1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/PostOrderIterator.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/CodeMetrics.h" 24 #include "llvm/Analysis/GlobalsModRef.h" 25 #include "llvm/Analysis/LoopAccessAnalysis.h" 26 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/Analysis/VectorUtils.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/NoFolder.h" 36 #include "llvm/IR/Type.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/IR/Verifier.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/Vectorize.h" 44 #include <algorithm> 45 #include <memory> 46 47 using namespace llvm; 48 using namespace slpvectorizer; 49 50 #define SV_NAME "slp-vectorizer" 51 #define DEBUG_TYPE "SLP" 52 53 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 54 55 static cl::opt<int> 56 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 57 cl::desc("Only vectorize if you gain more than this " 58 "number ")); 59 60 static cl::opt<bool> 61 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 62 cl::desc("Attempt to vectorize horizontal reductions")); 63 64 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 65 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 66 cl::desc( 67 "Attempt to vectorize horizontal reductions feeding into a store")); 68 69 static cl::opt<int> 70 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 71 cl::desc("Attempt to vectorize for this register size in bits")); 72 73 /// Limits the size of scheduling regions in a block. 74 /// It avoid long compile times for _very_ large blocks where vector 75 /// instructions are spread over a wide range. 76 /// This limit is way higher than needed by real-world functions. 77 static cl::opt<int> 78 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 79 cl::desc("Limit the size of the SLP scheduling region per block")); 80 81 static cl::opt<int> MinVectorRegSizeOption( 82 "slp-min-reg-size", cl::init(128), cl::Hidden, 83 cl::desc("Attempt to vectorize for this register size in bits")); 84 85 static cl::opt<unsigned> RecursionMaxDepth( 86 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 87 cl::desc("Limit the recursion depth when building a vectorizable tree")); 88 89 static cl::opt<unsigned> MinTreeSize( 90 "slp-min-tree-size", cl::init(3), cl::Hidden, 91 cl::desc("Only vectorize small trees if they are fully vectorizable")); 92 93 // Limit the number of alias checks. The limit is chosen so that 94 // it has no negative effect on the llvm benchmarks. 95 static const unsigned AliasedCheckLimit = 10; 96 97 // Another limit for the alias checks: The maximum distance between load/store 98 // instructions where alias checks are done. 99 // This limit is useful for very large basic blocks. 100 static const unsigned MaxMemDepDistance = 160; 101 102 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 103 /// regions to be handled. 104 static const int MinScheduleRegionSize = 16; 105 106 /// \brief Predicate for the element types that the SLP vectorizer supports. 107 /// 108 /// The most important thing to filter here are types which are invalid in LLVM 109 /// vectors. We also filter target specific types which have absolutely no 110 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 111 /// avoids spending time checking the cost model and realizing that they will 112 /// be inevitably scalarized. 113 static bool isValidElementType(Type *Ty) { 114 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 115 !Ty->isPPC_FP128Ty(); 116 } 117 118 /// \returns true if all of the instructions in \p VL are in the same block or 119 /// false otherwise. 120 static bool allSameBlock(ArrayRef<Value *> VL) { 121 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 122 if (!I0) 123 return false; 124 BasicBlock *BB = I0->getParent(); 125 for (int i = 1, e = VL.size(); i < e; i++) { 126 Instruction *I = dyn_cast<Instruction>(VL[i]); 127 if (!I) 128 return false; 129 130 if (BB != I->getParent()) 131 return false; 132 } 133 return true; 134 } 135 136 /// \returns True if all of the values in \p VL are constants. 137 static bool allConstant(ArrayRef<Value *> VL) { 138 for (Value *i : VL) 139 if (!isa<Constant>(i)) 140 return false; 141 return true; 142 } 143 144 /// \returns True if all of the values in \p VL are identical. 145 static bool isSplat(ArrayRef<Value *> VL) { 146 for (unsigned i = 1, e = VL.size(); i < e; ++i) 147 if (VL[i] != VL[0]) 148 return false; 149 return true; 150 } 151 152 ///\returns Opcode that can be clubbed with \p Op to create an alternate 153 /// sequence which can later be merged as a ShuffleVector instruction. 154 static unsigned getAltOpcode(unsigned Op) { 155 switch (Op) { 156 case Instruction::FAdd: 157 return Instruction::FSub; 158 case Instruction::FSub: 159 return Instruction::FAdd; 160 case Instruction::Add: 161 return Instruction::Sub; 162 case Instruction::Sub: 163 return Instruction::Add; 164 default: 165 return 0; 166 } 167 } 168 169 ///\returns bool representing if Opcode \p Op can be part 170 /// of an alternate sequence which can later be merged as 171 /// a ShuffleVector instruction. 172 static bool canCombineAsAltInst(unsigned Op) { 173 return Op == Instruction::FAdd || Op == Instruction::FSub || 174 Op == Instruction::Sub || Op == Instruction::Add; 175 } 176 177 /// \returns ShuffleVector instruction if instructions in \p VL have 178 /// alternate fadd,fsub / fsub,fadd/add,sub/sub,add sequence. 179 /// (i.e. e.g. opcodes of fadd,fsub,fadd,fsub...) 180 static unsigned isAltInst(ArrayRef<Value *> VL) { 181 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 182 unsigned Opcode = I0->getOpcode(); 183 unsigned AltOpcode = getAltOpcode(Opcode); 184 for (int i = 1, e = VL.size(); i < e; i++) { 185 Instruction *I = dyn_cast<Instruction>(VL[i]); 186 if (!I || I->getOpcode() != ((i & 1) ? AltOpcode : Opcode)) 187 return 0; 188 } 189 return Instruction::ShuffleVector; 190 } 191 192 /// \returns The opcode if all of the Instructions in \p VL have the same 193 /// opcode, or zero. 194 static unsigned getSameOpcode(ArrayRef<Value *> VL) { 195 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 196 if (!I0) 197 return 0; 198 unsigned Opcode = I0->getOpcode(); 199 for (int i = 1, e = VL.size(); i < e; i++) { 200 Instruction *I = dyn_cast<Instruction>(VL[i]); 201 if (!I || Opcode != I->getOpcode()) { 202 if (canCombineAsAltInst(Opcode) && i == 1) 203 return isAltInst(VL); 204 return 0; 205 } 206 } 207 return Opcode; 208 } 209 210 /// Get the intersection (logical and) of all of the potential IR flags 211 /// of each scalar operation (VL) that will be converted into a vector (I). 212 /// Flag set: NSW, NUW, exact, and all of fast-math. 213 static void propagateIRFlags(Value *I, ArrayRef<Value *> VL) { 214 if (auto *VecOp = dyn_cast<Instruction>(I)) { 215 if (auto *I0 = dyn_cast<Instruction>(VL[0])) { 216 // VecOVp is initialized to the 0th scalar, so start counting from index 217 // '1'. 218 VecOp->copyIRFlags(I0); 219 for (int i = 1, e = VL.size(); i < e; ++i) { 220 if (auto *Scalar = dyn_cast<Instruction>(VL[i])) 221 VecOp->andIRFlags(Scalar); 222 } 223 } 224 } 225 } 226 227 /// \returns true if all of the values in \p VL have the same type or false 228 /// otherwise. 229 static bool allSameType(ArrayRef<Value *> VL) { 230 Type *Ty = VL[0]->getType(); 231 for (int i = 1, e = VL.size(); i < e; i++) 232 if (VL[i]->getType() != Ty) 233 return false; 234 235 return true; 236 } 237 238 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 239 static bool matchExtractIndex(Instruction *E, unsigned Idx, unsigned Opcode) { 240 assert(Opcode == Instruction::ExtractElement || 241 Opcode == Instruction::ExtractValue); 242 if (Opcode == Instruction::ExtractElement) { 243 ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 244 return CI && CI->getZExtValue() == Idx; 245 } else { 246 ExtractValueInst *EI = cast<ExtractValueInst>(E); 247 return EI->getNumIndices() == 1 && *EI->idx_begin() == Idx; 248 } 249 } 250 251 /// \returns True if in-tree use also needs extract. This refers to 252 /// possible scalar operand in vectorized instruction. 253 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 254 TargetLibraryInfo *TLI) { 255 256 unsigned Opcode = UserInst->getOpcode(); 257 switch (Opcode) { 258 case Instruction::Load: { 259 LoadInst *LI = cast<LoadInst>(UserInst); 260 return (LI->getPointerOperand() == Scalar); 261 } 262 case Instruction::Store: { 263 StoreInst *SI = cast<StoreInst>(UserInst); 264 return (SI->getPointerOperand() == Scalar); 265 } 266 case Instruction::Call: { 267 CallInst *CI = cast<CallInst>(UserInst); 268 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 269 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 270 return (CI->getArgOperand(1) == Scalar); 271 } 272 } 273 default: 274 return false; 275 } 276 } 277 278 /// \returns the AA location that is being access by the instruction. 279 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 280 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 281 return MemoryLocation::get(SI); 282 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 283 return MemoryLocation::get(LI); 284 return MemoryLocation(); 285 } 286 287 /// \returns True if the instruction is not a volatile or atomic load/store. 288 static bool isSimple(Instruction *I) { 289 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 290 return LI->isSimple(); 291 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 292 return SI->isSimple(); 293 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 294 return !MI->isVolatile(); 295 return true; 296 } 297 298 namespace llvm { 299 namespace slpvectorizer { 300 /// Bottom Up SLP Vectorizer. 301 class BoUpSLP { 302 public: 303 typedef SmallVector<Value *, 8> ValueList; 304 typedef SmallVector<Instruction *, 16> InstrList; 305 typedef SmallPtrSet<Value *, 16> ValueSet; 306 typedef SmallVector<StoreInst *, 8> StoreList; 307 typedef MapVector<Value *, SmallVector<Instruction *, 2>> 308 ExtraValueToDebugLocsMap; 309 310 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 311 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 312 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 313 const DataLayout *DL) 314 : NumLoadsWantToKeepOrder(0), NumLoadsWantToChangeOrder(0), F(Func), 315 SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), DB(DB), 316 DL(DL), Builder(Se->getContext()) { 317 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 318 // Use the vector register size specified by the target unless overridden 319 // by a command-line option. 320 // TODO: It would be better to limit the vectorization factor based on 321 // data type rather than just register size. For example, x86 AVX has 322 // 256-bit registers, but it does not support integer operations 323 // at that width (that requires AVX2). 324 if (MaxVectorRegSizeOption.getNumOccurrences()) 325 MaxVecRegSize = MaxVectorRegSizeOption; 326 else 327 MaxVecRegSize = TTI->getRegisterBitWidth(true); 328 329 MinVecRegSize = MinVectorRegSizeOption; 330 } 331 332 /// \brief Vectorize the tree that starts with the elements in \p VL. 333 /// Returns the vectorized root. 334 Value *vectorizeTree(); 335 /// Vectorize the tree but with the list of externally used values \p 336 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 337 /// generated extractvalue instructions. 338 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 339 340 /// \returns the cost incurred by unwanted spills and fills, caused by 341 /// holding live values over call sites. 342 int getSpillCost(); 343 344 /// \returns the vectorization cost of the subtree that starts at \p VL. 345 /// A negative number means that this is profitable. 346 int getTreeCost(); 347 348 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 349 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 350 void buildTree(ArrayRef<Value *> Roots, 351 ArrayRef<Value *> UserIgnoreLst = None); 352 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 353 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 354 /// into account (anf updating it, if required) list of externally used 355 /// values stored in \p ExternallyUsedValues. 356 void buildTree(ArrayRef<Value *> Roots, 357 ExtraValueToDebugLocsMap &ExternallyUsedValues, 358 ArrayRef<Value *> UserIgnoreLst = None); 359 360 /// Clear the internal data structures that are created by 'buildTree'. 361 void deleteTree() { 362 VectorizableTree.clear(); 363 ScalarToTreeEntry.clear(); 364 MustGather.clear(); 365 ExternalUses.clear(); 366 NumLoadsWantToKeepOrder = 0; 367 NumLoadsWantToChangeOrder = 0; 368 for (auto &Iter : BlocksSchedules) { 369 BlockScheduling *BS = Iter.second.get(); 370 BS->clear(); 371 } 372 MinBWs.clear(); 373 } 374 375 /// \brief Perform LICM and CSE on the newly generated gather sequences. 376 void optimizeGatherSequence(); 377 378 /// \returns true if it is beneficial to reverse the vector order. 379 bool shouldReorder() const { 380 return NumLoadsWantToChangeOrder > NumLoadsWantToKeepOrder; 381 } 382 383 /// \return The vector element size in bits to use when vectorizing the 384 /// expression tree ending at \p V. If V is a store, the size is the width of 385 /// the stored value. Otherwise, the size is the width of the largest loaded 386 /// value reaching V. This method is used by the vectorizer to calculate 387 /// vectorization factors. 388 unsigned getVectorElementSize(Value *V); 389 390 /// Compute the minimum type sizes required to represent the entries in a 391 /// vectorizable tree. 392 void computeMinimumValueSizes(); 393 394 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 395 unsigned getMaxVecRegSize() const { 396 return MaxVecRegSize; 397 } 398 399 // \returns minimum vector register size as set by cl::opt. 400 unsigned getMinVecRegSize() const { 401 return MinVecRegSize; 402 } 403 404 /// \brief Check if ArrayType or StructType is isomorphic to some VectorType. 405 /// 406 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 407 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 408 409 /// \returns True if the VectorizableTree is both tiny and not fully 410 /// vectorizable. We do not vectorize such trees. 411 bool isTreeTinyAndNotFullyVectorizable(); 412 413 private: 414 struct TreeEntry; 415 416 /// \returns the cost of the vectorizable entry. 417 int getEntryCost(TreeEntry *E); 418 419 /// This is the recursive part of buildTree. 420 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth); 421 422 /// \returns True if the ExtractElement/ExtractValue instructions in VL can 423 /// be vectorized to use the original vector (or aggregate "bitcast" to a vector). 424 bool canReuseExtract(ArrayRef<Value *> VL, unsigned Opcode) const; 425 426 /// Vectorize a single entry in the tree. VL icontains all isomorphic scalars 427 /// in order of its usage in a user program, for example ADD1, ADD2 and so on 428 /// or LOAD1 , LOAD2 etc. 429 Value *vectorizeTree(ArrayRef<Value *> VL, TreeEntry *E); 430 431 /// Vectorize a single entry in the tree, starting in \p VL. 432 Value *vectorizeTree(ArrayRef<Value *> VL); 433 434 /// \returns the pointer to the vectorized value if \p VL is already 435 /// vectorized, or NULL. They may happen in cycles. 436 Value *alreadyVectorized(ArrayRef<Value *> VL) const; 437 438 /// \returns the scalarization cost for this type. Scalarization in this 439 /// context means the creation of vectors from a group of scalars. 440 int getGatherCost(Type *Ty); 441 442 /// \returns the scalarization cost for this list of values. Assuming that 443 /// this subtree gets vectorized, we may need to extract the values from the 444 /// roots. This method calculates the cost of extracting the values. 445 int getGatherCost(ArrayRef<Value *> VL); 446 447 /// \brief Set the Builder insert point to one after the last instruction in 448 /// the bundle 449 void setInsertPointAfterBundle(ArrayRef<Value *> VL); 450 451 /// \returns a vector from a collection of scalars in \p VL. 452 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 453 454 /// \returns whether the VectorizableTree is fully vectorizable and will 455 /// be beneficial even the tree height is tiny. 456 bool isFullyVectorizableTinyTree(); 457 458 /// \reorder commutative operands in alt shuffle if they result in 459 /// vectorized code. 460 void reorderAltShuffleOperands(ArrayRef<Value *> VL, 461 SmallVectorImpl<Value *> &Left, 462 SmallVectorImpl<Value *> &Right); 463 /// \reorder commutative operands to get better probability of 464 /// generating vectorized code. 465 void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 466 SmallVectorImpl<Value *> &Left, 467 SmallVectorImpl<Value *> &Right); 468 struct TreeEntry { 469 TreeEntry() : Scalars(), VectorizedValue(nullptr), 470 NeedToGather(0), NeedToShuffle(0) {} 471 472 /// \returns true if the scalars in VL are equal to this entry. 473 bool isSame(ArrayRef<Value *> VL) const { 474 assert(VL.size() == Scalars.size() && "Invalid size"); 475 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 476 } 477 478 /// \returns true if the scalars in VL are found in this tree entry. 479 bool isFoundJumbled(ArrayRef<Value *> VL, const DataLayout &DL, 480 ScalarEvolution &SE) const { 481 assert(VL.size() == Scalars.size() && "Invalid size"); 482 SmallVector<Value *, 8> List; 483 if (!sortMemAccesses(VL, DL, SE, List)) 484 return false; 485 486 return std::equal(List.begin(), List.end(), Scalars.begin()); 487 } 488 489 /// A vector of scalars. 490 ValueList Scalars; 491 492 /// The Scalars are vectorized into this value. It is initialized to Null. 493 Value *VectorizedValue; 494 495 /// Do we need to gather this sequence ? 496 bool NeedToGather; 497 498 /// Do we need to shuffle the load ? 499 bool NeedToShuffle; 500 }; 501 502 /// Create a new VectorizableTree entry. 503 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized, 504 bool NeedToShuffle) { 505 VectorizableTree.emplace_back(); 506 int idx = VectorizableTree.size() - 1; 507 TreeEntry *Last = &VectorizableTree[idx]; 508 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 509 Last->NeedToGather = !Vectorized; 510 Last->NeedToShuffle = NeedToShuffle; 511 if (Vectorized) { 512 for (int i = 0, e = VL.size(); i != e; ++i) { 513 assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!"); 514 ScalarToTreeEntry[VL[i]] = idx; 515 } 516 } else { 517 MustGather.insert(VL.begin(), VL.end()); 518 } 519 return Last; 520 } 521 522 /// -- Vectorization State -- 523 /// Holds all of the tree entries. 524 std::vector<TreeEntry> VectorizableTree; 525 526 /// Maps a specific scalar to its tree entry. 527 SmallDenseMap<Value*, int> ScalarToTreeEntry; 528 529 /// A list of scalars that we found that we need to keep as scalars. 530 ValueSet MustGather; 531 532 /// This POD struct describes one external user in the vectorized tree. 533 struct ExternalUser { 534 ExternalUser (Value *S, llvm::User *U, int L) : 535 Scalar(S), User(U), Lane(L){} 536 // Which scalar in our function. 537 Value *Scalar; 538 // Which user that uses the scalar. 539 llvm::User *User; 540 // Which lane does the scalar belong to. 541 int Lane; 542 }; 543 typedef SmallVector<ExternalUser, 16> UserList; 544 545 /// Checks if two instructions may access the same memory. 546 /// 547 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 548 /// is invariant in the calling loop. 549 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 550 Instruction *Inst2) { 551 552 // First check if the result is already in the cache. 553 AliasCacheKey key = std::make_pair(Inst1, Inst2); 554 Optional<bool> &result = AliasCache[key]; 555 if (result.hasValue()) { 556 return result.getValue(); 557 } 558 MemoryLocation Loc2 = getLocation(Inst2, AA); 559 bool aliased = true; 560 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 561 // Do the alias check. 562 aliased = AA->alias(Loc1, Loc2); 563 } 564 // Store the result in the cache. 565 result = aliased; 566 return aliased; 567 } 568 569 typedef std::pair<Instruction *, Instruction *> AliasCacheKey; 570 571 /// Cache for alias results. 572 /// TODO: consider moving this to the AliasAnalysis itself. 573 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 574 575 /// Removes an instruction from its block and eventually deletes it. 576 /// It's like Instruction::eraseFromParent() except that the actual deletion 577 /// is delayed until BoUpSLP is destructed. 578 /// This is required to ensure that there are no incorrect collisions in the 579 /// AliasCache, which can happen if a new instruction is allocated at the 580 /// same address as a previously deleted instruction. 581 void eraseInstruction(Instruction *I) { 582 I->removeFromParent(); 583 I->dropAllReferences(); 584 DeletedInstructions.push_back(std::unique_ptr<Instruction>(I)); 585 } 586 587 /// Temporary store for deleted instructions. Instructions will be deleted 588 /// eventually when the BoUpSLP is destructed. 589 SmallVector<std::unique_ptr<Instruction>, 8> DeletedInstructions; 590 591 /// A list of values that need to extracted out of the tree. 592 /// This list holds pairs of (Internal Scalar : External User). External User 593 /// can be nullptr, it means that this Internal Scalar will be used later, 594 /// after vectorization. 595 UserList ExternalUses; 596 597 /// Values used only by @llvm.assume calls. 598 SmallPtrSet<const Value *, 32> EphValues; 599 600 /// Holds all of the instructions that we gathered. 601 SetVector<Instruction *> GatherSeq; 602 /// A list of blocks that we are going to CSE. 603 SetVector<BasicBlock *> CSEBlocks; 604 605 /// Contains all scheduling relevant data for an instruction. 606 /// A ScheduleData either represents a single instruction or a member of an 607 /// instruction bundle (= a group of instructions which is combined into a 608 /// vector instruction). 609 struct ScheduleData { 610 611 // The initial value for the dependency counters. It means that the 612 // dependencies are not calculated yet. 613 enum { InvalidDeps = -1 }; 614 615 ScheduleData() 616 : Inst(nullptr), FirstInBundle(nullptr), NextInBundle(nullptr), 617 NextLoadStore(nullptr), SchedulingRegionID(0), SchedulingPriority(0), 618 Dependencies(InvalidDeps), UnscheduledDeps(InvalidDeps), 619 UnscheduledDepsInBundle(InvalidDeps), IsScheduled(false) {} 620 621 void init(int BlockSchedulingRegionID) { 622 FirstInBundle = this; 623 NextInBundle = nullptr; 624 NextLoadStore = nullptr; 625 IsScheduled = false; 626 SchedulingRegionID = BlockSchedulingRegionID; 627 UnscheduledDepsInBundle = UnscheduledDeps; 628 clearDependencies(); 629 } 630 631 /// Returns true if the dependency information has been calculated. 632 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 633 634 /// Returns true for single instructions and for bundle representatives 635 /// (= the head of a bundle). 636 bool isSchedulingEntity() const { return FirstInBundle == this; } 637 638 /// Returns true if it represents an instruction bundle and not only a 639 /// single instruction. 640 bool isPartOfBundle() const { 641 return NextInBundle != nullptr || FirstInBundle != this; 642 } 643 644 /// Returns true if it is ready for scheduling, i.e. it has no more 645 /// unscheduled depending instructions/bundles. 646 bool isReady() const { 647 assert(isSchedulingEntity() && 648 "can't consider non-scheduling entity for ready list"); 649 return UnscheduledDepsInBundle == 0 && !IsScheduled; 650 } 651 652 /// Modifies the number of unscheduled dependencies, also updating it for 653 /// the whole bundle. 654 int incrementUnscheduledDeps(int Incr) { 655 UnscheduledDeps += Incr; 656 return FirstInBundle->UnscheduledDepsInBundle += Incr; 657 } 658 659 /// Sets the number of unscheduled dependencies to the number of 660 /// dependencies. 661 void resetUnscheduledDeps() { 662 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 663 } 664 665 /// Clears all dependency information. 666 void clearDependencies() { 667 Dependencies = InvalidDeps; 668 resetUnscheduledDeps(); 669 MemoryDependencies.clear(); 670 } 671 672 void dump(raw_ostream &os) const { 673 if (!isSchedulingEntity()) { 674 os << "/ " << *Inst; 675 } else if (NextInBundle) { 676 os << '[' << *Inst; 677 ScheduleData *SD = NextInBundle; 678 while (SD) { 679 os << ';' << *SD->Inst; 680 SD = SD->NextInBundle; 681 } 682 os << ']'; 683 } else { 684 os << *Inst; 685 } 686 } 687 688 Instruction *Inst; 689 690 /// Points to the head in an instruction bundle (and always to this for 691 /// single instructions). 692 ScheduleData *FirstInBundle; 693 694 /// Single linked list of all instructions in a bundle. Null if it is a 695 /// single instruction. 696 ScheduleData *NextInBundle; 697 698 /// Single linked list of all memory instructions (e.g. load, store, call) 699 /// in the block - until the end of the scheduling region. 700 ScheduleData *NextLoadStore; 701 702 /// The dependent memory instructions. 703 /// This list is derived on demand in calculateDependencies(). 704 SmallVector<ScheduleData *, 4> MemoryDependencies; 705 706 /// This ScheduleData is in the current scheduling region if this matches 707 /// the current SchedulingRegionID of BlockScheduling. 708 int SchedulingRegionID; 709 710 /// Used for getting a "good" final ordering of instructions. 711 int SchedulingPriority; 712 713 /// The number of dependencies. Constitutes of the number of users of the 714 /// instruction plus the number of dependent memory instructions (if any). 715 /// This value is calculated on demand. 716 /// If InvalidDeps, the number of dependencies is not calculated yet. 717 /// 718 int Dependencies; 719 720 /// The number of dependencies minus the number of dependencies of scheduled 721 /// instructions. As soon as this is zero, the instruction/bundle gets ready 722 /// for scheduling. 723 /// Note that this is negative as long as Dependencies is not calculated. 724 int UnscheduledDeps; 725 726 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 727 /// single instructions. 728 int UnscheduledDepsInBundle; 729 730 /// True if this instruction is scheduled (or considered as scheduled in the 731 /// dry-run). 732 bool IsScheduled; 733 }; 734 735 #ifndef NDEBUG 736 friend inline raw_ostream &operator<<(raw_ostream &os, 737 const BoUpSLP::ScheduleData &SD) { 738 SD.dump(os); 739 return os; 740 } 741 #endif 742 743 /// Contains all scheduling data for a basic block. 744 /// 745 struct BlockScheduling { 746 747 BlockScheduling(BasicBlock *BB) 748 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize), 749 ScheduleStart(nullptr), ScheduleEnd(nullptr), 750 FirstLoadStoreInRegion(nullptr), LastLoadStoreInRegion(nullptr), 751 ScheduleRegionSize(0), 752 ScheduleRegionSizeLimit(ScheduleRegionSizeBudget), 753 // Make sure that the initial SchedulingRegionID is greater than the 754 // initial SchedulingRegionID in ScheduleData (which is 0). 755 SchedulingRegionID(1) {} 756 757 void clear() { 758 ReadyInsts.clear(); 759 ScheduleStart = nullptr; 760 ScheduleEnd = nullptr; 761 FirstLoadStoreInRegion = nullptr; 762 LastLoadStoreInRegion = nullptr; 763 764 // Reduce the maximum schedule region size by the size of the 765 // previous scheduling run. 766 ScheduleRegionSizeLimit -= ScheduleRegionSize; 767 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 768 ScheduleRegionSizeLimit = MinScheduleRegionSize; 769 ScheduleRegionSize = 0; 770 771 // Make a new scheduling region, i.e. all existing ScheduleData is not 772 // in the new region yet. 773 ++SchedulingRegionID; 774 } 775 776 ScheduleData *getScheduleData(Value *V) { 777 ScheduleData *SD = ScheduleDataMap[V]; 778 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 779 return SD; 780 return nullptr; 781 } 782 783 bool isInSchedulingRegion(ScheduleData *SD) { 784 return SD->SchedulingRegionID == SchedulingRegionID; 785 } 786 787 /// Marks an instruction as scheduled and puts all dependent ready 788 /// instructions into the ready-list. 789 template <typename ReadyListType> 790 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 791 SD->IsScheduled = true; 792 DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 793 794 ScheduleData *BundleMember = SD; 795 while (BundleMember) { 796 // Handle the def-use chain dependencies. 797 for (Use &U : BundleMember->Inst->operands()) { 798 ScheduleData *OpDef = getScheduleData(U.get()); 799 if (OpDef && OpDef->hasValidDependencies() && 800 OpDef->incrementUnscheduledDeps(-1) == 0) { 801 // There are no more unscheduled dependencies after decrementing, 802 // so we can put the dependent instruction into the ready list. 803 ScheduleData *DepBundle = OpDef->FirstInBundle; 804 assert(!DepBundle->IsScheduled && 805 "already scheduled bundle gets ready"); 806 ReadyList.insert(DepBundle); 807 DEBUG(dbgs() << "SLP: gets ready (def): " << *DepBundle << "\n"); 808 } 809 } 810 // Handle the memory dependencies. 811 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 812 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 813 // There are no more unscheduled dependencies after decrementing, 814 // so we can put the dependent instruction into the ready list. 815 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 816 assert(!DepBundle->IsScheduled && 817 "already scheduled bundle gets ready"); 818 ReadyList.insert(DepBundle); 819 DEBUG(dbgs() << "SLP: gets ready (mem): " << *DepBundle << "\n"); 820 } 821 } 822 BundleMember = BundleMember->NextInBundle; 823 } 824 } 825 826 /// Put all instructions into the ReadyList which are ready for scheduling. 827 template <typename ReadyListType> 828 void initialFillReadyList(ReadyListType &ReadyList) { 829 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 830 ScheduleData *SD = getScheduleData(I); 831 if (SD->isSchedulingEntity() && SD->isReady()) { 832 ReadyList.insert(SD); 833 DEBUG(dbgs() << "SLP: initially in ready list: " << *I << "\n"); 834 } 835 } 836 } 837 838 /// Checks if a bundle of instructions can be scheduled, i.e. has no 839 /// cyclic dependencies. This is only a dry-run, no instructions are 840 /// actually moved at this stage. 841 bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP); 842 843 /// Un-bundles a group of instructions. 844 void cancelScheduling(ArrayRef<Value *> VL); 845 846 /// Extends the scheduling region so that V is inside the region. 847 /// \returns true if the region size is within the limit. 848 bool extendSchedulingRegion(Value *V); 849 850 /// Initialize the ScheduleData structures for new instructions in the 851 /// scheduling region. 852 void initScheduleData(Instruction *FromI, Instruction *ToI, 853 ScheduleData *PrevLoadStore, 854 ScheduleData *NextLoadStore); 855 856 /// Updates the dependency information of a bundle and of all instructions/ 857 /// bundles which depend on the original bundle. 858 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 859 BoUpSLP *SLP); 860 861 /// Sets all instruction in the scheduling region to un-scheduled. 862 void resetSchedule(); 863 864 BasicBlock *BB; 865 866 /// Simple memory allocation for ScheduleData. 867 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 868 869 /// The size of a ScheduleData array in ScheduleDataChunks. 870 int ChunkSize; 871 872 /// The allocator position in the current chunk, which is the last entry 873 /// of ScheduleDataChunks. 874 int ChunkPos; 875 876 /// Attaches ScheduleData to Instruction. 877 /// Note that the mapping survives during all vectorization iterations, i.e. 878 /// ScheduleData structures are recycled. 879 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 880 881 struct ReadyList : SmallVector<ScheduleData *, 8> { 882 void insert(ScheduleData *SD) { push_back(SD); } 883 }; 884 885 /// The ready-list for scheduling (only used for the dry-run). 886 ReadyList ReadyInsts; 887 888 /// The first instruction of the scheduling region. 889 Instruction *ScheduleStart; 890 891 /// The first instruction _after_ the scheduling region. 892 Instruction *ScheduleEnd; 893 894 /// The first memory accessing instruction in the scheduling region 895 /// (can be null). 896 ScheduleData *FirstLoadStoreInRegion; 897 898 /// The last memory accessing instruction in the scheduling region 899 /// (can be null). 900 ScheduleData *LastLoadStoreInRegion; 901 902 /// The current size of the scheduling region. 903 int ScheduleRegionSize; 904 905 /// The maximum size allowed for the scheduling region. 906 int ScheduleRegionSizeLimit; 907 908 /// The ID of the scheduling region. For a new vectorization iteration this 909 /// is incremented which "removes" all ScheduleData from the region. 910 int SchedulingRegionID; 911 }; 912 913 /// Attaches the BlockScheduling structures to basic blocks. 914 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 915 916 /// Performs the "real" scheduling. Done before vectorization is actually 917 /// performed in a basic block. 918 void scheduleBlock(BlockScheduling *BS); 919 920 /// List of users to ignore during scheduling and that don't need extracting. 921 ArrayRef<Value *> UserIgnoreList; 922 923 // Number of load bundles that contain consecutive loads. 924 int NumLoadsWantToKeepOrder; 925 926 // Number of load bundles that contain consecutive loads in reversed order. 927 int NumLoadsWantToChangeOrder; 928 929 // Analysis and block reference. 930 Function *F; 931 ScalarEvolution *SE; 932 TargetTransformInfo *TTI; 933 TargetLibraryInfo *TLI; 934 AliasAnalysis *AA; 935 LoopInfo *LI; 936 DominatorTree *DT; 937 AssumptionCache *AC; 938 DemandedBits *DB; 939 const DataLayout *DL; 940 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 941 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 942 /// Instruction builder to construct the vectorized tree. 943 IRBuilder<> Builder; 944 945 /// A map of scalar integer values to the smallest bit width with which they 946 /// can legally be represented. The values map to (width, signed) pairs, 947 /// where "width" indicates the minimum bit width and "signed" is True if the 948 /// value must be signed-extended, rather than zero-extended, back to its 949 /// original width. 950 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 951 }; 952 953 } // end namespace llvm 954 } // end namespace slpvectorizer 955 956 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 957 ArrayRef<Value *> UserIgnoreLst) { 958 ExtraValueToDebugLocsMap ExternallyUsedValues; 959 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 960 } 961 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 962 ExtraValueToDebugLocsMap &ExternallyUsedValues, 963 ArrayRef<Value *> UserIgnoreLst) { 964 deleteTree(); 965 UserIgnoreList = UserIgnoreLst; 966 if (!allSameType(Roots)) 967 return; 968 buildTree_rec(Roots, 0); 969 970 // Collect the values that we need to extract from the tree. 971 for (TreeEntry &EIdx : VectorizableTree) { 972 TreeEntry *Entry = &EIdx; 973 974 // For each lane: 975 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 976 Value *Scalar = Entry->Scalars[Lane]; 977 978 // No need to handle users of gathered values. 979 if (Entry->NeedToGather) 980 continue; 981 982 // Check if the scalar is externally used as an extra arg. 983 auto ExtI = ExternallyUsedValues.find(Scalar); 984 if (ExtI != ExternallyUsedValues.end()) { 985 DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " << 986 Lane << " from " << *Scalar << ".\n"); 987 ExternalUses.emplace_back(Scalar, nullptr, Lane); 988 continue; 989 } 990 for (User *U : Scalar->users()) { 991 DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 992 993 Instruction *UserInst = dyn_cast<Instruction>(U); 994 if (!UserInst) 995 continue; 996 997 // Skip in-tree scalars that become vectors 998 if (ScalarToTreeEntry.count(U)) { 999 int Idx = ScalarToTreeEntry[U]; 1000 TreeEntry *UseEntry = &VectorizableTree[Idx]; 1001 Value *UseScalar = UseEntry->Scalars[0]; 1002 // Some in-tree scalars will remain as scalar in vectorized 1003 // instructions. If that is the case, the one in Lane 0 will 1004 // be used. 1005 if (UseScalar != U || 1006 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 1007 DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 1008 << ".\n"); 1009 assert(!VectorizableTree[Idx].NeedToGather && "Bad state"); 1010 continue; 1011 } 1012 } 1013 1014 // Ignore users in the user ignore list. 1015 if (is_contained(UserIgnoreList, UserInst)) 1016 continue; 1017 1018 DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " << 1019 Lane << " from " << *Scalar << ".\n"); 1020 ExternalUses.push_back(ExternalUser(Scalar, U, Lane)); 1021 } 1022 } 1023 } 1024 } 1025 1026 1027 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { 1028 bool isAltShuffle = false; 1029 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 1030 1031 if (Depth == RecursionMaxDepth) { 1032 DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 1033 newTreeEntry(VL, false, false); 1034 return; 1035 } 1036 1037 // Don't handle vectors. 1038 if (VL[0]->getType()->isVectorTy()) { 1039 DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 1040 newTreeEntry(VL, false, false); 1041 return; 1042 } 1043 1044 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1045 if (SI->getValueOperand()->getType()->isVectorTy()) { 1046 DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 1047 newTreeEntry(VL, false, false); 1048 return; 1049 } 1050 unsigned Opcode = getSameOpcode(VL); 1051 1052 // Check that this shuffle vector refers to the alternate 1053 // sequence of opcodes. 1054 if (Opcode == Instruction::ShuffleVector) { 1055 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 1056 unsigned Op = I0->getOpcode(); 1057 if (Op != Instruction::ShuffleVector) 1058 isAltShuffle = true; 1059 } 1060 1061 // If all of the operands are identical or constant we have a simple solution. 1062 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !Opcode) { 1063 DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 1064 newTreeEntry(VL, false, false); 1065 return; 1066 } 1067 1068 // We now know that this is a vector of instructions of the same type from 1069 // the same block. 1070 1071 // Don't vectorize ephemeral values. 1072 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1073 if (EphValues.count(VL[i])) { 1074 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1075 ") is ephemeral.\n"); 1076 newTreeEntry(VL, false, false); 1077 return; 1078 } 1079 } 1080 1081 // Check if this is a duplicate of another entry. 1082 if (ScalarToTreeEntry.count(VL[0])) { 1083 int Idx = ScalarToTreeEntry[VL[0]]; 1084 TreeEntry *E = &VectorizableTree[Idx]; 1085 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1086 DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n"); 1087 if (E->Scalars[i] != VL[i]) { 1088 DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 1089 newTreeEntry(VL, false, false); 1090 return; 1091 } 1092 } 1093 DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n"); 1094 return; 1095 } 1096 1097 // Check that none of the instructions in the bundle are already in the tree. 1098 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1099 if (ScalarToTreeEntry.count(VL[i])) { 1100 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1101 ") is already in tree.\n"); 1102 newTreeEntry(VL, false, false); 1103 return; 1104 } 1105 } 1106 1107 // If any of the scalars is marked as a value that needs to stay scalar then 1108 // we need to gather the scalars. 1109 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1110 if (MustGather.count(VL[i])) { 1111 DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 1112 newTreeEntry(VL, false, false); 1113 return; 1114 } 1115 } 1116 1117 // Check that all of the users of the scalars that we want to vectorize are 1118 // schedulable. 1119 Instruction *VL0 = cast<Instruction>(VL[0]); 1120 BasicBlock *BB = cast<Instruction>(VL0)->getParent(); 1121 1122 if (!DT->isReachableFromEntry(BB)) { 1123 // Don't go into unreachable blocks. They may contain instructions with 1124 // dependency cycles which confuse the final scheduling. 1125 DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 1126 newTreeEntry(VL, false, false); 1127 return; 1128 } 1129 1130 // Check that every instructions appears once in this bundle. 1131 for (unsigned i = 0, e = VL.size(); i < e; ++i) 1132 for (unsigned j = i+1; j < e; ++j) 1133 if (VL[i] == VL[j]) { 1134 DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 1135 newTreeEntry(VL, false, false); 1136 return; 1137 } 1138 1139 auto &BSRef = BlocksSchedules[BB]; 1140 if (!BSRef) { 1141 BSRef = llvm::make_unique<BlockScheduling>(BB); 1142 } 1143 BlockScheduling &BS = *BSRef.get(); 1144 1145 if (!BS.tryScheduleBundle(VL, this)) { 1146 DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 1147 assert((!BS.getScheduleData(VL[0]) || 1148 !BS.getScheduleData(VL[0])->isPartOfBundle()) && 1149 "tryScheduleBundle should cancelScheduling on failure"); 1150 newTreeEntry(VL, false, false); 1151 return; 1152 } 1153 DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 1154 1155 switch (Opcode) { 1156 case Instruction::PHI: { 1157 PHINode *PH = dyn_cast<PHINode>(VL0); 1158 1159 // Check for terminator values (e.g. invoke). 1160 for (unsigned j = 0; j < VL.size(); ++j) 1161 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1162 TerminatorInst *Term = dyn_cast<TerminatorInst>( 1163 cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i))); 1164 if (Term) { 1165 DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n"); 1166 BS.cancelScheduling(VL); 1167 newTreeEntry(VL, false, false); 1168 return; 1169 } 1170 } 1171 1172 newTreeEntry(VL, true, false); 1173 DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 1174 1175 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1176 ValueList Operands; 1177 // Prepare the operand vector. 1178 for (Value *j : VL) 1179 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( 1180 PH->getIncomingBlock(i))); 1181 1182 buildTree_rec(Operands, Depth + 1); 1183 } 1184 return; 1185 } 1186 case Instruction::ExtractValue: 1187 case Instruction::ExtractElement: { 1188 bool Reuse = canReuseExtract(VL, Opcode); 1189 if (Reuse) { 1190 DEBUG(dbgs() << "SLP: Reusing extract sequence.\n"); 1191 } else { 1192 BS.cancelScheduling(VL); 1193 } 1194 newTreeEntry(VL, Reuse, false); 1195 return; 1196 } 1197 case Instruction::Load: { 1198 // Check that a vectorized load would load the same memory as a scalar 1199 // load. 1200 // For example we don't want vectorize loads that are smaller than 8 bit. 1201 // Even though we have a packed struct {<i2, i2, i2, i2>} LLVM treats 1202 // loading/storing it as an i8 struct. If we vectorize loads/stores from 1203 // such a struct we read/write packed bits disagreeing with the 1204 // unvectorized version. 1205 Type *ScalarTy = VL[0]->getType(); 1206 1207 if (DL->getTypeSizeInBits(ScalarTy) != 1208 DL->getTypeAllocSizeInBits(ScalarTy)) { 1209 BS.cancelScheduling(VL); 1210 newTreeEntry(VL, false, false); 1211 DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 1212 return; 1213 } 1214 1215 // Make sure all loads in the bundle are simple - we can't vectorize 1216 // atomic or volatile loads. 1217 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { 1218 LoadInst *L = cast<LoadInst>(VL[i]); 1219 if (!L->isSimple()) { 1220 BS.cancelScheduling(VL); 1221 newTreeEntry(VL, false, false); 1222 DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 1223 return; 1224 } 1225 } 1226 1227 // Check if the loads are consecutive, reversed, or neither. 1228 bool Consecutive = true; 1229 bool ReverseConsecutive = true; 1230 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { 1231 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1232 Consecutive = false; 1233 break; 1234 } else { 1235 ReverseConsecutive = false; 1236 } 1237 } 1238 1239 if (Consecutive) { 1240 ++NumLoadsWantToKeepOrder; 1241 newTreeEntry(VL, true, false); 1242 DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 1243 return; 1244 } 1245 1246 // If none of the load pairs were consecutive when checked in order, 1247 // check the reverse order. 1248 if (ReverseConsecutive) 1249 for (unsigned i = VL.size() - 1; i > 0; --i) 1250 if (!isConsecutiveAccess(VL[i], VL[i - 1], *DL, *SE)) { 1251 ReverseConsecutive = false; 1252 break; 1253 } 1254 1255 if (VL.size() > 2 && !ReverseConsecutive) { 1256 bool ShuffledLoads = true; 1257 SmallVector<Value *, 8> Sorted; 1258 if (sortMemAccesses(VL, *DL, *SE, Sorted)) { 1259 auto NewVL = makeArrayRef(Sorted.begin(), Sorted.end()); 1260 for (unsigned i = 0, e = NewVL.size() - 1; i < e; ++i) { 1261 if (!isConsecutiveAccess(NewVL[i], NewVL[i + 1], *DL, *SE)) { 1262 ShuffledLoads = false; 1263 break; 1264 } 1265 } 1266 if (ShuffledLoads) { 1267 newTreeEntry(NewVL, true, true); 1268 return; 1269 } 1270 } 1271 } 1272 1273 BS.cancelScheduling(VL); 1274 newTreeEntry(VL, false, false); 1275 1276 if (ReverseConsecutive) { 1277 ++NumLoadsWantToChangeOrder; 1278 DEBUG(dbgs() << "SLP: Gathering reversed loads.\n"); 1279 } else { 1280 DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 1281 } 1282 return; 1283 } 1284 case Instruction::ZExt: 1285 case Instruction::SExt: 1286 case Instruction::FPToUI: 1287 case Instruction::FPToSI: 1288 case Instruction::FPExt: 1289 case Instruction::PtrToInt: 1290 case Instruction::IntToPtr: 1291 case Instruction::SIToFP: 1292 case Instruction::UIToFP: 1293 case Instruction::Trunc: 1294 case Instruction::FPTrunc: 1295 case Instruction::BitCast: { 1296 Type *SrcTy = VL0->getOperand(0)->getType(); 1297 for (Value *Val : VL) { 1298 Type *Ty = cast<Instruction>(Val)->getOperand(0)->getType(); 1299 if (Ty != SrcTy || !isValidElementType(Ty)) { 1300 BS.cancelScheduling(VL); 1301 newTreeEntry(VL, false, false); 1302 DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n"); 1303 return; 1304 } 1305 } 1306 newTreeEntry(VL, true, false); 1307 DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 1308 1309 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1310 ValueList Operands; 1311 // Prepare the operand vector. 1312 for (Value *j : VL) 1313 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1314 1315 buildTree_rec(Operands, Depth+1); 1316 } 1317 return; 1318 } 1319 case Instruction::ICmp: 1320 case Instruction::FCmp: { 1321 // Check that all of the compares have the same predicate. 1322 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 1323 Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType(); 1324 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1325 CmpInst *Cmp = cast<CmpInst>(VL[i]); 1326 if (Cmp->getPredicate() != P0 || 1327 Cmp->getOperand(0)->getType() != ComparedTy) { 1328 BS.cancelScheduling(VL); 1329 newTreeEntry(VL, false, false); 1330 DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n"); 1331 return; 1332 } 1333 } 1334 1335 newTreeEntry(VL, true, false); 1336 DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 1337 1338 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1339 ValueList Operands; 1340 // Prepare the operand vector. 1341 for (Value *j : VL) 1342 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1343 1344 buildTree_rec(Operands, Depth+1); 1345 } 1346 return; 1347 } 1348 case Instruction::Select: 1349 case Instruction::Add: 1350 case Instruction::FAdd: 1351 case Instruction::Sub: 1352 case Instruction::FSub: 1353 case Instruction::Mul: 1354 case Instruction::FMul: 1355 case Instruction::UDiv: 1356 case Instruction::SDiv: 1357 case Instruction::FDiv: 1358 case Instruction::URem: 1359 case Instruction::SRem: 1360 case Instruction::FRem: 1361 case Instruction::Shl: 1362 case Instruction::LShr: 1363 case Instruction::AShr: 1364 case Instruction::And: 1365 case Instruction::Or: 1366 case Instruction::Xor: { 1367 newTreeEntry(VL, true, false); 1368 DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); 1369 1370 // Sort operands of the instructions so that each side is more likely to 1371 // have the same opcode. 1372 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 1373 ValueList Left, Right; 1374 reorderInputsAccordingToOpcode(VL, Left, Right); 1375 buildTree_rec(Left, Depth + 1); 1376 buildTree_rec(Right, Depth + 1); 1377 return; 1378 } 1379 1380 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1381 ValueList Operands; 1382 // Prepare the operand vector. 1383 for (Value *j : VL) 1384 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1385 1386 buildTree_rec(Operands, Depth+1); 1387 } 1388 return; 1389 } 1390 case Instruction::GetElementPtr: { 1391 // We don't combine GEPs with complicated (nested) indexing. 1392 for (Value *Val : VL) { 1393 if (cast<Instruction>(Val)->getNumOperands() != 2) { 1394 DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 1395 BS.cancelScheduling(VL); 1396 newTreeEntry(VL, false, false); 1397 return; 1398 } 1399 } 1400 1401 // We can't combine several GEPs into one vector if they operate on 1402 // different types. 1403 Type *Ty0 = cast<Instruction>(VL0)->getOperand(0)->getType(); 1404 for (Value *Val : VL) { 1405 Type *CurTy = cast<Instruction>(Val)->getOperand(0)->getType(); 1406 if (Ty0 != CurTy) { 1407 DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n"); 1408 BS.cancelScheduling(VL); 1409 newTreeEntry(VL, false, false); 1410 return; 1411 } 1412 } 1413 1414 // We don't combine GEPs with non-constant indexes. 1415 for (Value *Val : VL) { 1416 auto Op = cast<Instruction>(Val)->getOperand(1); 1417 if (!isa<ConstantInt>(Op)) { 1418 DEBUG( 1419 dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 1420 BS.cancelScheduling(VL); 1421 newTreeEntry(VL, false, false); 1422 return; 1423 } 1424 } 1425 1426 newTreeEntry(VL, true, false); 1427 DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 1428 for (unsigned i = 0, e = 2; i < e; ++i) { 1429 ValueList Operands; 1430 // Prepare the operand vector. 1431 for (Value *j : VL) 1432 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1433 1434 buildTree_rec(Operands, Depth + 1); 1435 } 1436 return; 1437 } 1438 case Instruction::Store: { 1439 // Check if the stores are consecutive or of we need to swizzle them. 1440 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 1441 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { 1442 BS.cancelScheduling(VL); 1443 newTreeEntry(VL, false, false); 1444 DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 1445 return; 1446 } 1447 1448 newTreeEntry(VL, true, false); 1449 DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 1450 1451 ValueList Operands; 1452 for (Value *j : VL) 1453 Operands.push_back(cast<Instruction>(j)->getOperand(0)); 1454 1455 buildTree_rec(Operands, Depth + 1); 1456 return; 1457 } 1458 case Instruction::Call: { 1459 // Check if the calls are all to the same vectorizable intrinsic. 1460 CallInst *CI = cast<CallInst>(VL[0]); 1461 // Check if this is an Intrinsic call or something that can be 1462 // represented by an intrinsic call 1463 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 1464 if (!isTriviallyVectorizable(ID)) { 1465 BS.cancelScheduling(VL); 1466 newTreeEntry(VL, false, false); 1467 DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 1468 return; 1469 } 1470 Function *Int = CI->getCalledFunction(); 1471 Value *A1I = nullptr; 1472 if (hasVectorInstrinsicScalarOpd(ID, 1)) 1473 A1I = CI->getArgOperand(1); 1474 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 1475 CallInst *CI2 = dyn_cast<CallInst>(VL[i]); 1476 if (!CI2 || CI2->getCalledFunction() != Int || 1477 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 1478 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 1479 BS.cancelScheduling(VL); 1480 newTreeEntry(VL, false, false); 1481 DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] 1482 << "\n"); 1483 return; 1484 } 1485 // ctlz,cttz and powi are special intrinsics whose second argument 1486 // should be same in order for them to be vectorized. 1487 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 1488 Value *A1J = CI2->getArgOperand(1); 1489 if (A1I != A1J) { 1490 BS.cancelScheduling(VL); 1491 newTreeEntry(VL, false, false); 1492 DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 1493 << " argument "<< A1I<<"!=" << A1J 1494 << "\n"); 1495 return; 1496 } 1497 } 1498 // Verify that the bundle operands are identical between the two calls. 1499 if (CI->hasOperandBundles() && 1500 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 1501 CI->op_begin() + CI->getBundleOperandsEndIndex(), 1502 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 1503 BS.cancelScheduling(VL); 1504 newTreeEntry(VL, false, false); 1505 DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" << *CI << "!=" 1506 << *VL[i] << '\n'); 1507 return; 1508 } 1509 } 1510 1511 newTreeEntry(VL, true, false); 1512 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 1513 ValueList Operands; 1514 // Prepare the operand vector. 1515 for (Value *j : VL) { 1516 CallInst *CI2 = dyn_cast<CallInst>(j); 1517 Operands.push_back(CI2->getArgOperand(i)); 1518 } 1519 buildTree_rec(Operands, Depth + 1); 1520 } 1521 return; 1522 } 1523 case Instruction::ShuffleVector: { 1524 // If this is not an alternate sequence of opcode like add-sub 1525 // then do not vectorize this instruction. 1526 if (!isAltShuffle) { 1527 BS.cancelScheduling(VL); 1528 newTreeEntry(VL, false, false); 1529 DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 1530 return; 1531 } 1532 newTreeEntry(VL, true, false); 1533 DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 1534 1535 // Reorder operands if reordering would enable vectorization. 1536 if (isa<BinaryOperator>(VL0)) { 1537 ValueList Left, Right; 1538 reorderAltShuffleOperands(VL, Left, Right); 1539 buildTree_rec(Left, Depth + 1); 1540 buildTree_rec(Right, Depth + 1); 1541 return; 1542 } 1543 1544 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1545 ValueList Operands; 1546 // Prepare the operand vector. 1547 for (Value *j : VL) 1548 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 1549 1550 buildTree_rec(Operands, Depth + 1); 1551 } 1552 return; 1553 } 1554 default: 1555 BS.cancelScheduling(VL); 1556 newTreeEntry(VL, false, false); 1557 DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 1558 return; 1559 } 1560 } 1561 1562 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 1563 unsigned N; 1564 Type *EltTy; 1565 auto *ST = dyn_cast<StructType>(T); 1566 if (ST) { 1567 N = ST->getNumElements(); 1568 EltTy = *ST->element_begin(); 1569 } else { 1570 N = cast<ArrayType>(T)->getNumElements(); 1571 EltTy = cast<ArrayType>(T)->getElementType(); 1572 } 1573 if (!isValidElementType(EltTy)) 1574 return 0; 1575 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); 1576 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 1577 return 0; 1578 if (ST) { 1579 // Check that struct is homogeneous. 1580 for (const auto *Ty : ST->elements()) 1581 if (Ty != EltTy) 1582 return 0; 1583 } 1584 return N; 1585 } 1586 1587 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, unsigned Opcode) const { 1588 assert(Opcode == Instruction::ExtractElement || 1589 Opcode == Instruction::ExtractValue); 1590 assert(Opcode == getSameOpcode(VL) && "Invalid opcode"); 1591 // Check if all of the extracts come from the same vector and from the 1592 // correct offset. 1593 Value *VL0 = VL[0]; 1594 Instruction *E0 = cast<Instruction>(VL0); 1595 Value *Vec = E0->getOperand(0); 1596 1597 // We have to extract from a vector/aggregate with the same number of elements. 1598 unsigned NElts; 1599 if (Opcode == Instruction::ExtractValue) { 1600 const DataLayout &DL = E0->getModule()->getDataLayout(); 1601 NElts = canMapToVector(Vec->getType(), DL); 1602 if (!NElts) 1603 return false; 1604 // Check if load can be rewritten as load of vector. 1605 LoadInst *LI = dyn_cast<LoadInst>(Vec); 1606 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 1607 return false; 1608 } else { 1609 NElts = Vec->getType()->getVectorNumElements(); 1610 } 1611 1612 if (NElts != VL.size()) 1613 return false; 1614 1615 // Check that all of the indices extract from the correct offset. 1616 if (!matchExtractIndex(E0, 0, Opcode)) 1617 return false; 1618 1619 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1620 Instruction *E = cast<Instruction>(VL[i]); 1621 if (!matchExtractIndex(E, i, Opcode)) 1622 return false; 1623 if (E->getOperand(0) != Vec) 1624 return false; 1625 } 1626 1627 return true; 1628 } 1629 1630 int BoUpSLP::getEntryCost(TreeEntry *E) { 1631 ArrayRef<Value*> VL = E->Scalars; 1632 1633 Type *ScalarTy = VL[0]->getType(); 1634 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1635 ScalarTy = SI->getValueOperand()->getType(); 1636 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1637 1638 // If we have computed a smaller type for the expression, update VecTy so 1639 // that the costs will be accurate. 1640 if (MinBWs.count(VL[0])) 1641 VecTy = VectorType::get( 1642 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 1643 1644 if (E->NeedToGather) { 1645 if (allConstant(VL)) 1646 return 0; 1647 if (isSplat(VL)) { 1648 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 1649 } 1650 return getGatherCost(E->Scalars); 1651 } 1652 unsigned Opcode = getSameOpcode(VL); 1653 assert(Opcode && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 1654 Instruction *VL0 = cast<Instruction>(VL[0]); 1655 switch (Opcode) { 1656 case Instruction::PHI: { 1657 return 0; 1658 } 1659 case Instruction::ExtractValue: 1660 case Instruction::ExtractElement: { 1661 if (canReuseExtract(VL, Opcode)) { 1662 int DeadCost = 0; 1663 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 1664 Instruction *E = cast<Instruction>(VL[i]); 1665 // If all users are going to be vectorized, instruction can be 1666 // considered as dead. 1667 // The same, if have only one user, it will be vectorized for sure. 1668 if (E->hasOneUse() || 1669 std::all_of(E->user_begin(), E->user_end(), [this](User *U) { 1670 return ScalarToTreeEntry.count(U) > 0; 1671 })) 1672 // Take credit for instruction that will become dead. 1673 DeadCost += 1674 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 1675 } 1676 return -DeadCost; 1677 } 1678 return getGatherCost(VecTy); 1679 } 1680 case Instruction::ZExt: 1681 case Instruction::SExt: 1682 case Instruction::FPToUI: 1683 case Instruction::FPToSI: 1684 case Instruction::FPExt: 1685 case Instruction::PtrToInt: 1686 case Instruction::IntToPtr: 1687 case Instruction::SIToFP: 1688 case Instruction::UIToFP: 1689 case Instruction::Trunc: 1690 case Instruction::FPTrunc: 1691 case Instruction::BitCast: { 1692 Type *SrcTy = VL0->getOperand(0)->getType(); 1693 1694 // Calculate the cost of this instruction. 1695 int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(), 1696 VL0->getType(), SrcTy); 1697 1698 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 1699 int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy); 1700 return VecCost - ScalarCost; 1701 } 1702 case Instruction::FCmp: 1703 case Instruction::ICmp: 1704 case Instruction::Select: { 1705 // Calculate the cost of this instruction. 1706 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 1707 int ScalarCost = VecTy->getNumElements() * 1708 TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty()); 1709 int VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy); 1710 return VecCost - ScalarCost; 1711 } 1712 case Instruction::Add: 1713 case Instruction::FAdd: 1714 case Instruction::Sub: 1715 case Instruction::FSub: 1716 case Instruction::Mul: 1717 case Instruction::FMul: 1718 case Instruction::UDiv: 1719 case Instruction::SDiv: 1720 case Instruction::FDiv: 1721 case Instruction::URem: 1722 case Instruction::SRem: 1723 case Instruction::FRem: 1724 case Instruction::Shl: 1725 case Instruction::LShr: 1726 case Instruction::AShr: 1727 case Instruction::And: 1728 case Instruction::Or: 1729 case Instruction::Xor: { 1730 // Certain instructions can be cheaper to vectorize if they have a 1731 // constant second vector operand. 1732 TargetTransformInfo::OperandValueKind Op1VK = 1733 TargetTransformInfo::OK_AnyValue; 1734 TargetTransformInfo::OperandValueKind Op2VK = 1735 TargetTransformInfo::OK_UniformConstantValue; 1736 TargetTransformInfo::OperandValueProperties Op1VP = 1737 TargetTransformInfo::OP_None; 1738 TargetTransformInfo::OperandValueProperties Op2VP = 1739 TargetTransformInfo::OP_None; 1740 1741 // If all operands are exactly the same ConstantInt then set the 1742 // operand kind to OK_UniformConstantValue. 1743 // If instead not all operands are constants, then set the operand kind 1744 // to OK_AnyValue. If all operands are constants but not the same, 1745 // then set the operand kind to OK_NonUniformConstantValue. 1746 ConstantInt *CInt = nullptr; 1747 for (unsigned i = 0; i < VL.size(); ++i) { 1748 const Instruction *I = cast<Instruction>(VL[i]); 1749 if (!isa<ConstantInt>(I->getOperand(1))) { 1750 Op2VK = TargetTransformInfo::OK_AnyValue; 1751 break; 1752 } 1753 if (i == 0) { 1754 CInt = cast<ConstantInt>(I->getOperand(1)); 1755 continue; 1756 } 1757 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && 1758 CInt != cast<ConstantInt>(I->getOperand(1))) 1759 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 1760 } 1761 // FIXME: Currently cost of model modification for division by power of 1762 // 2 is handled for X86 and AArch64. Add support for other targets. 1763 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt && 1764 CInt->getValue().isPowerOf2()) 1765 Op2VP = TargetTransformInfo::OP_PowerOf2; 1766 1767 int ScalarCost = VecTy->getNumElements() * 1768 TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, 1769 Op2VK, Op1VP, Op2VP); 1770 int VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK, 1771 Op1VP, Op2VP); 1772 return VecCost - ScalarCost; 1773 } 1774 case Instruction::GetElementPtr: { 1775 TargetTransformInfo::OperandValueKind Op1VK = 1776 TargetTransformInfo::OK_AnyValue; 1777 TargetTransformInfo::OperandValueKind Op2VK = 1778 TargetTransformInfo::OK_UniformConstantValue; 1779 1780 int ScalarCost = 1781 VecTy->getNumElements() * 1782 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 1783 int VecCost = 1784 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 1785 1786 return VecCost - ScalarCost; 1787 } 1788 case Instruction::Load: { 1789 // Cost of wide load - cost of scalar loads. 1790 unsigned alignment = dyn_cast<LoadInst>(VL0)->getAlignment(); 1791 int ScalarLdCost = VecTy->getNumElements() * 1792 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0); 1793 int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, 1794 VecTy, alignment, 0); 1795 if (E->NeedToShuffle) { 1796 VecLdCost += TTI->getShuffleCost( 1797 TargetTransformInfo::SK_PermuteSingleSrc, VecTy, 0); 1798 } 1799 return VecLdCost - ScalarLdCost; 1800 } 1801 case Instruction::Store: { 1802 // We know that we can merge the stores. Calculate the cost. 1803 unsigned alignment = dyn_cast<StoreInst>(VL0)->getAlignment(); 1804 int ScalarStCost = VecTy->getNumElements() * 1805 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0); 1806 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, 1807 VecTy, alignment, 0); 1808 return VecStCost - ScalarStCost; 1809 } 1810 case Instruction::Call: { 1811 CallInst *CI = cast<CallInst>(VL0); 1812 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 1813 1814 // Calculate the cost of the scalar and vector calls. 1815 SmallVector<Type*, 4> ScalarTys, VecTys; 1816 for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) { 1817 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 1818 VecTys.push_back(VectorType::get(CI->getArgOperand(op)->getType(), 1819 VecTy->getNumElements())); 1820 } 1821 1822 FastMathFlags FMF; 1823 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 1824 FMF = FPMO->getFastMathFlags(); 1825 1826 int ScalarCallCost = VecTy->getNumElements() * 1827 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); 1828 1829 int VecCallCost = TTI->getIntrinsicInstrCost(ID, VecTy, VecTys, FMF); 1830 1831 DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost 1832 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 1833 << " for " << *CI << "\n"); 1834 1835 return VecCallCost - ScalarCallCost; 1836 } 1837 case Instruction::ShuffleVector: { 1838 TargetTransformInfo::OperandValueKind Op1VK = 1839 TargetTransformInfo::OK_AnyValue; 1840 TargetTransformInfo::OperandValueKind Op2VK = 1841 TargetTransformInfo::OK_AnyValue; 1842 int ScalarCost = 0; 1843 int VecCost = 0; 1844 for (Value *i : VL) { 1845 Instruction *I = cast<Instruction>(i); 1846 if (!I) 1847 break; 1848 ScalarCost += 1849 TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK); 1850 } 1851 // VecCost is equal to sum of the cost of creating 2 vectors 1852 // and the cost of creating shuffle. 1853 Instruction *I0 = cast<Instruction>(VL[0]); 1854 VecCost = 1855 TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK); 1856 Instruction *I1 = cast<Instruction>(VL[1]); 1857 VecCost += 1858 TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK); 1859 VecCost += 1860 TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0); 1861 return VecCost - ScalarCost; 1862 } 1863 default: 1864 llvm_unreachable("Unknown instruction"); 1865 } 1866 } 1867 1868 bool BoUpSLP::isFullyVectorizableTinyTree() { 1869 DEBUG(dbgs() << "SLP: Check whether the tree with height " << 1870 VectorizableTree.size() << " is fully vectorizable .\n"); 1871 1872 // We only handle trees of heights 1 and 2. 1873 if (VectorizableTree.size() == 1 && !VectorizableTree[0].NeedToGather) 1874 return true; 1875 1876 if (VectorizableTree.size() != 2) 1877 return false; 1878 1879 // Handle splat and all-constants stores. 1880 if (!VectorizableTree[0].NeedToGather && 1881 (allConstant(VectorizableTree[1].Scalars) || 1882 isSplat(VectorizableTree[1].Scalars))) 1883 return true; 1884 1885 // Gathering cost would be too much for tiny trees. 1886 if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather) 1887 return false; 1888 1889 return true; 1890 } 1891 1892 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() { 1893 1894 // We can vectorize the tree if its size is greater than or equal to the 1895 // minimum size specified by the MinTreeSize command line option. 1896 if (VectorizableTree.size() >= MinTreeSize) 1897 return false; 1898 1899 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 1900 // can vectorize it if we can prove it fully vectorizable. 1901 if (isFullyVectorizableTinyTree()) 1902 return false; 1903 1904 assert(VectorizableTree.empty() 1905 ? ExternalUses.empty() 1906 : true && "We shouldn't have any external users"); 1907 1908 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 1909 // vectorizable. 1910 return true; 1911 } 1912 1913 int BoUpSLP::getSpillCost() { 1914 // Walk from the bottom of the tree to the top, tracking which values are 1915 // live. When we see a call instruction that is not part of our tree, 1916 // query TTI to see if there is a cost to keeping values live over it 1917 // (for example, if spills and fills are required). 1918 unsigned BundleWidth = VectorizableTree.front().Scalars.size(); 1919 int Cost = 0; 1920 1921 SmallPtrSet<Instruction*, 4> LiveValues; 1922 Instruction *PrevInst = nullptr; 1923 1924 for (const auto &N : VectorizableTree) { 1925 Instruction *Inst = dyn_cast<Instruction>(N.Scalars[0]); 1926 if (!Inst) 1927 continue; 1928 1929 if (!PrevInst) { 1930 PrevInst = Inst; 1931 continue; 1932 } 1933 1934 // Update LiveValues. 1935 LiveValues.erase(PrevInst); 1936 for (auto &J : PrevInst->operands()) { 1937 if (isa<Instruction>(&*J) && ScalarToTreeEntry.count(&*J)) 1938 LiveValues.insert(cast<Instruction>(&*J)); 1939 } 1940 1941 DEBUG( 1942 dbgs() << "SLP: #LV: " << LiveValues.size(); 1943 for (auto *X : LiveValues) 1944 dbgs() << " " << X->getName(); 1945 dbgs() << ", Looking at "; 1946 Inst->dump(); 1947 ); 1948 1949 // Now find the sequence of instructions between PrevInst and Inst. 1950 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 1951 PrevInstIt = 1952 PrevInst->getIterator().getReverse(); 1953 while (InstIt != PrevInstIt) { 1954 if (PrevInstIt == PrevInst->getParent()->rend()) { 1955 PrevInstIt = Inst->getParent()->rbegin(); 1956 continue; 1957 } 1958 1959 if (isa<CallInst>(&*PrevInstIt) && &*PrevInstIt != PrevInst) { 1960 SmallVector<Type*, 4> V; 1961 for (auto *II : LiveValues) 1962 V.push_back(VectorType::get(II->getType(), BundleWidth)); 1963 Cost += TTI->getCostOfKeepingLiveOverCall(V); 1964 } 1965 1966 ++PrevInstIt; 1967 } 1968 1969 PrevInst = Inst; 1970 } 1971 1972 return Cost; 1973 } 1974 1975 int BoUpSLP::getTreeCost() { 1976 int Cost = 0; 1977 DEBUG(dbgs() << "SLP: Calculating cost for tree of size " << 1978 VectorizableTree.size() << ".\n"); 1979 1980 unsigned BundleWidth = VectorizableTree[0].Scalars.size(); 1981 1982 for (TreeEntry &TE : VectorizableTree) { 1983 int C = getEntryCost(&TE); 1984 DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with " 1985 << *TE.Scalars[0] << ".\n"); 1986 Cost += C; 1987 } 1988 1989 SmallSet<Value *, 16> ExtractCostCalculated; 1990 int ExtractCost = 0; 1991 for (ExternalUser &EU : ExternalUses) { 1992 // We only add extract cost once for the same scalar. 1993 if (!ExtractCostCalculated.insert(EU.Scalar).second) 1994 continue; 1995 1996 // Uses by ephemeral values are free (because the ephemeral value will be 1997 // removed prior to code generation, and so the extraction will be 1998 // removed as well). 1999 if (EphValues.count(EU.User)) 2000 continue; 2001 2002 // If we plan to rewrite the tree in a smaller type, we will need to sign 2003 // extend the extracted value back to the original type. Here, we account 2004 // for the extract and the added cost of the sign extend if needed. 2005 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); 2006 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 2007 if (MinBWs.count(ScalarRoot)) { 2008 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 2009 auto Extend = 2010 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 2011 VecTy = VectorType::get(MinTy, BundleWidth); 2012 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 2013 VecTy, EU.Lane); 2014 } else { 2015 ExtractCost += 2016 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 2017 } 2018 } 2019 2020 int SpillCost = getSpillCost(); 2021 Cost += SpillCost + ExtractCost; 2022 2023 DEBUG(dbgs() << "SLP: Spill Cost = " << SpillCost << ".\n" 2024 << "SLP: Extract Cost = " << ExtractCost << ".\n" 2025 << "SLP: Total Cost = " << Cost << ".\n"); 2026 return Cost; 2027 } 2028 2029 int BoUpSLP::getGatherCost(Type *Ty) { 2030 int Cost = 0; 2031 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 2032 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 2033 return Cost; 2034 } 2035 2036 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) { 2037 // Find the type of the operands in VL. 2038 Type *ScalarTy = VL[0]->getType(); 2039 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2040 ScalarTy = SI->getValueOperand()->getType(); 2041 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2042 // Find the cost of inserting/extracting values from the vector. 2043 return getGatherCost(VecTy); 2044 } 2045 2046 // Reorder commutative operations in alternate shuffle if the resulting vectors 2047 // are consecutive loads. This would allow us to vectorize the tree. 2048 // If we have something like- 2049 // load a[0] - load b[0] 2050 // load b[1] + load a[1] 2051 // load a[2] - load b[2] 2052 // load a[3] + load b[3] 2053 // Reordering the second load b[1] load a[1] would allow us to vectorize this 2054 // code. 2055 void BoUpSLP::reorderAltShuffleOperands(ArrayRef<Value *> VL, 2056 SmallVectorImpl<Value *> &Left, 2057 SmallVectorImpl<Value *> &Right) { 2058 // Push left and right operands of binary operation into Left and Right 2059 for (Value *i : VL) { 2060 Left.push_back(cast<Instruction>(i)->getOperand(0)); 2061 Right.push_back(cast<Instruction>(i)->getOperand(1)); 2062 } 2063 2064 // Reorder if we have a commutative operation and consecutive access 2065 // are on either side of the alternate instructions. 2066 for (unsigned j = 0; j < VL.size() - 1; ++j) { 2067 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2068 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2069 Instruction *VL1 = cast<Instruction>(VL[j]); 2070 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 2071 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 2072 std::swap(Left[j], Right[j]); 2073 continue; 2074 } else if (VL2->isCommutative() && 2075 isConsecutiveAccess(L, L1, *DL, *SE)) { 2076 std::swap(Left[j + 1], Right[j + 1]); 2077 continue; 2078 } 2079 // else unchanged 2080 } 2081 } 2082 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2083 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2084 Instruction *VL1 = cast<Instruction>(VL[j]); 2085 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 2086 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { 2087 std::swap(Left[j], Right[j]); 2088 continue; 2089 } else if (VL2->isCommutative() && 2090 isConsecutiveAccess(L, L1, *DL, *SE)) { 2091 std::swap(Left[j + 1], Right[j + 1]); 2092 continue; 2093 } 2094 // else unchanged 2095 } 2096 } 2097 } 2098 } 2099 2100 // Return true if I should be commuted before adding it's left and right 2101 // operands to the arrays Left and Right. 2102 // 2103 // The vectorizer is trying to either have all elements one side being 2104 // instruction with the same opcode to enable further vectorization, or having 2105 // a splat to lower the vectorizing cost. 2106 static bool shouldReorderOperands(int i, Instruction &I, 2107 SmallVectorImpl<Value *> &Left, 2108 SmallVectorImpl<Value *> &Right, 2109 bool AllSameOpcodeLeft, 2110 bool AllSameOpcodeRight, bool SplatLeft, 2111 bool SplatRight) { 2112 Value *VLeft = I.getOperand(0); 2113 Value *VRight = I.getOperand(1); 2114 // If we have "SplatRight", try to see if commuting is needed to preserve it. 2115 if (SplatRight) { 2116 if (VRight == Right[i - 1]) 2117 // Preserve SplatRight 2118 return false; 2119 if (VLeft == Right[i - 1]) { 2120 // Commuting would preserve SplatRight, but we don't want to break 2121 // SplatLeft either, i.e. preserve the original order if possible. 2122 // (FIXME: why do we care?) 2123 if (SplatLeft && VLeft == Left[i - 1]) 2124 return false; 2125 return true; 2126 } 2127 } 2128 // Symmetrically handle Right side. 2129 if (SplatLeft) { 2130 if (VLeft == Left[i - 1]) 2131 // Preserve SplatLeft 2132 return false; 2133 if (VRight == Left[i - 1]) 2134 return true; 2135 } 2136 2137 Instruction *ILeft = dyn_cast<Instruction>(VLeft); 2138 Instruction *IRight = dyn_cast<Instruction>(VRight); 2139 2140 // If we have "AllSameOpcodeRight", try to see if the left operands preserves 2141 // it and not the right, in this case we want to commute. 2142 if (AllSameOpcodeRight) { 2143 unsigned RightPrevOpcode = cast<Instruction>(Right[i - 1])->getOpcode(); 2144 if (IRight && RightPrevOpcode == IRight->getOpcode()) 2145 // Do not commute, a match on the right preserves AllSameOpcodeRight 2146 return false; 2147 if (ILeft && RightPrevOpcode == ILeft->getOpcode()) { 2148 // We have a match and may want to commute, but first check if there is 2149 // not also a match on the existing operands on the Left to preserve 2150 // AllSameOpcodeLeft, i.e. preserve the original order if possible. 2151 // (FIXME: why do we care?) 2152 if (AllSameOpcodeLeft && ILeft && 2153 cast<Instruction>(Left[i - 1])->getOpcode() == ILeft->getOpcode()) 2154 return false; 2155 return true; 2156 } 2157 } 2158 // Symmetrically handle Left side. 2159 if (AllSameOpcodeLeft) { 2160 unsigned LeftPrevOpcode = cast<Instruction>(Left[i - 1])->getOpcode(); 2161 if (ILeft && LeftPrevOpcode == ILeft->getOpcode()) 2162 return false; 2163 if (IRight && LeftPrevOpcode == IRight->getOpcode()) 2164 return true; 2165 } 2166 return false; 2167 } 2168 2169 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 2170 SmallVectorImpl<Value *> &Left, 2171 SmallVectorImpl<Value *> &Right) { 2172 2173 if (VL.size()) { 2174 // Peel the first iteration out of the loop since there's nothing 2175 // interesting to do anyway and it simplifies the checks in the loop. 2176 auto VLeft = cast<Instruction>(VL[0])->getOperand(0); 2177 auto VRight = cast<Instruction>(VL[0])->getOperand(1); 2178 if (!isa<Instruction>(VRight) && isa<Instruction>(VLeft)) 2179 // Favor having instruction to the right. FIXME: why? 2180 std::swap(VLeft, VRight); 2181 Left.push_back(VLeft); 2182 Right.push_back(VRight); 2183 } 2184 2185 // Keep track if we have instructions with all the same opcode on one side. 2186 bool AllSameOpcodeLeft = isa<Instruction>(Left[0]); 2187 bool AllSameOpcodeRight = isa<Instruction>(Right[0]); 2188 // Keep track if we have one side with all the same value (broadcast). 2189 bool SplatLeft = true; 2190 bool SplatRight = true; 2191 2192 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 2193 Instruction *I = cast<Instruction>(VL[i]); 2194 assert(I->isCommutative() && "Can only process commutative instruction"); 2195 // Commute to favor either a splat or maximizing having the same opcodes on 2196 // one side. 2197 if (shouldReorderOperands(i, *I, Left, Right, AllSameOpcodeLeft, 2198 AllSameOpcodeRight, SplatLeft, SplatRight)) { 2199 Left.push_back(I->getOperand(1)); 2200 Right.push_back(I->getOperand(0)); 2201 } else { 2202 Left.push_back(I->getOperand(0)); 2203 Right.push_back(I->getOperand(1)); 2204 } 2205 // Update Splat* and AllSameOpcode* after the insertion. 2206 SplatRight = SplatRight && (Right[i - 1] == Right[i]); 2207 SplatLeft = SplatLeft && (Left[i - 1] == Left[i]); 2208 AllSameOpcodeLeft = AllSameOpcodeLeft && isa<Instruction>(Left[i]) && 2209 (cast<Instruction>(Left[i - 1])->getOpcode() == 2210 cast<Instruction>(Left[i])->getOpcode()); 2211 AllSameOpcodeRight = AllSameOpcodeRight && isa<Instruction>(Right[i]) && 2212 (cast<Instruction>(Right[i - 1])->getOpcode() == 2213 cast<Instruction>(Right[i])->getOpcode()); 2214 } 2215 2216 // If one operand end up being broadcast, return this operand order. 2217 if (SplatRight || SplatLeft) 2218 return; 2219 2220 // Finally check if we can get longer vectorizable chain by reordering 2221 // without breaking the good operand order detected above. 2222 // E.g. If we have something like- 2223 // load a[0] load b[0] 2224 // load b[1] load a[1] 2225 // load a[2] load b[2] 2226 // load a[3] load b[3] 2227 // Reordering the second load b[1] load a[1] would allow us to vectorize 2228 // this code and we still retain AllSameOpcode property. 2229 // FIXME: This load reordering might break AllSameOpcode in some rare cases 2230 // such as- 2231 // add a[0],c[0] load b[0] 2232 // add a[1],c[2] load b[1] 2233 // b[2] load b[2] 2234 // add a[3],c[3] load b[3] 2235 for (unsigned j = 0; j < VL.size() - 1; ++j) { 2236 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2237 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2238 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2239 std::swap(Left[j + 1], Right[j + 1]); 2240 continue; 2241 } 2242 } 2243 } 2244 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2245 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2246 if (isConsecutiveAccess(L, L1, *DL, *SE)) { 2247 std::swap(Left[j + 1], Right[j + 1]); 2248 continue; 2249 } 2250 } 2251 } 2252 // else unchanged 2253 } 2254 } 2255 2256 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) { 2257 2258 // Get the basic block this bundle is in. All instructions in the bundle 2259 // should be in this block. 2260 auto *Front = cast<Instruction>(VL.front()); 2261 auto *BB = Front->getParent(); 2262 assert(all_of(make_range(VL.begin(), VL.end()), [&](Value *V) -> bool { 2263 return cast<Instruction>(V)->getParent() == BB; 2264 })); 2265 2266 // The last instruction in the bundle in program order. 2267 Instruction *LastInst = nullptr; 2268 2269 // Find the last instruction. The common case should be that BB has been 2270 // scheduled, and the last instruction is VL.back(). So we start with 2271 // VL.back() and iterate over schedule data until we reach the end of the 2272 // bundle. The end of the bundle is marked by null ScheduleData. 2273 if (BlocksSchedules.count(BB)) { 2274 auto *Bundle = BlocksSchedules[BB]->getScheduleData(VL.back()); 2275 if (Bundle && Bundle->isPartOfBundle()) 2276 for (; Bundle; Bundle = Bundle->NextInBundle) 2277 LastInst = Bundle->Inst; 2278 } 2279 2280 // LastInst can still be null at this point if there's either not an entry 2281 // for BB in BlocksSchedules or there's no ScheduleData available for 2282 // VL.back(). This can be the case if buildTree_rec aborts for various 2283 // reasons (e.g., the maximum recursion depth is reached, the maximum region 2284 // size is reached, etc.). ScheduleData is initialized in the scheduling 2285 // "dry-run". 2286 // 2287 // If this happens, we can still find the last instruction by brute force. We 2288 // iterate forwards from Front (inclusive) until we either see all 2289 // instructions in the bundle or reach the end of the block. If Front is the 2290 // last instruction in program order, LastInst will be set to Front, and we 2291 // will visit all the remaining instructions in the block. 2292 // 2293 // One of the reasons we exit early from buildTree_rec is to place an upper 2294 // bound on compile-time. Thus, taking an additional compile-time hit here is 2295 // not ideal. However, this should be exceedingly rare since it requires that 2296 // we both exit early from buildTree_rec and that the bundle be out-of-order 2297 // (causing us to iterate all the way to the end of the block). 2298 if (!LastInst) { 2299 SmallPtrSet<Value *, 16> Bundle(VL.begin(), VL.end()); 2300 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 2301 if (Bundle.erase(&I)) 2302 LastInst = &I; 2303 if (Bundle.empty()) 2304 break; 2305 } 2306 } 2307 2308 // Set the insertion point after the last instruction in the bundle. Set the 2309 // debug location to Front. 2310 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 2311 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 2312 } 2313 2314 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 2315 Value *Vec = UndefValue::get(Ty); 2316 // Generate the 'InsertElement' instruction. 2317 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 2318 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 2319 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { 2320 GatherSeq.insert(Insrt); 2321 CSEBlocks.insert(Insrt->getParent()); 2322 2323 // Add to our 'need-to-extract' list. 2324 if (ScalarToTreeEntry.count(VL[i])) { 2325 int Idx = ScalarToTreeEntry[VL[i]]; 2326 TreeEntry *E = &VectorizableTree[Idx]; 2327 // Find which lane we need to extract. 2328 int FoundLane = -1; 2329 for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) { 2330 // Is this the lane of the scalar that we are looking for ? 2331 if (E->Scalars[Lane] == VL[i]) { 2332 FoundLane = Lane; 2333 break; 2334 } 2335 } 2336 assert(FoundLane >= 0 && "Could not find the correct lane"); 2337 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 2338 } 2339 } 2340 } 2341 2342 return Vec; 2343 } 2344 2345 Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) const { 2346 SmallDenseMap<Value*, int>::const_iterator Entry 2347 = ScalarToTreeEntry.find(VL[0]); 2348 if (Entry != ScalarToTreeEntry.end()) { 2349 int Idx = Entry->second; 2350 const TreeEntry *En = &VectorizableTree[Idx]; 2351 if (En->isSame(VL) && En->VectorizedValue) 2352 return En->VectorizedValue; 2353 } 2354 return nullptr; 2355 } 2356 2357 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 2358 if (ScalarToTreeEntry.count(VL[0])) { 2359 int Idx = ScalarToTreeEntry[VL[0]]; 2360 TreeEntry *E = &VectorizableTree[Idx]; 2361 if (E->isSame(VL) || (E->NeedToShuffle && E->isFoundJumbled(VL, *DL, *SE))) 2362 return vectorizeTree(VL, E); 2363 } 2364 2365 Type *ScalarTy = VL[0]->getType(); 2366 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2367 ScalarTy = SI->getValueOperand()->getType(); 2368 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2369 2370 return Gather(VL, VecTy); 2371 } 2372 2373 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL, TreeEntry *E) { 2374 IRBuilder<>::InsertPointGuard Guard(Builder); 2375 2376 if (E->VectorizedValue && !E->NeedToShuffle) { 2377 DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 2378 return E->VectorizedValue; 2379 } 2380 2381 Instruction *VL0 = cast<Instruction>(E->Scalars[0]); 2382 Type *ScalarTy = VL0->getType(); 2383 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 2384 ScalarTy = SI->getValueOperand()->getType(); 2385 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 2386 2387 if (E->NeedToGather) { 2388 setInsertPointAfterBundle(E->Scalars); 2389 auto *V = Gather(E->Scalars, VecTy); 2390 E->VectorizedValue = V; 2391 return V; 2392 } 2393 2394 unsigned Opcode = getSameOpcode(E->Scalars); 2395 2396 switch (Opcode) { 2397 case Instruction::PHI: { 2398 PHINode *PH = dyn_cast<PHINode>(VL0); 2399 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 2400 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 2401 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 2402 E->VectorizedValue = NewPhi; 2403 2404 // PHINodes may have multiple entries from the same block. We want to 2405 // visit every block once. 2406 SmallSet<BasicBlock*, 4> VisitedBBs; 2407 2408 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2409 ValueList Operands; 2410 BasicBlock *IBB = PH->getIncomingBlock(i); 2411 2412 if (!VisitedBBs.insert(IBB).second) { 2413 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 2414 continue; 2415 } 2416 2417 // Prepare the operand vector. 2418 for (Value *V : E->Scalars) 2419 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB)); 2420 2421 Builder.SetInsertPoint(IBB->getTerminator()); 2422 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 2423 Value *Vec = vectorizeTree(Operands); 2424 NewPhi->addIncoming(Vec, IBB); 2425 } 2426 2427 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 2428 "Invalid number of incoming values"); 2429 return NewPhi; 2430 } 2431 2432 case Instruction::ExtractElement: { 2433 if (canReuseExtract(E->Scalars, Instruction::ExtractElement)) { 2434 Value *V = VL0->getOperand(0); 2435 E->VectorizedValue = V; 2436 return V; 2437 } 2438 setInsertPointAfterBundle(E->Scalars); 2439 auto *V = Gather(E->Scalars, VecTy); 2440 E->VectorizedValue = V; 2441 return V; 2442 } 2443 case Instruction::ExtractValue: { 2444 if (canReuseExtract(E->Scalars, Instruction::ExtractValue)) { 2445 LoadInst *LI = cast<LoadInst>(VL0->getOperand(0)); 2446 Builder.SetInsertPoint(LI); 2447 PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 2448 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 2449 LoadInst *V = Builder.CreateAlignedLoad(Ptr, LI->getAlignment()); 2450 E->VectorizedValue = V; 2451 return propagateMetadata(V, E->Scalars); 2452 } 2453 setInsertPointAfterBundle(E->Scalars); 2454 auto *V = Gather(E->Scalars, VecTy); 2455 E->VectorizedValue = V; 2456 return V; 2457 } 2458 case Instruction::ZExt: 2459 case Instruction::SExt: 2460 case Instruction::FPToUI: 2461 case Instruction::FPToSI: 2462 case Instruction::FPExt: 2463 case Instruction::PtrToInt: 2464 case Instruction::IntToPtr: 2465 case Instruction::SIToFP: 2466 case Instruction::UIToFP: 2467 case Instruction::Trunc: 2468 case Instruction::FPTrunc: 2469 case Instruction::BitCast: { 2470 ValueList INVL; 2471 for (Value *V : E->Scalars) 2472 INVL.push_back(cast<Instruction>(V)->getOperand(0)); 2473 2474 setInsertPointAfterBundle(E->Scalars); 2475 2476 Value *InVec = vectorizeTree(INVL); 2477 2478 if (Value *V = alreadyVectorized(E->Scalars)) 2479 return V; 2480 2481 CastInst *CI = dyn_cast<CastInst>(VL0); 2482 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 2483 E->VectorizedValue = V; 2484 ++NumVectorInstructions; 2485 return V; 2486 } 2487 case Instruction::FCmp: 2488 case Instruction::ICmp: { 2489 ValueList LHSV, RHSV; 2490 for (Value *V : E->Scalars) { 2491 LHSV.push_back(cast<Instruction>(V)->getOperand(0)); 2492 RHSV.push_back(cast<Instruction>(V)->getOperand(1)); 2493 } 2494 2495 setInsertPointAfterBundle(E->Scalars); 2496 2497 Value *L = vectorizeTree(LHSV); 2498 Value *R = vectorizeTree(RHSV); 2499 2500 if (Value *V = alreadyVectorized(E->Scalars)) 2501 return V; 2502 2503 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2504 Value *V; 2505 if (Opcode == Instruction::FCmp) 2506 V = Builder.CreateFCmp(P0, L, R); 2507 else 2508 V = Builder.CreateICmp(P0, L, R); 2509 2510 E->VectorizedValue = V; 2511 propagateIRFlags(E->VectorizedValue, E->Scalars); 2512 ++NumVectorInstructions; 2513 return V; 2514 } 2515 case Instruction::Select: { 2516 ValueList TrueVec, FalseVec, CondVec; 2517 for (Value *V : E->Scalars) { 2518 CondVec.push_back(cast<Instruction>(V)->getOperand(0)); 2519 TrueVec.push_back(cast<Instruction>(V)->getOperand(1)); 2520 FalseVec.push_back(cast<Instruction>(V)->getOperand(2)); 2521 } 2522 2523 setInsertPointAfterBundle(E->Scalars); 2524 2525 Value *Cond = vectorizeTree(CondVec); 2526 Value *True = vectorizeTree(TrueVec); 2527 Value *False = vectorizeTree(FalseVec); 2528 2529 if (Value *V = alreadyVectorized(E->Scalars)) 2530 return V; 2531 2532 Value *V = Builder.CreateSelect(Cond, True, False); 2533 E->VectorizedValue = V; 2534 ++NumVectorInstructions; 2535 return V; 2536 } 2537 case Instruction::Add: 2538 case Instruction::FAdd: 2539 case Instruction::Sub: 2540 case Instruction::FSub: 2541 case Instruction::Mul: 2542 case Instruction::FMul: 2543 case Instruction::UDiv: 2544 case Instruction::SDiv: 2545 case Instruction::FDiv: 2546 case Instruction::URem: 2547 case Instruction::SRem: 2548 case Instruction::FRem: 2549 case Instruction::Shl: 2550 case Instruction::LShr: 2551 case Instruction::AShr: 2552 case Instruction::And: 2553 case Instruction::Or: 2554 case Instruction::Xor: { 2555 ValueList LHSVL, RHSVL; 2556 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) 2557 reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL); 2558 else 2559 for (Value *V : E->Scalars) { 2560 LHSVL.push_back(cast<Instruction>(V)->getOperand(0)); 2561 RHSVL.push_back(cast<Instruction>(V)->getOperand(1)); 2562 } 2563 2564 setInsertPointAfterBundle(E->Scalars); 2565 2566 Value *LHS = vectorizeTree(LHSVL); 2567 Value *RHS = vectorizeTree(RHSVL); 2568 2569 if (Value *V = alreadyVectorized(E->Scalars)) 2570 return V; 2571 2572 BinaryOperator *BinOp = cast<BinaryOperator>(VL0); 2573 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS); 2574 E->VectorizedValue = V; 2575 propagateIRFlags(E->VectorizedValue, E->Scalars); 2576 ++NumVectorInstructions; 2577 2578 if (Instruction *I = dyn_cast<Instruction>(V)) 2579 return propagateMetadata(I, E->Scalars); 2580 2581 return V; 2582 } 2583 case Instruction::Load: { 2584 // Loads are inserted at the head of the tree because we don't want to 2585 // sink them all the way down past store instructions. 2586 setInsertPointAfterBundle(E->Scalars); 2587 2588 LoadInst *LI = cast<LoadInst>(VL0); 2589 Type *ScalarLoadTy = LI->getType(); 2590 unsigned AS = LI->getPointerAddressSpace(); 2591 2592 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 2593 VecTy->getPointerTo(AS)); 2594 2595 // The pointer operand uses an in-tree scalar so we add the new BitCast to 2596 // ExternalUses list to make sure that an extract will be generated in the 2597 // future. 2598 if (ScalarToTreeEntry.count(LI->getPointerOperand())) 2599 ExternalUses.push_back( 2600 ExternalUser(LI->getPointerOperand(), cast<User>(VecPtr), 0)); 2601 2602 unsigned Alignment = LI->getAlignment(); 2603 LI = Builder.CreateLoad(VecPtr); 2604 if (!Alignment) { 2605 Alignment = DL->getABITypeAlignment(ScalarLoadTy); 2606 } 2607 LI->setAlignment(Alignment); 2608 E->VectorizedValue = LI; 2609 ++NumVectorInstructions; 2610 propagateMetadata(LI, E->Scalars); 2611 2612 // As program order of scalar loads are jumbled, the vectorized 'load' 2613 // must be followed by a 'shuffle' with the required jumbled mask. 2614 if (!VL.empty() && (E->NeedToShuffle)) { 2615 assert(VL.size() == E->Scalars.size() && 2616 "Equal number of scalars expected"); 2617 SmallVector<Constant *, 8> Mask; 2618 for (Value *Val : VL) { 2619 if (ScalarToTreeEntry.count(Val)) { 2620 int Idx = ScalarToTreeEntry[Val]; 2621 TreeEntry *E = &VectorizableTree[Idx]; 2622 for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) { 2623 if (E->Scalars[Lane] == Val) { 2624 Mask.push_back(Builder.getInt32(Lane)); 2625 break; 2626 } 2627 } 2628 } 2629 } 2630 2631 // Generate shuffle for jumbled memory access 2632 Value *Undef = UndefValue::get(VecTy); 2633 Value *Shuf = Builder.CreateShuffleVector((Value *)LI, Undef, 2634 ConstantVector::get(Mask)); 2635 return Shuf; 2636 } 2637 2638 return LI; 2639 } 2640 case Instruction::Store: { 2641 StoreInst *SI = cast<StoreInst>(VL0); 2642 unsigned Alignment = SI->getAlignment(); 2643 unsigned AS = SI->getPointerAddressSpace(); 2644 2645 ValueList ValueOp; 2646 for (Value *V : E->Scalars) 2647 ValueOp.push_back(cast<StoreInst>(V)->getValueOperand()); 2648 2649 setInsertPointAfterBundle(E->Scalars); 2650 2651 Value *VecValue = vectorizeTree(ValueOp); 2652 Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(), 2653 VecTy->getPointerTo(AS)); 2654 StoreInst *S = Builder.CreateStore(VecValue, VecPtr); 2655 2656 // The pointer operand uses an in-tree scalar so we add the new BitCast to 2657 // ExternalUses list to make sure that an extract will be generated in the 2658 // future. 2659 if (ScalarToTreeEntry.count(SI->getPointerOperand())) 2660 ExternalUses.push_back( 2661 ExternalUser(SI->getPointerOperand(), cast<User>(VecPtr), 0)); 2662 2663 if (!Alignment) { 2664 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); 2665 } 2666 S->setAlignment(Alignment); 2667 E->VectorizedValue = S; 2668 ++NumVectorInstructions; 2669 return propagateMetadata(S, E->Scalars); 2670 } 2671 case Instruction::GetElementPtr: { 2672 setInsertPointAfterBundle(E->Scalars); 2673 2674 ValueList Op0VL; 2675 for (Value *V : E->Scalars) 2676 Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0)); 2677 2678 Value *Op0 = vectorizeTree(Op0VL); 2679 2680 std::vector<Value *> OpVecs; 2681 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 2682 ++j) { 2683 ValueList OpVL; 2684 for (Value *V : E->Scalars) 2685 OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j)); 2686 2687 Value *OpVec = vectorizeTree(OpVL); 2688 OpVecs.push_back(OpVec); 2689 } 2690 2691 Value *V = Builder.CreateGEP( 2692 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 2693 E->VectorizedValue = V; 2694 ++NumVectorInstructions; 2695 2696 if (Instruction *I = dyn_cast<Instruction>(V)) 2697 return propagateMetadata(I, E->Scalars); 2698 2699 return V; 2700 } 2701 case Instruction::Call: { 2702 CallInst *CI = cast<CallInst>(VL0); 2703 setInsertPointAfterBundle(E->Scalars); 2704 Function *FI; 2705 Intrinsic::ID IID = Intrinsic::not_intrinsic; 2706 Value *ScalarArg = nullptr; 2707 if (CI && (FI = CI->getCalledFunction())) { 2708 IID = FI->getIntrinsicID(); 2709 } 2710 std::vector<Value *> OpVecs; 2711 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 2712 ValueList OpVL; 2713 // ctlz,cttz and powi are special intrinsics whose second argument is 2714 // a scalar. This argument should not be vectorized. 2715 if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) { 2716 CallInst *CEI = cast<CallInst>(E->Scalars[0]); 2717 ScalarArg = CEI->getArgOperand(j); 2718 OpVecs.push_back(CEI->getArgOperand(j)); 2719 continue; 2720 } 2721 for (Value *V : E->Scalars) { 2722 CallInst *CEI = cast<CallInst>(V); 2723 OpVL.push_back(CEI->getArgOperand(j)); 2724 } 2725 2726 Value *OpVec = vectorizeTree(OpVL); 2727 DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 2728 OpVecs.push_back(OpVec); 2729 } 2730 2731 Module *M = F->getParent(); 2732 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2733 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 2734 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 2735 SmallVector<OperandBundleDef, 1> OpBundles; 2736 CI->getOperandBundlesAsDefs(OpBundles); 2737 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 2738 2739 // The scalar argument uses an in-tree scalar so we add the new vectorized 2740 // call to ExternalUses list to make sure that an extract will be 2741 // generated in the future. 2742 if (ScalarArg && ScalarToTreeEntry.count(ScalarArg)) 2743 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 2744 2745 E->VectorizedValue = V; 2746 propagateIRFlags(E->VectorizedValue, E->Scalars); 2747 ++NumVectorInstructions; 2748 return V; 2749 } 2750 case Instruction::ShuffleVector: { 2751 ValueList LHSVL, RHSVL; 2752 assert(isa<BinaryOperator>(VL0) && "Invalid Shuffle Vector Operand"); 2753 reorderAltShuffleOperands(E->Scalars, LHSVL, RHSVL); 2754 setInsertPointAfterBundle(E->Scalars); 2755 2756 Value *LHS = vectorizeTree(LHSVL); 2757 Value *RHS = vectorizeTree(RHSVL); 2758 2759 if (Value *V = alreadyVectorized(E->Scalars)) 2760 return V; 2761 2762 // Create a vector of LHS op1 RHS 2763 BinaryOperator *BinOp0 = cast<BinaryOperator>(VL0); 2764 Value *V0 = Builder.CreateBinOp(BinOp0->getOpcode(), LHS, RHS); 2765 2766 // Create a vector of LHS op2 RHS 2767 Instruction *VL1 = cast<Instruction>(E->Scalars[1]); 2768 BinaryOperator *BinOp1 = cast<BinaryOperator>(VL1); 2769 Value *V1 = Builder.CreateBinOp(BinOp1->getOpcode(), LHS, RHS); 2770 2771 // Create shuffle to take alternate operations from the vector. 2772 // Also, gather up odd and even scalar ops to propagate IR flags to 2773 // each vector operation. 2774 ValueList OddScalars, EvenScalars; 2775 unsigned e = E->Scalars.size(); 2776 SmallVector<Constant *, 8> Mask(e); 2777 for (unsigned i = 0; i < e; ++i) { 2778 if (i & 1) { 2779 Mask[i] = Builder.getInt32(e + i); 2780 OddScalars.push_back(E->Scalars[i]); 2781 } else { 2782 Mask[i] = Builder.getInt32(i); 2783 EvenScalars.push_back(E->Scalars[i]); 2784 } 2785 } 2786 2787 Value *ShuffleMask = ConstantVector::get(Mask); 2788 propagateIRFlags(V0, EvenScalars); 2789 propagateIRFlags(V1, OddScalars); 2790 2791 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 2792 E->VectorizedValue = V; 2793 ++NumVectorInstructions; 2794 if (Instruction *I = dyn_cast<Instruction>(V)) 2795 return propagateMetadata(I, E->Scalars); 2796 2797 return V; 2798 } 2799 default: 2800 llvm_unreachable("unknown inst"); 2801 } 2802 return nullptr; 2803 } 2804 2805 Value *BoUpSLP::vectorizeTree() { 2806 ExtraValueToDebugLocsMap ExternallyUsedValues; 2807 return vectorizeTree(ExternallyUsedValues); 2808 } 2809 2810 Value * 2811 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 2812 2813 // All blocks must be scheduled before any instructions are inserted. 2814 for (auto &BSIter : BlocksSchedules) { 2815 scheduleBlock(BSIter.second.get()); 2816 } 2817 2818 Builder.SetInsertPoint(&F->getEntryBlock().front()); 2819 auto *VectorRoot = vectorizeTree(ArrayRef<Value *>(), &VectorizableTree[0]); 2820 2821 // If the vectorized tree can be rewritten in a smaller type, we truncate the 2822 // vectorized root. InstCombine will then rewrite the entire expression. We 2823 // sign extend the extracted values below. 2824 auto *ScalarRoot = VectorizableTree[0].Scalars[0]; 2825 if (MinBWs.count(ScalarRoot)) { 2826 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 2827 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 2828 auto BundleWidth = VectorizableTree[0].Scalars.size(); 2829 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 2830 auto *VecTy = VectorType::get(MinTy, BundleWidth); 2831 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 2832 VectorizableTree[0].VectorizedValue = Trunc; 2833 } 2834 2835 DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n"); 2836 2837 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 2838 // specified by ScalarType. 2839 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 2840 if (!MinBWs.count(ScalarRoot)) 2841 return Ex; 2842 if (MinBWs[ScalarRoot].second) 2843 return Builder.CreateSExt(Ex, ScalarType); 2844 return Builder.CreateZExt(Ex, ScalarType); 2845 }; 2846 2847 // Extract all of the elements with the external uses. 2848 for (const auto &ExternalUse : ExternalUses) { 2849 Value *Scalar = ExternalUse.Scalar; 2850 llvm::User *User = ExternalUse.User; 2851 2852 // Skip users that we already RAUW. This happens when one instruction 2853 // has multiple uses of the same value. 2854 if (User && !is_contained(Scalar->users(), User)) 2855 continue; 2856 assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar"); 2857 2858 int Idx = ScalarToTreeEntry[Scalar]; 2859 TreeEntry *E = &VectorizableTree[Idx]; 2860 assert(!E->NeedToGather && "Extracting from a gather list"); 2861 2862 Value *Vec = E->VectorizedValue; 2863 assert(Vec && "Can't find vectorizable value"); 2864 2865 Value *Lane = Builder.getInt32(ExternalUse.Lane); 2866 // If User == nullptr, the Scalar is used as extra arg. Generate 2867 // ExtractElement instruction and update the record for this scalar in 2868 // ExternallyUsedValues. 2869 if (!User) { 2870 assert(ExternallyUsedValues.count(Scalar) && 2871 "Scalar with nullptr as an external user must be registered in " 2872 "ExternallyUsedValues map"); 2873 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 2874 Builder.SetInsertPoint(VecI->getParent(), 2875 std::next(VecI->getIterator())); 2876 } else { 2877 Builder.SetInsertPoint(&F->getEntryBlock().front()); 2878 } 2879 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2880 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 2881 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 2882 auto &Locs = ExternallyUsedValues[Scalar]; 2883 ExternallyUsedValues.insert({Ex, Locs}); 2884 ExternallyUsedValues.erase(Scalar); 2885 continue; 2886 } 2887 2888 // Generate extracts for out-of-tree users. 2889 // Find the insertion point for the extractelement lane. 2890 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 2891 if (PHINode *PH = dyn_cast<PHINode>(User)) { 2892 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 2893 if (PH->getIncomingValue(i) == Scalar) { 2894 TerminatorInst *IncomingTerminator = 2895 PH->getIncomingBlock(i)->getTerminator(); 2896 if (isa<CatchSwitchInst>(IncomingTerminator)) { 2897 Builder.SetInsertPoint(VecI->getParent(), 2898 std::next(VecI->getIterator())); 2899 } else { 2900 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 2901 } 2902 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2903 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 2904 CSEBlocks.insert(PH->getIncomingBlock(i)); 2905 PH->setOperand(i, Ex); 2906 } 2907 } 2908 } else { 2909 Builder.SetInsertPoint(cast<Instruction>(User)); 2910 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2911 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 2912 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 2913 User->replaceUsesOfWith(Scalar, Ex); 2914 } 2915 } else { 2916 Builder.SetInsertPoint(&F->getEntryBlock().front()); 2917 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2918 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 2919 CSEBlocks.insert(&F->getEntryBlock()); 2920 User->replaceUsesOfWith(Scalar, Ex); 2921 } 2922 2923 DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 2924 } 2925 2926 // For each vectorized value: 2927 for (TreeEntry &EIdx : VectorizableTree) { 2928 TreeEntry *Entry = &EIdx; 2929 2930 // For each lane: 2931 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2932 Value *Scalar = Entry->Scalars[Lane]; 2933 // No need to handle users of gathered values. 2934 if (Entry->NeedToGather) 2935 continue; 2936 2937 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 2938 2939 Type *Ty = Scalar->getType(); 2940 if (!Ty->isVoidTy()) { 2941 #ifndef NDEBUG 2942 for (User *U : Scalar->users()) { 2943 DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 2944 2945 assert((ScalarToTreeEntry.count(U) || 2946 // It is legal to replace users in the ignorelist by undef. 2947 is_contained(UserIgnoreList, U)) && 2948 "Replacing out-of-tree value with undef"); 2949 } 2950 #endif 2951 Value *Undef = UndefValue::get(Ty); 2952 Scalar->replaceAllUsesWith(Undef); 2953 } 2954 DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 2955 eraseInstruction(cast<Instruction>(Scalar)); 2956 } 2957 } 2958 2959 Builder.ClearInsertionPoint(); 2960 2961 return VectorizableTree[0].VectorizedValue; 2962 } 2963 2964 void BoUpSLP::optimizeGatherSequence() { 2965 DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 2966 << " gather sequences instructions.\n"); 2967 // LICM InsertElementInst sequences. 2968 for (Instruction *it : GatherSeq) { 2969 InsertElementInst *Insert = dyn_cast<InsertElementInst>(it); 2970 2971 if (!Insert) 2972 continue; 2973 2974 // Check if this block is inside a loop. 2975 Loop *L = LI->getLoopFor(Insert->getParent()); 2976 if (!L) 2977 continue; 2978 2979 // Check if it has a preheader. 2980 BasicBlock *PreHeader = L->getLoopPreheader(); 2981 if (!PreHeader) 2982 continue; 2983 2984 // If the vector or the element that we insert into it are 2985 // instructions that are defined in this basic block then we can't 2986 // hoist this instruction. 2987 Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0)); 2988 Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1)); 2989 if (CurrVec && L->contains(CurrVec)) 2990 continue; 2991 if (NewElem && L->contains(NewElem)) 2992 continue; 2993 2994 // We can hoist this instruction. Move it to the pre-header. 2995 Insert->moveBefore(PreHeader->getTerminator()); 2996 } 2997 2998 // Make a list of all reachable blocks in our CSE queue. 2999 SmallVector<const DomTreeNode *, 8> CSEWorkList; 3000 CSEWorkList.reserve(CSEBlocks.size()); 3001 for (BasicBlock *BB : CSEBlocks) 3002 if (DomTreeNode *N = DT->getNode(BB)) { 3003 assert(DT->isReachableFromEntry(N)); 3004 CSEWorkList.push_back(N); 3005 } 3006 3007 // Sort blocks by domination. This ensures we visit a block after all blocks 3008 // dominating it are visited. 3009 std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(), 3010 [this](const DomTreeNode *A, const DomTreeNode *B) { 3011 return DT->properlyDominates(A, B); 3012 }); 3013 3014 // Perform O(N^2) search over the gather sequences and merge identical 3015 // instructions. TODO: We can further optimize this scan if we split the 3016 // instructions into different buckets based on the insert lane. 3017 SmallVector<Instruction *, 16> Visited; 3018 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 3019 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 3020 "Worklist not sorted properly!"); 3021 BasicBlock *BB = (*I)->getBlock(); 3022 // For all instructions in blocks containing gather sequences: 3023 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 3024 Instruction *In = &*it++; 3025 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 3026 continue; 3027 3028 // Check if we can replace this instruction with any of the 3029 // visited instructions. 3030 for (Instruction *v : Visited) { 3031 if (In->isIdenticalTo(v) && 3032 DT->dominates(v->getParent(), In->getParent())) { 3033 In->replaceAllUsesWith(v); 3034 eraseInstruction(In); 3035 In = nullptr; 3036 break; 3037 } 3038 } 3039 if (In) { 3040 assert(!is_contained(Visited, In)); 3041 Visited.push_back(In); 3042 } 3043 } 3044 } 3045 CSEBlocks.clear(); 3046 GatherSeq.clear(); 3047 } 3048 3049 // Groups the instructions to a bundle (which is then a single scheduling entity) 3050 // and schedules instructions until the bundle gets ready. 3051 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, 3052 BoUpSLP *SLP) { 3053 if (isa<PHINode>(VL[0])) 3054 return true; 3055 3056 // Initialize the instruction bundle. 3057 Instruction *OldScheduleEnd = ScheduleEnd; 3058 ScheduleData *PrevInBundle = nullptr; 3059 ScheduleData *Bundle = nullptr; 3060 bool ReSchedule = false; 3061 DEBUG(dbgs() << "SLP: bundle: " << *VL[0] << "\n"); 3062 3063 // Make sure that the scheduling region contains all 3064 // instructions of the bundle. 3065 for (Value *V : VL) { 3066 if (!extendSchedulingRegion(V)) 3067 return false; 3068 } 3069 3070 for (Value *V : VL) { 3071 ScheduleData *BundleMember = getScheduleData(V); 3072 assert(BundleMember && 3073 "no ScheduleData for bundle member (maybe not in same basic block)"); 3074 if (BundleMember->IsScheduled) { 3075 // A bundle member was scheduled as single instruction before and now 3076 // needs to be scheduled as part of the bundle. We just get rid of the 3077 // existing schedule. 3078 DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 3079 << " was already scheduled\n"); 3080 ReSchedule = true; 3081 } 3082 assert(BundleMember->isSchedulingEntity() && 3083 "bundle member already part of other bundle"); 3084 if (PrevInBundle) { 3085 PrevInBundle->NextInBundle = BundleMember; 3086 } else { 3087 Bundle = BundleMember; 3088 } 3089 BundleMember->UnscheduledDepsInBundle = 0; 3090 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 3091 3092 // Group the instructions to a bundle. 3093 BundleMember->FirstInBundle = Bundle; 3094 PrevInBundle = BundleMember; 3095 } 3096 if (ScheduleEnd != OldScheduleEnd) { 3097 // The scheduling region got new instructions at the lower end (or it is a 3098 // new region for the first bundle). This makes it necessary to 3099 // recalculate all dependencies. 3100 // It is seldom that this needs to be done a second time after adding the 3101 // initial bundle to the region. 3102 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3103 ScheduleData *SD = getScheduleData(I); 3104 SD->clearDependencies(); 3105 } 3106 ReSchedule = true; 3107 } 3108 if (ReSchedule) { 3109 resetSchedule(); 3110 initialFillReadyList(ReadyInsts); 3111 } 3112 3113 DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 3114 << BB->getName() << "\n"); 3115 3116 calculateDependencies(Bundle, true, SLP); 3117 3118 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 3119 // means that there are no cyclic dependencies and we can schedule it. 3120 // Note that's important that we don't "schedule" the bundle yet (see 3121 // cancelScheduling). 3122 while (!Bundle->isReady() && !ReadyInsts.empty()) { 3123 3124 ScheduleData *pickedSD = ReadyInsts.back(); 3125 ReadyInsts.pop_back(); 3126 3127 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 3128 schedule(pickedSD, ReadyInsts); 3129 } 3130 } 3131 if (!Bundle->isReady()) { 3132 cancelScheduling(VL); 3133 return false; 3134 } 3135 return true; 3136 } 3137 3138 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL) { 3139 if (isa<PHINode>(VL[0])) 3140 return; 3141 3142 ScheduleData *Bundle = getScheduleData(VL[0]); 3143 DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 3144 assert(!Bundle->IsScheduled && 3145 "Can't cancel bundle which is already scheduled"); 3146 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 3147 "tried to unbundle something which is not a bundle"); 3148 3149 // Un-bundle: make single instructions out of the bundle. 3150 ScheduleData *BundleMember = Bundle; 3151 while (BundleMember) { 3152 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 3153 BundleMember->FirstInBundle = BundleMember; 3154 ScheduleData *Next = BundleMember->NextInBundle; 3155 BundleMember->NextInBundle = nullptr; 3156 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 3157 if (BundleMember->UnscheduledDepsInBundle == 0) { 3158 ReadyInsts.insert(BundleMember); 3159 } 3160 BundleMember = Next; 3161 } 3162 } 3163 3164 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V) { 3165 if (getScheduleData(V)) 3166 return true; 3167 Instruction *I = dyn_cast<Instruction>(V); 3168 assert(I && "bundle member must be an instruction"); 3169 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 3170 if (!ScheduleStart) { 3171 // It's the first instruction in the new region. 3172 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 3173 ScheduleStart = I; 3174 ScheduleEnd = I->getNextNode(); 3175 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 3176 DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 3177 return true; 3178 } 3179 // Search up and down at the same time, because we don't know if the new 3180 // instruction is above or below the existing scheduling region. 3181 BasicBlock::reverse_iterator UpIter = 3182 ++ScheduleStart->getIterator().getReverse(); 3183 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 3184 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 3185 BasicBlock::iterator LowerEnd = BB->end(); 3186 for (;;) { 3187 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 3188 DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 3189 return false; 3190 } 3191 3192 if (UpIter != UpperEnd) { 3193 if (&*UpIter == I) { 3194 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 3195 ScheduleStart = I; 3196 DEBUG(dbgs() << "SLP: extend schedule region start to " << *I << "\n"); 3197 return true; 3198 } 3199 UpIter++; 3200 } 3201 if (DownIter != LowerEnd) { 3202 if (&*DownIter == I) { 3203 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 3204 nullptr); 3205 ScheduleEnd = I->getNextNode(); 3206 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 3207 DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 3208 return true; 3209 } 3210 DownIter++; 3211 } 3212 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 3213 "instruction not found in block"); 3214 } 3215 return true; 3216 } 3217 3218 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 3219 Instruction *ToI, 3220 ScheduleData *PrevLoadStore, 3221 ScheduleData *NextLoadStore) { 3222 ScheduleData *CurrentLoadStore = PrevLoadStore; 3223 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 3224 ScheduleData *SD = ScheduleDataMap[I]; 3225 if (!SD) { 3226 // Allocate a new ScheduleData for the instruction. 3227 if (ChunkPos >= ChunkSize) { 3228 ScheduleDataChunks.push_back( 3229 llvm::make_unique<ScheduleData[]>(ChunkSize)); 3230 ChunkPos = 0; 3231 } 3232 SD = &(ScheduleDataChunks.back()[ChunkPos++]); 3233 ScheduleDataMap[I] = SD; 3234 SD->Inst = I; 3235 } 3236 assert(!isInSchedulingRegion(SD) && 3237 "new ScheduleData already in scheduling region"); 3238 SD->init(SchedulingRegionID); 3239 3240 if (I->mayReadOrWriteMemory()) { 3241 // Update the linked list of memory accessing instructions. 3242 if (CurrentLoadStore) { 3243 CurrentLoadStore->NextLoadStore = SD; 3244 } else { 3245 FirstLoadStoreInRegion = SD; 3246 } 3247 CurrentLoadStore = SD; 3248 } 3249 } 3250 if (NextLoadStore) { 3251 if (CurrentLoadStore) 3252 CurrentLoadStore->NextLoadStore = NextLoadStore; 3253 } else { 3254 LastLoadStoreInRegion = CurrentLoadStore; 3255 } 3256 } 3257 3258 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 3259 bool InsertInReadyList, 3260 BoUpSLP *SLP) { 3261 assert(SD->isSchedulingEntity()); 3262 3263 SmallVector<ScheduleData *, 10> WorkList; 3264 WorkList.push_back(SD); 3265 3266 while (!WorkList.empty()) { 3267 ScheduleData *SD = WorkList.back(); 3268 WorkList.pop_back(); 3269 3270 ScheduleData *BundleMember = SD; 3271 while (BundleMember) { 3272 assert(isInSchedulingRegion(BundleMember)); 3273 if (!BundleMember->hasValidDependencies()) { 3274 3275 DEBUG(dbgs() << "SLP: update deps of " << *BundleMember << "\n"); 3276 BundleMember->Dependencies = 0; 3277 BundleMember->resetUnscheduledDeps(); 3278 3279 // Handle def-use chain dependencies. 3280 for (User *U : BundleMember->Inst->users()) { 3281 if (isa<Instruction>(U)) { 3282 ScheduleData *UseSD = getScheduleData(U); 3283 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 3284 BundleMember->Dependencies++; 3285 ScheduleData *DestBundle = UseSD->FirstInBundle; 3286 if (!DestBundle->IsScheduled) { 3287 BundleMember->incrementUnscheduledDeps(1); 3288 } 3289 if (!DestBundle->hasValidDependencies()) { 3290 WorkList.push_back(DestBundle); 3291 } 3292 } 3293 } else { 3294 // I'm not sure if this can ever happen. But we need to be safe. 3295 // This lets the instruction/bundle never be scheduled and 3296 // eventually disable vectorization. 3297 BundleMember->Dependencies++; 3298 BundleMember->incrementUnscheduledDeps(1); 3299 } 3300 } 3301 3302 // Handle the memory dependencies. 3303 ScheduleData *DepDest = BundleMember->NextLoadStore; 3304 if (DepDest) { 3305 Instruction *SrcInst = BundleMember->Inst; 3306 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 3307 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 3308 unsigned numAliased = 0; 3309 unsigned DistToSrc = 1; 3310 3311 while (DepDest) { 3312 assert(isInSchedulingRegion(DepDest)); 3313 3314 // We have two limits to reduce the complexity: 3315 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 3316 // SLP->isAliased (which is the expensive part in this loop). 3317 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 3318 // the whole loop (even if the loop is fast, it's quadratic). 3319 // It's important for the loop break condition (see below) to 3320 // check this limit even between two read-only instructions. 3321 if (DistToSrc >= MaxMemDepDistance || 3322 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 3323 (numAliased >= AliasedCheckLimit || 3324 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 3325 3326 // We increment the counter only if the locations are aliased 3327 // (instead of counting all alias checks). This gives a better 3328 // balance between reduced runtime and accurate dependencies. 3329 numAliased++; 3330 3331 DepDest->MemoryDependencies.push_back(BundleMember); 3332 BundleMember->Dependencies++; 3333 ScheduleData *DestBundle = DepDest->FirstInBundle; 3334 if (!DestBundle->IsScheduled) { 3335 BundleMember->incrementUnscheduledDeps(1); 3336 } 3337 if (!DestBundle->hasValidDependencies()) { 3338 WorkList.push_back(DestBundle); 3339 } 3340 } 3341 DepDest = DepDest->NextLoadStore; 3342 3343 // Example, explaining the loop break condition: Let's assume our 3344 // starting instruction is i0 and MaxMemDepDistance = 3. 3345 // 3346 // +--------v--v--v 3347 // i0,i1,i2,i3,i4,i5,i6,i7,i8 3348 // +--------^--^--^ 3349 // 3350 // MaxMemDepDistance let us stop alias-checking at i3 and we add 3351 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 3352 // Previously we already added dependencies from i3 to i6,i7,i8 3353 // (because of MaxMemDepDistance). As we added a dependency from 3354 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 3355 // and we can abort this loop at i6. 3356 if (DistToSrc >= 2 * MaxMemDepDistance) 3357 break; 3358 DistToSrc++; 3359 } 3360 } 3361 } 3362 BundleMember = BundleMember->NextInBundle; 3363 } 3364 if (InsertInReadyList && SD->isReady()) { 3365 ReadyInsts.push_back(SD); 3366 DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst << "\n"); 3367 } 3368 } 3369 } 3370 3371 void BoUpSLP::BlockScheduling::resetSchedule() { 3372 assert(ScheduleStart && 3373 "tried to reset schedule on block which has not been scheduled"); 3374 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3375 ScheduleData *SD = getScheduleData(I); 3376 assert(isInSchedulingRegion(SD)); 3377 SD->IsScheduled = false; 3378 SD->resetUnscheduledDeps(); 3379 } 3380 ReadyInsts.clear(); 3381 } 3382 3383 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 3384 3385 if (!BS->ScheduleStart) 3386 return; 3387 3388 DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 3389 3390 BS->resetSchedule(); 3391 3392 // For the real scheduling we use a more sophisticated ready-list: it is 3393 // sorted by the original instruction location. This lets the final schedule 3394 // be as close as possible to the original instruction order. 3395 struct ScheduleDataCompare { 3396 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 3397 return SD2->SchedulingPriority < SD1->SchedulingPriority; 3398 } 3399 }; 3400 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 3401 3402 // Ensure that all dependency data is updated and fill the ready-list with 3403 // initial instructions. 3404 int Idx = 0; 3405 int NumToSchedule = 0; 3406 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 3407 I = I->getNextNode()) { 3408 ScheduleData *SD = BS->getScheduleData(I); 3409 assert( 3410 SD->isPartOfBundle() == (ScalarToTreeEntry.count(SD->Inst) != 0) && 3411 "scheduler and vectorizer have different opinion on what is a bundle"); 3412 SD->FirstInBundle->SchedulingPriority = Idx++; 3413 if (SD->isSchedulingEntity()) { 3414 BS->calculateDependencies(SD, false, this); 3415 NumToSchedule++; 3416 } 3417 } 3418 BS->initialFillReadyList(ReadyInsts); 3419 3420 Instruction *LastScheduledInst = BS->ScheduleEnd; 3421 3422 // Do the "real" scheduling. 3423 while (!ReadyInsts.empty()) { 3424 ScheduleData *picked = *ReadyInsts.begin(); 3425 ReadyInsts.erase(ReadyInsts.begin()); 3426 3427 // Move the scheduled instruction(s) to their dedicated places, if not 3428 // there yet. 3429 ScheduleData *BundleMember = picked; 3430 while (BundleMember) { 3431 Instruction *pickedInst = BundleMember->Inst; 3432 if (LastScheduledInst->getNextNode() != pickedInst) { 3433 BS->BB->getInstList().remove(pickedInst); 3434 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 3435 pickedInst); 3436 } 3437 LastScheduledInst = pickedInst; 3438 BundleMember = BundleMember->NextInBundle; 3439 } 3440 3441 BS->schedule(picked, ReadyInsts); 3442 NumToSchedule--; 3443 } 3444 assert(NumToSchedule == 0 && "could not schedule all instructions"); 3445 3446 // Avoid duplicate scheduling of the block. 3447 BS->ScheduleStart = nullptr; 3448 } 3449 3450 unsigned BoUpSLP::getVectorElementSize(Value *V) { 3451 // If V is a store, just return the width of the stored value without 3452 // traversing the expression tree. This is the common case. 3453 if (auto *Store = dyn_cast<StoreInst>(V)) 3454 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 3455 3456 // If V is not a store, we can traverse the expression tree to find loads 3457 // that feed it. The type of the loaded value may indicate a more suitable 3458 // width than V's type. We want to base the vector element size on the width 3459 // of memory operations where possible. 3460 SmallVector<Instruction *, 16> Worklist; 3461 SmallPtrSet<Instruction *, 16> Visited; 3462 if (auto *I = dyn_cast<Instruction>(V)) 3463 Worklist.push_back(I); 3464 3465 // Traverse the expression tree in bottom-up order looking for loads. If we 3466 // encounter an instruciton we don't yet handle, we give up. 3467 auto MaxWidth = 0u; 3468 auto FoundUnknownInst = false; 3469 while (!Worklist.empty() && !FoundUnknownInst) { 3470 auto *I = Worklist.pop_back_val(); 3471 Visited.insert(I); 3472 3473 // We should only be looking at scalar instructions here. If the current 3474 // instruction has a vector type, give up. 3475 auto *Ty = I->getType(); 3476 if (isa<VectorType>(Ty)) 3477 FoundUnknownInst = true; 3478 3479 // If the current instruction is a load, update MaxWidth to reflect the 3480 // width of the loaded value. 3481 else if (isa<LoadInst>(I)) 3482 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 3483 3484 // Otherwise, we need to visit the operands of the instruction. We only 3485 // handle the interesting cases from buildTree here. If an operand is an 3486 // instruction we haven't yet visited, we add it to the worklist. 3487 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 3488 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 3489 for (Use &U : I->operands()) 3490 if (auto *J = dyn_cast<Instruction>(U.get())) 3491 if (!Visited.count(J)) 3492 Worklist.push_back(J); 3493 } 3494 3495 // If we don't yet handle the instruction, give up. 3496 else 3497 FoundUnknownInst = true; 3498 } 3499 3500 // If we didn't encounter a memory access in the expression tree, or if we 3501 // gave up for some reason, just return the width of V. 3502 if (!MaxWidth || FoundUnknownInst) 3503 return DL->getTypeSizeInBits(V->getType()); 3504 3505 // Otherwise, return the maximum width we found. 3506 return MaxWidth; 3507 } 3508 3509 // Determine if a value V in a vectorizable expression Expr can be demoted to a 3510 // smaller type with a truncation. We collect the values that will be demoted 3511 // in ToDemote and additional roots that require investigating in Roots. 3512 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 3513 SmallVectorImpl<Value *> &ToDemote, 3514 SmallVectorImpl<Value *> &Roots) { 3515 3516 // We can always demote constants. 3517 if (isa<Constant>(V)) { 3518 ToDemote.push_back(V); 3519 return true; 3520 } 3521 3522 // If the value is not an instruction in the expression with only one use, it 3523 // cannot be demoted. 3524 auto *I = dyn_cast<Instruction>(V); 3525 if (!I || !I->hasOneUse() || !Expr.count(I)) 3526 return false; 3527 3528 switch (I->getOpcode()) { 3529 3530 // We can always demote truncations and extensions. Since truncations can 3531 // seed additional demotion, we save the truncated value. 3532 case Instruction::Trunc: 3533 Roots.push_back(I->getOperand(0)); 3534 case Instruction::ZExt: 3535 case Instruction::SExt: 3536 break; 3537 3538 // We can demote certain binary operations if we can demote both of their 3539 // operands. 3540 case Instruction::Add: 3541 case Instruction::Sub: 3542 case Instruction::Mul: 3543 case Instruction::And: 3544 case Instruction::Or: 3545 case Instruction::Xor: 3546 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 3547 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 3548 return false; 3549 break; 3550 3551 // We can demote selects if we can demote their true and false values. 3552 case Instruction::Select: { 3553 SelectInst *SI = cast<SelectInst>(I); 3554 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 3555 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 3556 return false; 3557 break; 3558 } 3559 3560 // We can demote phis if we can demote all their incoming operands. Note that 3561 // we don't need to worry about cycles since we ensure single use above. 3562 case Instruction::PHI: { 3563 PHINode *PN = cast<PHINode>(I); 3564 for (Value *IncValue : PN->incoming_values()) 3565 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 3566 return false; 3567 break; 3568 } 3569 3570 // Otherwise, conservatively give up. 3571 default: 3572 return false; 3573 } 3574 3575 // Record the value that we can demote. 3576 ToDemote.push_back(V); 3577 return true; 3578 } 3579 3580 void BoUpSLP::computeMinimumValueSizes() { 3581 // If there are no external uses, the expression tree must be rooted by a 3582 // store. We can't demote in-memory values, so there is nothing to do here. 3583 if (ExternalUses.empty()) 3584 return; 3585 3586 // We only attempt to truncate integer expressions. 3587 auto &TreeRoot = VectorizableTree[0].Scalars; 3588 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 3589 if (!TreeRootIT) 3590 return; 3591 3592 // If the expression is not rooted by a store, these roots should have 3593 // external uses. We will rely on InstCombine to rewrite the expression in 3594 // the narrower type. However, InstCombine only rewrites single-use values. 3595 // This means that if a tree entry other than a root is used externally, it 3596 // must have multiple uses and InstCombine will not rewrite it. The code 3597 // below ensures that only the roots are used externally. 3598 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 3599 for (auto &EU : ExternalUses) 3600 if (!Expr.erase(EU.Scalar)) 3601 return; 3602 if (!Expr.empty()) 3603 return; 3604 3605 // Collect the scalar values of the vectorizable expression. We will use this 3606 // context to determine which values can be demoted. If we see a truncation, 3607 // we mark it as seeding another demotion. 3608 for (auto &Entry : VectorizableTree) 3609 Expr.insert(Entry.Scalars.begin(), Entry.Scalars.end()); 3610 3611 // Ensure the roots of the vectorizable tree don't form a cycle. They must 3612 // have a single external user that is not in the vectorizable tree. 3613 for (auto *Root : TreeRoot) 3614 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 3615 return; 3616 3617 // Conservatively determine if we can actually truncate the roots of the 3618 // expression. Collect the values that can be demoted in ToDemote and 3619 // additional roots that require investigating in Roots. 3620 SmallVector<Value *, 32> ToDemote; 3621 SmallVector<Value *, 4> Roots; 3622 for (auto *Root : TreeRoot) 3623 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 3624 return; 3625 3626 // The maximum bit width required to represent all the values that can be 3627 // demoted without loss of precision. It would be safe to truncate the roots 3628 // of the expression to this width. 3629 auto MaxBitWidth = 8u; 3630 3631 // We first check if all the bits of the roots are demanded. If they're not, 3632 // we can truncate the roots to this narrower type. 3633 for (auto *Root : TreeRoot) { 3634 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 3635 MaxBitWidth = std::max<unsigned>( 3636 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 3637 } 3638 3639 // True if the roots can be zero-extended back to their original type, rather 3640 // than sign-extended. We know that if the leading bits are not demanded, we 3641 // can safely zero-extend. So we initialize IsKnownPositive to True. 3642 bool IsKnownPositive = true; 3643 3644 // If all the bits of the roots are demanded, we can try a little harder to 3645 // compute a narrower type. This can happen, for example, if the roots are 3646 // getelementptr indices. InstCombine promotes these indices to the pointer 3647 // width. Thus, all their bits are technically demanded even though the 3648 // address computation might be vectorized in a smaller type. 3649 // 3650 // We start by looking at each entry that can be demoted. We compute the 3651 // maximum bit width required to store the scalar by using ValueTracking to 3652 // compute the number of high-order bits we can truncate. 3653 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType())) { 3654 MaxBitWidth = 8u; 3655 3656 // Determine if the sign bit of all the roots is known to be zero. If not, 3657 // IsKnownPositive is set to False. 3658 IsKnownPositive = all_of(TreeRoot, [&](Value *R) { 3659 bool KnownZero = false; 3660 bool KnownOne = false; 3661 ComputeSignBit(R, KnownZero, KnownOne, *DL); 3662 return KnownZero; 3663 }); 3664 3665 // Determine the maximum number of bits required to store the scalar 3666 // values. 3667 for (auto *Scalar : ToDemote) { 3668 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, 0, DT); 3669 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 3670 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 3671 } 3672 3673 // If we can't prove that the sign bit is zero, we must add one to the 3674 // maximum bit width to account for the unknown sign bit. This preserves 3675 // the existing sign bit so we can safely sign-extend the root back to the 3676 // original type. Otherwise, if we know the sign bit is zero, we will 3677 // zero-extend the root instead. 3678 // 3679 // FIXME: This is somewhat suboptimal, as there will be cases where adding 3680 // one to the maximum bit width will yield a larger-than-necessary 3681 // type. In general, we need to add an extra bit only if we can't 3682 // prove that the upper bit of the original type is equal to the 3683 // upper bit of the proposed smaller type. If these two bits are the 3684 // same (either zero or one) we know that sign-extending from the 3685 // smaller type will result in the same value. Here, since we can't 3686 // yet prove this, we are just making the proposed smaller type 3687 // larger to ensure correctness. 3688 if (!IsKnownPositive) 3689 ++MaxBitWidth; 3690 } 3691 3692 // Round MaxBitWidth up to the next power-of-two. 3693 if (!isPowerOf2_64(MaxBitWidth)) 3694 MaxBitWidth = NextPowerOf2(MaxBitWidth); 3695 3696 // If the maximum bit width we compute is less than the with of the roots' 3697 // type, we can proceed with the narrowing. Otherwise, do nothing. 3698 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 3699 return; 3700 3701 // If we can truncate the root, we must collect additional values that might 3702 // be demoted as a result. That is, those seeded by truncations we will 3703 // modify. 3704 while (!Roots.empty()) 3705 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 3706 3707 // Finally, map the values we can demote to the maximum bit with we computed. 3708 for (auto *Scalar : ToDemote) 3709 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 3710 } 3711 3712 namespace { 3713 /// The SLPVectorizer Pass. 3714 struct SLPVectorizer : public FunctionPass { 3715 SLPVectorizerPass Impl; 3716 3717 /// Pass identification, replacement for typeid 3718 static char ID; 3719 3720 explicit SLPVectorizer() : FunctionPass(ID) { 3721 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 3722 } 3723 3724 3725 bool doInitialization(Module &M) override { 3726 return false; 3727 } 3728 3729 bool runOnFunction(Function &F) override { 3730 if (skipFunction(F)) 3731 return false; 3732 3733 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 3734 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 3735 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 3736 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 3737 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3738 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 3739 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3740 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 3741 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 3742 3743 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB); 3744 } 3745 3746 void getAnalysisUsage(AnalysisUsage &AU) const override { 3747 FunctionPass::getAnalysisUsage(AU); 3748 AU.addRequired<AssumptionCacheTracker>(); 3749 AU.addRequired<ScalarEvolutionWrapperPass>(); 3750 AU.addRequired<AAResultsWrapperPass>(); 3751 AU.addRequired<TargetTransformInfoWrapperPass>(); 3752 AU.addRequired<LoopInfoWrapperPass>(); 3753 AU.addRequired<DominatorTreeWrapperPass>(); 3754 AU.addRequired<DemandedBitsWrapperPass>(); 3755 AU.addPreserved<LoopInfoWrapperPass>(); 3756 AU.addPreserved<DominatorTreeWrapperPass>(); 3757 AU.addPreserved<AAResultsWrapperPass>(); 3758 AU.addPreserved<GlobalsAAWrapperPass>(); 3759 AU.setPreservesCFG(); 3760 } 3761 }; 3762 } // end anonymous namespace 3763 3764 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 3765 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 3766 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 3767 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 3768 auto *AA = &AM.getResult<AAManager>(F); 3769 auto *LI = &AM.getResult<LoopAnalysis>(F); 3770 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 3771 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 3772 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 3773 3774 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB); 3775 if (!Changed) 3776 return PreservedAnalyses::all(); 3777 3778 PreservedAnalyses PA; 3779 PA.preserveSet<CFGAnalyses>(); 3780 PA.preserve<AAManager>(); 3781 PA.preserve<GlobalsAA>(); 3782 return PA; 3783 } 3784 3785 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 3786 TargetTransformInfo *TTI_, 3787 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 3788 LoopInfo *LI_, DominatorTree *DT_, 3789 AssumptionCache *AC_, DemandedBits *DB_) { 3790 SE = SE_; 3791 TTI = TTI_; 3792 TLI = TLI_; 3793 AA = AA_; 3794 LI = LI_; 3795 DT = DT_; 3796 AC = AC_; 3797 DB = DB_; 3798 DL = &F.getParent()->getDataLayout(); 3799 3800 Stores.clear(); 3801 GEPs.clear(); 3802 bool Changed = false; 3803 3804 // If the target claims to have no vector registers don't attempt 3805 // vectorization. 3806 if (!TTI->getNumberOfRegisters(true)) 3807 return false; 3808 3809 // Don't vectorize when the attribute NoImplicitFloat is used. 3810 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 3811 return false; 3812 3813 DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 3814 3815 // Use the bottom up slp vectorizer to construct chains that start with 3816 // store instructions. 3817 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL); 3818 3819 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 3820 // delete instructions. 3821 3822 // Scan the blocks in the function in post order. 3823 for (auto BB : post_order(&F.getEntryBlock())) { 3824 collectSeedInstructions(BB); 3825 3826 // Vectorize trees that end at stores. 3827 if (!Stores.empty()) { 3828 DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 3829 << " underlying objects.\n"); 3830 Changed |= vectorizeStoreChains(R); 3831 } 3832 3833 // Vectorize trees that end at reductions. 3834 Changed |= vectorizeChainsInBlock(BB, R); 3835 3836 // Vectorize the index computations of getelementptr instructions. This 3837 // is primarily intended to catch gather-like idioms ending at 3838 // non-consecutive loads. 3839 if (!GEPs.empty()) { 3840 DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 3841 << " underlying objects.\n"); 3842 Changed |= vectorizeGEPIndices(BB, R); 3843 } 3844 } 3845 3846 if (Changed) { 3847 R.optimizeGatherSequence(); 3848 DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 3849 DEBUG(verifyFunction(F)); 3850 } 3851 return Changed; 3852 } 3853 3854 /// \brief Check that the Values in the slice in VL array are still existent in 3855 /// the WeakVH array. 3856 /// Vectorization of part of the VL array may cause later values in the VL array 3857 /// to become invalid. We track when this has happened in the WeakVH array. 3858 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, ArrayRef<WeakVH> VH, 3859 unsigned SliceBegin, unsigned SliceSize) { 3860 VL = VL.slice(SliceBegin, SliceSize); 3861 VH = VH.slice(SliceBegin, SliceSize); 3862 return !std::equal(VL.begin(), VL.end(), VH.begin()); 3863 } 3864 3865 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 3866 unsigned VecRegSize) { 3867 unsigned ChainLen = Chain.size(); 3868 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 3869 << "\n"); 3870 unsigned Sz = R.getVectorElementSize(Chain[0]); 3871 unsigned VF = VecRegSize / Sz; 3872 3873 if (!isPowerOf2_32(Sz) || VF < 2) 3874 return false; 3875 3876 // Keep track of values that were deleted by vectorizing in the loop below. 3877 SmallVector<WeakVH, 8> TrackValues(Chain.begin(), Chain.end()); 3878 3879 bool Changed = false; 3880 // Look for profitable vectorizable trees at all offsets, starting at zero. 3881 for (unsigned i = 0, e = ChainLen; i < e; ++i) { 3882 if (i + VF > e) 3883 break; 3884 3885 // Check that a previous iteration of this loop did not delete the Value. 3886 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) 3887 continue; 3888 3889 DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 3890 << "\n"); 3891 ArrayRef<Value *> Operands = Chain.slice(i, VF); 3892 3893 R.buildTree(Operands); 3894 if (R.isTreeTinyAndNotFullyVectorizable()) 3895 continue; 3896 3897 R.computeMinimumValueSizes(); 3898 3899 int Cost = R.getTreeCost(); 3900 3901 DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n"); 3902 if (Cost < -SLPCostThreshold) { 3903 DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 3904 R.vectorizeTree(); 3905 3906 // Move to the next bundle. 3907 i += VF - 1; 3908 Changed = true; 3909 } 3910 } 3911 3912 return Changed; 3913 } 3914 3915 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 3916 BoUpSLP &R) { 3917 SetVector<StoreInst *> Heads, Tails; 3918 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 3919 3920 // We may run into multiple chains that merge into a single chain. We mark the 3921 // stores that we vectorized so that we don't visit the same store twice. 3922 BoUpSLP::ValueSet VectorizedStores; 3923 bool Changed = false; 3924 3925 // Do a quadratic search on all of the given stores and find 3926 // all of the pairs of stores that follow each other. 3927 SmallVector<unsigned, 16> IndexQueue; 3928 for (unsigned i = 0, e = Stores.size(); i < e; ++i) { 3929 IndexQueue.clear(); 3930 // If a store has multiple consecutive store candidates, search Stores 3931 // array according to the sequence: from i+1 to e, then from i-1 to 0. 3932 // This is because usually pairing with immediate succeeding or preceding 3933 // candidate create the best chance to find slp vectorization opportunity. 3934 unsigned j = 0; 3935 for (j = i + 1; j < e; ++j) 3936 IndexQueue.push_back(j); 3937 for (j = i; j > 0; --j) 3938 IndexQueue.push_back(j - 1); 3939 3940 for (auto &k : IndexQueue) { 3941 if (isConsecutiveAccess(Stores[i], Stores[k], *DL, *SE)) { 3942 Tails.insert(Stores[k]); 3943 Heads.insert(Stores[i]); 3944 ConsecutiveChain[Stores[i]] = Stores[k]; 3945 break; 3946 } 3947 } 3948 } 3949 3950 // For stores that start but don't end a link in the chain: 3951 for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end(); 3952 it != e; ++it) { 3953 if (Tails.count(*it)) 3954 continue; 3955 3956 // We found a store instr that starts a chain. Now follow the chain and try 3957 // to vectorize it. 3958 BoUpSLP::ValueList Operands; 3959 StoreInst *I = *it; 3960 // Collect the chain into a list. 3961 while (Tails.count(I) || Heads.count(I)) { 3962 if (VectorizedStores.count(I)) 3963 break; 3964 Operands.push_back(I); 3965 // Move to the next value in the chain. 3966 I = ConsecutiveChain[I]; 3967 } 3968 3969 // FIXME: Is division-by-2 the correct step? Should we assert that the 3970 // register size is a power-of-2? 3971 for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize(); 3972 Size /= 2) { 3973 if (vectorizeStoreChain(Operands, R, Size)) { 3974 // Mark the vectorized stores so that we don't vectorize them again. 3975 VectorizedStores.insert(Operands.begin(), Operands.end()); 3976 Changed = true; 3977 break; 3978 } 3979 } 3980 } 3981 3982 return Changed; 3983 } 3984 3985 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 3986 3987 // Initialize the collections. We will make a single pass over the block. 3988 Stores.clear(); 3989 GEPs.clear(); 3990 3991 // Visit the store and getelementptr instructions in BB and organize them in 3992 // Stores and GEPs according to the underlying objects of their pointer 3993 // operands. 3994 for (Instruction &I : *BB) { 3995 3996 // Ignore store instructions that are volatile or have a pointer operand 3997 // that doesn't point to a scalar type. 3998 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3999 if (!SI->isSimple()) 4000 continue; 4001 if (!isValidElementType(SI->getValueOperand()->getType())) 4002 continue; 4003 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); 4004 } 4005 4006 // Ignore getelementptr instructions that have more than one index, a 4007 // constant index, or a pointer operand that doesn't point to a scalar 4008 // type. 4009 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 4010 auto Idx = GEP->idx_begin()->get(); 4011 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 4012 continue; 4013 if (!isValidElementType(Idx->getType())) 4014 continue; 4015 if (GEP->getType()->isVectorTy()) 4016 continue; 4017 GEPs[GetUnderlyingObject(GEP->getPointerOperand(), *DL)].push_back(GEP); 4018 } 4019 } 4020 } 4021 4022 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 4023 if (!A || !B) 4024 return false; 4025 Value *VL[] = { A, B }; 4026 return tryToVectorizeList(VL, R, None, true); 4027 } 4028 4029 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 4030 ArrayRef<Value *> BuildVector, 4031 bool AllowReorder) { 4032 if (VL.size() < 2) 4033 return false; 4034 4035 DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " << VL.size() 4036 << ".\n"); 4037 4038 // Check that all of the parts are scalar instructions of the same type. 4039 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 4040 if (!I0) 4041 return false; 4042 4043 unsigned Opcode0 = I0->getOpcode(); 4044 4045 unsigned Sz = R.getVectorElementSize(I0); 4046 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 4047 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 4048 if (MaxVF < 2) 4049 return false; 4050 4051 for (Value *V : VL) { 4052 Type *Ty = V->getType(); 4053 if (!isValidElementType(Ty)) 4054 return false; 4055 Instruction *Inst = dyn_cast<Instruction>(V); 4056 if (!Inst || Inst->getOpcode() != Opcode0) 4057 return false; 4058 } 4059 4060 bool Changed = false; 4061 4062 // Keep track of values that were deleted by vectorizing in the loop below. 4063 SmallVector<WeakVH, 8> TrackValues(VL.begin(), VL.end()); 4064 4065 unsigned NextInst = 0, MaxInst = VL.size(); 4066 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; 4067 VF /= 2) { 4068 // No actual vectorization should happen, if number of parts is the same as 4069 // provided vectorization factor (i.e. the scalar type is used for vector 4070 // code during codegen). 4071 auto *VecTy = VectorType::get(VL[0]->getType(), VF); 4072 if (TTI->getNumberOfParts(VecTy) == VF) 4073 continue; 4074 for (unsigned I = NextInst; I < MaxInst; ++I) { 4075 unsigned OpsWidth = 0; 4076 4077 if (I + VF > MaxInst) 4078 OpsWidth = MaxInst - I; 4079 else 4080 OpsWidth = VF; 4081 4082 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 4083 break; 4084 4085 // Check that a previous iteration of this loop did not delete the Value. 4086 if (hasValueBeenRAUWed(VL, TrackValues, I, OpsWidth)) 4087 continue; 4088 4089 DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 4090 << "\n"); 4091 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 4092 4093 ArrayRef<Value *> BuildVectorSlice; 4094 if (!BuildVector.empty()) 4095 BuildVectorSlice = BuildVector.slice(I, OpsWidth); 4096 4097 R.buildTree(Ops, BuildVectorSlice); 4098 // TODO: check if we can allow reordering for more cases. 4099 if (AllowReorder && R.shouldReorder()) { 4100 // Conceptually, there is nothing actually preventing us from trying to 4101 // reorder a larger list. In fact, we do exactly this when vectorizing 4102 // reductions. However, at this point, we only expect to get here from 4103 // tryToVectorizePair(). 4104 assert(Ops.size() == 2); 4105 assert(BuildVectorSlice.empty()); 4106 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 4107 R.buildTree(ReorderedOps, None); 4108 } 4109 if (R.isTreeTinyAndNotFullyVectorizable()) 4110 continue; 4111 4112 R.computeMinimumValueSizes(); 4113 int Cost = R.getTreeCost(); 4114 4115 if (Cost < -SLPCostThreshold) { 4116 DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 4117 Value *VectorizedRoot = R.vectorizeTree(); 4118 4119 // Reconstruct the build vector by extracting the vectorized root. This 4120 // way we handle the case where some elements of the vector are 4121 // undefined. 4122 // (return (inserelt <4 xi32> (insertelt undef (opd0) 0) (opd1) 2)) 4123 if (!BuildVectorSlice.empty()) { 4124 // The insert point is the last build vector instruction. The 4125 // vectorized root will precede it. This guarantees that we get an 4126 // instruction. The vectorized tree could have been constant folded. 4127 Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back()); 4128 unsigned VecIdx = 0; 4129 for (auto &V : BuildVectorSlice) { 4130 IRBuilder<NoFolder> Builder(InsertAfter->getParent(), 4131 ++BasicBlock::iterator(InsertAfter)); 4132 Instruction *I = cast<Instruction>(V); 4133 assert(isa<InsertElementInst>(I) || isa<InsertValueInst>(I)); 4134 Instruction *Extract = 4135 cast<Instruction>(Builder.CreateExtractElement( 4136 VectorizedRoot, Builder.getInt32(VecIdx++))); 4137 I->setOperand(1, Extract); 4138 I->removeFromParent(); 4139 I->insertAfter(Extract); 4140 InsertAfter = I; 4141 } 4142 } 4143 // Move to the next bundle. 4144 I += VF - 1; 4145 NextInst = I + 1; 4146 Changed = true; 4147 } 4148 } 4149 } 4150 4151 return Changed; 4152 } 4153 4154 bool SLPVectorizerPass::tryToVectorize(BinaryOperator *V, BoUpSLP &R) { 4155 if (!V) 4156 return false; 4157 4158 Value *P = V->getParent(); 4159 4160 // Vectorize in current basic block only. 4161 auto *Op0 = dyn_cast<Instruction>(V->getOperand(0)); 4162 auto *Op1 = dyn_cast<Instruction>(V->getOperand(1)); 4163 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 4164 return false; 4165 4166 // Try to vectorize V. 4167 if (tryToVectorizePair(Op0, Op1, R)) 4168 return true; 4169 4170 auto *A = dyn_cast<BinaryOperator>(Op0); 4171 auto *B = dyn_cast<BinaryOperator>(Op1); 4172 // Try to skip B. 4173 if (B && B->hasOneUse()) { 4174 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 4175 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 4176 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 4177 return true; 4178 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 4179 return true; 4180 } 4181 4182 // Try to skip A. 4183 if (A && A->hasOneUse()) { 4184 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 4185 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 4186 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 4187 return true; 4188 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 4189 return true; 4190 } 4191 return false; 4192 } 4193 4194 /// \brief Generate a shuffle mask to be used in a reduction tree. 4195 /// 4196 /// \param VecLen The length of the vector to be reduced. 4197 /// \param NumEltsToRdx The number of elements that should be reduced in the 4198 /// vector. 4199 /// \param IsPairwise Whether the reduction is a pairwise or splitting 4200 /// reduction. A pairwise reduction will generate a mask of 4201 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 4202 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 4203 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 4204 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 4205 bool IsPairwise, bool IsLeft, 4206 IRBuilder<> &Builder) { 4207 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 4208 4209 SmallVector<Constant *, 32> ShuffleMask( 4210 VecLen, UndefValue::get(Builder.getInt32Ty())); 4211 4212 if (IsPairwise) 4213 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 4214 for (unsigned i = 0; i != NumEltsToRdx; ++i) 4215 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 4216 else 4217 // Move the upper half of the vector to the lower half. 4218 for (unsigned i = 0; i != NumEltsToRdx; ++i) 4219 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 4220 4221 return ConstantVector::get(ShuffleMask); 4222 } 4223 4224 namespace { 4225 /// Model horizontal reductions. 4226 /// 4227 /// A horizontal reduction is a tree of reduction operations (currently add and 4228 /// fadd) that has operations that can be put into a vector as its leaf. 4229 /// For example, this tree: 4230 /// 4231 /// mul mul mul mul 4232 /// \ / \ / 4233 /// + + 4234 /// \ / 4235 /// + 4236 /// This tree has "mul" as its reduced values and "+" as its reduction 4237 /// operations. A reduction might be feeding into a store or a binary operation 4238 /// feeding a phi. 4239 /// ... 4240 /// \ / 4241 /// + 4242 /// | 4243 /// phi += 4244 /// 4245 /// Or: 4246 /// ... 4247 /// \ / 4248 /// + 4249 /// | 4250 /// *p = 4251 /// 4252 class HorizontalReduction { 4253 SmallVector<Value *, 16> ReductionOps; 4254 SmallVector<Value *, 32> ReducedVals; 4255 // Use map vector to make stable output. 4256 MapVector<Instruction *, Value *> ExtraArgs; 4257 4258 BinaryOperator *ReductionRoot = nullptr; 4259 4260 /// The opcode of the reduction. 4261 Instruction::BinaryOps ReductionOpcode = Instruction::BinaryOpsEnd; 4262 /// The opcode of the values we perform a reduction on. 4263 unsigned ReducedValueOpcode = 0; 4264 /// Should we model this reduction as a pairwise reduction tree or a tree that 4265 /// splits the vector in halves and adds those halves. 4266 bool IsPairwiseReduction = false; 4267 4268 /// Checks if the ParentStackElem.first should be marked as a reduction 4269 /// operation with an extra argument or as extra argument itself. 4270 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 4271 Value *ExtraArg) { 4272 if (ExtraArgs.count(ParentStackElem.first)) { 4273 ExtraArgs[ParentStackElem.first] = nullptr; 4274 // We ran into something like: 4275 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 4276 // The whole ParentStackElem.first should be considered as an extra value 4277 // in this case. 4278 // Do not perform analysis of remaining operands of ParentStackElem.first 4279 // instruction, this whole instruction is an extra argument. 4280 ParentStackElem.second = ParentStackElem.first->getNumOperands(); 4281 } else { 4282 // We ran into something like: 4283 // ParentStackElem.first += ... + ExtraArg + ... 4284 ExtraArgs[ParentStackElem.first] = ExtraArg; 4285 } 4286 } 4287 4288 public: 4289 HorizontalReduction() = default; 4290 4291 /// \brief Try to find a reduction tree. 4292 bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B) { 4293 assert((!Phi || is_contained(Phi->operands(), B)) && 4294 "Thi phi needs to use the binary operator"); 4295 4296 // We could have a initial reductions that is not an add. 4297 // r *= v1 + v2 + v3 + v4 4298 // In such a case start looking for a tree rooted in the first '+'. 4299 if (Phi) { 4300 if (B->getOperand(0) == Phi) { 4301 Phi = nullptr; 4302 B = dyn_cast<BinaryOperator>(B->getOperand(1)); 4303 } else if (B->getOperand(1) == Phi) { 4304 Phi = nullptr; 4305 B = dyn_cast<BinaryOperator>(B->getOperand(0)); 4306 } 4307 } 4308 4309 if (!B) 4310 return false; 4311 4312 Type *Ty = B->getType(); 4313 if (!isValidElementType(Ty)) 4314 return false; 4315 4316 ReductionOpcode = B->getOpcode(); 4317 ReducedValueOpcode = 0; 4318 ReductionRoot = B; 4319 4320 // We currently only support adds. 4321 if ((ReductionOpcode != Instruction::Add && 4322 ReductionOpcode != Instruction::FAdd) || 4323 !B->isAssociative()) 4324 return false; 4325 4326 // Post order traverse the reduction tree starting at B. We only handle true 4327 // trees containing only binary operators or selects. 4328 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 4329 Stack.push_back(std::make_pair(B, 0)); 4330 while (!Stack.empty()) { 4331 Instruction *TreeN = Stack.back().first; 4332 unsigned EdgeToVist = Stack.back().second++; 4333 bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode; 4334 4335 // Postorder vist. 4336 if (EdgeToVist == 2 || IsReducedValue) { 4337 if (IsReducedValue) 4338 ReducedVals.push_back(TreeN); 4339 else { 4340 auto I = ExtraArgs.find(TreeN); 4341 if (I != ExtraArgs.end() && !I->second) { 4342 // Check if TreeN is an extra argument of its parent operation. 4343 if (Stack.size() <= 1) { 4344 // TreeN can't be an extra argument as it is a root reduction 4345 // operation. 4346 return false; 4347 } 4348 // Yes, TreeN is an extra argument, do not add it to a list of 4349 // reduction operations. 4350 // Stack[Stack.size() - 2] always points to the parent operation. 4351 markExtraArg(Stack[Stack.size() - 2], TreeN); 4352 ExtraArgs.erase(TreeN); 4353 } else 4354 ReductionOps.push_back(TreeN); 4355 } 4356 // Retract. 4357 Stack.pop_back(); 4358 continue; 4359 } 4360 4361 // Visit left or right. 4362 Value *NextV = TreeN->getOperand(EdgeToVist); 4363 if (NextV != Phi) { 4364 auto *I = dyn_cast<Instruction>(NextV); 4365 // Continue analysis if the next operand is a reduction operation or 4366 // (possibly) a reduced value. If the reduced value opcode is not set, 4367 // the first met operation != reduction operation is considered as the 4368 // reduced value class. 4369 if (I && (!ReducedValueOpcode || I->getOpcode() == ReducedValueOpcode || 4370 I->getOpcode() == ReductionOpcode)) { 4371 // Only handle trees in the current basic block. 4372 if (I->getParent() != B->getParent()) { 4373 // I is an extra argument for TreeN (its parent operation). 4374 markExtraArg(Stack.back(), I); 4375 continue; 4376 } 4377 4378 // Each tree node needs to have one user except for the ultimate 4379 // reduction. 4380 if (!I->hasOneUse() && I != B) { 4381 // I is an extra argument for TreeN (its parent operation). 4382 markExtraArg(Stack.back(), I); 4383 continue; 4384 } 4385 4386 if (I->getOpcode() == ReductionOpcode) { 4387 // We need to be able to reassociate the reduction operations. 4388 if (!I->isAssociative()) { 4389 // I is an extra argument for TreeN (its parent operation). 4390 markExtraArg(Stack.back(), I); 4391 continue; 4392 } 4393 } else if (ReducedValueOpcode && 4394 ReducedValueOpcode != I->getOpcode()) { 4395 // Make sure that the opcodes of the operations that we are going to 4396 // reduce match. 4397 // I is an extra argument for TreeN (its parent operation). 4398 markExtraArg(Stack.back(), I); 4399 continue; 4400 } else if (!ReducedValueOpcode) 4401 ReducedValueOpcode = I->getOpcode(); 4402 4403 Stack.push_back(std::make_pair(I, 0)); 4404 continue; 4405 } 4406 } 4407 // NextV is an extra argument for TreeN (its parent operation). 4408 markExtraArg(Stack.back(), NextV); 4409 } 4410 return true; 4411 } 4412 4413 /// \brief Attempt to vectorize the tree found by 4414 /// matchAssociativeReduction. 4415 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 4416 if (ReducedVals.empty()) 4417 return false; 4418 4419 // If there is a sufficient number of reduction values, reduce 4420 // to a nearby power-of-2. Can safely generate oversized 4421 // vectors and rely on the backend to split them to legal sizes. 4422 unsigned NumReducedVals = ReducedVals.size(); 4423 if (NumReducedVals < 4) 4424 return false; 4425 4426 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 4427 4428 Value *VectorizedTree = nullptr; 4429 IRBuilder<> Builder(ReductionRoot); 4430 FastMathFlags Unsafe; 4431 Unsafe.setUnsafeAlgebra(); 4432 Builder.setFastMathFlags(Unsafe); 4433 unsigned i = 0; 4434 4435 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 4436 // The same extra argument may be used several time, so log each attempt 4437 // to use it. 4438 for (auto &Pair : ExtraArgs) 4439 ExternallyUsedValues[Pair.second].push_back(Pair.first); 4440 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 4441 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth); 4442 V.buildTree(VL, ExternallyUsedValues, ReductionOps); 4443 if (V.shouldReorder()) { 4444 SmallVector<Value *, 8> Reversed(VL.rbegin(), VL.rend()); 4445 V.buildTree(Reversed, ExternallyUsedValues, ReductionOps); 4446 } 4447 if (V.isTreeTinyAndNotFullyVectorizable()) 4448 break; 4449 4450 V.computeMinimumValueSizes(); 4451 4452 // Estimate cost. 4453 int Cost = 4454 V.getTreeCost() + getReductionCost(TTI, ReducedVals[i], ReduxWidth); 4455 if (Cost >= -SLPCostThreshold) 4456 break; 4457 4458 DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost 4459 << ". (HorRdx)\n"); 4460 4461 // Vectorize a tree. 4462 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 4463 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 4464 4465 // Emit a reduction. 4466 Value *ReducedSubTree = 4467 emitReduction(VectorizedRoot, Builder, ReduxWidth, ReductionOps); 4468 if (VectorizedTree) { 4469 Builder.SetCurrentDebugLocation(Loc); 4470 VectorizedTree = Builder.CreateBinOp(ReductionOpcode, VectorizedTree, 4471 ReducedSubTree, "bin.rdx"); 4472 propagateIRFlags(VectorizedTree, ReductionOps); 4473 } else 4474 VectorizedTree = ReducedSubTree; 4475 i += ReduxWidth; 4476 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 4477 } 4478 4479 if (VectorizedTree) { 4480 // Finish the reduction. 4481 for (; i < NumReducedVals; ++i) { 4482 auto *I = cast<Instruction>(ReducedVals[i]); 4483 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 4484 VectorizedTree = 4485 Builder.CreateBinOp(ReductionOpcode, VectorizedTree, I); 4486 propagateIRFlags(VectorizedTree, ReductionOps); 4487 } 4488 for (auto &Pair : ExternallyUsedValues) { 4489 assert(!Pair.second.empty() && 4490 "At least one DebugLoc must be inserted"); 4491 // Add each externally used value to the final reduction. 4492 for (auto *I : Pair.second) { 4493 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 4494 VectorizedTree = Builder.CreateBinOp(ReductionOpcode, VectorizedTree, 4495 Pair.first, "bin.extra"); 4496 propagateIRFlags(VectorizedTree, I); 4497 } 4498 } 4499 // Update users. 4500 ReductionRoot->replaceAllUsesWith(VectorizedTree); 4501 } 4502 return VectorizedTree != nullptr; 4503 } 4504 4505 unsigned numReductionValues() const { 4506 return ReducedVals.size(); 4507 } 4508 4509 private: 4510 /// \brief Calculate the cost of a reduction. 4511 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 4512 unsigned ReduxWidth) { 4513 Type *ScalarTy = FirstReducedVal->getType(); 4514 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 4515 4516 int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true); 4517 int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false); 4518 4519 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 4520 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 4521 4522 int ScalarReduxCost = 4523 (ReduxWidth - 1) * 4524 TTI->getArithmeticInstrCost(ReductionOpcode, ScalarTy); 4525 4526 DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 4527 << " for reduction that starts with " << *FirstReducedVal 4528 << " (It is a " 4529 << (IsPairwiseReduction ? "pairwise" : "splitting") 4530 << " reduction)\n"); 4531 4532 return VecReduxCost - ScalarReduxCost; 4533 } 4534 4535 /// \brief Emit a horizontal reduction of the vectorized value. 4536 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 4537 unsigned ReduxWidth, ArrayRef<Value *> RedOps) { 4538 assert(VectorizedValue && "Need to have a vectorized tree node"); 4539 assert(isPowerOf2_32(ReduxWidth) && 4540 "We only handle power-of-two reductions for now"); 4541 4542 Value *TmpVec = VectorizedValue; 4543 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 4544 if (IsPairwiseReduction) { 4545 Value *LeftMask = 4546 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 4547 Value *RightMask = 4548 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 4549 4550 Value *LeftShuf = Builder.CreateShuffleVector( 4551 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 4552 Value *RightShuf = Builder.CreateShuffleVector( 4553 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 4554 "rdx.shuf.r"); 4555 TmpVec = Builder.CreateBinOp(ReductionOpcode, LeftShuf, RightShuf, 4556 "bin.rdx"); 4557 } else { 4558 Value *UpperHalf = 4559 createRdxShuffleMask(ReduxWidth, i, false, false, Builder); 4560 Value *Shuf = Builder.CreateShuffleVector( 4561 TmpVec, UndefValue::get(TmpVec->getType()), UpperHalf, "rdx.shuf"); 4562 TmpVec = Builder.CreateBinOp(ReductionOpcode, TmpVec, Shuf, "bin.rdx"); 4563 } 4564 propagateIRFlags(TmpVec, RedOps); 4565 } 4566 4567 // The result is in the first element of the vector. 4568 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 4569 } 4570 }; 4571 } // end anonymous namespace 4572 4573 /// \brief Recognize construction of vectors like 4574 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 4575 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 4576 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 4577 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 4578 /// 4579 /// Returns true if it matches 4580 /// 4581 static bool findBuildVector(InsertElementInst *FirstInsertElem, 4582 SmallVectorImpl<Value *> &BuildVector, 4583 SmallVectorImpl<Value *> &BuildVectorOpds) { 4584 if (!isa<UndefValue>(FirstInsertElem->getOperand(0))) 4585 return false; 4586 4587 InsertElementInst *IE = FirstInsertElem; 4588 while (true) { 4589 BuildVector.push_back(IE); 4590 BuildVectorOpds.push_back(IE->getOperand(1)); 4591 4592 if (IE->use_empty()) 4593 return false; 4594 4595 InsertElementInst *NextUse = dyn_cast<InsertElementInst>(IE->user_back()); 4596 if (!NextUse) 4597 return true; 4598 4599 // If this isn't the final use, make sure the next insertelement is the only 4600 // use. It's OK if the final constructed vector is used multiple times 4601 if (!IE->hasOneUse()) 4602 return false; 4603 4604 IE = NextUse; 4605 } 4606 4607 return false; 4608 } 4609 4610 /// \brief Like findBuildVector, but looks backwards for construction of aggregate. 4611 /// 4612 /// \return true if it matches. 4613 static bool findBuildAggregate(InsertValueInst *IV, 4614 SmallVectorImpl<Value *> &BuildVector, 4615 SmallVectorImpl<Value *> &BuildVectorOpds) { 4616 Value *V; 4617 do { 4618 BuildVector.push_back(IV); 4619 BuildVectorOpds.push_back(IV->getInsertedValueOperand()); 4620 V = IV->getAggregateOperand(); 4621 if (isa<UndefValue>(V)) 4622 break; 4623 IV = dyn_cast<InsertValueInst>(V); 4624 if (!IV || !IV->hasOneUse()) 4625 return false; 4626 } while (true); 4627 std::reverse(BuildVector.begin(), BuildVector.end()); 4628 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 4629 return true; 4630 } 4631 4632 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 4633 return V->getType() < V2->getType(); 4634 } 4635 4636 /// \brief Try and get a reduction value from a phi node. 4637 /// 4638 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 4639 /// if they come from either \p ParentBB or a containing loop latch. 4640 /// 4641 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 4642 /// if not possible. 4643 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 4644 BasicBlock *ParentBB, LoopInfo *LI) { 4645 // There are situations where the reduction value is not dominated by the 4646 // reduction phi. Vectorizing such cases has been reported to cause 4647 // miscompiles. See PR25787. 4648 auto DominatedReduxValue = [&](Value *R) { 4649 return ( 4650 dyn_cast<Instruction>(R) && 4651 DT->dominates(P->getParent(), dyn_cast<Instruction>(R)->getParent())); 4652 }; 4653 4654 Value *Rdx = nullptr; 4655 4656 // Return the incoming value if it comes from the same BB as the phi node. 4657 if (P->getIncomingBlock(0) == ParentBB) { 4658 Rdx = P->getIncomingValue(0); 4659 } else if (P->getIncomingBlock(1) == ParentBB) { 4660 Rdx = P->getIncomingValue(1); 4661 } 4662 4663 if (Rdx && DominatedReduxValue(Rdx)) 4664 return Rdx; 4665 4666 // Otherwise, check whether we have a loop latch to look at. 4667 Loop *BBL = LI->getLoopFor(ParentBB); 4668 if (!BBL) 4669 return nullptr; 4670 BasicBlock *BBLatch = BBL->getLoopLatch(); 4671 if (!BBLatch) 4672 return nullptr; 4673 4674 // There is a loop latch, return the incoming value if it comes from 4675 // that. This reduction pattern occasionally turns up. 4676 if (P->getIncomingBlock(0) == BBLatch) { 4677 Rdx = P->getIncomingValue(0); 4678 } else if (P->getIncomingBlock(1) == BBLatch) { 4679 Rdx = P->getIncomingValue(1); 4680 } 4681 4682 if (Rdx && DominatedReduxValue(Rdx)) 4683 return Rdx; 4684 4685 return nullptr; 4686 } 4687 4688 namespace { 4689 /// Tracks instructons and its children. 4690 class WeakVHWithLevel final : public CallbackVH { 4691 /// Operand index of the instruction currently beeing analized. 4692 unsigned Level = 0; 4693 /// Is this the instruction that should be vectorized, or are we now 4694 /// processing children (i.e. operands of this instruction) for potential 4695 /// vectorization? 4696 bool IsInitial = true; 4697 4698 public: 4699 explicit WeakVHWithLevel() = default; 4700 WeakVHWithLevel(Value *V) : CallbackVH(V){}; 4701 /// Restart children analysis each time it is repaced by the new instruction. 4702 void allUsesReplacedWith(Value *New) override { 4703 setValPtr(New); 4704 Level = 0; 4705 IsInitial = true; 4706 } 4707 /// Check if the instruction was not deleted during vectorization. 4708 bool isValid() const { return !getValPtr(); } 4709 /// Is the istruction itself must be vectorized? 4710 bool isInitial() const { return IsInitial; } 4711 /// Try to vectorize children. 4712 void clearInitial() { IsInitial = false; } 4713 /// Are all children processed already? 4714 bool isFinal() const { 4715 assert(getValPtr() && 4716 (isa<Instruction>(getValPtr()) && 4717 cast<Instruction>(getValPtr())->getNumOperands() >= Level)); 4718 return getValPtr() && 4719 cast<Instruction>(getValPtr())->getNumOperands() == Level; 4720 } 4721 /// Get next child operation. 4722 Value *nextOperand() { 4723 assert(getValPtr() && isa<Instruction>(getValPtr()) && 4724 cast<Instruction>(getValPtr())->getNumOperands() > Level); 4725 return cast<Instruction>(getValPtr())->getOperand(Level++); 4726 } 4727 virtual ~WeakVHWithLevel() = default; 4728 }; 4729 } // namespace 4730 4731 /// \brief Attempt to reduce a horizontal reduction. 4732 /// If it is legal to match a horizontal reduction feeding 4733 /// the phi node P with reduction operators Root in a basic block BB, then check 4734 /// if it can be done. 4735 /// \returns true if a horizontal reduction was matched and reduced. 4736 /// \returns false if a horizontal reduction was not matched. 4737 static bool canBeVectorized( 4738 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 4739 TargetTransformInfo *TTI, 4740 const function_ref<bool(BinaryOperator *, BoUpSLP &)> Vectorize) { 4741 if (!ShouldVectorizeHor) 4742 return false; 4743 4744 if (!Root) 4745 return false; 4746 4747 if (Root->getParent() != BB) 4748 return false; 4749 SmallVector<WeakVHWithLevel, 8> Stack(1, Root); 4750 SmallSet<Value *, 8> VisitedInstrs; 4751 bool Res = false; 4752 while (!Stack.empty()) { 4753 Value *V = Stack.back(); 4754 if (!V) { 4755 Stack.pop_back(); 4756 continue; 4757 } 4758 auto *Inst = dyn_cast<Instruction>(V); 4759 if (!Inst || isa<PHINode>(Inst)) { 4760 Stack.pop_back(); 4761 continue; 4762 } 4763 if (Stack.back().isInitial()) { 4764 Stack.back().clearInitial(); 4765 if (auto *BI = dyn_cast<BinaryOperator>(Inst)) { 4766 HorizontalReduction HorRdx; 4767 if (HorRdx.matchAssociativeReduction(P, BI)) { 4768 if (HorRdx.tryToReduce(R, TTI)) { 4769 Res = true; 4770 P = nullptr; 4771 continue; 4772 } 4773 } 4774 if (P) { 4775 Inst = dyn_cast<Instruction>(BI->getOperand(0)); 4776 if (Inst == P) 4777 Inst = dyn_cast<Instruction>(BI->getOperand(1)); 4778 if (!Inst) { 4779 P = nullptr; 4780 continue; 4781 } 4782 } 4783 } 4784 P = nullptr; 4785 if (Vectorize(dyn_cast<BinaryOperator>(Inst), R)) { 4786 Res = true; 4787 continue; 4788 } 4789 } 4790 if (Stack.back().isFinal()) { 4791 Stack.pop_back(); 4792 continue; 4793 } 4794 4795 if (auto *NextV = dyn_cast<Instruction>(Stack.back().nextOperand())) 4796 if (NextV->getParent() == BB && VisitedInstrs.insert(NextV).second && 4797 Stack.size() < RecursionMaxDepth) 4798 Stack.push_back(NextV); 4799 } 4800 return Res; 4801 } 4802 4803 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 4804 BasicBlock *BB, BoUpSLP &R, 4805 TargetTransformInfo *TTI) { 4806 if (!V) 4807 return false; 4808 auto *I = dyn_cast<Instruction>(V); 4809 if (!I) 4810 return false; 4811 4812 if (!isa<BinaryOperator>(I)) 4813 P = nullptr; 4814 // Try to match and vectorize a horizontal reduction. 4815 return canBeVectorized(P, I, BB, R, TTI, 4816 [this](BinaryOperator *BI, BoUpSLP &R) -> bool { 4817 return tryToVectorize(BI, R); 4818 }); 4819 } 4820 4821 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 4822 bool Changed = false; 4823 SmallVector<Value *, 4> Incoming; 4824 SmallSet<Value *, 16> VisitedInstrs; 4825 4826 bool HaveVectorizedPhiNodes = true; 4827 while (HaveVectorizedPhiNodes) { 4828 HaveVectorizedPhiNodes = false; 4829 4830 // Collect the incoming values from the PHIs. 4831 Incoming.clear(); 4832 for (Instruction &I : *BB) { 4833 PHINode *P = dyn_cast<PHINode>(&I); 4834 if (!P) 4835 break; 4836 4837 if (!VisitedInstrs.count(P)) 4838 Incoming.push_back(P); 4839 } 4840 4841 // Sort by type. 4842 std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc); 4843 4844 // Try to vectorize elements base on their type. 4845 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 4846 E = Incoming.end(); 4847 IncIt != E;) { 4848 4849 // Look for the next elements with the same type. 4850 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 4851 while (SameTypeIt != E && 4852 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 4853 VisitedInstrs.insert(*SameTypeIt); 4854 ++SameTypeIt; 4855 } 4856 4857 // Try to vectorize them. 4858 unsigned NumElts = (SameTypeIt - IncIt); 4859 DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n"); 4860 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R)) { 4861 // Success start over because instructions might have been changed. 4862 HaveVectorizedPhiNodes = true; 4863 Changed = true; 4864 break; 4865 } 4866 4867 // Start over at the next instruction of a different type (or the end). 4868 IncIt = SameTypeIt; 4869 } 4870 } 4871 4872 VisitedInstrs.clear(); 4873 4874 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) { 4875 // We may go through BB multiple times so skip the one we have checked. 4876 if (!VisitedInstrs.insert(&*it).second) 4877 continue; 4878 4879 if (isa<DbgInfoIntrinsic>(it)) 4880 continue; 4881 4882 // Try to vectorize reductions that use PHINodes. 4883 if (PHINode *P = dyn_cast<PHINode>(it)) { 4884 // Check that the PHI is a reduction PHI. 4885 if (P->getNumIncomingValues() != 2) 4886 return Changed; 4887 4888 // Try to match and vectorize a horizontal reduction. 4889 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 4890 TTI)) { 4891 Changed = true; 4892 it = BB->begin(); 4893 e = BB->end(); 4894 continue; 4895 } 4896 continue; 4897 } 4898 4899 if (ShouldStartVectorizeHorAtStore) { 4900 if (StoreInst *SI = dyn_cast<StoreInst>(it)) { 4901 // Try to match and vectorize a horizontal reduction. 4902 if (vectorizeRootInstruction(nullptr, SI->getValueOperand(), BB, R, 4903 TTI)) { 4904 Changed = true; 4905 it = BB->begin(); 4906 e = BB->end(); 4907 continue; 4908 } 4909 } 4910 } 4911 4912 // Try to vectorize horizontal reductions feeding into a return. 4913 if (ReturnInst *RI = dyn_cast<ReturnInst>(it)) { 4914 if (RI->getNumOperands() != 0) { 4915 // Try to match and vectorize a horizontal reduction. 4916 if (vectorizeRootInstruction(nullptr, RI->getOperand(0), BB, R, TTI)) { 4917 Changed = true; 4918 it = BB->begin(); 4919 e = BB->end(); 4920 continue; 4921 } 4922 } 4923 } 4924 4925 // Try to vectorize trees that start at compare instructions. 4926 if (CmpInst *CI = dyn_cast<CmpInst>(it)) { 4927 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) { 4928 Changed = true; 4929 // We would like to start over since some instructions are deleted 4930 // and the iterator may become invalid value. 4931 it = BB->begin(); 4932 e = BB->end(); 4933 continue; 4934 } 4935 4936 for (int I = 0; I < 2; ++I) { 4937 if (vectorizeRootInstruction(nullptr, CI->getOperand(I), BB, R, TTI)) { 4938 Changed = true; 4939 // We would like to start over since some instructions are deleted 4940 // and the iterator may become invalid value. 4941 it = BB->begin(); 4942 e = BB->end(); 4943 break; 4944 } 4945 } 4946 continue; 4947 } 4948 4949 // Try to vectorize trees that start at insertelement instructions. 4950 if (InsertElementInst *FirstInsertElem = dyn_cast<InsertElementInst>(it)) { 4951 SmallVector<Value *, 16> BuildVector; 4952 SmallVector<Value *, 16> BuildVectorOpds; 4953 if (!findBuildVector(FirstInsertElem, BuildVector, BuildVectorOpds)) 4954 continue; 4955 4956 // Vectorize starting with the build vector operands ignoring the 4957 // BuildVector instructions for the purpose of scheduling and user 4958 // extraction. 4959 if (tryToVectorizeList(BuildVectorOpds, R, BuildVector)) { 4960 Changed = true; 4961 it = BB->begin(); 4962 e = BB->end(); 4963 } 4964 4965 continue; 4966 } 4967 4968 // Try to vectorize trees that start at insertvalue instructions feeding into 4969 // a store. 4970 if (StoreInst *SI = dyn_cast<StoreInst>(it)) { 4971 if (InsertValueInst *LastInsertValue = dyn_cast<InsertValueInst>(SI->getValueOperand())) { 4972 const DataLayout &DL = BB->getModule()->getDataLayout(); 4973 if (R.canMapToVector(SI->getValueOperand()->getType(), DL)) { 4974 SmallVector<Value *, 16> BuildVector; 4975 SmallVector<Value *, 16> BuildVectorOpds; 4976 if (!findBuildAggregate(LastInsertValue, BuildVector, BuildVectorOpds)) 4977 continue; 4978 4979 DEBUG(dbgs() << "SLP: store of array mappable to vector: " << *SI << "\n"); 4980 if (tryToVectorizeList(BuildVectorOpds, R, BuildVector, false)) { 4981 Changed = true; 4982 it = BB->begin(); 4983 e = BB->end(); 4984 } 4985 continue; 4986 } 4987 } 4988 } 4989 } 4990 4991 return Changed; 4992 } 4993 4994 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 4995 auto Changed = false; 4996 for (auto &Entry : GEPs) { 4997 4998 // If the getelementptr list has fewer than two elements, there's nothing 4999 // to do. 5000 if (Entry.second.size() < 2) 5001 continue; 5002 5003 DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 5004 << Entry.second.size() << ".\n"); 5005 5006 // We process the getelementptr list in chunks of 16 (like we do for 5007 // stores) to minimize compile-time. 5008 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) { 5009 auto Len = std::min<unsigned>(BE - BI, 16); 5010 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 5011 5012 // Initialize a set a candidate getelementptrs. Note that we use a 5013 // SetVector here to preserve program order. If the index computations 5014 // are vectorizable and begin with loads, we want to minimize the chance 5015 // of having to reorder them later. 5016 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 5017 5018 // Some of the candidates may have already been vectorized after we 5019 // initially collected them. If so, the WeakVHs will have nullified the 5020 // values, so remove them from the set of candidates. 5021 Candidates.remove(nullptr); 5022 5023 // Remove from the set of candidates all pairs of getelementptrs with 5024 // constant differences. Such getelementptrs are likely not good 5025 // candidates for vectorization in a bottom-up phase since one can be 5026 // computed from the other. We also ensure all candidate getelementptr 5027 // indices are unique. 5028 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 5029 auto *GEPI = cast<GetElementPtrInst>(GEPList[I]); 5030 if (!Candidates.count(GEPI)) 5031 continue; 5032 auto *SCEVI = SE->getSCEV(GEPList[I]); 5033 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 5034 auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]); 5035 auto *SCEVJ = SE->getSCEV(GEPList[J]); 5036 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 5037 Candidates.remove(GEPList[I]); 5038 Candidates.remove(GEPList[J]); 5039 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 5040 Candidates.remove(GEPList[J]); 5041 } 5042 } 5043 } 5044 5045 // We break out of the above computation as soon as we know there are 5046 // fewer than two candidates remaining. 5047 if (Candidates.size() < 2) 5048 continue; 5049 5050 // Add the single, non-constant index of each candidate to the bundle. We 5051 // ensured the indices met these constraints when we originally collected 5052 // the getelementptrs. 5053 SmallVector<Value *, 16> Bundle(Candidates.size()); 5054 auto BundleIndex = 0u; 5055 for (auto *V : Candidates) { 5056 auto *GEP = cast<GetElementPtrInst>(V); 5057 auto *GEPIdx = GEP->idx_begin()->get(); 5058 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 5059 Bundle[BundleIndex++] = GEPIdx; 5060 } 5061 5062 // Try and vectorize the indices. We are currently only interested in 5063 // gather-like cases of the form: 5064 // 5065 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 5066 // 5067 // where the loads of "a", the loads of "b", and the subtractions can be 5068 // performed in parallel. It's likely that detecting this pattern in a 5069 // bottom-up phase will be simpler and less costly than building a 5070 // full-blown top-down phase beginning at the consecutive loads. 5071 Changed |= tryToVectorizeList(Bundle, R); 5072 } 5073 } 5074 return Changed; 5075 } 5076 5077 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 5078 bool Changed = false; 5079 // Attempt to sort and vectorize each of the store-groups. 5080 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 5081 ++it) { 5082 if (it->second.size() < 2) 5083 continue; 5084 5085 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 5086 << it->second.size() << ".\n"); 5087 5088 // Process the stores in chunks of 16. 5089 // TODO: The limit of 16 inhibits greater vectorization factors. 5090 // For example, AVX2 supports v32i8. Increasing this limit, however, 5091 // may cause a significant compile-time increase. 5092 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) { 5093 unsigned Len = std::min<unsigned>(CE - CI, 16); 5094 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R); 5095 } 5096 } 5097 return Changed; 5098 } 5099 5100 char SLPVectorizer::ID = 0; 5101 static const char lv_name[] = "SLP Vectorizer"; 5102 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 5103 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 5104 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5105 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 5106 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 5107 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5108 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 5109 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 5110 5111 namespace llvm { 5112 Pass *createSLPVectorizerPass() { return new SLPVectorizer(); } 5113 } 5114