1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/PriorityQueue.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SetOperations.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallBitVector.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AssumptionCache.h" 37 #include "llvm/Analysis/CodeMetrics.h" 38 #include "llvm/Analysis/DemandedBits.h" 39 #include "llvm/Analysis/GlobalsModRef.h" 40 #include "llvm/Analysis/IVDescriptors.h" 41 #include "llvm/Analysis/LoopAccessAnalysis.h" 42 #include "llvm/Analysis/LoopInfo.h" 43 #include "llvm/Analysis/MemoryLocation.h" 44 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 45 #include "llvm/Analysis/ScalarEvolution.h" 46 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 47 #include "llvm/Analysis/TargetLibraryInfo.h" 48 #include "llvm/Analysis/TargetTransformInfo.h" 49 #include "llvm/Analysis/ValueTracking.h" 50 #include "llvm/Analysis/VectorUtils.h" 51 #include "llvm/IR/Attributes.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DebugLoc.h" 57 #include "llvm/IR/DerivedTypes.h" 58 #include "llvm/IR/Dominators.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/IRBuilder.h" 61 #include "llvm/IR/InstrTypes.h" 62 #include "llvm/IR/Instruction.h" 63 #include "llvm/IR/Instructions.h" 64 #include "llvm/IR/IntrinsicInst.h" 65 #include "llvm/IR/Intrinsics.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/NoFolder.h" 68 #include "llvm/IR/Operator.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/Verifier.h" 76 #include "llvm/InitializePasses.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/DOTGraphTraits.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/GraphWriter.h" 85 #include "llvm/Support/InstructionCost.h" 86 #include "llvm/Support/KnownBits.h" 87 #include "llvm/Support/MathExtras.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 90 #include "llvm/Transforms/Utils/LoopUtils.h" 91 #include "llvm/Transforms/Vectorize.h" 92 #include <algorithm> 93 #include <cassert> 94 #include <cstdint> 95 #include <iterator> 96 #include <memory> 97 #include <set> 98 #include <string> 99 #include <tuple> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 using namespace slpvectorizer; 106 107 #define SV_NAME "slp-vectorizer" 108 #define DEBUG_TYPE "SLP" 109 110 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 111 112 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 113 cl::desc("Run the SLP vectorization passes")); 114 115 static cl::opt<int> 116 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 117 cl::desc("Only vectorize if you gain more than this " 118 "number ")); 119 120 static cl::opt<bool> 121 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 122 cl::desc("Attempt to vectorize horizontal reductions")); 123 124 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 125 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 126 cl::desc( 127 "Attempt to vectorize horizontal reductions feeding into a store")); 128 129 static cl::opt<int> 130 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 131 cl::desc("Attempt to vectorize for this register size in bits")); 132 133 static cl::opt<unsigned> 134 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 135 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 136 137 static cl::opt<int> 138 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 139 cl::desc("Maximum depth of the lookup for consecutive stores.")); 140 141 /// Limits the size of scheduling regions in a block. 142 /// It avoid long compile times for _very_ large blocks where vector 143 /// instructions are spread over a wide range. 144 /// This limit is way higher than needed by real-world functions. 145 static cl::opt<int> 146 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 147 cl::desc("Limit the size of the SLP scheduling region per block")); 148 149 static cl::opt<int> MinVectorRegSizeOption( 150 "slp-min-reg-size", cl::init(128), cl::Hidden, 151 cl::desc("Attempt to vectorize for this register size in bits")); 152 153 static cl::opt<unsigned> RecursionMaxDepth( 154 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 155 cl::desc("Limit the recursion depth when building a vectorizable tree")); 156 157 static cl::opt<unsigned> MinTreeSize( 158 "slp-min-tree-size", cl::init(3), cl::Hidden, 159 cl::desc("Only vectorize small trees if they are fully vectorizable")); 160 161 // The maximum depth that the look-ahead score heuristic will explore. 162 // The higher this value, the higher the compilation time overhead. 163 static cl::opt<int> LookAheadMaxDepth( 164 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 165 cl::desc("The maximum look-ahead depth for operand reordering scores")); 166 167 // The Look-ahead heuristic goes through the users of the bundle to calculate 168 // the users cost in getExternalUsesCost(). To avoid compilation time increase 169 // we limit the number of users visited to this value. 170 static cl::opt<unsigned> LookAheadUsersBudget( 171 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, 172 cl::desc("The maximum number of users to visit while visiting the " 173 "predecessors. This prevents compilation time increase.")); 174 175 static cl::opt<bool> 176 ViewSLPTree("view-slp-tree", cl::Hidden, 177 cl::desc("Display the SLP trees with Graphviz")); 178 179 // Limit the number of alias checks. The limit is chosen so that 180 // it has no negative effect on the llvm benchmarks. 181 static const unsigned AliasedCheckLimit = 10; 182 183 // Another limit for the alias checks: The maximum distance between load/store 184 // instructions where alias checks are done. 185 // This limit is useful for very large basic blocks. 186 static const unsigned MaxMemDepDistance = 160; 187 188 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 189 /// regions to be handled. 190 static const int MinScheduleRegionSize = 16; 191 192 /// Predicate for the element types that the SLP vectorizer supports. 193 /// 194 /// The most important thing to filter here are types which are invalid in LLVM 195 /// vectors. We also filter target specific types which have absolutely no 196 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 197 /// avoids spending time checking the cost model and realizing that they will 198 /// be inevitably scalarized. 199 static bool isValidElementType(Type *Ty) { 200 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 201 !Ty->isPPC_FP128Ty(); 202 } 203 204 /// \returns True if the value is a constant (but not globals/constant 205 /// expressions). 206 static bool isConstant(Value *V) { 207 return isa<Constant>(V) && !isa<ConstantExpr>(V) && !isa<GlobalValue>(V); 208 } 209 210 /// Checks if \p V is one of vector-like instructions, i.e. undef, 211 /// insertelement/extractelement with constant indices for fixed vector type or 212 /// extractvalue instruction. 213 static bool isVectorLikeInstWithConstOps(Value *V) { 214 if (!isa<InsertElementInst, ExtractElementInst>(V) && 215 !isa<ExtractValueInst, UndefValue>(V)) 216 return false; 217 auto *I = dyn_cast<Instruction>(V); 218 if (!I || isa<ExtractValueInst>(I)) 219 return true; 220 if (!isa<FixedVectorType>(I->getOperand(0)->getType())) 221 return false; 222 if (isa<ExtractElementInst>(I)) 223 return isConstant(I->getOperand(1)); 224 assert(isa<InsertElementInst>(V) && "Expected only insertelement."); 225 return isConstant(I->getOperand(2)); 226 } 227 228 /// \returns true if all of the instructions in \p VL are in the same block or 229 /// false otherwise. 230 static bool allSameBlock(ArrayRef<Value *> VL) { 231 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 232 if (!I0) 233 return false; 234 if (all_of(VL, isVectorLikeInstWithConstOps)) 235 return true; 236 237 BasicBlock *BB = I0->getParent(); 238 for (int I = 1, E = VL.size(); I < E; I++) { 239 auto *II = dyn_cast<Instruction>(VL[I]); 240 if (!II) 241 return false; 242 243 if (BB != II->getParent()) 244 return false; 245 } 246 return true; 247 } 248 249 /// \returns True if all of the values in \p VL are constants (but not 250 /// globals/constant expressions). 251 static bool allConstant(ArrayRef<Value *> VL) { 252 // Constant expressions and globals can't be vectorized like normal integer/FP 253 // constants. 254 return all_of(VL, isConstant); 255 } 256 257 /// \returns True if all of the values in \p VL are identical or some of them 258 /// are UndefValue. 259 static bool isSplat(ArrayRef<Value *> VL) { 260 Value *FirstNonUndef = nullptr; 261 for (Value *V : VL) { 262 if (isa<UndefValue>(V)) 263 continue; 264 if (!FirstNonUndef) { 265 FirstNonUndef = V; 266 continue; 267 } 268 if (V != FirstNonUndef) 269 return false; 270 } 271 return FirstNonUndef != nullptr; 272 } 273 274 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 275 static bool isCommutative(Instruction *I) { 276 if (auto *Cmp = dyn_cast<CmpInst>(I)) 277 return Cmp->isCommutative(); 278 if (auto *BO = dyn_cast<BinaryOperator>(I)) 279 return BO->isCommutative(); 280 // TODO: This should check for generic Instruction::isCommutative(), but 281 // we need to confirm that the caller code correctly handles Intrinsics 282 // for example (does not have 2 operands). 283 return false; 284 } 285 286 /// Checks if the given value is actually an undefined constant vector. 287 static bool isUndefVector(const Value *V) { 288 if (isa<UndefValue>(V)) 289 return true; 290 auto *C = dyn_cast<Constant>(V); 291 if (!C) 292 return false; 293 if (!C->containsUndefOrPoisonElement()) 294 return false; 295 auto *VecTy = dyn_cast<FixedVectorType>(C->getType()); 296 if (!VecTy) 297 return false; 298 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { 299 if (Constant *Elem = C->getAggregateElement(I)) 300 if (!isa<UndefValue>(Elem)) 301 return false; 302 } 303 return true; 304 } 305 306 /// Checks if the vector of instructions can be represented as a shuffle, like: 307 /// %x0 = extractelement <4 x i8> %x, i32 0 308 /// %x3 = extractelement <4 x i8> %x, i32 3 309 /// %y1 = extractelement <4 x i8> %y, i32 1 310 /// %y2 = extractelement <4 x i8> %y, i32 2 311 /// %x0x0 = mul i8 %x0, %x0 312 /// %x3x3 = mul i8 %x3, %x3 313 /// %y1y1 = mul i8 %y1, %y1 314 /// %y2y2 = mul i8 %y2, %y2 315 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 316 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 317 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 318 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 319 /// ret <4 x i8> %ins4 320 /// can be transformed into: 321 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 322 /// i32 6> 323 /// %2 = mul <4 x i8> %1, %1 324 /// ret <4 x i8> %2 325 /// We convert this initially to something like: 326 /// %x0 = extractelement <4 x i8> %x, i32 0 327 /// %x3 = extractelement <4 x i8> %x, i32 3 328 /// %y1 = extractelement <4 x i8> %y, i32 1 329 /// %y2 = extractelement <4 x i8> %y, i32 2 330 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 331 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 332 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 333 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 334 /// %5 = mul <4 x i8> %4, %4 335 /// %6 = extractelement <4 x i8> %5, i32 0 336 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 337 /// %7 = extractelement <4 x i8> %5, i32 1 338 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 339 /// %8 = extractelement <4 x i8> %5, i32 2 340 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 341 /// %9 = extractelement <4 x i8> %5, i32 3 342 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 343 /// ret <4 x i8> %ins4 344 /// InstCombiner transforms this into a shuffle and vector mul 345 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 346 /// TODO: Can we split off and reuse the shuffle mask detection from 347 /// TargetTransformInfo::getInstructionThroughput? 348 static Optional<TargetTransformInfo::ShuffleKind> 349 isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 350 const auto *It = 351 find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); }); 352 if (It == VL.end()) 353 return None; 354 auto *EI0 = cast<ExtractElementInst>(*It); 355 if (isa<ScalableVectorType>(EI0->getVectorOperandType())) 356 return None; 357 unsigned Size = 358 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 359 Value *Vec1 = nullptr; 360 Value *Vec2 = nullptr; 361 enum ShuffleMode { Unknown, Select, Permute }; 362 ShuffleMode CommonShuffleMode = Unknown; 363 Mask.assign(VL.size(), UndefMaskElem); 364 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 365 // Undef can be represented as an undef element in a vector. 366 if (isa<UndefValue>(VL[I])) 367 continue; 368 auto *EI = cast<ExtractElementInst>(VL[I]); 369 if (isa<ScalableVectorType>(EI->getVectorOperandType())) 370 return None; 371 auto *Vec = EI->getVectorOperand(); 372 // We can extractelement from undef or poison vector. 373 if (isUndefVector(Vec)) 374 continue; 375 // All vector operands must have the same number of vector elements. 376 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 377 return None; 378 if (isa<UndefValue>(EI->getIndexOperand())) 379 continue; 380 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 381 if (!Idx) 382 return None; 383 // Undefined behavior if Idx is negative or >= Size. 384 if (Idx->getValue().uge(Size)) 385 continue; 386 unsigned IntIdx = Idx->getValue().getZExtValue(); 387 Mask[I] = IntIdx; 388 // For correct shuffling we have to have at most 2 different vector operands 389 // in all extractelement instructions. 390 if (!Vec1 || Vec1 == Vec) { 391 Vec1 = Vec; 392 } else if (!Vec2 || Vec2 == Vec) { 393 Vec2 = Vec; 394 Mask[I] += Size; 395 } else { 396 return None; 397 } 398 if (CommonShuffleMode == Permute) 399 continue; 400 // If the extract index is not the same as the operation number, it is a 401 // permutation. 402 if (IntIdx != I) { 403 CommonShuffleMode = Permute; 404 continue; 405 } 406 CommonShuffleMode = Select; 407 } 408 // If we're not crossing lanes in different vectors, consider it as blending. 409 if (CommonShuffleMode == Select && Vec2) 410 return TargetTransformInfo::SK_Select; 411 // If Vec2 was never used, we have a permutation of a single vector, otherwise 412 // we have permutation of 2 vectors. 413 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 414 : TargetTransformInfo::SK_PermuteSingleSrc; 415 } 416 417 namespace { 418 419 /// Main data required for vectorization of instructions. 420 struct InstructionsState { 421 /// The very first instruction in the list with the main opcode. 422 Value *OpValue = nullptr; 423 424 /// The main/alternate instruction. 425 Instruction *MainOp = nullptr; 426 Instruction *AltOp = nullptr; 427 428 /// The main/alternate opcodes for the list of instructions. 429 unsigned getOpcode() const { 430 return MainOp ? MainOp->getOpcode() : 0; 431 } 432 433 unsigned getAltOpcode() const { 434 return AltOp ? AltOp->getOpcode() : 0; 435 } 436 437 /// Some of the instructions in the list have alternate opcodes. 438 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 439 440 bool isOpcodeOrAlt(Instruction *I) const { 441 unsigned CheckedOpcode = I->getOpcode(); 442 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 443 } 444 445 InstructionsState() = delete; 446 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 447 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 448 }; 449 450 } // end anonymous namespace 451 452 /// Chooses the correct key for scheduling data. If \p Op has the same (or 453 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 454 /// OpValue. 455 static Value *isOneOf(const InstructionsState &S, Value *Op) { 456 auto *I = dyn_cast<Instruction>(Op); 457 if (I && S.isOpcodeOrAlt(I)) 458 return Op; 459 return S.OpValue; 460 } 461 462 /// \returns true if \p Opcode is allowed as part of of the main/alternate 463 /// instruction for SLP vectorization. 464 /// 465 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 466 /// "shuffled out" lane would result in division by zero. 467 static bool isValidForAlternation(unsigned Opcode) { 468 if (Instruction::isIntDivRem(Opcode)) 469 return false; 470 471 return true; 472 } 473 474 /// \returns analysis of the Instructions in \p VL described in 475 /// InstructionsState, the Opcode that we suppose the whole list 476 /// could be vectorized even if its structure is diverse. 477 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 478 unsigned BaseIndex = 0) { 479 // Make sure these are all Instructions. 480 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 481 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 482 483 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 484 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 485 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 486 unsigned AltOpcode = Opcode; 487 unsigned AltIndex = BaseIndex; 488 489 // Check for one alternate opcode from another BinaryOperator. 490 // TODO - generalize to support all operators (types, calls etc.). 491 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 492 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 493 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 494 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 495 continue; 496 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 497 isValidForAlternation(Opcode)) { 498 AltOpcode = InstOpcode; 499 AltIndex = Cnt; 500 continue; 501 } 502 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 503 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 504 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 505 if (Ty0 == Ty1) { 506 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 507 continue; 508 if (Opcode == AltOpcode) { 509 assert(isValidForAlternation(Opcode) && 510 isValidForAlternation(InstOpcode) && 511 "Cast isn't safe for alternation, logic needs to be updated!"); 512 AltOpcode = InstOpcode; 513 AltIndex = Cnt; 514 continue; 515 } 516 } 517 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 518 continue; 519 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 520 } 521 522 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 523 cast<Instruction>(VL[AltIndex])); 524 } 525 526 /// \returns true if all of the values in \p VL have the same type or false 527 /// otherwise. 528 static bool allSameType(ArrayRef<Value *> VL) { 529 Type *Ty = VL[0]->getType(); 530 for (int i = 1, e = VL.size(); i < e; i++) 531 if (VL[i]->getType() != Ty) 532 return false; 533 534 return true; 535 } 536 537 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 538 static Optional<unsigned> getExtractIndex(Instruction *E) { 539 unsigned Opcode = E->getOpcode(); 540 assert((Opcode == Instruction::ExtractElement || 541 Opcode == Instruction::ExtractValue) && 542 "Expected extractelement or extractvalue instruction."); 543 if (Opcode == Instruction::ExtractElement) { 544 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 545 if (!CI) 546 return None; 547 return CI->getZExtValue(); 548 } 549 ExtractValueInst *EI = cast<ExtractValueInst>(E); 550 if (EI->getNumIndices() != 1) 551 return None; 552 return *EI->idx_begin(); 553 } 554 555 /// \returns True if in-tree use also needs extract. This refers to 556 /// possible scalar operand in vectorized instruction. 557 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 558 TargetLibraryInfo *TLI) { 559 unsigned Opcode = UserInst->getOpcode(); 560 switch (Opcode) { 561 case Instruction::Load: { 562 LoadInst *LI = cast<LoadInst>(UserInst); 563 return (LI->getPointerOperand() == Scalar); 564 } 565 case Instruction::Store: { 566 StoreInst *SI = cast<StoreInst>(UserInst); 567 return (SI->getPointerOperand() == Scalar); 568 } 569 case Instruction::Call: { 570 CallInst *CI = cast<CallInst>(UserInst); 571 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 572 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 573 if (hasVectorInstrinsicScalarOpd(ID, i)) 574 return (CI->getArgOperand(i) == Scalar); 575 } 576 LLVM_FALLTHROUGH; 577 } 578 default: 579 return false; 580 } 581 } 582 583 /// \returns the AA location that is being access by the instruction. 584 static MemoryLocation getLocation(Instruction *I, AAResults *AA) { 585 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 586 return MemoryLocation::get(SI); 587 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 588 return MemoryLocation::get(LI); 589 return MemoryLocation(); 590 } 591 592 /// \returns True if the instruction is not a volatile or atomic load/store. 593 static bool isSimple(Instruction *I) { 594 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 595 return LI->isSimple(); 596 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 597 return SI->isSimple(); 598 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 599 return !MI->isVolatile(); 600 return true; 601 } 602 603 /// Shuffles \p Mask in accordance with the given \p SubMask. 604 static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask) { 605 if (SubMask.empty()) 606 return; 607 if (Mask.empty()) { 608 Mask.append(SubMask.begin(), SubMask.end()); 609 return; 610 } 611 SmallVector<int> NewMask(SubMask.size(), UndefMaskElem); 612 int TermValue = std::min(Mask.size(), SubMask.size()); 613 for (int I = 0, E = SubMask.size(); I < E; ++I) { 614 if (SubMask[I] >= TermValue || SubMask[I] == UndefMaskElem || 615 Mask[SubMask[I]] >= TermValue) 616 continue; 617 NewMask[I] = Mask[SubMask[I]]; 618 } 619 Mask.swap(NewMask); 620 } 621 622 /// Order may have elements assigned special value (size) which is out of 623 /// bounds. Such indices only appear on places which correspond to undef values 624 /// (see canReuseExtract for details) and used in order to avoid undef values 625 /// have effect on operands ordering. 626 /// The first loop below simply finds all unused indices and then the next loop 627 /// nest assigns these indices for undef values positions. 628 /// As an example below Order has two undef positions and they have assigned 629 /// values 3 and 7 respectively: 630 /// before: 6 9 5 4 9 2 1 0 631 /// after: 6 3 5 4 7 2 1 0 632 static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { 633 const unsigned Sz = Order.size(); 634 SmallBitVector UnusedIndices(Sz, /*t=*/true); 635 SmallBitVector MaskedIndices(Sz); 636 for (unsigned I = 0; I < Sz; ++I) { 637 if (Order[I] < Sz) 638 UnusedIndices.reset(Order[I]); 639 else 640 MaskedIndices.set(I); 641 } 642 if (MaskedIndices.none()) 643 return; 644 assert(UnusedIndices.count() == MaskedIndices.count() && 645 "Non-synced masked/available indices."); 646 int Idx = UnusedIndices.find_first(); 647 int MIdx = MaskedIndices.find_first(); 648 while (MIdx >= 0) { 649 assert(Idx >= 0 && "Indices must be synced."); 650 Order[MIdx] = Idx; 651 Idx = UnusedIndices.find_next(Idx); 652 MIdx = MaskedIndices.find_next(MIdx); 653 } 654 } 655 656 namespace llvm { 657 658 static void inversePermutation(ArrayRef<unsigned> Indices, 659 SmallVectorImpl<int> &Mask) { 660 Mask.clear(); 661 const unsigned E = Indices.size(); 662 Mask.resize(E, UndefMaskElem); 663 for (unsigned I = 0; I < E; ++I) 664 Mask[Indices[I]] = I; 665 } 666 667 /// \returns inserting index of InsertElement or InsertValue instruction, 668 /// using Offset as base offset for index. 669 static Optional<int> getInsertIndex(Value *InsertInst, unsigned Offset) { 670 int Index = Offset; 671 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 672 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 673 auto *VT = cast<FixedVectorType>(IE->getType()); 674 if (CI->getValue().uge(VT->getNumElements())) 675 return UndefMaskElem; 676 Index *= VT->getNumElements(); 677 Index += CI->getZExtValue(); 678 return Index; 679 } 680 if (isa<UndefValue>(IE->getOperand(2))) 681 return UndefMaskElem; 682 return None; 683 } 684 685 auto *IV = cast<InsertValueInst>(InsertInst); 686 Type *CurrentType = IV->getType(); 687 for (unsigned I : IV->indices()) { 688 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 689 Index *= ST->getNumElements(); 690 CurrentType = ST->getElementType(I); 691 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 692 Index *= AT->getNumElements(); 693 CurrentType = AT->getElementType(); 694 } else { 695 return None; 696 } 697 Index += I; 698 } 699 return Index; 700 } 701 702 /// Reorders the list of scalars in accordance with the given \p Order and then 703 /// the \p Mask. \p Order - is the original order of the scalars, need to 704 /// reorder scalars into an unordered state at first according to the given 705 /// order. Then the ordered scalars are shuffled once again in accordance with 706 /// the provided mask. 707 static void reorderScalars(SmallVectorImpl<Value *> &Scalars, 708 ArrayRef<int> Mask) { 709 assert(!Mask.empty() && "Expected non-empty mask."); 710 SmallVector<Value *> Prev(Scalars.size(), 711 UndefValue::get(Scalars.front()->getType())); 712 Prev.swap(Scalars); 713 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 714 if (Mask[I] != UndefMaskElem) 715 Scalars[Mask[I]] = Prev[I]; 716 } 717 718 namespace slpvectorizer { 719 720 /// Bottom Up SLP Vectorizer. 721 class BoUpSLP { 722 struct TreeEntry; 723 struct ScheduleData; 724 725 public: 726 using ValueList = SmallVector<Value *, 8>; 727 using InstrList = SmallVector<Instruction *, 16>; 728 using ValueSet = SmallPtrSet<Value *, 16>; 729 using StoreList = SmallVector<StoreInst *, 8>; 730 using ExtraValueToDebugLocsMap = 731 MapVector<Value *, SmallVector<Instruction *, 2>>; 732 using OrdersType = SmallVector<unsigned, 4>; 733 734 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 735 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 736 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 737 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 738 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 739 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 740 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 741 // Use the vector register size specified by the target unless overridden 742 // by a command-line option. 743 // TODO: It would be better to limit the vectorization factor based on 744 // data type rather than just register size. For example, x86 AVX has 745 // 256-bit registers, but it does not support integer operations 746 // at that width (that requires AVX2). 747 if (MaxVectorRegSizeOption.getNumOccurrences()) 748 MaxVecRegSize = MaxVectorRegSizeOption; 749 else 750 MaxVecRegSize = 751 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 752 .getFixedSize(); 753 754 if (MinVectorRegSizeOption.getNumOccurrences()) 755 MinVecRegSize = MinVectorRegSizeOption; 756 else 757 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 758 } 759 760 /// Vectorize the tree that starts with the elements in \p VL. 761 /// Returns the vectorized root. 762 Value *vectorizeTree(); 763 764 /// Vectorize the tree but with the list of externally used values \p 765 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 766 /// generated extractvalue instructions. 767 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 768 769 /// \returns the cost incurred by unwanted spills and fills, caused by 770 /// holding live values over call sites. 771 InstructionCost getSpillCost() const; 772 773 /// \returns the vectorization cost of the subtree that starts at \p VL. 774 /// A negative number means that this is profitable. 775 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 776 777 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 778 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 779 void buildTree(ArrayRef<Value *> Roots, 780 ArrayRef<Value *> UserIgnoreLst = None); 781 782 /// Builds external uses of the vectorized scalars, i.e. the list of 783 /// vectorized scalars to be extracted, their lanes and their scalar users. \p 784 /// ExternallyUsedValues contains additional list of external uses to handle 785 /// vectorization of reductions. 786 void 787 buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); 788 789 /// Clear the internal data structures that are created by 'buildTree'. 790 void deleteTree() { 791 VectorizableTree.clear(); 792 ScalarToTreeEntry.clear(); 793 MustGather.clear(); 794 ExternalUses.clear(); 795 for (auto &Iter : BlocksSchedules) { 796 BlockScheduling *BS = Iter.second.get(); 797 BS->clear(); 798 } 799 MinBWs.clear(); 800 InstrElementSize.clear(); 801 } 802 803 unsigned getTreeSize() const { return VectorizableTree.size(); } 804 805 /// Perform LICM and CSE on the newly generated gather sequences. 806 void optimizeGatherSequence(); 807 808 /// Checks if the specified gather tree entry \p TE can be represented as a 809 /// shuffled vector entry + (possibly) permutation with other gathers. It 810 /// implements the checks only for possibly ordered scalars (Loads, 811 /// ExtractElement, ExtractValue), which can be part of the graph. 812 Optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); 813 814 /// Gets reordering data for the given tree entry. If the entry is vectorized 815 /// - just return ReorderIndices, otherwise check if the scalars can be 816 /// reordered and return the most optimal order. 817 /// \param TopToBottom If true, include the order of vectorized stores and 818 /// insertelement nodes, otherwise skip them. 819 Optional<OrdersType> getReorderingData(const TreeEntry &TE, bool TopToBottom); 820 821 /// Reorders the current graph to the most profitable order starting from the 822 /// root node to the leaf nodes. The best order is chosen only from the nodes 823 /// of the same size (vectorization factor). Smaller nodes are considered 824 /// parts of subgraph with smaller VF and they are reordered independently. We 825 /// can make it because we still need to extend smaller nodes to the wider VF 826 /// and we can merge reordering shuffles with the widening shuffles. 827 void reorderTopToBottom(); 828 829 /// Reorders the current graph to the most profitable order starting from 830 /// leaves to the root. It allows to rotate small subgraphs and reduce the 831 /// number of reshuffles if the leaf nodes use the same order. In this case we 832 /// can merge the orders and just shuffle user node instead of shuffling its 833 /// operands. Plus, even the leaf nodes have different orders, it allows to 834 /// sink reordering in the graph closer to the root node and merge it later 835 /// during analysis. 836 void reorderBottomToTop(bool IgnoreReorder = false); 837 838 /// \return The vector element size in bits to use when vectorizing the 839 /// expression tree ending at \p V. If V is a store, the size is the width of 840 /// the stored value. Otherwise, the size is the width of the largest loaded 841 /// value reaching V. This method is used by the vectorizer to calculate 842 /// vectorization factors. 843 unsigned getVectorElementSize(Value *V); 844 845 /// Compute the minimum type sizes required to represent the entries in a 846 /// vectorizable tree. 847 void computeMinimumValueSizes(); 848 849 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 850 unsigned getMaxVecRegSize() const { 851 return MaxVecRegSize; 852 } 853 854 // \returns minimum vector register size as set by cl::opt. 855 unsigned getMinVecRegSize() const { 856 return MinVecRegSize; 857 } 858 859 unsigned getMinVF(unsigned Sz) const { 860 return std::max(2U, getMinVecRegSize() / Sz); 861 } 862 863 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 864 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 865 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 866 return MaxVF ? MaxVF : UINT_MAX; 867 } 868 869 /// Check if homogeneous aggregate is isomorphic to some VectorType. 870 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 871 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 872 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 873 /// 874 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 875 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 876 877 /// \returns True if the VectorizableTree is both tiny and not fully 878 /// vectorizable. We do not vectorize such trees. 879 bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; 880 881 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 882 /// can be load combined in the backend. Load combining may not be allowed in 883 /// the IR optimizer, so we do not want to alter the pattern. For example, 884 /// partially transforming a scalar bswap() pattern into vector code is 885 /// effectively impossible for the backend to undo. 886 /// TODO: If load combining is allowed in the IR optimizer, this analysis 887 /// may not be necessary. 888 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 889 890 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 891 /// can be load combined in the backend. Load combining may not be allowed in 892 /// the IR optimizer, so we do not want to alter the pattern. For example, 893 /// partially transforming a scalar bswap() pattern into vector code is 894 /// effectively impossible for the backend to undo. 895 /// TODO: If load combining is allowed in the IR optimizer, this analysis 896 /// may not be necessary. 897 bool isLoadCombineCandidate() const; 898 899 OptimizationRemarkEmitter *getORE() { return ORE; } 900 901 /// This structure holds any data we need about the edges being traversed 902 /// during buildTree_rec(). We keep track of: 903 /// (i) the user TreeEntry index, and 904 /// (ii) the index of the edge. 905 struct EdgeInfo { 906 EdgeInfo() = default; 907 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 908 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 909 /// The user TreeEntry. 910 TreeEntry *UserTE = nullptr; 911 /// The operand index of the use. 912 unsigned EdgeIdx = UINT_MAX; 913 #ifndef NDEBUG 914 friend inline raw_ostream &operator<<(raw_ostream &OS, 915 const BoUpSLP::EdgeInfo &EI) { 916 EI.dump(OS); 917 return OS; 918 } 919 /// Debug print. 920 void dump(raw_ostream &OS) const { 921 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 922 << " EdgeIdx:" << EdgeIdx << "}"; 923 } 924 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 925 #endif 926 }; 927 928 /// A helper data structure to hold the operands of a vector of instructions. 929 /// This supports a fixed vector length for all operand vectors. 930 class VLOperands { 931 /// For each operand we need (i) the value, and (ii) the opcode that it 932 /// would be attached to if the expression was in a left-linearized form. 933 /// This is required to avoid illegal operand reordering. 934 /// For example: 935 /// \verbatim 936 /// 0 Op1 937 /// |/ 938 /// Op1 Op2 Linearized + Op2 939 /// \ / ----------> |/ 940 /// - - 941 /// 942 /// Op1 - Op2 (0 + Op1) - Op2 943 /// \endverbatim 944 /// 945 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 946 /// 947 /// Another way to think of this is to track all the operations across the 948 /// path from the operand all the way to the root of the tree and to 949 /// calculate the operation that corresponds to this path. For example, the 950 /// path from Op2 to the root crosses the RHS of the '-', therefore the 951 /// corresponding operation is a '-' (which matches the one in the 952 /// linearized tree, as shown above). 953 /// 954 /// For lack of a better term, we refer to this operation as Accumulated 955 /// Path Operation (APO). 956 struct OperandData { 957 OperandData() = default; 958 OperandData(Value *V, bool APO, bool IsUsed) 959 : V(V), APO(APO), IsUsed(IsUsed) {} 960 /// The operand value. 961 Value *V = nullptr; 962 /// TreeEntries only allow a single opcode, or an alternate sequence of 963 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 964 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 965 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 966 /// (e.g., Add/Mul) 967 bool APO = false; 968 /// Helper data for the reordering function. 969 bool IsUsed = false; 970 }; 971 972 /// During operand reordering, we are trying to select the operand at lane 973 /// that matches best with the operand at the neighboring lane. Our 974 /// selection is based on the type of value we are looking for. For example, 975 /// if the neighboring lane has a load, we need to look for a load that is 976 /// accessing a consecutive address. These strategies are summarized in the 977 /// 'ReorderingMode' enumerator. 978 enum class ReorderingMode { 979 Load, ///< Matching loads to consecutive memory addresses 980 Opcode, ///< Matching instructions based on opcode (same or alternate) 981 Constant, ///< Matching constants 982 Splat, ///< Matching the same instruction multiple times (broadcast) 983 Failed, ///< We failed to create a vectorizable group 984 }; 985 986 using OperandDataVec = SmallVector<OperandData, 2>; 987 988 /// A vector of operand vectors. 989 SmallVector<OperandDataVec, 4> OpsVec; 990 991 const DataLayout &DL; 992 ScalarEvolution &SE; 993 const BoUpSLP &R; 994 995 /// \returns the operand data at \p OpIdx and \p Lane. 996 OperandData &getData(unsigned OpIdx, unsigned Lane) { 997 return OpsVec[OpIdx][Lane]; 998 } 999 1000 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 1001 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 1002 return OpsVec[OpIdx][Lane]; 1003 } 1004 1005 /// Clears the used flag for all entries. 1006 void clearUsed() { 1007 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 1008 OpIdx != NumOperands; ++OpIdx) 1009 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1010 ++Lane) 1011 OpsVec[OpIdx][Lane].IsUsed = false; 1012 } 1013 1014 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 1015 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 1016 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 1017 } 1018 1019 // The hard-coded scores listed here are not very important, though it shall 1020 // be higher for better matches to improve the resulting cost. When 1021 // computing the scores of matching one sub-tree with another, we are 1022 // basically counting the number of values that are matching. So even if all 1023 // scores are set to 1, we would still get a decent matching result. 1024 // However, sometimes we have to break ties. For example we may have to 1025 // choose between matching loads vs matching opcodes. This is what these 1026 // scores are helping us with: they provide the order of preference. Also, 1027 // this is important if the scalar is externally used or used in another 1028 // tree entry node in the different lane. 1029 1030 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 1031 static const int ScoreConsecutiveLoads = 4; 1032 /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]). 1033 static const int ScoreReversedLoads = 3; 1034 /// ExtractElementInst from same vector and consecutive indexes. 1035 static const int ScoreConsecutiveExtracts = 4; 1036 /// ExtractElementInst from same vector and reversed indices. 1037 static const int ScoreReversedExtracts = 3; 1038 /// Constants. 1039 static const int ScoreConstants = 2; 1040 /// Instructions with the same opcode. 1041 static const int ScoreSameOpcode = 2; 1042 /// Instructions with alt opcodes (e.g, add + sub). 1043 static const int ScoreAltOpcodes = 1; 1044 /// Identical instructions (a.k.a. splat or broadcast). 1045 static const int ScoreSplat = 1; 1046 /// Matching with an undef is preferable to failing. 1047 static const int ScoreUndef = 1; 1048 /// Score for failing to find a decent match. 1049 static const int ScoreFail = 0; 1050 /// User exteranl to the vectorized code. 1051 static const int ExternalUseCost = 1; 1052 /// The user is internal but in a different lane. 1053 static const int UserInDiffLaneCost = ExternalUseCost; 1054 1055 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 1056 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 1057 ScalarEvolution &SE, int NumLanes) { 1058 if (V1 == V2) 1059 return VLOperands::ScoreSplat; 1060 1061 auto *LI1 = dyn_cast<LoadInst>(V1); 1062 auto *LI2 = dyn_cast<LoadInst>(V2); 1063 if (LI1 && LI2) { 1064 if (LI1->getParent() != LI2->getParent()) 1065 return VLOperands::ScoreFail; 1066 1067 Optional<int> Dist = getPointersDiff( 1068 LI1->getType(), LI1->getPointerOperand(), LI2->getType(), 1069 LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); 1070 if (!Dist) 1071 return VLOperands::ScoreFail; 1072 // The distance is too large - still may be profitable to use masked 1073 // loads/gathers. 1074 if (std::abs(*Dist) > NumLanes / 2) 1075 return VLOperands::ScoreAltOpcodes; 1076 // This still will detect consecutive loads, but we might have "holes" 1077 // in some cases. It is ok for non-power-2 vectorization and may produce 1078 // better results. It should not affect current vectorization. 1079 return (*Dist > 0) ? VLOperands::ScoreConsecutiveLoads 1080 : VLOperands::ScoreReversedLoads; 1081 } 1082 1083 auto *C1 = dyn_cast<Constant>(V1); 1084 auto *C2 = dyn_cast<Constant>(V2); 1085 if (C1 && C2) 1086 return VLOperands::ScoreConstants; 1087 1088 // Extracts from consecutive indexes of the same vector better score as 1089 // the extracts could be optimized away. 1090 Value *EV1; 1091 ConstantInt *Ex1Idx; 1092 if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) { 1093 // Undefs are always profitable for extractelements. 1094 if (isa<UndefValue>(V2)) 1095 return VLOperands::ScoreConsecutiveExtracts; 1096 Value *EV2 = nullptr; 1097 ConstantInt *Ex2Idx = nullptr; 1098 if (match(V2, 1099 m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx), 1100 m_Undef())))) { 1101 // Undefs are always profitable for extractelements. 1102 if (!Ex2Idx) 1103 return VLOperands::ScoreConsecutiveExtracts; 1104 if (isUndefVector(EV2) && EV2->getType() == EV1->getType()) 1105 return VLOperands::ScoreConsecutiveExtracts; 1106 if (EV2 == EV1) { 1107 int Idx1 = Ex1Idx->getZExtValue(); 1108 int Idx2 = Ex2Idx->getZExtValue(); 1109 int Dist = Idx2 - Idx1; 1110 // The distance is too large - still may be profitable to use 1111 // shuffles. 1112 if (std::abs(Dist) > NumLanes / 2) 1113 return VLOperands::ScoreAltOpcodes; 1114 return (Dist > 0) ? VLOperands::ScoreConsecutiveExtracts 1115 : VLOperands::ScoreReversedExtracts; 1116 } 1117 } 1118 } 1119 1120 auto *I1 = dyn_cast<Instruction>(V1); 1121 auto *I2 = dyn_cast<Instruction>(V2); 1122 if (I1 && I2) { 1123 if (I1->getParent() != I2->getParent()) 1124 return VLOperands::ScoreFail; 1125 InstructionsState S = getSameOpcode({I1, I2}); 1126 // Note: Only consider instructions with <= 2 operands to avoid 1127 // complexity explosion. 1128 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) 1129 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 1130 : VLOperands::ScoreSameOpcode; 1131 } 1132 1133 if (isa<UndefValue>(V2)) 1134 return VLOperands::ScoreUndef; 1135 1136 return VLOperands::ScoreFail; 1137 } 1138 1139 /// Holds the values and their lanes that are taking part in the look-ahead 1140 /// score calculation. This is used in the external uses cost calculation. 1141 /// Need to hold all the lanes in case of splat/broadcast at least to 1142 /// correctly check for the use in the different lane. 1143 SmallDenseMap<Value *, SmallSet<int, 4>> InLookAheadValues; 1144 1145 /// \returns the additional cost due to uses of \p LHS and \p RHS that are 1146 /// either external to the vectorized code, or require shuffling. 1147 int getExternalUsesCost(const std::pair<Value *, int> &LHS, 1148 const std::pair<Value *, int> &RHS) { 1149 int Cost = 0; 1150 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}}; 1151 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { 1152 Value *V = Values[Idx].first; 1153 if (isa<Constant>(V)) { 1154 // Since this is a function pass, it doesn't make semantic sense to 1155 // walk the users of a subclass of Constant. The users could be in 1156 // another function, or even another module that happens to be in 1157 // the same LLVMContext. 1158 continue; 1159 } 1160 1161 // Calculate the absolute lane, using the minimum relative lane of LHS 1162 // and RHS as base and Idx as the offset. 1163 int Ln = std::min(LHS.second, RHS.second) + Idx; 1164 assert(Ln >= 0 && "Bad lane calculation"); 1165 unsigned UsersBudget = LookAheadUsersBudget; 1166 for (User *U : V->users()) { 1167 if (const TreeEntry *UserTE = R.getTreeEntry(U)) { 1168 // The user is in the VectorizableTree. Check if we need to insert. 1169 int UserLn = UserTE->findLaneForValue(U); 1170 assert(UserLn >= 0 && "Bad lane"); 1171 // If the values are different, check just the line of the current 1172 // value. If the values are the same, need to add UserInDiffLaneCost 1173 // only if UserLn does not match both line numbers. 1174 if ((LHS.first != RHS.first && UserLn != Ln) || 1175 (LHS.first == RHS.first && UserLn != LHS.second && 1176 UserLn != RHS.second)) { 1177 Cost += UserInDiffLaneCost; 1178 break; 1179 } 1180 } else { 1181 // Check if the user is in the look-ahead code. 1182 auto It2 = InLookAheadValues.find(U); 1183 if (It2 != InLookAheadValues.end()) { 1184 // The user is in the look-ahead code. Check the lane. 1185 if (!It2->getSecond().contains(Ln)) { 1186 Cost += UserInDiffLaneCost; 1187 break; 1188 } 1189 } else { 1190 // The user is neither in SLP tree nor in the look-ahead code. 1191 Cost += ExternalUseCost; 1192 break; 1193 } 1194 } 1195 // Limit the number of visited uses to cap compilation time. 1196 if (--UsersBudget == 0) 1197 break; 1198 } 1199 } 1200 return Cost; 1201 } 1202 1203 /// Go through the operands of \p LHS and \p RHS recursively until \p 1204 /// MaxLevel, and return the cummulative score. For example: 1205 /// \verbatim 1206 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1207 /// \ / \ / \ / \ / 1208 /// + + + + 1209 /// G1 G2 G3 G4 1210 /// \endverbatim 1211 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1212 /// each level recursively, accumulating the score. It starts from matching 1213 /// the additions at level 0, then moves on to the loads (level 1). The 1214 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1215 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1216 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1217 /// Please note that the order of the operands does not matter, as we 1218 /// evaluate the score of all profitable combinations of operands. In 1219 /// other words the score of G1 and G4 is the same as G1 and G2. This 1220 /// heuristic is based on ideas described in: 1221 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1222 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1223 /// Luís F. W. Góes 1224 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS, 1225 const std::pair<Value *, int> &RHS, int CurrLevel, 1226 int MaxLevel) { 1227 1228 Value *V1 = LHS.first; 1229 Value *V2 = RHS.first; 1230 // Get the shallow score of V1 and V2. 1231 int ShallowScoreAtThisLevel = std::max( 1232 (int)ScoreFail, getShallowScore(V1, V2, DL, SE, getNumLanes()) - 1233 getExternalUsesCost(LHS, RHS)); 1234 int Lane1 = LHS.second; 1235 int Lane2 = RHS.second; 1236 1237 // If reached MaxLevel, 1238 // or if V1 and V2 are not instructions, 1239 // or if they are SPLAT, 1240 // or if they are not consecutive, 1241 // or if profitable to vectorize loads or extractelements, early return 1242 // the current cost. 1243 auto *I1 = dyn_cast<Instruction>(V1); 1244 auto *I2 = dyn_cast<Instruction>(V2); 1245 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1246 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1247 (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) || 1248 (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) && 1249 ShallowScoreAtThisLevel)) 1250 return ShallowScoreAtThisLevel; 1251 assert(I1 && I2 && "Should have early exited."); 1252 1253 // Keep track of in-tree values for determining the external-use cost. 1254 InLookAheadValues[V1].insert(Lane1); 1255 InLookAheadValues[V2].insert(Lane2); 1256 1257 // Contains the I2 operand indexes that got matched with I1 operands. 1258 SmallSet<unsigned, 4> Op2Used; 1259 1260 // Recursion towards the operands of I1 and I2. We are trying all possible 1261 // operand pairs, and keeping track of the best score. 1262 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1263 OpIdx1 != NumOperands1; ++OpIdx1) { 1264 // Try to pair op1I with the best operand of I2. 1265 int MaxTmpScore = 0; 1266 unsigned MaxOpIdx2 = 0; 1267 bool FoundBest = false; 1268 // If I2 is commutative try all combinations. 1269 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1270 unsigned ToIdx = isCommutative(I2) 1271 ? I2->getNumOperands() 1272 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1273 assert(FromIdx <= ToIdx && "Bad index"); 1274 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1275 // Skip operands already paired with OpIdx1. 1276 if (Op2Used.count(OpIdx2)) 1277 continue; 1278 // Recursively calculate the cost at each level 1279 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, 1280 {I2->getOperand(OpIdx2), Lane2}, 1281 CurrLevel + 1, MaxLevel); 1282 // Look for the best score. 1283 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1284 MaxTmpScore = TmpScore; 1285 MaxOpIdx2 = OpIdx2; 1286 FoundBest = true; 1287 } 1288 } 1289 if (FoundBest) { 1290 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1291 Op2Used.insert(MaxOpIdx2); 1292 ShallowScoreAtThisLevel += MaxTmpScore; 1293 } 1294 } 1295 return ShallowScoreAtThisLevel; 1296 } 1297 1298 /// \Returns the look-ahead score, which tells us how much the sub-trees 1299 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1300 /// score. This helps break ties in an informed way when we cannot decide on 1301 /// the order of the operands by just considering the immediate 1302 /// predecessors. 1303 int getLookAheadScore(const std::pair<Value *, int> &LHS, 1304 const std::pair<Value *, int> &RHS) { 1305 InLookAheadValues.clear(); 1306 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); 1307 } 1308 1309 // Search all operands in Ops[*][Lane] for the one that matches best 1310 // Ops[OpIdx][LastLane] and return its opreand index. 1311 // If no good match can be found, return None. 1312 Optional<unsigned> 1313 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1314 ArrayRef<ReorderingMode> ReorderingModes) { 1315 unsigned NumOperands = getNumOperands(); 1316 1317 // The operand of the previous lane at OpIdx. 1318 Value *OpLastLane = getData(OpIdx, LastLane).V; 1319 1320 // Our strategy mode for OpIdx. 1321 ReorderingMode RMode = ReorderingModes[OpIdx]; 1322 1323 // The linearized opcode of the operand at OpIdx, Lane. 1324 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1325 1326 // The best operand index and its score. 1327 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1328 // are using the score to differentiate between the two. 1329 struct BestOpData { 1330 Optional<unsigned> Idx = None; 1331 unsigned Score = 0; 1332 } BestOp; 1333 1334 // Iterate through all unused operands and look for the best. 1335 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1336 // Get the operand at Idx and Lane. 1337 OperandData &OpData = getData(Idx, Lane); 1338 Value *Op = OpData.V; 1339 bool OpAPO = OpData.APO; 1340 1341 // Skip already selected operands. 1342 if (OpData.IsUsed) 1343 continue; 1344 1345 // Skip if we are trying to move the operand to a position with a 1346 // different opcode in the linearized tree form. This would break the 1347 // semantics. 1348 if (OpAPO != OpIdxAPO) 1349 continue; 1350 1351 // Look for an operand that matches the current mode. 1352 switch (RMode) { 1353 case ReorderingMode::Load: 1354 case ReorderingMode::Constant: 1355 case ReorderingMode::Opcode: { 1356 bool LeftToRight = Lane > LastLane; 1357 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1358 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1359 unsigned Score = 1360 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); 1361 if (Score > BestOp.Score) { 1362 BestOp.Idx = Idx; 1363 BestOp.Score = Score; 1364 } 1365 break; 1366 } 1367 case ReorderingMode::Splat: 1368 if (Op == OpLastLane) 1369 BestOp.Idx = Idx; 1370 break; 1371 case ReorderingMode::Failed: 1372 return None; 1373 } 1374 } 1375 1376 if (BestOp.Idx) { 1377 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 1378 return BestOp.Idx; 1379 } 1380 // If we could not find a good match return None. 1381 return None; 1382 } 1383 1384 /// Helper for reorderOperandVecs. 1385 /// \returns the lane that we should start reordering from. This is the one 1386 /// which has the least number of operands that can freely move about or 1387 /// less profitable because it already has the most optimal set of operands. 1388 unsigned getBestLaneToStartReordering() const { 1389 unsigned Min = UINT_MAX; 1390 unsigned SameOpNumber = 0; 1391 // std::pair<unsigned, unsigned> is used to implement a simple voting 1392 // algorithm and choose the lane with the least number of operands that 1393 // can freely move about or less profitable because it already has the 1394 // most optimal set of operands. The first unsigned is a counter for 1395 // voting, the second unsigned is the counter of lanes with instructions 1396 // with same/alternate opcodes and same parent basic block. 1397 MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap; 1398 // Try to be closer to the original results, if we have multiple lanes 1399 // with same cost. If 2 lanes have the same cost, use the one with the 1400 // lowest index. 1401 for (int I = getNumLanes(); I > 0; --I) { 1402 unsigned Lane = I - 1; 1403 OperandsOrderData NumFreeOpsHash = 1404 getMaxNumOperandsThatCanBeReordered(Lane); 1405 // Compare the number of operands that can move and choose the one with 1406 // the least number. 1407 if (NumFreeOpsHash.NumOfAPOs < Min) { 1408 Min = NumFreeOpsHash.NumOfAPOs; 1409 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1410 HashMap.clear(); 1411 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1412 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1413 NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) { 1414 // Select the most optimal lane in terms of number of operands that 1415 // should be moved around. 1416 SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; 1417 HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); 1418 } else if (NumFreeOpsHash.NumOfAPOs == Min && 1419 NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) { 1420 ++HashMap[NumFreeOpsHash.Hash].first; 1421 } 1422 } 1423 // Select the lane with the minimum counter. 1424 unsigned BestLane = 0; 1425 unsigned CntMin = UINT_MAX; 1426 for (const auto &Data : reverse(HashMap)) { 1427 if (Data.second.first < CntMin) { 1428 CntMin = Data.second.first; 1429 BestLane = Data.second.second; 1430 } 1431 } 1432 return BestLane; 1433 } 1434 1435 /// Data structure that helps to reorder operands. 1436 struct OperandsOrderData { 1437 /// The best number of operands with the same APOs, which can be 1438 /// reordered. 1439 unsigned NumOfAPOs = UINT_MAX; 1440 /// Number of operands with the same/alternate instruction opcode and 1441 /// parent. 1442 unsigned NumOpsWithSameOpcodeParent = 0; 1443 /// Hash for the actual operands ordering. 1444 /// Used to count operands, actually their position id and opcode 1445 /// value. It is used in the voting mechanism to find the lane with the 1446 /// least number of operands that can freely move about or less profitable 1447 /// because it already has the most optimal set of operands. Can be 1448 /// replaced with SmallVector<unsigned> instead but hash code is faster 1449 /// and requires less memory. 1450 unsigned Hash = 0; 1451 }; 1452 /// \returns the maximum number of operands that are allowed to be reordered 1453 /// for \p Lane and the number of compatible instructions(with the same 1454 /// parent/opcode). This is used as a heuristic for selecting the first lane 1455 /// to start operand reordering. 1456 OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1457 unsigned CntTrue = 0; 1458 unsigned NumOperands = getNumOperands(); 1459 // Operands with the same APO can be reordered. We therefore need to count 1460 // how many of them we have for each APO, like this: Cnt[APO] = x. 1461 // Since we only have two APOs, namely true and false, we can avoid using 1462 // a map. Instead we can simply count the number of operands that 1463 // correspond to one of them (in this case the 'true' APO), and calculate 1464 // the other by subtracting it from the total number of operands. 1465 // Operands with the same instruction opcode and parent are more 1466 // profitable since we don't need to move them in many cases, with a high 1467 // probability such lane already can be vectorized effectively. 1468 bool AllUndefs = true; 1469 unsigned NumOpsWithSameOpcodeParent = 0; 1470 Instruction *OpcodeI = nullptr; 1471 BasicBlock *Parent = nullptr; 1472 unsigned Hash = 0; 1473 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1474 const OperandData &OpData = getData(OpIdx, Lane); 1475 if (OpData.APO) 1476 ++CntTrue; 1477 // Use Boyer-Moore majority voting for finding the majority opcode and 1478 // the number of times it occurs. 1479 if (auto *I = dyn_cast<Instruction>(OpData.V)) { 1480 if (!OpcodeI || !getSameOpcode({OpcodeI, I}).getOpcode() || 1481 I->getParent() != Parent) { 1482 if (NumOpsWithSameOpcodeParent == 0) { 1483 NumOpsWithSameOpcodeParent = 1; 1484 OpcodeI = I; 1485 Parent = I->getParent(); 1486 } else { 1487 --NumOpsWithSameOpcodeParent; 1488 } 1489 } else { 1490 ++NumOpsWithSameOpcodeParent; 1491 } 1492 } 1493 Hash = hash_combine( 1494 Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1))); 1495 AllUndefs = AllUndefs && isa<UndefValue>(OpData.V); 1496 } 1497 if (AllUndefs) 1498 return {}; 1499 OperandsOrderData Data; 1500 Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue); 1501 Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent; 1502 Data.Hash = Hash; 1503 return Data; 1504 } 1505 1506 /// Go through the instructions in VL and append their operands. 1507 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1508 assert(!VL.empty() && "Bad VL"); 1509 assert((empty() || VL.size() == getNumLanes()) && 1510 "Expected same number of lanes"); 1511 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1512 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1513 OpsVec.resize(NumOperands); 1514 unsigned NumLanes = VL.size(); 1515 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1516 OpsVec[OpIdx].resize(NumLanes); 1517 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1518 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1519 // Our tree has just 3 nodes: the root and two operands. 1520 // It is therefore trivial to get the APO. We only need to check the 1521 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1522 // RHS operand. The LHS operand of both add and sub is never attached 1523 // to an inversese operation in the linearized form, therefore its APO 1524 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1525 1526 // Since operand reordering is performed on groups of commutative 1527 // operations or alternating sequences (e.g., +, -), we can safely 1528 // tell the inverse operations by checking commutativity. 1529 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1530 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1531 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1532 APO, false}; 1533 } 1534 } 1535 } 1536 1537 /// \returns the number of operands. 1538 unsigned getNumOperands() const { return OpsVec.size(); } 1539 1540 /// \returns the number of lanes. 1541 unsigned getNumLanes() const { return OpsVec[0].size(); } 1542 1543 /// \returns the operand value at \p OpIdx and \p Lane. 1544 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1545 return getData(OpIdx, Lane).V; 1546 } 1547 1548 /// \returns true if the data structure is empty. 1549 bool empty() const { return OpsVec.empty(); } 1550 1551 /// Clears the data. 1552 void clear() { OpsVec.clear(); } 1553 1554 /// \Returns true if there are enough operands identical to \p Op to fill 1555 /// the whole vector. 1556 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1557 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1558 bool OpAPO = getData(OpIdx, Lane).APO; 1559 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1560 if (Ln == Lane) 1561 continue; 1562 // This is set to true if we found a candidate for broadcast at Lane. 1563 bool FoundCandidate = false; 1564 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1565 OperandData &Data = getData(OpI, Ln); 1566 if (Data.APO != OpAPO || Data.IsUsed) 1567 continue; 1568 if (Data.V == Op) { 1569 FoundCandidate = true; 1570 Data.IsUsed = true; 1571 break; 1572 } 1573 } 1574 if (!FoundCandidate) 1575 return false; 1576 } 1577 return true; 1578 } 1579 1580 public: 1581 /// Initialize with all the operands of the instruction vector \p RootVL. 1582 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1583 ScalarEvolution &SE, const BoUpSLP &R) 1584 : DL(DL), SE(SE), R(R) { 1585 // Append all the operands of RootVL. 1586 appendOperandsOfVL(RootVL); 1587 } 1588 1589 /// \Returns a value vector with the operands across all lanes for the 1590 /// opearnd at \p OpIdx. 1591 ValueList getVL(unsigned OpIdx) const { 1592 ValueList OpVL(OpsVec[OpIdx].size()); 1593 assert(OpsVec[OpIdx].size() == getNumLanes() && 1594 "Expected same num of lanes across all operands"); 1595 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1596 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1597 return OpVL; 1598 } 1599 1600 // Performs operand reordering for 2 or more operands. 1601 // The original operands are in OrigOps[OpIdx][Lane]. 1602 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1603 void reorder() { 1604 unsigned NumOperands = getNumOperands(); 1605 unsigned NumLanes = getNumLanes(); 1606 // Each operand has its own mode. We are using this mode to help us select 1607 // the instructions for each lane, so that they match best with the ones 1608 // we have selected so far. 1609 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1610 1611 // This is a greedy single-pass algorithm. We are going over each lane 1612 // once and deciding on the best order right away with no back-tracking. 1613 // However, in order to increase its effectiveness, we start with the lane 1614 // that has operands that can move the least. For example, given the 1615 // following lanes: 1616 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1617 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1618 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1619 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1620 // we will start at Lane 1, since the operands of the subtraction cannot 1621 // be reordered. Then we will visit the rest of the lanes in a circular 1622 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1623 1624 // Find the first lane that we will start our search from. 1625 unsigned FirstLane = getBestLaneToStartReordering(); 1626 1627 // Initialize the modes. 1628 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1629 Value *OpLane0 = getValue(OpIdx, FirstLane); 1630 // Keep track if we have instructions with all the same opcode on one 1631 // side. 1632 if (isa<LoadInst>(OpLane0)) 1633 ReorderingModes[OpIdx] = ReorderingMode::Load; 1634 else if (isa<Instruction>(OpLane0)) { 1635 // Check if OpLane0 should be broadcast. 1636 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1637 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1638 else 1639 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1640 } 1641 else if (isa<Constant>(OpLane0)) 1642 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1643 else if (isa<Argument>(OpLane0)) 1644 // Our best hope is a Splat. It may save some cost in some cases. 1645 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1646 else 1647 // NOTE: This should be unreachable. 1648 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1649 } 1650 1651 // If the initial strategy fails for any of the operand indexes, then we 1652 // perform reordering again in a second pass. This helps avoid assigning 1653 // high priority to the failed strategy, and should improve reordering for 1654 // the non-failed operand indexes. 1655 for (int Pass = 0; Pass != 2; ++Pass) { 1656 // Skip the second pass if the first pass did not fail. 1657 bool StrategyFailed = false; 1658 // Mark all operand data as free to use. 1659 clearUsed(); 1660 // We keep the original operand order for the FirstLane, so reorder the 1661 // rest of the lanes. We are visiting the nodes in a circular fashion, 1662 // using FirstLane as the center point and increasing the radius 1663 // distance. 1664 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1665 // Visit the lane on the right and then the lane on the left. 1666 for (int Direction : {+1, -1}) { 1667 int Lane = FirstLane + Direction * Distance; 1668 if (Lane < 0 || Lane >= (int)NumLanes) 1669 continue; 1670 int LastLane = Lane - Direction; 1671 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1672 "Out of bounds"); 1673 // Look for a good match for each operand. 1674 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1675 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1676 Optional<unsigned> BestIdx = 1677 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1678 // By not selecting a value, we allow the operands that follow to 1679 // select a better matching value. We will get a non-null value in 1680 // the next run of getBestOperand(). 1681 if (BestIdx) { 1682 // Swap the current operand with the one returned by 1683 // getBestOperand(). 1684 swap(OpIdx, BestIdx.getValue(), Lane); 1685 } else { 1686 // We failed to find a best operand, set mode to 'Failed'. 1687 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1688 // Enable the second pass. 1689 StrategyFailed = true; 1690 } 1691 } 1692 } 1693 } 1694 // Skip second pass if the strategy did not fail. 1695 if (!StrategyFailed) 1696 break; 1697 } 1698 } 1699 1700 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1701 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1702 switch (RMode) { 1703 case ReorderingMode::Load: 1704 return "Load"; 1705 case ReorderingMode::Opcode: 1706 return "Opcode"; 1707 case ReorderingMode::Constant: 1708 return "Constant"; 1709 case ReorderingMode::Splat: 1710 return "Splat"; 1711 case ReorderingMode::Failed: 1712 return "Failed"; 1713 } 1714 llvm_unreachable("Unimplemented Reordering Type"); 1715 } 1716 1717 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1718 raw_ostream &OS) { 1719 return OS << getModeStr(RMode); 1720 } 1721 1722 /// Debug print. 1723 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1724 printMode(RMode, dbgs()); 1725 } 1726 1727 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1728 return printMode(RMode, OS); 1729 } 1730 1731 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1732 const unsigned Indent = 2; 1733 unsigned Cnt = 0; 1734 for (const OperandDataVec &OpDataVec : OpsVec) { 1735 OS << "Operand " << Cnt++ << "\n"; 1736 for (const OperandData &OpData : OpDataVec) { 1737 OS.indent(Indent) << "{"; 1738 if (Value *V = OpData.V) 1739 OS << *V; 1740 else 1741 OS << "null"; 1742 OS << ", APO:" << OpData.APO << "}\n"; 1743 } 1744 OS << "\n"; 1745 } 1746 return OS; 1747 } 1748 1749 /// Debug print. 1750 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1751 #endif 1752 }; 1753 1754 /// Checks if the instruction is marked for deletion. 1755 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1756 1757 /// Marks values operands for later deletion by replacing them with Undefs. 1758 void eraseInstructions(ArrayRef<Value *> AV); 1759 1760 ~BoUpSLP(); 1761 1762 private: 1763 /// Checks if all users of \p I are the part of the vectorization tree. 1764 bool areAllUsersVectorized(Instruction *I, 1765 ArrayRef<Value *> VectorizedVals) const; 1766 1767 /// \returns the cost of the vectorizable entry. 1768 InstructionCost getEntryCost(const TreeEntry *E, 1769 ArrayRef<Value *> VectorizedVals); 1770 1771 /// This is the recursive part of buildTree. 1772 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1773 const EdgeInfo &EI); 1774 1775 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1776 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1777 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1778 /// returns false, setting \p CurrentOrder to either an empty vector or a 1779 /// non-identity permutation that allows to reuse extract instructions. 1780 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1781 SmallVectorImpl<unsigned> &CurrentOrder) const; 1782 1783 /// Vectorize a single entry in the tree. 1784 Value *vectorizeTree(TreeEntry *E); 1785 1786 /// Vectorize a single entry in the tree, starting in \p VL. 1787 Value *vectorizeTree(ArrayRef<Value *> VL); 1788 1789 /// \returns the scalarization cost for this type. Scalarization in this 1790 /// context means the creation of vectors from a group of scalars. If \p 1791 /// NeedToShuffle is true, need to add a cost of reshuffling some of the 1792 /// vector elements. 1793 InstructionCost getGatherCost(FixedVectorType *Ty, 1794 const DenseSet<unsigned> &ShuffledIndices, 1795 bool NeedToShuffle) const; 1796 1797 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 1798 /// tree entries. 1799 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 1800 /// previous tree entries. \p Mask is filled with the shuffle mask. 1801 Optional<TargetTransformInfo::ShuffleKind> 1802 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 1803 SmallVectorImpl<const TreeEntry *> &Entries); 1804 1805 /// \returns the scalarization cost for this list of values. Assuming that 1806 /// this subtree gets vectorized, we may need to extract the values from the 1807 /// roots. This method calculates the cost of extracting the values. 1808 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 1809 1810 /// Set the Builder insert point to one after the last instruction in 1811 /// the bundle 1812 void setInsertPointAfterBundle(const TreeEntry *E); 1813 1814 /// \returns a vector from a collection of scalars in \p VL. 1815 Value *gather(ArrayRef<Value *> VL); 1816 1817 /// \returns whether the VectorizableTree is fully vectorizable and will 1818 /// be beneficial even the tree height is tiny. 1819 bool isFullyVectorizableTinyTree(bool ForReduction) const; 1820 1821 /// Reorder commutative or alt operands to get better probability of 1822 /// generating vectorized code. 1823 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1824 SmallVectorImpl<Value *> &Left, 1825 SmallVectorImpl<Value *> &Right, 1826 const DataLayout &DL, 1827 ScalarEvolution &SE, 1828 const BoUpSLP &R); 1829 struct TreeEntry { 1830 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1831 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1832 1833 /// \returns true if the scalars in VL are equal to this entry. 1834 bool isSame(ArrayRef<Value *> VL) const { 1835 auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { 1836 if (Mask.size() != VL.size() && VL.size() == Scalars.size()) 1837 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1838 return VL.size() == Mask.size() && 1839 std::equal(VL.begin(), VL.end(), Mask.begin(), 1840 [Scalars](Value *V, int Idx) { 1841 return (isa<UndefValue>(V) && 1842 Idx == UndefMaskElem) || 1843 (Idx != UndefMaskElem && V == Scalars[Idx]); 1844 }); 1845 }; 1846 if (!ReorderIndices.empty()) { 1847 // TODO: implement matching if the nodes are just reordered, still can 1848 // treat the vector as the same if the list of scalars matches VL 1849 // directly, without reordering. 1850 SmallVector<int> Mask; 1851 inversePermutation(ReorderIndices, Mask); 1852 if (VL.size() == Scalars.size()) 1853 return IsSame(Scalars, Mask); 1854 if (VL.size() == ReuseShuffleIndices.size()) { 1855 ::addMask(Mask, ReuseShuffleIndices); 1856 return IsSame(Scalars, Mask); 1857 } 1858 return false; 1859 } 1860 return IsSame(Scalars, ReuseShuffleIndices); 1861 } 1862 1863 /// \returns true if current entry has same operands as \p TE. 1864 bool hasEqualOperands(const TreeEntry &TE) const { 1865 if (TE.getNumOperands() != getNumOperands()) 1866 return false; 1867 SmallBitVector Used(getNumOperands()); 1868 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 1869 unsigned PrevCount = Used.count(); 1870 for (unsigned K = 0; K < E; ++K) { 1871 if (Used.test(K)) 1872 continue; 1873 if (getOperand(K) == TE.getOperand(I)) { 1874 Used.set(K); 1875 break; 1876 } 1877 } 1878 // Check if we actually found the matching operand. 1879 if (PrevCount == Used.count()) 1880 return false; 1881 } 1882 return true; 1883 } 1884 1885 /// \return Final vectorization factor for the node. Defined by the total 1886 /// number of vectorized scalars, including those, used several times in the 1887 /// entry and counted in the \a ReuseShuffleIndices, if any. 1888 unsigned getVectorFactor() const { 1889 if (!ReuseShuffleIndices.empty()) 1890 return ReuseShuffleIndices.size(); 1891 return Scalars.size(); 1892 }; 1893 1894 /// A vector of scalars. 1895 ValueList Scalars; 1896 1897 /// The Scalars are vectorized into this value. It is initialized to Null. 1898 Value *VectorizedValue = nullptr; 1899 1900 /// Do we need to gather this sequence or vectorize it 1901 /// (either with vector instruction or with scatter/gather 1902 /// intrinsics for store/load)? 1903 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 1904 EntryState State; 1905 1906 /// Does this sequence require some shuffling? 1907 SmallVector<int, 4> ReuseShuffleIndices; 1908 1909 /// Does this entry require reordering? 1910 SmallVector<unsigned, 4> ReorderIndices; 1911 1912 /// Points back to the VectorizableTree. 1913 /// 1914 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1915 /// to be a pointer and needs to be able to initialize the child iterator. 1916 /// Thus we need a reference back to the container to translate the indices 1917 /// to entries. 1918 VecTreeTy &Container; 1919 1920 /// The TreeEntry index containing the user of this entry. We can actually 1921 /// have multiple users so the data structure is not truly a tree. 1922 SmallVector<EdgeInfo, 1> UserTreeIndices; 1923 1924 /// The index of this treeEntry in VectorizableTree. 1925 int Idx = -1; 1926 1927 private: 1928 /// The operands of each instruction in each lane Operands[op_index][lane]. 1929 /// Note: This helps avoid the replication of the code that performs the 1930 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1931 SmallVector<ValueList, 2> Operands; 1932 1933 /// The main/alternate instruction. 1934 Instruction *MainOp = nullptr; 1935 Instruction *AltOp = nullptr; 1936 1937 public: 1938 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1939 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1940 if (Operands.size() < OpIdx + 1) 1941 Operands.resize(OpIdx + 1); 1942 assert(Operands[OpIdx].empty() && "Already resized?"); 1943 Operands[OpIdx].resize(Scalars.size()); 1944 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1945 Operands[OpIdx][Lane] = OpVL[Lane]; 1946 } 1947 1948 /// Set the operands of this bundle in their original order. 1949 void setOperandsInOrder() { 1950 assert(Operands.empty() && "Already initialized?"); 1951 auto *I0 = cast<Instruction>(Scalars[0]); 1952 Operands.resize(I0->getNumOperands()); 1953 unsigned NumLanes = Scalars.size(); 1954 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1955 OpIdx != NumOperands; ++OpIdx) { 1956 Operands[OpIdx].resize(NumLanes); 1957 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1958 auto *I = cast<Instruction>(Scalars[Lane]); 1959 assert(I->getNumOperands() == NumOperands && 1960 "Expected same number of operands"); 1961 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1962 } 1963 } 1964 } 1965 1966 /// Reorders operands of the node to the given mask \p Mask. 1967 void reorderOperands(ArrayRef<int> Mask) { 1968 for (ValueList &Operand : Operands) 1969 reorderScalars(Operand, Mask); 1970 } 1971 1972 /// \returns the \p OpIdx operand of this TreeEntry. 1973 ValueList &getOperand(unsigned OpIdx) { 1974 assert(OpIdx < Operands.size() && "Off bounds"); 1975 return Operands[OpIdx]; 1976 } 1977 1978 /// \returns the \p OpIdx operand of this TreeEntry. 1979 ArrayRef<Value *> getOperand(unsigned OpIdx) const { 1980 assert(OpIdx < Operands.size() && "Off bounds"); 1981 return Operands[OpIdx]; 1982 } 1983 1984 /// \returns the number of operands. 1985 unsigned getNumOperands() const { return Operands.size(); } 1986 1987 /// \return the single \p OpIdx operand. 1988 Value *getSingleOperand(unsigned OpIdx) const { 1989 assert(OpIdx < Operands.size() && "Off bounds"); 1990 assert(!Operands[OpIdx].empty() && "No operand available"); 1991 return Operands[OpIdx][0]; 1992 } 1993 1994 /// Some of the instructions in the list have alternate opcodes. 1995 bool isAltShuffle() const { 1996 return getOpcode() != getAltOpcode(); 1997 } 1998 1999 bool isOpcodeOrAlt(Instruction *I) const { 2000 unsigned CheckedOpcode = I->getOpcode(); 2001 return (getOpcode() == CheckedOpcode || 2002 getAltOpcode() == CheckedOpcode); 2003 } 2004 2005 /// Chooses the correct key for scheduling data. If \p Op has the same (or 2006 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 2007 /// \p OpValue. 2008 Value *isOneOf(Value *Op) const { 2009 auto *I = dyn_cast<Instruction>(Op); 2010 if (I && isOpcodeOrAlt(I)) 2011 return Op; 2012 return MainOp; 2013 } 2014 2015 void setOperations(const InstructionsState &S) { 2016 MainOp = S.MainOp; 2017 AltOp = S.AltOp; 2018 } 2019 2020 Instruction *getMainOp() const { 2021 return MainOp; 2022 } 2023 2024 Instruction *getAltOp() const { 2025 return AltOp; 2026 } 2027 2028 /// The main/alternate opcodes for the list of instructions. 2029 unsigned getOpcode() const { 2030 return MainOp ? MainOp->getOpcode() : 0; 2031 } 2032 2033 unsigned getAltOpcode() const { 2034 return AltOp ? AltOp->getOpcode() : 0; 2035 } 2036 2037 /// When ReuseReorderShuffleIndices is empty it just returns position of \p 2038 /// V within vector of Scalars. Otherwise, try to remap on its reuse index. 2039 int findLaneForValue(Value *V) const { 2040 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 2041 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2042 if (!ReorderIndices.empty()) 2043 FoundLane = ReorderIndices[FoundLane]; 2044 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2045 if (!ReuseShuffleIndices.empty()) { 2046 FoundLane = std::distance(ReuseShuffleIndices.begin(), 2047 find(ReuseShuffleIndices, FoundLane)); 2048 } 2049 return FoundLane; 2050 } 2051 2052 #ifndef NDEBUG 2053 /// Debug printer. 2054 LLVM_DUMP_METHOD void dump() const { 2055 dbgs() << Idx << ".\n"; 2056 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 2057 dbgs() << "Operand " << OpI << ":\n"; 2058 for (const Value *V : Operands[OpI]) 2059 dbgs().indent(2) << *V << "\n"; 2060 } 2061 dbgs() << "Scalars: \n"; 2062 for (Value *V : Scalars) 2063 dbgs().indent(2) << *V << "\n"; 2064 dbgs() << "State: "; 2065 switch (State) { 2066 case Vectorize: 2067 dbgs() << "Vectorize\n"; 2068 break; 2069 case ScatterVectorize: 2070 dbgs() << "ScatterVectorize\n"; 2071 break; 2072 case NeedToGather: 2073 dbgs() << "NeedToGather\n"; 2074 break; 2075 } 2076 dbgs() << "MainOp: "; 2077 if (MainOp) 2078 dbgs() << *MainOp << "\n"; 2079 else 2080 dbgs() << "NULL\n"; 2081 dbgs() << "AltOp: "; 2082 if (AltOp) 2083 dbgs() << *AltOp << "\n"; 2084 else 2085 dbgs() << "NULL\n"; 2086 dbgs() << "VectorizedValue: "; 2087 if (VectorizedValue) 2088 dbgs() << *VectorizedValue << "\n"; 2089 else 2090 dbgs() << "NULL\n"; 2091 dbgs() << "ReuseShuffleIndices: "; 2092 if (ReuseShuffleIndices.empty()) 2093 dbgs() << "Empty"; 2094 else 2095 for (unsigned ReuseIdx : ReuseShuffleIndices) 2096 dbgs() << ReuseIdx << ", "; 2097 dbgs() << "\n"; 2098 dbgs() << "ReorderIndices: "; 2099 for (unsigned ReorderIdx : ReorderIndices) 2100 dbgs() << ReorderIdx << ", "; 2101 dbgs() << "\n"; 2102 dbgs() << "UserTreeIndices: "; 2103 for (const auto &EInfo : UserTreeIndices) 2104 dbgs() << EInfo << ", "; 2105 dbgs() << "\n"; 2106 } 2107 #endif 2108 }; 2109 2110 #ifndef NDEBUG 2111 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 2112 InstructionCost VecCost, 2113 InstructionCost ScalarCost) const { 2114 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 2115 dbgs() << "SLP: Costs:\n"; 2116 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 2117 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 2118 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 2119 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 2120 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 2121 } 2122 #endif 2123 2124 /// Create a new VectorizableTree entry. 2125 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 2126 const InstructionsState &S, 2127 const EdgeInfo &UserTreeIdx, 2128 ArrayRef<int> ReuseShuffleIndices = None, 2129 ArrayRef<unsigned> ReorderIndices = None) { 2130 TreeEntry::EntryState EntryState = 2131 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 2132 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 2133 ReuseShuffleIndices, ReorderIndices); 2134 } 2135 2136 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 2137 TreeEntry::EntryState EntryState, 2138 Optional<ScheduleData *> Bundle, 2139 const InstructionsState &S, 2140 const EdgeInfo &UserTreeIdx, 2141 ArrayRef<int> ReuseShuffleIndices = None, 2142 ArrayRef<unsigned> ReorderIndices = None) { 2143 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 2144 (Bundle && EntryState != TreeEntry::NeedToGather)) && 2145 "Need to vectorize gather entry?"); 2146 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 2147 TreeEntry *Last = VectorizableTree.back().get(); 2148 Last->Idx = VectorizableTree.size() - 1; 2149 Last->State = EntryState; 2150 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 2151 ReuseShuffleIndices.end()); 2152 if (ReorderIndices.empty()) { 2153 Last->Scalars.assign(VL.begin(), VL.end()); 2154 Last->setOperations(S); 2155 } else { 2156 // Reorder scalars and build final mask. 2157 Last->Scalars.assign(VL.size(), nullptr); 2158 transform(ReorderIndices, Last->Scalars.begin(), 2159 [VL](unsigned Idx) -> Value * { 2160 if (Idx >= VL.size()) 2161 return UndefValue::get(VL.front()->getType()); 2162 return VL[Idx]; 2163 }); 2164 InstructionsState S = getSameOpcode(Last->Scalars); 2165 Last->setOperations(S); 2166 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 2167 } 2168 if (Last->State != TreeEntry::NeedToGather) { 2169 for (Value *V : VL) { 2170 assert(!getTreeEntry(V) && "Scalar already in tree!"); 2171 ScalarToTreeEntry[V] = Last; 2172 } 2173 // Update the scheduler bundle to point to this TreeEntry. 2174 unsigned Lane = 0; 2175 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 2176 BundleMember = BundleMember->NextInBundle) { 2177 BundleMember->TE = Last; 2178 BundleMember->Lane = Lane; 2179 ++Lane; 2180 } 2181 assert((!Bundle.getValue() || Lane == VL.size()) && 2182 "Bundle and VL out of sync"); 2183 } else { 2184 MustGather.insert(VL.begin(), VL.end()); 2185 } 2186 2187 if (UserTreeIdx.UserTE) 2188 Last->UserTreeIndices.push_back(UserTreeIdx); 2189 2190 return Last; 2191 } 2192 2193 /// -- Vectorization State -- 2194 /// Holds all of the tree entries. 2195 TreeEntry::VecTreeTy VectorizableTree; 2196 2197 #ifndef NDEBUG 2198 /// Debug printer. 2199 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 2200 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 2201 VectorizableTree[Id]->dump(); 2202 dbgs() << "\n"; 2203 } 2204 } 2205 #endif 2206 2207 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 2208 2209 const TreeEntry *getTreeEntry(Value *V) const { 2210 return ScalarToTreeEntry.lookup(V); 2211 } 2212 2213 /// Maps a specific scalar to its tree entry. 2214 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 2215 2216 /// Maps a value to the proposed vectorizable size. 2217 SmallDenseMap<Value *, unsigned> InstrElementSize; 2218 2219 /// A list of scalars that we found that we need to keep as scalars. 2220 ValueSet MustGather; 2221 2222 /// This POD struct describes one external user in the vectorized tree. 2223 struct ExternalUser { 2224 ExternalUser(Value *S, llvm::User *U, int L) 2225 : Scalar(S), User(U), Lane(L) {} 2226 2227 // Which scalar in our function. 2228 Value *Scalar; 2229 2230 // Which user that uses the scalar. 2231 llvm::User *User; 2232 2233 // Which lane does the scalar belong to. 2234 int Lane; 2235 }; 2236 using UserList = SmallVector<ExternalUser, 16>; 2237 2238 /// Checks if two instructions may access the same memory. 2239 /// 2240 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 2241 /// is invariant in the calling loop. 2242 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 2243 Instruction *Inst2) { 2244 // First check if the result is already in the cache. 2245 AliasCacheKey key = std::make_pair(Inst1, Inst2); 2246 Optional<bool> &result = AliasCache[key]; 2247 if (result.hasValue()) { 2248 return result.getValue(); 2249 } 2250 bool aliased = true; 2251 if (Loc1.Ptr && isSimple(Inst1)) 2252 aliased = isModOrRefSet(AA->getModRefInfo(Inst2, Loc1)); 2253 // Store the result in the cache. 2254 result = aliased; 2255 return aliased; 2256 } 2257 2258 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 2259 2260 /// Cache for alias results. 2261 /// TODO: consider moving this to the AliasAnalysis itself. 2262 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 2263 2264 /// Removes an instruction from its block and eventually deletes it. 2265 /// It's like Instruction::eraseFromParent() except that the actual deletion 2266 /// is delayed until BoUpSLP is destructed. 2267 /// This is required to ensure that there are no incorrect collisions in the 2268 /// AliasCache, which can happen if a new instruction is allocated at the 2269 /// same address as a previously deleted instruction. 2270 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 2271 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 2272 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 2273 } 2274 2275 /// Temporary store for deleted instructions. Instructions will be deleted 2276 /// eventually when the BoUpSLP is destructed. 2277 DenseMap<Instruction *, bool> DeletedInstructions; 2278 2279 /// A list of values that need to extracted out of the tree. 2280 /// This list holds pairs of (Internal Scalar : External User). External User 2281 /// can be nullptr, it means that this Internal Scalar will be used later, 2282 /// after vectorization. 2283 UserList ExternalUses; 2284 2285 /// Values used only by @llvm.assume calls. 2286 SmallPtrSet<const Value *, 32> EphValues; 2287 2288 /// Holds all of the instructions that we gathered. 2289 SetVector<Instruction *> GatherShuffleSeq; 2290 2291 /// A list of blocks that we are going to CSE. 2292 SetVector<BasicBlock *> CSEBlocks; 2293 2294 /// Contains all scheduling relevant data for an instruction. 2295 /// A ScheduleData either represents a single instruction or a member of an 2296 /// instruction bundle (= a group of instructions which is combined into a 2297 /// vector instruction). 2298 struct ScheduleData { 2299 // The initial value for the dependency counters. It means that the 2300 // dependencies are not calculated yet. 2301 enum { InvalidDeps = -1 }; 2302 2303 ScheduleData() = default; 2304 2305 void init(int BlockSchedulingRegionID, Value *OpVal) { 2306 FirstInBundle = this; 2307 NextInBundle = nullptr; 2308 NextLoadStore = nullptr; 2309 IsScheduled = false; 2310 SchedulingRegionID = BlockSchedulingRegionID; 2311 UnscheduledDepsInBundle = UnscheduledDeps; 2312 clearDependencies(); 2313 OpValue = OpVal; 2314 TE = nullptr; 2315 Lane = -1; 2316 } 2317 2318 /// Returns true if the dependency information has been calculated. 2319 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2320 2321 /// Returns true for single instructions and for bundle representatives 2322 /// (= the head of a bundle). 2323 bool isSchedulingEntity() const { return FirstInBundle == this; } 2324 2325 /// Returns true if it represents an instruction bundle and not only a 2326 /// single instruction. 2327 bool isPartOfBundle() const { 2328 return NextInBundle != nullptr || FirstInBundle != this; 2329 } 2330 2331 /// Returns true if it is ready for scheduling, i.e. it has no more 2332 /// unscheduled depending instructions/bundles. 2333 bool isReady() const { 2334 assert(isSchedulingEntity() && 2335 "can't consider non-scheduling entity for ready list"); 2336 return UnscheduledDepsInBundle == 0 && !IsScheduled; 2337 } 2338 2339 /// Modifies the number of unscheduled dependencies, also updating it for 2340 /// the whole bundle. 2341 int incrementUnscheduledDeps(int Incr) { 2342 UnscheduledDeps += Incr; 2343 return FirstInBundle->UnscheduledDepsInBundle += Incr; 2344 } 2345 2346 /// Sets the number of unscheduled dependencies to the number of 2347 /// dependencies. 2348 void resetUnscheduledDeps() { 2349 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 2350 } 2351 2352 /// Clears all dependency information. 2353 void clearDependencies() { 2354 Dependencies = InvalidDeps; 2355 resetUnscheduledDeps(); 2356 MemoryDependencies.clear(); 2357 } 2358 2359 void dump(raw_ostream &os) const { 2360 if (!isSchedulingEntity()) { 2361 os << "/ " << *Inst; 2362 } else if (NextInBundle) { 2363 os << '[' << *Inst; 2364 ScheduleData *SD = NextInBundle; 2365 while (SD) { 2366 os << ';' << *SD->Inst; 2367 SD = SD->NextInBundle; 2368 } 2369 os << ']'; 2370 } else { 2371 os << *Inst; 2372 } 2373 } 2374 2375 Instruction *Inst = nullptr; 2376 2377 /// Points to the head in an instruction bundle (and always to this for 2378 /// single instructions). 2379 ScheduleData *FirstInBundle = nullptr; 2380 2381 /// Single linked list of all instructions in a bundle. Null if it is a 2382 /// single instruction. 2383 ScheduleData *NextInBundle = nullptr; 2384 2385 /// Single linked list of all memory instructions (e.g. load, store, call) 2386 /// in the block - until the end of the scheduling region. 2387 ScheduleData *NextLoadStore = nullptr; 2388 2389 /// The dependent memory instructions. 2390 /// This list is derived on demand in calculateDependencies(). 2391 SmallVector<ScheduleData *, 4> MemoryDependencies; 2392 2393 /// This ScheduleData is in the current scheduling region if this matches 2394 /// the current SchedulingRegionID of BlockScheduling. 2395 int SchedulingRegionID = 0; 2396 2397 /// Used for getting a "good" final ordering of instructions. 2398 int SchedulingPriority = 0; 2399 2400 /// The number of dependencies. Constitutes of the number of users of the 2401 /// instruction plus the number of dependent memory instructions (if any). 2402 /// This value is calculated on demand. 2403 /// If InvalidDeps, the number of dependencies is not calculated yet. 2404 int Dependencies = InvalidDeps; 2405 2406 /// The number of dependencies minus the number of dependencies of scheduled 2407 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2408 /// for scheduling. 2409 /// Note that this is negative as long as Dependencies is not calculated. 2410 int UnscheduledDeps = InvalidDeps; 2411 2412 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 2413 /// single instructions. 2414 int UnscheduledDepsInBundle = InvalidDeps; 2415 2416 /// True if this instruction is scheduled (or considered as scheduled in the 2417 /// dry-run). 2418 bool IsScheduled = false; 2419 2420 /// Opcode of the current instruction in the schedule data. 2421 Value *OpValue = nullptr; 2422 2423 /// The TreeEntry that this instruction corresponds to. 2424 TreeEntry *TE = nullptr; 2425 2426 /// The lane of this node in the TreeEntry. 2427 int Lane = -1; 2428 }; 2429 2430 #ifndef NDEBUG 2431 friend inline raw_ostream &operator<<(raw_ostream &os, 2432 const BoUpSLP::ScheduleData &SD) { 2433 SD.dump(os); 2434 return os; 2435 } 2436 #endif 2437 2438 friend struct GraphTraits<BoUpSLP *>; 2439 friend struct DOTGraphTraits<BoUpSLP *>; 2440 2441 /// Contains all scheduling data for a basic block. 2442 struct BlockScheduling { 2443 BlockScheduling(BasicBlock *BB) 2444 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2445 2446 void clear() { 2447 ReadyInsts.clear(); 2448 ScheduleStart = nullptr; 2449 ScheduleEnd = nullptr; 2450 FirstLoadStoreInRegion = nullptr; 2451 LastLoadStoreInRegion = nullptr; 2452 2453 // Reduce the maximum schedule region size by the size of the 2454 // previous scheduling run. 2455 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2456 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2457 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2458 ScheduleRegionSize = 0; 2459 2460 // Make a new scheduling region, i.e. all existing ScheduleData is not 2461 // in the new region yet. 2462 ++SchedulingRegionID; 2463 } 2464 2465 ScheduleData *getScheduleData(Value *V) { 2466 ScheduleData *SD = ScheduleDataMap[V]; 2467 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2468 return SD; 2469 return nullptr; 2470 } 2471 2472 ScheduleData *getScheduleData(Value *V, Value *Key) { 2473 if (V == Key) 2474 return getScheduleData(V); 2475 auto I = ExtraScheduleDataMap.find(V); 2476 if (I != ExtraScheduleDataMap.end()) { 2477 ScheduleData *SD = I->second[Key]; 2478 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2479 return SD; 2480 } 2481 return nullptr; 2482 } 2483 2484 bool isInSchedulingRegion(ScheduleData *SD) const { 2485 return SD->SchedulingRegionID == SchedulingRegionID; 2486 } 2487 2488 /// Marks an instruction as scheduled and puts all dependent ready 2489 /// instructions into the ready-list. 2490 template <typename ReadyListType> 2491 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2492 SD->IsScheduled = true; 2493 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2494 2495 ScheduleData *BundleMember = SD; 2496 while (BundleMember) { 2497 if (BundleMember->Inst != BundleMember->OpValue) { 2498 BundleMember = BundleMember->NextInBundle; 2499 continue; 2500 } 2501 // Handle the def-use chain dependencies. 2502 2503 // Decrement the unscheduled counter and insert to ready list if ready. 2504 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2505 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2506 if (OpDef && OpDef->hasValidDependencies() && 2507 OpDef->incrementUnscheduledDeps(-1) == 0) { 2508 // There are no more unscheduled dependencies after 2509 // decrementing, so we can put the dependent instruction 2510 // into the ready list. 2511 ScheduleData *DepBundle = OpDef->FirstInBundle; 2512 assert(!DepBundle->IsScheduled && 2513 "already scheduled bundle gets ready"); 2514 ReadyList.insert(DepBundle); 2515 LLVM_DEBUG(dbgs() 2516 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2517 } 2518 }); 2519 }; 2520 2521 // If BundleMember is a vector bundle, its operands may have been 2522 // reordered duiring buildTree(). We therefore need to get its operands 2523 // through the TreeEntry. 2524 if (TreeEntry *TE = BundleMember->TE) { 2525 int Lane = BundleMember->Lane; 2526 assert(Lane >= 0 && "Lane not set"); 2527 2528 // Since vectorization tree is being built recursively this assertion 2529 // ensures that the tree entry has all operands set before reaching 2530 // this code. Couple of exceptions known at the moment are extracts 2531 // where their second (immediate) operand is not added. Since 2532 // immediates do not affect scheduler behavior this is considered 2533 // okay. 2534 auto *In = TE->getMainOp(); 2535 assert(In && 2536 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2537 In->getNumOperands() == TE->getNumOperands()) && 2538 "Missed TreeEntry operands?"); 2539 (void)In; // fake use to avoid build failure when assertions disabled 2540 2541 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2542 OpIdx != NumOperands; ++OpIdx) 2543 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2544 DecrUnsched(I); 2545 } else { 2546 // If BundleMember is a stand-alone instruction, no operand reordering 2547 // has taken place, so we directly access its operands. 2548 for (Use &U : BundleMember->Inst->operands()) 2549 if (auto *I = dyn_cast<Instruction>(U.get())) 2550 DecrUnsched(I); 2551 } 2552 // Handle the memory dependencies. 2553 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2554 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2555 // There are no more unscheduled dependencies after decrementing, 2556 // so we can put the dependent instruction into the ready list. 2557 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2558 assert(!DepBundle->IsScheduled && 2559 "already scheduled bundle gets ready"); 2560 ReadyList.insert(DepBundle); 2561 LLVM_DEBUG(dbgs() 2562 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2563 } 2564 } 2565 BundleMember = BundleMember->NextInBundle; 2566 } 2567 } 2568 2569 void doForAllOpcodes(Value *V, 2570 function_ref<void(ScheduleData *SD)> Action) { 2571 if (ScheduleData *SD = getScheduleData(V)) 2572 Action(SD); 2573 auto I = ExtraScheduleDataMap.find(V); 2574 if (I != ExtraScheduleDataMap.end()) 2575 for (auto &P : I->second) 2576 if (P.second->SchedulingRegionID == SchedulingRegionID) 2577 Action(P.second); 2578 } 2579 2580 /// Put all instructions into the ReadyList which are ready for scheduling. 2581 template <typename ReadyListType> 2582 void initialFillReadyList(ReadyListType &ReadyList) { 2583 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2584 doForAllOpcodes(I, [&](ScheduleData *SD) { 2585 if (SD->isSchedulingEntity() && SD->isReady()) { 2586 ReadyList.insert(SD); 2587 LLVM_DEBUG(dbgs() 2588 << "SLP: initially in ready list: " << *I << "\n"); 2589 } 2590 }); 2591 } 2592 } 2593 2594 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2595 /// cyclic dependencies. This is only a dry-run, no instructions are 2596 /// actually moved at this stage. 2597 /// \returns the scheduling bundle. The returned Optional value is non-None 2598 /// if \p VL is allowed to be scheduled. 2599 Optional<ScheduleData *> 2600 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2601 const InstructionsState &S); 2602 2603 /// Un-bundles a group of instructions. 2604 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2605 2606 /// Allocates schedule data chunk. 2607 ScheduleData *allocateScheduleDataChunks(); 2608 2609 /// Extends the scheduling region so that V is inside the region. 2610 /// \returns true if the region size is within the limit. 2611 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2612 2613 /// Initialize the ScheduleData structures for new instructions in the 2614 /// scheduling region. 2615 void initScheduleData(Instruction *FromI, Instruction *ToI, 2616 ScheduleData *PrevLoadStore, 2617 ScheduleData *NextLoadStore); 2618 2619 /// Updates the dependency information of a bundle and of all instructions/ 2620 /// bundles which depend on the original bundle. 2621 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2622 BoUpSLP *SLP); 2623 2624 /// Sets all instruction in the scheduling region to un-scheduled. 2625 void resetSchedule(); 2626 2627 BasicBlock *BB; 2628 2629 /// Simple memory allocation for ScheduleData. 2630 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2631 2632 /// The size of a ScheduleData array in ScheduleDataChunks. 2633 int ChunkSize; 2634 2635 /// The allocator position in the current chunk, which is the last entry 2636 /// of ScheduleDataChunks. 2637 int ChunkPos; 2638 2639 /// Attaches ScheduleData to Instruction. 2640 /// Note that the mapping survives during all vectorization iterations, i.e. 2641 /// ScheduleData structures are recycled. 2642 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2643 2644 /// Attaches ScheduleData to Instruction with the leading key. 2645 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2646 ExtraScheduleDataMap; 2647 2648 struct ReadyList : SmallVector<ScheduleData *, 8> { 2649 void insert(ScheduleData *SD) { push_back(SD); } 2650 }; 2651 2652 /// The ready-list for scheduling (only used for the dry-run). 2653 ReadyList ReadyInsts; 2654 2655 /// The first instruction of the scheduling region. 2656 Instruction *ScheduleStart = nullptr; 2657 2658 /// The first instruction _after_ the scheduling region. 2659 Instruction *ScheduleEnd = nullptr; 2660 2661 /// The first memory accessing instruction in the scheduling region 2662 /// (can be null). 2663 ScheduleData *FirstLoadStoreInRegion = nullptr; 2664 2665 /// The last memory accessing instruction in the scheduling region 2666 /// (can be null). 2667 ScheduleData *LastLoadStoreInRegion = nullptr; 2668 2669 /// The current size of the scheduling region. 2670 int ScheduleRegionSize = 0; 2671 2672 /// The maximum size allowed for the scheduling region. 2673 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2674 2675 /// The ID of the scheduling region. For a new vectorization iteration this 2676 /// is incremented which "removes" all ScheduleData from the region. 2677 // Make sure that the initial SchedulingRegionID is greater than the 2678 // initial SchedulingRegionID in ScheduleData (which is 0). 2679 int SchedulingRegionID = 1; 2680 }; 2681 2682 /// Attaches the BlockScheduling structures to basic blocks. 2683 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2684 2685 /// Performs the "real" scheduling. Done before vectorization is actually 2686 /// performed in a basic block. 2687 void scheduleBlock(BlockScheduling *BS); 2688 2689 /// List of users to ignore during scheduling and that don't need extracting. 2690 ArrayRef<Value *> UserIgnoreList; 2691 2692 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2693 /// sorted SmallVectors of unsigned. 2694 struct OrdersTypeDenseMapInfo { 2695 static OrdersType getEmptyKey() { 2696 OrdersType V; 2697 V.push_back(~1U); 2698 return V; 2699 } 2700 2701 static OrdersType getTombstoneKey() { 2702 OrdersType V; 2703 V.push_back(~2U); 2704 return V; 2705 } 2706 2707 static unsigned getHashValue(const OrdersType &V) { 2708 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2709 } 2710 2711 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2712 return LHS == RHS; 2713 } 2714 }; 2715 2716 // Analysis and block reference. 2717 Function *F; 2718 ScalarEvolution *SE; 2719 TargetTransformInfo *TTI; 2720 TargetLibraryInfo *TLI; 2721 AAResults *AA; 2722 LoopInfo *LI; 2723 DominatorTree *DT; 2724 AssumptionCache *AC; 2725 DemandedBits *DB; 2726 const DataLayout *DL; 2727 OptimizationRemarkEmitter *ORE; 2728 2729 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2730 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2731 2732 /// Instruction builder to construct the vectorized tree. 2733 IRBuilder<> Builder; 2734 2735 /// A map of scalar integer values to the smallest bit width with which they 2736 /// can legally be represented. The values map to (width, signed) pairs, 2737 /// where "width" indicates the minimum bit width and "signed" is True if the 2738 /// value must be signed-extended, rather than zero-extended, back to its 2739 /// original width. 2740 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2741 }; 2742 2743 } // end namespace slpvectorizer 2744 2745 template <> struct GraphTraits<BoUpSLP *> { 2746 using TreeEntry = BoUpSLP::TreeEntry; 2747 2748 /// NodeRef has to be a pointer per the GraphWriter. 2749 using NodeRef = TreeEntry *; 2750 2751 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2752 2753 /// Add the VectorizableTree to the index iterator to be able to return 2754 /// TreeEntry pointers. 2755 struct ChildIteratorType 2756 : public iterator_adaptor_base< 2757 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2758 ContainerTy &VectorizableTree; 2759 2760 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2761 ContainerTy &VT) 2762 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2763 2764 NodeRef operator*() { return I->UserTE; } 2765 }; 2766 2767 static NodeRef getEntryNode(BoUpSLP &R) { 2768 return R.VectorizableTree[0].get(); 2769 } 2770 2771 static ChildIteratorType child_begin(NodeRef N) { 2772 return {N->UserTreeIndices.begin(), N->Container}; 2773 } 2774 2775 static ChildIteratorType child_end(NodeRef N) { 2776 return {N->UserTreeIndices.end(), N->Container}; 2777 } 2778 2779 /// For the node iterator we just need to turn the TreeEntry iterator into a 2780 /// TreeEntry* iterator so that it dereferences to NodeRef. 2781 class nodes_iterator { 2782 using ItTy = ContainerTy::iterator; 2783 ItTy It; 2784 2785 public: 2786 nodes_iterator(const ItTy &It2) : It(It2) {} 2787 NodeRef operator*() { return It->get(); } 2788 nodes_iterator operator++() { 2789 ++It; 2790 return *this; 2791 } 2792 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2793 }; 2794 2795 static nodes_iterator nodes_begin(BoUpSLP *R) { 2796 return nodes_iterator(R->VectorizableTree.begin()); 2797 } 2798 2799 static nodes_iterator nodes_end(BoUpSLP *R) { 2800 return nodes_iterator(R->VectorizableTree.end()); 2801 } 2802 2803 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2804 }; 2805 2806 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2807 using TreeEntry = BoUpSLP::TreeEntry; 2808 2809 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2810 2811 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2812 std::string Str; 2813 raw_string_ostream OS(Str); 2814 if (isSplat(Entry->Scalars)) 2815 OS << "<splat> "; 2816 for (auto V : Entry->Scalars) { 2817 OS << *V; 2818 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 2819 return EU.Scalar == V; 2820 })) 2821 OS << " <extract>"; 2822 OS << "\n"; 2823 } 2824 return Str; 2825 } 2826 2827 static std::string getNodeAttributes(const TreeEntry *Entry, 2828 const BoUpSLP *) { 2829 if (Entry->State == TreeEntry::NeedToGather) 2830 return "color=red"; 2831 return ""; 2832 } 2833 }; 2834 2835 } // end namespace llvm 2836 2837 BoUpSLP::~BoUpSLP() { 2838 for (const auto &Pair : DeletedInstructions) { 2839 // Replace operands of ignored instructions with Undefs in case if they were 2840 // marked for deletion. 2841 if (Pair.getSecond()) { 2842 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2843 Pair.getFirst()->replaceAllUsesWith(Undef); 2844 } 2845 Pair.getFirst()->dropAllReferences(); 2846 } 2847 for (const auto &Pair : DeletedInstructions) { 2848 assert(Pair.getFirst()->use_empty() && 2849 "trying to erase instruction with users."); 2850 Pair.getFirst()->eraseFromParent(); 2851 } 2852 #ifdef EXPENSIVE_CHECKS 2853 // If we could guarantee that this call is not extremely slow, we could 2854 // remove the ifdef limitation (see PR47712). 2855 assert(!verifyFunction(*F, &dbgs())); 2856 #endif 2857 } 2858 2859 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2860 for (auto *V : AV) { 2861 if (auto *I = dyn_cast<Instruction>(V)) 2862 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 2863 }; 2864 } 2865 2866 /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses 2867 /// contains original mask for the scalars reused in the node. Procedure 2868 /// transform this mask in accordance with the given \p Mask. 2869 static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { 2870 assert(!Mask.empty() && Reuses.size() == Mask.size() && 2871 "Expected non-empty mask."); 2872 SmallVector<int> Prev(Reuses.begin(), Reuses.end()); 2873 Prev.swap(Reuses); 2874 for (unsigned I = 0, E = Prev.size(); I < E; ++I) 2875 if (Mask[I] != UndefMaskElem) 2876 Reuses[Mask[I]] = Prev[I]; 2877 } 2878 2879 /// Reorders the given \p Order according to the given \p Mask. \p Order - is 2880 /// the original order of the scalars. Procedure transforms the provided order 2881 /// in accordance with the given \p Mask. If the resulting \p Order is just an 2882 /// identity order, \p Order is cleared. 2883 static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { 2884 assert(!Mask.empty() && "Expected non-empty mask."); 2885 SmallVector<int> MaskOrder; 2886 if (Order.empty()) { 2887 MaskOrder.resize(Mask.size()); 2888 std::iota(MaskOrder.begin(), MaskOrder.end(), 0); 2889 } else { 2890 inversePermutation(Order, MaskOrder); 2891 } 2892 reorderReuses(MaskOrder, Mask); 2893 if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { 2894 Order.clear(); 2895 return; 2896 } 2897 Order.assign(Mask.size(), Mask.size()); 2898 for (unsigned I = 0, E = Mask.size(); I < E; ++I) 2899 if (MaskOrder[I] != UndefMaskElem) 2900 Order[MaskOrder[I]] = I; 2901 fixupOrderingIndices(Order); 2902 } 2903 2904 Optional<BoUpSLP::OrdersType> 2905 BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { 2906 assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); 2907 unsigned NumScalars = TE.Scalars.size(); 2908 OrdersType CurrentOrder(NumScalars, NumScalars); 2909 SmallVector<int> Positions; 2910 SmallBitVector UsedPositions(NumScalars); 2911 const TreeEntry *STE = nullptr; 2912 // Try to find all gathered scalars that are gets vectorized in other 2913 // vectorize node. Here we can have only one single tree vector node to 2914 // correctly identify order of the gathered scalars. 2915 for (unsigned I = 0; I < NumScalars; ++I) { 2916 Value *V = TE.Scalars[I]; 2917 if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) 2918 continue; 2919 if (const auto *LocalSTE = getTreeEntry(V)) { 2920 if (!STE) 2921 STE = LocalSTE; 2922 else if (STE != LocalSTE) 2923 // Take the order only from the single vector node. 2924 return None; 2925 unsigned Lane = 2926 std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); 2927 if (Lane >= NumScalars) 2928 return None; 2929 if (CurrentOrder[Lane] != NumScalars) { 2930 if (Lane != I) 2931 continue; 2932 UsedPositions.reset(CurrentOrder[Lane]); 2933 } 2934 // The partial identity (where only some elements of the gather node are 2935 // in the identity order) is good. 2936 CurrentOrder[Lane] = I; 2937 UsedPositions.set(I); 2938 } 2939 } 2940 // Need to keep the order if we have a vector entry and at least 2 scalars or 2941 // the vectorized entry has just 2 scalars. 2942 if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { 2943 auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { 2944 for (unsigned I = 0; I < NumScalars; ++I) 2945 if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) 2946 return false; 2947 return true; 2948 }; 2949 if (IsIdentityOrder(CurrentOrder)) { 2950 CurrentOrder.clear(); 2951 return CurrentOrder; 2952 } 2953 auto *It = CurrentOrder.begin(); 2954 for (unsigned I = 0; I < NumScalars;) { 2955 if (UsedPositions.test(I)) { 2956 ++I; 2957 continue; 2958 } 2959 if (*It == NumScalars) { 2960 *It = I; 2961 ++I; 2962 } 2963 ++It; 2964 } 2965 return CurrentOrder; 2966 } 2967 return None; 2968 } 2969 2970 Optional<BoUpSLP::OrdersType> BoUpSLP::getReorderingData(const TreeEntry &TE, 2971 bool TopToBottom) { 2972 // No need to reorder if need to shuffle reuses, still need to shuffle the 2973 // node. 2974 if (!TE.ReuseShuffleIndices.empty()) 2975 return None; 2976 if (TE.State == TreeEntry::Vectorize && 2977 (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) || 2978 (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) && 2979 !TE.isAltShuffle()) 2980 return TE.ReorderIndices; 2981 if (TE.State == TreeEntry::NeedToGather) { 2982 // TODO: add analysis of other gather nodes with extractelement 2983 // instructions and other values/instructions, not only undefs. 2984 if (((TE.getOpcode() == Instruction::ExtractElement && 2985 !TE.isAltShuffle()) || 2986 (all_of(TE.Scalars, 2987 [](Value *V) { 2988 return isa<UndefValue, ExtractElementInst>(V); 2989 }) && 2990 any_of(TE.Scalars, 2991 [](Value *V) { return isa<ExtractElementInst>(V); }))) && 2992 all_of(TE.Scalars, 2993 [](Value *V) { 2994 auto *EE = dyn_cast<ExtractElementInst>(V); 2995 return !EE || isa<FixedVectorType>(EE->getVectorOperandType()); 2996 }) && 2997 allSameType(TE.Scalars)) { 2998 // Check that gather of extractelements can be represented as 2999 // just a shuffle of a single vector. 3000 OrdersType CurrentOrder; 3001 bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder); 3002 if (Reuse || !CurrentOrder.empty()) { 3003 if (!CurrentOrder.empty()) 3004 fixupOrderingIndices(CurrentOrder); 3005 return CurrentOrder; 3006 } 3007 } 3008 if (Optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE)) 3009 return CurrentOrder; 3010 } 3011 return None; 3012 } 3013 3014 void BoUpSLP::reorderTopToBottom() { 3015 // Maps VF to the graph nodes. 3016 DenseMap<unsigned, SmallPtrSet<TreeEntry *, 4>> VFToOrderedEntries; 3017 // ExtractElement gather nodes which can be vectorized and need to handle 3018 // their ordering. 3019 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3020 // Find all reorderable nodes with the given VF. 3021 // Currently the are vectorized stores,loads,extracts + some gathering of 3022 // extracts. 3023 for_each(VectorizableTree, [this, &VFToOrderedEntries, &GathersToOrders]( 3024 const std::unique_ptr<TreeEntry> &TE) { 3025 if (Optional<OrdersType> CurrentOrder = 3026 getReorderingData(*TE.get(), /*TopToBottom=*/true)) { 3027 VFToOrderedEntries[TE->Scalars.size()].insert(TE.get()); 3028 if (TE->State != TreeEntry::Vectorize) 3029 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3030 } 3031 }); 3032 3033 // Reorder the graph nodes according to their vectorization factor. 3034 for (unsigned VF = VectorizableTree.front()->Scalars.size(); VF > 1; 3035 VF /= 2) { 3036 auto It = VFToOrderedEntries.find(VF); 3037 if (It == VFToOrderedEntries.end()) 3038 continue; 3039 // Try to find the most profitable order. We just are looking for the most 3040 // used order and reorder scalar elements in the nodes according to this 3041 // mostly used order. 3042 const SmallPtrSetImpl<TreeEntry *> &OrderedEntries = It->getSecond(); 3043 // All operands are reordered and used only in this node - propagate the 3044 // most used order to the user node. 3045 MapVector<OrdersType, unsigned, 3046 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3047 OrdersUses; 3048 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3049 for (const TreeEntry *OpTE : OrderedEntries) { 3050 // No need to reorder this nodes, still need to extend and to use shuffle, 3051 // just need to merge reordering shuffle and the reuse shuffle. 3052 if (!OpTE->ReuseShuffleIndices.empty()) 3053 continue; 3054 // Count number of orders uses. 3055 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3056 if (OpTE->State == TreeEntry::NeedToGather) 3057 return GathersToOrders.find(OpTE)->second; 3058 return OpTE->ReorderIndices; 3059 }(); 3060 // Stores actually store the mask, not the order, need to invert. 3061 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3062 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3063 SmallVector<int> Mask; 3064 inversePermutation(Order, Mask); 3065 unsigned E = Order.size(); 3066 OrdersType CurrentOrder(E, E); 3067 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3068 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3069 }); 3070 fixupOrderingIndices(CurrentOrder); 3071 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3072 } else { 3073 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3074 } 3075 } 3076 // Set order of the user node. 3077 if (OrdersUses.empty()) 3078 continue; 3079 // Choose the most used order. 3080 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3081 unsigned Cnt = OrdersUses.front().second; 3082 for (const auto &Pair : drop_begin(OrdersUses)) { 3083 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3084 BestOrder = Pair.first; 3085 Cnt = Pair.second; 3086 } 3087 } 3088 // Set order of the user node. 3089 if (BestOrder.empty()) 3090 continue; 3091 SmallVector<int> Mask; 3092 inversePermutation(BestOrder, Mask); 3093 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3094 unsigned E = BestOrder.size(); 3095 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3096 return I < E ? static_cast<int>(I) : UndefMaskElem; 3097 }); 3098 // Do an actual reordering, if profitable. 3099 for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 3100 // Just do the reordering for the nodes with the given VF. 3101 if (TE->Scalars.size() != VF) { 3102 if (TE->ReuseShuffleIndices.size() == VF) { 3103 // Need to reorder the reuses masks of the operands with smaller VF to 3104 // be able to find the match between the graph nodes and scalar 3105 // operands of the given node during vectorization/cost estimation. 3106 assert(all_of(TE->UserTreeIndices, 3107 [VF, &TE](const EdgeInfo &EI) { 3108 return EI.UserTE->Scalars.size() == VF || 3109 EI.UserTE->Scalars.size() == 3110 TE->Scalars.size(); 3111 }) && 3112 "All users must be of VF size."); 3113 // Update ordering of the operands with the smaller VF than the given 3114 // one. 3115 reorderReuses(TE->ReuseShuffleIndices, Mask); 3116 } 3117 continue; 3118 } 3119 if (TE->State == TreeEntry::Vectorize && 3120 isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, 3121 InsertElementInst>(TE->getMainOp()) && 3122 !TE->isAltShuffle()) { 3123 // Build correct orders for extract{element,value}, loads and 3124 // stores. 3125 reorderOrder(TE->ReorderIndices, Mask); 3126 if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) 3127 TE->reorderOperands(Mask); 3128 } else { 3129 // Reorder the node and its operands. 3130 TE->reorderOperands(Mask); 3131 assert(TE->ReorderIndices.empty() && 3132 "Expected empty reorder sequence."); 3133 reorderScalars(TE->Scalars, Mask); 3134 } 3135 if (!TE->ReuseShuffleIndices.empty()) { 3136 // Apply reversed order to keep the original ordering of the reused 3137 // elements to avoid extra reorder indices shuffling. 3138 OrdersType CurrentOrder; 3139 reorderOrder(CurrentOrder, MaskOrder); 3140 SmallVector<int> NewReuses; 3141 inversePermutation(CurrentOrder, NewReuses); 3142 addMask(NewReuses, TE->ReuseShuffleIndices); 3143 TE->ReuseShuffleIndices.swap(NewReuses); 3144 } 3145 } 3146 } 3147 } 3148 3149 void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { 3150 SetVector<TreeEntry *> OrderedEntries; 3151 DenseMap<const TreeEntry *, OrdersType> GathersToOrders; 3152 // Find all reorderable leaf nodes with the given VF. 3153 // Currently the are vectorized loads,extracts without alternate operands + 3154 // some gathering of extracts. 3155 SmallVector<TreeEntry *> NonVectorized; 3156 for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, 3157 &NonVectorized]( 3158 const std::unique_ptr<TreeEntry> &TE) { 3159 if (TE->State != TreeEntry::Vectorize) 3160 NonVectorized.push_back(TE.get()); 3161 if (Optional<OrdersType> CurrentOrder = 3162 getReorderingData(*TE.get(), /*TopToBottom=*/false)) { 3163 OrderedEntries.insert(TE.get()); 3164 if (TE->State != TreeEntry::Vectorize) 3165 GathersToOrders.try_emplace(TE.get(), *CurrentOrder); 3166 } 3167 }); 3168 3169 // Checks if the operands of the users are reordarable and have only single 3170 // use. 3171 auto &&CheckOperands = 3172 [this, &NonVectorized](const auto &Data, 3173 SmallVectorImpl<TreeEntry *> &GatherOps) { 3174 for (unsigned I = 0, E = Data.first->getNumOperands(); I < E; ++I) { 3175 if (any_of(Data.second, 3176 [I](const std::pair<unsigned, TreeEntry *> &OpData) { 3177 return OpData.first == I && 3178 OpData.second->State == TreeEntry::Vectorize; 3179 })) 3180 continue; 3181 ArrayRef<Value *> VL = Data.first->getOperand(I); 3182 const TreeEntry *TE = nullptr; 3183 const auto *It = find_if(VL, [this, &TE](Value *V) { 3184 TE = getTreeEntry(V); 3185 return TE; 3186 }); 3187 if (It != VL.end() && TE->isSame(VL)) 3188 return false; 3189 TreeEntry *Gather = nullptr; 3190 if (count_if(NonVectorized, [VL, &Gather](TreeEntry *TE) { 3191 assert(TE->State != TreeEntry::Vectorize && 3192 "Only non-vectorized nodes are expected."); 3193 if (TE->isSame(VL)) { 3194 Gather = TE; 3195 return true; 3196 } 3197 return false; 3198 }) > 1) 3199 return false; 3200 if (Gather) 3201 GatherOps.push_back(Gather); 3202 } 3203 return true; 3204 }; 3205 // 1. Propagate order to the graph nodes, which use only reordered nodes. 3206 // I.e., if the node has operands, that are reordered, try to make at least 3207 // one operand order in the natural order and reorder others + reorder the 3208 // user node itself. 3209 SmallPtrSet<const TreeEntry *, 4> Visited; 3210 while (!OrderedEntries.empty()) { 3211 // 1. Filter out only reordered nodes. 3212 // 2. If the entry has multiple uses - skip it and jump to the next node. 3213 MapVector<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; 3214 SmallVector<TreeEntry *> Filtered; 3215 for (TreeEntry *TE : OrderedEntries) { 3216 if (!(TE->State == TreeEntry::Vectorize || 3217 (TE->State == TreeEntry::NeedToGather && 3218 GathersToOrders.count(TE))) || 3219 TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || 3220 !all_of(drop_begin(TE->UserTreeIndices), 3221 [TE](const EdgeInfo &EI) { 3222 return EI.UserTE == TE->UserTreeIndices.front().UserTE; 3223 }) || 3224 !Visited.insert(TE).second) { 3225 Filtered.push_back(TE); 3226 continue; 3227 } 3228 // Build a map between user nodes and their operands order to speedup 3229 // search. The graph currently does not provide this dependency directly. 3230 for (EdgeInfo &EI : TE->UserTreeIndices) { 3231 TreeEntry *UserTE = EI.UserTE; 3232 auto It = Users.find(UserTE); 3233 if (It == Users.end()) 3234 It = Users.insert({UserTE, {}}).first; 3235 It->second.emplace_back(EI.EdgeIdx, TE); 3236 } 3237 } 3238 // Erase filtered entries. 3239 for_each(Filtered, 3240 [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); 3241 for (const auto &Data : Users) { 3242 // Check that operands are used only in the User node. 3243 SmallVector<TreeEntry *> GatherOps; 3244 if (!CheckOperands(Data, GatherOps)) { 3245 for_each(Data.second, 3246 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3247 OrderedEntries.remove(Op.second); 3248 }); 3249 continue; 3250 } 3251 // All operands are reordered and used only in this node - propagate the 3252 // most used order to the user node. 3253 MapVector<OrdersType, unsigned, 3254 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> 3255 OrdersUses; 3256 SmallPtrSet<const TreeEntry *, 4> VisitedOps; 3257 for (const auto &Op : Data.second) { 3258 TreeEntry *OpTE = Op.second; 3259 if (!OpTE->ReuseShuffleIndices.empty() || 3260 (IgnoreReorder && OpTE == VectorizableTree.front().get())) 3261 continue; 3262 const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { 3263 if (OpTE->State == TreeEntry::NeedToGather) 3264 return GathersToOrders.find(OpTE)->second; 3265 return OpTE->ReorderIndices; 3266 }(); 3267 // Stores actually store the mask, not the order, need to invert. 3268 if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && 3269 OpTE->getOpcode() == Instruction::Store && !Order.empty()) { 3270 SmallVector<int> Mask; 3271 inversePermutation(Order, Mask); 3272 unsigned E = Order.size(); 3273 OrdersType CurrentOrder(E, E); 3274 transform(Mask, CurrentOrder.begin(), [E](int Idx) { 3275 return Idx == UndefMaskElem ? E : static_cast<unsigned>(Idx); 3276 }); 3277 fixupOrderingIndices(CurrentOrder); 3278 ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; 3279 } else { 3280 ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; 3281 } 3282 if (VisitedOps.insert(OpTE).second) 3283 OrdersUses.insert(std::make_pair(OrdersType(), 0)).first->second += 3284 OpTE->UserTreeIndices.size(); 3285 assert(OrdersUses[{}] > 0 && "Counter cannot be less than 0."); 3286 --OrdersUses[{}]; 3287 } 3288 // If no orders - skip current nodes and jump to the next one, if any. 3289 if (OrdersUses.empty()) { 3290 for_each(Data.second, 3291 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3292 OrderedEntries.remove(Op.second); 3293 }); 3294 continue; 3295 } 3296 // Choose the best order. 3297 ArrayRef<unsigned> BestOrder = OrdersUses.front().first; 3298 unsigned Cnt = OrdersUses.front().second; 3299 for (const auto &Pair : drop_begin(OrdersUses)) { 3300 if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { 3301 BestOrder = Pair.first; 3302 Cnt = Pair.second; 3303 } 3304 } 3305 // Set order of the user node (reordering of operands and user nodes). 3306 if (BestOrder.empty()) { 3307 for_each(Data.second, 3308 [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { 3309 OrderedEntries.remove(Op.second); 3310 }); 3311 continue; 3312 } 3313 // Erase operands from OrderedEntries list and adjust their orders. 3314 VisitedOps.clear(); 3315 SmallVector<int> Mask; 3316 inversePermutation(BestOrder, Mask); 3317 SmallVector<int> MaskOrder(BestOrder.size(), UndefMaskElem); 3318 unsigned E = BestOrder.size(); 3319 transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { 3320 return I < E ? static_cast<int>(I) : UndefMaskElem; 3321 }); 3322 for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { 3323 TreeEntry *TE = Op.second; 3324 OrderedEntries.remove(TE); 3325 if (!VisitedOps.insert(TE).second) 3326 continue; 3327 if (!TE->ReuseShuffleIndices.empty() && TE->ReorderIndices.empty()) { 3328 // Just reorder reuses indices. 3329 reorderReuses(TE->ReuseShuffleIndices, Mask); 3330 continue; 3331 } 3332 // Gathers are processed separately. 3333 if (TE->State != TreeEntry::Vectorize) 3334 continue; 3335 assert((BestOrder.size() == TE->ReorderIndices.size() || 3336 TE->ReorderIndices.empty()) && 3337 "Non-matching sizes of user/operand entries."); 3338 reorderOrder(TE->ReorderIndices, Mask); 3339 } 3340 // For gathers just need to reorder its scalars. 3341 for (TreeEntry *Gather : GatherOps) { 3342 assert(Gather->ReorderIndices.empty() && 3343 "Unexpected reordering of gathers."); 3344 if (!Gather->ReuseShuffleIndices.empty()) { 3345 // Just reorder reuses indices. 3346 reorderReuses(Gather->ReuseShuffleIndices, Mask); 3347 continue; 3348 } 3349 reorderScalars(Gather->Scalars, Mask); 3350 OrderedEntries.remove(Gather); 3351 } 3352 // Reorder operands of the user node and set the ordering for the user 3353 // node itself. 3354 if (Data.first->State != TreeEntry::Vectorize || 3355 !isa<ExtractElementInst, ExtractValueInst, LoadInst>( 3356 Data.first->getMainOp()) || 3357 Data.first->isAltShuffle()) 3358 Data.first->reorderOperands(Mask); 3359 if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || 3360 Data.first->isAltShuffle()) { 3361 reorderScalars(Data.first->Scalars, Mask); 3362 reorderOrder(Data.first->ReorderIndices, MaskOrder); 3363 if (Data.first->ReuseShuffleIndices.empty() && 3364 !Data.first->ReorderIndices.empty() && 3365 !Data.first->isAltShuffle()) { 3366 // Insert user node to the list to try to sink reordering deeper in 3367 // the graph. 3368 OrderedEntries.insert(Data.first); 3369 } 3370 } else { 3371 reorderOrder(Data.first->ReorderIndices, Mask); 3372 } 3373 } 3374 } 3375 // If the reordering is unnecessary, just remove the reorder. 3376 if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && 3377 VectorizableTree.front()->ReuseShuffleIndices.empty()) 3378 VectorizableTree.front()->ReorderIndices.clear(); 3379 } 3380 3381 void BoUpSLP::buildExternalUses( 3382 const ExtraValueToDebugLocsMap &ExternallyUsedValues) { 3383 // Collect the values that we need to extract from the tree. 3384 for (auto &TEPtr : VectorizableTree) { 3385 TreeEntry *Entry = TEPtr.get(); 3386 3387 // No need to handle users of gathered values. 3388 if (Entry->State == TreeEntry::NeedToGather) 3389 continue; 3390 3391 // For each lane: 3392 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 3393 Value *Scalar = Entry->Scalars[Lane]; 3394 int FoundLane = Entry->findLaneForValue(Scalar); 3395 3396 // Check if the scalar is externally used as an extra arg. 3397 auto ExtI = ExternallyUsedValues.find(Scalar); 3398 if (ExtI != ExternallyUsedValues.end()) { 3399 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 3400 << Lane << " from " << *Scalar << ".\n"); 3401 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 3402 } 3403 for (User *U : Scalar->users()) { 3404 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 3405 3406 Instruction *UserInst = dyn_cast<Instruction>(U); 3407 if (!UserInst) 3408 continue; 3409 3410 if (isDeleted(UserInst)) 3411 continue; 3412 3413 // Skip in-tree scalars that become vectors 3414 if (TreeEntry *UseEntry = getTreeEntry(U)) { 3415 Value *UseScalar = UseEntry->Scalars[0]; 3416 // Some in-tree scalars will remain as scalar in vectorized 3417 // instructions. If that is the case, the one in Lane 0 will 3418 // be used. 3419 if (UseScalar != U || 3420 UseEntry->State == TreeEntry::ScatterVectorize || 3421 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 3422 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 3423 << ".\n"); 3424 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 3425 continue; 3426 } 3427 } 3428 3429 // Ignore users in the user ignore list. 3430 if (is_contained(UserIgnoreList, UserInst)) 3431 continue; 3432 3433 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 3434 << Lane << " from " << *Scalar << ".\n"); 3435 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 3436 } 3437 } 3438 } 3439 } 3440 3441 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 3442 ArrayRef<Value *> UserIgnoreLst) { 3443 deleteTree(); 3444 UserIgnoreList = UserIgnoreLst; 3445 if (!allSameType(Roots)) 3446 return; 3447 buildTree_rec(Roots, 0, EdgeInfo()); 3448 } 3449 3450 namespace { 3451 /// Tracks the state we can represent the loads in the given sequence. 3452 enum class LoadsState { Gather, Vectorize, ScatterVectorize }; 3453 } // anonymous namespace 3454 3455 /// Checks if the given array of loads can be represented as a vectorized, 3456 /// scatter or just simple gather. 3457 static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, 3458 const TargetTransformInfo &TTI, 3459 const DataLayout &DL, ScalarEvolution &SE, 3460 SmallVectorImpl<unsigned> &Order, 3461 SmallVectorImpl<Value *> &PointerOps) { 3462 // Check that a vectorized load would load the same memory as a scalar 3463 // load. For example, we don't want to vectorize loads that are smaller 3464 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3465 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3466 // from such a struct, we read/write packed bits disagreeing with the 3467 // unvectorized version. 3468 Type *ScalarTy = VL0->getType(); 3469 3470 if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) 3471 return LoadsState::Gather; 3472 3473 // Make sure all loads in the bundle are simple - we can't vectorize 3474 // atomic or volatile loads. 3475 PointerOps.clear(); 3476 PointerOps.resize(VL.size()); 3477 auto *POIter = PointerOps.begin(); 3478 for (Value *V : VL) { 3479 auto *L = cast<LoadInst>(V); 3480 if (!L->isSimple()) 3481 return LoadsState::Gather; 3482 *POIter = L->getPointerOperand(); 3483 ++POIter; 3484 } 3485 3486 Order.clear(); 3487 // Check the order of pointer operands. 3488 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order)) { 3489 Value *Ptr0; 3490 Value *PtrN; 3491 if (Order.empty()) { 3492 Ptr0 = PointerOps.front(); 3493 PtrN = PointerOps.back(); 3494 } else { 3495 Ptr0 = PointerOps[Order.front()]; 3496 PtrN = PointerOps[Order.back()]; 3497 } 3498 Optional<int> Diff = 3499 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); 3500 // Check that the sorted loads are consecutive. 3501 if (static_cast<unsigned>(*Diff) == VL.size() - 1) 3502 return LoadsState::Vectorize; 3503 Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); 3504 for (Value *V : VL) 3505 CommonAlignment = 3506 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 3507 if (TTI.isLegalMaskedGather(FixedVectorType::get(ScalarTy, VL.size()), 3508 CommonAlignment)) 3509 return LoadsState::ScatterVectorize; 3510 } 3511 3512 return LoadsState::Gather; 3513 } 3514 3515 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 3516 const EdgeInfo &UserTreeIdx) { 3517 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 3518 3519 SmallVector<int> ReuseShuffleIndicies; 3520 SmallVector<Value *> UniqueValues; 3521 auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, 3522 &UserTreeIdx, 3523 this](const InstructionsState &S) { 3524 // Check that every instruction appears once in this bundle. 3525 DenseMap<Value *, unsigned> UniquePositions; 3526 for (Value *V : VL) { 3527 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 3528 ReuseShuffleIndicies.emplace_back(isa<UndefValue>(V) ? -1 3529 : Res.first->second); 3530 if (Res.second) 3531 UniqueValues.emplace_back(V); 3532 } 3533 size_t NumUniqueScalarValues = UniqueValues.size(); 3534 if (NumUniqueScalarValues == VL.size()) { 3535 ReuseShuffleIndicies.clear(); 3536 } else { 3537 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 3538 if (NumUniqueScalarValues <= 1 || 3539 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 3540 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 3541 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3542 return false; 3543 } 3544 VL = UniqueValues; 3545 } 3546 return true; 3547 }; 3548 3549 InstructionsState S = getSameOpcode(VL); 3550 if (Depth == RecursionMaxDepth) { 3551 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 3552 if (TryToFindDuplicates(S)) 3553 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3554 ReuseShuffleIndicies); 3555 return; 3556 } 3557 3558 // Don't handle scalable vectors 3559 if (S.getOpcode() == Instruction::ExtractElement && 3560 isa<ScalableVectorType>( 3561 cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { 3562 LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); 3563 if (TryToFindDuplicates(S)) 3564 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3565 ReuseShuffleIndicies); 3566 return; 3567 } 3568 3569 // Don't handle vectors. 3570 if (S.OpValue->getType()->isVectorTy() && 3571 !isa<InsertElementInst>(S.OpValue)) { 3572 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 3573 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3574 return; 3575 } 3576 3577 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 3578 if (SI->getValueOperand()->getType()->isVectorTy()) { 3579 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 3580 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3581 return; 3582 } 3583 3584 // If all of the operands are identical or constant we have a simple solution. 3585 // If we deal with insert/extract instructions, they all must have constant 3586 // indices, otherwise we should gather them, not try to vectorize. 3587 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode() || 3588 (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>(S.MainOp) && 3589 !all_of(VL, isVectorLikeInstWithConstOps))) { 3590 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 3591 if (TryToFindDuplicates(S)) 3592 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3593 ReuseShuffleIndicies); 3594 return; 3595 } 3596 3597 // We now know that this is a vector of instructions of the same type from 3598 // the same block. 3599 3600 // Don't vectorize ephemeral values. 3601 for (Value *V : VL) { 3602 if (EphValues.count(V)) { 3603 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3604 << ") is ephemeral.\n"); 3605 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3606 return; 3607 } 3608 } 3609 3610 // Check if this is a duplicate of another entry. 3611 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 3612 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 3613 if (!E->isSame(VL)) { 3614 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 3615 if (TryToFindDuplicates(S)) 3616 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3617 ReuseShuffleIndicies); 3618 return; 3619 } 3620 // Record the reuse of the tree node. FIXME, currently this is only used to 3621 // properly draw the graph rather than for the actual vectorization. 3622 E->UserTreeIndices.push_back(UserTreeIdx); 3623 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 3624 << ".\n"); 3625 return; 3626 } 3627 3628 // Check that none of the instructions in the bundle are already in the tree. 3629 for (Value *V : VL) { 3630 auto *I = dyn_cast<Instruction>(V); 3631 if (!I) 3632 continue; 3633 if (getTreeEntry(I)) { 3634 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 3635 << ") is already in tree.\n"); 3636 if (TryToFindDuplicates(S)) 3637 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3638 ReuseShuffleIndicies); 3639 return; 3640 } 3641 } 3642 3643 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 3644 for (Value *V : VL) { 3645 if (is_contained(UserIgnoreList, V)) { 3646 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 3647 if (TryToFindDuplicates(S)) 3648 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3649 ReuseShuffleIndicies); 3650 return; 3651 } 3652 } 3653 3654 // Check that all of the users of the scalars that we want to vectorize are 3655 // schedulable. 3656 auto *VL0 = cast<Instruction>(S.OpValue); 3657 BasicBlock *BB = VL0->getParent(); 3658 3659 if (!DT->isReachableFromEntry(BB)) { 3660 // Don't go into unreachable blocks. They may contain instructions with 3661 // dependency cycles which confuse the final scheduling. 3662 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 3663 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3664 return; 3665 } 3666 3667 // Check that every instruction appears once in this bundle. 3668 if (!TryToFindDuplicates(S)) 3669 return; 3670 3671 auto &BSRef = BlocksSchedules[BB]; 3672 if (!BSRef) 3673 BSRef = std::make_unique<BlockScheduling>(BB); 3674 3675 BlockScheduling &BS = *BSRef.get(); 3676 3677 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 3678 if (!Bundle) { 3679 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 3680 assert((!BS.getScheduleData(VL0) || 3681 !BS.getScheduleData(VL0)->isPartOfBundle()) && 3682 "tryScheduleBundle should cancelScheduling on failure"); 3683 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3684 ReuseShuffleIndicies); 3685 return; 3686 } 3687 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 3688 3689 unsigned ShuffleOrOp = S.isAltShuffle() ? 3690 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 3691 switch (ShuffleOrOp) { 3692 case Instruction::PHI: { 3693 auto *PH = cast<PHINode>(VL0); 3694 3695 // Check for terminator values (e.g. invoke). 3696 for (Value *V : VL) 3697 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 3698 Instruction *Term = dyn_cast<Instruction>( 3699 cast<PHINode>(V)->getIncomingValueForBlock( 3700 PH->getIncomingBlock(I))); 3701 if (Term && Term->isTerminator()) { 3702 LLVM_DEBUG(dbgs() 3703 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 3704 BS.cancelScheduling(VL, VL0); 3705 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3706 ReuseShuffleIndicies); 3707 return; 3708 } 3709 } 3710 3711 TreeEntry *TE = 3712 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 3713 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 3714 3715 // Keeps the reordered operands to avoid code duplication. 3716 SmallVector<ValueList, 2> OperandsVec; 3717 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 3718 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 3719 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 3720 TE->setOperand(I, Operands); 3721 OperandsVec.push_back(Operands); 3722 continue; 3723 } 3724 ValueList Operands; 3725 // Prepare the operand vector. 3726 for (Value *V : VL) 3727 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 3728 PH->getIncomingBlock(I))); 3729 TE->setOperand(I, Operands); 3730 OperandsVec.push_back(Operands); 3731 } 3732 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 3733 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 3734 return; 3735 } 3736 case Instruction::ExtractValue: 3737 case Instruction::ExtractElement: { 3738 OrdersType CurrentOrder; 3739 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 3740 if (Reuse) { 3741 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 3742 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3743 ReuseShuffleIndicies); 3744 // This is a special case, as it does not gather, but at the same time 3745 // we are not extending buildTree_rec() towards the operands. 3746 ValueList Op0; 3747 Op0.assign(VL.size(), VL0->getOperand(0)); 3748 VectorizableTree.back()->setOperand(0, Op0); 3749 return; 3750 } 3751 if (!CurrentOrder.empty()) { 3752 LLVM_DEBUG({ 3753 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 3754 "with order"; 3755 for (unsigned Idx : CurrentOrder) 3756 dbgs() << " " << Idx; 3757 dbgs() << "\n"; 3758 }); 3759 fixupOrderingIndices(CurrentOrder); 3760 // Insert new order with initial value 0, if it does not exist, 3761 // otherwise return the iterator to the existing one. 3762 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3763 ReuseShuffleIndicies, CurrentOrder); 3764 // This is a special case, as it does not gather, but at the same time 3765 // we are not extending buildTree_rec() towards the operands. 3766 ValueList Op0; 3767 Op0.assign(VL.size(), VL0->getOperand(0)); 3768 VectorizableTree.back()->setOperand(0, Op0); 3769 return; 3770 } 3771 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 3772 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3773 ReuseShuffleIndicies); 3774 BS.cancelScheduling(VL, VL0); 3775 return; 3776 } 3777 case Instruction::InsertElement: { 3778 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 3779 3780 // Check that we have a buildvector and not a shuffle of 2 or more 3781 // different vectors. 3782 ValueSet SourceVectors; 3783 int MinIdx = std::numeric_limits<int>::max(); 3784 for (Value *V : VL) { 3785 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 3786 Optional<int> Idx = *getInsertIndex(V, 0); 3787 if (!Idx || *Idx == UndefMaskElem) 3788 continue; 3789 MinIdx = std::min(MinIdx, *Idx); 3790 } 3791 3792 if (count_if(VL, [&SourceVectors](Value *V) { 3793 return !SourceVectors.contains(V); 3794 }) >= 2) { 3795 // Found 2nd source vector - cancel. 3796 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 3797 "different source vectors.\n"); 3798 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 3799 BS.cancelScheduling(VL, VL0); 3800 return; 3801 } 3802 3803 auto OrdCompare = [](const std::pair<int, int> &P1, 3804 const std::pair<int, int> &P2) { 3805 return P1.first > P2.first; 3806 }; 3807 PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, 3808 decltype(OrdCompare)> 3809 Indices(OrdCompare); 3810 for (int I = 0, E = VL.size(); I < E; ++I) { 3811 Optional<int> Idx = *getInsertIndex(VL[I], 0); 3812 if (!Idx || *Idx == UndefMaskElem) 3813 continue; 3814 Indices.emplace(*Idx, I); 3815 } 3816 OrdersType CurrentOrder(VL.size(), VL.size()); 3817 bool IsIdentity = true; 3818 for (int I = 0, E = VL.size(); I < E; ++I) { 3819 CurrentOrder[Indices.top().second] = I; 3820 IsIdentity &= Indices.top().second == I; 3821 Indices.pop(); 3822 } 3823 if (IsIdentity) 3824 CurrentOrder.clear(); 3825 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3826 None, CurrentOrder); 3827 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 3828 3829 constexpr int NumOps = 2; 3830 ValueList VectorOperands[NumOps]; 3831 for (int I = 0; I < NumOps; ++I) { 3832 for (Value *V : VL) 3833 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 3834 3835 TE->setOperand(I, VectorOperands[I]); 3836 } 3837 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); 3838 return; 3839 } 3840 case Instruction::Load: { 3841 // Check that a vectorized load would load the same memory as a scalar 3842 // load. For example, we don't want to vectorize loads that are smaller 3843 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 3844 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 3845 // from such a struct, we read/write packed bits disagreeing with the 3846 // unvectorized version. 3847 SmallVector<Value *> PointerOps; 3848 OrdersType CurrentOrder; 3849 TreeEntry *TE = nullptr; 3850 switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, CurrentOrder, 3851 PointerOps)) { 3852 case LoadsState::Vectorize: 3853 if (CurrentOrder.empty()) { 3854 // Original loads are consecutive and does not require reordering. 3855 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3856 ReuseShuffleIndicies); 3857 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 3858 } else { 3859 fixupOrderingIndices(CurrentOrder); 3860 // Need to reorder. 3861 TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3862 ReuseShuffleIndicies, CurrentOrder); 3863 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 3864 } 3865 TE->setOperandsInOrder(); 3866 break; 3867 case LoadsState::ScatterVectorize: 3868 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 3869 TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 3870 UserTreeIdx, ReuseShuffleIndicies); 3871 TE->setOperandsInOrder(); 3872 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 3873 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 3874 break; 3875 case LoadsState::Gather: 3876 BS.cancelScheduling(VL, VL0); 3877 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3878 ReuseShuffleIndicies); 3879 #ifndef NDEBUG 3880 Type *ScalarTy = VL0->getType(); 3881 if (DL->getTypeSizeInBits(ScalarTy) != 3882 DL->getTypeAllocSizeInBits(ScalarTy)) 3883 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 3884 else if (any_of(VL, [](Value *V) { 3885 return !cast<LoadInst>(V)->isSimple(); 3886 })) 3887 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 3888 else 3889 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 3890 #endif // NDEBUG 3891 break; 3892 } 3893 return; 3894 } 3895 case Instruction::ZExt: 3896 case Instruction::SExt: 3897 case Instruction::FPToUI: 3898 case Instruction::FPToSI: 3899 case Instruction::FPExt: 3900 case Instruction::PtrToInt: 3901 case Instruction::IntToPtr: 3902 case Instruction::SIToFP: 3903 case Instruction::UIToFP: 3904 case Instruction::Trunc: 3905 case Instruction::FPTrunc: 3906 case Instruction::BitCast: { 3907 Type *SrcTy = VL0->getOperand(0)->getType(); 3908 for (Value *V : VL) { 3909 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 3910 if (Ty != SrcTy || !isValidElementType(Ty)) { 3911 BS.cancelScheduling(VL, VL0); 3912 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3913 ReuseShuffleIndicies); 3914 LLVM_DEBUG(dbgs() 3915 << "SLP: Gathering casts with different src types.\n"); 3916 return; 3917 } 3918 } 3919 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3920 ReuseShuffleIndicies); 3921 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 3922 3923 TE->setOperandsInOrder(); 3924 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3925 ValueList Operands; 3926 // Prepare the operand vector. 3927 for (Value *V : VL) 3928 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3929 3930 buildTree_rec(Operands, Depth + 1, {TE, i}); 3931 } 3932 return; 3933 } 3934 case Instruction::ICmp: 3935 case Instruction::FCmp: { 3936 // Check that all of the compares have the same predicate. 3937 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 3938 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 3939 Type *ComparedTy = VL0->getOperand(0)->getType(); 3940 for (Value *V : VL) { 3941 CmpInst *Cmp = cast<CmpInst>(V); 3942 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 3943 Cmp->getOperand(0)->getType() != ComparedTy) { 3944 BS.cancelScheduling(VL, VL0); 3945 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3946 ReuseShuffleIndicies); 3947 LLVM_DEBUG(dbgs() 3948 << "SLP: Gathering cmp with different predicate.\n"); 3949 return; 3950 } 3951 } 3952 3953 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3954 ReuseShuffleIndicies); 3955 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 3956 3957 ValueList Left, Right; 3958 if (cast<CmpInst>(VL0)->isCommutative()) { 3959 // Commutative predicate - collect + sort operands of the instructions 3960 // so that each side is more likely to have the same opcode. 3961 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 3962 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3963 } else { 3964 // Collect operands - commute if it uses the swapped predicate. 3965 for (Value *V : VL) { 3966 auto *Cmp = cast<CmpInst>(V); 3967 Value *LHS = Cmp->getOperand(0); 3968 Value *RHS = Cmp->getOperand(1); 3969 if (Cmp->getPredicate() != P0) 3970 std::swap(LHS, RHS); 3971 Left.push_back(LHS); 3972 Right.push_back(RHS); 3973 } 3974 } 3975 TE->setOperand(0, Left); 3976 TE->setOperand(1, Right); 3977 buildTree_rec(Left, Depth + 1, {TE, 0}); 3978 buildTree_rec(Right, Depth + 1, {TE, 1}); 3979 return; 3980 } 3981 case Instruction::Select: 3982 case Instruction::FNeg: 3983 case Instruction::Add: 3984 case Instruction::FAdd: 3985 case Instruction::Sub: 3986 case Instruction::FSub: 3987 case Instruction::Mul: 3988 case Instruction::FMul: 3989 case Instruction::UDiv: 3990 case Instruction::SDiv: 3991 case Instruction::FDiv: 3992 case Instruction::URem: 3993 case Instruction::SRem: 3994 case Instruction::FRem: 3995 case Instruction::Shl: 3996 case Instruction::LShr: 3997 case Instruction::AShr: 3998 case Instruction::And: 3999 case Instruction::Or: 4000 case Instruction::Xor: { 4001 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4002 ReuseShuffleIndicies); 4003 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 4004 4005 // Sort operands of the instructions so that each side is more likely to 4006 // have the same opcode. 4007 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 4008 ValueList Left, Right; 4009 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4010 TE->setOperand(0, Left); 4011 TE->setOperand(1, Right); 4012 buildTree_rec(Left, Depth + 1, {TE, 0}); 4013 buildTree_rec(Right, Depth + 1, {TE, 1}); 4014 return; 4015 } 4016 4017 TE->setOperandsInOrder(); 4018 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4019 ValueList Operands; 4020 // Prepare the operand vector. 4021 for (Value *V : VL) 4022 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4023 4024 buildTree_rec(Operands, Depth + 1, {TE, i}); 4025 } 4026 return; 4027 } 4028 case Instruction::GetElementPtr: { 4029 // We don't combine GEPs with complicated (nested) indexing. 4030 for (Value *V : VL) { 4031 if (cast<Instruction>(V)->getNumOperands() != 2) { 4032 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 4033 BS.cancelScheduling(VL, VL0); 4034 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4035 ReuseShuffleIndicies); 4036 return; 4037 } 4038 } 4039 4040 // We can't combine several GEPs into one vector if they operate on 4041 // different types. 4042 Type *Ty0 = VL0->getOperand(0)->getType(); 4043 for (Value *V : VL) { 4044 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 4045 if (Ty0 != CurTy) { 4046 LLVM_DEBUG(dbgs() 4047 << "SLP: not-vectorizable GEP (different types).\n"); 4048 BS.cancelScheduling(VL, VL0); 4049 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4050 ReuseShuffleIndicies); 4051 return; 4052 } 4053 } 4054 4055 // We don't combine GEPs with non-constant indexes. 4056 Type *Ty1 = VL0->getOperand(1)->getType(); 4057 for (Value *V : VL) { 4058 auto Op = cast<Instruction>(V)->getOperand(1); 4059 if (!isa<ConstantInt>(Op) || 4060 (Op->getType() != Ty1 && 4061 Op->getType()->getScalarSizeInBits() > 4062 DL->getIndexSizeInBits( 4063 V->getType()->getPointerAddressSpace()))) { 4064 LLVM_DEBUG(dbgs() 4065 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 4066 BS.cancelScheduling(VL, VL0); 4067 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4068 ReuseShuffleIndicies); 4069 return; 4070 } 4071 } 4072 4073 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4074 ReuseShuffleIndicies); 4075 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 4076 SmallVector<ValueList, 2> Operands(2); 4077 // Prepare the operand vector for pointer operands. 4078 for (Value *V : VL) 4079 Operands.front().push_back( 4080 cast<GetElementPtrInst>(V)->getPointerOperand()); 4081 TE->setOperand(0, Operands.front()); 4082 // Need to cast all indices to the same type before vectorization to 4083 // avoid crash. 4084 // Required to be able to find correct matches between different gather 4085 // nodes and reuse the vectorized values rather than trying to gather them 4086 // again. 4087 int IndexIdx = 1; 4088 Type *VL0Ty = VL0->getOperand(IndexIdx)->getType(); 4089 Type *Ty = all_of(VL, 4090 [VL0Ty, IndexIdx](Value *V) { 4091 return VL0Ty == cast<GetElementPtrInst>(V) 4092 ->getOperand(IndexIdx) 4093 ->getType(); 4094 }) 4095 ? VL0Ty 4096 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 4097 ->getPointerOperandType() 4098 ->getScalarType()); 4099 // Prepare the operand vector. 4100 for (Value *V : VL) { 4101 auto *Op = cast<Instruction>(V)->getOperand(IndexIdx); 4102 auto *CI = cast<ConstantInt>(Op); 4103 Operands.back().push_back(ConstantExpr::getIntegerCast( 4104 CI, Ty, CI->getValue().isSignBitSet())); 4105 } 4106 TE->setOperand(IndexIdx, Operands.back()); 4107 4108 for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I) 4109 buildTree_rec(Operands[I], Depth + 1, {TE, I}); 4110 return; 4111 } 4112 case Instruction::Store: { 4113 // Check if the stores are consecutive or if we need to swizzle them. 4114 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 4115 // Avoid types that are padded when being allocated as scalars, while 4116 // being packed together in a vector (such as i1). 4117 if (DL->getTypeSizeInBits(ScalarTy) != 4118 DL->getTypeAllocSizeInBits(ScalarTy)) { 4119 BS.cancelScheduling(VL, VL0); 4120 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4121 ReuseShuffleIndicies); 4122 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 4123 return; 4124 } 4125 // Make sure all stores in the bundle are simple - we can't vectorize 4126 // atomic or volatile stores. 4127 SmallVector<Value *, 4> PointerOps(VL.size()); 4128 ValueList Operands(VL.size()); 4129 auto POIter = PointerOps.begin(); 4130 auto OIter = Operands.begin(); 4131 for (Value *V : VL) { 4132 auto *SI = cast<StoreInst>(V); 4133 if (!SI->isSimple()) { 4134 BS.cancelScheduling(VL, VL0); 4135 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4136 ReuseShuffleIndicies); 4137 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 4138 return; 4139 } 4140 *POIter = SI->getPointerOperand(); 4141 *OIter = SI->getValueOperand(); 4142 ++POIter; 4143 ++OIter; 4144 } 4145 4146 OrdersType CurrentOrder; 4147 // Check the order of pointer operands. 4148 if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { 4149 Value *Ptr0; 4150 Value *PtrN; 4151 if (CurrentOrder.empty()) { 4152 Ptr0 = PointerOps.front(); 4153 PtrN = PointerOps.back(); 4154 } else { 4155 Ptr0 = PointerOps[CurrentOrder.front()]; 4156 PtrN = PointerOps[CurrentOrder.back()]; 4157 } 4158 Optional<int> Dist = 4159 getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); 4160 // Check that the sorted pointer operands are consecutive. 4161 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 4162 if (CurrentOrder.empty()) { 4163 // Original stores are consecutive and does not require reordering. 4164 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 4165 UserTreeIdx, ReuseShuffleIndicies); 4166 TE->setOperandsInOrder(); 4167 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4168 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 4169 } else { 4170 fixupOrderingIndices(CurrentOrder); 4171 TreeEntry *TE = 4172 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4173 ReuseShuffleIndicies, CurrentOrder); 4174 TE->setOperandsInOrder(); 4175 buildTree_rec(Operands, Depth + 1, {TE, 0}); 4176 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 4177 } 4178 return; 4179 } 4180 } 4181 4182 BS.cancelScheduling(VL, VL0); 4183 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4184 ReuseShuffleIndicies); 4185 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 4186 return; 4187 } 4188 case Instruction::Call: { 4189 // Check if the calls are all to the same vectorizable intrinsic or 4190 // library function. 4191 CallInst *CI = cast<CallInst>(VL0); 4192 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4193 4194 VFShape Shape = VFShape::get( 4195 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 4196 false /*HasGlobalPred*/); 4197 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4198 4199 if (!VecFunc && !isTriviallyVectorizable(ID)) { 4200 BS.cancelScheduling(VL, VL0); 4201 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4202 ReuseShuffleIndicies); 4203 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 4204 return; 4205 } 4206 Function *F = CI->getCalledFunction(); 4207 unsigned NumArgs = CI->arg_size(); 4208 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 4209 for (unsigned j = 0; j != NumArgs; ++j) 4210 if (hasVectorInstrinsicScalarOpd(ID, j)) 4211 ScalarArgs[j] = CI->getArgOperand(j); 4212 for (Value *V : VL) { 4213 CallInst *CI2 = dyn_cast<CallInst>(V); 4214 if (!CI2 || CI2->getCalledFunction() != F || 4215 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 4216 (VecFunc && 4217 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 4218 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 4219 BS.cancelScheduling(VL, VL0); 4220 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4221 ReuseShuffleIndicies); 4222 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 4223 << "\n"); 4224 return; 4225 } 4226 // Some intrinsics have scalar arguments and should be same in order for 4227 // them to be vectorized. 4228 for (unsigned j = 0; j != NumArgs; ++j) { 4229 if (hasVectorInstrinsicScalarOpd(ID, j)) { 4230 Value *A1J = CI2->getArgOperand(j); 4231 if (ScalarArgs[j] != A1J) { 4232 BS.cancelScheduling(VL, VL0); 4233 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4234 ReuseShuffleIndicies); 4235 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 4236 << " argument " << ScalarArgs[j] << "!=" << A1J 4237 << "\n"); 4238 return; 4239 } 4240 } 4241 } 4242 // Verify that the bundle operands are identical between the two calls. 4243 if (CI->hasOperandBundles() && 4244 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 4245 CI->op_begin() + CI->getBundleOperandsEndIndex(), 4246 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 4247 BS.cancelScheduling(VL, VL0); 4248 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4249 ReuseShuffleIndicies); 4250 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 4251 << *CI << "!=" << *V << '\n'); 4252 return; 4253 } 4254 } 4255 4256 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4257 ReuseShuffleIndicies); 4258 TE->setOperandsInOrder(); 4259 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { 4260 // For scalar operands no need to to create an entry since no need to 4261 // vectorize it. 4262 if (hasVectorInstrinsicScalarOpd(ID, i)) 4263 continue; 4264 ValueList Operands; 4265 // Prepare the operand vector. 4266 for (Value *V : VL) { 4267 auto *CI2 = cast<CallInst>(V); 4268 Operands.push_back(CI2->getArgOperand(i)); 4269 } 4270 buildTree_rec(Operands, Depth + 1, {TE, i}); 4271 } 4272 return; 4273 } 4274 case Instruction::ShuffleVector: { 4275 // If this is not an alternate sequence of opcode like add-sub 4276 // then do not vectorize this instruction. 4277 if (!S.isAltShuffle()) { 4278 BS.cancelScheduling(VL, VL0); 4279 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4280 ReuseShuffleIndicies); 4281 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 4282 return; 4283 } 4284 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 4285 ReuseShuffleIndicies); 4286 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 4287 4288 // Reorder operands if reordering would enable vectorization. 4289 if (isa<BinaryOperator>(VL0)) { 4290 ValueList Left, Right; 4291 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 4292 TE->setOperand(0, Left); 4293 TE->setOperand(1, Right); 4294 buildTree_rec(Left, Depth + 1, {TE, 0}); 4295 buildTree_rec(Right, Depth + 1, {TE, 1}); 4296 return; 4297 } 4298 4299 TE->setOperandsInOrder(); 4300 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 4301 ValueList Operands; 4302 // Prepare the operand vector. 4303 for (Value *V : VL) 4304 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 4305 4306 buildTree_rec(Operands, Depth + 1, {TE, i}); 4307 } 4308 return; 4309 } 4310 default: 4311 BS.cancelScheduling(VL, VL0); 4312 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 4313 ReuseShuffleIndicies); 4314 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 4315 return; 4316 } 4317 } 4318 4319 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 4320 unsigned N = 1; 4321 Type *EltTy = T; 4322 4323 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 4324 isa<VectorType>(EltTy)) { 4325 if (auto *ST = dyn_cast<StructType>(EltTy)) { 4326 // Check that struct is homogeneous. 4327 for (const auto *Ty : ST->elements()) 4328 if (Ty != *ST->element_begin()) 4329 return 0; 4330 N *= ST->getNumElements(); 4331 EltTy = *ST->element_begin(); 4332 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 4333 N *= AT->getNumElements(); 4334 EltTy = AT->getElementType(); 4335 } else { 4336 auto *VT = cast<FixedVectorType>(EltTy); 4337 N *= VT->getNumElements(); 4338 EltTy = VT->getElementType(); 4339 } 4340 } 4341 4342 if (!isValidElementType(EltTy)) 4343 return 0; 4344 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 4345 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 4346 return 0; 4347 return N; 4348 } 4349 4350 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 4351 SmallVectorImpl<unsigned> &CurrentOrder) const { 4352 const auto *It = find_if(VL, [](Value *V) { 4353 return isa<ExtractElementInst, ExtractValueInst>(V); 4354 }); 4355 assert(It != VL.end() && "Expected at least one extract instruction."); 4356 auto *E0 = cast<Instruction>(*It); 4357 assert(all_of(VL, 4358 [](Value *V) { 4359 return isa<UndefValue, ExtractElementInst, ExtractValueInst>( 4360 V); 4361 }) && 4362 "Invalid opcode"); 4363 // Check if all of the extracts come from the same vector and from the 4364 // correct offset. 4365 Value *Vec = E0->getOperand(0); 4366 4367 CurrentOrder.clear(); 4368 4369 // We have to extract from a vector/aggregate with the same number of elements. 4370 unsigned NElts; 4371 if (E0->getOpcode() == Instruction::ExtractValue) { 4372 const DataLayout &DL = E0->getModule()->getDataLayout(); 4373 NElts = canMapToVector(Vec->getType(), DL); 4374 if (!NElts) 4375 return false; 4376 // Check if load can be rewritten as load of vector. 4377 LoadInst *LI = dyn_cast<LoadInst>(Vec); 4378 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 4379 return false; 4380 } else { 4381 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 4382 } 4383 4384 if (NElts != VL.size()) 4385 return false; 4386 4387 // Check that all of the indices extract from the correct offset. 4388 bool ShouldKeepOrder = true; 4389 unsigned E = VL.size(); 4390 // Assign to all items the initial value E + 1 so we can check if the extract 4391 // instruction index was used already. 4392 // Also, later we can check that all the indices are used and we have a 4393 // consecutive access in the extract instructions, by checking that no 4394 // element of CurrentOrder still has value E + 1. 4395 CurrentOrder.assign(E, E); 4396 unsigned I = 0; 4397 for (; I < E; ++I) { 4398 auto *Inst = dyn_cast<Instruction>(VL[I]); 4399 if (!Inst) 4400 continue; 4401 if (Inst->getOperand(0) != Vec) 4402 break; 4403 if (auto *EE = dyn_cast<ExtractElementInst>(Inst)) 4404 if (isa<UndefValue>(EE->getIndexOperand())) 4405 continue; 4406 Optional<unsigned> Idx = getExtractIndex(Inst); 4407 if (!Idx) 4408 break; 4409 const unsigned ExtIdx = *Idx; 4410 if (ExtIdx != I) { 4411 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E) 4412 break; 4413 ShouldKeepOrder = false; 4414 CurrentOrder[ExtIdx] = I; 4415 } else { 4416 if (CurrentOrder[I] != E) 4417 break; 4418 CurrentOrder[I] = I; 4419 } 4420 } 4421 if (I < E) { 4422 CurrentOrder.clear(); 4423 return false; 4424 } 4425 4426 return ShouldKeepOrder; 4427 } 4428 4429 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 4430 ArrayRef<Value *> VectorizedVals) const { 4431 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 4432 all_of(I->users(), [this](User *U) { 4433 return ScalarToTreeEntry.count(U) > 0 || MustGather.contains(U); 4434 }); 4435 } 4436 4437 static std::pair<InstructionCost, InstructionCost> 4438 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 4439 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 4440 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4441 4442 // Calculate the cost of the scalar and vector calls. 4443 SmallVector<Type *, 4> VecTys; 4444 for (Use &Arg : CI->args()) 4445 VecTys.push_back( 4446 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 4447 FastMathFlags FMF; 4448 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 4449 FMF = FPCI->getFastMathFlags(); 4450 SmallVector<const Value *> Arguments(CI->args()); 4451 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 4452 dyn_cast<IntrinsicInst>(CI)); 4453 auto IntrinsicCost = 4454 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 4455 4456 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 4457 VecTy->getNumElements())), 4458 false /*HasGlobalPred*/); 4459 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 4460 auto LibCost = IntrinsicCost; 4461 if (!CI->isNoBuiltin() && VecFunc) { 4462 // Calculate the cost of the vector library call. 4463 // If the corresponding vector call is cheaper, return its cost. 4464 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 4465 TTI::TCK_RecipThroughput); 4466 } 4467 return {IntrinsicCost, LibCost}; 4468 } 4469 4470 /// Compute the cost of creating a vector of type \p VecTy containing the 4471 /// extracted values from \p VL. 4472 static InstructionCost 4473 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 4474 TargetTransformInfo::ShuffleKind ShuffleKind, 4475 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 4476 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 4477 4478 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 4479 VecTy->getNumElements() < NumOfParts) 4480 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 4481 4482 bool AllConsecutive = true; 4483 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 4484 unsigned Idx = -1; 4485 InstructionCost Cost = 0; 4486 4487 // Process extracts in blocks of EltsPerVector to check if the source vector 4488 // operand can be re-used directly. If not, add the cost of creating a shuffle 4489 // to extract the values into a vector register. 4490 for (auto *V : VL) { 4491 ++Idx; 4492 4493 // Need to exclude undefs from analysis. 4494 if (isa<UndefValue>(V) || Mask[Idx] == UndefMaskElem) 4495 continue; 4496 4497 // Reached the start of a new vector registers. 4498 if (Idx % EltsPerVector == 0) { 4499 AllConsecutive = true; 4500 continue; 4501 } 4502 4503 // Check all extracts for a vector register on the target directly 4504 // extract values in order. 4505 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 4506 if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != UndefMaskElem) { 4507 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 4508 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 4509 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 4510 } 4511 4512 if (AllConsecutive) 4513 continue; 4514 4515 // Skip all indices, except for the last index per vector block. 4516 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 4517 continue; 4518 4519 // If we have a series of extracts which are not consecutive and hence 4520 // cannot re-use the source vector register directly, compute the shuffle 4521 // cost to extract the a vector with EltsPerVector elements. 4522 Cost += TTI.getShuffleCost( 4523 TargetTransformInfo::SK_PermuteSingleSrc, 4524 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 4525 } 4526 return Cost; 4527 } 4528 4529 /// Build shuffle mask for shuffle graph entries and lists of main and alternate 4530 /// operations operands. 4531 static void 4532 buildSuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, 4533 ArrayRef<int> ReusesIndices, 4534 const function_ref<bool(Instruction *)> IsAltOp, 4535 SmallVectorImpl<int> &Mask, 4536 SmallVectorImpl<Value *> *OpScalars = nullptr, 4537 SmallVectorImpl<Value *> *AltScalars = nullptr) { 4538 unsigned Sz = VL.size(); 4539 Mask.assign(Sz, UndefMaskElem); 4540 SmallVector<int> OrderMask; 4541 if (!ReorderIndices.empty()) 4542 inversePermutation(ReorderIndices, OrderMask); 4543 for (unsigned I = 0; I < Sz; ++I) { 4544 unsigned Idx = I; 4545 if (!ReorderIndices.empty()) 4546 Idx = OrderMask[I]; 4547 auto *OpInst = cast<Instruction>(VL[Idx]); 4548 if (IsAltOp(OpInst)) { 4549 Mask[I] = Sz + Idx; 4550 if (AltScalars) 4551 AltScalars->push_back(OpInst); 4552 } else { 4553 Mask[I] = Idx; 4554 if (OpScalars) 4555 OpScalars->push_back(OpInst); 4556 } 4557 } 4558 if (!ReusesIndices.empty()) { 4559 SmallVector<int> NewMask(ReusesIndices.size(), UndefMaskElem); 4560 transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { 4561 return Idx != UndefMaskElem ? Mask[Idx] : UndefMaskElem; 4562 }); 4563 Mask.swap(NewMask); 4564 } 4565 } 4566 4567 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 4568 ArrayRef<Value *> VectorizedVals) { 4569 ArrayRef<Value*> VL = E->Scalars; 4570 4571 Type *ScalarTy = VL[0]->getType(); 4572 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4573 ScalarTy = SI->getValueOperand()->getType(); 4574 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 4575 ScalarTy = CI->getOperand(0)->getType(); 4576 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 4577 ScalarTy = IE->getOperand(1)->getType(); 4578 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4579 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 4580 4581 // If we have computed a smaller type for the expression, update VecTy so 4582 // that the costs will be accurate. 4583 if (MinBWs.count(VL[0])) 4584 VecTy = FixedVectorType::get( 4585 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 4586 unsigned EntryVF = E->getVectorFactor(); 4587 auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF); 4588 4589 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4590 // FIXME: it tries to fix a problem with MSVC buildbots. 4591 TargetTransformInfo &TTIRef = *TTI; 4592 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 4593 VectorizedVals, E](InstructionCost &Cost) { 4594 DenseMap<Value *, int> ExtractVectorsTys; 4595 SmallPtrSet<Value *, 4> CheckedExtracts; 4596 for (auto *V : VL) { 4597 if (isa<UndefValue>(V)) 4598 continue; 4599 // If all users of instruction are going to be vectorized and this 4600 // instruction itself is not going to be vectorized, consider this 4601 // instruction as dead and remove its cost from the final cost of the 4602 // vectorized tree. 4603 // Also, avoid adjusting the cost for extractelements with multiple uses 4604 // in different graph entries. 4605 const TreeEntry *VE = getTreeEntry(V); 4606 if (!CheckedExtracts.insert(V).second || 4607 !areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 4608 (VE && VE != E)) 4609 continue; 4610 auto *EE = cast<ExtractElementInst>(V); 4611 Optional<unsigned> EEIdx = getExtractIndex(EE); 4612 if (!EEIdx) 4613 continue; 4614 unsigned Idx = *EEIdx; 4615 if (TTIRef.getNumberOfParts(VecTy) != 4616 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 4617 auto It = 4618 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 4619 It->getSecond() = std::min<int>(It->second, Idx); 4620 } 4621 // Take credit for instruction that will become dead. 4622 if (EE->hasOneUse()) { 4623 Instruction *Ext = EE->user_back(); 4624 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4625 all_of(Ext->users(), 4626 [](User *U) { return isa<GetElementPtrInst>(U); })) { 4627 // Use getExtractWithExtendCost() to calculate the cost of 4628 // extractelement/ext pair. 4629 Cost -= 4630 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 4631 EE->getVectorOperandType(), Idx); 4632 // Add back the cost of s|zext which is subtracted separately. 4633 Cost += TTIRef.getCastInstrCost( 4634 Ext->getOpcode(), Ext->getType(), EE->getType(), 4635 TTI::getCastContextHint(Ext), CostKind, Ext); 4636 continue; 4637 } 4638 } 4639 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 4640 EE->getVectorOperandType(), Idx); 4641 } 4642 // Add a cost for subvector extracts/inserts if required. 4643 for (const auto &Data : ExtractVectorsTys) { 4644 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 4645 unsigned NumElts = VecTy->getNumElements(); 4646 if (Data.second % NumElts == 0) 4647 continue; 4648 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 4649 unsigned Idx = (Data.second / NumElts) * NumElts; 4650 unsigned EENumElts = EEVTy->getNumElements(); 4651 if (Idx + NumElts <= EENumElts) { 4652 Cost += 4653 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 4654 EEVTy, None, Idx, VecTy); 4655 } else { 4656 // Need to round up the subvector type vectorization factor to avoid a 4657 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 4658 // <= EENumElts. 4659 auto *SubVT = 4660 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 4661 Cost += 4662 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 4663 EEVTy, None, Idx, SubVT); 4664 } 4665 } else { 4666 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 4667 VecTy, None, 0, EEVTy); 4668 } 4669 } 4670 }; 4671 if (E->State == TreeEntry::NeedToGather) { 4672 if (allConstant(VL)) 4673 return 0; 4674 if (isa<InsertElementInst>(VL[0])) 4675 return InstructionCost::getInvalid(); 4676 SmallVector<int> Mask; 4677 SmallVector<const TreeEntry *> Entries; 4678 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 4679 isGatherShuffledEntry(E, Mask, Entries); 4680 if (Shuffle.hasValue()) { 4681 InstructionCost GatherCost = 0; 4682 if (ShuffleVectorInst::isIdentityMask(Mask)) { 4683 // Perfect match in the graph, will reuse the previously vectorized 4684 // node. Cost is 0. 4685 LLVM_DEBUG( 4686 dbgs() 4687 << "SLP: perfect diamond match for gather bundle that starts with " 4688 << *VL.front() << ".\n"); 4689 if (NeedToShuffleReuses) 4690 GatherCost = 4691 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 4692 FinalVecTy, E->ReuseShuffleIndices); 4693 } else { 4694 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 4695 << " entries for bundle that starts with " 4696 << *VL.front() << ".\n"); 4697 // Detected that instead of gather we can emit a shuffle of single/two 4698 // previously vectorized nodes. Add the cost of the permutation rather 4699 // than gather. 4700 ::addMask(Mask, E->ReuseShuffleIndices); 4701 GatherCost = TTI->getShuffleCost(*Shuffle, FinalVecTy, Mask); 4702 } 4703 return GatherCost; 4704 } 4705 if ((E->getOpcode() == Instruction::ExtractElement || 4706 all_of(E->Scalars, 4707 [](Value *V) { 4708 return isa<ExtractElementInst, UndefValue>(V); 4709 })) && 4710 allSameType(VL)) { 4711 // Check that gather of extractelements can be represented as just a 4712 // shuffle of a single/two vectors the scalars are extracted from. 4713 SmallVector<int> Mask; 4714 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 4715 isFixedVectorShuffle(VL, Mask); 4716 if (ShuffleKind.hasValue()) { 4717 // Found the bunch of extractelement instructions that must be gathered 4718 // into a vector and can be represented as a permutation elements in a 4719 // single input vector or of 2 input vectors. 4720 InstructionCost Cost = 4721 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 4722 AdjustExtractsCost(Cost); 4723 if (NeedToShuffleReuses) 4724 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, 4725 FinalVecTy, E->ReuseShuffleIndices); 4726 return Cost; 4727 } 4728 } 4729 if (isSplat(VL)) { 4730 // Found the broadcasting of the single scalar, calculate the cost as the 4731 // broadcast. 4732 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy); 4733 } 4734 InstructionCost ReuseShuffleCost = 0; 4735 if (NeedToShuffleReuses) 4736 ReuseShuffleCost = TTI->getShuffleCost( 4737 TTI::SK_PermuteSingleSrc, FinalVecTy, E->ReuseShuffleIndices); 4738 // Improve gather cost for gather of loads, if we can group some of the 4739 // loads into vector loads. 4740 if (VL.size() > 2 && E->getOpcode() == Instruction::Load && 4741 !E->isAltShuffle()) { 4742 BoUpSLP::ValueSet VectorizedLoads; 4743 unsigned StartIdx = 0; 4744 unsigned VF = VL.size() / 2; 4745 unsigned VectorizedCnt = 0; 4746 unsigned ScatterVectorizeCnt = 0; 4747 const unsigned Sz = DL->getTypeSizeInBits(E->getMainOp()->getType()); 4748 for (unsigned MinVF = getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { 4749 for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; 4750 Cnt += VF) { 4751 ArrayRef<Value *> Slice = VL.slice(Cnt, VF); 4752 if (!VectorizedLoads.count(Slice.front()) && 4753 !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { 4754 SmallVector<Value *> PointerOps; 4755 OrdersType CurrentOrder; 4756 LoadsState LS = canVectorizeLoads(Slice, Slice.front(), *TTI, *DL, 4757 *SE, CurrentOrder, PointerOps); 4758 switch (LS) { 4759 case LoadsState::Vectorize: 4760 case LoadsState::ScatterVectorize: 4761 // Mark the vectorized loads so that we don't vectorize them 4762 // again. 4763 if (LS == LoadsState::Vectorize) 4764 ++VectorizedCnt; 4765 else 4766 ++ScatterVectorizeCnt; 4767 VectorizedLoads.insert(Slice.begin(), Slice.end()); 4768 // If we vectorized initial block, no need to try to vectorize it 4769 // again. 4770 if (Cnt == StartIdx) 4771 StartIdx += VF; 4772 break; 4773 case LoadsState::Gather: 4774 break; 4775 } 4776 } 4777 } 4778 // Check if the whole array was vectorized already - exit. 4779 if (StartIdx >= VL.size()) 4780 break; 4781 // Found vectorizable parts - exit. 4782 if (!VectorizedLoads.empty()) 4783 break; 4784 } 4785 if (!VectorizedLoads.empty()) { 4786 InstructionCost GatherCost = 0; 4787 unsigned NumParts = TTI->getNumberOfParts(VecTy); 4788 bool NeedInsertSubvectorAnalysis = 4789 !NumParts || (VL.size() / VF) > NumParts; 4790 // Get the cost for gathered loads. 4791 for (unsigned I = 0, End = VL.size(); I < End; I += VF) { 4792 if (VectorizedLoads.contains(VL[I])) 4793 continue; 4794 GatherCost += getGatherCost(VL.slice(I, VF)); 4795 } 4796 // The cost for vectorized loads. 4797 InstructionCost ScalarsCost = 0; 4798 for (Value *V : VectorizedLoads) { 4799 auto *LI = cast<LoadInst>(V); 4800 ScalarsCost += TTI->getMemoryOpCost( 4801 Instruction::Load, LI->getType(), LI->getAlign(), 4802 LI->getPointerAddressSpace(), CostKind, LI); 4803 } 4804 auto *LI = cast<LoadInst>(E->getMainOp()); 4805 auto *LoadTy = FixedVectorType::get(LI->getType(), VF); 4806 Align Alignment = LI->getAlign(); 4807 GatherCost += 4808 VectorizedCnt * 4809 TTI->getMemoryOpCost(Instruction::Load, LoadTy, Alignment, 4810 LI->getPointerAddressSpace(), CostKind, LI); 4811 GatherCost += ScatterVectorizeCnt * 4812 TTI->getGatherScatterOpCost( 4813 Instruction::Load, LoadTy, LI->getPointerOperand(), 4814 /*VariableMask=*/false, Alignment, CostKind, LI); 4815 if (NeedInsertSubvectorAnalysis) { 4816 // Add the cost for the subvectors insert. 4817 for (int I = VF, E = VL.size(); I < E; I += VF) 4818 GatherCost += TTI->getShuffleCost(TTI::SK_InsertSubvector, VecTy, 4819 None, I, LoadTy); 4820 } 4821 return ReuseShuffleCost + GatherCost - ScalarsCost; 4822 } 4823 } 4824 return ReuseShuffleCost + getGatherCost(VL); 4825 } 4826 InstructionCost CommonCost = 0; 4827 SmallVector<int> Mask; 4828 if (!E->ReorderIndices.empty()) { 4829 SmallVector<int> NewMask; 4830 if (E->getOpcode() == Instruction::Store) { 4831 // For stores the order is actually a mask. 4832 NewMask.resize(E->ReorderIndices.size()); 4833 copy(E->ReorderIndices, NewMask.begin()); 4834 } else { 4835 inversePermutation(E->ReorderIndices, NewMask); 4836 } 4837 ::addMask(Mask, NewMask); 4838 } 4839 if (NeedToShuffleReuses) 4840 ::addMask(Mask, E->ReuseShuffleIndices); 4841 if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) 4842 CommonCost = 4843 TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); 4844 assert((E->State == TreeEntry::Vectorize || 4845 E->State == TreeEntry::ScatterVectorize) && 4846 "Unhandled state"); 4847 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 4848 Instruction *VL0 = E->getMainOp(); 4849 unsigned ShuffleOrOp = 4850 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 4851 switch (ShuffleOrOp) { 4852 case Instruction::PHI: 4853 return 0; 4854 4855 case Instruction::ExtractValue: 4856 case Instruction::ExtractElement: { 4857 // The common cost of removal ExtractElement/ExtractValue instructions + 4858 // the cost of shuffles, if required to resuffle the original vector. 4859 if (NeedToShuffleReuses) { 4860 unsigned Idx = 0; 4861 for (unsigned I : E->ReuseShuffleIndices) { 4862 if (ShuffleOrOp == Instruction::ExtractElement) { 4863 auto *EE = cast<ExtractElementInst>(VL[I]); 4864 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 4865 EE->getVectorOperandType(), 4866 *getExtractIndex(EE)); 4867 } else { 4868 CommonCost -= TTI->getVectorInstrCost(Instruction::ExtractElement, 4869 VecTy, Idx); 4870 ++Idx; 4871 } 4872 } 4873 Idx = EntryVF; 4874 for (Value *V : VL) { 4875 if (ShuffleOrOp == Instruction::ExtractElement) { 4876 auto *EE = cast<ExtractElementInst>(V); 4877 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 4878 EE->getVectorOperandType(), 4879 *getExtractIndex(EE)); 4880 } else { 4881 --Idx; 4882 CommonCost += TTI->getVectorInstrCost(Instruction::ExtractElement, 4883 VecTy, Idx); 4884 } 4885 } 4886 } 4887 if (ShuffleOrOp == Instruction::ExtractValue) { 4888 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 4889 auto *EI = cast<Instruction>(VL[I]); 4890 // Take credit for instruction that will become dead. 4891 if (EI->hasOneUse()) { 4892 Instruction *Ext = EI->user_back(); 4893 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4894 all_of(Ext->users(), 4895 [](User *U) { return isa<GetElementPtrInst>(U); })) { 4896 // Use getExtractWithExtendCost() to calculate the cost of 4897 // extractelement/ext pair. 4898 CommonCost -= TTI->getExtractWithExtendCost( 4899 Ext->getOpcode(), Ext->getType(), VecTy, I); 4900 // Add back the cost of s|zext which is subtracted separately. 4901 CommonCost += TTI->getCastInstrCost( 4902 Ext->getOpcode(), Ext->getType(), EI->getType(), 4903 TTI::getCastContextHint(Ext), CostKind, Ext); 4904 continue; 4905 } 4906 } 4907 CommonCost -= 4908 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 4909 } 4910 } else { 4911 AdjustExtractsCost(CommonCost); 4912 } 4913 return CommonCost; 4914 } 4915 case Instruction::InsertElement: { 4916 assert(E->ReuseShuffleIndices.empty() && 4917 "Unique insertelements only are expected."); 4918 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 4919 4920 unsigned const NumElts = SrcVecTy->getNumElements(); 4921 unsigned const NumScalars = VL.size(); 4922 APInt DemandedElts = APInt::getZero(NumElts); 4923 // TODO: Add support for Instruction::InsertValue. 4924 SmallVector<int> Mask; 4925 if (!E->ReorderIndices.empty()) { 4926 inversePermutation(E->ReorderIndices, Mask); 4927 Mask.append(NumElts - NumScalars, UndefMaskElem); 4928 } else { 4929 Mask.assign(NumElts, UndefMaskElem); 4930 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 4931 } 4932 unsigned Offset = *getInsertIndex(VL0, 0); 4933 bool IsIdentity = true; 4934 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 4935 Mask.swap(PrevMask); 4936 for (unsigned I = 0; I < NumScalars; ++I) { 4937 Optional<int> InsertIdx = getInsertIndex(VL[PrevMask[I]], 0); 4938 if (!InsertIdx || *InsertIdx == UndefMaskElem) 4939 continue; 4940 DemandedElts.setBit(*InsertIdx); 4941 IsIdentity &= *InsertIdx - Offset == I; 4942 Mask[*InsertIdx - Offset] = I; 4943 } 4944 assert(Offset < NumElts && "Failed to find vector index offset"); 4945 4946 InstructionCost Cost = 0; 4947 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 4948 /*Insert*/ true, /*Extract*/ false); 4949 4950 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) { 4951 // FIXME: Replace with SK_InsertSubvector once it is properly supported. 4952 unsigned Sz = PowerOf2Ceil(Offset + NumScalars); 4953 Cost += TTI->getShuffleCost( 4954 TargetTransformInfo::SK_PermuteSingleSrc, 4955 FixedVectorType::get(SrcVecTy->getElementType(), Sz)); 4956 } else if (!IsIdentity) { 4957 auto *FirstInsert = 4958 cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 4959 return !is_contained(E->Scalars, 4960 cast<Instruction>(V)->getOperand(0)); 4961 })); 4962 if (isUndefVector(FirstInsert->getOperand(0))) { 4963 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, Mask); 4964 } else { 4965 SmallVector<int> InsertMask(NumElts); 4966 std::iota(InsertMask.begin(), InsertMask.end(), 0); 4967 for (unsigned I = 0; I < NumElts; I++) { 4968 if (Mask[I] != UndefMaskElem) 4969 InsertMask[Offset + I] = NumElts + I; 4970 } 4971 Cost += 4972 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVecTy, InsertMask); 4973 } 4974 } 4975 4976 return Cost; 4977 } 4978 case Instruction::ZExt: 4979 case Instruction::SExt: 4980 case Instruction::FPToUI: 4981 case Instruction::FPToSI: 4982 case Instruction::FPExt: 4983 case Instruction::PtrToInt: 4984 case Instruction::IntToPtr: 4985 case Instruction::SIToFP: 4986 case Instruction::UIToFP: 4987 case Instruction::Trunc: 4988 case Instruction::FPTrunc: 4989 case Instruction::BitCast: { 4990 Type *SrcTy = VL0->getOperand(0)->getType(); 4991 InstructionCost ScalarEltCost = 4992 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 4993 TTI::getCastContextHint(VL0), CostKind, VL0); 4994 if (NeedToShuffleReuses) { 4995 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 4996 } 4997 4998 // Calculate the cost of this instruction. 4999 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 5000 5001 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 5002 InstructionCost VecCost = 0; 5003 // Check if the values are candidates to demote. 5004 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 5005 VecCost = CommonCost + TTI->getCastInstrCost( 5006 E->getOpcode(), VecTy, SrcVecTy, 5007 TTI::getCastContextHint(VL0), CostKind, VL0); 5008 } 5009 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5010 return VecCost - ScalarCost; 5011 } 5012 case Instruction::FCmp: 5013 case Instruction::ICmp: 5014 case Instruction::Select: { 5015 // Calculate the cost of this instruction. 5016 InstructionCost ScalarEltCost = 5017 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 5018 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 5019 if (NeedToShuffleReuses) { 5020 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5021 } 5022 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 5023 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5024 5025 // Check if all entries in VL are either compares or selects with compares 5026 // as condition that have the same predicates. 5027 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 5028 bool First = true; 5029 for (auto *V : VL) { 5030 CmpInst::Predicate CurrentPred; 5031 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 5032 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 5033 !match(V, MatchCmp)) || 5034 (!First && VecPred != CurrentPred)) { 5035 VecPred = CmpInst::BAD_ICMP_PREDICATE; 5036 break; 5037 } 5038 First = false; 5039 VecPred = CurrentPred; 5040 } 5041 5042 InstructionCost VecCost = TTI->getCmpSelInstrCost( 5043 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 5044 // Check if it is possible and profitable to use min/max for selects in 5045 // VL. 5046 // 5047 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 5048 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 5049 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 5050 {VecTy, VecTy}); 5051 InstructionCost IntrinsicCost = 5052 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5053 // If the selects are the only uses of the compares, they will be dead 5054 // and we can adjust the cost by removing their cost. 5055 if (IntrinsicAndUse.second) 5056 IntrinsicCost -= 5057 TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy, 5058 CmpInst::BAD_ICMP_PREDICATE, CostKind); 5059 VecCost = std::min(VecCost, IntrinsicCost); 5060 } 5061 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5062 return CommonCost + VecCost - ScalarCost; 5063 } 5064 case Instruction::FNeg: 5065 case Instruction::Add: 5066 case Instruction::FAdd: 5067 case Instruction::Sub: 5068 case Instruction::FSub: 5069 case Instruction::Mul: 5070 case Instruction::FMul: 5071 case Instruction::UDiv: 5072 case Instruction::SDiv: 5073 case Instruction::FDiv: 5074 case Instruction::URem: 5075 case Instruction::SRem: 5076 case Instruction::FRem: 5077 case Instruction::Shl: 5078 case Instruction::LShr: 5079 case Instruction::AShr: 5080 case Instruction::And: 5081 case Instruction::Or: 5082 case Instruction::Xor: { 5083 // Certain instructions can be cheaper to vectorize if they have a 5084 // constant second vector operand. 5085 TargetTransformInfo::OperandValueKind Op1VK = 5086 TargetTransformInfo::OK_AnyValue; 5087 TargetTransformInfo::OperandValueKind Op2VK = 5088 TargetTransformInfo::OK_UniformConstantValue; 5089 TargetTransformInfo::OperandValueProperties Op1VP = 5090 TargetTransformInfo::OP_None; 5091 TargetTransformInfo::OperandValueProperties Op2VP = 5092 TargetTransformInfo::OP_PowerOf2; 5093 5094 // If all operands are exactly the same ConstantInt then set the 5095 // operand kind to OK_UniformConstantValue. 5096 // If instead not all operands are constants, then set the operand kind 5097 // to OK_AnyValue. If all operands are constants but not the same, 5098 // then set the operand kind to OK_NonUniformConstantValue. 5099 ConstantInt *CInt0 = nullptr; 5100 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 5101 const Instruction *I = cast<Instruction>(VL[i]); 5102 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 5103 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 5104 if (!CInt) { 5105 Op2VK = TargetTransformInfo::OK_AnyValue; 5106 Op2VP = TargetTransformInfo::OP_None; 5107 break; 5108 } 5109 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 5110 !CInt->getValue().isPowerOf2()) 5111 Op2VP = TargetTransformInfo::OP_None; 5112 if (i == 0) { 5113 CInt0 = CInt; 5114 continue; 5115 } 5116 if (CInt0 != CInt) 5117 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5118 } 5119 5120 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 5121 InstructionCost ScalarEltCost = 5122 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 5123 Op2VK, Op1VP, Op2VP, Operands, VL0); 5124 if (NeedToShuffleReuses) { 5125 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5126 } 5127 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5128 InstructionCost VecCost = 5129 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 5130 Op2VK, Op1VP, Op2VP, Operands, VL0); 5131 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5132 return CommonCost + VecCost - ScalarCost; 5133 } 5134 case Instruction::GetElementPtr: { 5135 TargetTransformInfo::OperandValueKind Op1VK = 5136 TargetTransformInfo::OK_AnyValue; 5137 TargetTransformInfo::OperandValueKind Op2VK = 5138 TargetTransformInfo::OK_UniformConstantValue; 5139 5140 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 5141 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 5142 if (NeedToShuffleReuses) { 5143 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5144 } 5145 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 5146 InstructionCost VecCost = TTI->getArithmeticInstrCost( 5147 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 5148 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5149 return CommonCost + VecCost - ScalarCost; 5150 } 5151 case Instruction::Load: { 5152 // Cost of wide load - cost of scalar loads. 5153 Align Alignment = cast<LoadInst>(VL0)->getAlign(); 5154 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5155 Instruction::Load, ScalarTy, Alignment, 0, CostKind, VL0); 5156 if (NeedToShuffleReuses) { 5157 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5158 } 5159 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 5160 InstructionCost VecLdCost; 5161 if (E->State == TreeEntry::Vectorize) { 5162 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, Alignment, 0, 5163 CostKind, VL0); 5164 } else { 5165 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 5166 Align CommonAlignment = Alignment; 5167 for (Value *V : VL) 5168 CommonAlignment = 5169 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 5170 VecLdCost = TTI->getGatherScatterOpCost( 5171 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 5172 /*VariableMask=*/false, CommonAlignment, CostKind, VL0); 5173 } 5174 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecLdCost, ScalarLdCost)); 5175 return CommonCost + VecLdCost - ScalarLdCost; 5176 } 5177 case Instruction::Store: { 5178 // We know that we can merge the stores. Calculate the cost. 5179 bool IsReorder = !E->ReorderIndices.empty(); 5180 auto *SI = 5181 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 5182 Align Alignment = SI->getAlign(); 5183 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 5184 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 5185 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 5186 InstructionCost VecStCost = TTI->getMemoryOpCost( 5187 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 5188 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecStCost, ScalarStCost)); 5189 return CommonCost + VecStCost - ScalarStCost; 5190 } 5191 case Instruction::Call: { 5192 CallInst *CI = cast<CallInst>(VL0); 5193 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5194 5195 // Calculate the cost of the scalar and vector calls. 5196 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 5197 InstructionCost ScalarEltCost = 5198 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 5199 if (NeedToShuffleReuses) { 5200 CommonCost -= (EntryVF - VL.size()) * ScalarEltCost; 5201 } 5202 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 5203 5204 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 5205 InstructionCost VecCallCost = 5206 std::min(VecCallCosts.first, VecCallCosts.second); 5207 5208 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 5209 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 5210 << " for " << *CI << "\n"); 5211 5212 return CommonCost + VecCallCost - ScalarCallCost; 5213 } 5214 case Instruction::ShuffleVector: { 5215 assert(E->isAltShuffle() && 5216 ((Instruction::isBinaryOp(E->getOpcode()) && 5217 Instruction::isBinaryOp(E->getAltOpcode())) || 5218 (Instruction::isCast(E->getOpcode()) && 5219 Instruction::isCast(E->getAltOpcode()))) && 5220 "Invalid Shuffle Vector Operand"); 5221 InstructionCost ScalarCost = 0; 5222 if (NeedToShuffleReuses) { 5223 for (unsigned Idx : E->ReuseShuffleIndices) { 5224 Instruction *I = cast<Instruction>(VL[Idx]); 5225 CommonCost -= TTI->getInstructionCost(I, CostKind); 5226 } 5227 for (Value *V : VL) { 5228 Instruction *I = cast<Instruction>(V); 5229 CommonCost += TTI->getInstructionCost(I, CostKind); 5230 } 5231 } 5232 for (Value *V : VL) { 5233 Instruction *I = cast<Instruction>(V); 5234 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5235 ScalarCost += TTI->getInstructionCost(I, CostKind); 5236 } 5237 // VecCost is equal to sum of the cost of creating 2 vectors 5238 // and the cost of creating shuffle. 5239 InstructionCost VecCost = 0; 5240 // Try to find the previous shuffle node with the same operands and same 5241 // main/alternate ops. 5242 auto &&TryFindNodeWithEqualOperands = [this, E]() { 5243 for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) { 5244 if (TE.get() == E) 5245 break; 5246 if (TE->isAltShuffle() && 5247 ((TE->getOpcode() == E->getOpcode() && 5248 TE->getAltOpcode() == E->getAltOpcode()) || 5249 (TE->getOpcode() == E->getAltOpcode() && 5250 TE->getAltOpcode() == E->getOpcode())) && 5251 TE->hasEqualOperands(*E)) 5252 return true; 5253 } 5254 return false; 5255 }; 5256 if (TryFindNodeWithEqualOperands()) { 5257 LLVM_DEBUG({ 5258 dbgs() << "SLP: diamond match for alternate node found.\n"; 5259 E->dump(); 5260 }); 5261 // No need to add new vector costs here since we're going to reuse 5262 // same main/alternate vector ops, just do different shuffling. 5263 } else if (Instruction::isBinaryOp(E->getOpcode())) { 5264 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 5265 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 5266 CostKind); 5267 } else { 5268 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 5269 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 5270 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 5271 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 5272 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 5273 TTI::CastContextHint::None, CostKind); 5274 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 5275 TTI::CastContextHint::None, CostKind); 5276 } 5277 5278 SmallVector<int> Mask; 5279 buildSuffleEntryMask( 5280 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 5281 [E](Instruction *I) { 5282 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 5283 return I->getOpcode() == E->getAltOpcode(); 5284 }, 5285 Mask); 5286 CommonCost = 5287 TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy, Mask); 5288 LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost, ScalarCost)); 5289 return CommonCost + VecCost - ScalarCost; 5290 } 5291 default: 5292 llvm_unreachable("Unknown instruction"); 5293 } 5294 } 5295 5296 bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { 5297 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 5298 << VectorizableTree.size() << " is fully vectorizable .\n"); 5299 5300 auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { 5301 SmallVector<int> Mask; 5302 return TE->State == TreeEntry::NeedToGather && 5303 !any_of(TE->Scalars, 5304 [this](Value *V) { return EphValues.contains(V); }) && 5305 (allConstant(TE->Scalars) || isSplat(TE->Scalars) || 5306 TE->Scalars.size() < Limit || 5307 ((TE->getOpcode() == Instruction::ExtractElement || 5308 all_of(TE->Scalars, 5309 [](Value *V) { 5310 return isa<ExtractElementInst, UndefValue>(V); 5311 })) && 5312 isFixedVectorShuffle(TE->Scalars, Mask)) || 5313 (TE->State == TreeEntry::NeedToGather && 5314 TE->getOpcode() == Instruction::Load && !TE->isAltShuffle())); 5315 }; 5316 5317 // We only handle trees of heights 1 and 2. 5318 if (VectorizableTree.size() == 1 && 5319 (VectorizableTree[0]->State == TreeEntry::Vectorize || 5320 (ForReduction && 5321 AreVectorizableGathers(VectorizableTree[0].get(), 5322 VectorizableTree[0]->Scalars.size()) && 5323 VectorizableTree[0]->getVectorFactor() > 2))) 5324 return true; 5325 5326 if (VectorizableTree.size() != 2) 5327 return false; 5328 5329 // Handle splat and all-constants stores. Also try to vectorize tiny trees 5330 // with the second gather nodes if they have less scalar operands rather than 5331 // the initial tree element (may be profitable to shuffle the second gather) 5332 // or they are extractelements, which form shuffle. 5333 SmallVector<int> Mask; 5334 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 5335 AreVectorizableGathers(VectorizableTree[1].get(), 5336 VectorizableTree[0]->Scalars.size())) 5337 return true; 5338 5339 // Gathering cost would be too much for tiny trees. 5340 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 5341 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 5342 VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) 5343 return false; 5344 5345 return true; 5346 } 5347 5348 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 5349 TargetTransformInfo *TTI, 5350 bool MustMatchOrInst) { 5351 // Look past the root to find a source value. Arbitrarily follow the 5352 // path through operand 0 of any 'or'. Also, peek through optional 5353 // shift-left-by-multiple-of-8-bits. 5354 Value *ZextLoad = Root; 5355 const APInt *ShAmtC; 5356 bool FoundOr = false; 5357 while (!isa<ConstantExpr>(ZextLoad) && 5358 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 5359 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 5360 ShAmtC->urem(8) == 0))) { 5361 auto *BinOp = cast<BinaryOperator>(ZextLoad); 5362 ZextLoad = BinOp->getOperand(0); 5363 if (BinOp->getOpcode() == Instruction::Or) 5364 FoundOr = true; 5365 } 5366 // Check if the input is an extended load of the required or/shift expression. 5367 Value *Load; 5368 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 5369 !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load)) 5370 return false; 5371 5372 // Require that the total load bit width is a legal integer type. 5373 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 5374 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 5375 Type *SrcTy = Load->getType(); 5376 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 5377 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 5378 return false; 5379 5380 // Everything matched - assume that we can fold the whole sequence using 5381 // load combining. 5382 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 5383 << *(cast<Instruction>(Root)) << "\n"); 5384 5385 return true; 5386 } 5387 5388 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 5389 if (RdxKind != RecurKind::Or) 5390 return false; 5391 5392 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5393 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 5394 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 5395 /* MatchOr */ false); 5396 } 5397 5398 bool BoUpSLP::isLoadCombineCandidate() const { 5399 // Peek through a final sequence of stores and check if all operations are 5400 // likely to be load-combined. 5401 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 5402 for (Value *Scalar : VectorizableTree[0]->Scalars) { 5403 Value *X; 5404 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 5405 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 5406 return false; 5407 } 5408 return true; 5409 } 5410 5411 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { 5412 // No need to vectorize inserts of gathered values. 5413 if (VectorizableTree.size() == 2 && 5414 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 5415 VectorizableTree[1]->State == TreeEntry::NeedToGather) 5416 return true; 5417 5418 // We can vectorize the tree if its size is greater than or equal to the 5419 // minimum size specified by the MinTreeSize command line option. 5420 if (VectorizableTree.size() >= MinTreeSize) 5421 return false; 5422 5423 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 5424 // can vectorize it if we can prove it fully vectorizable. 5425 if (isFullyVectorizableTinyTree(ForReduction)) 5426 return false; 5427 5428 assert(VectorizableTree.empty() 5429 ? ExternalUses.empty() 5430 : true && "We shouldn't have any external users"); 5431 5432 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 5433 // vectorizable. 5434 return true; 5435 } 5436 5437 InstructionCost BoUpSLP::getSpillCost() const { 5438 // Walk from the bottom of the tree to the top, tracking which values are 5439 // live. When we see a call instruction that is not part of our tree, 5440 // query TTI to see if there is a cost to keeping values live over it 5441 // (for example, if spills and fills are required). 5442 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 5443 InstructionCost Cost = 0; 5444 5445 SmallPtrSet<Instruction*, 4> LiveValues; 5446 Instruction *PrevInst = nullptr; 5447 5448 // The entries in VectorizableTree are not necessarily ordered by their 5449 // position in basic blocks. Collect them and order them by dominance so later 5450 // instructions are guaranteed to be visited first. For instructions in 5451 // different basic blocks, we only scan to the beginning of the block, so 5452 // their order does not matter, as long as all instructions in a basic block 5453 // are grouped together. Using dominance ensures a deterministic order. 5454 SmallVector<Instruction *, 16> OrderedScalars; 5455 for (const auto &TEPtr : VectorizableTree) { 5456 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 5457 if (!Inst) 5458 continue; 5459 OrderedScalars.push_back(Inst); 5460 } 5461 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 5462 auto *NodeA = DT->getNode(A->getParent()); 5463 auto *NodeB = DT->getNode(B->getParent()); 5464 assert(NodeA && "Should only process reachable instructions"); 5465 assert(NodeB && "Should only process reachable instructions"); 5466 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 5467 "Different nodes should have different DFS numbers"); 5468 if (NodeA != NodeB) 5469 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 5470 return B->comesBefore(A); 5471 }); 5472 5473 for (Instruction *Inst : OrderedScalars) { 5474 if (!PrevInst) { 5475 PrevInst = Inst; 5476 continue; 5477 } 5478 5479 // Update LiveValues. 5480 LiveValues.erase(PrevInst); 5481 for (auto &J : PrevInst->operands()) { 5482 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 5483 LiveValues.insert(cast<Instruction>(&*J)); 5484 } 5485 5486 LLVM_DEBUG({ 5487 dbgs() << "SLP: #LV: " << LiveValues.size(); 5488 for (auto *X : LiveValues) 5489 dbgs() << " " << X->getName(); 5490 dbgs() << ", Looking at "; 5491 Inst->dump(); 5492 }); 5493 5494 // Now find the sequence of instructions between PrevInst and Inst. 5495 unsigned NumCalls = 0; 5496 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 5497 PrevInstIt = 5498 PrevInst->getIterator().getReverse(); 5499 while (InstIt != PrevInstIt) { 5500 if (PrevInstIt == PrevInst->getParent()->rend()) { 5501 PrevInstIt = Inst->getParent()->rbegin(); 5502 continue; 5503 } 5504 5505 // Debug information does not impact spill cost. 5506 if ((isa<CallInst>(&*PrevInstIt) && 5507 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 5508 &*PrevInstIt != PrevInst) 5509 NumCalls++; 5510 5511 ++PrevInstIt; 5512 } 5513 5514 if (NumCalls) { 5515 SmallVector<Type*, 4> V; 5516 for (auto *II : LiveValues) { 5517 auto *ScalarTy = II->getType(); 5518 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 5519 ScalarTy = VectorTy->getElementType(); 5520 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 5521 } 5522 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 5523 } 5524 5525 PrevInst = Inst; 5526 } 5527 5528 return Cost; 5529 } 5530 5531 /// Check if two insertelement instructions are from the same buildvector. 5532 static bool areTwoInsertFromSameBuildVector(InsertElementInst *VU, 5533 InsertElementInst *V) { 5534 // Instructions must be from the same basic blocks. 5535 if (VU->getParent() != V->getParent()) 5536 return false; 5537 // Checks if 2 insertelements are from the same buildvector. 5538 if (VU->getType() != V->getType()) 5539 return false; 5540 // Multiple used inserts are separate nodes. 5541 if (!VU->hasOneUse() && !V->hasOneUse()) 5542 return false; 5543 auto *IE1 = VU; 5544 auto *IE2 = V; 5545 // Go through the vector operand of insertelement instructions trying to find 5546 // either VU as the original vector for IE2 or V as the original vector for 5547 // IE1. 5548 do { 5549 if (IE2 == VU || IE1 == V) 5550 return true; 5551 if (IE1) { 5552 if (IE1 != VU && !IE1->hasOneUse()) 5553 IE1 = nullptr; 5554 else 5555 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 5556 } 5557 if (IE2) { 5558 if (IE2 != V && !IE2->hasOneUse()) 5559 IE2 = nullptr; 5560 else 5561 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 5562 } 5563 } while (IE1 || IE2); 5564 return false; 5565 } 5566 5567 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 5568 InstructionCost Cost = 0; 5569 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 5570 << VectorizableTree.size() << ".\n"); 5571 5572 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 5573 5574 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 5575 TreeEntry &TE = *VectorizableTree[I].get(); 5576 5577 InstructionCost C = getEntryCost(&TE, VectorizedVals); 5578 Cost += C; 5579 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5580 << " for bundle that starts with " << *TE.Scalars[0] 5581 << ".\n" 5582 << "SLP: Current total cost = " << Cost << "\n"); 5583 } 5584 5585 SmallPtrSet<Value *, 16> ExtractCostCalculated; 5586 InstructionCost ExtractCost = 0; 5587 SmallVector<unsigned> VF; 5588 SmallVector<SmallVector<int>> ShuffleMask; 5589 SmallVector<Value *> FirstUsers; 5590 SmallVector<APInt> DemandedElts; 5591 for (ExternalUser &EU : ExternalUses) { 5592 // We only add extract cost once for the same scalar. 5593 if (!isa_and_nonnull<InsertElementInst>(EU.User) && 5594 !ExtractCostCalculated.insert(EU.Scalar).second) 5595 continue; 5596 5597 // Uses by ephemeral values are free (because the ephemeral value will be 5598 // removed prior to code generation, and so the extraction will be 5599 // removed as well). 5600 if (EphValues.count(EU.User)) 5601 continue; 5602 5603 // No extract cost for vector "scalar" 5604 if (isa<FixedVectorType>(EU.Scalar->getType())) 5605 continue; 5606 5607 // Already counted the cost for external uses when tried to adjust the cost 5608 // for extractelements, no need to add it again. 5609 if (isa<ExtractElementInst>(EU.Scalar)) 5610 continue; 5611 5612 // If found user is an insertelement, do not calculate extract cost but try 5613 // to detect it as a final shuffled/identity match. 5614 if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) { 5615 if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) { 5616 Optional<int> InsertIdx = getInsertIndex(VU, 0); 5617 if (!InsertIdx || *InsertIdx == UndefMaskElem) 5618 continue; 5619 auto *It = find_if(FirstUsers, [VU](Value *V) { 5620 return areTwoInsertFromSameBuildVector(VU, 5621 cast<InsertElementInst>(V)); 5622 }); 5623 int VecId = -1; 5624 if (It == FirstUsers.end()) { 5625 VF.push_back(FTy->getNumElements()); 5626 ShuffleMask.emplace_back(VF.back(), UndefMaskElem); 5627 // Find the insertvector, vectorized in tree, if any. 5628 Value *Base = VU; 5629 while (isa<InsertElementInst>(Base)) { 5630 // Build the mask for the vectorized insertelement instructions. 5631 if (const TreeEntry *E = getTreeEntry(Base)) { 5632 VU = cast<InsertElementInst>(Base); 5633 do { 5634 int Idx = E->findLaneForValue(Base); 5635 ShuffleMask.back()[Idx] = Idx; 5636 Base = cast<InsertElementInst>(Base)->getOperand(0); 5637 } while (E == getTreeEntry(Base)); 5638 break; 5639 } 5640 Base = cast<InsertElementInst>(Base)->getOperand(0); 5641 } 5642 FirstUsers.push_back(VU); 5643 DemandedElts.push_back(APInt::getZero(VF.back())); 5644 VecId = FirstUsers.size() - 1; 5645 } else { 5646 VecId = std::distance(FirstUsers.begin(), It); 5647 } 5648 int Idx = *InsertIdx; 5649 ShuffleMask[VecId][Idx] = EU.Lane; 5650 DemandedElts[VecId].setBit(Idx); 5651 continue; 5652 } 5653 } 5654 5655 // If we plan to rewrite the tree in a smaller type, we will need to sign 5656 // extend the extracted value back to the original type. Here, we account 5657 // for the extract and the added cost of the sign extend if needed. 5658 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 5659 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 5660 if (MinBWs.count(ScalarRoot)) { 5661 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 5662 auto Extend = 5663 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 5664 VecTy = FixedVectorType::get(MinTy, BundleWidth); 5665 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 5666 VecTy, EU.Lane); 5667 } else { 5668 ExtractCost += 5669 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 5670 } 5671 } 5672 5673 InstructionCost SpillCost = getSpillCost(); 5674 Cost += SpillCost + ExtractCost; 5675 if (FirstUsers.size() == 1) { 5676 int Limit = ShuffleMask.front().size() * 2; 5677 if (all_of(ShuffleMask.front(), [Limit](int Idx) { return Idx < Limit; }) && 5678 !ShuffleVectorInst::isIdentityMask(ShuffleMask.front())) { 5679 InstructionCost C = TTI->getShuffleCost( 5680 TTI::SK_PermuteSingleSrc, 5681 cast<FixedVectorType>(FirstUsers.front()->getType()), 5682 ShuffleMask.front()); 5683 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5684 << " for final shuffle of insertelement external users " 5685 << *VectorizableTree.front()->Scalars.front() << ".\n" 5686 << "SLP: Current total cost = " << Cost << "\n"); 5687 Cost += C; 5688 } 5689 InstructionCost InsertCost = TTI->getScalarizationOverhead( 5690 cast<FixedVectorType>(FirstUsers.front()->getType()), 5691 DemandedElts.front(), /*Insert*/ true, /*Extract*/ false); 5692 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 5693 << " for insertelements gather.\n" 5694 << "SLP: Current total cost = " << Cost << "\n"); 5695 Cost -= InsertCost; 5696 } else if (FirstUsers.size() >= 2) { 5697 unsigned MaxVF = *std::max_element(VF.begin(), VF.end()); 5698 // Combined masks of the first 2 vectors. 5699 SmallVector<int> CombinedMask(MaxVF, UndefMaskElem); 5700 copy(ShuffleMask.front(), CombinedMask.begin()); 5701 APInt CombinedDemandedElts = DemandedElts.front().zextOrSelf(MaxVF); 5702 auto *VecTy = FixedVectorType::get( 5703 cast<VectorType>(FirstUsers.front()->getType())->getElementType(), 5704 MaxVF); 5705 for (int I = 0, E = ShuffleMask[1].size(); I < E; ++I) { 5706 if (ShuffleMask[1][I] != UndefMaskElem) { 5707 CombinedMask[I] = ShuffleMask[1][I] + MaxVF; 5708 CombinedDemandedElts.setBit(I); 5709 } 5710 } 5711 InstructionCost C = 5712 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 5713 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5714 << " for final shuffle of vector node and external " 5715 "insertelement users " 5716 << *VectorizableTree.front()->Scalars.front() << ".\n" 5717 << "SLP: Current total cost = " << Cost << "\n"); 5718 Cost += C; 5719 InstructionCost InsertCost = TTI->getScalarizationOverhead( 5720 VecTy, CombinedDemandedElts, /*Insert*/ true, /*Extract*/ false); 5721 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 5722 << " for insertelements gather.\n" 5723 << "SLP: Current total cost = " << Cost << "\n"); 5724 Cost -= InsertCost; 5725 for (int I = 2, E = FirstUsers.size(); I < E; ++I) { 5726 // Other elements - permutation of 2 vectors (the initial one and the 5727 // next Ith incoming vector). 5728 unsigned VF = ShuffleMask[I].size(); 5729 for (unsigned Idx = 0; Idx < VF; ++Idx) { 5730 int Mask = ShuffleMask[I][Idx]; 5731 if (Mask != UndefMaskElem) 5732 CombinedMask[Idx] = MaxVF + Mask; 5733 else if (CombinedMask[Idx] != UndefMaskElem) 5734 CombinedMask[Idx] = Idx; 5735 } 5736 for (unsigned Idx = VF; Idx < MaxVF; ++Idx) 5737 if (CombinedMask[Idx] != UndefMaskElem) 5738 CombinedMask[Idx] = Idx; 5739 InstructionCost C = 5740 TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, CombinedMask); 5741 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 5742 << " for final shuffle of vector node and external " 5743 "insertelement users " 5744 << *VectorizableTree.front()->Scalars.front() << ".\n" 5745 << "SLP: Current total cost = " << Cost << "\n"); 5746 Cost += C; 5747 InstructionCost InsertCost = TTI->getScalarizationOverhead( 5748 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I], 5749 /*Insert*/ true, /*Extract*/ false); 5750 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 5751 << " for insertelements gather.\n" 5752 << "SLP: Current total cost = " << Cost << "\n"); 5753 Cost -= InsertCost; 5754 } 5755 } 5756 5757 #ifndef NDEBUG 5758 SmallString<256> Str; 5759 { 5760 raw_svector_ostream OS(Str); 5761 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 5762 << "SLP: Extract Cost = " << ExtractCost << ".\n" 5763 << "SLP: Total Cost = " << Cost << ".\n"; 5764 } 5765 LLVM_DEBUG(dbgs() << Str); 5766 if (ViewSLPTree) 5767 ViewGraph(this, "SLP" + F->getName(), false, Str); 5768 #endif 5769 5770 return Cost; 5771 } 5772 5773 Optional<TargetTransformInfo::ShuffleKind> 5774 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 5775 SmallVectorImpl<const TreeEntry *> &Entries) { 5776 // TODO: currently checking only for Scalars in the tree entry, need to count 5777 // reused elements too for better cost estimation. 5778 Mask.assign(TE->Scalars.size(), UndefMaskElem); 5779 Entries.clear(); 5780 // Build a lists of values to tree entries. 5781 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 5782 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 5783 if (EntryPtr.get() == TE) 5784 break; 5785 if (EntryPtr->State != TreeEntry::NeedToGather) 5786 continue; 5787 for (Value *V : EntryPtr->Scalars) 5788 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 5789 } 5790 // Find all tree entries used by the gathered values. If no common entries 5791 // found - not a shuffle. 5792 // Here we build a set of tree nodes for each gathered value and trying to 5793 // find the intersection between these sets. If we have at least one common 5794 // tree node for each gathered value - we have just a permutation of the 5795 // single vector. If we have 2 different sets, we're in situation where we 5796 // have a permutation of 2 input vectors. 5797 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 5798 DenseMap<Value *, int> UsedValuesEntry; 5799 for (Value *V : TE->Scalars) { 5800 if (isa<UndefValue>(V)) 5801 continue; 5802 // Build a list of tree entries where V is used. 5803 SmallPtrSet<const TreeEntry *, 4> VToTEs; 5804 auto It = ValueToTEs.find(V); 5805 if (It != ValueToTEs.end()) 5806 VToTEs = It->second; 5807 if (const TreeEntry *VTE = getTreeEntry(V)) 5808 VToTEs.insert(VTE); 5809 if (VToTEs.empty()) 5810 return None; 5811 if (UsedTEs.empty()) { 5812 // The first iteration, just insert the list of nodes to vector. 5813 UsedTEs.push_back(VToTEs); 5814 } else { 5815 // Need to check if there are any previously used tree nodes which use V. 5816 // If there are no such nodes, consider that we have another one input 5817 // vector. 5818 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 5819 unsigned Idx = 0; 5820 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 5821 // Do we have a non-empty intersection of previously listed tree entries 5822 // and tree entries using current V? 5823 set_intersect(VToTEs, Set); 5824 if (!VToTEs.empty()) { 5825 // Yes, write the new subset and continue analysis for the next 5826 // scalar. 5827 Set.swap(VToTEs); 5828 break; 5829 } 5830 VToTEs = SavedVToTEs; 5831 ++Idx; 5832 } 5833 // No non-empty intersection found - need to add a second set of possible 5834 // source vectors. 5835 if (Idx == UsedTEs.size()) { 5836 // If the number of input vectors is greater than 2 - not a permutation, 5837 // fallback to the regular gather. 5838 if (UsedTEs.size() == 2) 5839 return None; 5840 UsedTEs.push_back(SavedVToTEs); 5841 Idx = UsedTEs.size() - 1; 5842 } 5843 UsedValuesEntry.try_emplace(V, Idx); 5844 } 5845 } 5846 5847 unsigned VF = 0; 5848 if (UsedTEs.size() == 1) { 5849 // Try to find the perfect match in another gather node at first. 5850 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 5851 return EntryPtr->isSame(TE->Scalars); 5852 }); 5853 if (It != UsedTEs.front().end()) { 5854 Entries.push_back(*It); 5855 std::iota(Mask.begin(), Mask.end(), 0); 5856 return TargetTransformInfo::SK_PermuteSingleSrc; 5857 } 5858 // No perfect match, just shuffle, so choose the first tree node. 5859 Entries.push_back(*UsedTEs.front().begin()); 5860 } else { 5861 // Try to find nodes with the same vector factor. 5862 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 5863 DenseMap<int, const TreeEntry *> VFToTE; 5864 for (const TreeEntry *TE : UsedTEs.front()) 5865 VFToTE.try_emplace(TE->getVectorFactor(), TE); 5866 for (const TreeEntry *TE : UsedTEs.back()) { 5867 auto It = VFToTE.find(TE->getVectorFactor()); 5868 if (It != VFToTE.end()) { 5869 VF = It->first; 5870 Entries.push_back(It->second); 5871 Entries.push_back(TE); 5872 break; 5873 } 5874 } 5875 // No 2 source vectors with the same vector factor - give up and do regular 5876 // gather. 5877 if (Entries.empty()) 5878 return None; 5879 } 5880 5881 // Build a shuffle mask for better cost estimation and vector emission. 5882 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 5883 Value *V = TE->Scalars[I]; 5884 if (isa<UndefValue>(V)) 5885 continue; 5886 unsigned Idx = UsedValuesEntry.lookup(V); 5887 const TreeEntry *VTE = Entries[Idx]; 5888 int FoundLane = VTE->findLaneForValue(V); 5889 Mask[I] = Idx * VF + FoundLane; 5890 // Extra check required by isSingleSourceMaskImpl function (called by 5891 // ShuffleVectorInst::isSingleSourceMask). 5892 if (Mask[I] >= 2 * E) 5893 return None; 5894 } 5895 switch (Entries.size()) { 5896 case 1: 5897 return TargetTransformInfo::SK_PermuteSingleSrc; 5898 case 2: 5899 return TargetTransformInfo::SK_PermuteTwoSrc; 5900 default: 5901 break; 5902 } 5903 return None; 5904 } 5905 5906 InstructionCost 5907 BoUpSLP::getGatherCost(FixedVectorType *Ty, 5908 const DenseSet<unsigned> &ShuffledIndices, 5909 bool NeedToShuffle) const { 5910 unsigned NumElts = Ty->getNumElements(); 5911 APInt DemandedElts = APInt::getZero(NumElts); 5912 for (unsigned I = 0; I < NumElts; ++I) 5913 if (!ShuffledIndices.count(I)) 5914 DemandedElts.setBit(I); 5915 InstructionCost Cost = 5916 TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true, 5917 /*Extract*/ false); 5918 if (NeedToShuffle) 5919 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 5920 return Cost; 5921 } 5922 5923 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 5924 // Find the type of the operands in VL. 5925 Type *ScalarTy = VL[0]->getType(); 5926 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 5927 ScalarTy = SI->getValueOperand()->getType(); 5928 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 5929 bool DuplicateNonConst = false; 5930 // Find the cost of inserting/extracting values from the vector. 5931 // Check if the same elements are inserted several times and count them as 5932 // shuffle candidates. 5933 DenseSet<unsigned> ShuffledElements; 5934 DenseSet<Value *> UniqueElements; 5935 // Iterate in reverse order to consider insert elements with the high cost. 5936 for (unsigned I = VL.size(); I > 0; --I) { 5937 unsigned Idx = I - 1; 5938 // No need to shuffle duplicates for constants. 5939 if (isConstant(VL[Idx])) { 5940 ShuffledElements.insert(Idx); 5941 continue; 5942 } 5943 if (!UniqueElements.insert(VL[Idx]).second) { 5944 DuplicateNonConst = true; 5945 ShuffledElements.insert(Idx); 5946 } 5947 } 5948 return getGatherCost(VecTy, ShuffledElements, DuplicateNonConst); 5949 } 5950 5951 // Perform operand reordering on the instructions in VL and return the reordered 5952 // operands in Left and Right. 5953 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 5954 SmallVectorImpl<Value *> &Left, 5955 SmallVectorImpl<Value *> &Right, 5956 const DataLayout &DL, 5957 ScalarEvolution &SE, 5958 const BoUpSLP &R) { 5959 if (VL.empty()) 5960 return; 5961 VLOperands Ops(VL, DL, SE, R); 5962 // Reorder the operands in place. 5963 Ops.reorder(); 5964 Left = Ops.getVL(0); 5965 Right = Ops.getVL(1); 5966 } 5967 5968 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 5969 // Get the basic block this bundle is in. All instructions in the bundle 5970 // should be in this block. 5971 auto *Front = E->getMainOp(); 5972 auto *BB = Front->getParent(); 5973 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 5974 auto *I = cast<Instruction>(V); 5975 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 5976 })); 5977 5978 // The last instruction in the bundle in program order. 5979 Instruction *LastInst = nullptr; 5980 5981 // Find the last instruction. The common case should be that BB has been 5982 // scheduled, and the last instruction is VL.back(). So we start with 5983 // VL.back() and iterate over schedule data until we reach the end of the 5984 // bundle. The end of the bundle is marked by null ScheduleData. 5985 if (BlocksSchedules.count(BB)) { 5986 auto *Bundle = 5987 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 5988 if (Bundle && Bundle->isPartOfBundle()) 5989 for (; Bundle; Bundle = Bundle->NextInBundle) 5990 if (Bundle->OpValue == Bundle->Inst) 5991 LastInst = Bundle->Inst; 5992 } 5993 5994 // LastInst can still be null at this point if there's either not an entry 5995 // for BB in BlocksSchedules or there's no ScheduleData available for 5996 // VL.back(). This can be the case if buildTree_rec aborts for various 5997 // reasons (e.g., the maximum recursion depth is reached, the maximum region 5998 // size is reached, etc.). ScheduleData is initialized in the scheduling 5999 // "dry-run". 6000 // 6001 // If this happens, we can still find the last instruction by brute force. We 6002 // iterate forwards from Front (inclusive) until we either see all 6003 // instructions in the bundle or reach the end of the block. If Front is the 6004 // last instruction in program order, LastInst will be set to Front, and we 6005 // will visit all the remaining instructions in the block. 6006 // 6007 // One of the reasons we exit early from buildTree_rec is to place an upper 6008 // bound on compile-time. Thus, taking an additional compile-time hit here is 6009 // not ideal. However, this should be exceedingly rare since it requires that 6010 // we both exit early from buildTree_rec and that the bundle be out-of-order 6011 // (causing us to iterate all the way to the end of the block). 6012 if (!LastInst) { 6013 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 6014 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 6015 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 6016 LastInst = &I; 6017 if (Bundle.empty()) 6018 break; 6019 } 6020 } 6021 assert(LastInst && "Failed to find last instruction in bundle"); 6022 6023 // Set the insertion point after the last instruction in the bundle. Set the 6024 // debug location to Front. 6025 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 6026 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 6027 } 6028 6029 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 6030 // List of instructions/lanes from current block and/or the blocks which are 6031 // part of the current loop. These instructions will be inserted at the end to 6032 // make it possible to optimize loops and hoist invariant instructions out of 6033 // the loops body with better chances for success. 6034 SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; 6035 SmallSet<int, 4> PostponedIndices; 6036 Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); 6037 auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { 6038 SmallPtrSet<BasicBlock *, 4> Visited; 6039 while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) 6040 InsertBB = InsertBB->getSinglePredecessor(); 6041 return InsertBB && InsertBB == InstBB; 6042 }; 6043 for (int I = 0, E = VL.size(); I < E; ++I) { 6044 if (auto *Inst = dyn_cast<Instruction>(VL[I])) 6045 if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || 6046 getTreeEntry(Inst) || (L && (L->contains(Inst)))) && 6047 PostponedIndices.insert(I).second) 6048 PostponedInsts.emplace_back(Inst, I); 6049 } 6050 6051 auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { 6052 Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); 6053 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 6054 if (!InsElt) 6055 return Vec; 6056 GatherShuffleSeq.insert(InsElt); 6057 CSEBlocks.insert(InsElt->getParent()); 6058 // Add to our 'need-to-extract' list. 6059 if (TreeEntry *Entry = getTreeEntry(V)) { 6060 // Find which lane we need to extract. 6061 unsigned FoundLane = Entry->findLaneForValue(V); 6062 ExternalUses.emplace_back(V, InsElt, FoundLane); 6063 } 6064 return Vec; 6065 }; 6066 Value *Val0 = 6067 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 6068 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 6069 Value *Vec = PoisonValue::get(VecTy); 6070 SmallVector<int> NonConsts; 6071 // Insert constant values at first. 6072 for (int I = 0, E = VL.size(); I < E; ++I) { 6073 if (PostponedIndices.contains(I)) 6074 continue; 6075 if (!isConstant(VL[I])) { 6076 NonConsts.push_back(I); 6077 continue; 6078 } 6079 Vec = CreateInsertElement(Vec, VL[I], I); 6080 } 6081 // Insert non-constant values. 6082 for (int I : NonConsts) 6083 Vec = CreateInsertElement(Vec, VL[I], I); 6084 // Append instructions, which are/may be part of the loop, in the end to make 6085 // it possible to hoist non-loop-based instructions. 6086 for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) 6087 Vec = CreateInsertElement(Vec, Pair.first, Pair.second); 6088 6089 return Vec; 6090 } 6091 6092 namespace { 6093 /// Merges shuffle masks and emits final shuffle instruction, if required. 6094 class ShuffleInstructionBuilder { 6095 IRBuilderBase &Builder; 6096 const unsigned VF = 0; 6097 bool IsFinalized = false; 6098 SmallVector<int, 4> Mask; 6099 /// Holds all of the instructions that we gathered. 6100 SetVector<Instruction *> &GatherShuffleSeq; 6101 /// A list of blocks that we are going to CSE. 6102 SetVector<BasicBlock *> &CSEBlocks; 6103 6104 public: 6105 ShuffleInstructionBuilder(IRBuilderBase &Builder, unsigned VF, 6106 SetVector<Instruction *> &GatherShuffleSeq, 6107 SetVector<BasicBlock *> &CSEBlocks) 6108 : Builder(Builder), VF(VF), GatherShuffleSeq(GatherShuffleSeq), 6109 CSEBlocks(CSEBlocks) {} 6110 6111 /// Adds a mask, inverting it before applying. 6112 void addInversedMask(ArrayRef<unsigned> SubMask) { 6113 if (SubMask.empty()) 6114 return; 6115 SmallVector<int, 4> NewMask; 6116 inversePermutation(SubMask, NewMask); 6117 addMask(NewMask); 6118 } 6119 6120 /// Functions adds masks, merging them into single one. 6121 void addMask(ArrayRef<unsigned> SubMask) { 6122 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 6123 addMask(NewMask); 6124 } 6125 6126 void addMask(ArrayRef<int> SubMask) { ::addMask(Mask, SubMask); } 6127 6128 Value *finalize(Value *V) { 6129 IsFinalized = true; 6130 unsigned ValueVF = cast<FixedVectorType>(V->getType())->getNumElements(); 6131 if (VF == ValueVF && Mask.empty()) 6132 return V; 6133 SmallVector<int, 4> NormalizedMask(VF, UndefMaskElem); 6134 std::iota(NormalizedMask.begin(), NormalizedMask.end(), 0); 6135 addMask(NormalizedMask); 6136 6137 if (VF == ValueVF && ShuffleVectorInst::isIdentityMask(Mask)) 6138 return V; 6139 Value *Vec = Builder.CreateShuffleVector(V, Mask, "shuffle"); 6140 if (auto *I = dyn_cast<Instruction>(Vec)) { 6141 GatherShuffleSeq.insert(I); 6142 CSEBlocks.insert(I->getParent()); 6143 } 6144 return Vec; 6145 } 6146 6147 ~ShuffleInstructionBuilder() { 6148 assert((IsFinalized || Mask.empty()) && 6149 "Shuffle construction must be finalized."); 6150 } 6151 }; 6152 } // namespace 6153 6154 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 6155 unsigned VF = VL.size(); 6156 InstructionsState S = getSameOpcode(VL); 6157 if (S.getOpcode()) { 6158 if (TreeEntry *E = getTreeEntry(S.OpValue)) 6159 if (E->isSame(VL)) { 6160 Value *V = vectorizeTree(E); 6161 if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { 6162 if (!E->ReuseShuffleIndices.empty()) { 6163 // Reshuffle to get only unique values. 6164 // If some of the scalars are duplicated in the vectorization tree 6165 // entry, we do not vectorize them but instead generate a mask for 6166 // the reuses. But if there are several users of the same entry, 6167 // they may have different vectorization factors. This is especially 6168 // important for PHI nodes. In this case, we need to adapt the 6169 // resulting instruction for the user vectorization factor and have 6170 // to reshuffle it again to take only unique elements of the vector. 6171 // Without this code the function incorrectly returns reduced vector 6172 // instruction with the same elements, not with the unique ones. 6173 6174 // block: 6175 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 6176 // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> 6177 // ... (use %2) 6178 // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} 6179 // br %block 6180 SmallVector<int> UniqueIdxs(VF, UndefMaskElem); 6181 SmallSet<int, 4> UsedIdxs; 6182 int Pos = 0; 6183 int Sz = VL.size(); 6184 for (int Idx : E->ReuseShuffleIndices) { 6185 if (Idx != Sz && Idx != UndefMaskElem && 6186 UsedIdxs.insert(Idx).second) 6187 UniqueIdxs[Idx] = Pos; 6188 ++Pos; 6189 } 6190 assert(VF >= UsedIdxs.size() && "Expected vectorization factor " 6191 "less than original vector size."); 6192 UniqueIdxs.append(VF - UsedIdxs.size(), UndefMaskElem); 6193 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 6194 } else { 6195 assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && 6196 "Expected vectorization factor less " 6197 "than original vector size."); 6198 SmallVector<int> UniformMask(VF, 0); 6199 std::iota(UniformMask.begin(), UniformMask.end(), 0); 6200 V = Builder.CreateShuffleVector(V, UniformMask, "shrink.shuffle"); 6201 } 6202 if (auto *I = dyn_cast<Instruction>(V)) { 6203 GatherShuffleSeq.insert(I); 6204 CSEBlocks.insert(I->getParent()); 6205 } 6206 } 6207 return V; 6208 } 6209 } 6210 6211 // Check that every instruction appears once in this bundle. 6212 SmallVector<int> ReuseShuffleIndicies; 6213 SmallVector<Value *> UniqueValues; 6214 if (VL.size() > 2) { 6215 DenseMap<Value *, unsigned> UniquePositions; 6216 unsigned NumValues = 6217 std::distance(VL.begin(), find_if(reverse(VL), [](Value *V) { 6218 return !isa<UndefValue>(V); 6219 }).base()); 6220 VF = std::max<unsigned>(VF, PowerOf2Ceil(NumValues)); 6221 int UniqueVals = 0; 6222 for (Value *V : VL.drop_back(VL.size() - VF)) { 6223 if (isa<UndefValue>(V)) { 6224 ReuseShuffleIndicies.emplace_back(UndefMaskElem); 6225 continue; 6226 } 6227 if (isConstant(V)) { 6228 ReuseShuffleIndicies.emplace_back(UniqueValues.size()); 6229 UniqueValues.emplace_back(V); 6230 continue; 6231 } 6232 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 6233 ReuseShuffleIndicies.emplace_back(Res.first->second); 6234 if (Res.second) { 6235 UniqueValues.emplace_back(V); 6236 ++UniqueVals; 6237 } 6238 } 6239 if (UniqueVals == 1 && UniqueValues.size() == 1) { 6240 // Emit pure splat vector. 6241 ReuseShuffleIndicies.append(VF - ReuseShuffleIndicies.size(), 6242 UndefMaskElem); 6243 } else if (UniqueValues.size() >= VF - 1 || UniqueValues.size() <= 1) { 6244 ReuseShuffleIndicies.clear(); 6245 UniqueValues.clear(); 6246 UniqueValues.append(VL.begin(), std::next(VL.begin(), NumValues)); 6247 } 6248 UniqueValues.append(VF - UniqueValues.size(), 6249 PoisonValue::get(VL[0]->getType())); 6250 VL = UniqueValues; 6251 } 6252 6253 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6254 CSEBlocks); 6255 Value *Vec = gather(VL); 6256 if (!ReuseShuffleIndicies.empty()) { 6257 ShuffleBuilder.addMask(ReuseShuffleIndicies); 6258 Vec = ShuffleBuilder.finalize(Vec); 6259 } 6260 return Vec; 6261 } 6262 6263 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 6264 IRBuilder<>::InsertPointGuard Guard(Builder); 6265 6266 if (E->VectorizedValue) { 6267 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 6268 return E->VectorizedValue; 6269 } 6270 6271 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 6272 unsigned VF = E->getVectorFactor(); 6273 ShuffleInstructionBuilder ShuffleBuilder(Builder, VF, GatherShuffleSeq, 6274 CSEBlocks); 6275 if (E->State == TreeEntry::NeedToGather) { 6276 if (E->getMainOp()) 6277 setInsertPointAfterBundle(E); 6278 Value *Vec; 6279 SmallVector<int> Mask; 6280 SmallVector<const TreeEntry *> Entries; 6281 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 6282 isGatherShuffledEntry(E, Mask, Entries); 6283 if (Shuffle.hasValue()) { 6284 assert((Entries.size() == 1 || Entries.size() == 2) && 6285 "Expected shuffle of 1 or 2 entries."); 6286 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 6287 Entries.back()->VectorizedValue, Mask); 6288 if (auto *I = dyn_cast<Instruction>(Vec)) { 6289 GatherShuffleSeq.insert(I); 6290 CSEBlocks.insert(I->getParent()); 6291 } 6292 } else { 6293 Vec = gather(E->Scalars); 6294 } 6295 if (NeedToShuffleReuses) { 6296 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6297 Vec = ShuffleBuilder.finalize(Vec); 6298 } 6299 E->VectorizedValue = Vec; 6300 return Vec; 6301 } 6302 6303 assert((E->State == TreeEntry::Vectorize || 6304 E->State == TreeEntry::ScatterVectorize) && 6305 "Unhandled state"); 6306 unsigned ShuffleOrOp = 6307 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 6308 Instruction *VL0 = E->getMainOp(); 6309 Type *ScalarTy = VL0->getType(); 6310 if (auto *Store = dyn_cast<StoreInst>(VL0)) 6311 ScalarTy = Store->getValueOperand()->getType(); 6312 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 6313 ScalarTy = IE->getOperand(1)->getType(); 6314 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 6315 switch (ShuffleOrOp) { 6316 case Instruction::PHI: { 6317 assert( 6318 (E->ReorderIndices.empty() || E != VectorizableTree.front().get()) && 6319 "PHI reordering is free."); 6320 auto *PH = cast<PHINode>(VL0); 6321 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 6322 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6323 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 6324 Value *V = NewPhi; 6325 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6326 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6327 V = ShuffleBuilder.finalize(V); 6328 6329 E->VectorizedValue = V; 6330 6331 // PHINodes may have multiple entries from the same block. We want to 6332 // visit every block once. 6333 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 6334 6335 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 6336 ValueList Operands; 6337 BasicBlock *IBB = PH->getIncomingBlock(i); 6338 6339 if (!VisitedBBs.insert(IBB).second) { 6340 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 6341 continue; 6342 } 6343 6344 Builder.SetInsertPoint(IBB->getTerminator()); 6345 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 6346 Value *Vec = vectorizeTree(E->getOperand(i)); 6347 NewPhi->addIncoming(Vec, IBB); 6348 } 6349 6350 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 6351 "Invalid number of incoming values"); 6352 return V; 6353 } 6354 6355 case Instruction::ExtractElement: { 6356 Value *V = E->getSingleOperand(0); 6357 Builder.SetInsertPoint(VL0); 6358 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6359 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6360 V = ShuffleBuilder.finalize(V); 6361 E->VectorizedValue = V; 6362 return V; 6363 } 6364 case Instruction::ExtractValue: { 6365 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 6366 Builder.SetInsertPoint(LI); 6367 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 6368 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 6369 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 6370 Value *NewV = propagateMetadata(V, E->Scalars); 6371 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6372 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6373 NewV = ShuffleBuilder.finalize(NewV); 6374 E->VectorizedValue = NewV; 6375 return NewV; 6376 } 6377 case Instruction::InsertElement: { 6378 assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); 6379 Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); 6380 Value *V = vectorizeTree(E->getOperand(1)); 6381 6382 // Create InsertVector shuffle if necessary 6383 auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { 6384 return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); 6385 })); 6386 const unsigned NumElts = 6387 cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); 6388 const unsigned NumScalars = E->Scalars.size(); 6389 6390 unsigned Offset = *getInsertIndex(VL0, 0); 6391 assert(Offset < NumElts && "Failed to find vector index offset"); 6392 6393 // Create shuffle to resize vector 6394 SmallVector<int> Mask; 6395 if (!E->ReorderIndices.empty()) { 6396 inversePermutation(E->ReorderIndices, Mask); 6397 Mask.append(NumElts - NumScalars, UndefMaskElem); 6398 } else { 6399 Mask.assign(NumElts, UndefMaskElem); 6400 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 6401 } 6402 // Create InsertVector shuffle if necessary 6403 bool IsIdentity = true; 6404 SmallVector<int> PrevMask(NumElts, UndefMaskElem); 6405 Mask.swap(PrevMask); 6406 for (unsigned I = 0; I < NumScalars; ++I) { 6407 Value *Scalar = E->Scalars[PrevMask[I]]; 6408 Optional<int> InsertIdx = getInsertIndex(Scalar, 0); 6409 if (!InsertIdx || *InsertIdx == UndefMaskElem) 6410 continue; 6411 IsIdentity &= *InsertIdx - Offset == I; 6412 Mask[*InsertIdx - Offset] = I; 6413 } 6414 if (!IsIdentity || NumElts != NumScalars) { 6415 V = Builder.CreateShuffleVector(V, Mask); 6416 if (auto *I = dyn_cast<Instruction>(V)) { 6417 GatherShuffleSeq.insert(I); 6418 CSEBlocks.insert(I->getParent()); 6419 } 6420 } 6421 6422 if ((!IsIdentity || Offset != 0 || 6423 !isUndefVector(FirstInsert->getOperand(0))) && 6424 NumElts != NumScalars) { 6425 SmallVector<int> InsertMask(NumElts); 6426 std::iota(InsertMask.begin(), InsertMask.end(), 0); 6427 for (unsigned I = 0; I < NumElts; I++) { 6428 if (Mask[I] != UndefMaskElem) 6429 InsertMask[Offset + I] = NumElts + I; 6430 } 6431 6432 V = Builder.CreateShuffleVector( 6433 FirstInsert->getOperand(0), V, InsertMask, 6434 cast<Instruction>(E->Scalars.back())->getName()); 6435 if (auto *I = dyn_cast<Instruction>(V)) { 6436 GatherShuffleSeq.insert(I); 6437 CSEBlocks.insert(I->getParent()); 6438 } 6439 } 6440 6441 ++NumVectorInstructions; 6442 E->VectorizedValue = V; 6443 return V; 6444 } 6445 case Instruction::ZExt: 6446 case Instruction::SExt: 6447 case Instruction::FPToUI: 6448 case Instruction::FPToSI: 6449 case Instruction::FPExt: 6450 case Instruction::PtrToInt: 6451 case Instruction::IntToPtr: 6452 case Instruction::SIToFP: 6453 case Instruction::UIToFP: 6454 case Instruction::Trunc: 6455 case Instruction::FPTrunc: 6456 case Instruction::BitCast: { 6457 setInsertPointAfterBundle(E); 6458 6459 Value *InVec = vectorizeTree(E->getOperand(0)); 6460 6461 if (E->VectorizedValue) { 6462 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6463 return E->VectorizedValue; 6464 } 6465 6466 auto *CI = cast<CastInst>(VL0); 6467 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 6468 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6469 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6470 V = ShuffleBuilder.finalize(V); 6471 6472 E->VectorizedValue = V; 6473 ++NumVectorInstructions; 6474 return V; 6475 } 6476 case Instruction::FCmp: 6477 case Instruction::ICmp: { 6478 setInsertPointAfterBundle(E); 6479 6480 Value *L = vectorizeTree(E->getOperand(0)); 6481 Value *R = vectorizeTree(E->getOperand(1)); 6482 6483 if (E->VectorizedValue) { 6484 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6485 return E->VectorizedValue; 6486 } 6487 6488 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 6489 Value *V = Builder.CreateCmp(P0, L, R); 6490 propagateIRFlags(V, E->Scalars, VL0); 6491 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6492 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6493 V = ShuffleBuilder.finalize(V); 6494 6495 E->VectorizedValue = V; 6496 ++NumVectorInstructions; 6497 return V; 6498 } 6499 case Instruction::Select: { 6500 setInsertPointAfterBundle(E); 6501 6502 Value *Cond = vectorizeTree(E->getOperand(0)); 6503 Value *True = vectorizeTree(E->getOperand(1)); 6504 Value *False = vectorizeTree(E->getOperand(2)); 6505 6506 if (E->VectorizedValue) { 6507 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6508 return E->VectorizedValue; 6509 } 6510 6511 Value *V = Builder.CreateSelect(Cond, True, False); 6512 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6513 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6514 V = ShuffleBuilder.finalize(V); 6515 6516 E->VectorizedValue = V; 6517 ++NumVectorInstructions; 6518 return V; 6519 } 6520 case Instruction::FNeg: { 6521 setInsertPointAfterBundle(E); 6522 6523 Value *Op = vectorizeTree(E->getOperand(0)); 6524 6525 if (E->VectorizedValue) { 6526 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6527 return E->VectorizedValue; 6528 } 6529 6530 Value *V = Builder.CreateUnOp( 6531 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 6532 propagateIRFlags(V, E->Scalars, VL0); 6533 if (auto *I = dyn_cast<Instruction>(V)) 6534 V = propagateMetadata(I, E->Scalars); 6535 6536 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6537 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6538 V = ShuffleBuilder.finalize(V); 6539 6540 E->VectorizedValue = V; 6541 ++NumVectorInstructions; 6542 6543 return V; 6544 } 6545 case Instruction::Add: 6546 case Instruction::FAdd: 6547 case Instruction::Sub: 6548 case Instruction::FSub: 6549 case Instruction::Mul: 6550 case Instruction::FMul: 6551 case Instruction::UDiv: 6552 case Instruction::SDiv: 6553 case Instruction::FDiv: 6554 case Instruction::URem: 6555 case Instruction::SRem: 6556 case Instruction::FRem: 6557 case Instruction::Shl: 6558 case Instruction::LShr: 6559 case Instruction::AShr: 6560 case Instruction::And: 6561 case Instruction::Or: 6562 case Instruction::Xor: { 6563 setInsertPointAfterBundle(E); 6564 6565 Value *LHS = vectorizeTree(E->getOperand(0)); 6566 Value *RHS = vectorizeTree(E->getOperand(1)); 6567 6568 if (E->VectorizedValue) { 6569 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6570 return E->VectorizedValue; 6571 } 6572 6573 Value *V = Builder.CreateBinOp( 6574 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 6575 RHS); 6576 propagateIRFlags(V, E->Scalars, VL0); 6577 if (auto *I = dyn_cast<Instruction>(V)) 6578 V = propagateMetadata(I, E->Scalars); 6579 6580 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6581 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6582 V = ShuffleBuilder.finalize(V); 6583 6584 E->VectorizedValue = V; 6585 ++NumVectorInstructions; 6586 6587 return V; 6588 } 6589 case Instruction::Load: { 6590 // Loads are inserted at the head of the tree because we don't want to 6591 // sink them all the way down past store instructions. 6592 setInsertPointAfterBundle(E); 6593 6594 LoadInst *LI = cast<LoadInst>(VL0); 6595 Instruction *NewLI; 6596 unsigned AS = LI->getPointerAddressSpace(); 6597 Value *PO = LI->getPointerOperand(); 6598 if (E->State == TreeEntry::Vectorize) { 6599 6600 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 6601 6602 // The pointer operand uses an in-tree scalar so we add the new BitCast 6603 // to ExternalUses list to make sure that an extract will be generated 6604 // in the future. 6605 if (TreeEntry *Entry = getTreeEntry(PO)) { 6606 // Find which lane we need to extract. 6607 unsigned FoundLane = Entry->findLaneForValue(PO); 6608 ExternalUses.emplace_back(PO, cast<User>(VecPtr), FoundLane); 6609 } 6610 6611 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 6612 } else { 6613 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 6614 Value *VecPtr = vectorizeTree(E->getOperand(0)); 6615 // Use the minimum alignment of the gathered loads. 6616 Align CommonAlignment = LI->getAlign(); 6617 for (Value *V : E->Scalars) 6618 CommonAlignment = 6619 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 6620 NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); 6621 } 6622 Value *V = propagateMetadata(NewLI, E->Scalars); 6623 6624 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6625 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6626 V = ShuffleBuilder.finalize(V); 6627 E->VectorizedValue = V; 6628 ++NumVectorInstructions; 6629 return V; 6630 } 6631 case Instruction::Store: { 6632 auto *SI = cast<StoreInst>(VL0); 6633 unsigned AS = SI->getPointerAddressSpace(); 6634 6635 setInsertPointAfterBundle(E); 6636 6637 Value *VecValue = vectorizeTree(E->getOperand(0)); 6638 ShuffleBuilder.addMask(E->ReorderIndices); 6639 VecValue = ShuffleBuilder.finalize(VecValue); 6640 6641 Value *ScalarPtr = SI->getPointerOperand(); 6642 Value *VecPtr = Builder.CreateBitCast( 6643 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 6644 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 6645 SI->getAlign()); 6646 6647 // The pointer operand uses an in-tree scalar, so add the new BitCast to 6648 // ExternalUses to make sure that an extract will be generated in the 6649 // future. 6650 if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { 6651 // Find which lane we need to extract. 6652 unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); 6653 ExternalUses.push_back( 6654 ExternalUser(ScalarPtr, cast<User>(VecPtr), FoundLane)); 6655 } 6656 6657 Value *V = propagateMetadata(ST, E->Scalars); 6658 6659 E->VectorizedValue = V; 6660 ++NumVectorInstructions; 6661 return V; 6662 } 6663 case Instruction::GetElementPtr: { 6664 auto *GEP0 = cast<GetElementPtrInst>(VL0); 6665 setInsertPointAfterBundle(E); 6666 6667 Value *Op0 = vectorizeTree(E->getOperand(0)); 6668 6669 SmallVector<Value *> OpVecs; 6670 for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) { 6671 Value *OpVec = vectorizeTree(E->getOperand(J)); 6672 OpVecs.push_back(OpVec); 6673 } 6674 6675 Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs); 6676 if (Instruction *I = dyn_cast<Instruction>(V)) 6677 V = propagateMetadata(I, E->Scalars); 6678 6679 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6680 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6681 V = ShuffleBuilder.finalize(V); 6682 6683 E->VectorizedValue = V; 6684 ++NumVectorInstructions; 6685 6686 return V; 6687 } 6688 case Instruction::Call: { 6689 CallInst *CI = cast<CallInst>(VL0); 6690 setInsertPointAfterBundle(E); 6691 6692 Intrinsic::ID IID = Intrinsic::not_intrinsic; 6693 if (Function *FI = CI->getCalledFunction()) 6694 IID = FI->getIntrinsicID(); 6695 6696 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6697 6698 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 6699 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 6700 VecCallCosts.first <= VecCallCosts.second; 6701 6702 Value *ScalarArg = nullptr; 6703 std::vector<Value *> OpVecs; 6704 SmallVector<Type *, 2> TysForDecl = 6705 {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 6706 for (int j = 0, e = CI->arg_size(); j < e; ++j) { 6707 ValueList OpVL; 6708 // Some intrinsics have scalar arguments. This argument should not be 6709 // vectorized. 6710 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 6711 CallInst *CEI = cast<CallInst>(VL0); 6712 ScalarArg = CEI->getArgOperand(j); 6713 OpVecs.push_back(CEI->getArgOperand(j)); 6714 if (hasVectorInstrinsicOverloadedScalarOpd(IID, j)) 6715 TysForDecl.push_back(ScalarArg->getType()); 6716 continue; 6717 } 6718 6719 Value *OpVec = vectorizeTree(E->getOperand(j)); 6720 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 6721 OpVecs.push_back(OpVec); 6722 } 6723 6724 Function *CF; 6725 if (!UseIntrinsic) { 6726 VFShape Shape = 6727 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 6728 VecTy->getNumElements())), 6729 false /*HasGlobalPred*/); 6730 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 6731 } else { 6732 CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); 6733 } 6734 6735 SmallVector<OperandBundleDef, 1> OpBundles; 6736 CI->getOperandBundlesAsDefs(OpBundles); 6737 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 6738 6739 // The scalar argument uses an in-tree scalar so we add the new vectorized 6740 // call to ExternalUses list to make sure that an extract will be 6741 // generated in the future. 6742 if (ScalarArg) { 6743 if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { 6744 // Find which lane we need to extract. 6745 unsigned FoundLane = Entry->findLaneForValue(ScalarArg); 6746 ExternalUses.push_back( 6747 ExternalUser(ScalarArg, cast<User>(V), FoundLane)); 6748 } 6749 } 6750 6751 propagateIRFlags(V, E->Scalars, VL0); 6752 ShuffleBuilder.addInversedMask(E->ReorderIndices); 6753 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 6754 V = ShuffleBuilder.finalize(V); 6755 6756 E->VectorizedValue = V; 6757 ++NumVectorInstructions; 6758 return V; 6759 } 6760 case Instruction::ShuffleVector: { 6761 assert(E->isAltShuffle() && 6762 ((Instruction::isBinaryOp(E->getOpcode()) && 6763 Instruction::isBinaryOp(E->getAltOpcode())) || 6764 (Instruction::isCast(E->getOpcode()) && 6765 Instruction::isCast(E->getAltOpcode()))) && 6766 "Invalid Shuffle Vector Operand"); 6767 6768 Value *LHS = nullptr, *RHS = nullptr; 6769 if (Instruction::isBinaryOp(E->getOpcode())) { 6770 setInsertPointAfterBundle(E); 6771 LHS = vectorizeTree(E->getOperand(0)); 6772 RHS = vectorizeTree(E->getOperand(1)); 6773 } else { 6774 setInsertPointAfterBundle(E); 6775 LHS = vectorizeTree(E->getOperand(0)); 6776 } 6777 6778 if (E->VectorizedValue) { 6779 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 6780 return E->VectorizedValue; 6781 } 6782 6783 Value *V0, *V1; 6784 if (Instruction::isBinaryOp(E->getOpcode())) { 6785 V0 = Builder.CreateBinOp( 6786 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 6787 V1 = Builder.CreateBinOp( 6788 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 6789 } else { 6790 V0 = Builder.CreateCast( 6791 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 6792 V1 = Builder.CreateCast( 6793 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 6794 } 6795 // Add V0 and V1 to later analysis to try to find and remove matching 6796 // instruction, if any. 6797 for (Value *V : {V0, V1}) { 6798 if (auto *I = dyn_cast<Instruction>(V)) { 6799 GatherShuffleSeq.insert(I); 6800 CSEBlocks.insert(I->getParent()); 6801 } 6802 } 6803 6804 // Create shuffle to take alternate operations from the vector. 6805 // Also, gather up main and alt scalar ops to propagate IR flags to 6806 // each vector operation. 6807 ValueList OpScalars, AltScalars; 6808 SmallVector<int> Mask; 6809 buildSuffleEntryMask( 6810 E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, 6811 [E](Instruction *I) { 6812 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 6813 return I->getOpcode() == E->getAltOpcode(); 6814 }, 6815 Mask, &OpScalars, &AltScalars); 6816 6817 propagateIRFlags(V0, OpScalars); 6818 propagateIRFlags(V1, AltScalars); 6819 6820 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 6821 if (auto *I = dyn_cast<Instruction>(V)) { 6822 V = propagateMetadata(I, E->Scalars); 6823 GatherShuffleSeq.insert(I); 6824 CSEBlocks.insert(I->getParent()); 6825 } 6826 V = ShuffleBuilder.finalize(V); 6827 6828 E->VectorizedValue = V; 6829 ++NumVectorInstructions; 6830 6831 return V; 6832 } 6833 default: 6834 llvm_unreachable("unknown inst"); 6835 } 6836 return nullptr; 6837 } 6838 6839 Value *BoUpSLP::vectorizeTree() { 6840 ExtraValueToDebugLocsMap ExternallyUsedValues; 6841 return vectorizeTree(ExternallyUsedValues); 6842 } 6843 6844 Value * 6845 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 6846 // All blocks must be scheduled before any instructions are inserted. 6847 for (auto &BSIter : BlocksSchedules) { 6848 scheduleBlock(BSIter.second.get()); 6849 } 6850 6851 Builder.SetInsertPoint(&F->getEntryBlock().front()); 6852 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 6853 6854 // If the vectorized tree can be rewritten in a smaller type, we truncate the 6855 // vectorized root. InstCombine will then rewrite the entire expression. We 6856 // sign extend the extracted values below. 6857 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 6858 if (MinBWs.count(ScalarRoot)) { 6859 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 6860 // If current instr is a phi and not the last phi, insert it after the 6861 // last phi node. 6862 if (isa<PHINode>(I)) 6863 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 6864 else 6865 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 6866 } 6867 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 6868 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 6869 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 6870 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 6871 VectorizableTree[0]->VectorizedValue = Trunc; 6872 } 6873 6874 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 6875 << " values .\n"); 6876 6877 // Extract all of the elements with the external uses. 6878 for (const auto &ExternalUse : ExternalUses) { 6879 Value *Scalar = ExternalUse.Scalar; 6880 llvm::User *User = ExternalUse.User; 6881 6882 // Skip users that we already RAUW. This happens when one instruction 6883 // has multiple uses of the same value. 6884 if (User && !is_contained(Scalar->users(), User)) 6885 continue; 6886 TreeEntry *E = getTreeEntry(Scalar); 6887 assert(E && "Invalid scalar"); 6888 assert(E->State != TreeEntry::NeedToGather && 6889 "Extracting from a gather list"); 6890 6891 Value *Vec = E->VectorizedValue; 6892 assert(Vec && "Can't find vectorizable value"); 6893 6894 Value *Lane = Builder.getInt32(ExternalUse.Lane); 6895 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 6896 if (Scalar->getType() != Vec->getType()) { 6897 Value *Ex; 6898 // "Reuse" the existing extract to improve final codegen. 6899 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 6900 Ex = Builder.CreateExtractElement(ES->getOperand(0), 6901 ES->getOperand(1)); 6902 } else { 6903 Ex = Builder.CreateExtractElement(Vec, Lane); 6904 } 6905 // If necessary, sign-extend or zero-extend ScalarRoot 6906 // to the larger type. 6907 if (!MinBWs.count(ScalarRoot)) 6908 return Ex; 6909 if (MinBWs[ScalarRoot].second) 6910 return Builder.CreateSExt(Ex, Scalar->getType()); 6911 return Builder.CreateZExt(Ex, Scalar->getType()); 6912 } 6913 assert(isa<FixedVectorType>(Scalar->getType()) && 6914 isa<InsertElementInst>(Scalar) && 6915 "In-tree scalar of vector type is not insertelement?"); 6916 return Vec; 6917 }; 6918 // If User == nullptr, the Scalar is used as extra arg. Generate 6919 // ExtractElement instruction and update the record for this scalar in 6920 // ExternallyUsedValues. 6921 if (!User) { 6922 assert(ExternallyUsedValues.count(Scalar) && 6923 "Scalar with nullptr as an external user must be registered in " 6924 "ExternallyUsedValues map"); 6925 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 6926 Builder.SetInsertPoint(VecI->getParent(), 6927 std::next(VecI->getIterator())); 6928 } else { 6929 Builder.SetInsertPoint(&F->getEntryBlock().front()); 6930 } 6931 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6932 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 6933 auto &NewInstLocs = ExternallyUsedValues[NewInst]; 6934 auto It = ExternallyUsedValues.find(Scalar); 6935 assert(It != ExternallyUsedValues.end() && 6936 "Externally used scalar is not found in ExternallyUsedValues"); 6937 NewInstLocs.append(It->second); 6938 ExternallyUsedValues.erase(Scalar); 6939 // Required to update internally referenced instructions. 6940 Scalar->replaceAllUsesWith(NewInst); 6941 continue; 6942 } 6943 6944 // Generate extracts for out-of-tree users. 6945 // Find the insertion point for the extractelement lane. 6946 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 6947 if (PHINode *PH = dyn_cast<PHINode>(User)) { 6948 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 6949 if (PH->getIncomingValue(i) == Scalar) { 6950 Instruction *IncomingTerminator = 6951 PH->getIncomingBlock(i)->getTerminator(); 6952 if (isa<CatchSwitchInst>(IncomingTerminator)) { 6953 Builder.SetInsertPoint(VecI->getParent(), 6954 std::next(VecI->getIterator())); 6955 } else { 6956 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 6957 } 6958 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6959 CSEBlocks.insert(PH->getIncomingBlock(i)); 6960 PH->setOperand(i, NewInst); 6961 } 6962 } 6963 } else { 6964 Builder.SetInsertPoint(cast<Instruction>(User)); 6965 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6966 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 6967 User->replaceUsesOfWith(Scalar, NewInst); 6968 } 6969 } else { 6970 Builder.SetInsertPoint(&F->getEntryBlock().front()); 6971 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 6972 CSEBlocks.insert(&F->getEntryBlock()); 6973 User->replaceUsesOfWith(Scalar, NewInst); 6974 } 6975 6976 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 6977 } 6978 6979 // For each vectorized value: 6980 for (auto &TEPtr : VectorizableTree) { 6981 TreeEntry *Entry = TEPtr.get(); 6982 6983 // No need to handle users of gathered values. 6984 if (Entry->State == TreeEntry::NeedToGather) 6985 continue; 6986 6987 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 6988 6989 // For each lane: 6990 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 6991 Value *Scalar = Entry->Scalars[Lane]; 6992 6993 #ifndef NDEBUG 6994 Type *Ty = Scalar->getType(); 6995 if (!Ty->isVoidTy()) { 6996 for (User *U : Scalar->users()) { 6997 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 6998 6999 // It is legal to delete users in the ignorelist. 7000 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U) || 7001 (isa_and_nonnull<Instruction>(U) && 7002 isDeleted(cast<Instruction>(U)))) && 7003 "Deleting out-of-tree value"); 7004 } 7005 } 7006 #endif 7007 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 7008 eraseInstruction(cast<Instruction>(Scalar)); 7009 } 7010 } 7011 7012 Builder.ClearInsertionPoint(); 7013 InstrElementSize.clear(); 7014 7015 return VectorizableTree[0]->VectorizedValue; 7016 } 7017 7018 void BoUpSLP::optimizeGatherSequence() { 7019 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleSeq.size() 7020 << " gather sequences instructions.\n"); 7021 // LICM InsertElementInst sequences. 7022 for (Instruction *I : GatherShuffleSeq) { 7023 if (isDeleted(I)) 7024 continue; 7025 7026 // Check if this block is inside a loop. 7027 Loop *L = LI->getLoopFor(I->getParent()); 7028 if (!L) 7029 continue; 7030 7031 // Check if it has a preheader. 7032 BasicBlock *PreHeader = L->getLoopPreheader(); 7033 if (!PreHeader) 7034 continue; 7035 7036 // If the vector or the element that we insert into it are 7037 // instructions that are defined in this basic block then we can't 7038 // hoist this instruction. 7039 if (any_of(I->operands(), [L](Value *V) { 7040 auto *OpI = dyn_cast<Instruction>(V); 7041 return OpI && L->contains(OpI); 7042 })) 7043 continue; 7044 7045 // We can hoist this instruction. Move it to the pre-header. 7046 I->moveBefore(PreHeader->getTerminator()); 7047 } 7048 7049 // Make a list of all reachable blocks in our CSE queue. 7050 SmallVector<const DomTreeNode *, 8> CSEWorkList; 7051 CSEWorkList.reserve(CSEBlocks.size()); 7052 for (BasicBlock *BB : CSEBlocks) 7053 if (DomTreeNode *N = DT->getNode(BB)) { 7054 assert(DT->isReachableFromEntry(N)); 7055 CSEWorkList.push_back(N); 7056 } 7057 7058 // Sort blocks by domination. This ensures we visit a block after all blocks 7059 // dominating it are visited. 7060 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 7061 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 7062 "Different nodes should have different DFS numbers"); 7063 return A->getDFSNumIn() < B->getDFSNumIn(); 7064 }); 7065 7066 // Less defined shuffles can be replaced by the more defined copies. 7067 // Between two shuffles one is less defined if it has the same vector operands 7068 // and its mask indeces are the same as in the first one or undefs. E.g. 7069 // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0, 7070 // poison, <0, 0, 0, 0>. 7071 auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2, 7072 SmallVectorImpl<int> &NewMask) { 7073 if (I1->getType() != I2->getType()) 7074 return false; 7075 auto *SI1 = dyn_cast<ShuffleVectorInst>(I1); 7076 auto *SI2 = dyn_cast<ShuffleVectorInst>(I2); 7077 if (!SI1 || !SI2) 7078 return I1->isIdenticalTo(I2); 7079 if (SI1->isIdenticalTo(SI2)) 7080 return true; 7081 for (int I = 0, E = SI1->getNumOperands(); I < E; ++I) 7082 if (SI1->getOperand(I) != SI2->getOperand(I)) 7083 return false; 7084 // Check if the second instruction is more defined than the first one. 7085 NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end()); 7086 ArrayRef<int> SM1 = SI1->getShuffleMask(); 7087 // Count trailing undefs in the mask to check the final number of used 7088 // registers. 7089 unsigned LastUndefsCnt = 0; 7090 for (int I = 0, E = NewMask.size(); I < E; ++I) { 7091 if (SM1[I] == UndefMaskElem) 7092 ++LastUndefsCnt; 7093 else 7094 LastUndefsCnt = 0; 7095 if (NewMask[I] != UndefMaskElem && SM1[I] != UndefMaskElem && 7096 NewMask[I] != SM1[I]) 7097 return false; 7098 if (NewMask[I] == UndefMaskElem) 7099 NewMask[I] = SM1[I]; 7100 } 7101 // Check if the last undefs actually change the final number of used vector 7102 // registers. 7103 return SM1.size() - LastUndefsCnt > 1 && 7104 TTI->getNumberOfParts(SI1->getType()) == 7105 TTI->getNumberOfParts( 7106 FixedVectorType::get(SI1->getType()->getElementType(), 7107 SM1.size() - LastUndefsCnt)); 7108 }; 7109 // Perform O(N^2) search over the gather/shuffle sequences and merge identical 7110 // instructions. TODO: We can further optimize this scan if we split the 7111 // instructions into different buckets based on the insert lane. 7112 SmallVector<Instruction *, 16> Visited; 7113 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 7114 assert(*I && 7115 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 7116 "Worklist not sorted properly!"); 7117 BasicBlock *BB = (*I)->getBlock(); 7118 // For all instructions in blocks containing gather sequences: 7119 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 7120 if (isDeleted(&In)) 7121 continue; 7122 if (!isa<InsertElementInst>(&In) && !isa<ExtractElementInst>(&In) && 7123 !isa<ShuffleVectorInst>(&In) && !GatherShuffleSeq.contains(&In)) 7124 continue; 7125 7126 // Check if we can replace this instruction with any of the 7127 // visited instructions. 7128 bool Replaced = false; 7129 for (Instruction *&V : Visited) { 7130 SmallVector<int> NewMask; 7131 if (IsIdenticalOrLessDefined(&In, V, NewMask) && 7132 DT->dominates(V->getParent(), In.getParent())) { 7133 In.replaceAllUsesWith(V); 7134 eraseInstruction(&In); 7135 if (auto *SI = dyn_cast<ShuffleVectorInst>(V)) 7136 if (!NewMask.empty()) 7137 SI->setShuffleMask(NewMask); 7138 Replaced = true; 7139 break; 7140 } 7141 if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) && 7142 GatherShuffleSeq.contains(V) && 7143 IsIdenticalOrLessDefined(V, &In, NewMask) && 7144 DT->dominates(In.getParent(), V->getParent())) { 7145 In.moveAfter(V); 7146 V->replaceAllUsesWith(&In); 7147 eraseInstruction(V); 7148 if (auto *SI = dyn_cast<ShuffleVectorInst>(&In)) 7149 if (!NewMask.empty()) 7150 SI->setShuffleMask(NewMask); 7151 V = &In; 7152 Replaced = true; 7153 break; 7154 } 7155 } 7156 if (!Replaced) { 7157 assert(!is_contained(Visited, &In)); 7158 Visited.push_back(&In); 7159 } 7160 } 7161 } 7162 CSEBlocks.clear(); 7163 GatherShuffleSeq.clear(); 7164 } 7165 7166 // Groups the instructions to a bundle (which is then a single scheduling entity) 7167 // and schedules instructions until the bundle gets ready. 7168 Optional<BoUpSLP::ScheduleData *> 7169 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 7170 const InstructionsState &S) { 7171 // No need to schedule PHIs, insertelement, extractelement and extractvalue 7172 // instructions. 7173 if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue)) 7174 return nullptr; 7175 7176 // Initialize the instruction bundle. 7177 Instruction *OldScheduleEnd = ScheduleEnd; 7178 ScheduleData *PrevInBundle = nullptr; 7179 ScheduleData *Bundle = nullptr; 7180 bool ReSchedule = false; 7181 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 7182 7183 auto &&TryScheduleBundle = [this, OldScheduleEnd, SLP](bool ReSchedule, 7184 ScheduleData *Bundle) { 7185 // The scheduling region got new instructions at the lower end (or it is a 7186 // new region for the first bundle). This makes it necessary to 7187 // recalculate all dependencies. 7188 // It is seldom that this needs to be done a second time after adding the 7189 // initial bundle to the region. 7190 if (ScheduleEnd != OldScheduleEnd) { 7191 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 7192 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 7193 ReSchedule = true; 7194 } 7195 if (ReSchedule) { 7196 resetSchedule(); 7197 initialFillReadyList(ReadyInsts); 7198 } 7199 if (Bundle) { 7200 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 7201 << " in block " << BB->getName() << "\n"); 7202 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 7203 } 7204 7205 // Now try to schedule the new bundle or (if no bundle) just calculate 7206 // dependencies. As soon as the bundle is "ready" it means that there are no 7207 // cyclic dependencies and we can schedule it. Note that's important that we 7208 // don't "schedule" the bundle yet (see cancelScheduling). 7209 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 7210 !ReadyInsts.empty()) { 7211 ScheduleData *Picked = ReadyInsts.pop_back_val(); 7212 if (Picked->isSchedulingEntity() && Picked->isReady()) 7213 schedule(Picked, ReadyInsts); 7214 } 7215 }; 7216 7217 // Make sure that the scheduling region contains all 7218 // instructions of the bundle. 7219 for (Value *V : VL) { 7220 if (!extendSchedulingRegion(V, S)) { 7221 // If the scheduling region got new instructions at the lower end (or it 7222 // is a new region for the first bundle). This makes it necessary to 7223 // recalculate all dependencies. 7224 // Otherwise the compiler may crash trying to incorrectly calculate 7225 // dependencies and emit instruction in the wrong order at the actual 7226 // scheduling. 7227 TryScheduleBundle(/*ReSchedule=*/false, nullptr); 7228 return None; 7229 } 7230 } 7231 7232 for (Value *V : VL) { 7233 ScheduleData *BundleMember = getScheduleData(V); 7234 assert(BundleMember && 7235 "no ScheduleData for bundle member (maybe not in same basic block)"); 7236 if (BundleMember->IsScheduled) { 7237 // A bundle member was scheduled as single instruction before and now 7238 // needs to be scheduled as part of the bundle. We just get rid of the 7239 // existing schedule. 7240 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 7241 << " was already scheduled\n"); 7242 ReSchedule = true; 7243 } 7244 assert(BundleMember->isSchedulingEntity() && 7245 "bundle member already part of other bundle"); 7246 if (PrevInBundle) { 7247 PrevInBundle->NextInBundle = BundleMember; 7248 } else { 7249 Bundle = BundleMember; 7250 } 7251 BundleMember->UnscheduledDepsInBundle = 0; 7252 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 7253 7254 // Group the instructions to a bundle. 7255 BundleMember->FirstInBundle = Bundle; 7256 PrevInBundle = BundleMember; 7257 } 7258 assert(Bundle && "Failed to find schedule bundle"); 7259 TryScheduleBundle(ReSchedule, Bundle); 7260 if (!Bundle->isReady()) { 7261 cancelScheduling(VL, S.OpValue); 7262 return None; 7263 } 7264 return Bundle; 7265 } 7266 7267 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 7268 Value *OpValue) { 7269 if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue)) 7270 return; 7271 7272 ScheduleData *Bundle = getScheduleData(OpValue); 7273 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 7274 assert(!Bundle->IsScheduled && 7275 "Can't cancel bundle which is already scheduled"); 7276 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 7277 "tried to unbundle something which is not a bundle"); 7278 7279 // Un-bundle: make single instructions out of the bundle. 7280 ScheduleData *BundleMember = Bundle; 7281 while (BundleMember) { 7282 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 7283 BundleMember->FirstInBundle = BundleMember; 7284 ScheduleData *Next = BundleMember->NextInBundle; 7285 BundleMember->NextInBundle = nullptr; 7286 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 7287 if (BundleMember->UnscheduledDepsInBundle == 0) { 7288 ReadyInsts.insert(BundleMember); 7289 } 7290 BundleMember = Next; 7291 } 7292 } 7293 7294 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 7295 // Allocate a new ScheduleData for the instruction. 7296 if (ChunkPos >= ChunkSize) { 7297 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 7298 ChunkPos = 0; 7299 } 7300 return &(ScheduleDataChunks.back()[ChunkPos++]); 7301 } 7302 7303 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 7304 const InstructionsState &S) { 7305 if (getScheduleData(V, isOneOf(S, V))) 7306 return true; 7307 Instruction *I = dyn_cast<Instruction>(V); 7308 assert(I && "bundle member must be an instruction"); 7309 assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && 7310 "phi nodes/insertelements/extractelements/extractvalues don't need to " 7311 "be scheduled"); 7312 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 7313 ScheduleData *ISD = getScheduleData(I); 7314 if (!ISD) 7315 return false; 7316 assert(isInSchedulingRegion(ISD) && 7317 "ScheduleData not in scheduling region"); 7318 ScheduleData *SD = allocateScheduleDataChunks(); 7319 SD->Inst = I; 7320 SD->init(SchedulingRegionID, S.OpValue); 7321 ExtraScheduleDataMap[I][S.OpValue] = SD; 7322 return true; 7323 }; 7324 if (CheckSheduleForI(I)) 7325 return true; 7326 if (!ScheduleStart) { 7327 // It's the first instruction in the new region. 7328 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 7329 ScheduleStart = I; 7330 ScheduleEnd = I->getNextNode(); 7331 if (isOneOf(S, I) != I) 7332 CheckSheduleForI(I); 7333 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7334 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 7335 return true; 7336 } 7337 // Search up and down at the same time, because we don't know if the new 7338 // instruction is above or below the existing scheduling region. 7339 BasicBlock::reverse_iterator UpIter = 7340 ++ScheduleStart->getIterator().getReverse(); 7341 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 7342 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 7343 BasicBlock::iterator LowerEnd = BB->end(); 7344 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 7345 &*DownIter != I) { 7346 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 7347 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 7348 return false; 7349 } 7350 7351 ++UpIter; 7352 ++DownIter; 7353 } 7354 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 7355 assert(I->getParent() == ScheduleStart->getParent() && 7356 "Instruction is in wrong basic block."); 7357 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 7358 ScheduleStart = I; 7359 if (isOneOf(S, I) != I) 7360 CheckSheduleForI(I); 7361 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 7362 << "\n"); 7363 return true; 7364 } 7365 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 7366 "Expected to reach top of the basic block or instruction down the " 7367 "lower end."); 7368 assert(I->getParent() == ScheduleEnd->getParent() && 7369 "Instruction is in wrong basic block."); 7370 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 7371 nullptr); 7372 ScheduleEnd = I->getNextNode(); 7373 if (isOneOf(S, I) != I) 7374 CheckSheduleForI(I); 7375 assert(ScheduleEnd && "tried to vectorize a terminator?"); 7376 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 7377 return true; 7378 } 7379 7380 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 7381 Instruction *ToI, 7382 ScheduleData *PrevLoadStore, 7383 ScheduleData *NextLoadStore) { 7384 ScheduleData *CurrentLoadStore = PrevLoadStore; 7385 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 7386 ScheduleData *SD = ScheduleDataMap[I]; 7387 if (!SD) { 7388 SD = allocateScheduleDataChunks(); 7389 ScheduleDataMap[I] = SD; 7390 SD->Inst = I; 7391 } 7392 assert(!isInSchedulingRegion(SD) && 7393 "new ScheduleData already in scheduling region"); 7394 SD->init(SchedulingRegionID, I); 7395 7396 if (I->mayReadOrWriteMemory() && 7397 (!isa<IntrinsicInst>(I) || 7398 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 7399 cast<IntrinsicInst>(I)->getIntrinsicID() != 7400 Intrinsic::pseudoprobe))) { 7401 // Update the linked list of memory accessing instructions. 7402 if (CurrentLoadStore) { 7403 CurrentLoadStore->NextLoadStore = SD; 7404 } else { 7405 FirstLoadStoreInRegion = SD; 7406 } 7407 CurrentLoadStore = SD; 7408 } 7409 } 7410 if (NextLoadStore) { 7411 if (CurrentLoadStore) 7412 CurrentLoadStore->NextLoadStore = NextLoadStore; 7413 } else { 7414 LastLoadStoreInRegion = CurrentLoadStore; 7415 } 7416 } 7417 7418 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 7419 bool InsertInReadyList, 7420 BoUpSLP *SLP) { 7421 assert(SD->isSchedulingEntity()); 7422 7423 SmallVector<ScheduleData *, 10> WorkList; 7424 WorkList.push_back(SD); 7425 7426 while (!WorkList.empty()) { 7427 ScheduleData *SD = WorkList.pop_back_val(); 7428 7429 ScheduleData *BundleMember = SD; 7430 while (BundleMember) { 7431 assert(isInSchedulingRegion(BundleMember)); 7432 if (!BundleMember->hasValidDependencies()) { 7433 7434 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 7435 << "\n"); 7436 BundleMember->Dependencies = 0; 7437 BundleMember->resetUnscheduledDeps(); 7438 7439 // Handle def-use chain dependencies. 7440 if (BundleMember->OpValue != BundleMember->Inst) { 7441 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 7442 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 7443 BundleMember->Dependencies++; 7444 ScheduleData *DestBundle = UseSD->FirstInBundle; 7445 if (!DestBundle->IsScheduled) 7446 BundleMember->incrementUnscheduledDeps(1); 7447 if (!DestBundle->hasValidDependencies()) 7448 WorkList.push_back(DestBundle); 7449 } 7450 } else { 7451 for (User *U : BundleMember->Inst->users()) { 7452 if (isa<Instruction>(U)) { 7453 ScheduleData *UseSD = getScheduleData(U); 7454 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 7455 BundleMember->Dependencies++; 7456 ScheduleData *DestBundle = UseSD->FirstInBundle; 7457 if (!DestBundle->IsScheduled) 7458 BundleMember->incrementUnscheduledDeps(1); 7459 if (!DestBundle->hasValidDependencies()) 7460 WorkList.push_back(DestBundle); 7461 } 7462 } else { 7463 // I'm not sure if this can ever happen. But we need to be safe. 7464 // This lets the instruction/bundle never be scheduled and 7465 // eventually disable vectorization. 7466 BundleMember->Dependencies++; 7467 BundleMember->incrementUnscheduledDeps(1); 7468 } 7469 } 7470 } 7471 7472 // Handle the memory dependencies. 7473 ScheduleData *DepDest = BundleMember->NextLoadStore; 7474 if (DepDest) { 7475 Instruction *SrcInst = BundleMember->Inst; 7476 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 7477 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 7478 unsigned numAliased = 0; 7479 unsigned DistToSrc = 1; 7480 7481 while (DepDest) { 7482 assert(isInSchedulingRegion(DepDest)); 7483 7484 // We have two limits to reduce the complexity: 7485 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 7486 // SLP->isAliased (which is the expensive part in this loop). 7487 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 7488 // the whole loop (even if the loop is fast, it's quadratic). 7489 // It's important for the loop break condition (see below) to 7490 // check this limit even between two read-only instructions. 7491 if (DistToSrc >= MaxMemDepDistance || 7492 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 7493 (numAliased >= AliasedCheckLimit || 7494 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 7495 7496 // We increment the counter only if the locations are aliased 7497 // (instead of counting all alias checks). This gives a better 7498 // balance between reduced runtime and accurate dependencies. 7499 numAliased++; 7500 7501 DepDest->MemoryDependencies.push_back(BundleMember); 7502 BundleMember->Dependencies++; 7503 ScheduleData *DestBundle = DepDest->FirstInBundle; 7504 if (!DestBundle->IsScheduled) { 7505 BundleMember->incrementUnscheduledDeps(1); 7506 } 7507 if (!DestBundle->hasValidDependencies()) { 7508 WorkList.push_back(DestBundle); 7509 } 7510 } 7511 DepDest = DepDest->NextLoadStore; 7512 7513 // Example, explaining the loop break condition: Let's assume our 7514 // starting instruction is i0 and MaxMemDepDistance = 3. 7515 // 7516 // +--------v--v--v 7517 // i0,i1,i2,i3,i4,i5,i6,i7,i8 7518 // +--------^--^--^ 7519 // 7520 // MaxMemDepDistance let us stop alias-checking at i3 and we add 7521 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 7522 // Previously we already added dependencies from i3 to i6,i7,i8 7523 // (because of MaxMemDepDistance). As we added a dependency from 7524 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 7525 // and we can abort this loop at i6. 7526 if (DistToSrc >= 2 * MaxMemDepDistance) 7527 break; 7528 DistToSrc++; 7529 } 7530 } 7531 } 7532 BundleMember = BundleMember->NextInBundle; 7533 } 7534 if (InsertInReadyList && SD->isReady()) { 7535 ReadyInsts.push_back(SD); 7536 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 7537 << "\n"); 7538 } 7539 } 7540 } 7541 7542 void BoUpSLP::BlockScheduling::resetSchedule() { 7543 assert(ScheduleStart && 7544 "tried to reset schedule on block which has not been scheduled"); 7545 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 7546 doForAllOpcodes(I, [&](ScheduleData *SD) { 7547 assert(isInSchedulingRegion(SD) && 7548 "ScheduleData not in scheduling region"); 7549 SD->IsScheduled = false; 7550 SD->resetUnscheduledDeps(); 7551 }); 7552 } 7553 ReadyInsts.clear(); 7554 } 7555 7556 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 7557 if (!BS->ScheduleStart) 7558 return; 7559 7560 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 7561 7562 BS->resetSchedule(); 7563 7564 // For the real scheduling we use a more sophisticated ready-list: it is 7565 // sorted by the original instruction location. This lets the final schedule 7566 // be as close as possible to the original instruction order. 7567 struct ScheduleDataCompare { 7568 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 7569 return SD2->SchedulingPriority < SD1->SchedulingPriority; 7570 } 7571 }; 7572 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 7573 7574 // Ensure that all dependency data is updated and fill the ready-list with 7575 // initial instructions. 7576 int Idx = 0; 7577 int NumToSchedule = 0; 7578 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 7579 I = I->getNextNode()) { 7580 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 7581 assert((isVectorLikeInstWithConstOps(SD->Inst) || 7582 SD->isPartOfBundle() == (getTreeEntry(SD->Inst) != nullptr)) && 7583 "scheduler and vectorizer bundle mismatch"); 7584 SD->FirstInBundle->SchedulingPriority = Idx++; 7585 if (SD->isSchedulingEntity()) { 7586 BS->calculateDependencies(SD, false, this); 7587 NumToSchedule++; 7588 } 7589 }); 7590 } 7591 BS->initialFillReadyList(ReadyInsts); 7592 7593 Instruction *LastScheduledInst = BS->ScheduleEnd; 7594 7595 // Do the "real" scheduling. 7596 while (!ReadyInsts.empty()) { 7597 ScheduleData *picked = *ReadyInsts.begin(); 7598 ReadyInsts.erase(ReadyInsts.begin()); 7599 7600 // Move the scheduled instruction(s) to their dedicated places, if not 7601 // there yet. 7602 ScheduleData *BundleMember = picked; 7603 while (BundleMember) { 7604 Instruction *pickedInst = BundleMember->Inst; 7605 if (pickedInst->getNextNode() != LastScheduledInst) { 7606 BS->BB->getInstList().remove(pickedInst); 7607 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 7608 pickedInst); 7609 } 7610 LastScheduledInst = pickedInst; 7611 BundleMember = BundleMember->NextInBundle; 7612 } 7613 7614 BS->schedule(picked, ReadyInsts); 7615 NumToSchedule--; 7616 } 7617 assert(NumToSchedule == 0 && "could not schedule all instructions"); 7618 7619 // Avoid duplicate scheduling of the block. 7620 BS->ScheduleStart = nullptr; 7621 } 7622 7623 unsigned BoUpSLP::getVectorElementSize(Value *V) { 7624 // If V is a store, just return the width of the stored value (or value 7625 // truncated just before storing) without traversing the expression tree. 7626 // This is the common case. 7627 if (auto *Store = dyn_cast<StoreInst>(V)) { 7628 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 7629 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 7630 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 7631 } 7632 7633 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 7634 return getVectorElementSize(IEI->getOperand(1)); 7635 7636 auto E = InstrElementSize.find(V); 7637 if (E != InstrElementSize.end()) 7638 return E->second; 7639 7640 // If V is not a store, we can traverse the expression tree to find loads 7641 // that feed it. The type of the loaded value may indicate a more suitable 7642 // width than V's type. We want to base the vector element size on the width 7643 // of memory operations where possible. 7644 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 7645 SmallPtrSet<Instruction *, 16> Visited; 7646 if (auto *I = dyn_cast<Instruction>(V)) { 7647 Worklist.emplace_back(I, I->getParent()); 7648 Visited.insert(I); 7649 } 7650 7651 // Traverse the expression tree in bottom-up order looking for loads. If we 7652 // encounter an instruction we don't yet handle, we give up. 7653 auto Width = 0u; 7654 while (!Worklist.empty()) { 7655 Instruction *I; 7656 BasicBlock *Parent; 7657 std::tie(I, Parent) = Worklist.pop_back_val(); 7658 7659 // We should only be looking at scalar instructions here. If the current 7660 // instruction has a vector type, skip. 7661 auto *Ty = I->getType(); 7662 if (isa<VectorType>(Ty)) 7663 continue; 7664 7665 // If the current instruction is a load, update MaxWidth to reflect the 7666 // width of the loaded value. 7667 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 7668 isa<ExtractValueInst>(I)) 7669 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 7670 7671 // Otherwise, we need to visit the operands of the instruction. We only 7672 // handle the interesting cases from buildTree here. If an operand is an 7673 // instruction we haven't yet visited and from the same basic block as the 7674 // user or the use is a PHI node, we add it to the worklist. 7675 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 7676 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 7677 isa<UnaryOperator>(I)) { 7678 for (Use &U : I->operands()) 7679 if (auto *J = dyn_cast<Instruction>(U.get())) 7680 if (Visited.insert(J).second && 7681 (isa<PHINode>(I) || J->getParent() == Parent)) 7682 Worklist.emplace_back(J, J->getParent()); 7683 } else { 7684 break; 7685 } 7686 } 7687 7688 // If we didn't encounter a memory access in the expression tree, or if we 7689 // gave up for some reason, just return the width of V. Otherwise, return the 7690 // maximum width we found. 7691 if (!Width) { 7692 if (auto *CI = dyn_cast<CmpInst>(V)) 7693 V = CI->getOperand(0); 7694 Width = DL->getTypeSizeInBits(V->getType()); 7695 } 7696 7697 for (Instruction *I : Visited) 7698 InstrElementSize[I] = Width; 7699 7700 return Width; 7701 } 7702 7703 // Determine if a value V in a vectorizable expression Expr can be demoted to a 7704 // smaller type with a truncation. We collect the values that will be demoted 7705 // in ToDemote and additional roots that require investigating in Roots. 7706 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 7707 SmallVectorImpl<Value *> &ToDemote, 7708 SmallVectorImpl<Value *> &Roots) { 7709 // We can always demote constants. 7710 if (isa<Constant>(V)) { 7711 ToDemote.push_back(V); 7712 return true; 7713 } 7714 7715 // If the value is not an instruction in the expression with only one use, it 7716 // cannot be demoted. 7717 auto *I = dyn_cast<Instruction>(V); 7718 if (!I || !I->hasOneUse() || !Expr.count(I)) 7719 return false; 7720 7721 switch (I->getOpcode()) { 7722 7723 // We can always demote truncations and extensions. Since truncations can 7724 // seed additional demotion, we save the truncated value. 7725 case Instruction::Trunc: 7726 Roots.push_back(I->getOperand(0)); 7727 break; 7728 case Instruction::ZExt: 7729 case Instruction::SExt: 7730 if (isa<ExtractElementInst>(I->getOperand(0)) || 7731 isa<InsertElementInst>(I->getOperand(0))) 7732 return false; 7733 break; 7734 7735 // We can demote certain binary operations if we can demote both of their 7736 // operands. 7737 case Instruction::Add: 7738 case Instruction::Sub: 7739 case Instruction::Mul: 7740 case Instruction::And: 7741 case Instruction::Or: 7742 case Instruction::Xor: 7743 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 7744 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 7745 return false; 7746 break; 7747 7748 // We can demote selects if we can demote their true and false values. 7749 case Instruction::Select: { 7750 SelectInst *SI = cast<SelectInst>(I); 7751 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 7752 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 7753 return false; 7754 break; 7755 } 7756 7757 // We can demote phis if we can demote all their incoming operands. Note that 7758 // we don't need to worry about cycles since we ensure single use above. 7759 case Instruction::PHI: { 7760 PHINode *PN = cast<PHINode>(I); 7761 for (Value *IncValue : PN->incoming_values()) 7762 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 7763 return false; 7764 break; 7765 } 7766 7767 // Otherwise, conservatively give up. 7768 default: 7769 return false; 7770 } 7771 7772 // Record the value that we can demote. 7773 ToDemote.push_back(V); 7774 return true; 7775 } 7776 7777 void BoUpSLP::computeMinimumValueSizes() { 7778 // If there are no external uses, the expression tree must be rooted by a 7779 // store. We can't demote in-memory values, so there is nothing to do here. 7780 if (ExternalUses.empty()) 7781 return; 7782 7783 // We only attempt to truncate integer expressions. 7784 auto &TreeRoot = VectorizableTree[0]->Scalars; 7785 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 7786 if (!TreeRootIT) 7787 return; 7788 7789 // If the expression is not rooted by a store, these roots should have 7790 // external uses. We will rely on InstCombine to rewrite the expression in 7791 // the narrower type. However, InstCombine only rewrites single-use values. 7792 // This means that if a tree entry other than a root is used externally, it 7793 // must have multiple uses and InstCombine will not rewrite it. The code 7794 // below ensures that only the roots are used externally. 7795 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 7796 for (auto &EU : ExternalUses) 7797 if (!Expr.erase(EU.Scalar)) 7798 return; 7799 if (!Expr.empty()) 7800 return; 7801 7802 // Collect the scalar values of the vectorizable expression. We will use this 7803 // context to determine which values can be demoted. If we see a truncation, 7804 // we mark it as seeding another demotion. 7805 for (auto &EntryPtr : VectorizableTree) 7806 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 7807 7808 // Ensure the roots of the vectorizable tree don't form a cycle. They must 7809 // have a single external user that is not in the vectorizable tree. 7810 for (auto *Root : TreeRoot) 7811 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 7812 return; 7813 7814 // Conservatively determine if we can actually truncate the roots of the 7815 // expression. Collect the values that can be demoted in ToDemote and 7816 // additional roots that require investigating in Roots. 7817 SmallVector<Value *, 32> ToDemote; 7818 SmallVector<Value *, 4> Roots; 7819 for (auto *Root : TreeRoot) 7820 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 7821 return; 7822 7823 // The maximum bit width required to represent all the values that can be 7824 // demoted without loss of precision. It would be safe to truncate the roots 7825 // of the expression to this width. 7826 auto MaxBitWidth = 8u; 7827 7828 // We first check if all the bits of the roots are demanded. If they're not, 7829 // we can truncate the roots to this narrower type. 7830 for (auto *Root : TreeRoot) { 7831 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 7832 MaxBitWidth = std::max<unsigned>( 7833 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 7834 } 7835 7836 // True if the roots can be zero-extended back to their original type, rather 7837 // than sign-extended. We know that if the leading bits are not demanded, we 7838 // can safely zero-extend. So we initialize IsKnownPositive to True. 7839 bool IsKnownPositive = true; 7840 7841 // If all the bits of the roots are demanded, we can try a little harder to 7842 // compute a narrower type. This can happen, for example, if the roots are 7843 // getelementptr indices. InstCombine promotes these indices to the pointer 7844 // width. Thus, all their bits are technically demanded even though the 7845 // address computation might be vectorized in a smaller type. 7846 // 7847 // We start by looking at each entry that can be demoted. We compute the 7848 // maximum bit width required to store the scalar by using ValueTracking to 7849 // compute the number of high-order bits we can truncate. 7850 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 7851 llvm::all_of(TreeRoot, [](Value *R) { 7852 assert(R->hasOneUse() && "Root should have only one use!"); 7853 return isa<GetElementPtrInst>(R->user_back()); 7854 })) { 7855 MaxBitWidth = 8u; 7856 7857 // Determine if the sign bit of all the roots is known to be zero. If not, 7858 // IsKnownPositive is set to False. 7859 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 7860 KnownBits Known = computeKnownBits(R, *DL); 7861 return Known.isNonNegative(); 7862 }); 7863 7864 // Determine the maximum number of bits required to store the scalar 7865 // values. 7866 for (auto *Scalar : ToDemote) { 7867 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 7868 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 7869 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 7870 } 7871 7872 // If we can't prove that the sign bit is zero, we must add one to the 7873 // maximum bit width to account for the unknown sign bit. This preserves 7874 // the existing sign bit so we can safely sign-extend the root back to the 7875 // original type. Otherwise, if we know the sign bit is zero, we will 7876 // zero-extend the root instead. 7877 // 7878 // FIXME: This is somewhat suboptimal, as there will be cases where adding 7879 // one to the maximum bit width will yield a larger-than-necessary 7880 // type. In general, we need to add an extra bit only if we can't 7881 // prove that the upper bit of the original type is equal to the 7882 // upper bit of the proposed smaller type. If these two bits are the 7883 // same (either zero or one) we know that sign-extending from the 7884 // smaller type will result in the same value. Here, since we can't 7885 // yet prove this, we are just making the proposed smaller type 7886 // larger to ensure correctness. 7887 if (!IsKnownPositive) 7888 ++MaxBitWidth; 7889 } 7890 7891 // Round MaxBitWidth up to the next power-of-two. 7892 if (!isPowerOf2_64(MaxBitWidth)) 7893 MaxBitWidth = NextPowerOf2(MaxBitWidth); 7894 7895 // If the maximum bit width we compute is less than the with of the roots' 7896 // type, we can proceed with the narrowing. Otherwise, do nothing. 7897 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 7898 return; 7899 7900 // If we can truncate the root, we must collect additional values that might 7901 // be demoted as a result. That is, those seeded by truncations we will 7902 // modify. 7903 while (!Roots.empty()) 7904 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 7905 7906 // Finally, map the values we can demote to the maximum bit with we computed. 7907 for (auto *Scalar : ToDemote) 7908 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 7909 } 7910 7911 namespace { 7912 7913 /// The SLPVectorizer Pass. 7914 struct SLPVectorizer : public FunctionPass { 7915 SLPVectorizerPass Impl; 7916 7917 /// Pass identification, replacement for typeid 7918 static char ID; 7919 7920 explicit SLPVectorizer() : FunctionPass(ID) { 7921 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 7922 } 7923 7924 bool doInitialization(Module &M) override { return false; } 7925 7926 bool runOnFunction(Function &F) override { 7927 if (skipFunction(F)) 7928 return false; 7929 7930 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 7931 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 7932 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 7933 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 7934 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 7935 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 7936 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 7937 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 7938 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 7939 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 7940 7941 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 7942 } 7943 7944 void getAnalysisUsage(AnalysisUsage &AU) const override { 7945 FunctionPass::getAnalysisUsage(AU); 7946 AU.addRequired<AssumptionCacheTracker>(); 7947 AU.addRequired<ScalarEvolutionWrapperPass>(); 7948 AU.addRequired<AAResultsWrapperPass>(); 7949 AU.addRequired<TargetTransformInfoWrapperPass>(); 7950 AU.addRequired<LoopInfoWrapperPass>(); 7951 AU.addRequired<DominatorTreeWrapperPass>(); 7952 AU.addRequired<DemandedBitsWrapperPass>(); 7953 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 7954 AU.addRequired<InjectTLIMappingsLegacy>(); 7955 AU.addPreserved<LoopInfoWrapperPass>(); 7956 AU.addPreserved<DominatorTreeWrapperPass>(); 7957 AU.addPreserved<AAResultsWrapperPass>(); 7958 AU.addPreserved<GlobalsAAWrapperPass>(); 7959 AU.setPreservesCFG(); 7960 } 7961 }; 7962 7963 } // end anonymous namespace 7964 7965 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 7966 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 7967 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 7968 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 7969 auto *AA = &AM.getResult<AAManager>(F); 7970 auto *LI = &AM.getResult<LoopAnalysis>(F); 7971 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 7972 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 7973 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 7974 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 7975 7976 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 7977 if (!Changed) 7978 return PreservedAnalyses::all(); 7979 7980 PreservedAnalyses PA; 7981 PA.preserveSet<CFGAnalyses>(); 7982 return PA; 7983 } 7984 7985 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 7986 TargetTransformInfo *TTI_, 7987 TargetLibraryInfo *TLI_, AAResults *AA_, 7988 LoopInfo *LI_, DominatorTree *DT_, 7989 AssumptionCache *AC_, DemandedBits *DB_, 7990 OptimizationRemarkEmitter *ORE_) { 7991 if (!RunSLPVectorization) 7992 return false; 7993 SE = SE_; 7994 TTI = TTI_; 7995 TLI = TLI_; 7996 AA = AA_; 7997 LI = LI_; 7998 DT = DT_; 7999 AC = AC_; 8000 DB = DB_; 8001 DL = &F.getParent()->getDataLayout(); 8002 8003 Stores.clear(); 8004 GEPs.clear(); 8005 bool Changed = false; 8006 8007 // If the target claims to have no vector registers don't attempt 8008 // vectorization. 8009 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) 8010 return false; 8011 8012 // Don't vectorize when the attribute NoImplicitFloat is used. 8013 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 8014 return false; 8015 8016 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 8017 8018 // Use the bottom up slp vectorizer to construct chains that start with 8019 // store instructions. 8020 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 8021 8022 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 8023 // delete instructions. 8024 8025 // Update DFS numbers now so that we can use them for ordering. 8026 DT->updateDFSNumbers(); 8027 8028 // Scan the blocks in the function in post order. 8029 for (auto BB : post_order(&F.getEntryBlock())) { 8030 collectSeedInstructions(BB); 8031 8032 // Vectorize trees that end at stores. 8033 if (!Stores.empty()) { 8034 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 8035 << " underlying objects.\n"); 8036 Changed |= vectorizeStoreChains(R); 8037 } 8038 8039 // Vectorize trees that end at reductions. 8040 Changed |= vectorizeChainsInBlock(BB, R); 8041 8042 // Vectorize the index computations of getelementptr instructions. This 8043 // is primarily intended to catch gather-like idioms ending at 8044 // non-consecutive loads. 8045 if (!GEPs.empty()) { 8046 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 8047 << " underlying objects.\n"); 8048 Changed |= vectorizeGEPIndices(BB, R); 8049 } 8050 } 8051 8052 if (Changed) { 8053 R.optimizeGatherSequence(); 8054 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 8055 } 8056 return Changed; 8057 } 8058 8059 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 8060 unsigned Idx) { 8061 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 8062 << "\n"); 8063 const unsigned Sz = R.getVectorElementSize(Chain[0]); 8064 const unsigned MinVF = R.getMinVecRegSize() / Sz; 8065 unsigned VF = Chain.size(); 8066 8067 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 8068 return false; 8069 8070 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 8071 << "\n"); 8072 8073 R.buildTree(Chain); 8074 if (R.isTreeTinyAndNotFullyVectorizable()) 8075 return false; 8076 if (R.isLoadCombineCandidate()) 8077 return false; 8078 R.reorderTopToBottom(); 8079 R.reorderBottomToTop(); 8080 R.buildExternalUses(); 8081 8082 R.computeMinimumValueSizes(); 8083 8084 InstructionCost Cost = R.getTreeCost(); 8085 8086 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 8087 if (Cost < -SLPCostThreshold) { 8088 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 8089 8090 using namespace ore; 8091 8092 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 8093 cast<StoreInst>(Chain[0])) 8094 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 8095 << " and with tree size " 8096 << NV("TreeSize", R.getTreeSize())); 8097 8098 R.vectorizeTree(); 8099 return true; 8100 } 8101 8102 return false; 8103 } 8104 8105 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 8106 BoUpSLP &R) { 8107 // We may run into multiple chains that merge into a single chain. We mark the 8108 // stores that we vectorized so that we don't visit the same store twice. 8109 BoUpSLP::ValueSet VectorizedStores; 8110 bool Changed = false; 8111 8112 int E = Stores.size(); 8113 SmallBitVector Tails(E, false); 8114 int MaxIter = MaxStoreLookup.getValue(); 8115 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 8116 E, std::make_pair(E, INT_MAX)); 8117 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 8118 int IterCnt; 8119 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 8120 &CheckedPairs, 8121 &ConsecutiveChain](int K, int Idx) { 8122 if (IterCnt >= MaxIter) 8123 return true; 8124 if (CheckedPairs[Idx].test(K)) 8125 return ConsecutiveChain[K].second == 1 && 8126 ConsecutiveChain[K].first == Idx; 8127 ++IterCnt; 8128 CheckedPairs[Idx].set(K); 8129 CheckedPairs[K].set(Idx); 8130 Optional<int> Diff = getPointersDiff( 8131 Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), 8132 Stores[Idx]->getValueOperand()->getType(), 8133 Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); 8134 if (!Diff || *Diff == 0) 8135 return false; 8136 int Val = *Diff; 8137 if (Val < 0) { 8138 if (ConsecutiveChain[Idx].second > -Val) { 8139 Tails.set(K); 8140 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 8141 } 8142 return false; 8143 } 8144 if (ConsecutiveChain[K].second <= Val) 8145 return false; 8146 8147 Tails.set(Idx); 8148 ConsecutiveChain[K] = std::make_pair(Idx, Val); 8149 return Val == 1; 8150 }; 8151 // Do a quadratic search on all of the given stores in reverse order and find 8152 // all of the pairs of stores that follow each other. 8153 for (int Idx = E - 1; Idx >= 0; --Idx) { 8154 // If a store has multiple consecutive store candidates, search according 8155 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 8156 // This is because usually pairing with immediate succeeding or preceding 8157 // candidate create the best chance to find slp vectorization opportunity. 8158 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 8159 IterCnt = 0; 8160 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 8161 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 8162 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 8163 break; 8164 } 8165 8166 // Tracks if we tried to vectorize stores starting from the given tail 8167 // already. 8168 SmallBitVector TriedTails(E, false); 8169 // For stores that start but don't end a link in the chain: 8170 for (int Cnt = E; Cnt > 0; --Cnt) { 8171 int I = Cnt - 1; 8172 if (ConsecutiveChain[I].first == E || Tails.test(I)) 8173 continue; 8174 // We found a store instr that starts a chain. Now follow the chain and try 8175 // to vectorize it. 8176 BoUpSLP::ValueList Operands; 8177 // Collect the chain into a list. 8178 while (I != E && !VectorizedStores.count(Stores[I])) { 8179 Operands.push_back(Stores[I]); 8180 Tails.set(I); 8181 if (ConsecutiveChain[I].second != 1) { 8182 // Mark the new end in the chain and go back, if required. It might be 8183 // required if the original stores come in reversed order, for example. 8184 if (ConsecutiveChain[I].first != E && 8185 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 8186 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 8187 TriedTails.set(I); 8188 Tails.reset(ConsecutiveChain[I].first); 8189 if (Cnt < ConsecutiveChain[I].first + 2) 8190 Cnt = ConsecutiveChain[I].first + 2; 8191 } 8192 break; 8193 } 8194 // Move to the next value in the chain. 8195 I = ConsecutiveChain[I].first; 8196 } 8197 assert(!Operands.empty() && "Expected non-empty list of stores."); 8198 8199 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 8200 unsigned EltSize = R.getVectorElementSize(Operands[0]); 8201 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 8202 8203 unsigned MinVF = R.getMinVF(EltSize); 8204 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 8205 MaxElts); 8206 8207 // FIXME: Is division-by-2 the correct step? Should we assert that the 8208 // register size is a power-of-2? 8209 unsigned StartIdx = 0; 8210 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 8211 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 8212 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 8213 if (!VectorizedStores.count(Slice.front()) && 8214 !VectorizedStores.count(Slice.back()) && 8215 vectorizeStoreChain(Slice, R, Cnt)) { 8216 // Mark the vectorized stores so that we don't vectorize them again. 8217 VectorizedStores.insert(Slice.begin(), Slice.end()); 8218 Changed = true; 8219 // If we vectorized initial block, no need to try to vectorize it 8220 // again. 8221 if (Cnt == StartIdx) 8222 StartIdx += Size; 8223 Cnt += Size; 8224 continue; 8225 } 8226 ++Cnt; 8227 } 8228 // Check if the whole array was vectorized already - exit. 8229 if (StartIdx >= Operands.size()) 8230 break; 8231 } 8232 } 8233 8234 return Changed; 8235 } 8236 8237 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 8238 // Initialize the collections. We will make a single pass over the block. 8239 Stores.clear(); 8240 GEPs.clear(); 8241 8242 // Visit the store and getelementptr instructions in BB and organize them in 8243 // Stores and GEPs according to the underlying objects of their pointer 8244 // operands. 8245 for (Instruction &I : *BB) { 8246 // Ignore store instructions that are volatile or have a pointer operand 8247 // that doesn't point to a scalar type. 8248 if (auto *SI = dyn_cast<StoreInst>(&I)) { 8249 if (!SI->isSimple()) 8250 continue; 8251 if (!isValidElementType(SI->getValueOperand()->getType())) 8252 continue; 8253 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 8254 } 8255 8256 // Ignore getelementptr instructions that have more than one index, a 8257 // constant index, or a pointer operand that doesn't point to a scalar 8258 // type. 8259 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 8260 auto Idx = GEP->idx_begin()->get(); 8261 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 8262 continue; 8263 if (!isValidElementType(Idx->getType())) 8264 continue; 8265 if (GEP->getType()->isVectorTy()) 8266 continue; 8267 GEPs[GEP->getPointerOperand()].push_back(GEP); 8268 } 8269 } 8270 } 8271 8272 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 8273 if (!A || !B) 8274 return false; 8275 Value *VL[] = {A, B}; 8276 return tryToVectorizeList(VL, R); 8277 } 8278 8279 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 8280 bool LimitForRegisterSize) { 8281 if (VL.size() < 2) 8282 return false; 8283 8284 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 8285 << VL.size() << ".\n"); 8286 8287 // Check that all of the parts are instructions of the same type, 8288 // we permit an alternate opcode via InstructionsState. 8289 InstructionsState S = getSameOpcode(VL); 8290 if (!S.getOpcode()) 8291 return false; 8292 8293 Instruction *I0 = cast<Instruction>(S.OpValue); 8294 // Make sure invalid types (including vector type) are rejected before 8295 // determining vectorization factor for scalar instructions. 8296 for (Value *V : VL) { 8297 Type *Ty = V->getType(); 8298 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 8299 // NOTE: the following will give user internal llvm type name, which may 8300 // not be useful. 8301 R.getORE()->emit([&]() { 8302 std::string type_str; 8303 llvm::raw_string_ostream rso(type_str); 8304 Ty->print(rso); 8305 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 8306 << "Cannot SLP vectorize list: type " 8307 << rso.str() + " is unsupported by vectorizer"; 8308 }); 8309 return false; 8310 } 8311 } 8312 8313 unsigned Sz = R.getVectorElementSize(I0); 8314 unsigned MinVF = R.getMinVF(Sz); 8315 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 8316 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 8317 if (MaxVF < 2) { 8318 R.getORE()->emit([&]() { 8319 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 8320 << "Cannot SLP vectorize list: vectorization factor " 8321 << "less than 2 is not supported"; 8322 }); 8323 return false; 8324 } 8325 8326 bool Changed = false; 8327 bool CandidateFound = false; 8328 InstructionCost MinCost = SLPCostThreshold.getValue(); 8329 Type *ScalarTy = VL[0]->getType(); 8330 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 8331 ScalarTy = IE->getOperand(1)->getType(); 8332 8333 unsigned NextInst = 0, MaxInst = VL.size(); 8334 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 8335 // No actual vectorization should happen, if number of parts is the same as 8336 // provided vectorization factor (i.e. the scalar type is used for vector 8337 // code during codegen). 8338 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 8339 if (TTI->getNumberOfParts(VecTy) == VF) 8340 continue; 8341 for (unsigned I = NextInst; I < MaxInst; ++I) { 8342 unsigned OpsWidth = 0; 8343 8344 if (I + VF > MaxInst) 8345 OpsWidth = MaxInst - I; 8346 else 8347 OpsWidth = VF; 8348 8349 if (!isPowerOf2_32(OpsWidth)) 8350 continue; 8351 8352 if ((LimitForRegisterSize && OpsWidth < MaxVF) || 8353 (VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 8354 break; 8355 8356 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 8357 // Check that a previous iteration of this loop did not delete the Value. 8358 if (llvm::any_of(Ops, [&R](Value *V) { 8359 auto *I = dyn_cast<Instruction>(V); 8360 return I && R.isDeleted(I); 8361 })) 8362 continue; 8363 8364 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 8365 << "\n"); 8366 8367 R.buildTree(Ops); 8368 if (R.isTreeTinyAndNotFullyVectorizable()) 8369 continue; 8370 R.reorderTopToBottom(); 8371 R.reorderBottomToTop(); 8372 R.buildExternalUses(); 8373 8374 R.computeMinimumValueSizes(); 8375 InstructionCost Cost = R.getTreeCost(); 8376 CandidateFound = true; 8377 MinCost = std::min(MinCost, Cost); 8378 8379 if (Cost < -SLPCostThreshold) { 8380 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 8381 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 8382 cast<Instruction>(Ops[0])) 8383 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 8384 << " and with tree size " 8385 << ore::NV("TreeSize", R.getTreeSize())); 8386 8387 R.vectorizeTree(); 8388 // Move to the next bundle. 8389 I += VF - 1; 8390 NextInst = I + 1; 8391 Changed = true; 8392 } 8393 } 8394 } 8395 8396 if (!Changed && CandidateFound) { 8397 R.getORE()->emit([&]() { 8398 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 8399 << "List vectorization was possible but not beneficial with cost " 8400 << ore::NV("Cost", MinCost) << " >= " 8401 << ore::NV("Treshold", -SLPCostThreshold); 8402 }); 8403 } else if (!Changed) { 8404 R.getORE()->emit([&]() { 8405 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 8406 << "Cannot SLP vectorize list: vectorization was impossible" 8407 << " with available vectorization factors"; 8408 }); 8409 } 8410 return Changed; 8411 } 8412 8413 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 8414 if (!I) 8415 return false; 8416 8417 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 8418 return false; 8419 8420 Value *P = I->getParent(); 8421 8422 // Vectorize in current basic block only. 8423 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 8424 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 8425 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 8426 return false; 8427 8428 // Try to vectorize V. 8429 if (tryToVectorizePair(Op0, Op1, R)) 8430 return true; 8431 8432 auto *A = dyn_cast<BinaryOperator>(Op0); 8433 auto *B = dyn_cast<BinaryOperator>(Op1); 8434 // Try to skip B. 8435 if (B && B->hasOneUse()) { 8436 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 8437 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 8438 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 8439 return true; 8440 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 8441 return true; 8442 } 8443 8444 // Try to skip A. 8445 if (A && A->hasOneUse()) { 8446 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 8447 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 8448 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 8449 return true; 8450 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 8451 return true; 8452 } 8453 return false; 8454 } 8455 8456 namespace { 8457 8458 /// Model horizontal reductions. 8459 /// 8460 /// A horizontal reduction is a tree of reduction instructions that has values 8461 /// that can be put into a vector as its leaves. For example: 8462 /// 8463 /// mul mul mul mul 8464 /// \ / \ / 8465 /// + + 8466 /// \ / 8467 /// + 8468 /// This tree has "mul" as its leaf values and "+" as its reduction 8469 /// instructions. A reduction can feed into a store or a binary operation 8470 /// feeding a phi. 8471 /// ... 8472 /// \ / 8473 /// + 8474 /// | 8475 /// phi += 8476 /// 8477 /// Or: 8478 /// ... 8479 /// \ / 8480 /// + 8481 /// | 8482 /// *p = 8483 /// 8484 class HorizontalReduction { 8485 using ReductionOpsType = SmallVector<Value *, 16>; 8486 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 8487 ReductionOpsListType ReductionOps; 8488 SmallVector<Value *, 32> ReducedVals; 8489 // Use map vector to make stable output. 8490 MapVector<Instruction *, Value *> ExtraArgs; 8491 WeakTrackingVH ReductionRoot; 8492 /// The type of reduction operation. 8493 RecurKind RdxKind; 8494 8495 const unsigned INVALID_OPERAND_INDEX = std::numeric_limits<unsigned>::max(); 8496 8497 static bool isCmpSelMinMax(Instruction *I) { 8498 return match(I, m_Select(m_Cmp(), m_Value(), m_Value())) && 8499 RecurrenceDescriptor::isMinMaxRecurrenceKind(getRdxKind(I)); 8500 } 8501 8502 // And/or are potentially poison-safe logical patterns like: 8503 // select x, y, false 8504 // select x, true, y 8505 static bool isBoolLogicOp(Instruction *I) { 8506 return match(I, m_LogicalAnd(m_Value(), m_Value())) || 8507 match(I, m_LogicalOr(m_Value(), m_Value())); 8508 } 8509 8510 /// Checks if instruction is associative and can be vectorized. 8511 static bool isVectorizable(RecurKind Kind, Instruction *I) { 8512 if (Kind == RecurKind::None) 8513 return false; 8514 8515 // Integer ops that map to select instructions or intrinsics are fine. 8516 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind) || 8517 isBoolLogicOp(I)) 8518 return true; 8519 8520 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 8521 // FP min/max are associative except for NaN and -0.0. We do not 8522 // have to rule out -0.0 here because the intrinsic semantics do not 8523 // specify a fixed result for it. 8524 return I->getFastMathFlags().noNaNs(); 8525 } 8526 8527 return I->isAssociative(); 8528 } 8529 8530 static Value *getRdxOperand(Instruction *I, unsigned Index) { 8531 // Poison-safe 'or' takes the form: select X, true, Y 8532 // To make that work with the normal operand processing, we skip the 8533 // true value operand. 8534 // TODO: Change the code and data structures to handle this without a hack. 8535 if (getRdxKind(I) == RecurKind::Or && isa<SelectInst>(I) && Index == 1) 8536 return I->getOperand(2); 8537 return I->getOperand(Index); 8538 } 8539 8540 /// Checks if the ParentStackElem.first should be marked as a reduction 8541 /// operation with an extra argument or as extra argument itself. 8542 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 8543 Value *ExtraArg) { 8544 if (ExtraArgs.count(ParentStackElem.first)) { 8545 ExtraArgs[ParentStackElem.first] = nullptr; 8546 // We ran into something like: 8547 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 8548 // The whole ParentStackElem.first should be considered as an extra value 8549 // in this case. 8550 // Do not perform analysis of remaining operands of ParentStackElem.first 8551 // instruction, this whole instruction is an extra argument. 8552 ParentStackElem.second = INVALID_OPERAND_INDEX; 8553 } else { 8554 // We ran into something like: 8555 // ParentStackElem.first += ... + ExtraArg + ... 8556 ExtraArgs[ParentStackElem.first] = ExtraArg; 8557 } 8558 } 8559 8560 /// Creates reduction operation with the current opcode. 8561 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 8562 Value *RHS, const Twine &Name, bool UseSelect) { 8563 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 8564 switch (Kind) { 8565 case RecurKind::Or: 8566 if (UseSelect && 8567 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 8568 return Builder.CreateSelect(LHS, Builder.getTrue(), RHS, Name); 8569 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8570 Name); 8571 case RecurKind::And: 8572 if (UseSelect && 8573 LHS->getType() == CmpInst::makeCmpResultType(LHS->getType())) 8574 return Builder.CreateSelect(LHS, RHS, Builder.getFalse(), Name); 8575 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8576 Name); 8577 case RecurKind::Add: 8578 case RecurKind::Mul: 8579 case RecurKind::Xor: 8580 case RecurKind::FAdd: 8581 case RecurKind::FMul: 8582 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 8583 Name); 8584 case RecurKind::FMax: 8585 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 8586 case RecurKind::FMin: 8587 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 8588 case RecurKind::SMax: 8589 if (UseSelect) { 8590 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 8591 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8592 } 8593 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 8594 case RecurKind::SMin: 8595 if (UseSelect) { 8596 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 8597 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8598 } 8599 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 8600 case RecurKind::UMax: 8601 if (UseSelect) { 8602 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 8603 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8604 } 8605 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 8606 case RecurKind::UMin: 8607 if (UseSelect) { 8608 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 8609 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 8610 } 8611 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 8612 default: 8613 llvm_unreachable("Unknown reduction operation."); 8614 } 8615 } 8616 8617 /// Creates reduction operation with the current opcode with the IR flags 8618 /// from \p ReductionOps. 8619 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 8620 Value *RHS, const Twine &Name, 8621 const ReductionOpsListType &ReductionOps) { 8622 bool UseSelect = ReductionOps.size() == 2 || 8623 // Logical or/and. 8624 (ReductionOps.size() == 1 && 8625 isa<SelectInst>(ReductionOps.front().front())); 8626 assert((!UseSelect || ReductionOps.size() != 2 || 8627 isa<SelectInst>(ReductionOps[1][0])) && 8628 "Expected cmp + select pairs for reduction"); 8629 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 8630 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 8631 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 8632 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 8633 propagateIRFlags(Op, ReductionOps[1]); 8634 return Op; 8635 } 8636 } 8637 propagateIRFlags(Op, ReductionOps[0]); 8638 return Op; 8639 } 8640 8641 /// Creates reduction operation with the current opcode with the IR flags 8642 /// from \p I. 8643 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 8644 Value *RHS, const Twine &Name, Instruction *I) { 8645 auto *SelI = dyn_cast<SelectInst>(I); 8646 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 8647 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 8648 if (auto *Sel = dyn_cast<SelectInst>(Op)) 8649 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 8650 } 8651 propagateIRFlags(Op, I); 8652 return Op; 8653 } 8654 8655 static RecurKind getRdxKind(Instruction *I) { 8656 assert(I && "Expected instruction for reduction matching"); 8657 TargetTransformInfo::ReductionFlags RdxFlags; 8658 if (match(I, m_Add(m_Value(), m_Value()))) 8659 return RecurKind::Add; 8660 if (match(I, m_Mul(m_Value(), m_Value()))) 8661 return RecurKind::Mul; 8662 if (match(I, m_And(m_Value(), m_Value())) || 8663 match(I, m_LogicalAnd(m_Value(), m_Value()))) 8664 return RecurKind::And; 8665 if (match(I, m_Or(m_Value(), m_Value())) || 8666 match(I, m_LogicalOr(m_Value(), m_Value()))) 8667 return RecurKind::Or; 8668 if (match(I, m_Xor(m_Value(), m_Value()))) 8669 return RecurKind::Xor; 8670 if (match(I, m_FAdd(m_Value(), m_Value()))) 8671 return RecurKind::FAdd; 8672 if (match(I, m_FMul(m_Value(), m_Value()))) 8673 return RecurKind::FMul; 8674 8675 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 8676 return RecurKind::FMax; 8677 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 8678 return RecurKind::FMin; 8679 8680 // This matches either cmp+select or intrinsics. SLP is expected to handle 8681 // either form. 8682 // TODO: If we are canonicalizing to intrinsics, we can remove several 8683 // special-case paths that deal with selects. 8684 if (match(I, m_SMax(m_Value(), m_Value()))) 8685 return RecurKind::SMax; 8686 if (match(I, m_SMin(m_Value(), m_Value()))) 8687 return RecurKind::SMin; 8688 if (match(I, m_UMax(m_Value(), m_Value()))) 8689 return RecurKind::UMax; 8690 if (match(I, m_UMin(m_Value(), m_Value()))) 8691 return RecurKind::UMin; 8692 8693 if (auto *Select = dyn_cast<SelectInst>(I)) { 8694 // Try harder: look for min/max pattern based on instructions producing 8695 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 8696 // During the intermediate stages of SLP, it's very common to have 8697 // pattern like this (since optimizeGatherSequence is run only once 8698 // at the end): 8699 // %1 = extractelement <2 x i32> %a, i32 0 8700 // %2 = extractelement <2 x i32> %a, i32 1 8701 // %cond = icmp sgt i32 %1, %2 8702 // %3 = extractelement <2 x i32> %a, i32 0 8703 // %4 = extractelement <2 x i32> %a, i32 1 8704 // %select = select i1 %cond, i32 %3, i32 %4 8705 CmpInst::Predicate Pred; 8706 Instruction *L1; 8707 Instruction *L2; 8708 8709 Value *LHS = Select->getTrueValue(); 8710 Value *RHS = Select->getFalseValue(); 8711 Value *Cond = Select->getCondition(); 8712 8713 // TODO: Support inverse predicates. 8714 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 8715 if (!isa<ExtractElementInst>(RHS) || 8716 !L2->isIdenticalTo(cast<Instruction>(RHS))) 8717 return RecurKind::None; 8718 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 8719 if (!isa<ExtractElementInst>(LHS) || 8720 !L1->isIdenticalTo(cast<Instruction>(LHS))) 8721 return RecurKind::None; 8722 } else { 8723 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 8724 return RecurKind::None; 8725 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 8726 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 8727 !L2->isIdenticalTo(cast<Instruction>(RHS))) 8728 return RecurKind::None; 8729 } 8730 8731 TargetTransformInfo::ReductionFlags RdxFlags; 8732 switch (Pred) { 8733 default: 8734 return RecurKind::None; 8735 case CmpInst::ICMP_SGT: 8736 case CmpInst::ICMP_SGE: 8737 return RecurKind::SMax; 8738 case CmpInst::ICMP_SLT: 8739 case CmpInst::ICMP_SLE: 8740 return RecurKind::SMin; 8741 case CmpInst::ICMP_UGT: 8742 case CmpInst::ICMP_UGE: 8743 return RecurKind::UMax; 8744 case CmpInst::ICMP_ULT: 8745 case CmpInst::ICMP_ULE: 8746 return RecurKind::UMin; 8747 } 8748 } 8749 return RecurKind::None; 8750 } 8751 8752 /// Get the index of the first operand. 8753 static unsigned getFirstOperandIndex(Instruction *I) { 8754 return isCmpSelMinMax(I) ? 1 : 0; 8755 } 8756 8757 /// Total number of operands in the reduction operation. 8758 static unsigned getNumberOfOperands(Instruction *I) { 8759 return isCmpSelMinMax(I) ? 3 : 2; 8760 } 8761 8762 /// Checks if the instruction is in basic block \p BB. 8763 /// For a cmp+sel min/max reduction check that both ops are in \p BB. 8764 static bool hasSameParent(Instruction *I, BasicBlock *BB) { 8765 if (isCmpSelMinMax(I) || (isBoolLogicOp(I) && isa<SelectInst>(I))) { 8766 auto *Sel = cast<SelectInst>(I); 8767 auto *Cmp = dyn_cast<Instruction>(Sel->getCondition()); 8768 return Sel->getParent() == BB && Cmp && Cmp->getParent() == BB; 8769 } 8770 return I->getParent() == BB; 8771 } 8772 8773 /// Expected number of uses for reduction operations/reduced values. 8774 static bool hasRequiredNumberOfUses(bool IsCmpSelMinMax, Instruction *I) { 8775 if (IsCmpSelMinMax) { 8776 // SelectInst must be used twice while the condition op must have single 8777 // use only. 8778 if (auto *Sel = dyn_cast<SelectInst>(I)) 8779 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 8780 return I->hasNUses(2); 8781 } 8782 8783 // Arithmetic reduction operation must be used once only. 8784 return I->hasOneUse(); 8785 } 8786 8787 /// Initializes the list of reduction operations. 8788 void initReductionOps(Instruction *I) { 8789 if (isCmpSelMinMax(I)) 8790 ReductionOps.assign(2, ReductionOpsType()); 8791 else 8792 ReductionOps.assign(1, ReductionOpsType()); 8793 } 8794 8795 /// Add all reduction operations for the reduction instruction \p I. 8796 void addReductionOps(Instruction *I) { 8797 if (isCmpSelMinMax(I)) { 8798 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition()); 8799 ReductionOps[1].emplace_back(I); 8800 } else { 8801 ReductionOps[0].emplace_back(I); 8802 } 8803 } 8804 8805 static Value *getLHS(RecurKind Kind, Instruction *I) { 8806 if (Kind == RecurKind::None) 8807 return nullptr; 8808 return I->getOperand(getFirstOperandIndex(I)); 8809 } 8810 static Value *getRHS(RecurKind Kind, Instruction *I) { 8811 if (Kind == RecurKind::None) 8812 return nullptr; 8813 return I->getOperand(getFirstOperandIndex(I) + 1); 8814 } 8815 8816 public: 8817 HorizontalReduction() = default; 8818 8819 /// Try to find a reduction tree. 8820 bool matchAssociativeReduction(PHINode *Phi, Instruction *Inst) { 8821 assert((!Phi || is_contained(Phi->operands(), Inst)) && 8822 "Phi needs to use the binary operator"); 8823 assert((isa<BinaryOperator>(Inst) || isa<SelectInst>(Inst) || 8824 isa<IntrinsicInst>(Inst)) && 8825 "Expected binop, select, or intrinsic for reduction matching"); 8826 RdxKind = getRdxKind(Inst); 8827 8828 // We could have a initial reductions that is not an add. 8829 // r *= v1 + v2 + v3 + v4 8830 // In such a case start looking for a tree rooted in the first '+'. 8831 if (Phi) { 8832 if (getLHS(RdxKind, Inst) == Phi) { 8833 Phi = nullptr; 8834 Inst = dyn_cast<Instruction>(getRHS(RdxKind, Inst)); 8835 if (!Inst) 8836 return false; 8837 RdxKind = getRdxKind(Inst); 8838 } else if (getRHS(RdxKind, Inst) == Phi) { 8839 Phi = nullptr; 8840 Inst = dyn_cast<Instruction>(getLHS(RdxKind, Inst)); 8841 if (!Inst) 8842 return false; 8843 RdxKind = getRdxKind(Inst); 8844 } 8845 } 8846 8847 if (!isVectorizable(RdxKind, Inst)) 8848 return false; 8849 8850 // Analyze "regular" integer/FP types for reductions - no target-specific 8851 // types or pointers. 8852 Type *Ty = Inst->getType(); 8853 if (!isValidElementType(Ty) || Ty->isPointerTy()) 8854 return false; 8855 8856 // Though the ultimate reduction may have multiple uses, its condition must 8857 // have only single use. 8858 if (auto *Sel = dyn_cast<SelectInst>(Inst)) 8859 if (!Sel->getCondition()->hasOneUse()) 8860 return false; 8861 8862 ReductionRoot = Inst; 8863 8864 // The opcode for leaf values that we perform a reduction on. 8865 // For example: load(x) + load(y) + load(z) + fptoui(w) 8866 // The leaf opcode for 'w' does not match, so we don't include it as a 8867 // potential candidate for the reduction. 8868 unsigned LeafOpcode = 0; 8869 8870 // Post-order traverse the reduction tree starting at Inst. We only handle 8871 // true trees containing binary operators or selects. 8872 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 8873 Stack.push_back(std::make_pair(Inst, getFirstOperandIndex(Inst))); 8874 initReductionOps(Inst); 8875 while (!Stack.empty()) { 8876 Instruction *TreeN = Stack.back().first; 8877 unsigned EdgeToVisit = Stack.back().second++; 8878 const RecurKind TreeRdxKind = getRdxKind(TreeN); 8879 bool IsReducedValue = TreeRdxKind != RdxKind; 8880 8881 // Postorder visit. 8882 if (IsReducedValue || EdgeToVisit >= getNumberOfOperands(TreeN)) { 8883 if (IsReducedValue) 8884 ReducedVals.push_back(TreeN); 8885 else { 8886 auto ExtraArgsIter = ExtraArgs.find(TreeN); 8887 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) { 8888 // Check if TreeN is an extra argument of its parent operation. 8889 if (Stack.size() <= 1) { 8890 // TreeN can't be an extra argument as it is a root reduction 8891 // operation. 8892 return false; 8893 } 8894 // Yes, TreeN is an extra argument, do not add it to a list of 8895 // reduction operations. 8896 // Stack[Stack.size() - 2] always points to the parent operation. 8897 markExtraArg(Stack[Stack.size() - 2], TreeN); 8898 ExtraArgs.erase(TreeN); 8899 } else 8900 addReductionOps(TreeN); 8901 } 8902 // Retract. 8903 Stack.pop_back(); 8904 continue; 8905 } 8906 8907 // Visit operands. 8908 Value *EdgeVal = getRdxOperand(TreeN, EdgeToVisit); 8909 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 8910 if (!EdgeInst) { 8911 // Edge value is not a reduction instruction or a leaf instruction. 8912 // (It may be a constant, function argument, or something else.) 8913 markExtraArg(Stack.back(), EdgeVal); 8914 continue; 8915 } 8916 RecurKind EdgeRdxKind = getRdxKind(EdgeInst); 8917 // Continue analysis if the next operand is a reduction operation or 8918 // (possibly) a leaf value. If the leaf value opcode is not set, 8919 // the first met operation != reduction operation is considered as the 8920 // leaf opcode. 8921 // Only handle trees in the current basic block. 8922 // Each tree node needs to have minimal number of users except for the 8923 // ultimate reduction. 8924 const bool IsRdxInst = EdgeRdxKind == RdxKind; 8925 if (EdgeInst != Phi && EdgeInst != Inst && 8926 hasSameParent(EdgeInst, Inst->getParent()) && 8927 hasRequiredNumberOfUses(isCmpSelMinMax(Inst), EdgeInst) && 8928 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) { 8929 if (IsRdxInst) { 8930 // We need to be able to reassociate the reduction operations. 8931 if (!isVectorizable(EdgeRdxKind, EdgeInst)) { 8932 // I is an extra argument for TreeN (its parent operation). 8933 markExtraArg(Stack.back(), EdgeInst); 8934 continue; 8935 } 8936 } else if (!LeafOpcode) { 8937 LeafOpcode = EdgeInst->getOpcode(); 8938 } 8939 Stack.push_back( 8940 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst))); 8941 continue; 8942 } 8943 // I is an extra argument for TreeN (its parent operation). 8944 markExtraArg(Stack.back(), EdgeInst); 8945 } 8946 return true; 8947 } 8948 8949 /// Attempt to vectorize the tree found by matchAssociativeReduction. 8950 Value *tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 8951 // If there are a sufficient number of reduction values, reduce 8952 // to a nearby power-of-2. We can safely generate oversized 8953 // vectors and rely on the backend to split them to legal sizes. 8954 unsigned NumReducedVals = ReducedVals.size(); 8955 if (NumReducedVals < 4) 8956 return nullptr; 8957 8958 // Intersect the fast-math-flags from all reduction operations. 8959 FastMathFlags RdxFMF; 8960 RdxFMF.set(); 8961 for (ReductionOpsType &RdxOp : ReductionOps) { 8962 for (Value *RdxVal : RdxOp) { 8963 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 8964 RdxFMF &= FPMO->getFastMathFlags(); 8965 } 8966 } 8967 8968 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 8969 Builder.setFastMathFlags(RdxFMF); 8970 8971 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 8972 // The same extra argument may be used several times, so log each attempt 8973 // to use it. 8974 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 8975 assert(Pair.first && "DebugLoc must be set."); 8976 ExternallyUsedValues[Pair.second].push_back(Pair.first); 8977 } 8978 8979 // The compare instruction of a min/max is the insertion point for new 8980 // instructions and may be replaced with a new compare instruction. 8981 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 8982 assert(isa<SelectInst>(RdxRootInst) && 8983 "Expected min/max reduction to have select root instruction"); 8984 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 8985 assert(isa<Instruction>(ScalarCond) && 8986 "Expected min/max reduction to have compare condition"); 8987 return cast<Instruction>(ScalarCond); 8988 }; 8989 8990 // The reduction root is used as the insertion point for new instructions, 8991 // so set it as externally used to prevent it from being deleted. 8992 ExternallyUsedValues[ReductionRoot]; 8993 SmallVector<Value *, 16> IgnoreList; 8994 for (ReductionOpsType &RdxOp : ReductionOps) 8995 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 8996 8997 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 8998 if (NumReducedVals > ReduxWidth) { 8999 // In the loop below, we are building a tree based on a window of 9000 // 'ReduxWidth' values. 9001 // If the operands of those values have common traits (compare predicate, 9002 // constant operand, etc), then we want to group those together to 9003 // minimize the cost of the reduction. 9004 9005 // TODO: This should be extended to count common operands for 9006 // compares and binops. 9007 9008 // Step 1: Count the number of times each compare predicate occurs. 9009 SmallDenseMap<unsigned, unsigned> PredCountMap; 9010 for (Value *RdxVal : ReducedVals) { 9011 CmpInst::Predicate Pred; 9012 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 9013 ++PredCountMap[Pred]; 9014 } 9015 // Step 2: Sort the values so the most common predicates come first. 9016 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 9017 CmpInst::Predicate PredA, PredB; 9018 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 9019 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 9020 return PredCountMap[PredA] > PredCountMap[PredB]; 9021 } 9022 return false; 9023 }); 9024 } 9025 9026 Value *VectorizedTree = nullptr; 9027 unsigned i = 0; 9028 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 9029 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 9030 V.buildTree(VL, IgnoreList); 9031 if (V.isTreeTinyAndNotFullyVectorizable(/*ForReduction=*/true)) 9032 break; 9033 if (V.isLoadCombineReductionCandidate(RdxKind)) 9034 break; 9035 V.reorderTopToBottom(); 9036 V.reorderBottomToTop(/*IgnoreReorder=*/true); 9037 V.buildExternalUses(ExternallyUsedValues); 9038 9039 // For a poison-safe boolean logic reduction, do not replace select 9040 // instructions with logic ops. All reduced values will be frozen (see 9041 // below) to prevent leaking poison. 9042 if (isa<SelectInst>(ReductionRoot) && 9043 isBoolLogicOp(cast<Instruction>(ReductionRoot)) && 9044 NumReducedVals != ReduxWidth) 9045 break; 9046 9047 V.computeMinimumValueSizes(); 9048 9049 // Estimate cost. 9050 InstructionCost TreeCost = 9051 V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth)); 9052 InstructionCost ReductionCost = 9053 getReductionCost(TTI, ReducedVals[i], ReduxWidth, RdxFMF); 9054 InstructionCost Cost = TreeCost + ReductionCost; 9055 if (!Cost.isValid()) { 9056 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 9057 return nullptr; 9058 } 9059 if (Cost >= -SLPCostThreshold) { 9060 V.getORE()->emit([&]() { 9061 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 9062 cast<Instruction>(VL[0])) 9063 << "Vectorizing horizontal reduction is possible" 9064 << "but not beneficial with cost " << ore::NV("Cost", Cost) 9065 << " and threshold " 9066 << ore::NV("Threshold", -SLPCostThreshold); 9067 }); 9068 break; 9069 } 9070 9071 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 9072 << Cost << ". (HorRdx)\n"); 9073 V.getORE()->emit([&]() { 9074 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 9075 cast<Instruction>(VL[0])) 9076 << "Vectorized horizontal reduction with cost " 9077 << ore::NV("Cost", Cost) << " and with tree size " 9078 << ore::NV("TreeSize", V.getTreeSize()); 9079 }); 9080 9081 // Vectorize a tree. 9082 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 9083 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 9084 9085 // Emit a reduction. If the root is a select (min/max idiom), the insert 9086 // point is the compare condition of that select. 9087 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 9088 if (isCmpSelMinMax(RdxRootInst)) 9089 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 9090 else 9091 Builder.SetInsertPoint(RdxRootInst); 9092 9093 // To prevent poison from leaking across what used to be sequential, safe, 9094 // scalar boolean logic operations, the reduction operand must be frozen. 9095 if (isa<SelectInst>(RdxRootInst) && isBoolLogicOp(RdxRootInst)) 9096 VectorizedRoot = Builder.CreateFreeze(VectorizedRoot); 9097 9098 Value *ReducedSubTree = 9099 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 9100 9101 if (!VectorizedTree) { 9102 // Initialize the final value in the reduction. 9103 VectorizedTree = ReducedSubTree; 9104 } else { 9105 // Update the final value in the reduction. 9106 Builder.SetCurrentDebugLocation(Loc); 9107 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9108 ReducedSubTree, "op.rdx", ReductionOps); 9109 } 9110 i += ReduxWidth; 9111 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 9112 } 9113 9114 if (VectorizedTree) { 9115 // Finish the reduction. 9116 for (; i < NumReducedVals; ++i) { 9117 auto *I = cast<Instruction>(ReducedVals[i]); 9118 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9119 VectorizedTree = 9120 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 9121 } 9122 for (auto &Pair : ExternallyUsedValues) { 9123 // Add each externally used value to the final reduction. 9124 for (auto *I : Pair.second) { 9125 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 9126 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 9127 Pair.first, "op.extra", I); 9128 } 9129 } 9130 9131 ReductionRoot->replaceAllUsesWith(VectorizedTree); 9132 9133 // Mark all scalar reduction ops for deletion, they are replaced by the 9134 // vector reductions. 9135 V.eraseInstructions(IgnoreList); 9136 } 9137 return VectorizedTree; 9138 } 9139 9140 unsigned numReductionValues() const { return ReducedVals.size(); } 9141 9142 private: 9143 /// Calculate the cost of a reduction. 9144 InstructionCost getReductionCost(TargetTransformInfo *TTI, 9145 Value *FirstReducedVal, unsigned ReduxWidth, 9146 FastMathFlags FMF) { 9147 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 9148 Type *ScalarTy = FirstReducedVal->getType(); 9149 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 9150 InstructionCost VectorCost, ScalarCost; 9151 switch (RdxKind) { 9152 case RecurKind::Add: 9153 case RecurKind::Mul: 9154 case RecurKind::Or: 9155 case RecurKind::And: 9156 case RecurKind::Xor: 9157 case RecurKind::FAdd: 9158 case RecurKind::FMul: { 9159 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 9160 VectorCost = 9161 TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, FMF, CostKind); 9162 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy, CostKind); 9163 break; 9164 } 9165 case RecurKind::FMax: 9166 case RecurKind::FMin: { 9167 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9168 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9169 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 9170 /*unsigned=*/false, CostKind); 9171 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9172 ScalarCost = TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy, 9173 SclCondTy, RdxPred, CostKind) + 9174 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9175 SclCondTy, RdxPred, CostKind); 9176 break; 9177 } 9178 case RecurKind::SMax: 9179 case RecurKind::SMin: 9180 case RecurKind::UMax: 9181 case RecurKind::UMin: { 9182 auto *SclCondTy = CmpInst::makeCmpResultType(ScalarTy); 9183 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 9184 bool IsUnsigned = 9185 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 9186 VectorCost = TTI->getMinMaxReductionCost(VectorTy, VecCondTy, IsUnsigned, 9187 CostKind); 9188 CmpInst::Predicate RdxPred = getMinMaxReductionPredicate(RdxKind); 9189 ScalarCost = TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy, 9190 SclCondTy, RdxPred, CostKind) + 9191 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 9192 SclCondTy, RdxPred, CostKind); 9193 break; 9194 } 9195 default: 9196 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 9197 } 9198 9199 // Scalar cost is repeated for N-1 elements. 9200 ScalarCost *= (ReduxWidth - 1); 9201 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 9202 << " for reduction that starts with " << *FirstReducedVal 9203 << " (It is a splitting reduction)\n"); 9204 return VectorCost - ScalarCost; 9205 } 9206 9207 /// Emit a horizontal reduction of the vectorized value. 9208 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 9209 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 9210 assert(VectorizedValue && "Need to have a vectorized tree node"); 9211 assert(isPowerOf2_32(ReduxWidth) && 9212 "We only handle power-of-two reductions for now"); 9213 assert(RdxKind != RecurKind::FMulAdd && 9214 "A call to the llvm.fmuladd intrinsic is not handled yet"); 9215 9216 ++NumVectorInstructions; 9217 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind); 9218 } 9219 }; 9220 9221 } // end anonymous namespace 9222 9223 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 9224 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 9225 return cast<FixedVectorType>(IE->getType())->getNumElements(); 9226 9227 unsigned AggregateSize = 1; 9228 auto *IV = cast<InsertValueInst>(InsertInst); 9229 Type *CurrentType = IV->getType(); 9230 do { 9231 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 9232 for (auto *Elt : ST->elements()) 9233 if (Elt != ST->getElementType(0)) // check homogeneity 9234 return None; 9235 AggregateSize *= ST->getNumElements(); 9236 CurrentType = ST->getElementType(0); 9237 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 9238 AggregateSize *= AT->getNumElements(); 9239 CurrentType = AT->getElementType(); 9240 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 9241 AggregateSize *= VT->getNumElements(); 9242 return AggregateSize; 9243 } else if (CurrentType->isSingleValueType()) { 9244 return AggregateSize; 9245 } else { 9246 return None; 9247 } 9248 } while (true); 9249 } 9250 9251 static bool findBuildAggregate_rec(Instruction *LastInsertInst, 9252 TargetTransformInfo *TTI, 9253 SmallVectorImpl<Value *> &BuildVectorOpds, 9254 SmallVectorImpl<Value *> &InsertElts, 9255 unsigned OperandOffset) { 9256 do { 9257 Value *InsertedOperand = LastInsertInst->getOperand(1); 9258 Optional<int> OperandIndex = getInsertIndex(LastInsertInst, OperandOffset); 9259 if (!OperandIndex) 9260 return false; 9261 if (isa<InsertElementInst>(InsertedOperand) || 9262 isa<InsertValueInst>(InsertedOperand)) { 9263 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 9264 BuildVectorOpds, InsertElts, *OperandIndex)) 9265 return false; 9266 } else { 9267 BuildVectorOpds[*OperandIndex] = InsertedOperand; 9268 InsertElts[*OperandIndex] = LastInsertInst; 9269 } 9270 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 9271 } while (LastInsertInst != nullptr && 9272 (isa<InsertValueInst>(LastInsertInst) || 9273 isa<InsertElementInst>(LastInsertInst)) && 9274 LastInsertInst->hasOneUse()); 9275 return true; 9276 } 9277 9278 /// Recognize construction of vectors like 9279 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 9280 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 9281 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 9282 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 9283 /// starting from the last insertelement or insertvalue instruction. 9284 /// 9285 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 9286 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 9287 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 9288 /// 9289 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 9290 /// 9291 /// \return true if it matches. 9292 static bool findBuildAggregate(Instruction *LastInsertInst, 9293 TargetTransformInfo *TTI, 9294 SmallVectorImpl<Value *> &BuildVectorOpds, 9295 SmallVectorImpl<Value *> &InsertElts) { 9296 9297 assert((isa<InsertElementInst>(LastInsertInst) || 9298 isa<InsertValueInst>(LastInsertInst)) && 9299 "Expected insertelement or insertvalue instruction!"); 9300 9301 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 9302 "Expected empty result vectors!"); 9303 9304 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 9305 if (!AggregateSize) 9306 return false; 9307 BuildVectorOpds.resize(*AggregateSize); 9308 InsertElts.resize(*AggregateSize); 9309 9310 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 9311 0)) { 9312 llvm::erase_value(BuildVectorOpds, nullptr); 9313 llvm::erase_value(InsertElts, nullptr); 9314 if (BuildVectorOpds.size() >= 2) 9315 return true; 9316 } 9317 9318 return false; 9319 } 9320 9321 /// Try and get a reduction value from a phi node. 9322 /// 9323 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 9324 /// if they come from either \p ParentBB or a containing loop latch. 9325 /// 9326 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 9327 /// if not possible. 9328 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 9329 BasicBlock *ParentBB, LoopInfo *LI) { 9330 // There are situations where the reduction value is not dominated by the 9331 // reduction phi. Vectorizing such cases has been reported to cause 9332 // miscompiles. See PR25787. 9333 auto DominatedReduxValue = [&](Value *R) { 9334 return isa<Instruction>(R) && 9335 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 9336 }; 9337 9338 Value *Rdx = nullptr; 9339 9340 // Return the incoming value if it comes from the same BB as the phi node. 9341 if (P->getIncomingBlock(0) == ParentBB) { 9342 Rdx = P->getIncomingValue(0); 9343 } else if (P->getIncomingBlock(1) == ParentBB) { 9344 Rdx = P->getIncomingValue(1); 9345 } 9346 9347 if (Rdx && DominatedReduxValue(Rdx)) 9348 return Rdx; 9349 9350 // Otherwise, check whether we have a loop latch to look at. 9351 Loop *BBL = LI->getLoopFor(ParentBB); 9352 if (!BBL) 9353 return nullptr; 9354 BasicBlock *BBLatch = BBL->getLoopLatch(); 9355 if (!BBLatch) 9356 return nullptr; 9357 9358 // There is a loop latch, return the incoming value if it comes from 9359 // that. This reduction pattern occasionally turns up. 9360 if (P->getIncomingBlock(0) == BBLatch) { 9361 Rdx = P->getIncomingValue(0); 9362 } else if (P->getIncomingBlock(1) == BBLatch) { 9363 Rdx = P->getIncomingValue(1); 9364 } 9365 9366 if (Rdx && DominatedReduxValue(Rdx)) 9367 return Rdx; 9368 9369 return nullptr; 9370 } 9371 9372 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 9373 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 9374 return true; 9375 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 9376 return true; 9377 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 9378 return true; 9379 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 9380 return true; 9381 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 9382 return true; 9383 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 9384 return true; 9385 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 9386 return true; 9387 return false; 9388 } 9389 9390 /// Attempt to reduce a horizontal reduction. 9391 /// If it is legal to match a horizontal reduction feeding the phi node \a P 9392 /// with reduction operators \a Root (or one of its operands) in a basic block 9393 /// \a BB, then check if it can be done. If horizontal reduction is not found 9394 /// and root instruction is a binary operation, vectorization of the operands is 9395 /// attempted. 9396 /// \returns true if a horizontal reduction was matched and reduced or operands 9397 /// of one of the binary instruction were vectorized. 9398 /// \returns false if a horizontal reduction was not matched (or not possible) 9399 /// or no vectorization of any binary operation feeding \a Root instruction was 9400 /// performed. 9401 static bool tryToVectorizeHorReductionOrInstOperands( 9402 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 9403 TargetTransformInfo *TTI, 9404 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 9405 if (!ShouldVectorizeHor) 9406 return false; 9407 9408 if (!Root) 9409 return false; 9410 9411 if (Root->getParent() != BB || isa<PHINode>(Root)) 9412 return false; 9413 // Start analysis starting from Root instruction. If horizontal reduction is 9414 // found, try to vectorize it. If it is not a horizontal reduction or 9415 // vectorization is not possible or not effective, and currently analyzed 9416 // instruction is a binary operation, try to vectorize the operands, using 9417 // pre-order DFS traversal order. If the operands were not vectorized, repeat 9418 // the same procedure considering each operand as a possible root of the 9419 // horizontal reduction. 9420 // Interrupt the process if the Root instruction itself was vectorized or all 9421 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 9422 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 9423 // CmpInsts so we can skip extra attempts in 9424 // tryToVectorizeHorReductionOrInstOperands and save compile time. 9425 std::queue<std::pair<Instruction *, unsigned>> Stack; 9426 Stack.emplace(Root, 0); 9427 SmallPtrSet<Value *, 8> VisitedInstrs; 9428 SmallVector<WeakTrackingVH> PostponedInsts; 9429 bool Res = false; 9430 auto &&TryToReduce = [TTI, &P, &R](Instruction *Inst, Value *&B0, 9431 Value *&B1) -> Value * { 9432 bool IsBinop = matchRdxBop(Inst, B0, B1); 9433 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 9434 if (IsBinop || IsSelect) { 9435 HorizontalReduction HorRdx; 9436 if (HorRdx.matchAssociativeReduction(P, Inst)) 9437 return HorRdx.tryToReduce(R, TTI); 9438 } 9439 return nullptr; 9440 }; 9441 while (!Stack.empty()) { 9442 Instruction *Inst; 9443 unsigned Level; 9444 std::tie(Inst, Level) = Stack.front(); 9445 Stack.pop(); 9446 // Do not try to analyze instruction that has already been vectorized. 9447 // This may happen when we vectorize instruction operands on a previous 9448 // iteration while stack was populated before that happened. 9449 if (R.isDeleted(Inst)) 9450 continue; 9451 Value *B0 = nullptr, *B1 = nullptr; 9452 if (Value *V = TryToReduce(Inst, B0, B1)) { 9453 Res = true; 9454 // Set P to nullptr to avoid re-analysis of phi node in 9455 // matchAssociativeReduction function unless this is the root node. 9456 P = nullptr; 9457 if (auto *I = dyn_cast<Instruction>(V)) { 9458 // Try to find another reduction. 9459 Stack.emplace(I, Level); 9460 continue; 9461 } 9462 } else { 9463 bool IsBinop = B0 && B1; 9464 if (P && IsBinop) { 9465 Inst = dyn_cast<Instruction>(B0); 9466 if (Inst == P) 9467 Inst = dyn_cast<Instruction>(B1); 9468 if (!Inst) { 9469 // Set P to nullptr to avoid re-analysis of phi node in 9470 // matchAssociativeReduction function unless this is the root node. 9471 P = nullptr; 9472 continue; 9473 } 9474 } 9475 // Set P to nullptr to avoid re-analysis of phi node in 9476 // matchAssociativeReduction function unless this is the root node. 9477 P = nullptr; 9478 // Do not try to vectorize CmpInst operands, this is done separately. 9479 // Final attempt for binop args vectorization should happen after the loop 9480 // to try to find reductions. 9481 if (!isa<CmpInst>(Inst)) 9482 PostponedInsts.push_back(Inst); 9483 } 9484 9485 // Try to vectorize operands. 9486 // Continue analysis for the instruction from the same basic block only to 9487 // save compile time. 9488 if (++Level < RecursionMaxDepth) 9489 for (auto *Op : Inst->operand_values()) 9490 if (VisitedInstrs.insert(Op).second) 9491 if (auto *I = dyn_cast<Instruction>(Op)) 9492 // Do not try to vectorize CmpInst operands, this is done 9493 // separately. 9494 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 9495 I->getParent() == BB) 9496 Stack.emplace(I, Level); 9497 } 9498 // Try to vectorized binops where reductions were not found. 9499 for (Value *V : PostponedInsts) 9500 if (auto *Inst = dyn_cast<Instruction>(V)) 9501 if (!R.isDeleted(Inst)) 9502 Res |= Vectorize(Inst, R); 9503 return Res; 9504 } 9505 9506 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 9507 BasicBlock *BB, BoUpSLP &R, 9508 TargetTransformInfo *TTI) { 9509 auto *I = dyn_cast_or_null<Instruction>(V); 9510 if (!I) 9511 return false; 9512 9513 if (!isa<BinaryOperator>(I)) 9514 P = nullptr; 9515 // Try to match and vectorize a horizontal reduction. 9516 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 9517 return tryToVectorize(I, R); 9518 }; 9519 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 9520 ExtraVectorization); 9521 } 9522 9523 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 9524 BasicBlock *BB, BoUpSLP &R) { 9525 const DataLayout &DL = BB->getModule()->getDataLayout(); 9526 if (!R.canMapToVector(IVI->getType(), DL)) 9527 return false; 9528 9529 SmallVector<Value *, 16> BuildVectorOpds; 9530 SmallVector<Value *, 16> BuildVectorInsts; 9531 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 9532 return false; 9533 9534 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 9535 // Aggregate value is unlikely to be processed in vector register, we need to 9536 // extract scalars into scalar registers, so NeedExtraction is set true. 9537 return tryToVectorizeList(BuildVectorOpds, R); 9538 } 9539 9540 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 9541 BasicBlock *BB, BoUpSLP &R) { 9542 SmallVector<Value *, 16> BuildVectorInsts; 9543 SmallVector<Value *, 16> BuildVectorOpds; 9544 SmallVector<int> Mask; 9545 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 9546 (llvm::all_of( 9547 BuildVectorOpds, 9548 [](Value *V) { return isa<ExtractElementInst, UndefValue>(V); }) && 9549 isFixedVectorShuffle(BuildVectorOpds, Mask))) 9550 return false; 9551 9552 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 9553 return tryToVectorizeList(BuildVectorInsts, R); 9554 } 9555 9556 template <typename T> 9557 static bool 9558 tryToVectorizeSequence(SmallVectorImpl<T *> &Incoming, 9559 function_ref<unsigned(T *)> Limit, 9560 function_ref<bool(T *, T *)> Comparator, 9561 function_ref<bool(T *, T *)> AreCompatible, 9562 function_ref<bool(ArrayRef<T *>, bool)> TryToVectorize, 9563 bool LimitForRegisterSize) { 9564 bool Changed = false; 9565 // Sort by type, parent, operands. 9566 stable_sort(Incoming, Comparator); 9567 9568 // Try to vectorize elements base on their type. 9569 SmallVector<T *> Candidates; 9570 for (auto *IncIt = Incoming.begin(), *E = Incoming.end(); IncIt != E;) { 9571 // Look for the next elements with the same type, parent and operand 9572 // kinds. 9573 auto *SameTypeIt = IncIt; 9574 while (SameTypeIt != E && AreCompatible(*SameTypeIt, *IncIt)) 9575 ++SameTypeIt; 9576 9577 // Try to vectorize them. 9578 unsigned NumElts = (SameTypeIt - IncIt); 9579 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at nodes (" 9580 << NumElts << ")\n"); 9581 // The vectorization is a 3-state attempt: 9582 // 1. Try to vectorize instructions with the same/alternate opcodes with the 9583 // size of maximal register at first. 9584 // 2. Try to vectorize remaining instructions with the same type, if 9585 // possible. This may result in the better vectorization results rather than 9586 // if we try just to vectorize instructions with the same/alternate opcodes. 9587 // 3. Final attempt to try to vectorize all instructions with the 9588 // same/alternate ops only, this may result in some extra final 9589 // vectorization. 9590 if (NumElts > 1 && 9591 TryToVectorize(makeArrayRef(IncIt, NumElts), LimitForRegisterSize)) { 9592 // Success start over because instructions might have been changed. 9593 Changed = true; 9594 } else if (NumElts < Limit(*IncIt) && 9595 (Candidates.empty() || 9596 Candidates.front()->getType() == (*IncIt)->getType())) { 9597 Candidates.append(IncIt, std::next(IncIt, NumElts)); 9598 } 9599 // Final attempt to vectorize instructions with the same types. 9600 if (Candidates.size() > 1 && 9601 (SameTypeIt == E || (*SameTypeIt)->getType() != (*IncIt)->getType())) { 9602 if (TryToVectorize(Candidates, /*LimitForRegisterSize=*/false)) { 9603 // Success start over because instructions might have been changed. 9604 Changed = true; 9605 } else if (LimitForRegisterSize) { 9606 // Try to vectorize using small vectors. 9607 for (auto *It = Candidates.begin(), *End = Candidates.end(); 9608 It != End;) { 9609 auto *SameTypeIt = It; 9610 while (SameTypeIt != End && AreCompatible(*SameTypeIt, *It)) 9611 ++SameTypeIt; 9612 unsigned NumElts = (SameTypeIt - It); 9613 if (NumElts > 1 && TryToVectorize(makeArrayRef(It, NumElts), 9614 /*LimitForRegisterSize=*/false)) 9615 Changed = true; 9616 It = SameTypeIt; 9617 } 9618 } 9619 Candidates.clear(); 9620 } 9621 9622 // Start over at the next instruction of a different type (or the end). 9623 IncIt = SameTypeIt; 9624 } 9625 return Changed; 9626 } 9627 9628 /// Compare two cmp instructions. If IsCompatibility is true, function returns 9629 /// true if 2 cmps have same/swapped predicates and mos compatible corresponding 9630 /// operands. If IsCompatibility is false, function implements strict weak 9631 /// ordering relation between two cmp instructions, returning true if the first 9632 /// instruction is "less" than the second, i.e. its predicate is less than the 9633 /// predicate of the second or the operands IDs are less than the operands IDs 9634 /// of the second cmp instruction. 9635 template <bool IsCompatibility> 9636 static bool compareCmp(Value *V, Value *V2, 9637 function_ref<bool(Instruction *)> IsDeleted) { 9638 auto *CI1 = cast<CmpInst>(V); 9639 auto *CI2 = cast<CmpInst>(V2); 9640 if (IsDeleted(CI2) || !isValidElementType(CI2->getType())) 9641 return false; 9642 if (CI1->getOperand(0)->getType()->getTypeID() < 9643 CI2->getOperand(0)->getType()->getTypeID()) 9644 return !IsCompatibility; 9645 if (CI1->getOperand(0)->getType()->getTypeID() > 9646 CI2->getOperand(0)->getType()->getTypeID()) 9647 return false; 9648 CmpInst::Predicate Pred1 = CI1->getPredicate(); 9649 CmpInst::Predicate Pred2 = CI2->getPredicate(); 9650 CmpInst::Predicate SwapPred1 = CmpInst::getSwappedPredicate(Pred1); 9651 CmpInst::Predicate SwapPred2 = CmpInst::getSwappedPredicate(Pred2); 9652 CmpInst::Predicate BasePred1 = std::min(Pred1, SwapPred1); 9653 CmpInst::Predicate BasePred2 = std::min(Pred2, SwapPred2); 9654 if (BasePred1 < BasePred2) 9655 return !IsCompatibility; 9656 if (BasePred1 > BasePred2) 9657 return false; 9658 // Compare operands. 9659 bool LEPreds = Pred1 <= Pred2; 9660 bool GEPreds = Pred1 >= Pred2; 9661 for (int I = 0, E = CI1->getNumOperands(); I < E; ++I) { 9662 auto *Op1 = CI1->getOperand(LEPreds ? I : E - I - 1); 9663 auto *Op2 = CI2->getOperand(GEPreds ? I : E - I - 1); 9664 if (Op1->getValueID() < Op2->getValueID()) 9665 return !IsCompatibility; 9666 if (Op1->getValueID() > Op2->getValueID()) 9667 return false; 9668 if (auto *I1 = dyn_cast<Instruction>(Op1)) 9669 if (auto *I2 = dyn_cast<Instruction>(Op2)) { 9670 if (I1->getParent() != I2->getParent()) 9671 return false; 9672 InstructionsState S = getSameOpcode({I1, I2}); 9673 if (S.getOpcode()) 9674 continue; 9675 return false; 9676 } 9677 } 9678 return IsCompatibility; 9679 } 9680 9681 bool SLPVectorizerPass::vectorizeSimpleInstructions( 9682 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 9683 bool AtTerminator) { 9684 bool OpsChanged = false; 9685 SmallVector<Instruction *, 4> PostponedCmps; 9686 for (auto *I : reverse(Instructions)) { 9687 if (R.isDeleted(I)) 9688 continue; 9689 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 9690 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 9691 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 9692 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 9693 else if (isa<CmpInst>(I)) 9694 PostponedCmps.push_back(I); 9695 } 9696 if (AtTerminator) { 9697 // Try to find reductions first. 9698 for (Instruction *I : PostponedCmps) { 9699 if (R.isDeleted(I)) 9700 continue; 9701 for (Value *Op : I->operands()) 9702 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 9703 } 9704 // Try to vectorize operands as vector bundles. 9705 for (Instruction *I : PostponedCmps) { 9706 if (R.isDeleted(I)) 9707 continue; 9708 OpsChanged |= tryToVectorize(I, R); 9709 } 9710 // Try to vectorize list of compares. 9711 // Sort by type, compare predicate, etc. 9712 auto &&CompareSorter = [&R](Value *V, Value *V2) { 9713 return compareCmp<false>(V, V2, 9714 [&R](Instruction *I) { return R.isDeleted(I); }); 9715 }; 9716 9717 auto &&AreCompatibleCompares = [&R](Value *V1, Value *V2) { 9718 if (V1 == V2) 9719 return true; 9720 return compareCmp<true>(V1, V2, 9721 [&R](Instruction *I) { return R.isDeleted(I); }); 9722 }; 9723 auto Limit = [&R](Value *V) { 9724 unsigned EltSize = R.getVectorElementSize(V); 9725 return std::max(2U, R.getMaxVecRegSize() / EltSize); 9726 }; 9727 9728 SmallVector<Value *> Vals(PostponedCmps.begin(), PostponedCmps.end()); 9729 OpsChanged |= tryToVectorizeSequence<Value>( 9730 Vals, Limit, CompareSorter, AreCompatibleCompares, 9731 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 9732 // Exclude possible reductions from other blocks. 9733 bool ArePossiblyReducedInOtherBlock = 9734 any_of(Candidates, [](Value *V) { 9735 return any_of(V->users(), [V](User *U) { 9736 return isa<SelectInst>(U) && 9737 cast<SelectInst>(U)->getParent() != 9738 cast<Instruction>(V)->getParent(); 9739 }); 9740 }); 9741 if (ArePossiblyReducedInOtherBlock) 9742 return false; 9743 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 9744 }, 9745 /*LimitForRegisterSize=*/true); 9746 Instructions.clear(); 9747 } else { 9748 // Insert in reverse order since the PostponedCmps vector was filled in 9749 // reverse order. 9750 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 9751 } 9752 return OpsChanged; 9753 } 9754 9755 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 9756 bool Changed = false; 9757 SmallVector<Value *, 4> Incoming; 9758 SmallPtrSet<Value *, 16> VisitedInstrs; 9759 // Maps phi nodes to the non-phi nodes found in the use tree for each phi 9760 // node. Allows better to identify the chains that can be vectorized in the 9761 // better way. 9762 DenseMap<Value *, SmallVector<Value *, 4>> PHIToOpcodes; 9763 auto PHICompare = [this, &PHIToOpcodes](Value *V1, Value *V2) { 9764 assert(isValidElementType(V1->getType()) && 9765 isValidElementType(V2->getType()) && 9766 "Expected vectorizable types only."); 9767 // It is fine to compare type IDs here, since we expect only vectorizable 9768 // types, like ints, floats and pointers, we don't care about other type. 9769 if (V1->getType()->getTypeID() < V2->getType()->getTypeID()) 9770 return true; 9771 if (V1->getType()->getTypeID() > V2->getType()->getTypeID()) 9772 return false; 9773 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 9774 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 9775 if (Opcodes1.size() < Opcodes2.size()) 9776 return true; 9777 if (Opcodes1.size() > Opcodes2.size()) 9778 return false; 9779 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 9780 // Undefs are compatible with any other value. 9781 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 9782 continue; 9783 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 9784 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 9785 DomTreeNodeBase<BasicBlock> *NodeI1 = DT->getNode(I1->getParent()); 9786 DomTreeNodeBase<BasicBlock> *NodeI2 = DT->getNode(I2->getParent()); 9787 if (!NodeI1) 9788 return NodeI2 != nullptr; 9789 if (!NodeI2) 9790 return false; 9791 assert((NodeI1 == NodeI2) == 9792 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 9793 "Different nodes should have different DFS numbers"); 9794 if (NodeI1 != NodeI2) 9795 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 9796 InstructionsState S = getSameOpcode({I1, I2}); 9797 if (S.getOpcode()) 9798 continue; 9799 return I1->getOpcode() < I2->getOpcode(); 9800 } 9801 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 9802 continue; 9803 if (Opcodes1[I]->getValueID() < Opcodes2[I]->getValueID()) 9804 return true; 9805 if (Opcodes1[I]->getValueID() > Opcodes2[I]->getValueID()) 9806 return false; 9807 } 9808 return false; 9809 }; 9810 auto AreCompatiblePHIs = [&PHIToOpcodes](Value *V1, Value *V2) { 9811 if (V1 == V2) 9812 return true; 9813 if (V1->getType() != V2->getType()) 9814 return false; 9815 ArrayRef<Value *> Opcodes1 = PHIToOpcodes[V1]; 9816 ArrayRef<Value *> Opcodes2 = PHIToOpcodes[V2]; 9817 if (Opcodes1.size() != Opcodes2.size()) 9818 return false; 9819 for (int I = 0, E = Opcodes1.size(); I < E; ++I) { 9820 // Undefs are compatible with any other value. 9821 if (isa<UndefValue>(Opcodes1[I]) || isa<UndefValue>(Opcodes2[I])) 9822 continue; 9823 if (auto *I1 = dyn_cast<Instruction>(Opcodes1[I])) 9824 if (auto *I2 = dyn_cast<Instruction>(Opcodes2[I])) { 9825 if (I1->getParent() != I2->getParent()) 9826 return false; 9827 InstructionsState S = getSameOpcode({I1, I2}); 9828 if (S.getOpcode()) 9829 continue; 9830 return false; 9831 } 9832 if (isa<Constant>(Opcodes1[I]) && isa<Constant>(Opcodes2[I])) 9833 continue; 9834 if (Opcodes1[I]->getValueID() != Opcodes2[I]->getValueID()) 9835 return false; 9836 } 9837 return true; 9838 }; 9839 auto Limit = [&R](Value *V) { 9840 unsigned EltSize = R.getVectorElementSize(V); 9841 return std::max(2U, R.getMaxVecRegSize() / EltSize); 9842 }; 9843 9844 bool HaveVectorizedPhiNodes = false; 9845 do { 9846 // Collect the incoming values from the PHIs. 9847 Incoming.clear(); 9848 for (Instruction &I : *BB) { 9849 PHINode *P = dyn_cast<PHINode>(&I); 9850 if (!P) 9851 break; 9852 9853 // No need to analyze deleted, vectorized and non-vectorizable 9854 // instructions. 9855 if (!VisitedInstrs.count(P) && !R.isDeleted(P) && 9856 isValidElementType(P->getType())) 9857 Incoming.push_back(P); 9858 } 9859 9860 // Find the corresponding non-phi nodes for better matching when trying to 9861 // build the tree. 9862 for (Value *V : Incoming) { 9863 SmallVectorImpl<Value *> &Opcodes = 9864 PHIToOpcodes.try_emplace(V).first->getSecond(); 9865 if (!Opcodes.empty()) 9866 continue; 9867 SmallVector<Value *, 4> Nodes(1, V); 9868 SmallPtrSet<Value *, 4> Visited; 9869 while (!Nodes.empty()) { 9870 auto *PHI = cast<PHINode>(Nodes.pop_back_val()); 9871 if (!Visited.insert(PHI).second) 9872 continue; 9873 for (Value *V : PHI->incoming_values()) { 9874 if (auto *PHI1 = dyn_cast<PHINode>((V))) { 9875 Nodes.push_back(PHI1); 9876 continue; 9877 } 9878 Opcodes.emplace_back(V); 9879 } 9880 } 9881 } 9882 9883 HaveVectorizedPhiNodes = tryToVectorizeSequence<Value>( 9884 Incoming, Limit, PHICompare, AreCompatiblePHIs, 9885 [this, &R](ArrayRef<Value *> Candidates, bool LimitForRegisterSize) { 9886 return tryToVectorizeList(Candidates, R, LimitForRegisterSize); 9887 }, 9888 /*LimitForRegisterSize=*/true); 9889 Changed |= HaveVectorizedPhiNodes; 9890 VisitedInstrs.insert(Incoming.begin(), Incoming.end()); 9891 } while (HaveVectorizedPhiNodes); 9892 9893 VisitedInstrs.clear(); 9894 9895 SmallVector<Instruction *, 8> PostProcessInstructions; 9896 SmallDenseSet<Instruction *, 4> KeyNodes; 9897 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 9898 // Skip instructions with scalable type. The num of elements is unknown at 9899 // compile-time for scalable type. 9900 if (isa<ScalableVectorType>(it->getType())) 9901 continue; 9902 9903 // Skip instructions marked for the deletion. 9904 if (R.isDeleted(&*it)) 9905 continue; 9906 // We may go through BB multiple times so skip the one we have checked. 9907 if (!VisitedInstrs.insert(&*it).second) { 9908 if (it->use_empty() && KeyNodes.contains(&*it) && 9909 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 9910 it->isTerminator())) { 9911 // We would like to start over since some instructions are deleted 9912 // and the iterator may become invalid value. 9913 Changed = true; 9914 it = BB->begin(); 9915 e = BB->end(); 9916 } 9917 continue; 9918 } 9919 9920 if (isa<DbgInfoIntrinsic>(it)) 9921 continue; 9922 9923 // Try to vectorize reductions that use PHINodes. 9924 if (PHINode *P = dyn_cast<PHINode>(it)) { 9925 // Check that the PHI is a reduction PHI. 9926 if (P->getNumIncomingValues() == 2) { 9927 // Try to match and vectorize a horizontal reduction. 9928 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 9929 TTI)) { 9930 Changed = true; 9931 it = BB->begin(); 9932 e = BB->end(); 9933 continue; 9934 } 9935 } 9936 // Try to vectorize the incoming values of the PHI, to catch reductions 9937 // that feed into PHIs. 9938 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 9939 // Skip if the incoming block is the current BB for now. Also, bypass 9940 // unreachable IR for efficiency and to avoid crashing. 9941 // TODO: Collect the skipped incoming values and try to vectorize them 9942 // after processing BB. 9943 if (BB == P->getIncomingBlock(I) || 9944 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 9945 continue; 9946 9947 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 9948 P->getIncomingBlock(I), R, TTI); 9949 } 9950 continue; 9951 } 9952 9953 // Ran into an instruction without users, like terminator, or function call 9954 // with ignored return value, store. Ignore unused instructions (basing on 9955 // instruction type, except for CallInst and InvokeInst). 9956 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 9957 isa<InvokeInst>(it))) { 9958 KeyNodes.insert(&*it); 9959 bool OpsChanged = false; 9960 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 9961 for (auto *V : it->operand_values()) { 9962 // Try to match and vectorize a horizontal reduction. 9963 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 9964 } 9965 } 9966 // Start vectorization of post-process list of instructions from the 9967 // top-tree instructions to try to vectorize as many instructions as 9968 // possible. 9969 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 9970 it->isTerminator()); 9971 if (OpsChanged) { 9972 // We would like to start over since some instructions are deleted 9973 // and the iterator may become invalid value. 9974 Changed = true; 9975 it = BB->begin(); 9976 e = BB->end(); 9977 continue; 9978 } 9979 } 9980 9981 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 9982 isa<InsertValueInst>(it)) 9983 PostProcessInstructions.push_back(&*it); 9984 } 9985 9986 return Changed; 9987 } 9988 9989 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 9990 auto Changed = false; 9991 for (auto &Entry : GEPs) { 9992 // If the getelementptr list has fewer than two elements, there's nothing 9993 // to do. 9994 if (Entry.second.size() < 2) 9995 continue; 9996 9997 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 9998 << Entry.second.size() << ".\n"); 9999 10000 // Process the GEP list in chunks suitable for the target's supported 10001 // vector size. If a vector register can't hold 1 element, we are done. We 10002 // are trying to vectorize the index computations, so the maximum number of 10003 // elements is based on the size of the index expression, rather than the 10004 // size of the GEP itself (the target's pointer size). 10005 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 10006 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 10007 if (MaxVecRegSize < EltSize) 10008 continue; 10009 10010 unsigned MaxElts = MaxVecRegSize / EltSize; 10011 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 10012 auto Len = std::min<unsigned>(BE - BI, MaxElts); 10013 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 10014 10015 // Initialize a set a candidate getelementptrs. Note that we use a 10016 // SetVector here to preserve program order. If the index computations 10017 // are vectorizable and begin with loads, we want to minimize the chance 10018 // of having to reorder them later. 10019 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 10020 10021 // Some of the candidates may have already been vectorized after we 10022 // initially collected them. If so, they are marked as deleted, so remove 10023 // them from the set of candidates. 10024 Candidates.remove_if( 10025 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 10026 10027 // Remove from the set of candidates all pairs of getelementptrs with 10028 // constant differences. Such getelementptrs are likely not good 10029 // candidates for vectorization in a bottom-up phase since one can be 10030 // computed from the other. We also ensure all candidate getelementptr 10031 // indices are unique. 10032 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 10033 auto *GEPI = GEPList[I]; 10034 if (!Candidates.count(GEPI)) 10035 continue; 10036 auto *SCEVI = SE->getSCEV(GEPList[I]); 10037 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 10038 auto *GEPJ = GEPList[J]; 10039 auto *SCEVJ = SE->getSCEV(GEPList[J]); 10040 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 10041 Candidates.remove(GEPI); 10042 Candidates.remove(GEPJ); 10043 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 10044 Candidates.remove(GEPJ); 10045 } 10046 } 10047 } 10048 10049 // We break out of the above computation as soon as we know there are 10050 // fewer than two candidates remaining. 10051 if (Candidates.size() < 2) 10052 continue; 10053 10054 // Add the single, non-constant index of each candidate to the bundle. We 10055 // ensured the indices met these constraints when we originally collected 10056 // the getelementptrs. 10057 SmallVector<Value *, 16> Bundle(Candidates.size()); 10058 auto BundleIndex = 0u; 10059 for (auto *V : Candidates) { 10060 auto *GEP = cast<GetElementPtrInst>(V); 10061 auto *GEPIdx = GEP->idx_begin()->get(); 10062 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 10063 Bundle[BundleIndex++] = GEPIdx; 10064 } 10065 10066 // Try and vectorize the indices. We are currently only interested in 10067 // gather-like cases of the form: 10068 // 10069 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 10070 // 10071 // where the loads of "a", the loads of "b", and the subtractions can be 10072 // performed in parallel. It's likely that detecting this pattern in a 10073 // bottom-up phase will be simpler and less costly than building a 10074 // full-blown top-down phase beginning at the consecutive loads. 10075 Changed |= tryToVectorizeList(Bundle, R); 10076 } 10077 } 10078 return Changed; 10079 } 10080 10081 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 10082 bool Changed = false; 10083 // Sort by type, base pointers and values operand. Value operands must be 10084 // compatible (have the same opcode, same parent), otherwise it is 10085 // definitely not profitable to try to vectorize them. 10086 auto &&StoreSorter = [this](StoreInst *V, StoreInst *V2) { 10087 if (V->getPointerOperandType()->getTypeID() < 10088 V2->getPointerOperandType()->getTypeID()) 10089 return true; 10090 if (V->getPointerOperandType()->getTypeID() > 10091 V2->getPointerOperandType()->getTypeID()) 10092 return false; 10093 // UndefValues are compatible with all other values. 10094 if (isa<UndefValue>(V->getValueOperand()) || 10095 isa<UndefValue>(V2->getValueOperand())) 10096 return false; 10097 if (auto *I1 = dyn_cast<Instruction>(V->getValueOperand())) 10098 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10099 DomTreeNodeBase<llvm::BasicBlock> *NodeI1 = 10100 DT->getNode(I1->getParent()); 10101 DomTreeNodeBase<llvm::BasicBlock> *NodeI2 = 10102 DT->getNode(I2->getParent()); 10103 assert(NodeI1 && "Should only process reachable instructions"); 10104 assert(NodeI1 && "Should only process reachable instructions"); 10105 assert((NodeI1 == NodeI2) == 10106 (NodeI1->getDFSNumIn() == NodeI2->getDFSNumIn()) && 10107 "Different nodes should have different DFS numbers"); 10108 if (NodeI1 != NodeI2) 10109 return NodeI1->getDFSNumIn() < NodeI2->getDFSNumIn(); 10110 InstructionsState S = getSameOpcode({I1, I2}); 10111 if (S.getOpcode()) 10112 return false; 10113 return I1->getOpcode() < I2->getOpcode(); 10114 } 10115 if (isa<Constant>(V->getValueOperand()) && 10116 isa<Constant>(V2->getValueOperand())) 10117 return false; 10118 return V->getValueOperand()->getValueID() < 10119 V2->getValueOperand()->getValueID(); 10120 }; 10121 10122 auto &&AreCompatibleStores = [](StoreInst *V1, StoreInst *V2) { 10123 if (V1 == V2) 10124 return true; 10125 if (V1->getPointerOperandType() != V2->getPointerOperandType()) 10126 return false; 10127 // Undefs are compatible with any other value. 10128 if (isa<UndefValue>(V1->getValueOperand()) || 10129 isa<UndefValue>(V2->getValueOperand())) 10130 return true; 10131 if (auto *I1 = dyn_cast<Instruction>(V1->getValueOperand())) 10132 if (auto *I2 = dyn_cast<Instruction>(V2->getValueOperand())) { 10133 if (I1->getParent() != I2->getParent()) 10134 return false; 10135 InstructionsState S = getSameOpcode({I1, I2}); 10136 return S.getOpcode() > 0; 10137 } 10138 if (isa<Constant>(V1->getValueOperand()) && 10139 isa<Constant>(V2->getValueOperand())) 10140 return true; 10141 return V1->getValueOperand()->getValueID() == 10142 V2->getValueOperand()->getValueID(); 10143 }; 10144 auto Limit = [&R, this](StoreInst *SI) { 10145 unsigned EltSize = DL->getTypeSizeInBits(SI->getValueOperand()->getType()); 10146 return R.getMinVF(EltSize); 10147 }; 10148 10149 // Attempt to sort and vectorize each of the store-groups. 10150 for (auto &Pair : Stores) { 10151 if (Pair.second.size() < 2) 10152 continue; 10153 10154 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 10155 << Pair.second.size() << ".\n"); 10156 10157 if (!isValidElementType(Pair.second.front()->getValueOperand()->getType())) 10158 continue; 10159 10160 Changed |= tryToVectorizeSequence<StoreInst>( 10161 Pair.second, Limit, StoreSorter, AreCompatibleStores, 10162 [this, &R](ArrayRef<StoreInst *> Candidates, bool) { 10163 return vectorizeStores(Candidates, R); 10164 }, 10165 /*LimitForRegisterSize=*/false); 10166 } 10167 return Changed; 10168 } 10169 10170 char SLPVectorizer::ID = 0; 10171 10172 static const char lv_name[] = "SLP Vectorizer"; 10173 10174 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 10175 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 10176 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 10177 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 10178 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 10179 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 10180 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 10181 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 10182 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 10183 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 10184 10185 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 10186