1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/DenseSet.h" 23 #include "llvm/ADT/MapVector.h" 24 #include "llvm/ADT/None.h" 25 #include "llvm/ADT/Optional.h" 26 #include "llvm/ADT/PostOrderIterator.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SetVector.h" 29 #include "llvm/ADT/SmallBitVector.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/ADT/iterator.h" 35 #include "llvm/ADT/iterator_range.h" 36 #include "llvm/Analysis/AliasAnalysis.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/LoopAccessAnalysis.h" 41 #include "llvm/Analysis/LoopInfo.h" 42 #include "llvm/Analysis/MemoryLocation.h" 43 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 44 #include "llvm/Analysis/ScalarEvolution.h" 45 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 46 #include "llvm/Analysis/TargetLibraryInfo.h" 47 #include "llvm/Analysis/TargetTransformInfo.h" 48 #include "llvm/Analysis/ValueTracking.h" 49 #include "llvm/Analysis/VectorUtils.h" 50 #include "llvm/IR/Attributes.h" 51 #include "llvm/IR/BasicBlock.h" 52 #include "llvm/IR/Constant.h" 53 #include "llvm/IR/Constants.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/DebugLoc.h" 56 #include "llvm/IR/DerivedTypes.h" 57 #include "llvm/IR/Dominators.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/IRBuilder.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/NoFolder.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PassManager.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/Verifier.h" 76 #include "llvm/InitializePasses.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/DOTGraphTraits.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/GraphWriter.h" 85 #include "llvm/Support/KnownBits.h" 86 #include "llvm/Support/MathExtras.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 89 #include "llvm/Transforms/Utils/LoopUtils.h" 90 #include "llvm/Transforms/Vectorize.h" 91 #include <algorithm> 92 #include <cassert> 93 #include <cstdint> 94 #include <iterator> 95 #include <memory> 96 #include <set> 97 #include <string> 98 #include <tuple> 99 #include <utility> 100 #include <vector> 101 102 using namespace llvm; 103 using namespace llvm::PatternMatch; 104 using namespace slpvectorizer; 105 106 #define SV_NAME "slp-vectorizer" 107 #define DEBUG_TYPE "SLP" 108 109 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 110 111 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 112 cl::desc("Run the SLP vectorization passes")); 113 114 static cl::opt<int> 115 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 116 cl::desc("Only vectorize if you gain more than this " 117 "number ")); 118 119 static cl::opt<bool> 120 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 121 cl::desc("Attempt to vectorize horizontal reductions")); 122 123 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 124 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 125 cl::desc( 126 "Attempt to vectorize horizontal reductions feeding into a store")); 127 128 static cl::opt<int> 129 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 130 cl::desc("Attempt to vectorize for this register size in bits")); 131 132 static cl::opt<int> 133 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 134 cl::desc("Maximum depth of the lookup for consecutive stores.")); 135 136 /// Limits the size of scheduling regions in a block. 137 /// It avoid long compile times for _very_ large blocks where vector 138 /// instructions are spread over a wide range. 139 /// This limit is way higher than needed by real-world functions. 140 static cl::opt<int> 141 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 142 cl::desc("Limit the size of the SLP scheduling region per block")); 143 144 static cl::opt<int> MinVectorRegSizeOption( 145 "slp-min-reg-size", cl::init(128), cl::Hidden, 146 cl::desc("Attempt to vectorize for this register size in bits")); 147 148 static cl::opt<unsigned> RecursionMaxDepth( 149 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 150 cl::desc("Limit the recursion depth when building a vectorizable tree")); 151 152 static cl::opt<unsigned> MinTreeSize( 153 "slp-min-tree-size", cl::init(3), cl::Hidden, 154 cl::desc("Only vectorize small trees if they are fully vectorizable")); 155 156 // The maximum depth that the look-ahead score heuristic will explore. 157 // The higher this value, the higher the compilation time overhead. 158 static cl::opt<int> LookAheadMaxDepth( 159 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 160 cl::desc("The maximum look-ahead depth for operand reordering scores")); 161 162 // The Look-ahead heuristic goes through the users of the bundle to calculate 163 // the users cost in getExternalUsesCost(). To avoid compilation time increase 164 // we limit the number of users visited to this value. 165 static cl::opt<unsigned> LookAheadUsersBudget( 166 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, 167 cl::desc("The maximum number of users to visit while visiting the " 168 "predecessors. This prevents compilation time increase.")); 169 170 static cl::opt<bool> 171 ViewSLPTree("view-slp-tree", cl::Hidden, 172 cl::desc("Display the SLP trees with Graphviz")); 173 174 // Limit the number of alias checks. The limit is chosen so that 175 // it has no negative effect on the llvm benchmarks. 176 static const unsigned AliasedCheckLimit = 10; 177 178 // Another limit for the alias checks: The maximum distance between load/store 179 // instructions where alias checks are done. 180 // This limit is useful for very large basic blocks. 181 static const unsigned MaxMemDepDistance = 160; 182 183 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 184 /// regions to be handled. 185 static const int MinScheduleRegionSize = 16; 186 187 /// Predicate for the element types that the SLP vectorizer supports. 188 /// 189 /// The most important thing to filter here are types which are invalid in LLVM 190 /// vectors. We also filter target specific types which have absolutely no 191 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 192 /// avoids spending time checking the cost model and realizing that they will 193 /// be inevitably scalarized. 194 static bool isValidElementType(Type *Ty) { 195 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 196 !Ty->isPPC_FP128Ty(); 197 } 198 199 /// \returns true if all of the instructions in \p VL are in the same block or 200 /// false otherwise. 201 static bool allSameBlock(ArrayRef<Value *> VL) { 202 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 203 if (!I0) 204 return false; 205 BasicBlock *BB = I0->getParent(); 206 for (int i = 1, e = VL.size(); i < e; i++) { 207 Instruction *I = dyn_cast<Instruction>(VL[i]); 208 if (!I) 209 return false; 210 211 if (BB != I->getParent()) 212 return false; 213 } 214 return true; 215 } 216 217 /// \returns True if all of the values in \p VL are constants (but not 218 /// globals/constant expressions). 219 static bool allConstant(ArrayRef<Value *> VL) { 220 // Constant expressions and globals can't be vectorized like normal integer/FP 221 // constants. 222 for (Value *i : VL) 223 if (!isa<Constant>(i) || isa<ConstantExpr>(i) || isa<GlobalValue>(i)) 224 return false; 225 return true; 226 } 227 228 /// \returns True if all of the values in \p VL are identical. 229 static bool isSplat(ArrayRef<Value *> VL) { 230 for (unsigned i = 1, e = VL.size(); i < e; ++i) 231 if (VL[i] != VL[0]) 232 return false; 233 return true; 234 } 235 236 /// \returns True if \p I is commutative, handles CmpInst as well as Instruction. 237 static bool isCommutative(Instruction *I) { 238 if (auto *IC = dyn_cast<CmpInst>(I)) 239 return IC->isCommutative(); 240 return I->isCommutative(); 241 } 242 243 /// Checks if the vector of instructions can be represented as a shuffle, like: 244 /// %x0 = extractelement <4 x i8> %x, i32 0 245 /// %x3 = extractelement <4 x i8> %x, i32 3 246 /// %y1 = extractelement <4 x i8> %y, i32 1 247 /// %y2 = extractelement <4 x i8> %y, i32 2 248 /// %x0x0 = mul i8 %x0, %x0 249 /// %x3x3 = mul i8 %x3, %x3 250 /// %y1y1 = mul i8 %y1, %y1 251 /// %y2y2 = mul i8 %y2, %y2 252 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0 253 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 254 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 255 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 256 /// ret <4 x i8> %ins4 257 /// can be transformed into: 258 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 259 /// i32 6> 260 /// %2 = mul <4 x i8> %1, %1 261 /// ret <4 x i8> %2 262 /// We convert this initially to something like: 263 /// %x0 = extractelement <4 x i8> %x, i32 0 264 /// %x3 = extractelement <4 x i8> %x, i32 3 265 /// %y1 = extractelement <4 x i8> %y, i32 1 266 /// %y2 = extractelement <4 x i8> %y, i32 2 267 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0 268 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 269 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 270 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 271 /// %5 = mul <4 x i8> %4, %4 272 /// %6 = extractelement <4 x i8> %5, i32 0 273 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0 274 /// %7 = extractelement <4 x i8> %5, i32 1 275 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 276 /// %8 = extractelement <4 x i8> %5, i32 2 277 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 278 /// %9 = extractelement <4 x i8> %5, i32 3 279 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 280 /// ret <4 x i8> %ins4 281 /// InstCombiner transforms this into a shuffle and vector mul 282 /// TODO: Can we split off and reuse the shuffle mask detection from 283 /// TargetTransformInfo::getInstructionThroughput? 284 static Optional<TargetTransformInfo::ShuffleKind> 285 isShuffle(ArrayRef<Value *> VL) { 286 auto *EI0 = cast<ExtractElementInst>(VL[0]); 287 unsigned Size = EI0->getVectorOperandType()->getNumElements(); 288 Value *Vec1 = nullptr; 289 Value *Vec2 = nullptr; 290 enum ShuffleMode { Unknown, Select, Permute }; 291 ShuffleMode CommonShuffleMode = Unknown; 292 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 293 auto *EI = cast<ExtractElementInst>(VL[I]); 294 auto *Vec = EI->getVectorOperand(); 295 // All vector operands must have the same number of vector elements. 296 if (cast<VectorType>(Vec->getType())->getNumElements() != Size) 297 return None; 298 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 299 if (!Idx) 300 return None; 301 // Undefined behavior if Idx is negative or >= Size. 302 if (Idx->getValue().uge(Size)) 303 continue; 304 unsigned IntIdx = Idx->getValue().getZExtValue(); 305 // We can extractelement from undef vector. 306 if (isa<UndefValue>(Vec)) 307 continue; 308 // For correct shuffling we have to have at most 2 different vector operands 309 // in all extractelement instructions. 310 if (!Vec1 || Vec1 == Vec) 311 Vec1 = Vec; 312 else if (!Vec2 || Vec2 == Vec) 313 Vec2 = Vec; 314 else 315 return None; 316 if (CommonShuffleMode == Permute) 317 continue; 318 // If the extract index is not the same as the operation number, it is a 319 // permutation. 320 if (IntIdx != I) { 321 CommonShuffleMode = Permute; 322 continue; 323 } 324 CommonShuffleMode = Select; 325 } 326 // If we're not crossing lanes in different vectors, consider it as blending. 327 if (CommonShuffleMode == Select && Vec2) 328 return TargetTransformInfo::SK_Select; 329 // If Vec2 was never used, we have a permutation of a single vector, otherwise 330 // we have permutation of 2 vectors. 331 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 332 : TargetTransformInfo::SK_PermuteSingleSrc; 333 } 334 335 namespace { 336 337 /// Main data required for vectorization of instructions. 338 struct InstructionsState { 339 /// The very first instruction in the list with the main opcode. 340 Value *OpValue = nullptr; 341 342 /// The main/alternate instruction. 343 Instruction *MainOp = nullptr; 344 Instruction *AltOp = nullptr; 345 346 /// The main/alternate opcodes for the list of instructions. 347 unsigned getOpcode() const { 348 return MainOp ? MainOp->getOpcode() : 0; 349 } 350 351 unsigned getAltOpcode() const { 352 return AltOp ? AltOp->getOpcode() : 0; 353 } 354 355 /// Some of the instructions in the list have alternate opcodes. 356 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 357 358 bool isOpcodeOrAlt(Instruction *I) const { 359 unsigned CheckedOpcode = I->getOpcode(); 360 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 361 } 362 363 InstructionsState() = delete; 364 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 365 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 366 }; 367 368 } // end anonymous namespace 369 370 /// Chooses the correct key for scheduling data. If \p Op has the same (or 371 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 372 /// OpValue. 373 static Value *isOneOf(const InstructionsState &S, Value *Op) { 374 auto *I = dyn_cast<Instruction>(Op); 375 if (I && S.isOpcodeOrAlt(I)) 376 return Op; 377 return S.OpValue; 378 } 379 380 /// \returns true if \p Opcode is allowed as part of of the main/alternate 381 /// instruction for SLP vectorization. 382 /// 383 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 384 /// "shuffled out" lane would result in division by zero. 385 static bool isValidForAlternation(unsigned Opcode) { 386 if (Instruction::isIntDivRem(Opcode)) 387 return false; 388 389 return true; 390 } 391 392 /// \returns analysis of the Instructions in \p VL described in 393 /// InstructionsState, the Opcode that we suppose the whole list 394 /// could be vectorized even if its structure is diverse. 395 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 396 unsigned BaseIndex = 0) { 397 // Make sure these are all Instructions. 398 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 399 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 400 401 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 402 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 403 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 404 unsigned AltOpcode = Opcode; 405 unsigned AltIndex = BaseIndex; 406 407 // Check for one alternate opcode from another BinaryOperator. 408 // TODO - generalize to support all operators (types, calls etc.). 409 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 410 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 411 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 412 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 413 continue; 414 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 415 isValidForAlternation(Opcode)) { 416 AltOpcode = InstOpcode; 417 AltIndex = Cnt; 418 continue; 419 } 420 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 421 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 422 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 423 if (Ty0 == Ty1) { 424 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 425 continue; 426 if (Opcode == AltOpcode) { 427 assert(isValidForAlternation(Opcode) && 428 isValidForAlternation(InstOpcode) && 429 "Cast isn't safe for alternation, logic needs to be updated!"); 430 AltOpcode = InstOpcode; 431 AltIndex = Cnt; 432 continue; 433 } 434 } 435 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 436 continue; 437 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 438 } 439 440 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 441 cast<Instruction>(VL[AltIndex])); 442 } 443 444 /// \returns true if all of the values in \p VL have the same type or false 445 /// otherwise. 446 static bool allSameType(ArrayRef<Value *> VL) { 447 Type *Ty = VL[0]->getType(); 448 for (int i = 1, e = VL.size(); i < e; i++) 449 if (VL[i]->getType() != Ty) 450 return false; 451 452 return true; 453 } 454 455 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 456 static Optional<unsigned> getExtractIndex(Instruction *E) { 457 unsigned Opcode = E->getOpcode(); 458 assert((Opcode == Instruction::ExtractElement || 459 Opcode == Instruction::ExtractValue) && 460 "Expected extractelement or extractvalue instruction."); 461 if (Opcode == Instruction::ExtractElement) { 462 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 463 if (!CI) 464 return None; 465 return CI->getZExtValue(); 466 } 467 ExtractValueInst *EI = cast<ExtractValueInst>(E); 468 if (EI->getNumIndices() != 1) 469 return None; 470 return *EI->idx_begin(); 471 } 472 473 /// \returns True if in-tree use also needs extract. This refers to 474 /// possible scalar operand in vectorized instruction. 475 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 476 TargetLibraryInfo *TLI) { 477 unsigned Opcode = UserInst->getOpcode(); 478 switch (Opcode) { 479 case Instruction::Load: { 480 LoadInst *LI = cast<LoadInst>(UserInst); 481 return (LI->getPointerOperand() == Scalar); 482 } 483 case Instruction::Store: { 484 StoreInst *SI = cast<StoreInst>(UserInst); 485 return (SI->getPointerOperand() == Scalar); 486 } 487 case Instruction::Call: { 488 CallInst *CI = cast<CallInst>(UserInst); 489 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 490 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 491 if (hasVectorInstrinsicScalarOpd(ID, i)) 492 return (CI->getArgOperand(i) == Scalar); 493 } 494 LLVM_FALLTHROUGH; 495 } 496 default: 497 return false; 498 } 499 } 500 501 /// \returns the AA location that is being access by the instruction. 502 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 503 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 504 return MemoryLocation::get(SI); 505 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 506 return MemoryLocation::get(LI); 507 return MemoryLocation(); 508 } 509 510 /// \returns True if the instruction is not a volatile or atomic load/store. 511 static bool isSimple(Instruction *I) { 512 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 513 return LI->isSimple(); 514 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 515 return SI->isSimple(); 516 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 517 return !MI->isVolatile(); 518 return true; 519 } 520 521 namespace llvm { 522 523 namespace slpvectorizer { 524 525 /// Bottom Up SLP Vectorizer. 526 class BoUpSLP { 527 struct TreeEntry; 528 struct ScheduleData; 529 530 public: 531 using ValueList = SmallVector<Value *, 8>; 532 using InstrList = SmallVector<Instruction *, 16>; 533 using ValueSet = SmallPtrSet<Value *, 16>; 534 using StoreList = SmallVector<StoreInst *, 8>; 535 using ExtraValueToDebugLocsMap = 536 MapVector<Value *, SmallVector<Instruction *, 2>>; 537 538 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 539 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 540 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 541 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 542 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 543 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 544 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 545 // Use the vector register size specified by the target unless overridden 546 // by a command-line option. 547 // TODO: It would be better to limit the vectorization factor based on 548 // data type rather than just register size. For example, x86 AVX has 549 // 256-bit registers, but it does not support integer operations 550 // at that width (that requires AVX2). 551 if (MaxVectorRegSizeOption.getNumOccurrences()) 552 MaxVecRegSize = MaxVectorRegSizeOption; 553 else 554 MaxVecRegSize = TTI->getRegisterBitWidth(true); 555 556 if (MinVectorRegSizeOption.getNumOccurrences()) 557 MinVecRegSize = MinVectorRegSizeOption; 558 else 559 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 560 } 561 562 /// Vectorize the tree that starts with the elements in \p VL. 563 /// Returns the vectorized root. 564 Value *vectorizeTree(); 565 566 /// Vectorize the tree but with the list of externally used values \p 567 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 568 /// generated extractvalue instructions. 569 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 570 571 /// \returns the cost incurred by unwanted spills and fills, caused by 572 /// holding live values over call sites. 573 int getSpillCost() const; 574 575 /// \returns the vectorization cost of the subtree that starts at \p VL. 576 /// A negative number means that this is profitable. 577 int getTreeCost(); 578 579 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 580 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 581 void buildTree(ArrayRef<Value *> Roots, 582 ArrayRef<Value *> UserIgnoreLst = None); 583 584 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 585 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 586 /// into account (and updating it, if required) list of externally used 587 /// values stored in \p ExternallyUsedValues. 588 void buildTree(ArrayRef<Value *> Roots, 589 ExtraValueToDebugLocsMap &ExternallyUsedValues, 590 ArrayRef<Value *> UserIgnoreLst = None); 591 592 /// Clear the internal data structures that are created by 'buildTree'. 593 void deleteTree() { 594 VectorizableTree.clear(); 595 ScalarToTreeEntry.clear(); 596 MustGather.clear(); 597 ExternalUses.clear(); 598 NumOpsWantToKeepOrder.clear(); 599 NumOpsWantToKeepOriginalOrder = 0; 600 for (auto &Iter : BlocksSchedules) { 601 BlockScheduling *BS = Iter.second.get(); 602 BS->clear(); 603 } 604 MinBWs.clear(); 605 } 606 607 unsigned getTreeSize() const { return VectorizableTree.size(); } 608 609 /// Perform LICM and CSE on the newly generated gather sequences. 610 void optimizeGatherSequence(); 611 612 /// \returns The best order of instructions for vectorization. 613 Optional<ArrayRef<unsigned>> bestOrder() const { 614 auto I = std::max_element( 615 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 616 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 617 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 618 return D1.second < D2.second; 619 }); 620 if (I == NumOpsWantToKeepOrder.end() || 621 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 622 return None; 623 624 return makeArrayRef(I->getFirst()); 625 } 626 627 /// \return The vector element size in bits to use when vectorizing the 628 /// expression tree ending at \p V. If V is a store, the size is the width of 629 /// the stored value. Otherwise, the size is the width of the largest loaded 630 /// value reaching V. This method is used by the vectorizer to calculate 631 /// vectorization factors. 632 unsigned getVectorElementSize(Value *V) const; 633 634 /// Compute the minimum type sizes required to represent the entries in a 635 /// vectorizable tree. 636 void computeMinimumValueSizes(); 637 638 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 639 unsigned getMaxVecRegSize() const { 640 return MaxVecRegSize; 641 } 642 643 // \returns minimum vector register size as set by cl::opt. 644 unsigned getMinVecRegSize() const { 645 return MinVecRegSize; 646 } 647 648 /// Check if homogeneous aggregate is isomorphic to some VectorType. 649 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 650 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 651 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 652 /// 653 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 654 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 655 656 /// \returns True if the VectorizableTree is both tiny and not fully 657 /// vectorizable. We do not vectorize such trees. 658 bool isTreeTinyAndNotFullyVectorizable() const; 659 660 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 661 /// can be load combined in the backend. Load combining may not be allowed in 662 /// the IR optimizer, so we do not want to alter the pattern. For example, 663 /// partially transforming a scalar bswap() pattern into vector code is 664 /// effectively impossible for the backend to undo. 665 /// TODO: If load combining is allowed in the IR optimizer, this analysis 666 /// may not be necessary. 667 bool isLoadCombineReductionCandidate(unsigned ReductionOpcode) const; 668 669 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 670 /// can be load combined in the backend. Load combining may not be allowed in 671 /// the IR optimizer, so we do not want to alter the pattern. For example, 672 /// partially transforming a scalar bswap() pattern into vector code is 673 /// effectively impossible for the backend to undo. 674 /// TODO: If load combining is allowed in the IR optimizer, this analysis 675 /// may not be necessary. 676 bool isLoadCombineCandidate() const; 677 678 OptimizationRemarkEmitter *getORE() { return ORE; } 679 680 /// This structure holds any data we need about the edges being traversed 681 /// during buildTree_rec(). We keep track of: 682 /// (i) the user TreeEntry index, and 683 /// (ii) the index of the edge. 684 struct EdgeInfo { 685 EdgeInfo() = default; 686 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 687 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 688 /// The user TreeEntry. 689 TreeEntry *UserTE = nullptr; 690 /// The operand index of the use. 691 unsigned EdgeIdx = UINT_MAX; 692 #ifndef NDEBUG 693 friend inline raw_ostream &operator<<(raw_ostream &OS, 694 const BoUpSLP::EdgeInfo &EI) { 695 EI.dump(OS); 696 return OS; 697 } 698 /// Debug print. 699 void dump(raw_ostream &OS) const { 700 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 701 << " EdgeIdx:" << EdgeIdx << "}"; 702 } 703 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 704 #endif 705 }; 706 707 /// A helper data structure to hold the operands of a vector of instructions. 708 /// This supports a fixed vector length for all operand vectors. 709 class VLOperands { 710 /// For each operand we need (i) the value, and (ii) the opcode that it 711 /// would be attached to if the expression was in a left-linearized form. 712 /// This is required to avoid illegal operand reordering. 713 /// For example: 714 /// \verbatim 715 /// 0 Op1 716 /// |/ 717 /// Op1 Op2 Linearized + Op2 718 /// \ / ----------> |/ 719 /// - - 720 /// 721 /// Op1 - Op2 (0 + Op1) - Op2 722 /// \endverbatim 723 /// 724 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 725 /// 726 /// Another way to think of this is to track all the operations across the 727 /// path from the operand all the way to the root of the tree and to 728 /// calculate the operation that corresponds to this path. For example, the 729 /// path from Op2 to the root crosses the RHS of the '-', therefore the 730 /// corresponding operation is a '-' (which matches the one in the 731 /// linearized tree, as shown above). 732 /// 733 /// For lack of a better term, we refer to this operation as Accumulated 734 /// Path Operation (APO). 735 struct OperandData { 736 OperandData() = default; 737 OperandData(Value *V, bool APO, bool IsUsed) 738 : V(V), APO(APO), IsUsed(IsUsed) {} 739 /// The operand value. 740 Value *V = nullptr; 741 /// TreeEntries only allow a single opcode, or an alternate sequence of 742 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 743 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 744 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 745 /// (e.g., Add/Mul) 746 bool APO = false; 747 /// Helper data for the reordering function. 748 bool IsUsed = false; 749 }; 750 751 /// During operand reordering, we are trying to select the operand at lane 752 /// that matches best with the operand at the neighboring lane. Our 753 /// selection is based on the type of value we are looking for. For example, 754 /// if the neighboring lane has a load, we need to look for a load that is 755 /// accessing a consecutive address. These strategies are summarized in the 756 /// 'ReorderingMode' enumerator. 757 enum class ReorderingMode { 758 Load, ///< Matching loads to consecutive memory addresses 759 Opcode, ///< Matching instructions based on opcode (same or alternate) 760 Constant, ///< Matching constants 761 Splat, ///< Matching the same instruction multiple times (broadcast) 762 Failed, ///< We failed to create a vectorizable group 763 }; 764 765 using OperandDataVec = SmallVector<OperandData, 2>; 766 767 /// A vector of operand vectors. 768 SmallVector<OperandDataVec, 4> OpsVec; 769 770 const DataLayout &DL; 771 ScalarEvolution &SE; 772 const BoUpSLP &R; 773 774 /// \returns the operand data at \p OpIdx and \p Lane. 775 OperandData &getData(unsigned OpIdx, unsigned Lane) { 776 return OpsVec[OpIdx][Lane]; 777 } 778 779 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 780 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 781 return OpsVec[OpIdx][Lane]; 782 } 783 784 /// Clears the used flag for all entries. 785 void clearUsed() { 786 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 787 OpIdx != NumOperands; ++OpIdx) 788 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 789 ++Lane) 790 OpsVec[OpIdx][Lane].IsUsed = false; 791 } 792 793 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 794 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 795 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 796 } 797 798 // The hard-coded scores listed here are not very important. When computing 799 // the scores of matching one sub-tree with another, we are basically 800 // counting the number of values that are matching. So even if all scores 801 // are set to 1, we would still get a decent matching result. 802 // However, sometimes we have to break ties. For example we may have to 803 // choose between matching loads vs matching opcodes. This is what these 804 // scores are helping us with: they provide the order of preference. 805 806 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 807 static const int ScoreConsecutiveLoads = 3; 808 /// ExtractElementInst from same vector and consecutive indexes. 809 static const int ScoreConsecutiveExtracts = 3; 810 /// Constants. 811 static const int ScoreConstants = 2; 812 /// Instructions with the same opcode. 813 static const int ScoreSameOpcode = 2; 814 /// Instructions with alt opcodes (e.g, add + sub). 815 static const int ScoreAltOpcodes = 1; 816 /// Identical instructions (a.k.a. splat or broadcast). 817 static const int ScoreSplat = 1; 818 /// Matching with an undef is preferable to failing. 819 static const int ScoreUndef = 1; 820 /// Score for failing to find a decent match. 821 static const int ScoreFail = 0; 822 /// User exteranl to the vectorized code. 823 static const int ExternalUseCost = 1; 824 /// The user is internal but in a different lane. 825 static const int UserInDiffLaneCost = ExternalUseCost; 826 827 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 828 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 829 ScalarEvolution &SE) { 830 auto *LI1 = dyn_cast<LoadInst>(V1); 831 auto *LI2 = dyn_cast<LoadInst>(V2); 832 if (LI1 && LI2) 833 return isConsecutiveAccess(LI1, LI2, DL, SE) 834 ? VLOperands::ScoreConsecutiveLoads 835 : VLOperands::ScoreFail; 836 837 auto *C1 = dyn_cast<Constant>(V1); 838 auto *C2 = dyn_cast<Constant>(V2); 839 if (C1 && C2) 840 return VLOperands::ScoreConstants; 841 842 // Extracts from consecutive indexes of the same vector better score as 843 // the extracts could be optimized away. 844 Value *EV; 845 ConstantInt *Ex1Idx, *Ex2Idx; 846 if (match(V1, m_ExtractElement(m_Value(EV), m_ConstantInt(Ex1Idx))) && 847 match(V2, m_ExtractElement(m_Deferred(EV), m_ConstantInt(Ex2Idx))) && 848 Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue()) 849 return VLOperands::ScoreConsecutiveExtracts; 850 851 auto *I1 = dyn_cast<Instruction>(V1); 852 auto *I2 = dyn_cast<Instruction>(V2); 853 if (I1 && I2) { 854 if (I1 == I2) 855 return VLOperands::ScoreSplat; 856 InstructionsState S = getSameOpcode({I1, I2}); 857 // Note: Only consider instructions with <= 2 operands to avoid 858 // complexity explosion. 859 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) 860 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 861 : VLOperands::ScoreSameOpcode; 862 } 863 864 if (isa<UndefValue>(V2)) 865 return VLOperands::ScoreUndef; 866 867 return VLOperands::ScoreFail; 868 } 869 870 /// Holds the values and their lane that are taking part in the look-ahead 871 /// score calculation. This is used in the external uses cost calculation. 872 SmallDenseMap<Value *, int> InLookAheadValues; 873 874 /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are 875 /// either external to the vectorized code, or require shuffling. 876 int getExternalUsesCost(const std::pair<Value *, int> &LHS, 877 const std::pair<Value *, int> &RHS) { 878 int Cost = 0; 879 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}}; 880 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { 881 Value *V = Values[Idx].first; 882 // Calculate the absolute lane, using the minimum relative lane of LHS 883 // and RHS as base and Idx as the offset. 884 int Ln = std::min(LHS.second, RHS.second) + Idx; 885 assert(Ln >= 0 && "Bad lane calculation"); 886 unsigned UsersBudget = LookAheadUsersBudget; 887 for (User *U : V->users()) { 888 if (const TreeEntry *UserTE = R.getTreeEntry(U)) { 889 // The user is in the VectorizableTree. Check if we need to insert. 890 auto It = llvm::find(UserTE->Scalars, U); 891 assert(It != UserTE->Scalars.end() && "U is in UserTE"); 892 int UserLn = std::distance(UserTE->Scalars.begin(), It); 893 assert(UserLn >= 0 && "Bad lane"); 894 if (UserLn != Ln) 895 Cost += UserInDiffLaneCost; 896 } else { 897 // Check if the user is in the look-ahead code. 898 auto It2 = InLookAheadValues.find(U); 899 if (It2 != InLookAheadValues.end()) { 900 // The user is in the look-ahead code. Check the lane. 901 if (It2->second != Ln) 902 Cost += UserInDiffLaneCost; 903 } else { 904 // The user is neither in SLP tree nor in the look-ahead code. 905 Cost += ExternalUseCost; 906 } 907 } 908 // Limit the number of visited uses to cap compilation time. 909 if (--UsersBudget == 0) 910 break; 911 } 912 } 913 return Cost; 914 } 915 916 /// Go through the operands of \p LHS and \p RHS recursively until \p 917 /// MaxLevel, and return the cummulative score. For example: 918 /// \verbatim 919 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 920 /// \ / \ / \ / \ / 921 /// + + + + 922 /// G1 G2 G3 G4 923 /// \endverbatim 924 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 925 /// each level recursively, accumulating the score. It starts from matching 926 /// the additions at level 0, then moves on to the loads (level 1). The 927 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 928 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 929 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 930 /// Please note that the order of the operands does not matter, as we 931 /// evaluate the score of all profitable combinations of operands. In 932 /// other words the score of G1 and G4 is the same as G1 and G2. This 933 /// heuristic is based on ideas described in: 934 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 935 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 936 /// Luís F. W. Góes 937 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS, 938 const std::pair<Value *, int> &RHS, int CurrLevel, 939 int MaxLevel) { 940 941 Value *V1 = LHS.first; 942 Value *V2 = RHS.first; 943 // Get the shallow score of V1 and V2. 944 int ShallowScoreAtThisLevel = 945 std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) - 946 getExternalUsesCost(LHS, RHS)); 947 int Lane1 = LHS.second; 948 int Lane2 = RHS.second; 949 950 // If reached MaxLevel, 951 // or if V1 and V2 are not instructions, 952 // or if they are SPLAT, 953 // or if they are not consecutive, early return the current cost. 954 auto *I1 = dyn_cast<Instruction>(V1); 955 auto *I2 = dyn_cast<Instruction>(V2); 956 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 957 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 958 (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel)) 959 return ShallowScoreAtThisLevel; 960 assert(I1 && I2 && "Should have early exited."); 961 962 // Keep track of in-tree values for determining the external-use cost. 963 InLookAheadValues[V1] = Lane1; 964 InLookAheadValues[V2] = Lane2; 965 966 // Contains the I2 operand indexes that got matched with I1 operands. 967 SmallSet<unsigned, 4> Op2Used; 968 969 // Recursion towards the operands of I1 and I2. We are trying all possbile 970 // operand pairs, and keeping track of the best score. 971 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 972 OpIdx1 != NumOperands1; ++OpIdx1) { 973 // Try to pair op1I with the best operand of I2. 974 int MaxTmpScore = 0; 975 unsigned MaxOpIdx2 = 0; 976 bool FoundBest = false; 977 // If I2 is commutative try all combinations. 978 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 979 unsigned ToIdx = isCommutative(I2) 980 ? I2->getNumOperands() 981 : std::min(I2->getNumOperands(), OpIdx1 + 1); 982 assert(FromIdx <= ToIdx && "Bad index"); 983 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 984 // Skip operands already paired with OpIdx1. 985 if (Op2Used.count(OpIdx2)) 986 continue; 987 // Recursively calculate the cost at each level 988 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, 989 {I2->getOperand(OpIdx2), Lane2}, 990 CurrLevel + 1, MaxLevel); 991 // Look for the best score. 992 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 993 MaxTmpScore = TmpScore; 994 MaxOpIdx2 = OpIdx2; 995 FoundBest = true; 996 } 997 } 998 if (FoundBest) { 999 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1000 Op2Used.insert(MaxOpIdx2); 1001 ShallowScoreAtThisLevel += MaxTmpScore; 1002 } 1003 } 1004 return ShallowScoreAtThisLevel; 1005 } 1006 1007 /// \Returns the look-ahead score, which tells us how much the sub-trees 1008 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1009 /// score. This helps break ties in an informed way when we cannot decide on 1010 /// the order of the operands by just considering the immediate 1011 /// predecessors. 1012 int getLookAheadScore(const std::pair<Value *, int> &LHS, 1013 const std::pair<Value *, int> &RHS) { 1014 InLookAheadValues.clear(); 1015 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); 1016 } 1017 1018 // Search all operands in Ops[*][Lane] for the one that matches best 1019 // Ops[OpIdx][LastLane] and return its opreand index. 1020 // If no good match can be found, return None. 1021 Optional<unsigned> 1022 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1023 ArrayRef<ReorderingMode> ReorderingModes) { 1024 unsigned NumOperands = getNumOperands(); 1025 1026 // The operand of the previous lane at OpIdx. 1027 Value *OpLastLane = getData(OpIdx, LastLane).V; 1028 1029 // Our strategy mode for OpIdx. 1030 ReorderingMode RMode = ReorderingModes[OpIdx]; 1031 1032 // The linearized opcode of the operand at OpIdx, Lane. 1033 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1034 1035 // The best operand index and its score. 1036 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1037 // are using the score to differentiate between the two. 1038 struct BestOpData { 1039 Optional<unsigned> Idx = None; 1040 unsigned Score = 0; 1041 } BestOp; 1042 1043 // Iterate through all unused operands and look for the best. 1044 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1045 // Get the operand at Idx and Lane. 1046 OperandData &OpData = getData(Idx, Lane); 1047 Value *Op = OpData.V; 1048 bool OpAPO = OpData.APO; 1049 1050 // Skip already selected operands. 1051 if (OpData.IsUsed) 1052 continue; 1053 1054 // Skip if we are trying to move the operand to a position with a 1055 // different opcode in the linearized tree form. This would break the 1056 // semantics. 1057 if (OpAPO != OpIdxAPO) 1058 continue; 1059 1060 // Look for an operand that matches the current mode. 1061 switch (RMode) { 1062 case ReorderingMode::Load: 1063 case ReorderingMode::Constant: 1064 case ReorderingMode::Opcode: { 1065 bool LeftToRight = Lane > LastLane; 1066 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1067 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1068 unsigned Score = 1069 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); 1070 if (Score > BestOp.Score) { 1071 BestOp.Idx = Idx; 1072 BestOp.Score = Score; 1073 } 1074 break; 1075 } 1076 case ReorderingMode::Splat: 1077 if (Op == OpLastLane) 1078 BestOp.Idx = Idx; 1079 break; 1080 case ReorderingMode::Failed: 1081 return None; 1082 } 1083 } 1084 1085 if (BestOp.Idx) { 1086 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 1087 return BestOp.Idx; 1088 } 1089 // If we could not find a good match return None. 1090 return None; 1091 } 1092 1093 /// Helper for reorderOperandVecs. \Returns the lane that we should start 1094 /// reordering from. This is the one which has the least number of operands 1095 /// that can freely move about. 1096 unsigned getBestLaneToStartReordering() const { 1097 unsigned BestLane = 0; 1098 unsigned Min = UINT_MAX; 1099 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1100 ++Lane) { 1101 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 1102 if (NumFreeOps < Min) { 1103 Min = NumFreeOps; 1104 BestLane = Lane; 1105 } 1106 } 1107 return BestLane; 1108 } 1109 1110 /// \Returns the maximum number of operands that are allowed to be reordered 1111 /// for \p Lane. This is used as a heuristic for selecting the first lane to 1112 /// start operand reordering. 1113 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1114 unsigned CntTrue = 0; 1115 unsigned NumOperands = getNumOperands(); 1116 // Operands with the same APO can be reordered. We therefore need to count 1117 // how many of them we have for each APO, like this: Cnt[APO] = x. 1118 // Since we only have two APOs, namely true and false, we can avoid using 1119 // a map. Instead we can simply count the number of operands that 1120 // correspond to one of them (in this case the 'true' APO), and calculate 1121 // the other by subtracting it from the total number of operands. 1122 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 1123 if (getData(OpIdx, Lane).APO) 1124 ++CntTrue; 1125 unsigned CntFalse = NumOperands - CntTrue; 1126 return std::max(CntTrue, CntFalse); 1127 } 1128 1129 /// Go through the instructions in VL and append their operands. 1130 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1131 assert(!VL.empty() && "Bad VL"); 1132 assert((empty() || VL.size() == getNumLanes()) && 1133 "Expected same number of lanes"); 1134 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1135 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1136 OpsVec.resize(NumOperands); 1137 unsigned NumLanes = VL.size(); 1138 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1139 OpsVec[OpIdx].resize(NumLanes); 1140 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1141 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1142 // Our tree has just 3 nodes: the root and two operands. 1143 // It is therefore trivial to get the APO. We only need to check the 1144 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1145 // RHS operand. The LHS operand of both add and sub is never attached 1146 // to an inversese operation in the linearized form, therefore its APO 1147 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1148 1149 // Since operand reordering is performed on groups of commutative 1150 // operations or alternating sequences (e.g., +, -), we can safely 1151 // tell the inverse operations by checking commutativity. 1152 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1153 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1154 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1155 APO, false}; 1156 } 1157 } 1158 } 1159 1160 /// \returns the number of operands. 1161 unsigned getNumOperands() const { return OpsVec.size(); } 1162 1163 /// \returns the number of lanes. 1164 unsigned getNumLanes() const { return OpsVec[0].size(); } 1165 1166 /// \returns the operand value at \p OpIdx and \p Lane. 1167 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1168 return getData(OpIdx, Lane).V; 1169 } 1170 1171 /// \returns true if the data structure is empty. 1172 bool empty() const { return OpsVec.empty(); } 1173 1174 /// Clears the data. 1175 void clear() { OpsVec.clear(); } 1176 1177 /// \Returns true if there are enough operands identical to \p Op to fill 1178 /// the whole vector. 1179 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1180 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1181 bool OpAPO = getData(OpIdx, Lane).APO; 1182 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1183 if (Ln == Lane) 1184 continue; 1185 // This is set to true if we found a candidate for broadcast at Lane. 1186 bool FoundCandidate = false; 1187 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1188 OperandData &Data = getData(OpI, Ln); 1189 if (Data.APO != OpAPO || Data.IsUsed) 1190 continue; 1191 if (Data.V == Op) { 1192 FoundCandidate = true; 1193 Data.IsUsed = true; 1194 break; 1195 } 1196 } 1197 if (!FoundCandidate) 1198 return false; 1199 } 1200 return true; 1201 } 1202 1203 public: 1204 /// Initialize with all the operands of the instruction vector \p RootVL. 1205 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1206 ScalarEvolution &SE, const BoUpSLP &R) 1207 : DL(DL), SE(SE), R(R) { 1208 // Append all the operands of RootVL. 1209 appendOperandsOfVL(RootVL); 1210 } 1211 1212 /// \Returns a value vector with the operands across all lanes for the 1213 /// opearnd at \p OpIdx. 1214 ValueList getVL(unsigned OpIdx) const { 1215 ValueList OpVL(OpsVec[OpIdx].size()); 1216 assert(OpsVec[OpIdx].size() == getNumLanes() && 1217 "Expected same num of lanes across all operands"); 1218 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1219 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1220 return OpVL; 1221 } 1222 1223 // Performs operand reordering for 2 or more operands. 1224 // The original operands are in OrigOps[OpIdx][Lane]. 1225 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1226 void reorder() { 1227 unsigned NumOperands = getNumOperands(); 1228 unsigned NumLanes = getNumLanes(); 1229 // Each operand has its own mode. We are using this mode to help us select 1230 // the instructions for each lane, so that they match best with the ones 1231 // we have selected so far. 1232 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1233 1234 // This is a greedy single-pass algorithm. We are going over each lane 1235 // once and deciding on the best order right away with no back-tracking. 1236 // However, in order to increase its effectiveness, we start with the lane 1237 // that has operands that can move the least. For example, given the 1238 // following lanes: 1239 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1240 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1241 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1242 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1243 // we will start at Lane 1, since the operands of the subtraction cannot 1244 // be reordered. Then we will visit the rest of the lanes in a circular 1245 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1246 1247 // Find the first lane that we will start our search from. 1248 unsigned FirstLane = getBestLaneToStartReordering(); 1249 1250 // Initialize the modes. 1251 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1252 Value *OpLane0 = getValue(OpIdx, FirstLane); 1253 // Keep track if we have instructions with all the same opcode on one 1254 // side. 1255 if (isa<LoadInst>(OpLane0)) 1256 ReorderingModes[OpIdx] = ReorderingMode::Load; 1257 else if (isa<Instruction>(OpLane0)) { 1258 // Check if OpLane0 should be broadcast. 1259 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1260 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1261 else 1262 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1263 } 1264 else if (isa<Constant>(OpLane0)) 1265 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1266 else if (isa<Argument>(OpLane0)) 1267 // Our best hope is a Splat. It may save some cost in some cases. 1268 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1269 else 1270 // NOTE: This should be unreachable. 1271 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1272 } 1273 1274 // If the initial strategy fails for any of the operand indexes, then we 1275 // perform reordering again in a second pass. This helps avoid assigning 1276 // high priority to the failed strategy, and should improve reordering for 1277 // the non-failed operand indexes. 1278 for (int Pass = 0; Pass != 2; ++Pass) { 1279 // Skip the second pass if the first pass did not fail. 1280 bool StrategyFailed = false; 1281 // Mark all operand data as free to use. 1282 clearUsed(); 1283 // We keep the original operand order for the FirstLane, so reorder the 1284 // rest of the lanes. We are visiting the nodes in a circular fashion, 1285 // using FirstLane as the center point and increasing the radius 1286 // distance. 1287 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1288 // Visit the lane on the right and then the lane on the left. 1289 for (int Direction : {+1, -1}) { 1290 int Lane = FirstLane + Direction * Distance; 1291 if (Lane < 0 || Lane >= (int)NumLanes) 1292 continue; 1293 int LastLane = Lane - Direction; 1294 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1295 "Out of bounds"); 1296 // Look for a good match for each operand. 1297 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1298 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1299 Optional<unsigned> BestIdx = 1300 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1301 // By not selecting a value, we allow the operands that follow to 1302 // select a better matching value. We will get a non-null value in 1303 // the next run of getBestOperand(). 1304 if (BestIdx) { 1305 // Swap the current operand with the one returned by 1306 // getBestOperand(). 1307 swap(OpIdx, BestIdx.getValue(), Lane); 1308 } else { 1309 // We failed to find a best operand, set mode to 'Failed'. 1310 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1311 // Enable the second pass. 1312 StrategyFailed = true; 1313 } 1314 } 1315 } 1316 } 1317 // Skip second pass if the strategy did not fail. 1318 if (!StrategyFailed) 1319 break; 1320 } 1321 } 1322 1323 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1324 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1325 switch (RMode) { 1326 case ReorderingMode::Load: 1327 return "Load"; 1328 case ReorderingMode::Opcode: 1329 return "Opcode"; 1330 case ReorderingMode::Constant: 1331 return "Constant"; 1332 case ReorderingMode::Splat: 1333 return "Splat"; 1334 case ReorderingMode::Failed: 1335 return "Failed"; 1336 } 1337 llvm_unreachable("Unimplemented Reordering Type"); 1338 } 1339 1340 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1341 raw_ostream &OS) { 1342 return OS << getModeStr(RMode); 1343 } 1344 1345 /// Debug print. 1346 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1347 printMode(RMode, dbgs()); 1348 } 1349 1350 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1351 return printMode(RMode, OS); 1352 } 1353 1354 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1355 const unsigned Indent = 2; 1356 unsigned Cnt = 0; 1357 for (const OperandDataVec &OpDataVec : OpsVec) { 1358 OS << "Operand " << Cnt++ << "\n"; 1359 for (const OperandData &OpData : OpDataVec) { 1360 OS.indent(Indent) << "{"; 1361 if (Value *V = OpData.V) 1362 OS << *V; 1363 else 1364 OS << "null"; 1365 OS << ", APO:" << OpData.APO << "}\n"; 1366 } 1367 OS << "\n"; 1368 } 1369 return OS; 1370 } 1371 1372 /// Debug print. 1373 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1374 #endif 1375 }; 1376 1377 /// Checks if the instruction is marked for deletion. 1378 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1379 1380 /// Marks values operands for later deletion by replacing them with Undefs. 1381 void eraseInstructions(ArrayRef<Value *> AV); 1382 1383 ~BoUpSLP(); 1384 1385 private: 1386 /// Checks if all users of \p I are the part of the vectorization tree. 1387 bool areAllUsersVectorized(Instruction *I) const; 1388 1389 /// \returns the cost of the vectorizable entry. 1390 int getEntryCost(TreeEntry *E); 1391 1392 /// This is the recursive part of buildTree. 1393 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1394 const EdgeInfo &EI); 1395 1396 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1397 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1398 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1399 /// returns false, setting \p CurrentOrder to either an empty vector or a 1400 /// non-identity permutation that allows to reuse extract instructions. 1401 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1402 SmallVectorImpl<unsigned> &CurrentOrder) const; 1403 1404 /// Vectorize a single entry in the tree. 1405 Value *vectorizeTree(TreeEntry *E); 1406 1407 /// Vectorize a single entry in the tree, starting in \p VL. 1408 Value *vectorizeTree(ArrayRef<Value *> VL); 1409 1410 /// \returns the scalarization cost for this type. Scalarization in this 1411 /// context means the creation of vectors from a group of scalars. 1412 int getGatherCost(VectorType *Ty, 1413 const DenseSet<unsigned> &ShuffledIndices) const; 1414 1415 /// \returns the scalarization cost for this list of values. Assuming that 1416 /// this subtree gets vectorized, we may need to extract the values from the 1417 /// roots. This method calculates the cost of extracting the values. 1418 int getGatherCost(ArrayRef<Value *> VL) const; 1419 1420 /// Set the Builder insert point to one after the last instruction in 1421 /// the bundle 1422 void setInsertPointAfterBundle(TreeEntry *E); 1423 1424 /// \returns a vector from a collection of scalars in \p VL. 1425 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 1426 1427 /// \returns whether the VectorizableTree is fully vectorizable and will 1428 /// be beneficial even the tree height is tiny. 1429 bool isFullyVectorizableTinyTree() const; 1430 1431 /// Reorder commutative or alt operands to get better probability of 1432 /// generating vectorized code. 1433 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1434 SmallVectorImpl<Value *> &Left, 1435 SmallVectorImpl<Value *> &Right, 1436 const DataLayout &DL, 1437 ScalarEvolution &SE, 1438 const BoUpSLP &R); 1439 struct TreeEntry { 1440 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1441 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1442 1443 /// \returns true if the scalars in VL are equal to this entry. 1444 bool isSame(ArrayRef<Value *> VL) const { 1445 if (VL.size() == Scalars.size()) 1446 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1447 return VL.size() == ReuseShuffleIndices.size() && 1448 std::equal( 1449 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 1450 [this](Value *V, int Idx) { return V == Scalars[Idx]; }); 1451 } 1452 1453 /// A vector of scalars. 1454 ValueList Scalars; 1455 1456 /// The Scalars are vectorized into this value. It is initialized to Null. 1457 Value *VectorizedValue = nullptr; 1458 1459 /// Do we need to gather this sequence ? 1460 enum EntryState { Vectorize, NeedToGather }; 1461 EntryState State; 1462 1463 /// Does this sequence require some shuffling? 1464 SmallVector<int, 4> ReuseShuffleIndices; 1465 1466 /// Does this entry require reordering? 1467 ArrayRef<unsigned> ReorderIndices; 1468 1469 /// Points back to the VectorizableTree. 1470 /// 1471 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1472 /// to be a pointer and needs to be able to initialize the child iterator. 1473 /// Thus we need a reference back to the container to translate the indices 1474 /// to entries. 1475 VecTreeTy &Container; 1476 1477 /// The TreeEntry index containing the user of this entry. We can actually 1478 /// have multiple users so the data structure is not truly a tree. 1479 SmallVector<EdgeInfo, 1> UserTreeIndices; 1480 1481 /// The index of this treeEntry in VectorizableTree. 1482 int Idx = -1; 1483 1484 private: 1485 /// The operands of each instruction in each lane Operands[op_index][lane]. 1486 /// Note: This helps avoid the replication of the code that performs the 1487 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1488 SmallVector<ValueList, 2> Operands; 1489 1490 /// The main/alternate instruction. 1491 Instruction *MainOp = nullptr; 1492 Instruction *AltOp = nullptr; 1493 1494 public: 1495 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1496 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1497 if (Operands.size() < OpIdx + 1) 1498 Operands.resize(OpIdx + 1); 1499 assert(Operands[OpIdx].size() == 0 && "Already resized?"); 1500 Operands[OpIdx].resize(Scalars.size()); 1501 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1502 Operands[OpIdx][Lane] = OpVL[Lane]; 1503 } 1504 1505 /// Set the operands of this bundle in their original order. 1506 void setOperandsInOrder() { 1507 assert(Operands.empty() && "Already initialized?"); 1508 auto *I0 = cast<Instruction>(Scalars[0]); 1509 Operands.resize(I0->getNumOperands()); 1510 unsigned NumLanes = Scalars.size(); 1511 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1512 OpIdx != NumOperands; ++OpIdx) { 1513 Operands[OpIdx].resize(NumLanes); 1514 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1515 auto *I = cast<Instruction>(Scalars[Lane]); 1516 assert(I->getNumOperands() == NumOperands && 1517 "Expected same number of operands"); 1518 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1519 } 1520 } 1521 } 1522 1523 /// \returns the \p OpIdx operand of this TreeEntry. 1524 ValueList &getOperand(unsigned OpIdx) { 1525 assert(OpIdx < Operands.size() && "Off bounds"); 1526 return Operands[OpIdx]; 1527 } 1528 1529 /// \returns the number of operands. 1530 unsigned getNumOperands() const { return Operands.size(); } 1531 1532 /// \return the single \p OpIdx operand. 1533 Value *getSingleOperand(unsigned OpIdx) const { 1534 assert(OpIdx < Operands.size() && "Off bounds"); 1535 assert(!Operands[OpIdx].empty() && "No operand available"); 1536 return Operands[OpIdx][0]; 1537 } 1538 1539 /// Some of the instructions in the list have alternate opcodes. 1540 bool isAltShuffle() const { 1541 return getOpcode() != getAltOpcode(); 1542 } 1543 1544 bool isOpcodeOrAlt(Instruction *I) const { 1545 unsigned CheckedOpcode = I->getOpcode(); 1546 return (getOpcode() == CheckedOpcode || 1547 getAltOpcode() == CheckedOpcode); 1548 } 1549 1550 /// Chooses the correct key for scheduling data. If \p Op has the same (or 1551 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 1552 /// \p OpValue. 1553 Value *isOneOf(Value *Op) const { 1554 auto *I = dyn_cast<Instruction>(Op); 1555 if (I && isOpcodeOrAlt(I)) 1556 return Op; 1557 return MainOp; 1558 } 1559 1560 void setOperations(const InstructionsState &S) { 1561 MainOp = S.MainOp; 1562 AltOp = S.AltOp; 1563 } 1564 1565 Instruction *getMainOp() const { 1566 return MainOp; 1567 } 1568 1569 Instruction *getAltOp() const { 1570 return AltOp; 1571 } 1572 1573 /// The main/alternate opcodes for the list of instructions. 1574 unsigned getOpcode() const { 1575 return MainOp ? MainOp->getOpcode() : 0; 1576 } 1577 1578 unsigned getAltOpcode() const { 1579 return AltOp ? AltOp->getOpcode() : 0; 1580 } 1581 1582 /// Update operations state of this entry if reorder occurred. 1583 bool updateStateIfReorder() { 1584 if (ReorderIndices.empty()) 1585 return false; 1586 InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front()); 1587 setOperations(S); 1588 return true; 1589 } 1590 1591 #ifndef NDEBUG 1592 /// Debug printer. 1593 LLVM_DUMP_METHOD void dump() const { 1594 dbgs() << Idx << ".\n"; 1595 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1596 dbgs() << "Operand " << OpI << ":\n"; 1597 for (const Value *V : Operands[OpI]) 1598 dbgs().indent(2) << *V << "\n"; 1599 } 1600 dbgs() << "Scalars: \n"; 1601 for (Value *V : Scalars) 1602 dbgs().indent(2) << *V << "\n"; 1603 dbgs() << "State: "; 1604 switch (State) { 1605 case Vectorize: 1606 dbgs() << "Vectorize\n"; 1607 break; 1608 case NeedToGather: 1609 dbgs() << "NeedToGather\n"; 1610 break; 1611 } 1612 dbgs() << "MainOp: "; 1613 if (MainOp) 1614 dbgs() << *MainOp << "\n"; 1615 else 1616 dbgs() << "NULL\n"; 1617 dbgs() << "AltOp: "; 1618 if (AltOp) 1619 dbgs() << *AltOp << "\n"; 1620 else 1621 dbgs() << "NULL\n"; 1622 dbgs() << "VectorizedValue: "; 1623 if (VectorizedValue) 1624 dbgs() << *VectorizedValue << "\n"; 1625 else 1626 dbgs() << "NULL\n"; 1627 dbgs() << "ReuseShuffleIndices: "; 1628 if (ReuseShuffleIndices.empty()) 1629 dbgs() << "Emtpy"; 1630 else 1631 for (unsigned ReuseIdx : ReuseShuffleIndices) 1632 dbgs() << ReuseIdx << ", "; 1633 dbgs() << "\n"; 1634 dbgs() << "ReorderIndices: "; 1635 for (unsigned ReorderIdx : ReorderIndices) 1636 dbgs() << ReorderIdx << ", "; 1637 dbgs() << "\n"; 1638 dbgs() << "UserTreeIndices: "; 1639 for (const auto &EInfo : UserTreeIndices) 1640 dbgs() << EInfo << ", "; 1641 dbgs() << "\n"; 1642 } 1643 #endif 1644 }; 1645 1646 /// Create a new VectorizableTree entry. 1647 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 1648 const InstructionsState &S, 1649 const EdgeInfo &UserTreeIdx, 1650 ArrayRef<unsigned> ReuseShuffleIndices = None, 1651 ArrayRef<unsigned> ReorderIndices = None) { 1652 bool Vectorized = (bool)Bundle; 1653 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 1654 TreeEntry *Last = VectorizableTree.back().get(); 1655 Last->Idx = VectorizableTree.size() - 1; 1656 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 1657 Last->State = Vectorized ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 1658 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1659 ReuseShuffleIndices.end()); 1660 Last->ReorderIndices = ReorderIndices; 1661 Last->setOperations(S); 1662 if (Vectorized) { 1663 for (int i = 0, e = VL.size(); i != e; ++i) { 1664 assert(!getTreeEntry(VL[i]) && "Scalar already in tree!"); 1665 ScalarToTreeEntry[VL[i]] = Last; 1666 } 1667 // Update the scheduler bundle to point to this TreeEntry. 1668 unsigned Lane = 0; 1669 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 1670 BundleMember = BundleMember->NextInBundle) { 1671 BundleMember->TE = Last; 1672 BundleMember->Lane = Lane; 1673 ++Lane; 1674 } 1675 assert((!Bundle.getValue() || Lane == VL.size()) && 1676 "Bundle and VL out of sync"); 1677 } else { 1678 MustGather.insert(VL.begin(), VL.end()); 1679 } 1680 1681 if (UserTreeIdx.UserTE) 1682 Last->UserTreeIndices.push_back(UserTreeIdx); 1683 1684 return Last; 1685 } 1686 1687 /// -- Vectorization State -- 1688 /// Holds all of the tree entries. 1689 TreeEntry::VecTreeTy VectorizableTree; 1690 1691 #ifndef NDEBUG 1692 /// Debug printer. 1693 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 1694 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 1695 VectorizableTree[Id]->dump(); 1696 dbgs() << "\n"; 1697 } 1698 } 1699 #endif 1700 1701 TreeEntry *getTreeEntry(Value *V) { 1702 auto I = ScalarToTreeEntry.find(V); 1703 if (I != ScalarToTreeEntry.end()) 1704 return I->second; 1705 return nullptr; 1706 } 1707 1708 const TreeEntry *getTreeEntry(Value *V) const { 1709 auto I = ScalarToTreeEntry.find(V); 1710 if (I != ScalarToTreeEntry.end()) 1711 return I->second; 1712 return nullptr; 1713 } 1714 1715 /// Maps a specific scalar to its tree entry. 1716 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 1717 1718 /// A list of scalars that we found that we need to keep as scalars. 1719 ValueSet MustGather; 1720 1721 /// This POD struct describes one external user in the vectorized tree. 1722 struct ExternalUser { 1723 ExternalUser(Value *S, llvm::User *U, int L) 1724 : Scalar(S), User(U), Lane(L) {} 1725 1726 // Which scalar in our function. 1727 Value *Scalar; 1728 1729 // Which user that uses the scalar. 1730 llvm::User *User; 1731 1732 // Which lane does the scalar belong to. 1733 int Lane; 1734 }; 1735 using UserList = SmallVector<ExternalUser, 16>; 1736 1737 /// Checks if two instructions may access the same memory. 1738 /// 1739 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 1740 /// is invariant in the calling loop. 1741 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 1742 Instruction *Inst2) { 1743 // First check if the result is already in the cache. 1744 AliasCacheKey key = std::make_pair(Inst1, Inst2); 1745 Optional<bool> &result = AliasCache[key]; 1746 if (result.hasValue()) { 1747 return result.getValue(); 1748 } 1749 MemoryLocation Loc2 = getLocation(Inst2, AA); 1750 bool aliased = true; 1751 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 1752 // Do the alias check. 1753 aliased = AA->alias(Loc1, Loc2); 1754 } 1755 // Store the result in the cache. 1756 result = aliased; 1757 return aliased; 1758 } 1759 1760 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 1761 1762 /// Cache for alias results. 1763 /// TODO: consider moving this to the AliasAnalysis itself. 1764 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 1765 1766 /// Removes an instruction from its block and eventually deletes it. 1767 /// It's like Instruction::eraseFromParent() except that the actual deletion 1768 /// is delayed until BoUpSLP is destructed. 1769 /// This is required to ensure that there are no incorrect collisions in the 1770 /// AliasCache, which can happen if a new instruction is allocated at the 1771 /// same address as a previously deleted instruction. 1772 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 1773 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 1774 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 1775 } 1776 1777 /// Temporary store for deleted instructions. Instructions will be deleted 1778 /// eventually when the BoUpSLP is destructed. 1779 DenseMap<Instruction *, bool> DeletedInstructions; 1780 1781 /// A list of values that need to extracted out of the tree. 1782 /// This list holds pairs of (Internal Scalar : External User). External User 1783 /// can be nullptr, it means that this Internal Scalar will be used later, 1784 /// after vectorization. 1785 UserList ExternalUses; 1786 1787 /// Values used only by @llvm.assume calls. 1788 SmallPtrSet<const Value *, 32> EphValues; 1789 1790 /// Holds all of the instructions that we gathered. 1791 SetVector<Instruction *> GatherSeq; 1792 1793 /// A list of blocks that we are going to CSE. 1794 SetVector<BasicBlock *> CSEBlocks; 1795 1796 /// Contains all scheduling relevant data for an instruction. 1797 /// A ScheduleData either represents a single instruction or a member of an 1798 /// instruction bundle (= a group of instructions which is combined into a 1799 /// vector instruction). 1800 struct ScheduleData { 1801 // The initial value for the dependency counters. It means that the 1802 // dependencies are not calculated yet. 1803 enum { InvalidDeps = -1 }; 1804 1805 ScheduleData() = default; 1806 1807 void init(int BlockSchedulingRegionID, Value *OpVal) { 1808 FirstInBundle = this; 1809 NextInBundle = nullptr; 1810 NextLoadStore = nullptr; 1811 IsScheduled = false; 1812 SchedulingRegionID = BlockSchedulingRegionID; 1813 UnscheduledDepsInBundle = UnscheduledDeps; 1814 clearDependencies(); 1815 OpValue = OpVal; 1816 TE = nullptr; 1817 Lane = -1; 1818 } 1819 1820 /// Returns true if the dependency information has been calculated. 1821 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 1822 1823 /// Returns true for single instructions and for bundle representatives 1824 /// (= the head of a bundle). 1825 bool isSchedulingEntity() const { return FirstInBundle == this; } 1826 1827 /// Returns true if it represents an instruction bundle and not only a 1828 /// single instruction. 1829 bool isPartOfBundle() const { 1830 return NextInBundle != nullptr || FirstInBundle != this; 1831 } 1832 1833 /// Returns true if it is ready for scheduling, i.e. it has no more 1834 /// unscheduled depending instructions/bundles. 1835 bool isReady() const { 1836 assert(isSchedulingEntity() && 1837 "can't consider non-scheduling entity for ready list"); 1838 return UnscheduledDepsInBundle == 0 && !IsScheduled; 1839 } 1840 1841 /// Modifies the number of unscheduled dependencies, also updating it for 1842 /// the whole bundle. 1843 int incrementUnscheduledDeps(int Incr) { 1844 UnscheduledDeps += Incr; 1845 return FirstInBundle->UnscheduledDepsInBundle += Incr; 1846 } 1847 1848 /// Sets the number of unscheduled dependencies to the number of 1849 /// dependencies. 1850 void resetUnscheduledDeps() { 1851 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 1852 } 1853 1854 /// Clears all dependency information. 1855 void clearDependencies() { 1856 Dependencies = InvalidDeps; 1857 resetUnscheduledDeps(); 1858 MemoryDependencies.clear(); 1859 } 1860 1861 void dump(raw_ostream &os) const { 1862 if (!isSchedulingEntity()) { 1863 os << "/ " << *Inst; 1864 } else if (NextInBundle) { 1865 os << '[' << *Inst; 1866 ScheduleData *SD = NextInBundle; 1867 while (SD) { 1868 os << ';' << *SD->Inst; 1869 SD = SD->NextInBundle; 1870 } 1871 os << ']'; 1872 } else { 1873 os << *Inst; 1874 } 1875 } 1876 1877 Instruction *Inst = nullptr; 1878 1879 /// Points to the head in an instruction bundle (and always to this for 1880 /// single instructions). 1881 ScheduleData *FirstInBundle = nullptr; 1882 1883 /// Single linked list of all instructions in a bundle. Null if it is a 1884 /// single instruction. 1885 ScheduleData *NextInBundle = nullptr; 1886 1887 /// Single linked list of all memory instructions (e.g. load, store, call) 1888 /// in the block - until the end of the scheduling region. 1889 ScheduleData *NextLoadStore = nullptr; 1890 1891 /// The dependent memory instructions. 1892 /// This list is derived on demand in calculateDependencies(). 1893 SmallVector<ScheduleData *, 4> MemoryDependencies; 1894 1895 /// This ScheduleData is in the current scheduling region if this matches 1896 /// the current SchedulingRegionID of BlockScheduling. 1897 int SchedulingRegionID = 0; 1898 1899 /// Used for getting a "good" final ordering of instructions. 1900 int SchedulingPriority = 0; 1901 1902 /// The number of dependencies. Constitutes of the number of users of the 1903 /// instruction plus the number of dependent memory instructions (if any). 1904 /// This value is calculated on demand. 1905 /// If InvalidDeps, the number of dependencies is not calculated yet. 1906 int Dependencies = InvalidDeps; 1907 1908 /// The number of dependencies minus the number of dependencies of scheduled 1909 /// instructions. As soon as this is zero, the instruction/bundle gets ready 1910 /// for scheduling. 1911 /// Note that this is negative as long as Dependencies is not calculated. 1912 int UnscheduledDeps = InvalidDeps; 1913 1914 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 1915 /// single instructions. 1916 int UnscheduledDepsInBundle = InvalidDeps; 1917 1918 /// True if this instruction is scheduled (or considered as scheduled in the 1919 /// dry-run). 1920 bool IsScheduled = false; 1921 1922 /// Opcode of the current instruction in the schedule data. 1923 Value *OpValue = nullptr; 1924 1925 /// The TreeEntry that this instruction corresponds to. 1926 TreeEntry *TE = nullptr; 1927 1928 /// The lane of this node in the TreeEntry. 1929 int Lane = -1; 1930 }; 1931 1932 #ifndef NDEBUG 1933 friend inline raw_ostream &operator<<(raw_ostream &os, 1934 const BoUpSLP::ScheduleData &SD) { 1935 SD.dump(os); 1936 return os; 1937 } 1938 #endif 1939 1940 friend struct GraphTraits<BoUpSLP *>; 1941 friend struct DOTGraphTraits<BoUpSLP *>; 1942 1943 /// Contains all scheduling data for a basic block. 1944 struct BlockScheduling { 1945 BlockScheduling(BasicBlock *BB) 1946 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 1947 1948 void clear() { 1949 ReadyInsts.clear(); 1950 ScheduleStart = nullptr; 1951 ScheduleEnd = nullptr; 1952 FirstLoadStoreInRegion = nullptr; 1953 LastLoadStoreInRegion = nullptr; 1954 1955 // Reduce the maximum schedule region size by the size of the 1956 // previous scheduling run. 1957 ScheduleRegionSizeLimit -= ScheduleRegionSize; 1958 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 1959 ScheduleRegionSizeLimit = MinScheduleRegionSize; 1960 ScheduleRegionSize = 0; 1961 1962 // Make a new scheduling region, i.e. all existing ScheduleData is not 1963 // in the new region yet. 1964 ++SchedulingRegionID; 1965 } 1966 1967 ScheduleData *getScheduleData(Value *V) { 1968 ScheduleData *SD = ScheduleDataMap[V]; 1969 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1970 return SD; 1971 return nullptr; 1972 } 1973 1974 ScheduleData *getScheduleData(Value *V, Value *Key) { 1975 if (V == Key) 1976 return getScheduleData(V); 1977 auto I = ExtraScheduleDataMap.find(V); 1978 if (I != ExtraScheduleDataMap.end()) { 1979 ScheduleData *SD = I->second[Key]; 1980 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 1981 return SD; 1982 } 1983 return nullptr; 1984 } 1985 1986 bool isInSchedulingRegion(ScheduleData *SD) const { 1987 return SD->SchedulingRegionID == SchedulingRegionID; 1988 } 1989 1990 /// Marks an instruction as scheduled and puts all dependent ready 1991 /// instructions into the ready-list. 1992 template <typename ReadyListType> 1993 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 1994 SD->IsScheduled = true; 1995 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 1996 1997 ScheduleData *BundleMember = SD; 1998 while (BundleMember) { 1999 if (BundleMember->Inst != BundleMember->OpValue) { 2000 BundleMember = BundleMember->NextInBundle; 2001 continue; 2002 } 2003 // Handle the def-use chain dependencies. 2004 2005 // Decrement the unscheduled counter and insert to ready list if ready. 2006 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2007 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2008 if (OpDef && OpDef->hasValidDependencies() && 2009 OpDef->incrementUnscheduledDeps(-1) == 0) { 2010 // There are no more unscheduled dependencies after 2011 // decrementing, so we can put the dependent instruction 2012 // into the ready list. 2013 ScheduleData *DepBundle = OpDef->FirstInBundle; 2014 assert(!DepBundle->IsScheduled && 2015 "already scheduled bundle gets ready"); 2016 ReadyList.insert(DepBundle); 2017 LLVM_DEBUG(dbgs() 2018 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2019 } 2020 }); 2021 }; 2022 2023 // If BundleMember is a vector bundle, its operands may have been 2024 // reordered duiring buildTree(). We therefore need to get its operands 2025 // through the TreeEntry. 2026 if (TreeEntry *TE = BundleMember->TE) { 2027 int Lane = BundleMember->Lane; 2028 assert(Lane >= 0 && "Lane not set"); 2029 2030 // Since vectorization tree is being built recursively this assertion 2031 // ensures that the tree entry has all operands set before reaching 2032 // this code. Couple of exceptions known at the moment are extracts 2033 // where their second (immediate) operand is not added. Since 2034 // immediates do not affect scheduler behavior this is considered 2035 // okay. 2036 auto *In = TE->getMainOp(); 2037 assert(In && 2038 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2039 In->getNumOperands() == TE->getNumOperands()) && 2040 "Missed TreeEntry operands?"); 2041 (void)In; // fake use to avoid build failure when assertions disabled 2042 2043 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2044 OpIdx != NumOperands; ++OpIdx) 2045 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2046 DecrUnsched(I); 2047 } else { 2048 // If BundleMember is a stand-alone instruction, no operand reordering 2049 // has taken place, so we directly access its operands. 2050 for (Use &U : BundleMember->Inst->operands()) 2051 if (auto *I = dyn_cast<Instruction>(U.get())) 2052 DecrUnsched(I); 2053 } 2054 // Handle the memory dependencies. 2055 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2056 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2057 // There are no more unscheduled dependencies after decrementing, 2058 // so we can put the dependent instruction into the ready list. 2059 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2060 assert(!DepBundle->IsScheduled && 2061 "already scheduled bundle gets ready"); 2062 ReadyList.insert(DepBundle); 2063 LLVM_DEBUG(dbgs() 2064 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2065 } 2066 } 2067 BundleMember = BundleMember->NextInBundle; 2068 } 2069 } 2070 2071 void doForAllOpcodes(Value *V, 2072 function_ref<void(ScheduleData *SD)> Action) { 2073 if (ScheduleData *SD = getScheduleData(V)) 2074 Action(SD); 2075 auto I = ExtraScheduleDataMap.find(V); 2076 if (I != ExtraScheduleDataMap.end()) 2077 for (auto &P : I->second) 2078 if (P.second->SchedulingRegionID == SchedulingRegionID) 2079 Action(P.second); 2080 } 2081 2082 /// Put all instructions into the ReadyList which are ready for scheduling. 2083 template <typename ReadyListType> 2084 void initialFillReadyList(ReadyListType &ReadyList) { 2085 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2086 doForAllOpcodes(I, [&](ScheduleData *SD) { 2087 if (SD->isSchedulingEntity() && SD->isReady()) { 2088 ReadyList.insert(SD); 2089 LLVM_DEBUG(dbgs() 2090 << "SLP: initially in ready list: " << *I << "\n"); 2091 } 2092 }); 2093 } 2094 } 2095 2096 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2097 /// cyclic dependencies. This is only a dry-run, no instructions are 2098 /// actually moved at this stage. 2099 /// \returns the scheduling bundle. The returned Optional value is non-None 2100 /// if \p VL is allowed to be scheduled. 2101 Optional<ScheduleData *> 2102 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2103 const InstructionsState &S); 2104 2105 /// Un-bundles a group of instructions. 2106 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2107 2108 /// Allocates schedule data chunk. 2109 ScheduleData *allocateScheduleDataChunks(); 2110 2111 /// Extends the scheduling region so that V is inside the region. 2112 /// \returns true if the region size is within the limit. 2113 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2114 2115 /// Initialize the ScheduleData structures for new instructions in the 2116 /// scheduling region. 2117 void initScheduleData(Instruction *FromI, Instruction *ToI, 2118 ScheduleData *PrevLoadStore, 2119 ScheduleData *NextLoadStore); 2120 2121 /// Updates the dependency information of a bundle and of all instructions/ 2122 /// bundles which depend on the original bundle. 2123 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2124 BoUpSLP *SLP); 2125 2126 /// Sets all instruction in the scheduling region to un-scheduled. 2127 void resetSchedule(); 2128 2129 BasicBlock *BB; 2130 2131 /// Simple memory allocation for ScheduleData. 2132 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2133 2134 /// The size of a ScheduleData array in ScheduleDataChunks. 2135 int ChunkSize; 2136 2137 /// The allocator position in the current chunk, which is the last entry 2138 /// of ScheduleDataChunks. 2139 int ChunkPos; 2140 2141 /// Attaches ScheduleData to Instruction. 2142 /// Note that the mapping survives during all vectorization iterations, i.e. 2143 /// ScheduleData structures are recycled. 2144 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2145 2146 /// Attaches ScheduleData to Instruction with the leading key. 2147 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2148 ExtraScheduleDataMap; 2149 2150 struct ReadyList : SmallVector<ScheduleData *, 8> { 2151 void insert(ScheduleData *SD) { push_back(SD); } 2152 }; 2153 2154 /// The ready-list for scheduling (only used for the dry-run). 2155 ReadyList ReadyInsts; 2156 2157 /// The first instruction of the scheduling region. 2158 Instruction *ScheduleStart = nullptr; 2159 2160 /// The first instruction _after_ the scheduling region. 2161 Instruction *ScheduleEnd = nullptr; 2162 2163 /// The first memory accessing instruction in the scheduling region 2164 /// (can be null). 2165 ScheduleData *FirstLoadStoreInRegion = nullptr; 2166 2167 /// The last memory accessing instruction in the scheduling region 2168 /// (can be null). 2169 ScheduleData *LastLoadStoreInRegion = nullptr; 2170 2171 /// The current size of the scheduling region. 2172 int ScheduleRegionSize = 0; 2173 2174 /// The maximum size allowed for the scheduling region. 2175 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2176 2177 /// The ID of the scheduling region. For a new vectorization iteration this 2178 /// is incremented which "removes" all ScheduleData from the region. 2179 // Make sure that the initial SchedulingRegionID is greater than the 2180 // initial SchedulingRegionID in ScheduleData (which is 0). 2181 int SchedulingRegionID = 1; 2182 }; 2183 2184 /// Attaches the BlockScheduling structures to basic blocks. 2185 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2186 2187 /// Performs the "real" scheduling. Done before vectorization is actually 2188 /// performed in a basic block. 2189 void scheduleBlock(BlockScheduling *BS); 2190 2191 /// List of users to ignore during scheduling and that don't need extracting. 2192 ArrayRef<Value *> UserIgnoreList; 2193 2194 using OrdersType = SmallVector<unsigned, 4>; 2195 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2196 /// sorted SmallVectors of unsigned. 2197 struct OrdersTypeDenseMapInfo { 2198 static OrdersType getEmptyKey() { 2199 OrdersType V; 2200 V.push_back(~1U); 2201 return V; 2202 } 2203 2204 static OrdersType getTombstoneKey() { 2205 OrdersType V; 2206 V.push_back(~2U); 2207 return V; 2208 } 2209 2210 static unsigned getHashValue(const OrdersType &V) { 2211 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2212 } 2213 2214 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2215 return LHS == RHS; 2216 } 2217 }; 2218 2219 /// Contains orders of operations along with the number of bundles that have 2220 /// operations in this order. It stores only those orders that require 2221 /// reordering, if reordering is not required it is counted using \a 2222 /// NumOpsWantToKeepOriginalOrder. 2223 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 2224 /// Number of bundles that do not require reordering. 2225 unsigned NumOpsWantToKeepOriginalOrder = 0; 2226 2227 // Analysis and block reference. 2228 Function *F; 2229 ScalarEvolution *SE; 2230 TargetTransformInfo *TTI; 2231 TargetLibraryInfo *TLI; 2232 AliasAnalysis *AA; 2233 LoopInfo *LI; 2234 DominatorTree *DT; 2235 AssumptionCache *AC; 2236 DemandedBits *DB; 2237 const DataLayout *DL; 2238 OptimizationRemarkEmitter *ORE; 2239 2240 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2241 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2242 2243 /// Instruction builder to construct the vectorized tree. 2244 IRBuilder<> Builder; 2245 2246 /// A map of scalar integer values to the smallest bit width with which they 2247 /// can legally be represented. The values map to (width, signed) pairs, 2248 /// where "width" indicates the minimum bit width and "signed" is True if the 2249 /// value must be signed-extended, rather than zero-extended, back to its 2250 /// original width. 2251 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2252 }; 2253 2254 } // end namespace slpvectorizer 2255 2256 template <> struct GraphTraits<BoUpSLP *> { 2257 using TreeEntry = BoUpSLP::TreeEntry; 2258 2259 /// NodeRef has to be a pointer per the GraphWriter. 2260 using NodeRef = TreeEntry *; 2261 2262 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2263 2264 /// Add the VectorizableTree to the index iterator to be able to return 2265 /// TreeEntry pointers. 2266 struct ChildIteratorType 2267 : public iterator_adaptor_base< 2268 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2269 ContainerTy &VectorizableTree; 2270 2271 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2272 ContainerTy &VT) 2273 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2274 2275 NodeRef operator*() { return I->UserTE; } 2276 }; 2277 2278 static NodeRef getEntryNode(BoUpSLP &R) { 2279 return R.VectorizableTree[0].get(); 2280 } 2281 2282 static ChildIteratorType child_begin(NodeRef N) { 2283 return {N->UserTreeIndices.begin(), N->Container}; 2284 } 2285 2286 static ChildIteratorType child_end(NodeRef N) { 2287 return {N->UserTreeIndices.end(), N->Container}; 2288 } 2289 2290 /// For the node iterator we just need to turn the TreeEntry iterator into a 2291 /// TreeEntry* iterator so that it dereferences to NodeRef. 2292 class nodes_iterator { 2293 using ItTy = ContainerTy::iterator; 2294 ItTy It; 2295 2296 public: 2297 nodes_iterator(const ItTy &It2) : It(It2) {} 2298 NodeRef operator*() { return It->get(); } 2299 nodes_iterator operator++() { 2300 ++It; 2301 return *this; 2302 } 2303 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2304 }; 2305 2306 static nodes_iterator nodes_begin(BoUpSLP *R) { 2307 return nodes_iterator(R->VectorizableTree.begin()); 2308 } 2309 2310 static nodes_iterator nodes_end(BoUpSLP *R) { 2311 return nodes_iterator(R->VectorizableTree.end()); 2312 } 2313 2314 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2315 }; 2316 2317 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2318 using TreeEntry = BoUpSLP::TreeEntry; 2319 2320 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2321 2322 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2323 std::string Str; 2324 raw_string_ostream OS(Str); 2325 if (isSplat(Entry->Scalars)) { 2326 OS << "<splat> " << *Entry->Scalars[0]; 2327 return Str; 2328 } 2329 for (auto V : Entry->Scalars) { 2330 OS << *V; 2331 if (std::any_of( 2332 R->ExternalUses.begin(), R->ExternalUses.end(), 2333 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; })) 2334 OS << " <extract>"; 2335 OS << "\n"; 2336 } 2337 return Str; 2338 } 2339 2340 static std::string getNodeAttributes(const TreeEntry *Entry, 2341 const BoUpSLP *) { 2342 if (Entry->State == TreeEntry::NeedToGather) 2343 return "color=red"; 2344 return ""; 2345 } 2346 }; 2347 2348 } // end namespace llvm 2349 2350 BoUpSLP::~BoUpSLP() { 2351 for (const auto &Pair : DeletedInstructions) { 2352 // Replace operands of ignored instructions with Undefs in case if they were 2353 // marked for deletion. 2354 if (Pair.getSecond()) { 2355 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2356 Pair.getFirst()->replaceAllUsesWith(Undef); 2357 } 2358 Pair.getFirst()->dropAllReferences(); 2359 } 2360 for (const auto &Pair : DeletedInstructions) { 2361 assert(Pair.getFirst()->use_empty() && 2362 "trying to erase instruction with users."); 2363 Pair.getFirst()->eraseFromParent(); 2364 } 2365 } 2366 2367 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2368 for (auto *V : AV) { 2369 if (auto *I = dyn_cast<Instruction>(V)) 2370 eraseInstruction(I, /*ReplaceWithUndef=*/true); 2371 }; 2372 } 2373 2374 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2375 ArrayRef<Value *> UserIgnoreLst) { 2376 ExtraValueToDebugLocsMap ExternallyUsedValues; 2377 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 2378 } 2379 2380 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2381 ExtraValueToDebugLocsMap &ExternallyUsedValues, 2382 ArrayRef<Value *> UserIgnoreLst) { 2383 deleteTree(); 2384 UserIgnoreList = UserIgnoreLst; 2385 if (!allSameType(Roots)) 2386 return; 2387 buildTree_rec(Roots, 0, EdgeInfo()); 2388 2389 // Collect the values that we need to extract from the tree. 2390 for (auto &TEPtr : VectorizableTree) { 2391 TreeEntry *Entry = TEPtr.get(); 2392 2393 // No need to handle users of gathered values. 2394 if (Entry->State == TreeEntry::NeedToGather) 2395 continue; 2396 2397 // For each lane: 2398 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2399 Value *Scalar = Entry->Scalars[Lane]; 2400 int FoundLane = Lane; 2401 if (!Entry->ReuseShuffleIndices.empty()) { 2402 FoundLane = 2403 std::distance(Entry->ReuseShuffleIndices.begin(), 2404 llvm::find(Entry->ReuseShuffleIndices, FoundLane)); 2405 } 2406 2407 // Check if the scalar is externally used as an extra arg. 2408 auto ExtI = ExternallyUsedValues.find(Scalar); 2409 if (ExtI != ExternallyUsedValues.end()) { 2410 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 2411 << Lane << " from " << *Scalar << ".\n"); 2412 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 2413 } 2414 for (User *U : Scalar->users()) { 2415 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 2416 2417 Instruction *UserInst = dyn_cast<Instruction>(U); 2418 if (!UserInst) 2419 continue; 2420 2421 // Skip in-tree scalars that become vectors 2422 if (TreeEntry *UseEntry = getTreeEntry(U)) { 2423 Value *UseScalar = UseEntry->Scalars[0]; 2424 // Some in-tree scalars will remain as scalar in vectorized 2425 // instructions. If that is the case, the one in Lane 0 will 2426 // be used. 2427 if (UseScalar != U || 2428 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 2429 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 2430 << ".\n"); 2431 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 2432 continue; 2433 } 2434 } 2435 2436 // Ignore users in the user ignore list. 2437 if (is_contained(UserIgnoreList, UserInst)) 2438 continue; 2439 2440 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 2441 << Lane << " from " << *Scalar << ".\n"); 2442 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 2443 } 2444 } 2445 } 2446 } 2447 2448 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 2449 const EdgeInfo &UserTreeIdx) { 2450 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 2451 2452 InstructionsState S = getSameOpcode(VL); 2453 if (Depth == RecursionMaxDepth) { 2454 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 2455 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2456 return; 2457 } 2458 2459 // Don't handle vectors. 2460 if (S.OpValue->getType()->isVectorTy()) { 2461 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 2462 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2463 return; 2464 } 2465 2466 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2467 if (SI->getValueOperand()->getType()->isVectorTy()) { 2468 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 2469 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2470 return; 2471 } 2472 2473 // If all of the operands are identical or constant we have a simple solution. 2474 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 2475 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 2476 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2477 return; 2478 } 2479 2480 // We now know that this is a vector of instructions of the same type from 2481 // the same block. 2482 2483 // Don't vectorize ephemeral values. 2484 for (Value *V : VL) { 2485 if (EphValues.count(V)) { 2486 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2487 << ") is ephemeral.\n"); 2488 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2489 return; 2490 } 2491 } 2492 2493 // Check if this is a duplicate of another entry. 2494 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2495 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 2496 if (!E->isSame(VL)) { 2497 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 2498 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2499 return; 2500 } 2501 // Record the reuse of the tree node. FIXME, currently this is only used to 2502 // properly draw the graph rather than for the actual vectorization. 2503 E->UserTreeIndices.push_back(UserTreeIdx); 2504 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 2505 << ".\n"); 2506 return; 2507 } 2508 2509 // Check that none of the instructions in the bundle are already in the tree. 2510 for (Value *V : VL) { 2511 auto *I = dyn_cast<Instruction>(V); 2512 if (!I) 2513 continue; 2514 if (getTreeEntry(I)) { 2515 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2516 << ") is already in tree.\n"); 2517 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2518 return; 2519 } 2520 } 2521 2522 // If any of the scalars is marked as a value that needs to stay scalar, then 2523 // we need to gather the scalars. 2524 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 2525 for (Value *V : VL) { 2526 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) { 2527 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 2528 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2529 return; 2530 } 2531 } 2532 2533 // Check that all of the users of the scalars that we want to vectorize are 2534 // schedulable. 2535 auto *VL0 = cast<Instruction>(S.OpValue); 2536 BasicBlock *BB = VL0->getParent(); 2537 2538 if (!DT->isReachableFromEntry(BB)) { 2539 // Don't go into unreachable blocks. They may contain instructions with 2540 // dependency cycles which confuse the final scheduling. 2541 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 2542 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2543 return; 2544 } 2545 2546 // Check that every instruction appears once in this bundle. 2547 SmallVector<unsigned, 4> ReuseShuffleIndicies; 2548 SmallVector<Value *, 4> UniqueValues; 2549 DenseMap<Value *, unsigned> UniquePositions; 2550 for (Value *V : VL) { 2551 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 2552 ReuseShuffleIndicies.emplace_back(Res.first->second); 2553 if (Res.second) 2554 UniqueValues.emplace_back(V); 2555 } 2556 size_t NumUniqueScalarValues = UniqueValues.size(); 2557 if (NumUniqueScalarValues == VL.size()) { 2558 ReuseShuffleIndicies.clear(); 2559 } else { 2560 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 2561 if (NumUniqueScalarValues <= 1 || 2562 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 2563 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 2564 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2565 return; 2566 } 2567 VL = UniqueValues; 2568 } 2569 2570 auto &BSRef = BlocksSchedules[BB]; 2571 if (!BSRef) 2572 BSRef = std::make_unique<BlockScheduling>(BB); 2573 2574 BlockScheduling &BS = *BSRef.get(); 2575 2576 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 2577 if (!Bundle) { 2578 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 2579 assert((!BS.getScheduleData(VL0) || 2580 !BS.getScheduleData(VL0)->isPartOfBundle()) && 2581 "tryScheduleBundle should cancelScheduling on failure"); 2582 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2583 ReuseShuffleIndicies); 2584 return; 2585 } 2586 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 2587 2588 unsigned ShuffleOrOp = S.isAltShuffle() ? 2589 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2590 switch (ShuffleOrOp) { 2591 case Instruction::PHI: { 2592 auto *PH = cast<PHINode>(VL0); 2593 2594 // Check for terminator values (e.g. invoke). 2595 for (unsigned j = 0; j < VL.size(); ++j) 2596 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2597 Instruction *Term = dyn_cast<Instruction>( 2598 cast<PHINode>(VL[j])->getIncomingValueForBlock( 2599 PH->getIncomingBlock(i))); 2600 if (Term && Term->isTerminator()) { 2601 LLVM_DEBUG(dbgs() 2602 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 2603 BS.cancelScheduling(VL, VL0); 2604 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2605 ReuseShuffleIndicies); 2606 return; 2607 } 2608 } 2609 2610 TreeEntry *TE = 2611 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 2612 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 2613 2614 // Keeps the reordered operands to avoid code duplication. 2615 SmallVector<ValueList, 2> OperandsVec; 2616 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2617 ValueList Operands; 2618 // Prepare the operand vector. 2619 for (Value *j : VL) 2620 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( 2621 PH->getIncomingBlock(i))); 2622 TE->setOperand(i, Operands); 2623 OperandsVec.push_back(Operands); 2624 } 2625 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 2626 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 2627 return; 2628 } 2629 case Instruction::ExtractValue: 2630 case Instruction::ExtractElement: { 2631 OrdersType CurrentOrder; 2632 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 2633 if (Reuse) { 2634 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 2635 ++NumOpsWantToKeepOriginalOrder; 2636 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2637 ReuseShuffleIndicies); 2638 // This is a special case, as it does not gather, but at the same time 2639 // we are not extending buildTree_rec() towards the operands. 2640 ValueList Op0; 2641 Op0.assign(VL.size(), VL0->getOperand(0)); 2642 VectorizableTree.back()->setOperand(0, Op0); 2643 return; 2644 } 2645 if (!CurrentOrder.empty()) { 2646 LLVM_DEBUG({ 2647 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 2648 "with order"; 2649 for (unsigned Idx : CurrentOrder) 2650 dbgs() << " " << Idx; 2651 dbgs() << "\n"; 2652 }); 2653 // Insert new order with initial value 0, if it does not exist, 2654 // otherwise return the iterator to the existing one. 2655 auto StoredCurrentOrderAndNum = 2656 NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 2657 ++StoredCurrentOrderAndNum->getSecond(); 2658 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2659 ReuseShuffleIndicies, 2660 StoredCurrentOrderAndNum->getFirst()); 2661 // This is a special case, as it does not gather, but at the same time 2662 // we are not extending buildTree_rec() towards the operands. 2663 ValueList Op0; 2664 Op0.assign(VL.size(), VL0->getOperand(0)); 2665 VectorizableTree.back()->setOperand(0, Op0); 2666 return; 2667 } 2668 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 2669 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2670 ReuseShuffleIndicies); 2671 BS.cancelScheduling(VL, VL0); 2672 return; 2673 } 2674 case Instruction::Load: { 2675 // Check that a vectorized load would load the same memory as a scalar 2676 // load. For example, we don't want to vectorize loads that are smaller 2677 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 2678 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 2679 // from such a struct, we read/write packed bits disagreeing with the 2680 // unvectorized version. 2681 Type *ScalarTy = VL0->getType(); 2682 2683 if (DL->getTypeSizeInBits(ScalarTy) != 2684 DL->getTypeAllocSizeInBits(ScalarTy)) { 2685 BS.cancelScheduling(VL, VL0); 2686 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2687 ReuseShuffleIndicies); 2688 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 2689 return; 2690 } 2691 2692 // Make sure all loads in the bundle are simple - we can't vectorize 2693 // atomic or volatile loads. 2694 SmallVector<Value *, 4> PointerOps(VL.size()); 2695 auto POIter = PointerOps.begin(); 2696 for (Value *V : VL) { 2697 auto *L = cast<LoadInst>(V); 2698 if (!L->isSimple()) { 2699 BS.cancelScheduling(VL, VL0); 2700 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2701 ReuseShuffleIndicies); 2702 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 2703 return; 2704 } 2705 *POIter = L->getPointerOperand(); 2706 ++POIter; 2707 } 2708 2709 OrdersType CurrentOrder; 2710 // Check the order of pointer operands. 2711 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 2712 Value *Ptr0; 2713 Value *PtrN; 2714 if (CurrentOrder.empty()) { 2715 Ptr0 = PointerOps.front(); 2716 PtrN = PointerOps.back(); 2717 } else { 2718 Ptr0 = PointerOps[CurrentOrder.front()]; 2719 PtrN = PointerOps[CurrentOrder.back()]; 2720 } 2721 const SCEV *Scev0 = SE->getSCEV(Ptr0); 2722 const SCEV *ScevN = SE->getSCEV(PtrN); 2723 const auto *Diff = 2724 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 2725 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 2726 // Check that the sorted loads are consecutive. 2727 if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) { 2728 if (CurrentOrder.empty()) { 2729 // Original loads are consecutive and does not require reordering. 2730 ++NumOpsWantToKeepOriginalOrder; 2731 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 2732 UserTreeIdx, ReuseShuffleIndicies); 2733 TE->setOperandsInOrder(); 2734 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 2735 } else { 2736 // Need to reorder. 2737 auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 2738 ++I->getSecond(); 2739 TreeEntry *TE = 2740 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2741 ReuseShuffleIndicies, I->getFirst()); 2742 TE->setOperandsInOrder(); 2743 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 2744 } 2745 return; 2746 } 2747 } 2748 2749 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 2750 BS.cancelScheduling(VL, VL0); 2751 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2752 ReuseShuffleIndicies); 2753 return; 2754 } 2755 case Instruction::ZExt: 2756 case Instruction::SExt: 2757 case Instruction::FPToUI: 2758 case Instruction::FPToSI: 2759 case Instruction::FPExt: 2760 case Instruction::PtrToInt: 2761 case Instruction::IntToPtr: 2762 case Instruction::SIToFP: 2763 case Instruction::UIToFP: 2764 case Instruction::Trunc: 2765 case Instruction::FPTrunc: 2766 case Instruction::BitCast: { 2767 Type *SrcTy = VL0->getOperand(0)->getType(); 2768 for (Value *V : VL) { 2769 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 2770 if (Ty != SrcTy || !isValidElementType(Ty)) { 2771 BS.cancelScheduling(VL, VL0); 2772 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2773 ReuseShuffleIndicies); 2774 LLVM_DEBUG(dbgs() 2775 << "SLP: Gathering casts with different src types.\n"); 2776 return; 2777 } 2778 } 2779 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2780 ReuseShuffleIndicies); 2781 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 2782 2783 TE->setOperandsInOrder(); 2784 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2785 ValueList Operands; 2786 // Prepare the operand vector. 2787 for (Value *V : VL) 2788 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2789 2790 buildTree_rec(Operands, Depth + 1, {TE, i}); 2791 } 2792 return; 2793 } 2794 case Instruction::ICmp: 2795 case Instruction::FCmp: { 2796 // Check that all of the compares have the same predicate. 2797 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2798 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 2799 Type *ComparedTy = VL0->getOperand(0)->getType(); 2800 for (Value *V : VL) { 2801 CmpInst *Cmp = cast<CmpInst>(V); 2802 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 2803 Cmp->getOperand(0)->getType() != ComparedTy) { 2804 BS.cancelScheduling(VL, VL0); 2805 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2806 ReuseShuffleIndicies); 2807 LLVM_DEBUG(dbgs() 2808 << "SLP: Gathering cmp with different predicate.\n"); 2809 return; 2810 } 2811 } 2812 2813 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2814 ReuseShuffleIndicies); 2815 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 2816 2817 ValueList Left, Right; 2818 if (cast<CmpInst>(VL0)->isCommutative()) { 2819 // Commutative predicate - collect + sort operands of the instructions 2820 // so that each side is more likely to have the same opcode. 2821 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 2822 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 2823 } else { 2824 // Collect operands - commute if it uses the swapped predicate. 2825 for (Value *V : VL) { 2826 auto *Cmp = cast<CmpInst>(V); 2827 Value *LHS = Cmp->getOperand(0); 2828 Value *RHS = Cmp->getOperand(1); 2829 if (Cmp->getPredicate() != P0) 2830 std::swap(LHS, RHS); 2831 Left.push_back(LHS); 2832 Right.push_back(RHS); 2833 } 2834 } 2835 TE->setOperand(0, Left); 2836 TE->setOperand(1, Right); 2837 buildTree_rec(Left, Depth + 1, {TE, 0}); 2838 buildTree_rec(Right, Depth + 1, {TE, 1}); 2839 return; 2840 } 2841 case Instruction::Select: 2842 case Instruction::FNeg: 2843 case Instruction::Add: 2844 case Instruction::FAdd: 2845 case Instruction::Sub: 2846 case Instruction::FSub: 2847 case Instruction::Mul: 2848 case Instruction::FMul: 2849 case Instruction::UDiv: 2850 case Instruction::SDiv: 2851 case Instruction::FDiv: 2852 case Instruction::URem: 2853 case Instruction::SRem: 2854 case Instruction::FRem: 2855 case Instruction::Shl: 2856 case Instruction::LShr: 2857 case Instruction::AShr: 2858 case Instruction::And: 2859 case Instruction::Or: 2860 case Instruction::Xor: { 2861 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2862 ReuseShuffleIndicies); 2863 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 2864 2865 // Sort operands of the instructions so that each side is more likely to 2866 // have the same opcode. 2867 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 2868 ValueList Left, Right; 2869 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 2870 TE->setOperand(0, Left); 2871 TE->setOperand(1, Right); 2872 buildTree_rec(Left, Depth + 1, {TE, 0}); 2873 buildTree_rec(Right, Depth + 1, {TE, 1}); 2874 return; 2875 } 2876 2877 TE->setOperandsInOrder(); 2878 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 2879 ValueList Operands; 2880 // Prepare the operand vector. 2881 for (Value *j : VL) 2882 Operands.push_back(cast<Instruction>(j)->getOperand(i)); 2883 2884 buildTree_rec(Operands, Depth + 1, {TE, i}); 2885 } 2886 return; 2887 } 2888 case Instruction::GetElementPtr: { 2889 // We don't combine GEPs with complicated (nested) indexing. 2890 for (Value *V : VL) { 2891 if (cast<Instruction>(V)->getNumOperands() != 2) { 2892 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 2893 BS.cancelScheduling(VL, VL0); 2894 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2895 ReuseShuffleIndicies); 2896 return; 2897 } 2898 } 2899 2900 // We can't combine several GEPs into one vector if they operate on 2901 // different types. 2902 Type *Ty0 = VL0->getOperand(0)->getType(); 2903 for (Value *V : VL) { 2904 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 2905 if (Ty0 != CurTy) { 2906 LLVM_DEBUG(dbgs() 2907 << "SLP: not-vectorizable GEP (different types).\n"); 2908 BS.cancelScheduling(VL, VL0); 2909 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2910 ReuseShuffleIndicies); 2911 return; 2912 } 2913 } 2914 2915 // We don't combine GEPs with non-constant indexes. 2916 Type *Ty1 = VL0->getOperand(1)->getType(); 2917 for (Value *V : VL) { 2918 auto Op = cast<Instruction>(V)->getOperand(1); 2919 if (!isa<ConstantInt>(Op) || 2920 (Op->getType() != Ty1 && 2921 Op->getType()->getScalarSizeInBits() > 2922 DL->getIndexSizeInBits( 2923 V->getType()->getPointerAddressSpace()))) { 2924 LLVM_DEBUG(dbgs() 2925 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 2926 BS.cancelScheduling(VL, VL0); 2927 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2928 ReuseShuffleIndicies); 2929 return; 2930 } 2931 } 2932 2933 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2934 ReuseShuffleIndicies); 2935 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 2936 TE->setOperandsInOrder(); 2937 for (unsigned i = 0, e = 2; i < e; ++i) { 2938 ValueList Operands; 2939 // Prepare the operand vector. 2940 for (Value *V : VL) 2941 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 2942 2943 buildTree_rec(Operands, Depth + 1, {TE, i}); 2944 } 2945 return; 2946 } 2947 case Instruction::Store: { 2948 // Check if the stores are consecutive or if we need to swizzle them. 2949 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 2950 // Make sure all stores in the bundle are simple - we can't vectorize 2951 // atomic or volatile stores. 2952 SmallVector<Value *, 4> PointerOps(VL.size()); 2953 ValueList Operands(VL.size()); 2954 auto POIter = PointerOps.begin(); 2955 auto OIter = Operands.begin(); 2956 for (Value *V : VL) { 2957 auto *SI = cast<StoreInst>(V); 2958 if (!SI->isSimple()) { 2959 BS.cancelScheduling(VL, VL0); 2960 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2961 ReuseShuffleIndicies); 2962 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 2963 return; 2964 } 2965 *POIter = SI->getPointerOperand(); 2966 *OIter = SI->getValueOperand(); 2967 ++POIter; 2968 ++OIter; 2969 } 2970 2971 OrdersType CurrentOrder; 2972 // Check the order of pointer operands. 2973 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 2974 Value *Ptr0; 2975 Value *PtrN; 2976 if (CurrentOrder.empty()) { 2977 Ptr0 = PointerOps.front(); 2978 PtrN = PointerOps.back(); 2979 } else { 2980 Ptr0 = PointerOps[CurrentOrder.front()]; 2981 PtrN = PointerOps[CurrentOrder.back()]; 2982 } 2983 const SCEV *Scev0 = SE->getSCEV(Ptr0); 2984 const SCEV *ScevN = SE->getSCEV(PtrN); 2985 const auto *Diff = 2986 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0)); 2987 uint64_t Size = DL->getTypeAllocSize(ScalarTy); 2988 // Check that the sorted pointer operands are consecutive. 2989 if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) { 2990 if (CurrentOrder.empty()) { 2991 // Original stores are consecutive and does not require reordering. 2992 ++NumOpsWantToKeepOriginalOrder; 2993 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 2994 UserTreeIdx, ReuseShuffleIndicies); 2995 TE->setOperandsInOrder(); 2996 buildTree_rec(Operands, Depth + 1, {TE, 0}); 2997 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 2998 } else { 2999 // Need to reorder. 3000 auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first; 3001 ++(I->getSecond()); 3002 TreeEntry *TE = 3003 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3004 ReuseShuffleIndicies, I->getFirst()); 3005 TE->setOperandsInOrder(); 3006 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3007 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 3008 } 3009 return; 3010 } 3011 } 3012 3013 BS.cancelScheduling(VL, VL0); 3014 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3015 ReuseShuffleIndicies); 3016 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 3017 return; 3018 } 3019 case Instruction::Call: { 3020 // Check if the calls are all to the same vectorizable intrinsic. 3021 CallInst *CI = cast<CallInst>(VL0); 3022 // Check if this is an Intrinsic call or something that can be 3023 // represented by an intrinsic call 3024 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3025 if (!isTriviallyVectorizable(ID)) { 3026 BS.cancelScheduling(VL, VL0); 3027 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3028 ReuseShuffleIndicies); 3029 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 3030 return; 3031 } 3032 Function *Int = CI->getCalledFunction(); 3033 unsigned NumArgs = CI->getNumArgOperands(); 3034 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 3035 for (unsigned j = 0; j != NumArgs; ++j) 3036 if (hasVectorInstrinsicScalarOpd(ID, j)) 3037 ScalarArgs[j] = CI->getArgOperand(j); 3038 for (Value *V : VL) { 3039 CallInst *CI2 = dyn_cast<CallInst>(V); 3040 if (!CI2 || CI2->getCalledFunction() != Int || 3041 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 3042 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 3043 BS.cancelScheduling(VL, VL0); 3044 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3045 ReuseShuffleIndicies); 3046 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 3047 << "\n"); 3048 return; 3049 } 3050 // Some intrinsics have scalar arguments and should be same in order for 3051 // them to be vectorized. 3052 for (unsigned j = 0; j != NumArgs; ++j) { 3053 if (hasVectorInstrinsicScalarOpd(ID, j)) { 3054 Value *A1J = CI2->getArgOperand(j); 3055 if (ScalarArgs[j] != A1J) { 3056 BS.cancelScheduling(VL, VL0); 3057 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3058 ReuseShuffleIndicies); 3059 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 3060 << " argument " << ScalarArgs[j] << "!=" << A1J 3061 << "\n"); 3062 return; 3063 } 3064 } 3065 } 3066 // Verify that the bundle operands are identical between the two calls. 3067 if (CI->hasOperandBundles() && 3068 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 3069 CI->op_begin() + CI->getBundleOperandsEndIndex(), 3070 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 3071 BS.cancelScheduling(VL, VL0); 3072 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3073 ReuseShuffleIndicies); 3074 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 3075 << *CI << "!=" << *V << '\n'); 3076 return; 3077 } 3078 } 3079 3080 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3081 ReuseShuffleIndicies); 3082 TE->setOperandsInOrder(); 3083 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 3084 ValueList Operands; 3085 // Prepare the operand vector. 3086 for (Value *V : VL) { 3087 auto *CI2 = cast<CallInst>(V); 3088 Operands.push_back(CI2->getArgOperand(i)); 3089 } 3090 buildTree_rec(Operands, Depth + 1, {TE, i}); 3091 } 3092 return; 3093 } 3094 case Instruction::ShuffleVector: { 3095 // If this is not an alternate sequence of opcode like add-sub 3096 // then do not vectorize this instruction. 3097 if (!S.isAltShuffle()) { 3098 BS.cancelScheduling(VL, VL0); 3099 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3100 ReuseShuffleIndicies); 3101 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 3102 return; 3103 } 3104 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3105 ReuseShuffleIndicies); 3106 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 3107 3108 // Reorder operands if reordering would enable vectorization. 3109 if (isa<BinaryOperator>(VL0)) { 3110 ValueList Left, Right; 3111 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3112 TE->setOperand(0, Left); 3113 TE->setOperand(1, Right); 3114 buildTree_rec(Left, Depth + 1, {TE, 0}); 3115 buildTree_rec(Right, Depth + 1, {TE, 1}); 3116 return; 3117 } 3118 3119 TE->setOperandsInOrder(); 3120 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3121 ValueList Operands; 3122 // Prepare the operand vector. 3123 for (Value *V : VL) 3124 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3125 3126 buildTree_rec(Operands, Depth + 1, {TE, i}); 3127 } 3128 return; 3129 } 3130 default: 3131 BS.cancelScheduling(VL, VL0); 3132 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3133 ReuseShuffleIndicies); 3134 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 3135 return; 3136 } 3137 } 3138 3139 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 3140 unsigned N = 1; 3141 Type *EltTy = T; 3142 3143 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 3144 isa<VectorType>(EltTy)) { 3145 if (auto *ST = dyn_cast<StructType>(EltTy)) { 3146 // Check that struct is homogeneous. 3147 for (const auto *Ty : ST->elements()) 3148 if (Ty != *ST->element_begin()) 3149 return 0; 3150 N *= ST->getNumElements(); 3151 EltTy = *ST->element_begin(); 3152 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 3153 N *= AT->getNumElements(); 3154 EltTy = AT->getElementType(); 3155 } else { 3156 auto *VT = cast<VectorType>(EltTy); 3157 N *= VT->getNumElements(); 3158 EltTy = VT->getElementType(); 3159 } 3160 } 3161 3162 if (!isValidElementType(EltTy)) 3163 return 0; 3164 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); 3165 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 3166 return 0; 3167 return N; 3168 } 3169 3170 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 3171 SmallVectorImpl<unsigned> &CurrentOrder) const { 3172 Instruction *E0 = cast<Instruction>(OpValue); 3173 assert(E0->getOpcode() == Instruction::ExtractElement || 3174 E0->getOpcode() == Instruction::ExtractValue); 3175 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 3176 // Check if all of the extracts come from the same vector and from the 3177 // correct offset. 3178 Value *Vec = E0->getOperand(0); 3179 3180 CurrentOrder.clear(); 3181 3182 // We have to extract from a vector/aggregate with the same number of elements. 3183 unsigned NElts; 3184 if (E0->getOpcode() == Instruction::ExtractValue) { 3185 const DataLayout &DL = E0->getModule()->getDataLayout(); 3186 NElts = canMapToVector(Vec->getType(), DL); 3187 if (!NElts) 3188 return false; 3189 // Check if load can be rewritten as load of vector. 3190 LoadInst *LI = dyn_cast<LoadInst>(Vec); 3191 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 3192 return false; 3193 } else { 3194 NElts = cast<VectorType>(Vec->getType())->getNumElements(); 3195 } 3196 3197 if (NElts != VL.size()) 3198 return false; 3199 3200 // Check that all of the indices extract from the correct offset. 3201 bool ShouldKeepOrder = true; 3202 unsigned E = VL.size(); 3203 // Assign to all items the initial value E + 1 so we can check if the extract 3204 // instruction index was used already. 3205 // Also, later we can check that all the indices are used and we have a 3206 // consecutive access in the extract instructions, by checking that no 3207 // element of CurrentOrder still has value E + 1. 3208 CurrentOrder.assign(E, E + 1); 3209 unsigned I = 0; 3210 for (; I < E; ++I) { 3211 auto *Inst = cast<Instruction>(VL[I]); 3212 if (Inst->getOperand(0) != Vec) 3213 break; 3214 Optional<unsigned> Idx = getExtractIndex(Inst); 3215 if (!Idx) 3216 break; 3217 const unsigned ExtIdx = *Idx; 3218 if (ExtIdx != I) { 3219 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 3220 break; 3221 ShouldKeepOrder = false; 3222 CurrentOrder[ExtIdx] = I; 3223 } else { 3224 if (CurrentOrder[I] != E + 1) 3225 break; 3226 CurrentOrder[I] = I; 3227 } 3228 } 3229 if (I < E) { 3230 CurrentOrder.clear(); 3231 return false; 3232 } 3233 3234 return ShouldKeepOrder; 3235 } 3236 3237 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const { 3238 return I->hasOneUse() || 3239 std::all_of(I->user_begin(), I->user_end(), [this](User *U) { 3240 return ScalarToTreeEntry.count(U) > 0; 3241 }); 3242 } 3243 3244 static std::pair<unsigned, unsigned> 3245 getVectorCallCosts(CallInst *CI, VectorType *VecTy, TargetTransformInfo *TTI, 3246 TargetLibraryInfo *TLI) { 3247 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3248 3249 // Calculate the cost of the scalar and vector calls. 3250 FastMathFlags FMF; 3251 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3252 FMF = FPMO->getFastMathFlags(); 3253 3254 SmallVector<Value *, 4> Args(CI->arg_operands()); 3255 int IntrinsicCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF, 3256 VecTy->getNumElements()); 3257 3258 auto Shape = 3259 VFShape::get(*CI, {static_cast<unsigned>(VecTy->getNumElements()), false}, 3260 false /*HasGlobalPred*/); 3261 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3262 int LibCost = IntrinsicCost; 3263 if (!CI->isNoBuiltin() && VecFunc) { 3264 // Calculate the cost of the vector library call. 3265 SmallVector<Type *, 4> VecTys; 3266 for (Use &Arg : CI->args()) 3267 VecTys.push_back( 3268 VectorType::get(Arg->getType(), VecTy->getNumElements())); 3269 3270 // If the corresponding vector call is cheaper, return its cost. 3271 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 3272 TTI::TCK_RecipThroughput); 3273 } 3274 return {IntrinsicCost, LibCost}; 3275 } 3276 3277 int BoUpSLP::getEntryCost(TreeEntry *E) { 3278 ArrayRef<Value*> VL = E->Scalars; 3279 3280 Type *ScalarTy = VL[0]->getType(); 3281 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 3282 ScalarTy = SI->getValueOperand()->getType(); 3283 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 3284 ScalarTy = CI->getOperand(0)->getType(); 3285 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 3286 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 3287 3288 // If we have computed a smaller type for the expression, update VecTy so 3289 // that the costs will be accurate. 3290 if (MinBWs.count(VL[0])) 3291 VecTy = VectorType::get( 3292 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 3293 3294 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 3295 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3296 int ReuseShuffleCost = 0; 3297 if (NeedToShuffleReuses) { 3298 ReuseShuffleCost = 3299 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3300 } 3301 if (E->State == TreeEntry::NeedToGather) { 3302 if (allConstant(VL)) 3303 return 0; 3304 if (isSplat(VL)) { 3305 return ReuseShuffleCost + 3306 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 3307 } 3308 if (E->getOpcode() == Instruction::ExtractElement && 3309 allSameType(VL) && allSameBlock(VL)) { 3310 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL); 3311 if (ShuffleKind.hasValue()) { 3312 int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy); 3313 for (auto *V : VL) { 3314 // If all users of instruction are going to be vectorized and this 3315 // instruction itself is not going to be vectorized, consider this 3316 // instruction as dead and remove its cost from the final cost of the 3317 // vectorized tree. 3318 if (areAllUsersVectorized(cast<Instruction>(V)) && 3319 !ScalarToTreeEntry.count(V)) { 3320 auto *IO = cast<ConstantInt>( 3321 cast<ExtractElementInst>(V)->getIndexOperand()); 3322 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 3323 IO->getZExtValue()); 3324 } 3325 } 3326 return ReuseShuffleCost + Cost; 3327 } 3328 } 3329 return ReuseShuffleCost + getGatherCost(VL); 3330 } 3331 assert(E->State == TreeEntry::Vectorize && "Unhandled state"); 3332 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 3333 Instruction *VL0 = E->getMainOp(); 3334 unsigned ShuffleOrOp = 3335 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 3336 switch (ShuffleOrOp) { 3337 case Instruction::PHI: 3338 return 0; 3339 3340 case Instruction::ExtractValue: 3341 case Instruction::ExtractElement: { 3342 if (NeedToShuffleReuses) { 3343 unsigned Idx = 0; 3344 for (unsigned I : E->ReuseShuffleIndices) { 3345 if (ShuffleOrOp == Instruction::ExtractElement) { 3346 auto *IO = cast<ConstantInt>( 3347 cast<ExtractElementInst>(VL[I])->getIndexOperand()); 3348 Idx = IO->getZExtValue(); 3349 ReuseShuffleCost -= TTI->getVectorInstrCost( 3350 Instruction::ExtractElement, VecTy, Idx); 3351 } else { 3352 ReuseShuffleCost -= TTI->getVectorInstrCost( 3353 Instruction::ExtractElement, VecTy, Idx); 3354 ++Idx; 3355 } 3356 } 3357 Idx = ReuseShuffleNumbers; 3358 for (Value *V : VL) { 3359 if (ShuffleOrOp == Instruction::ExtractElement) { 3360 auto *IO = cast<ConstantInt>( 3361 cast<ExtractElementInst>(V)->getIndexOperand()); 3362 Idx = IO->getZExtValue(); 3363 } else { 3364 --Idx; 3365 } 3366 ReuseShuffleCost += 3367 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx); 3368 } 3369 } 3370 int DeadCost = ReuseShuffleCost; 3371 if (!E->ReorderIndices.empty()) { 3372 // TODO: Merge this shuffle with the ReuseShuffleCost. 3373 DeadCost += TTI->getShuffleCost( 3374 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3375 } 3376 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3377 Instruction *E = cast<Instruction>(VL[i]); 3378 // If all users are going to be vectorized, instruction can be 3379 // considered as dead. 3380 // The same, if have only one user, it will be vectorized for sure. 3381 if (areAllUsersVectorized(E)) { 3382 // Take credit for instruction that will become dead. 3383 if (E->hasOneUse()) { 3384 Instruction *Ext = E->user_back(); 3385 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3386 all_of(Ext->users(), 3387 [](User *U) { return isa<GetElementPtrInst>(U); })) { 3388 // Use getExtractWithExtendCost() to calculate the cost of 3389 // extractelement/ext pair. 3390 DeadCost -= TTI->getExtractWithExtendCost( 3391 Ext->getOpcode(), Ext->getType(), VecTy, i); 3392 // Add back the cost of s|zext which is subtracted separately. 3393 DeadCost += TTI->getCastInstrCost( 3394 Ext->getOpcode(), Ext->getType(), E->getType(), CostKind, 3395 Ext); 3396 continue; 3397 } 3398 } 3399 DeadCost -= 3400 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 3401 } 3402 } 3403 return DeadCost; 3404 } 3405 case Instruction::ZExt: 3406 case Instruction::SExt: 3407 case Instruction::FPToUI: 3408 case Instruction::FPToSI: 3409 case Instruction::FPExt: 3410 case Instruction::PtrToInt: 3411 case Instruction::IntToPtr: 3412 case Instruction::SIToFP: 3413 case Instruction::UIToFP: 3414 case Instruction::Trunc: 3415 case Instruction::FPTrunc: 3416 case Instruction::BitCast: { 3417 Type *SrcTy = VL0->getOperand(0)->getType(); 3418 int ScalarEltCost = 3419 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, CostKind, 3420 VL0); 3421 if (NeedToShuffleReuses) { 3422 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3423 } 3424 3425 // Calculate the cost of this instruction. 3426 int ScalarCost = VL.size() * ScalarEltCost; 3427 3428 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 3429 int VecCost = 0; 3430 // Check if the values are candidates to demote. 3431 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 3432 VecCost = ReuseShuffleCost + 3433 TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy, 3434 CostKind, VL0); 3435 } 3436 return VecCost - ScalarCost; 3437 } 3438 case Instruction::FCmp: 3439 case Instruction::ICmp: 3440 case Instruction::Select: { 3441 // Calculate the cost of this instruction. 3442 int ScalarEltCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, 3443 Builder.getInt1Ty(), 3444 CostKind, VL0); 3445 if (NeedToShuffleReuses) { 3446 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3447 } 3448 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 3449 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3450 int VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), VecTy, MaskTy, 3451 CostKind, VL0); 3452 return ReuseShuffleCost + VecCost - ScalarCost; 3453 } 3454 case Instruction::FNeg: 3455 case Instruction::Add: 3456 case Instruction::FAdd: 3457 case Instruction::Sub: 3458 case Instruction::FSub: 3459 case Instruction::Mul: 3460 case Instruction::FMul: 3461 case Instruction::UDiv: 3462 case Instruction::SDiv: 3463 case Instruction::FDiv: 3464 case Instruction::URem: 3465 case Instruction::SRem: 3466 case Instruction::FRem: 3467 case Instruction::Shl: 3468 case Instruction::LShr: 3469 case Instruction::AShr: 3470 case Instruction::And: 3471 case Instruction::Or: 3472 case Instruction::Xor: { 3473 // Certain instructions can be cheaper to vectorize if they have a 3474 // constant second vector operand. 3475 TargetTransformInfo::OperandValueKind Op1VK = 3476 TargetTransformInfo::OK_AnyValue; 3477 TargetTransformInfo::OperandValueKind Op2VK = 3478 TargetTransformInfo::OK_UniformConstantValue; 3479 TargetTransformInfo::OperandValueProperties Op1VP = 3480 TargetTransformInfo::OP_None; 3481 TargetTransformInfo::OperandValueProperties Op2VP = 3482 TargetTransformInfo::OP_PowerOf2; 3483 3484 // If all operands are exactly the same ConstantInt then set the 3485 // operand kind to OK_UniformConstantValue. 3486 // If instead not all operands are constants, then set the operand kind 3487 // to OK_AnyValue. If all operands are constants but not the same, 3488 // then set the operand kind to OK_NonUniformConstantValue. 3489 ConstantInt *CInt0 = nullptr; 3490 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3491 const Instruction *I = cast<Instruction>(VL[i]); 3492 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 3493 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 3494 if (!CInt) { 3495 Op2VK = TargetTransformInfo::OK_AnyValue; 3496 Op2VP = TargetTransformInfo::OP_None; 3497 break; 3498 } 3499 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 3500 !CInt->getValue().isPowerOf2()) 3501 Op2VP = TargetTransformInfo::OP_None; 3502 if (i == 0) { 3503 CInt0 = CInt; 3504 continue; 3505 } 3506 if (CInt0 != CInt) 3507 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 3508 } 3509 3510 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 3511 int ScalarEltCost = TTI->getArithmeticInstrCost( 3512 E->getOpcode(), ScalarTy, CostKind, Op1VK, Op2VK, Op1VP, Op2VP, 3513 Operands, VL0); 3514 if (NeedToShuffleReuses) { 3515 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3516 } 3517 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3518 int VecCost = TTI->getArithmeticInstrCost( 3519 E->getOpcode(), VecTy, CostKind, Op1VK, Op2VK, Op1VP, Op2VP, 3520 Operands, VL0); 3521 return ReuseShuffleCost + VecCost - ScalarCost; 3522 } 3523 case Instruction::GetElementPtr: { 3524 TargetTransformInfo::OperandValueKind Op1VK = 3525 TargetTransformInfo::OK_AnyValue; 3526 TargetTransformInfo::OperandValueKind Op2VK = 3527 TargetTransformInfo::OK_UniformConstantValue; 3528 3529 int ScalarEltCost = 3530 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, CostKind, 3531 Op1VK, Op2VK); 3532 if (NeedToShuffleReuses) { 3533 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3534 } 3535 int ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3536 int VecCost = 3537 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, CostKind, 3538 Op1VK, Op2VK); 3539 return ReuseShuffleCost + VecCost - ScalarCost; 3540 } 3541 case Instruction::Load: { 3542 // Cost of wide load - cost of scalar loads. 3543 Align alignment = cast<LoadInst>(VL0)->getAlign(); 3544 int ScalarEltCost = 3545 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, 3546 CostKind, VL0); 3547 if (NeedToShuffleReuses) { 3548 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3549 } 3550 int ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 3551 int VecLdCost = 3552 TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, 3553 CostKind, VL0); 3554 if (!E->ReorderIndices.empty()) { 3555 // TODO: Merge this shuffle with the ReuseShuffleCost. 3556 VecLdCost += TTI->getShuffleCost( 3557 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3558 } 3559 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 3560 } 3561 case Instruction::Store: { 3562 // We know that we can merge the stores. Calculate the cost. 3563 bool IsReorder = !E->ReorderIndices.empty(); 3564 auto *SI = 3565 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 3566 Align Alignment = SI->getAlign(); 3567 int ScalarEltCost = 3568 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, Alignment, 0, 3569 CostKind, VL0); 3570 if (NeedToShuffleReuses) 3571 ReuseShuffleCost = -(ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3572 int ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 3573 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, 3574 VecTy, Alignment, 0, CostKind, VL0); 3575 if (IsReorder) { 3576 // TODO: Merge this shuffle with the ReuseShuffleCost. 3577 VecStCost += TTI->getShuffleCost( 3578 TargetTransformInfo::SK_PermuteSingleSrc, VecTy); 3579 } 3580 return ReuseShuffleCost + VecStCost - ScalarStCost; 3581 } 3582 case Instruction::Call: { 3583 CallInst *CI = cast<CallInst>(VL0); 3584 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3585 3586 // Calculate the cost of the scalar and vector calls. 3587 SmallVector<Type *, 4> ScalarTys; 3588 for (unsigned op = 0, opc = CI->getNumArgOperands(); op != opc; ++op) 3589 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 3590 3591 FastMathFlags FMF; 3592 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3593 FMF = FPMO->getFastMathFlags(); 3594 3595 int ScalarEltCost = 3596 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF, 1, CostKind); 3597 if (NeedToShuffleReuses) { 3598 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3599 } 3600 int ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 3601 3602 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 3603 int VecCallCost = std::min(VecCallCosts.first, VecCallCosts.second); 3604 3605 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 3606 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 3607 << " for " << *CI << "\n"); 3608 3609 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 3610 } 3611 case Instruction::ShuffleVector: { 3612 assert(E->isAltShuffle() && 3613 ((Instruction::isBinaryOp(E->getOpcode()) && 3614 Instruction::isBinaryOp(E->getAltOpcode())) || 3615 (Instruction::isCast(E->getOpcode()) && 3616 Instruction::isCast(E->getAltOpcode()))) && 3617 "Invalid Shuffle Vector Operand"); 3618 int ScalarCost = 0; 3619 if (NeedToShuffleReuses) { 3620 for (unsigned Idx : E->ReuseShuffleIndices) { 3621 Instruction *I = cast<Instruction>(VL[Idx]); 3622 ReuseShuffleCost -= TTI->getInstructionCost(I, CostKind); 3623 } 3624 for (Value *V : VL) { 3625 Instruction *I = cast<Instruction>(V); 3626 ReuseShuffleCost += TTI->getInstructionCost(I, CostKind); 3627 } 3628 } 3629 for (Value *V : VL) { 3630 Instruction *I = cast<Instruction>(V); 3631 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 3632 ScalarCost += TTI->getInstructionCost(I, CostKind); 3633 } 3634 // VecCost is equal to sum of the cost of creating 2 vectors 3635 // and the cost of creating shuffle. 3636 int VecCost = 0; 3637 if (Instruction::isBinaryOp(E->getOpcode())) { 3638 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 3639 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 3640 CostKind); 3641 } else { 3642 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 3643 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 3644 VectorType *Src0Ty = VectorType::get(Src0SclTy, VL.size()); 3645 VectorType *Src1Ty = VectorType::get(Src1SclTy, VL.size()); 3646 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 3647 CostKind); 3648 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 3649 CostKind); 3650 } 3651 VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0); 3652 return ReuseShuffleCost + VecCost - ScalarCost; 3653 } 3654 default: 3655 llvm_unreachable("Unknown instruction"); 3656 } 3657 } 3658 3659 bool BoUpSLP::isFullyVectorizableTinyTree() const { 3660 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 3661 << VectorizableTree.size() << " is fully vectorizable .\n"); 3662 3663 // We only handle trees of heights 1 and 2. 3664 if (VectorizableTree.size() == 1 && 3665 VectorizableTree[0]->State == TreeEntry::Vectorize) 3666 return true; 3667 3668 if (VectorizableTree.size() != 2) 3669 return false; 3670 3671 // Handle splat and all-constants stores. 3672 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 3673 (allConstant(VectorizableTree[1]->Scalars) || 3674 isSplat(VectorizableTree[1]->Scalars))) 3675 return true; 3676 3677 // Gathering cost would be too much for tiny trees. 3678 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 3679 VectorizableTree[1]->State == TreeEntry::NeedToGather) 3680 return false; 3681 3682 return true; 3683 } 3684 3685 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 3686 TargetTransformInfo *TTI) { 3687 // Look past the root to find a source value. Arbitrarily follow the 3688 // path through operand 0 of any 'or'. Also, peek through optional 3689 // shift-left-by-constant. 3690 Value *ZextLoad = Root; 3691 while (!isa<ConstantExpr>(ZextLoad) && 3692 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 3693 match(ZextLoad, m_Shl(m_Value(), m_Constant())))) 3694 ZextLoad = cast<BinaryOperator>(ZextLoad)->getOperand(0); 3695 3696 // Check if the input is an extended load of the required or/shift expression. 3697 Value *LoadPtr; 3698 if (ZextLoad == Root || !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr))))) 3699 return false; 3700 3701 // Require that the total load bit width is a legal integer type. 3702 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 3703 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 3704 Type *SrcTy = LoadPtr->getType()->getPointerElementType(); 3705 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 3706 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 3707 return false; 3708 3709 // Everything matched - assume that we can fold the whole sequence using 3710 // load combining. 3711 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 3712 << *(cast<Instruction>(Root)) << "\n"); 3713 3714 return true; 3715 } 3716 3717 bool BoUpSLP::isLoadCombineReductionCandidate(unsigned RdxOpcode) const { 3718 if (RdxOpcode != Instruction::Or) 3719 return false; 3720 3721 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 3722 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 3723 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI); 3724 } 3725 3726 bool BoUpSLP::isLoadCombineCandidate() const { 3727 // Peek through a final sequence of stores and check if all operations are 3728 // likely to be load-combined. 3729 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 3730 for (Value *Scalar : VectorizableTree[0]->Scalars) { 3731 Value *X; 3732 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 3733 !isLoadCombineCandidateImpl(X, NumElts, TTI)) 3734 return false; 3735 } 3736 return true; 3737 } 3738 3739 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const { 3740 // We can vectorize the tree if its size is greater than or equal to the 3741 // minimum size specified by the MinTreeSize command line option. 3742 if (VectorizableTree.size() >= MinTreeSize) 3743 return false; 3744 3745 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 3746 // can vectorize it if we can prove it fully vectorizable. 3747 if (isFullyVectorizableTinyTree()) 3748 return false; 3749 3750 assert(VectorizableTree.empty() 3751 ? ExternalUses.empty() 3752 : true && "We shouldn't have any external users"); 3753 3754 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 3755 // vectorizable. 3756 return true; 3757 } 3758 3759 int BoUpSLP::getSpillCost() const { 3760 // Walk from the bottom of the tree to the top, tracking which values are 3761 // live. When we see a call instruction that is not part of our tree, 3762 // query TTI to see if there is a cost to keeping values live over it 3763 // (for example, if spills and fills are required). 3764 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 3765 int Cost = 0; 3766 3767 SmallPtrSet<Instruction*, 4> LiveValues; 3768 Instruction *PrevInst = nullptr; 3769 3770 for (const auto &TEPtr : VectorizableTree) { 3771 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 3772 if (!Inst) 3773 continue; 3774 3775 if (!PrevInst) { 3776 PrevInst = Inst; 3777 continue; 3778 } 3779 3780 // Update LiveValues. 3781 LiveValues.erase(PrevInst); 3782 for (auto &J : PrevInst->operands()) { 3783 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 3784 LiveValues.insert(cast<Instruction>(&*J)); 3785 } 3786 3787 LLVM_DEBUG({ 3788 dbgs() << "SLP: #LV: " << LiveValues.size(); 3789 for (auto *X : LiveValues) 3790 dbgs() << " " << X->getName(); 3791 dbgs() << ", Looking at "; 3792 Inst->dump(); 3793 }); 3794 3795 // Now find the sequence of instructions between PrevInst and Inst. 3796 unsigned NumCalls = 0; 3797 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 3798 PrevInstIt = 3799 PrevInst->getIterator().getReverse(); 3800 while (InstIt != PrevInstIt) { 3801 if (PrevInstIt == PrevInst->getParent()->rend()) { 3802 PrevInstIt = Inst->getParent()->rbegin(); 3803 continue; 3804 } 3805 3806 // Debug information does not impact spill cost. 3807 if ((isa<CallInst>(&*PrevInstIt) && 3808 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 3809 &*PrevInstIt != PrevInst) 3810 NumCalls++; 3811 3812 ++PrevInstIt; 3813 } 3814 3815 if (NumCalls) { 3816 SmallVector<Type*, 4> V; 3817 for (auto *II : LiveValues) 3818 V.push_back(VectorType::get(II->getType(), BundleWidth)); 3819 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 3820 } 3821 3822 PrevInst = Inst; 3823 } 3824 3825 return Cost; 3826 } 3827 3828 int BoUpSLP::getTreeCost() { 3829 int Cost = 0; 3830 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 3831 << VectorizableTree.size() << ".\n"); 3832 3833 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 3834 3835 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 3836 TreeEntry &TE = *VectorizableTree[I].get(); 3837 3838 // We create duplicate tree entries for gather sequences that have multiple 3839 // uses. However, we should not compute the cost of duplicate sequences. 3840 // For example, if we have a build vector (i.e., insertelement sequence) 3841 // that is used by more than one vector instruction, we only need to 3842 // compute the cost of the insertelement instructions once. The redundant 3843 // instructions will be eliminated by CSE. 3844 // 3845 // We should consider not creating duplicate tree entries for gather 3846 // sequences, and instead add additional edges to the tree representing 3847 // their uses. Since such an approach results in fewer total entries, 3848 // existing heuristics based on tree size may yield different results. 3849 // 3850 if (TE.State == TreeEntry::NeedToGather && 3851 std::any_of(std::next(VectorizableTree.begin(), I + 1), 3852 VectorizableTree.end(), 3853 [TE](const std::unique_ptr<TreeEntry> &EntryPtr) { 3854 return EntryPtr->State == TreeEntry::NeedToGather && 3855 EntryPtr->isSame(TE.Scalars); 3856 })) 3857 continue; 3858 3859 int C = getEntryCost(&TE); 3860 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 3861 << " for bundle that starts with " << *TE.Scalars[0] 3862 << ".\n"); 3863 Cost += C; 3864 } 3865 3866 SmallPtrSet<Value *, 16> ExtractCostCalculated; 3867 int ExtractCost = 0; 3868 for (ExternalUser &EU : ExternalUses) { 3869 // We only add extract cost once for the same scalar. 3870 if (!ExtractCostCalculated.insert(EU.Scalar).second) 3871 continue; 3872 3873 // Uses by ephemeral values are free (because the ephemeral value will be 3874 // removed prior to code generation, and so the extraction will be 3875 // removed as well). 3876 if (EphValues.count(EU.User)) 3877 continue; 3878 3879 // If we plan to rewrite the tree in a smaller type, we will need to sign 3880 // extend the extracted value back to the original type. Here, we account 3881 // for the extract and the added cost of the sign extend if needed. 3882 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); 3883 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 3884 if (MinBWs.count(ScalarRoot)) { 3885 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 3886 auto Extend = 3887 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 3888 VecTy = VectorType::get(MinTy, BundleWidth); 3889 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 3890 VecTy, EU.Lane); 3891 } else { 3892 ExtractCost += 3893 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 3894 } 3895 } 3896 3897 int SpillCost = getSpillCost(); 3898 Cost += SpillCost + ExtractCost; 3899 3900 std::string Str; 3901 { 3902 raw_string_ostream OS(Str); 3903 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 3904 << "SLP: Extract Cost = " << ExtractCost << ".\n" 3905 << "SLP: Total Cost = " << Cost << ".\n"; 3906 } 3907 LLVM_DEBUG(dbgs() << Str); 3908 3909 if (ViewSLPTree) 3910 ViewGraph(this, "SLP" + F->getName(), false, Str); 3911 3912 return Cost; 3913 } 3914 3915 int BoUpSLP::getGatherCost(VectorType *Ty, 3916 const DenseSet<unsigned> &ShuffledIndices) const { 3917 unsigned NumElts = Ty->getNumElements(); 3918 APInt DemandedElts = APInt::getNullValue(NumElts); 3919 for (unsigned i = 0; i < NumElts; ++i) 3920 if (!ShuffledIndices.count(i)) 3921 DemandedElts.setBit(i); 3922 int Cost = TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true, 3923 /*Extract*/ false); 3924 if (!ShuffledIndices.empty()) 3925 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 3926 return Cost; 3927 } 3928 3929 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 3930 // Find the type of the operands in VL. 3931 Type *ScalarTy = VL[0]->getType(); 3932 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 3933 ScalarTy = SI->getValueOperand()->getType(); 3934 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 3935 // Find the cost of inserting/extracting values from the vector. 3936 // Check if the same elements are inserted several times and count them as 3937 // shuffle candidates. 3938 DenseSet<unsigned> ShuffledElements; 3939 DenseSet<Value *> UniqueElements; 3940 // Iterate in reverse order to consider insert elements with the high cost. 3941 for (unsigned I = VL.size(); I > 0; --I) { 3942 unsigned Idx = I - 1; 3943 if (!UniqueElements.insert(VL[Idx]).second) 3944 ShuffledElements.insert(Idx); 3945 } 3946 return getGatherCost(VecTy, ShuffledElements); 3947 } 3948 3949 // Perform operand reordering on the instructions in VL and return the reordered 3950 // operands in Left and Right. 3951 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 3952 SmallVectorImpl<Value *> &Left, 3953 SmallVectorImpl<Value *> &Right, 3954 const DataLayout &DL, 3955 ScalarEvolution &SE, 3956 const BoUpSLP &R) { 3957 if (VL.empty()) 3958 return; 3959 VLOperands Ops(VL, DL, SE, R); 3960 // Reorder the operands in place. 3961 Ops.reorder(); 3962 Left = Ops.getVL(0); 3963 Right = Ops.getVL(1); 3964 } 3965 3966 void BoUpSLP::setInsertPointAfterBundle(TreeEntry *E) { 3967 // Get the basic block this bundle is in. All instructions in the bundle 3968 // should be in this block. 3969 auto *Front = E->getMainOp(); 3970 auto *BB = Front->getParent(); 3971 assert(llvm::all_of(make_range(E->Scalars.begin(), E->Scalars.end()), 3972 [=](Value *V) -> bool { 3973 auto *I = cast<Instruction>(V); 3974 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 3975 })); 3976 3977 // The last instruction in the bundle in program order. 3978 Instruction *LastInst = nullptr; 3979 3980 // Find the last instruction. The common case should be that BB has been 3981 // scheduled, and the last instruction is VL.back(). So we start with 3982 // VL.back() and iterate over schedule data until we reach the end of the 3983 // bundle. The end of the bundle is marked by null ScheduleData. 3984 if (BlocksSchedules.count(BB)) { 3985 auto *Bundle = 3986 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 3987 if (Bundle && Bundle->isPartOfBundle()) 3988 for (; Bundle; Bundle = Bundle->NextInBundle) 3989 if (Bundle->OpValue == Bundle->Inst) 3990 LastInst = Bundle->Inst; 3991 } 3992 3993 // LastInst can still be null at this point if there's either not an entry 3994 // for BB in BlocksSchedules or there's no ScheduleData available for 3995 // VL.back(). This can be the case if buildTree_rec aborts for various 3996 // reasons (e.g., the maximum recursion depth is reached, the maximum region 3997 // size is reached, etc.). ScheduleData is initialized in the scheduling 3998 // "dry-run". 3999 // 4000 // If this happens, we can still find the last instruction by brute force. We 4001 // iterate forwards from Front (inclusive) until we either see all 4002 // instructions in the bundle or reach the end of the block. If Front is the 4003 // last instruction in program order, LastInst will be set to Front, and we 4004 // will visit all the remaining instructions in the block. 4005 // 4006 // One of the reasons we exit early from buildTree_rec is to place an upper 4007 // bound on compile-time. Thus, taking an additional compile-time hit here is 4008 // not ideal. However, this should be exceedingly rare since it requires that 4009 // we both exit early from buildTree_rec and that the bundle be out-of-order 4010 // (causing us to iterate all the way to the end of the block). 4011 if (!LastInst) { 4012 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 4013 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 4014 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 4015 LastInst = &I; 4016 if (Bundle.empty()) 4017 break; 4018 } 4019 } 4020 assert(LastInst && "Failed to find last instruction in bundle"); 4021 4022 // Set the insertion point after the last instruction in the bundle. Set the 4023 // debug location to Front. 4024 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 4025 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 4026 } 4027 4028 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 4029 Value *Vec = UndefValue::get(Ty); 4030 // Generate the 'InsertElement' instruction. 4031 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 4032 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 4033 if (auto *Insrt = dyn_cast<InsertElementInst>(Vec)) { 4034 GatherSeq.insert(Insrt); 4035 CSEBlocks.insert(Insrt->getParent()); 4036 4037 // Add to our 'need-to-extract' list. 4038 if (TreeEntry *E = getTreeEntry(VL[i])) { 4039 // Find which lane we need to extract. 4040 int FoundLane = -1; 4041 for (unsigned Lane = 0, LE = E->Scalars.size(); Lane != LE; ++Lane) { 4042 // Is this the lane of the scalar that we are looking for ? 4043 if (E->Scalars[Lane] == VL[i]) { 4044 FoundLane = Lane; 4045 break; 4046 } 4047 } 4048 assert(FoundLane >= 0 && "Could not find the correct lane"); 4049 if (!E->ReuseShuffleIndices.empty()) { 4050 FoundLane = 4051 std::distance(E->ReuseShuffleIndices.begin(), 4052 llvm::find(E->ReuseShuffleIndices, FoundLane)); 4053 } 4054 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 4055 } 4056 } 4057 } 4058 4059 return Vec; 4060 } 4061 4062 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 4063 InstructionsState S = getSameOpcode(VL); 4064 if (S.getOpcode()) { 4065 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 4066 if (E->isSame(VL)) { 4067 Value *V = vectorizeTree(E); 4068 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 4069 // We need to get the vectorized value but without shuffle. 4070 if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) { 4071 V = SV->getOperand(0); 4072 } else { 4073 // Reshuffle to get only unique values. 4074 SmallVector<int, 4> UniqueIdxs; 4075 SmallSet<int, 4> UsedIdxs; 4076 for (int Idx : E->ReuseShuffleIndices) 4077 if (UsedIdxs.insert(Idx).second) 4078 UniqueIdxs.emplace_back(Idx); 4079 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 4080 UniqueIdxs); 4081 } 4082 } 4083 return V; 4084 } 4085 } 4086 } 4087 4088 Type *ScalarTy = S.OpValue->getType(); 4089 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 4090 ScalarTy = SI->getValueOperand()->getType(); 4091 4092 // Check that every instruction appears once in this bundle. 4093 SmallVector<int, 4> ReuseShuffleIndicies; 4094 SmallVector<Value *, 4> UniqueValues; 4095 if (VL.size() > 2) { 4096 DenseMap<Value *, unsigned> UniquePositions; 4097 for (Value *V : VL) { 4098 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 4099 ReuseShuffleIndicies.emplace_back(Res.first->second); 4100 if (Res.second || isa<Constant>(V)) 4101 UniqueValues.emplace_back(V); 4102 } 4103 // Do not shuffle single element or if number of unique values is not power 4104 // of 2. 4105 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 4106 !llvm::isPowerOf2_32(UniqueValues.size())) 4107 ReuseShuffleIndicies.clear(); 4108 else 4109 VL = UniqueValues; 4110 } 4111 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 4112 4113 Value *V = Gather(VL, VecTy); 4114 if (!ReuseShuffleIndicies.empty()) { 4115 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4116 ReuseShuffleIndicies, "shuffle"); 4117 if (auto *I = dyn_cast<Instruction>(V)) { 4118 GatherSeq.insert(I); 4119 CSEBlocks.insert(I->getParent()); 4120 } 4121 } 4122 return V; 4123 } 4124 4125 static void inversePermutation(ArrayRef<unsigned> Indices, 4126 SmallVectorImpl<int> &Mask) { 4127 Mask.clear(); 4128 const unsigned E = Indices.size(); 4129 Mask.resize(E); 4130 for (unsigned I = 0; I < E; ++I) 4131 Mask[Indices[I]] = I; 4132 } 4133 4134 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 4135 IRBuilder<>::InsertPointGuard Guard(Builder); 4136 4137 if (E->VectorizedValue) { 4138 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 4139 return E->VectorizedValue; 4140 } 4141 4142 Instruction *VL0 = E->getMainOp(); 4143 Type *ScalarTy = VL0->getType(); 4144 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 4145 ScalarTy = SI->getValueOperand()->getType(); 4146 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 4147 4148 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4149 4150 if (E->State == TreeEntry::NeedToGather) { 4151 setInsertPointAfterBundle(E); 4152 auto *V = Gather(E->Scalars, VecTy); 4153 if (NeedToShuffleReuses) { 4154 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4155 E->ReuseShuffleIndices, "shuffle"); 4156 if (auto *I = dyn_cast<Instruction>(V)) { 4157 GatherSeq.insert(I); 4158 CSEBlocks.insert(I->getParent()); 4159 } 4160 } 4161 E->VectorizedValue = V; 4162 return V; 4163 } 4164 4165 assert(E->State == TreeEntry::Vectorize && "Unhandled state"); 4166 unsigned ShuffleOrOp = 4167 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 4168 switch (ShuffleOrOp) { 4169 case Instruction::PHI: { 4170 auto *PH = cast<PHINode>(VL0); 4171 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 4172 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4173 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 4174 Value *V = NewPhi; 4175 if (NeedToShuffleReuses) { 4176 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4177 E->ReuseShuffleIndices, "shuffle"); 4178 } 4179 E->VectorizedValue = V; 4180 4181 // PHINodes may have multiple entries from the same block. We want to 4182 // visit every block once. 4183 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 4184 4185 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 4186 ValueList Operands; 4187 BasicBlock *IBB = PH->getIncomingBlock(i); 4188 4189 if (!VisitedBBs.insert(IBB).second) { 4190 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 4191 continue; 4192 } 4193 4194 Builder.SetInsertPoint(IBB->getTerminator()); 4195 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 4196 Value *Vec = vectorizeTree(E->getOperand(i)); 4197 NewPhi->addIncoming(Vec, IBB); 4198 } 4199 4200 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 4201 "Invalid number of incoming values"); 4202 return V; 4203 } 4204 4205 case Instruction::ExtractElement: { 4206 Value *V = E->getSingleOperand(0); 4207 if (!E->ReorderIndices.empty()) { 4208 SmallVector<int, 4> Mask; 4209 inversePermutation(E->ReorderIndices, Mask); 4210 Builder.SetInsertPoint(VL0); 4211 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), Mask, 4212 "reorder_shuffle"); 4213 } 4214 if (NeedToShuffleReuses) { 4215 // TODO: Merge this shuffle with the ReorderShuffleMask. 4216 if (E->ReorderIndices.empty()) 4217 Builder.SetInsertPoint(VL0); 4218 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4219 E->ReuseShuffleIndices, "shuffle"); 4220 } 4221 E->VectorizedValue = V; 4222 return V; 4223 } 4224 case Instruction::ExtractValue: { 4225 LoadInst *LI = cast<LoadInst>(E->getSingleOperand(0)); 4226 Builder.SetInsertPoint(LI); 4227 PointerType *PtrTy = 4228 PointerType::get(VecTy, LI->getPointerAddressSpace()); 4229 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 4230 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 4231 Value *NewV = propagateMetadata(V, E->Scalars); 4232 if (!E->ReorderIndices.empty()) { 4233 SmallVector<int, 4> Mask; 4234 inversePermutation(E->ReorderIndices, Mask); 4235 NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), Mask, 4236 "reorder_shuffle"); 4237 } 4238 if (NeedToShuffleReuses) { 4239 // TODO: Merge this shuffle with the ReorderShuffleMask. 4240 NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), 4241 E->ReuseShuffleIndices, "shuffle"); 4242 } 4243 E->VectorizedValue = NewV; 4244 return NewV; 4245 } 4246 case Instruction::ZExt: 4247 case Instruction::SExt: 4248 case Instruction::FPToUI: 4249 case Instruction::FPToSI: 4250 case Instruction::FPExt: 4251 case Instruction::PtrToInt: 4252 case Instruction::IntToPtr: 4253 case Instruction::SIToFP: 4254 case Instruction::UIToFP: 4255 case Instruction::Trunc: 4256 case Instruction::FPTrunc: 4257 case Instruction::BitCast: { 4258 setInsertPointAfterBundle(E); 4259 4260 Value *InVec = vectorizeTree(E->getOperand(0)); 4261 4262 if (E->VectorizedValue) { 4263 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4264 return E->VectorizedValue; 4265 } 4266 4267 auto *CI = cast<CastInst>(VL0); 4268 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 4269 if (NeedToShuffleReuses) { 4270 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4271 E->ReuseShuffleIndices, "shuffle"); 4272 } 4273 E->VectorizedValue = V; 4274 ++NumVectorInstructions; 4275 return V; 4276 } 4277 case Instruction::FCmp: 4278 case Instruction::ICmp: { 4279 setInsertPointAfterBundle(E); 4280 4281 Value *L = vectorizeTree(E->getOperand(0)); 4282 Value *R = vectorizeTree(E->getOperand(1)); 4283 4284 if (E->VectorizedValue) { 4285 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4286 return E->VectorizedValue; 4287 } 4288 4289 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 4290 Value *V; 4291 if (E->getOpcode() == Instruction::FCmp) 4292 V = Builder.CreateFCmp(P0, L, R); 4293 else 4294 V = Builder.CreateICmp(P0, L, R); 4295 4296 propagateIRFlags(V, E->Scalars, VL0); 4297 if (NeedToShuffleReuses) { 4298 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4299 E->ReuseShuffleIndices, "shuffle"); 4300 } 4301 E->VectorizedValue = V; 4302 ++NumVectorInstructions; 4303 return V; 4304 } 4305 case Instruction::Select: { 4306 setInsertPointAfterBundle(E); 4307 4308 Value *Cond = vectorizeTree(E->getOperand(0)); 4309 Value *True = vectorizeTree(E->getOperand(1)); 4310 Value *False = vectorizeTree(E->getOperand(2)); 4311 4312 if (E->VectorizedValue) { 4313 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4314 return E->VectorizedValue; 4315 } 4316 4317 Value *V = Builder.CreateSelect(Cond, True, False); 4318 if (NeedToShuffleReuses) { 4319 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4320 E->ReuseShuffleIndices, "shuffle"); 4321 } 4322 E->VectorizedValue = V; 4323 ++NumVectorInstructions; 4324 return V; 4325 } 4326 case Instruction::FNeg: { 4327 setInsertPointAfterBundle(E); 4328 4329 Value *Op = vectorizeTree(E->getOperand(0)); 4330 4331 if (E->VectorizedValue) { 4332 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4333 return E->VectorizedValue; 4334 } 4335 4336 Value *V = Builder.CreateUnOp( 4337 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 4338 propagateIRFlags(V, E->Scalars, VL0); 4339 if (auto *I = dyn_cast<Instruction>(V)) 4340 V = propagateMetadata(I, E->Scalars); 4341 4342 if (NeedToShuffleReuses) { 4343 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4344 E->ReuseShuffleIndices, "shuffle"); 4345 } 4346 E->VectorizedValue = V; 4347 ++NumVectorInstructions; 4348 4349 return V; 4350 } 4351 case Instruction::Add: 4352 case Instruction::FAdd: 4353 case Instruction::Sub: 4354 case Instruction::FSub: 4355 case Instruction::Mul: 4356 case Instruction::FMul: 4357 case Instruction::UDiv: 4358 case Instruction::SDiv: 4359 case Instruction::FDiv: 4360 case Instruction::URem: 4361 case Instruction::SRem: 4362 case Instruction::FRem: 4363 case Instruction::Shl: 4364 case Instruction::LShr: 4365 case Instruction::AShr: 4366 case Instruction::And: 4367 case Instruction::Or: 4368 case Instruction::Xor: { 4369 setInsertPointAfterBundle(E); 4370 4371 Value *LHS = vectorizeTree(E->getOperand(0)); 4372 Value *RHS = vectorizeTree(E->getOperand(1)); 4373 4374 if (E->VectorizedValue) { 4375 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4376 return E->VectorizedValue; 4377 } 4378 4379 Value *V = Builder.CreateBinOp( 4380 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 4381 RHS); 4382 propagateIRFlags(V, E->Scalars, VL0); 4383 if (auto *I = dyn_cast<Instruction>(V)) 4384 V = propagateMetadata(I, E->Scalars); 4385 4386 if (NeedToShuffleReuses) { 4387 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4388 E->ReuseShuffleIndices, "shuffle"); 4389 } 4390 E->VectorizedValue = V; 4391 ++NumVectorInstructions; 4392 4393 return V; 4394 } 4395 case Instruction::Load: { 4396 // Loads are inserted at the head of the tree because we don't want to 4397 // sink them all the way down past store instructions. 4398 bool IsReorder = E->updateStateIfReorder(); 4399 if (IsReorder) 4400 VL0 = E->getMainOp(); 4401 setInsertPointAfterBundle(E); 4402 4403 LoadInst *LI = cast<LoadInst>(VL0); 4404 unsigned AS = LI->getPointerAddressSpace(); 4405 4406 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 4407 VecTy->getPointerTo(AS)); 4408 4409 // The pointer operand uses an in-tree scalar so we add the new BitCast to 4410 // ExternalUses list to make sure that an extract will be generated in the 4411 // future. 4412 Value *PO = LI->getPointerOperand(); 4413 if (getTreeEntry(PO)) 4414 ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0)); 4415 4416 LI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 4417 Value *V = propagateMetadata(LI, E->Scalars); 4418 if (IsReorder) { 4419 SmallVector<int, 4> Mask; 4420 inversePermutation(E->ReorderIndices, Mask); 4421 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), 4422 Mask, "reorder_shuffle"); 4423 } 4424 if (NeedToShuffleReuses) { 4425 // TODO: Merge this shuffle with the ReorderShuffleMask. 4426 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4427 E->ReuseShuffleIndices, "shuffle"); 4428 } 4429 E->VectorizedValue = V; 4430 ++NumVectorInstructions; 4431 return V; 4432 } 4433 case Instruction::Store: { 4434 bool IsReorder = !E->ReorderIndices.empty(); 4435 auto *SI = cast<StoreInst>( 4436 IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0); 4437 unsigned AS = SI->getPointerAddressSpace(); 4438 4439 setInsertPointAfterBundle(E); 4440 4441 Value *VecValue = vectorizeTree(E->getOperand(0)); 4442 if (IsReorder) { 4443 SmallVector<int, 4> Mask(E->ReorderIndices.begin(), 4444 E->ReorderIndices.end()); 4445 VecValue = Builder.CreateShuffleVector( 4446 VecValue, UndefValue::get(VecValue->getType()), Mask, 4447 "reorder_shuffle"); 4448 } 4449 Value *ScalarPtr = SI->getPointerOperand(); 4450 Value *VecPtr = Builder.CreateBitCast( 4451 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 4452 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 4453 SI->getAlign()); 4454 4455 // The pointer operand uses an in-tree scalar, so add the new BitCast to 4456 // ExternalUses to make sure that an extract will be generated in the 4457 // future. 4458 if (getTreeEntry(ScalarPtr)) 4459 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 4460 4461 Value *V = propagateMetadata(ST, E->Scalars); 4462 if (NeedToShuffleReuses) { 4463 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4464 E->ReuseShuffleIndices, "shuffle"); 4465 } 4466 E->VectorizedValue = V; 4467 ++NumVectorInstructions; 4468 return V; 4469 } 4470 case Instruction::GetElementPtr: { 4471 setInsertPointAfterBundle(E); 4472 4473 Value *Op0 = vectorizeTree(E->getOperand(0)); 4474 4475 std::vector<Value *> OpVecs; 4476 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 4477 ++j) { 4478 ValueList &VL = E->getOperand(j); 4479 // Need to cast all elements to the same type before vectorization to 4480 // avoid crash. 4481 Type *VL0Ty = VL0->getOperand(j)->getType(); 4482 Type *Ty = llvm::all_of( 4483 VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); }) 4484 ? VL0Ty 4485 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4486 ->getPointerOperandType() 4487 ->getScalarType()); 4488 for (Value *&V : VL) { 4489 auto *CI = cast<ConstantInt>(V); 4490 V = ConstantExpr::getIntegerCast(CI, Ty, 4491 CI->getValue().isSignBitSet()); 4492 } 4493 Value *OpVec = vectorizeTree(VL); 4494 OpVecs.push_back(OpVec); 4495 } 4496 4497 Value *V = Builder.CreateGEP( 4498 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 4499 if (Instruction *I = dyn_cast<Instruction>(V)) 4500 V = propagateMetadata(I, E->Scalars); 4501 4502 if (NeedToShuffleReuses) { 4503 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4504 E->ReuseShuffleIndices, "shuffle"); 4505 } 4506 E->VectorizedValue = V; 4507 ++NumVectorInstructions; 4508 4509 return V; 4510 } 4511 case Instruction::Call: { 4512 CallInst *CI = cast<CallInst>(VL0); 4513 setInsertPointAfterBundle(E); 4514 4515 Intrinsic::ID IID = Intrinsic::not_intrinsic; 4516 if (Function *FI = CI->getCalledFunction()) 4517 IID = FI->getIntrinsicID(); 4518 4519 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4520 4521 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 4522 bool UseIntrinsic = VecCallCosts.first <= VecCallCosts.second; 4523 4524 Value *ScalarArg = nullptr; 4525 std::vector<Value *> OpVecs; 4526 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 4527 ValueList OpVL; 4528 // Some intrinsics have scalar arguments. This argument should not be 4529 // vectorized. 4530 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 4531 CallInst *CEI = cast<CallInst>(VL0); 4532 ScalarArg = CEI->getArgOperand(j); 4533 OpVecs.push_back(CEI->getArgOperand(j)); 4534 continue; 4535 } 4536 4537 Value *OpVec = vectorizeTree(E->getOperand(j)); 4538 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 4539 OpVecs.push_back(OpVec); 4540 } 4541 4542 Module *M = F->getParent(); 4543 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 4544 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 4545 4546 if (!UseIntrinsic) { 4547 VFShape Shape = VFShape::get( 4548 *CI, {static_cast<unsigned>(VecTy->getNumElements()), false}, 4549 false /*HasGlobalPred*/); 4550 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 4551 } 4552 4553 SmallVector<OperandBundleDef, 1> OpBundles; 4554 CI->getOperandBundlesAsDefs(OpBundles); 4555 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 4556 4557 // The scalar argument uses an in-tree scalar so we add the new vectorized 4558 // call to ExternalUses list to make sure that an extract will be 4559 // generated in the future. 4560 if (ScalarArg && getTreeEntry(ScalarArg)) 4561 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 4562 4563 propagateIRFlags(V, E->Scalars, VL0); 4564 if (NeedToShuffleReuses) { 4565 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4566 E->ReuseShuffleIndices, "shuffle"); 4567 } 4568 E->VectorizedValue = V; 4569 ++NumVectorInstructions; 4570 return V; 4571 } 4572 case Instruction::ShuffleVector: { 4573 assert(E->isAltShuffle() && 4574 ((Instruction::isBinaryOp(E->getOpcode()) && 4575 Instruction::isBinaryOp(E->getAltOpcode())) || 4576 (Instruction::isCast(E->getOpcode()) && 4577 Instruction::isCast(E->getAltOpcode()))) && 4578 "Invalid Shuffle Vector Operand"); 4579 4580 Value *LHS = nullptr, *RHS = nullptr; 4581 if (Instruction::isBinaryOp(E->getOpcode())) { 4582 setInsertPointAfterBundle(E); 4583 LHS = vectorizeTree(E->getOperand(0)); 4584 RHS = vectorizeTree(E->getOperand(1)); 4585 } else { 4586 setInsertPointAfterBundle(E); 4587 LHS = vectorizeTree(E->getOperand(0)); 4588 } 4589 4590 if (E->VectorizedValue) { 4591 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 4592 return E->VectorizedValue; 4593 } 4594 4595 Value *V0, *V1; 4596 if (Instruction::isBinaryOp(E->getOpcode())) { 4597 V0 = Builder.CreateBinOp( 4598 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 4599 V1 = Builder.CreateBinOp( 4600 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 4601 } else { 4602 V0 = Builder.CreateCast( 4603 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 4604 V1 = Builder.CreateCast( 4605 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 4606 } 4607 4608 // Create shuffle to take alternate operations from the vector. 4609 // Also, gather up main and alt scalar ops to propagate IR flags to 4610 // each vector operation. 4611 ValueList OpScalars, AltScalars; 4612 unsigned e = E->Scalars.size(); 4613 SmallVector<int, 8> Mask(e); 4614 for (unsigned i = 0; i < e; ++i) { 4615 auto *OpInst = cast<Instruction>(E->Scalars[i]); 4616 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 4617 if (OpInst->getOpcode() == E->getAltOpcode()) { 4618 Mask[i] = e + i; 4619 AltScalars.push_back(E->Scalars[i]); 4620 } else { 4621 Mask[i] = i; 4622 OpScalars.push_back(E->Scalars[i]); 4623 } 4624 } 4625 4626 propagateIRFlags(V0, OpScalars); 4627 propagateIRFlags(V1, AltScalars); 4628 4629 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 4630 if (Instruction *I = dyn_cast<Instruction>(V)) 4631 V = propagateMetadata(I, E->Scalars); 4632 if (NeedToShuffleReuses) { 4633 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), 4634 E->ReuseShuffleIndices, "shuffle"); 4635 } 4636 E->VectorizedValue = V; 4637 ++NumVectorInstructions; 4638 4639 return V; 4640 } 4641 default: 4642 llvm_unreachable("unknown inst"); 4643 } 4644 return nullptr; 4645 } 4646 4647 Value *BoUpSLP::vectorizeTree() { 4648 ExtraValueToDebugLocsMap ExternallyUsedValues; 4649 return vectorizeTree(ExternallyUsedValues); 4650 } 4651 4652 Value * 4653 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 4654 // All blocks must be scheduled before any instructions are inserted. 4655 for (auto &BSIter : BlocksSchedules) { 4656 scheduleBlock(BSIter.second.get()); 4657 } 4658 4659 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4660 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 4661 4662 // If the vectorized tree can be rewritten in a smaller type, we truncate the 4663 // vectorized root. InstCombine will then rewrite the entire expression. We 4664 // sign extend the extracted values below. 4665 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4666 if (MinBWs.count(ScalarRoot)) { 4667 if (auto *I = dyn_cast<Instruction>(VectorRoot)) 4668 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 4669 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 4670 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4671 auto *VecTy = VectorType::get(MinTy, BundleWidth); 4672 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 4673 VectorizableTree[0]->VectorizedValue = Trunc; 4674 } 4675 4676 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 4677 << " values .\n"); 4678 4679 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type 4680 // specified by ScalarType. 4681 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) { 4682 if (!MinBWs.count(ScalarRoot)) 4683 return Ex; 4684 if (MinBWs[ScalarRoot].second) 4685 return Builder.CreateSExt(Ex, ScalarType); 4686 return Builder.CreateZExt(Ex, ScalarType); 4687 }; 4688 4689 // Extract all of the elements with the external uses. 4690 for (const auto &ExternalUse : ExternalUses) { 4691 Value *Scalar = ExternalUse.Scalar; 4692 llvm::User *User = ExternalUse.User; 4693 4694 // Skip users that we already RAUW. This happens when one instruction 4695 // has multiple uses of the same value. 4696 if (User && !is_contained(Scalar->users(), User)) 4697 continue; 4698 TreeEntry *E = getTreeEntry(Scalar); 4699 assert(E && "Invalid scalar"); 4700 assert(E->State == TreeEntry::Vectorize && "Extracting from a gather list"); 4701 4702 Value *Vec = E->VectorizedValue; 4703 assert(Vec && "Can't find vectorizable value"); 4704 4705 Value *Lane = Builder.getInt32(ExternalUse.Lane); 4706 // If User == nullptr, the Scalar is used as extra arg. Generate 4707 // ExtractElement instruction and update the record for this scalar in 4708 // ExternallyUsedValues. 4709 if (!User) { 4710 assert(ExternallyUsedValues.count(Scalar) && 4711 "Scalar with nullptr as an external user must be registered in " 4712 "ExternallyUsedValues map"); 4713 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4714 Builder.SetInsertPoint(VecI->getParent(), 4715 std::next(VecI->getIterator())); 4716 } else { 4717 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4718 } 4719 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4720 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4721 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 4722 auto &Locs = ExternallyUsedValues[Scalar]; 4723 ExternallyUsedValues.insert({Ex, Locs}); 4724 ExternallyUsedValues.erase(Scalar); 4725 // Required to update internally referenced instructions. 4726 Scalar->replaceAllUsesWith(Ex); 4727 continue; 4728 } 4729 4730 // Generate extracts for out-of-tree users. 4731 // Find the insertion point for the extractelement lane. 4732 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 4733 if (PHINode *PH = dyn_cast<PHINode>(User)) { 4734 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 4735 if (PH->getIncomingValue(i) == Scalar) { 4736 Instruction *IncomingTerminator = 4737 PH->getIncomingBlock(i)->getTerminator(); 4738 if (isa<CatchSwitchInst>(IncomingTerminator)) { 4739 Builder.SetInsertPoint(VecI->getParent(), 4740 std::next(VecI->getIterator())); 4741 } else { 4742 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 4743 } 4744 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4745 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4746 CSEBlocks.insert(PH->getIncomingBlock(i)); 4747 PH->setOperand(i, Ex); 4748 } 4749 } 4750 } else { 4751 Builder.SetInsertPoint(cast<Instruction>(User)); 4752 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4753 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4754 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 4755 User->replaceUsesOfWith(Scalar, Ex); 4756 } 4757 } else { 4758 Builder.SetInsertPoint(&F->getEntryBlock().front()); 4759 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 4760 Ex = extend(ScalarRoot, Ex, Scalar->getType()); 4761 CSEBlocks.insert(&F->getEntryBlock()); 4762 User->replaceUsesOfWith(Scalar, Ex); 4763 } 4764 4765 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 4766 } 4767 4768 // For each vectorized value: 4769 for (auto &TEPtr : VectorizableTree) { 4770 TreeEntry *Entry = TEPtr.get(); 4771 4772 // No need to handle users of gathered values. 4773 if (Entry->State == TreeEntry::NeedToGather) 4774 continue; 4775 4776 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 4777 4778 // For each lane: 4779 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 4780 Value *Scalar = Entry->Scalars[Lane]; 4781 4782 #ifndef NDEBUG 4783 Type *Ty = Scalar->getType(); 4784 if (!Ty->isVoidTy()) { 4785 for (User *U : Scalar->users()) { 4786 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 4787 4788 // It is legal to delete users in the ignorelist. 4789 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 4790 "Deleting out-of-tree value"); 4791 } 4792 } 4793 #endif 4794 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 4795 eraseInstruction(cast<Instruction>(Scalar)); 4796 } 4797 } 4798 4799 Builder.ClearInsertionPoint(); 4800 4801 return VectorizableTree[0]->VectorizedValue; 4802 } 4803 4804 void BoUpSLP::optimizeGatherSequence() { 4805 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 4806 << " gather sequences instructions.\n"); 4807 // LICM InsertElementInst sequences. 4808 for (Instruction *I : GatherSeq) { 4809 if (isDeleted(I)) 4810 continue; 4811 4812 // Check if this block is inside a loop. 4813 Loop *L = LI->getLoopFor(I->getParent()); 4814 if (!L) 4815 continue; 4816 4817 // Check if it has a preheader. 4818 BasicBlock *PreHeader = L->getLoopPreheader(); 4819 if (!PreHeader) 4820 continue; 4821 4822 // If the vector or the element that we insert into it are 4823 // instructions that are defined in this basic block then we can't 4824 // hoist this instruction. 4825 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 4826 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 4827 if (Op0 && L->contains(Op0)) 4828 continue; 4829 if (Op1 && L->contains(Op1)) 4830 continue; 4831 4832 // We can hoist this instruction. Move it to the pre-header. 4833 I->moveBefore(PreHeader->getTerminator()); 4834 } 4835 4836 // Make a list of all reachable blocks in our CSE queue. 4837 SmallVector<const DomTreeNode *, 8> CSEWorkList; 4838 CSEWorkList.reserve(CSEBlocks.size()); 4839 for (BasicBlock *BB : CSEBlocks) 4840 if (DomTreeNode *N = DT->getNode(BB)) { 4841 assert(DT->isReachableFromEntry(N)); 4842 CSEWorkList.push_back(N); 4843 } 4844 4845 // Sort blocks by domination. This ensures we visit a block after all blocks 4846 // dominating it are visited. 4847 llvm::stable_sort(CSEWorkList, 4848 [this](const DomTreeNode *A, const DomTreeNode *B) { 4849 return DT->properlyDominates(A, B); 4850 }); 4851 4852 // Perform O(N^2) search over the gather sequences and merge identical 4853 // instructions. TODO: We can further optimize this scan if we split the 4854 // instructions into different buckets based on the insert lane. 4855 SmallVector<Instruction *, 16> Visited; 4856 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 4857 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 4858 "Worklist not sorted properly!"); 4859 BasicBlock *BB = (*I)->getBlock(); 4860 // For all instructions in blocks containing gather sequences: 4861 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 4862 Instruction *In = &*it++; 4863 if (isDeleted(In)) 4864 continue; 4865 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 4866 continue; 4867 4868 // Check if we can replace this instruction with any of the 4869 // visited instructions. 4870 for (Instruction *v : Visited) { 4871 if (In->isIdenticalTo(v) && 4872 DT->dominates(v->getParent(), In->getParent())) { 4873 In->replaceAllUsesWith(v); 4874 eraseInstruction(In); 4875 In = nullptr; 4876 break; 4877 } 4878 } 4879 if (In) { 4880 assert(!is_contained(Visited, In)); 4881 Visited.push_back(In); 4882 } 4883 } 4884 } 4885 CSEBlocks.clear(); 4886 GatherSeq.clear(); 4887 } 4888 4889 // Groups the instructions to a bundle (which is then a single scheduling entity) 4890 // and schedules instructions until the bundle gets ready. 4891 Optional<BoUpSLP::ScheduleData *> 4892 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 4893 const InstructionsState &S) { 4894 if (isa<PHINode>(S.OpValue)) 4895 return nullptr; 4896 4897 // Initialize the instruction bundle. 4898 Instruction *OldScheduleEnd = ScheduleEnd; 4899 ScheduleData *PrevInBundle = nullptr; 4900 ScheduleData *Bundle = nullptr; 4901 bool ReSchedule = false; 4902 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 4903 4904 // Make sure that the scheduling region contains all 4905 // instructions of the bundle. 4906 for (Value *V : VL) { 4907 if (!extendSchedulingRegion(V, S)) 4908 return None; 4909 } 4910 4911 for (Value *V : VL) { 4912 ScheduleData *BundleMember = getScheduleData(V); 4913 assert(BundleMember && 4914 "no ScheduleData for bundle member (maybe not in same basic block)"); 4915 if (BundleMember->IsScheduled) { 4916 // A bundle member was scheduled as single instruction before and now 4917 // needs to be scheduled as part of the bundle. We just get rid of the 4918 // existing schedule. 4919 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 4920 << " was already scheduled\n"); 4921 ReSchedule = true; 4922 } 4923 assert(BundleMember->isSchedulingEntity() && 4924 "bundle member already part of other bundle"); 4925 if (PrevInBundle) { 4926 PrevInBundle->NextInBundle = BundleMember; 4927 } else { 4928 Bundle = BundleMember; 4929 } 4930 BundleMember->UnscheduledDepsInBundle = 0; 4931 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 4932 4933 // Group the instructions to a bundle. 4934 BundleMember->FirstInBundle = Bundle; 4935 PrevInBundle = BundleMember; 4936 } 4937 if (ScheduleEnd != OldScheduleEnd) { 4938 // The scheduling region got new instructions at the lower end (or it is a 4939 // new region for the first bundle). This makes it necessary to 4940 // recalculate all dependencies. 4941 // It is seldom that this needs to be done a second time after adding the 4942 // initial bundle to the region. 4943 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 4944 doForAllOpcodes(I, [](ScheduleData *SD) { 4945 SD->clearDependencies(); 4946 }); 4947 } 4948 ReSchedule = true; 4949 } 4950 if (ReSchedule) { 4951 resetSchedule(); 4952 initialFillReadyList(ReadyInsts); 4953 } 4954 assert(Bundle && "Failed to find schedule bundle"); 4955 4956 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 4957 << BB->getName() << "\n"); 4958 4959 calculateDependencies(Bundle, true, SLP); 4960 4961 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 4962 // means that there are no cyclic dependencies and we can schedule it. 4963 // Note that's important that we don't "schedule" the bundle yet (see 4964 // cancelScheduling). 4965 while (!Bundle->isReady() && !ReadyInsts.empty()) { 4966 4967 ScheduleData *pickedSD = ReadyInsts.back(); 4968 ReadyInsts.pop_back(); 4969 4970 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 4971 schedule(pickedSD, ReadyInsts); 4972 } 4973 } 4974 if (!Bundle->isReady()) { 4975 cancelScheduling(VL, S.OpValue); 4976 return None; 4977 } 4978 return Bundle; 4979 } 4980 4981 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 4982 Value *OpValue) { 4983 if (isa<PHINode>(OpValue)) 4984 return; 4985 4986 ScheduleData *Bundle = getScheduleData(OpValue); 4987 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 4988 assert(!Bundle->IsScheduled && 4989 "Can't cancel bundle which is already scheduled"); 4990 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 4991 "tried to unbundle something which is not a bundle"); 4992 4993 // Un-bundle: make single instructions out of the bundle. 4994 ScheduleData *BundleMember = Bundle; 4995 while (BundleMember) { 4996 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 4997 BundleMember->FirstInBundle = BundleMember; 4998 ScheduleData *Next = BundleMember->NextInBundle; 4999 BundleMember->NextInBundle = nullptr; 5000 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 5001 if (BundleMember->UnscheduledDepsInBundle == 0) { 5002 ReadyInsts.insert(BundleMember); 5003 } 5004 BundleMember = Next; 5005 } 5006 } 5007 5008 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 5009 // Allocate a new ScheduleData for the instruction. 5010 if (ChunkPos >= ChunkSize) { 5011 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 5012 ChunkPos = 0; 5013 } 5014 return &(ScheduleDataChunks.back()[ChunkPos++]); 5015 } 5016 5017 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 5018 const InstructionsState &S) { 5019 if (getScheduleData(V, isOneOf(S, V))) 5020 return true; 5021 Instruction *I = dyn_cast<Instruction>(V); 5022 assert(I && "bundle member must be an instruction"); 5023 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 5024 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 5025 ScheduleData *ISD = getScheduleData(I); 5026 if (!ISD) 5027 return false; 5028 assert(isInSchedulingRegion(ISD) && 5029 "ScheduleData not in scheduling region"); 5030 ScheduleData *SD = allocateScheduleDataChunks(); 5031 SD->Inst = I; 5032 SD->init(SchedulingRegionID, S.OpValue); 5033 ExtraScheduleDataMap[I][S.OpValue] = SD; 5034 return true; 5035 }; 5036 if (CheckSheduleForI(I)) 5037 return true; 5038 if (!ScheduleStart) { 5039 // It's the first instruction in the new region. 5040 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 5041 ScheduleStart = I; 5042 ScheduleEnd = I->getNextNode(); 5043 if (isOneOf(S, I) != I) 5044 CheckSheduleForI(I); 5045 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5046 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 5047 return true; 5048 } 5049 // Search up and down at the same time, because we don't know if the new 5050 // instruction is above or below the existing scheduling region. 5051 BasicBlock::reverse_iterator UpIter = 5052 ++ScheduleStart->getIterator().getReverse(); 5053 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 5054 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 5055 BasicBlock::iterator LowerEnd = BB->end(); 5056 while (true) { 5057 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 5058 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 5059 return false; 5060 } 5061 5062 if (UpIter != UpperEnd) { 5063 if (&*UpIter == I) { 5064 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 5065 ScheduleStart = I; 5066 if (isOneOf(S, I) != I) 5067 CheckSheduleForI(I); 5068 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 5069 << "\n"); 5070 return true; 5071 } 5072 ++UpIter; 5073 } 5074 if (DownIter != LowerEnd) { 5075 if (&*DownIter == I) { 5076 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 5077 nullptr); 5078 ScheduleEnd = I->getNextNode(); 5079 if (isOneOf(S, I) != I) 5080 CheckSheduleForI(I); 5081 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5082 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I 5083 << "\n"); 5084 return true; 5085 } 5086 ++DownIter; 5087 } 5088 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 5089 "instruction not found in block"); 5090 } 5091 return true; 5092 } 5093 5094 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 5095 Instruction *ToI, 5096 ScheduleData *PrevLoadStore, 5097 ScheduleData *NextLoadStore) { 5098 ScheduleData *CurrentLoadStore = PrevLoadStore; 5099 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 5100 ScheduleData *SD = ScheduleDataMap[I]; 5101 if (!SD) { 5102 SD = allocateScheduleDataChunks(); 5103 ScheduleDataMap[I] = SD; 5104 SD->Inst = I; 5105 } 5106 assert(!isInSchedulingRegion(SD) && 5107 "new ScheduleData already in scheduling region"); 5108 SD->init(SchedulingRegionID, I); 5109 5110 if (I->mayReadOrWriteMemory() && 5111 (!isa<IntrinsicInst>(I) || 5112 cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) { 5113 // Update the linked list of memory accessing instructions. 5114 if (CurrentLoadStore) { 5115 CurrentLoadStore->NextLoadStore = SD; 5116 } else { 5117 FirstLoadStoreInRegion = SD; 5118 } 5119 CurrentLoadStore = SD; 5120 } 5121 } 5122 if (NextLoadStore) { 5123 if (CurrentLoadStore) 5124 CurrentLoadStore->NextLoadStore = NextLoadStore; 5125 } else { 5126 LastLoadStoreInRegion = CurrentLoadStore; 5127 } 5128 } 5129 5130 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 5131 bool InsertInReadyList, 5132 BoUpSLP *SLP) { 5133 assert(SD->isSchedulingEntity()); 5134 5135 SmallVector<ScheduleData *, 10> WorkList; 5136 WorkList.push_back(SD); 5137 5138 while (!WorkList.empty()) { 5139 ScheduleData *SD = WorkList.back(); 5140 WorkList.pop_back(); 5141 5142 ScheduleData *BundleMember = SD; 5143 while (BundleMember) { 5144 assert(isInSchedulingRegion(BundleMember)); 5145 if (!BundleMember->hasValidDependencies()) { 5146 5147 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 5148 << "\n"); 5149 BundleMember->Dependencies = 0; 5150 BundleMember->resetUnscheduledDeps(); 5151 5152 // Handle def-use chain dependencies. 5153 if (BundleMember->OpValue != BundleMember->Inst) { 5154 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 5155 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5156 BundleMember->Dependencies++; 5157 ScheduleData *DestBundle = UseSD->FirstInBundle; 5158 if (!DestBundle->IsScheduled) 5159 BundleMember->incrementUnscheduledDeps(1); 5160 if (!DestBundle->hasValidDependencies()) 5161 WorkList.push_back(DestBundle); 5162 } 5163 } else { 5164 for (User *U : BundleMember->Inst->users()) { 5165 if (isa<Instruction>(U)) { 5166 ScheduleData *UseSD = getScheduleData(U); 5167 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 5168 BundleMember->Dependencies++; 5169 ScheduleData *DestBundle = UseSD->FirstInBundle; 5170 if (!DestBundle->IsScheduled) 5171 BundleMember->incrementUnscheduledDeps(1); 5172 if (!DestBundle->hasValidDependencies()) 5173 WorkList.push_back(DestBundle); 5174 } 5175 } else { 5176 // I'm not sure if this can ever happen. But we need to be safe. 5177 // This lets the instruction/bundle never be scheduled and 5178 // eventually disable vectorization. 5179 BundleMember->Dependencies++; 5180 BundleMember->incrementUnscheduledDeps(1); 5181 } 5182 } 5183 } 5184 5185 // Handle the memory dependencies. 5186 ScheduleData *DepDest = BundleMember->NextLoadStore; 5187 if (DepDest) { 5188 Instruction *SrcInst = BundleMember->Inst; 5189 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 5190 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 5191 unsigned numAliased = 0; 5192 unsigned DistToSrc = 1; 5193 5194 while (DepDest) { 5195 assert(isInSchedulingRegion(DepDest)); 5196 5197 // We have two limits to reduce the complexity: 5198 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 5199 // SLP->isAliased (which is the expensive part in this loop). 5200 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 5201 // the whole loop (even if the loop is fast, it's quadratic). 5202 // It's important for the loop break condition (see below) to 5203 // check this limit even between two read-only instructions. 5204 if (DistToSrc >= MaxMemDepDistance || 5205 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 5206 (numAliased >= AliasedCheckLimit || 5207 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 5208 5209 // We increment the counter only if the locations are aliased 5210 // (instead of counting all alias checks). This gives a better 5211 // balance between reduced runtime and accurate dependencies. 5212 numAliased++; 5213 5214 DepDest->MemoryDependencies.push_back(BundleMember); 5215 BundleMember->Dependencies++; 5216 ScheduleData *DestBundle = DepDest->FirstInBundle; 5217 if (!DestBundle->IsScheduled) { 5218 BundleMember->incrementUnscheduledDeps(1); 5219 } 5220 if (!DestBundle->hasValidDependencies()) { 5221 WorkList.push_back(DestBundle); 5222 } 5223 } 5224 DepDest = DepDest->NextLoadStore; 5225 5226 // Example, explaining the loop break condition: Let's assume our 5227 // starting instruction is i0 and MaxMemDepDistance = 3. 5228 // 5229 // +--------v--v--v 5230 // i0,i1,i2,i3,i4,i5,i6,i7,i8 5231 // +--------^--^--^ 5232 // 5233 // MaxMemDepDistance let us stop alias-checking at i3 and we add 5234 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 5235 // Previously we already added dependencies from i3 to i6,i7,i8 5236 // (because of MaxMemDepDistance). As we added a dependency from 5237 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 5238 // and we can abort this loop at i6. 5239 if (DistToSrc >= 2 * MaxMemDepDistance) 5240 break; 5241 DistToSrc++; 5242 } 5243 } 5244 } 5245 BundleMember = BundleMember->NextInBundle; 5246 } 5247 if (InsertInReadyList && SD->isReady()) { 5248 ReadyInsts.push_back(SD); 5249 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 5250 << "\n"); 5251 } 5252 } 5253 } 5254 5255 void BoUpSLP::BlockScheduling::resetSchedule() { 5256 assert(ScheduleStart && 5257 "tried to reset schedule on block which has not been scheduled"); 5258 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 5259 doForAllOpcodes(I, [&](ScheduleData *SD) { 5260 assert(isInSchedulingRegion(SD) && 5261 "ScheduleData not in scheduling region"); 5262 SD->IsScheduled = false; 5263 SD->resetUnscheduledDeps(); 5264 }); 5265 } 5266 ReadyInsts.clear(); 5267 } 5268 5269 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 5270 if (!BS->ScheduleStart) 5271 return; 5272 5273 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 5274 5275 BS->resetSchedule(); 5276 5277 // For the real scheduling we use a more sophisticated ready-list: it is 5278 // sorted by the original instruction location. This lets the final schedule 5279 // be as close as possible to the original instruction order. 5280 struct ScheduleDataCompare { 5281 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 5282 return SD2->SchedulingPriority < SD1->SchedulingPriority; 5283 } 5284 }; 5285 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 5286 5287 // Ensure that all dependency data is updated and fill the ready-list with 5288 // initial instructions. 5289 int Idx = 0; 5290 int NumToSchedule = 0; 5291 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 5292 I = I->getNextNode()) { 5293 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 5294 assert(SD->isPartOfBundle() == 5295 (getTreeEntry(SD->Inst) != nullptr) && 5296 "scheduler and vectorizer bundle mismatch"); 5297 SD->FirstInBundle->SchedulingPriority = Idx++; 5298 if (SD->isSchedulingEntity()) { 5299 BS->calculateDependencies(SD, false, this); 5300 NumToSchedule++; 5301 } 5302 }); 5303 } 5304 BS->initialFillReadyList(ReadyInsts); 5305 5306 Instruction *LastScheduledInst = BS->ScheduleEnd; 5307 5308 // Do the "real" scheduling. 5309 while (!ReadyInsts.empty()) { 5310 ScheduleData *picked = *ReadyInsts.begin(); 5311 ReadyInsts.erase(ReadyInsts.begin()); 5312 5313 // Move the scheduled instruction(s) to their dedicated places, if not 5314 // there yet. 5315 ScheduleData *BundleMember = picked; 5316 while (BundleMember) { 5317 Instruction *pickedInst = BundleMember->Inst; 5318 if (LastScheduledInst->getNextNode() != pickedInst) { 5319 BS->BB->getInstList().remove(pickedInst); 5320 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 5321 pickedInst); 5322 } 5323 LastScheduledInst = pickedInst; 5324 BundleMember = BundleMember->NextInBundle; 5325 } 5326 5327 BS->schedule(picked, ReadyInsts); 5328 NumToSchedule--; 5329 } 5330 assert(NumToSchedule == 0 && "could not schedule all instructions"); 5331 5332 // Avoid duplicate scheduling of the block. 5333 BS->ScheduleStart = nullptr; 5334 } 5335 5336 unsigned BoUpSLP::getVectorElementSize(Value *V) const { 5337 // If V is a store, just return the width of the stored value without 5338 // traversing the expression tree. This is the common case. 5339 if (auto *Store = dyn_cast<StoreInst>(V)) 5340 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 5341 5342 // If V is not a store, we can traverse the expression tree to find loads 5343 // that feed it. The type of the loaded value may indicate a more suitable 5344 // width than V's type. We want to base the vector element size on the width 5345 // of memory operations where possible. 5346 SmallVector<Instruction *, 16> Worklist; 5347 SmallPtrSet<Instruction *, 16> Visited; 5348 if (auto *I = dyn_cast<Instruction>(V)) { 5349 Worklist.push_back(I); 5350 Visited.insert(I); 5351 } 5352 5353 // Traverse the expression tree in bottom-up order looking for loads. If we 5354 // encounter an instruction we don't yet handle, we give up. 5355 auto MaxWidth = 0u; 5356 auto FoundUnknownInst = false; 5357 while (!Worklist.empty() && !FoundUnknownInst) { 5358 auto *I = Worklist.pop_back_val(); 5359 5360 // We should only be looking at scalar instructions here. If the current 5361 // instruction has a vector type, give up. 5362 auto *Ty = I->getType(); 5363 if (isa<VectorType>(Ty)) 5364 FoundUnknownInst = true; 5365 5366 // If the current instruction is a load, update MaxWidth to reflect the 5367 // width of the loaded value. 5368 else if (isa<LoadInst>(I)) 5369 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); 5370 5371 // Otherwise, we need to visit the operands of the instruction. We only 5372 // handle the interesting cases from buildTree here. If an operand is an 5373 // instruction we haven't yet visited, we add it to the worklist. 5374 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 5375 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { 5376 for (Use &U : I->operands()) 5377 if (auto *J = dyn_cast<Instruction>(U.get())) 5378 if (Visited.insert(J).second) 5379 Worklist.push_back(J); 5380 } 5381 5382 // If we don't yet handle the instruction, give up. 5383 else 5384 FoundUnknownInst = true; 5385 } 5386 5387 // If we didn't encounter a memory access in the expression tree, or if we 5388 // gave up for some reason, just return the width of V. 5389 if (!MaxWidth || FoundUnknownInst) 5390 return DL->getTypeSizeInBits(V->getType()); 5391 5392 // Otherwise, return the maximum width we found. 5393 return MaxWidth; 5394 } 5395 5396 // Determine if a value V in a vectorizable expression Expr can be demoted to a 5397 // smaller type with a truncation. We collect the values that will be demoted 5398 // in ToDemote and additional roots that require investigating in Roots. 5399 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 5400 SmallVectorImpl<Value *> &ToDemote, 5401 SmallVectorImpl<Value *> &Roots) { 5402 // We can always demote constants. 5403 if (isa<Constant>(V)) { 5404 ToDemote.push_back(V); 5405 return true; 5406 } 5407 5408 // If the value is not an instruction in the expression with only one use, it 5409 // cannot be demoted. 5410 auto *I = dyn_cast<Instruction>(V); 5411 if (!I || !I->hasOneUse() || !Expr.count(I)) 5412 return false; 5413 5414 switch (I->getOpcode()) { 5415 5416 // We can always demote truncations and extensions. Since truncations can 5417 // seed additional demotion, we save the truncated value. 5418 case Instruction::Trunc: 5419 Roots.push_back(I->getOperand(0)); 5420 break; 5421 case Instruction::ZExt: 5422 case Instruction::SExt: 5423 break; 5424 5425 // We can demote certain binary operations if we can demote both of their 5426 // operands. 5427 case Instruction::Add: 5428 case Instruction::Sub: 5429 case Instruction::Mul: 5430 case Instruction::And: 5431 case Instruction::Or: 5432 case Instruction::Xor: 5433 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 5434 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 5435 return false; 5436 break; 5437 5438 // We can demote selects if we can demote their true and false values. 5439 case Instruction::Select: { 5440 SelectInst *SI = cast<SelectInst>(I); 5441 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 5442 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 5443 return false; 5444 break; 5445 } 5446 5447 // We can demote phis if we can demote all their incoming operands. Note that 5448 // we don't need to worry about cycles since we ensure single use above. 5449 case Instruction::PHI: { 5450 PHINode *PN = cast<PHINode>(I); 5451 for (Value *IncValue : PN->incoming_values()) 5452 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 5453 return false; 5454 break; 5455 } 5456 5457 // Otherwise, conservatively give up. 5458 default: 5459 return false; 5460 } 5461 5462 // Record the value that we can demote. 5463 ToDemote.push_back(V); 5464 return true; 5465 } 5466 5467 void BoUpSLP::computeMinimumValueSizes() { 5468 // If there are no external uses, the expression tree must be rooted by a 5469 // store. We can't demote in-memory values, so there is nothing to do here. 5470 if (ExternalUses.empty()) 5471 return; 5472 5473 // We only attempt to truncate integer expressions. 5474 auto &TreeRoot = VectorizableTree[0]->Scalars; 5475 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 5476 if (!TreeRootIT) 5477 return; 5478 5479 // If the expression is not rooted by a store, these roots should have 5480 // external uses. We will rely on InstCombine to rewrite the expression in 5481 // the narrower type. However, InstCombine only rewrites single-use values. 5482 // This means that if a tree entry other than a root is used externally, it 5483 // must have multiple uses and InstCombine will not rewrite it. The code 5484 // below ensures that only the roots are used externally. 5485 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 5486 for (auto &EU : ExternalUses) 5487 if (!Expr.erase(EU.Scalar)) 5488 return; 5489 if (!Expr.empty()) 5490 return; 5491 5492 // Collect the scalar values of the vectorizable expression. We will use this 5493 // context to determine which values can be demoted. If we see a truncation, 5494 // we mark it as seeding another demotion. 5495 for (auto &EntryPtr : VectorizableTree) 5496 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 5497 5498 // Ensure the roots of the vectorizable tree don't form a cycle. They must 5499 // have a single external user that is not in the vectorizable tree. 5500 for (auto *Root : TreeRoot) 5501 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 5502 return; 5503 5504 // Conservatively determine if we can actually truncate the roots of the 5505 // expression. Collect the values that can be demoted in ToDemote and 5506 // additional roots that require investigating in Roots. 5507 SmallVector<Value *, 32> ToDemote; 5508 SmallVector<Value *, 4> Roots; 5509 for (auto *Root : TreeRoot) 5510 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 5511 return; 5512 5513 // The maximum bit width required to represent all the values that can be 5514 // demoted without loss of precision. It would be safe to truncate the roots 5515 // of the expression to this width. 5516 auto MaxBitWidth = 8u; 5517 5518 // We first check if all the bits of the roots are demanded. If they're not, 5519 // we can truncate the roots to this narrower type. 5520 for (auto *Root : TreeRoot) { 5521 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 5522 MaxBitWidth = std::max<unsigned>( 5523 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 5524 } 5525 5526 // True if the roots can be zero-extended back to their original type, rather 5527 // than sign-extended. We know that if the leading bits are not demanded, we 5528 // can safely zero-extend. So we initialize IsKnownPositive to True. 5529 bool IsKnownPositive = true; 5530 5531 // If all the bits of the roots are demanded, we can try a little harder to 5532 // compute a narrower type. This can happen, for example, if the roots are 5533 // getelementptr indices. InstCombine promotes these indices to the pointer 5534 // width. Thus, all their bits are technically demanded even though the 5535 // address computation might be vectorized in a smaller type. 5536 // 5537 // We start by looking at each entry that can be demoted. We compute the 5538 // maximum bit width required to store the scalar by using ValueTracking to 5539 // compute the number of high-order bits we can truncate. 5540 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 5541 llvm::all_of(TreeRoot, [](Value *R) { 5542 assert(R->hasOneUse() && "Root should have only one use!"); 5543 return isa<GetElementPtrInst>(R->user_back()); 5544 })) { 5545 MaxBitWidth = 8u; 5546 5547 // Determine if the sign bit of all the roots is known to be zero. If not, 5548 // IsKnownPositive is set to False. 5549 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 5550 KnownBits Known = computeKnownBits(R, *DL); 5551 return Known.isNonNegative(); 5552 }); 5553 5554 // Determine the maximum number of bits required to store the scalar 5555 // values. 5556 for (auto *Scalar : ToDemote) { 5557 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 5558 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 5559 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 5560 } 5561 5562 // If we can't prove that the sign bit is zero, we must add one to the 5563 // maximum bit width to account for the unknown sign bit. This preserves 5564 // the existing sign bit so we can safely sign-extend the root back to the 5565 // original type. Otherwise, if we know the sign bit is zero, we will 5566 // zero-extend the root instead. 5567 // 5568 // FIXME: This is somewhat suboptimal, as there will be cases where adding 5569 // one to the maximum bit width will yield a larger-than-necessary 5570 // type. In general, we need to add an extra bit only if we can't 5571 // prove that the upper bit of the original type is equal to the 5572 // upper bit of the proposed smaller type. If these two bits are the 5573 // same (either zero or one) we know that sign-extending from the 5574 // smaller type will result in the same value. Here, since we can't 5575 // yet prove this, we are just making the proposed smaller type 5576 // larger to ensure correctness. 5577 if (!IsKnownPositive) 5578 ++MaxBitWidth; 5579 } 5580 5581 // Round MaxBitWidth up to the next power-of-two. 5582 if (!isPowerOf2_64(MaxBitWidth)) 5583 MaxBitWidth = NextPowerOf2(MaxBitWidth); 5584 5585 // If the maximum bit width we compute is less than the with of the roots' 5586 // type, we can proceed with the narrowing. Otherwise, do nothing. 5587 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 5588 return; 5589 5590 // If we can truncate the root, we must collect additional values that might 5591 // be demoted as a result. That is, those seeded by truncations we will 5592 // modify. 5593 while (!Roots.empty()) 5594 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 5595 5596 // Finally, map the values we can demote to the maximum bit with we computed. 5597 for (auto *Scalar : ToDemote) 5598 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 5599 } 5600 5601 namespace { 5602 5603 /// The SLPVectorizer Pass. 5604 struct SLPVectorizer : public FunctionPass { 5605 SLPVectorizerPass Impl; 5606 5607 /// Pass identification, replacement for typeid 5608 static char ID; 5609 5610 explicit SLPVectorizer() : FunctionPass(ID) { 5611 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 5612 } 5613 5614 bool doInitialization(Module &M) override { 5615 return false; 5616 } 5617 5618 bool runOnFunction(Function &F) override { 5619 if (skipFunction(F)) 5620 return false; 5621 5622 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5623 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 5624 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 5625 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 5626 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 5627 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5628 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5629 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 5630 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 5631 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 5632 5633 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5634 } 5635 5636 void getAnalysisUsage(AnalysisUsage &AU) const override { 5637 FunctionPass::getAnalysisUsage(AU); 5638 AU.addRequired<AssumptionCacheTracker>(); 5639 AU.addRequired<ScalarEvolutionWrapperPass>(); 5640 AU.addRequired<AAResultsWrapperPass>(); 5641 AU.addRequired<TargetTransformInfoWrapperPass>(); 5642 AU.addRequired<LoopInfoWrapperPass>(); 5643 AU.addRequired<DominatorTreeWrapperPass>(); 5644 AU.addRequired<DemandedBitsWrapperPass>(); 5645 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 5646 AU.addRequired<InjectTLIMappingsLegacy>(); 5647 AU.addPreserved<LoopInfoWrapperPass>(); 5648 AU.addPreserved<DominatorTreeWrapperPass>(); 5649 AU.addPreserved<AAResultsWrapperPass>(); 5650 AU.addPreserved<GlobalsAAWrapperPass>(); 5651 AU.setPreservesCFG(); 5652 } 5653 }; 5654 5655 } // end anonymous namespace 5656 5657 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 5658 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 5659 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 5660 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 5661 auto *AA = &AM.getResult<AAManager>(F); 5662 auto *LI = &AM.getResult<LoopAnalysis>(F); 5663 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 5664 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 5665 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 5666 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 5667 5668 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 5669 if (!Changed) 5670 return PreservedAnalyses::all(); 5671 5672 PreservedAnalyses PA; 5673 PA.preserveSet<CFGAnalyses>(); 5674 PA.preserve<AAManager>(); 5675 PA.preserve<GlobalsAA>(); 5676 return PA; 5677 } 5678 5679 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 5680 TargetTransformInfo *TTI_, 5681 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 5682 LoopInfo *LI_, DominatorTree *DT_, 5683 AssumptionCache *AC_, DemandedBits *DB_, 5684 OptimizationRemarkEmitter *ORE_) { 5685 if (!RunSLPVectorization) 5686 return false; 5687 SE = SE_; 5688 TTI = TTI_; 5689 TLI = TLI_; 5690 AA = AA_; 5691 LI = LI_; 5692 DT = DT_; 5693 AC = AC_; 5694 DB = DB_; 5695 DL = &F.getParent()->getDataLayout(); 5696 5697 Stores.clear(); 5698 GEPs.clear(); 5699 bool Changed = false; 5700 5701 // If the target claims to have no vector registers don't attempt 5702 // vectorization. 5703 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) 5704 return false; 5705 5706 // Don't vectorize when the attribute NoImplicitFloat is used. 5707 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 5708 return false; 5709 5710 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 5711 5712 // Use the bottom up slp vectorizer to construct chains that start with 5713 // store instructions. 5714 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 5715 5716 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 5717 // delete instructions. 5718 5719 // Scan the blocks in the function in post order. 5720 for (auto BB : post_order(&F.getEntryBlock())) { 5721 collectSeedInstructions(BB); 5722 5723 // Vectorize trees that end at stores. 5724 if (!Stores.empty()) { 5725 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 5726 << " underlying objects.\n"); 5727 Changed |= vectorizeStoreChains(R); 5728 } 5729 5730 // Vectorize trees that end at reductions. 5731 Changed |= vectorizeChainsInBlock(BB, R); 5732 5733 // Vectorize the index computations of getelementptr instructions. This 5734 // is primarily intended to catch gather-like idioms ending at 5735 // non-consecutive loads. 5736 if (!GEPs.empty()) { 5737 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 5738 << " underlying objects.\n"); 5739 Changed |= vectorizeGEPIndices(BB, R); 5740 } 5741 } 5742 5743 if (Changed) { 5744 R.optimizeGatherSequence(); 5745 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 5746 LLVM_DEBUG(verifyFunction(F)); 5747 } 5748 return Changed; 5749 } 5750 5751 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 5752 unsigned Idx) { 5753 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 5754 << "\n"); 5755 const unsigned Sz = R.getVectorElementSize(Chain[0]); 5756 const unsigned MinVF = R.getMinVecRegSize() / Sz; 5757 unsigned VF = Chain.size(); 5758 5759 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 5760 return false; 5761 5762 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 5763 << "\n"); 5764 5765 R.buildTree(Chain); 5766 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 5767 // TODO: Handle orders of size less than number of elements in the vector. 5768 if (Order && Order->size() == Chain.size()) { 5769 // TODO: reorder tree nodes without tree rebuilding. 5770 SmallVector<Value *, 4> ReorderedOps(Chain.rbegin(), Chain.rend()); 5771 llvm::transform(*Order, ReorderedOps.begin(), 5772 [Chain](const unsigned Idx) { return Chain[Idx]; }); 5773 R.buildTree(ReorderedOps); 5774 } 5775 if (R.isTreeTinyAndNotFullyVectorizable()) 5776 return false; 5777 if (R.isLoadCombineCandidate()) 5778 return false; 5779 5780 R.computeMinimumValueSizes(); 5781 5782 int Cost = R.getTreeCost(); 5783 5784 LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n"); 5785 if (Cost < -SLPCostThreshold) { 5786 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 5787 5788 using namespace ore; 5789 5790 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 5791 cast<StoreInst>(Chain[0])) 5792 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 5793 << " and with tree size " 5794 << NV("TreeSize", R.getTreeSize())); 5795 5796 R.vectorizeTree(); 5797 return true; 5798 } 5799 5800 return false; 5801 } 5802 5803 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 5804 BoUpSLP &R) { 5805 // We may run into multiple chains that merge into a single chain. We mark the 5806 // stores that we vectorized so that we don't visit the same store twice. 5807 BoUpSLP::ValueSet VectorizedStores; 5808 bool Changed = false; 5809 5810 int E = Stores.size(); 5811 SmallBitVector Tails(E, false); 5812 SmallVector<int, 16> ConsecutiveChain(E, E + 1); 5813 int MaxIter = MaxStoreLookup.getValue(); 5814 int IterCnt; 5815 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 5816 &ConsecutiveChain](int K, int Idx) { 5817 if (IterCnt >= MaxIter) 5818 return true; 5819 ++IterCnt; 5820 if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) 5821 return false; 5822 5823 Tails.set(Idx); 5824 ConsecutiveChain[K] = Idx; 5825 return true; 5826 }; 5827 // Do a quadratic search on all of the given stores in reverse order and find 5828 // all of the pairs of stores that follow each other. 5829 for (int Idx = E - 1; Idx >= 0; --Idx) { 5830 // If a store has multiple consecutive store candidates, search according 5831 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 5832 // This is because usually pairing with immediate succeeding or preceding 5833 // candidate create the best chance to find slp vectorization opportunity. 5834 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 5835 IterCnt = 0; 5836 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 5837 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 5838 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 5839 break; 5840 } 5841 5842 // For stores that start but don't end a link in the chain: 5843 for (int Cnt = E; Cnt > 0; --Cnt) { 5844 int I = Cnt - 1; 5845 if (ConsecutiveChain[I] == E + 1 || Tails.test(I)) 5846 continue; 5847 // We found a store instr that starts a chain. Now follow the chain and try 5848 // to vectorize it. 5849 BoUpSLP::ValueList Operands; 5850 // Collect the chain into a list. 5851 while (I != E + 1 && !VectorizedStores.count(Stores[I])) { 5852 Operands.push_back(Stores[I]); 5853 // Move to the next value in the chain. 5854 I = ConsecutiveChain[I]; 5855 } 5856 5857 // If a vector register can't hold 1 element, we are done. 5858 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 5859 unsigned EltSize = R.getVectorElementSize(Stores[0]); 5860 if (MaxVecRegSize % EltSize != 0) 5861 continue; 5862 5863 unsigned MaxElts = MaxVecRegSize / EltSize; 5864 // FIXME: Is division-by-2 the correct step? Should we assert that the 5865 // register size is a power-of-2? 5866 unsigned StartIdx = 0; 5867 for (unsigned Size = llvm::PowerOf2Ceil(MaxElts); Size >= 2; Size /= 2) { 5868 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 5869 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 5870 if (!VectorizedStores.count(Slice.front()) && 5871 !VectorizedStores.count(Slice.back()) && 5872 vectorizeStoreChain(Slice, R, Cnt)) { 5873 // Mark the vectorized stores so that we don't vectorize them again. 5874 VectorizedStores.insert(Slice.begin(), Slice.end()); 5875 Changed = true; 5876 // If we vectorized initial block, no need to try to vectorize it 5877 // again. 5878 if (Cnt == StartIdx) 5879 StartIdx += Size; 5880 Cnt += Size; 5881 continue; 5882 } 5883 ++Cnt; 5884 } 5885 // Check if the whole array was vectorized already - exit. 5886 if (StartIdx >= Operands.size()) 5887 break; 5888 } 5889 } 5890 5891 return Changed; 5892 } 5893 5894 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 5895 // Initialize the collections. We will make a single pass over the block. 5896 Stores.clear(); 5897 GEPs.clear(); 5898 5899 // Visit the store and getelementptr instructions in BB and organize them in 5900 // Stores and GEPs according to the underlying objects of their pointer 5901 // operands. 5902 for (Instruction &I : *BB) { 5903 // Ignore store instructions that are volatile or have a pointer operand 5904 // that doesn't point to a scalar type. 5905 if (auto *SI = dyn_cast<StoreInst>(&I)) { 5906 if (!SI->isSimple()) 5907 continue; 5908 if (!isValidElementType(SI->getValueOperand()->getType())) 5909 continue; 5910 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); 5911 } 5912 5913 // Ignore getelementptr instructions that have more than one index, a 5914 // constant index, or a pointer operand that doesn't point to a scalar 5915 // type. 5916 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 5917 auto Idx = GEP->idx_begin()->get(); 5918 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 5919 continue; 5920 if (!isValidElementType(Idx->getType())) 5921 continue; 5922 if (GEP->getType()->isVectorTy()) 5923 continue; 5924 GEPs[GEP->getPointerOperand()].push_back(GEP); 5925 } 5926 } 5927 } 5928 5929 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 5930 if (!A || !B) 5931 return false; 5932 Value *VL[] = { A, B }; 5933 return tryToVectorizeList(VL, R, /*UserCost=*/0, true); 5934 } 5935 5936 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 5937 int UserCost, bool AllowReorder) { 5938 if (VL.size() < 2) 5939 return false; 5940 5941 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 5942 << VL.size() << ".\n"); 5943 5944 // Check that all of the parts are instructions of the same type, 5945 // we permit an alternate opcode via InstructionsState. 5946 InstructionsState S = getSameOpcode(VL); 5947 if (!S.getOpcode()) 5948 return false; 5949 5950 Instruction *I0 = cast<Instruction>(S.OpValue); 5951 // Make sure invalid types (including vector type) are rejected before 5952 // determining vectorization factor for scalar instructions. 5953 for (Value *V : VL) { 5954 Type *Ty = V->getType(); 5955 if (!isValidElementType(Ty)) { 5956 // NOTE: the following will give user internal llvm type name, which may 5957 // not be useful. 5958 R.getORE()->emit([&]() { 5959 std::string type_str; 5960 llvm::raw_string_ostream rso(type_str); 5961 Ty->print(rso); 5962 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 5963 << "Cannot SLP vectorize list: type " 5964 << rso.str() + " is unsupported by vectorizer"; 5965 }); 5966 return false; 5967 } 5968 } 5969 5970 unsigned Sz = R.getVectorElementSize(I0); 5971 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 5972 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 5973 if (MaxVF < 2) { 5974 R.getORE()->emit([&]() { 5975 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 5976 << "Cannot SLP vectorize list: vectorization factor " 5977 << "less than 2 is not supported"; 5978 }); 5979 return false; 5980 } 5981 5982 bool Changed = false; 5983 bool CandidateFound = false; 5984 int MinCost = SLPCostThreshold; 5985 5986 unsigned NextInst = 0, MaxInst = VL.size(); 5987 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 5988 // No actual vectorization should happen, if number of parts is the same as 5989 // provided vectorization factor (i.e. the scalar type is used for vector 5990 // code during codegen). 5991 auto *VecTy = VectorType::get(VL[0]->getType(), VF); 5992 if (TTI->getNumberOfParts(VecTy) == VF) 5993 continue; 5994 for (unsigned I = NextInst; I < MaxInst; ++I) { 5995 unsigned OpsWidth = 0; 5996 5997 if (I + VF > MaxInst) 5998 OpsWidth = MaxInst - I; 5999 else 6000 OpsWidth = VF; 6001 6002 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 6003 break; 6004 6005 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 6006 // Check that a previous iteration of this loop did not delete the Value. 6007 if (llvm::any_of(Ops, [&R](Value *V) { 6008 auto *I = dyn_cast<Instruction>(V); 6009 return I && R.isDeleted(I); 6010 })) 6011 continue; 6012 6013 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 6014 << "\n"); 6015 6016 R.buildTree(Ops); 6017 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 6018 // TODO: check if we can allow reordering for more cases. 6019 if (AllowReorder && Order) { 6020 // TODO: reorder tree nodes without tree rebuilding. 6021 // Conceptually, there is nothing actually preventing us from trying to 6022 // reorder a larger list. In fact, we do exactly this when vectorizing 6023 // reductions. However, at this point, we only expect to get here when 6024 // there are exactly two operations. 6025 assert(Ops.size() == 2); 6026 Value *ReorderedOps[] = {Ops[1], Ops[0]}; 6027 R.buildTree(ReorderedOps, None); 6028 } 6029 if (R.isTreeTinyAndNotFullyVectorizable()) 6030 continue; 6031 6032 R.computeMinimumValueSizes(); 6033 int Cost = R.getTreeCost() - UserCost; 6034 CandidateFound = true; 6035 MinCost = std::min(MinCost, Cost); 6036 6037 if (Cost < -SLPCostThreshold) { 6038 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 6039 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 6040 cast<Instruction>(Ops[0])) 6041 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 6042 << " and with tree size " 6043 << ore::NV("TreeSize", R.getTreeSize())); 6044 6045 R.vectorizeTree(); 6046 // Move to the next bundle. 6047 I += VF - 1; 6048 NextInst = I + 1; 6049 Changed = true; 6050 } 6051 } 6052 } 6053 6054 if (!Changed && CandidateFound) { 6055 R.getORE()->emit([&]() { 6056 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 6057 << "List vectorization was possible but not beneficial with cost " 6058 << ore::NV("Cost", MinCost) << " >= " 6059 << ore::NV("Treshold", -SLPCostThreshold); 6060 }); 6061 } else if (!Changed) { 6062 R.getORE()->emit([&]() { 6063 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 6064 << "Cannot SLP vectorize list: vectorization was impossible" 6065 << " with available vectorization factors"; 6066 }); 6067 } 6068 return Changed; 6069 } 6070 6071 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 6072 if (!I) 6073 return false; 6074 6075 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 6076 return false; 6077 6078 Value *P = I->getParent(); 6079 6080 // Vectorize in current basic block only. 6081 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 6082 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 6083 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 6084 return false; 6085 6086 // Try to vectorize V. 6087 if (tryToVectorizePair(Op0, Op1, R)) 6088 return true; 6089 6090 auto *A = dyn_cast<BinaryOperator>(Op0); 6091 auto *B = dyn_cast<BinaryOperator>(Op1); 6092 // Try to skip B. 6093 if (B && B->hasOneUse()) { 6094 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 6095 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 6096 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 6097 return true; 6098 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 6099 return true; 6100 } 6101 6102 // Try to skip A. 6103 if (A && A->hasOneUse()) { 6104 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 6105 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 6106 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 6107 return true; 6108 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 6109 return true; 6110 } 6111 return false; 6112 } 6113 6114 /// Generate a shuffle mask to be used in a reduction tree. 6115 /// 6116 /// \param VecLen The length of the vector to be reduced. 6117 /// \param NumEltsToRdx The number of elements that should be reduced in the 6118 /// vector. 6119 /// \param IsPairwise Whether the reduction is a pairwise or splitting 6120 /// reduction. A pairwise reduction will generate a mask of 6121 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 6122 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 6123 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 6124 static SmallVector<int, 32> createRdxShuffleMask(unsigned VecLen, 6125 unsigned NumEltsToRdx, 6126 bool IsPairwise, bool IsLeft) { 6127 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 6128 6129 SmallVector<int, 32> ShuffleMask(VecLen, -1); 6130 6131 if (IsPairwise) 6132 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 6133 for (unsigned i = 0; i != NumEltsToRdx; ++i) 6134 ShuffleMask[i] = 2 * i + !IsLeft; 6135 else 6136 // Move the upper half of the vector to the lower half. 6137 for (unsigned i = 0; i != NumEltsToRdx; ++i) 6138 ShuffleMask[i] = NumEltsToRdx + i; 6139 6140 return ShuffleMask; 6141 } 6142 6143 namespace { 6144 6145 /// Model horizontal reductions. 6146 /// 6147 /// A horizontal reduction is a tree of reduction operations (currently add and 6148 /// fadd) that has operations that can be put into a vector as its leaf. 6149 /// For example, this tree: 6150 /// 6151 /// mul mul mul mul 6152 /// \ / \ / 6153 /// + + 6154 /// \ / 6155 /// + 6156 /// This tree has "mul" as its reduced values and "+" as its reduction 6157 /// operations. A reduction might be feeding into a store or a binary operation 6158 /// feeding a phi. 6159 /// ... 6160 /// \ / 6161 /// + 6162 /// | 6163 /// phi += 6164 /// 6165 /// Or: 6166 /// ... 6167 /// \ / 6168 /// + 6169 /// | 6170 /// *p = 6171 /// 6172 class HorizontalReduction { 6173 using ReductionOpsType = SmallVector<Value *, 16>; 6174 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 6175 ReductionOpsListType ReductionOps; 6176 SmallVector<Value *, 32> ReducedVals; 6177 // Use map vector to make stable output. 6178 MapVector<Instruction *, Value *> ExtraArgs; 6179 6180 /// Kind of the reduction data. 6181 enum ReductionKind { 6182 RK_None, /// Not a reduction. 6183 RK_Arithmetic, /// Binary reduction data. 6184 RK_Min, /// Minimum reduction data. 6185 RK_UMin, /// Unsigned minimum reduction data. 6186 RK_Max, /// Maximum reduction data. 6187 RK_UMax, /// Unsigned maximum reduction data. 6188 }; 6189 6190 /// Contains info about operation, like its opcode, left and right operands. 6191 class OperationData { 6192 /// Opcode of the instruction. 6193 unsigned Opcode = 0; 6194 6195 /// Left operand of the reduction operation. 6196 Value *LHS = nullptr; 6197 6198 /// Right operand of the reduction operation. 6199 Value *RHS = nullptr; 6200 6201 /// Kind of the reduction operation. 6202 ReductionKind Kind = RK_None; 6203 6204 /// True if float point min/max reduction has no NaNs. 6205 bool NoNaN = false; 6206 6207 /// Checks if the reduction operation can be vectorized. 6208 bool isVectorizable() const { 6209 return LHS && RHS && 6210 // We currently only support add/mul/logical && min/max reductions. 6211 ((Kind == RK_Arithmetic && 6212 (Opcode == Instruction::Add || Opcode == Instruction::FAdd || 6213 Opcode == Instruction::Mul || Opcode == Instruction::FMul || 6214 Opcode == Instruction::And || Opcode == Instruction::Or || 6215 Opcode == Instruction::Xor)) || 6216 ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 6217 (Kind == RK_Min || Kind == RK_Max)) || 6218 (Opcode == Instruction::ICmp && 6219 (Kind == RK_UMin || Kind == RK_UMax))); 6220 } 6221 6222 /// Creates reduction operation with the current opcode. 6223 Value *createOp(IRBuilder<> &Builder, const Twine &Name) const { 6224 assert(isVectorizable() && 6225 "Expected add|fadd or min/max reduction operation."); 6226 Value *Cmp = nullptr; 6227 switch (Kind) { 6228 case RK_Arithmetic: 6229 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS, 6230 Name); 6231 case RK_Min: 6232 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS) 6233 : Builder.CreateFCmpOLT(LHS, RHS); 6234 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6235 case RK_Max: 6236 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS) 6237 : Builder.CreateFCmpOGT(LHS, RHS); 6238 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6239 case RK_UMin: 6240 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6241 Cmp = Builder.CreateICmpULT(LHS, RHS); 6242 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6243 case RK_UMax: 6244 assert(Opcode == Instruction::ICmp && "Expected integer types."); 6245 Cmp = Builder.CreateICmpUGT(LHS, RHS); 6246 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 6247 case RK_None: 6248 break; 6249 } 6250 llvm_unreachable("Unknown reduction operation."); 6251 } 6252 6253 public: 6254 explicit OperationData() = default; 6255 6256 /// Construction for reduced values. They are identified by opcode only and 6257 /// don't have associated LHS/RHS values. 6258 explicit OperationData(Value *V) { 6259 if (auto *I = dyn_cast<Instruction>(V)) 6260 Opcode = I->getOpcode(); 6261 } 6262 6263 /// Constructor for reduction operations with opcode and its left and 6264 /// right operands. 6265 OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind, 6266 bool NoNaN = false) 6267 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) { 6268 assert(Kind != RK_None && "One of the reduction operations is expected."); 6269 } 6270 6271 explicit operator bool() const { return Opcode; } 6272 6273 /// Return true if this operation is any kind of minimum or maximum. 6274 bool isMinMax() const { 6275 switch (Kind) { 6276 case RK_Arithmetic: 6277 return false; 6278 case RK_Min: 6279 case RK_Max: 6280 case RK_UMin: 6281 case RK_UMax: 6282 return true; 6283 case RK_None: 6284 break; 6285 } 6286 llvm_unreachable("Reduction kind is not set"); 6287 } 6288 6289 /// Get the index of the first operand. 6290 unsigned getFirstOperandIndex() const { 6291 assert(!!*this && "The opcode is not set."); 6292 // We allow calling this before 'Kind' is set, so handle that specially. 6293 if (Kind == RK_None) 6294 return 0; 6295 return isMinMax() ? 1 : 0; 6296 } 6297 6298 /// Total number of operands in the reduction operation. 6299 unsigned getNumberOfOperands() const { 6300 assert(Kind != RK_None && !!*this && LHS && RHS && 6301 "Expected reduction operation."); 6302 return isMinMax() ? 3 : 2; 6303 } 6304 6305 /// Checks if the operation has the same parent as \p P. 6306 bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const { 6307 assert(Kind != RK_None && !!*this && LHS && RHS && 6308 "Expected reduction operation."); 6309 if (!IsRedOp) 6310 return I->getParent() == P; 6311 if (isMinMax()) { 6312 // SelectInst must be used twice while the condition op must have single 6313 // use only. 6314 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition()); 6315 return I->getParent() == P && Cmp && Cmp->getParent() == P; 6316 } 6317 // Arithmetic reduction operation must be used once only. 6318 return I->getParent() == P; 6319 } 6320 6321 /// Expected number of uses for reduction operations/reduced values. 6322 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const { 6323 assert(Kind != RK_None && !!*this && LHS && RHS && 6324 "Expected reduction operation."); 6325 if (isMinMax()) 6326 return I->hasNUses(2) && 6327 (!IsReductionOp || 6328 cast<SelectInst>(I)->getCondition()->hasOneUse()); 6329 return I->hasOneUse(); 6330 } 6331 6332 /// Initializes the list of reduction operations. 6333 void initReductionOps(ReductionOpsListType &ReductionOps) { 6334 assert(Kind != RK_None && !!*this && LHS && RHS && 6335 "Expected reduction operation."); 6336 if (isMinMax()) 6337 ReductionOps.assign(2, ReductionOpsType()); 6338 else 6339 ReductionOps.assign(1, ReductionOpsType()); 6340 } 6341 6342 /// Add all reduction operations for the reduction instruction \p I. 6343 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) { 6344 assert(Kind != RK_None && !!*this && LHS && RHS && 6345 "Expected reduction operation."); 6346 if (isMinMax()) { 6347 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 6348 ReductionOps[1].emplace_back(I); 6349 } else { 6350 ReductionOps[0].emplace_back(I); 6351 } 6352 } 6353 6354 /// Checks if instruction is associative and can be vectorized. 6355 bool isAssociative(Instruction *I) const { 6356 assert(Kind != RK_None && *this && LHS && RHS && 6357 "Expected reduction operation."); 6358 switch (Kind) { 6359 case RK_Arithmetic: 6360 return I->isAssociative(); 6361 case RK_Min: 6362 case RK_Max: 6363 return Opcode == Instruction::ICmp || 6364 cast<Instruction>(I->getOperand(0))->isFast(); 6365 case RK_UMin: 6366 case RK_UMax: 6367 assert(Opcode == Instruction::ICmp && 6368 "Only integer compare operation is expected."); 6369 return true; 6370 case RK_None: 6371 break; 6372 } 6373 llvm_unreachable("Reduction kind is not set"); 6374 } 6375 6376 /// Checks if the reduction operation can be vectorized. 6377 bool isVectorizable(Instruction *I) const { 6378 return isVectorizable() && isAssociative(I); 6379 } 6380 6381 /// Checks if two operation data are both a reduction op or both a reduced 6382 /// value. 6383 bool operator==(const OperationData &OD) const { 6384 assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) && 6385 "One of the comparing operations is incorrect."); 6386 return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode); 6387 } 6388 bool operator!=(const OperationData &OD) const { return !(*this == OD); } 6389 void clear() { 6390 Opcode = 0; 6391 LHS = nullptr; 6392 RHS = nullptr; 6393 Kind = RK_None; 6394 NoNaN = false; 6395 } 6396 6397 /// Get the opcode of the reduction operation. 6398 unsigned getOpcode() const { 6399 assert(isVectorizable() && "Expected vectorizable operation."); 6400 return Opcode; 6401 } 6402 6403 /// Get kind of reduction data. 6404 ReductionKind getKind() const { return Kind; } 6405 Value *getLHS() const { return LHS; } 6406 Value *getRHS() const { return RHS; } 6407 Type *getConditionType() const { 6408 return isMinMax() ? CmpInst::makeCmpResultType(LHS->getType()) : nullptr; 6409 } 6410 6411 /// Creates reduction operation with the current opcode with the IR flags 6412 /// from \p ReductionOps. 6413 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 6414 const ReductionOpsListType &ReductionOps) const { 6415 assert(isVectorizable() && 6416 "Expected add|fadd or min/max reduction operation."); 6417 auto *Op = createOp(Builder, Name); 6418 switch (Kind) { 6419 case RK_Arithmetic: 6420 propagateIRFlags(Op, ReductionOps[0]); 6421 return Op; 6422 case RK_Min: 6423 case RK_Max: 6424 case RK_UMin: 6425 case RK_UMax: 6426 if (auto *SI = dyn_cast<SelectInst>(Op)) 6427 propagateIRFlags(SI->getCondition(), ReductionOps[0]); 6428 propagateIRFlags(Op, ReductionOps[1]); 6429 return Op; 6430 case RK_None: 6431 break; 6432 } 6433 llvm_unreachable("Unknown reduction operation."); 6434 } 6435 /// Creates reduction operation with the current opcode with the IR flags 6436 /// from \p I. 6437 Value *createOp(IRBuilder<> &Builder, const Twine &Name, 6438 Instruction *I) const { 6439 assert(isVectorizable() && 6440 "Expected add|fadd or min/max reduction operation."); 6441 auto *Op = createOp(Builder, Name); 6442 switch (Kind) { 6443 case RK_Arithmetic: 6444 propagateIRFlags(Op, I); 6445 return Op; 6446 case RK_Min: 6447 case RK_Max: 6448 case RK_UMin: 6449 case RK_UMax: 6450 if (auto *SI = dyn_cast<SelectInst>(Op)) { 6451 propagateIRFlags(SI->getCondition(), 6452 cast<SelectInst>(I)->getCondition()); 6453 } 6454 propagateIRFlags(Op, I); 6455 return Op; 6456 case RK_None: 6457 break; 6458 } 6459 llvm_unreachable("Unknown reduction operation."); 6460 } 6461 6462 TargetTransformInfo::ReductionFlags getFlags() const { 6463 TargetTransformInfo::ReductionFlags Flags; 6464 Flags.NoNaN = NoNaN; 6465 switch (Kind) { 6466 case RK_Arithmetic: 6467 break; 6468 case RK_Min: 6469 Flags.IsSigned = Opcode == Instruction::ICmp; 6470 Flags.IsMaxOp = false; 6471 break; 6472 case RK_Max: 6473 Flags.IsSigned = Opcode == Instruction::ICmp; 6474 Flags.IsMaxOp = true; 6475 break; 6476 case RK_UMin: 6477 Flags.IsSigned = false; 6478 Flags.IsMaxOp = false; 6479 break; 6480 case RK_UMax: 6481 Flags.IsSigned = false; 6482 Flags.IsMaxOp = true; 6483 break; 6484 case RK_None: 6485 llvm_unreachable("Reduction kind is not set"); 6486 } 6487 return Flags; 6488 } 6489 }; 6490 6491 WeakTrackingVH ReductionRoot; 6492 6493 /// The operation data of the reduction operation. 6494 OperationData ReductionData; 6495 6496 /// The operation data of the values we perform a reduction on. 6497 OperationData ReducedValueData; 6498 6499 /// Should we model this reduction as a pairwise reduction tree or a tree that 6500 /// splits the vector in halves and adds those halves. 6501 bool IsPairwiseReduction = false; 6502 6503 /// Checks if the ParentStackElem.first should be marked as a reduction 6504 /// operation with an extra argument or as extra argument itself. 6505 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 6506 Value *ExtraArg) { 6507 if (ExtraArgs.count(ParentStackElem.first)) { 6508 ExtraArgs[ParentStackElem.first] = nullptr; 6509 // We ran into something like: 6510 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 6511 // The whole ParentStackElem.first should be considered as an extra value 6512 // in this case. 6513 // Do not perform analysis of remaining operands of ParentStackElem.first 6514 // instruction, this whole instruction is an extra argument. 6515 ParentStackElem.second = ParentStackElem.first->getNumOperands(); 6516 } else { 6517 // We ran into something like: 6518 // ParentStackElem.first += ... + ExtraArg + ... 6519 ExtraArgs[ParentStackElem.first] = ExtraArg; 6520 } 6521 } 6522 6523 static OperationData getOperationData(Value *V) { 6524 if (!V) 6525 return OperationData(); 6526 6527 Value *LHS; 6528 Value *RHS; 6529 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) { 6530 return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS, 6531 RK_Arithmetic); 6532 } 6533 if (auto *Select = dyn_cast<SelectInst>(V)) { 6534 // Look for a min/max pattern. 6535 if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6536 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 6537 } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6538 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 6539 } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) || 6540 m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) { 6541 return OperationData( 6542 Instruction::FCmp, LHS, RHS, RK_Min, 6543 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 6544 } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6545 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 6546 } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6547 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 6548 } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) || 6549 m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) { 6550 return OperationData( 6551 Instruction::FCmp, LHS, RHS, RK_Max, 6552 cast<Instruction>(Select->getCondition())->hasNoNaNs()); 6553 } else { 6554 // Try harder: look for min/max pattern based on instructions producing 6555 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 6556 // During the intermediate stages of SLP, it's very common to have 6557 // pattern like this (since optimizeGatherSequence is run only once 6558 // at the end): 6559 // %1 = extractelement <2 x i32> %a, i32 0 6560 // %2 = extractelement <2 x i32> %a, i32 1 6561 // %cond = icmp sgt i32 %1, %2 6562 // %3 = extractelement <2 x i32> %a, i32 0 6563 // %4 = extractelement <2 x i32> %a, i32 1 6564 // %select = select i1 %cond, i32 %3, i32 %4 6565 CmpInst::Predicate Pred; 6566 Instruction *L1; 6567 Instruction *L2; 6568 6569 LHS = Select->getTrueValue(); 6570 RHS = Select->getFalseValue(); 6571 Value *Cond = Select->getCondition(); 6572 6573 // TODO: Support inverse predicates. 6574 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 6575 if (!isa<ExtractElementInst>(RHS) || 6576 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6577 return OperationData(V); 6578 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 6579 if (!isa<ExtractElementInst>(LHS) || 6580 !L1->isIdenticalTo(cast<Instruction>(LHS))) 6581 return OperationData(V); 6582 } else { 6583 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 6584 return OperationData(V); 6585 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 6586 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 6587 !L2->isIdenticalTo(cast<Instruction>(RHS))) 6588 return OperationData(V); 6589 } 6590 switch (Pred) { 6591 default: 6592 return OperationData(V); 6593 6594 case CmpInst::ICMP_ULT: 6595 case CmpInst::ICMP_ULE: 6596 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin); 6597 6598 case CmpInst::ICMP_SLT: 6599 case CmpInst::ICMP_SLE: 6600 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min); 6601 6602 case CmpInst::FCMP_OLT: 6603 case CmpInst::FCMP_OLE: 6604 case CmpInst::FCMP_ULT: 6605 case CmpInst::FCMP_ULE: 6606 return OperationData(Instruction::FCmp, LHS, RHS, RK_Min, 6607 cast<Instruction>(Cond)->hasNoNaNs()); 6608 6609 case CmpInst::ICMP_UGT: 6610 case CmpInst::ICMP_UGE: 6611 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax); 6612 6613 case CmpInst::ICMP_SGT: 6614 case CmpInst::ICMP_SGE: 6615 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max); 6616 6617 case CmpInst::FCMP_OGT: 6618 case CmpInst::FCMP_OGE: 6619 case CmpInst::FCMP_UGT: 6620 case CmpInst::FCMP_UGE: 6621 return OperationData(Instruction::FCmp, LHS, RHS, RK_Max, 6622 cast<Instruction>(Cond)->hasNoNaNs()); 6623 } 6624 } 6625 } 6626 return OperationData(V); 6627 } 6628 6629 public: 6630 HorizontalReduction() = default; 6631 6632 /// Try to find a reduction tree. 6633 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 6634 assert((!Phi || is_contained(Phi->operands(), B)) && 6635 "Thi phi needs to use the binary operator"); 6636 6637 ReductionData = getOperationData(B); 6638 6639 // We could have a initial reductions that is not an add. 6640 // r *= v1 + v2 + v3 + v4 6641 // In such a case start looking for a tree rooted in the first '+'. 6642 if (Phi) { 6643 if (ReductionData.getLHS() == Phi) { 6644 Phi = nullptr; 6645 B = dyn_cast<Instruction>(ReductionData.getRHS()); 6646 ReductionData = getOperationData(B); 6647 } else if (ReductionData.getRHS() == Phi) { 6648 Phi = nullptr; 6649 B = dyn_cast<Instruction>(ReductionData.getLHS()); 6650 ReductionData = getOperationData(B); 6651 } 6652 } 6653 6654 if (!ReductionData.isVectorizable(B)) 6655 return false; 6656 6657 Type *Ty = B->getType(); 6658 if (!isValidElementType(Ty)) 6659 return false; 6660 if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy()) 6661 return false; 6662 6663 ReducedValueData.clear(); 6664 ReductionRoot = B; 6665 6666 // Post order traverse the reduction tree starting at B. We only handle true 6667 // trees containing only binary operators. 6668 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 6669 Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex())); 6670 ReductionData.initReductionOps(ReductionOps); 6671 while (!Stack.empty()) { 6672 Instruction *TreeN = Stack.back().first; 6673 unsigned EdgeToVist = Stack.back().second++; 6674 OperationData OpData = getOperationData(TreeN); 6675 bool IsReducedValue = OpData != ReductionData; 6676 6677 // Postorder vist. 6678 if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) { 6679 if (IsReducedValue) 6680 ReducedVals.push_back(TreeN); 6681 else { 6682 auto I = ExtraArgs.find(TreeN); 6683 if (I != ExtraArgs.end() && !I->second) { 6684 // Check if TreeN is an extra argument of its parent operation. 6685 if (Stack.size() <= 1) { 6686 // TreeN can't be an extra argument as it is a root reduction 6687 // operation. 6688 return false; 6689 } 6690 // Yes, TreeN is an extra argument, do not add it to a list of 6691 // reduction operations. 6692 // Stack[Stack.size() - 2] always points to the parent operation. 6693 markExtraArg(Stack[Stack.size() - 2], TreeN); 6694 ExtraArgs.erase(TreeN); 6695 } else 6696 ReductionData.addReductionOps(TreeN, ReductionOps); 6697 } 6698 // Retract. 6699 Stack.pop_back(); 6700 continue; 6701 } 6702 6703 // Visit left or right. 6704 Value *NextV = TreeN->getOperand(EdgeToVist); 6705 if (NextV != Phi) { 6706 auto *I = dyn_cast<Instruction>(NextV); 6707 OpData = getOperationData(I); 6708 // Continue analysis if the next operand is a reduction operation or 6709 // (possibly) a reduced value. If the reduced value opcode is not set, 6710 // the first met operation != reduction operation is considered as the 6711 // reduced value class. 6712 if (I && (!ReducedValueData || OpData == ReducedValueData || 6713 OpData == ReductionData)) { 6714 const bool IsReductionOperation = OpData == ReductionData; 6715 // Only handle trees in the current basic block. 6716 if (!ReductionData.hasSameParent(I, B->getParent(), 6717 IsReductionOperation)) { 6718 // I is an extra argument for TreeN (its parent operation). 6719 markExtraArg(Stack.back(), I); 6720 continue; 6721 } 6722 6723 // Each tree node needs to have minimal number of users except for the 6724 // ultimate reduction. 6725 if (!ReductionData.hasRequiredNumberOfUses(I, 6726 OpData == ReductionData) && 6727 I != B) { 6728 // I is an extra argument for TreeN (its parent operation). 6729 markExtraArg(Stack.back(), I); 6730 continue; 6731 } 6732 6733 if (IsReductionOperation) { 6734 // We need to be able to reassociate the reduction operations. 6735 if (!OpData.isAssociative(I)) { 6736 // I is an extra argument for TreeN (its parent operation). 6737 markExtraArg(Stack.back(), I); 6738 continue; 6739 } 6740 } else if (ReducedValueData && 6741 ReducedValueData != OpData) { 6742 // Make sure that the opcodes of the operations that we are going to 6743 // reduce match. 6744 // I is an extra argument for TreeN (its parent operation). 6745 markExtraArg(Stack.back(), I); 6746 continue; 6747 } else if (!ReducedValueData) 6748 ReducedValueData = OpData; 6749 6750 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex())); 6751 continue; 6752 } 6753 } 6754 // NextV is an extra argument for TreeN (its parent operation). 6755 markExtraArg(Stack.back(), NextV); 6756 } 6757 return true; 6758 } 6759 6760 /// Attempt to vectorize the tree found by 6761 /// matchAssociativeReduction. 6762 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 6763 if (ReducedVals.empty()) 6764 return false; 6765 6766 // If there is a sufficient number of reduction values, reduce 6767 // to a nearby power-of-2. Can safely generate oversized 6768 // vectors and rely on the backend to split them to legal sizes. 6769 unsigned NumReducedVals = ReducedVals.size(); 6770 if (NumReducedVals < 4) 6771 return false; 6772 6773 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 6774 6775 Value *VectorizedTree = nullptr; 6776 6777 // FIXME: Fast-math-flags should be set based on the instructions in the 6778 // reduction (not all of 'fast' are required). 6779 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 6780 FastMathFlags Unsafe; 6781 Unsafe.setFast(); 6782 Builder.setFastMathFlags(Unsafe); 6783 unsigned i = 0; 6784 6785 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 6786 // The same extra argument may be used several time, so log each attempt 6787 // to use it. 6788 for (auto &Pair : ExtraArgs) { 6789 assert(Pair.first && "DebugLoc must be set."); 6790 ExternallyUsedValues[Pair.second].push_back(Pair.first); 6791 } 6792 6793 // The compare instruction of a min/max is the insertion point for new 6794 // instructions and may be replaced with a new compare instruction. 6795 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 6796 assert(isa<SelectInst>(RdxRootInst) && 6797 "Expected min/max reduction to have select root instruction"); 6798 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 6799 assert(isa<Instruction>(ScalarCond) && 6800 "Expected min/max reduction to have compare condition"); 6801 return cast<Instruction>(ScalarCond); 6802 }; 6803 6804 // The reduction root is used as the insertion point for new instructions, 6805 // so set it as externally used to prevent it from being deleted. 6806 ExternallyUsedValues[ReductionRoot]; 6807 SmallVector<Value *, 16> IgnoreList; 6808 for (auto &V : ReductionOps) 6809 IgnoreList.append(V.begin(), V.end()); 6810 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 6811 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth); 6812 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 6813 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 6814 // TODO: Handle orders of size less than number of elements in the vector. 6815 if (Order && Order->size() == VL.size()) { 6816 // TODO: reorder tree nodes without tree rebuilding. 6817 SmallVector<Value *, 4> ReorderedOps(VL.size()); 6818 llvm::transform(*Order, ReorderedOps.begin(), 6819 [VL](const unsigned Idx) { return VL[Idx]; }); 6820 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 6821 } 6822 if (V.isTreeTinyAndNotFullyVectorizable()) 6823 break; 6824 if (V.isLoadCombineReductionCandidate(ReductionData.getOpcode())) 6825 break; 6826 6827 V.computeMinimumValueSizes(); 6828 6829 // Estimate cost. 6830 int TreeCost = V.getTreeCost(); 6831 int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth); 6832 int Cost = TreeCost + ReductionCost; 6833 if (Cost >= -SLPCostThreshold) { 6834 V.getORE()->emit([&]() { 6835 return OptimizationRemarkMissed( 6836 SV_NAME, "HorSLPNotBeneficial", cast<Instruction>(VL[0])) 6837 << "Vectorizing horizontal reduction is possible" 6838 << "but not beneficial with cost " 6839 << ore::NV("Cost", Cost) << " and threshold " 6840 << ore::NV("Threshold", -SLPCostThreshold); 6841 }); 6842 break; 6843 } 6844 6845 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 6846 << Cost << ". (HorRdx)\n"); 6847 V.getORE()->emit([&]() { 6848 return OptimizationRemark( 6849 SV_NAME, "VectorizedHorizontalReduction", cast<Instruction>(VL[0])) 6850 << "Vectorized horizontal reduction with cost " 6851 << ore::NV("Cost", Cost) << " and with tree size " 6852 << ore::NV("TreeSize", V.getTreeSize()); 6853 }); 6854 6855 // Vectorize a tree. 6856 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 6857 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 6858 6859 // Emit a reduction. For min/max, the root is a select, but the insertion 6860 // point is the compare condition of that select. 6861 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 6862 if (ReductionData.isMinMax()) 6863 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 6864 else 6865 Builder.SetInsertPoint(RdxRootInst); 6866 6867 Value *ReducedSubTree = 6868 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 6869 if (VectorizedTree) { 6870 Builder.SetCurrentDebugLocation(Loc); 6871 OperationData VectReductionData(ReductionData.getOpcode(), 6872 VectorizedTree, ReducedSubTree, 6873 ReductionData.getKind()); 6874 VectorizedTree = 6875 VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 6876 } else 6877 VectorizedTree = ReducedSubTree; 6878 i += ReduxWidth; 6879 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 6880 } 6881 6882 if (VectorizedTree) { 6883 // Finish the reduction. 6884 for (; i < NumReducedVals; ++i) { 6885 auto *I = cast<Instruction>(ReducedVals[i]); 6886 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 6887 OperationData VectReductionData(ReductionData.getOpcode(), 6888 VectorizedTree, I, 6889 ReductionData.getKind()); 6890 VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps); 6891 } 6892 for (auto &Pair : ExternallyUsedValues) { 6893 // Add each externally used value to the final reduction. 6894 for (auto *I : Pair.second) { 6895 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 6896 OperationData VectReductionData(ReductionData.getOpcode(), 6897 VectorizedTree, Pair.first, 6898 ReductionData.getKind()); 6899 VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I); 6900 } 6901 } 6902 6903 // Update users. For a min/max reduction that ends with a compare and 6904 // select, we also have to RAUW for the compare instruction feeding the 6905 // reduction root. That's because the original compare may have extra uses 6906 // besides the final select of the reduction. 6907 if (ReductionData.isMinMax()) { 6908 if (auto *VecSelect = dyn_cast<SelectInst>(VectorizedTree)) { 6909 Instruction *ScalarCmp = 6910 getCmpForMinMaxReduction(cast<Instruction>(ReductionRoot)); 6911 ScalarCmp->replaceAllUsesWith(VecSelect->getCondition()); 6912 } 6913 } 6914 ReductionRoot->replaceAllUsesWith(VectorizedTree); 6915 6916 // Mark all scalar reduction ops for deletion, they are replaced by the 6917 // vector reductions. 6918 V.eraseInstructions(IgnoreList); 6919 } 6920 return VectorizedTree != nullptr; 6921 } 6922 6923 unsigned numReductionValues() const { 6924 return ReducedVals.size(); 6925 } 6926 6927 private: 6928 /// Calculate the cost of a reduction. 6929 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal, 6930 unsigned ReduxWidth) { 6931 Type *ScalarTy = FirstReducedVal->getType(); 6932 VectorType *VecTy = VectorType::get(ScalarTy, ReduxWidth); 6933 6934 int PairwiseRdxCost; 6935 int SplittingRdxCost; 6936 switch (ReductionData.getKind()) { 6937 case RK_Arithmetic: 6938 PairwiseRdxCost = 6939 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 6940 /*IsPairwiseForm=*/true); 6941 SplittingRdxCost = 6942 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy, 6943 /*IsPairwiseForm=*/false); 6944 break; 6945 case RK_Min: 6946 case RK_Max: 6947 case RK_UMin: 6948 case RK_UMax: { 6949 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VecTy)); 6950 bool IsUnsigned = ReductionData.getKind() == RK_UMin || 6951 ReductionData.getKind() == RK_UMax; 6952 PairwiseRdxCost = 6953 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 6954 /*IsPairwiseForm=*/true, IsUnsigned); 6955 SplittingRdxCost = 6956 TTI->getMinMaxReductionCost(VecTy, VecCondTy, 6957 /*IsPairwiseForm=*/false, IsUnsigned); 6958 break; 6959 } 6960 case RK_None: 6961 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 6962 } 6963 6964 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 6965 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 6966 6967 int ScalarReduxCost = 0; 6968 switch (ReductionData.getKind()) { 6969 case RK_Arithmetic: 6970 ScalarReduxCost = 6971 TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy); 6972 break; 6973 case RK_Min: 6974 case RK_Max: 6975 case RK_UMin: 6976 case RK_UMax: 6977 ScalarReduxCost = 6978 TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) + 6979 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 6980 CmpInst::makeCmpResultType(ScalarTy)); 6981 break; 6982 case RK_None: 6983 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 6984 } 6985 ScalarReduxCost *= (ReduxWidth - 1); 6986 6987 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 6988 << " for reduction that starts with " << *FirstReducedVal 6989 << " (It is a " 6990 << (IsPairwiseReduction ? "pairwise" : "splitting") 6991 << " reduction)\n"); 6992 6993 return VecReduxCost - ScalarReduxCost; 6994 } 6995 6996 /// Emit a horizontal reduction of the vectorized value. 6997 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 6998 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 6999 assert(VectorizedValue && "Need to have a vectorized tree node"); 7000 assert(isPowerOf2_32(ReduxWidth) && 7001 "We only handle power-of-two reductions for now"); 7002 7003 if (!IsPairwiseReduction) { 7004 // FIXME: The builder should use an FMF guard. It should not be hard-coded 7005 // to 'fast'. 7006 assert(Builder.getFastMathFlags().isFast() && "Expected 'fast' FMF"); 7007 return createSimpleTargetReduction( 7008 Builder, TTI, ReductionData.getOpcode(), VectorizedValue, 7009 ReductionData.getFlags(), ReductionOps.back()); 7010 } 7011 7012 Value *TmpVec = VectorizedValue; 7013 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 7014 auto LeftMask = createRdxShuffleMask(ReduxWidth, i, true, true); 7015 auto RightMask = createRdxShuffleMask(ReduxWidth, i, true, false); 7016 7017 Value *LeftShuf = Builder.CreateShuffleVector( 7018 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 7019 Value *RightShuf = Builder.CreateShuffleVector( 7020 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 7021 "rdx.shuf.r"); 7022 OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf, 7023 RightShuf, ReductionData.getKind()); 7024 TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps); 7025 } 7026 7027 // The result is in the first element of the vector. 7028 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 7029 } 7030 }; 7031 7032 } // end anonymous namespace 7033 7034 /// Recognize construction of vectors like 7035 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 7036 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 7037 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 7038 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 7039 /// starting from the last insertelement or insertvalue instruction. 7040 /// 7041 /// Also recognize aggregates like {<2 x float>, <2 x float>}, 7042 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 7043 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 7044 /// 7045 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 7046 /// 7047 /// \return true if it matches. 7048 static bool findBuildAggregate(Value *LastInsertInst, TargetTransformInfo *TTI, 7049 SmallVectorImpl<Value *> &BuildVectorOpds, 7050 int &UserCost) { 7051 assert((isa<InsertElementInst>(LastInsertInst) || 7052 isa<InsertValueInst>(LastInsertInst)) && 7053 "Expected insertelement or insertvalue instruction!"); 7054 UserCost = 0; 7055 do { 7056 // TODO: Use TTI's getScalarizationOverhead for sequence of inserts rather 7057 // than sum of single inserts as the latter may overestimate cost. 7058 // This work should imply improving cost estimation for extracts that 7059 // added in for external (for vectorization tree) users. 7060 // For example, in following case all extracts added in order to feed 7061 // into external users (inserts), which in turn form sequence to build 7062 // an aggregate that we do match here: 7063 // %4 = extractelement <4 x i64> %3, i32 0 7064 // %v0 = insertelement <4 x i64> undef, i64 %4, i32 0 7065 // %5 = extractelement <4 x i64> %3, i32 1 7066 // %v1 = insertelement <4 x i64> %v0, i64 %5, i32 1 7067 // %6 = extractelement <4 x i64> %3, i32 2 7068 // %v2 = insertelement <4 x i64> %v1, i64 %6, i32 2 7069 // %7 = extractelement <4 x i64> %3, i32 3 7070 // %v3 = insertelement <4 x i64> %v2, i64 %7, i32 3 7071 // 7072 // Cost of this entire sequence is currently estimated as sum of single 7073 // extracts (as this aggregate build sequence is an external to 7074 // vectorization tree user) minus cost of the aggregate build. 7075 // As this whole sequence will be optimized away we want the cost to be 7076 // zero. But it is not quite possible using given approach (at least for 7077 // X86) because inserts can be more expensive than extracts for longer 7078 // vector lengths so the difference turns out not zero in such a case. 7079 // Ideally we want to match this entire sequence and treat it as a no-op 7080 // (i.e. do not count into final cost at all). 7081 // Currently the difference tends to be negative thus adding a bias 7082 // toward favoring vectorization. If we switch into using TTI interface 7083 // the bias tendency will remain but will be lower. 7084 Value *InsertedOperand; 7085 if (auto *IE = dyn_cast<InsertElementInst>(LastInsertInst)) { 7086 InsertedOperand = IE->getOperand(1); 7087 LastInsertInst = IE->getOperand(0); 7088 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 7089 UserCost += TTI->getVectorInstrCost(Instruction::InsertElement, 7090 IE->getType(), CI->getZExtValue()); 7091 } 7092 } else { 7093 auto *IV = cast<InsertValueInst>(LastInsertInst); 7094 InsertedOperand = IV->getInsertedValueOperand(); 7095 LastInsertInst = IV->getAggregateOperand(); 7096 } 7097 if (isa<InsertElementInst>(InsertedOperand) || 7098 isa<InsertValueInst>(InsertedOperand)) { 7099 int TmpUserCost; 7100 SmallVector<Value *, 8> TmpBuildVectorOpds; 7101 if (!findBuildAggregate(InsertedOperand, TTI, TmpBuildVectorOpds, 7102 TmpUserCost)) 7103 return false; 7104 BuildVectorOpds.append(TmpBuildVectorOpds.rbegin(), 7105 TmpBuildVectorOpds.rend()); 7106 UserCost += TmpUserCost; 7107 } else { 7108 BuildVectorOpds.push_back(InsertedOperand); 7109 } 7110 if (isa<UndefValue>(LastInsertInst)) 7111 break; 7112 if ((!isa<InsertValueInst>(LastInsertInst) && 7113 !isa<InsertElementInst>(LastInsertInst)) || 7114 !LastInsertInst->hasOneUse()) 7115 return false; 7116 } while (true); 7117 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end()); 7118 return true; 7119 } 7120 7121 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 7122 return V->getType() < V2->getType(); 7123 } 7124 7125 /// Try and get a reduction value from a phi node. 7126 /// 7127 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 7128 /// if they come from either \p ParentBB or a containing loop latch. 7129 /// 7130 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 7131 /// if not possible. 7132 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 7133 BasicBlock *ParentBB, LoopInfo *LI) { 7134 // There are situations where the reduction value is not dominated by the 7135 // reduction phi. Vectorizing such cases has been reported to cause 7136 // miscompiles. See PR25787. 7137 auto DominatedReduxValue = [&](Value *R) { 7138 return isa<Instruction>(R) && 7139 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 7140 }; 7141 7142 Value *Rdx = nullptr; 7143 7144 // Return the incoming value if it comes from the same BB as the phi node. 7145 if (P->getIncomingBlock(0) == ParentBB) { 7146 Rdx = P->getIncomingValue(0); 7147 } else if (P->getIncomingBlock(1) == ParentBB) { 7148 Rdx = P->getIncomingValue(1); 7149 } 7150 7151 if (Rdx && DominatedReduxValue(Rdx)) 7152 return Rdx; 7153 7154 // Otherwise, check whether we have a loop latch to look at. 7155 Loop *BBL = LI->getLoopFor(ParentBB); 7156 if (!BBL) 7157 return nullptr; 7158 BasicBlock *BBLatch = BBL->getLoopLatch(); 7159 if (!BBLatch) 7160 return nullptr; 7161 7162 // There is a loop latch, return the incoming value if it comes from 7163 // that. This reduction pattern occasionally turns up. 7164 if (P->getIncomingBlock(0) == BBLatch) { 7165 Rdx = P->getIncomingValue(0); 7166 } else if (P->getIncomingBlock(1) == BBLatch) { 7167 Rdx = P->getIncomingValue(1); 7168 } 7169 7170 if (Rdx && DominatedReduxValue(Rdx)) 7171 return Rdx; 7172 7173 return nullptr; 7174 } 7175 7176 /// Attempt to reduce a horizontal reduction. 7177 /// If it is legal to match a horizontal reduction feeding the phi node \a P 7178 /// with reduction operators \a Root (or one of its operands) in a basic block 7179 /// \a BB, then check if it can be done. If horizontal reduction is not found 7180 /// and root instruction is a binary operation, vectorization of the operands is 7181 /// attempted. 7182 /// \returns true if a horizontal reduction was matched and reduced or operands 7183 /// of one of the binary instruction were vectorized. 7184 /// \returns false if a horizontal reduction was not matched (or not possible) 7185 /// or no vectorization of any binary operation feeding \a Root instruction was 7186 /// performed. 7187 static bool tryToVectorizeHorReductionOrInstOperands( 7188 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 7189 TargetTransformInfo *TTI, 7190 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 7191 if (!ShouldVectorizeHor) 7192 return false; 7193 7194 if (!Root) 7195 return false; 7196 7197 if (Root->getParent() != BB || isa<PHINode>(Root)) 7198 return false; 7199 // Start analysis starting from Root instruction. If horizontal reduction is 7200 // found, try to vectorize it. If it is not a horizontal reduction or 7201 // vectorization is not possible or not effective, and currently analyzed 7202 // instruction is a binary operation, try to vectorize the operands, using 7203 // pre-order DFS traversal order. If the operands were not vectorized, repeat 7204 // the same procedure considering each operand as a possible root of the 7205 // horizontal reduction. 7206 // Interrupt the process if the Root instruction itself was vectorized or all 7207 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 7208 SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0}); 7209 SmallPtrSet<Value *, 8> VisitedInstrs; 7210 bool Res = false; 7211 while (!Stack.empty()) { 7212 Instruction *Inst; 7213 unsigned Level; 7214 std::tie(Inst, Level) = Stack.pop_back_val(); 7215 auto *BI = dyn_cast<BinaryOperator>(Inst); 7216 auto *SI = dyn_cast<SelectInst>(Inst); 7217 if (BI || SI) { 7218 HorizontalReduction HorRdx; 7219 if (HorRdx.matchAssociativeReduction(P, Inst)) { 7220 if (HorRdx.tryToReduce(R, TTI)) { 7221 Res = true; 7222 // Set P to nullptr to avoid re-analysis of phi node in 7223 // matchAssociativeReduction function unless this is the root node. 7224 P = nullptr; 7225 continue; 7226 } 7227 } 7228 if (P && BI) { 7229 Inst = dyn_cast<Instruction>(BI->getOperand(0)); 7230 if (Inst == P) 7231 Inst = dyn_cast<Instruction>(BI->getOperand(1)); 7232 if (!Inst) { 7233 // Set P to nullptr to avoid re-analysis of phi node in 7234 // matchAssociativeReduction function unless this is the root node. 7235 P = nullptr; 7236 continue; 7237 } 7238 } 7239 } 7240 // Set P to nullptr to avoid re-analysis of phi node in 7241 // matchAssociativeReduction function unless this is the root node. 7242 P = nullptr; 7243 if (Vectorize(Inst, R)) { 7244 Res = true; 7245 continue; 7246 } 7247 7248 // Try to vectorize operands. 7249 // Continue analysis for the instruction from the same basic block only to 7250 // save compile time. 7251 if (++Level < RecursionMaxDepth) 7252 for (auto *Op : Inst->operand_values()) 7253 if (VisitedInstrs.insert(Op).second) 7254 if (auto *I = dyn_cast<Instruction>(Op)) 7255 if (!isa<PHINode>(I) && !R.isDeleted(I) && I->getParent() == BB) 7256 Stack.emplace_back(I, Level); 7257 } 7258 return Res; 7259 } 7260 7261 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 7262 BasicBlock *BB, BoUpSLP &R, 7263 TargetTransformInfo *TTI) { 7264 if (!V) 7265 return false; 7266 auto *I = dyn_cast<Instruction>(V); 7267 if (!I) 7268 return false; 7269 7270 if (!isa<BinaryOperator>(I)) 7271 P = nullptr; 7272 // Try to match and vectorize a horizontal reduction. 7273 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 7274 return tryToVectorize(I, R); 7275 }; 7276 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 7277 ExtraVectorization); 7278 } 7279 7280 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 7281 BasicBlock *BB, BoUpSLP &R) { 7282 int UserCost = 0; 7283 const DataLayout &DL = BB->getModule()->getDataLayout(); 7284 if (!R.canMapToVector(IVI->getType(), DL)) 7285 return false; 7286 7287 SmallVector<Value *, 16> BuildVectorOpds; 7288 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, UserCost)) 7289 return false; 7290 7291 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 7292 // Aggregate value is unlikely to be processed in vector register, we need to 7293 // extract scalars into scalar registers, so NeedExtraction is set true. 7294 return tryToVectorizeList(BuildVectorOpds, R, UserCost); 7295 } 7296 7297 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 7298 BasicBlock *BB, BoUpSLP &R) { 7299 int UserCost; 7300 SmallVector<Value *, 16> BuildVectorOpds; 7301 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, UserCost) || 7302 (llvm::all_of(BuildVectorOpds, 7303 [](Value *V) { return isa<ExtractElementInst>(V); }) && 7304 isShuffle(BuildVectorOpds))) 7305 return false; 7306 7307 // Vectorize starting with the build vector operands ignoring the BuildVector 7308 // instructions for the purpose of scheduling and user extraction. 7309 return tryToVectorizeList(BuildVectorOpds, R, UserCost); 7310 } 7311 7312 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB, 7313 BoUpSLP &R) { 7314 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) 7315 return true; 7316 7317 bool OpsChanged = false; 7318 for (int Idx = 0; Idx < 2; ++Idx) { 7319 OpsChanged |= 7320 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI); 7321 } 7322 return OpsChanged; 7323 } 7324 7325 bool SLPVectorizerPass::vectorizeSimpleInstructions( 7326 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R) { 7327 bool OpsChanged = false; 7328 for (auto *I : reverse(Instructions)) { 7329 if (R.isDeleted(I)) 7330 continue; 7331 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 7332 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 7333 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 7334 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 7335 else if (auto *CI = dyn_cast<CmpInst>(I)) 7336 OpsChanged |= vectorizeCmpInst(CI, BB, R); 7337 } 7338 Instructions.clear(); 7339 return OpsChanged; 7340 } 7341 7342 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 7343 bool Changed = false; 7344 SmallVector<Value *, 4> Incoming; 7345 SmallPtrSet<Value *, 16> VisitedInstrs; 7346 7347 bool HaveVectorizedPhiNodes = true; 7348 while (HaveVectorizedPhiNodes) { 7349 HaveVectorizedPhiNodes = false; 7350 7351 // Collect the incoming values from the PHIs. 7352 Incoming.clear(); 7353 for (Instruction &I : *BB) { 7354 PHINode *P = dyn_cast<PHINode>(&I); 7355 if (!P) 7356 break; 7357 7358 if (!VisitedInstrs.count(P) && !R.isDeleted(P)) 7359 Incoming.push_back(P); 7360 } 7361 7362 // Sort by type. 7363 llvm::stable_sort(Incoming, PhiTypeSorterFunc); 7364 7365 // Try to vectorize elements base on their type. 7366 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 7367 E = Incoming.end(); 7368 IncIt != E;) { 7369 7370 // Look for the next elements with the same type. 7371 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 7372 while (SameTypeIt != E && 7373 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 7374 VisitedInstrs.insert(*SameTypeIt); 7375 ++SameTypeIt; 7376 } 7377 7378 // Try to vectorize them. 7379 unsigned NumElts = (SameTypeIt - IncIt); 7380 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 7381 << NumElts << ")\n"); 7382 // The order in which the phi nodes appear in the program does not matter. 7383 // So allow tryToVectorizeList to reorder them if it is beneficial. This 7384 // is done when there are exactly two elements since tryToVectorizeList 7385 // asserts that there are only two values when AllowReorder is true. 7386 bool AllowReorder = NumElts == 2; 7387 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, 7388 /*UserCost=*/0, AllowReorder)) { 7389 // Success start over because instructions might have been changed. 7390 HaveVectorizedPhiNodes = true; 7391 Changed = true; 7392 break; 7393 } 7394 7395 // Start over at the next instruction of a different type (or the end). 7396 IncIt = SameTypeIt; 7397 } 7398 } 7399 7400 VisitedInstrs.clear(); 7401 7402 SmallVector<Instruction *, 8> PostProcessInstructions; 7403 SmallDenseSet<Instruction *, 4> KeyNodes; 7404 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 7405 // Skip instructions marked for the deletion. 7406 if (R.isDeleted(&*it)) 7407 continue; 7408 // We may go through BB multiple times so skip the one we have checked. 7409 if (!VisitedInstrs.insert(&*it).second) { 7410 if (it->use_empty() && KeyNodes.count(&*it) > 0 && 7411 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) { 7412 // We would like to start over since some instructions are deleted 7413 // and the iterator may become invalid value. 7414 Changed = true; 7415 it = BB->begin(); 7416 e = BB->end(); 7417 } 7418 continue; 7419 } 7420 7421 if (isa<DbgInfoIntrinsic>(it)) 7422 continue; 7423 7424 // Try to vectorize reductions that use PHINodes. 7425 if (PHINode *P = dyn_cast<PHINode>(it)) { 7426 // Check that the PHI is a reduction PHI. 7427 if (P->getNumIncomingValues() != 2) 7428 return Changed; 7429 7430 // Try to match and vectorize a horizontal reduction. 7431 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 7432 TTI)) { 7433 Changed = true; 7434 it = BB->begin(); 7435 e = BB->end(); 7436 continue; 7437 } 7438 continue; 7439 } 7440 7441 // Ran into an instruction without users, like terminator, or function call 7442 // with ignored return value, store. Ignore unused instructions (basing on 7443 // instruction type, except for CallInst and InvokeInst). 7444 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 7445 isa<InvokeInst>(it))) { 7446 KeyNodes.insert(&*it); 7447 bool OpsChanged = false; 7448 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 7449 for (auto *V : it->operand_values()) { 7450 // Try to match and vectorize a horizontal reduction. 7451 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 7452 } 7453 } 7454 // Start vectorization of post-process list of instructions from the 7455 // top-tree instructions to try to vectorize as many instructions as 7456 // possible. 7457 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R); 7458 if (OpsChanged) { 7459 // We would like to start over since some instructions are deleted 7460 // and the iterator may become invalid value. 7461 Changed = true; 7462 it = BB->begin(); 7463 e = BB->end(); 7464 continue; 7465 } 7466 } 7467 7468 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 7469 isa<InsertValueInst>(it)) 7470 PostProcessInstructions.push_back(&*it); 7471 } 7472 7473 return Changed; 7474 } 7475 7476 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 7477 auto Changed = false; 7478 for (auto &Entry : GEPs) { 7479 // If the getelementptr list has fewer than two elements, there's nothing 7480 // to do. 7481 if (Entry.second.size() < 2) 7482 continue; 7483 7484 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 7485 << Entry.second.size() << ".\n"); 7486 7487 // Process the GEP list in chunks suitable for the target's supported 7488 // vector size. If a vector register can't hold 1 element, we are done. 7489 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 7490 unsigned EltSize = R.getVectorElementSize(Entry.second[0]); 7491 if (MaxVecRegSize < EltSize) 7492 continue; 7493 7494 unsigned MaxElts = MaxVecRegSize / EltSize; 7495 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 7496 auto Len = std::min<unsigned>(BE - BI, MaxElts); 7497 auto GEPList = makeArrayRef(&Entry.second[BI], Len); 7498 7499 // Initialize a set a candidate getelementptrs. Note that we use a 7500 // SetVector here to preserve program order. If the index computations 7501 // are vectorizable and begin with loads, we want to minimize the chance 7502 // of having to reorder them later. 7503 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 7504 7505 // Some of the candidates may have already been vectorized after we 7506 // initially collected them. If so, they are marked as deleted, so remove 7507 // them from the set of candidates. 7508 Candidates.remove_if( 7509 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 7510 7511 // Remove from the set of candidates all pairs of getelementptrs with 7512 // constant differences. Such getelementptrs are likely not good 7513 // candidates for vectorization in a bottom-up phase since one can be 7514 // computed from the other. We also ensure all candidate getelementptr 7515 // indices are unique. 7516 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 7517 auto *GEPI = GEPList[I]; 7518 if (!Candidates.count(GEPI)) 7519 continue; 7520 auto *SCEVI = SE->getSCEV(GEPList[I]); 7521 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 7522 auto *GEPJ = GEPList[J]; 7523 auto *SCEVJ = SE->getSCEV(GEPList[J]); 7524 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 7525 Candidates.remove(GEPI); 7526 Candidates.remove(GEPJ); 7527 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 7528 Candidates.remove(GEPJ); 7529 } 7530 } 7531 } 7532 7533 // We break out of the above computation as soon as we know there are 7534 // fewer than two candidates remaining. 7535 if (Candidates.size() < 2) 7536 continue; 7537 7538 // Add the single, non-constant index of each candidate to the bundle. We 7539 // ensured the indices met these constraints when we originally collected 7540 // the getelementptrs. 7541 SmallVector<Value *, 16> Bundle(Candidates.size()); 7542 auto BundleIndex = 0u; 7543 for (auto *V : Candidates) { 7544 auto *GEP = cast<GetElementPtrInst>(V); 7545 auto *GEPIdx = GEP->idx_begin()->get(); 7546 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 7547 Bundle[BundleIndex++] = GEPIdx; 7548 } 7549 7550 // Try and vectorize the indices. We are currently only interested in 7551 // gather-like cases of the form: 7552 // 7553 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 7554 // 7555 // where the loads of "a", the loads of "b", and the subtractions can be 7556 // performed in parallel. It's likely that detecting this pattern in a 7557 // bottom-up phase will be simpler and less costly than building a 7558 // full-blown top-down phase beginning at the consecutive loads. 7559 Changed |= tryToVectorizeList(Bundle, R); 7560 } 7561 } 7562 return Changed; 7563 } 7564 7565 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 7566 bool Changed = false; 7567 // Attempt to sort and vectorize each of the store-groups. 7568 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 7569 ++it) { 7570 if (it->second.size() < 2) 7571 continue; 7572 7573 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 7574 << it->second.size() << ".\n"); 7575 7576 Changed |= vectorizeStores(it->second, R); 7577 } 7578 return Changed; 7579 } 7580 7581 char SLPVectorizer::ID = 0; 7582 7583 static const char lv_name[] = "SLP Vectorizer"; 7584 7585 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 7586 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7587 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7588 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7589 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7590 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 7591 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7592 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7593 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7594 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 7595 7596 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 7597