1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 #include "llvm/Transforms/Vectorize.h" 19 #include "llvm/ADT/MapVector.h" 20 #include "llvm/ADT/PostOrderIterator.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/ScalarEvolution.h" 26 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 27 #include "llvm/Analysis/TargetTransformInfo.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/NoFolder.h" 36 #include "llvm/IR/Type.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/IR/Verifier.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/Utils/VectorUtils.h" 44 #include <algorithm> 45 #include <map> 46 #include <memory> 47 48 using namespace llvm; 49 50 #define SV_NAME "slp-vectorizer" 51 #define DEBUG_TYPE "SLP" 52 53 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 54 55 static cl::opt<int> 56 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 57 cl::desc("Only vectorize if you gain more than this " 58 "number ")); 59 60 static cl::opt<bool> 61 ShouldVectorizeHor("slp-vectorize-hor", cl::init(false), cl::Hidden, 62 cl::desc("Attempt to vectorize horizontal reductions")); 63 64 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 65 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 66 cl::desc( 67 "Attempt to vectorize horizontal reductions feeding into a store")); 68 69 namespace { 70 71 static const unsigned MinVecRegSize = 128; 72 73 static const unsigned RecursionMaxDepth = 12; 74 75 /// \returns the parent basic block if all of the instructions in \p VL 76 /// are in the same block or null otherwise. 77 static BasicBlock *getSameBlock(ArrayRef<Value *> VL) { 78 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 79 if (!I0) 80 return nullptr; 81 BasicBlock *BB = I0->getParent(); 82 for (int i = 1, e = VL.size(); i < e; i++) { 83 Instruction *I = dyn_cast<Instruction>(VL[i]); 84 if (!I) 85 return nullptr; 86 87 if (BB != I->getParent()) 88 return nullptr; 89 } 90 return BB; 91 } 92 93 /// \returns True if all of the values in \p VL are constants. 94 static bool allConstant(ArrayRef<Value *> VL) { 95 for (unsigned i = 0, e = VL.size(); i < e; ++i) 96 if (!isa<Constant>(VL[i])) 97 return false; 98 return true; 99 } 100 101 /// \returns True if all of the values in \p VL are identical. 102 static bool isSplat(ArrayRef<Value *> VL) { 103 for (unsigned i = 1, e = VL.size(); i < e; ++i) 104 if (VL[i] != VL[0]) 105 return false; 106 return true; 107 } 108 109 ///\returns Opcode that can be clubbed with \p Op to create an alternate 110 /// sequence which can later be merged as a ShuffleVector instruction. 111 static unsigned getAltOpcode(unsigned Op) { 112 switch (Op) { 113 case Instruction::FAdd: 114 return Instruction::FSub; 115 case Instruction::FSub: 116 return Instruction::FAdd; 117 case Instruction::Add: 118 return Instruction::Sub; 119 case Instruction::Sub: 120 return Instruction::Add; 121 default: 122 return 0; 123 } 124 } 125 126 ///\returns bool representing if Opcode \p Op can be part 127 /// of an alternate sequence which can later be merged as 128 /// a ShuffleVector instruction. 129 static bool canCombineAsAltInst(unsigned Op) { 130 if (Op == Instruction::FAdd || Op == Instruction::FSub || 131 Op == Instruction::Sub || Op == Instruction::Add) 132 return true; 133 return false; 134 } 135 136 /// \returns ShuffleVector instruction if intructions in \p VL have 137 /// alternate fadd,fsub / fsub,fadd/add,sub/sub,add sequence. 138 /// (i.e. e.g. opcodes of fadd,fsub,fadd,fsub...) 139 static unsigned isAltInst(ArrayRef<Value *> VL) { 140 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 141 unsigned Opcode = I0->getOpcode(); 142 unsigned AltOpcode = getAltOpcode(Opcode); 143 for (int i = 1, e = VL.size(); i < e; i++) { 144 Instruction *I = dyn_cast<Instruction>(VL[i]); 145 if (!I || I->getOpcode() != ((i & 1) ? AltOpcode : Opcode)) 146 return 0; 147 } 148 return Instruction::ShuffleVector; 149 } 150 151 /// \returns The opcode if all of the Instructions in \p VL have the same 152 /// opcode, or zero. 153 static unsigned getSameOpcode(ArrayRef<Value *> VL) { 154 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 155 if (!I0) 156 return 0; 157 unsigned Opcode = I0->getOpcode(); 158 for (int i = 1, e = VL.size(); i < e; i++) { 159 Instruction *I = dyn_cast<Instruction>(VL[i]); 160 if (!I || Opcode != I->getOpcode()) { 161 if (canCombineAsAltInst(Opcode) && i == 1) 162 return isAltInst(VL); 163 return 0; 164 } 165 } 166 return Opcode; 167 } 168 169 /// \returns \p I after propagating metadata from \p VL. 170 static Instruction *propagateMetadata(Instruction *I, ArrayRef<Value *> VL) { 171 Instruction *I0 = cast<Instruction>(VL[0]); 172 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 173 I0->getAllMetadataOtherThanDebugLoc(Metadata); 174 175 for (unsigned i = 0, n = Metadata.size(); i != n; ++i) { 176 unsigned Kind = Metadata[i].first; 177 MDNode *MD = Metadata[i].second; 178 179 for (int i = 1, e = VL.size(); MD && i != e; i++) { 180 Instruction *I = cast<Instruction>(VL[i]); 181 MDNode *IMD = I->getMetadata(Kind); 182 183 switch (Kind) { 184 default: 185 MD = nullptr; // Remove unknown metadata 186 break; 187 case LLVMContext::MD_tbaa: 188 MD = MDNode::getMostGenericTBAA(MD, IMD); 189 break; 190 case LLVMContext::MD_alias_scope: 191 case LLVMContext::MD_noalias: 192 MD = MDNode::intersect(MD, IMD); 193 break; 194 case LLVMContext::MD_fpmath: 195 MD = MDNode::getMostGenericFPMath(MD, IMD); 196 break; 197 } 198 } 199 I->setMetadata(Kind, MD); 200 } 201 return I; 202 } 203 204 /// \returns The type that all of the values in \p VL have or null if there 205 /// are different types. 206 static Type* getSameType(ArrayRef<Value *> VL) { 207 Type *Ty = VL[0]->getType(); 208 for (int i = 1, e = VL.size(); i < e; i++) 209 if (VL[i]->getType() != Ty) 210 return nullptr; 211 212 return Ty; 213 } 214 215 /// \returns True if the ExtractElement instructions in VL can be vectorized 216 /// to use the original vector. 217 static bool CanReuseExtract(ArrayRef<Value *> VL) { 218 assert(Instruction::ExtractElement == getSameOpcode(VL) && "Invalid opcode"); 219 // Check if all of the extracts come from the same vector and from the 220 // correct offset. 221 Value *VL0 = VL[0]; 222 ExtractElementInst *E0 = cast<ExtractElementInst>(VL0); 223 Value *Vec = E0->getOperand(0); 224 225 // We have to extract from the same vector type. 226 unsigned NElts = Vec->getType()->getVectorNumElements(); 227 228 if (NElts != VL.size()) 229 return false; 230 231 // Check that all of the indices extract from the correct offset. 232 ConstantInt *CI = dyn_cast<ConstantInt>(E0->getOperand(1)); 233 if (!CI || CI->getZExtValue()) 234 return false; 235 236 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 237 ExtractElementInst *E = cast<ExtractElementInst>(VL[i]); 238 ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 239 240 if (!CI || CI->getZExtValue() != i || E->getOperand(0) != Vec) 241 return false; 242 } 243 244 return true; 245 } 246 247 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 248 SmallVectorImpl<Value *> &Left, 249 SmallVectorImpl<Value *> &Right) { 250 251 SmallVector<Value *, 16> OrigLeft, OrigRight; 252 253 bool AllSameOpcodeLeft = true; 254 bool AllSameOpcodeRight = true; 255 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 256 Instruction *I = cast<Instruction>(VL[i]); 257 Value *V0 = I->getOperand(0); 258 Value *V1 = I->getOperand(1); 259 260 OrigLeft.push_back(V0); 261 OrigRight.push_back(V1); 262 263 Instruction *I0 = dyn_cast<Instruction>(V0); 264 Instruction *I1 = dyn_cast<Instruction>(V1); 265 266 // Check whether all operands on one side have the same opcode. In this case 267 // we want to preserve the original order and not make things worse by 268 // reordering. 269 AllSameOpcodeLeft = I0; 270 AllSameOpcodeRight = I1; 271 272 if (i && AllSameOpcodeLeft) { 273 if(Instruction *P0 = dyn_cast<Instruction>(OrigLeft[i-1])) { 274 if(P0->getOpcode() != I0->getOpcode()) 275 AllSameOpcodeLeft = false; 276 } else 277 AllSameOpcodeLeft = false; 278 } 279 if (i && AllSameOpcodeRight) { 280 if(Instruction *P1 = dyn_cast<Instruction>(OrigRight[i-1])) { 281 if(P1->getOpcode() != I1->getOpcode()) 282 AllSameOpcodeRight = false; 283 } else 284 AllSameOpcodeRight = false; 285 } 286 287 // Sort two opcodes. In the code below we try to preserve the ability to use 288 // broadcast of values instead of individual inserts. 289 // vl1 = load 290 // vl2 = phi 291 // vr1 = load 292 // vr2 = vr2 293 // = vl1 x vr1 294 // = vl2 x vr2 295 // If we just sorted according to opcode we would leave the first line in 296 // tact but we would swap vl2 with vr2 because opcode(phi) > opcode(load). 297 // = vl1 x vr1 298 // = vr2 x vl2 299 // Because vr2 and vr1 are from the same load we loose the opportunity of a 300 // broadcast for the packed right side in the backend: we have [vr1, vl2] 301 // instead of [vr1, vr2=vr1]. 302 if (I0 && I1) { 303 if(!i && I0->getOpcode() > I1->getOpcode()) { 304 Left.push_back(I1); 305 Right.push_back(I0); 306 } else if (i && I0->getOpcode() > I1->getOpcode() && Right[i-1] != I1) { 307 // Try not to destroy a broad cast for no apparent benefit. 308 Left.push_back(I1); 309 Right.push_back(I0); 310 } else if (i && I0->getOpcode() == I1->getOpcode() && Right[i-1] == I0) { 311 // Try preserve broadcasts. 312 Left.push_back(I1); 313 Right.push_back(I0); 314 } else if (i && I0->getOpcode() == I1->getOpcode() && Left[i-1] == I1) { 315 // Try preserve broadcasts. 316 Left.push_back(I1); 317 Right.push_back(I0); 318 } else { 319 Left.push_back(I0); 320 Right.push_back(I1); 321 } 322 continue; 323 } 324 // One opcode, put the instruction on the right. 325 if (I0) { 326 Left.push_back(V1); 327 Right.push_back(I0); 328 continue; 329 } 330 Left.push_back(V0); 331 Right.push_back(V1); 332 } 333 334 bool LeftBroadcast = isSplat(Left); 335 bool RightBroadcast = isSplat(Right); 336 337 // Don't reorder if the operands where good to begin with. 338 if (!(LeftBroadcast || RightBroadcast) && 339 (AllSameOpcodeRight || AllSameOpcodeLeft)) { 340 Left = OrigLeft; 341 Right = OrigRight; 342 } 343 } 344 345 /// Bottom Up SLP Vectorizer. 346 class BoUpSLP { 347 public: 348 typedef SmallVector<Value *, 8> ValueList; 349 typedef SmallVector<Instruction *, 16> InstrList; 350 typedef SmallPtrSet<Value *, 16> ValueSet; 351 typedef SmallVector<StoreInst *, 8> StoreList; 352 353 BoUpSLP(Function *Func, ScalarEvolution *Se, const DataLayout *Dl, 354 TargetTransformInfo *Tti, TargetLibraryInfo *TLi, AliasAnalysis *Aa, 355 LoopInfo *Li, DominatorTree *Dt) 356 : NumLoadsWantToKeepOrder(0), NumLoadsWantToChangeOrder(0), 357 F(Func), SE(Se), DL(Dl), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), 358 Builder(Se->getContext()) {} 359 360 /// \brief Vectorize the tree that starts with the elements in \p VL. 361 /// Returns the vectorized root. 362 Value *vectorizeTree(); 363 364 /// \returns the cost incurred by unwanted spills and fills, caused by 365 /// holding live values over call sites. 366 int getSpillCost(); 367 368 /// \returns the vectorization cost of the subtree that starts at \p VL. 369 /// A negative number means that this is profitable. 370 int getTreeCost(); 371 372 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 373 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 374 void buildTree(ArrayRef<Value *> Roots, 375 ArrayRef<Value *> UserIgnoreLst = None); 376 377 /// Clear the internal data structures that are created by 'buildTree'. 378 void deleteTree() { 379 VectorizableTree.clear(); 380 ScalarToTreeEntry.clear(); 381 MustGather.clear(); 382 ExternalUses.clear(); 383 NumLoadsWantToKeepOrder = 0; 384 NumLoadsWantToChangeOrder = 0; 385 for (auto &Iter : BlocksSchedules) { 386 BlockScheduling *BS = Iter.second.get(); 387 BS->clear(); 388 } 389 } 390 391 /// \returns true if the memory operations A and B are consecutive. 392 bool isConsecutiveAccess(Value *A, Value *B); 393 394 /// \brief Perform LICM and CSE on the newly generated gather sequences. 395 void optimizeGatherSequence(); 396 397 /// \returns true if it is benefitial to reverse the vector order. 398 bool shouldReorder() const { 399 return NumLoadsWantToChangeOrder > NumLoadsWantToKeepOrder; 400 } 401 402 private: 403 struct TreeEntry; 404 405 /// \returns the cost of the vectorizable entry. 406 int getEntryCost(TreeEntry *E); 407 408 /// This is the recursive part of buildTree. 409 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth); 410 411 /// Vectorize a single entry in the tree. 412 Value *vectorizeTree(TreeEntry *E); 413 414 /// Vectorize a single entry in the tree, starting in \p VL. 415 Value *vectorizeTree(ArrayRef<Value *> VL); 416 417 /// \returns the pointer to the vectorized value if \p VL is already 418 /// vectorized, or NULL. They may happen in cycles. 419 Value *alreadyVectorized(ArrayRef<Value *> VL) const; 420 421 /// \brief Take the pointer operand from the Load/Store instruction. 422 /// \returns NULL if this is not a valid Load/Store instruction. 423 static Value *getPointerOperand(Value *I); 424 425 /// \brief Take the address space operand from the Load/Store instruction. 426 /// \returns -1 if this is not a valid Load/Store instruction. 427 static unsigned getAddressSpaceOperand(Value *I); 428 429 /// \returns the scalarization cost for this type. Scalarization in this 430 /// context means the creation of vectors from a group of scalars. 431 int getGatherCost(Type *Ty); 432 433 /// \returns the scalarization cost for this list of values. Assuming that 434 /// this subtree gets vectorized, we may need to extract the values from the 435 /// roots. This method calculates the cost of extracting the values. 436 int getGatherCost(ArrayRef<Value *> VL); 437 438 /// \brief Set the Builder insert point to one after the last instruction in 439 /// the bundle 440 void setInsertPointAfterBundle(ArrayRef<Value *> VL); 441 442 /// \returns a vector from a collection of scalars in \p VL. 443 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 444 445 /// \returns whether the VectorizableTree is fully vectoriable and will 446 /// be beneficial even the tree height is tiny. 447 bool isFullyVectorizableTinyTree(); 448 449 struct TreeEntry { 450 TreeEntry() : Scalars(), VectorizedValue(nullptr), 451 NeedToGather(0) {} 452 453 /// \returns true if the scalars in VL are equal to this entry. 454 bool isSame(ArrayRef<Value *> VL) const { 455 assert(VL.size() == Scalars.size() && "Invalid size"); 456 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 457 } 458 459 /// A vector of scalars. 460 ValueList Scalars; 461 462 /// The Scalars are vectorized into this value. It is initialized to Null. 463 Value *VectorizedValue; 464 465 /// Do we need to gather this sequence ? 466 bool NeedToGather; 467 }; 468 469 /// Create a new VectorizableTree entry. 470 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized) { 471 VectorizableTree.push_back(TreeEntry()); 472 int idx = VectorizableTree.size() - 1; 473 TreeEntry *Last = &VectorizableTree[idx]; 474 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 475 Last->NeedToGather = !Vectorized; 476 if (Vectorized) { 477 for (int i = 0, e = VL.size(); i != e; ++i) { 478 assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!"); 479 ScalarToTreeEntry[VL[i]] = idx; 480 } 481 } else { 482 MustGather.insert(VL.begin(), VL.end()); 483 } 484 return Last; 485 } 486 487 /// -- Vectorization State -- 488 /// Holds all of the tree entries. 489 std::vector<TreeEntry> VectorizableTree; 490 491 /// Maps a specific scalar to its tree entry. 492 SmallDenseMap<Value*, int> ScalarToTreeEntry; 493 494 /// A list of scalars that we found that we need to keep as scalars. 495 ValueSet MustGather; 496 497 /// This POD struct describes one external user in the vectorized tree. 498 struct ExternalUser { 499 ExternalUser (Value *S, llvm::User *U, int L) : 500 Scalar(S), User(U), Lane(L){}; 501 // Which scalar in our function. 502 Value *Scalar; 503 // Which user that uses the scalar. 504 llvm::User *User; 505 // Which lane does the scalar belong to. 506 int Lane; 507 }; 508 typedef SmallVector<ExternalUser, 16> UserList; 509 510 /// A list of values that need to extracted out of the tree. 511 /// This list holds pairs of (Internal Scalar : External User). 512 UserList ExternalUses; 513 514 /// Holds all of the instructions that we gathered. 515 SetVector<Instruction *> GatherSeq; 516 /// A list of blocks that we are going to CSE. 517 SetVector<BasicBlock *> CSEBlocks; 518 519 /// Contains all scheduling relevant data for an instruction. 520 /// A ScheduleData either represents a single instruction or a member of an 521 /// instruction bundle (= a group of instructions which is combined into a 522 /// vector instruction). 523 struct ScheduleData { 524 525 // The initial value for the dependency counters. It means that the 526 // dependencies are not calculated yet. 527 enum { InvalidDeps = -1 }; 528 529 ScheduleData() 530 : Inst(nullptr), FirstInBundle(nullptr), NextInBundle(nullptr), 531 NextLoadStore(nullptr), SchedulingRegionID(0), SchedulingPriority(0), 532 Dependencies(InvalidDeps), UnscheduledDeps(InvalidDeps), 533 UnscheduledDepsInBundle(InvalidDeps), IsScheduled(false) {} 534 535 void init(int BlockSchedulingRegionID) { 536 FirstInBundle = this; 537 NextInBundle = nullptr; 538 NextLoadStore = nullptr; 539 IsScheduled = false; 540 SchedulingRegionID = BlockSchedulingRegionID; 541 UnscheduledDepsInBundle = UnscheduledDeps; 542 clearDependencies(); 543 } 544 545 /// Returns true if the dependency information has been calculated. 546 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 547 548 /// Returns true for single instructions and for bundle representatives 549 /// (= the head of a bundle). 550 bool isSchedulingEntity() const { return FirstInBundle == this; } 551 552 /// Returns true if it represents an instruction bundle and not only a 553 /// single instruction. 554 bool isPartOfBundle() const { 555 return NextInBundle != nullptr || FirstInBundle != this; 556 } 557 558 /// Returns true if it is ready for scheduling, i.e. it has no more 559 /// unscheduled depending instructions/bundles. 560 bool isReady() const { 561 assert(isSchedulingEntity() && 562 "can't consider non-scheduling entity for ready list"); 563 return UnscheduledDepsInBundle == 0 && !IsScheduled; 564 } 565 566 /// Modifies the number of unscheduled dependencies, also updating it for 567 /// the whole bundle. 568 int incrementUnscheduledDeps(int Incr) { 569 UnscheduledDeps += Incr; 570 return FirstInBundle->UnscheduledDepsInBundle += Incr; 571 } 572 573 /// Sets the number of unscheduled dependencies to the number of 574 /// dependencies. 575 void resetUnscheduledDeps() { 576 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 577 } 578 579 /// Clears all dependency information. 580 void clearDependencies() { 581 Dependencies = InvalidDeps; 582 resetUnscheduledDeps(); 583 MemoryDependencies.clear(); 584 } 585 586 void dump(raw_ostream &os) const { 587 if (!isSchedulingEntity()) { 588 os << "/ " << *Inst; 589 } else if (NextInBundle) { 590 os << '[' << *Inst; 591 ScheduleData *SD = NextInBundle; 592 while (SD) { 593 os << ';' << *SD->Inst; 594 SD = SD->NextInBundle; 595 } 596 os << ']'; 597 } else { 598 os << *Inst; 599 } 600 } 601 602 Instruction *Inst; 603 604 /// Points to the head in an instruction bundle (and always to this for 605 /// single instructions). 606 ScheduleData *FirstInBundle; 607 608 /// Single linked list of all instructions in a bundle. Null if it is a 609 /// single instruction. 610 ScheduleData *NextInBundle; 611 612 /// Single linked list of all memory instructions (e.g. load, store, call) 613 /// in the block - until the end of the scheduling region. 614 ScheduleData *NextLoadStore; 615 616 /// The dependent memory instructions. 617 /// This list is derived on demand in calculateDependencies(). 618 SmallVector<ScheduleData *, 4> MemoryDependencies; 619 620 /// This ScheduleData is in the current scheduling region if this matches 621 /// the current SchedulingRegionID of BlockScheduling. 622 int SchedulingRegionID; 623 624 /// Used for getting a "good" final ordering of instructions. 625 int SchedulingPriority; 626 627 /// The number of dependencies. Constitutes of the number of users of the 628 /// instruction plus the number of dependent memory instructions (if any). 629 /// This value is calculated on demand. 630 /// If InvalidDeps, the number of dependencies is not calculated yet. 631 /// 632 int Dependencies; 633 634 /// The number of dependencies minus the number of dependencies of scheduled 635 /// instructions. As soon as this is zero, the instruction/bundle gets ready 636 /// for scheduling. 637 /// Note that this is negative as long as Dependencies is not calculated. 638 int UnscheduledDeps; 639 640 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 641 /// single instructions. 642 int UnscheduledDepsInBundle; 643 644 /// True if this instruction is scheduled (or considered as scheduled in the 645 /// dry-run). 646 bool IsScheduled; 647 }; 648 649 #ifndef NDEBUG 650 friend raw_ostream &operator<<(raw_ostream &os, 651 const BoUpSLP::ScheduleData &SD); 652 #endif 653 654 /// Contains all scheduling data for a basic block. 655 /// 656 struct BlockScheduling { 657 658 BlockScheduling(BasicBlock *BB) 659 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize), 660 ScheduleStart(nullptr), ScheduleEnd(nullptr), 661 FirstLoadStoreInRegion(nullptr), LastLoadStoreInRegion(nullptr), 662 // Make sure that the initial SchedulingRegionID is greater than the 663 // initial SchedulingRegionID in ScheduleData (which is 0). 664 SchedulingRegionID(1) {} 665 666 void clear() { 667 ReadyInsts.clear(); 668 ScheduleStart = nullptr; 669 ScheduleEnd = nullptr; 670 FirstLoadStoreInRegion = nullptr; 671 LastLoadStoreInRegion = nullptr; 672 673 // Make a new scheduling region, i.e. all existing ScheduleData is not 674 // in the new region yet. 675 ++SchedulingRegionID; 676 } 677 678 ScheduleData *getScheduleData(Value *V) { 679 ScheduleData *SD = ScheduleDataMap[V]; 680 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 681 return SD; 682 return nullptr; 683 } 684 685 bool isInSchedulingRegion(ScheduleData *SD) { 686 return SD->SchedulingRegionID == SchedulingRegionID; 687 } 688 689 /// Marks an instruction as scheduled and puts all dependent ready 690 /// instructions into the ready-list. 691 template <typename ReadyListType> 692 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 693 SD->IsScheduled = true; 694 DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 695 696 ScheduleData *BundleMember = SD; 697 while (BundleMember) { 698 // Handle the def-use chain dependencies. 699 for (Use &U : BundleMember->Inst->operands()) { 700 ScheduleData *OpDef = getScheduleData(U.get()); 701 if (OpDef && OpDef->hasValidDependencies() && 702 OpDef->incrementUnscheduledDeps(-1) == 0) { 703 // There are no more unscheduled dependencies after decrementing, 704 // so we can put the dependent instruction into the ready list. 705 ScheduleData *DepBundle = OpDef->FirstInBundle; 706 assert(!DepBundle->IsScheduled && 707 "already scheduled bundle gets ready"); 708 ReadyList.insert(DepBundle); 709 DEBUG(dbgs() << "SLP: gets ready (def): " << *DepBundle << "\n"); 710 } 711 } 712 // Handle the memory dependencies. 713 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 714 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 715 // There are no more unscheduled dependencies after decrementing, 716 // so we can put the dependent instruction into the ready list. 717 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 718 assert(!DepBundle->IsScheduled && 719 "already scheduled bundle gets ready"); 720 ReadyList.insert(DepBundle); 721 DEBUG(dbgs() << "SLP: gets ready (mem): " << *DepBundle << "\n"); 722 } 723 } 724 BundleMember = BundleMember->NextInBundle; 725 } 726 } 727 728 /// Put all instructions into the ReadyList which are ready for scheduling. 729 template <typename ReadyListType> 730 void initialFillReadyList(ReadyListType &ReadyList) { 731 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 732 ScheduleData *SD = getScheduleData(I); 733 if (SD->isSchedulingEntity() && SD->isReady()) { 734 ReadyList.insert(SD); 735 DEBUG(dbgs() << "SLP: initially in ready list: " << *I << "\n"); 736 } 737 } 738 } 739 740 /// Checks if a bundle of instructions can be scheduled, i.e. has no 741 /// cyclic dependencies. This is only a dry-run, no instructions are 742 /// actually moved at this stage. 743 bool tryScheduleBundle(ArrayRef<Value *> VL, AliasAnalysis *AA); 744 745 /// Un-bundles a group of instructions. 746 void cancelScheduling(ArrayRef<Value *> VL); 747 748 /// Extends the scheduling region so that V is inside the region. 749 void extendSchedulingRegion(Value *V); 750 751 /// Initialize the ScheduleData structures for new instructions in the 752 /// scheduling region. 753 void initScheduleData(Instruction *FromI, Instruction *ToI, 754 ScheduleData *PrevLoadStore, 755 ScheduleData *NextLoadStore); 756 757 /// Updates the dependency information of a bundle and of all instructions/ 758 /// bundles which depend on the original bundle. 759 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 760 AliasAnalysis *AA); 761 762 /// Sets all instruction in the scheduling region to un-scheduled. 763 void resetSchedule(); 764 765 BasicBlock *BB; 766 767 /// Simple memory allocation for ScheduleData. 768 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 769 770 /// The size of a ScheduleData array in ScheduleDataChunks. 771 int ChunkSize; 772 773 /// The allocator position in the current chunk, which is the last entry 774 /// of ScheduleDataChunks. 775 int ChunkPos; 776 777 /// Attaches ScheduleData to Instruction. 778 /// Note that the mapping survives during all vectorization iterations, i.e. 779 /// ScheduleData structures are recycled. 780 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 781 782 struct ReadyList : SmallVector<ScheduleData *, 8> { 783 void insert(ScheduleData *SD) { push_back(SD); } 784 }; 785 786 /// The ready-list for scheduling (only used for the dry-run). 787 ReadyList ReadyInsts; 788 789 /// The first instruction of the scheduling region. 790 Instruction *ScheduleStart; 791 792 /// The first instruction _after_ the scheduling region. 793 Instruction *ScheduleEnd; 794 795 /// The first memory accessing instruction in the scheduling region 796 /// (can be null). 797 ScheduleData *FirstLoadStoreInRegion; 798 799 /// The last memory accessing instruction in the scheduling region 800 /// (can be null). 801 ScheduleData *LastLoadStoreInRegion; 802 803 /// The ID of the scheduling region. For a new vectorization iteration this 804 /// is incremented which "removes" all ScheduleData from the region. 805 int SchedulingRegionID; 806 }; 807 808 /// Attaches the BlockScheduling structures to basic blocks. 809 DenseMap<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 810 811 /// Performs the "real" scheduling. Done before vectorization is actually 812 /// performed in a basic block. 813 void scheduleBlock(BlockScheduling *BS); 814 815 /// List of users to ignore during scheduling and that don't need extracting. 816 ArrayRef<Value *> UserIgnoreList; 817 818 // Number of load-bundles, which contain consecutive loads. 819 int NumLoadsWantToKeepOrder; 820 821 // Number of load-bundles of size 2, which are consecutive loads if reversed. 822 int NumLoadsWantToChangeOrder; 823 824 // Analysis and block reference. 825 Function *F; 826 ScalarEvolution *SE; 827 const DataLayout *DL; 828 TargetTransformInfo *TTI; 829 TargetLibraryInfo *TLI; 830 AliasAnalysis *AA; 831 LoopInfo *LI; 832 DominatorTree *DT; 833 /// Instruction builder to construct the vectorized tree. 834 IRBuilder<> Builder; 835 }; 836 837 #ifndef NDEBUG 838 raw_ostream &operator<<(raw_ostream &os, const BoUpSLP::ScheduleData &SD) { 839 SD.dump(os); 840 return os; 841 } 842 #endif 843 844 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 845 ArrayRef<Value *> UserIgnoreLst) { 846 deleteTree(); 847 UserIgnoreList = UserIgnoreLst; 848 if (!getSameType(Roots)) 849 return; 850 buildTree_rec(Roots, 0); 851 852 // Collect the values that we need to extract from the tree. 853 for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) { 854 TreeEntry *Entry = &VectorizableTree[EIdx]; 855 856 // For each lane: 857 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 858 Value *Scalar = Entry->Scalars[Lane]; 859 860 // No need to handle users of gathered values. 861 if (Entry->NeedToGather) 862 continue; 863 864 for (User *U : Scalar->users()) { 865 DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 866 867 // Skip in-tree scalars that become vectors. 868 if (ScalarToTreeEntry.count(U)) { 869 DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << 870 *U << ".\n"); 871 int Idx = ScalarToTreeEntry[U]; (void) Idx; 872 assert(!VectorizableTree[Idx].NeedToGather && "Bad state"); 873 continue; 874 } 875 Instruction *UserInst = dyn_cast<Instruction>(U); 876 if (!UserInst) 877 continue; 878 879 // Ignore users in the user ignore list. 880 if (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), UserInst) != 881 UserIgnoreList.end()) 882 continue; 883 884 DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " << 885 Lane << " from " << *Scalar << ".\n"); 886 ExternalUses.push_back(ExternalUser(Scalar, U, Lane)); 887 } 888 } 889 } 890 } 891 892 893 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { 894 bool SameTy = getSameType(VL); (void)SameTy; 895 bool isAltShuffle = false; 896 assert(SameTy && "Invalid types!"); 897 898 if (Depth == RecursionMaxDepth) { 899 DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 900 newTreeEntry(VL, false); 901 return; 902 } 903 904 // Don't handle vectors. 905 if (VL[0]->getType()->isVectorTy()) { 906 DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 907 newTreeEntry(VL, false); 908 return; 909 } 910 911 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 912 if (SI->getValueOperand()->getType()->isVectorTy()) { 913 DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 914 newTreeEntry(VL, false); 915 return; 916 } 917 unsigned Opcode = getSameOpcode(VL); 918 919 // Check that this shuffle vector refers to the alternate 920 // sequence of opcodes. 921 if (Opcode == Instruction::ShuffleVector) { 922 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 923 unsigned Op = I0->getOpcode(); 924 if (Op != Instruction::ShuffleVector) 925 isAltShuffle = true; 926 } 927 928 // If all of the operands are identical or constant we have a simple solution. 929 if (allConstant(VL) || isSplat(VL) || !getSameBlock(VL) || !Opcode) { 930 DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 931 newTreeEntry(VL, false); 932 return; 933 } 934 935 // We now know that this is a vector of instructions of the same type from 936 // the same block. 937 938 // Check if this is a duplicate of another entry. 939 if (ScalarToTreeEntry.count(VL[0])) { 940 int Idx = ScalarToTreeEntry[VL[0]]; 941 TreeEntry *E = &VectorizableTree[Idx]; 942 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 943 DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n"); 944 if (E->Scalars[i] != VL[i]) { 945 DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 946 newTreeEntry(VL, false); 947 return; 948 } 949 } 950 DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n"); 951 return; 952 } 953 954 // Check that none of the instructions in the bundle are already in the tree. 955 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 956 if (ScalarToTreeEntry.count(VL[i])) { 957 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 958 ") is already in tree.\n"); 959 newTreeEntry(VL, false); 960 return; 961 } 962 } 963 964 // If any of the scalars appears in the table OR it is marked as a value that 965 // needs to stat scalar then we need to gather the scalars. 966 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 967 if (ScalarToTreeEntry.count(VL[i]) || MustGather.count(VL[i])) { 968 DEBUG(dbgs() << "SLP: Gathering due to gathered scalar. \n"); 969 newTreeEntry(VL, false); 970 return; 971 } 972 } 973 974 // Check that all of the users of the scalars that we want to vectorize are 975 // schedulable. 976 Instruction *VL0 = cast<Instruction>(VL[0]); 977 BasicBlock *BB = cast<Instruction>(VL0)->getParent(); 978 979 // Check that every instructions appears once in this bundle. 980 for (unsigned i = 0, e = VL.size(); i < e; ++i) 981 for (unsigned j = i+1; j < e; ++j) 982 if (VL[i] == VL[j]) { 983 DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 984 newTreeEntry(VL, false); 985 return; 986 } 987 988 auto &BSRef = BlocksSchedules[BB]; 989 if (!BSRef) { 990 BSRef = llvm::make_unique<BlockScheduling>(BB); 991 } 992 BlockScheduling &BS = *BSRef.get(); 993 994 if (!BS.tryScheduleBundle(VL, AA)) { 995 DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 996 BS.cancelScheduling(VL); 997 newTreeEntry(VL, false); 998 return; 999 } 1000 DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 1001 1002 switch (Opcode) { 1003 case Instruction::PHI: { 1004 PHINode *PH = dyn_cast<PHINode>(VL0); 1005 1006 // Check for terminator values (e.g. invoke). 1007 for (unsigned j = 0; j < VL.size(); ++j) 1008 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1009 TerminatorInst *Term = dyn_cast<TerminatorInst>( 1010 cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i))); 1011 if (Term) { 1012 DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n"); 1013 BS.cancelScheduling(VL); 1014 newTreeEntry(VL, false); 1015 return; 1016 } 1017 } 1018 1019 newTreeEntry(VL, true); 1020 DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 1021 1022 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1023 ValueList Operands; 1024 // Prepare the operand vector. 1025 for (unsigned j = 0; j < VL.size(); ++j) 1026 Operands.push_back(cast<PHINode>(VL[j])->getIncomingValueForBlock( 1027 PH->getIncomingBlock(i))); 1028 1029 buildTree_rec(Operands, Depth + 1); 1030 } 1031 return; 1032 } 1033 case Instruction::ExtractElement: { 1034 bool Reuse = CanReuseExtract(VL); 1035 if (Reuse) { 1036 DEBUG(dbgs() << "SLP: Reusing extract sequence.\n"); 1037 } else { 1038 BS.cancelScheduling(VL); 1039 } 1040 newTreeEntry(VL, Reuse); 1041 return; 1042 } 1043 case Instruction::Load: { 1044 // Check if the loads are consecutive or of we need to swizzle them. 1045 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { 1046 LoadInst *L = cast<LoadInst>(VL[i]); 1047 if (!L->isSimple()) { 1048 BS.cancelScheduling(VL); 1049 newTreeEntry(VL, false); 1050 DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 1051 return; 1052 } 1053 if (!isConsecutiveAccess(VL[i], VL[i + 1])) { 1054 if (VL.size() == 2 && isConsecutiveAccess(VL[1], VL[0])) { 1055 ++NumLoadsWantToChangeOrder; 1056 } 1057 BS.cancelScheduling(VL); 1058 newTreeEntry(VL, false); 1059 DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 1060 return; 1061 } 1062 } 1063 ++NumLoadsWantToKeepOrder; 1064 newTreeEntry(VL, true); 1065 DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 1066 return; 1067 } 1068 case Instruction::ZExt: 1069 case Instruction::SExt: 1070 case Instruction::FPToUI: 1071 case Instruction::FPToSI: 1072 case Instruction::FPExt: 1073 case Instruction::PtrToInt: 1074 case Instruction::IntToPtr: 1075 case Instruction::SIToFP: 1076 case Instruction::UIToFP: 1077 case Instruction::Trunc: 1078 case Instruction::FPTrunc: 1079 case Instruction::BitCast: { 1080 Type *SrcTy = VL0->getOperand(0)->getType(); 1081 for (unsigned i = 0; i < VL.size(); ++i) { 1082 Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType(); 1083 if (Ty != SrcTy || Ty->isAggregateType() || Ty->isVectorTy()) { 1084 BS.cancelScheduling(VL); 1085 newTreeEntry(VL, false); 1086 DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n"); 1087 return; 1088 } 1089 } 1090 newTreeEntry(VL, true); 1091 DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 1092 1093 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1094 ValueList Operands; 1095 // Prepare the operand vector. 1096 for (unsigned j = 0; j < VL.size(); ++j) 1097 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); 1098 1099 buildTree_rec(Operands, Depth+1); 1100 } 1101 return; 1102 } 1103 case Instruction::ICmp: 1104 case Instruction::FCmp: { 1105 // Check that all of the compares have the same predicate. 1106 CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate(); 1107 Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType(); 1108 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1109 CmpInst *Cmp = cast<CmpInst>(VL[i]); 1110 if (Cmp->getPredicate() != P0 || 1111 Cmp->getOperand(0)->getType() != ComparedTy) { 1112 BS.cancelScheduling(VL); 1113 newTreeEntry(VL, false); 1114 DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n"); 1115 return; 1116 } 1117 } 1118 1119 newTreeEntry(VL, true); 1120 DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 1121 1122 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1123 ValueList Operands; 1124 // Prepare the operand vector. 1125 for (unsigned j = 0; j < VL.size(); ++j) 1126 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); 1127 1128 buildTree_rec(Operands, Depth+1); 1129 } 1130 return; 1131 } 1132 case Instruction::Select: 1133 case Instruction::Add: 1134 case Instruction::FAdd: 1135 case Instruction::Sub: 1136 case Instruction::FSub: 1137 case Instruction::Mul: 1138 case Instruction::FMul: 1139 case Instruction::UDiv: 1140 case Instruction::SDiv: 1141 case Instruction::FDiv: 1142 case Instruction::URem: 1143 case Instruction::SRem: 1144 case Instruction::FRem: 1145 case Instruction::Shl: 1146 case Instruction::LShr: 1147 case Instruction::AShr: 1148 case Instruction::And: 1149 case Instruction::Or: 1150 case Instruction::Xor: { 1151 newTreeEntry(VL, true); 1152 DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); 1153 1154 // Sort operands of the instructions so that each side is more likely to 1155 // have the same opcode. 1156 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 1157 ValueList Left, Right; 1158 reorderInputsAccordingToOpcode(VL, Left, Right); 1159 buildTree_rec(Left, Depth + 1); 1160 buildTree_rec(Right, Depth + 1); 1161 return; 1162 } 1163 1164 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1165 ValueList Operands; 1166 // Prepare the operand vector. 1167 for (unsigned j = 0; j < VL.size(); ++j) 1168 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); 1169 1170 buildTree_rec(Operands, Depth+1); 1171 } 1172 return; 1173 } 1174 case Instruction::GetElementPtr: { 1175 // We don't combine GEPs with complicated (nested) indexing. 1176 for (unsigned j = 0; j < VL.size(); ++j) { 1177 if (cast<Instruction>(VL[j])->getNumOperands() != 2) { 1178 DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 1179 BS.cancelScheduling(VL); 1180 newTreeEntry(VL, false); 1181 return; 1182 } 1183 } 1184 1185 // We can't combine several GEPs into one vector if they operate on 1186 // different types. 1187 Type *Ty0 = cast<Instruction>(VL0)->getOperand(0)->getType(); 1188 for (unsigned j = 0; j < VL.size(); ++j) { 1189 Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType(); 1190 if (Ty0 != CurTy) { 1191 DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n"); 1192 BS.cancelScheduling(VL); 1193 newTreeEntry(VL, false); 1194 return; 1195 } 1196 } 1197 1198 // We don't combine GEPs with non-constant indexes. 1199 for (unsigned j = 0; j < VL.size(); ++j) { 1200 auto Op = cast<Instruction>(VL[j])->getOperand(1); 1201 if (!isa<ConstantInt>(Op)) { 1202 DEBUG( 1203 dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 1204 BS.cancelScheduling(VL); 1205 newTreeEntry(VL, false); 1206 return; 1207 } 1208 } 1209 1210 newTreeEntry(VL, true); 1211 DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 1212 for (unsigned i = 0, e = 2; i < e; ++i) { 1213 ValueList Operands; 1214 // Prepare the operand vector. 1215 for (unsigned j = 0; j < VL.size(); ++j) 1216 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); 1217 1218 buildTree_rec(Operands, Depth + 1); 1219 } 1220 return; 1221 } 1222 case Instruction::Store: { 1223 // Check if the stores are consecutive or of we need to swizzle them. 1224 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 1225 if (!isConsecutiveAccess(VL[i], VL[i + 1])) { 1226 BS.cancelScheduling(VL); 1227 newTreeEntry(VL, false); 1228 DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 1229 return; 1230 } 1231 1232 newTreeEntry(VL, true); 1233 DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 1234 1235 ValueList Operands; 1236 for (unsigned j = 0; j < VL.size(); ++j) 1237 Operands.push_back(cast<Instruction>(VL[j])->getOperand(0)); 1238 1239 buildTree_rec(Operands, Depth + 1); 1240 return; 1241 } 1242 case Instruction::Call: { 1243 // Check if the calls are all to the same vectorizable intrinsic. 1244 CallInst *CI = cast<CallInst>(VL[0]); 1245 // Check if this is an Intrinsic call or something that can be 1246 // represented by an intrinsic call 1247 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 1248 if (!isTriviallyVectorizable(ID)) { 1249 BS.cancelScheduling(VL); 1250 newTreeEntry(VL, false); 1251 DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 1252 return; 1253 } 1254 Function *Int = CI->getCalledFunction(); 1255 Value *A1I = nullptr; 1256 if (hasVectorInstrinsicScalarOpd(ID, 1)) 1257 A1I = CI->getArgOperand(1); 1258 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 1259 CallInst *CI2 = dyn_cast<CallInst>(VL[i]); 1260 if (!CI2 || CI2->getCalledFunction() != Int || 1261 getIntrinsicIDForCall(CI2, TLI) != ID) { 1262 BS.cancelScheduling(VL); 1263 newTreeEntry(VL, false); 1264 DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] 1265 << "\n"); 1266 return; 1267 } 1268 // ctlz,cttz and powi are special intrinsics whose second argument 1269 // should be same in order for them to be vectorized. 1270 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 1271 Value *A1J = CI2->getArgOperand(1); 1272 if (A1I != A1J) { 1273 BS.cancelScheduling(VL); 1274 newTreeEntry(VL, false); 1275 DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 1276 << " argument "<< A1I<<"!=" << A1J 1277 << "\n"); 1278 return; 1279 } 1280 } 1281 } 1282 1283 newTreeEntry(VL, true); 1284 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 1285 ValueList Operands; 1286 // Prepare the operand vector. 1287 for (unsigned j = 0; j < VL.size(); ++j) { 1288 CallInst *CI2 = dyn_cast<CallInst>(VL[j]); 1289 Operands.push_back(CI2->getArgOperand(i)); 1290 } 1291 buildTree_rec(Operands, Depth + 1); 1292 } 1293 return; 1294 } 1295 case Instruction::ShuffleVector: { 1296 // If this is not an alternate sequence of opcode like add-sub 1297 // then do not vectorize this instruction. 1298 if (!isAltShuffle) { 1299 BS.cancelScheduling(VL); 1300 newTreeEntry(VL, false); 1301 DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 1302 return; 1303 } 1304 newTreeEntry(VL, true); 1305 DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 1306 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1307 ValueList Operands; 1308 // Prepare the operand vector. 1309 for (unsigned j = 0; j < VL.size(); ++j) 1310 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); 1311 1312 buildTree_rec(Operands, Depth + 1); 1313 } 1314 return; 1315 } 1316 default: 1317 BS.cancelScheduling(VL); 1318 newTreeEntry(VL, false); 1319 DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 1320 return; 1321 } 1322 } 1323 1324 int BoUpSLP::getEntryCost(TreeEntry *E) { 1325 ArrayRef<Value*> VL = E->Scalars; 1326 1327 Type *ScalarTy = VL[0]->getType(); 1328 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1329 ScalarTy = SI->getValueOperand()->getType(); 1330 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1331 1332 if (E->NeedToGather) { 1333 if (allConstant(VL)) 1334 return 0; 1335 if (isSplat(VL)) { 1336 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 1337 } 1338 return getGatherCost(E->Scalars); 1339 } 1340 unsigned Opcode = getSameOpcode(VL); 1341 assert(Opcode && getSameType(VL) && getSameBlock(VL) && "Invalid VL"); 1342 Instruction *VL0 = cast<Instruction>(VL[0]); 1343 switch (Opcode) { 1344 case Instruction::PHI: { 1345 return 0; 1346 } 1347 case Instruction::ExtractElement: { 1348 if (CanReuseExtract(VL)) { 1349 int DeadCost = 0; 1350 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 1351 ExtractElementInst *E = cast<ExtractElementInst>(VL[i]); 1352 if (E->hasOneUse()) 1353 // Take credit for instruction that will become dead. 1354 DeadCost += 1355 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 1356 } 1357 return -DeadCost; 1358 } 1359 return getGatherCost(VecTy); 1360 } 1361 case Instruction::ZExt: 1362 case Instruction::SExt: 1363 case Instruction::FPToUI: 1364 case Instruction::FPToSI: 1365 case Instruction::FPExt: 1366 case Instruction::PtrToInt: 1367 case Instruction::IntToPtr: 1368 case Instruction::SIToFP: 1369 case Instruction::UIToFP: 1370 case Instruction::Trunc: 1371 case Instruction::FPTrunc: 1372 case Instruction::BitCast: { 1373 Type *SrcTy = VL0->getOperand(0)->getType(); 1374 1375 // Calculate the cost of this instruction. 1376 int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(), 1377 VL0->getType(), SrcTy); 1378 1379 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 1380 int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy); 1381 return VecCost - ScalarCost; 1382 } 1383 case Instruction::FCmp: 1384 case Instruction::ICmp: 1385 case Instruction::Select: 1386 case Instruction::Add: 1387 case Instruction::FAdd: 1388 case Instruction::Sub: 1389 case Instruction::FSub: 1390 case Instruction::Mul: 1391 case Instruction::FMul: 1392 case Instruction::UDiv: 1393 case Instruction::SDiv: 1394 case Instruction::FDiv: 1395 case Instruction::URem: 1396 case Instruction::SRem: 1397 case Instruction::FRem: 1398 case Instruction::Shl: 1399 case Instruction::LShr: 1400 case Instruction::AShr: 1401 case Instruction::And: 1402 case Instruction::Or: 1403 case Instruction::Xor: { 1404 // Calculate the cost of this instruction. 1405 int ScalarCost = 0; 1406 int VecCost = 0; 1407 if (Opcode == Instruction::FCmp || Opcode == Instruction::ICmp || 1408 Opcode == Instruction::Select) { 1409 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 1410 ScalarCost = VecTy->getNumElements() * 1411 TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty()); 1412 VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy); 1413 } else { 1414 // Certain instructions can be cheaper to vectorize if they have a 1415 // constant second vector operand. 1416 TargetTransformInfo::OperandValueKind Op1VK = 1417 TargetTransformInfo::OK_AnyValue; 1418 TargetTransformInfo::OperandValueKind Op2VK = 1419 TargetTransformInfo::OK_UniformConstantValue; 1420 1421 // If all operands are exactly the same ConstantInt then set the 1422 // operand kind to OK_UniformConstantValue. 1423 // If instead not all operands are constants, then set the operand kind 1424 // to OK_AnyValue. If all operands are constants but not the same, 1425 // then set the operand kind to OK_NonUniformConstantValue. 1426 ConstantInt *CInt = nullptr; 1427 for (unsigned i = 0; i < VL.size(); ++i) { 1428 const Instruction *I = cast<Instruction>(VL[i]); 1429 if (!isa<ConstantInt>(I->getOperand(1))) { 1430 Op2VK = TargetTransformInfo::OK_AnyValue; 1431 break; 1432 } 1433 if (i == 0) { 1434 CInt = cast<ConstantInt>(I->getOperand(1)); 1435 continue; 1436 } 1437 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && 1438 CInt != cast<ConstantInt>(I->getOperand(1))) 1439 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 1440 } 1441 1442 ScalarCost = 1443 VecTy->getNumElements() * 1444 TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, Op2VK); 1445 VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK); 1446 } 1447 return VecCost - ScalarCost; 1448 } 1449 case Instruction::GetElementPtr: { 1450 TargetTransformInfo::OperandValueKind Op1VK = 1451 TargetTransformInfo::OK_AnyValue; 1452 TargetTransformInfo::OperandValueKind Op2VK = 1453 TargetTransformInfo::OK_UniformConstantValue; 1454 1455 int ScalarCost = 1456 VecTy->getNumElements() * 1457 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 1458 int VecCost = 1459 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 1460 1461 return VecCost - ScalarCost; 1462 } 1463 case Instruction::Load: { 1464 // Cost of wide load - cost of scalar loads. 1465 int ScalarLdCost = VecTy->getNumElements() * 1466 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0); 1467 int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, 1, 0); 1468 return VecLdCost - ScalarLdCost; 1469 } 1470 case Instruction::Store: { 1471 // We know that we can merge the stores. Calculate the cost. 1472 int ScalarStCost = VecTy->getNumElements() * 1473 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0); 1474 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, VecTy, 1, 0); 1475 return VecStCost - ScalarStCost; 1476 } 1477 case Instruction::Call: { 1478 CallInst *CI = cast<CallInst>(VL0); 1479 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 1480 1481 // Calculate the cost of the scalar and vector calls. 1482 SmallVector<Type*, 4> ScalarTys, VecTys; 1483 for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) { 1484 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 1485 VecTys.push_back(VectorType::get(CI->getArgOperand(op)->getType(), 1486 VecTy->getNumElements())); 1487 } 1488 1489 int ScalarCallCost = VecTy->getNumElements() * 1490 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys); 1491 1492 int VecCallCost = TTI->getIntrinsicInstrCost(ID, VecTy, VecTys); 1493 1494 DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost 1495 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 1496 << " for " << *CI << "\n"); 1497 1498 return VecCallCost - ScalarCallCost; 1499 } 1500 case Instruction::ShuffleVector: { 1501 TargetTransformInfo::OperandValueKind Op1VK = 1502 TargetTransformInfo::OK_AnyValue; 1503 TargetTransformInfo::OperandValueKind Op2VK = 1504 TargetTransformInfo::OK_AnyValue; 1505 int ScalarCost = 0; 1506 int VecCost = 0; 1507 for (unsigned i = 0; i < VL.size(); ++i) { 1508 Instruction *I = cast<Instruction>(VL[i]); 1509 if (!I) 1510 break; 1511 ScalarCost += 1512 TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK); 1513 } 1514 // VecCost is equal to sum of the cost of creating 2 vectors 1515 // and the cost of creating shuffle. 1516 Instruction *I0 = cast<Instruction>(VL[0]); 1517 VecCost = 1518 TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK); 1519 Instruction *I1 = cast<Instruction>(VL[1]); 1520 VecCost += 1521 TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK); 1522 VecCost += 1523 TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0); 1524 return VecCost - ScalarCost; 1525 } 1526 default: 1527 llvm_unreachable("Unknown instruction"); 1528 } 1529 } 1530 1531 bool BoUpSLP::isFullyVectorizableTinyTree() { 1532 DEBUG(dbgs() << "SLP: Check whether the tree with height " << 1533 VectorizableTree.size() << " is fully vectorizable .\n"); 1534 1535 // We only handle trees of height 2. 1536 if (VectorizableTree.size() != 2) 1537 return false; 1538 1539 // Handle splat stores. 1540 if (!VectorizableTree[0].NeedToGather && isSplat(VectorizableTree[1].Scalars)) 1541 return true; 1542 1543 // Gathering cost would be too much for tiny trees. 1544 if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather) 1545 return false; 1546 1547 return true; 1548 } 1549 1550 int BoUpSLP::getSpillCost() { 1551 // Walk from the bottom of the tree to the top, tracking which values are 1552 // live. When we see a call instruction that is not part of our tree, 1553 // query TTI to see if there is a cost to keeping values live over it 1554 // (for example, if spills and fills are required). 1555 unsigned BundleWidth = VectorizableTree.front().Scalars.size(); 1556 int Cost = 0; 1557 1558 SmallPtrSet<Instruction*, 4> LiveValues; 1559 Instruction *PrevInst = nullptr; 1560 1561 for (unsigned N = 0; N < VectorizableTree.size(); ++N) { 1562 Instruction *Inst = dyn_cast<Instruction>(VectorizableTree[N].Scalars[0]); 1563 if (!Inst) 1564 continue; 1565 1566 if (!PrevInst) { 1567 PrevInst = Inst; 1568 continue; 1569 } 1570 1571 DEBUG( 1572 dbgs() << "SLP: #LV: " << LiveValues.size(); 1573 for (auto *X : LiveValues) 1574 dbgs() << " " << X->getName(); 1575 dbgs() << ", Looking at "; 1576 Inst->dump(); 1577 ); 1578 1579 // Update LiveValues. 1580 LiveValues.erase(PrevInst); 1581 for (auto &J : PrevInst->operands()) { 1582 if (isa<Instruction>(&*J) && ScalarToTreeEntry.count(&*J)) 1583 LiveValues.insert(cast<Instruction>(&*J)); 1584 } 1585 1586 // Now find the sequence of instructions between PrevInst and Inst. 1587 BasicBlock::reverse_iterator InstIt(Inst), PrevInstIt(PrevInst); 1588 --PrevInstIt; 1589 while (InstIt != PrevInstIt) { 1590 if (PrevInstIt == PrevInst->getParent()->rend()) { 1591 PrevInstIt = Inst->getParent()->rbegin(); 1592 continue; 1593 } 1594 1595 if (isa<CallInst>(&*PrevInstIt) && &*PrevInstIt != PrevInst) { 1596 SmallVector<Type*, 4> V; 1597 for (auto *II : LiveValues) 1598 V.push_back(VectorType::get(II->getType(), BundleWidth)); 1599 Cost += TTI->getCostOfKeepingLiveOverCall(V); 1600 } 1601 1602 ++PrevInstIt; 1603 } 1604 1605 PrevInst = Inst; 1606 } 1607 1608 DEBUG(dbgs() << "SLP: SpillCost=" << Cost << "\n"); 1609 return Cost; 1610 } 1611 1612 int BoUpSLP::getTreeCost() { 1613 int Cost = 0; 1614 DEBUG(dbgs() << "SLP: Calculating cost for tree of size " << 1615 VectorizableTree.size() << ".\n"); 1616 1617 // We only vectorize tiny trees if it is fully vectorizable. 1618 if (VectorizableTree.size() < 3 && !isFullyVectorizableTinyTree()) { 1619 if (!VectorizableTree.size()) { 1620 assert(!ExternalUses.size() && "We should not have any external users"); 1621 } 1622 return INT_MAX; 1623 } 1624 1625 unsigned BundleWidth = VectorizableTree[0].Scalars.size(); 1626 1627 for (unsigned i = 0, e = VectorizableTree.size(); i != e; ++i) { 1628 int C = getEntryCost(&VectorizableTree[i]); 1629 DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with " 1630 << *VectorizableTree[i].Scalars[0] << " .\n"); 1631 Cost += C; 1632 } 1633 1634 SmallSet<Value *, 16> ExtractCostCalculated; 1635 int ExtractCost = 0; 1636 for (UserList::iterator I = ExternalUses.begin(), E = ExternalUses.end(); 1637 I != E; ++I) { 1638 // We only add extract cost once for the same scalar. 1639 if (!ExtractCostCalculated.insert(I->Scalar)) 1640 continue; 1641 1642 VectorType *VecTy = VectorType::get(I->Scalar->getType(), BundleWidth); 1643 ExtractCost += TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 1644 I->Lane); 1645 } 1646 1647 Cost += getSpillCost(); 1648 1649 DEBUG(dbgs() << "SLP: Total Cost " << Cost + ExtractCost<< ".\n"); 1650 return Cost + ExtractCost; 1651 } 1652 1653 int BoUpSLP::getGatherCost(Type *Ty) { 1654 int Cost = 0; 1655 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 1656 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 1657 return Cost; 1658 } 1659 1660 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) { 1661 // Find the type of the operands in VL. 1662 Type *ScalarTy = VL[0]->getType(); 1663 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1664 ScalarTy = SI->getValueOperand()->getType(); 1665 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1666 // Find the cost of inserting/extracting values from the vector. 1667 return getGatherCost(VecTy); 1668 } 1669 1670 Value *BoUpSLP::getPointerOperand(Value *I) { 1671 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 1672 return LI->getPointerOperand(); 1673 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 1674 return SI->getPointerOperand(); 1675 return nullptr; 1676 } 1677 1678 unsigned BoUpSLP::getAddressSpaceOperand(Value *I) { 1679 if (LoadInst *L = dyn_cast<LoadInst>(I)) 1680 return L->getPointerAddressSpace(); 1681 if (StoreInst *S = dyn_cast<StoreInst>(I)) 1682 return S->getPointerAddressSpace(); 1683 return -1; 1684 } 1685 1686 bool BoUpSLP::isConsecutiveAccess(Value *A, Value *B) { 1687 Value *PtrA = getPointerOperand(A); 1688 Value *PtrB = getPointerOperand(B); 1689 unsigned ASA = getAddressSpaceOperand(A); 1690 unsigned ASB = getAddressSpaceOperand(B); 1691 1692 // Check that the address spaces match and that the pointers are valid. 1693 if (!PtrA || !PtrB || (ASA != ASB)) 1694 return false; 1695 1696 // Make sure that A and B are different pointers of the same type. 1697 if (PtrA == PtrB || PtrA->getType() != PtrB->getType()) 1698 return false; 1699 1700 unsigned PtrBitWidth = DL->getPointerSizeInBits(ASA); 1701 Type *Ty = cast<PointerType>(PtrA->getType())->getElementType(); 1702 APInt Size(PtrBitWidth, DL->getTypeStoreSize(Ty)); 1703 1704 APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0); 1705 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(*DL, OffsetA); 1706 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(*DL, OffsetB); 1707 1708 APInt OffsetDelta = OffsetB - OffsetA; 1709 1710 // Check if they are based on the same pointer. That makes the offsets 1711 // sufficient. 1712 if (PtrA == PtrB) 1713 return OffsetDelta == Size; 1714 1715 // Compute the necessary base pointer delta to have the necessary final delta 1716 // equal to the size. 1717 APInt BaseDelta = Size - OffsetDelta; 1718 1719 // Otherwise compute the distance with SCEV between the base pointers. 1720 const SCEV *PtrSCEVA = SE->getSCEV(PtrA); 1721 const SCEV *PtrSCEVB = SE->getSCEV(PtrB); 1722 const SCEV *C = SE->getConstant(BaseDelta); 1723 const SCEV *X = SE->getAddExpr(PtrSCEVA, C); 1724 return X == PtrSCEVB; 1725 } 1726 1727 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) { 1728 Instruction *VL0 = cast<Instruction>(VL[0]); 1729 BasicBlock::iterator NextInst = VL0; 1730 ++NextInst; 1731 Builder.SetInsertPoint(VL0->getParent(), NextInst); 1732 Builder.SetCurrentDebugLocation(VL0->getDebugLoc()); 1733 } 1734 1735 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 1736 Value *Vec = UndefValue::get(Ty); 1737 // Generate the 'InsertElement' instruction. 1738 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 1739 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 1740 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { 1741 GatherSeq.insert(Insrt); 1742 CSEBlocks.insert(Insrt->getParent()); 1743 1744 // Add to our 'need-to-extract' list. 1745 if (ScalarToTreeEntry.count(VL[i])) { 1746 int Idx = ScalarToTreeEntry[VL[i]]; 1747 TreeEntry *E = &VectorizableTree[Idx]; 1748 // Find which lane we need to extract. 1749 int FoundLane = -1; 1750 for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) { 1751 // Is this the lane of the scalar that we are looking for ? 1752 if (E->Scalars[Lane] == VL[i]) { 1753 FoundLane = Lane; 1754 break; 1755 } 1756 } 1757 assert(FoundLane >= 0 && "Could not find the correct lane"); 1758 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 1759 } 1760 } 1761 } 1762 1763 return Vec; 1764 } 1765 1766 Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) const { 1767 SmallDenseMap<Value*, int>::const_iterator Entry 1768 = ScalarToTreeEntry.find(VL[0]); 1769 if (Entry != ScalarToTreeEntry.end()) { 1770 int Idx = Entry->second; 1771 const TreeEntry *En = &VectorizableTree[Idx]; 1772 if (En->isSame(VL) && En->VectorizedValue) 1773 return En->VectorizedValue; 1774 } 1775 return nullptr; 1776 } 1777 1778 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 1779 if (ScalarToTreeEntry.count(VL[0])) { 1780 int Idx = ScalarToTreeEntry[VL[0]]; 1781 TreeEntry *E = &VectorizableTree[Idx]; 1782 if (E->isSame(VL)) 1783 return vectorizeTree(E); 1784 } 1785 1786 Type *ScalarTy = VL[0]->getType(); 1787 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1788 ScalarTy = SI->getValueOperand()->getType(); 1789 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1790 1791 return Gather(VL, VecTy); 1792 } 1793 1794 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 1795 IRBuilder<>::InsertPointGuard Guard(Builder); 1796 1797 if (E->VectorizedValue) { 1798 DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 1799 return E->VectorizedValue; 1800 } 1801 1802 Instruction *VL0 = cast<Instruction>(E->Scalars[0]); 1803 Type *ScalarTy = VL0->getType(); 1804 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 1805 ScalarTy = SI->getValueOperand()->getType(); 1806 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 1807 1808 if (E->NeedToGather) { 1809 setInsertPointAfterBundle(E->Scalars); 1810 return Gather(E->Scalars, VecTy); 1811 } 1812 1813 unsigned Opcode = getSameOpcode(E->Scalars); 1814 1815 switch (Opcode) { 1816 case Instruction::PHI: { 1817 PHINode *PH = dyn_cast<PHINode>(VL0); 1818 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 1819 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 1820 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 1821 E->VectorizedValue = NewPhi; 1822 1823 // PHINodes may have multiple entries from the same block. We want to 1824 // visit every block once. 1825 SmallSet<BasicBlock*, 4> VisitedBBs; 1826 1827 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1828 ValueList Operands; 1829 BasicBlock *IBB = PH->getIncomingBlock(i); 1830 1831 if (!VisitedBBs.insert(IBB)) { 1832 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 1833 continue; 1834 } 1835 1836 // Prepare the operand vector. 1837 for (unsigned j = 0; j < E->Scalars.size(); ++j) 1838 Operands.push_back(cast<PHINode>(E->Scalars[j])-> 1839 getIncomingValueForBlock(IBB)); 1840 1841 Builder.SetInsertPoint(IBB->getTerminator()); 1842 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 1843 Value *Vec = vectorizeTree(Operands); 1844 NewPhi->addIncoming(Vec, IBB); 1845 } 1846 1847 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 1848 "Invalid number of incoming values"); 1849 return NewPhi; 1850 } 1851 1852 case Instruction::ExtractElement: { 1853 if (CanReuseExtract(E->Scalars)) { 1854 Value *V = VL0->getOperand(0); 1855 E->VectorizedValue = V; 1856 return V; 1857 } 1858 return Gather(E->Scalars, VecTy); 1859 } 1860 case Instruction::ZExt: 1861 case Instruction::SExt: 1862 case Instruction::FPToUI: 1863 case Instruction::FPToSI: 1864 case Instruction::FPExt: 1865 case Instruction::PtrToInt: 1866 case Instruction::IntToPtr: 1867 case Instruction::SIToFP: 1868 case Instruction::UIToFP: 1869 case Instruction::Trunc: 1870 case Instruction::FPTrunc: 1871 case Instruction::BitCast: { 1872 ValueList INVL; 1873 for (int i = 0, e = E->Scalars.size(); i < e; ++i) 1874 INVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0)); 1875 1876 setInsertPointAfterBundle(E->Scalars); 1877 1878 Value *InVec = vectorizeTree(INVL); 1879 1880 if (Value *V = alreadyVectorized(E->Scalars)) 1881 return V; 1882 1883 CastInst *CI = dyn_cast<CastInst>(VL0); 1884 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 1885 E->VectorizedValue = V; 1886 ++NumVectorInstructions; 1887 return V; 1888 } 1889 case Instruction::FCmp: 1890 case Instruction::ICmp: { 1891 ValueList LHSV, RHSV; 1892 for (int i = 0, e = E->Scalars.size(); i < e; ++i) { 1893 LHSV.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0)); 1894 RHSV.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1)); 1895 } 1896 1897 setInsertPointAfterBundle(E->Scalars); 1898 1899 Value *L = vectorizeTree(LHSV); 1900 Value *R = vectorizeTree(RHSV); 1901 1902 if (Value *V = alreadyVectorized(E->Scalars)) 1903 return V; 1904 1905 CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate(); 1906 Value *V; 1907 if (Opcode == Instruction::FCmp) 1908 V = Builder.CreateFCmp(P0, L, R); 1909 else 1910 V = Builder.CreateICmp(P0, L, R); 1911 1912 E->VectorizedValue = V; 1913 ++NumVectorInstructions; 1914 return V; 1915 } 1916 case Instruction::Select: { 1917 ValueList TrueVec, FalseVec, CondVec; 1918 for (int i = 0, e = E->Scalars.size(); i < e; ++i) { 1919 CondVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0)); 1920 TrueVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1)); 1921 FalseVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(2)); 1922 } 1923 1924 setInsertPointAfterBundle(E->Scalars); 1925 1926 Value *Cond = vectorizeTree(CondVec); 1927 Value *True = vectorizeTree(TrueVec); 1928 Value *False = vectorizeTree(FalseVec); 1929 1930 if (Value *V = alreadyVectorized(E->Scalars)) 1931 return V; 1932 1933 Value *V = Builder.CreateSelect(Cond, True, False); 1934 E->VectorizedValue = V; 1935 ++NumVectorInstructions; 1936 return V; 1937 } 1938 case Instruction::Add: 1939 case Instruction::FAdd: 1940 case Instruction::Sub: 1941 case Instruction::FSub: 1942 case Instruction::Mul: 1943 case Instruction::FMul: 1944 case Instruction::UDiv: 1945 case Instruction::SDiv: 1946 case Instruction::FDiv: 1947 case Instruction::URem: 1948 case Instruction::SRem: 1949 case Instruction::FRem: 1950 case Instruction::Shl: 1951 case Instruction::LShr: 1952 case Instruction::AShr: 1953 case Instruction::And: 1954 case Instruction::Or: 1955 case Instruction::Xor: { 1956 ValueList LHSVL, RHSVL; 1957 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) 1958 reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL); 1959 else 1960 for (int i = 0, e = E->Scalars.size(); i < e; ++i) { 1961 LHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0)); 1962 RHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1)); 1963 } 1964 1965 setInsertPointAfterBundle(E->Scalars); 1966 1967 Value *LHS = vectorizeTree(LHSVL); 1968 Value *RHS = vectorizeTree(RHSVL); 1969 1970 if (LHS == RHS && isa<Instruction>(LHS)) { 1971 assert((VL0->getOperand(0) == VL0->getOperand(1)) && "Invalid order"); 1972 } 1973 1974 if (Value *V = alreadyVectorized(E->Scalars)) 1975 return V; 1976 1977 BinaryOperator *BinOp = cast<BinaryOperator>(VL0); 1978 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS); 1979 E->VectorizedValue = V; 1980 ++NumVectorInstructions; 1981 1982 if (Instruction *I = dyn_cast<Instruction>(V)) 1983 return propagateMetadata(I, E->Scalars); 1984 1985 return V; 1986 } 1987 case Instruction::Load: { 1988 // Loads are inserted at the head of the tree because we don't want to 1989 // sink them all the way down past store instructions. 1990 setInsertPointAfterBundle(E->Scalars); 1991 1992 LoadInst *LI = cast<LoadInst>(VL0); 1993 Type *ScalarLoadTy = LI->getType(); 1994 unsigned AS = LI->getPointerAddressSpace(); 1995 1996 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 1997 VecTy->getPointerTo(AS)); 1998 unsigned Alignment = LI->getAlignment(); 1999 LI = Builder.CreateLoad(VecPtr); 2000 if (!Alignment) 2001 Alignment = DL->getABITypeAlignment(ScalarLoadTy); 2002 LI->setAlignment(Alignment); 2003 E->VectorizedValue = LI; 2004 ++NumVectorInstructions; 2005 return propagateMetadata(LI, E->Scalars); 2006 } 2007 case Instruction::Store: { 2008 StoreInst *SI = cast<StoreInst>(VL0); 2009 unsigned Alignment = SI->getAlignment(); 2010 unsigned AS = SI->getPointerAddressSpace(); 2011 2012 ValueList ValueOp; 2013 for (int i = 0, e = E->Scalars.size(); i < e; ++i) 2014 ValueOp.push_back(cast<StoreInst>(E->Scalars[i])->getValueOperand()); 2015 2016 setInsertPointAfterBundle(E->Scalars); 2017 2018 Value *VecValue = vectorizeTree(ValueOp); 2019 Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(), 2020 VecTy->getPointerTo(AS)); 2021 StoreInst *S = Builder.CreateStore(VecValue, VecPtr); 2022 if (!Alignment) 2023 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); 2024 S->setAlignment(Alignment); 2025 E->VectorizedValue = S; 2026 ++NumVectorInstructions; 2027 return propagateMetadata(S, E->Scalars); 2028 } 2029 case Instruction::GetElementPtr: { 2030 setInsertPointAfterBundle(E->Scalars); 2031 2032 ValueList Op0VL; 2033 for (int i = 0, e = E->Scalars.size(); i < e; ++i) 2034 Op0VL.push_back(cast<GetElementPtrInst>(E->Scalars[i])->getOperand(0)); 2035 2036 Value *Op0 = vectorizeTree(Op0VL); 2037 2038 std::vector<Value *> OpVecs; 2039 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 2040 ++j) { 2041 ValueList OpVL; 2042 for (int i = 0, e = E->Scalars.size(); i < e; ++i) 2043 OpVL.push_back(cast<GetElementPtrInst>(E->Scalars[i])->getOperand(j)); 2044 2045 Value *OpVec = vectorizeTree(OpVL); 2046 OpVecs.push_back(OpVec); 2047 } 2048 2049 Value *V = Builder.CreateGEP(Op0, OpVecs); 2050 E->VectorizedValue = V; 2051 ++NumVectorInstructions; 2052 2053 if (Instruction *I = dyn_cast<Instruction>(V)) 2054 return propagateMetadata(I, E->Scalars); 2055 2056 return V; 2057 } 2058 case Instruction::Call: { 2059 CallInst *CI = cast<CallInst>(VL0); 2060 setInsertPointAfterBundle(E->Scalars); 2061 Function *FI; 2062 Intrinsic::ID IID = Intrinsic::not_intrinsic; 2063 if (CI && (FI = CI->getCalledFunction())) { 2064 IID = (Intrinsic::ID) FI->getIntrinsicID(); 2065 } 2066 std::vector<Value *> OpVecs; 2067 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 2068 ValueList OpVL; 2069 // ctlz,cttz and powi are special intrinsics whose second argument is 2070 // a scalar. This argument should not be vectorized. 2071 if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) { 2072 CallInst *CEI = cast<CallInst>(E->Scalars[0]); 2073 OpVecs.push_back(CEI->getArgOperand(j)); 2074 continue; 2075 } 2076 for (int i = 0, e = E->Scalars.size(); i < e; ++i) { 2077 CallInst *CEI = cast<CallInst>(E->Scalars[i]); 2078 OpVL.push_back(CEI->getArgOperand(j)); 2079 } 2080 2081 Value *OpVec = vectorizeTree(OpVL); 2082 DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 2083 OpVecs.push_back(OpVec); 2084 } 2085 2086 Module *M = F->getParent(); 2087 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 2088 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 2089 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 2090 Value *V = Builder.CreateCall(CF, OpVecs); 2091 E->VectorizedValue = V; 2092 ++NumVectorInstructions; 2093 return V; 2094 } 2095 case Instruction::ShuffleVector: { 2096 ValueList LHSVL, RHSVL; 2097 for (int i = 0, e = E->Scalars.size(); i < e; ++i) { 2098 LHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0)); 2099 RHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1)); 2100 } 2101 setInsertPointAfterBundle(E->Scalars); 2102 2103 Value *LHS = vectorizeTree(LHSVL); 2104 Value *RHS = vectorizeTree(RHSVL); 2105 2106 if (Value *V = alreadyVectorized(E->Scalars)) 2107 return V; 2108 2109 // Create a vector of LHS op1 RHS 2110 BinaryOperator *BinOp0 = cast<BinaryOperator>(VL0); 2111 Value *V0 = Builder.CreateBinOp(BinOp0->getOpcode(), LHS, RHS); 2112 2113 // Create a vector of LHS op2 RHS 2114 Instruction *VL1 = cast<Instruction>(E->Scalars[1]); 2115 BinaryOperator *BinOp1 = cast<BinaryOperator>(VL1); 2116 Value *V1 = Builder.CreateBinOp(BinOp1->getOpcode(), LHS, RHS); 2117 2118 // Create appropriate shuffle to take alternative operations from 2119 // the vector. 2120 std::vector<Constant *> Mask(E->Scalars.size()); 2121 unsigned e = E->Scalars.size(); 2122 for (unsigned i = 0; i < e; ++i) { 2123 if (i & 1) 2124 Mask[i] = Builder.getInt32(e + i); 2125 else 2126 Mask[i] = Builder.getInt32(i); 2127 } 2128 2129 Value *ShuffleMask = ConstantVector::get(Mask); 2130 2131 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 2132 E->VectorizedValue = V; 2133 ++NumVectorInstructions; 2134 if (Instruction *I = dyn_cast<Instruction>(V)) 2135 return propagateMetadata(I, E->Scalars); 2136 2137 return V; 2138 } 2139 default: 2140 llvm_unreachable("unknown inst"); 2141 } 2142 return nullptr; 2143 } 2144 2145 Value *BoUpSLP::vectorizeTree() { 2146 2147 // All blocks must be scheduled before any instructions are inserted. 2148 for (auto &BSIter : BlocksSchedules) { 2149 scheduleBlock(BSIter.second.get()); 2150 } 2151 2152 Builder.SetInsertPoint(F->getEntryBlock().begin()); 2153 vectorizeTree(&VectorizableTree[0]); 2154 2155 DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n"); 2156 2157 // Extract all of the elements with the external uses. 2158 for (UserList::iterator it = ExternalUses.begin(), e = ExternalUses.end(); 2159 it != e; ++it) { 2160 Value *Scalar = it->Scalar; 2161 llvm::User *User = it->User; 2162 2163 // Skip users that we already RAUW. This happens when one instruction 2164 // has multiple uses of the same value. 2165 if (std::find(Scalar->user_begin(), Scalar->user_end(), User) == 2166 Scalar->user_end()) 2167 continue; 2168 assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar"); 2169 2170 int Idx = ScalarToTreeEntry[Scalar]; 2171 TreeEntry *E = &VectorizableTree[Idx]; 2172 assert(!E->NeedToGather && "Extracting from a gather list"); 2173 2174 Value *Vec = E->VectorizedValue; 2175 assert(Vec && "Can't find vectorizable value"); 2176 2177 Value *Lane = Builder.getInt32(it->Lane); 2178 // Generate extracts for out-of-tree users. 2179 // Find the insertion point for the extractelement lane. 2180 if (isa<Instruction>(Vec)){ 2181 if (PHINode *PH = dyn_cast<PHINode>(User)) { 2182 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 2183 if (PH->getIncomingValue(i) == Scalar) { 2184 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 2185 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2186 CSEBlocks.insert(PH->getIncomingBlock(i)); 2187 PH->setOperand(i, Ex); 2188 } 2189 } 2190 } else { 2191 Builder.SetInsertPoint(cast<Instruction>(User)); 2192 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2193 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 2194 User->replaceUsesOfWith(Scalar, Ex); 2195 } 2196 } else { 2197 Builder.SetInsertPoint(F->getEntryBlock().begin()); 2198 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2199 CSEBlocks.insert(&F->getEntryBlock()); 2200 User->replaceUsesOfWith(Scalar, Ex); 2201 } 2202 2203 DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 2204 } 2205 2206 // For each vectorized value: 2207 for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) { 2208 TreeEntry *Entry = &VectorizableTree[EIdx]; 2209 2210 // For each lane: 2211 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2212 Value *Scalar = Entry->Scalars[Lane]; 2213 // No need to handle users of gathered values. 2214 if (Entry->NeedToGather) 2215 continue; 2216 2217 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 2218 2219 Type *Ty = Scalar->getType(); 2220 if (!Ty->isVoidTy()) { 2221 #ifndef NDEBUG 2222 for (User *U : Scalar->users()) { 2223 DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 2224 2225 assert((ScalarToTreeEntry.count(U) || 2226 // It is legal to replace users in the ignorelist by undef. 2227 (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), U) != 2228 UserIgnoreList.end())) && 2229 "Replacing out-of-tree value with undef"); 2230 } 2231 #endif 2232 Value *Undef = UndefValue::get(Ty); 2233 Scalar->replaceAllUsesWith(Undef); 2234 } 2235 DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 2236 cast<Instruction>(Scalar)->eraseFromParent(); 2237 } 2238 } 2239 2240 Builder.ClearInsertionPoint(); 2241 2242 return VectorizableTree[0].VectorizedValue; 2243 } 2244 2245 void BoUpSLP::optimizeGatherSequence() { 2246 DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 2247 << " gather sequences instructions.\n"); 2248 // LICM InsertElementInst sequences. 2249 for (SetVector<Instruction *>::iterator it = GatherSeq.begin(), 2250 e = GatherSeq.end(); it != e; ++it) { 2251 InsertElementInst *Insert = dyn_cast<InsertElementInst>(*it); 2252 2253 if (!Insert) 2254 continue; 2255 2256 // Check if this block is inside a loop. 2257 Loop *L = LI->getLoopFor(Insert->getParent()); 2258 if (!L) 2259 continue; 2260 2261 // Check if it has a preheader. 2262 BasicBlock *PreHeader = L->getLoopPreheader(); 2263 if (!PreHeader) 2264 continue; 2265 2266 // If the vector or the element that we insert into it are 2267 // instructions that are defined in this basic block then we can't 2268 // hoist this instruction. 2269 Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0)); 2270 Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1)); 2271 if (CurrVec && L->contains(CurrVec)) 2272 continue; 2273 if (NewElem && L->contains(NewElem)) 2274 continue; 2275 2276 // We can hoist this instruction. Move it to the pre-header. 2277 Insert->moveBefore(PreHeader->getTerminator()); 2278 } 2279 2280 // Make a list of all reachable blocks in our CSE queue. 2281 SmallVector<const DomTreeNode *, 8> CSEWorkList; 2282 CSEWorkList.reserve(CSEBlocks.size()); 2283 for (BasicBlock *BB : CSEBlocks) 2284 if (DomTreeNode *N = DT->getNode(BB)) { 2285 assert(DT->isReachableFromEntry(N)); 2286 CSEWorkList.push_back(N); 2287 } 2288 2289 // Sort blocks by domination. This ensures we visit a block after all blocks 2290 // dominating it are visited. 2291 std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(), 2292 [this](const DomTreeNode *A, const DomTreeNode *B) { 2293 return DT->properlyDominates(A, B); 2294 }); 2295 2296 // Perform O(N^2) search over the gather sequences and merge identical 2297 // instructions. TODO: We can further optimize this scan if we split the 2298 // instructions into different buckets based on the insert lane. 2299 SmallVector<Instruction *, 16> Visited; 2300 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 2301 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 2302 "Worklist not sorted properly!"); 2303 BasicBlock *BB = (*I)->getBlock(); 2304 // For all instructions in blocks containing gather sequences: 2305 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 2306 Instruction *In = it++; 2307 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 2308 continue; 2309 2310 // Check if we can replace this instruction with any of the 2311 // visited instructions. 2312 for (SmallVectorImpl<Instruction *>::iterator v = Visited.begin(), 2313 ve = Visited.end(); 2314 v != ve; ++v) { 2315 if (In->isIdenticalTo(*v) && 2316 DT->dominates((*v)->getParent(), In->getParent())) { 2317 In->replaceAllUsesWith(*v); 2318 In->eraseFromParent(); 2319 In = nullptr; 2320 break; 2321 } 2322 } 2323 if (In) { 2324 assert(std::find(Visited.begin(), Visited.end(), In) == Visited.end()); 2325 Visited.push_back(In); 2326 } 2327 } 2328 } 2329 CSEBlocks.clear(); 2330 GatherSeq.clear(); 2331 } 2332 2333 // Groups the instructions to a bundle (which is then a single scheduling entity) 2334 // and schedules instructions until the bundle gets ready. 2335 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, 2336 AliasAnalysis *AA) { 2337 if (isa<PHINode>(VL[0])) 2338 return true; 2339 2340 // Initialize the instruction bundle. 2341 Instruction *OldScheduleEnd = ScheduleEnd; 2342 ScheduleData *PrevInBundle = nullptr; 2343 ScheduleData *Bundle = nullptr; 2344 bool ReSchedule = false; 2345 DEBUG(dbgs() << "SLP: bundle: " << *VL[0] << "\n"); 2346 for (Value *V : VL) { 2347 extendSchedulingRegion(V); 2348 ScheduleData *BundleMember = getScheduleData(V); 2349 assert(BundleMember && 2350 "no ScheduleData for bundle member (maybe not in same basic block)"); 2351 if (BundleMember->IsScheduled) { 2352 // A bundle member was scheduled as single instruction before and now 2353 // needs to be scheduled as part of the bundle. We just get rid of the 2354 // existing schedule. 2355 DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 2356 << " was already scheduled\n"); 2357 ReSchedule = true; 2358 } 2359 assert(BundleMember->isSchedulingEntity() && 2360 "bundle member already part of other bundle"); 2361 if (PrevInBundle) { 2362 PrevInBundle->NextInBundle = BundleMember; 2363 } else { 2364 Bundle = BundleMember; 2365 } 2366 BundleMember->UnscheduledDepsInBundle = 0; 2367 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 2368 2369 // Group the instructions to a bundle. 2370 BundleMember->FirstInBundle = Bundle; 2371 PrevInBundle = BundleMember; 2372 } 2373 if (ScheduleEnd != OldScheduleEnd) { 2374 // The scheduling region got new instructions at the lower end (or it is a 2375 // new region for the first bundle). This makes it necessary to 2376 // recalculate all dependencies. 2377 // It is seldom that this needs to be done a second time after adding the 2378 // initial bundle to the region. 2379 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2380 ScheduleData *SD = getScheduleData(I); 2381 SD->clearDependencies(); 2382 } 2383 ReSchedule = true; 2384 } 2385 if (ReSchedule) { 2386 resetSchedule(); 2387 initialFillReadyList(ReadyInsts); 2388 } 2389 2390 DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 2391 << BB->getName() << "\n"); 2392 2393 calculateDependencies(Bundle, true, AA); 2394 2395 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 2396 // means that there are no cyclic dependencies and we can schedule it. 2397 // Note that's important that we don't "schedule" the bundle yet (see 2398 // cancelScheduling). 2399 while (!Bundle->isReady() && !ReadyInsts.empty()) { 2400 2401 ScheduleData *pickedSD = ReadyInsts.back(); 2402 ReadyInsts.pop_back(); 2403 2404 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 2405 schedule(pickedSD, ReadyInsts); 2406 } 2407 } 2408 return Bundle->isReady(); 2409 } 2410 2411 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL) { 2412 if (isa<PHINode>(VL[0])) 2413 return; 2414 2415 ScheduleData *Bundle = getScheduleData(VL[0]); 2416 DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 2417 assert(!Bundle->IsScheduled && 2418 "Can't cancel bundle which is already scheduled"); 2419 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 2420 "tried to unbundle something which is not a bundle"); 2421 2422 // Un-bundle: make single instructions out of the bundle. 2423 ScheduleData *BundleMember = Bundle; 2424 while (BundleMember) { 2425 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 2426 BundleMember->FirstInBundle = BundleMember; 2427 ScheduleData *Next = BundleMember->NextInBundle; 2428 BundleMember->NextInBundle = nullptr; 2429 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 2430 if (BundleMember->UnscheduledDepsInBundle == 0) { 2431 ReadyInsts.insert(BundleMember); 2432 } 2433 BundleMember = Next; 2434 } 2435 } 2436 2437 void BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V) { 2438 if (getScheduleData(V)) 2439 return; 2440 Instruction *I = dyn_cast<Instruction>(V); 2441 assert(I && "bundle member must be an instruction"); 2442 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 2443 if (!ScheduleStart) { 2444 // It's the first instruction in the new region. 2445 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 2446 ScheduleStart = I; 2447 ScheduleEnd = I->getNextNode(); 2448 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 2449 DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 2450 return; 2451 } 2452 // Search up and down at the same time, because we don't know if the new 2453 // instruction is above or below the existing scheduling region. 2454 BasicBlock::reverse_iterator UpIter(ScheduleStart); 2455 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 2456 BasicBlock::iterator DownIter(ScheduleEnd); 2457 BasicBlock::iterator LowerEnd = BB->end(); 2458 for (;;) { 2459 if (UpIter != UpperEnd) { 2460 if (&*UpIter == I) { 2461 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 2462 ScheduleStart = I; 2463 DEBUG(dbgs() << "SLP: extend schedule region start to " << *I << "\n"); 2464 return; 2465 } 2466 UpIter++; 2467 } 2468 if (DownIter != LowerEnd) { 2469 if (&*DownIter == I) { 2470 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 2471 nullptr); 2472 ScheduleEnd = I->getNextNode(); 2473 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 2474 DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 2475 return; 2476 } 2477 DownIter++; 2478 } 2479 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 2480 "instruction not found in block"); 2481 } 2482 } 2483 2484 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 2485 Instruction *ToI, 2486 ScheduleData *PrevLoadStore, 2487 ScheduleData *NextLoadStore) { 2488 ScheduleData *CurrentLoadStore = PrevLoadStore; 2489 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 2490 ScheduleData *SD = ScheduleDataMap[I]; 2491 if (!SD) { 2492 // Allocate a new ScheduleData for the instruction. 2493 if (ChunkPos >= ChunkSize) { 2494 ScheduleDataChunks.push_back( 2495 llvm::make_unique<ScheduleData[]>(ChunkSize)); 2496 ChunkPos = 0; 2497 } 2498 SD = &(ScheduleDataChunks.back()[ChunkPos++]); 2499 ScheduleDataMap[I] = SD; 2500 SD->Inst = I; 2501 } 2502 assert(!isInSchedulingRegion(SD) && 2503 "new ScheduleData already in scheduling region"); 2504 SD->init(SchedulingRegionID); 2505 2506 if (I->mayReadOrWriteMemory()) { 2507 // Update the linked list of memory accessing instructions. 2508 if (CurrentLoadStore) { 2509 CurrentLoadStore->NextLoadStore = SD; 2510 } else { 2511 FirstLoadStoreInRegion = SD; 2512 } 2513 CurrentLoadStore = SD; 2514 } 2515 } 2516 if (NextLoadStore) { 2517 if (CurrentLoadStore) 2518 CurrentLoadStore->NextLoadStore = NextLoadStore; 2519 } else { 2520 LastLoadStoreInRegion = CurrentLoadStore; 2521 } 2522 } 2523 2524 /// \returns the AA location that is being access by the instruction. 2525 static AliasAnalysis::Location getLocation(Instruction *I, AliasAnalysis *AA) { 2526 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 2527 return AA->getLocation(SI); 2528 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 2529 return AA->getLocation(LI); 2530 return AliasAnalysis::Location(); 2531 } 2532 2533 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 2534 bool InsertInReadyList, 2535 AliasAnalysis *AA) { 2536 assert(SD->isSchedulingEntity()); 2537 2538 SmallVector<ScheduleData *, 10> WorkList; 2539 WorkList.push_back(SD); 2540 2541 while (!WorkList.empty()) { 2542 ScheduleData *SD = WorkList.back(); 2543 WorkList.pop_back(); 2544 2545 ScheduleData *BundleMember = SD; 2546 while (BundleMember) { 2547 assert(isInSchedulingRegion(BundleMember)); 2548 if (!BundleMember->hasValidDependencies()) { 2549 2550 DEBUG(dbgs() << "SLP: update deps of " << *BundleMember << "\n"); 2551 BundleMember->Dependencies = 0; 2552 BundleMember->resetUnscheduledDeps(); 2553 2554 // Handle def-use chain dependencies. 2555 for (User *U : BundleMember->Inst->users()) { 2556 if (isa<Instruction>(U)) { 2557 ScheduleData *UseSD = getScheduleData(U); 2558 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 2559 BundleMember->Dependencies++; 2560 ScheduleData *DestBundle = UseSD->FirstInBundle; 2561 if (!DestBundle->IsScheduled) { 2562 BundleMember->incrementUnscheduledDeps(1); 2563 } 2564 if (!DestBundle->hasValidDependencies()) { 2565 WorkList.push_back(DestBundle); 2566 } 2567 } 2568 } else { 2569 // I'm not sure if this can ever happen. But we need to be safe. 2570 // This lets the instruction/bundle never be scheduled and eventally 2571 // disable vectorization. 2572 BundleMember->Dependencies++; 2573 BundleMember->incrementUnscheduledDeps(1); 2574 } 2575 } 2576 2577 // Handle the memory dependencies. 2578 ScheduleData *DepDest = BundleMember->NextLoadStore; 2579 if (DepDest) { 2580 AliasAnalysis::Location SrcLoc = getLocation(BundleMember->Inst, AA); 2581 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 2582 2583 while (DepDest) { 2584 assert(isInSchedulingRegion(DepDest)); 2585 if (SrcMayWrite || DepDest->Inst->mayWriteToMemory()) { 2586 AliasAnalysis::Location DstLoc = getLocation(DepDest->Inst, AA); 2587 if (!SrcLoc.Ptr || !DstLoc.Ptr || AA->alias(SrcLoc, DstLoc)) { 2588 DepDest->MemoryDependencies.push_back(BundleMember); 2589 BundleMember->Dependencies++; 2590 ScheduleData *DestBundle = DepDest->FirstInBundle; 2591 if (!DestBundle->IsScheduled) { 2592 BundleMember->incrementUnscheduledDeps(1); 2593 } 2594 if (!DestBundle->hasValidDependencies()) { 2595 WorkList.push_back(DestBundle); 2596 } 2597 } 2598 } 2599 DepDest = DepDest->NextLoadStore; 2600 } 2601 } 2602 } 2603 BundleMember = BundleMember->NextInBundle; 2604 } 2605 if (InsertInReadyList && SD->isReady()) { 2606 ReadyInsts.push_back(SD); 2607 DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst << "\n"); 2608 } 2609 } 2610 } 2611 2612 void BoUpSLP::BlockScheduling::resetSchedule() { 2613 assert(ScheduleStart && 2614 "tried to reset schedule on block which has not been scheduled"); 2615 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2616 ScheduleData *SD = getScheduleData(I); 2617 assert(isInSchedulingRegion(SD)); 2618 SD->IsScheduled = false; 2619 SD->resetUnscheduledDeps(); 2620 } 2621 ReadyInsts.clear(); 2622 } 2623 2624 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 2625 2626 if (!BS->ScheduleStart) 2627 return; 2628 2629 DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 2630 2631 BS->resetSchedule(); 2632 2633 // For the real scheduling we use a more sophisticated ready-list: it is 2634 // sorted by the original instruction location. This lets the final schedule 2635 // be as close as possible to the original instruction order. 2636 struct ScheduleDataCompare { 2637 bool operator()(ScheduleData *SD1, ScheduleData *SD2) { 2638 return SD2->SchedulingPriority < SD1->SchedulingPriority; 2639 } 2640 }; 2641 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 2642 2643 // Ensure that all depencency data is updated and fill the ready-list with 2644 // initial instructions. 2645 int Idx = 0; 2646 int NumToSchedule = 0; 2647 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 2648 I = I->getNextNode()) { 2649 ScheduleData *SD = BS->getScheduleData(I); 2650 assert( 2651 SD->isPartOfBundle() == (ScalarToTreeEntry.count(SD->Inst) != 0) && 2652 "scheduler and vectorizer have different opinion on what is a bundle"); 2653 SD->FirstInBundle->SchedulingPriority = Idx++; 2654 if (SD->isSchedulingEntity()) { 2655 BS->calculateDependencies(SD, false, AA); 2656 NumToSchedule++; 2657 } 2658 } 2659 BS->initialFillReadyList(ReadyInsts); 2660 2661 Instruction *LastScheduledInst = BS->ScheduleEnd; 2662 2663 // Do the "real" scheduling. 2664 while (!ReadyInsts.empty()) { 2665 ScheduleData *picked = *ReadyInsts.begin(); 2666 ReadyInsts.erase(ReadyInsts.begin()); 2667 2668 // Move the scheduled instruction(s) to their dedicated places, if not 2669 // there yet. 2670 ScheduleData *BundleMember = picked; 2671 while (BundleMember) { 2672 Instruction *pickedInst = BundleMember->Inst; 2673 if (LastScheduledInst->getNextNode() != pickedInst) { 2674 BS->BB->getInstList().remove(pickedInst); 2675 BS->BB->getInstList().insert(LastScheduledInst, pickedInst); 2676 } 2677 LastScheduledInst = pickedInst; 2678 BundleMember = BundleMember->NextInBundle; 2679 } 2680 2681 BS->schedule(picked, ReadyInsts); 2682 NumToSchedule--; 2683 } 2684 assert(NumToSchedule == 0 && "could not schedule all instructions"); 2685 2686 // Avoid duplicate scheduling of the block. 2687 BS->ScheduleStart = nullptr; 2688 } 2689 2690 /// The SLPVectorizer Pass. 2691 struct SLPVectorizer : public FunctionPass { 2692 typedef SmallVector<StoreInst *, 8> StoreList; 2693 typedef MapVector<Value *, StoreList> StoreListMap; 2694 2695 /// Pass identification, replacement for typeid 2696 static char ID; 2697 2698 explicit SLPVectorizer() : FunctionPass(ID) { 2699 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 2700 } 2701 2702 ScalarEvolution *SE; 2703 const DataLayout *DL; 2704 TargetTransformInfo *TTI; 2705 TargetLibraryInfo *TLI; 2706 AliasAnalysis *AA; 2707 LoopInfo *LI; 2708 DominatorTree *DT; 2709 2710 bool runOnFunction(Function &F) override { 2711 if (skipOptnoneFunction(F)) 2712 return false; 2713 2714 SE = &getAnalysis<ScalarEvolution>(); 2715 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 2716 DL = DLP ? &DLP->getDataLayout() : nullptr; 2717 TTI = &getAnalysis<TargetTransformInfo>(); 2718 TLI = getAnalysisIfAvailable<TargetLibraryInfo>(); 2719 AA = &getAnalysis<AliasAnalysis>(); 2720 LI = &getAnalysis<LoopInfo>(); 2721 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2722 2723 StoreRefs.clear(); 2724 bool Changed = false; 2725 2726 // If the target claims to have no vector registers don't attempt 2727 // vectorization. 2728 if (!TTI->getNumberOfRegisters(true)) 2729 return false; 2730 2731 // Must have DataLayout. We can't require it because some tests run w/o 2732 // triple. 2733 if (!DL) 2734 return false; 2735 2736 // Don't vectorize when the attribute NoImplicitFloat is used. 2737 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 2738 return false; 2739 2740 DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 2741 2742 // Use the bottom up slp vectorizer to construct chains that start with 2743 // store instructions. 2744 BoUpSLP R(&F, SE, DL, TTI, TLI, AA, LI, DT); 2745 2746 // Scan the blocks in the function in post order. 2747 for (po_iterator<BasicBlock*> it = po_begin(&F.getEntryBlock()), 2748 e = po_end(&F.getEntryBlock()); it != e; ++it) { 2749 BasicBlock *BB = *it; 2750 // Vectorize trees that end at stores. 2751 if (unsigned count = collectStores(BB, R)) { 2752 (void)count; 2753 DEBUG(dbgs() << "SLP: Found " << count << " stores to vectorize.\n"); 2754 Changed |= vectorizeStoreChains(R); 2755 } 2756 2757 // Vectorize trees that end at reductions. 2758 Changed |= vectorizeChainsInBlock(BB, R); 2759 } 2760 2761 if (Changed) { 2762 R.optimizeGatherSequence(); 2763 DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 2764 DEBUG(verifyFunction(F)); 2765 } 2766 return Changed; 2767 } 2768 2769 void getAnalysisUsage(AnalysisUsage &AU) const override { 2770 FunctionPass::getAnalysisUsage(AU); 2771 AU.addRequired<ScalarEvolution>(); 2772 AU.addRequired<AliasAnalysis>(); 2773 AU.addRequired<TargetTransformInfo>(); 2774 AU.addRequired<LoopInfo>(); 2775 AU.addRequired<DominatorTreeWrapperPass>(); 2776 AU.addPreserved<LoopInfo>(); 2777 AU.addPreserved<DominatorTreeWrapperPass>(); 2778 AU.setPreservesCFG(); 2779 } 2780 2781 private: 2782 2783 /// \brief Collect memory references and sort them according to their base 2784 /// object. We sort the stores to their base objects to reduce the cost of the 2785 /// quadratic search on the stores. TODO: We can further reduce this cost 2786 /// if we flush the chain creation every time we run into a memory barrier. 2787 unsigned collectStores(BasicBlock *BB, BoUpSLP &R); 2788 2789 /// \brief Try to vectorize a chain that starts at two arithmetic instrs. 2790 bool tryToVectorizePair(Value *A, Value *B, BoUpSLP &R); 2791 2792 /// \brief Try to vectorize a list of operands. 2793 /// \@param BuildVector A list of users to ignore for the purpose of 2794 /// scheduling and that don't need extracting. 2795 /// \returns true if a value was vectorized. 2796 bool tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 2797 ArrayRef<Value *> BuildVector = None, 2798 bool allowReorder = false); 2799 2800 /// \brief Try to vectorize a chain that may start at the operands of \V; 2801 bool tryToVectorize(BinaryOperator *V, BoUpSLP &R); 2802 2803 /// \brief Vectorize the stores that were collected in StoreRefs. 2804 bool vectorizeStoreChains(BoUpSLP &R); 2805 2806 /// \brief Scan the basic block and look for patterns that are likely to start 2807 /// a vectorization chain. 2808 bool vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R); 2809 2810 bool vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold, 2811 BoUpSLP &R); 2812 2813 bool vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold, 2814 BoUpSLP &R); 2815 private: 2816 StoreListMap StoreRefs; 2817 }; 2818 2819 /// \brief Check that the Values in the slice in VL array are still existent in 2820 /// the WeakVH array. 2821 /// Vectorization of part of the VL array may cause later values in the VL array 2822 /// to become invalid. We track when this has happened in the WeakVH array. 2823 static bool hasValueBeenRAUWed(ArrayRef<Value *> &VL, 2824 SmallVectorImpl<WeakVH> &VH, 2825 unsigned SliceBegin, 2826 unsigned SliceSize) { 2827 for (unsigned i = SliceBegin; i < SliceBegin + SliceSize; ++i) 2828 if (VH[i] != VL[i]) 2829 return true; 2830 2831 return false; 2832 } 2833 2834 bool SLPVectorizer::vectorizeStoreChain(ArrayRef<Value *> Chain, 2835 int CostThreshold, BoUpSLP &R) { 2836 unsigned ChainLen = Chain.size(); 2837 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 2838 << "\n"); 2839 Type *StoreTy = cast<StoreInst>(Chain[0])->getValueOperand()->getType(); 2840 unsigned Sz = DL->getTypeSizeInBits(StoreTy); 2841 unsigned VF = MinVecRegSize / Sz; 2842 2843 if (!isPowerOf2_32(Sz) || VF < 2) 2844 return false; 2845 2846 // Keep track of values that were deleted by vectorizing in the loop below. 2847 SmallVector<WeakVH, 8> TrackValues(Chain.begin(), Chain.end()); 2848 2849 bool Changed = false; 2850 // Look for profitable vectorizable trees at all offsets, starting at zero. 2851 for (unsigned i = 0, e = ChainLen; i < e; ++i) { 2852 if (i + VF > e) 2853 break; 2854 2855 // Check that a previous iteration of this loop did not delete the Value. 2856 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) 2857 continue; 2858 2859 DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 2860 << "\n"); 2861 ArrayRef<Value *> Operands = Chain.slice(i, VF); 2862 2863 R.buildTree(Operands); 2864 2865 int Cost = R.getTreeCost(); 2866 2867 DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n"); 2868 if (Cost < CostThreshold) { 2869 DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 2870 R.vectorizeTree(); 2871 2872 // Move to the next bundle. 2873 i += VF - 1; 2874 Changed = true; 2875 } 2876 } 2877 2878 return Changed; 2879 } 2880 2881 bool SLPVectorizer::vectorizeStores(ArrayRef<StoreInst *> Stores, 2882 int costThreshold, BoUpSLP &R) { 2883 SetVector<Value *> Heads, Tails; 2884 SmallDenseMap<Value *, Value *> ConsecutiveChain; 2885 2886 // We may run into multiple chains that merge into a single chain. We mark the 2887 // stores that we vectorized so that we don't visit the same store twice. 2888 BoUpSLP::ValueSet VectorizedStores; 2889 bool Changed = false; 2890 2891 // Do a quadratic search on all of the given stores and find 2892 // all of the pairs of stores that follow each other. 2893 for (unsigned i = 0, e = Stores.size(); i < e; ++i) { 2894 for (unsigned j = 0; j < e; ++j) { 2895 if (i == j) 2896 continue; 2897 2898 if (R.isConsecutiveAccess(Stores[i], Stores[j])) { 2899 Tails.insert(Stores[j]); 2900 Heads.insert(Stores[i]); 2901 ConsecutiveChain[Stores[i]] = Stores[j]; 2902 } 2903 } 2904 } 2905 2906 // For stores that start but don't end a link in the chain: 2907 for (SetVector<Value *>::iterator it = Heads.begin(), e = Heads.end(); 2908 it != e; ++it) { 2909 if (Tails.count(*it)) 2910 continue; 2911 2912 // We found a store instr that starts a chain. Now follow the chain and try 2913 // to vectorize it. 2914 BoUpSLP::ValueList Operands; 2915 Value *I = *it; 2916 // Collect the chain into a list. 2917 while (Tails.count(I) || Heads.count(I)) { 2918 if (VectorizedStores.count(I)) 2919 break; 2920 Operands.push_back(I); 2921 // Move to the next value in the chain. 2922 I = ConsecutiveChain[I]; 2923 } 2924 2925 bool Vectorized = vectorizeStoreChain(Operands, costThreshold, R); 2926 2927 // Mark the vectorized stores so that we don't vectorize them again. 2928 if (Vectorized) 2929 VectorizedStores.insert(Operands.begin(), Operands.end()); 2930 Changed |= Vectorized; 2931 } 2932 2933 return Changed; 2934 } 2935 2936 2937 unsigned SLPVectorizer::collectStores(BasicBlock *BB, BoUpSLP &R) { 2938 unsigned count = 0; 2939 StoreRefs.clear(); 2940 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 2941 StoreInst *SI = dyn_cast<StoreInst>(it); 2942 if (!SI) 2943 continue; 2944 2945 // Don't touch volatile stores. 2946 if (!SI->isSimple()) 2947 continue; 2948 2949 // Check that the pointer points to scalars. 2950 Type *Ty = SI->getValueOperand()->getType(); 2951 if (Ty->isAggregateType() || Ty->isVectorTy()) 2952 continue; 2953 2954 // Find the base pointer. 2955 Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), DL); 2956 2957 // Save the store locations. 2958 StoreRefs[Ptr].push_back(SI); 2959 count++; 2960 } 2961 return count; 2962 } 2963 2964 bool SLPVectorizer::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 2965 if (!A || !B) 2966 return false; 2967 Value *VL[] = { A, B }; 2968 return tryToVectorizeList(VL, R, None, true); 2969 } 2970 2971 bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 2972 ArrayRef<Value *> BuildVector, 2973 bool allowReorder) { 2974 if (VL.size() < 2) 2975 return false; 2976 2977 DEBUG(dbgs() << "SLP: Vectorizing a list of length = " << VL.size() << ".\n"); 2978 2979 // Check that all of the parts are scalar instructions of the same type. 2980 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 2981 if (!I0) 2982 return false; 2983 2984 unsigned Opcode0 = I0->getOpcode(); 2985 2986 Type *Ty0 = I0->getType(); 2987 unsigned Sz = DL->getTypeSizeInBits(Ty0); 2988 unsigned VF = MinVecRegSize / Sz; 2989 2990 for (int i = 0, e = VL.size(); i < e; ++i) { 2991 Type *Ty = VL[i]->getType(); 2992 if (Ty->isAggregateType() || Ty->isVectorTy()) 2993 return false; 2994 Instruction *Inst = dyn_cast<Instruction>(VL[i]); 2995 if (!Inst || Inst->getOpcode() != Opcode0) 2996 return false; 2997 } 2998 2999 bool Changed = false; 3000 3001 // Keep track of values that were deleted by vectorizing in the loop below. 3002 SmallVector<WeakVH, 8> TrackValues(VL.begin(), VL.end()); 3003 3004 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3005 unsigned OpsWidth = 0; 3006 3007 if (i + VF > e) 3008 OpsWidth = e - i; 3009 else 3010 OpsWidth = VF; 3011 3012 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 3013 break; 3014 3015 // Check that a previous iteration of this loop did not delete the Value. 3016 if (hasValueBeenRAUWed(VL, TrackValues, i, OpsWidth)) 3017 continue; 3018 3019 DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 3020 << "\n"); 3021 ArrayRef<Value *> Ops = VL.slice(i, OpsWidth); 3022 3023 ArrayRef<Value *> BuildVectorSlice; 3024 if (!BuildVector.empty()) 3025 BuildVectorSlice = BuildVector.slice(i, OpsWidth); 3026 3027 R.buildTree(Ops, BuildVectorSlice); 3028 // TODO: check if we can allow reordering also for other cases than 3029 // tryToVectorizePair() 3030 if (allowReorder && R.shouldReorder()) { 3031 assert(Ops.size() == 2); 3032 assert(BuildVectorSlice.empty()); 3033 Value *ReorderedOps[] = { Ops[1], Ops[0] }; 3034 R.buildTree(ReorderedOps, None); 3035 } 3036 int Cost = R.getTreeCost(); 3037 3038 if (Cost < -SLPCostThreshold) { 3039 DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 3040 Value *VectorizedRoot = R.vectorizeTree(); 3041 3042 // Reconstruct the build vector by extracting the vectorized root. This 3043 // way we handle the case where some elements of the vector are undefined. 3044 // (return (inserelt <4 xi32> (insertelt undef (opd0) 0) (opd1) 2)) 3045 if (!BuildVectorSlice.empty()) { 3046 // The insert point is the last build vector instruction. The vectorized 3047 // root will precede it. This guarantees that we get an instruction. The 3048 // vectorized tree could have been constant folded. 3049 Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back()); 3050 unsigned VecIdx = 0; 3051 for (auto &V : BuildVectorSlice) { 3052 IRBuilder<true, NoFolder> Builder( 3053 ++BasicBlock::iterator(InsertAfter)); 3054 InsertElementInst *IE = cast<InsertElementInst>(V); 3055 Instruction *Extract = cast<Instruction>(Builder.CreateExtractElement( 3056 VectorizedRoot, Builder.getInt32(VecIdx++))); 3057 IE->setOperand(1, Extract); 3058 IE->removeFromParent(); 3059 IE->insertAfter(Extract); 3060 InsertAfter = IE; 3061 } 3062 } 3063 // Move to the next bundle. 3064 i += VF - 1; 3065 Changed = true; 3066 } 3067 } 3068 3069 return Changed; 3070 } 3071 3072 bool SLPVectorizer::tryToVectorize(BinaryOperator *V, BoUpSLP &R) { 3073 if (!V) 3074 return false; 3075 3076 // Try to vectorize V. 3077 if (tryToVectorizePair(V->getOperand(0), V->getOperand(1), R)) 3078 return true; 3079 3080 BinaryOperator *A = dyn_cast<BinaryOperator>(V->getOperand(0)); 3081 BinaryOperator *B = dyn_cast<BinaryOperator>(V->getOperand(1)); 3082 // Try to skip B. 3083 if (B && B->hasOneUse()) { 3084 BinaryOperator *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 3085 BinaryOperator *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 3086 if (tryToVectorizePair(A, B0, R)) { 3087 B->moveBefore(V); 3088 return true; 3089 } 3090 if (tryToVectorizePair(A, B1, R)) { 3091 B->moveBefore(V); 3092 return true; 3093 } 3094 } 3095 3096 // Try to skip A. 3097 if (A && A->hasOneUse()) { 3098 BinaryOperator *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 3099 BinaryOperator *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 3100 if (tryToVectorizePair(A0, B, R)) { 3101 A->moveBefore(V); 3102 return true; 3103 } 3104 if (tryToVectorizePair(A1, B, R)) { 3105 A->moveBefore(V); 3106 return true; 3107 } 3108 } 3109 return 0; 3110 } 3111 3112 /// \brief Generate a shuffle mask to be used in a reduction tree. 3113 /// 3114 /// \param VecLen The length of the vector to be reduced. 3115 /// \param NumEltsToRdx The number of elements that should be reduced in the 3116 /// vector. 3117 /// \param IsPairwise Whether the reduction is a pairwise or splitting 3118 /// reduction. A pairwise reduction will generate a mask of 3119 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 3120 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 3121 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 3122 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 3123 bool IsPairwise, bool IsLeft, 3124 IRBuilder<> &Builder) { 3125 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 3126 3127 SmallVector<Constant *, 32> ShuffleMask( 3128 VecLen, UndefValue::get(Builder.getInt32Ty())); 3129 3130 if (IsPairwise) 3131 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 3132 for (unsigned i = 0; i != NumEltsToRdx; ++i) 3133 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 3134 else 3135 // Move the upper half of the vector to the lower half. 3136 for (unsigned i = 0; i != NumEltsToRdx; ++i) 3137 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 3138 3139 return ConstantVector::get(ShuffleMask); 3140 } 3141 3142 3143 /// Model horizontal reductions. 3144 /// 3145 /// A horizontal reduction is a tree of reduction operations (currently add and 3146 /// fadd) that has operations that can be put into a vector as its leaf. 3147 /// For example, this tree: 3148 /// 3149 /// mul mul mul mul 3150 /// \ / \ / 3151 /// + + 3152 /// \ / 3153 /// + 3154 /// This tree has "mul" as its reduced values and "+" as its reduction 3155 /// operations. A reduction might be feeding into a store or a binary operation 3156 /// feeding a phi. 3157 /// ... 3158 /// \ / 3159 /// + 3160 /// | 3161 /// phi += 3162 /// 3163 /// Or: 3164 /// ... 3165 /// \ / 3166 /// + 3167 /// | 3168 /// *p = 3169 /// 3170 class HorizontalReduction { 3171 SmallVector<Value *, 16> ReductionOps; 3172 SmallVector<Value *, 32> ReducedVals; 3173 3174 BinaryOperator *ReductionRoot; 3175 PHINode *ReductionPHI; 3176 3177 /// The opcode of the reduction. 3178 unsigned ReductionOpcode; 3179 /// The opcode of the values we perform a reduction on. 3180 unsigned ReducedValueOpcode; 3181 /// The width of one full horizontal reduction operation. 3182 unsigned ReduxWidth; 3183 /// Should we model this reduction as a pairwise reduction tree or a tree that 3184 /// splits the vector in halves and adds those halves. 3185 bool IsPairwiseReduction; 3186 3187 public: 3188 HorizontalReduction() 3189 : ReductionRoot(nullptr), ReductionPHI(nullptr), ReductionOpcode(0), 3190 ReducedValueOpcode(0), ReduxWidth(0), IsPairwiseReduction(false) {} 3191 3192 /// \brief Try to find a reduction tree. 3193 bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B, 3194 const DataLayout *DL) { 3195 assert((!Phi || 3196 std::find(Phi->op_begin(), Phi->op_end(), B) != Phi->op_end()) && 3197 "Thi phi needs to use the binary operator"); 3198 3199 // We could have a initial reductions that is not an add. 3200 // r *= v1 + v2 + v3 + v4 3201 // In such a case start looking for a tree rooted in the first '+'. 3202 if (Phi) { 3203 if (B->getOperand(0) == Phi) { 3204 Phi = nullptr; 3205 B = dyn_cast<BinaryOperator>(B->getOperand(1)); 3206 } else if (B->getOperand(1) == Phi) { 3207 Phi = nullptr; 3208 B = dyn_cast<BinaryOperator>(B->getOperand(0)); 3209 } 3210 } 3211 3212 if (!B) 3213 return false; 3214 3215 Type *Ty = B->getType(); 3216 if (Ty->isVectorTy()) 3217 return false; 3218 3219 ReductionOpcode = B->getOpcode(); 3220 ReducedValueOpcode = 0; 3221 ReduxWidth = MinVecRegSize / DL->getTypeSizeInBits(Ty); 3222 ReductionRoot = B; 3223 ReductionPHI = Phi; 3224 3225 if (ReduxWidth < 4) 3226 return false; 3227 3228 // We currently only support adds. 3229 if (ReductionOpcode != Instruction::Add && 3230 ReductionOpcode != Instruction::FAdd) 3231 return false; 3232 3233 // Post order traverse the reduction tree starting at B. We only handle true 3234 // trees containing only binary operators. 3235 SmallVector<std::pair<BinaryOperator *, unsigned>, 32> Stack; 3236 Stack.push_back(std::make_pair(B, 0)); 3237 while (!Stack.empty()) { 3238 BinaryOperator *TreeN = Stack.back().first; 3239 unsigned EdgeToVist = Stack.back().second++; 3240 bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode; 3241 3242 // Only handle trees in the current basic block. 3243 if (TreeN->getParent() != B->getParent()) 3244 return false; 3245 3246 // Each tree node needs to have one user except for the ultimate 3247 // reduction. 3248 if (!TreeN->hasOneUse() && TreeN != B) 3249 return false; 3250 3251 // Postorder vist. 3252 if (EdgeToVist == 2 || IsReducedValue) { 3253 if (IsReducedValue) { 3254 // Make sure that the opcodes of the operations that we are going to 3255 // reduce match. 3256 if (!ReducedValueOpcode) 3257 ReducedValueOpcode = TreeN->getOpcode(); 3258 else if (ReducedValueOpcode != TreeN->getOpcode()) 3259 return false; 3260 ReducedVals.push_back(TreeN); 3261 } else { 3262 // We need to be able to reassociate the adds. 3263 if (!TreeN->isAssociative()) 3264 return false; 3265 ReductionOps.push_back(TreeN); 3266 } 3267 // Retract. 3268 Stack.pop_back(); 3269 continue; 3270 } 3271 3272 // Visit left or right. 3273 Value *NextV = TreeN->getOperand(EdgeToVist); 3274 BinaryOperator *Next = dyn_cast<BinaryOperator>(NextV); 3275 if (Next) 3276 Stack.push_back(std::make_pair(Next, 0)); 3277 else if (NextV != Phi) 3278 return false; 3279 } 3280 return true; 3281 } 3282 3283 /// \brief Attempt to vectorize the tree found by 3284 /// matchAssociativeReduction. 3285 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 3286 if (ReducedVals.empty()) 3287 return false; 3288 3289 unsigned NumReducedVals = ReducedVals.size(); 3290 if (NumReducedVals < ReduxWidth) 3291 return false; 3292 3293 Value *VectorizedTree = nullptr; 3294 IRBuilder<> Builder(ReductionRoot); 3295 FastMathFlags Unsafe; 3296 Unsafe.setUnsafeAlgebra(); 3297 Builder.SetFastMathFlags(Unsafe); 3298 unsigned i = 0; 3299 3300 for (; i < NumReducedVals - ReduxWidth + 1; i += ReduxWidth) { 3301 ArrayRef<Value *> ValsToReduce(&ReducedVals[i], ReduxWidth); 3302 V.buildTree(ValsToReduce, ReductionOps); 3303 3304 // Estimate cost. 3305 int Cost = V.getTreeCost() + getReductionCost(TTI, ReducedVals[i]); 3306 if (Cost >= -SLPCostThreshold) 3307 break; 3308 3309 DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost 3310 << ". (HorRdx)\n"); 3311 3312 // Vectorize a tree. 3313 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 3314 Value *VectorizedRoot = V.vectorizeTree(); 3315 3316 // Emit a reduction. 3317 Value *ReducedSubTree = emitReduction(VectorizedRoot, Builder); 3318 if (VectorizedTree) { 3319 Builder.SetCurrentDebugLocation(Loc); 3320 VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree, 3321 ReducedSubTree, "bin.rdx"); 3322 } else 3323 VectorizedTree = ReducedSubTree; 3324 } 3325 3326 if (VectorizedTree) { 3327 // Finish the reduction. 3328 for (; i < NumReducedVals; ++i) { 3329 Builder.SetCurrentDebugLocation( 3330 cast<Instruction>(ReducedVals[i])->getDebugLoc()); 3331 VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree, 3332 ReducedVals[i]); 3333 } 3334 // Update users. 3335 if (ReductionPHI) { 3336 assert(ReductionRoot && "Need a reduction operation"); 3337 ReductionRoot->setOperand(0, VectorizedTree); 3338 ReductionRoot->setOperand(1, ReductionPHI); 3339 } else 3340 ReductionRoot->replaceAllUsesWith(VectorizedTree); 3341 } 3342 return VectorizedTree != nullptr; 3343 } 3344 3345 private: 3346 3347 /// \brief Calcuate the cost of a reduction. 3348 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal) { 3349 Type *ScalarTy = FirstReducedVal->getType(); 3350 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 3351 3352 int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true); 3353 int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false); 3354 3355 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 3356 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 3357 3358 int ScalarReduxCost = 3359 ReduxWidth * TTI->getArithmeticInstrCost(ReductionOpcode, VecTy); 3360 3361 DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 3362 << " for reduction that starts with " << *FirstReducedVal 3363 << " (It is a " 3364 << (IsPairwiseReduction ? "pairwise" : "splitting") 3365 << " reduction)\n"); 3366 3367 return VecReduxCost - ScalarReduxCost; 3368 } 3369 3370 static Value *createBinOp(IRBuilder<> &Builder, unsigned Opcode, Value *L, 3371 Value *R, const Twine &Name = "") { 3372 if (Opcode == Instruction::FAdd) 3373 return Builder.CreateFAdd(L, R, Name); 3374 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, L, R, Name); 3375 } 3376 3377 /// \brief Emit a horizontal reduction of the vectorized value. 3378 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder) { 3379 assert(VectorizedValue && "Need to have a vectorized tree node"); 3380 Instruction *ValToReduce = dyn_cast<Instruction>(VectorizedValue); 3381 assert(isPowerOf2_32(ReduxWidth) && 3382 "We only handle power-of-two reductions for now"); 3383 3384 Value *TmpVec = ValToReduce; 3385 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 3386 if (IsPairwiseReduction) { 3387 Value *LeftMask = 3388 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 3389 Value *RightMask = 3390 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 3391 3392 Value *LeftShuf = Builder.CreateShuffleVector( 3393 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 3394 Value *RightShuf = Builder.CreateShuffleVector( 3395 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 3396 "rdx.shuf.r"); 3397 TmpVec = createBinOp(Builder, ReductionOpcode, LeftShuf, RightShuf, 3398 "bin.rdx"); 3399 } else { 3400 Value *UpperHalf = 3401 createRdxShuffleMask(ReduxWidth, i, false, false, Builder); 3402 Value *Shuf = Builder.CreateShuffleVector( 3403 TmpVec, UndefValue::get(TmpVec->getType()), UpperHalf, "rdx.shuf"); 3404 TmpVec = createBinOp(Builder, ReductionOpcode, TmpVec, Shuf, "bin.rdx"); 3405 } 3406 } 3407 3408 // The result is in the first element of the vector. 3409 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 3410 } 3411 }; 3412 3413 /// \brief Recognize construction of vectors like 3414 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 3415 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 3416 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 3417 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 3418 /// 3419 /// Returns true if it matches 3420 /// 3421 static bool findBuildVector(InsertElementInst *FirstInsertElem, 3422 SmallVectorImpl<Value *> &BuildVector, 3423 SmallVectorImpl<Value *> &BuildVectorOpds) { 3424 if (!isa<UndefValue>(FirstInsertElem->getOperand(0))) 3425 return false; 3426 3427 InsertElementInst *IE = FirstInsertElem; 3428 while (true) { 3429 BuildVector.push_back(IE); 3430 BuildVectorOpds.push_back(IE->getOperand(1)); 3431 3432 if (IE->use_empty()) 3433 return false; 3434 3435 InsertElementInst *NextUse = dyn_cast<InsertElementInst>(IE->user_back()); 3436 if (!NextUse) 3437 return true; 3438 3439 // If this isn't the final use, make sure the next insertelement is the only 3440 // use. It's OK if the final constructed vector is used multiple times 3441 if (!IE->hasOneUse()) 3442 return false; 3443 3444 IE = NextUse; 3445 } 3446 3447 return false; 3448 } 3449 3450 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 3451 return V->getType() < V2->getType(); 3452 } 3453 3454 bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 3455 bool Changed = false; 3456 SmallVector<Value *, 4> Incoming; 3457 SmallSet<Value *, 16> VisitedInstrs; 3458 3459 bool HaveVectorizedPhiNodes = true; 3460 while (HaveVectorizedPhiNodes) { 3461 HaveVectorizedPhiNodes = false; 3462 3463 // Collect the incoming values from the PHIs. 3464 Incoming.clear(); 3465 for (BasicBlock::iterator instr = BB->begin(), ie = BB->end(); instr != ie; 3466 ++instr) { 3467 PHINode *P = dyn_cast<PHINode>(instr); 3468 if (!P) 3469 break; 3470 3471 if (!VisitedInstrs.count(P)) 3472 Incoming.push_back(P); 3473 } 3474 3475 // Sort by type. 3476 std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc); 3477 3478 // Try to vectorize elements base on their type. 3479 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 3480 E = Incoming.end(); 3481 IncIt != E;) { 3482 3483 // Look for the next elements with the same type. 3484 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 3485 while (SameTypeIt != E && 3486 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 3487 VisitedInstrs.insert(*SameTypeIt); 3488 ++SameTypeIt; 3489 } 3490 3491 // Try to vectorize them. 3492 unsigned NumElts = (SameTypeIt - IncIt); 3493 DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n"); 3494 if (NumElts > 1 && 3495 tryToVectorizeList(ArrayRef<Value *>(IncIt, NumElts), R)) { 3496 // Success start over because instructions might have been changed. 3497 HaveVectorizedPhiNodes = true; 3498 Changed = true; 3499 break; 3500 } 3501 3502 // Start over at the next instruction of a different type (or the end). 3503 IncIt = SameTypeIt; 3504 } 3505 } 3506 3507 VisitedInstrs.clear(); 3508 3509 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) { 3510 // We may go through BB multiple times so skip the one we have checked. 3511 if (!VisitedInstrs.insert(it)) 3512 continue; 3513 3514 if (isa<DbgInfoIntrinsic>(it)) 3515 continue; 3516 3517 // Try to vectorize reductions that use PHINodes. 3518 if (PHINode *P = dyn_cast<PHINode>(it)) { 3519 // Check that the PHI is a reduction PHI. 3520 if (P->getNumIncomingValues() != 2) 3521 return Changed; 3522 Value *Rdx = 3523 (P->getIncomingBlock(0) == BB 3524 ? (P->getIncomingValue(0)) 3525 : (P->getIncomingBlock(1) == BB ? P->getIncomingValue(1) 3526 : nullptr)); 3527 // Check if this is a Binary Operator. 3528 BinaryOperator *BI = dyn_cast_or_null<BinaryOperator>(Rdx); 3529 if (!BI) 3530 continue; 3531 3532 // Try to match and vectorize a horizontal reduction. 3533 HorizontalReduction HorRdx; 3534 if (ShouldVectorizeHor && 3535 HorRdx.matchAssociativeReduction(P, BI, DL) && 3536 HorRdx.tryToReduce(R, TTI)) { 3537 Changed = true; 3538 it = BB->begin(); 3539 e = BB->end(); 3540 continue; 3541 } 3542 3543 Value *Inst = BI->getOperand(0); 3544 if (Inst == P) 3545 Inst = BI->getOperand(1); 3546 3547 if (tryToVectorize(dyn_cast<BinaryOperator>(Inst), R)) { 3548 // We would like to start over since some instructions are deleted 3549 // and the iterator may become invalid value. 3550 Changed = true; 3551 it = BB->begin(); 3552 e = BB->end(); 3553 continue; 3554 } 3555 3556 continue; 3557 } 3558 3559 // Try to vectorize horizontal reductions feeding into a store. 3560 if (ShouldStartVectorizeHorAtStore) 3561 if (StoreInst *SI = dyn_cast<StoreInst>(it)) 3562 if (BinaryOperator *BinOp = 3563 dyn_cast<BinaryOperator>(SI->getValueOperand())) { 3564 HorizontalReduction HorRdx; 3565 if (((HorRdx.matchAssociativeReduction(nullptr, BinOp, DL) && 3566 HorRdx.tryToReduce(R, TTI)) || 3567 tryToVectorize(BinOp, R))) { 3568 Changed = true; 3569 it = BB->begin(); 3570 e = BB->end(); 3571 continue; 3572 } 3573 } 3574 3575 // Try to vectorize trees that start at compare instructions. 3576 if (CmpInst *CI = dyn_cast<CmpInst>(it)) { 3577 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) { 3578 Changed = true; 3579 // We would like to start over since some instructions are deleted 3580 // and the iterator may become invalid value. 3581 it = BB->begin(); 3582 e = BB->end(); 3583 continue; 3584 } 3585 3586 for (int i = 0; i < 2; ++i) { 3587 if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i))) { 3588 if (tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R)) { 3589 Changed = true; 3590 // We would like to start over since some instructions are deleted 3591 // and the iterator may become invalid value. 3592 it = BB->begin(); 3593 e = BB->end(); 3594 } 3595 } 3596 } 3597 continue; 3598 } 3599 3600 // Try to vectorize trees that start at insertelement instructions. 3601 if (InsertElementInst *FirstInsertElem = dyn_cast<InsertElementInst>(it)) { 3602 SmallVector<Value *, 16> BuildVector; 3603 SmallVector<Value *, 16> BuildVectorOpds; 3604 if (!findBuildVector(FirstInsertElem, BuildVector, BuildVectorOpds)) 3605 continue; 3606 3607 // Vectorize starting with the build vector operands ignoring the 3608 // BuildVector instructions for the purpose of scheduling and user 3609 // extraction. 3610 if (tryToVectorizeList(BuildVectorOpds, R, BuildVector)) { 3611 Changed = true; 3612 it = BB->begin(); 3613 e = BB->end(); 3614 } 3615 3616 continue; 3617 } 3618 } 3619 3620 return Changed; 3621 } 3622 3623 bool SLPVectorizer::vectorizeStoreChains(BoUpSLP &R) { 3624 bool Changed = false; 3625 // Attempt to sort and vectorize each of the store-groups. 3626 for (StoreListMap::iterator it = StoreRefs.begin(), e = StoreRefs.end(); 3627 it != e; ++it) { 3628 if (it->second.size() < 2) 3629 continue; 3630 3631 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 3632 << it->second.size() << ".\n"); 3633 3634 // Process the stores in chunks of 16. 3635 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) { 3636 unsigned Len = std::min<unsigned>(CE - CI, 16); 3637 ArrayRef<StoreInst *> Chunk(&it->second[CI], Len); 3638 Changed |= vectorizeStores(Chunk, -SLPCostThreshold, R); 3639 } 3640 } 3641 return Changed; 3642 } 3643 3644 } // end anonymous namespace 3645 3646 char SLPVectorizer::ID = 0; 3647 static const char lv_name[] = "SLP Vectorizer"; 3648 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 3649 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 3650 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) 3651 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 3652 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 3653 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 3654 3655 namespace llvm { 3656 Pass *createSLPVectorizerPass() { return new SLPVectorizer(); } 3657 } 3658