOps.
8957   static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS,
8958                          Value *RHS, const Twine &Name,
8959                          const ReductionOpsListType &ReductionOps) {
8960     bool UseSelect = ReductionOps.size() == 2 ||
8961                      // Logical or/and.
8962                      (ReductionOps.size() == 1 &&
8963                       isa<SelectInst>(ReductionOps.front().front()));
8964     assert((!UseSelect || ReductionOps.size() != 2 ||
8965             isa<SelectInst>(ReductionOps[1][0])) &&
8966            "Expected cmp + select pairs for reduction");
8967     Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect);
8968     if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) {
8969       if (auto *Sel = dyn_cast<SelectInst>(Op)) {
8970         propagateIRFlags(Sel->getCondition(), ReductionOps[0]);
8971         propagateIRFlags(Op, ReductionOps[1]);
8972         return Op;
8973       }
8974     }
8975     propagateIRFlags(Op, ReductionOps[0]);
8976     return Op;
8977   }
8978 
8979   /// Creates reduction operation with the current opcode with the IR flags
8980   /// from \p I.
8981   static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS,
8982                          Value *RHS, const Twine &Name, Instruction *I) {
8983     auto *SelI = dyn_cast<SelectInst>(I);
8984     Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr);
8985     if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) {
8986       if (auto *Sel = dyn_cast<SelectInst>(Op))
8987         propagateIRFlags(Sel->getCondition(), SelI->getCondition());
8988     }
8989     propagateIRFlags(Op, I);
8990     return Op;
8991   }
8992 
8993   static RecurKind getRdxKind(Instruction *I) {
8994     assert(I && "Expected instruction for reduction matching");
8995     if (match(I, m_Add(m_Value(), m_Value())))
8996       return RecurKind::Add;
8997     if (match(I, m_Mul(m_Value(), m_Value())))
8998       return RecurKind::Mul;
8999     if (match(I, m_And(m_Value(), m_Value())) ||
9000         match(I, m_LogicalAnd(m_Value(), m_Value())))
9001       return RecurKind::And;
9002     if (match(I, m_Or(m_Value(), m_Value())) ||
9003         match(I, m_LogicalOr(m_Value(), m_Value())))
9004       return RecurKind::Or;
9005     if (match(I, m_Xor(m_Value(), m_Value())))
9006       return RecurKind::Xor;
9007     if (match(I, m_FAdd(m_Value(), m_Value())))
9008       return RecurKind::FAdd;
9009     if (match(I, m_FMul(m_Value(), m_Value())))
9010       return RecurKind::FMul;
9011 
9012     if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value())))
9013       return RecurKind::FMax;
9014     if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value())))
9015       return RecurKind::FMin;
9016 
9017     // This matches either cmp+select or intrinsics. SLP is expected to handle
9018     // either form.
9019     // TODO: If we are canonicalizing to intrinsics, we can remove several
9020     //       special-case paths that deal with selects.
9021     if (match(I, m_SMax(m_Value(), m_Value())))
9022       return RecurKind::SMax;
9023     if (match(I, m_SMin(m_Value(), m_Value())))
9024       return RecurKind::SMin;
9025     if (match(I, m_UMax(m_Value(), m_Value())))
9026       return RecurKind::UMax;
9027     if (match(I, m_UMin(m_Value(), m_Value())))
9028       return RecurKind::UMin;
9029 
9030     if (auto *Select = dyn_cast<SelectInst>(I)) {
9031       // Try harder: look for min/max pattern based on instructions producing
9032       // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2).
9033       // During the intermediate stages of SLP, it's very common to have
9034       // pattern like this (since optimizeGatherSequence is run only once
9035       // at the end):
9036       // %1 = extractelement <2 x i32> %a, i32 0
9037       // %2 = extractelement <2 x i32> %a, i32 1
9038       // %cond = icmp sgt i32 %1, %2
9039       // %3 = extractelement <2 x i32> %a, i32 0
9040       // %4 = extractelement <2 x i32> %a, i32 1
9041       // %select = select i1 %cond, i32 %3, i32 %4
9042       CmpInst::Predicate Pred;
9043       Instruction *L1;
9044       Instruction *L2;
9045 
9046       Value *LHS = Select->getTrueValue();
9047       Value *RHS = Select->getFalseValue();
9048       Value *Cond = Select->getCondition();
9049 
9050       // TODO: Support inverse predicates.
9051       if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) {
9052         if (!isa<ExtractElementInst>(RHS) ||
9053             !L2->isIdenticalTo(cast<Instruction>(RHS)))
9054           return RecurKind::None;
9055       } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) {
9056         if (!isa<ExtractElementInst>(LHS) ||
9057             !L1->isIdenticalTo(cast<Instruction>(LHS)))
9058           return RecurKind::None;
9059       } else {
9060         if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS))
9061           return RecurKind::None;
9062         if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) ||
9063             !L1->isIdenticalTo(cast<Instruction>(LHS)) ||
9064             !L2->isIdenticalTo(cast<Instruction>(RHS)))
9065           return RecurKind::None;
9066       }
9067 
9068       switch (Pred) {
9069       default:
9070         return RecurKind::None;
9071       case CmpInst::ICMP_SGT:
9072       case CmpInst::ICMP_SGE:
9073         return RecurKind::SMax;
9074       case CmpInst::ICMP_SLT:
9075       case CmpInst::ICMP_SLE:
9076         return RecurKind::SMin;
9077       case CmpInst::ICMP_UGT:
9078       case CmpInst::ICMP_UGE:
9079         return RecurKind::UMax;
9080       case CmpInst::ICMP_ULT:
9081       case CmpInst::ICMP_ULE:
9082         return RecurKind::UMin;
9083       }
9084     }
9085     return RecurKind::None;
9086   }
9087 
9088   /// Get the index of the first operand.
9089   static unsigned getFirstOperandIndex(Instruction *I) {
9090     return isCmpSelMinMax(I) ? 1 : 0;
9091   }
9092 
9093   /// Total number of operands in the reduction operation.
9094   static unsigned getNumberOfOperands(Instruction *I) {
9095     return isCmpSelMinMax(I) ? 3 : 2;
9096   }
9097 
9098   /// Checks if the instruction is in basic block \p BB.
9099   /// For a cmp+sel min/max reduction check that both ops are in \p BB.
9100   static bool hasSameParent(Instruction *I, BasicBlock *BB) {
9101     if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) {
9102       auto *Sel = cast<SelectInst>(I);
9103       auto *Cmp = dyn_cast<Instruction>(Sel->getCondition());
9104       return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB;
9105     }
9106     return I->getParent() == BB;
9107   }
9108 
9109   /// Expected number of uses for reduction operations/reduced values.
9110   static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) {
9111     if (IsCmpSelMinMax) {
9112       // SelectInst must be used twice while the condition op must have single
9113       // use only.
9114       if (auto *Sel = dyn_cast<SelectInst>(I))
9115         return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse();
9116       return I->hasNUses(2);
9117     }
9118 
9119     // Arithmetic reduction operation must be used once only.
9120     return I->hasOneUse();
9121   }
9122 
9123   /// Initializes the list of reduction operations.
9124   void initReductionOps(Instruction *I) {
9125     if (isCmpSelMinMax(I))
9126       ReductionOps.assign(2, ReductionOpsType());
9127     else
9128       ReductionOps.assign(1, ReductionOpsType());
9129   }
9130 
9131   /// Add all reduction operations for the reduction instruction \p I.
9132   void addReductionOps(Instruction *I) {
9133     if (isCmpSelMinMax(I)) {
9134       ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition());
9135       ReductionOps[1].emplace_back(I);
9136     } else {
9137       ReductionOps[0].emplace_back(I);
9138     }
9139   }
9140 
9141   static Value *getLHS(RecurKind Kind, Instruction *I) {
9142     if (Kind == RecurKind::None)
9143       return nullptr;
9144     return I->getOperand(getFirstOperandIndex(I));
9145   }
9146   static Value *getRHS(RecurKind Kind, Instruction *I) {
9147     if (Kind == RecurKind::None)
9148       return nullptr;
9149     return I->getOperand(getFirstOperandIndex(I) + 1);
9150   }
9151 
9152 public:
9153   HorizontalReduction() = default;
9154 
9155   /// Try to find a reduction tree.
9156   bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst) {
9157     assert((!Phi || is_contained(Phi->operands(), Inst)) &&
9158            "Phi needs to use the binary operator");
9159     assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) ||
9160             isa<IntrinsicInst>(Inst)) &&
9161            "Expected binop, select, or intrinsic for reduction matching");
9162     RdxKind = getRdxKind(Inst);
9163 
9164     // We could have a initial reductions that is not an add.
9165     //  r *= v1 + v2 + v3 + v4
9166     // In such a case start looking for a tree rooted in the first '+'.
9167     if (Phi) {
9168       if (getLHS(RdxKind, Inst) == Phi) {
9169         Phi = nullptr;
9170         Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst));
9171         if (!Inst)
9172           return false;
9173         RdxKind = getRdxKind(Inst);
9174       } else if (getRHS(RdxKind, Inst) == Phi) {
9175         Phi = nullptr;
9176         Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst));
9177         if (!Inst)
9178           return false;
9179         RdxKind = getRdxKind(Inst);
9180       }
9181     }
9182 
9183     if (!isVectorizable(RdxKind, Inst))
9184       return false;
9185 
9186     // Analyze "regular" integer/FP types for reductions - no target-specific
9187     // types or pointers.
9188     Type *Ty = Inst->getType();
9189     if (!isValidElementType(Ty) || Ty->isPointerTy())
9190       return false;
9191 
9192     // Though the ultimate reduction may have multiple uses, its condition must
9193     // have only single use.
9194     if (auto *Sel = dyn_cast<SelectInst>(Inst))
9195       if (!Sel->getCondition()->hasOneUse())
9196         return false;
9197 
9198     ReductionRoot = Inst;
9199 
9200     // The opcode for leaf values that we perform a reduction on.
9201     // For example: load(x) + load(y) + load(z) + fptoui(w)
9202     // The leaf opcode for 'w' does not match, so we don't include it as a
9203     // potential candidate for the reduction.
9204     unsigned LeafOpcode = 0;
9205 
9206     // Post-order traverse the reduction tree starting at Inst. We only handle
9207     // true trees containing binary operators or selects.
9208     SmallVector<std::pair<Instruction *, unsigned>, 32> Stack;
9209     Stack.push_back(std::make_pair(Inst, getFirstOperandIndex(Inst)));
9210     initReductionOps(Inst);
9211     while (!Stack.empty()) {
9212       Instruction *TreeN = Stack.back().first;
9213       unsigned EdgeToVisit = Stack.back().second++;
9214       const RecurKind TreeRdxKind = getRdxKind(TreeN);
9215       bool IsReducedValue = TreeRdxKind != RdxKind;
9216 
9217       // Postorder visit.
9218       if (IsReducedValue || EdgeToVisit >= getNumberOfOperands(TreeN)) {
9219         if (IsReducedValue)
9220           ReducedVals.push_back(TreeN);
9221         else {
9222           auto ExtraArgsIter = ExtraArgs.find(TreeN);
9223           if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) {
9224             // Check if TreeN is an extra argument of its parent operation.
9225             if (Stack.size() <= 1) {
9226               // TreeN can't be an extra argument as it is a root reduction
9227               // operation.
9228               return false;
9229             }
9230             // Yes, TreeN is an extra argument, do not add it to a list of
9231             // reduction operations.
9232             // Stack[Stack.size() - 2] always points to the parent operation.
9233             markExtraArg(Stack[Stack.size() - 2], TreeN);
9234             ExtraArgs.erase(TreeN);
9235           } else
9236             addReductionOps(TreeN);
9237         }
9238         // Retract.
9239         Stack.pop_back();
9240         continue;
9241       }
9242 
9243       // Visit operands.
9244       Value *EdgeVal = getRdxOperand(TreeN, EdgeToVisit);
9245       auto *EdgeInst = dyn_cast<Instruction>(EdgeVal);
9246       if (!EdgeInst) {
9247         // Edge value is not a reduction instruction or a leaf instruction.
9248         // (It may be a constant, function argument, or something else.)
9249         markExtraArg(Stack.back(), EdgeVal);
9250         continue;
9251       }
9252       RecurKind EdgeRdxKind = getRdxKind(EdgeInst);
9253       // Continue analysis if the next operand is a reduction operation or
9254       // (possibly) a leaf value. If the leaf value opcode is not set,
9255       // the first met operation != reduction operation is considered as the
9256       // leaf opcode.
9257       // Only handle trees in the current basic block.
9258       // Each tree node needs to have minimal number of users except for the
9259       // ultimate reduction.
9260       const bool IsRdxInst = EdgeRdxKind == RdxKind;
9261       if (EdgeInst != Phi && EdgeInst != Inst &&
9262           hasSameParent(EdgeInst, Inst->getParent()) &&
9263           hasRequiredNumberOfUses(isCmpSelMinMax(Inst), EdgeInst) &&
9264           (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) {
9265         if (IsRdxInst) {
9266           // We need to be able to reassociate the reduction operations.
9267           if (!isVectorizable(EdgeRdxKind, EdgeInst)) {
9268             // I is an extra argument for TreeN (its parent operation).
9269             markExtraArg(Stack.back(), EdgeInst);
9270             continue;
9271           }
9272         } else if (!LeafOpcode) {
9273           LeafOpcode = EdgeInst->getOpcode();
9274         }
9275         Stack.push_back(
9276             std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst)));
9277         continue;
9278       }
9279       // I is an extra argument for TreeN (its parent operation).
9280       markExtraArg(Stack.back(), EdgeInst);
9281     }
9282     return true;
9283   }
9284 
9285   /// Attempt to vectorize the tree found by matchAssociativeReduction.
9286   Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
9287     // If there are a sufficient number of reduction values, reduce
9288     // to a nearby power-of-2. We can safely generate oversized
9289     // vectors and rely on the backend to split them to legal sizes.
9290     unsigned NumReducedVals = ReducedVals.size();
9291     if (NumReducedVals < 4)
9292       return nullptr;
9293 
9294     // Intersect the fast-math-flags from all reduction operations.
9295     FastMathFlags RdxFMF;
9296     RdxFMF.set();
9297     for (ReductionOpsType &RdxOp : ReductionOps) {
9298       for (Value *RdxVal : RdxOp) {
9299         if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal))
9300           RdxFMF &= FPMO->getFastMathFlags();
9301       }
9302     }
9303 
9304     IRBuilder<> Builder(cast<Instruction>(ReductionRoot));
9305     Builder.setFastMathFlags(RdxFMF);
9306 
9307     BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues;
9308     // The same extra argument may be used several times, so log each attempt
9309     // to use it.
9310     for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) {
9311       assert(Pair.first && "DebugLoc must be set.");
9312       ExternallyUsedValues[Pair.second].push_back(Pair.first);
9313     }
9314 
9315     // The compare instruction of a min/max is the insertion point for new
9316     // instructions and may be replaced with a new compare instruction.
9317     auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) {
9318       assert(isa<SelectInst>(RdxRootInst) &&
9319              "Expected min/max reduction to have select root instruction");
9320       Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition();
9321       assert(isa<Instruction>(ScalarCond) &&
9322              "Expected min/max reduction to have compare condition");
9323       return cast<Instruction>(ScalarCond);
9324     };
9325 
9326     // The reduction root is used as the insertion point for new instructions,
9327     // so set it as externally used to prevent it from being deleted.
9328     ExternallyUsedValues[ReductionRoot];
9329     SmallVector<Value *, 16> IgnoreList;
9330     for (ReductionOpsType &RdxOp : ReductionOps)
9331       IgnoreList.append(RdxOp.begin(), RdxOp.end());
9332 
9333     unsigned ReduxWidth = PowerOf2Floor(NumReducedVals);
9334     if (NumReducedVals > ReduxWidth) {
9335       // In the loop below, we are building a tree based on a window of
9336       // 'ReduxWidth' values.
9337       // If the operands of those values have common traits (compare predicate,
9338       // constant operand, etc), then we want to group those together to
9339       // minimize the cost of the reduction.
9340 
9341       // TODO: This should be extended to count common operands for
9342       //       compares and binops.
9343 
9344       // Step 1: Count the number of times each compare predicate occurs.
9345       SmallDenseMap<unsigned, unsigned> PredCountMap;
9346       for (Value *RdxVal : ReducedVals) {
9347         CmpInst::Predicate Pred;
9348         if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value())))
9349           ++PredCountMap[Pred];
9350       }
9351       // Step 2: Sort the values so the most common predicates come first.
9352       stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) {
9353         CmpInst::Predicate PredA, PredB;
9354         if (match(A, m_Cmp(PredA, m_Value(), m_Value())) &&
9355             match(B, m_Cmp(PredB, m_Value(), m_Value()))) {
9356           return PredCountMap[PredA] > PredCountMap[PredB];
9357         }
9358         return false;
9359       });
9360     }
9361 
9362     Value *VectorizedTree = nullptr;
9363     unsigned i = 0;
9364     while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) {
9365       ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth);
9366       V.buildTree(VL, IgnoreList);
9367       if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true))
9368         break;
9369       if (V.isLoadCombineReductionCandidate(RdxKind))
9370         break;
9371       V.reorderTopToBottom();
9372       V.reorderBottomToTop(/*IgnoreReorder=*/true);
9373       V.buildExternalUses(ExternallyUsedValues);
9374 
9375       // For a poison-safe boolean logic reduction, do not replace select
9376       // instructions with logic ops. All reduced values will be frozen (see
9377       // below) to prevent leaking poison.
9378       if (isa<SelectInst>(ReductionRoot) &&
9379           isBoolLogicOp(cast<Instruction>(ReductionRoot)) &&
9380           NumReducedVals != ReduxWidth)
9381         break;
9382 
9383       V.computeMinimumValueSizes();
9384 
9385       // Estimate cost.
9386       InstructionCost TreeCost =
9387           V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth));
9388       InstructionCost ReductionCost =
9389           getReductionCost(TTI, ReducedVals[i], ReduxWidth, RdxFMF);
9390       InstructionCost Cost = TreeCost + ReductionCost;
9391       if (!Cost.isValid()) {
9392         LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n");
9393         return nullptr;
9394       }
9395       if (Cost >= -SLPCostThreshold) {
9396         V.getORE()->emit([&]() {
9397           return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial",
9398                                           cast<Instruction>(VL[0]))
9399                  << "Vectorizing horizontal reduction is possible"
9400                  << "but not beneficial with cost " << ore::NV("Cost", Cost)
9401                  << " and threshold "
9402                  << ore::NV("Threshold", -SLPCostThreshold);
9403         });
9404         break;
9405       }
9406 
9407       LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
9408                         << Cost << ". (HorRdx)\n");
9409       V.getORE()->emit([&]() {
9410         return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction",
9411                                   cast<Instruction>(VL[0]))
9412                << "Vectorized horizontal reduction with cost "
9413                << ore::NV("Cost", Cost) << " and with tree size "
9414                << ore::NV("TreeSize", V.getTreeSize());
9415       });
9416 
9417       // Vectorize a tree.
9418       DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
9419       Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues);
9420 
9421       // Emit a reduction. If the root is a select (min/max idiom), the insert
9422       // point is the compare condition of that select.
9423       Instruction *RdxRootInst = cast<Instruction>(ReductionRoot);
9424       if (isCmpSelMinMax(RdxRootInst))
9425         Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst));
9426       else
9427         Builder.SetInsertPoint(RdxRootInst);
9428 
9429       // To prevent poison from leaking across what used to be sequential, safe,
9430       // scalar boolean logic operations, the reduction operand must be frozen.
9431       if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst))
9432         VectorizedRoot = Builder.CreateFreeze(VectorizedRoot);
9433 
9434       Value *ReducedSubTree =
9435           emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI);
9436 
9437       if (!VectorizedTree) {
9438         // Initialize the final value in the reduction.
9439         VectorizedTree = ReducedSubTree;
9440       } else {
9441         // Update the final value in the reduction.
9442         Builder.SetCurrentDebugLocation(Loc);
9443         VectorizedTree = createOp(Builder, RdxKind, VectorizedTree,
9444                                   ReducedSubTree, "op.rdx", ReductionOps);
9445       }
9446       i += ReduxWidth;
9447       ReduxWidth = PowerOf2Floor(NumReducedVals - i);
9448     }
9449 
9450     if (VectorizedTree) {
9451       // Finish the reduction.
9452       for (; i < NumReducedVals; ++i) {
9453         auto *I = cast<Instruction>(ReducedVals[i]);
9454         Builder.SetCurrentDebugLocation(I->getDebugLoc());
9455         VectorizedTree =
9456             createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps);
9457       }
9458       for (auto &Pair : ExternallyUsedValues) {
9459         // Add each externally used value to the final reduction.
9460         for (auto *I : Pair.second) {
9461           Builder.SetCurrentDebugLocation(I->getDebugLoc());
9462           VectorizedTree = createOp(Builder, RdxKind, VectorizedTree,
9463                                     Pair.first, "op.extra", I);
9464         }
9465       }
9466 
9467       ReductionRoot->replaceAllUsesWith(VectorizedTree);
9468 
9469       // Mark all scalar reduction ops for deletion, they are replaced by the
9470       // vector reductions.
9471       V.eraseInstructions(IgnoreList);
9472     }
9473     return VectorizedTree;
9474   }
9475 
9476   unsigned numReductionValues() const { return ReducedVals.size(); }
9477 
9478 private:
9479   /// Calculate the cost of a reduction.
9480   InstructionCost getReductionCost(TargetTransformInfo *TTI,
9481                                    Value *FirstReducedVal, unsigned ReduxWidth,
9482                                    FastMathFlags FMF) {
9483     TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
9484     Type *ScalarTy = FirstReducedVal->getType();
9485     FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth);
9486     InstructionCost VectorCost, ScalarCost;
9487     switch (RdxKind) {
9488     case RecurKind::Add:
9489     case RecurKind::Mul:
9490     case RecurKind::Or:
9491     case RecurKind::And:
9492     case RecurKind::Xor:
9493     case RecurKind::FAdd:
9494     case RecurKind::FMul: {
9495       unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind);
9496       VectorCost =
9497           TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind);
9498       ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind);
9499       break;
9500     }
9501     case RecurKind::FMax:
9502     case RecurKind::FMin: {
9503       auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy);
9504       auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy));
9505       VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy,
9506                                                /*IsUnsigned=*/false, CostKind);
9507       CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind);
9508       ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy,
9509                                            SclCondTy, RdxPred, CostKind) +
9510                    TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
9511                                            SclCondTy, RdxPred, CostKind);
9512       break;
9513     }
9514     case RecurKind::SMax:
9515     case RecurKind::SMin:
9516     case RecurKind::UMax:
9517     case RecurKind::UMin: {
9518       auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy);
9519       auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy));
9520       bool IsUnsigned =
9521           RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin;
9522       VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned,
9523                                                CostKind);
9524       CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind);
9525       ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy,
9526                                            SclCondTy, RdxPred, CostKind) +
9527                    TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
9528                                            SclCondTy, RdxPred, CostKind);
9529       break;
9530     }
9531     default:
9532       llvm_unreachable("Expected arithmetic or min/max reduction operation");
9533     }
9534 
9535     // Scalar cost is repeated for N-1 elements.
9536     ScalarCost *= (ReduxWidth - 1);
9537     LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost
9538                       << " for reduction that starts with " << *FirstReducedVal
9539                       << " (It is a splitting reduction)\n");
9540     return VectorCost - ScalarCost;
9541   }
9542 
9543   /// Emit a horizontal reduction of the vectorized value.
9544   Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder,
9545                        unsigned ReduxWidth, const TargetTransformInfo *TTI) {
9546     assert(VectorizedValue && "Need to have a vectorized tree node");
9547     assert(isPowerOf2_32(ReduxWidth) &&
9548            "We only handle power-of-two reductions for now");
9549     assert(RdxKind != RecurKind::FMulAdd &&
9550            "A call to the llvm.fmuladd intrinsic is not handled yet");
9551 
9552     ++NumVectorInstructions;
9553     return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind);
9554   }
9555 };
9556 
9557 } // end anonymous namespace
9558 
9559 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) {
9560   if (auto *IE = dyn_cast<InsertElementInst>(InsertInst))
9561     return cast<FixedVectorType>(IE->getType())->getNumElements();
9562 
9563   unsigned AggregateSize = 1;
9564   auto *IV = cast<InsertValueInst>(InsertInst);
9565   Type *CurrentType = IV->getType();
9566   do {
9567     if (auto *ST = dyn_cast<StructType>(CurrentType)) {
9568       for (auto *Elt : ST->elements())
9569         if (Elt != ST->getElementType(0)) // check homogeneity
9570           return None;
9571       AggregateSize *= ST->getNumElements();
9572       CurrentType = ST->getElementType(0);
9573     } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) {
9574       AggregateSize *= AT->getNumElements();
9575       CurrentType = AT->getElementType();
9576     } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) {
9577       AggregateSize *= VT->getNumElements();
9578       return AggregateSize;
9579     } else if (CurrentType->isSingleValueType()) {
9580       return AggregateSize;
9581     } else {
9582       return None;
9583     }
9584   } while (true);
9585 }
9586 
9587 static void findBuildAggregate_rec(Instruction *LastInsertInst,
9588                                    TargetTransformInfo *TTI,
9589                                    SmallVectorImpl<Value *> &BuildVectorOpds,
9590                                    SmallVectorImpl<Value *> &InsertElts,
9591                                    unsigned OperandOffset) {
9592   do {
9593     Value *InsertedOperand = LastInsertInst->getOperand(1);
9594     Optional<unsigned> OperandIndex =
9595         getInsertIndex(LastInsertInst, OperandOffset);
9596     if (!OperandIndex)
9597       return;
9598     if (isa<InsertElementInst>(InsertedOperand) ||
9599         isa<InsertValueInst>(InsertedOperand)) {
9600       findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI,
9601                              BuildVectorOpds, InsertElts, *OperandIndex);
9602 
9603     } else {
9604       BuildVectorOpds[*OperandIndex] = InsertedOperand;
9605       InsertElts[*OperandIndex] = LastInsertInst;
9606     }
9607     LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0));
9608   } while (LastInsertInst != nullptr &&
9609            (isa<InsertValueInst>(LastInsertInst) ||
9610             isa<InsertElementInst>(LastInsertInst)) &&
9611            LastInsertInst->hasOneUse());
9612 }
9613 
9614 /// Recognize construction of vectors like
9615 ///  %ra = insertelement <4 x float> poison, float %s0, i32 0
9616 ///  %rb = insertelement <4 x float> %ra, float %s1, i32 1
9617 ///  %rc = insertelement <4 x float> %rb, float %s2, i32 2
9618 ///  %rd = insertelement <4 x float> %rc, float %s3, i32 3
9619 ///  starting from the last insertelement or insertvalue instruction.
9620 ///
9621 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>},
9622 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on.
9623 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples.
9624 ///
9625 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type.
9626 ///
9627 /// \return true if it matches.
9628 static bool findBuildAggregate(Instruction *LastInsertInst,
9629                                TargetTransformInfo *TTI,
9630                                SmallVectorImpl<Value *> &BuildVectorOpds,
9631                                SmallVectorImpl<Value *> &InsertElts) {
9632 
9633   assert((isa<InsertElementInst>(LastInsertInst) ||
9634           isa<InsertValueInst>(LastInsertInst)) &&
9635          "Expected insertelement or insertvalue instruction!");
9636 
9637   assert((BuildVectorOpds.empty() && InsertElts.empty()) &&
9638          "Expected empty result vectors!");
9639 
9640   Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst);
9641   if (!AggregateSize)
9642     return false;
9643   BuildVectorOpds.resize(*AggregateSize);
9644   InsertElts.resize(*AggregateSize);
9645 
9646   findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 0);
9647   llvm::erase_value(BuildVectorOpds, nullptr);
9648   llvm::erase_value(InsertElts, nullptr);
9649   if (BuildVectorOpds.size() >= 2)
9650     return true;
9651 
9652   return false;
9653 }
9654 
9655 /// Try and get a reduction value from a phi node.
9656 ///
9657 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions
9658 /// if they come from either \p ParentBB or a containing loop latch.
9659 ///
9660 /// \returns A candidate reduction value if possible, or \code nullptr \endcode
9661 /// if not possible.
9662 static Value *getReductionValue(const DominatorTree *DT, PHINode *P,
9663                                 BasicBlock *ParentBB, LoopInfo *LI) {
9664   // There are situations where the reduction value is not dominated by the
9665   // reduction phi. Vectorizing such cases has been reported to cause
9666   // miscompiles. See PR25787.
9667   auto DominatedReduxValue = [&](Value *R) {
9668     return isa<Instruction>(R) &&
9669            DT->dominates(P->getParent(), cast<Instruction>(R)->getParent());
9670   };
9671 
9672   Value *Rdx = nullptr;
9673 
9674   // Return the incoming value if it comes from the same BB as the phi node.
9675   if (P->getIncomingBlock(0) == ParentBB) {
9676     Rdx = P->getIncomingValue(0);
9677   } else if (P->getIncomingBlock(1) == ParentBB) {
9678     Rdx = P->getIncomingValue(1);
9679   }
9680 
9681   if (Rdx && DominatedReduxValue(Rdx))
9682     return Rdx;
9683 
9684   // Otherwise, check whether we have a loop latch to look at.
9685   Loop *BBL = LI->getLoopFor(ParentBB);
9686   if (!BBL)
9687     return nullptr;
9688   BasicBlock *BBLatch = BBL->getLoopLatch();
9689   if (!BBLatch)
9690     return nullptr;
9691 
9692   // There is a loop latch, return the incoming value if it comes from
9693   // that. This reduction pattern occasionally turns up.
9694   if (P->getIncomingBlock(0) == BBLatch) {
9695     Rdx = P->getIncomingValue(0);
9696   } else if (P->getIncomingBlock(1) == BBLatch) {
9697     Rdx = P->getIncomingValue(1);
9698   }
9699 
9700   if (Rdx && DominatedReduxValue(Rdx))
9701     return Rdx;
9702 
9703   return nullptr;
9704 }
9705 
9706 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) {
9707   if (match(I, m_BinOp(m_Value(V0), m_Value(V1))))
9708     return true;
9709   if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1))))
9710     return true;
9711   if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1))))
9712     return true;
9713   if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1))))
9714     return true;
9715   if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1))))
9716     return true;
9717   if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1))))
9718     return true;
9719   if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1))))
9720     return true;
9721   return false;
9722 }
9723 
9724 /// Attempt to reduce a horizontal reduction.
9725 /// If it is legal to match a horizontal reduction feeding the phi node \a P
9726 /// with reduction operators \a Root (or one of its operands) in a basic block
9727 /// \a BB, then check if it can be done. If horizontal reduction is not found
9728 /// and root instruction is a binary operation, vectorization of the operands is
9729 /// attempted.
9730 /// \returns true if a horizontal reduction was matched and reduced or operands
9731 /// of one of the binary instruction were vectorized.
9732 /// \returns false if a horizontal reduction was not matched (or not possible)
9733 /// or no vectorization of any binary operation feeding \a Root instruction was
9734 /// performed.
9735 static bool tryToVectorizeHorReductionOrInstOperands(
9736     PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R,
9737     TargetTransformInfo *TTI,
9738     const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) {
9739   if (!ShouldVectorizeHor)
9740     return false;
9741 
9742   if (!Root)
9743     return false;
9744 
9745   if (Root->getParent() != BB || isa<PHINode>(Root))
9746     return false;
9747   // Start analysis starting from Root instruction. If horizontal reduction is
9748   // found, try to vectorize it. If it is not a horizontal reduction or
9749   // vectorization is not possible or not effective, and currently analyzed
9750   // instruction is a binary operation, try to vectorize the operands, using
9751   // pre-order DFS traversal order. If the operands were not vectorized, repeat
9752   // the same procedure considering each operand as a possible root of the
9753   // horizontal reduction.
9754   // Interrupt the process if the Root instruction itself was vectorized or all
9755   // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized.
9756   // Skip the analysis of CmpInsts.Compiler implements postanalysis of the
9757   // CmpInsts so we can skip extra attempts in
9758   // tryToVectorizeHorReductionOrInstOperands and save compile time.
9759   std::queue<std::pair<Instruction *, unsigned>> Stack;
9760   Stack.emplace(Root, 0);
9761   SmallPtrSet<Value *, 8> VisitedInstrs;
9762   SmallVector<WeakTrackingVH> PostponedInsts;
9763   bool Res = false;
9764   auto &&TryToReduce = [TTI, &P, &R](Instruction *Inst, Value *&B0,
9765                                      Value *&B1) -> Value * {
9766     bool IsBinop = matchRdxBop(Inst, B0, B1);
9767     bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value()));
9768     if (IsBinop || IsSelect) {
9769       HorizontalReduction HorRdx;
9770       if (HorRdx.matchAssociativeReduction(P, Inst))
9771         return HorRdx.tryToReduce(R, TTI);
9772     }
9773     return nullptr;
9774   };
9775   while (!Stack.empty()) {
9776     Instruction *Inst;
9777     unsigned Level;
9778     std::tie(Inst, Level) = Stack.front();
9779     Stack.pop();
9780     // Do not try to analyze instruction that has already been vectorized.
9781     // This may happen when we vectorize instruction operands on a previous
9782     // iteration while stack was populated before that happened.
9783     if (R.isDeleted(Inst))
9784       continue;
9785     Value *B0 = nullptr, *B1 = nullptr;
9786     if (Value *V = TryToReduce(Inst, B0, B1)) {
9787       Res = true;
9788       // Set P to nullptr to avoid re-analysis of phi node in
9789       // matchAssociativeReduction function unless this is the root node.
9790       P = nullptr;
9791       if (auto *I = dyn_cast<Instruction>(V)) {
9792         // Try to find another reduction.
9793         Stack.emplace(I, Level);
9794         continue;
9795       }
9796     } else {
9797       bool IsBinop = B0 && B1;
9798       if (P && IsBinop) {
9799         Inst = dyn_cast<Instruction>(B0);
9800         if (Inst == P)
9801           Inst = dyn_cast<Instruction>(B1);
9802         if (!Inst) {
9803           // Set P to nullptr to avoid re-analysis of phi node in
9804           // matchAssociativeReduction function unless this is the root node.
9805           P = nullptr;
9806           continue;
9807         }
9808       }
9809       // Set P to nullptr to avoid re-analysis of phi node in
9810       // matchAssociativeReduction function unless this is the root node.
9811       P = nullptr;
9812       // Do not try to vectorize CmpInst operands, this is done separately.
9813       // Final attempt for binop args vectorization should happen after the loop
9814       // to try to find reductions.
9815       if (!isa<CmpInst>(Inst))
9816         PostponedInsts.push_back(Inst);
9817     }
9818 
9819     // Try to vectorize operands.
9820     // Continue analysis for the instruction from the same basic block only to
9821     // save compile time.
9822     if (++Level < RecursionMaxDepth)
9823       for (auto *Op : Inst->operand_values())
9824         if (VisitedInstrs.insert(Op).second)
9825           if (auto *I = dyn_cast<Instruction>(Op))
9826             // Do not try to vectorize CmpInst operands,  this is done
9827             // separately.
9828             if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) &&
9829                 I->getParent() == BB)
9830               Stack.emplace(I, Level);
9831   }
9832   // Try to vectorized binops where reductions were not found.
9833   for (Value *V : PostponedInsts)
9834     if (auto *Inst = dyn_cast<Instruction>(V))
9835       if (!R.isDeleted(Inst))
9836         Res |= Vectorize(Inst, R);
9837   return Res;
9838 }
9839 
9840 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V,
9841                                                  BasicBlock *BB, BoUpSLP &R,
9842                                                  TargetTransformInfo *TTI) {
9843   auto *I = dyn_cast_or_null<Instruction>(V);
9844   if (!I)
9845     return false;
9846 
9847   if (!isa<BinaryOperator>(I))
9848     P = nullptr;
9849   // Try to match and vectorize a horizontal reduction.
9850   auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool {
9851     return tryToVectorize(I, R);
9852   };
9853   return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI,
9854                                                   ExtraVectorization);
9855 }
9856 
9857 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI,
9858                                                  BasicBlock *BB, BoUpSLP &R) {
9859   const DataLayout &DL = BB->getModule()->getDataLayout();
9860   if (!R.canMapToVector(IVI->getType(), DL))
9861     return false;
9862 
9863   SmallVector<Value *, 16> BuildVectorOpds;
9864   SmallVector<Value *, 16> BuildVectorInsts;
9865   if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts))
9866     return false;
9867 
9868   LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n");
9869   // Aggregate value is unlikely to be processed in vector register.
9870   return tryToVectorizeList(BuildVectorOpds, R);
9871 }
9872 
9873 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI,
9874                                                    BasicBlock *BB, BoUpSLP &R) {
9875   SmallVector<Value *, 16> BuildVectorInsts;
9876   SmallVector<Value *, 16> BuildVectorOpds;
9877   SmallVector<int> Mask;
9878   if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) ||
9879       (llvm::all_of(
9880            BuildVectorOpds,
9881            [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) &&
9882        isFixedVectorShuffle(BuildVectorOpds, Mask)))
9883     return false;
9884 
9885   LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n");
9886   return tryToVectorizeList(BuildVectorInsts, R);
9887 }
9888 
9889 template <typename T>
9890 static bool
9891 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming,
9892                        function_ref<unsigned(T *)> Limit,
9893                        function_ref<bool(T *, T *)> Comparator,
9894                        function_ref<bool(T *, T *)> AreCompatible,
9895                        function_ref<bool(ArrayRef<T *>, bool)> TryToVectorizeHelper,
9896                        bool LimitForRegisterSize) {
9897   bool Changed = false;
9898   // Sort by type, parent, operands.
9899   stable_sort(Incoming, Comparator);
9900 
9901   // Try to vectorize elements base on their type.
9902   SmallVector<T *> Candidates;
9903   for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) {
9904     // Look for the next elements with the same type, parent and operand
9905     // kinds.
9906     auto *SameTypeIt = IncIt;
9907     while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt))
9908       ++SameTypeIt;
9909 
9910     // Try to vectorize them.
9911     unsigned NumElts = (SameTypeIt - IncIt);
9912     LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes ("
9913                       << NumElts << ")\n");
9914     // The vectorization is a 3-state attempt:
9915     // 1. Try to vectorize instructions with the same/alternate opcodes with the
9916     // size of maximal register at first.
9917     // 2. Try to vectorize remaining instructions with the same type, if
9918     // possible. This may result in the better vectorization results rather than
9919     // if we try just to vectorize instructions with the same/alternate opcodes.
9920     // 3. Final attempt to try to vectorize all instructions with the
9921     // same/alternate ops only, this may result in some extra final
9922     // vectorization.
9923     if (NumElts > 1 &&
9924         TryToVectorizeHelper(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) {
9925       // Success start over because instructions might have been changed.
9926       Changed = true;
9927     } else if (NumElts < Limit(*IncIt) &&
9928                (Candidates.empty() ||
9929                 Candidates.front()->getType() == (*IncIt)->getType())) {
9930       Candidates.append(IncIt, std::next(IncIt, NumElts));
9931     }
9932     // Final attempt to vectorize instructions with the same types.
9933     if (Candidates.size() > 1 &&
9934         (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) {
9935       if (TryToVectorizeHelper(Candidates, /*LimitForRegisterSize=*/false)) {
9936         // Success start over because instructions might have been changed.
9937         Changed = true;
9938       } else if (LimitForRegisterSize) {
9939         // Try to vectorize using small vectors.
9940         for (auto *It = Candidates.begin(), *End = Candidates.end();
9941              It != End;) {
9942           auto *SameTypeIt = It;
9943           while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It))
9944             ++SameTypeIt;
9945           unsigned NumElts = (SameTypeIt - It);
9946           if (NumElts > 1 && TryToVectorizeHelper(makeArrayRef(It, NumElts),
9947                                             /*LimitForRegisterSize=*/false))
9948             Changed = true;
9949           It = SameTypeIt;
9950         }
9951       }
9952       Candidates.clear();
9953     }
9954 
9955     // Start over at the next instruction of a different type (or the end).
9956     IncIt = SameTypeIt;
9957   }
9958   return Changed;
9959 }
9960 
9961 /// Compare two cmp instructions. If IsCompatibility is true, function returns
9962 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding
9963 /// operands. If IsCompatibility is false, function implements strict weak
9964 /// ordering relation between two cmp instructions, returning true if the first
9965 /// instruction is "less" than the second, i.e. its predicate is less than the
9966 /// predicate of the second or the operands IDs are less than the operands IDs
9967 /// of the second cmp instruction.
9968 template <bool IsCompatibility>
9969 static bool compareCmp(Value *V, Value *V2,
9970                        function_ref<bool(Instruction *)> IsDeleted) {
9971   auto *CI1 = cast<CmpInst>(V);
9972   auto *CI2 = cast<CmpInst>(V2);
9973   if (IsDeleted(CI2) || !isValidElementType(CI2->getType()))
9974     return false;
9975   if (CI1->getOperand(0)->getType()->getTypeID() <
9976       CI2->getOperand(0)->getType()->getTypeID())
9977     return !IsCompatibility;
9978   if (CI1->getOperand(0)->getType()->getTypeID() >
9979       CI2->getOperand(0)->getType()->getTypeID())
9980     return false;
9981   CmpInst::Predicate Pred1 = CI1->getPredicate();
9982   CmpInst::Predicate Pred2 = CI2->getPredicate();
9983   CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1);
9984   CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2);
9985   CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1);
9986   CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2);
9987   if (BasePred1 < BasePred2)
9988     return !IsCompatibility;
9989   if (BasePred1 > BasePred2)
9990     return false;
9991   // Compare operands.
9992   bool LEPreds = Pred1 <= Pred2;
9993   bool GEPreds = Pred1 >= Pred2;
9994   for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) {
9995     auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1);
9996     auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1);
9997     if (Op1->getValueID() < Op2->getValueID())
9998       return !IsCompatibility;
9999     if (Op1->getValueID() > Op2->getValueID())
10000       return false;
10001     if (auto *I1 = dyn_cast<Instruction>(Op1))
10002       if (auto *I2 = dyn_cast<Instruction>(Op2)) {
10003         if (I1->getParent() != I2->getParent())
10004           return false;
10005         InstructionsState S = getSameOpcode({I1, I2});
10006         if (S.getOpcode())
10007           continue;
10008         return false;
10009       }
10010   }
10011   return IsCompatibility;
10012 }
10013 
10014 bool SLPVectorizerPass::vectorizeSimpleInstructions(
10015     SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R,
10016     bool AtTerminator) {
10017   bool OpsChanged = false;
10018   SmallVector<Instruction *, 4> PostponedCmps;
10019   for (auto *I : reverse(Instructions)) {
10020     if (R.isDeleted(I))
10021       continue;
10022     if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I))
10023       OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R);
10024     else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I))
10025       OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R);
10026     else if (isa<CmpInst>(I))
10027       PostponedCmps.push_back(I);
10028   }
10029   if (AtTerminator) {
10030     // Try to find reductions first.
10031     for (Instruction *I : PostponedCmps) {
10032       if (R.isDeleted(I))
10033         continue;
10034       for (Value *Op : I->operands())
10035         OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI);
10036     }
10037     // Try to vectorize operands as vector bundles.
10038     for (Instruction *I : PostponedCmps) {
10039       if (R.isDeleted(I))
10040         continue;
10041       OpsChanged |= tryToVectorize(I, R);
10042     }
10043     // Try to vectorize list of compares.
10044     // Sort by type, compare predicate, etc.
10045     auto &&CompareSorter = [&R](Value *V, Value *V2) {
10046       return compareCmp<false>(V, V2,
10047                                [&R](Instruction *I) { return R.isDeleted(I); });
10048     };
10049 
10050     auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) {
10051       if (V1 == V2)
10052         return true;
10053       return compareCmp<true>(V1, V2,
10054                               [&R](Instruction *I) { return R.isDeleted(I); });
10055     };
10056     auto Limit = [&R](Value *V) {
10057       unsigned EltSize = R.getVectorElementSize(V);
10058       return std::max(2U, R.getMaxVecRegSize() / EltSize);
10059     };
10060 
10061     SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end());
10062     OpsChanged |= tryToVectorizeSequence<Value>(
10063         Vals, Limit, CompareSorter, AreCompatibleCompares,
10064         [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) {
10065           // Exclude possible reductions from other blocks.
10066           bool ArePossiblyReducedInOtherBlock =
10067               any_of(Candidates, [](Value *V) {
10068                 return any_of(V->users(), [V](User *U) {
10069                   return isa<SelectInst>(U) &&
10070                          cast<SelectInst>(U)->getParent() !=
10071                              cast<Instruction>(V)->getParent();
10072                 });
10073               });
10074           if (ArePossiblyReducedInOtherBlock)
10075             return false;
10076           return tryToVectorizeList(Candidates, R, LimitForRegisterSize);
10077         },
10078         /*LimitForRegisterSize=*/true);
10079     Instructions.clear();
10080   } else {
10081     // Insert in reverse order since the PostponedCmps vector was filled in
10082     // reverse order.
10083     Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend());
10084   }
10085   return OpsChanged;
10086 }
10087 
10088 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
10089   bool Changed = false;
10090   SmallVector<Value *, 4> Incoming;
10091   SmallPtrSet<Value *, 16> VisitedInstrs;
10092   // Maps phi nodes to the non-phi nodes found in the use tree for each phi
10093   // node. Allows better to identify the chains that can be vectorized in the
10094   // better way.
10095   DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes;
10096   auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) {
10097     assert(isValidElementType(V1->getType()) &&
10098            isValidElementType(V2->getType()) &&
10099            "Expected vectorizable types only.");
10100     // It is fine to compare type IDs here, since we expect only vectorizable
10101     // types, like ints, floats and pointers, we don't care about other type.
10102     if (V1->getType()->getTypeID() < V2->getType()->getTypeID())
10103       return true;
10104     if (V1->getType()->getTypeID() > V2->getType()->getTypeID())
10105       return false;
10106     ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1];
10107     ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2];
10108     if (Opcodes1.size() < Opcodes2.size())
10109       return true;
10110     if (Opcodes1.size() > Opcodes2.size())
10111       return false;
10112     Optional<bool> ConstOrder;
10113     for (int I = 0, E = Opcodes1.size(); I < E; ++I) {
10114       // Undefs are compatible with any other value.
10115       if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) {
10116         if (!ConstOrder)
10117           ConstOrder =
10118               !isa<UndefValue>(Opcodes1[I]) && isa<UndefValue>(Opcodes2[I]);
10119         continue;
10120       }
10121       if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I]))
10122         if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) {
10123           DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent());
10124           DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent());
10125           if (!NodeI1)
10126             return NodeI2 != nullptr;
10127           if (!NodeI2)
10128             return false;
10129           assert((NodeI1 == NodeI2) ==
10130                      (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) &&
10131                  "Different nodes should have different DFS numbers");
10132           if (NodeI1 != NodeI2)
10133             return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn();
10134           InstructionsState S = getSameOpcode({I1, I2});
10135           if (S.getOpcode())
10136             continue;
10137           return I1->getOpcode() < I2->getOpcode();
10138         }
10139       if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) {
10140         if (!ConstOrder)
10141           ConstOrder = Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID();
10142         continue;
10143       }
10144       if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID())
10145         return true;
10146       if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID())
10147         return false;
10148     }
10149     return ConstOrder && *ConstOrder;
10150   };
10151   auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) {
10152     if (V1 == V2)
10153       return true;
10154     if (V1->getType() != V2->getType())
10155       return false;
10156     ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1];
10157     ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2];
10158     if (Opcodes1.size() != Opcodes2.size())
10159       return false;
10160     for (int I = 0, E = Opcodes1.size(); I < E; ++I) {
10161       // Undefs are compatible with any other value.
10162       if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I]))
10163         continue;
10164       if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I]))
10165         if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) {
10166           if (I1->getParent() != I2->getParent())
10167             return false;
10168           InstructionsState S = getSameOpcode({I1, I2});
10169           if (S.getOpcode())
10170             continue;
10171           return false;
10172         }
10173       if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I]))
10174         continue;
10175       if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID())
10176         return false;
10177     }
10178     return true;
10179   };
10180   auto Limit = [&R](Value *V) {
10181     unsigned EltSize = R.getVectorElementSize(V);
10182     return std::max(2U, R.getMaxVecRegSize() / EltSize);
10183   };
10184 
10185   bool HaveVectorizedPhiNodes = false;
10186   do {
10187     // Collect the incoming values from the PHIs.
10188     Incoming.clear();
10189     for (Instruction &I : *BB) {
10190       PHINode *P = dyn_cast<PHINode>(&I);
10191       if (!P)
10192         break;
10193 
10194       // No need to analyze deleted, vectorized and non-vectorizable
10195       // instructions.
10196       if (!VisitedInstrs.count(P) && !R.isDeleted(P) &&
10197           isValidElementType(P->getType()))
10198         Incoming.push_back(P);
10199     }
10200 
10201     // Find the corresponding non-phi nodes for better matching when trying to
10202     // build the tree.
10203     for (Value *V : Incoming) {
10204       SmallVectorImpl<Value *> &Opcodes =
10205           PHIToOpcodes.try_emplace(V).first->getSecond();
10206       if (!Opcodes.empty())
10207         continue;
10208       SmallVector<Value *, 4> Nodes(1, V);
10209       SmallPtrSet<Value *, 4> Visited;
10210       while (!Nodes.empty()) {
10211         auto *PHI = cast<PHINode>(Nodes.pop_back_val());
10212         if (!Visited.insert(PHI).second)
10213           continue;
10214         for (Value *V : PHI->incoming_values()) {
10215           if (auto *PHI1 = dyn_cast<PHINode>((V))) {
10216             Nodes.push_back(PHI1);
10217             continue;
10218           }
10219           Opcodes.emplace_back(V);
10220         }
10221       }
10222     }
10223 
10224     HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>(
10225         Incoming, Limit, PHICompare, AreCompatiblePHIs,
10226         [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) {
10227           return tryToVectorizeList(Candidates, R, LimitForRegisterSize);
10228         },
10229         /*LimitForRegisterSize=*/true);
10230     Changed |= HaveVectorizedPhiNodes;
10231     VisitedInstrs.insert(Incoming.begin(), Incoming.end());
10232   } while (HaveVectorizedPhiNodes);
10233 
10234   VisitedInstrs.clear();
10235 
10236   SmallVector<Instruction *, 8> PostProcessInstructions;
10237   SmallDenseSet<Instruction *, 4> KeyNodes;
10238   for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
10239     // Skip instructions with scalable type. The num of elements is unknown at
10240     // compile-time for scalable type.
10241     if (isa<ScalableVectorType>(it->getType()))
10242       continue;
10243 
10244     // Skip instructions marked for the deletion.
10245     if (R.isDeleted(&*it))
10246       continue;
10247     // We may go through BB multiple times so skip the one we have checked.
10248     if (!VisitedInstrs.insert(&*it).second) {
10249       if (it->use_empty() && KeyNodes.contains(&*it) &&
10250           vectorizeSimpleInstructions(PostProcessInstructions, BB, R,
10251                                       it->isTerminator())) {
10252         // We would like to start over since some instructions are deleted
10253         // and the iterator may become invalid value.
10254         Changed = true;
10255         it = BB->begin();
10256         e = BB->end();
10257       }
10258       continue;
10259     }
10260 
10261     if (isa<DbgInfoIntrinsic>(it))
10262       continue;
10263 
10264     // Try to vectorize reductions that use PHINodes.
10265     if (PHINode *P = dyn_cast<PHINode>(it)) {
10266       // Check that the PHI is a reduction PHI.
10267       if (P->getNumIncomingValues() == 2) {
10268         // Try to match and vectorize a horizontal reduction.
10269         if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R,
10270                                      TTI)) {
10271           Changed = true;
10272           it = BB->begin();
10273           e = BB->end();
10274           continue;
10275         }
10276       }
10277       // Try to vectorize the incoming values of the PHI, to catch reductions
10278       // that feed into PHIs.
10279       for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) {
10280         // Skip if the incoming block is the current BB for now. Also, bypass
10281         // unreachable IR for efficiency and to avoid crashing.
10282         // TODO: Collect the skipped incoming values and try to vectorize them
10283         // after processing BB.
10284         if (BB == P->getIncomingBlock(I) ||
10285             !DT->isReachableFromEntry(P->getIncomingBlock(I)))
10286           continue;
10287 
10288         Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I),
10289                                             P->getIncomingBlock(I), R, TTI);
10290       }
10291       continue;
10292     }
10293 
10294     // Ran into an instruction without users, like terminator, or function call
10295     // with ignored return value, store. Ignore unused instructions (basing on
10296     // instruction type, except for CallInst and InvokeInst).
10297     if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) ||
10298                             isa<InvokeInst>(it))) {
10299       KeyNodes.insert(&*it);
10300       bool OpsChanged = false;
10301       if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) {
10302         for (auto *V : it->operand_values()) {
10303           // Try to match and vectorize a horizontal reduction.
10304           OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI);
10305         }
10306       }
10307       // Start vectorization of post-process list of instructions from the
10308       // top-tree instructions to try to vectorize as many instructions as
10309       // possible.
10310       OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R,
10311                                                 it->isTerminator());
10312       if (OpsChanged) {
10313         // We would like to start over since some instructions are deleted
10314         // and the iterator may become invalid value.
10315         Changed = true;
10316         it = BB->begin();
10317         e = BB->end();
10318         continue;
10319       }
10320     }
10321 
10322     if (isa<InsertElementInst>(it) || isa<CmpInst>(it) ||
10323         isa<InsertValueInst>(it))
10324       PostProcessInstructions.push_back(&*it);
10325   }
10326 
10327   return Changed;
10328 }
10329 
10330 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) {
10331   auto Changed = false;
10332   for (auto &Entry : GEPs) {
10333     // If the getelementptr list has fewer than two elements, there's nothing
10334     // to do.
10335     if (Entry.second.size() < 2)
10336       continue;
10337 
10338     LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length "
10339                       << Entry.second.size() << ".\n");
10340 
10341     // Process the GEP list in chunks suitable for the target's supported
10342     // vector size. If a vector register can't hold 1 element, we are done. We
10343     // are trying to vectorize the index computations, so the maximum number of
10344     // elements is based on the size of the index expression, rather than the
10345     // size of the GEP itself (the target's pointer size).
10346     unsigned MaxVecRegSize = R.getMaxVecRegSize();
10347     unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin());
10348     if (MaxVecRegSize < EltSize)
10349       continue;
10350 
10351     unsigned MaxElts = MaxVecRegSize / EltSize;
10352     for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) {
10353       auto Len = std::min<unsigned>(BE - BI, MaxElts);
10354       ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len);
10355 
10356       // Initialize a set a candidate getelementptrs. Note that we use a
10357       // SetVector here to preserve program order. If the index computations
10358       // are vectorizable and begin with loads, we want to minimize the chance
10359       // of having to reorder them later.
10360       SetVector<Value *> Candidates(GEPList.begin(), GEPList.end());
10361 
10362       // Some of the candidates may have already been vectorized after we
10363       // initially collected them. If so, they are marked as deleted, so remove
10364       // them from the set of candidates.
10365       Candidates.remove_if(
10366           [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); });
10367 
10368       // Remove from the set of candidates all pairs of getelementptrs with
10369       // constant differences. Such getelementptrs are likely not good
10370       // candidates for vectorization in a bottom-up phase since one can be
10371       // computed from the other. We also ensure all candidate getelementptr
10372       // indices are unique.
10373       for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) {
10374         auto *GEPI = GEPList[I];
10375         if (!Candidates.count(GEPI))
10376           continue;
10377         auto *SCEVI = SE->getSCEV(GEPList[I]);
10378         for (int J = I + 1; J < E && Candidates.size() > 1; ++J) {
10379           auto *GEPJ = GEPList[J];
10380           auto *SCEVJ = SE->getSCEV(GEPList[J]);
10381           if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) {
10382             Candidates.remove(GEPI);
10383             Candidates.remove(GEPJ);
10384           } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) {
10385             Candidates.remove(GEPJ);
10386           }
10387         }
10388       }
10389 
10390       // We break out of the above computation as soon as we know there are
10391       // fewer than two candidates remaining.
10392       if (Candidates.size() < 2)
10393         continue;
10394 
10395       // Add the single, non-constant index of each candidate to the bundle. We
10396       // ensured the indices met these constraints when we originally collected
10397       // the getelementptrs.
10398       SmallVector<Value *, 16> Bundle(Candidates.size());
10399       auto BundleIndex = 0u;
10400       for (auto *V : Candidates) {
10401         auto *GEP = cast<GetElementPtrInst>(V);
10402         auto *GEPIdx = GEP->idx_begin()->get();
10403         assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx));
10404         Bundle[BundleIndex++] = GEPIdx;
10405       }
10406 
10407       // Try and vectorize the indices. We are currently only interested in
10408       // gather-like cases of the form:
10409       //
10410       // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ...
10411       //
10412       // where the loads of "a", the loads of "b", and the subtractions can be
10413       // performed in parallel. It's likely that detecting this pattern in a
10414       // bottom-up phase will be simpler and less costly than building a
10415       // full-blown top-down phase beginning at the consecutive loads.
10416       Changed |= tryToVectorizeList(Bundle, R);
10417     }
10418   }
10419   return Changed;
10420 }
10421 
10422 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) {
10423   bool Changed = false;
10424   // Sort by type, base pointers and values operand. Value operands must be
10425   // compatible (have the same opcode, same parent), otherwise it is
10426   // definitely not profitable to try to vectorize them.
10427   auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) {
10428     if (V->getPointerOperandType()->getTypeID() <
10429         V2->getPointerOperandType()->getTypeID())
10430       return true;
10431     if (V->getPointerOperandType()->getTypeID() >
10432         V2->getPointerOperandType()->getTypeID())
10433       return false;
10434     // UndefValues are compatible with all other values.
10435     if (isa<UndefValue>(V->getValueOperand()) ||
10436         isa<UndefValue>(V2->getValueOperand()))
10437       return false;
10438     if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand()))
10439       if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) {
10440         DomTreeNodeBase<llvm::BasicBlock> *NodeI1 =
10441             DT->getNode(I1->getParent());
10442         DomTreeNodeBase<llvm::BasicBlock> *NodeI2 =
10443             DT->getNode(I2->getParent());
10444         assert(NodeI1 && "Should only process reachable instructions");
10445         assert(NodeI1 && "Should only process reachable instructions");
10446         assert((NodeI1 == NodeI2) ==
10447                    (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) &&
10448                "Different nodes should have different DFS numbers");
10449         if (NodeI1 != NodeI2)
10450           return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn();
10451         InstructionsState S = getSameOpcode({I1, I2});
10452         if (S.getOpcode())
10453           return false;
10454         return I1->getOpcode() < I2->getOpcode();
10455       }
10456     if (isa<Constant>(V->getValueOperand()) &&
10457         isa<Constant>(V2->getValueOperand()))
10458       return false;
10459     return V->getValueOperand()->getValueID() <
10460            V2->getValueOperand()->getValueID();
10461   };
10462 
10463   auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) {
10464     if (V1 == V2)
10465       return true;
10466     if (V1->getPointerOperandType() != V2->getPointerOperandType())
10467       return false;
10468     // Undefs are compatible with any other value.
10469     if (isa<UndefValue>(V1->getValueOperand()) ||
10470         isa<UndefValue>(V2->getValueOperand()))
10471       return true;
10472     if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand()))
10473       if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) {
10474         if (I1->getParent() != I2->getParent())
10475           return false;
10476         InstructionsState S = getSameOpcode({I1, I2});
10477         return S.getOpcode() > 0;
10478       }
10479     if (isa<Constant>(V1->getValueOperand()) &&
10480         isa<Constant>(V2->getValueOperand()))
10481       return true;
10482     return V1->getValueOperand()->getValueID() ==
10483            V2->getValueOperand()->getValueID();
10484   };
10485   auto Limit = [&R, this](StoreInst *SI) {
10486     unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType());
10487     return R.getMinVF(EltSize);
10488   };
10489 
10490   // Attempt to sort and vectorize each of the store-groups.
10491   for (auto &Pair : Stores) {
10492     if (Pair.second.size() < 2)
10493       continue;
10494 
10495     LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
10496                       << Pair.second.size() << ".\n");
10497 
10498     if (!isValidElementType(Pair.second.front()->getValueOperand()->getType()))
10499       continue;
10500 
10501     Changed |= tryToVectorizeSequence<StoreInst>(
10502         Pair.second, Limit, StoreSorter, AreCompatibleStores,
10503         [this, &R](ArrayRef<StoreInst *> Candidates, bool) {
10504           return vectorizeStores(Candidates, R);
10505         },
10506         /*LimitForRegisterSize=*/false);
10507   }
10508   return Changed;
10509 }
10510 
10511 char SLPVectorizer::ID = 0;
10512 
10513 static const char lv_name[] = "SLP Vectorizer";
10514 
10515 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
10516 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
10517 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
10518 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
10519 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
10520 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
10521 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
10522 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
10523 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
10524 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
10525 
10526 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); }
10527