1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SetVector.h" 26 #include "llvm/ADT/SmallBitVector.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/ADT/SmallString.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/ADT/iterator.h" 32 #include "llvm/ADT/iterator_range.h" 33 #include "llvm/Analysis/AliasAnalysis.h" 34 #include "llvm/Analysis/AssumptionCache.h" 35 #include "llvm/Analysis/CodeMetrics.h" 36 #include "llvm/Analysis/DemandedBits.h" 37 #include "llvm/Analysis/GlobalsModRef.h" 38 #include "llvm/Analysis/LoopAccessAnalysis.h" 39 #include "llvm/Analysis/LoopInfo.h" 40 #include "llvm/Analysis/MemoryLocation.h" 41 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 42 #include "llvm/Analysis/ScalarEvolution.h" 43 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 44 #include "llvm/Analysis/TargetLibraryInfo.h" 45 #include "llvm/Analysis/TargetTransformInfo.h" 46 #include "llvm/Analysis/ValueTracking.h" 47 #include "llvm/Analysis/VectorUtils.h" 48 #include "llvm/IR/Attributes.h" 49 #include "llvm/IR/BasicBlock.h" 50 #include "llvm/IR/Constant.h" 51 #include "llvm/IR/Constants.h" 52 #include "llvm/IR/DataLayout.h" 53 #include "llvm/IR/DebugLoc.h" 54 #include "llvm/IR/DerivedTypes.h" 55 #include "llvm/IR/Dominators.h" 56 #include "llvm/IR/Function.h" 57 #include "llvm/IR/IRBuilder.h" 58 #include "llvm/IR/InstrTypes.h" 59 #include "llvm/IR/Instruction.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/Intrinsics.h" 63 #include "llvm/IR/Module.h" 64 #include "llvm/IR/NoFolder.h" 65 #include "llvm/IR/Operator.h" 66 #include "llvm/IR/PatternMatch.h" 67 #include "llvm/IR/Type.h" 68 #include "llvm/IR/Use.h" 69 #include "llvm/IR/User.h" 70 #include "llvm/IR/Value.h" 71 #include "llvm/IR/ValueHandle.h" 72 #include "llvm/IR/Verifier.h" 73 #include "llvm/InitializePasses.h" 74 #include "llvm/Pass.h" 75 #include "llvm/Support/Casting.h" 76 #include "llvm/Support/CommandLine.h" 77 #include "llvm/Support/Compiler.h" 78 #include "llvm/Support/DOTGraphTraits.h" 79 #include "llvm/Support/Debug.h" 80 #include "llvm/Support/ErrorHandling.h" 81 #include "llvm/Support/GraphWriter.h" 82 #include "llvm/Support/KnownBits.h" 83 #include "llvm/Support/MathExtras.h" 84 #include "llvm/Support/raw_ostream.h" 85 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 86 #include "llvm/Transforms/Utils/LoopUtils.h" 87 #include "llvm/Transforms/Vectorize.h" 88 #include <algorithm> 89 #include <cassert> 90 #include <cstdint> 91 #include <iterator> 92 #include <memory> 93 #include <set> 94 #include <string> 95 #include <tuple> 96 #include <utility> 97 #include <vector> 98 99 using namespace llvm; 100 using namespace llvm::PatternMatch; 101 using namespace slpvectorizer; 102 103 #define SV_NAME "slp-vectorizer" 104 #define DEBUG_TYPE "SLP" 105 106 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 107 108 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 109 cl::desc("Run the SLP vectorization passes")); 110 111 static cl::opt<int> 112 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 113 cl::desc("Only vectorize if you gain more than this " 114 "number ")); 115 116 static cl::opt<bool> 117 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 118 cl::desc("Attempt to vectorize horizontal reductions")); 119 120 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 121 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 122 cl::desc( 123 "Attempt to vectorize horizontal reductions feeding into a store")); 124 125 static cl::opt<int> 126 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 127 cl::desc("Attempt to vectorize for this register size in bits")); 128 129 static cl::opt<int> 130 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 131 cl::desc("Maximum depth of the lookup for consecutive stores.")); 132 133 /// Limits the size of scheduling regions in a block. 134 /// It avoid long compile times for _very_ large blocks where vector 135 /// instructions are spread over a wide range. 136 /// This limit is way higher than needed by real-world functions. 137 static cl::opt<int> 138 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 139 cl::desc("Limit the size of the SLP scheduling region per block")); 140 141 static cl::opt<int> MinVectorRegSizeOption( 142 "slp-min-reg-size", cl::init(128), cl::Hidden, 143 cl::desc("Attempt to vectorize for this register size in bits")); 144 145 static cl::opt<unsigned> RecursionMaxDepth( 146 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 147 cl::desc("Limit the recursion depth when building a vectorizable tree")); 148 149 static cl::opt<unsigned> MinTreeSize( 150 "slp-min-tree-size", cl::init(3), cl::Hidden, 151 cl::desc("Only vectorize small trees if they are fully vectorizable")); 152 153 // The maximum depth that the look-ahead score heuristic will explore. 154 // The higher this value, the higher the compilation time overhead. 155 static cl::opt<int> LookAheadMaxDepth( 156 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 157 cl::desc("The maximum look-ahead depth for operand reordering scores")); 158 159 // The Look-ahead heuristic goes through the users of the bundle to calculate 160 // the users cost in getExternalUsesCost(). To avoid compilation time increase 161 // we limit the number of users visited to this value. 162 static cl::opt<unsigned> LookAheadUsersBudget( 163 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, 164 cl::desc("The maximum number of users to visit while visiting the " 165 "predecessors. This prevents compilation time increase.")); 166 167 static cl::opt<bool> 168 ViewSLPTree("view-slp-tree", cl::Hidden, 169 cl::desc("Display the SLP trees with Graphviz")); 170 171 // Limit the number of alias checks. The limit is chosen so that 172 // it has no negative effect on the llvm benchmarks. 173 static const unsigned AliasedCheckLimit = 10; 174 175 // Another limit for the alias checks: The maximum distance between load/store 176 // instructions where alias checks are done. 177 // This limit is useful for very large basic blocks. 178 static const unsigned MaxMemDepDistance = 160; 179 180 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 181 /// regions to be handled. 182 static const int MinScheduleRegionSize = 16; 183 184 /// Predicate for the element types that the SLP vectorizer supports. 185 /// 186 /// The most important thing to filter here are types which are invalid in LLVM 187 /// vectors. We also filter target specific types which have absolutely no 188 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 189 /// avoids spending time checking the cost model and realizing that they will 190 /// be inevitably scalarized. 191 static bool isValidElementType(Type *Ty) { 192 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 193 !Ty->isPPC_FP128Ty(); 194 } 195 196 /// \returns true if all of the instructions in \p VL are in the same block or 197 /// false otherwise. 198 static bool allSameBlock(ArrayRef<Value *> VL) { 199 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 200 if (!I0) 201 return false; 202 BasicBlock *BB = I0->getParent(); 203 for (int I = 1, E = VL.size(); I < E; I++) { 204 auto *II = dyn_cast<Instruction>(VL[I]); 205 if (!II) 206 return false; 207 208 if (BB != II->getParent()) 209 return false; 210 } 211 return true; 212 } 213 214 /// \returns True if all of the values in \p VL are constants (but not 215 /// globals/constant expressions). 216 static bool allConstant(ArrayRef<Value *> VL) { 217 // Constant expressions and globals can't be vectorized like normal integer/FP 218 // constants. 219 for (Value *i : VL) 220 if (!isa<Constant>(i) || isa<ConstantExpr>(i) || isa<GlobalValue>(i)) 221 return false; 222 return true; 223 } 224 225 /// \returns True if all of the values in \p VL are identical. 226 static bool isSplat(ArrayRef<Value *> VL) { 227 for (unsigned i = 1, e = VL.size(); i < e; ++i) 228 if (VL[i] != VL[0]) 229 return false; 230 return true; 231 } 232 233 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 234 static bool isCommutative(Instruction *I) { 235 if (auto *Cmp = dyn_cast<CmpInst>(I)) 236 return Cmp->isCommutative(); 237 if (auto *BO = dyn_cast<BinaryOperator>(I)) 238 return BO->isCommutative(); 239 // TODO: This should check for generic Instruction::isCommutative(), but 240 // we need to confirm that the caller code correctly handles Intrinsics 241 // for example (does not have 2 operands). 242 return false; 243 } 244 245 /// Checks if the vector of instructions can be represented as a shuffle, like: 246 /// %x0 = extractelement <4 x i8> %x, i32 0 247 /// %x3 = extractelement <4 x i8> %x, i32 3 248 /// %y1 = extractelement <4 x i8> %y, i32 1 249 /// %y2 = extractelement <4 x i8> %y, i32 2 250 /// %x0x0 = mul i8 %x0, %x0 251 /// %x3x3 = mul i8 %x3, %x3 252 /// %y1y1 = mul i8 %y1, %y1 253 /// %y2y2 = mul i8 %y2, %y2 254 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0 255 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 256 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 257 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 258 /// ret <4 x i8> %ins4 259 /// can be transformed into: 260 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 261 /// i32 6> 262 /// %2 = mul <4 x i8> %1, %1 263 /// ret <4 x i8> %2 264 /// We convert this initially to something like: 265 /// %x0 = extractelement <4 x i8> %x, i32 0 266 /// %x3 = extractelement <4 x i8> %x, i32 3 267 /// %y1 = extractelement <4 x i8> %y, i32 1 268 /// %y2 = extractelement <4 x i8> %y, i32 2 269 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0 270 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 271 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 272 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 273 /// %5 = mul <4 x i8> %4, %4 274 /// %6 = extractelement <4 x i8> %5, i32 0 275 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0 276 /// %7 = extractelement <4 x i8> %5, i32 1 277 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 278 /// %8 = extractelement <4 x i8> %5, i32 2 279 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 280 /// %9 = extractelement <4 x i8> %5, i32 3 281 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 282 /// ret <4 x i8> %ins4 283 /// InstCombiner transforms this into a shuffle and vector mul 284 /// TODO: Can we split off and reuse the shuffle mask detection from 285 /// TargetTransformInfo::getInstructionThroughput? 286 static Optional<TargetTransformInfo::ShuffleKind> 287 isShuffle(ArrayRef<Value *> VL) { 288 auto *EI0 = cast<ExtractElementInst>(VL[0]); 289 unsigned Size = 290 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 291 Value *Vec1 = nullptr; 292 Value *Vec2 = nullptr; 293 enum ShuffleMode { Unknown, Select, Permute }; 294 ShuffleMode CommonShuffleMode = Unknown; 295 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 296 auto *EI = cast<ExtractElementInst>(VL[I]); 297 auto *Vec = EI->getVectorOperand(); 298 // All vector operands must have the same number of vector elements. 299 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 300 return None; 301 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 302 if (!Idx) 303 return None; 304 // Undefined behavior if Idx is negative or >= Size. 305 if (Idx->getValue().uge(Size)) 306 continue; 307 unsigned IntIdx = Idx->getValue().getZExtValue(); 308 // We can extractelement from undef vector. 309 if (isa<UndefValue>(Vec)) 310 continue; 311 // For correct shuffling we have to have at most 2 different vector operands 312 // in all extractelement instructions. 313 if (!Vec1 || Vec1 == Vec) 314 Vec1 = Vec; 315 else if (!Vec2 || Vec2 == Vec) 316 Vec2 = Vec; 317 else 318 return None; 319 if (CommonShuffleMode == Permute) 320 continue; 321 // If the extract index is not the same as the operation number, it is a 322 // permutation. 323 if (IntIdx != I) { 324 CommonShuffleMode = Permute; 325 continue; 326 } 327 CommonShuffleMode = Select; 328 } 329 // If we're not crossing lanes in different vectors, consider it as blending. 330 if (CommonShuffleMode == Select && Vec2) 331 return TargetTransformInfo::SK_Select; 332 // If Vec2 was never used, we have a permutation of a single vector, otherwise 333 // we have permutation of 2 vectors. 334 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 335 : TargetTransformInfo::SK_PermuteSingleSrc; 336 } 337 338 namespace { 339 340 /// Main data required for vectorization of instructions. 341 struct InstructionsState { 342 /// The very first instruction in the list with the main opcode. 343 Value *OpValue = nullptr; 344 345 /// The main/alternate instruction. 346 Instruction *MainOp = nullptr; 347 Instruction *AltOp = nullptr; 348 349 /// The main/alternate opcodes for the list of instructions. 350 unsigned getOpcode() const { 351 return MainOp ? MainOp->getOpcode() : 0; 352 } 353 354 unsigned getAltOpcode() const { 355 return AltOp ? AltOp->getOpcode() : 0; 356 } 357 358 /// Some of the instructions in the list have alternate opcodes. 359 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 360 361 bool isOpcodeOrAlt(Instruction *I) const { 362 unsigned CheckedOpcode = I->getOpcode(); 363 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 364 } 365 366 InstructionsState() = delete; 367 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 368 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 369 }; 370 371 } // end anonymous namespace 372 373 /// Chooses the correct key for scheduling data. If \p Op has the same (or 374 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 375 /// OpValue. 376 static Value *isOneOf(const InstructionsState &S, Value *Op) { 377 auto *I = dyn_cast<Instruction>(Op); 378 if (I && S.isOpcodeOrAlt(I)) 379 return Op; 380 return S.OpValue; 381 } 382 383 /// \returns true if \p Opcode is allowed as part of of the main/alternate 384 /// instruction for SLP vectorization. 385 /// 386 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 387 /// "shuffled out" lane would result in division by zero. 388 static bool isValidForAlternation(unsigned Opcode) { 389 if (Instruction::isIntDivRem(Opcode)) 390 return false; 391 392 return true; 393 } 394 395 /// \returns analysis of the Instructions in \p VL described in 396 /// InstructionsState, the Opcode that we suppose the whole list 397 /// could be vectorized even if its structure is diverse. 398 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 399 unsigned BaseIndex = 0) { 400 // Make sure these are all Instructions. 401 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 402 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 403 404 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 405 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 406 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 407 unsigned AltOpcode = Opcode; 408 unsigned AltIndex = BaseIndex; 409 410 // Check for one alternate opcode from another BinaryOperator. 411 // TODO - generalize to support all operators (types, calls etc.). 412 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 413 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 414 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 415 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 416 continue; 417 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 418 isValidForAlternation(Opcode)) { 419 AltOpcode = InstOpcode; 420 AltIndex = Cnt; 421 continue; 422 } 423 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 424 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 425 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 426 if (Ty0 == Ty1) { 427 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 428 continue; 429 if (Opcode == AltOpcode) { 430 assert(isValidForAlternation(Opcode) && 431 isValidForAlternation(InstOpcode) && 432 "Cast isn't safe for alternation, logic needs to be updated!"); 433 AltOpcode = InstOpcode; 434 AltIndex = Cnt; 435 continue; 436 } 437 } 438 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 439 continue; 440 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 441 } 442 443 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 444 cast<Instruction>(VL[AltIndex])); 445 } 446 447 /// \returns true if all of the values in \p VL have the same type or false 448 /// otherwise. 449 static bool allSameType(ArrayRef<Value *> VL) { 450 Type *Ty = VL[0]->getType(); 451 for (int i = 1, e = VL.size(); i < e; i++) 452 if (VL[i]->getType() != Ty) 453 return false; 454 455 return true; 456 } 457 458 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 459 static Optional<unsigned> getExtractIndex(Instruction *E) { 460 unsigned Opcode = E->getOpcode(); 461 assert((Opcode == Instruction::ExtractElement || 462 Opcode == Instruction::ExtractValue) && 463 "Expected extractelement or extractvalue instruction."); 464 if (Opcode == Instruction::ExtractElement) { 465 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 466 if (!CI) 467 return None; 468 return CI->getZExtValue(); 469 } 470 ExtractValueInst *EI = cast<ExtractValueInst>(E); 471 if (EI->getNumIndices() != 1) 472 return None; 473 return *EI->idx_begin(); 474 } 475 476 /// \returns True if in-tree use also needs extract. This refers to 477 /// possible scalar operand in vectorized instruction. 478 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 479 TargetLibraryInfo *TLI) { 480 unsigned Opcode = UserInst->getOpcode(); 481 switch (Opcode) { 482 case Instruction::Load: { 483 LoadInst *LI = cast<LoadInst>(UserInst); 484 return (LI->getPointerOperand() == Scalar); 485 } 486 case Instruction::Store: { 487 StoreInst *SI = cast<StoreInst>(UserInst); 488 return (SI->getPointerOperand() == Scalar); 489 } 490 case Instruction::Call: { 491 CallInst *CI = cast<CallInst>(UserInst); 492 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 493 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 494 if (hasVectorInstrinsicScalarOpd(ID, i)) 495 return (CI->getArgOperand(i) == Scalar); 496 } 497 LLVM_FALLTHROUGH; 498 } 499 default: 500 return false; 501 } 502 } 503 504 /// \returns the AA location that is being access by the instruction. 505 static MemoryLocation getLocation(Instruction *I, AAResults *AA) { 506 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 507 return MemoryLocation::get(SI); 508 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 509 return MemoryLocation::get(LI); 510 return MemoryLocation(); 511 } 512 513 /// \returns True if the instruction is not a volatile or atomic load/store. 514 static bool isSimple(Instruction *I) { 515 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 516 return LI->isSimple(); 517 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 518 return SI->isSimple(); 519 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 520 return !MI->isVolatile(); 521 return true; 522 } 523 524 namespace llvm { 525 526 static void inversePermutation(ArrayRef<unsigned> Indices, 527 SmallVectorImpl<int> &Mask) { 528 Mask.clear(); 529 const unsigned E = Indices.size(); 530 Mask.resize(E, E + 1); 531 for (unsigned I = 0; I < E; ++I) 532 Mask[Indices[I]] = I; 533 } 534 535 namespace slpvectorizer { 536 537 /// Bottom Up SLP Vectorizer. 538 class BoUpSLP { 539 struct TreeEntry; 540 struct ScheduleData; 541 542 public: 543 using ValueList = SmallVector<Value *, 8>; 544 using InstrList = SmallVector<Instruction *, 16>; 545 using ValueSet = SmallPtrSet<Value *, 16>; 546 using StoreList = SmallVector<StoreInst *, 8>; 547 using ExtraValueToDebugLocsMap = 548 MapVector<Value *, SmallVector<Instruction *, 2>>; 549 using OrdersType = SmallVector<unsigned, 4>; 550 551 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 552 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 553 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 554 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 555 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 556 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 557 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 558 // Use the vector register size specified by the target unless overridden 559 // by a command-line option. 560 // TODO: It would be better to limit the vectorization factor based on 561 // data type rather than just register size. For example, x86 AVX has 562 // 256-bit registers, but it does not support integer operations 563 // at that width (that requires AVX2). 564 if (MaxVectorRegSizeOption.getNumOccurrences()) 565 MaxVecRegSize = MaxVectorRegSizeOption; 566 else 567 MaxVecRegSize = TTI->getRegisterBitWidth(true); 568 569 if (MinVectorRegSizeOption.getNumOccurrences()) 570 MinVecRegSize = MinVectorRegSizeOption; 571 else 572 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 573 } 574 575 /// Vectorize the tree that starts with the elements in \p VL. 576 /// Returns the vectorized root. 577 Value *vectorizeTree(); 578 579 /// Vectorize the tree but with the list of externally used values \p 580 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 581 /// generated extractvalue instructions. 582 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 583 584 /// \returns the cost incurred by unwanted spills and fills, caused by 585 /// holding live values over call sites. 586 int getSpillCost() const; 587 588 /// \returns the vectorization cost of the subtree that starts at \p VL. 589 /// A negative number means that this is profitable. 590 int getTreeCost(); 591 592 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 593 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 594 void buildTree(ArrayRef<Value *> Roots, 595 ArrayRef<Value *> UserIgnoreLst = None); 596 597 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 598 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 599 /// into account (and updating it, if required) list of externally used 600 /// values stored in \p ExternallyUsedValues. 601 void buildTree(ArrayRef<Value *> Roots, 602 ExtraValueToDebugLocsMap &ExternallyUsedValues, 603 ArrayRef<Value *> UserIgnoreLst = None); 604 605 /// Clear the internal data structures that are created by 'buildTree'. 606 void deleteTree() { 607 VectorizableTree.clear(); 608 ScalarToTreeEntry.clear(); 609 MustGather.clear(); 610 ExternalUses.clear(); 611 NumOpsWantToKeepOrder.clear(); 612 NumOpsWantToKeepOriginalOrder = 0; 613 for (auto &Iter : BlocksSchedules) { 614 BlockScheduling *BS = Iter.second.get(); 615 BS->clear(); 616 } 617 MinBWs.clear(); 618 } 619 620 unsigned getTreeSize() const { return VectorizableTree.size(); } 621 622 /// Perform LICM and CSE on the newly generated gather sequences. 623 void optimizeGatherSequence(); 624 625 /// \returns The best order of instructions for vectorization. 626 Optional<ArrayRef<unsigned>> bestOrder() const { 627 assert(llvm::all_of( 628 NumOpsWantToKeepOrder, 629 [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { 630 return D.getFirst().size() == 631 VectorizableTree[0]->Scalars.size(); 632 }) && 633 "All orders must have the same size as number of instructions in " 634 "tree node."); 635 auto I = std::max_element( 636 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 637 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 638 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 639 return D1.second < D2.second; 640 }); 641 if (I == NumOpsWantToKeepOrder.end() || 642 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 643 return None; 644 645 return makeArrayRef(I->getFirst()); 646 } 647 648 /// Builds the correct order for root instructions. 649 /// If some leaves have the same instructions to be vectorized, we may 650 /// incorrectly evaluate the best order for the root node (it is built for the 651 /// vector of instructions without repeated instructions and, thus, has less 652 /// elements than the root node). This function builds the correct order for 653 /// the root node. 654 /// For example, if the root node is \<a+b, a+c, a+d, f+e\>, then the leaves 655 /// are \<a, a, a, f\> and \<b, c, d, e\>. When we try to vectorize the first 656 /// leaf, it will be shrink to \<a, b\>. If instructions in this leaf should 657 /// be reordered, the best order will be \<1, 0\>. We need to extend this 658 /// order for the root node. For the root node this order should look like 659 /// \<3, 0, 1, 2\>. This function extends the order for the reused 660 /// instructions. 661 void findRootOrder(OrdersType &Order) { 662 // If the leaf has the same number of instructions to vectorize as the root 663 // - order must be set already. 664 unsigned RootSize = VectorizableTree[0]->Scalars.size(); 665 if (Order.size() == RootSize) 666 return; 667 SmallVector<unsigned, 4> RealOrder(Order.size()); 668 std::swap(Order, RealOrder); 669 SmallVector<int, 4> Mask; 670 inversePermutation(RealOrder, Mask); 671 Order.assign(Mask.begin(), Mask.end()); 672 // The leaf has less number of instructions - need to find the true order of 673 // the root. 674 // Scan the nodes starting from the leaf back to the root. 675 const TreeEntry *PNode = VectorizableTree.back().get(); 676 SmallVector<const TreeEntry *, 4> Nodes(1, PNode); 677 SmallPtrSet<const TreeEntry *, 4> Visited; 678 while (!Nodes.empty() && Order.size() != RootSize) { 679 const TreeEntry *PNode = Nodes.pop_back_val(); 680 if (!Visited.insert(PNode).second) 681 continue; 682 const TreeEntry &Node = *PNode; 683 for (const EdgeInfo &EI : Node.UserTreeIndices) 684 if (EI.UserTE) 685 Nodes.push_back(EI.UserTE); 686 if (Node.ReuseShuffleIndices.empty()) 687 continue; 688 // Build the order for the parent node. 689 OrdersType NewOrder(Node.ReuseShuffleIndices.size(), RootSize); 690 SmallVector<unsigned, 4> OrderCounter(Order.size(), 0); 691 // The algorithm of the order extension is: 692 // 1. Calculate the number of the same instructions for the order. 693 // 2. Calculate the index of the new order: total number of instructions 694 // with order less than the order of the current instruction + reuse 695 // number of the current instruction. 696 // 3. The new order is just the index of the instruction in the original 697 // vector of the instructions. 698 for (unsigned I : Node.ReuseShuffleIndices) 699 ++OrderCounter[Order[I]]; 700 SmallVector<unsigned, 4> CurrentCounter(Order.size(), 0); 701 for (unsigned I = 0, E = Node.ReuseShuffleIndices.size(); I < E; ++I) { 702 unsigned ReusedIdx = Node.ReuseShuffleIndices[I]; 703 unsigned OrderIdx = Order[ReusedIdx]; 704 unsigned NewIdx = 0; 705 for (unsigned J = 0; J < OrderIdx; ++J) 706 NewIdx += OrderCounter[J]; 707 NewIdx += CurrentCounter[OrderIdx]; 708 ++CurrentCounter[OrderIdx]; 709 assert(NewOrder[NewIdx] == RootSize && 710 "The order index should not be written already."); 711 NewOrder[NewIdx] = I; 712 } 713 std::swap(Order, NewOrder); 714 } 715 assert(Order.size() == RootSize && 716 "Root node is expected or the size of the order must be the same as " 717 "the number of elements in the root node."); 718 assert(llvm::all_of(Order, 719 [RootSize](unsigned Val) { return Val != RootSize; }) && 720 "All indices must be initialized"); 721 } 722 723 /// \return The vector element size in bits to use when vectorizing the 724 /// expression tree ending at \p V. If V is a store, the size is the width of 725 /// the stored value. Otherwise, the size is the width of the largest loaded 726 /// value reaching V. This method is used by the vectorizer to calculate 727 /// vectorization factors. 728 unsigned getVectorElementSize(Value *V); 729 730 /// Compute the minimum type sizes required to represent the entries in a 731 /// vectorizable tree. 732 void computeMinimumValueSizes(); 733 734 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 735 unsigned getMaxVecRegSize() const { 736 return MaxVecRegSize; 737 } 738 739 // \returns minimum vector register size as set by cl::opt. 740 unsigned getMinVecRegSize() const { 741 return MinVecRegSize; 742 } 743 744 /// Check if homogeneous aggregate is isomorphic to some VectorType. 745 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 746 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 747 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 748 /// 749 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 750 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 751 752 /// \returns True if the VectorizableTree is both tiny and not fully 753 /// vectorizable. We do not vectorize such trees. 754 bool isTreeTinyAndNotFullyVectorizable() const; 755 756 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 757 /// can be load combined in the backend. Load combining may not be allowed in 758 /// the IR optimizer, so we do not want to alter the pattern. For example, 759 /// partially transforming a scalar bswap() pattern into vector code is 760 /// effectively impossible for the backend to undo. 761 /// TODO: If load combining is allowed in the IR optimizer, this analysis 762 /// may not be necessary. 763 bool isLoadCombineReductionCandidate(unsigned ReductionOpcode) const; 764 765 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 766 /// can be load combined in the backend. Load combining may not be allowed in 767 /// the IR optimizer, so we do not want to alter the pattern. For example, 768 /// partially transforming a scalar bswap() pattern into vector code is 769 /// effectively impossible for the backend to undo. 770 /// TODO: If load combining is allowed in the IR optimizer, this analysis 771 /// may not be necessary. 772 bool isLoadCombineCandidate() const; 773 774 OptimizationRemarkEmitter *getORE() { return ORE; } 775 776 /// This structure holds any data we need about the edges being traversed 777 /// during buildTree_rec(). We keep track of: 778 /// (i) the user TreeEntry index, and 779 /// (ii) the index of the edge. 780 struct EdgeInfo { 781 EdgeInfo() = default; 782 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 783 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 784 /// The user TreeEntry. 785 TreeEntry *UserTE = nullptr; 786 /// The operand index of the use. 787 unsigned EdgeIdx = UINT_MAX; 788 #ifndef NDEBUG 789 friend inline raw_ostream &operator<<(raw_ostream &OS, 790 const BoUpSLP::EdgeInfo &EI) { 791 EI.dump(OS); 792 return OS; 793 } 794 /// Debug print. 795 void dump(raw_ostream &OS) const { 796 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 797 << " EdgeIdx:" << EdgeIdx << "}"; 798 } 799 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 800 #endif 801 }; 802 803 /// A helper data structure to hold the operands of a vector of instructions. 804 /// This supports a fixed vector length for all operand vectors. 805 class VLOperands { 806 /// For each operand we need (i) the value, and (ii) the opcode that it 807 /// would be attached to if the expression was in a left-linearized form. 808 /// This is required to avoid illegal operand reordering. 809 /// For example: 810 /// \verbatim 811 /// 0 Op1 812 /// |/ 813 /// Op1 Op2 Linearized + Op2 814 /// \ / ----------> |/ 815 /// - - 816 /// 817 /// Op1 - Op2 (0 + Op1) - Op2 818 /// \endverbatim 819 /// 820 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 821 /// 822 /// Another way to think of this is to track all the operations across the 823 /// path from the operand all the way to the root of the tree and to 824 /// calculate the operation that corresponds to this path. For example, the 825 /// path from Op2 to the root crosses the RHS of the '-', therefore the 826 /// corresponding operation is a '-' (which matches the one in the 827 /// linearized tree, as shown above). 828 /// 829 /// For lack of a better term, we refer to this operation as Accumulated 830 /// Path Operation (APO). 831 struct OperandData { 832 OperandData() = default; 833 OperandData(Value *V, bool APO, bool IsUsed) 834 : V(V), APO(APO), IsUsed(IsUsed) {} 835 /// The operand value. 836 Value *V = nullptr; 837 /// TreeEntries only allow a single opcode, or an alternate sequence of 838 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 839 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 840 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 841 /// (e.g., Add/Mul) 842 bool APO = false; 843 /// Helper data for the reordering function. 844 bool IsUsed = false; 845 }; 846 847 /// During operand reordering, we are trying to select the operand at lane 848 /// that matches best with the operand at the neighboring lane. Our 849 /// selection is based on the type of value we are looking for. For example, 850 /// if the neighboring lane has a load, we need to look for a load that is 851 /// accessing a consecutive address. These strategies are summarized in the 852 /// 'ReorderingMode' enumerator. 853 enum class ReorderingMode { 854 Load, ///< Matching loads to consecutive memory addresses 855 Opcode, ///< Matching instructions based on opcode (same or alternate) 856 Constant, ///< Matching constants 857 Splat, ///< Matching the same instruction multiple times (broadcast) 858 Failed, ///< We failed to create a vectorizable group 859 }; 860 861 using OperandDataVec = SmallVector<OperandData, 2>; 862 863 /// A vector of operand vectors. 864 SmallVector<OperandDataVec, 4> OpsVec; 865 866 const DataLayout &DL; 867 ScalarEvolution &SE; 868 const BoUpSLP &R; 869 870 /// \returns the operand data at \p OpIdx and \p Lane. 871 OperandData &getData(unsigned OpIdx, unsigned Lane) { 872 return OpsVec[OpIdx][Lane]; 873 } 874 875 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 876 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 877 return OpsVec[OpIdx][Lane]; 878 } 879 880 /// Clears the used flag for all entries. 881 void clearUsed() { 882 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 883 OpIdx != NumOperands; ++OpIdx) 884 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 885 ++Lane) 886 OpsVec[OpIdx][Lane].IsUsed = false; 887 } 888 889 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 890 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 891 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 892 } 893 894 // The hard-coded scores listed here are not very important. When computing 895 // the scores of matching one sub-tree with another, we are basically 896 // counting the number of values that are matching. So even if all scores 897 // are set to 1, we would still get a decent matching result. 898 // However, sometimes we have to break ties. For example we may have to 899 // choose between matching loads vs matching opcodes. This is what these 900 // scores are helping us with: they provide the order of preference. 901 902 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 903 static const int ScoreConsecutiveLoads = 3; 904 /// ExtractElementInst from same vector and consecutive indexes. 905 static const int ScoreConsecutiveExtracts = 3; 906 /// Constants. 907 static const int ScoreConstants = 2; 908 /// Instructions with the same opcode. 909 static const int ScoreSameOpcode = 2; 910 /// Instructions with alt opcodes (e.g, add + sub). 911 static const int ScoreAltOpcodes = 1; 912 /// Identical instructions (a.k.a. splat or broadcast). 913 static const int ScoreSplat = 1; 914 /// Matching with an undef is preferable to failing. 915 static const int ScoreUndef = 1; 916 /// Score for failing to find a decent match. 917 static const int ScoreFail = 0; 918 /// User exteranl to the vectorized code. 919 static const int ExternalUseCost = 1; 920 /// The user is internal but in a different lane. 921 static const int UserInDiffLaneCost = ExternalUseCost; 922 923 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 924 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 925 ScalarEvolution &SE) { 926 auto *LI1 = dyn_cast<LoadInst>(V1); 927 auto *LI2 = dyn_cast<LoadInst>(V2); 928 if (LI1 && LI2) 929 return isConsecutiveAccess(LI1, LI2, DL, SE) 930 ? VLOperands::ScoreConsecutiveLoads 931 : VLOperands::ScoreFail; 932 933 auto *C1 = dyn_cast<Constant>(V1); 934 auto *C2 = dyn_cast<Constant>(V2); 935 if (C1 && C2) 936 return VLOperands::ScoreConstants; 937 938 // Extracts from consecutive indexes of the same vector better score as 939 // the extracts could be optimized away. 940 Value *EV; 941 ConstantInt *Ex1Idx, *Ex2Idx; 942 if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) && 943 match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) && 944 Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue()) 945 return VLOperands::ScoreConsecutiveExtracts; 946 947 auto *I1 = dyn_cast<Instruction>(V1); 948 auto *I2 = dyn_cast<Instruction>(V2); 949 if (I1 && I2) { 950 if (I1 == I2) 951 return VLOperands::ScoreSplat; 952 InstructionsState S = getSameOpcode({I1, I2}); 953 // Note: Only consider instructions with <= 2 operands to avoid 954 // complexity explosion. 955 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) 956 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 957 : VLOperands::ScoreSameOpcode; 958 } 959 960 if (isa<UndefValue>(V2)) 961 return VLOperands::ScoreUndef; 962 963 return VLOperands::ScoreFail; 964 } 965 966 /// Holds the values and their lane that are taking part in the look-ahead 967 /// score calculation. This is used in the external uses cost calculation. 968 SmallDenseMap<Value *, int> InLookAheadValues; 969 970 /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are 971 /// either external to the vectorized code, or require shuffling. 972 int getExternalUsesCost(const std::pair<Value *, int> &LHS, 973 const std::pair<Value *, int> &RHS) { 974 int Cost = 0; 975 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}}; 976 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { 977 Value *V = Values[Idx].first; 978 // Calculate the absolute lane, using the minimum relative lane of LHS 979 // and RHS as base and Idx as the offset. 980 int Ln = std::min(LHS.second, RHS.second) + Idx; 981 assert(Ln >= 0 && "Bad lane calculation"); 982 unsigned UsersBudget = LookAheadUsersBudget; 983 for (User *U : V->users()) { 984 if (const TreeEntry *UserTE = R.getTreeEntry(U)) { 985 // The user is in the VectorizableTree. Check if we need to insert. 986 auto It = llvm::find(UserTE->Scalars, U); 987 assert(It != UserTE->Scalars.end() && "U is in UserTE"); 988 int UserLn = std::distance(UserTE->Scalars.begin(), It); 989 assert(UserLn >= 0 && "Bad lane"); 990 if (UserLn != Ln) 991 Cost += UserInDiffLaneCost; 992 } else { 993 // Check if the user is in the look-ahead code. 994 auto It2 = InLookAheadValues.find(U); 995 if (It2 != InLookAheadValues.end()) { 996 // The user is in the look-ahead code. Check the lane. 997 if (It2->second != Ln) 998 Cost += UserInDiffLaneCost; 999 } else { 1000 // The user is neither in SLP tree nor in the look-ahead code. 1001 Cost += ExternalUseCost; 1002 } 1003 } 1004 // Limit the number of visited uses to cap compilation time. 1005 if (--UsersBudget == 0) 1006 break; 1007 } 1008 } 1009 return Cost; 1010 } 1011 1012 /// Go through the operands of \p LHS and \p RHS recursively until \p 1013 /// MaxLevel, and return the cummulative score. For example: 1014 /// \verbatim 1015 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1016 /// \ / \ / \ / \ / 1017 /// + + + + 1018 /// G1 G2 G3 G4 1019 /// \endverbatim 1020 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1021 /// each level recursively, accumulating the score. It starts from matching 1022 /// the additions at level 0, then moves on to the loads (level 1). The 1023 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1024 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1025 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1026 /// Please note that the order of the operands does not matter, as we 1027 /// evaluate the score of all profitable combinations of operands. In 1028 /// other words the score of G1 and G4 is the same as G1 and G2. This 1029 /// heuristic is based on ideas described in: 1030 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1031 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1032 /// Luís F. W. Góes 1033 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS, 1034 const std::pair<Value *, int> &RHS, int CurrLevel, 1035 int MaxLevel) { 1036 1037 Value *V1 = LHS.first; 1038 Value *V2 = RHS.first; 1039 // Get the shallow score of V1 and V2. 1040 int ShallowScoreAtThisLevel = 1041 std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) - 1042 getExternalUsesCost(LHS, RHS)); 1043 int Lane1 = LHS.second; 1044 int Lane2 = RHS.second; 1045 1046 // If reached MaxLevel, 1047 // or if V1 and V2 are not instructions, 1048 // or if they are SPLAT, 1049 // or if they are not consecutive, early return the current cost. 1050 auto *I1 = dyn_cast<Instruction>(V1); 1051 auto *I2 = dyn_cast<Instruction>(V2); 1052 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1053 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1054 (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel)) 1055 return ShallowScoreAtThisLevel; 1056 assert(I1 && I2 && "Should have early exited."); 1057 1058 // Keep track of in-tree values for determining the external-use cost. 1059 InLookAheadValues[V1] = Lane1; 1060 InLookAheadValues[V2] = Lane2; 1061 1062 // Contains the I2 operand indexes that got matched with I1 operands. 1063 SmallSet<unsigned, 4> Op2Used; 1064 1065 // Recursion towards the operands of I1 and I2. We are trying all possbile 1066 // operand pairs, and keeping track of the best score. 1067 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1068 OpIdx1 != NumOperands1; ++OpIdx1) { 1069 // Try to pair op1I with the best operand of I2. 1070 int MaxTmpScore = 0; 1071 unsigned MaxOpIdx2 = 0; 1072 bool FoundBest = false; 1073 // If I2 is commutative try all combinations. 1074 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1075 unsigned ToIdx = isCommutative(I2) 1076 ? I2->getNumOperands() 1077 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1078 assert(FromIdx <= ToIdx && "Bad index"); 1079 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1080 // Skip operands already paired with OpIdx1. 1081 if (Op2Used.count(OpIdx2)) 1082 continue; 1083 // Recursively calculate the cost at each level 1084 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, 1085 {I2->getOperand(OpIdx2), Lane2}, 1086 CurrLevel + 1, MaxLevel); 1087 // Look for the best score. 1088 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1089 MaxTmpScore = TmpScore; 1090 MaxOpIdx2 = OpIdx2; 1091 FoundBest = true; 1092 } 1093 } 1094 if (FoundBest) { 1095 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1096 Op2Used.insert(MaxOpIdx2); 1097 ShallowScoreAtThisLevel += MaxTmpScore; 1098 } 1099 } 1100 return ShallowScoreAtThisLevel; 1101 } 1102 1103 /// \Returns the look-ahead score, which tells us how much the sub-trees 1104 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1105 /// score. This helps break ties in an informed way when we cannot decide on 1106 /// the order of the operands by just considering the immediate 1107 /// predecessors. 1108 int getLookAheadScore(const std::pair<Value *, int> &LHS, 1109 const std::pair<Value *, int> &RHS) { 1110 InLookAheadValues.clear(); 1111 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); 1112 } 1113 1114 // Search all operands in Ops[*][Lane] for the one that matches best 1115 // Ops[OpIdx][LastLane] and return its opreand index. 1116 // If no good match can be found, return None. 1117 Optional<unsigned> 1118 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1119 ArrayRef<ReorderingMode> ReorderingModes) { 1120 unsigned NumOperands = getNumOperands(); 1121 1122 // The operand of the previous lane at OpIdx. 1123 Value *OpLastLane = getData(OpIdx, LastLane).V; 1124 1125 // Our strategy mode for OpIdx. 1126 ReorderingMode RMode = ReorderingModes[OpIdx]; 1127 1128 // The linearized opcode of the operand at OpIdx, Lane. 1129 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1130 1131 // The best operand index and its score. 1132 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1133 // are using the score to differentiate between the two. 1134 struct BestOpData { 1135 Optional<unsigned> Idx = None; 1136 unsigned Score = 0; 1137 } BestOp; 1138 1139 // Iterate through all unused operands and look for the best. 1140 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1141 // Get the operand at Idx and Lane. 1142 OperandData &OpData = getData(Idx, Lane); 1143 Value *Op = OpData.V; 1144 bool OpAPO = OpData.APO; 1145 1146 // Skip already selected operands. 1147 if (OpData.IsUsed) 1148 continue; 1149 1150 // Skip if we are trying to move the operand to a position with a 1151 // different opcode in the linearized tree form. This would break the 1152 // semantics. 1153 if (OpAPO != OpIdxAPO) 1154 continue; 1155 1156 // Look for an operand that matches the current mode. 1157 switch (RMode) { 1158 case ReorderingMode::Load: 1159 case ReorderingMode::Constant: 1160 case ReorderingMode::Opcode: { 1161 bool LeftToRight = Lane > LastLane; 1162 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1163 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1164 unsigned Score = 1165 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); 1166 if (Score > BestOp.Score) { 1167 BestOp.Idx = Idx; 1168 BestOp.Score = Score; 1169 } 1170 break; 1171 } 1172 case ReorderingMode::Splat: 1173 if (Op == OpLastLane) 1174 BestOp.Idx = Idx; 1175 break; 1176 case ReorderingMode::Failed: 1177 return None; 1178 } 1179 } 1180 1181 if (BestOp.Idx) { 1182 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 1183 return BestOp.Idx; 1184 } 1185 // If we could not find a good match return None. 1186 return None; 1187 } 1188 1189 /// Helper for reorderOperandVecs. \Returns the lane that we should start 1190 /// reordering from. This is the one which has the least number of operands 1191 /// that can freely move about. 1192 unsigned getBestLaneToStartReordering() const { 1193 unsigned BestLane = 0; 1194 unsigned Min = UINT_MAX; 1195 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1196 ++Lane) { 1197 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 1198 if (NumFreeOps < Min) { 1199 Min = NumFreeOps; 1200 BestLane = Lane; 1201 } 1202 } 1203 return BestLane; 1204 } 1205 1206 /// \Returns the maximum number of operands that are allowed to be reordered 1207 /// for \p Lane. This is used as a heuristic for selecting the first lane to 1208 /// start operand reordering. 1209 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1210 unsigned CntTrue = 0; 1211 unsigned NumOperands = getNumOperands(); 1212 // Operands with the same APO can be reordered. We therefore need to count 1213 // how many of them we have for each APO, like this: Cnt[APO] = x. 1214 // Since we only have two APOs, namely true and false, we can avoid using 1215 // a map. Instead we can simply count the number of operands that 1216 // correspond to one of them (in this case the 'true' APO), and calculate 1217 // the other by subtracting it from the total number of operands. 1218 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 1219 if (getData(OpIdx, Lane).APO) 1220 ++CntTrue; 1221 unsigned CntFalse = NumOperands - CntTrue; 1222 return std::max(CntTrue, CntFalse); 1223 } 1224 1225 /// Go through the instructions in VL and append their operands. 1226 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1227 assert(!VL.empty() && "Bad VL"); 1228 assert((empty() || VL.size() == getNumLanes()) && 1229 "Expected same number of lanes"); 1230 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1231 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1232 OpsVec.resize(NumOperands); 1233 unsigned NumLanes = VL.size(); 1234 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1235 OpsVec[OpIdx].resize(NumLanes); 1236 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1237 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1238 // Our tree has just 3 nodes: the root and two operands. 1239 // It is therefore trivial to get the APO. We only need to check the 1240 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1241 // RHS operand. The LHS operand of both add and sub is never attached 1242 // to an inversese operation in the linearized form, therefore its APO 1243 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1244 1245 // Since operand reordering is performed on groups of commutative 1246 // operations or alternating sequences (e.g., +, -), we can safely 1247 // tell the inverse operations by checking commutativity. 1248 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1249 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1250 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1251 APO, false}; 1252 } 1253 } 1254 } 1255 1256 /// \returns the number of operands. 1257 unsigned getNumOperands() const { return OpsVec.size(); } 1258 1259 /// \returns the number of lanes. 1260 unsigned getNumLanes() const { return OpsVec[0].size(); } 1261 1262 /// \returns the operand value at \p OpIdx and \p Lane. 1263 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1264 return getData(OpIdx, Lane).V; 1265 } 1266 1267 /// \returns true if the data structure is empty. 1268 bool empty() const { return OpsVec.empty(); } 1269 1270 /// Clears the data. 1271 void clear() { OpsVec.clear(); } 1272 1273 /// \Returns true if there are enough operands identical to \p Op to fill 1274 /// the whole vector. 1275 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1276 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1277 bool OpAPO = getData(OpIdx, Lane).APO; 1278 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1279 if (Ln == Lane) 1280 continue; 1281 // This is set to true if we found a candidate for broadcast at Lane. 1282 bool FoundCandidate = false; 1283 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1284 OperandData &Data = getData(OpI, Ln); 1285 if (Data.APO != OpAPO || Data.IsUsed) 1286 continue; 1287 if (Data.V == Op) { 1288 FoundCandidate = true; 1289 Data.IsUsed = true; 1290 break; 1291 } 1292 } 1293 if (!FoundCandidate) 1294 return false; 1295 } 1296 return true; 1297 } 1298 1299 public: 1300 /// Initialize with all the operands of the instruction vector \p RootVL. 1301 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1302 ScalarEvolution &SE, const BoUpSLP &R) 1303 : DL(DL), SE(SE), R(R) { 1304 // Append all the operands of RootVL. 1305 appendOperandsOfVL(RootVL); 1306 } 1307 1308 /// \Returns a value vector with the operands across all lanes for the 1309 /// opearnd at \p OpIdx. 1310 ValueList getVL(unsigned OpIdx) const { 1311 ValueList OpVL(OpsVec[OpIdx].size()); 1312 assert(OpsVec[OpIdx].size() == getNumLanes() && 1313 "Expected same num of lanes across all operands"); 1314 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1315 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1316 return OpVL; 1317 } 1318 1319 // Performs operand reordering for 2 or more operands. 1320 // The original operands are in OrigOps[OpIdx][Lane]. 1321 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1322 void reorder() { 1323 unsigned NumOperands = getNumOperands(); 1324 unsigned NumLanes = getNumLanes(); 1325 // Each operand has its own mode. We are using this mode to help us select 1326 // the instructions for each lane, so that they match best with the ones 1327 // we have selected so far. 1328 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1329 1330 // This is a greedy single-pass algorithm. We are going over each lane 1331 // once and deciding on the best order right away with no back-tracking. 1332 // However, in order to increase its effectiveness, we start with the lane 1333 // that has operands that can move the least. For example, given the 1334 // following lanes: 1335 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1336 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1337 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1338 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1339 // we will start at Lane 1, since the operands of the subtraction cannot 1340 // be reordered. Then we will visit the rest of the lanes in a circular 1341 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1342 1343 // Find the first lane that we will start our search from. 1344 unsigned FirstLane = getBestLaneToStartReordering(); 1345 1346 // Initialize the modes. 1347 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1348 Value *OpLane0 = getValue(OpIdx, FirstLane); 1349 // Keep track if we have instructions with all the same opcode on one 1350 // side. 1351 if (isa<LoadInst>(OpLane0)) 1352 ReorderingModes[OpIdx] = ReorderingMode::Load; 1353 else if (isa<Instruction>(OpLane0)) { 1354 // Check if OpLane0 should be broadcast. 1355 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1356 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1357 else 1358 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1359 } 1360 else if (isa<Constant>(OpLane0)) 1361 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1362 else if (isa<Argument>(OpLane0)) 1363 // Our best hope is a Splat. It may save some cost in some cases. 1364 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1365 else 1366 // NOTE: This should be unreachable. 1367 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1368 } 1369 1370 // If the initial strategy fails for any of the operand indexes, then we 1371 // perform reordering again in a second pass. This helps avoid assigning 1372 // high priority to the failed strategy, and should improve reordering for 1373 // the non-failed operand indexes. 1374 for (int Pass = 0; Pass != 2; ++Pass) { 1375 // Skip the second pass if the first pass did not fail. 1376 bool StrategyFailed = false; 1377 // Mark all operand data as free to use. 1378 clearUsed(); 1379 // We keep the original operand order for the FirstLane, so reorder the 1380 // rest of the lanes. We are visiting the nodes in a circular fashion, 1381 // using FirstLane as the center point and increasing the radius 1382 // distance. 1383 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1384 // Visit the lane on the right and then the lane on the left. 1385 for (int Direction : {+1, -1}) { 1386 int Lane = FirstLane + Direction * Distance; 1387 if (Lane < 0 || Lane >= (int)NumLanes) 1388 continue; 1389 int LastLane = Lane - Direction; 1390 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1391 "Out of bounds"); 1392 // Look for a good match for each operand. 1393 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1394 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1395 Optional<unsigned> BestIdx = 1396 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1397 // By not selecting a value, we allow the operands that follow to 1398 // select a better matching value. We will get a non-null value in 1399 // the next run of getBestOperand(). 1400 if (BestIdx) { 1401 // Swap the current operand with the one returned by 1402 // getBestOperand(). 1403 swap(OpIdx, BestIdx.getValue(), Lane); 1404 } else { 1405 // We failed to find a best operand, set mode to 'Failed'. 1406 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1407 // Enable the second pass. 1408 StrategyFailed = true; 1409 } 1410 } 1411 } 1412 } 1413 // Skip second pass if the strategy did not fail. 1414 if (!StrategyFailed) 1415 break; 1416 } 1417 } 1418 1419 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1420 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1421 switch (RMode) { 1422 case ReorderingMode::Load: 1423 return "Load"; 1424 case ReorderingMode::Opcode: 1425 return "Opcode"; 1426 case ReorderingMode::Constant: 1427 return "Constant"; 1428 case ReorderingMode::Splat: 1429 return "Splat"; 1430 case ReorderingMode::Failed: 1431 return "Failed"; 1432 } 1433 llvm_unreachable("Unimplemented Reordering Type"); 1434 } 1435 1436 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1437 raw_ostream &OS) { 1438 return OS << getModeStr(RMode); 1439 } 1440 1441 /// Debug print. 1442 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1443 printMode(RMode, dbgs()); 1444 } 1445 1446 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1447 return printMode(RMode, OS); 1448 } 1449 1450 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1451 const unsigned Indent = 2; 1452 unsigned Cnt = 0; 1453 for (const OperandDataVec &OpDataVec : OpsVec) { 1454 OS << "Operand " << Cnt++ << "\n"; 1455 for (const OperandData &OpData : OpDataVec) { 1456 OS.indent(Indent) << "{"; 1457 if (Value *V = OpData.V) 1458 OS << *V; 1459 else 1460 OS << "null"; 1461 OS << ", APO:" << OpData.APO << "}\n"; 1462 } 1463 OS << "\n"; 1464 } 1465 return OS; 1466 } 1467 1468 /// Debug print. 1469 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1470 #endif 1471 }; 1472 1473 /// Checks if the instruction is marked for deletion. 1474 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1475 1476 /// Marks values operands for later deletion by replacing them with Undefs. 1477 void eraseInstructions(ArrayRef<Value *> AV); 1478 1479 ~BoUpSLP(); 1480 1481 private: 1482 /// Checks if all users of \p I are the part of the vectorization tree. 1483 bool areAllUsersVectorized(Instruction *I) const; 1484 1485 /// \returns the cost of the vectorizable entry. 1486 int getEntryCost(TreeEntry *E); 1487 1488 /// This is the recursive part of buildTree. 1489 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1490 const EdgeInfo &EI); 1491 1492 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1493 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1494 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1495 /// returns false, setting \p CurrentOrder to either an empty vector or a 1496 /// non-identity permutation that allows to reuse extract instructions. 1497 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1498 SmallVectorImpl<unsigned> &CurrentOrder) const; 1499 1500 /// Vectorize a single entry in the tree. 1501 Value *vectorizeTree(TreeEntry *E); 1502 1503 /// Vectorize a single entry in the tree, starting in \p VL. 1504 Value *vectorizeTree(ArrayRef<Value *> VL); 1505 1506 /// \returns the scalarization cost for this type. Scalarization in this 1507 /// context means the creation of vectors from a group of scalars. 1508 int getGatherCost(FixedVectorType *Ty, 1509 const DenseSet<unsigned> &ShuffledIndices) const; 1510 1511 /// \returns the scalarization cost for this list of values. Assuming that 1512 /// this subtree gets vectorized, we may need to extract the values from the 1513 /// roots. This method calculates the cost of extracting the values. 1514 int getGatherCost(ArrayRef<Value *> VL) const; 1515 1516 /// Set the Builder insert point to one after the last instruction in 1517 /// the bundle 1518 void setInsertPointAfterBundle(TreeEntry *E); 1519 1520 /// \returns a vector from a collection of scalars in \p VL. 1521 Value *gather(ArrayRef<Value *> VL); 1522 1523 /// \returns whether the VectorizableTree is fully vectorizable and will 1524 /// be beneficial even the tree height is tiny. 1525 bool isFullyVectorizableTinyTree() const; 1526 1527 /// Reorder commutative or alt operands to get better probability of 1528 /// generating vectorized code. 1529 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1530 SmallVectorImpl<Value *> &Left, 1531 SmallVectorImpl<Value *> &Right, 1532 const DataLayout &DL, 1533 ScalarEvolution &SE, 1534 const BoUpSLP &R); 1535 struct TreeEntry { 1536 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1537 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1538 1539 /// \returns true if the scalars in VL are equal to this entry. 1540 bool isSame(ArrayRef<Value *> VL) const { 1541 if (VL.size() == Scalars.size()) 1542 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1543 return VL.size() == ReuseShuffleIndices.size() && 1544 std::equal( 1545 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 1546 [this](Value *V, int Idx) { return V == Scalars[Idx]; }); 1547 } 1548 1549 /// A vector of scalars. 1550 ValueList Scalars; 1551 1552 /// The Scalars are vectorized into this value. It is initialized to Null. 1553 Value *VectorizedValue = nullptr; 1554 1555 /// Do we need to gather this sequence or vectorize it 1556 /// (either with vector instruction or with scatter/gather 1557 /// intrinsics for store/load)? 1558 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 1559 EntryState State; 1560 1561 /// Does this sequence require some shuffling? 1562 SmallVector<int, 4> ReuseShuffleIndices; 1563 1564 /// Does this entry require reordering? 1565 SmallVector<unsigned, 4> ReorderIndices; 1566 1567 /// Points back to the VectorizableTree. 1568 /// 1569 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1570 /// to be a pointer and needs to be able to initialize the child iterator. 1571 /// Thus we need a reference back to the container to translate the indices 1572 /// to entries. 1573 VecTreeTy &Container; 1574 1575 /// The TreeEntry index containing the user of this entry. We can actually 1576 /// have multiple users so the data structure is not truly a tree. 1577 SmallVector<EdgeInfo, 1> UserTreeIndices; 1578 1579 /// The index of this treeEntry in VectorizableTree. 1580 int Idx = -1; 1581 1582 private: 1583 /// The operands of each instruction in each lane Operands[op_index][lane]. 1584 /// Note: This helps avoid the replication of the code that performs the 1585 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1586 SmallVector<ValueList, 2> Operands; 1587 1588 /// The main/alternate instruction. 1589 Instruction *MainOp = nullptr; 1590 Instruction *AltOp = nullptr; 1591 1592 public: 1593 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1594 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1595 if (Operands.size() < OpIdx + 1) 1596 Operands.resize(OpIdx + 1); 1597 assert(Operands[OpIdx].size() == 0 && "Already resized?"); 1598 Operands[OpIdx].resize(Scalars.size()); 1599 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1600 Operands[OpIdx][Lane] = OpVL[Lane]; 1601 } 1602 1603 /// Set the operands of this bundle in their original order. 1604 void setOperandsInOrder() { 1605 assert(Operands.empty() && "Already initialized?"); 1606 auto *I0 = cast<Instruction>(Scalars[0]); 1607 Operands.resize(I0->getNumOperands()); 1608 unsigned NumLanes = Scalars.size(); 1609 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1610 OpIdx != NumOperands; ++OpIdx) { 1611 Operands[OpIdx].resize(NumLanes); 1612 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1613 auto *I = cast<Instruction>(Scalars[Lane]); 1614 assert(I->getNumOperands() == NumOperands && 1615 "Expected same number of operands"); 1616 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1617 } 1618 } 1619 } 1620 1621 /// \returns the \p OpIdx operand of this TreeEntry. 1622 ValueList &getOperand(unsigned OpIdx) { 1623 assert(OpIdx < Operands.size() && "Off bounds"); 1624 return Operands[OpIdx]; 1625 } 1626 1627 /// \returns the number of operands. 1628 unsigned getNumOperands() const { return Operands.size(); } 1629 1630 /// \return the single \p OpIdx operand. 1631 Value *getSingleOperand(unsigned OpIdx) const { 1632 assert(OpIdx < Operands.size() && "Off bounds"); 1633 assert(!Operands[OpIdx].empty() && "No operand available"); 1634 return Operands[OpIdx][0]; 1635 } 1636 1637 /// Some of the instructions in the list have alternate opcodes. 1638 bool isAltShuffle() const { 1639 return getOpcode() != getAltOpcode(); 1640 } 1641 1642 bool isOpcodeOrAlt(Instruction *I) const { 1643 unsigned CheckedOpcode = I->getOpcode(); 1644 return (getOpcode() == CheckedOpcode || 1645 getAltOpcode() == CheckedOpcode); 1646 } 1647 1648 /// Chooses the correct key for scheduling data. If \p Op has the same (or 1649 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 1650 /// \p OpValue. 1651 Value *isOneOf(Value *Op) const { 1652 auto *I = dyn_cast<Instruction>(Op); 1653 if (I && isOpcodeOrAlt(I)) 1654 return Op; 1655 return MainOp; 1656 } 1657 1658 void setOperations(const InstructionsState &S) { 1659 MainOp = S.MainOp; 1660 AltOp = S.AltOp; 1661 } 1662 1663 Instruction *getMainOp() const { 1664 return MainOp; 1665 } 1666 1667 Instruction *getAltOp() const { 1668 return AltOp; 1669 } 1670 1671 /// The main/alternate opcodes for the list of instructions. 1672 unsigned getOpcode() const { 1673 return MainOp ? MainOp->getOpcode() : 0; 1674 } 1675 1676 unsigned getAltOpcode() const { 1677 return AltOp ? AltOp->getOpcode() : 0; 1678 } 1679 1680 /// Update operations state of this entry if reorder occurred. 1681 bool updateStateIfReorder() { 1682 if (ReorderIndices.empty()) 1683 return false; 1684 InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front()); 1685 setOperations(S); 1686 return true; 1687 } 1688 1689 #ifndef NDEBUG 1690 /// Debug printer. 1691 LLVM_DUMP_METHOD void dump() const { 1692 dbgs() << Idx << ".\n"; 1693 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1694 dbgs() << "Operand " << OpI << ":\n"; 1695 for (const Value *V : Operands[OpI]) 1696 dbgs().indent(2) << *V << "\n"; 1697 } 1698 dbgs() << "Scalars: \n"; 1699 for (Value *V : Scalars) 1700 dbgs().indent(2) << *V << "\n"; 1701 dbgs() << "State: "; 1702 switch (State) { 1703 case Vectorize: 1704 dbgs() << "Vectorize\n"; 1705 break; 1706 case ScatterVectorize: 1707 dbgs() << "ScatterVectorize\n"; 1708 break; 1709 case NeedToGather: 1710 dbgs() << "NeedToGather\n"; 1711 break; 1712 } 1713 dbgs() << "MainOp: "; 1714 if (MainOp) 1715 dbgs() << *MainOp << "\n"; 1716 else 1717 dbgs() << "NULL\n"; 1718 dbgs() << "AltOp: "; 1719 if (AltOp) 1720 dbgs() << *AltOp << "\n"; 1721 else 1722 dbgs() << "NULL\n"; 1723 dbgs() << "VectorizedValue: "; 1724 if (VectorizedValue) 1725 dbgs() << *VectorizedValue << "\n"; 1726 else 1727 dbgs() << "NULL\n"; 1728 dbgs() << "ReuseShuffleIndices: "; 1729 if (ReuseShuffleIndices.empty()) 1730 dbgs() << "Empty"; 1731 else 1732 for (unsigned ReuseIdx : ReuseShuffleIndices) 1733 dbgs() << ReuseIdx << ", "; 1734 dbgs() << "\n"; 1735 dbgs() << "ReorderIndices: "; 1736 for (unsigned ReorderIdx : ReorderIndices) 1737 dbgs() << ReorderIdx << ", "; 1738 dbgs() << "\n"; 1739 dbgs() << "UserTreeIndices: "; 1740 for (const auto &EInfo : UserTreeIndices) 1741 dbgs() << EInfo << ", "; 1742 dbgs() << "\n"; 1743 } 1744 #endif 1745 }; 1746 1747 #ifndef NDEBUG 1748 void dumpTreeCosts(TreeEntry *E, int ReuseShuffleCost, int VecCost, 1749 int ScalarCost) const { 1750 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 1751 dbgs() << "SLP: Costs:\n"; 1752 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 1753 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 1754 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 1755 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 1756 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 1757 } 1758 #endif 1759 1760 /// Create a new VectorizableTree entry. 1761 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 1762 const InstructionsState &S, 1763 const EdgeInfo &UserTreeIdx, 1764 ArrayRef<unsigned> ReuseShuffleIndices = None, 1765 ArrayRef<unsigned> ReorderIndices = None) { 1766 TreeEntry::EntryState EntryState = 1767 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 1768 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 1769 ReuseShuffleIndices, ReorderIndices); 1770 } 1771 1772 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 1773 TreeEntry::EntryState EntryState, 1774 Optional<ScheduleData *> Bundle, 1775 const InstructionsState &S, 1776 const EdgeInfo &UserTreeIdx, 1777 ArrayRef<unsigned> ReuseShuffleIndices = None, 1778 ArrayRef<unsigned> ReorderIndices = None) { 1779 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 1780 (Bundle && EntryState != TreeEntry::NeedToGather)) && 1781 "Need to vectorize gather entry?"); 1782 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 1783 TreeEntry *Last = VectorizableTree.back().get(); 1784 Last->Idx = VectorizableTree.size() - 1; 1785 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 1786 Last->State = EntryState; 1787 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1788 ReuseShuffleIndices.end()); 1789 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 1790 Last->setOperations(S); 1791 if (Last->State != TreeEntry::NeedToGather) { 1792 for (Value *V : VL) { 1793 assert(!getTreeEntry(V) && "Scalar already in tree!"); 1794 ScalarToTreeEntry[V] = Last; 1795 } 1796 // Update the scheduler bundle to point to this TreeEntry. 1797 unsigned Lane = 0; 1798 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 1799 BundleMember = BundleMember->NextInBundle) { 1800 BundleMember->TE = Last; 1801 BundleMember->Lane = Lane; 1802 ++Lane; 1803 } 1804 assert((!Bundle.getValue() || Lane == VL.size()) && 1805 "Bundle and VL out of sync"); 1806 } else { 1807 MustGather.insert(VL.begin(), VL.end()); 1808 } 1809 1810 if (UserTreeIdx.UserTE) 1811 Last->UserTreeIndices.push_back(UserTreeIdx); 1812 1813 return Last; 1814 } 1815 1816 /// -- Vectorization State -- 1817 /// Holds all of the tree entries. 1818 TreeEntry::VecTreeTy VectorizableTree; 1819 1820 #ifndef NDEBUG 1821 /// Debug printer. 1822 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 1823 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 1824 VectorizableTree[Id]->dump(); 1825 dbgs() << "\n"; 1826 } 1827 } 1828 #endif 1829 1830 TreeEntry *getTreeEntry(Value *V) { 1831 auto I = ScalarToTreeEntry.find(V); 1832 if (I != ScalarToTreeEntry.end()) 1833 return I->second; 1834 return nullptr; 1835 } 1836 1837 const TreeEntry *getTreeEntry(Value *V) const { 1838 auto I = ScalarToTreeEntry.find(V); 1839 if (I != ScalarToTreeEntry.end()) 1840 return I->second; 1841 return nullptr; 1842 } 1843 1844 /// Maps a specific scalar to its tree entry. 1845 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 1846 1847 /// Maps a value to the proposed vectorizable size. 1848 SmallDenseMap<Value *, unsigned> InstrElementSize; 1849 1850 /// A list of scalars that we found that we need to keep as scalars. 1851 ValueSet MustGather; 1852 1853 /// This POD struct describes one external user in the vectorized tree. 1854 struct ExternalUser { 1855 ExternalUser(Value *S, llvm::User *U, int L) 1856 : Scalar(S), User(U), Lane(L) {} 1857 1858 // Which scalar in our function. 1859 Value *Scalar; 1860 1861 // Which user that uses the scalar. 1862 llvm::User *User; 1863 1864 // Which lane does the scalar belong to. 1865 int Lane; 1866 }; 1867 using UserList = SmallVector<ExternalUser, 16>; 1868 1869 /// Checks if two instructions may access the same memory. 1870 /// 1871 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 1872 /// is invariant in the calling loop. 1873 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 1874 Instruction *Inst2) { 1875 // First check if the result is already in the cache. 1876 AliasCacheKey key = std::make_pair(Inst1, Inst2); 1877 Optional<bool> &result = AliasCache[key]; 1878 if (result.hasValue()) { 1879 return result.getValue(); 1880 } 1881 MemoryLocation Loc2 = getLocation(Inst2, AA); 1882 bool aliased = true; 1883 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 1884 // Do the alias check. 1885 aliased = AA->alias(Loc1, Loc2); 1886 } 1887 // Store the result in the cache. 1888 result = aliased; 1889 return aliased; 1890 } 1891 1892 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 1893 1894 /// Cache for alias results. 1895 /// TODO: consider moving this to the AliasAnalysis itself. 1896 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 1897 1898 /// Removes an instruction from its block and eventually deletes it. 1899 /// It's like Instruction::eraseFromParent() except that the actual deletion 1900 /// is delayed until BoUpSLP is destructed. 1901 /// This is required to ensure that there are no incorrect collisions in the 1902 /// AliasCache, which can happen if a new instruction is allocated at the 1903 /// same address as a previously deleted instruction. 1904 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 1905 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 1906 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 1907 } 1908 1909 /// Temporary store for deleted instructions. Instructions will be deleted 1910 /// eventually when the BoUpSLP is destructed. 1911 DenseMap<Instruction *, bool> DeletedInstructions; 1912 1913 /// A list of values that need to extracted out of the tree. 1914 /// This list holds pairs of (Internal Scalar : External User). External User 1915 /// can be nullptr, it means that this Internal Scalar will be used later, 1916 /// after vectorization. 1917 UserList ExternalUses; 1918 1919 /// Values used only by @llvm.assume calls. 1920 SmallPtrSet<const Value *, 32> EphValues; 1921 1922 /// Holds all of the instructions that we gathered. 1923 SetVector<Instruction *> GatherSeq; 1924 1925 /// A list of blocks that we are going to CSE. 1926 SetVector<BasicBlock *> CSEBlocks; 1927 1928 /// Contains all scheduling relevant data for an instruction. 1929 /// A ScheduleData either represents a single instruction or a member of an 1930 /// instruction bundle (= a group of instructions which is combined into a 1931 /// vector instruction). 1932 struct ScheduleData { 1933 // The initial value for the dependency counters. It means that the 1934 // dependencies are not calculated yet. 1935 enum { InvalidDeps = -1 }; 1936 1937 ScheduleData() = default; 1938 1939 void init(int BlockSchedulingRegionID, Value *OpVal) { 1940 FirstInBundle = this; 1941 NextInBundle = nullptr; 1942 NextLoadStore = nullptr; 1943 IsScheduled = false; 1944 SchedulingRegionID = BlockSchedulingRegionID; 1945 UnscheduledDepsInBundle = UnscheduledDeps; 1946 clearDependencies(); 1947 OpValue = OpVal; 1948 TE = nullptr; 1949 Lane = -1; 1950 } 1951 1952 /// Returns true if the dependency information has been calculated. 1953 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 1954 1955 /// Returns true for single instructions and for bundle representatives 1956 /// (= the head of a bundle). 1957 bool isSchedulingEntity() const { return FirstInBundle == this; } 1958 1959 /// Returns true if it represents an instruction bundle and not only a 1960 /// single instruction. 1961 bool isPartOfBundle() const { 1962 return NextInBundle != nullptr || FirstInBundle != this; 1963 } 1964 1965 /// Returns true if it is ready for scheduling, i.e. it has no more 1966 /// unscheduled depending instructions/bundles. 1967 bool isReady() const { 1968 assert(isSchedulingEntity() && 1969 "can't consider non-scheduling entity for ready list"); 1970 return UnscheduledDepsInBundle == 0 && !IsScheduled; 1971 } 1972 1973 /// Modifies the number of unscheduled dependencies, also updating it for 1974 /// the whole bundle. 1975 int incrementUnscheduledDeps(int Incr) { 1976 UnscheduledDeps += Incr; 1977 return FirstInBundle->UnscheduledDepsInBundle += Incr; 1978 } 1979 1980 /// Sets the number of unscheduled dependencies to the number of 1981 /// dependencies. 1982 void resetUnscheduledDeps() { 1983 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 1984 } 1985 1986 /// Clears all dependency information. 1987 void clearDependencies() { 1988 Dependencies = InvalidDeps; 1989 resetUnscheduledDeps(); 1990 MemoryDependencies.clear(); 1991 } 1992 1993 void dump(raw_ostream &os) const { 1994 if (!isSchedulingEntity()) { 1995 os << "/ " << *Inst; 1996 } else if (NextInBundle) { 1997 os << '[' << *Inst; 1998 ScheduleData *SD = NextInBundle; 1999 while (SD) { 2000 os << ';' << *SD->Inst; 2001 SD = SD->NextInBundle; 2002 } 2003 os << ']'; 2004 } else { 2005 os << *Inst; 2006 } 2007 } 2008 2009 Instruction *Inst = nullptr; 2010 2011 /// Points to the head in an instruction bundle (and always to this for 2012 /// single instructions). 2013 ScheduleData *FirstInBundle = nullptr; 2014 2015 /// Single linked list of all instructions in a bundle. Null if it is a 2016 /// single instruction. 2017 ScheduleData *NextInBundle = nullptr; 2018 2019 /// Single linked list of all memory instructions (e.g. load, store, call) 2020 /// in the block - until the end of the scheduling region. 2021 ScheduleData *NextLoadStore = nullptr; 2022 2023 /// The dependent memory instructions. 2024 /// This list is derived on demand in calculateDependencies(). 2025 SmallVector<ScheduleData *, 4> MemoryDependencies; 2026 2027 /// This ScheduleData is in the current scheduling region if this matches 2028 /// the current SchedulingRegionID of BlockScheduling. 2029 int SchedulingRegionID = 0; 2030 2031 /// Used for getting a "good" final ordering of instructions. 2032 int SchedulingPriority = 0; 2033 2034 /// The number of dependencies. Constitutes of the number of users of the 2035 /// instruction plus the number of dependent memory instructions (if any). 2036 /// This value is calculated on demand. 2037 /// If InvalidDeps, the number of dependencies is not calculated yet. 2038 int Dependencies = InvalidDeps; 2039 2040 /// The number of dependencies minus the number of dependencies of scheduled 2041 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2042 /// for scheduling. 2043 /// Note that this is negative as long as Dependencies is not calculated. 2044 int UnscheduledDeps = InvalidDeps; 2045 2046 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 2047 /// single instructions. 2048 int UnscheduledDepsInBundle = InvalidDeps; 2049 2050 /// True if this instruction is scheduled (or considered as scheduled in the 2051 /// dry-run). 2052 bool IsScheduled = false; 2053 2054 /// Opcode of the current instruction in the schedule data. 2055 Value *OpValue = nullptr; 2056 2057 /// The TreeEntry that this instruction corresponds to. 2058 TreeEntry *TE = nullptr; 2059 2060 /// The lane of this node in the TreeEntry. 2061 int Lane = -1; 2062 }; 2063 2064 #ifndef NDEBUG 2065 friend inline raw_ostream &operator<<(raw_ostream &os, 2066 const BoUpSLP::ScheduleData &SD) { 2067 SD.dump(os); 2068 return os; 2069 } 2070 #endif 2071 2072 friend struct GraphTraits<BoUpSLP *>; 2073 friend struct DOTGraphTraits<BoUpSLP *>; 2074 2075 /// Contains all scheduling data for a basic block. 2076 struct BlockScheduling { 2077 BlockScheduling(BasicBlock *BB) 2078 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2079 2080 void clear() { 2081 ReadyInsts.clear(); 2082 ScheduleStart = nullptr; 2083 ScheduleEnd = nullptr; 2084 FirstLoadStoreInRegion = nullptr; 2085 LastLoadStoreInRegion = nullptr; 2086 2087 // Reduce the maximum schedule region size by the size of the 2088 // previous scheduling run. 2089 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2090 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2091 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2092 ScheduleRegionSize = 0; 2093 2094 // Make a new scheduling region, i.e. all existing ScheduleData is not 2095 // in the new region yet. 2096 ++SchedulingRegionID; 2097 } 2098 2099 ScheduleData *getScheduleData(Value *V) { 2100 ScheduleData *SD = ScheduleDataMap[V]; 2101 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2102 return SD; 2103 return nullptr; 2104 } 2105 2106 ScheduleData *getScheduleData(Value *V, Value *Key) { 2107 if (V == Key) 2108 return getScheduleData(V); 2109 auto I = ExtraScheduleDataMap.find(V); 2110 if (I != ExtraScheduleDataMap.end()) { 2111 ScheduleData *SD = I->second[Key]; 2112 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2113 return SD; 2114 } 2115 return nullptr; 2116 } 2117 2118 bool isInSchedulingRegion(ScheduleData *SD) const { 2119 return SD->SchedulingRegionID == SchedulingRegionID; 2120 } 2121 2122 /// Marks an instruction as scheduled and puts all dependent ready 2123 /// instructions into the ready-list. 2124 template <typename ReadyListType> 2125 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2126 SD->IsScheduled = true; 2127 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2128 2129 ScheduleData *BundleMember = SD; 2130 while (BundleMember) { 2131 if (BundleMember->Inst != BundleMember->OpValue) { 2132 BundleMember = BundleMember->NextInBundle; 2133 continue; 2134 } 2135 // Handle the def-use chain dependencies. 2136 2137 // Decrement the unscheduled counter and insert to ready list if ready. 2138 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2139 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2140 if (OpDef && OpDef->hasValidDependencies() && 2141 OpDef->incrementUnscheduledDeps(-1) == 0) { 2142 // There are no more unscheduled dependencies after 2143 // decrementing, so we can put the dependent instruction 2144 // into the ready list. 2145 ScheduleData *DepBundle = OpDef->FirstInBundle; 2146 assert(!DepBundle->IsScheduled && 2147 "already scheduled bundle gets ready"); 2148 ReadyList.insert(DepBundle); 2149 LLVM_DEBUG(dbgs() 2150 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2151 } 2152 }); 2153 }; 2154 2155 // If BundleMember is a vector bundle, its operands may have been 2156 // reordered duiring buildTree(). We therefore need to get its operands 2157 // through the TreeEntry. 2158 if (TreeEntry *TE = BundleMember->TE) { 2159 int Lane = BundleMember->Lane; 2160 assert(Lane >= 0 && "Lane not set"); 2161 2162 // Since vectorization tree is being built recursively this assertion 2163 // ensures that the tree entry has all operands set before reaching 2164 // this code. Couple of exceptions known at the moment are extracts 2165 // where their second (immediate) operand is not added. Since 2166 // immediates do not affect scheduler behavior this is considered 2167 // okay. 2168 auto *In = TE->getMainOp(); 2169 assert(In && 2170 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2171 In->getNumOperands() == TE->getNumOperands()) && 2172 "Missed TreeEntry operands?"); 2173 (void)In; // fake use to avoid build failure when assertions disabled 2174 2175 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2176 OpIdx != NumOperands; ++OpIdx) 2177 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2178 DecrUnsched(I); 2179 } else { 2180 // If BundleMember is a stand-alone instruction, no operand reordering 2181 // has taken place, so we directly access its operands. 2182 for (Use &U : BundleMember->Inst->operands()) 2183 if (auto *I = dyn_cast<Instruction>(U.get())) 2184 DecrUnsched(I); 2185 } 2186 // Handle the memory dependencies. 2187 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2188 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2189 // There are no more unscheduled dependencies after decrementing, 2190 // so we can put the dependent instruction into the ready list. 2191 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2192 assert(!DepBundle->IsScheduled && 2193 "already scheduled bundle gets ready"); 2194 ReadyList.insert(DepBundle); 2195 LLVM_DEBUG(dbgs() 2196 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2197 } 2198 } 2199 BundleMember = BundleMember->NextInBundle; 2200 } 2201 } 2202 2203 void doForAllOpcodes(Value *V, 2204 function_ref<void(ScheduleData *SD)> Action) { 2205 if (ScheduleData *SD = getScheduleData(V)) 2206 Action(SD); 2207 auto I = ExtraScheduleDataMap.find(V); 2208 if (I != ExtraScheduleDataMap.end()) 2209 for (auto &P : I->second) 2210 if (P.second->SchedulingRegionID == SchedulingRegionID) 2211 Action(P.second); 2212 } 2213 2214 /// Put all instructions into the ReadyList which are ready for scheduling. 2215 template <typename ReadyListType> 2216 void initialFillReadyList(ReadyListType &ReadyList) { 2217 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2218 doForAllOpcodes(I, [&](ScheduleData *SD) { 2219 if (SD->isSchedulingEntity() && SD->isReady()) { 2220 ReadyList.insert(SD); 2221 LLVM_DEBUG(dbgs() 2222 << "SLP: initially in ready list: " << *I << "\n"); 2223 } 2224 }); 2225 } 2226 } 2227 2228 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2229 /// cyclic dependencies. This is only a dry-run, no instructions are 2230 /// actually moved at this stage. 2231 /// \returns the scheduling bundle. The returned Optional value is non-None 2232 /// if \p VL is allowed to be scheduled. 2233 Optional<ScheduleData *> 2234 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2235 const InstructionsState &S); 2236 2237 /// Un-bundles a group of instructions. 2238 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2239 2240 /// Allocates schedule data chunk. 2241 ScheduleData *allocateScheduleDataChunks(); 2242 2243 /// Extends the scheduling region so that V is inside the region. 2244 /// \returns true if the region size is within the limit. 2245 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2246 2247 /// Initialize the ScheduleData structures for new instructions in the 2248 /// scheduling region. 2249 void initScheduleData(Instruction *FromI, Instruction *ToI, 2250 ScheduleData *PrevLoadStore, 2251 ScheduleData *NextLoadStore); 2252 2253 /// Updates the dependency information of a bundle and of all instructions/ 2254 /// bundles which depend on the original bundle. 2255 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2256 BoUpSLP *SLP); 2257 2258 /// Sets all instruction in the scheduling region to un-scheduled. 2259 void resetSchedule(); 2260 2261 BasicBlock *BB; 2262 2263 /// Simple memory allocation for ScheduleData. 2264 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2265 2266 /// The size of a ScheduleData array in ScheduleDataChunks. 2267 int ChunkSize; 2268 2269 /// The allocator position in the current chunk, which is the last entry 2270 /// of ScheduleDataChunks. 2271 int ChunkPos; 2272 2273 /// Attaches ScheduleData to Instruction. 2274 /// Note that the mapping survives during all vectorization iterations, i.e. 2275 /// ScheduleData structures are recycled. 2276 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2277 2278 /// Attaches ScheduleData to Instruction with the leading key. 2279 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2280 ExtraScheduleDataMap; 2281 2282 struct ReadyList : SmallVector<ScheduleData *, 8> { 2283 void insert(ScheduleData *SD) { push_back(SD); } 2284 }; 2285 2286 /// The ready-list for scheduling (only used for the dry-run). 2287 ReadyList ReadyInsts; 2288 2289 /// The first instruction of the scheduling region. 2290 Instruction *ScheduleStart = nullptr; 2291 2292 /// The first instruction _after_ the scheduling region. 2293 Instruction *ScheduleEnd = nullptr; 2294 2295 /// The first memory accessing instruction in the scheduling region 2296 /// (can be null). 2297 ScheduleData *FirstLoadStoreInRegion = nullptr; 2298 2299 /// The last memory accessing instruction in the scheduling region 2300 /// (can be null). 2301 ScheduleData *LastLoadStoreInRegion = nullptr; 2302 2303 /// The current size of the scheduling region. 2304 int ScheduleRegionSize = 0; 2305 2306 /// The maximum size allowed for the scheduling region. 2307 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2308 2309 /// The ID of the scheduling region. For a new vectorization iteration this 2310 /// is incremented which "removes" all ScheduleData from the region. 2311 // Make sure that the initial SchedulingRegionID is greater than the 2312 // initial SchedulingRegionID in ScheduleData (which is 0). 2313 int SchedulingRegionID = 1; 2314 }; 2315 2316 /// Attaches the BlockScheduling structures to basic blocks. 2317 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2318 2319 /// Performs the "real" scheduling. Done before vectorization is actually 2320 /// performed in a basic block. 2321 void scheduleBlock(BlockScheduling *BS); 2322 2323 /// List of users to ignore during scheduling and that don't need extracting. 2324 ArrayRef<Value *> UserIgnoreList; 2325 2326 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2327 /// sorted SmallVectors of unsigned. 2328 struct OrdersTypeDenseMapInfo { 2329 static OrdersType getEmptyKey() { 2330 OrdersType V; 2331 V.push_back(~1U); 2332 return V; 2333 } 2334 2335 static OrdersType getTombstoneKey() { 2336 OrdersType V; 2337 V.push_back(~2U); 2338 return V; 2339 } 2340 2341 static unsigned getHashValue(const OrdersType &V) { 2342 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2343 } 2344 2345 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2346 return LHS == RHS; 2347 } 2348 }; 2349 2350 /// Contains orders of operations along with the number of bundles that have 2351 /// operations in this order. It stores only those orders that require 2352 /// reordering, if reordering is not required it is counted using \a 2353 /// NumOpsWantToKeepOriginalOrder. 2354 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 2355 /// Number of bundles that do not require reordering. 2356 unsigned NumOpsWantToKeepOriginalOrder = 0; 2357 2358 // Analysis and block reference. 2359 Function *F; 2360 ScalarEvolution *SE; 2361 TargetTransformInfo *TTI; 2362 TargetLibraryInfo *TLI; 2363 AAResults *AA; 2364 LoopInfo *LI; 2365 DominatorTree *DT; 2366 AssumptionCache *AC; 2367 DemandedBits *DB; 2368 const DataLayout *DL; 2369 OptimizationRemarkEmitter *ORE; 2370 2371 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2372 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2373 2374 /// Instruction builder to construct the vectorized tree. 2375 IRBuilder<> Builder; 2376 2377 /// A map of scalar integer values to the smallest bit width with which they 2378 /// can legally be represented. The values map to (width, signed) pairs, 2379 /// where "width" indicates the minimum bit width and "signed" is True if the 2380 /// value must be signed-extended, rather than zero-extended, back to its 2381 /// original width. 2382 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2383 }; 2384 2385 } // end namespace slpvectorizer 2386 2387 template <> struct GraphTraits<BoUpSLP *> { 2388 using TreeEntry = BoUpSLP::TreeEntry; 2389 2390 /// NodeRef has to be a pointer per the GraphWriter. 2391 using NodeRef = TreeEntry *; 2392 2393 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2394 2395 /// Add the VectorizableTree to the index iterator to be able to return 2396 /// TreeEntry pointers. 2397 struct ChildIteratorType 2398 : public iterator_adaptor_base< 2399 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2400 ContainerTy &VectorizableTree; 2401 2402 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2403 ContainerTy &VT) 2404 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2405 2406 NodeRef operator*() { return I->UserTE; } 2407 }; 2408 2409 static NodeRef getEntryNode(BoUpSLP &R) { 2410 return R.VectorizableTree[0].get(); 2411 } 2412 2413 static ChildIteratorType child_begin(NodeRef N) { 2414 return {N->UserTreeIndices.begin(), N->Container}; 2415 } 2416 2417 static ChildIteratorType child_end(NodeRef N) { 2418 return {N->UserTreeIndices.end(), N->Container}; 2419 } 2420 2421 /// For the node iterator we just need to turn the TreeEntry iterator into a 2422 /// TreeEntry* iterator so that it dereferences to NodeRef. 2423 class nodes_iterator { 2424 using ItTy = ContainerTy::iterator; 2425 ItTy It; 2426 2427 public: 2428 nodes_iterator(const ItTy &It2) : It(It2) {} 2429 NodeRef operator*() { return It->get(); } 2430 nodes_iterator operator++() { 2431 ++It; 2432 return *this; 2433 } 2434 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2435 }; 2436 2437 static nodes_iterator nodes_begin(BoUpSLP *R) { 2438 return nodes_iterator(R->VectorizableTree.begin()); 2439 } 2440 2441 static nodes_iterator nodes_end(BoUpSLP *R) { 2442 return nodes_iterator(R->VectorizableTree.end()); 2443 } 2444 2445 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2446 }; 2447 2448 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2449 using TreeEntry = BoUpSLP::TreeEntry; 2450 2451 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2452 2453 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2454 std::string Str; 2455 raw_string_ostream OS(Str); 2456 if (isSplat(Entry->Scalars)) { 2457 OS << "<splat> " << *Entry->Scalars[0]; 2458 return Str; 2459 } 2460 for (auto V : Entry->Scalars) { 2461 OS << *V; 2462 if (std::any_of( 2463 R->ExternalUses.begin(), R->ExternalUses.end(), 2464 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; })) 2465 OS << " <extract>"; 2466 OS << "\n"; 2467 } 2468 return Str; 2469 } 2470 2471 static std::string getNodeAttributes(const TreeEntry *Entry, 2472 const BoUpSLP *) { 2473 if (Entry->State == TreeEntry::NeedToGather) 2474 return "color=red"; 2475 return ""; 2476 } 2477 }; 2478 2479 } // end namespace llvm 2480 2481 BoUpSLP::~BoUpSLP() { 2482 for (const auto &Pair : DeletedInstructions) { 2483 // Replace operands of ignored instructions with Undefs in case if they were 2484 // marked for deletion. 2485 if (Pair.getSecond()) { 2486 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2487 Pair.getFirst()->replaceAllUsesWith(Undef); 2488 } 2489 Pair.getFirst()->dropAllReferences(); 2490 } 2491 for (const auto &Pair : DeletedInstructions) { 2492 assert(Pair.getFirst()->use_empty() && 2493 "trying to erase instruction with users."); 2494 Pair.getFirst()->eraseFromParent(); 2495 } 2496 assert(!verifyFunction(*F, &dbgs())); 2497 } 2498 2499 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2500 for (auto *V : AV) { 2501 if (auto *I = dyn_cast<Instruction>(V)) 2502 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 2503 }; 2504 } 2505 2506 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2507 ArrayRef<Value *> UserIgnoreLst) { 2508 ExtraValueToDebugLocsMap ExternallyUsedValues; 2509 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 2510 } 2511 2512 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2513 ExtraValueToDebugLocsMap &ExternallyUsedValues, 2514 ArrayRef<Value *> UserIgnoreLst) { 2515 deleteTree(); 2516 UserIgnoreList = UserIgnoreLst; 2517 if (!allSameType(Roots)) 2518 return; 2519 buildTree_rec(Roots, 0, EdgeInfo()); 2520 2521 // Collect the values that we need to extract from the tree. 2522 for (auto &TEPtr : VectorizableTree) { 2523 TreeEntry *Entry = TEPtr.get(); 2524 2525 // No need to handle users of gathered values. 2526 if (Entry->State == TreeEntry::NeedToGather) 2527 continue; 2528 2529 // For each lane: 2530 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2531 Value *Scalar = Entry->Scalars[Lane]; 2532 int FoundLane = Lane; 2533 if (!Entry->ReuseShuffleIndices.empty()) { 2534 FoundLane = 2535 std::distance(Entry->ReuseShuffleIndices.begin(), 2536 llvm::find(Entry->ReuseShuffleIndices, FoundLane)); 2537 } 2538 2539 // Check if the scalar is externally used as an extra arg. 2540 auto ExtI = ExternallyUsedValues.find(Scalar); 2541 if (ExtI != ExternallyUsedValues.end()) { 2542 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 2543 << Lane << " from " << *Scalar << ".\n"); 2544 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 2545 } 2546 for (User *U : Scalar->users()) { 2547 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 2548 2549 Instruction *UserInst = dyn_cast<Instruction>(U); 2550 if (!UserInst) 2551 continue; 2552 2553 // Skip in-tree scalars that become vectors 2554 if (TreeEntry *UseEntry = getTreeEntry(U)) { 2555 Value *UseScalar = UseEntry->Scalars[0]; 2556 // Some in-tree scalars will remain as scalar in vectorized 2557 // instructions. If that is the case, the one in Lane 0 will 2558 // be used. 2559 if (UseScalar != U || 2560 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 2561 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 2562 << ".\n"); 2563 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 2564 continue; 2565 } 2566 } 2567 2568 // Ignore users in the user ignore list. 2569 if (is_contained(UserIgnoreList, UserInst)) 2570 continue; 2571 2572 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 2573 << Lane << " from " << *Scalar << ".\n"); 2574 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 2575 } 2576 } 2577 } 2578 } 2579 2580 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 2581 const EdgeInfo &UserTreeIdx) { 2582 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 2583 2584 InstructionsState S = getSameOpcode(VL); 2585 if (Depth == RecursionMaxDepth) { 2586 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 2587 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2588 return; 2589 } 2590 2591 // Don't handle vectors. 2592 if (S.OpValue->getType()->isVectorTy()) { 2593 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 2594 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2595 return; 2596 } 2597 2598 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2599 if (SI->getValueOperand()->getType()->isVectorTy()) { 2600 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 2601 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2602 return; 2603 } 2604 2605 // If all of the operands are identical or constant we have a simple solution. 2606 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 2607 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 2608 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2609 return; 2610 } 2611 2612 // We now know that this is a vector of instructions of the same type from 2613 // the same block. 2614 2615 // Don't vectorize ephemeral values. 2616 for (Value *V : VL) { 2617 if (EphValues.count(V)) { 2618 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2619 << ") is ephemeral.\n"); 2620 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2621 return; 2622 } 2623 } 2624 2625 // Check if this is a duplicate of another entry. 2626 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2627 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 2628 if (!E->isSame(VL)) { 2629 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 2630 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2631 return; 2632 } 2633 // Record the reuse of the tree node. FIXME, currently this is only used to 2634 // properly draw the graph rather than for the actual vectorization. 2635 E->UserTreeIndices.push_back(UserTreeIdx); 2636 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 2637 << ".\n"); 2638 return; 2639 } 2640 2641 // Check that none of the instructions in the bundle are already in the tree. 2642 for (Value *V : VL) { 2643 auto *I = dyn_cast<Instruction>(V); 2644 if (!I) 2645 continue; 2646 if (getTreeEntry(I)) { 2647 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2648 << ") is already in tree.\n"); 2649 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2650 return; 2651 } 2652 } 2653 2654 // If any of the scalars is marked as a value that needs to stay scalar, then 2655 // we need to gather the scalars. 2656 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 2657 for (Value *V : VL) { 2658 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) { 2659 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 2660 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2661 return; 2662 } 2663 } 2664 2665 // Check that all of the users of the scalars that we want to vectorize are 2666 // schedulable. 2667 auto *VL0 = cast<Instruction>(S.OpValue); 2668 BasicBlock *BB = VL0->getParent(); 2669 2670 if (!DT->isReachableFromEntry(BB)) { 2671 // Don't go into unreachable blocks. They may contain instructions with 2672 // dependency cycles which confuse the final scheduling. 2673 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 2674 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2675 return; 2676 } 2677 2678 // Check that every instruction appears once in this bundle. 2679 SmallVector<unsigned, 4> ReuseShuffleIndicies; 2680 SmallVector<Value *, 4> UniqueValues; 2681 DenseMap<Value *, unsigned> UniquePositions; 2682 for (Value *V : VL) { 2683 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 2684 ReuseShuffleIndicies.emplace_back(Res.first->second); 2685 if (Res.second) 2686 UniqueValues.emplace_back(V); 2687 } 2688 size_t NumUniqueScalarValues = UniqueValues.size(); 2689 if (NumUniqueScalarValues == VL.size()) { 2690 ReuseShuffleIndicies.clear(); 2691 } else { 2692 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 2693 if (NumUniqueScalarValues <= 1 || 2694 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 2695 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 2696 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2697 return; 2698 } 2699 VL = UniqueValues; 2700 } 2701 2702 auto &BSRef = BlocksSchedules[BB]; 2703 if (!BSRef) 2704 BSRef = std::make_unique<BlockScheduling>(BB); 2705 2706 BlockScheduling &BS = *BSRef.get(); 2707 2708 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 2709 if (!Bundle) { 2710 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 2711 assert((!BS.getScheduleData(VL0) || 2712 !BS.getScheduleData(VL0)->isPartOfBundle()) && 2713 "tryScheduleBundle should cancelScheduling on failure"); 2714 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2715 ReuseShuffleIndicies); 2716 return; 2717 } 2718 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 2719 2720 unsigned ShuffleOrOp = S.isAltShuffle() ? 2721 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2722 switch (ShuffleOrOp) { 2723 case Instruction::PHI: { 2724 auto *PH = cast<PHINode>(VL0); 2725 2726 // Check for terminator values (e.g. invoke). 2727 for (Value *V : VL) 2728 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 2729 Instruction *Term = dyn_cast<Instruction>( 2730 cast<PHINode>(V)->getIncomingValueForBlock( 2731 PH->getIncomingBlock(I))); 2732 if (Term && Term->isTerminator()) { 2733 LLVM_DEBUG(dbgs() 2734 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 2735 BS.cancelScheduling(VL, VL0); 2736 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2737 ReuseShuffleIndicies); 2738 return; 2739 } 2740 } 2741 2742 TreeEntry *TE = 2743 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 2744 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 2745 2746 // Keeps the reordered operands to avoid code duplication. 2747 SmallVector<ValueList, 2> OperandsVec; 2748 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 2749 ValueList Operands; 2750 // Prepare the operand vector. 2751 for (Value *V : VL) 2752 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 2753 PH->getIncomingBlock(I))); 2754 TE->setOperand(I, Operands); 2755 OperandsVec.push_back(Operands); 2756 } 2757 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 2758 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 2759 return; 2760 } 2761 case Instruction::ExtractValue: 2762 case Instruction::ExtractElement: { 2763 OrdersType CurrentOrder; 2764 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 2765 if (Reuse) { 2766 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 2767 ++NumOpsWantToKeepOriginalOrder; 2768 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2769 ReuseShuffleIndicies); 2770 // This is a special case, as it does not gather, but at the same time 2771 // we are not extending buildTree_rec() towards the operands. 2772 ValueList Op0; 2773 Op0.assign(VL.size(), VL0->getOperand(0)); 2774 VectorizableTree.back()->setOperand(0, Op0); 2775 return; 2776 } 2777 if (!CurrentOrder.empty()) { 2778 LLVM_DEBUG({ 2779 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 2780 "with order"; 2781 for (unsigned Idx : CurrentOrder) 2782 dbgs() << " " << Idx; 2783 dbgs() << "\n"; 2784 }); 2785 // Insert new order with initial value 0, if it does not exist, 2786 // otherwise return the iterator to the existing one. 2787 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2788 ReuseShuffleIndicies, CurrentOrder); 2789 findRootOrder(CurrentOrder); 2790 ++NumOpsWantToKeepOrder[CurrentOrder]; 2791 // This is a special case, as it does not gather, but at the same time 2792 // we are not extending buildTree_rec() towards the operands. 2793 ValueList Op0; 2794 Op0.assign(VL.size(), VL0->getOperand(0)); 2795 VectorizableTree.back()->setOperand(0, Op0); 2796 return; 2797 } 2798 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 2799 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2800 ReuseShuffleIndicies); 2801 BS.cancelScheduling(VL, VL0); 2802 return; 2803 } 2804 case Instruction::Load: { 2805 // Check that a vectorized load would load the same memory as a scalar 2806 // load. For example, we don't want to vectorize loads that are smaller 2807 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 2808 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 2809 // from such a struct, we read/write packed bits disagreeing with the 2810 // unvectorized version. 2811 Type *ScalarTy = VL0->getType(); 2812 2813 if (DL->getTypeSizeInBits(ScalarTy) != 2814 DL->getTypeAllocSizeInBits(ScalarTy)) { 2815 BS.cancelScheduling(VL, VL0); 2816 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2817 ReuseShuffleIndicies); 2818 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 2819 return; 2820 } 2821 2822 // Make sure all loads in the bundle are simple - we can't vectorize 2823 // atomic or volatile loads. 2824 SmallVector<Value *, 4> PointerOps(VL.size()); 2825 auto POIter = PointerOps.begin(); 2826 for (Value *V : VL) { 2827 auto *L = cast<LoadInst>(V); 2828 if (!L->isSimple()) { 2829 BS.cancelScheduling(VL, VL0); 2830 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2831 ReuseShuffleIndicies); 2832 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 2833 return; 2834 } 2835 *POIter = L->getPointerOperand(); 2836 ++POIter; 2837 } 2838 2839 OrdersType CurrentOrder; 2840 // Check the order of pointer operands. 2841 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 2842 Value *Ptr0; 2843 Value *PtrN; 2844 if (CurrentOrder.empty()) { 2845 Ptr0 = PointerOps.front(); 2846 PtrN = PointerOps.back(); 2847 } else { 2848 Ptr0 = PointerOps[CurrentOrder.front()]; 2849 PtrN = PointerOps[CurrentOrder.back()]; 2850 } 2851 const SCEV *Scev0 = SE->getSCEV(Ptr0); 2852 const SCEV *ScevN = SE->getSCEV(PtrN); 2853 const auto *Diff = 2854 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 2855 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 2856 // Check that the sorted loads are consecutive. 2857 if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) { 2858 if (CurrentOrder.empty()) { 2859 // Original loads are consecutive and does not require reordering. 2860 ++NumOpsWantToKeepOriginalOrder; 2861 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 2862 UserTreeIdx, ReuseShuffleIndicies); 2863 TE->setOperandsInOrder(); 2864 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 2865 } else { 2866 // Need to reorder. 2867 TreeEntry *TE = 2868 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2869 ReuseShuffleIndicies, CurrentOrder); 2870 TE->setOperandsInOrder(); 2871 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 2872 findRootOrder(CurrentOrder); 2873 ++NumOpsWantToKeepOrder[CurrentOrder]; 2874 } 2875 return; 2876 } 2877 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 2878 TreeEntry *TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 2879 UserTreeIdx, ReuseShuffleIndicies); 2880 TE->setOperandsInOrder(); 2881 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 2882 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 2883 return; 2884 } 2885 2886 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 2887 BS.cancelScheduling(VL, VL0); 2888 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2889 ReuseShuffleIndicies); 2890 return; 2891 } 2892 case Instruction::ZExt: 2893 case Instruction::SExt: 2894 case Instruction::FPToUI: 2895 case Instruction::FPToSI: 2896 case Instruction::FPExt: 2897 case Instruction::PtrToInt: 2898 case Instruction::IntToPtr: 2899 case Instruction::SIToFP: 2900 case Instruction::UIToFP: 2901 case Instruction::Trunc: 2902 case Instruction::FPTrunc: 2903 case Instruction::BitCast: { 2904 Type *SrcTy = VL0->getOperand(0)->getType(); 2905 for (Value *V : VL) { 2906 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 2907 if (Ty != SrcTy || !isValidElementType(Ty)) { 2908 BS.cancelScheduling(VL, VL0); 2909 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2910 ReuseShuffleIndicies); 2911 LLVM_DEBUG(dbgs() 2912 << "SLP: Gathering casts with different src types.\n"); 2913 return; 2914 } 2915 } 2916 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2917 ReuseShuffleIndicies); 2918 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 2919 2920 TE->setOperandsInOrder(); 2921 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2922 ValueList Operands; 2923 // Prepare the operand vector. 2924 for (Value *V : VL) 2925 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2926 2927 buildTree_rec(Operands, Depth + 1, {TE, i}); 2928 } 2929 return; 2930 } 2931 case Instruction::ICmp: 2932 case Instruction::FCmp: { 2933 // Check that all of the compares have the same predicate. 2934 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2935 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 2936 Type *ComparedTy = VL0->getOperand(0)->getType(); 2937 for (Value *V : VL) { 2938 CmpInst *Cmp = cast<CmpInst>(V); 2939 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 2940 Cmp->getOperand(0)->getType() != ComparedTy) { 2941 BS.cancelScheduling(VL, VL0); 2942 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2943 ReuseShuffleIndicies); 2944 LLVM_DEBUG(dbgs() 2945 << "SLP: Gathering cmp with different predicate.\n"); 2946 return; 2947 } 2948 } 2949 2950 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2951 ReuseShuffleIndicies); 2952 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 2953 2954 ValueList Left, Right; 2955 if (cast<CmpInst>(VL0)->isCommutative()) { 2956 // Commutative predicate - collect + sort operands of the instructions 2957 // so that each side is more likely to have the same opcode. 2958 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 2959 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 2960 } else { 2961 // Collect operands - commute if it uses the swapped predicate. 2962 for (Value *V : VL) { 2963 auto *Cmp = cast<CmpInst>(V); 2964 Value *LHS = Cmp->getOperand(0); 2965 Value *RHS = Cmp->getOperand(1); 2966 if (Cmp->getPredicate() != P0) 2967 std::swap(LHS, RHS); 2968 Left.push_back(LHS); 2969 Right.push_back(RHS); 2970 } 2971 } 2972 TE->setOperand(0, Left); 2973 TE->setOperand(1, Right); 2974 buildTree_rec(Left, Depth + 1, {TE, 0}); 2975 buildTree_rec(Right, Depth + 1, {TE, 1}); 2976 return; 2977 } 2978 case Instruction::Select: 2979 case Instruction::FNeg: 2980 case Instruction::Add: 2981 case Instruction::FAdd: 2982 case Instruction::Sub: 2983 case Instruction::FSub: 2984 case Instruction::Mul: 2985 case Instruction::FMul: 2986 case Instruction::UDiv: 2987 case Instruction::SDiv: 2988 case Instruction::FDiv: 2989 case Instruction::URem: 2990 case Instruction::SRem: 2991 case Instruction::FRem: 2992 case Instruction::Shl: 2993 case Instruction::LShr: 2994 case Instruction::AShr: 2995 case Instruction::And: 2996 case Instruction::Or: 2997 case Instruction::Xor: { 2998 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2999 ReuseShuffleIndicies); 3000 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 3001 3002 // Sort operands of the instructions so that each side is more likely to 3003 // have the same opcode. 3004 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 3005 ValueList Left, Right; 3006 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3007 TE->setOperand(0, Left); 3008 TE->setOperand(1, Right); 3009 buildTree_rec(Left, Depth + 1, {TE, 0}); 3010 buildTree_rec(Right, Depth + 1, {TE, 1}); 3011 return; 3012 } 3013 3014 TE->setOperandsInOrder(); 3015 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3016 ValueList Operands; 3017 // Prepare the operand vector. 3018 for (Value *V : VL) 3019 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3020 3021 buildTree_rec(Operands, Depth + 1, {TE, i}); 3022 } 3023 return; 3024 } 3025 case Instruction::GetElementPtr: { 3026 // We don't combine GEPs with complicated (nested) indexing. 3027 for (Value *V : VL) { 3028 if (cast<Instruction>(V)->getNumOperands() != 2) { 3029 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 3030 BS.cancelScheduling(VL, VL0); 3031 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3032 ReuseShuffleIndicies); 3033 return; 3034 } 3035 } 3036 3037 // We can't combine several GEPs into one vector if they operate on 3038 // different types. 3039 Type *Ty0 = VL0->getOperand(0)->getType(); 3040 for (Value *V : VL) { 3041 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 3042 if (Ty0 != CurTy) { 3043 LLVM_DEBUG(dbgs() 3044 << "SLP: not-vectorizable GEP (different types).\n"); 3045 BS.cancelScheduling(VL, VL0); 3046 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3047 ReuseShuffleIndicies); 3048 return; 3049 } 3050 } 3051 3052 // We don't combine GEPs with non-constant indexes. 3053 Type *Ty1 = VL0->getOperand(1)->getType(); 3054 for (Value *V : VL) { 3055 auto Op = cast<Instruction>(V)->getOperand(1); 3056 if (!isa<ConstantInt>(Op) || 3057 (Op->getType() != Ty1 && 3058 Op->getType()->getScalarSizeInBits() > 3059 DL->getIndexSizeInBits( 3060 V->getType()->getPointerAddressSpace()))) { 3061 LLVM_DEBUG(dbgs() 3062 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 3063 BS.cancelScheduling(VL, VL0); 3064 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3065 ReuseShuffleIndicies); 3066 return; 3067 } 3068 } 3069 3070 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3071 ReuseShuffleIndicies); 3072 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 3073 TE->setOperandsInOrder(); 3074 for (unsigned i = 0, e = 2; i < e; ++i) { 3075 ValueList Operands; 3076 // Prepare the operand vector. 3077 for (Value *V : VL) 3078 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3079 3080 buildTree_rec(Operands, Depth + 1, {TE, i}); 3081 } 3082 return; 3083 } 3084 case Instruction::Store: { 3085 // Check if the stores are consecutive or if we need to swizzle them. 3086 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 3087 // Make sure all stores in the bundle are simple - we can't vectorize 3088 // atomic or volatile stores. 3089 SmallVector<Value *, 4> PointerOps(VL.size()); 3090 ValueList Operands(VL.size()); 3091 auto POIter = PointerOps.begin(); 3092 auto OIter = Operands.begin(); 3093 for (Value *V : VL) { 3094 auto *SI = cast<StoreInst>(V); 3095 if (!SI->isSimple()) { 3096 BS.cancelScheduling(VL, VL0); 3097 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3098 ReuseShuffleIndicies); 3099 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 3100 return; 3101 } 3102 *POIter = SI->getPointerOperand(); 3103 *OIter = SI->getValueOperand(); 3104 ++POIter; 3105 ++OIter; 3106 } 3107 3108 OrdersType CurrentOrder; 3109 // Check the order of pointer operands. 3110 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 3111 Value *Ptr0; 3112 Value *PtrN; 3113 if (CurrentOrder.empty()) { 3114 Ptr0 = PointerOps.front(); 3115 PtrN = PointerOps.back(); 3116 } else { 3117 Ptr0 = PointerOps[CurrentOrder.front()]; 3118 PtrN = PointerOps[CurrentOrder.back()]; 3119 } 3120 const SCEV *Scev0 = SE->getSCEV(Ptr0); 3121 const SCEV *ScevN = SE->getSCEV(PtrN); 3122 const auto *Diff = 3123 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 3124 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 3125 // Check that the sorted pointer operands are consecutive. 3126 if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) { 3127 if (CurrentOrder.empty()) { 3128 // Original stores are consecutive and does not require reordering. 3129 ++NumOpsWantToKeepOriginalOrder; 3130 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 3131 UserTreeIdx, ReuseShuffleIndicies); 3132 TE->setOperandsInOrder(); 3133 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3134 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 3135 } else { 3136 TreeEntry *TE = 3137 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3138 ReuseShuffleIndicies, CurrentOrder); 3139 TE->setOperandsInOrder(); 3140 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3141 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 3142 findRootOrder(CurrentOrder); 3143 ++NumOpsWantToKeepOrder[CurrentOrder]; 3144 } 3145 return; 3146 } 3147 } 3148 3149 BS.cancelScheduling(VL, VL0); 3150 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3151 ReuseShuffleIndicies); 3152 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 3153 return; 3154 } 3155 case Instruction::Call: { 3156 // Check if the calls are all to the same vectorizable intrinsic or 3157 // library function. 3158 CallInst *CI = cast<CallInst>(VL0); 3159 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3160 3161 VFShape Shape = VFShape::get( 3162 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 3163 false /*HasGlobalPred*/); 3164 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3165 3166 if (!VecFunc && !isTriviallyVectorizable(ID)) { 3167 BS.cancelScheduling(VL, VL0); 3168 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3169 ReuseShuffleIndicies); 3170 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 3171 return; 3172 } 3173 Function *F = CI->getCalledFunction(); 3174 unsigned NumArgs = CI->getNumArgOperands(); 3175 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 3176 for (unsigned j = 0; j != NumArgs; ++j) 3177 if (hasVectorInstrinsicScalarOpd(ID, j)) 3178 ScalarArgs[j] = CI->getArgOperand(j); 3179 for (Value *V : VL) { 3180 CallInst *CI2 = dyn_cast<CallInst>(V); 3181 if (!CI2 || CI2->getCalledFunction() != F || 3182 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 3183 (VecFunc && 3184 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 3185 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 3186 BS.cancelScheduling(VL, VL0); 3187 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3188 ReuseShuffleIndicies); 3189 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 3190 << "\n"); 3191 return; 3192 } 3193 // Some intrinsics have scalar arguments and should be same in order for 3194 // them to be vectorized. 3195 for (unsigned j = 0; j != NumArgs; ++j) { 3196 if (hasVectorInstrinsicScalarOpd(ID, j)) { 3197 Value *A1J = CI2->getArgOperand(j); 3198 if (ScalarArgs[j] != A1J) { 3199 BS.cancelScheduling(VL, VL0); 3200 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3201 ReuseShuffleIndicies); 3202 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 3203 << " argument " << ScalarArgs[j] << "!=" << A1J 3204 << "\n"); 3205 return; 3206 } 3207 } 3208 } 3209 // Verify that the bundle operands are identical between the two calls. 3210 if (CI->hasOperandBundles() && 3211 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 3212 CI->op_begin() + CI->getBundleOperandsEndIndex(), 3213 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 3214 BS.cancelScheduling(VL, VL0); 3215 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3216 ReuseShuffleIndicies); 3217 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 3218 << *CI << "!=" << *V << '\n'); 3219 return; 3220 } 3221 } 3222 3223 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3224 ReuseShuffleIndicies); 3225 TE->setOperandsInOrder(); 3226 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 3227 ValueList Operands; 3228 // Prepare the operand vector. 3229 for (Value *V : VL) { 3230 auto *CI2 = cast<CallInst>(V); 3231 Operands.push_back(CI2->getArgOperand(i)); 3232 } 3233 buildTree_rec(Operands, Depth + 1, {TE, i}); 3234 } 3235 return; 3236 } 3237 case Instruction::ShuffleVector: { 3238 // If this is not an alternate sequence of opcode like add-sub 3239 // then do not vectorize this instruction. 3240 if (!S.isAltShuffle()) { 3241 BS.cancelScheduling(VL, VL0); 3242 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3243 ReuseShuffleIndicies); 3244 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 3245 return; 3246 } 3247 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3248 ReuseShuffleIndicies); 3249 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 3250 3251 // Reorder operands if reordering would enable vectorization. 3252 if (isa<BinaryOperator>(VL0)) { 3253 ValueList Left, Right; 3254 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3255 TE->setOperand(0, Left); 3256 TE->setOperand(1, Right); 3257 buildTree_rec(Left, Depth + 1, {TE, 0}); 3258 buildTree_rec(Right, Depth + 1, {TE, 1}); 3259 return; 3260 } 3261 3262 TE->setOperandsInOrder(); 3263 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3264 ValueList Operands; 3265 // Prepare the operand vector. 3266 for (Value *V : VL) 3267 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3268 3269 buildTree_rec(Operands, Depth + 1, {TE, i}); 3270 } 3271 return; 3272 } 3273 default: 3274 BS.cancelScheduling(VL, VL0); 3275 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3276 ReuseShuffleIndicies); 3277 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 3278 return; 3279 } 3280 } 3281 3282 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 3283 unsigned N = 1; 3284 Type *EltTy = T; 3285 3286 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 3287 isa<VectorType>(EltTy)) { 3288 if (auto *ST = dyn_cast<StructType>(EltTy)) { 3289 // Check that struct is homogeneous. 3290 for (const auto *Ty : ST->elements()) 3291 if (Ty != *ST->element_begin()) 3292 return 0; 3293 N *= ST->getNumElements(); 3294 EltTy = *ST->element_begin(); 3295 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 3296 N *= AT->getNumElements(); 3297 EltTy = AT->getElementType(); 3298 } else { 3299 auto *VT = cast<FixedVectorType>(EltTy); 3300 N *= VT->getNumElements(); 3301 EltTy = VT->getElementType(); 3302 } 3303 } 3304 3305 if (!isValidElementType(EltTy)) 3306 return 0; 3307 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 3308 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 3309 return 0; 3310 return N; 3311 } 3312 3313 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 3314 SmallVectorImpl<unsigned> &CurrentOrder) const { 3315 Instruction *E0 = cast<Instruction>(OpValue); 3316 assert(E0->getOpcode() == Instruction::ExtractElement || 3317 E0->getOpcode() == Instruction::ExtractValue); 3318 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 3319 // Check if all of the extracts come from the same vector and from the 3320 // correct offset. 3321 Value *Vec = E0->getOperand(0); 3322 3323 CurrentOrder.clear(); 3324 3325 // We have to extract from a vector/aggregate with the same number of elements. 3326 unsigned NElts; 3327 if (E0->getOpcode() == Instruction::ExtractValue) { 3328 const DataLayout &DL = E0->getModule()->getDataLayout(); 3329 NElts = canMapToVector(Vec->getType(), DL); 3330 if (!NElts) 3331 return false; 3332 // Check if load can be rewritten as load of vector. 3333 LoadInst *LI = dyn_cast<LoadInst>(Vec); 3334 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 3335 return false; 3336 } else { 3337 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 3338 } 3339 3340 if (NElts != VL.size()) 3341 return false; 3342 3343 // Check that all of the indices extract from the correct offset. 3344 bool ShouldKeepOrder = true; 3345 unsigned E = VL.size(); 3346 // Assign to all items the initial value E + 1 so we can check if the extract 3347 // instruction index was used already. 3348 // Also, later we can check that all the indices are used and we have a 3349 // consecutive access in the extract instructions, by checking that no 3350 // element of CurrentOrder still has value E + 1. 3351 CurrentOrder.assign(E, E + 1); 3352 unsigned I = 0; 3353 for (; I < E; ++I) { 3354 auto *Inst = cast<Instruction>(VL[I]); 3355 if (Inst->getOperand(0) != Vec) 3356 break; 3357 Optional<unsigned> Idx = getExtractIndex(Inst); 3358 if (!Idx) 3359 break; 3360 const unsigned ExtIdx = *Idx; 3361 if (ExtIdx != I) { 3362 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 3363 break; 3364 ShouldKeepOrder = false; 3365 CurrentOrder[ExtIdx] = I; 3366 } else { 3367 if (CurrentOrder[I] != E + 1) 3368 break; 3369 CurrentOrder[I] = I; 3370 } 3371 } 3372 if (I < E) { 3373 CurrentOrder.clear(); 3374 return false; 3375 } 3376 3377 return ShouldKeepOrder; 3378 } 3379 3380 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 3381 return I->hasOneUse() || 3382 std::all_of(I->user_begin(), I->user_end(), [this](User *U) { 3383 return ScalarToTreeEntry.count(U) > 0; 3384 }); 3385 } 3386 3387 static std::pair<unsigned, unsigned> 3388 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 3389 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 3390 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3391 3392 // Calculate the cost of the scalar and vector calls. 3393 IntrinsicCostAttributes CostAttrs(ID, *CI, VecTy->getElementCount()); 3394 int IntrinsicCost = 3395 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 3396 3397 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 3398 VecTy->getNumElements())), 3399 false /*HasGlobalPred*/); 3400 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3401 int LibCost = IntrinsicCost; 3402 if (!CI->isNoBuiltin() && VecFunc) { 3403 // Calculate the cost of the vector library call. 3404 SmallVector<Type *, 4> VecTys; 3405 for (Use &Arg : CI->args()) 3406 VecTys.push_back( 3407 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 3408 3409 // If the corresponding vector call is cheaper, return its cost. 3410 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 3411 TTI::TCK_RecipThroughput); 3412 } 3413 return {IntrinsicCost, LibCost}; 3414 } 3415 3416 int BoUpSLP::getEntryCost(TreeEntry *E) { 3417 ArrayRef<Value*> VL = E->Scalars; 3418 3419 Type *ScalarTy = VL[0]->getType(); 3420 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 3421 ScalarTy = SI->getValueOperand()->getType(); 3422 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 3423 ScalarTy = CI->getOperand(0)->getType(); 3424 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 3425 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 3426 3427 // If we have computed a smaller type for the expression, update VecTy so 3428 // that the costs will be accurate. 3429 if (MinBWs.count(VL[0])) 3430 VecTy = FixedVectorType::get( 3431 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 3432 3433 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 3434 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3435 int ReuseShuffleCost = 0; 3436 if (NeedToShuffleReuses) { 3437 ReuseShuffleCost = 3438 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3439 } 3440 if (E->State == TreeEntry::NeedToGather) { 3441 if (allConstant(VL)) 3442 return 0; 3443 if (isSplat(VL)) { 3444 return ReuseShuffleCost + 3445 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 3446 } 3447 if (E->getOpcode() == Instruction::ExtractElement && 3448 allSameType(VL) && allSameBlock(VL)) { 3449 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 3450 if (ShuffleKind.hasValue()) { 3451 int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 3452 for (auto *V : VL) { 3453 // If all users of instruction are going to be vectorized and this 3454 // instruction itself is not going to be vectorized, consider this 3455 // instruction as dead and remove its cost from the final cost of the 3456 // vectorized tree. 3457 if (areAllUsersVectorized(cast<Instruction>(V)) && 3458 !ScalarToTreeEntry.count(V)) { 3459 auto *IO = cast<ConstantInt>( 3460 cast<ExtractElementInst>(V)->getIndexOperand()); 3461 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 3462 IO->getZExtValue()); 3463 } 3464 } 3465 return ReuseShuffleCost + Cost; 3466 } 3467 } 3468 return ReuseShuffleCost + getGatherCost(VL); 3469 } 3470 assert((E->State == TreeEntry::Vectorize || 3471 E->State == TreeEntry::ScatterVectorize) && 3472 "Unhandled state"); 3473 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 3474 Instruction *VL0 = E->getMainOp(); 3475 unsigned ShuffleOrOp = 3476 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 3477 switch (ShuffleOrOp) { 3478 case Instruction::PHI: 3479 return 0; 3480 3481 case Instruction::ExtractValue: 3482 case Instruction::ExtractElement: { 3483 int DeadCost = 0; 3484 if (NeedToShuffleReuses) { 3485 unsigned Idx = 0; 3486 for (unsigned I : E->ReuseShuffleIndices) { 3487 if (ShuffleOrOp == Instruction::ExtractElement) { 3488 auto *IO = cast<ConstantInt>( 3489 cast<ExtractElementInst>(VL[I])->getIndexOperand()); 3490 Idx = IO->getZExtValue(); 3491 ReuseShuffleCost -= TTI->getVectorInstrCost( 3492 Instruction::ExtractElement, VecTy, Idx); 3493 } else { 3494 ReuseShuffleCost -= TTI->getVectorInstrCost( 3495 Instruction::ExtractElement, VecTy, Idx); 3496 ++Idx; 3497 } 3498 } 3499 Idx = ReuseShuffleNumbers; 3500 for (Value *V : VL) { 3501 if (ShuffleOrOp == Instruction::ExtractElement) { 3502 auto *IO = cast<ConstantInt>( 3503 cast<ExtractElementInst>(V)->getIndexOperand()); 3504 Idx = IO->getZExtValue(); 3505 } else { 3506 --Idx; 3507 } 3508 ReuseShuffleCost += 3509 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); 3510 } 3511 DeadCost = ReuseShuffleCost; 3512 } else if (!E->ReorderIndices.empty()) { 3513 DeadCost = TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 3514 VecTy); 3515 } 3516 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 3517 Instruction *EI = cast<Instruction>(VL[I]); 3518 // If all users are going to be vectorized, instruction can be 3519 // considered as dead. 3520 // The same, if have only one user, it will be vectorized for sure. 3521 if (areAllUsersVectorized(EI)) { 3522 // Take credit for instruction that will become dead. 3523 if (EI->hasOneUse()) { 3524 Instruction *Ext = EI->user_back(); 3525 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3526 all_of(Ext->users(), 3527 [](User *U) { return isa<GetElementPtrInst>(U); })) { 3528 // Use getExtractWithExtendCost() to calculate the cost of 3529 // extractelement/ext pair. 3530 DeadCost -= TTI->getExtractWithExtendCost( 3531 Ext->getOpcode(), Ext->getType(), VecTy, I); 3532 // Add back the cost of s|zext which is subtracted separately. 3533 DeadCost += TTI->getCastInstrCost( 3534 Ext->getOpcode(), Ext->getType(), EI->getType(), 3535 TTI::getCastContextHint(Ext), CostKind, Ext); 3536 continue; 3537 } 3538 } 3539 DeadCost -= 3540 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 3541 } 3542 } 3543 return DeadCost; 3544 } 3545 case Instruction::ZExt: 3546 case Instruction::SExt: 3547 case Instruction::FPToUI: 3548 case Instruction::FPToSI: 3549 case Instruction::FPExt: 3550 case Instruction::PtrToInt: 3551 case Instruction::IntToPtr: 3552 case Instruction::SIToFP: 3553 case Instruction::UIToFP: 3554 case Instruction::Trunc: 3555 case Instruction::FPTrunc: 3556 case Instruction::BitCast: { 3557 Type *SrcTy = VL0->getOperand(0)->getType(); 3558 int ScalarEltCost = 3559 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 3560 TTI::getCastContextHint(VL0), CostKind, VL0); 3561 if (NeedToShuffleReuses) { 3562 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3563 } 3564 3565 // Calculate the cost of this instruction. 3566 int ScalarCost = VL.size() * ScalarEltCost; 3567 3568 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 3569 int VecCost = 0; 3570 // Check if the values are candidates to demote. 3571 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 3572 VecCost = 3573 ReuseShuffleCost + 3574 TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy, 3575 TTI::getCastContextHint(VL0), CostKind, VL0); 3576 } 3577 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3578 return VecCost - ScalarCost; 3579 } 3580 case Instruction::FCmp: 3581 case Instruction::ICmp: 3582 case Instruction::Select: { 3583 // Calculate the cost of this instruction. 3584 int ScalarEltCost = 3585 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 3586 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 3587 if (NeedToShuffleReuses) { 3588 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3589 } 3590 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 3591 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3592 3593 // Check if all entries in VL are either compares or selects with compares 3594 // as condition that have the same predicates. 3595 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 3596 bool First = true; 3597 for (auto *V : VL) { 3598 CmpInst::Predicate CurrentPred; 3599 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 3600 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 3601 !match(V, MatchCmp)) || 3602 (!First && VecPred != CurrentPred)) { 3603 VecPred = CmpInst::BAD_ICMP_PREDICATE; 3604 break; 3605 } 3606 First = false; 3607 VecPred = CurrentPred; 3608 } 3609 3610 int VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), VecTy, MaskTy, 3611 VecPred, CostKind, VL0); 3612 // Check if it is possible and profitable to use min/max for selects in 3613 // VL. 3614 // 3615 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 3616 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 3617 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 3618 {VecTy, VecTy}); 3619 int IntrinsicCost = TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 3620 // If the selects are the only uses of the compares, they will be dead 3621 // and we can adjust the cost by removing their cost. 3622 if (IntrinsicAndUse.second) 3623 IntrinsicCost -= 3624 TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy, 3625 CmpInst::BAD_ICMP_PREDICATE, CostKind); 3626 VecCost = std::min(VecCost, IntrinsicCost); 3627 } 3628 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3629 return ReuseShuffleCost + VecCost - ScalarCost; 3630 } 3631 case Instruction::FNeg: 3632 case Instruction::Add: 3633 case Instruction::FAdd: 3634 case Instruction::Sub: 3635 case Instruction::FSub: 3636 case Instruction::Mul: 3637 case Instruction::FMul: 3638 case Instruction::UDiv: 3639 case Instruction::SDiv: 3640 case Instruction::FDiv: 3641 case Instruction::URem: 3642 case Instruction::SRem: 3643 case Instruction::FRem: 3644 case Instruction::Shl: 3645 case Instruction::LShr: 3646 case Instruction::AShr: 3647 case Instruction::And: 3648 case Instruction::Or: 3649 case Instruction::Xor: { 3650 // Certain instructions can be cheaper to vectorize if they have a 3651 // constant second vector operand. 3652 TargetTransformInfo::OperandValueKind Op1VK = 3653 TargetTransformInfo::OK_AnyValue; 3654 TargetTransformInfo::OperandValueKind Op2VK = 3655 TargetTransformInfo::OK_UniformConstantValue; 3656 TargetTransformInfo::OperandValueProperties Op1VP = 3657 TargetTransformInfo::OP_None; 3658 TargetTransformInfo::OperandValueProperties Op2VP = 3659 TargetTransformInfo::OP_PowerOf2; 3660 3661 // If all operands are exactly the same ConstantInt then set the 3662 // operand kind to OK_UniformConstantValue. 3663 // If instead not all operands are constants, then set the operand kind 3664 // to OK_AnyValue. If all operands are constants but not the same, 3665 // then set the operand kind to OK_NonUniformConstantValue. 3666 ConstantInt *CInt0 = nullptr; 3667 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3668 const Instruction *I = cast<Instruction>(VL[i]); 3669 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 3670 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 3671 if (!CInt) { 3672 Op2VK = TargetTransformInfo::OK_AnyValue; 3673 Op2VP = TargetTransformInfo::OP_None; 3674 break; 3675 } 3676 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 3677 !CInt->getValue().isPowerOf2()) 3678 Op2VP = TargetTransformInfo::OP_None; 3679 if (i == 0) { 3680 CInt0 = CInt; 3681 continue; 3682 } 3683 if (CInt0 != CInt) 3684 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 3685 } 3686 3687 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 3688 int ScalarEltCost = TTI->getArithmeticInstrCost( 3689 E->getOpcode(), ScalarTy, CostKind, Op1VK, Op2VK, Op1VP, Op2VP, 3690 Operands, VL0); 3691 if (NeedToShuffleReuses) { 3692 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3693 } 3694 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3695 int VecCost = TTI->getArithmeticInstrCost( 3696 E->getOpcode(), VecTy, CostKind, Op1VK, Op2VK, Op1VP, Op2VP, 3697 Operands, VL0); 3698 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3699 return ReuseShuffleCost + VecCost - ScalarCost; 3700 } 3701 case Instruction::GetElementPtr: { 3702 TargetTransformInfo::OperandValueKind Op1VK = 3703 TargetTransformInfo::OK_AnyValue; 3704 TargetTransformInfo::OperandValueKind Op2VK = 3705 TargetTransformInfo::OK_UniformConstantValue; 3706 3707 int ScalarEltCost = 3708 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, CostKind, 3709 Op1VK, Op2VK); 3710 if (NeedToShuffleReuses) { 3711 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3712 } 3713 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3714 int VecCost = 3715 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, CostKind, 3716 Op1VK, Op2VK); 3717 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3718 return ReuseShuffleCost + VecCost - ScalarCost; 3719 } 3720 case Instruction::Load: { 3721 // Cost of wide load - cost of scalar loads. 3722 Align alignment = cast<LoadInst>(VL0)->getAlign(); 3723 int ScalarEltCost = 3724 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, 3725 CostKind, VL0); 3726 if (NeedToShuffleReuses) { 3727 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3728 } 3729 int ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 3730 int VecLdCost; 3731 if (E->State == TreeEntry::Vectorize) { 3732 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, 3733 CostKind, VL0); 3734 } else { 3735 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 3736 VecLdCost = TTI->getGatherScatterOpCost( 3737 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 3738 /*VariableMask=*/false, alignment, CostKind, VL0); 3739 } 3740 if (!NeedToShuffleReuses && !E->ReorderIndices.empty()) 3741 VecLdCost += TTI->getShuffleCost( 3742 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3743 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecLdCost, ScalarLdCost)); 3744 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 3745 } 3746 case Instruction::Store: { 3747 // We know that we can merge the stores. Calculate the cost. 3748 bool IsReorder = !E->ReorderIndices.empty(); 3749 auto *SI = 3750 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 3751 Align Alignment = SI->getAlign(); 3752 int ScalarEltCost = 3753 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, Alignment, 0, 3754 CostKind, VL0); 3755 int ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 3756 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, 3757 VecTy, Alignment, 0, CostKind, VL0); 3758 if (IsReorder) 3759 VecStCost += TTI->getShuffleCost( 3760 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3761 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecStCost, ScalarStCost)); 3762 return VecStCost - ScalarStCost; 3763 } 3764 case Instruction::Call: { 3765 CallInst *CI = cast<CallInst>(VL0); 3766 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3767 3768 // Calculate the cost of the scalar and vector calls. 3769 IntrinsicCostAttributes CostAttrs(ID, *CI, ElementCount::getFixed(1), 1); 3770 int ScalarEltCost = TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 3771 if (NeedToShuffleReuses) { 3772 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3773 } 3774 int ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 3775 3776 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 3777 int VecCallCost = std::min(VecCallCosts.first, VecCallCosts.second); 3778 3779 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 3780 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 3781 << " for " << *CI << "\n"); 3782 3783 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 3784 } 3785 case Instruction::ShuffleVector: { 3786 assert(E->isAltShuffle() && 3787 ((Instruction::isBinaryOp(E->getOpcode()) && 3788 Instruction::isBinaryOp(E->getAltOpcode())) || 3789 (Instruction::isCast(E->getOpcode()) && 3790 Instruction::isCast(E->getAltOpcode()))) && 3791 "Invalid Shuffle Vector Operand"); 3792 int ScalarCost = 0; 3793 if (NeedToShuffleReuses) { 3794 for (unsigned Idx : E->ReuseShuffleIndices) { 3795 Instruction *I = cast<Instruction>(VL[Idx]); 3796 ReuseShuffleCost -= TTI->getInstructionCost(I, CostKind); 3797 } 3798 for (Value *V : VL) { 3799 Instruction *I = cast<Instruction>(V); 3800 ReuseShuffleCost += TTI->getInstructionCost(I, CostKind); 3801 } 3802 } 3803 for (Value *V : VL) { 3804 Instruction *I = cast<Instruction>(V); 3805 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 3806 ScalarCost += TTI->getInstructionCost(I, CostKind); 3807 } 3808 // VecCost is equal to sum of the cost of creating 2 vectors 3809 // and the cost of creating shuffle. 3810 int VecCost = 0; 3811 if (Instruction::isBinaryOp(E->getOpcode())) { 3812 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 3813 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 3814 CostKind); 3815 } else { 3816 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 3817 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 3818 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 3819 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 3820 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 3821 TTI::CastContextHint::None, CostKind); 3822 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 3823 TTI::CastContextHint::None, CostKind); 3824 } 3825 VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0); 3826 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3827 return ReuseShuffleCost + VecCost - ScalarCost; 3828 } 3829 default: 3830 llvm_unreachable("Unknown instruction"); 3831 } 3832 } 3833 3834 bool BoUpSLP::isFullyVectorizableTinyTree() const { 3835 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 3836 << VectorizableTree.size() << " is fully vectorizable .\n"); 3837 3838 // We only handle trees of heights 1 and 2. 3839 if (VectorizableTree.size() == 1 && 3840 VectorizableTree[0]->State == TreeEntry::Vectorize) 3841 return true; 3842 3843 if (VectorizableTree.size() != 2) 3844 return false; 3845 3846 // Handle splat and all-constants stores. 3847 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 3848 (allConstant(VectorizableTree[1]->Scalars) || 3849 isSplat(VectorizableTree[1]->Scalars))) 3850 return true; 3851 3852 // Gathering cost would be too much for tiny trees. 3853 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 3854 VectorizableTree[1]->State == TreeEntry::NeedToGather) 3855 return false; 3856 3857 return true; 3858 } 3859 3860 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 3861 TargetTransformInfo *TTI) { 3862 // Look past the root to find a source value. Arbitrarily follow the 3863 // path through operand 0 of any 'or'. Also, peek through optional 3864 // shift-left-by-multiple-of-8-bits. 3865 Value *ZextLoad = Root; 3866 const APInt *ShAmtC; 3867 while (!isa<ConstantExpr>(ZextLoad) && 3868 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 3869 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 3870 ShAmtC->urem(8) == 0))) 3871 ZextLoad = cast<BinaryOperator>(ZextLoad)->getOperand(0); 3872 3873 // Check if the input is an extended load of the required or/shift expression. 3874 Value *LoadPtr; 3875 if (ZextLoad == Root || !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr))))) 3876 return false; 3877 3878 // Require that the total load bit width is a legal integer type. 3879 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 3880 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 3881 Type *SrcTy = LoadPtr->getType()->getPointerElementType(); 3882 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 3883 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 3884 return false; 3885 3886 // Everything matched - assume that we can fold the whole sequence using 3887 // load combining. 3888 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 3889 << *(cast<Instruction>(Root)) << "\n"); 3890 3891 return true; 3892 } 3893 3894 bool BoUpSLP::isLoadCombineReductionCandidate(unsigned RdxOpcode) const { 3895 if (RdxOpcode != Instruction::Or) 3896 return false; 3897 3898 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 3899 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 3900 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI); 3901 } 3902 3903 bool BoUpSLP::isLoadCombineCandidate() const { 3904 // Peek through a final sequence of stores and check if all operations are 3905 // likely to be load-combined. 3906 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 3907 for (Value *Scalar : VectorizableTree[0]->Scalars) { 3908 Value *X; 3909 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 3910 !isLoadCombineCandidateImpl(X, NumElts, TTI)) 3911 return false; 3912 } 3913 return true; 3914 } 3915 3916 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const { 3917 // We can vectorize the tree if its size is greater than or equal to the 3918 // minimum size specified by the MinTreeSize command line option. 3919 if (VectorizableTree.size() >= MinTreeSize) 3920 return false; 3921 3922 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 3923 // can vectorize it if we can prove it fully vectorizable. 3924 if (isFullyVectorizableTinyTree()) 3925 return false; 3926 3927 assert(VectorizableTree.empty() 3928 ? ExternalUses.empty() 3929 : true && "We shouldn't have any external users"); 3930 3931 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 3932 // vectorizable. 3933 return true; 3934 } 3935 3936 int BoUpSLP::getSpillCost() const { 3937 // Walk from the bottom of the tree to the top, tracking which values are 3938 // live. When we see a call instruction that is not part of our tree, 3939 // query TTI to see if there is a cost to keeping values live over it 3940 // (for example, if spills and fills are required). 3941 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 3942 int Cost = 0; 3943 3944 SmallPtrSet<Instruction*, 4> LiveValues; 3945 Instruction *PrevInst = nullptr; 3946 3947 // The entries in VectorizableTree are not necessarily ordered by their 3948 // position in basic blocks. Collect them and order them by dominance so later 3949 // instructions are guaranteed to be visited first. For instructions in 3950 // different basic blocks, we only scan to the beginning of the block, so 3951 // their order does not matter, as long as all instructions in a basic block 3952 // are grouped together. Using dominance ensures a deterministic order. 3953 SmallVector<Instruction *, 16> OrderedScalars; 3954 for (const auto &TEPtr : VectorizableTree) { 3955 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 3956 if (!Inst) 3957 continue; 3958 OrderedScalars.push_back(Inst); 3959 } 3960 llvm::stable_sort(OrderedScalars, [this](Instruction *A, Instruction *B) { 3961 return DT->dominates(B, A); 3962 }); 3963 3964 for (Instruction *Inst : OrderedScalars) { 3965 if (!PrevInst) { 3966 PrevInst = Inst; 3967 continue; 3968 } 3969 3970 // Update LiveValues. 3971 LiveValues.erase(PrevInst); 3972 for (auto &J : PrevInst->operands()) { 3973 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 3974 LiveValues.insert(cast<Instruction>(&*J)); 3975 } 3976 3977 LLVM_DEBUG({ 3978 dbgs() << "SLP: #LV: " << LiveValues.size(); 3979 for (auto *X : LiveValues) 3980 dbgs() << " " << X->getName(); 3981 dbgs() << ", Looking at "; 3982 Inst->dump(); 3983 }); 3984 3985 // Now find the sequence of instructions between PrevInst and Inst. 3986 unsigned NumCalls = 0; 3987 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 3988 PrevInstIt = 3989 PrevInst->getIterator().getReverse(); 3990 while (InstIt != PrevInstIt) { 3991 if (PrevInstIt == PrevInst->getParent()->rend()) { 3992 PrevInstIt = Inst->getParent()->rbegin(); 3993 continue; 3994 } 3995 3996 // Debug information does not impact spill cost. 3997 if ((isa<CallInst>(&*PrevInstIt) && 3998 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 3999 &*PrevInstIt != PrevInst) 4000 NumCalls++; 4001 4002 ++PrevInstIt; 4003 } 4004 4005 if (NumCalls) { 4006 SmallVector<Type*, 4> V; 4007 for (auto *II : LiveValues) 4008 V.push_back(FixedVectorType::get(II->getType(), BundleWidth)); 4009 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 4010 } 4011 4012 PrevInst = Inst; 4013 } 4014 4015 return Cost; 4016 } 4017 4018 int BoUpSLP::getTreeCost() { 4019 int Cost = 0; 4020 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 4021 << VectorizableTree.size() << ".\n"); 4022 4023 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 4024 4025 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 4026 TreeEntry &TE = *VectorizableTree[I].get(); 4027 4028 // We create duplicate tree entries for gather sequences that have multiple 4029 // uses. However, we should not compute the cost of duplicate sequences. 4030 // For example, if we have a build vector (i.e., insertelement sequence) 4031 // that is used by more than one vector instruction, we only need to 4032 // compute the cost of the insertelement instructions once. The redundant 4033 // instructions will be eliminated by CSE. 4034 // 4035 // We should consider not creating duplicate tree entries for gather 4036 // sequences, and instead add additional edges to the tree representing 4037 // their uses. Since such an approach results in fewer total entries, 4038 // existing heuristics based on tree size may yield different results. 4039 // 4040 if (TE.State == TreeEntry::NeedToGather && 4041 std::any_of(std::next(VectorizableTree.begin(), I + 1), 4042 VectorizableTree.end(), 4043 [TE](const std::unique_ptr<TreeEntry> &EntryPtr) { 4044 return EntryPtr->State == TreeEntry::NeedToGather && 4045 EntryPtr->isSame(TE.Scalars); 4046 })) 4047 continue; 4048 4049 int C = getEntryCost(&TE); 4050 Cost += C; 4051 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 4052 << " for bundle that starts with " << *TE.Scalars[0] 4053 << ".\n" 4054 << "SLP: Current total cost = " << Cost << "\n"); 4055 } 4056 4057 SmallPtrSet<Value *, 16> ExtractCostCalculated; 4058 int ExtractCost = 0; 4059 for (ExternalUser &EU : ExternalUses) { 4060 // We only add extract cost once for the same scalar. 4061 if (!ExtractCostCalculated.insert(EU.Scalar).second) 4062 continue; 4063 4064 // Uses by ephemeral values are free (because the ephemeral value will be 4065 // removed prior to code generation, and so the extraction will be 4066 // removed as well). 4067 if (EphValues.count(EU.User)) 4068 continue; 4069 4070 // If we plan to rewrite the tree in a smaller type, we will need to sign 4071 // extend the extracted value back to the original type. Here, we account 4072 // for the extract and the added cost of the sign extend if needed. 4073 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 4074 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4075 if (MinBWs.count(ScalarRoot)) { 4076 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4077 auto Extend = 4078 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 4079 VecTy = FixedVectorType::get(MinTy, BundleWidth); 4080 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 4081 VecTy, EU.Lane); 4082 } else { 4083 ExtractCost += 4084 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 4085 } 4086 } 4087 4088 int SpillCost = getSpillCost(); 4089 Cost += SpillCost + ExtractCost; 4090 4091 #ifndef NDEBUG 4092 SmallString<256> Str; 4093 { 4094 raw_svector_ostream OS(Str); 4095 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 4096 << "SLP: Extract Cost = " << ExtractCost << ".\n" 4097 << "SLP: Total Cost = " << Cost << ".\n"; 4098 } 4099 LLVM_DEBUG(dbgs() << Str); 4100 if (ViewSLPTree) 4101 ViewGraph(this, "SLP" + F->getName(), false, Str); 4102 #endif 4103 4104 return Cost; 4105 } 4106 4107 int BoUpSLP::getGatherCost(FixedVectorType *Ty, 4108 const DenseSet<unsigned> &ShuffledIndices) const { 4109 unsigned NumElts = Ty->getNumElements(); 4110 APInt DemandedElts = APInt::getNullValue(NumElts); 4111 for (unsigned I = 0; I < NumElts; ++I) 4112 if (!ShuffledIndices.count(I)) 4113 DemandedElts.setBit(I); 4114 int Cost = TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true, 4115 /*Extract*/ false); 4116 if (!ShuffledIndices.empty()) 4117 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 4118 return Cost; 4119 } 4120 4121 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 4122 // Find the type of the operands in VL. 4123 Type *ScalarTy = VL[0]->getType(); 4124 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4125 ScalarTy = SI->getValueOperand()->getType(); 4126 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4127 // Find the cost of inserting/extracting values from the vector. 4128 // Check if the same elements are inserted several times and count them as 4129 // shuffle candidates. 4130 DenseSet<unsigned> ShuffledElements; 4131 DenseSet<Value *> UniqueElements; 4132 // Iterate in reverse order to consider insert elements with the high cost. 4133 for (unsigned I = VL.size(); I > 0; --I) { 4134 unsigned Idx = I - 1; 4135 if (!UniqueElements.insert(VL[Idx]).second) 4136 ShuffledElements.insert(Idx); 4137 } 4138 return getGatherCost(VecTy, ShuffledElements); 4139 } 4140 4141 // Perform operand reordering on the instructions in VL and return the reordered 4142 // operands in Left and Right. 4143 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 4144 SmallVectorImpl<Value *> &Left, 4145 SmallVectorImpl<Value *> &Right, 4146 const DataLayout &DL, 4147 ScalarEvolution &SE, 4148 const BoUpSLP &R) { 4149 if (VL.empty()) 4150 return; 4151 VLOperands Ops(VL, DL, SE, R); 4152 // Reorder the operands in place. 4153 Ops.reorder(); 4154 Left = Ops.getVL(0); 4155 Right = Ops.getVL(1); 4156 } 4157 4158 void BoUpSLP::setInsertPointAfterBundle(TreeEntry *E) { 4159 // Get the basic block this bundle is in. All instructions in the bundle 4160 // should be in this block. 4161 auto *Front = E->getMainOp(); 4162 auto *BB = Front->getParent(); 4163 assert(llvm::all_of(make_range(E->Scalars.begin(), E->Scalars.end()), 4164 [=](Value *V) -> bool { 4165 auto *I = cast<Instruction>(V); 4166 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 4167 })); 4168 4169 // The last instruction in the bundle in program order. 4170 Instruction *LastInst = nullptr; 4171 4172 // Find the last instruction. The common case should be that BB has been 4173 // scheduled, and the last instruction is VL.back(). So we start with 4174 // VL.back() and iterate over schedule data until we reach the end of the 4175 // bundle. The end of the bundle is marked by null ScheduleData. 4176 if (BlocksSchedules.count(BB)) { 4177 auto *Bundle = 4178 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 4179 if (Bundle && Bundle->isPartOfBundle()) 4180 for (; Bundle; Bundle = Bundle->NextInBundle) 4181 if (Bundle->OpValue == Bundle->Inst) 4182 LastInst = Bundle->Inst; 4183 } 4184 4185 // LastInst can still be null at this point if there's either not an entry 4186 // for BB in BlocksSchedules or there's no ScheduleData available for 4187 // VL.back(). This can be the case if buildTree_rec aborts for various 4188 // reasons (e.g., the maximum recursion depth is reached, the maximum region 4189 // size is reached, etc.). ScheduleData is initialized in the scheduling 4190 // "dry-run". 4191 // 4192 // If this happens, we can still find the last instruction by brute force. We 4193 // iterate forwards from Front (inclusive) until we either see all 4194 // instructions in the bundle or reach the end of the block. If Front is the 4195 // last instruction in program order, LastInst will be set to Front, and we 4196 // will visit all the remaining instructions in the block. 4197 // 4198 // One of the reasons we exit early from buildTree_rec is to place an upper 4199 // bound on compile-time. Thus, taking an additional compile-time hit here is 4200 // not ideal. However, this should be exceedingly rare since it requires that 4201 // we both exit early from buildTree_rec and that the bundle be out-of-order 4202 // (causing us to iterate all the way to the end of the block). 4203 if (!LastInst) { 4204 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 4205 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 4206 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 4207 LastInst = &I; 4208 if (Bundle.empty()) 4209 break; 4210 } 4211 } 4212 assert(LastInst && "Failed to find last instruction in bundle"); 4213 4214 // Set the insertion point after the last instruction in the bundle. Set the 4215 // debug location to Front. 4216 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 4217 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 4218 } 4219 4220 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 4221 Value *Val0 = 4222 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 4223 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 4224 Value *Vec = UndefValue::get(VecTy); 4225 unsigned InsIndex = 0; 4226 for (Value *Val : VL) { 4227 Vec = Builder.CreateInsertElement(Vec, Val, Builder.getInt32(InsIndex++)); 4228 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 4229 if (!InsElt) 4230 continue; 4231 GatherSeq.insert(InsElt); 4232 CSEBlocks.insert(InsElt->getParent()); 4233 // Add to our 'need-to-extract' list. 4234 if (TreeEntry *Entry = getTreeEntry(Val)) { 4235 // Find which lane we need to extract. 4236 unsigned FoundLane = std::distance(Entry->Scalars.begin(), 4237 find(Entry->Scalars, Val)); 4238 assert(FoundLane < Entry->Scalars.size() && "Couldn't find extract lane"); 4239 if (!Entry->ReuseShuffleIndices.empty()) { 4240 FoundLane = std::distance(Entry->ReuseShuffleIndices.begin(), 4241 find(Entry->ReuseShuffleIndices, FoundLane)); 4242 } 4243 ExternalUses.push_back(ExternalUser(Val, InsElt, FoundLane)); 4244 } 4245 } 4246 4247 return Vec; 4248 } 4249 4250 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 4251 InstructionsState S = getSameOpcode(VL); 4252 if (S.getOpcode()) { 4253 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 4254 if (E->isSame(VL)) { 4255 Value *V = vectorizeTree(E); 4256 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 4257 // We need to get the vectorized value but without shuffle. 4258 if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) { 4259 V = SV->getOperand(0); 4260 } else { 4261 // Reshuffle to get only unique values. 4262 SmallVector<int, 4> UniqueIdxs; 4263 SmallSet<int, 4> UsedIdxs; 4264 for (int Idx : E->ReuseShuffleIndices) 4265 if (UsedIdxs.insert(Idx).second) 4266 UniqueIdxs.emplace_back(Idx); 4267 V = Builder.CreateShuffleVector(V, UniqueIdxs); 4268 } 4269 } 4270 return V; 4271 } 4272 } 4273 } 4274 4275 // Check that every instruction appears once in this bundle. 4276 SmallVector<int, 4> ReuseShuffleIndicies; 4277 SmallVector<Value *, 4> UniqueValues; 4278 if (VL.size() > 2) { 4279 DenseMap<Value *, unsigned> UniquePositions; 4280 for (Value *V : VL) { 4281 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 4282 ReuseShuffleIndicies.emplace_back(Res.first->second); 4283 if (Res.second || isa<Constant>(V)) 4284 UniqueValues.emplace_back(V); 4285 } 4286 // Do not shuffle single element or if number of unique values is not power 4287 // of 2. 4288 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 4289 !llvm::isPowerOf2_32(UniqueValues.size())) 4290 ReuseShuffleIndicies.clear(); 4291 else 4292 VL = UniqueValues; 4293 } 4294 4295 Value *Vec = gather(VL); 4296 if (!ReuseShuffleIndicies.empty()) { 4297 Vec = Builder.CreateShuffleVector(Vec, ReuseShuffleIndicies, "shuffle"); 4298 if (auto *I = dyn_cast<Instruction>(Vec)) { 4299 GatherSeq.insert(I); 4300 CSEBlocks.insert(I->getParent()); 4301 } 4302 } 4303 return Vec; 4304 } 4305 4306 namespace { 4307 /// Merges shuffle masks and emits final shuffle instruction, if required. 4308 class ShuffleInstructionBuilder { 4309 IRBuilderBase &Builder; 4310 bool IsFinalized = false; 4311 SmallVector<int, 4> Mask; 4312 4313 public: 4314 ShuffleInstructionBuilder(IRBuilderBase &Builder) : Builder(Builder) {} 4315 4316 /// Adds a mask, inverting it before applying. 4317 void addInversedMask(ArrayRef<unsigned> SubMask) { 4318 if (SubMask.empty()) 4319 return; 4320 SmallVector<int, 4> NewMask; 4321 inversePermutation(SubMask, NewMask); 4322 addMask(NewMask); 4323 } 4324 4325 /// Functions adds masks, merging them into single one. 4326 void addMask(ArrayRef<unsigned> SubMask) { 4327 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 4328 addMask(NewMask); 4329 } 4330 4331 void addMask(ArrayRef<int> SubMask) { 4332 if (SubMask.empty()) 4333 return; 4334 if (Mask.empty()) { 4335 Mask.append(SubMask.begin(), SubMask.end()); 4336 return; 4337 } 4338 SmallVector<int, 4> NewMask(SubMask.size(), SubMask.size()); 4339 int TermValue = std::min(Mask.size(), SubMask.size()); 4340 for (int I = 0, E = SubMask.size(); I < E; ++I) { 4341 if (SubMask[I] >= TermValue || Mask[SubMask[I]] >= TermValue) { 4342 NewMask[I] = E; 4343 continue; 4344 } 4345 NewMask[I] = Mask[SubMask[I]]; 4346 } 4347 Mask.swap(NewMask); 4348 } 4349 4350 Value *finalize(Value *V) { 4351 IsFinalized = true; 4352 if (Mask.empty()) 4353 return V; 4354 return Builder.CreateShuffleVector(V, Mask, "shuffle"); 4355 } 4356 4357 ~ShuffleInstructionBuilder() { 4358 assert((IsFinalized || Mask.empty()) && 4359 "Must be finalized construction of the shuffles."); 4360 } 4361 }; 4362 } // namespace 4363 4364 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 4365 IRBuilder<>::InsertPointGuard Guard(Builder); 4366 4367 if (E->VectorizedValue) { 4368 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 4369 return E->VectorizedValue; 4370 } 4371 4372 ShuffleInstructionBuilder ShuffleBuilder(Builder); 4373 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4374 if (E->State == TreeEntry::NeedToGather) { 4375 setInsertPointAfterBundle(E); 4376 Value *Vec = gather(E->Scalars); 4377 if (NeedToShuffleReuses) { 4378 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4379 Vec = ShuffleBuilder.finalize(Vec); 4380 if (auto *I = dyn_cast<Instruction>(Vec)) { 4381 GatherSeq.insert(I); 4382 CSEBlocks.insert(I->getParent()); 4383 } 4384 } 4385 E->VectorizedValue = Vec; 4386 return Vec; 4387 } 4388 4389 assert((E->State == TreeEntry::Vectorize || 4390 E->State == TreeEntry::ScatterVectorize) && 4391 "Unhandled state"); 4392 unsigned ShuffleOrOp = 4393 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 4394 Instruction *VL0 = E->getMainOp(); 4395 Type *ScalarTy = VL0->getType(); 4396 if (auto *Store = dyn_cast<StoreInst>(VL0)) 4397 ScalarTy = Store->getValueOperand()->getType(); 4398 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 4399 switch (ShuffleOrOp) { 4400 case Instruction::PHI: { 4401 auto *PH = cast<PHINode>(VL0); 4402 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 4403 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4404 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 4405 Value *V = NewPhi; 4406 if (NeedToShuffleReuses) 4407 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 4408 4409 E->VectorizedValue = V; 4410 4411 // PHINodes may have multiple entries from the same block. We want to 4412 // visit every block once. 4413 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 4414 4415 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 4416 ValueList Operands; 4417 BasicBlock *IBB = PH->getIncomingBlock(i); 4418 4419 if (!VisitedBBs.insert(IBB).second) { 4420 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 4421 continue; 4422 } 4423 4424 Builder.SetInsertPoint(IBB->getTerminator()); 4425 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4426 Value *Vec = vectorizeTree(E->getOperand(i)); 4427 NewPhi->addIncoming(Vec, IBB); 4428 } 4429 4430 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 4431 "Invalid number of incoming values"); 4432 return V; 4433 } 4434 4435 case Instruction::ExtractElement: { 4436 Value *V = E->getSingleOperand(0); 4437 Builder.SetInsertPoint(VL0); 4438 ShuffleBuilder.addInversedMask(E->ReorderIndices); 4439 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4440 V = ShuffleBuilder.finalize(V); 4441 E->VectorizedValue = V; 4442 return V; 4443 } 4444 case Instruction::ExtractValue: { 4445 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 4446 Builder.SetInsertPoint(LI); 4447 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 4448 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 4449 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 4450 Value *NewV = propagateMetadata(V, E->Scalars); 4451 ShuffleBuilder.addInversedMask(E->ReorderIndices); 4452 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4453 NewV = ShuffleBuilder.finalize(NewV); 4454 E->VectorizedValue = NewV; 4455 return NewV; 4456 } 4457 case Instruction::ZExt: 4458 case Instruction::SExt: 4459 case Instruction::FPToUI: 4460 case Instruction::FPToSI: 4461 case Instruction::FPExt: 4462 case Instruction::PtrToInt: 4463 case Instruction::IntToPtr: 4464 case Instruction::SIToFP: 4465 case Instruction::UIToFP: 4466 case Instruction::Trunc: 4467 case Instruction::FPTrunc: 4468 case Instruction::BitCast: { 4469 setInsertPointAfterBundle(E); 4470 4471 Value *InVec = vectorizeTree(E->getOperand(0)); 4472 4473 if (E->VectorizedValue) { 4474 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4475 return E->VectorizedValue; 4476 } 4477 4478 auto *CI = cast<CastInst>(VL0); 4479 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 4480 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4481 V = ShuffleBuilder.finalize(V); 4482 4483 E->VectorizedValue = V; 4484 ++NumVectorInstructions; 4485 return V; 4486 } 4487 case Instruction::FCmp: 4488 case Instruction::ICmp: { 4489 setInsertPointAfterBundle(E); 4490 4491 Value *L = vectorizeTree(E->getOperand(0)); 4492 Value *R = vectorizeTree(E->getOperand(1)); 4493 4494 if (E->VectorizedValue) { 4495 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4496 return E->VectorizedValue; 4497 } 4498 4499 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4500 Value *V = Builder.CreateCmp(P0, L, R); 4501 propagateIRFlags(V, E->Scalars, VL0); 4502 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4503 V = ShuffleBuilder.finalize(V); 4504 4505 E->VectorizedValue = V; 4506 ++NumVectorInstructions; 4507 return V; 4508 } 4509 case Instruction::Select: { 4510 setInsertPointAfterBundle(E); 4511 4512 Value *Cond = vectorizeTree(E->getOperand(0)); 4513 Value *True = vectorizeTree(E->getOperand(1)); 4514 Value *False = vectorizeTree(E->getOperand(2)); 4515 4516 if (E->VectorizedValue) { 4517 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4518 return E->VectorizedValue; 4519 } 4520 4521 Value *V = Builder.CreateSelect(Cond, True, False); 4522 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4523 V = ShuffleBuilder.finalize(V); 4524 4525 E->VectorizedValue = V; 4526 ++NumVectorInstructions; 4527 return V; 4528 } 4529 case Instruction::FNeg: { 4530 setInsertPointAfterBundle(E); 4531 4532 Value *Op = vectorizeTree(E->getOperand(0)); 4533 4534 if (E->VectorizedValue) { 4535 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4536 return E->VectorizedValue; 4537 } 4538 4539 Value *V = Builder.CreateUnOp( 4540 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 4541 propagateIRFlags(V, E->Scalars, VL0); 4542 if (auto *I = dyn_cast<Instruction>(V)) 4543 V = propagateMetadata(I, E->Scalars); 4544 4545 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4546 V = ShuffleBuilder.finalize(V); 4547 4548 E->VectorizedValue = V; 4549 ++NumVectorInstructions; 4550 4551 return V; 4552 } 4553 case Instruction::Add: 4554 case Instruction::FAdd: 4555 case Instruction::Sub: 4556 case Instruction::FSub: 4557 case Instruction::Mul: 4558 case Instruction::FMul: 4559 case Instruction::UDiv: 4560 case Instruction::SDiv: 4561 case Instruction::FDiv: 4562 case Instruction::URem: 4563 case Instruction::SRem: 4564 case Instruction::FRem: 4565 case Instruction::Shl: 4566 case Instruction::LShr: 4567 case Instruction::AShr: 4568 case Instruction::And: 4569 case Instruction::Or: 4570 case Instruction::Xor: { 4571 setInsertPointAfterBundle(E); 4572 4573 Value *LHS = vectorizeTree(E->getOperand(0)); 4574 Value *RHS = vectorizeTree(E->getOperand(1)); 4575 4576 if (E->VectorizedValue) { 4577 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4578 return E->VectorizedValue; 4579 } 4580 4581 Value *V = Builder.CreateBinOp( 4582 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 4583 RHS); 4584 propagateIRFlags(V, E->Scalars, VL0); 4585 if (auto *I = dyn_cast<Instruction>(V)) 4586 V = propagateMetadata(I, E->Scalars); 4587 4588 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4589 V = ShuffleBuilder.finalize(V); 4590 4591 E->VectorizedValue = V; 4592 ++NumVectorInstructions; 4593 4594 return V; 4595 } 4596 case Instruction::Load: { 4597 // Loads are inserted at the head of the tree because we don't want to 4598 // sink them all the way down past store instructions. 4599 bool IsReorder = E->updateStateIfReorder(); 4600 if (IsReorder) 4601 VL0 = E->getMainOp(); 4602 setInsertPointAfterBundle(E); 4603 4604 LoadInst *LI = cast<LoadInst>(VL0); 4605 Instruction *NewLI; 4606 unsigned AS = LI->getPointerAddressSpace(); 4607 Value *PO = LI->getPointerOperand(); 4608 if (E->State == TreeEntry::Vectorize) { 4609 4610 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 4611 4612 // The pointer operand uses an in-tree scalar so we add the new BitCast 4613 // to ExternalUses list to make sure that an extract will be generated 4614 // in the future. 4615 if (getTreeEntry(PO)) 4616 ExternalUses.emplace_back(PO, cast<User>(VecPtr), 0); 4617 4618 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 4619 } else { 4620 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 4621 Value *VecPtr = vectorizeTree(E->getOperand(0)); 4622 // Use the minimum alignment of the gathered loads. 4623 Align CommonAlignment = LI->getAlign(); 4624 for (Value *V : E->Scalars) 4625 CommonAlignment = 4626 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 4627 NewLI = Builder.CreateMaskedGather(VecPtr, CommonAlignment); 4628 } 4629 Value *V = propagateMetadata(NewLI, E->Scalars); 4630 4631 ShuffleBuilder.addInversedMask(E->ReorderIndices); 4632 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4633 V = ShuffleBuilder.finalize(V); 4634 E->VectorizedValue = V; 4635 ++NumVectorInstructions; 4636 return V; 4637 } 4638 case Instruction::Store: { 4639 bool IsReorder = !E->ReorderIndices.empty(); 4640 auto *SI = cast<StoreInst>( 4641 IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0); 4642 unsigned AS = SI->getPointerAddressSpace(); 4643 4644 setInsertPointAfterBundle(E); 4645 4646 Value *VecValue = vectorizeTree(E->getOperand(0)); 4647 ShuffleBuilder.addMask(E->ReorderIndices); 4648 VecValue = ShuffleBuilder.finalize(VecValue); 4649 4650 Value *ScalarPtr = SI->getPointerOperand(); 4651 Value *VecPtr = Builder.CreateBitCast( 4652 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 4653 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 4654 SI->getAlign()); 4655 4656 // The pointer operand uses an in-tree scalar, so add the new BitCast to 4657 // ExternalUses to make sure that an extract will be generated in the 4658 // future. 4659 if (getTreeEntry(ScalarPtr)) 4660 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 4661 4662 Value *V = propagateMetadata(ST, E->Scalars); 4663 4664 E->VectorizedValue = V; 4665 ++NumVectorInstructions; 4666 return V; 4667 } 4668 case Instruction::GetElementPtr: { 4669 setInsertPointAfterBundle(E); 4670 4671 Value *Op0 = vectorizeTree(E->getOperand(0)); 4672 4673 std::vector<Value *> OpVecs; 4674 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 4675 ++j) { 4676 ValueList &VL = E->getOperand(j); 4677 // Need to cast all elements to the same type before vectorization to 4678 // avoid crash. 4679 Type *VL0Ty = VL0->getOperand(j)->getType(); 4680 Type *Ty = llvm::all_of( 4681 VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); }) 4682 ? VL0Ty 4683 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4684 ->getPointerOperandType() 4685 ->getScalarType()); 4686 for (Value *&V : VL) { 4687 auto *CI = cast<ConstantInt>(V); 4688 V = ConstantExpr::getIntegerCast(CI, Ty, 4689 CI->getValue().isSignBitSet()); 4690 } 4691 Value *OpVec = vectorizeTree(VL); 4692 OpVecs.push_back(OpVec); 4693 } 4694 4695 Value *V = Builder.CreateGEP( 4696 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 4697 if (Instruction *I = dyn_cast<Instruction>(V)) 4698 V = propagateMetadata(I, E->Scalars); 4699 4700 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4701 V = ShuffleBuilder.finalize(V); 4702 4703 E->VectorizedValue = V; 4704 ++NumVectorInstructions; 4705 4706 return V; 4707 } 4708 case Instruction::Call: { 4709 CallInst *CI = cast<CallInst>(VL0); 4710 setInsertPointAfterBundle(E); 4711 4712 Intrinsic::ID IID = Intrinsic::not_intrinsic; 4713 if (Function *FI = CI->getCalledFunction()) 4714 IID = FI->getIntrinsicID(); 4715 4716 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4717 4718 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 4719 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 4720 VecCallCosts.first <= VecCallCosts.second; 4721 4722 Value *ScalarArg = nullptr; 4723 std::vector<Value *> OpVecs; 4724 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 4725 ValueList OpVL; 4726 // Some intrinsics have scalar arguments. This argument should not be 4727 // vectorized. 4728 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 4729 CallInst *CEI = cast<CallInst>(VL0); 4730 ScalarArg = CEI->getArgOperand(j); 4731 OpVecs.push_back(CEI->getArgOperand(j)); 4732 continue; 4733 } 4734 4735 Value *OpVec = vectorizeTree(E->getOperand(j)); 4736 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 4737 OpVecs.push_back(OpVec); 4738 } 4739 4740 Function *CF; 4741 if (!UseIntrinsic) { 4742 VFShape Shape = 4743 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4744 VecTy->getNumElements())), 4745 false /*HasGlobalPred*/); 4746 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 4747 } else { 4748 Type *Tys[] = {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 4749 CF = Intrinsic::getDeclaration(F->getParent(), ID, Tys); 4750 } 4751 4752 SmallVector<OperandBundleDef, 1> OpBundles; 4753 CI->getOperandBundlesAsDefs(OpBundles); 4754 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 4755 4756 // The scalar argument uses an in-tree scalar so we add the new vectorized 4757 // call to ExternalUses list to make sure that an extract will be 4758 // generated in the future. 4759 if (ScalarArg && getTreeEntry(ScalarArg)) 4760 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 4761 4762 propagateIRFlags(V, E->Scalars, VL0); 4763 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4764 V = ShuffleBuilder.finalize(V); 4765 4766 E->VectorizedValue = V; 4767 ++NumVectorInstructions; 4768 return V; 4769 } 4770 case Instruction::ShuffleVector: { 4771 assert(E->isAltShuffle() && 4772 ((Instruction::isBinaryOp(E->getOpcode()) && 4773 Instruction::isBinaryOp(E->getAltOpcode())) || 4774 (Instruction::isCast(E->getOpcode()) && 4775 Instruction::isCast(E->getAltOpcode()))) && 4776 "Invalid Shuffle Vector Operand"); 4777 4778 Value *LHS = nullptr, *RHS = nullptr; 4779 if (Instruction::isBinaryOp(E->getOpcode())) { 4780 setInsertPointAfterBundle(E); 4781 LHS = vectorizeTree(E->getOperand(0)); 4782 RHS = vectorizeTree(E->getOperand(1)); 4783 } else { 4784 setInsertPointAfterBundle(E); 4785 LHS = vectorizeTree(E->getOperand(0)); 4786 } 4787 4788 if (E->VectorizedValue) { 4789 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4790 return E->VectorizedValue; 4791 } 4792 4793 Value *V0, *V1; 4794 if (Instruction::isBinaryOp(E->getOpcode())) { 4795 V0 = Builder.CreateBinOp( 4796 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 4797 V1 = Builder.CreateBinOp( 4798 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 4799 } else { 4800 V0 = Builder.CreateCast( 4801 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 4802 V1 = Builder.CreateCast( 4803 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 4804 } 4805 4806 // Create shuffle to take alternate operations from the vector. 4807 // Also, gather up main and alt scalar ops to propagate IR flags to 4808 // each vector operation. 4809 ValueList OpScalars, AltScalars; 4810 unsigned e = E->Scalars.size(); 4811 SmallVector<int, 8> Mask(e); 4812 for (unsigned i = 0; i < e; ++i) { 4813 auto *OpInst = cast<Instruction>(E->Scalars[i]); 4814 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 4815 if (OpInst->getOpcode() == E->getAltOpcode()) { 4816 Mask[i] = e + i; 4817 AltScalars.push_back(E->Scalars[i]); 4818 } else { 4819 Mask[i] = i; 4820 OpScalars.push_back(E->Scalars[i]); 4821 } 4822 } 4823 4824 propagateIRFlags(V0, OpScalars); 4825 propagateIRFlags(V1, AltScalars); 4826 4827 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 4828 if (Instruction *I = dyn_cast<Instruction>(V)) 4829 V = propagateMetadata(I, E->Scalars); 4830 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4831 V = ShuffleBuilder.finalize(V); 4832 4833 E->VectorizedValue = V; 4834 ++NumVectorInstructions; 4835 4836 return V; 4837 } 4838 default: 4839 llvm_unreachable("unknown inst"); 4840 } 4841 return nullptr; 4842 } 4843 4844 Value *BoUpSLP::vectorizeTree() { 4845 ExtraValueToDebugLocsMap ExternallyUsedValues; 4846 return vectorizeTree(ExternallyUsedValues); 4847 } 4848 4849 Value * 4850 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 4851 // All blocks must be scheduled before any instructions are inserted. 4852 for (auto &BSIter : BlocksSchedules) { 4853 scheduleBlock(BSIter.second.get()); 4854 } 4855 4856 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4857 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 4858 4859 // If the vectorized tree can be rewritten in a smaller type, we truncate the 4860 // vectorized root. InstCombine will then rewrite the entire expression. We 4861 // sign extend the extracted values below. 4862 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4863 if (MinBWs.count(ScalarRoot)) { 4864 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 4865 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 4866 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 4867 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4868 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 4869 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 4870 VectorizableTree[0]->VectorizedValue = Trunc; 4871 } 4872 4873 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 4874 << " values .\n"); 4875 4876 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 4877 // specified by ScalarType. 4878 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 4879 if (!MinBWs.count(ScalarRoot)) 4880 return Ex; 4881 if (MinBWs[ScalarRoot].second) 4882 return Builder.CreateSExt(Ex, ScalarType); 4883 return Builder.CreateZExt(Ex, ScalarType); 4884 }; 4885 4886 // Extract all of the elements with the external uses. 4887 for (const auto &ExternalUse : ExternalUses) { 4888 Value *Scalar = ExternalUse.Scalar; 4889 llvm::User *User = ExternalUse.User; 4890 4891 // Skip users that we already RAUW. This happens when one instruction 4892 // has multiple uses of the same value. 4893 if (User && !is_contained(Scalar->users(), User)) 4894 continue; 4895 TreeEntry *E = getTreeEntry(Scalar); 4896 assert(E && "Invalid scalar"); 4897 assert(E->State != TreeEntry::NeedToGather && 4898 "Extracting from a gather list"); 4899 4900 Value *Vec = E->VectorizedValue; 4901 assert(Vec && "Can't find vectorizable value"); 4902 4903 Value *Lane = Builder.getInt32(ExternalUse.Lane); 4904 // If User == nullptr, the Scalar is used as extra arg. Generate 4905 // ExtractElement instruction and update the record for this scalar in 4906 // ExternallyUsedValues. 4907 if (!User) { 4908 assert(ExternallyUsedValues.count(Scalar) && 4909 "Scalar with nullptr as an external user must be registered in " 4910 "ExternallyUsedValues map"); 4911 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4912 Builder.SetInsertPoint(VecI->getParent(), 4913 std::next(VecI->getIterator())); 4914 } else { 4915 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4916 } 4917 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4918 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4919 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 4920 auto &Locs = ExternallyUsedValues[Scalar]; 4921 ExternallyUsedValues.insert({Ex, Locs}); 4922 ExternallyUsedValues.erase(Scalar); 4923 // Required to update internally referenced instructions. 4924 Scalar->replaceAllUsesWith(Ex); 4925 continue; 4926 } 4927 4928 // Generate extracts for out-of-tree users. 4929 // Find the insertion point for the extractelement lane. 4930 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4931 if (PHINode *PH = dyn_cast<PHINode>(User)) { 4932 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 4933 if (PH->getIncomingValue(i) == Scalar) { 4934 Instruction *IncomingTerminator = 4935 PH->getIncomingBlock(i)->getTerminator(); 4936 if (isa<CatchSwitchInst>(IncomingTerminator)) { 4937 Builder.SetInsertPoint(VecI->getParent(), 4938 std::next(VecI->getIterator())); 4939 } else { 4940 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 4941 } 4942 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4943 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4944 CSEBlocks.insert(PH->getIncomingBlock(i)); 4945 PH->setOperand(i, Ex); 4946 } 4947 } 4948 } else { 4949 Builder.SetInsertPoint(cast<Instruction>(User)); 4950 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4951 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4952 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 4953 User->replaceUsesOfWith(Scalar, Ex); 4954 } 4955 } else { 4956 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4957 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4958 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4959 CSEBlocks.insert(&F->getEntryBlock()); 4960 User->replaceUsesOfWith(Scalar, Ex); 4961 } 4962 4963 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 4964 } 4965 4966 // For each vectorized value: 4967 for (auto &TEPtr : VectorizableTree) { 4968 TreeEntry *Entry = TEPtr.get(); 4969 4970 // No need to handle users of gathered values. 4971 if (Entry->State == TreeEntry::NeedToGather) 4972 continue; 4973 4974 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 4975 4976 // For each lane: 4977 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 4978 Value *Scalar = Entry->Scalars[Lane]; 4979 4980 #ifndef NDEBUG 4981 Type *Ty = Scalar->getType(); 4982 if (!Ty->isVoidTy()) { 4983 for (User *U : Scalar->users()) { 4984 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 4985 4986 // It is legal to delete users in the ignorelist. 4987 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 4988 "Deleting out-of-tree value"); 4989 } 4990 } 4991 #endif 4992 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 4993 eraseInstruction(cast<Instruction>(Scalar)); 4994 } 4995 } 4996 4997 Builder.ClearInsertionPoint(); 4998 InstrElementSize.clear(); 4999 5000 return VectorizableTree[0]->VectorizedValue; 5001 } 5002 5003 void BoUpSLP::optimizeGatherSequence() { 5004 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 5005 << " gather sequences instructions.\n"); 5006 // LICM InsertElementInst sequences. 5007 for (Instruction *I : GatherSeq) { 5008 if (isDeleted(I)) 5009 continue; 5010 5011 // Check if this block is inside a loop. 5012 Loop *L = LI->getLoopFor(I->getParent()); 5013 if (!L) 5014 continue; 5015 5016 // Check if it has a preheader. 5017 BasicBlock *PreHeader = L->getLoopPreheader(); 5018 if (!PreHeader) 5019 continue; 5020 5021 // If the vector or the element that we insert into it are 5022 // instructions that are defined in this basic block then we can't 5023 // hoist this instruction. 5024 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 5025 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 5026 if (Op0 && L->contains(Op0)) 5027 continue; 5028 if (Op1 && L->contains(Op1)) 5029 continue; 5030 5031 // We can hoist this instruction. Move it to the pre-header. 5032 I->moveBefore(PreHeader->getTerminator()); 5033 } 5034 5035 // Make a list of all reachable blocks in our CSE queue. 5036 SmallVector<const DomTreeNode *, 8> CSEWorkList; 5037 CSEWorkList.reserve(CSEBlocks.size()); 5038 for (BasicBlock *BB : CSEBlocks) 5039 if (DomTreeNode *N = DT->getNode(BB)) { 5040 assert(DT->isReachableFromEntry(N)); 5041 CSEWorkList.push_back(N); 5042 } 5043 5044 // Sort blocks by domination. This ensures we visit a block after all blocks 5045 // dominating it are visited. 5046 llvm::stable_sort(CSEWorkList, 5047 [this](const DomTreeNode *A, const DomTreeNode *B) { 5048 return DT->properlyDominates(A, B); 5049 }); 5050 5051 // Perform O(N^2) search over the gather sequences and merge identical 5052 // instructions. TODO: We can further optimize this scan if we split the 5053 // instructions into different buckets based on the insert lane. 5054 SmallVector<Instruction *, 16> Visited; 5055 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 5056 assert(*I && 5057 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 5058 "Worklist not sorted properly!"); 5059 BasicBlock *BB = (*I)->getBlock(); 5060 // For all instructions in blocks containing gather sequences: 5061 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 5062 Instruction *In = &*it++; 5063 if (isDeleted(In)) 5064 continue; 5065 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 5066 continue; 5067 5068 // Check if we can replace this instruction with any of the 5069 // visited instructions. 5070 for (Instruction *v : Visited) { 5071 if (In->isIdenticalTo(v) && 5072 DT->dominates(v->getParent(), In->getParent())) { 5073 In->replaceAllUsesWith(v); 5074 eraseInstruction(In); 5075 In = nullptr; 5076 break; 5077 } 5078 } 5079 if (In) { 5080 assert(!is_contained(Visited, In)); 5081 Visited.push_back(In); 5082 } 5083 } 5084 } 5085 CSEBlocks.clear(); 5086 GatherSeq.clear(); 5087 } 5088 5089 // Groups the instructions to a bundle (which is then a single scheduling entity) 5090 // and schedules instructions until the bundle gets ready. 5091 Optional<BoUpSLP::ScheduleData *> 5092 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 5093 const InstructionsState &S) { 5094 if (isa<PHINode>(S.OpValue)) 5095 return nullptr; 5096 5097 // Initialize the instruction bundle. 5098 Instruction *OldScheduleEnd = ScheduleEnd; 5099 ScheduleData *PrevInBundle = nullptr; 5100 ScheduleData *Bundle = nullptr; 5101 bool ReSchedule = false; 5102 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 5103 5104 // Make sure that the scheduling region contains all 5105 // instructions of the bundle. 5106 for (Value *V : VL) { 5107 if (!extendSchedulingRegion(V, S)) 5108 return None; 5109 } 5110 5111 for (Value *V : VL) { 5112 ScheduleData *BundleMember = getScheduleData(V); 5113 assert(BundleMember && 5114 "no ScheduleData for bundle member (maybe not in same basic block)"); 5115 if (BundleMember->IsScheduled) { 5116 // A bundle member was scheduled as single instruction before and now 5117 // needs to be scheduled as part of the bundle. We just get rid of the 5118 // existing schedule. 5119 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 5120 << " was already scheduled\n"); 5121 ReSchedule = true; 5122 } 5123 assert(BundleMember->isSchedulingEntity() && 5124 "bundle member already part of other bundle"); 5125 if (PrevInBundle) { 5126 PrevInBundle->NextInBundle = BundleMember; 5127 } else { 5128 Bundle = BundleMember; 5129 } 5130 BundleMember->UnscheduledDepsInBundle = 0; 5131 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 5132 5133 // Group the instructions to a bundle. 5134 BundleMember->FirstInBundle = Bundle; 5135 PrevInBundle = BundleMember; 5136 } 5137 if (ScheduleEnd != OldScheduleEnd) { 5138 // The scheduling region got new instructions at the lower end (or it is a 5139 // new region for the first bundle). This makes it necessary to 5140 // recalculate all dependencies. 5141 // It is seldom that this needs to be done a second time after adding the 5142 // initial bundle to the region. 5143 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 5144 doForAllOpcodes(I, [](ScheduleData *SD) { 5145 SD->clearDependencies(); 5146 }); 5147 } 5148 ReSchedule = true; 5149 } 5150 if (ReSchedule) { 5151 resetSchedule(); 5152 initialFillReadyList(ReadyInsts); 5153 } 5154 assert(Bundle && "Failed to find schedule bundle"); 5155 5156 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 5157 << BB->getName() << "\n"); 5158 5159 calculateDependencies(Bundle, true, SLP); 5160 5161 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 5162 // means that there are no cyclic dependencies and we can schedule it. 5163 // Note that's important that we don't "schedule" the bundle yet (see 5164 // cancelScheduling). 5165 while (!Bundle->isReady() && !ReadyInsts.empty()) { 5166 5167 ScheduleData *pickedSD = ReadyInsts.back(); 5168 ReadyInsts.pop_back(); 5169 5170 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 5171 schedule(pickedSD, ReadyInsts); 5172 } 5173 } 5174 if (!Bundle->isReady()) { 5175 cancelScheduling(VL, S.OpValue); 5176 return None; 5177 } 5178 return Bundle; 5179 } 5180 5181 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 5182 Value *OpValue) { 5183 if (isa<PHINode>(OpValue)) 5184 return; 5185 5186 ScheduleData *Bundle = getScheduleData(OpValue); 5187 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 5188 assert(!Bundle->IsScheduled && 5189 "Can't cancel bundle which is already scheduled"); 5190 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 5191 "tried to unbundle something which is not a bundle"); 5192 5193 // Un-bundle: make single instructions out of the bundle. 5194 ScheduleData *BundleMember = Bundle; 5195 while (BundleMember) { 5196 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 5197 BundleMember->FirstInBundle = BundleMember; 5198 ScheduleData *Next = BundleMember->NextInBundle; 5199 BundleMember->NextInBundle = nullptr; 5200 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 5201 if (BundleMember->UnscheduledDepsInBundle == 0) { 5202 ReadyInsts.insert(BundleMember); 5203 } 5204 BundleMember = Next; 5205 } 5206 } 5207 5208 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 5209 // Allocate a new ScheduleData for the instruction. 5210 if (ChunkPos >= ChunkSize) { 5211 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 5212 ChunkPos = 0; 5213 } 5214 return &(ScheduleDataChunks.back()[ChunkPos++]); 5215 } 5216 5217 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 5218 const InstructionsState &S) { 5219 if (getScheduleData(V, isOneOf(S, V))) 5220 return true; 5221 Instruction *I = dyn_cast<Instruction>(V); 5222 assert(I && "bundle member must be an instruction"); 5223 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 5224 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 5225 ScheduleData *ISD = getScheduleData(I); 5226 if (!ISD) 5227 return false; 5228 assert(isInSchedulingRegion(ISD) && 5229 "ScheduleData not in scheduling region"); 5230 ScheduleData *SD = allocateScheduleDataChunks(); 5231 SD->Inst = I; 5232 SD->init(SchedulingRegionID, S.OpValue); 5233 ExtraScheduleDataMap[I][S.OpValue] = SD; 5234 return true; 5235 }; 5236 if (CheckSheduleForI(I)) 5237 return true; 5238 if (!ScheduleStart) { 5239 // It's the first instruction in the new region. 5240 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 5241 ScheduleStart = I; 5242 ScheduleEnd = I->getNextNode(); 5243 if (isOneOf(S, I) != I) 5244 CheckSheduleForI(I); 5245 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5246 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 5247 return true; 5248 } 5249 // Search up and down at the same time, because we don't know if the new 5250 // instruction is above or below the existing scheduling region. 5251 BasicBlock::reverse_iterator UpIter = 5252 ++ScheduleStart->getIterator().getReverse(); 5253 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 5254 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 5255 BasicBlock::iterator LowerEnd = BB->end(); 5256 while (true) { 5257 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 5258 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 5259 return false; 5260 } 5261 5262 if (UpIter != UpperEnd) { 5263 if (&*UpIter == I) { 5264 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 5265 ScheduleStart = I; 5266 if (isOneOf(S, I) != I) 5267 CheckSheduleForI(I); 5268 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 5269 << "\n"); 5270 return true; 5271 } 5272 ++UpIter; 5273 } 5274 if (DownIter != LowerEnd) { 5275 if (&*DownIter == I) { 5276 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 5277 nullptr); 5278 ScheduleEnd = I->getNextNode(); 5279 if (isOneOf(S, I) != I) 5280 CheckSheduleForI(I); 5281 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5282 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I 5283 << "\n"); 5284 return true; 5285 } 5286 ++DownIter; 5287 } 5288 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 5289 "instruction not found in block"); 5290 } 5291 return true; 5292 } 5293 5294 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 5295 Instruction *ToI, 5296 ScheduleData *PrevLoadStore, 5297 ScheduleData *NextLoadStore) { 5298 ScheduleData *CurrentLoadStore = PrevLoadStore; 5299 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 5300 ScheduleData *SD = ScheduleDataMap[I]; 5301 if (!SD) { 5302 SD = allocateScheduleDataChunks(); 5303 ScheduleDataMap[I] = SD; 5304 SD->Inst = I; 5305 } 5306 assert(!isInSchedulingRegion(SD) && 5307 "new ScheduleData already in scheduling region"); 5308 SD->init(SchedulingRegionID, I); 5309 5310 if (I->mayReadOrWriteMemory() && 5311 (!isa<IntrinsicInst>(I) || 5312 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 5313 cast<IntrinsicInst>(I)->getIntrinsicID() != 5314 Intrinsic::pseudoprobe))) { 5315 // Update the linked list of memory accessing instructions. 5316 if (CurrentLoadStore) { 5317 CurrentLoadStore->NextLoadStore = SD; 5318 } else { 5319 FirstLoadStoreInRegion = SD; 5320 } 5321 CurrentLoadStore = SD; 5322 } 5323 } 5324 if (NextLoadStore) { 5325 if (CurrentLoadStore) 5326 CurrentLoadStore->NextLoadStore = NextLoadStore; 5327 } else { 5328 LastLoadStoreInRegion = CurrentLoadStore; 5329 } 5330 } 5331 5332 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 5333 bool InsertInReadyList, 5334 BoUpSLP *SLP) { 5335 assert(SD->isSchedulingEntity()); 5336 5337 SmallVector<ScheduleData *, 10> WorkList; 5338 WorkList.push_back(SD); 5339 5340 while (!WorkList.empty()) { 5341 ScheduleData *SD = WorkList.back(); 5342 WorkList.pop_back(); 5343 5344 ScheduleData *BundleMember = SD; 5345 while (BundleMember) { 5346 assert(isInSchedulingRegion(BundleMember)); 5347 if (!BundleMember->hasValidDependencies()) { 5348 5349 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 5350 << "\n"); 5351 BundleMember->Dependencies = 0; 5352 BundleMember->resetUnscheduledDeps(); 5353 5354 // Handle def-use chain dependencies. 5355 if (BundleMember->OpValue != BundleMember->Inst) { 5356 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 5357 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5358 BundleMember->Dependencies++; 5359 ScheduleData *DestBundle = UseSD->FirstInBundle; 5360 if (!DestBundle->IsScheduled) 5361 BundleMember->incrementUnscheduledDeps(1); 5362 if (!DestBundle->hasValidDependencies()) 5363 WorkList.push_back(DestBundle); 5364 } 5365 } else { 5366 for (User *U : BundleMember->Inst->users()) { 5367 if (isa<Instruction>(U)) { 5368 ScheduleData *UseSD = getScheduleData(U); 5369 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5370 BundleMember->Dependencies++; 5371 ScheduleData *DestBundle = UseSD->FirstInBundle; 5372 if (!DestBundle->IsScheduled) 5373 BundleMember->incrementUnscheduledDeps(1); 5374 if (!DestBundle->hasValidDependencies()) 5375 WorkList.push_back(DestBundle); 5376 } 5377 } else { 5378 // I'm not sure if this can ever happen. But we need to be safe. 5379 // This lets the instruction/bundle never be scheduled and 5380 // eventually disable vectorization. 5381 BundleMember->Dependencies++; 5382 BundleMember->incrementUnscheduledDeps(1); 5383 } 5384 } 5385 } 5386 5387 // Handle the memory dependencies. 5388 ScheduleData *DepDest = BundleMember->NextLoadStore; 5389 if (DepDest) { 5390 Instruction *SrcInst = BundleMember->Inst; 5391 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 5392 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 5393 unsigned numAliased = 0; 5394 unsigned DistToSrc = 1; 5395 5396 while (DepDest) { 5397 assert(isInSchedulingRegion(DepDest)); 5398 5399 // We have two limits to reduce the complexity: 5400 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 5401 // SLP->isAliased (which is the expensive part in this loop). 5402 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 5403 // the whole loop (even if the loop is fast, it's quadratic). 5404 // It's important for the loop break condition (see below) to 5405 // check this limit even between two read-only instructions. 5406 if (DistToSrc >= MaxMemDepDistance || 5407 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 5408 (numAliased >= AliasedCheckLimit || 5409 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 5410 5411 // We increment the counter only if the locations are aliased 5412 // (instead of counting all alias checks). This gives a better 5413 // balance between reduced runtime and accurate dependencies. 5414 numAliased++; 5415 5416 DepDest->MemoryDependencies.push_back(BundleMember); 5417 BundleMember->Dependencies++; 5418 ScheduleData *DestBundle = DepDest->FirstInBundle; 5419 if (!DestBundle->IsScheduled) { 5420 BundleMember->incrementUnscheduledDeps(1); 5421 } 5422 if (!DestBundle->hasValidDependencies()) { 5423 WorkList.push_back(DestBundle); 5424 } 5425 } 5426 DepDest = DepDest->NextLoadStore; 5427 5428 // Example, explaining the loop break condition: Let's assume our 5429 // starting instruction is i0 and MaxMemDepDistance = 3. 5430 // 5431 // +--------v--v--v 5432 // i0,i1,i2,i3,i4,i5,i6,i7,i8 5433 // +--------^--^--^ 5434 // 5435 // MaxMemDepDistance let us stop alias-checking at i3 and we add 5436 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 5437 // Previously we already added dependencies from i3 to i6,i7,i8 5438 // (because of MaxMemDepDistance). As we added a dependency from 5439 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 5440 // and we can abort this loop at i6. 5441 if (DistToSrc >= 2 * MaxMemDepDistance) 5442 break; 5443 DistToSrc++; 5444 } 5445 } 5446 } 5447 BundleMember = BundleMember->NextInBundle; 5448 } 5449 if (InsertInReadyList && SD->isReady()) { 5450 ReadyInsts.push_back(SD); 5451 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 5452 << "\n"); 5453 } 5454 } 5455 } 5456 5457 void BoUpSLP::BlockScheduling::resetSchedule() { 5458 assert(ScheduleStart && 5459 "tried to reset schedule on block which has not been scheduled"); 5460 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 5461 doForAllOpcodes(I, [&](ScheduleData *SD) { 5462 assert(isInSchedulingRegion(SD) && 5463 "ScheduleData not in scheduling region"); 5464 SD->IsScheduled = false; 5465 SD->resetUnscheduledDeps(); 5466 }); 5467 } 5468 ReadyInsts.clear(); 5469 } 5470 5471 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 5472 if (!BS->ScheduleStart) 5473 return; 5474 5475 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 5476 5477 BS->resetSchedule(); 5478 5479 // For the real scheduling we use a more sophisticated ready-list: it is 5480 // sorted by the original instruction location. This lets the final schedule 5481 // be as close as possible to the original instruction order. 5482 struct ScheduleDataCompare { 5483 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 5484 return SD2->SchedulingPriority < SD1->SchedulingPriority; 5485 } 5486 }; 5487 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 5488 5489 // Ensure that all dependency data is updated and fill the ready-list with 5490 // initial instructions. 5491 int Idx = 0; 5492 int NumToSchedule = 0; 5493 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 5494 I = I->getNextNode()) { 5495 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 5496 assert(SD->isPartOfBundle() == 5497 (getTreeEntry(SD->Inst) != nullptr) && 5498 "scheduler and vectorizer bundle mismatch"); 5499 SD->FirstInBundle->SchedulingPriority = Idx++; 5500 if (SD->isSchedulingEntity()) { 5501 BS->calculateDependencies(SD, false, this); 5502 NumToSchedule++; 5503 } 5504 }); 5505 } 5506 BS->initialFillReadyList(ReadyInsts); 5507 5508 Instruction *LastScheduledInst = BS->ScheduleEnd; 5509 5510 // Do the "real" scheduling. 5511 while (!ReadyInsts.empty()) { 5512 ScheduleData *picked = *ReadyInsts.begin(); 5513 ReadyInsts.erase(ReadyInsts.begin()); 5514 5515 // Move the scheduled instruction(s) to their dedicated places, if not 5516 // there yet. 5517 ScheduleData *BundleMember = picked; 5518 while (BundleMember) { 5519 Instruction *pickedInst = BundleMember->Inst; 5520 if (LastScheduledInst->getNextNode() != pickedInst) { 5521 BS->BB->getInstList().remove(pickedInst); 5522 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 5523 pickedInst); 5524 } 5525 LastScheduledInst = pickedInst; 5526 BundleMember = BundleMember->NextInBundle; 5527 } 5528 5529 BS->schedule(picked, ReadyInsts); 5530 NumToSchedule--; 5531 } 5532 assert(NumToSchedule == 0 && "could not schedule all instructions"); 5533 5534 // Avoid duplicate scheduling of the block. 5535 BS->ScheduleStart = nullptr; 5536 } 5537 5538 unsigned BoUpSLP::getVectorElementSize(Value *V) { 5539 // If V is a store, just return the width of the stored value (or value 5540 // truncated just before storing) without traversing the expression tree. 5541 // This is the common case. 5542 if (auto *Store = dyn_cast<StoreInst>(V)) { 5543 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 5544 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 5545 else 5546 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 5547 } 5548 5549 auto E = InstrElementSize.find(V); 5550 if (E != InstrElementSize.end()) 5551 return E->second; 5552 5553 // If V is not a store, we can traverse the expression tree to find loads 5554 // that feed it. The type of the loaded value may indicate a more suitable 5555 // width than V's type. We want to base the vector element size on the width 5556 // of memory operations where possible. 5557 SmallVector<Instruction *, 16> Worklist; 5558 SmallPtrSet<Instruction *, 16> Visited; 5559 if (auto *I = dyn_cast<Instruction>(V)) { 5560 Worklist.push_back(I); 5561 Visited.insert(I); 5562 } 5563 5564 // Traverse the expression tree in bottom-up order looking for loads. If we 5565 // encounter an instruction we don't yet handle, we give up. 5566 auto MaxWidth = 0u; 5567 auto FoundUnknownInst = false; 5568 while (!Worklist.empty() && !FoundUnknownInst) { 5569 auto *I = Worklist.pop_back_val(); 5570 5571 // We should only be looking at scalar instructions here. If the current 5572 // instruction has a vector type, give up. 5573 auto *Ty = I->getType(); 5574 if (isa<VectorType>(Ty)) 5575 FoundUnknownInst = true; 5576 5577 // If the current instruction is a load, update MaxWidth to reflect the 5578 // width of the loaded value. 5579 else if (isa<LoadInst>(I)) 5580 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 5581 5582 // Otherwise, we need to visit the operands of the instruction. We only 5583 // handle the interesting cases from buildTree here. If an operand is an 5584 // instruction we haven't yet visited, we add it to the worklist. 5585 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 5586 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 5587 for (Use &U : I->operands()) 5588 if (auto *J = dyn_cast<Instruction>(U.get())) 5589 if (Visited.insert(J).second) 5590 Worklist.push_back(J); 5591 } 5592 5593 // If we don't yet handle the instruction, give up. 5594 else 5595 FoundUnknownInst = true; 5596 } 5597 5598 int Width = MaxWidth; 5599 // If we didn't encounter a memory access in the expression tree, or if we 5600 // gave up for some reason, just return the width of V. Otherwise, return the 5601 // maximum width we found. 5602 if (!MaxWidth || FoundUnknownInst) 5603 Width = DL->getTypeSizeInBits(V->getType()); 5604 5605 for (Instruction *I : Visited) 5606 InstrElementSize[I] = Width; 5607 5608 return Width; 5609 } 5610 5611 // Determine if a value V in a vectorizable expression Expr can be demoted to a 5612 // smaller type with a truncation. We collect the values that will be demoted 5613 // in ToDemote and additional roots that require investigating in Roots. 5614 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 5615 SmallVectorImpl<Value *> &ToDemote, 5616 SmallVectorImpl<Value *> &Roots) { 5617 // We can always demote constants. 5618 if (isa<Constant>(V)) { 5619 ToDemote.push_back(V); 5620 return true; 5621 } 5622 5623 // If the value is not an instruction in the expression with only one use, it 5624 // cannot be demoted. 5625 auto *I = dyn_cast<Instruction>(V); 5626 if (!I || !I->hasOneUse() || !Expr.count(I)) 5627 return false; 5628 5629 switch (I->getOpcode()) { 5630 5631 // We can always demote truncations and extensions. Since truncations can 5632 // seed additional demotion, we save the truncated value. 5633 case Instruction::Trunc: 5634 Roots.push_back(I->getOperand(0)); 5635 break; 5636 case Instruction::ZExt: 5637 case Instruction::SExt: 5638 break; 5639 5640 // We can demote certain binary operations if we can demote both of their 5641 // operands. 5642 case Instruction::Add: 5643 case Instruction::Sub: 5644 case Instruction::Mul: 5645 case Instruction::And: 5646 case Instruction::Or: 5647 case Instruction::Xor: 5648 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 5649 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 5650 return false; 5651 break; 5652 5653 // We can demote selects if we can demote their true and false values. 5654 case Instruction::Select: { 5655 SelectInst *SI = cast<SelectInst>(I); 5656 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 5657 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 5658 return false; 5659 break; 5660 } 5661 5662 // We can demote phis if we can demote all their incoming operands. Note that 5663 // we don't need to worry about cycles since we ensure single use above. 5664 case Instruction::PHI: { 5665 PHINode *PN = cast<PHINode>(I); 5666 for (Value *IncValue : PN->incoming_values()) 5667 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 5668 return false; 5669 break; 5670 } 5671 5672 // Otherwise, conservatively give up. 5673 default: 5674 return false; 5675 } 5676 5677 // Record the value that we can demote. 5678 ToDemote.push_back(V); 5679 return true; 5680 } 5681 5682 void BoUpSLP::computeMinimumValueSizes() { 5683 // If there are no external uses, the expression tree must be rooted by a 5684 // store. We can't demote in-memory values, so there is nothing to do here. 5685 if (ExternalUses.empty()) 5686 return; 5687 5688 // We only attempt to truncate integer expressions. 5689 auto &TreeRoot = VectorizableTree[0]->Scalars; 5690 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 5691 if (!TreeRootIT) 5692 return; 5693 5694 // If the expression is not rooted by a store, these roots should have 5695 // external uses. We will rely on InstCombine to rewrite the expression in 5696 // the narrower type. However, InstCombine only rewrites single-use values. 5697 // This means that if a tree entry other than a root is used externally, it 5698 // must have multiple uses and InstCombine will not rewrite it. The code 5699 // below ensures that only the roots are used externally. 5700 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 5701 for (auto &EU : ExternalUses) 5702 if (!Expr.erase(EU.Scalar)) 5703 return; 5704 if (!Expr.empty()) 5705 return; 5706 5707 // Collect the scalar values of the vectorizable expression. We will use this 5708 // context to determine which values can be demoted. If we see a truncation, 5709 // we mark it as seeding another demotion. 5710 for (auto &EntryPtr : VectorizableTree) 5711 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 5712 5713 // Ensure the roots of the vectorizable tree don't form a cycle. They must 5714 // have a single external user that is not in the vectorizable tree. 5715 for (auto *Root : TreeRoot) 5716 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 5717 return; 5718 5719 // Conservatively determine if we can actually truncate the roots of the 5720 // expression. Collect the values that can be demoted in ToDemote and 5721 // additional roots that require investigating in Roots. 5722 SmallVector<Value *, 32> ToDemote; 5723 SmallVector<Value *, 4> Roots; 5724 for (auto *Root : TreeRoot) 5725 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 5726 return; 5727 5728 // The maximum bit width required to represent all the values that can be 5729 // demoted without loss of precision. It would be safe to truncate the roots 5730 // of the expression to this width. 5731 auto MaxBitWidth = 8u; 5732 5733 // We first check if all the bits of the roots are demanded. If they're not, 5734 // we can truncate the roots to this narrower type. 5735 for (auto *Root : TreeRoot) { 5736 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 5737 MaxBitWidth = std::max<unsigned>( 5738 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 5739 } 5740 5741 // True if the roots can be zero-extended back to their original type, rather 5742 // than sign-extended. We know that if the leading bits are not demanded, we 5743 // can safely zero-extend. So we initialize IsKnownPositive to True. 5744 bool IsKnownPositive = true; 5745 5746 // If all the bits of the roots are demanded, we can try a little harder to 5747 // compute a narrower type. This can happen, for example, if the roots are 5748 // getelementptr indices. InstCombine promotes these indices to the pointer 5749 // width. Thus, all their bits are technically demanded even though the 5750 // address computation might be vectorized in a smaller type. 5751 // 5752 // We start by looking at each entry that can be demoted. We compute the 5753 // maximum bit width required to store the scalar by using ValueTracking to 5754 // compute the number of high-order bits we can truncate. 5755 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 5756 llvm::all_of(TreeRoot, [](Value *R) { 5757 assert(R->hasOneUse() && "Root should have only one use!"); 5758 return isa<GetElementPtrInst>(R->user_back()); 5759 })) { 5760 MaxBitWidth = 8u; 5761 5762 // Determine if the sign bit of all the roots is known to be zero. If not, 5763 // IsKnownPositive is set to False. 5764 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 5765 KnownBits Known = computeKnownBits(R, *DL); 5766 return Known.isNonNegative(); 5767 }); 5768 5769 // Determine the maximum number of bits required to store the scalar 5770 // values. 5771 for (auto *Scalar : ToDemote) { 5772 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 5773 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 5774 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 5775 } 5776 5777 // If we can't prove that the sign bit is zero, we must add one to the 5778 // maximum bit width to account for the unknown sign bit. This preserves 5779 // the existing sign bit so we can safely sign-extend the root back to the 5780 // original type. Otherwise, if we know the sign bit is zero, we will 5781 // zero-extend the root instead. 5782 // 5783 // FIXME: This is somewhat suboptimal, as there will be cases where adding 5784 // one to the maximum bit width will yield a larger-than-necessary 5785 // type. In general, we need to add an extra bit only if we can't 5786 // prove that the upper bit of the original type is equal to the 5787 // upper bit of the proposed smaller type. If these two bits are the 5788 // same (either zero or one) we know that sign-extending from the 5789 // smaller type will result in the same value. Here, since we can't 5790 // yet prove this, we are just making the proposed smaller type 5791 // larger to ensure correctness. 5792 if (!IsKnownPositive) 5793 ++MaxBitWidth; 5794 } 5795 5796 // Round MaxBitWidth up to the next power-of-two. 5797 if (!isPowerOf2_64(MaxBitWidth)) 5798 MaxBitWidth = NextPowerOf2(MaxBitWidth); 5799 5800 // If the maximum bit width we compute is less than the with of the roots' 5801 // type, we can proceed with the narrowing. Otherwise, do nothing. 5802 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 5803 return; 5804 5805 // If we can truncate the root, we must collect additional values that might 5806 // be demoted as a result. That is, those seeded by truncations we will 5807 // modify. 5808 while (!Roots.empty()) 5809 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 5810 5811 // Finally, map the values we can demote to the maximum bit with we computed. 5812 for (auto *Scalar : ToDemote) 5813 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 5814 } 5815 5816 namespace { 5817 5818 /// The SLPVectorizer Pass. 5819 struct SLPVectorizer : public FunctionPass { 5820 SLPVectorizerPass Impl; 5821 5822 /// Pass identification, replacement for typeid 5823 static char ID; 5824 5825 explicit SLPVectorizer() : FunctionPass(ID) { 5826 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 5827 } 5828 5829 bool doInitialization(Module &M) override { 5830 return false; 5831 } 5832 5833 bool runOnFunction(Function &F) override { 5834 if (skipFunction(F)) 5835 return false; 5836 5837 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5838 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 5839 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 5840 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 5841 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 5842 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5843 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5844 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 5845 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 5846 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 5847 5848 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5849 } 5850 5851 void getAnalysisUsage(AnalysisUsage &AU) const override { 5852 FunctionPass::getAnalysisUsage(AU); 5853 AU.addRequired<AssumptionCacheTracker>(); 5854 AU.addRequired<ScalarEvolutionWrapperPass>(); 5855 AU.addRequired<AAResultsWrapperPass>(); 5856 AU.addRequired<TargetTransformInfoWrapperPass>(); 5857 AU.addRequired<LoopInfoWrapperPass>(); 5858 AU.addRequired<DominatorTreeWrapperPass>(); 5859 AU.addRequired<DemandedBitsWrapperPass>(); 5860 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 5861 AU.addRequired<InjectTLIMappingsLegacy>(); 5862 AU.addPreserved<LoopInfoWrapperPass>(); 5863 AU.addPreserved<DominatorTreeWrapperPass>(); 5864 AU.addPreserved<AAResultsWrapperPass>(); 5865 AU.addPreserved<GlobalsAAWrapperPass>(); 5866 AU.setPreservesCFG(); 5867 } 5868 }; 5869 5870 } // end anonymous namespace 5871 5872 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 5873 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 5874 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 5875 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 5876 auto *AA = &AM.getResult<AAManager>(F); 5877 auto *LI = &AM.getResult<LoopAnalysis>(F); 5878 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 5879 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 5880 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 5881 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 5882 5883 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5884 if (!Changed) 5885 return PreservedAnalyses::all(); 5886 5887 PreservedAnalyses PA; 5888 PA.preserveSet<CFGAnalyses>(); 5889 PA.preserve<AAManager>(); 5890 PA.preserve<GlobalsAA>(); 5891 return PA; 5892 } 5893 5894 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 5895 TargetTransformInfo *TTI_, 5896 TargetLibraryInfo *TLI_, AAResults *AA_, 5897 LoopInfo *LI_, DominatorTree *DT_, 5898 AssumptionCache *AC_, DemandedBits *DB_, 5899 OptimizationRemarkEmitter *ORE_) { 5900 if (!RunSLPVectorization) 5901 return false; 5902 SE = SE_; 5903 TTI = TTI_; 5904 TLI = TLI_; 5905 AA = AA_; 5906 LI = LI_; 5907 DT = DT_; 5908 AC = AC_; 5909 DB = DB_; 5910 DL = &F.getParent()->getDataLayout(); 5911 5912 Stores.clear(); 5913 GEPs.clear(); 5914 bool Changed = false; 5915 5916 // If the target claims to have no vector registers don't attempt 5917 // vectorization. 5918 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) 5919 return false; 5920 5921 // Don't vectorize when the attribute NoImplicitFloat is used. 5922 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 5923 return false; 5924 5925 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 5926 5927 // Use the bottom up slp vectorizer to construct chains that start with 5928 // store instructions. 5929 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 5930 5931 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 5932 // delete instructions. 5933 5934 // Scan the blocks in the function in post order. 5935 for (auto BB : post_order(&F.getEntryBlock())) { 5936 collectSeedInstructions(BB); 5937 5938 // Vectorize trees that end at stores. 5939 if (!Stores.empty()) { 5940 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 5941 << " underlying objects.\n"); 5942 Changed |= vectorizeStoreChains(R); 5943 } 5944 5945 // Vectorize trees that end at reductions. 5946 Changed |= vectorizeChainsInBlock(BB, R); 5947 5948 // Vectorize the index computations of getelementptr instructions. This 5949 // is primarily intended to catch gather-like idioms ending at 5950 // non-consecutive loads. 5951 if (!GEPs.empty()) { 5952 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 5953 << " underlying objects.\n"); 5954 Changed |= vectorizeGEPIndices(BB, R); 5955 } 5956 } 5957 5958 if (Changed) { 5959 R.optimizeGatherSequence(); 5960 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 5961 } 5962 return Changed; 5963 } 5964 5965 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 5966 unsigned Idx) { 5967 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 5968 << "\n"); 5969 const unsigned Sz = R.getVectorElementSize(Chain[0]); 5970 const unsigned MinVF = R.getMinVecRegSize() / Sz; 5971 unsigned VF = Chain.size(); 5972 5973 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 5974 return false; 5975 5976 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 5977 << "\n"); 5978 5979 R.buildTree(Chain); 5980 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 5981 // TODO: Handle orders of size less than number of elements in the vector. 5982 if (Order && Order->size() == Chain.size()) { 5983 // TODO: reorder tree nodes without tree rebuilding. 5984 SmallVector<Value *, 4> ReorderedOps(Chain.rbegin(), Chain.rend()); 5985 llvm::transform(*Order, ReorderedOps.begin(), 5986 [Chain](const unsigned Idx) { return Chain[Idx]; }); 5987 R.buildTree(ReorderedOps); 5988 } 5989 if (R.isTreeTinyAndNotFullyVectorizable()) 5990 return false; 5991 if (R.isLoadCombineCandidate()) 5992 return false; 5993 5994 R.computeMinimumValueSizes(); 5995 5996 int Cost = R.getTreeCost(); 5997 5998 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 5999 if (Cost < -SLPCostThreshold) { 6000 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 6001 6002 using namespace ore; 6003 6004 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 6005 cast<StoreInst>(Chain[0])) 6006 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 6007 << " and with tree size " 6008 << NV("TreeSize", R.getTreeSize())); 6009 6010 R.vectorizeTree(); 6011 return true; 6012 } 6013 6014 return false; 6015 } 6016 6017 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 6018 BoUpSLP &R) { 6019 // We may run into multiple chains that merge into a single chain. We mark the 6020 // stores that we vectorized so that we don't visit the same store twice. 6021 BoUpSLP::ValueSet VectorizedStores; 6022 bool Changed = false; 6023 6024 int E = Stores.size(); 6025 SmallBitVector Tails(E, false); 6026 SmallVector<int, 16> ConsecutiveChain(E, E + 1); 6027 int MaxIter = MaxStoreLookup.getValue(); 6028 int IterCnt; 6029 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 6030 &ConsecutiveChain](int K, int Idx) { 6031 if (IterCnt >= MaxIter) 6032 return true; 6033 ++IterCnt; 6034 if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) 6035 return false; 6036 6037 Tails.set(Idx); 6038 ConsecutiveChain[K] = Idx; 6039 return true; 6040 }; 6041 // Do a quadratic search on all of the given stores in reverse order and find 6042 // all of the pairs of stores that follow each other. 6043 for (int Idx = E - 1; Idx >= 0; --Idx) { 6044 // If a store has multiple consecutive store candidates, search according 6045 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 6046 // This is because usually pairing with immediate succeeding or preceding 6047 // candidate create the best chance to find slp vectorization opportunity. 6048 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 6049 IterCnt = 0; 6050 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 6051 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 6052 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 6053 break; 6054 } 6055 6056 // For stores that start but don't end a link in the chain: 6057 for (int Cnt = E; Cnt > 0; --Cnt) { 6058 int I = Cnt - 1; 6059 if (ConsecutiveChain[I] == E + 1 || Tails.test(I)) 6060 continue; 6061 // We found a store instr that starts a chain. Now follow the chain and try 6062 // to vectorize it. 6063 BoUpSLP::ValueList Operands; 6064 // Collect the chain into a list. 6065 while (I != E + 1 && !VectorizedStores.count(Stores[I])) { 6066 Operands.push_back(Stores[I]); 6067 // Move to the next value in the chain. 6068 I = ConsecutiveChain[I]; 6069 } 6070 6071 // If a vector register can't hold 1 element, we are done. 6072 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 6073 unsigned EltSize = R.getVectorElementSize(Stores[0]); 6074 if (MaxVecRegSize % EltSize != 0) 6075 continue; 6076 6077 unsigned MaxElts = MaxVecRegSize / EltSize; 6078 // FIXME: Is division-by-2 the correct step? Should we assert that the 6079 // register size is a power-of-2? 6080 unsigned StartIdx = 0; 6081 for (unsigned Size = llvm::PowerOf2Ceil(MaxElts); Size >= 2; Size /= 2) { 6082 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 6083 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 6084 if (!VectorizedStores.count(Slice.front()) && 6085 !VectorizedStores.count(Slice.back()) && 6086 vectorizeStoreChain(Slice, R, Cnt)) { 6087 // Mark the vectorized stores so that we don't vectorize them again. 6088 VectorizedStores.insert(Slice.begin(), Slice.end()); 6089 Changed = true; 6090 // If we vectorized initial block, no need to try to vectorize it 6091 // again. 6092 if (Cnt == StartIdx) 6093 StartIdx += Size; 6094 Cnt += Size; 6095 continue; 6096 } 6097 ++Cnt; 6098 } 6099 // Check if the whole array was vectorized already - exit. 6100 if (StartIdx >= Operands.size()) 6101 break; 6102 } 6103 } 6104 6105 return Changed; 6106 } 6107 6108 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 6109 // Initialize the collections. We will make a single pass over the block. 6110 Stores.clear(); 6111 GEPs.clear(); 6112 6113 // Visit the store and getelementptr instructions in BB and organize them in 6114 // Stores and GEPs according to the underlying objects of their pointer 6115 // operands. 6116 for (Instruction &I : *BB) { 6117 // Ignore store instructions that are volatile or have a pointer operand 6118 // that doesn't point to a scalar type. 6119 if (auto *SI = dyn_cast<StoreInst>(&I)) { 6120 if (!SI->isSimple()) 6121 continue; 6122 if (!isValidElementType(SI->getValueOperand()->getType())) 6123 continue; 6124 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 6125 } 6126 6127 // Ignore getelementptr instructions that have more than one index, a 6128 // constant index, or a pointer operand that doesn't point to a scalar 6129 // type. 6130 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 6131 auto Idx = GEP->idx_begin()->get(); 6132 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 6133 continue; 6134 if (!isValidElementType(Idx->getType())) 6135 continue; 6136 if (GEP->getType()->isVectorTy()) 6137 continue; 6138 GEPs[GEP->getPointerOperand()].push_back(GEP); 6139 } 6140 } 6141 } 6142 6143 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 6144 if (!A || !B) 6145 return false; 6146 Value *VL[] = {A, B}; 6147 return tryToVectorizeList(VL, R, /*AllowReorder=*/true); 6148 } 6149 6150 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 6151 bool AllowReorder, 6152 ArrayRef<Value *> InsertUses) { 6153 if (VL.size() < 2) 6154 return false; 6155 6156 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 6157 << VL.size() << ".\n"); 6158 6159 // Check that all of the parts are instructions of the same type, 6160 // we permit an alternate opcode via InstructionsState. 6161 InstructionsState S = getSameOpcode(VL); 6162 if (!S.getOpcode()) 6163 return false; 6164 6165 Instruction *I0 = cast<Instruction>(S.OpValue); 6166 // Make sure invalid types (including vector type) are rejected before 6167 // determining vectorization factor for scalar instructions. 6168 for (Value *V : VL) { 6169 Type *Ty = V->getType(); 6170 if (!isValidElementType(Ty)) { 6171 // NOTE: the following will give user internal llvm type name, which may 6172 // not be useful. 6173 R.getORE()->emit([&]() { 6174 std::string type_str; 6175 llvm::raw_string_ostream rso(type_str); 6176 Ty->print(rso); 6177 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 6178 << "Cannot SLP vectorize list: type " 6179 << rso.str() + " is unsupported by vectorizer"; 6180 }); 6181 return false; 6182 } 6183 } 6184 6185 unsigned Sz = R.getVectorElementSize(I0); 6186 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 6187 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 6188 if (MaxVF < 2) { 6189 R.getORE()->emit([&]() { 6190 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 6191 << "Cannot SLP vectorize list: vectorization factor " 6192 << "less than 2 is not supported"; 6193 }); 6194 return false; 6195 } 6196 6197 bool Changed = false; 6198 bool CandidateFound = false; 6199 int MinCost = SLPCostThreshold; 6200 6201 bool CompensateUseCost = 6202 !InsertUses.empty() && llvm::all_of(InsertUses, [](const Value *V) { 6203 return V && isa<InsertElementInst>(V); 6204 }); 6205 assert((!CompensateUseCost || InsertUses.size() == VL.size()) && 6206 "Each scalar expected to have an associated InsertElement user."); 6207 6208 unsigned NextInst = 0, MaxInst = VL.size(); 6209 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 6210 // No actual vectorization should happen, if number of parts is the same as 6211 // provided vectorization factor (i.e. the scalar type is used for vector 6212 // code during codegen). 6213 auto *VecTy = FixedVectorType::get(VL[0]->getType(), VF); 6214 if (TTI->getNumberOfParts(VecTy) == VF) 6215 continue; 6216 for (unsigned I = NextInst; I < MaxInst; ++I) { 6217 unsigned OpsWidth = 0; 6218 6219 if (I + VF > MaxInst) 6220 OpsWidth = MaxInst - I; 6221 else 6222 OpsWidth = VF; 6223 6224 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 6225 break; 6226 6227 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 6228 // Check that a previous iteration of this loop did not delete the Value. 6229 if (llvm::any_of(Ops, [&R](Value *V) { 6230 auto *I = dyn_cast<Instruction>(V); 6231 return I && R.isDeleted(I); 6232 })) 6233 continue; 6234 6235 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 6236 << "\n"); 6237 6238 R.buildTree(Ops); 6239 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 6240 // TODO: check if we can allow reordering for more cases. 6241 if (AllowReorder && Order) { 6242 // TODO: reorder tree nodes without tree rebuilding. 6243 // Conceptually, there is nothing actually preventing us from trying to 6244 // reorder a larger list. In fact, we do exactly this when vectorizing 6245 // reductions. However, at this point, we only expect to get here when 6246 // there are exactly two operations. 6247 assert(Ops.size() == 2); 6248 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 6249 R.buildTree(ReorderedOps, None); 6250 } 6251 if (R.isTreeTinyAndNotFullyVectorizable()) 6252 continue; 6253 6254 R.computeMinimumValueSizes(); 6255 int Cost = R.getTreeCost(); 6256 CandidateFound = true; 6257 if (CompensateUseCost) { 6258 // TODO: Use TTI's getScalarizationOverhead for sequence of inserts 6259 // rather than sum of single inserts as the latter may overestimate 6260 // cost. This work should imply improving cost estimation for extracts 6261 // that added in for external (for vectorization tree) users,i.e. that 6262 // part should also switch to same interface. 6263 // For example, the following case is projected code after SLP: 6264 // %4 = extractelement <4 x i64> %3, i32 0 6265 // %v0 = insertelement <4 x i64> undef, i64 %4, i32 0 6266 // %5 = extractelement <4 x i64> %3, i32 1 6267 // %v1 = insertelement <4 x i64> %v0, i64 %5, i32 1 6268 // %6 = extractelement <4 x i64> %3, i32 2 6269 // %v2 = insertelement <4 x i64> %v1, i64 %6, i32 2 6270 // %7 = extractelement <4 x i64> %3, i32 3 6271 // %v3 = insertelement <4 x i64> %v2, i64 %7, i32 3 6272 // 6273 // Extracts here added by SLP in order to feed users (the inserts) of 6274 // original scalars and contribute to "ExtractCost" at cost evaluation. 6275 // The inserts in turn form sequence to build an aggregate that 6276 // detected by findBuildAggregate routine. 6277 // SLP makes an assumption that such sequence will be optimized away 6278 // later (instcombine) so it tries to compensate ExctractCost with 6279 // cost of insert sequence. 6280 // Current per element cost calculation approach is not quite accurate 6281 // and tends to create bias toward favoring vectorization. 6282 // Switching to the TTI interface might help a bit. 6283 // Alternative solution could be pattern-match to detect a no-op or 6284 // shuffle. 6285 unsigned UserCost = 0; 6286 for (unsigned Lane = 0; Lane < OpsWidth; Lane++) { 6287 auto *IE = cast<InsertElementInst>(InsertUses[I + Lane]); 6288 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) 6289 UserCost += TTI->getVectorInstrCost( 6290 Instruction::InsertElement, IE->getType(), CI->getZExtValue()); 6291 } 6292 LLVM_DEBUG(dbgs() << "SLP: Compensate cost of users by: " << UserCost 6293 << ".\n"); 6294 Cost -= UserCost; 6295 } 6296 6297 MinCost = std::min(MinCost, Cost); 6298 6299 if (Cost < -SLPCostThreshold) { 6300 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 6301 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 6302 cast<Instruction>(Ops[0])) 6303 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 6304 << " and with tree size " 6305 << ore::NV("TreeSize", R.getTreeSize())); 6306 6307 R.vectorizeTree(); 6308 // Move to the next bundle. 6309 I += VF - 1; 6310 NextInst = I + 1; 6311 Changed = true; 6312 } 6313 } 6314 } 6315 6316 if (!Changed && CandidateFound) { 6317 R.getORE()->emit([&]() { 6318 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 6319 << "List vectorization was possible but not beneficial with cost " 6320 << ore::NV("Cost", MinCost) << " >= " 6321 << ore::NV("Treshold", -SLPCostThreshold); 6322 }); 6323 } else if (!Changed) { 6324 R.getORE()->emit([&]() { 6325 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 6326 << "Cannot SLP vectorize list: vectorization was impossible" 6327 << " with available vectorization factors"; 6328 }); 6329 } 6330 return Changed; 6331 } 6332 6333 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 6334 if (!I) 6335 return false; 6336 6337 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 6338 return false; 6339 6340 Value *P = I->getParent(); 6341 6342 // Vectorize in current basic block only. 6343 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 6344 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 6345 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 6346 return false; 6347 6348 // Try to vectorize V. 6349 if (tryToVectorizePair(Op0, Op1, R)) 6350 return true; 6351 6352 auto *A = dyn_cast<BinaryOperator>(Op0); 6353 auto *B = dyn_cast<BinaryOperator>(Op1); 6354 // Try to skip B. 6355 if (B && B->hasOneUse()) { 6356 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 6357 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 6358 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 6359 return true; 6360 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 6361 return true; 6362 } 6363 6364 // Try to skip A. 6365 if (A && A->hasOneUse()) { 6366 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 6367 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 6368 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 6369 return true; 6370 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 6371 return true; 6372 } 6373 return false; 6374 } 6375 6376 /// Generate a shuffle mask to be used in a reduction tree. 6377 /// 6378 /// \param VecLen The length of the vector to be reduced. 6379 /// \param NumEltsToRdx The number of elements that should be reduced in the 6380 /// vector. 6381 /// \param IsPairwise Whether the reduction is a pairwise or splitting 6382 /// reduction. A pairwise reduction will generate a mask of 6383 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 6384 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 6385 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 6386 static SmallVector<int, 32> createRdxShuffleMask(unsigned VecLen, 6387 unsigned NumEltsToRdx, 6388 bool IsPairwise, bool IsLeft) { 6389 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 6390 6391 SmallVector<int, 32> ShuffleMask(VecLen, -1); 6392 6393 if (IsPairwise) 6394 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 6395 for (unsigned i = 0; i != NumEltsToRdx; ++i) 6396 ShuffleMask[i] = 2 * i + !IsLeft; 6397 else 6398 // Move the upper half of the vector to the lower half. 6399 for (unsigned i = 0; i != NumEltsToRdx; ++i) 6400 ShuffleMask[i] = NumEltsToRdx + i; 6401 6402 return ShuffleMask; 6403 } 6404 6405 namespace { 6406 6407 /// Model horizontal reductions. 6408 /// 6409 /// A horizontal reduction is a tree of reduction operations (currently add and 6410 /// fadd) that has operations that can be put into a vector as its leaf. 6411 /// For example, this tree: 6412 /// 6413 /// mul mul mul mul 6414 /// \ / \ / 6415 /// + + 6416 /// \ / 6417 /// + 6418 /// This tree has "mul" as its reduced values and "+" as its reduction 6419 /// operations. A reduction might be feeding into a store or a binary operation 6420 /// feeding a phi. 6421 /// ... 6422 /// \ / 6423 /// + 6424 /// | 6425 /// phi += 6426 /// 6427 /// Or: 6428 /// ... 6429 /// \ / 6430 /// + 6431 /// | 6432 /// *p = 6433 /// 6434 class HorizontalReduction { 6435 using ReductionOpsType = SmallVector<Value *, 16>; 6436 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 6437 ReductionOpsListType ReductionOps; 6438 SmallVector<Value *, 32> ReducedVals; 6439 // Use map vector to make stable output. 6440 MapVector<Instruction *, Value *> ExtraArgs; 6441 6442 /// Kind of the reduction data. 6443 enum ReductionKind { 6444 RK_None, /// Not a reduction. 6445 RK_Arithmetic, /// Binary reduction data. 6446 RK_SMin, /// Signed minimum reduction data. 6447 RK_UMin, /// Unsigned minimum reduction data. 6448 RK_SMax, /// Signed maximum reduction data. 6449 RK_UMax, /// Unsigned maximum reduction data. 6450 }; 6451 6452 /// Contains info about operation, like its opcode, left and right operands. 6453 class OperationData { 6454 /// Opcode of the instruction. 6455 unsigned Opcode = 0; 6456 6457 /// Kind of the reduction operation. 6458 ReductionKind Kind = RK_None; 6459 6460 /// Checks if the reduction operation can be vectorized. 6461 bool isVectorizable() const { 6462 // We currently only support add/mul/logical && min/max reductions. 6463 return ((Kind == RK_Arithmetic && 6464 (Opcode == Instruction::Add || Opcode == Instruction::FAdd || 6465 Opcode == Instruction::Mul || Opcode == Instruction::FMul || 6466 Opcode == Instruction::And || Opcode == Instruction::Or || 6467 Opcode == Instruction::Xor)) || 6468 (Opcode == Instruction::ICmp && 6469 (Kind == RK_SMin || Kind == RK_SMax || 6470 Kind == RK_UMin || Kind == RK_UMax))); 6471 } 6472 6473 /// Creates reduction operation with the current opcode. 6474 Value *createOp(IRBuilder<> &Builder, Value *LHS, Value *RHS, 6475 const Twine &Name) const { 6476 assert(isVectorizable() && 6477 "Expected add|fadd or min/max reduction operation."); 6478 Value *Cmp = nullptr; 6479 switch (Kind) { 6480 case RK_Arithmetic: 6481 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS, 6482 Name); 6483 case RK_SMin: 6484 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6485 Cmp = Builder.CreateICmpSLT(LHS, RHS); 6486 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6487 case RK_SMax: 6488 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6489 Cmp = Builder.CreateICmpSGT(LHS, RHS); 6490 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6491 case RK_UMin: 6492 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6493 Cmp = Builder.CreateICmpULT(LHS, RHS); 6494 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6495 case RK_UMax: 6496 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6497 Cmp = Builder.CreateICmpUGT(LHS, RHS); 6498 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6499 case RK_None: 6500 break; 6501 } 6502 llvm_unreachable("Unknown reduction operation."); 6503 } 6504 6505 public: 6506 explicit OperationData() = default; 6507 6508 /// Construction for reduced values. They are identified by opcode only and 6509 /// don't have associated LHS/RHS values. 6510 explicit OperationData(Instruction &I) { 6511 Opcode = I.getOpcode(); 6512 } 6513 6514 /// Constructor for reduction operations with opcode and its left and 6515 /// right operands. 6516 OperationData(unsigned Opcode, ReductionKind Kind) 6517 : Opcode(Opcode), Kind(Kind) { 6518 assert(Kind != RK_None && "One of the reduction operations is expected."); 6519 } 6520 6521 explicit operator bool() const { return Opcode; } 6522 6523 /// Return true if this operation is any kind of minimum or maximum. 6524 bool isMinMax() const { 6525 switch (Kind) { 6526 case RK_Arithmetic: 6527 return false; 6528 case RK_SMin: 6529 case RK_SMax: 6530 case RK_UMin: 6531 case RK_UMax: 6532 return true; 6533 case RK_None: 6534 break; 6535 } 6536 llvm_unreachable("Reduction kind is not set"); 6537 } 6538 6539 /// Get the index of the first operand. 6540 unsigned getFirstOperandIndex() const { 6541 assert(!!*this && "The opcode is not set."); 6542 // We allow calling this before 'Kind' is set, so handle that specially. 6543 if (Kind == RK_None) 6544 return 0; 6545 return isMinMax() ? 1 : 0; 6546 } 6547 6548 /// Total number of operands in the reduction operation. 6549 unsigned getNumberOfOperands() const { 6550 assert(Kind != RK_None && !!*this && "Expected reduction operation."); 6551 return isMinMax() ? 3 : 2; 6552 } 6553 6554 /// Checks if the instruction is in basic block \p BB. 6555 /// For a min/max reduction check that both compare and select are in \p BB. 6556 bool hasSameParent(Instruction *I, BasicBlock *BB, bool IsRedOp) const { 6557 assert(Kind != RK_None && !!*this && "Expected reduction operation."); 6558 if (IsRedOp && isMinMax()) { 6559 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition()); 6560 return I->getParent() == BB && Cmp && Cmp->getParent() == BB; 6561 } 6562 return I->getParent() == BB; 6563 } 6564 6565 /// Expected number of uses for reduction operations/reduced values. 6566 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const { 6567 assert(Kind != RK_None && !!*this && "Expected reduction operation."); 6568 // SelectInst must be used twice while the condition op must have single 6569 // use only. 6570 if (isMinMax()) 6571 return I->hasNUses(2) && 6572 (!IsReductionOp || 6573 cast<SelectInst>(I)->getCondition()->hasOneUse()); 6574 6575 // Arithmetic reduction operation must be used once only. 6576 return I->hasOneUse(); 6577 } 6578 6579 /// Initializes the list of reduction operations. 6580 void initReductionOps(ReductionOpsListType &ReductionOps) { 6581 assert(Kind != RK_None && !!*this && "Expected reduction operation."); 6582 if (isMinMax()) 6583 ReductionOps.assign(2, ReductionOpsType()); 6584 else 6585 ReductionOps.assign(1, ReductionOpsType()); 6586 } 6587 6588 /// Add all reduction operations for the reduction instruction \p I. 6589 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) { 6590 assert(Kind != RK_None && !!*this && "Expected reduction operation."); 6591 if (isMinMax()) { 6592 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 6593 ReductionOps[1].emplace_back(I); 6594 } else { 6595 ReductionOps[0].emplace_back(I); 6596 } 6597 } 6598 6599 /// Checks if instruction is associative and can be vectorized. 6600 bool isAssociative(Instruction *I) const { 6601 assert(Kind != RK_None && *this && "Expected reduction operation."); 6602 switch (Kind) { 6603 case RK_Arithmetic: 6604 return I->isAssociative(); 6605 case RK_SMin: 6606 case RK_SMax: 6607 case RK_UMin: 6608 case RK_UMax: 6609 assert(Opcode == Instruction::ICmp && 6610 "Only integer compare operation is expected."); 6611 return true; 6612 case RK_None: 6613 break; 6614 } 6615 llvm_unreachable("Reduction kind is not set"); 6616 } 6617 6618 /// Checks if the reduction operation can be vectorized. 6619 bool isVectorizable(Instruction *I) const { 6620 return isVectorizable() && isAssociative(I); 6621 } 6622 6623 /// Checks if two operation data are both a reduction op or both a reduced 6624 /// value. 6625 bool operator==(const OperationData &OD) const { 6626 assert(((Kind != OD.Kind) || (Opcode != 0 && OD.Opcode != 0)) && 6627 "One of the comparing operations is incorrect."); 6628 return Kind == OD.Kind && Opcode == OD.Opcode; 6629 } 6630 bool operator!=(const OperationData &OD) const { return !(*this == OD); } 6631 void clear() { 6632 Opcode = 0; 6633 Kind = RK_None; 6634 } 6635 6636 /// Get the opcode of the reduction operation. 6637 unsigned getOpcode() const { 6638 assert(isVectorizable() && "Expected vectorizable operation."); 6639 return Opcode; 6640 } 6641 6642 /// Get kind of reduction data. 6643 ReductionKind getKind() const { return Kind; } 6644 Value *getLHS(Instruction *I) const { 6645 if (Kind == RK_None) 6646 return nullptr; 6647 return I->getOperand(getFirstOperandIndex()); 6648 } 6649 Value *getRHS(Instruction *I) const { 6650 if (Kind == RK_None) 6651 return nullptr; 6652 return I->getOperand(getFirstOperandIndex() + 1); 6653 } 6654 6655 /// Creates reduction operation with the current opcode with the IR flags 6656 /// from \p ReductionOps. 6657 Value *createOp(IRBuilder<> &Builder, Value *LHS, Value *RHS, 6658 const Twine &Name, 6659 const ReductionOpsListType &ReductionOps) const { 6660 assert(isVectorizable() && 6661 "Expected add|fadd or min/max reduction operation."); 6662 auto *Op = createOp(Builder, LHS, RHS, Name); 6663 switch (Kind) { 6664 case RK_Arithmetic: 6665 propagateIRFlags(Op, ReductionOps[0]); 6666 return Op; 6667 case RK_SMin: 6668 case RK_SMax: 6669 case RK_UMin: 6670 case RK_UMax: 6671 if (auto *SI = dyn_cast<SelectInst>(Op)) 6672 propagateIRFlags(SI->getCondition(), ReductionOps[0]); 6673 propagateIRFlags(Op, ReductionOps[1]); 6674 return Op; 6675 case RK_None: 6676 break; 6677 } 6678 llvm_unreachable("Unknown reduction operation."); 6679 } 6680 /// Creates reduction operation with the current opcode with the IR flags 6681 /// from \p I. 6682 Value *createOp(IRBuilder<> &Builder, Value *LHS, Value *RHS, 6683 const Twine &Name, Instruction *I) const { 6684 assert(isVectorizable() && 6685 "Expected add|fadd or min/max reduction operation."); 6686 auto *Op = createOp(Builder, LHS, RHS, Name); 6687 switch (Kind) { 6688 case RK_Arithmetic: 6689 propagateIRFlags(Op, I); 6690 return Op; 6691 case RK_SMin: 6692 case RK_SMax: 6693 case RK_UMin: 6694 case RK_UMax: 6695 if (auto *SI = dyn_cast<SelectInst>(Op)) { 6696 propagateIRFlags(SI->getCondition(), 6697 cast<SelectInst>(I)->getCondition()); 6698 } 6699 propagateIRFlags(Op, I); 6700 return Op; 6701 case RK_None: 6702 break; 6703 } 6704 llvm_unreachable("Unknown reduction operation."); 6705 } 6706 6707 TargetTransformInfo::ReductionFlags getFlags() const { 6708 TargetTransformInfo::ReductionFlags Flags; 6709 switch (Kind) { 6710 case RK_Arithmetic: 6711 break; 6712 case RK_SMin: 6713 Flags.IsSigned = true; 6714 Flags.IsMaxOp = false; 6715 break; 6716 case RK_SMax: 6717 Flags.IsSigned = true; 6718 Flags.IsMaxOp = true; 6719 break; 6720 case RK_UMin: 6721 Flags.IsSigned = false; 6722 Flags.IsMaxOp = false; 6723 break; 6724 case RK_UMax: 6725 Flags.IsSigned = false; 6726 Flags.IsMaxOp = true; 6727 break; 6728 case RK_None: 6729 llvm_unreachable("Reduction kind is not set"); 6730 } 6731 return Flags; 6732 } 6733 }; 6734 6735 WeakTrackingVH ReductionRoot; 6736 6737 /// The operation data of the reduction operation. 6738 OperationData ReductionData; 6739 6740 /// The operation data of the values we perform a reduction on. 6741 OperationData ReducedValueData; 6742 6743 /// Should we model this reduction as a pairwise reduction tree or a tree that 6744 /// splits the vector in halves and adds those halves. 6745 bool IsPairwiseReduction = false; 6746 6747 /// Checks if the ParentStackElem.first should be marked as a reduction 6748 /// operation with an extra argument or as extra argument itself. 6749 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 6750 Value *ExtraArg) { 6751 if (ExtraArgs.count(ParentStackElem.first)) { 6752 ExtraArgs[ParentStackElem.first] = nullptr; 6753 // We ran into something like: 6754 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 6755 // The whole ParentStackElem.first should be considered as an extra value 6756 // in this case. 6757 // Do not perform analysis of remaining operands of ParentStackElem.first 6758 // instruction, this whole instruction is an extra argument. 6759 ParentStackElem.second = ParentStackElem.first->getNumOperands(); 6760 } else { 6761 // We ran into something like: 6762 // ParentStackElem.first += ... + ExtraArg + ... 6763 ExtraArgs[ParentStackElem.first] = ExtraArg; 6764 } 6765 } 6766 6767 static OperationData getOperationData(Instruction *I) { 6768 if (!I) 6769 return OperationData(); 6770 6771 Value *LHS; 6772 Value *RHS; 6773 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(I)) { 6774 return OperationData(cast<BinaryOperator>(I)->getOpcode(), RK_Arithmetic); 6775 } 6776 if (auto *Select = dyn_cast<SelectInst>(I)) { 6777 // Look for a min/max pattern. 6778 if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6779 return OperationData(Instruction::ICmp, RK_UMin); 6780 } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6781 return OperationData(Instruction::ICmp, RK_SMin); 6782 } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6783 return OperationData(Instruction::ICmp, RK_UMax); 6784 } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6785 return OperationData(Instruction::ICmp, RK_SMax); 6786 } else { 6787 // Try harder: look for min/max pattern based on instructions producing 6788 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 6789 // During the intermediate stages of SLP, it's very common to have 6790 // pattern like this (since optimizeGatherSequence is run only once 6791 // at the end): 6792 // %1 = extractelement <2 x i32> %a, i32 0 6793 // %2 = extractelement <2 x i32> %a, i32 1 6794 // %cond = icmp sgt i32 %1, %2 6795 // %3 = extractelement <2 x i32> %a, i32 0 6796 // %4 = extractelement <2 x i32> %a, i32 1 6797 // %select = select i1 %cond, i32 %3, i32 %4 6798 CmpInst::Predicate Pred; 6799 Instruction *L1; 6800 Instruction *L2; 6801 6802 LHS = Select->getTrueValue(); 6803 RHS = Select->getFalseValue(); 6804 Value *Cond = Select->getCondition(); 6805 6806 // TODO: Support inverse predicates. 6807 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 6808 if (!isa<ExtractElementInst>(RHS) || 6809 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6810 return OperationData(*I); 6811 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 6812 if (!isa<ExtractElementInst>(LHS) || 6813 !L1->isIdenticalTo(cast<Instruction>(LHS))) 6814 return OperationData(*I); 6815 } else { 6816 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 6817 return OperationData(*I); 6818 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 6819 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 6820 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6821 return OperationData(*I); 6822 } 6823 switch (Pred) { 6824 default: 6825 return OperationData(*I); 6826 6827 case CmpInst::ICMP_ULT: 6828 case CmpInst::ICMP_ULE: 6829 return OperationData(Instruction::ICmp, RK_UMin); 6830 6831 case CmpInst::ICMP_SLT: 6832 case CmpInst::ICMP_SLE: 6833 return OperationData(Instruction::ICmp, RK_SMin); 6834 6835 case CmpInst::ICMP_UGT: 6836 case CmpInst::ICMP_UGE: 6837 return OperationData(Instruction::ICmp, RK_UMax); 6838 6839 case CmpInst::ICMP_SGT: 6840 case CmpInst::ICMP_SGE: 6841 return OperationData(Instruction::ICmp, RK_SMax); 6842 } 6843 } 6844 } 6845 return OperationData(*I); 6846 } 6847 6848 public: 6849 HorizontalReduction() = default; 6850 6851 /// Try to find a reduction tree. 6852 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 6853 assert((!Phi || is_contained(Phi->operands(), B)) && 6854 "Thi phi needs to use the binary operator"); 6855 6856 ReductionData = getOperationData(B); 6857 6858 // We could have a initial reductions that is not an add. 6859 // r *= v1 + v2 + v3 + v4 6860 // In such a case start looking for a tree rooted in the first '+'. 6861 if (Phi) { 6862 if (ReductionData.getLHS(B) == Phi) { 6863 Phi = nullptr; 6864 B = dyn_cast<Instruction>(ReductionData.getRHS(B)); 6865 ReductionData = getOperationData(B); 6866 } else if (ReductionData.getRHS(B) == Phi) { 6867 Phi = nullptr; 6868 B = dyn_cast<Instruction>(ReductionData.getLHS(B)); 6869 ReductionData = getOperationData(B); 6870 } 6871 } 6872 6873 if (!ReductionData.isVectorizable(B)) 6874 return false; 6875 6876 Type *Ty = B->getType(); 6877 if (!isValidElementType(Ty)) 6878 return false; 6879 if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy()) 6880 return false; 6881 6882 ReducedValueData.clear(); 6883 ReductionRoot = B; 6884 6885 // Post order traverse the reduction tree starting at B. We only handle true 6886 // trees containing only binary operators. 6887 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 6888 Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex())); 6889 ReductionData.initReductionOps(ReductionOps); 6890 while (!Stack.empty()) { 6891 Instruction *TreeN = Stack.back().first; 6892 unsigned EdgeToVist = Stack.back().second++; 6893 OperationData OpData = getOperationData(TreeN); 6894 bool IsReducedValue = OpData != ReductionData; 6895 6896 // Postorder vist. 6897 if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) { 6898 if (IsReducedValue) 6899 ReducedVals.push_back(TreeN); 6900 else { 6901 auto I = ExtraArgs.find(TreeN); 6902 if (I != ExtraArgs.end() && !I->second) { 6903 // Check if TreeN is an extra argument of its parent operation. 6904 if (Stack.size() <= 1) { 6905 // TreeN can't be an extra argument as it is a root reduction 6906 // operation. 6907 return false; 6908 } 6909 // Yes, TreeN is an extra argument, do not add it to a list of 6910 // reduction operations. 6911 // Stack[Stack.size() - 2] always points to the parent operation. 6912 markExtraArg(Stack[Stack.size() - 2], TreeN); 6913 ExtraArgs.erase(TreeN); 6914 } else 6915 ReductionData.addReductionOps(TreeN, ReductionOps); 6916 } 6917 // Retract. 6918 Stack.pop_back(); 6919 continue; 6920 } 6921 6922 // Visit left or right. 6923 Value *NextV = TreeN->getOperand(EdgeToVist); 6924 if (NextV != Phi) { 6925 auto *I = dyn_cast<Instruction>(NextV); 6926 OpData = getOperationData(I); 6927 // Continue analysis if the next operand is a reduction operation or 6928 // (possibly) a reduced value. If the reduced value opcode is not set, 6929 // the first met operation != reduction operation is considered as the 6930 // reduced value class. 6931 if (I && (!ReducedValueData || OpData == ReducedValueData || 6932 OpData == ReductionData)) { 6933 const bool IsReductionOperation = OpData == ReductionData; 6934 // Only handle trees in the current basic block. 6935 if (!ReductionData.hasSameParent(I, B->getParent(), 6936 IsReductionOperation)) { 6937 // I is an extra argument for TreeN (its parent operation). 6938 markExtraArg(Stack.back(), I); 6939 continue; 6940 } 6941 6942 // Each tree node needs to have minimal number of users except for the 6943 // ultimate reduction. 6944 if (!ReductionData.hasRequiredNumberOfUses(I, 6945 OpData == ReductionData) && 6946 I != B) { 6947 // I is an extra argument for TreeN (its parent operation). 6948 markExtraArg(Stack.back(), I); 6949 continue; 6950 } 6951 6952 if (IsReductionOperation) { 6953 // We need to be able to reassociate the reduction operations. 6954 if (!OpData.isAssociative(I)) { 6955 // I is an extra argument for TreeN (its parent operation). 6956 markExtraArg(Stack.back(), I); 6957 continue; 6958 } 6959 } else if (ReducedValueData && 6960 ReducedValueData != OpData) { 6961 // Make sure that the opcodes of the operations that we are going to 6962 // reduce match. 6963 // I is an extra argument for TreeN (its parent operation). 6964 markExtraArg(Stack.back(), I); 6965 continue; 6966 } else if (!ReducedValueData) 6967 ReducedValueData = OpData; 6968 6969 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex())); 6970 continue; 6971 } 6972 } 6973 // NextV is an extra argument for TreeN (its parent operation). 6974 markExtraArg(Stack.back(), NextV); 6975 } 6976 return true; 6977 } 6978 6979 /// Attempt to vectorize the tree found by matchAssociativeReduction. 6980 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 6981 // If there are a sufficient number of reduction values, reduce 6982 // to a nearby power-of-2. We can safely generate oversized 6983 // vectors and rely on the backend to split them to legal sizes. 6984 unsigned NumReducedVals = ReducedVals.size(); 6985 if (NumReducedVals < 4) 6986 return false; 6987 6988 // FIXME: Fast-math-flags should be set based on the instructions in the 6989 // reduction (not all of 'fast' are required). 6990 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 6991 FastMathFlags Unsafe; 6992 Unsafe.setFast(); 6993 Builder.setFastMathFlags(Unsafe); 6994 6995 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 6996 // The same extra argument may be used several times, so log each attempt 6997 // to use it. 6998 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 6999 assert(Pair.first && "DebugLoc must be set."); 7000 ExternallyUsedValues[Pair.second].push_back(Pair.first); 7001 } 7002 7003 // The compare instruction of a min/max is the insertion point for new 7004 // instructions and may be replaced with a new compare instruction. 7005 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 7006 assert(isa<SelectInst>(RdxRootInst) && 7007 "Expected min/max reduction to have select root instruction"); 7008 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 7009 assert(isa<Instruction>(ScalarCond) && 7010 "Expected min/max reduction to have compare condition"); 7011 return cast<Instruction>(ScalarCond); 7012 }; 7013 7014 // The reduction root is used as the insertion point for new instructions, 7015 // so set it as externally used to prevent it from being deleted. 7016 ExternallyUsedValues[ReductionRoot]; 7017 SmallVector<Value *, 16> IgnoreList; 7018 for (ReductionOpsType &RdxOp : ReductionOps) 7019 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 7020 7021 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 7022 if (NumReducedVals > ReduxWidth) { 7023 // In the loop below, we are building a tree based on a window of 7024 // 'ReduxWidth' values. 7025 // If the operands of those values have common traits (compare predicate, 7026 // constant operand, etc), then we want to group those together to 7027 // minimize the cost of the reduction. 7028 7029 // TODO: This should be extended to count common operands for 7030 // compares and binops. 7031 7032 // Step 1: Count the number of times each compare predicate occurs. 7033 SmallDenseMap<unsigned, unsigned> PredCountMap; 7034 for (Value *RdxVal : ReducedVals) { 7035 CmpInst::Predicate Pred; 7036 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 7037 ++PredCountMap[Pred]; 7038 } 7039 // Step 2: Sort the values so the most common predicates come first. 7040 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 7041 CmpInst::Predicate PredA, PredB; 7042 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 7043 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 7044 return PredCountMap[PredA] > PredCountMap[PredB]; 7045 } 7046 return false; 7047 }); 7048 } 7049 7050 Value *VectorizedTree = nullptr; 7051 unsigned i = 0; 7052 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 7053 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 7054 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 7055 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 7056 if (Order) { 7057 assert(Order->size() == VL.size() && 7058 "Order size must be the same as number of vectorized " 7059 "instructions."); 7060 // TODO: reorder tree nodes without tree rebuilding. 7061 SmallVector<Value *, 4> ReorderedOps(VL.size()); 7062 llvm::transform(*Order, ReorderedOps.begin(), 7063 [VL](const unsigned Idx) { return VL[Idx]; }); 7064 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 7065 } 7066 if (V.isTreeTinyAndNotFullyVectorizable()) 7067 break; 7068 if (V.isLoadCombineReductionCandidate(ReductionData.getOpcode())) 7069 break; 7070 7071 V.computeMinimumValueSizes(); 7072 7073 // Estimate cost. 7074 int TreeCost = V.getTreeCost(); 7075 int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth); 7076 int Cost = TreeCost + ReductionCost; 7077 if (Cost >= -SLPCostThreshold) { 7078 V.getORE()->emit([&]() { 7079 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 7080 cast<Instruction>(VL[0])) 7081 << "Vectorizing horizontal reduction is possible" 7082 << "but not beneficial with cost " << ore::NV("Cost", Cost) 7083 << " and threshold " 7084 << ore::NV("Threshold", -SLPCostThreshold); 7085 }); 7086 break; 7087 } 7088 7089 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 7090 << Cost << ". (HorRdx)\n"); 7091 V.getORE()->emit([&]() { 7092 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 7093 cast<Instruction>(VL[0])) 7094 << "Vectorized horizontal reduction with cost " 7095 << ore::NV("Cost", Cost) << " and with tree size " 7096 << ore::NV("TreeSize", V.getTreeSize()); 7097 }); 7098 7099 // Vectorize a tree. 7100 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 7101 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 7102 7103 // Emit a reduction. For min/max, the root is a select, but the insertion 7104 // point is the compare condition of that select. 7105 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 7106 if (ReductionData.isMinMax()) 7107 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 7108 else 7109 Builder.SetInsertPoint(RdxRootInst); 7110 7111 Value *ReducedSubTree = 7112 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 7113 7114 if (!VectorizedTree) { 7115 // Initialize the final value in the reduction. 7116 VectorizedTree = ReducedSubTree; 7117 } else { 7118 // Update the final value in the reduction. 7119 Builder.SetCurrentDebugLocation(Loc); 7120 VectorizedTree = ReductionData.createOp( 7121 Builder, VectorizedTree, ReducedSubTree, "op.rdx", ReductionOps); 7122 } 7123 i += ReduxWidth; 7124 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 7125 } 7126 7127 if (VectorizedTree) { 7128 // Finish the reduction. 7129 for (; i < NumReducedVals; ++i) { 7130 auto *I = cast<Instruction>(ReducedVals[i]); 7131 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 7132 VectorizedTree = ReductionData.createOp(Builder, VectorizedTree, I, "", 7133 ReductionOps); 7134 } 7135 for (auto &Pair : ExternallyUsedValues) { 7136 // Add each externally used value to the final reduction. 7137 for (auto *I : Pair.second) { 7138 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 7139 VectorizedTree = ReductionData.createOp(Builder, VectorizedTree, 7140 Pair.first, "op.extra", I); 7141 } 7142 } 7143 7144 // Update users. For a min/max reduction that ends with a compare and 7145 // select, we also have to RAUW for the compare instruction feeding the 7146 // reduction root. That's because the original compare may have extra uses 7147 // besides the final select of the reduction. 7148 if (ReductionData.isMinMax()) { 7149 if (auto *VecSelect = dyn_cast<SelectInst>(VectorizedTree)) { 7150 Instruction *ScalarCmp = 7151 getCmpForMinMaxReduction(cast<Instruction>(ReductionRoot)); 7152 ScalarCmp->replaceAllUsesWith(VecSelect->getCondition()); 7153 } 7154 } 7155 ReductionRoot->replaceAllUsesWith(VectorizedTree); 7156 7157 // Mark all scalar reduction ops for deletion, they are replaced by the 7158 // vector reductions. 7159 V.eraseInstructions(IgnoreList); 7160 } 7161 return VectorizedTree != nullptr; 7162 } 7163 7164 unsigned numReductionValues() const { 7165 return ReducedVals.size(); 7166 } 7167 7168 private: 7169 /// Calculate the cost of a reduction. 7170 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 7171 unsigned ReduxWidth) { 7172 Type *ScalarTy = FirstReducedVal->getType(); 7173 auto *VecTy = FixedVectorType::get(ScalarTy, ReduxWidth); 7174 7175 int PairwiseRdxCost; 7176 int SplittingRdxCost; 7177 switch (ReductionData.getKind()) { 7178 case RK_Arithmetic: 7179 PairwiseRdxCost = 7180 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 7181 /*IsPairwiseForm=*/true); 7182 SplittingRdxCost = 7183 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 7184 /*IsPairwiseForm=*/false); 7185 break; 7186 case RK_SMin: 7187 case RK_SMax: 7188 case RK_UMin: 7189 case RK_UMax: { 7190 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VecTy)); 7191 bool IsUnsigned = ReductionData.getKind() == RK_UMin || 7192 ReductionData.getKind() == RK_UMax; 7193 PairwiseRdxCost = 7194 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 7195 /*IsPairwiseForm=*/true, IsUnsigned); 7196 SplittingRdxCost = 7197 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 7198 /*IsPairwiseForm=*/false, IsUnsigned); 7199 break; 7200 } 7201 case RK_None: 7202 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 7203 } 7204 7205 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 7206 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 7207 7208 int ScalarReduxCost = 0; 7209 switch (ReductionData.getKind()) { 7210 case RK_Arithmetic: 7211 ScalarReduxCost = 7212 TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy); 7213 break; 7214 case RK_SMin: 7215 case RK_SMax: 7216 case RK_UMin: 7217 case RK_UMax: 7218 ScalarReduxCost = 7219 TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) + 7220 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 7221 CmpInst::makeCmpResultType(ScalarTy)); 7222 break; 7223 case RK_None: 7224 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 7225 } 7226 ScalarReduxCost *= (ReduxWidth - 1); 7227 7228 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 7229 << " for reduction that starts with " << *FirstReducedVal 7230 << " (It is a " 7231 << (IsPairwiseReduction ? "pairwise" : "splitting") 7232 << " reduction)\n"); 7233 7234 return VecReduxCost - ScalarReduxCost; 7235 } 7236 7237 /// Emit a horizontal reduction of the vectorized value. 7238 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 7239 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 7240 assert(VectorizedValue && "Need to have a vectorized tree node"); 7241 assert(isPowerOf2_32(ReduxWidth) && 7242 "We only handle power-of-two reductions for now"); 7243 7244 if (!IsPairwiseReduction) { 7245 // FIXME: The builder should use an FMF guard. It should not be hard-coded 7246 // to 'fast'. 7247 assert(Builder.getFastMathFlags().isFast() && "Expected 'fast' FMF"); 7248 return createSimpleTargetReduction( 7249 Builder, TTI, ReductionData.getOpcode(), VectorizedValue, 7250 ReductionData.getFlags(), ReductionOps.back()); 7251 } 7252 7253 Value *TmpVec = VectorizedValue; 7254 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 7255 auto LeftMask = createRdxShuffleMask(ReduxWidth, i, true, true); 7256 auto RightMask = createRdxShuffleMask(ReduxWidth, i, true, false); 7257 7258 Value *LeftShuf = 7259 Builder.CreateShuffleVector(TmpVec, LeftMask, "rdx.shuf.l"); 7260 Value *RightShuf = 7261 Builder.CreateShuffleVector(TmpVec, RightMask, "rdx.shuf.r"); 7262 TmpVec = ReductionData.createOp(Builder, LeftShuf, RightShuf, "op.rdx", 7263 ReductionOps); 7264 } 7265 7266 // The result is in the first element of the vector. 7267 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 7268 } 7269 }; 7270 7271 } // end anonymous namespace 7272 7273 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 7274 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 7275 return cast<FixedVectorType>(IE->getType())->getNumElements(); 7276 7277 unsigned AggregateSize = 1; 7278 auto *IV = cast<InsertValueInst>(InsertInst); 7279 Type *CurrentType = IV->getType(); 7280 do { 7281 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 7282 for (auto *Elt : ST->elements()) 7283 if (Elt != ST->getElementType(0)) // check homogeneity 7284 return None; 7285 AggregateSize *= ST->getNumElements(); 7286 CurrentType = ST->getElementType(0); 7287 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 7288 AggregateSize *= AT->getNumElements(); 7289 CurrentType = AT->getElementType(); 7290 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 7291 AggregateSize *= VT->getNumElements(); 7292 return AggregateSize; 7293 } else if (CurrentType->isSingleValueType()) { 7294 return AggregateSize; 7295 } else { 7296 return None; 7297 } 7298 } while (true); 7299 } 7300 7301 static Optional<unsigned> getOperandIndex(Instruction *InsertInst, 7302 unsigned OperandOffset) { 7303 unsigned OperandIndex = OperandOffset; 7304 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 7305 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 7306 auto *VT = cast<FixedVectorType>(IE->getType()); 7307 OperandIndex *= VT->getNumElements(); 7308 OperandIndex += CI->getZExtValue(); 7309 return OperandIndex; 7310 } 7311 return None; 7312 } 7313 7314 auto *IV = cast<InsertValueInst>(InsertInst); 7315 Type *CurrentType = IV->getType(); 7316 for (unsigned int Index : IV->indices()) { 7317 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 7318 OperandIndex *= ST->getNumElements(); 7319 CurrentType = ST->getElementType(Index); 7320 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 7321 OperandIndex *= AT->getNumElements(); 7322 CurrentType = AT->getElementType(); 7323 } else { 7324 return None; 7325 } 7326 OperandIndex += Index; 7327 } 7328 return OperandIndex; 7329 } 7330 7331 static bool findBuildAggregate_rec(Instruction *LastInsertInst, 7332 TargetTransformInfo *TTI, 7333 SmallVectorImpl<Value *> &BuildVectorOpds, 7334 SmallVectorImpl<Value *> &InsertElts, 7335 unsigned OperandOffset) { 7336 do { 7337 Value *InsertedOperand = LastInsertInst->getOperand(1); 7338 Optional<unsigned> OperandIndex = 7339 getOperandIndex(LastInsertInst, OperandOffset); 7340 if (!OperandIndex) 7341 return false; 7342 if (isa<InsertElementInst>(InsertedOperand) || 7343 isa<InsertValueInst>(InsertedOperand)) { 7344 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 7345 BuildVectorOpds, InsertElts, *OperandIndex)) 7346 return false; 7347 } else { 7348 BuildVectorOpds[*OperandIndex] = InsertedOperand; 7349 InsertElts[*OperandIndex] = LastInsertInst; 7350 } 7351 if (isa<UndefValue>(LastInsertInst->getOperand(0))) 7352 return true; 7353 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 7354 } while (LastInsertInst != nullptr && 7355 (isa<InsertValueInst>(LastInsertInst) || 7356 isa<InsertElementInst>(LastInsertInst)) && 7357 LastInsertInst->hasOneUse()); 7358 return false; 7359 } 7360 7361 /// Recognize construction of vectors like 7362 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 7363 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 7364 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 7365 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 7366 /// starting from the last insertelement or insertvalue instruction. 7367 /// 7368 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 7369 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 7370 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 7371 /// 7372 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 7373 /// 7374 /// \return true if it matches. 7375 static bool findBuildAggregate(Instruction *LastInsertInst, 7376 TargetTransformInfo *TTI, 7377 SmallVectorImpl<Value *> &BuildVectorOpds, 7378 SmallVectorImpl<Value *> &InsertElts) { 7379 7380 assert((isa<InsertElementInst>(LastInsertInst) || 7381 isa<InsertValueInst>(LastInsertInst)) && 7382 "Expected insertelement or insertvalue instruction!"); 7383 7384 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 7385 "Expected empty result vectors!"); 7386 7387 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 7388 if (!AggregateSize) 7389 return false; 7390 BuildVectorOpds.resize(*AggregateSize); 7391 InsertElts.resize(*AggregateSize); 7392 7393 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 7394 0)) { 7395 llvm::erase_if(BuildVectorOpds, 7396 [](const Value *V) { return V == nullptr; }); 7397 llvm::erase_if(InsertElts, [](const Value *V) { return V == nullptr; }); 7398 if (BuildVectorOpds.size() >= 2) 7399 return true; 7400 } 7401 7402 return false; 7403 } 7404 7405 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 7406 return V->getType() < V2->getType(); 7407 } 7408 7409 /// Try and get a reduction value from a phi node. 7410 /// 7411 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 7412 /// if they come from either \p ParentBB or a containing loop latch. 7413 /// 7414 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 7415 /// if not possible. 7416 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 7417 BasicBlock *ParentBB, LoopInfo *LI) { 7418 // There are situations where the reduction value is not dominated by the 7419 // reduction phi. Vectorizing such cases has been reported to cause 7420 // miscompiles. See PR25787. 7421 auto DominatedReduxValue = [&](Value *R) { 7422 return isa<Instruction>(R) && 7423 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 7424 }; 7425 7426 Value *Rdx = nullptr; 7427 7428 // Return the incoming value if it comes from the same BB as the phi node. 7429 if (P->getIncomingBlock(0) == ParentBB) { 7430 Rdx = P->getIncomingValue(0); 7431 } else if (P->getIncomingBlock(1) == ParentBB) { 7432 Rdx = P->getIncomingValue(1); 7433 } 7434 7435 if (Rdx && DominatedReduxValue(Rdx)) 7436 return Rdx; 7437 7438 // Otherwise, check whether we have a loop latch to look at. 7439 Loop *BBL = LI->getLoopFor(ParentBB); 7440 if (!BBL) 7441 return nullptr; 7442 BasicBlock *BBLatch = BBL->getLoopLatch(); 7443 if (!BBLatch) 7444 return nullptr; 7445 7446 // There is a loop latch, return the incoming value if it comes from 7447 // that. This reduction pattern occasionally turns up. 7448 if (P->getIncomingBlock(0) == BBLatch) { 7449 Rdx = P->getIncomingValue(0); 7450 } else if (P->getIncomingBlock(1) == BBLatch) { 7451 Rdx = P->getIncomingValue(1); 7452 } 7453 7454 if (Rdx && DominatedReduxValue(Rdx)) 7455 return Rdx; 7456 7457 return nullptr; 7458 } 7459 7460 /// Attempt to reduce a horizontal reduction. 7461 /// If it is legal to match a horizontal reduction feeding the phi node \a P 7462 /// with reduction operators \a Root (or one of its operands) in a basic block 7463 /// \a BB, then check if it can be done. If horizontal reduction is not found 7464 /// and root instruction is a binary operation, vectorization of the operands is 7465 /// attempted. 7466 /// \returns true if a horizontal reduction was matched and reduced or operands 7467 /// of one of the binary instruction were vectorized. 7468 /// \returns false if a horizontal reduction was not matched (or not possible) 7469 /// or no vectorization of any binary operation feeding \a Root instruction was 7470 /// performed. 7471 static bool tryToVectorizeHorReductionOrInstOperands( 7472 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 7473 TargetTransformInfo *TTI, 7474 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 7475 if (!ShouldVectorizeHor) 7476 return false; 7477 7478 if (!Root) 7479 return false; 7480 7481 if (Root->getParent() != BB || isa<PHINode>(Root)) 7482 return false; 7483 // Start analysis starting from Root instruction. If horizontal reduction is 7484 // found, try to vectorize it. If it is not a horizontal reduction or 7485 // vectorization is not possible or not effective, and currently analyzed 7486 // instruction is a binary operation, try to vectorize the operands, using 7487 // pre-order DFS traversal order. If the operands were not vectorized, repeat 7488 // the same procedure considering each operand as a possible root of the 7489 // horizontal reduction. 7490 // Interrupt the process if the Root instruction itself was vectorized or all 7491 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 7492 SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0}); 7493 SmallPtrSet<Value *, 8> VisitedInstrs; 7494 bool Res = false; 7495 while (!Stack.empty()) { 7496 Instruction *Inst; 7497 unsigned Level; 7498 std::tie(Inst, Level) = Stack.pop_back_val(); 7499 Value *B0, *B1; 7500 bool IsBinop = match(Inst, m_BinOp(m_Value(B0), m_Value(B1))); 7501 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 7502 if (IsBinop || IsSelect) { 7503 HorizontalReduction HorRdx; 7504 if (HorRdx.matchAssociativeReduction(P, Inst)) { 7505 if (HorRdx.tryToReduce(R, TTI)) { 7506 Res = true; 7507 // Set P to nullptr to avoid re-analysis of phi node in 7508 // matchAssociativeReduction function unless this is the root node. 7509 P = nullptr; 7510 continue; 7511 } 7512 } 7513 if (P && IsBinop) { 7514 Inst = dyn_cast<Instruction>(B0); 7515 if (Inst == P) 7516 Inst = dyn_cast<Instruction>(B1); 7517 if (!Inst) { 7518 // Set P to nullptr to avoid re-analysis of phi node in 7519 // matchAssociativeReduction function unless this is the root node. 7520 P = nullptr; 7521 continue; 7522 } 7523 } 7524 } 7525 // Set P to nullptr to avoid re-analysis of phi node in 7526 // matchAssociativeReduction function unless this is the root node. 7527 P = nullptr; 7528 if (Vectorize(Inst, R)) { 7529 Res = true; 7530 continue; 7531 } 7532 7533 // Try to vectorize operands. 7534 // Continue analysis for the instruction from the same basic block only to 7535 // save compile time. 7536 if (++Level < RecursionMaxDepth) 7537 for (auto *Op : Inst->operand_values()) 7538 if (VisitedInstrs.insert(Op).second) 7539 if (auto *I = dyn_cast<Instruction>(Op)) 7540 if (!isa<PHINode>(I) && !R.isDeleted(I) && I->getParent() == BB) 7541 Stack.emplace_back(I, Level); 7542 } 7543 return Res; 7544 } 7545 7546 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 7547 BasicBlock *BB, BoUpSLP &R, 7548 TargetTransformInfo *TTI) { 7549 auto *I = dyn_cast_or_null<Instruction>(V); 7550 if (!I) 7551 return false; 7552 7553 if (!isa<BinaryOperator>(I)) 7554 P = nullptr; 7555 // Try to match and vectorize a horizontal reduction. 7556 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 7557 return tryToVectorize(I, R); 7558 }; 7559 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 7560 ExtraVectorization); 7561 } 7562 7563 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 7564 BasicBlock *BB, BoUpSLP &R) { 7565 const DataLayout &DL = BB->getModule()->getDataLayout(); 7566 if (!R.canMapToVector(IVI->getType(), DL)) 7567 return false; 7568 7569 SmallVector<Value *, 16> BuildVectorOpds; 7570 SmallVector<Value *, 16> BuildVectorInsts; 7571 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 7572 return false; 7573 7574 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 7575 // Aggregate value is unlikely to be processed in vector register, we need to 7576 // extract scalars into scalar registers, so NeedExtraction is set true. 7577 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false, 7578 BuildVectorInsts); 7579 } 7580 7581 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 7582 BasicBlock *BB, BoUpSLP &R) { 7583 SmallVector<Value *, 16> BuildVectorInsts; 7584 SmallVector<Value *, 16> BuildVectorOpds; 7585 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 7586 (llvm::all_of(BuildVectorOpds, 7587 [](Value *V) { return isa<ExtractElementInst>(V); }) && 7588 isShuffle(BuildVectorOpds))) 7589 return false; 7590 7591 // Vectorize starting with the build vector operands ignoring the BuildVector 7592 // instructions for the purpose of scheduling and user extraction. 7593 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false, 7594 BuildVectorInsts); 7595 } 7596 7597 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 7598 BoUpSLP &R) { 7599 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 7600 return true; 7601 7602 bool OpsChanged = false; 7603 for (int Idx = 0; Idx < 2; ++Idx) { 7604 OpsChanged |= 7605 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 7606 } 7607 return OpsChanged; 7608 } 7609 7610 bool SLPVectorizerPass::vectorizeSimpleInstructions( 7611 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R) { 7612 bool OpsChanged = false; 7613 for (auto *I : reverse(Instructions)) { 7614 if (R.isDeleted(I)) 7615 continue; 7616 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 7617 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 7618 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 7619 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 7620 else if (auto *CI = dyn_cast<CmpInst>(I)) 7621 OpsChanged |= vectorizeCmpInst(CI, BB, R); 7622 } 7623 Instructions.clear(); 7624 return OpsChanged; 7625 } 7626 7627 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 7628 bool Changed = false; 7629 SmallVector<Value *, 4> Incoming; 7630 SmallPtrSet<Value *, 16> VisitedInstrs; 7631 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 7632 7633 bool HaveVectorizedPhiNodes = true; 7634 while (HaveVectorizedPhiNodes) { 7635 HaveVectorizedPhiNodes = false; 7636 7637 // Collect the incoming values from the PHIs. 7638 Incoming.clear(); 7639 for (Instruction &I : *BB) { 7640 PHINode *P = dyn_cast<PHINode>(&I); 7641 if (!P) 7642 break; 7643 7644 if (!VisitedInstrs.count(P) && !R.isDeleted(P)) 7645 Incoming.push_back(P); 7646 } 7647 7648 // Sort by type. 7649 llvm::stable_sort(Incoming, PhiTypeSorterFunc); 7650 7651 // Try to vectorize elements base on their type. 7652 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 7653 E = Incoming.end(); 7654 IncIt != E;) { 7655 7656 // Look for the next elements with the same type. 7657 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 7658 Type *EltTy = (*IncIt)->getType(); 7659 7660 assert(EltTy->isSized() && 7661 "Instructions should all be sized at this point"); 7662 TypeSize EltTS = DL->getTypeSizeInBits(EltTy); 7663 if (EltTS.isScalable()) { 7664 // For now, just ignore vectorizing scalable types. 7665 ++IncIt; 7666 continue; 7667 } 7668 7669 unsigned EltSize = EltTS.getFixedSize(); 7670 unsigned MaxNumElts = MaxVecRegSize / EltSize; 7671 if (MaxNumElts < 2) { 7672 ++IncIt; 7673 continue; 7674 } 7675 7676 while (SameTypeIt != E && 7677 (*SameTypeIt)->getType() == EltTy && 7678 static_cast<unsigned>(SameTypeIt - IncIt) < MaxNumElts) { 7679 VisitedInstrs.insert(*SameTypeIt); 7680 ++SameTypeIt; 7681 } 7682 7683 // Try to vectorize them. 7684 unsigned NumElts = (SameTypeIt - IncIt); 7685 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 7686 << NumElts << ")\n"); 7687 // The order in which the phi nodes appear in the program does not matter. 7688 // So allow tryToVectorizeList to reorder them if it is beneficial. This 7689 // is done when there are exactly two elements since tryToVectorizeList 7690 // asserts that there are only two values when AllowReorder is true. 7691 bool AllowReorder = NumElts == 2; 7692 if (NumElts > 1 && 7693 tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, AllowReorder)) { 7694 // Success start over because instructions might have been changed. 7695 HaveVectorizedPhiNodes = true; 7696 Changed = true; 7697 break; 7698 } 7699 7700 // Start over at the next instruction of a different type (or the end). 7701 IncIt = SameTypeIt; 7702 } 7703 } 7704 7705 VisitedInstrs.clear(); 7706 7707 SmallVector<Instruction *, 8> PostProcessInstructions; 7708 SmallDenseSet<Instruction *, 4> KeyNodes; 7709 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 7710 // Skip instructions with scalable type. The num of elements is unknown at 7711 // compile-time for scalable type. 7712 if (isa<ScalableVectorType>(it->getType())) 7713 continue; 7714 7715 // Skip instructions marked for the deletion. 7716 if (R.isDeleted(&*it)) 7717 continue; 7718 // We may go through BB multiple times so skip the one we have checked. 7719 if (!VisitedInstrs.insert(&*it).second) { 7720 if (it->use_empty() && KeyNodes.count(&*it) > 0 && 7721 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 7722 // We would like to start over since some instructions are deleted 7723 // and the iterator may become invalid value. 7724 Changed = true; 7725 it = BB->begin(); 7726 e = BB->end(); 7727 } 7728 continue; 7729 } 7730 7731 if (isa<DbgInfoIntrinsic>(it)) 7732 continue; 7733 7734 // Try to vectorize reductions that use PHINodes. 7735 if (PHINode *P = dyn_cast<PHINode>(it)) { 7736 // Check that the PHI is a reduction PHI. 7737 if (P->getNumIncomingValues() == 2) { 7738 // Try to match and vectorize a horizontal reduction. 7739 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 7740 TTI)) { 7741 Changed = true; 7742 it = BB->begin(); 7743 e = BB->end(); 7744 continue; 7745 } 7746 } 7747 // Try to vectorize the incoming values of the PHI, to catch reductions 7748 // that feed into PHIs. 7749 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 7750 // Skip if the incoming block is the current BB for now. Also, bypass 7751 // unreachable IR for efficiency and to avoid crashing. 7752 // TODO: Collect the skipped incoming values and try to vectorize them 7753 // after processing BB. 7754 if (BB == P->getIncomingBlock(I) || 7755 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 7756 continue; 7757 7758 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 7759 P->getIncomingBlock(I), R, TTI); 7760 } 7761 continue; 7762 } 7763 7764 // Ran into an instruction without users, like terminator, or function call 7765 // with ignored return value, store. Ignore unused instructions (basing on 7766 // instruction type, except for CallInst and InvokeInst). 7767 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 7768 isa<InvokeInst>(it))) { 7769 KeyNodes.insert(&*it); 7770 bool OpsChanged = false; 7771 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 7772 for (auto *V : it->operand_values()) { 7773 // Try to match and vectorize a horizontal reduction. 7774 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 7775 } 7776 } 7777 // Start vectorization of post-process list of instructions from the 7778 // top-tree instructions to try to vectorize as many instructions as 7779 // possible. 7780 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 7781 if (OpsChanged) { 7782 // We would like to start over since some instructions are deleted 7783 // and the iterator may become invalid value. 7784 Changed = true; 7785 it = BB->begin(); 7786 e = BB->end(); 7787 continue; 7788 } 7789 } 7790 7791 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 7792 isa<InsertValueInst>(it)) 7793 PostProcessInstructions.push_back(&*it); 7794 } 7795 7796 return Changed; 7797 } 7798 7799 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 7800 auto Changed = false; 7801 for (auto &Entry : GEPs) { 7802 // If the getelementptr list has fewer than two elements, there's nothing 7803 // to do. 7804 if (Entry.second.size() < 2) 7805 continue; 7806 7807 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 7808 << Entry.second.size() << ".\n"); 7809 7810 // Process the GEP list in chunks suitable for the target's supported 7811 // vector size. If a vector register can't hold 1 element, we are done. We 7812 // are trying to vectorize the index computations, so the maximum number of 7813 // elements is based on the size of the index expression, rather than the 7814 // size of the GEP itself (the target's pointer size). 7815 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 7816 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 7817 if (MaxVecRegSize < EltSize) 7818 continue; 7819 7820 unsigned MaxElts = MaxVecRegSize / EltSize; 7821 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 7822 auto Len = std::min<unsigned>(BE - BI, MaxElts); 7823 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 7824 7825 // Initialize a set a candidate getelementptrs. Note that we use a 7826 // SetVector here to preserve program order. If the index computations 7827 // are vectorizable and begin with loads, we want to minimize the chance 7828 // of having to reorder them later. 7829 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 7830 7831 // Some of the candidates may have already been vectorized after we 7832 // initially collected them. If so, they are marked as deleted, so remove 7833 // them from the set of candidates. 7834 Candidates.remove_if( 7835 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 7836 7837 // Remove from the set of candidates all pairs of getelementptrs with 7838 // constant differences. Such getelementptrs are likely not good 7839 // candidates for vectorization in a bottom-up phase since one can be 7840 // computed from the other. We also ensure all candidate getelementptr 7841 // indices are unique. 7842 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 7843 auto *GEPI = GEPList[I]; 7844 if (!Candidates.count(GEPI)) 7845 continue; 7846 auto *SCEVI = SE->getSCEV(GEPList[I]); 7847 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 7848 auto *GEPJ = GEPList[J]; 7849 auto *SCEVJ = SE->getSCEV(GEPList[J]); 7850 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 7851 Candidates.remove(GEPI); 7852 Candidates.remove(GEPJ); 7853 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 7854 Candidates.remove(GEPJ); 7855 } 7856 } 7857 } 7858 7859 // We break out of the above computation as soon as we know there are 7860 // fewer than two candidates remaining. 7861 if (Candidates.size() < 2) 7862 continue; 7863 7864 // Add the single, non-constant index of each candidate to the bundle. We 7865 // ensured the indices met these constraints when we originally collected 7866 // the getelementptrs. 7867 SmallVector<Value *, 16> Bundle(Candidates.size()); 7868 auto BundleIndex = 0u; 7869 for (auto *V : Candidates) { 7870 auto *GEP = cast<GetElementPtrInst>(V); 7871 auto *GEPIdx = GEP->idx_begin()->get(); 7872 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 7873 Bundle[BundleIndex++] = GEPIdx; 7874 } 7875 7876 // Try and vectorize the indices. We are currently only interested in 7877 // gather-like cases of the form: 7878 // 7879 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 7880 // 7881 // where the loads of "a", the loads of "b", and the subtractions can be 7882 // performed in parallel. It's likely that detecting this pattern in a 7883 // bottom-up phase will be simpler and less costly than building a 7884 // full-blown top-down phase beginning at the consecutive loads. 7885 Changed |= tryToVectorizeList(Bundle, R); 7886 } 7887 } 7888 return Changed; 7889 } 7890 7891 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 7892 bool Changed = false; 7893 // Attempt to sort and vectorize each of the store-groups. 7894 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 7895 ++it) { 7896 if (it->second.size() < 2) 7897 continue; 7898 7899 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 7900 << it->second.size() << ".\n"); 7901 7902 Changed |= vectorizeStores(it->second, R); 7903 } 7904 return Changed; 7905 } 7906 7907 char SLPVectorizer::ID = 0; 7908 7909 static const char lv_name[] = "SLP Vectorizer"; 7910 7911 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 7912 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7913 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7914 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7915 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7916 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 7917 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7918 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7919 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7920 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 7921 7922 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 7923