1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 #include "llvm/Transforms/Vectorize.h" 19 #include "llvm/ADT/MapVector.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/PostOrderIterator.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/CodeMetrics.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/Analysis/ScalarEvolution.h" 29 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 30 #include "llvm/Analysis/TargetTransformInfo.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Dominators.h" 34 #include "llvm/IR/IRBuilder.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/Module.h" 38 #include "llvm/IR/NoFolder.h" 39 #include "llvm/IR/Type.h" 40 #include "llvm/IR/Value.h" 41 #include "llvm/IR/Verifier.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Analysis/VectorUtils.h" 47 #include <algorithm> 48 #include <map> 49 #include <memory> 50 51 using namespace llvm; 52 53 #define SV_NAME "slp-vectorizer" 54 #define DEBUG_TYPE "SLP" 55 56 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 57 58 static cl::opt<int> 59 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 60 cl::desc("Only vectorize if you gain more than this " 61 "number ")); 62 63 static cl::opt<bool> 64 ShouldVectorizeHor("slp-vectorize-hor", cl::init(false), cl::Hidden, 65 cl::desc("Attempt to vectorize horizontal reductions")); 66 67 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 68 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 69 cl::desc( 70 "Attempt to vectorize horizontal reductions feeding into a store")); 71 72 static cl::opt<int> 73 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 74 cl::desc("Attempt to vectorize for this register size in bits")); 75 76 /// Limits the size of scheduling regions in a block. 77 /// It avoid long compile times for _very_ large blocks where vector 78 /// instructions are spread over a wide range. 79 /// This limit is way higher than needed by real-world functions. 80 static cl::opt<int> 81 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 82 cl::desc("Limit the size of the SLP scheduling region per block")); 83 84 namespace { 85 86 // FIXME: Set this via cl::opt to allow overriding. 87 static const unsigned MinVecRegSize = 128; 88 89 static const unsigned RecursionMaxDepth = 12; 90 91 // Limit the number of alias checks. The limit is chosen so that 92 // it has no negative effect on the llvm benchmarks. 93 static const unsigned AliasedCheckLimit = 10; 94 95 // Another limit for the alias checks: The maximum distance between load/store 96 // instructions where alias checks are done. 97 // This limit is useful for very large basic blocks. 98 static const unsigned MaxMemDepDistance = 160; 99 100 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 101 /// regions to be handled. 102 static const int MinScheduleRegionSize = 16; 103 104 /// \brief Predicate for the element types that the SLP vectorizer supports. 105 /// 106 /// The most important thing to filter here are types which are invalid in LLVM 107 /// vectors. We also filter target specific types which have absolutely no 108 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 109 /// avoids spending time checking the cost model and realizing that they will 110 /// be inevitably scalarized. 111 static bool isValidElementType(Type *Ty) { 112 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 113 !Ty->isPPC_FP128Ty(); 114 } 115 116 /// \returns the parent basic block if all of the instructions in \p VL 117 /// are in the same block or null otherwise. 118 static BasicBlock *getSameBlock(ArrayRef<Value *> VL) { 119 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 120 if (!I0) 121 return nullptr; 122 BasicBlock *BB = I0->getParent(); 123 for (int i = 1, e = VL.size(); i < e; i++) { 124 Instruction *I = dyn_cast<Instruction>(VL[i]); 125 if (!I) 126 return nullptr; 127 128 if (BB != I->getParent()) 129 return nullptr; 130 } 131 return BB; 132 } 133 134 /// \returns True if all of the values in \p VL are constants. 135 static bool allConstant(ArrayRef<Value *> VL) { 136 for (unsigned i = 0, e = VL.size(); i < e; ++i) 137 if (!isa<Constant>(VL[i])) 138 return false; 139 return true; 140 } 141 142 /// \returns True if all of the values in \p VL are identical. 143 static bool isSplat(ArrayRef<Value *> VL) { 144 for (unsigned i = 1, e = VL.size(); i < e; ++i) 145 if (VL[i] != VL[0]) 146 return false; 147 return true; 148 } 149 150 ///\returns Opcode that can be clubbed with \p Op to create an alternate 151 /// sequence which can later be merged as a ShuffleVector instruction. 152 static unsigned getAltOpcode(unsigned Op) { 153 switch (Op) { 154 case Instruction::FAdd: 155 return Instruction::FSub; 156 case Instruction::FSub: 157 return Instruction::FAdd; 158 case Instruction::Add: 159 return Instruction::Sub; 160 case Instruction::Sub: 161 return Instruction::Add; 162 default: 163 return 0; 164 } 165 } 166 167 ///\returns bool representing if Opcode \p Op can be part 168 /// of an alternate sequence which can later be merged as 169 /// a ShuffleVector instruction. 170 static bool canCombineAsAltInst(unsigned Op) { 171 if (Op == Instruction::FAdd || Op == Instruction::FSub || 172 Op == Instruction::Sub || Op == Instruction::Add) 173 return true; 174 return false; 175 } 176 177 /// \returns ShuffleVector instruction if instructions in \p VL have 178 /// alternate fadd,fsub / fsub,fadd/add,sub/sub,add sequence. 179 /// (i.e. e.g. opcodes of fadd,fsub,fadd,fsub...) 180 static unsigned isAltInst(ArrayRef<Value *> VL) { 181 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 182 unsigned Opcode = I0->getOpcode(); 183 unsigned AltOpcode = getAltOpcode(Opcode); 184 for (int i = 1, e = VL.size(); i < e; i++) { 185 Instruction *I = dyn_cast<Instruction>(VL[i]); 186 if (!I || I->getOpcode() != ((i & 1) ? AltOpcode : Opcode)) 187 return 0; 188 } 189 return Instruction::ShuffleVector; 190 } 191 192 /// \returns The opcode if all of the Instructions in \p VL have the same 193 /// opcode, or zero. 194 static unsigned getSameOpcode(ArrayRef<Value *> VL) { 195 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 196 if (!I0) 197 return 0; 198 unsigned Opcode = I0->getOpcode(); 199 for (int i = 1, e = VL.size(); i < e; i++) { 200 Instruction *I = dyn_cast<Instruction>(VL[i]); 201 if (!I || Opcode != I->getOpcode()) { 202 if (canCombineAsAltInst(Opcode) && i == 1) 203 return isAltInst(VL); 204 return 0; 205 } 206 } 207 return Opcode; 208 } 209 210 /// Get the intersection (logical and) of all of the potential IR flags 211 /// of each scalar operation (VL) that will be converted into a vector (I). 212 /// Flag set: NSW, NUW, exact, and all of fast-math. 213 static void propagateIRFlags(Value *I, ArrayRef<Value *> VL) { 214 if (auto *VecOp = dyn_cast<BinaryOperator>(I)) { 215 if (auto *Intersection = dyn_cast<BinaryOperator>(VL[0])) { 216 // Intersection is initialized to the 0th scalar, 217 // so start counting from index '1'. 218 for (int i = 1, e = VL.size(); i < e; ++i) { 219 if (auto *Scalar = dyn_cast<BinaryOperator>(VL[i])) 220 Intersection->andIRFlags(Scalar); 221 } 222 VecOp->copyIRFlags(Intersection); 223 } 224 } 225 } 226 227 /// \returns \p I after propagating metadata from \p VL. 228 static Instruction *propagateMetadata(Instruction *I, ArrayRef<Value *> VL) { 229 Instruction *I0 = cast<Instruction>(VL[0]); 230 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 231 I0->getAllMetadataOtherThanDebugLoc(Metadata); 232 233 for (unsigned i = 0, n = Metadata.size(); i != n; ++i) { 234 unsigned Kind = Metadata[i].first; 235 MDNode *MD = Metadata[i].second; 236 237 for (int i = 1, e = VL.size(); MD && i != e; i++) { 238 Instruction *I = cast<Instruction>(VL[i]); 239 MDNode *IMD = I->getMetadata(Kind); 240 241 switch (Kind) { 242 default: 243 MD = nullptr; // Remove unknown metadata 244 break; 245 case LLVMContext::MD_tbaa: 246 MD = MDNode::getMostGenericTBAA(MD, IMD); 247 break; 248 case LLVMContext::MD_alias_scope: 249 MD = MDNode::getMostGenericAliasScope(MD, IMD); 250 break; 251 case LLVMContext::MD_noalias: 252 MD = MDNode::intersect(MD, IMD); 253 break; 254 case LLVMContext::MD_fpmath: 255 MD = MDNode::getMostGenericFPMath(MD, IMD); 256 break; 257 case LLVMContext::MD_nontemporal: 258 MD = MDNode::intersect(MD, IMD); 259 break; 260 } 261 } 262 I->setMetadata(Kind, MD); 263 } 264 return I; 265 } 266 267 /// \returns The type that all of the values in \p VL have or null if there 268 /// are different types. 269 static Type* getSameType(ArrayRef<Value *> VL) { 270 Type *Ty = VL[0]->getType(); 271 for (int i = 1, e = VL.size(); i < e; i++) 272 if (VL[i]->getType() != Ty) 273 return nullptr; 274 275 return Ty; 276 } 277 278 /// \returns True if the ExtractElement instructions in VL can be vectorized 279 /// to use the original vector. 280 static bool CanReuseExtract(ArrayRef<Value *> VL) { 281 assert(Instruction::ExtractElement == getSameOpcode(VL) && "Invalid opcode"); 282 // Check if all of the extracts come from the same vector and from the 283 // correct offset. 284 Value *VL0 = VL[0]; 285 ExtractElementInst *E0 = cast<ExtractElementInst>(VL0); 286 Value *Vec = E0->getOperand(0); 287 288 // We have to extract from the same vector type. 289 unsigned NElts = Vec->getType()->getVectorNumElements(); 290 291 if (NElts != VL.size()) 292 return false; 293 294 // Check that all of the indices extract from the correct offset. 295 ConstantInt *CI = dyn_cast<ConstantInt>(E0->getOperand(1)); 296 if (!CI || CI->getZExtValue()) 297 return false; 298 299 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 300 ExtractElementInst *E = cast<ExtractElementInst>(VL[i]); 301 ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 302 303 if (!CI || CI->getZExtValue() != i || E->getOperand(0) != Vec) 304 return false; 305 } 306 307 return true; 308 } 309 310 /// \returns True if in-tree use also needs extract. This refers to 311 /// possible scalar operand in vectorized instruction. 312 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 313 TargetLibraryInfo *TLI) { 314 315 unsigned Opcode = UserInst->getOpcode(); 316 switch (Opcode) { 317 case Instruction::Load: { 318 LoadInst *LI = cast<LoadInst>(UserInst); 319 return (LI->getPointerOperand() == Scalar); 320 } 321 case Instruction::Store: { 322 StoreInst *SI = cast<StoreInst>(UserInst); 323 return (SI->getPointerOperand() == Scalar); 324 } 325 case Instruction::Call: { 326 CallInst *CI = cast<CallInst>(UserInst); 327 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 328 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 329 return (CI->getArgOperand(1) == Scalar); 330 } 331 } 332 default: 333 return false; 334 } 335 } 336 337 /// \returns the AA location that is being access by the instruction. 338 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { 339 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 340 return MemoryLocation::get(SI); 341 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 342 return MemoryLocation::get(LI); 343 return MemoryLocation(); 344 } 345 346 /// \returns True if the instruction is not a volatile or atomic load/store. 347 static bool isSimple(Instruction *I) { 348 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 349 return LI->isSimple(); 350 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 351 return SI->isSimple(); 352 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 353 return !MI->isVolatile(); 354 return true; 355 } 356 357 /// Bottom Up SLP Vectorizer. 358 class BoUpSLP { 359 public: 360 typedef SmallVector<Value *, 8> ValueList; 361 typedef SmallVector<Instruction *, 16> InstrList; 362 typedef SmallPtrSet<Value *, 16> ValueSet; 363 typedef SmallVector<StoreInst *, 8> StoreList; 364 365 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 366 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, 367 DominatorTree *Dt, AssumptionCache *AC) 368 : NumLoadsWantToKeepOrder(0), NumLoadsWantToChangeOrder(0), F(Func), 369 SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), 370 Builder(Se->getContext()) { 371 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 372 } 373 374 /// \brief Vectorize the tree that starts with the elements in \p VL. 375 /// Returns the vectorized root. 376 Value *vectorizeTree(); 377 378 /// \returns the cost incurred by unwanted spills and fills, caused by 379 /// holding live values over call sites. 380 int getSpillCost(); 381 382 /// \returns the vectorization cost of the subtree that starts at \p VL. 383 /// A negative number means that this is profitable. 384 int getTreeCost(); 385 386 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 387 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 388 void buildTree(ArrayRef<Value *> Roots, 389 ArrayRef<Value *> UserIgnoreLst = None); 390 391 /// Clear the internal data structures that are created by 'buildTree'. 392 void deleteTree() { 393 VectorizableTree.clear(); 394 ScalarToTreeEntry.clear(); 395 MustGather.clear(); 396 ExternalUses.clear(); 397 NumLoadsWantToKeepOrder = 0; 398 NumLoadsWantToChangeOrder = 0; 399 for (auto &Iter : BlocksSchedules) { 400 BlockScheduling *BS = Iter.second.get(); 401 BS->clear(); 402 } 403 } 404 405 /// \returns true if the memory operations A and B are consecutive. 406 bool isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL); 407 408 /// \brief Perform LICM and CSE on the newly generated gather sequences. 409 void optimizeGatherSequence(); 410 411 /// \returns true if it is beneficial to reverse the vector order. 412 bool shouldReorder() const { 413 return NumLoadsWantToChangeOrder > NumLoadsWantToKeepOrder; 414 } 415 416 private: 417 struct TreeEntry; 418 419 /// \returns the cost of the vectorizable entry. 420 int getEntryCost(TreeEntry *E); 421 422 /// This is the recursive part of buildTree. 423 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth); 424 425 /// Vectorize a single entry in the tree. 426 Value *vectorizeTree(TreeEntry *E); 427 428 /// Vectorize a single entry in the tree, starting in \p VL. 429 Value *vectorizeTree(ArrayRef<Value *> VL); 430 431 /// \returns the pointer to the vectorized value if \p VL is already 432 /// vectorized, or NULL. They may happen in cycles. 433 Value *alreadyVectorized(ArrayRef<Value *> VL) const; 434 435 /// \brief Take the pointer operand from the Load/Store instruction. 436 /// \returns NULL if this is not a valid Load/Store instruction. 437 static Value *getPointerOperand(Value *I); 438 439 /// \brief Take the address space operand from the Load/Store instruction. 440 /// \returns -1 if this is not a valid Load/Store instruction. 441 static unsigned getAddressSpaceOperand(Value *I); 442 443 /// \returns the scalarization cost for this type. Scalarization in this 444 /// context means the creation of vectors from a group of scalars. 445 int getGatherCost(Type *Ty); 446 447 /// \returns the scalarization cost for this list of values. Assuming that 448 /// this subtree gets vectorized, we may need to extract the values from the 449 /// roots. This method calculates the cost of extracting the values. 450 int getGatherCost(ArrayRef<Value *> VL); 451 452 /// \brief Set the Builder insert point to one after the last instruction in 453 /// the bundle 454 void setInsertPointAfterBundle(ArrayRef<Value *> VL); 455 456 /// \returns a vector from a collection of scalars in \p VL. 457 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); 458 459 /// \returns whether the VectorizableTree is fully vectorizable and will 460 /// be beneficial even the tree height is tiny. 461 bool isFullyVectorizableTinyTree(); 462 463 /// \reorder commutative operands in alt shuffle if they result in 464 /// vectorized code. 465 void reorderAltShuffleOperands(ArrayRef<Value *> VL, 466 SmallVectorImpl<Value *> &Left, 467 SmallVectorImpl<Value *> &Right); 468 /// \reorder commutative operands to get better probability of 469 /// generating vectorized code. 470 void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 471 SmallVectorImpl<Value *> &Left, 472 SmallVectorImpl<Value *> &Right); 473 struct TreeEntry { 474 TreeEntry() : Scalars(), VectorizedValue(nullptr), 475 NeedToGather(0) {} 476 477 /// \returns true if the scalars in VL are equal to this entry. 478 bool isSame(ArrayRef<Value *> VL) const { 479 assert(VL.size() == Scalars.size() && "Invalid size"); 480 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 481 } 482 483 /// A vector of scalars. 484 ValueList Scalars; 485 486 /// The Scalars are vectorized into this value. It is initialized to Null. 487 Value *VectorizedValue; 488 489 /// Do we need to gather this sequence ? 490 bool NeedToGather; 491 }; 492 493 /// Create a new VectorizableTree entry. 494 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized) { 495 VectorizableTree.emplace_back(); 496 int idx = VectorizableTree.size() - 1; 497 TreeEntry *Last = &VectorizableTree[idx]; 498 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 499 Last->NeedToGather = !Vectorized; 500 if (Vectorized) { 501 for (int i = 0, e = VL.size(); i != e; ++i) { 502 assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!"); 503 ScalarToTreeEntry[VL[i]] = idx; 504 } 505 } else { 506 MustGather.insert(VL.begin(), VL.end()); 507 } 508 return Last; 509 } 510 511 /// -- Vectorization State -- 512 /// Holds all of the tree entries. 513 std::vector<TreeEntry> VectorizableTree; 514 515 /// Maps a specific scalar to its tree entry. 516 SmallDenseMap<Value*, int> ScalarToTreeEntry; 517 518 /// A list of scalars that we found that we need to keep as scalars. 519 ValueSet MustGather; 520 521 /// This POD struct describes one external user in the vectorized tree. 522 struct ExternalUser { 523 ExternalUser (Value *S, llvm::User *U, int L) : 524 Scalar(S), User(U), Lane(L){} 525 // Which scalar in our function. 526 Value *Scalar; 527 // Which user that uses the scalar. 528 llvm::User *User; 529 // Which lane does the scalar belong to. 530 int Lane; 531 }; 532 typedef SmallVector<ExternalUser, 16> UserList; 533 534 /// Checks if two instructions may access the same memory. 535 /// 536 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 537 /// is invariant in the calling loop. 538 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 539 Instruction *Inst2) { 540 541 // First check if the result is already in the cache. 542 AliasCacheKey key = std::make_pair(Inst1, Inst2); 543 Optional<bool> &result = AliasCache[key]; 544 if (result.hasValue()) { 545 return result.getValue(); 546 } 547 MemoryLocation Loc2 = getLocation(Inst2, AA); 548 bool aliased = true; 549 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 550 // Do the alias check. 551 aliased = AA->alias(Loc1, Loc2); 552 } 553 // Store the result in the cache. 554 result = aliased; 555 return aliased; 556 } 557 558 typedef std::pair<Instruction *, Instruction *> AliasCacheKey; 559 560 /// Cache for alias results. 561 /// TODO: consider moving this to the AliasAnalysis itself. 562 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 563 564 /// Removes an instruction from its block and eventually deletes it. 565 /// It's like Instruction::eraseFromParent() except that the actual deletion 566 /// is delayed until BoUpSLP is destructed. 567 /// This is required to ensure that there are no incorrect collisions in the 568 /// AliasCache, which can happen if a new instruction is allocated at the 569 /// same address as a previously deleted instruction. 570 void eraseInstruction(Instruction *I) { 571 I->removeFromParent(); 572 I->dropAllReferences(); 573 DeletedInstructions.push_back(std::unique_ptr<Instruction>(I)); 574 } 575 576 /// Temporary store for deleted instructions. Instructions will be deleted 577 /// eventually when the BoUpSLP is destructed. 578 SmallVector<std::unique_ptr<Instruction>, 8> DeletedInstructions; 579 580 /// A list of values that need to extracted out of the tree. 581 /// This list holds pairs of (Internal Scalar : External User). 582 UserList ExternalUses; 583 584 /// Values used only by @llvm.assume calls. 585 SmallPtrSet<const Value *, 32> EphValues; 586 587 /// Holds all of the instructions that we gathered. 588 SetVector<Instruction *> GatherSeq; 589 /// A list of blocks that we are going to CSE. 590 SetVector<BasicBlock *> CSEBlocks; 591 592 /// Contains all scheduling relevant data for an instruction. 593 /// A ScheduleData either represents a single instruction or a member of an 594 /// instruction bundle (= a group of instructions which is combined into a 595 /// vector instruction). 596 struct ScheduleData { 597 598 // The initial value for the dependency counters. It means that the 599 // dependencies are not calculated yet. 600 enum { InvalidDeps = -1 }; 601 602 ScheduleData() 603 : Inst(nullptr), FirstInBundle(nullptr), NextInBundle(nullptr), 604 NextLoadStore(nullptr), SchedulingRegionID(0), SchedulingPriority(0), 605 Dependencies(InvalidDeps), UnscheduledDeps(InvalidDeps), 606 UnscheduledDepsInBundle(InvalidDeps), IsScheduled(false) {} 607 608 void init(int BlockSchedulingRegionID) { 609 FirstInBundle = this; 610 NextInBundle = nullptr; 611 NextLoadStore = nullptr; 612 IsScheduled = false; 613 SchedulingRegionID = BlockSchedulingRegionID; 614 UnscheduledDepsInBundle = UnscheduledDeps; 615 clearDependencies(); 616 } 617 618 /// Returns true if the dependency information has been calculated. 619 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 620 621 /// Returns true for single instructions and for bundle representatives 622 /// (= the head of a bundle). 623 bool isSchedulingEntity() const { return FirstInBundle == this; } 624 625 /// Returns true if it represents an instruction bundle and not only a 626 /// single instruction. 627 bool isPartOfBundle() const { 628 return NextInBundle != nullptr || FirstInBundle != this; 629 } 630 631 /// Returns true if it is ready for scheduling, i.e. it has no more 632 /// unscheduled depending instructions/bundles. 633 bool isReady() const { 634 assert(isSchedulingEntity() && 635 "can't consider non-scheduling entity for ready list"); 636 return UnscheduledDepsInBundle == 0 && !IsScheduled; 637 } 638 639 /// Modifies the number of unscheduled dependencies, also updating it for 640 /// the whole bundle. 641 int incrementUnscheduledDeps(int Incr) { 642 UnscheduledDeps += Incr; 643 return FirstInBundle->UnscheduledDepsInBundle += Incr; 644 } 645 646 /// Sets the number of unscheduled dependencies to the number of 647 /// dependencies. 648 void resetUnscheduledDeps() { 649 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 650 } 651 652 /// Clears all dependency information. 653 void clearDependencies() { 654 Dependencies = InvalidDeps; 655 resetUnscheduledDeps(); 656 MemoryDependencies.clear(); 657 } 658 659 void dump(raw_ostream &os) const { 660 if (!isSchedulingEntity()) { 661 os << "/ " << *Inst; 662 } else if (NextInBundle) { 663 os << '[' << *Inst; 664 ScheduleData *SD = NextInBundle; 665 while (SD) { 666 os << ';' << *SD->Inst; 667 SD = SD->NextInBundle; 668 } 669 os << ']'; 670 } else { 671 os << *Inst; 672 } 673 } 674 675 Instruction *Inst; 676 677 /// Points to the head in an instruction bundle (and always to this for 678 /// single instructions). 679 ScheduleData *FirstInBundle; 680 681 /// Single linked list of all instructions in a bundle. Null if it is a 682 /// single instruction. 683 ScheduleData *NextInBundle; 684 685 /// Single linked list of all memory instructions (e.g. load, store, call) 686 /// in the block - until the end of the scheduling region. 687 ScheduleData *NextLoadStore; 688 689 /// The dependent memory instructions. 690 /// This list is derived on demand in calculateDependencies(). 691 SmallVector<ScheduleData *, 4> MemoryDependencies; 692 693 /// This ScheduleData is in the current scheduling region if this matches 694 /// the current SchedulingRegionID of BlockScheduling. 695 int SchedulingRegionID; 696 697 /// Used for getting a "good" final ordering of instructions. 698 int SchedulingPriority; 699 700 /// The number of dependencies. Constitutes of the number of users of the 701 /// instruction plus the number of dependent memory instructions (if any). 702 /// This value is calculated on demand. 703 /// If InvalidDeps, the number of dependencies is not calculated yet. 704 /// 705 int Dependencies; 706 707 /// The number of dependencies minus the number of dependencies of scheduled 708 /// instructions. As soon as this is zero, the instruction/bundle gets ready 709 /// for scheduling. 710 /// Note that this is negative as long as Dependencies is not calculated. 711 int UnscheduledDeps; 712 713 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 714 /// single instructions. 715 int UnscheduledDepsInBundle; 716 717 /// True if this instruction is scheduled (or considered as scheduled in the 718 /// dry-run). 719 bool IsScheduled; 720 }; 721 722 #ifndef NDEBUG 723 friend raw_ostream &operator<<(raw_ostream &os, 724 const BoUpSLP::ScheduleData &SD); 725 #endif 726 727 /// Contains all scheduling data for a basic block. 728 /// 729 struct BlockScheduling { 730 731 BlockScheduling(BasicBlock *BB) 732 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize), 733 ScheduleStart(nullptr), ScheduleEnd(nullptr), 734 FirstLoadStoreInRegion(nullptr), LastLoadStoreInRegion(nullptr), 735 ScheduleRegionSize(0), 736 ScheduleRegionSizeLimit(ScheduleRegionSizeBudget), 737 // Make sure that the initial SchedulingRegionID is greater than the 738 // initial SchedulingRegionID in ScheduleData (which is 0). 739 SchedulingRegionID(1) {} 740 741 void clear() { 742 ReadyInsts.clear(); 743 ScheduleStart = nullptr; 744 ScheduleEnd = nullptr; 745 FirstLoadStoreInRegion = nullptr; 746 LastLoadStoreInRegion = nullptr; 747 748 // Reduce the maximum schedule region size by the size of the 749 // previous scheduling run. 750 ScheduleRegionSizeLimit -= ScheduleRegionSize; 751 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 752 ScheduleRegionSizeLimit = MinScheduleRegionSize; 753 ScheduleRegionSize = 0; 754 755 // Make a new scheduling region, i.e. all existing ScheduleData is not 756 // in the new region yet. 757 ++SchedulingRegionID; 758 } 759 760 ScheduleData *getScheduleData(Value *V) { 761 ScheduleData *SD = ScheduleDataMap[V]; 762 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 763 return SD; 764 return nullptr; 765 } 766 767 bool isInSchedulingRegion(ScheduleData *SD) { 768 return SD->SchedulingRegionID == SchedulingRegionID; 769 } 770 771 /// Marks an instruction as scheduled and puts all dependent ready 772 /// instructions into the ready-list. 773 template <typename ReadyListType> 774 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 775 SD->IsScheduled = true; 776 DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 777 778 ScheduleData *BundleMember = SD; 779 while (BundleMember) { 780 // Handle the def-use chain dependencies. 781 for (Use &U : BundleMember->Inst->operands()) { 782 ScheduleData *OpDef = getScheduleData(U.get()); 783 if (OpDef && OpDef->hasValidDependencies() && 784 OpDef->incrementUnscheduledDeps(-1) == 0) { 785 // There are no more unscheduled dependencies after decrementing, 786 // so we can put the dependent instruction into the ready list. 787 ScheduleData *DepBundle = OpDef->FirstInBundle; 788 assert(!DepBundle->IsScheduled && 789 "already scheduled bundle gets ready"); 790 ReadyList.insert(DepBundle); 791 DEBUG(dbgs() << "SLP: gets ready (def): " << *DepBundle << "\n"); 792 } 793 } 794 // Handle the memory dependencies. 795 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 796 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 797 // There are no more unscheduled dependencies after decrementing, 798 // so we can put the dependent instruction into the ready list. 799 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 800 assert(!DepBundle->IsScheduled && 801 "already scheduled bundle gets ready"); 802 ReadyList.insert(DepBundle); 803 DEBUG(dbgs() << "SLP: gets ready (mem): " << *DepBundle << "\n"); 804 } 805 } 806 BundleMember = BundleMember->NextInBundle; 807 } 808 } 809 810 /// Put all instructions into the ReadyList which are ready for scheduling. 811 template <typename ReadyListType> 812 void initialFillReadyList(ReadyListType &ReadyList) { 813 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 814 ScheduleData *SD = getScheduleData(I); 815 if (SD->isSchedulingEntity() && SD->isReady()) { 816 ReadyList.insert(SD); 817 DEBUG(dbgs() << "SLP: initially in ready list: " << *I << "\n"); 818 } 819 } 820 } 821 822 /// Checks if a bundle of instructions can be scheduled, i.e. has no 823 /// cyclic dependencies. This is only a dry-run, no instructions are 824 /// actually moved at this stage. 825 bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP); 826 827 /// Un-bundles a group of instructions. 828 void cancelScheduling(ArrayRef<Value *> VL); 829 830 /// Extends the scheduling region so that V is inside the region. 831 /// \returns true if the region size is within the limit. 832 bool extendSchedulingRegion(Value *V); 833 834 /// Initialize the ScheduleData structures for new instructions in the 835 /// scheduling region. 836 void initScheduleData(Instruction *FromI, Instruction *ToI, 837 ScheduleData *PrevLoadStore, 838 ScheduleData *NextLoadStore); 839 840 /// Updates the dependency information of a bundle and of all instructions/ 841 /// bundles which depend on the original bundle. 842 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 843 BoUpSLP *SLP); 844 845 /// Sets all instruction in the scheduling region to un-scheduled. 846 void resetSchedule(); 847 848 BasicBlock *BB; 849 850 /// Simple memory allocation for ScheduleData. 851 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 852 853 /// The size of a ScheduleData array in ScheduleDataChunks. 854 int ChunkSize; 855 856 /// The allocator position in the current chunk, which is the last entry 857 /// of ScheduleDataChunks. 858 int ChunkPos; 859 860 /// Attaches ScheduleData to Instruction. 861 /// Note that the mapping survives during all vectorization iterations, i.e. 862 /// ScheduleData structures are recycled. 863 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 864 865 struct ReadyList : SmallVector<ScheduleData *, 8> { 866 void insert(ScheduleData *SD) { push_back(SD); } 867 }; 868 869 /// The ready-list for scheduling (only used for the dry-run). 870 ReadyList ReadyInsts; 871 872 /// The first instruction of the scheduling region. 873 Instruction *ScheduleStart; 874 875 /// The first instruction _after_ the scheduling region. 876 Instruction *ScheduleEnd; 877 878 /// The first memory accessing instruction in the scheduling region 879 /// (can be null). 880 ScheduleData *FirstLoadStoreInRegion; 881 882 /// The last memory accessing instruction in the scheduling region 883 /// (can be null). 884 ScheduleData *LastLoadStoreInRegion; 885 886 /// The current size of the scheduling region. 887 int ScheduleRegionSize; 888 889 /// The maximum size allowed for the scheduling region. 890 int ScheduleRegionSizeLimit; 891 892 /// The ID of the scheduling region. For a new vectorization iteration this 893 /// is incremented which "removes" all ScheduleData from the region. 894 int SchedulingRegionID; 895 }; 896 897 /// Attaches the BlockScheduling structures to basic blocks. 898 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 899 900 /// Performs the "real" scheduling. Done before vectorization is actually 901 /// performed in a basic block. 902 void scheduleBlock(BlockScheduling *BS); 903 904 /// List of users to ignore during scheduling and that don't need extracting. 905 ArrayRef<Value *> UserIgnoreList; 906 907 // Number of load-bundles, which contain consecutive loads. 908 int NumLoadsWantToKeepOrder; 909 910 // Number of load-bundles of size 2, which are consecutive loads if reversed. 911 int NumLoadsWantToChangeOrder; 912 913 // Analysis and block reference. 914 Function *F; 915 ScalarEvolution *SE; 916 TargetTransformInfo *TTI; 917 TargetLibraryInfo *TLI; 918 AliasAnalysis *AA; 919 LoopInfo *LI; 920 DominatorTree *DT; 921 /// Instruction builder to construct the vectorized tree. 922 IRBuilder<> Builder; 923 }; 924 925 #ifndef NDEBUG 926 raw_ostream &operator<<(raw_ostream &os, const BoUpSLP::ScheduleData &SD) { 927 SD.dump(os); 928 return os; 929 } 930 #endif 931 932 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 933 ArrayRef<Value *> UserIgnoreLst) { 934 deleteTree(); 935 UserIgnoreList = UserIgnoreLst; 936 if (!getSameType(Roots)) 937 return; 938 buildTree_rec(Roots, 0); 939 940 // Collect the values that we need to extract from the tree. 941 for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) { 942 TreeEntry *Entry = &VectorizableTree[EIdx]; 943 944 // For each lane: 945 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 946 Value *Scalar = Entry->Scalars[Lane]; 947 948 // No need to handle users of gathered values. 949 if (Entry->NeedToGather) 950 continue; 951 952 for (User *U : Scalar->users()) { 953 DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 954 955 Instruction *UserInst = dyn_cast<Instruction>(U); 956 if (!UserInst) 957 continue; 958 959 // Skip in-tree scalars that become vectors 960 if (ScalarToTreeEntry.count(U)) { 961 int Idx = ScalarToTreeEntry[U]; 962 TreeEntry *UseEntry = &VectorizableTree[Idx]; 963 Value *UseScalar = UseEntry->Scalars[0]; 964 // Some in-tree scalars will remain as scalar in vectorized 965 // instructions. If that is the case, the one in Lane 0 will 966 // be used. 967 if (UseScalar != U || 968 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 969 DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 970 << ".\n"); 971 assert(!VectorizableTree[Idx].NeedToGather && "Bad state"); 972 continue; 973 } 974 } 975 976 // Ignore users in the user ignore list. 977 if (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), UserInst) != 978 UserIgnoreList.end()) 979 continue; 980 981 DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " << 982 Lane << " from " << *Scalar << ".\n"); 983 ExternalUses.push_back(ExternalUser(Scalar, U, Lane)); 984 } 985 } 986 } 987 } 988 989 990 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { 991 bool SameTy = getSameType(VL); (void)SameTy; 992 bool isAltShuffle = false; 993 assert(SameTy && "Invalid types!"); 994 995 if (Depth == RecursionMaxDepth) { 996 DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 997 newTreeEntry(VL, false); 998 return; 999 } 1000 1001 // Don't handle vectors. 1002 if (VL[0]->getType()->isVectorTy()) { 1003 DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 1004 newTreeEntry(VL, false); 1005 return; 1006 } 1007 1008 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1009 if (SI->getValueOperand()->getType()->isVectorTy()) { 1010 DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 1011 newTreeEntry(VL, false); 1012 return; 1013 } 1014 unsigned Opcode = getSameOpcode(VL); 1015 1016 // Check that this shuffle vector refers to the alternate 1017 // sequence of opcodes. 1018 if (Opcode == Instruction::ShuffleVector) { 1019 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 1020 unsigned Op = I0->getOpcode(); 1021 if (Op != Instruction::ShuffleVector) 1022 isAltShuffle = true; 1023 } 1024 1025 // If all of the operands are identical or constant we have a simple solution. 1026 if (allConstant(VL) || isSplat(VL) || !getSameBlock(VL) || !Opcode) { 1027 DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 1028 newTreeEntry(VL, false); 1029 return; 1030 } 1031 1032 // We now know that this is a vector of instructions of the same type from 1033 // the same block. 1034 1035 // Don't vectorize ephemeral values. 1036 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1037 if (EphValues.count(VL[i])) { 1038 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1039 ") is ephemeral.\n"); 1040 newTreeEntry(VL, false); 1041 return; 1042 } 1043 } 1044 1045 // Check if this is a duplicate of another entry. 1046 if (ScalarToTreeEntry.count(VL[0])) { 1047 int Idx = ScalarToTreeEntry[VL[0]]; 1048 TreeEntry *E = &VectorizableTree[Idx]; 1049 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1050 DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n"); 1051 if (E->Scalars[i] != VL[i]) { 1052 DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 1053 newTreeEntry(VL, false); 1054 return; 1055 } 1056 } 1057 DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n"); 1058 return; 1059 } 1060 1061 // Check that none of the instructions in the bundle are already in the tree. 1062 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1063 if (ScalarToTreeEntry.count(VL[i])) { 1064 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << 1065 ") is already in tree.\n"); 1066 newTreeEntry(VL, false); 1067 return; 1068 } 1069 } 1070 1071 // If any of the scalars is marked as a value that needs to stay scalar then 1072 // we need to gather the scalars. 1073 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1074 if (MustGather.count(VL[i])) { 1075 DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 1076 newTreeEntry(VL, false); 1077 return; 1078 } 1079 } 1080 1081 // Check that all of the users of the scalars that we want to vectorize are 1082 // schedulable. 1083 Instruction *VL0 = cast<Instruction>(VL[0]); 1084 BasicBlock *BB = cast<Instruction>(VL0)->getParent(); 1085 1086 if (!DT->isReachableFromEntry(BB)) { 1087 // Don't go into unreachable blocks. They may contain instructions with 1088 // dependency cycles which confuse the final scheduling. 1089 DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 1090 newTreeEntry(VL, false); 1091 return; 1092 } 1093 1094 // Check that every instructions appears once in this bundle. 1095 for (unsigned i = 0, e = VL.size(); i < e; ++i) 1096 for (unsigned j = i+1; j < e; ++j) 1097 if (VL[i] == VL[j]) { 1098 DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 1099 newTreeEntry(VL, false); 1100 return; 1101 } 1102 1103 auto &BSRef = BlocksSchedules[BB]; 1104 if (!BSRef) { 1105 BSRef = llvm::make_unique<BlockScheduling>(BB); 1106 } 1107 BlockScheduling &BS = *BSRef.get(); 1108 1109 if (!BS.tryScheduleBundle(VL, this)) { 1110 DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 1111 assert((!BS.getScheduleData(VL[0]) || 1112 !BS.getScheduleData(VL[0])->isPartOfBundle()) && 1113 "tryScheduleBundle should cancelScheduling on failure"); 1114 newTreeEntry(VL, false); 1115 return; 1116 } 1117 DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 1118 1119 switch (Opcode) { 1120 case Instruction::PHI: { 1121 PHINode *PH = dyn_cast<PHINode>(VL0); 1122 1123 // Check for terminator values (e.g. invoke). 1124 for (unsigned j = 0; j < VL.size(); ++j) 1125 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1126 TerminatorInst *Term = dyn_cast<TerminatorInst>( 1127 cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i))); 1128 if (Term) { 1129 DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n"); 1130 BS.cancelScheduling(VL); 1131 newTreeEntry(VL, false); 1132 return; 1133 } 1134 } 1135 1136 newTreeEntry(VL, true); 1137 DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 1138 1139 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 1140 ValueList Operands; 1141 // Prepare the operand vector. 1142 for (unsigned j = 0; j < VL.size(); ++j) 1143 Operands.push_back(cast<PHINode>(VL[j])->getIncomingValueForBlock( 1144 PH->getIncomingBlock(i))); 1145 1146 buildTree_rec(Operands, Depth + 1); 1147 } 1148 return; 1149 } 1150 case Instruction::ExtractElement: { 1151 bool Reuse = CanReuseExtract(VL); 1152 if (Reuse) { 1153 DEBUG(dbgs() << "SLP: Reusing extract sequence.\n"); 1154 } else { 1155 BS.cancelScheduling(VL); 1156 } 1157 newTreeEntry(VL, Reuse); 1158 return; 1159 } 1160 case Instruction::Load: { 1161 // Check that a vectorized load would load the same memory as a scalar 1162 // load. 1163 // For example we don't want vectorize loads that are smaller than 8 bit. 1164 // Even though we have a packed struct {<i2, i2, i2, i2>} LLVM treats 1165 // loading/storing it as an i8 struct. If we vectorize loads/stores from 1166 // such a struct we read/write packed bits disagreeing with the 1167 // unvectorized version. 1168 const DataLayout &DL = F->getParent()->getDataLayout(); 1169 Type *ScalarTy = VL[0]->getType(); 1170 1171 if (DL.getTypeSizeInBits(ScalarTy) != 1172 DL.getTypeAllocSizeInBits(ScalarTy)) { 1173 BS.cancelScheduling(VL); 1174 newTreeEntry(VL, false); 1175 DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 1176 return; 1177 } 1178 // Check if the loads are consecutive or of we need to swizzle them. 1179 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { 1180 LoadInst *L = cast<LoadInst>(VL[i]); 1181 if (!L->isSimple()) { 1182 BS.cancelScheduling(VL); 1183 newTreeEntry(VL, false); 1184 DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 1185 return; 1186 } 1187 1188 if (!isConsecutiveAccess(VL[i], VL[i + 1], DL)) { 1189 if (VL.size() == 2 && isConsecutiveAccess(VL[1], VL[0], DL)) { 1190 ++NumLoadsWantToChangeOrder; 1191 } 1192 BS.cancelScheduling(VL); 1193 newTreeEntry(VL, false); 1194 DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 1195 return; 1196 } 1197 } 1198 ++NumLoadsWantToKeepOrder; 1199 newTreeEntry(VL, true); 1200 DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 1201 return; 1202 } 1203 case Instruction::ZExt: 1204 case Instruction::SExt: 1205 case Instruction::FPToUI: 1206 case Instruction::FPToSI: 1207 case Instruction::FPExt: 1208 case Instruction::PtrToInt: 1209 case Instruction::IntToPtr: 1210 case Instruction::SIToFP: 1211 case Instruction::UIToFP: 1212 case Instruction::Trunc: 1213 case Instruction::FPTrunc: 1214 case Instruction::BitCast: { 1215 Type *SrcTy = VL0->getOperand(0)->getType(); 1216 for (unsigned i = 0; i < VL.size(); ++i) { 1217 Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType(); 1218 if (Ty != SrcTy || !isValidElementType(Ty)) { 1219 BS.cancelScheduling(VL); 1220 newTreeEntry(VL, false); 1221 DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n"); 1222 return; 1223 } 1224 } 1225 newTreeEntry(VL, true); 1226 DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 1227 1228 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1229 ValueList Operands; 1230 // Prepare the operand vector. 1231 for (unsigned j = 0; j < VL.size(); ++j) 1232 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); 1233 1234 buildTree_rec(Operands, Depth+1); 1235 } 1236 return; 1237 } 1238 case Instruction::ICmp: 1239 case Instruction::FCmp: { 1240 // Check that all of the compares have the same predicate. 1241 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 1242 Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType(); 1243 for (unsigned i = 1, e = VL.size(); i < e; ++i) { 1244 CmpInst *Cmp = cast<CmpInst>(VL[i]); 1245 if (Cmp->getPredicate() != P0 || 1246 Cmp->getOperand(0)->getType() != ComparedTy) { 1247 BS.cancelScheduling(VL); 1248 newTreeEntry(VL, false); 1249 DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n"); 1250 return; 1251 } 1252 } 1253 1254 newTreeEntry(VL, true); 1255 DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 1256 1257 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1258 ValueList Operands; 1259 // Prepare the operand vector. 1260 for (unsigned j = 0; j < VL.size(); ++j) 1261 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); 1262 1263 buildTree_rec(Operands, Depth+1); 1264 } 1265 return; 1266 } 1267 case Instruction::Select: 1268 case Instruction::Add: 1269 case Instruction::FAdd: 1270 case Instruction::Sub: 1271 case Instruction::FSub: 1272 case Instruction::Mul: 1273 case Instruction::FMul: 1274 case Instruction::UDiv: 1275 case Instruction::SDiv: 1276 case Instruction::FDiv: 1277 case Instruction::URem: 1278 case Instruction::SRem: 1279 case Instruction::FRem: 1280 case Instruction::Shl: 1281 case Instruction::LShr: 1282 case Instruction::AShr: 1283 case Instruction::And: 1284 case Instruction::Or: 1285 case Instruction::Xor: { 1286 newTreeEntry(VL, true); 1287 DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); 1288 1289 // Sort operands of the instructions so that each side is more likely to 1290 // have the same opcode. 1291 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 1292 ValueList Left, Right; 1293 reorderInputsAccordingToOpcode(VL, Left, Right); 1294 buildTree_rec(Left, Depth + 1); 1295 buildTree_rec(Right, Depth + 1); 1296 return; 1297 } 1298 1299 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1300 ValueList Operands; 1301 // Prepare the operand vector. 1302 for (unsigned j = 0; j < VL.size(); ++j) 1303 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); 1304 1305 buildTree_rec(Operands, Depth+1); 1306 } 1307 return; 1308 } 1309 case Instruction::GetElementPtr: { 1310 // We don't combine GEPs with complicated (nested) indexing. 1311 for (unsigned j = 0; j < VL.size(); ++j) { 1312 if (cast<Instruction>(VL[j])->getNumOperands() != 2) { 1313 DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 1314 BS.cancelScheduling(VL); 1315 newTreeEntry(VL, false); 1316 return; 1317 } 1318 } 1319 1320 // We can't combine several GEPs into one vector if they operate on 1321 // different types. 1322 Type *Ty0 = cast<Instruction>(VL0)->getOperand(0)->getType(); 1323 for (unsigned j = 0; j < VL.size(); ++j) { 1324 Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType(); 1325 if (Ty0 != CurTy) { 1326 DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n"); 1327 BS.cancelScheduling(VL); 1328 newTreeEntry(VL, false); 1329 return; 1330 } 1331 } 1332 1333 // We don't combine GEPs with non-constant indexes. 1334 for (unsigned j = 0; j < VL.size(); ++j) { 1335 auto Op = cast<Instruction>(VL[j])->getOperand(1); 1336 if (!isa<ConstantInt>(Op)) { 1337 DEBUG( 1338 dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 1339 BS.cancelScheduling(VL); 1340 newTreeEntry(VL, false); 1341 return; 1342 } 1343 } 1344 1345 newTreeEntry(VL, true); 1346 DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 1347 for (unsigned i = 0, e = 2; i < e; ++i) { 1348 ValueList Operands; 1349 // Prepare the operand vector. 1350 for (unsigned j = 0; j < VL.size(); ++j) 1351 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); 1352 1353 buildTree_rec(Operands, Depth + 1); 1354 } 1355 return; 1356 } 1357 case Instruction::Store: { 1358 const DataLayout &DL = F->getParent()->getDataLayout(); 1359 // Check if the stores are consecutive or of we need to swizzle them. 1360 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) 1361 if (!isConsecutiveAccess(VL[i], VL[i + 1], DL)) { 1362 BS.cancelScheduling(VL); 1363 newTreeEntry(VL, false); 1364 DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 1365 return; 1366 } 1367 1368 newTreeEntry(VL, true); 1369 DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 1370 1371 ValueList Operands; 1372 for (unsigned j = 0; j < VL.size(); ++j) 1373 Operands.push_back(cast<Instruction>(VL[j])->getOperand(0)); 1374 1375 buildTree_rec(Operands, Depth + 1); 1376 return; 1377 } 1378 case Instruction::Call: { 1379 // Check if the calls are all to the same vectorizable intrinsic. 1380 CallInst *CI = cast<CallInst>(VL[0]); 1381 // Check if this is an Intrinsic call or something that can be 1382 // represented by an intrinsic call 1383 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 1384 if (!isTriviallyVectorizable(ID)) { 1385 BS.cancelScheduling(VL); 1386 newTreeEntry(VL, false); 1387 DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 1388 return; 1389 } 1390 Function *Int = CI->getCalledFunction(); 1391 Value *A1I = nullptr; 1392 if (hasVectorInstrinsicScalarOpd(ID, 1)) 1393 A1I = CI->getArgOperand(1); 1394 for (unsigned i = 1, e = VL.size(); i != e; ++i) { 1395 CallInst *CI2 = dyn_cast<CallInst>(VL[i]); 1396 if (!CI2 || CI2->getCalledFunction() != Int || 1397 getIntrinsicIDForCall(CI2, TLI) != ID) { 1398 BS.cancelScheduling(VL); 1399 newTreeEntry(VL, false); 1400 DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] 1401 << "\n"); 1402 return; 1403 } 1404 // ctlz,cttz and powi are special intrinsics whose second argument 1405 // should be same in order for them to be vectorized. 1406 if (hasVectorInstrinsicScalarOpd(ID, 1)) { 1407 Value *A1J = CI2->getArgOperand(1); 1408 if (A1I != A1J) { 1409 BS.cancelScheduling(VL); 1410 newTreeEntry(VL, false); 1411 DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 1412 << " argument "<< A1I<<"!=" << A1J 1413 << "\n"); 1414 return; 1415 } 1416 } 1417 } 1418 1419 newTreeEntry(VL, true); 1420 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 1421 ValueList Operands; 1422 // Prepare the operand vector. 1423 for (unsigned j = 0; j < VL.size(); ++j) { 1424 CallInst *CI2 = dyn_cast<CallInst>(VL[j]); 1425 Operands.push_back(CI2->getArgOperand(i)); 1426 } 1427 buildTree_rec(Operands, Depth + 1); 1428 } 1429 return; 1430 } 1431 case Instruction::ShuffleVector: { 1432 // If this is not an alternate sequence of opcode like add-sub 1433 // then do not vectorize this instruction. 1434 if (!isAltShuffle) { 1435 BS.cancelScheduling(VL); 1436 newTreeEntry(VL, false); 1437 DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 1438 return; 1439 } 1440 newTreeEntry(VL, true); 1441 DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 1442 1443 // Reorder operands if reordering would enable vectorization. 1444 if (isa<BinaryOperator>(VL0)) { 1445 ValueList Left, Right; 1446 reorderAltShuffleOperands(VL, Left, Right); 1447 buildTree_rec(Left, Depth + 1); 1448 buildTree_rec(Right, Depth + 1); 1449 return; 1450 } 1451 1452 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 1453 ValueList Operands; 1454 // Prepare the operand vector. 1455 for (unsigned j = 0; j < VL.size(); ++j) 1456 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i)); 1457 1458 buildTree_rec(Operands, Depth + 1); 1459 } 1460 return; 1461 } 1462 default: 1463 BS.cancelScheduling(VL); 1464 newTreeEntry(VL, false); 1465 DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 1466 return; 1467 } 1468 } 1469 1470 int BoUpSLP::getEntryCost(TreeEntry *E) { 1471 ArrayRef<Value*> VL = E->Scalars; 1472 1473 Type *ScalarTy = VL[0]->getType(); 1474 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1475 ScalarTy = SI->getValueOperand()->getType(); 1476 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1477 1478 if (E->NeedToGather) { 1479 if (allConstant(VL)) 1480 return 0; 1481 if (isSplat(VL)) { 1482 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); 1483 } 1484 return getGatherCost(E->Scalars); 1485 } 1486 unsigned Opcode = getSameOpcode(VL); 1487 assert(Opcode && getSameType(VL) && getSameBlock(VL) && "Invalid VL"); 1488 Instruction *VL0 = cast<Instruction>(VL[0]); 1489 switch (Opcode) { 1490 case Instruction::PHI: { 1491 return 0; 1492 } 1493 case Instruction::ExtractElement: { 1494 if (CanReuseExtract(VL)) { 1495 int DeadCost = 0; 1496 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 1497 ExtractElementInst *E = cast<ExtractElementInst>(VL[i]); 1498 if (E->hasOneUse()) 1499 // Take credit for instruction that will become dead. 1500 DeadCost += 1501 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); 1502 } 1503 return -DeadCost; 1504 } 1505 return getGatherCost(VecTy); 1506 } 1507 case Instruction::ZExt: 1508 case Instruction::SExt: 1509 case Instruction::FPToUI: 1510 case Instruction::FPToSI: 1511 case Instruction::FPExt: 1512 case Instruction::PtrToInt: 1513 case Instruction::IntToPtr: 1514 case Instruction::SIToFP: 1515 case Instruction::UIToFP: 1516 case Instruction::Trunc: 1517 case Instruction::FPTrunc: 1518 case Instruction::BitCast: { 1519 Type *SrcTy = VL0->getOperand(0)->getType(); 1520 1521 // Calculate the cost of this instruction. 1522 int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(), 1523 VL0->getType(), SrcTy); 1524 1525 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); 1526 int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy); 1527 return VecCost - ScalarCost; 1528 } 1529 case Instruction::FCmp: 1530 case Instruction::ICmp: 1531 case Instruction::Select: 1532 case Instruction::Add: 1533 case Instruction::FAdd: 1534 case Instruction::Sub: 1535 case Instruction::FSub: 1536 case Instruction::Mul: 1537 case Instruction::FMul: 1538 case Instruction::UDiv: 1539 case Instruction::SDiv: 1540 case Instruction::FDiv: 1541 case Instruction::URem: 1542 case Instruction::SRem: 1543 case Instruction::FRem: 1544 case Instruction::Shl: 1545 case Instruction::LShr: 1546 case Instruction::AShr: 1547 case Instruction::And: 1548 case Instruction::Or: 1549 case Instruction::Xor: { 1550 // Calculate the cost of this instruction. 1551 int ScalarCost = 0; 1552 int VecCost = 0; 1553 if (Opcode == Instruction::FCmp || Opcode == Instruction::ICmp || 1554 Opcode == Instruction::Select) { 1555 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); 1556 ScalarCost = VecTy->getNumElements() * 1557 TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty()); 1558 VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy); 1559 } else { 1560 // Certain instructions can be cheaper to vectorize if they have a 1561 // constant second vector operand. 1562 TargetTransformInfo::OperandValueKind Op1VK = 1563 TargetTransformInfo::OK_AnyValue; 1564 TargetTransformInfo::OperandValueKind Op2VK = 1565 TargetTransformInfo::OK_UniformConstantValue; 1566 TargetTransformInfo::OperandValueProperties Op1VP = 1567 TargetTransformInfo::OP_None; 1568 TargetTransformInfo::OperandValueProperties Op2VP = 1569 TargetTransformInfo::OP_None; 1570 1571 // If all operands are exactly the same ConstantInt then set the 1572 // operand kind to OK_UniformConstantValue. 1573 // If instead not all operands are constants, then set the operand kind 1574 // to OK_AnyValue. If all operands are constants but not the same, 1575 // then set the operand kind to OK_NonUniformConstantValue. 1576 ConstantInt *CInt = nullptr; 1577 for (unsigned i = 0; i < VL.size(); ++i) { 1578 const Instruction *I = cast<Instruction>(VL[i]); 1579 if (!isa<ConstantInt>(I->getOperand(1))) { 1580 Op2VK = TargetTransformInfo::OK_AnyValue; 1581 break; 1582 } 1583 if (i == 0) { 1584 CInt = cast<ConstantInt>(I->getOperand(1)); 1585 continue; 1586 } 1587 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && 1588 CInt != cast<ConstantInt>(I->getOperand(1))) 1589 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 1590 } 1591 // FIXME: Currently cost of model modification for division by 1592 // power of 2 is handled only for X86. Add support for other targets. 1593 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt && 1594 CInt->getValue().isPowerOf2()) 1595 Op2VP = TargetTransformInfo::OP_PowerOf2; 1596 1597 ScalarCost = VecTy->getNumElements() * 1598 TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, Op2VK, 1599 Op1VP, Op2VP); 1600 VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK, 1601 Op1VP, Op2VP); 1602 } 1603 return VecCost - ScalarCost; 1604 } 1605 case Instruction::GetElementPtr: { 1606 TargetTransformInfo::OperandValueKind Op1VK = 1607 TargetTransformInfo::OK_AnyValue; 1608 TargetTransformInfo::OperandValueKind Op2VK = 1609 TargetTransformInfo::OK_UniformConstantValue; 1610 1611 int ScalarCost = 1612 VecTy->getNumElements() * 1613 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); 1614 int VecCost = 1615 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); 1616 1617 return VecCost - ScalarCost; 1618 } 1619 case Instruction::Load: { 1620 // Cost of wide load - cost of scalar loads. 1621 int ScalarLdCost = VecTy->getNumElements() * 1622 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0); 1623 int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, 1, 0); 1624 return VecLdCost - ScalarLdCost; 1625 } 1626 case Instruction::Store: { 1627 // We know that we can merge the stores. Calculate the cost. 1628 int ScalarStCost = VecTy->getNumElements() * 1629 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0); 1630 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, VecTy, 1, 0); 1631 return VecStCost - ScalarStCost; 1632 } 1633 case Instruction::Call: { 1634 CallInst *CI = cast<CallInst>(VL0); 1635 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 1636 1637 // Calculate the cost of the scalar and vector calls. 1638 SmallVector<Type*, 4> ScalarTys, VecTys; 1639 for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) { 1640 ScalarTys.push_back(CI->getArgOperand(op)->getType()); 1641 VecTys.push_back(VectorType::get(CI->getArgOperand(op)->getType(), 1642 VecTy->getNumElements())); 1643 } 1644 1645 int ScalarCallCost = VecTy->getNumElements() * 1646 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys); 1647 1648 int VecCallCost = TTI->getIntrinsicInstrCost(ID, VecTy, VecTys); 1649 1650 DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost 1651 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 1652 << " for " << *CI << "\n"); 1653 1654 return VecCallCost - ScalarCallCost; 1655 } 1656 case Instruction::ShuffleVector: { 1657 TargetTransformInfo::OperandValueKind Op1VK = 1658 TargetTransformInfo::OK_AnyValue; 1659 TargetTransformInfo::OperandValueKind Op2VK = 1660 TargetTransformInfo::OK_AnyValue; 1661 int ScalarCost = 0; 1662 int VecCost = 0; 1663 for (unsigned i = 0; i < VL.size(); ++i) { 1664 Instruction *I = cast<Instruction>(VL[i]); 1665 if (!I) 1666 break; 1667 ScalarCost += 1668 TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK); 1669 } 1670 // VecCost is equal to sum of the cost of creating 2 vectors 1671 // and the cost of creating shuffle. 1672 Instruction *I0 = cast<Instruction>(VL[0]); 1673 VecCost = 1674 TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK); 1675 Instruction *I1 = cast<Instruction>(VL[1]); 1676 VecCost += 1677 TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK); 1678 VecCost += 1679 TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0); 1680 return VecCost - ScalarCost; 1681 } 1682 default: 1683 llvm_unreachable("Unknown instruction"); 1684 } 1685 } 1686 1687 bool BoUpSLP::isFullyVectorizableTinyTree() { 1688 DEBUG(dbgs() << "SLP: Check whether the tree with height " << 1689 VectorizableTree.size() << " is fully vectorizable .\n"); 1690 1691 // We only handle trees of height 2. 1692 if (VectorizableTree.size() != 2) 1693 return false; 1694 1695 // Handle splat and all-constants stores. 1696 if (!VectorizableTree[0].NeedToGather && 1697 (allConstant(VectorizableTree[1].Scalars) || 1698 isSplat(VectorizableTree[1].Scalars))) 1699 return true; 1700 1701 // Gathering cost would be too much for tiny trees. 1702 if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather) 1703 return false; 1704 1705 return true; 1706 } 1707 1708 int BoUpSLP::getSpillCost() { 1709 // Walk from the bottom of the tree to the top, tracking which values are 1710 // live. When we see a call instruction that is not part of our tree, 1711 // query TTI to see if there is a cost to keeping values live over it 1712 // (for example, if spills and fills are required). 1713 unsigned BundleWidth = VectorizableTree.front().Scalars.size(); 1714 int Cost = 0; 1715 1716 SmallPtrSet<Instruction*, 4> LiveValues; 1717 Instruction *PrevInst = nullptr; 1718 1719 for (unsigned N = 0; N < VectorizableTree.size(); ++N) { 1720 Instruction *Inst = dyn_cast<Instruction>(VectorizableTree[N].Scalars[0]); 1721 if (!Inst) 1722 continue; 1723 1724 if (!PrevInst) { 1725 PrevInst = Inst; 1726 continue; 1727 } 1728 1729 DEBUG( 1730 dbgs() << "SLP: #LV: " << LiveValues.size(); 1731 for (auto *X : LiveValues) 1732 dbgs() << " " << X->getName(); 1733 dbgs() << ", Looking at "; 1734 Inst->dump(); 1735 ); 1736 1737 // Update LiveValues. 1738 LiveValues.erase(PrevInst); 1739 for (auto &J : PrevInst->operands()) { 1740 if (isa<Instruction>(&*J) && ScalarToTreeEntry.count(&*J)) 1741 LiveValues.insert(cast<Instruction>(&*J)); 1742 } 1743 1744 // Now find the sequence of instructions between PrevInst and Inst. 1745 BasicBlock::reverse_iterator InstIt(Inst->getIterator()), 1746 PrevInstIt(PrevInst->getIterator()); 1747 --PrevInstIt; 1748 while (InstIt != PrevInstIt) { 1749 if (PrevInstIt == PrevInst->getParent()->rend()) { 1750 PrevInstIt = Inst->getParent()->rbegin(); 1751 continue; 1752 } 1753 1754 if (isa<CallInst>(&*PrevInstIt) && &*PrevInstIt != PrevInst) { 1755 SmallVector<Type*, 4> V; 1756 for (auto *II : LiveValues) 1757 V.push_back(VectorType::get(II->getType(), BundleWidth)); 1758 Cost += TTI->getCostOfKeepingLiveOverCall(V); 1759 } 1760 1761 ++PrevInstIt; 1762 } 1763 1764 PrevInst = Inst; 1765 } 1766 1767 DEBUG(dbgs() << "SLP: SpillCost=" << Cost << "\n"); 1768 return Cost; 1769 } 1770 1771 int BoUpSLP::getTreeCost() { 1772 int Cost = 0; 1773 DEBUG(dbgs() << "SLP: Calculating cost for tree of size " << 1774 VectorizableTree.size() << ".\n"); 1775 1776 // We only vectorize tiny trees if it is fully vectorizable. 1777 if (VectorizableTree.size() < 3 && !isFullyVectorizableTinyTree()) { 1778 if (VectorizableTree.empty()) { 1779 assert(!ExternalUses.size() && "We should not have any external users"); 1780 } 1781 return INT_MAX; 1782 } 1783 1784 unsigned BundleWidth = VectorizableTree[0].Scalars.size(); 1785 1786 for (unsigned i = 0, e = VectorizableTree.size(); i != e; ++i) { 1787 int C = getEntryCost(&VectorizableTree[i]); 1788 DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with " 1789 << *VectorizableTree[i].Scalars[0] << " .\n"); 1790 Cost += C; 1791 } 1792 1793 SmallSet<Value *, 16> ExtractCostCalculated; 1794 int ExtractCost = 0; 1795 for (UserList::iterator I = ExternalUses.begin(), E = ExternalUses.end(); 1796 I != E; ++I) { 1797 // We only add extract cost once for the same scalar. 1798 if (!ExtractCostCalculated.insert(I->Scalar).second) 1799 continue; 1800 1801 // Uses by ephemeral values are free (because the ephemeral value will be 1802 // removed prior to code generation, and so the extraction will be 1803 // removed as well). 1804 if (EphValues.count(I->User)) 1805 continue; 1806 1807 VectorType *VecTy = VectorType::get(I->Scalar->getType(), BundleWidth); 1808 ExtractCost += TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, 1809 I->Lane); 1810 } 1811 1812 Cost += getSpillCost(); 1813 1814 DEBUG(dbgs() << "SLP: Total Cost " << Cost + ExtractCost<< ".\n"); 1815 return Cost + ExtractCost; 1816 } 1817 1818 int BoUpSLP::getGatherCost(Type *Ty) { 1819 int Cost = 0; 1820 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) 1821 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); 1822 return Cost; 1823 } 1824 1825 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) { 1826 // Find the type of the operands in VL. 1827 Type *ScalarTy = VL[0]->getType(); 1828 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 1829 ScalarTy = SI->getValueOperand()->getType(); 1830 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 1831 // Find the cost of inserting/extracting values from the vector. 1832 return getGatherCost(VecTy); 1833 } 1834 1835 Value *BoUpSLP::getPointerOperand(Value *I) { 1836 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 1837 return LI->getPointerOperand(); 1838 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 1839 return SI->getPointerOperand(); 1840 return nullptr; 1841 } 1842 1843 unsigned BoUpSLP::getAddressSpaceOperand(Value *I) { 1844 if (LoadInst *L = dyn_cast<LoadInst>(I)) 1845 return L->getPointerAddressSpace(); 1846 if (StoreInst *S = dyn_cast<StoreInst>(I)) 1847 return S->getPointerAddressSpace(); 1848 return -1; 1849 } 1850 1851 bool BoUpSLP::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL) { 1852 Value *PtrA = getPointerOperand(A); 1853 Value *PtrB = getPointerOperand(B); 1854 unsigned ASA = getAddressSpaceOperand(A); 1855 unsigned ASB = getAddressSpaceOperand(B); 1856 1857 // Check that the address spaces match and that the pointers are valid. 1858 if (!PtrA || !PtrB || (ASA != ASB)) 1859 return false; 1860 1861 // Make sure that A and B are different pointers of the same type. 1862 if (PtrA == PtrB || PtrA->getType() != PtrB->getType()) 1863 return false; 1864 1865 unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA); 1866 Type *Ty = cast<PointerType>(PtrA->getType())->getElementType(); 1867 APInt Size(PtrBitWidth, DL.getTypeStoreSize(Ty)); 1868 1869 APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0); 1870 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 1871 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 1872 1873 APInt OffsetDelta = OffsetB - OffsetA; 1874 1875 // Check if they are based on the same pointer. That makes the offsets 1876 // sufficient. 1877 if (PtrA == PtrB) 1878 return OffsetDelta == Size; 1879 1880 // Compute the necessary base pointer delta to have the necessary final delta 1881 // equal to the size. 1882 APInt BaseDelta = Size - OffsetDelta; 1883 1884 // Otherwise compute the distance with SCEV between the base pointers. 1885 const SCEV *PtrSCEVA = SE->getSCEV(PtrA); 1886 const SCEV *PtrSCEVB = SE->getSCEV(PtrB); 1887 const SCEV *C = SE->getConstant(BaseDelta); 1888 const SCEV *X = SE->getAddExpr(PtrSCEVA, C); 1889 return X == PtrSCEVB; 1890 } 1891 1892 // Reorder commutative operations in alternate shuffle if the resulting vectors 1893 // are consecutive loads. This would allow us to vectorize the tree. 1894 // If we have something like- 1895 // load a[0] - load b[0] 1896 // load b[1] + load a[1] 1897 // load a[2] - load b[2] 1898 // load a[3] + load b[3] 1899 // Reordering the second load b[1] load a[1] would allow us to vectorize this 1900 // code. 1901 void BoUpSLP::reorderAltShuffleOperands(ArrayRef<Value *> VL, 1902 SmallVectorImpl<Value *> &Left, 1903 SmallVectorImpl<Value *> &Right) { 1904 const DataLayout &DL = F->getParent()->getDataLayout(); 1905 1906 // Push left and right operands of binary operation into Left and Right 1907 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 1908 Left.push_back(cast<Instruction>(VL[i])->getOperand(0)); 1909 Right.push_back(cast<Instruction>(VL[i])->getOperand(1)); 1910 } 1911 1912 // Reorder if we have a commutative operation and consecutive access 1913 // are on either side of the alternate instructions. 1914 for (unsigned j = 0; j < VL.size() - 1; ++j) { 1915 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 1916 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 1917 Instruction *VL1 = cast<Instruction>(VL[j]); 1918 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 1919 if (isConsecutiveAccess(L, L1, DL) && VL1->isCommutative()) { 1920 std::swap(Left[j], Right[j]); 1921 continue; 1922 } else if (isConsecutiveAccess(L, L1, DL) && VL2->isCommutative()) { 1923 std::swap(Left[j + 1], Right[j + 1]); 1924 continue; 1925 } 1926 // else unchanged 1927 } 1928 } 1929 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 1930 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 1931 Instruction *VL1 = cast<Instruction>(VL[j]); 1932 Instruction *VL2 = cast<Instruction>(VL[j + 1]); 1933 if (isConsecutiveAccess(L, L1, DL) && VL1->isCommutative()) { 1934 std::swap(Left[j], Right[j]); 1935 continue; 1936 } else if (isConsecutiveAccess(L, L1, DL) && VL2->isCommutative()) { 1937 std::swap(Left[j + 1], Right[j + 1]); 1938 continue; 1939 } 1940 // else unchanged 1941 } 1942 } 1943 } 1944 } 1945 1946 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1947 SmallVectorImpl<Value *> &Left, 1948 SmallVectorImpl<Value *> &Right) { 1949 1950 SmallVector<Value *, 16> OrigLeft, OrigRight; 1951 1952 bool AllSameOpcodeLeft = true; 1953 bool AllSameOpcodeRight = true; 1954 for (unsigned i = 0, e = VL.size(); i != e; ++i) { 1955 Instruction *I = cast<Instruction>(VL[i]); 1956 Value *VLeft = I->getOperand(0); 1957 Value *VRight = I->getOperand(1); 1958 1959 OrigLeft.push_back(VLeft); 1960 OrigRight.push_back(VRight); 1961 1962 Instruction *ILeft = dyn_cast<Instruction>(VLeft); 1963 Instruction *IRight = dyn_cast<Instruction>(VRight); 1964 1965 // Check whether all operands on one side have the same opcode. In this case 1966 // we want to preserve the original order and not make things worse by 1967 // reordering. 1968 if (i && AllSameOpcodeLeft && ILeft) { 1969 if (Instruction *PLeft = dyn_cast<Instruction>(OrigLeft[i - 1])) { 1970 if (PLeft->getOpcode() != ILeft->getOpcode()) 1971 AllSameOpcodeLeft = false; 1972 } else 1973 AllSameOpcodeLeft = false; 1974 } 1975 if (i && AllSameOpcodeRight && IRight) { 1976 if (Instruction *PRight = dyn_cast<Instruction>(OrigRight[i - 1])) { 1977 if (PRight->getOpcode() != IRight->getOpcode()) 1978 AllSameOpcodeRight = false; 1979 } else 1980 AllSameOpcodeRight = false; 1981 } 1982 1983 // Sort two opcodes. In the code below we try to preserve the ability to use 1984 // broadcast of values instead of individual inserts. 1985 // vl1 = load 1986 // vl2 = phi 1987 // vr1 = load 1988 // vr2 = vr2 1989 // = vl1 x vr1 1990 // = vl2 x vr2 1991 // If we just sorted according to opcode we would leave the first line in 1992 // tact but we would swap vl2 with vr2 because opcode(phi) > opcode(load). 1993 // = vl1 x vr1 1994 // = vr2 x vl2 1995 // Because vr2 and vr1 are from the same load we loose the opportunity of a 1996 // broadcast for the packed right side in the backend: we have [vr1, vl2] 1997 // instead of [vr1, vr2=vr1]. 1998 if (ILeft && IRight) { 1999 if (!i && ILeft->getOpcode() > IRight->getOpcode()) { 2000 Left.push_back(IRight); 2001 Right.push_back(ILeft); 2002 } else if (i && ILeft->getOpcode() > IRight->getOpcode() && 2003 Right[i - 1] != IRight) { 2004 // Try not to destroy a broad cast for no apparent benefit. 2005 Left.push_back(IRight); 2006 Right.push_back(ILeft); 2007 } else if (i && ILeft->getOpcode() == IRight->getOpcode() && 2008 Right[i - 1] == ILeft) { 2009 // Try preserve broadcasts. 2010 Left.push_back(IRight); 2011 Right.push_back(ILeft); 2012 } else if (i && ILeft->getOpcode() == IRight->getOpcode() && 2013 Left[i - 1] == IRight) { 2014 // Try preserve broadcasts. 2015 Left.push_back(IRight); 2016 Right.push_back(ILeft); 2017 } else { 2018 Left.push_back(ILeft); 2019 Right.push_back(IRight); 2020 } 2021 continue; 2022 } 2023 // One opcode, put the instruction on the right. 2024 if (ILeft) { 2025 Left.push_back(VRight); 2026 Right.push_back(ILeft); 2027 continue; 2028 } 2029 Left.push_back(VLeft); 2030 Right.push_back(VRight); 2031 } 2032 2033 bool LeftBroadcast = isSplat(Left); 2034 bool RightBroadcast = isSplat(Right); 2035 2036 // If operands end up being broadcast return this operand order. 2037 if (LeftBroadcast || RightBroadcast) 2038 return; 2039 2040 // Don't reorder if the operands where good to begin. 2041 if (AllSameOpcodeRight || AllSameOpcodeLeft) { 2042 Left = OrigLeft; 2043 Right = OrigRight; 2044 } 2045 2046 const DataLayout &DL = F->getParent()->getDataLayout(); 2047 2048 // Finally check if we can get longer vectorizable chain by reordering 2049 // without breaking the good operand order detected above. 2050 // E.g. If we have something like- 2051 // load a[0] load b[0] 2052 // load b[1] load a[1] 2053 // load a[2] load b[2] 2054 // load a[3] load b[3] 2055 // Reordering the second load b[1] load a[1] would allow us to vectorize 2056 // this code and we still retain AllSameOpcode property. 2057 // FIXME: This load reordering might break AllSameOpcode in some rare cases 2058 // such as- 2059 // add a[0],c[0] load b[0] 2060 // add a[1],c[2] load b[1] 2061 // b[2] load b[2] 2062 // add a[3],c[3] load b[3] 2063 for (unsigned j = 0; j < VL.size() - 1; ++j) { 2064 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { 2065 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { 2066 if (isConsecutiveAccess(L, L1, DL)) { 2067 std::swap(Left[j + 1], Right[j + 1]); 2068 continue; 2069 } 2070 } 2071 } 2072 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { 2073 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { 2074 if (isConsecutiveAccess(L, L1, DL)) { 2075 std::swap(Left[j + 1], Right[j + 1]); 2076 continue; 2077 } 2078 } 2079 } 2080 // else unchanged 2081 } 2082 } 2083 2084 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) { 2085 Instruction *VL0 = cast<Instruction>(VL[0]); 2086 BasicBlock::iterator NextInst(VL0); 2087 ++NextInst; 2088 Builder.SetInsertPoint(VL0->getParent(), NextInst); 2089 Builder.SetCurrentDebugLocation(VL0->getDebugLoc()); 2090 } 2091 2092 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { 2093 Value *Vec = UndefValue::get(Ty); 2094 // Generate the 'InsertElement' instruction. 2095 for (unsigned i = 0; i < Ty->getNumElements(); ++i) { 2096 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); 2097 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { 2098 GatherSeq.insert(Insrt); 2099 CSEBlocks.insert(Insrt->getParent()); 2100 2101 // Add to our 'need-to-extract' list. 2102 if (ScalarToTreeEntry.count(VL[i])) { 2103 int Idx = ScalarToTreeEntry[VL[i]]; 2104 TreeEntry *E = &VectorizableTree[Idx]; 2105 // Find which lane we need to extract. 2106 int FoundLane = -1; 2107 for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) { 2108 // Is this the lane of the scalar that we are looking for ? 2109 if (E->Scalars[Lane] == VL[i]) { 2110 FoundLane = Lane; 2111 break; 2112 } 2113 } 2114 assert(FoundLane >= 0 && "Could not find the correct lane"); 2115 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); 2116 } 2117 } 2118 } 2119 2120 return Vec; 2121 } 2122 2123 Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) const { 2124 SmallDenseMap<Value*, int>::const_iterator Entry 2125 = ScalarToTreeEntry.find(VL[0]); 2126 if (Entry != ScalarToTreeEntry.end()) { 2127 int Idx = Entry->second; 2128 const TreeEntry *En = &VectorizableTree[Idx]; 2129 if (En->isSame(VL) && En->VectorizedValue) 2130 return En->VectorizedValue; 2131 } 2132 return nullptr; 2133 } 2134 2135 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 2136 if (ScalarToTreeEntry.count(VL[0])) { 2137 int Idx = ScalarToTreeEntry[VL[0]]; 2138 TreeEntry *E = &VectorizableTree[Idx]; 2139 if (E->isSame(VL)) 2140 return vectorizeTree(E); 2141 } 2142 2143 Type *ScalarTy = VL[0]->getType(); 2144 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 2145 ScalarTy = SI->getValueOperand()->getType(); 2146 VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); 2147 2148 return Gather(VL, VecTy); 2149 } 2150 2151 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 2152 IRBuilder<>::InsertPointGuard Guard(Builder); 2153 2154 if (E->VectorizedValue) { 2155 DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 2156 return E->VectorizedValue; 2157 } 2158 2159 Instruction *VL0 = cast<Instruction>(E->Scalars[0]); 2160 Type *ScalarTy = VL0->getType(); 2161 if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) 2162 ScalarTy = SI->getValueOperand()->getType(); 2163 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); 2164 2165 if (E->NeedToGather) { 2166 setInsertPointAfterBundle(E->Scalars); 2167 return Gather(E->Scalars, VecTy); 2168 } 2169 2170 const DataLayout &DL = F->getParent()->getDataLayout(); 2171 unsigned Opcode = getSameOpcode(E->Scalars); 2172 2173 switch (Opcode) { 2174 case Instruction::PHI: { 2175 PHINode *PH = dyn_cast<PHINode>(VL0); 2176 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 2177 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 2178 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 2179 E->VectorizedValue = NewPhi; 2180 2181 // PHINodes may have multiple entries from the same block. We want to 2182 // visit every block once. 2183 SmallSet<BasicBlock*, 4> VisitedBBs; 2184 2185 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 2186 ValueList Operands; 2187 BasicBlock *IBB = PH->getIncomingBlock(i); 2188 2189 if (!VisitedBBs.insert(IBB).second) { 2190 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 2191 continue; 2192 } 2193 2194 // Prepare the operand vector. 2195 for (Value *V : E->Scalars) 2196 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB)); 2197 2198 Builder.SetInsertPoint(IBB->getTerminator()); 2199 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 2200 Value *Vec = vectorizeTree(Operands); 2201 NewPhi->addIncoming(Vec, IBB); 2202 } 2203 2204 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 2205 "Invalid number of incoming values"); 2206 return NewPhi; 2207 } 2208 2209 case Instruction::ExtractElement: { 2210 if (CanReuseExtract(E->Scalars)) { 2211 Value *V = VL0->getOperand(0); 2212 E->VectorizedValue = V; 2213 return V; 2214 } 2215 return Gather(E->Scalars, VecTy); 2216 } 2217 case Instruction::ZExt: 2218 case Instruction::SExt: 2219 case Instruction::FPToUI: 2220 case Instruction::FPToSI: 2221 case Instruction::FPExt: 2222 case Instruction::PtrToInt: 2223 case Instruction::IntToPtr: 2224 case Instruction::SIToFP: 2225 case Instruction::UIToFP: 2226 case Instruction::Trunc: 2227 case Instruction::FPTrunc: 2228 case Instruction::BitCast: { 2229 ValueList INVL; 2230 for (Value *V : E->Scalars) 2231 INVL.push_back(cast<Instruction>(V)->getOperand(0)); 2232 2233 setInsertPointAfterBundle(E->Scalars); 2234 2235 Value *InVec = vectorizeTree(INVL); 2236 2237 if (Value *V = alreadyVectorized(E->Scalars)) 2238 return V; 2239 2240 CastInst *CI = dyn_cast<CastInst>(VL0); 2241 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 2242 E->VectorizedValue = V; 2243 ++NumVectorInstructions; 2244 return V; 2245 } 2246 case Instruction::FCmp: 2247 case Instruction::ICmp: { 2248 ValueList LHSV, RHSV; 2249 for (Value *V : E->Scalars) { 2250 LHSV.push_back(cast<Instruction>(V)->getOperand(0)); 2251 RHSV.push_back(cast<Instruction>(V)->getOperand(1)); 2252 } 2253 2254 setInsertPointAfterBundle(E->Scalars); 2255 2256 Value *L = vectorizeTree(LHSV); 2257 Value *R = vectorizeTree(RHSV); 2258 2259 if (Value *V = alreadyVectorized(E->Scalars)) 2260 return V; 2261 2262 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 2263 Value *V; 2264 if (Opcode == Instruction::FCmp) 2265 V = Builder.CreateFCmp(P0, L, R); 2266 else 2267 V = Builder.CreateICmp(P0, L, R); 2268 2269 E->VectorizedValue = V; 2270 ++NumVectorInstructions; 2271 return V; 2272 } 2273 case Instruction::Select: { 2274 ValueList TrueVec, FalseVec, CondVec; 2275 for (Value *V : E->Scalars) { 2276 CondVec.push_back(cast<Instruction>(V)->getOperand(0)); 2277 TrueVec.push_back(cast<Instruction>(V)->getOperand(1)); 2278 FalseVec.push_back(cast<Instruction>(V)->getOperand(2)); 2279 } 2280 2281 setInsertPointAfterBundle(E->Scalars); 2282 2283 Value *Cond = vectorizeTree(CondVec); 2284 Value *True = vectorizeTree(TrueVec); 2285 Value *False = vectorizeTree(FalseVec); 2286 2287 if (Value *V = alreadyVectorized(E->Scalars)) 2288 return V; 2289 2290 Value *V = Builder.CreateSelect(Cond, True, False); 2291 E->VectorizedValue = V; 2292 ++NumVectorInstructions; 2293 return V; 2294 } 2295 case Instruction::Add: 2296 case Instruction::FAdd: 2297 case Instruction::Sub: 2298 case Instruction::FSub: 2299 case Instruction::Mul: 2300 case Instruction::FMul: 2301 case Instruction::UDiv: 2302 case Instruction::SDiv: 2303 case Instruction::FDiv: 2304 case Instruction::URem: 2305 case Instruction::SRem: 2306 case Instruction::FRem: 2307 case Instruction::Shl: 2308 case Instruction::LShr: 2309 case Instruction::AShr: 2310 case Instruction::And: 2311 case Instruction::Or: 2312 case Instruction::Xor: { 2313 ValueList LHSVL, RHSVL; 2314 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) 2315 reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL); 2316 else 2317 for (Value *V : E->Scalars) { 2318 LHSVL.push_back(cast<Instruction>(V)->getOperand(0)); 2319 RHSVL.push_back(cast<Instruction>(V)->getOperand(1)); 2320 } 2321 2322 setInsertPointAfterBundle(E->Scalars); 2323 2324 Value *LHS = vectorizeTree(LHSVL); 2325 Value *RHS = vectorizeTree(RHSVL); 2326 2327 if (LHS == RHS && isa<Instruction>(LHS)) { 2328 assert((VL0->getOperand(0) == VL0->getOperand(1)) && "Invalid order"); 2329 } 2330 2331 if (Value *V = alreadyVectorized(E->Scalars)) 2332 return V; 2333 2334 BinaryOperator *BinOp = cast<BinaryOperator>(VL0); 2335 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS); 2336 E->VectorizedValue = V; 2337 propagateIRFlags(E->VectorizedValue, E->Scalars); 2338 ++NumVectorInstructions; 2339 2340 if (Instruction *I = dyn_cast<Instruction>(V)) 2341 return propagateMetadata(I, E->Scalars); 2342 2343 return V; 2344 } 2345 case Instruction::Load: { 2346 // Loads are inserted at the head of the tree because we don't want to 2347 // sink them all the way down past store instructions. 2348 setInsertPointAfterBundle(E->Scalars); 2349 2350 LoadInst *LI = cast<LoadInst>(VL0); 2351 Type *ScalarLoadTy = LI->getType(); 2352 unsigned AS = LI->getPointerAddressSpace(); 2353 2354 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), 2355 VecTy->getPointerTo(AS)); 2356 2357 // The pointer operand uses an in-tree scalar so we add the new BitCast to 2358 // ExternalUses list to make sure that an extract will be generated in the 2359 // future. 2360 if (ScalarToTreeEntry.count(LI->getPointerOperand())) 2361 ExternalUses.push_back( 2362 ExternalUser(LI->getPointerOperand(), cast<User>(VecPtr), 0)); 2363 2364 unsigned Alignment = LI->getAlignment(); 2365 LI = Builder.CreateLoad(VecPtr); 2366 if (!Alignment) { 2367 Alignment = DL.getABITypeAlignment(ScalarLoadTy); 2368 } 2369 LI->setAlignment(Alignment); 2370 E->VectorizedValue = LI; 2371 ++NumVectorInstructions; 2372 return propagateMetadata(LI, E->Scalars); 2373 } 2374 case Instruction::Store: { 2375 StoreInst *SI = cast<StoreInst>(VL0); 2376 unsigned Alignment = SI->getAlignment(); 2377 unsigned AS = SI->getPointerAddressSpace(); 2378 2379 ValueList ValueOp; 2380 for (Value *V : E->Scalars) 2381 ValueOp.push_back(cast<StoreInst>(V)->getValueOperand()); 2382 2383 setInsertPointAfterBundle(E->Scalars); 2384 2385 Value *VecValue = vectorizeTree(ValueOp); 2386 Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(), 2387 VecTy->getPointerTo(AS)); 2388 StoreInst *S = Builder.CreateStore(VecValue, VecPtr); 2389 2390 // The pointer operand uses an in-tree scalar so we add the new BitCast to 2391 // ExternalUses list to make sure that an extract will be generated in the 2392 // future. 2393 if (ScalarToTreeEntry.count(SI->getPointerOperand())) 2394 ExternalUses.push_back( 2395 ExternalUser(SI->getPointerOperand(), cast<User>(VecPtr), 0)); 2396 2397 if (!Alignment) { 2398 Alignment = DL.getABITypeAlignment(SI->getValueOperand()->getType()); 2399 } 2400 S->setAlignment(Alignment); 2401 E->VectorizedValue = S; 2402 ++NumVectorInstructions; 2403 return propagateMetadata(S, E->Scalars); 2404 } 2405 case Instruction::GetElementPtr: { 2406 setInsertPointAfterBundle(E->Scalars); 2407 2408 ValueList Op0VL; 2409 for (Value *V : E->Scalars) 2410 Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0)); 2411 2412 Value *Op0 = vectorizeTree(Op0VL); 2413 2414 std::vector<Value *> OpVecs; 2415 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 2416 ++j) { 2417 ValueList OpVL; 2418 for (Value *V : E->Scalars) 2419 OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j)); 2420 2421 Value *OpVec = vectorizeTree(OpVL); 2422 OpVecs.push_back(OpVec); 2423 } 2424 2425 Value *V = Builder.CreateGEP( 2426 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 2427 E->VectorizedValue = V; 2428 ++NumVectorInstructions; 2429 2430 if (Instruction *I = dyn_cast<Instruction>(V)) 2431 return propagateMetadata(I, E->Scalars); 2432 2433 return V; 2434 } 2435 case Instruction::Call: { 2436 CallInst *CI = cast<CallInst>(VL0); 2437 setInsertPointAfterBundle(E->Scalars); 2438 Function *FI; 2439 Intrinsic::ID IID = Intrinsic::not_intrinsic; 2440 Value *ScalarArg = nullptr; 2441 if (CI && (FI = CI->getCalledFunction())) { 2442 IID = FI->getIntrinsicID(); 2443 } 2444 std::vector<Value *> OpVecs; 2445 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 2446 ValueList OpVL; 2447 // ctlz,cttz and powi are special intrinsics whose second argument is 2448 // a scalar. This argument should not be vectorized. 2449 if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) { 2450 CallInst *CEI = cast<CallInst>(E->Scalars[0]); 2451 ScalarArg = CEI->getArgOperand(j); 2452 OpVecs.push_back(CEI->getArgOperand(j)); 2453 continue; 2454 } 2455 for (Value *V : E->Scalars) { 2456 CallInst *CEI = cast<CallInst>(V); 2457 OpVL.push_back(CEI->getArgOperand(j)); 2458 } 2459 2460 Value *OpVec = vectorizeTree(OpVL); 2461 DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 2462 OpVecs.push_back(OpVec); 2463 } 2464 2465 Module *M = F->getParent(); 2466 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 2467 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; 2468 Function *CF = Intrinsic::getDeclaration(M, ID, Tys); 2469 Value *V = Builder.CreateCall(CF, OpVecs); 2470 2471 // The scalar argument uses an in-tree scalar so we add the new vectorized 2472 // call to ExternalUses list to make sure that an extract will be 2473 // generated in the future. 2474 if (ScalarArg && ScalarToTreeEntry.count(ScalarArg)) 2475 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 2476 2477 E->VectorizedValue = V; 2478 ++NumVectorInstructions; 2479 return V; 2480 } 2481 case Instruction::ShuffleVector: { 2482 ValueList LHSVL, RHSVL; 2483 assert(isa<BinaryOperator>(VL0) && "Invalid Shuffle Vector Operand"); 2484 reorderAltShuffleOperands(E->Scalars, LHSVL, RHSVL); 2485 setInsertPointAfterBundle(E->Scalars); 2486 2487 Value *LHS = vectorizeTree(LHSVL); 2488 Value *RHS = vectorizeTree(RHSVL); 2489 2490 if (Value *V = alreadyVectorized(E->Scalars)) 2491 return V; 2492 2493 // Create a vector of LHS op1 RHS 2494 BinaryOperator *BinOp0 = cast<BinaryOperator>(VL0); 2495 Value *V0 = Builder.CreateBinOp(BinOp0->getOpcode(), LHS, RHS); 2496 2497 // Create a vector of LHS op2 RHS 2498 Instruction *VL1 = cast<Instruction>(E->Scalars[1]); 2499 BinaryOperator *BinOp1 = cast<BinaryOperator>(VL1); 2500 Value *V1 = Builder.CreateBinOp(BinOp1->getOpcode(), LHS, RHS); 2501 2502 // Create shuffle to take alternate operations from the vector. 2503 // Also, gather up odd and even scalar ops to propagate IR flags to 2504 // each vector operation. 2505 ValueList OddScalars, EvenScalars; 2506 unsigned e = E->Scalars.size(); 2507 SmallVector<Constant *, 8> Mask(e); 2508 for (unsigned i = 0; i < e; ++i) { 2509 if (i & 1) { 2510 Mask[i] = Builder.getInt32(e + i); 2511 OddScalars.push_back(E->Scalars[i]); 2512 } else { 2513 Mask[i] = Builder.getInt32(i); 2514 EvenScalars.push_back(E->Scalars[i]); 2515 } 2516 } 2517 2518 Value *ShuffleMask = ConstantVector::get(Mask); 2519 propagateIRFlags(V0, EvenScalars); 2520 propagateIRFlags(V1, OddScalars); 2521 2522 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); 2523 E->VectorizedValue = V; 2524 ++NumVectorInstructions; 2525 if (Instruction *I = dyn_cast<Instruction>(V)) 2526 return propagateMetadata(I, E->Scalars); 2527 2528 return V; 2529 } 2530 default: 2531 llvm_unreachable("unknown inst"); 2532 } 2533 return nullptr; 2534 } 2535 2536 Value *BoUpSLP::vectorizeTree() { 2537 2538 // All blocks must be scheduled before any instructions are inserted. 2539 for (auto &BSIter : BlocksSchedules) { 2540 scheduleBlock(BSIter.second.get()); 2541 } 2542 2543 Builder.SetInsertPoint(&F->getEntryBlock().front()); 2544 vectorizeTree(&VectorizableTree[0]); 2545 2546 DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n"); 2547 2548 // Extract all of the elements with the external uses. 2549 for (UserList::iterator it = ExternalUses.begin(), e = ExternalUses.end(); 2550 it != e; ++it) { 2551 Value *Scalar = it->Scalar; 2552 llvm::User *User = it->User; 2553 2554 // Skip users that we already RAUW. This happens when one instruction 2555 // has multiple uses of the same value. 2556 if (std::find(Scalar->user_begin(), Scalar->user_end(), User) == 2557 Scalar->user_end()) 2558 continue; 2559 assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar"); 2560 2561 int Idx = ScalarToTreeEntry[Scalar]; 2562 TreeEntry *E = &VectorizableTree[Idx]; 2563 assert(!E->NeedToGather && "Extracting from a gather list"); 2564 2565 Value *Vec = E->VectorizedValue; 2566 assert(Vec && "Can't find vectorizable value"); 2567 2568 Value *Lane = Builder.getInt32(it->Lane); 2569 // Generate extracts for out-of-tree users. 2570 // Find the insertion point for the extractelement lane. 2571 if (isa<Instruction>(Vec)){ 2572 if (PHINode *PH = dyn_cast<PHINode>(User)) { 2573 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 2574 if (PH->getIncomingValue(i) == Scalar) { 2575 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 2576 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2577 CSEBlocks.insert(PH->getIncomingBlock(i)); 2578 PH->setOperand(i, Ex); 2579 } 2580 } 2581 } else { 2582 Builder.SetInsertPoint(cast<Instruction>(User)); 2583 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2584 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 2585 User->replaceUsesOfWith(Scalar, Ex); 2586 } 2587 } else { 2588 Builder.SetInsertPoint(&F->getEntryBlock().front()); 2589 Value *Ex = Builder.CreateExtractElement(Vec, Lane); 2590 CSEBlocks.insert(&F->getEntryBlock()); 2591 User->replaceUsesOfWith(Scalar, Ex); 2592 } 2593 2594 DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 2595 } 2596 2597 // For each vectorized value: 2598 for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) { 2599 TreeEntry *Entry = &VectorizableTree[EIdx]; 2600 2601 // For each lane: 2602 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2603 Value *Scalar = Entry->Scalars[Lane]; 2604 // No need to handle users of gathered values. 2605 if (Entry->NeedToGather) 2606 continue; 2607 2608 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 2609 2610 Type *Ty = Scalar->getType(); 2611 if (!Ty->isVoidTy()) { 2612 #ifndef NDEBUG 2613 for (User *U : Scalar->users()) { 2614 DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 2615 2616 assert((ScalarToTreeEntry.count(U) || 2617 // It is legal to replace users in the ignorelist by undef. 2618 (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), U) != 2619 UserIgnoreList.end())) && 2620 "Replacing out-of-tree value with undef"); 2621 } 2622 #endif 2623 Value *Undef = UndefValue::get(Ty); 2624 Scalar->replaceAllUsesWith(Undef); 2625 } 2626 DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 2627 eraseInstruction(cast<Instruction>(Scalar)); 2628 } 2629 } 2630 2631 Builder.ClearInsertionPoint(); 2632 2633 return VectorizableTree[0].VectorizedValue; 2634 } 2635 2636 void BoUpSLP::optimizeGatherSequence() { 2637 DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 2638 << " gather sequences instructions.\n"); 2639 // LICM InsertElementInst sequences. 2640 for (SetVector<Instruction *>::iterator it = GatherSeq.begin(), 2641 e = GatherSeq.end(); it != e; ++it) { 2642 InsertElementInst *Insert = dyn_cast<InsertElementInst>(*it); 2643 2644 if (!Insert) 2645 continue; 2646 2647 // Check if this block is inside a loop. 2648 Loop *L = LI->getLoopFor(Insert->getParent()); 2649 if (!L) 2650 continue; 2651 2652 // Check if it has a preheader. 2653 BasicBlock *PreHeader = L->getLoopPreheader(); 2654 if (!PreHeader) 2655 continue; 2656 2657 // If the vector or the element that we insert into it are 2658 // instructions that are defined in this basic block then we can't 2659 // hoist this instruction. 2660 Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0)); 2661 Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1)); 2662 if (CurrVec && L->contains(CurrVec)) 2663 continue; 2664 if (NewElem && L->contains(NewElem)) 2665 continue; 2666 2667 // We can hoist this instruction. Move it to the pre-header. 2668 Insert->moveBefore(PreHeader->getTerminator()); 2669 } 2670 2671 // Make a list of all reachable blocks in our CSE queue. 2672 SmallVector<const DomTreeNode *, 8> CSEWorkList; 2673 CSEWorkList.reserve(CSEBlocks.size()); 2674 for (BasicBlock *BB : CSEBlocks) 2675 if (DomTreeNode *N = DT->getNode(BB)) { 2676 assert(DT->isReachableFromEntry(N)); 2677 CSEWorkList.push_back(N); 2678 } 2679 2680 // Sort blocks by domination. This ensures we visit a block after all blocks 2681 // dominating it are visited. 2682 std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(), 2683 [this](const DomTreeNode *A, const DomTreeNode *B) { 2684 return DT->properlyDominates(A, B); 2685 }); 2686 2687 // Perform O(N^2) search over the gather sequences and merge identical 2688 // instructions. TODO: We can further optimize this scan if we split the 2689 // instructions into different buckets based on the insert lane. 2690 SmallVector<Instruction *, 16> Visited; 2691 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 2692 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 2693 "Worklist not sorted properly!"); 2694 BasicBlock *BB = (*I)->getBlock(); 2695 // For all instructions in blocks containing gather sequences: 2696 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 2697 Instruction *In = &*it++; 2698 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 2699 continue; 2700 2701 // Check if we can replace this instruction with any of the 2702 // visited instructions. 2703 for (SmallVectorImpl<Instruction *>::iterator v = Visited.begin(), 2704 ve = Visited.end(); 2705 v != ve; ++v) { 2706 if (In->isIdenticalTo(*v) && 2707 DT->dominates((*v)->getParent(), In->getParent())) { 2708 In->replaceAllUsesWith(*v); 2709 eraseInstruction(In); 2710 In = nullptr; 2711 break; 2712 } 2713 } 2714 if (In) { 2715 assert(std::find(Visited.begin(), Visited.end(), In) == Visited.end()); 2716 Visited.push_back(In); 2717 } 2718 } 2719 } 2720 CSEBlocks.clear(); 2721 GatherSeq.clear(); 2722 } 2723 2724 // Groups the instructions to a bundle (which is then a single scheduling entity) 2725 // and schedules instructions until the bundle gets ready. 2726 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, 2727 BoUpSLP *SLP) { 2728 if (isa<PHINode>(VL[0])) 2729 return true; 2730 2731 // Initialize the instruction bundle. 2732 Instruction *OldScheduleEnd = ScheduleEnd; 2733 ScheduleData *PrevInBundle = nullptr; 2734 ScheduleData *Bundle = nullptr; 2735 bool ReSchedule = false; 2736 DEBUG(dbgs() << "SLP: bundle: " << *VL[0] << "\n"); 2737 2738 // Make sure that the scheduling region contains all 2739 // instructions of the bundle. 2740 for (Value *V : VL) { 2741 if (!extendSchedulingRegion(V)) 2742 return false; 2743 } 2744 2745 for (Value *V : VL) { 2746 ScheduleData *BundleMember = getScheduleData(V); 2747 assert(BundleMember && 2748 "no ScheduleData for bundle member (maybe not in same basic block)"); 2749 if (BundleMember->IsScheduled) { 2750 // A bundle member was scheduled as single instruction before and now 2751 // needs to be scheduled as part of the bundle. We just get rid of the 2752 // existing schedule. 2753 DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 2754 << " was already scheduled\n"); 2755 ReSchedule = true; 2756 } 2757 assert(BundleMember->isSchedulingEntity() && 2758 "bundle member already part of other bundle"); 2759 if (PrevInBundle) { 2760 PrevInBundle->NextInBundle = BundleMember; 2761 } else { 2762 Bundle = BundleMember; 2763 } 2764 BundleMember->UnscheduledDepsInBundle = 0; 2765 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 2766 2767 // Group the instructions to a bundle. 2768 BundleMember->FirstInBundle = Bundle; 2769 PrevInBundle = BundleMember; 2770 } 2771 if (ScheduleEnd != OldScheduleEnd) { 2772 // The scheduling region got new instructions at the lower end (or it is a 2773 // new region for the first bundle). This makes it necessary to 2774 // recalculate all dependencies. 2775 // It is seldom that this needs to be done a second time after adding the 2776 // initial bundle to the region. 2777 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2778 ScheduleData *SD = getScheduleData(I); 2779 SD->clearDependencies(); 2780 } 2781 ReSchedule = true; 2782 } 2783 if (ReSchedule) { 2784 resetSchedule(); 2785 initialFillReadyList(ReadyInsts); 2786 } 2787 2788 DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " 2789 << BB->getName() << "\n"); 2790 2791 calculateDependencies(Bundle, true, SLP); 2792 2793 // Now try to schedule the new bundle. As soon as the bundle is "ready" it 2794 // means that there are no cyclic dependencies and we can schedule it. 2795 // Note that's important that we don't "schedule" the bundle yet (see 2796 // cancelScheduling). 2797 while (!Bundle->isReady() && !ReadyInsts.empty()) { 2798 2799 ScheduleData *pickedSD = ReadyInsts.back(); 2800 ReadyInsts.pop_back(); 2801 2802 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { 2803 schedule(pickedSD, ReadyInsts); 2804 } 2805 } 2806 if (!Bundle->isReady()) { 2807 cancelScheduling(VL); 2808 return false; 2809 } 2810 return true; 2811 } 2812 2813 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL) { 2814 if (isa<PHINode>(VL[0])) 2815 return; 2816 2817 ScheduleData *Bundle = getScheduleData(VL[0]); 2818 DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 2819 assert(!Bundle->IsScheduled && 2820 "Can't cancel bundle which is already scheduled"); 2821 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 2822 "tried to unbundle something which is not a bundle"); 2823 2824 // Un-bundle: make single instructions out of the bundle. 2825 ScheduleData *BundleMember = Bundle; 2826 while (BundleMember) { 2827 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 2828 BundleMember->FirstInBundle = BundleMember; 2829 ScheduleData *Next = BundleMember->NextInBundle; 2830 BundleMember->NextInBundle = nullptr; 2831 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 2832 if (BundleMember->UnscheduledDepsInBundle == 0) { 2833 ReadyInsts.insert(BundleMember); 2834 } 2835 BundleMember = Next; 2836 } 2837 } 2838 2839 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V) { 2840 if (getScheduleData(V)) 2841 return true; 2842 Instruction *I = dyn_cast<Instruction>(V); 2843 assert(I && "bundle member must be an instruction"); 2844 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 2845 if (!ScheduleStart) { 2846 // It's the first instruction in the new region. 2847 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 2848 ScheduleStart = I; 2849 ScheduleEnd = I->getNextNode(); 2850 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 2851 DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 2852 return true; 2853 } 2854 // Search up and down at the same time, because we don't know if the new 2855 // instruction is above or below the existing scheduling region. 2856 BasicBlock::reverse_iterator UpIter(ScheduleStart->getIterator()); 2857 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 2858 BasicBlock::iterator DownIter(ScheduleEnd); 2859 BasicBlock::iterator LowerEnd = BB->end(); 2860 for (;;) { 2861 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 2862 DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 2863 return false; 2864 } 2865 2866 if (UpIter != UpperEnd) { 2867 if (&*UpIter == I) { 2868 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 2869 ScheduleStart = I; 2870 DEBUG(dbgs() << "SLP: extend schedule region start to " << *I << "\n"); 2871 return true; 2872 } 2873 UpIter++; 2874 } 2875 if (DownIter != LowerEnd) { 2876 if (&*DownIter == I) { 2877 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 2878 nullptr); 2879 ScheduleEnd = I->getNextNode(); 2880 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); 2881 DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 2882 return true; 2883 } 2884 DownIter++; 2885 } 2886 assert((UpIter != UpperEnd || DownIter != LowerEnd) && 2887 "instruction not found in block"); 2888 } 2889 return true; 2890 } 2891 2892 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 2893 Instruction *ToI, 2894 ScheduleData *PrevLoadStore, 2895 ScheduleData *NextLoadStore) { 2896 ScheduleData *CurrentLoadStore = PrevLoadStore; 2897 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 2898 ScheduleData *SD = ScheduleDataMap[I]; 2899 if (!SD) { 2900 // Allocate a new ScheduleData for the instruction. 2901 if (ChunkPos >= ChunkSize) { 2902 ScheduleDataChunks.push_back( 2903 llvm::make_unique<ScheduleData[]>(ChunkSize)); 2904 ChunkPos = 0; 2905 } 2906 SD = &(ScheduleDataChunks.back()[ChunkPos++]); 2907 ScheduleDataMap[I] = SD; 2908 SD->Inst = I; 2909 } 2910 assert(!isInSchedulingRegion(SD) && 2911 "new ScheduleData already in scheduling region"); 2912 SD->init(SchedulingRegionID); 2913 2914 if (I->mayReadOrWriteMemory()) { 2915 // Update the linked list of memory accessing instructions. 2916 if (CurrentLoadStore) { 2917 CurrentLoadStore->NextLoadStore = SD; 2918 } else { 2919 FirstLoadStoreInRegion = SD; 2920 } 2921 CurrentLoadStore = SD; 2922 } 2923 } 2924 if (NextLoadStore) { 2925 if (CurrentLoadStore) 2926 CurrentLoadStore->NextLoadStore = NextLoadStore; 2927 } else { 2928 LastLoadStoreInRegion = CurrentLoadStore; 2929 } 2930 } 2931 2932 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 2933 bool InsertInReadyList, 2934 BoUpSLP *SLP) { 2935 assert(SD->isSchedulingEntity()); 2936 2937 SmallVector<ScheduleData *, 10> WorkList; 2938 WorkList.push_back(SD); 2939 2940 while (!WorkList.empty()) { 2941 ScheduleData *SD = WorkList.back(); 2942 WorkList.pop_back(); 2943 2944 ScheduleData *BundleMember = SD; 2945 while (BundleMember) { 2946 assert(isInSchedulingRegion(BundleMember)); 2947 if (!BundleMember->hasValidDependencies()) { 2948 2949 DEBUG(dbgs() << "SLP: update deps of " << *BundleMember << "\n"); 2950 BundleMember->Dependencies = 0; 2951 BundleMember->resetUnscheduledDeps(); 2952 2953 // Handle def-use chain dependencies. 2954 for (User *U : BundleMember->Inst->users()) { 2955 if (isa<Instruction>(U)) { 2956 ScheduleData *UseSD = getScheduleData(U); 2957 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 2958 BundleMember->Dependencies++; 2959 ScheduleData *DestBundle = UseSD->FirstInBundle; 2960 if (!DestBundle->IsScheduled) { 2961 BundleMember->incrementUnscheduledDeps(1); 2962 } 2963 if (!DestBundle->hasValidDependencies()) { 2964 WorkList.push_back(DestBundle); 2965 } 2966 } 2967 } else { 2968 // I'm not sure if this can ever happen. But we need to be safe. 2969 // This lets the instruction/bundle never be scheduled and 2970 // eventually disable vectorization. 2971 BundleMember->Dependencies++; 2972 BundleMember->incrementUnscheduledDeps(1); 2973 } 2974 } 2975 2976 // Handle the memory dependencies. 2977 ScheduleData *DepDest = BundleMember->NextLoadStore; 2978 if (DepDest) { 2979 Instruction *SrcInst = BundleMember->Inst; 2980 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 2981 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 2982 unsigned numAliased = 0; 2983 unsigned DistToSrc = 1; 2984 2985 while (DepDest) { 2986 assert(isInSchedulingRegion(DepDest)); 2987 2988 // We have two limits to reduce the complexity: 2989 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 2990 // SLP->isAliased (which is the expensive part in this loop). 2991 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 2992 // the whole loop (even if the loop is fast, it's quadratic). 2993 // It's important for the loop break condition (see below) to 2994 // check this limit even between two read-only instructions. 2995 if (DistToSrc >= MaxMemDepDistance || 2996 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 2997 (numAliased >= AliasedCheckLimit || 2998 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 2999 3000 // We increment the counter only if the locations are aliased 3001 // (instead of counting all alias checks). This gives a better 3002 // balance between reduced runtime and accurate dependencies. 3003 numAliased++; 3004 3005 DepDest->MemoryDependencies.push_back(BundleMember); 3006 BundleMember->Dependencies++; 3007 ScheduleData *DestBundle = DepDest->FirstInBundle; 3008 if (!DestBundle->IsScheduled) { 3009 BundleMember->incrementUnscheduledDeps(1); 3010 } 3011 if (!DestBundle->hasValidDependencies()) { 3012 WorkList.push_back(DestBundle); 3013 } 3014 } 3015 DepDest = DepDest->NextLoadStore; 3016 3017 // Example, explaining the loop break condition: Let's assume our 3018 // starting instruction is i0 and MaxMemDepDistance = 3. 3019 // 3020 // +--------v--v--v 3021 // i0,i1,i2,i3,i4,i5,i6,i7,i8 3022 // +--------^--^--^ 3023 // 3024 // MaxMemDepDistance let us stop alias-checking at i3 and we add 3025 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 3026 // Previously we already added dependencies from i3 to i6,i7,i8 3027 // (because of MaxMemDepDistance). As we added a dependency from 3028 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 3029 // and we can abort this loop at i6. 3030 if (DistToSrc >= 2 * MaxMemDepDistance) 3031 break; 3032 DistToSrc++; 3033 } 3034 } 3035 } 3036 BundleMember = BundleMember->NextInBundle; 3037 } 3038 if (InsertInReadyList && SD->isReady()) { 3039 ReadyInsts.push_back(SD); 3040 DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst << "\n"); 3041 } 3042 } 3043 } 3044 3045 void BoUpSLP::BlockScheduling::resetSchedule() { 3046 assert(ScheduleStart && 3047 "tried to reset schedule on block which has not been scheduled"); 3048 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 3049 ScheduleData *SD = getScheduleData(I); 3050 assert(isInSchedulingRegion(SD)); 3051 SD->IsScheduled = false; 3052 SD->resetUnscheduledDeps(); 3053 } 3054 ReadyInsts.clear(); 3055 } 3056 3057 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 3058 3059 if (!BS->ScheduleStart) 3060 return; 3061 3062 DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 3063 3064 BS->resetSchedule(); 3065 3066 // For the real scheduling we use a more sophisticated ready-list: it is 3067 // sorted by the original instruction location. This lets the final schedule 3068 // be as close as possible to the original instruction order. 3069 struct ScheduleDataCompare { 3070 bool operator()(ScheduleData *SD1, ScheduleData *SD2) { 3071 return SD2->SchedulingPriority < SD1->SchedulingPriority; 3072 } 3073 }; 3074 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 3075 3076 // Ensure that all dependency data is updated and fill the ready-list with 3077 // initial instructions. 3078 int Idx = 0; 3079 int NumToSchedule = 0; 3080 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 3081 I = I->getNextNode()) { 3082 ScheduleData *SD = BS->getScheduleData(I); 3083 assert( 3084 SD->isPartOfBundle() == (ScalarToTreeEntry.count(SD->Inst) != 0) && 3085 "scheduler and vectorizer have different opinion on what is a bundle"); 3086 SD->FirstInBundle->SchedulingPriority = Idx++; 3087 if (SD->isSchedulingEntity()) { 3088 BS->calculateDependencies(SD, false, this); 3089 NumToSchedule++; 3090 } 3091 } 3092 BS->initialFillReadyList(ReadyInsts); 3093 3094 Instruction *LastScheduledInst = BS->ScheduleEnd; 3095 3096 // Do the "real" scheduling. 3097 while (!ReadyInsts.empty()) { 3098 ScheduleData *picked = *ReadyInsts.begin(); 3099 ReadyInsts.erase(ReadyInsts.begin()); 3100 3101 // Move the scheduled instruction(s) to their dedicated places, if not 3102 // there yet. 3103 ScheduleData *BundleMember = picked; 3104 while (BundleMember) { 3105 Instruction *pickedInst = BundleMember->Inst; 3106 if (LastScheduledInst->getNextNode() != pickedInst) { 3107 BS->BB->getInstList().remove(pickedInst); 3108 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 3109 pickedInst); 3110 } 3111 LastScheduledInst = pickedInst; 3112 BundleMember = BundleMember->NextInBundle; 3113 } 3114 3115 BS->schedule(picked, ReadyInsts); 3116 NumToSchedule--; 3117 } 3118 assert(NumToSchedule == 0 && "could not schedule all instructions"); 3119 3120 // Avoid duplicate scheduling of the block. 3121 BS->ScheduleStart = nullptr; 3122 } 3123 3124 /// The SLPVectorizer Pass. 3125 struct SLPVectorizer : public FunctionPass { 3126 typedef SmallVector<StoreInst *, 8> StoreList; 3127 typedef MapVector<Value *, StoreList> StoreListMap; 3128 3129 /// Pass identification, replacement for typeid 3130 static char ID; 3131 3132 explicit SLPVectorizer() : FunctionPass(ID) { 3133 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 3134 } 3135 3136 ScalarEvolution *SE; 3137 TargetTransformInfo *TTI; 3138 TargetLibraryInfo *TLI; 3139 AliasAnalysis *AA; 3140 LoopInfo *LI; 3141 DominatorTree *DT; 3142 AssumptionCache *AC; 3143 3144 bool runOnFunction(Function &F) override { 3145 if (skipOptnoneFunction(F)) 3146 return false; 3147 3148 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 3149 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 3150 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 3151 TLI = TLIP ? &TLIP->getTLI() : nullptr; 3152 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3153 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 3154 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3155 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 3156 3157 StoreRefs.clear(); 3158 bool Changed = false; 3159 3160 // If the target claims to have no vector registers don't attempt 3161 // vectorization. 3162 if (!TTI->getNumberOfRegisters(true)) 3163 return false; 3164 3165 // Use the vector register size specified by the target unless overridden 3166 // by a command-line option. 3167 // TODO: It would be better to limit the vectorization factor based on 3168 // data type rather than just register size. For example, x86 AVX has 3169 // 256-bit registers, but it does not support integer operations 3170 // at that width (that requires AVX2). 3171 if (MaxVectorRegSizeOption.getNumOccurrences()) 3172 MaxVecRegSize = MaxVectorRegSizeOption; 3173 else 3174 MaxVecRegSize = TTI->getRegisterBitWidth(true); 3175 3176 // Don't vectorize when the attribute NoImplicitFloat is used. 3177 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 3178 return false; 3179 3180 DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 3181 3182 // Use the bottom up slp vectorizer to construct chains that start with 3183 // store instructions. 3184 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC); 3185 3186 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 3187 // delete instructions. 3188 3189 // Scan the blocks in the function in post order. 3190 for (auto BB : post_order(&F.getEntryBlock())) { 3191 // Vectorize trees that end at stores. 3192 if (unsigned count = collectStores(BB, R)) { 3193 (void)count; 3194 DEBUG(dbgs() << "SLP: Found " << count << " stores to vectorize.\n"); 3195 Changed |= vectorizeStoreChains(R); 3196 } 3197 3198 // Vectorize trees that end at reductions. 3199 Changed |= vectorizeChainsInBlock(BB, R); 3200 } 3201 3202 if (Changed) { 3203 R.optimizeGatherSequence(); 3204 DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 3205 DEBUG(verifyFunction(F)); 3206 } 3207 return Changed; 3208 } 3209 3210 void getAnalysisUsage(AnalysisUsage &AU) const override { 3211 FunctionPass::getAnalysisUsage(AU); 3212 AU.addRequired<AssumptionCacheTracker>(); 3213 AU.addRequired<ScalarEvolutionWrapperPass>(); 3214 AU.addRequired<AAResultsWrapperPass>(); 3215 AU.addRequired<TargetTransformInfoWrapperPass>(); 3216 AU.addRequired<LoopInfoWrapperPass>(); 3217 AU.addRequired<DominatorTreeWrapperPass>(); 3218 AU.addPreserved<LoopInfoWrapperPass>(); 3219 AU.addPreserved<DominatorTreeWrapperPass>(); 3220 AU.setPreservesCFG(); 3221 } 3222 3223 private: 3224 3225 /// \brief Collect memory references and sort them according to their base 3226 /// object. We sort the stores to their base objects to reduce the cost of the 3227 /// quadratic search on the stores. TODO: We can further reduce this cost 3228 /// if we flush the chain creation every time we run into a memory barrier. 3229 unsigned collectStores(BasicBlock *BB, BoUpSLP &R); 3230 3231 /// \brief Try to vectorize a chain that starts at two arithmetic instrs. 3232 bool tryToVectorizePair(Value *A, Value *B, BoUpSLP &R); 3233 3234 /// \brief Try to vectorize a list of operands. 3235 /// \@param BuildVector A list of users to ignore for the purpose of 3236 /// scheduling and that don't need extracting. 3237 /// \returns true if a value was vectorized. 3238 bool tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 3239 ArrayRef<Value *> BuildVector = None, 3240 bool allowReorder = false); 3241 3242 /// \brief Try to vectorize a chain that may start at the operands of \V; 3243 bool tryToVectorize(BinaryOperator *V, BoUpSLP &R); 3244 3245 /// \brief Vectorize the stores that were collected in StoreRefs. 3246 bool vectorizeStoreChains(BoUpSLP &R); 3247 3248 /// \brief Scan the basic block and look for patterns that are likely to start 3249 /// a vectorization chain. 3250 bool vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R); 3251 3252 bool vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold, 3253 BoUpSLP &R, unsigned VecRegSize); 3254 3255 bool vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold, 3256 BoUpSLP &R); 3257 private: 3258 StoreListMap StoreRefs; 3259 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 3260 }; 3261 3262 /// \brief Check that the Values in the slice in VL array are still existent in 3263 /// the WeakVH array. 3264 /// Vectorization of part of the VL array may cause later values in the VL array 3265 /// to become invalid. We track when this has happened in the WeakVH array. 3266 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, ArrayRef<WeakVH> VH, 3267 unsigned SliceBegin, unsigned SliceSize) { 3268 VL = VL.slice(SliceBegin, SliceSize); 3269 VH = VH.slice(SliceBegin, SliceSize); 3270 return !std::equal(VL.begin(), VL.end(), VH.begin()); 3271 } 3272 3273 bool SLPVectorizer::vectorizeStoreChain(ArrayRef<Value *> Chain, 3274 int CostThreshold, BoUpSLP &R, 3275 unsigned VecRegSize) { 3276 unsigned ChainLen = Chain.size(); 3277 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen 3278 << "\n"); 3279 Type *StoreTy = cast<StoreInst>(Chain[0])->getValueOperand()->getType(); 3280 auto &DL = cast<StoreInst>(Chain[0])->getModule()->getDataLayout(); 3281 unsigned Sz = DL.getTypeSizeInBits(StoreTy); 3282 unsigned VF = VecRegSize / Sz; 3283 3284 if (!isPowerOf2_32(Sz) || VF < 2) 3285 return false; 3286 3287 // Keep track of values that were deleted by vectorizing in the loop below. 3288 SmallVector<WeakVH, 8> TrackValues(Chain.begin(), Chain.end()); 3289 3290 bool Changed = false; 3291 // Look for profitable vectorizable trees at all offsets, starting at zero. 3292 for (unsigned i = 0, e = ChainLen; i < e; ++i) { 3293 if (i + VF > e) 3294 break; 3295 3296 // Check that a previous iteration of this loop did not delete the Value. 3297 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) 3298 continue; 3299 3300 DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i 3301 << "\n"); 3302 ArrayRef<Value *> Operands = Chain.slice(i, VF); 3303 3304 R.buildTree(Operands); 3305 3306 int Cost = R.getTreeCost(); 3307 3308 DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n"); 3309 if (Cost < CostThreshold) { 3310 DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); 3311 R.vectorizeTree(); 3312 3313 // Move to the next bundle. 3314 i += VF - 1; 3315 Changed = true; 3316 } 3317 } 3318 3319 return Changed; 3320 } 3321 3322 bool SLPVectorizer::vectorizeStores(ArrayRef<StoreInst *> Stores, 3323 int costThreshold, BoUpSLP &R) { 3324 SetVector<StoreInst *> Heads, Tails; 3325 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 3326 3327 // We may run into multiple chains that merge into a single chain. We mark the 3328 // stores that we vectorized so that we don't visit the same store twice. 3329 BoUpSLP::ValueSet VectorizedStores; 3330 bool Changed = false; 3331 3332 // Do a quadratic search on all of the given stores and find 3333 // all of the pairs of stores that follow each other. 3334 SmallVector<unsigned, 16> IndexQueue; 3335 for (unsigned i = 0, e = Stores.size(); i < e; ++i) { 3336 const DataLayout &DL = Stores[i]->getModule()->getDataLayout(); 3337 IndexQueue.clear(); 3338 // If a store has multiple consecutive store candidates, search Stores 3339 // array according to the sequence: from i+1 to e, then from i-1 to 0. 3340 // This is because usually pairing with immediate succeeding or preceding 3341 // candidate create the best chance to find slp vectorization opportunity. 3342 unsigned j = 0; 3343 for (j = i + 1; j < e; ++j) 3344 IndexQueue.push_back(j); 3345 for (j = i; j > 0; --j) 3346 IndexQueue.push_back(j - 1); 3347 3348 for (auto &k : IndexQueue) { 3349 if (R.isConsecutiveAccess(Stores[i], Stores[k], DL)) { 3350 Tails.insert(Stores[k]); 3351 Heads.insert(Stores[i]); 3352 ConsecutiveChain[Stores[i]] = Stores[k]; 3353 break; 3354 } 3355 } 3356 } 3357 3358 // For stores that start but don't end a link in the chain: 3359 for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end(); 3360 it != e; ++it) { 3361 if (Tails.count(*it)) 3362 continue; 3363 3364 // We found a store instr that starts a chain. Now follow the chain and try 3365 // to vectorize it. 3366 BoUpSLP::ValueList Operands; 3367 StoreInst *I = *it; 3368 // Collect the chain into a list. 3369 while (Tails.count(I) || Heads.count(I)) { 3370 if (VectorizedStores.count(I)) 3371 break; 3372 Operands.push_back(I); 3373 // Move to the next value in the chain. 3374 I = ConsecutiveChain[I]; 3375 } 3376 3377 // FIXME: Is division-by-2 the correct step? Should we assert that the 3378 // register size is a power-of-2? 3379 for (unsigned Size = MaxVecRegSize; Size >= MinVecRegSize; Size /= 2) { 3380 if (vectorizeStoreChain(Operands, costThreshold, R, Size)) { 3381 // Mark the vectorized stores so that we don't vectorize them again. 3382 VectorizedStores.insert(Operands.begin(), Operands.end()); 3383 Changed = true; 3384 break; 3385 } 3386 } 3387 } 3388 3389 return Changed; 3390 } 3391 3392 3393 unsigned SLPVectorizer::collectStores(BasicBlock *BB, BoUpSLP &R) { 3394 unsigned count = 0; 3395 StoreRefs.clear(); 3396 const DataLayout &DL = BB->getModule()->getDataLayout(); 3397 for (Instruction &I : *BB) { 3398 StoreInst *SI = dyn_cast<StoreInst>(&I); 3399 if (!SI) 3400 continue; 3401 3402 // Don't touch volatile stores. 3403 if (!SI->isSimple()) 3404 continue; 3405 3406 // Check that the pointer points to scalars. 3407 Type *Ty = SI->getValueOperand()->getType(); 3408 if (!isValidElementType(Ty)) 3409 continue; 3410 3411 // Find the base pointer. 3412 Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), DL); 3413 3414 // Save the store locations. 3415 StoreRefs[Ptr].push_back(SI); 3416 count++; 3417 } 3418 return count; 3419 } 3420 3421 bool SLPVectorizer::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 3422 if (!A || !B) 3423 return false; 3424 Value *VL[] = { A, B }; 3425 return tryToVectorizeList(VL, R, None, true); 3426 } 3427 3428 bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 3429 ArrayRef<Value *> BuildVector, 3430 bool allowReorder) { 3431 if (VL.size() < 2) 3432 return false; 3433 3434 DEBUG(dbgs() << "SLP: Vectorizing a list of length = " << VL.size() << ".\n"); 3435 3436 // Check that all of the parts are scalar instructions of the same type. 3437 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 3438 if (!I0) 3439 return false; 3440 3441 unsigned Opcode0 = I0->getOpcode(); 3442 const DataLayout &DL = I0->getModule()->getDataLayout(); 3443 3444 Type *Ty0 = I0->getType(); 3445 unsigned Sz = DL.getTypeSizeInBits(Ty0); 3446 // FIXME: Register size should be a parameter to this function, so we can 3447 // try different vectorization factors. 3448 unsigned VF = MinVecRegSize / Sz; 3449 3450 for (Value *V : VL) { 3451 Type *Ty = V->getType(); 3452 if (!isValidElementType(Ty)) 3453 return false; 3454 Instruction *Inst = dyn_cast<Instruction>(V); 3455 if (!Inst || Inst->getOpcode() != Opcode0) 3456 return false; 3457 } 3458 3459 bool Changed = false; 3460 3461 // Keep track of values that were deleted by vectorizing in the loop below. 3462 SmallVector<WeakVH, 8> TrackValues(VL.begin(), VL.end()); 3463 3464 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 3465 unsigned OpsWidth = 0; 3466 3467 if (i + VF > e) 3468 OpsWidth = e - i; 3469 else 3470 OpsWidth = VF; 3471 3472 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) 3473 break; 3474 3475 // Check that a previous iteration of this loop did not delete the Value. 3476 if (hasValueBeenRAUWed(VL, TrackValues, i, OpsWidth)) 3477 continue; 3478 3479 DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 3480 << "\n"); 3481 ArrayRef<Value *> Ops = VL.slice(i, OpsWidth); 3482 3483 ArrayRef<Value *> BuildVectorSlice; 3484 if (!BuildVector.empty()) 3485 BuildVectorSlice = BuildVector.slice(i, OpsWidth); 3486 3487 R.buildTree(Ops, BuildVectorSlice); 3488 // TODO: check if we can allow reordering also for other cases than 3489 // tryToVectorizePair() 3490 if (allowReorder && R.shouldReorder()) { 3491 assert(Ops.size() == 2); 3492 assert(BuildVectorSlice.empty()); 3493 Value *ReorderedOps[] = { Ops[1], Ops[0] }; 3494 R.buildTree(ReorderedOps, None); 3495 } 3496 int Cost = R.getTreeCost(); 3497 3498 if (Cost < -SLPCostThreshold) { 3499 DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 3500 Value *VectorizedRoot = R.vectorizeTree(); 3501 3502 // Reconstruct the build vector by extracting the vectorized root. This 3503 // way we handle the case where some elements of the vector are undefined. 3504 // (return (inserelt <4 xi32> (insertelt undef (opd0) 0) (opd1) 2)) 3505 if (!BuildVectorSlice.empty()) { 3506 // The insert point is the last build vector instruction. The vectorized 3507 // root will precede it. This guarantees that we get an instruction. The 3508 // vectorized tree could have been constant folded. 3509 Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back()); 3510 unsigned VecIdx = 0; 3511 for (auto &V : BuildVectorSlice) { 3512 IRBuilder<true, NoFolder> Builder( 3513 InsertAfter->getParent(), ++BasicBlock::iterator(InsertAfter)); 3514 InsertElementInst *IE = cast<InsertElementInst>(V); 3515 Instruction *Extract = cast<Instruction>(Builder.CreateExtractElement( 3516 VectorizedRoot, Builder.getInt32(VecIdx++))); 3517 IE->setOperand(1, Extract); 3518 IE->removeFromParent(); 3519 IE->insertAfter(Extract); 3520 InsertAfter = IE; 3521 } 3522 } 3523 // Move to the next bundle. 3524 i += VF - 1; 3525 Changed = true; 3526 } 3527 } 3528 3529 return Changed; 3530 } 3531 3532 bool SLPVectorizer::tryToVectorize(BinaryOperator *V, BoUpSLP &R) { 3533 if (!V) 3534 return false; 3535 3536 // Try to vectorize V. 3537 if (tryToVectorizePair(V->getOperand(0), V->getOperand(1), R)) 3538 return true; 3539 3540 BinaryOperator *A = dyn_cast<BinaryOperator>(V->getOperand(0)); 3541 BinaryOperator *B = dyn_cast<BinaryOperator>(V->getOperand(1)); 3542 // Try to skip B. 3543 if (B && B->hasOneUse()) { 3544 BinaryOperator *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 3545 BinaryOperator *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 3546 if (tryToVectorizePair(A, B0, R)) { 3547 return true; 3548 } 3549 if (tryToVectorizePair(A, B1, R)) { 3550 return true; 3551 } 3552 } 3553 3554 // Try to skip A. 3555 if (A && A->hasOneUse()) { 3556 BinaryOperator *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 3557 BinaryOperator *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 3558 if (tryToVectorizePair(A0, B, R)) { 3559 return true; 3560 } 3561 if (tryToVectorizePair(A1, B, R)) { 3562 return true; 3563 } 3564 } 3565 return 0; 3566 } 3567 3568 /// \brief Generate a shuffle mask to be used in a reduction tree. 3569 /// 3570 /// \param VecLen The length of the vector to be reduced. 3571 /// \param NumEltsToRdx The number of elements that should be reduced in the 3572 /// vector. 3573 /// \param IsPairwise Whether the reduction is a pairwise or splitting 3574 /// reduction. A pairwise reduction will generate a mask of 3575 /// <0,2,...> or <1,3,..> while a splitting reduction will generate 3576 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. 3577 /// \param IsLeft True will generate a mask of even elements, odd otherwise. 3578 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, 3579 bool IsPairwise, bool IsLeft, 3580 IRBuilder<> &Builder) { 3581 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); 3582 3583 SmallVector<Constant *, 32> ShuffleMask( 3584 VecLen, UndefValue::get(Builder.getInt32Ty())); 3585 3586 if (IsPairwise) 3587 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). 3588 for (unsigned i = 0; i != NumEltsToRdx; ++i) 3589 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); 3590 else 3591 // Move the upper half of the vector to the lower half. 3592 for (unsigned i = 0; i != NumEltsToRdx; ++i) 3593 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); 3594 3595 return ConstantVector::get(ShuffleMask); 3596 } 3597 3598 3599 /// Model horizontal reductions. 3600 /// 3601 /// A horizontal reduction is a tree of reduction operations (currently add and 3602 /// fadd) that has operations that can be put into a vector as its leaf. 3603 /// For example, this tree: 3604 /// 3605 /// mul mul mul mul 3606 /// \ / \ / 3607 /// + + 3608 /// \ / 3609 /// + 3610 /// This tree has "mul" as its reduced values and "+" as its reduction 3611 /// operations. A reduction might be feeding into a store or a binary operation 3612 /// feeding a phi. 3613 /// ... 3614 /// \ / 3615 /// + 3616 /// | 3617 /// phi += 3618 /// 3619 /// Or: 3620 /// ... 3621 /// \ / 3622 /// + 3623 /// | 3624 /// *p = 3625 /// 3626 class HorizontalReduction { 3627 SmallVector<Value *, 16> ReductionOps; 3628 SmallVector<Value *, 32> ReducedVals; 3629 3630 BinaryOperator *ReductionRoot; 3631 PHINode *ReductionPHI; 3632 3633 /// The opcode of the reduction. 3634 unsigned ReductionOpcode; 3635 /// The opcode of the values we perform a reduction on. 3636 unsigned ReducedValueOpcode; 3637 /// The width of one full horizontal reduction operation. 3638 unsigned ReduxWidth; 3639 /// Should we model this reduction as a pairwise reduction tree or a tree that 3640 /// splits the vector in halves and adds those halves. 3641 bool IsPairwiseReduction; 3642 3643 public: 3644 HorizontalReduction() 3645 : ReductionRoot(nullptr), ReductionPHI(nullptr), ReductionOpcode(0), 3646 ReducedValueOpcode(0), ReduxWidth(0), IsPairwiseReduction(false) {} 3647 3648 /// \brief Try to find a reduction tree. 3649 bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B) { 3650 assert((!Phi || 3651 std::find(Phi->op_begin(), Phi->op_end(), B) != Phi->op_end()) && 3652 "Thi phi needs to use the binary operator"); 3653 3654 // We could have a initial reductions that is not an add. 3655 // r *= v1 + v2 + v3 + v4 3656 // In such a case start looking for a tree rooted in the first '+'. 3657 if (Phi) { 3658 if (B->getOperand(0) == Phi) { 3659 Phi = nullptr; 3660 B = dyn_cast<BinaryOperator>(B->getOperand(1)); 3661 } else if (B->getOperand(1) == Phi) { 3662 Phi = nullptr; 3663 B = dyn_cast<BinaryOperator>(B->getOperand(0)); 3664 } 3665 } 3666 3667 if (!B) 3668 return false; 3669 3670 Type *Ty = B->getType(); 3671 if (!isValidElementType(Ty)) 3672 return false; 3673 3674 const DataLayout &DL = B->getModule()->getDataLayout(); 3675 ReductionOpcode = B->getOpcode(); 3676 ReducedValueOpcode = 0; 3677 // FIXME: Register size should be a parameter to this function, so we can 3678 // try different vectorization factors. 3679 ReduxWidth = MinVecRegSize / DL.getTypeSizeInBits(Ty); 3680 ReductionRoot = B; 3681 ReductionPHI = Phi; 3682 3683 if (ReduxWidth < 4) 3684 return false; 3685 3686 // We currently only support adds. 3687 if (ReductionOpcode != Instruction::Add && 3688 ReductionOpcode != Instruction::FAdd) 3689 return false; 3690 3691 // Post order traverse the reduction tree starting at B. We only handle true 3692 // trees containing only binary operators. 3693 SmallVector<std::pair<BinaryOperator *, unsigned>, 32> Stack; 3694 Stack.push_back(std::make_pair(B, 0)); 3695 while (!Stack.empty()) { 3696 BinaryOperator *TreeN = Stack.back().first; 3697 unsigned EdgeToVist = Stack.back().second++; 3698 bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode; 3699 3700 // Only handle trees in the current basic block. 3701 if (TreeN->getParent() != B->getParent()) 3702 return false; 3703 3704 // Each tree node needs to have one user except for the ultimate 3705 // reduction. 3706 if (!TreeN->hasOneUse() && TreeN != B) 3707 return false; 3708 3709 // Postorder vist. 3710 if (EdgeToVist == 2 || IsReducedValue) { 3711 if (IsReducedValue) { 3712 // Make sure that the opcodes of the operations that we are going to 3713 // reduce match. 3714 if (!ReducedValueOpcode) 3715 ReducedValueOpcode = TreeN->getOpcode(); 3716 else if (ReducedValueOpcode != TreeN->getOpcode()) 3717 return false; 3718 ReducedVals.push_back(TreeN); 3719 } else { 3720 // We need to be able to reassociate the adds. 3721 if (!TreeN->isAssociative()) 3722 return false; 3723 ReductionOps.push_back(TreeN); 3724 } 3725 // Retract. 3726 Stack.pop_back(); 3727 continue; 3728 } 3729 3730 // Visit left or right. 3731 Value *NextV = TreeN->getOperand(EdgeToVist); 3732 BinaryOperator *Next = dyn_cast<BinaryOperator>(NextV); 3733 if (Next) 3734 Stack.push_back(std::make_pair(Next, 0)); 3735 else if (NextV != Phi) 3736 return false; 3737 } 3738 return true; 3739 } 3740 3741 /// \brief Attempt to vectorize the tree found by 3742 /// matchAssociativeReduction. 3743 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 3744 if (ReducedVals.empty()) 3745 return false; 3746 3747 unsigned NumReducedVals = ReducedVals.size(); 3748 if (NumReducedVals < ReduxWidth) 3749 return false; 3750 3751 Value *VectorizedTree = nullptr; 3752 IRBuilder<> Builder(ReductionRoot); 3753 FastMathFlags Unsafe; 3754 Unsafe.setUnsafeAlgebra(); 3755 Builder.SetFastMathFlags(Unsafe); 3756 unsigned i = 0; 3757 3758 for (; i < NumReducedVals - ReduxWidth + 1; i += ReduxWidth) { 3759 V.buildTree(makeArrayRef(&ReducedVals[i], ReduxWidth), ReductionOps); 3760 3761 // Estimate cost. 3762 int Cost = V.getTreeCost() + getReductionCost(TTI, ReducedVals[i]); 3763 if (Cost >= -SLPCostThreshold) 3764 break; 3765 3766 DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost 3767 << ". (HorRdx)\n"); 3768 3769 // Vectorize a tree. 3770 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 3771 Value *VectorizedRoot = V.vectorizeTree(); 3772 3773 // Emit a reduction. 3774 Value *ReducedSubTree = emitReduction(VectorizedRoot, Builder); 3775 if (VectorizedTree) { 3776 Builder.SetCurrentDebugLocation(Loc); 3777 VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree, 3778 ReducedSubTree, "bin.rdx"); 3779 } else 3780 VectorizedTree = ReducedSubTree; 3781 } 3782 3783 if (VectorizedTree) { 3784 // Finish the reduction. 3785 for (; i < NumReducedVals; ++i) { 3786 Builder.SetCurrentDebugLocation( 3787 cast<Instruction>(ReducedVals[i])->getDebugLoc()); 3788 VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree, 3789 ReducedVals[i]); 3790 } 3791 // Update users. 3792 if (ReductionPHI) { 3793 assert(ReductionRoot && "Need a reduction operation"); 3794 ReductionRoot->setOperand(0, VectorizedTree); 3795 ReductionRoot->setOperand(1, ReductionPHI); 3796 } else 3797 ReductionRoot->replaceAllUsesWith(VectorizedTree); 3798 } 3799 return VectorizedTree != nullptr; 3800 } 3801 3802 private: 3803 3804 /// \brief Calculate the cost of a reduction. 3805 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal) { 3806 Type *ScalarTy = FirstReducedVal->getType(); 3807 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); 3808 3809 int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true); 3810 int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false); 3811 3812 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; 3813 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; 3814 3815 int ScalarReduxCost = 3816 ReduxWidth * TTI->getArithmeticInstrCost(ReductionOpcode, VecTy); 3817 3818 DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost 3819 << " for reduction that starts with " << *FirstReducedVal 3820 << " (It is a " 3821 << (IsPairwiseReduction ? "pairwise" : "splitting") 3822 << " reduction)\n"); 3823 3824 return VecReduxCost - ScalarReduxCost; 3825 } 3826 3827 static Value *createBinOp(IRBuilder<> &Builder, unsigned Opcode, Value *L, 3828 Value *R, const Twine &Name = "") { 3829 if (Opcode == Instruction::FAdd) 3830 return Builder.CreateFAdd(L, R, Name); 3831 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, L, R, Name); 3832 } 3833 3834 /// \brief Emit a horizontal reduction of the vectorized value. 3835 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder) { 3836 assert(VectorizedValue && "Need to have a vectorized tree node"); 3837 assert(isPowerOf2_32(ReduxWidth) && 3838 "We only handle power-of-two reductions for now"); 3839 3840 Value *TmpVec = VectorizedValue; 3841 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { 3842 if (IsPairwiseReduction) { 3843 Value *LeftMask = 3844 createRdxShuffleMask(ReduxWidth, i, true, true, Builder); 3845 Value *RightMask = 3846 createRdxShuffleMask(ReduxWidth, i, true, false, Builder); 3847 3848 Value *LeftShuf = Builder.CreateShuffleVector( 3849 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); 3850 Value *RightShuf = Builder.CreateShuffleVector( 3851 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), 3852 "rdx.shuf.r"); 3853 TmpVec = createBinOp(Builder, ReductionOpcode, LeftShuf, RightShuf, 3854 "bin.rdx"); 3855 } else { 3856 Value *UpperHalf = 3857 createRdxShuffleMask(ReduxWidth, i, false, false, Builder); 3858 Value *Shuf = Builder.CreateShuffleVector( 3859 TmpVec, UndefValue::get(TmpVec->getType()), UpperHalf, "rdx.shuf"); 3860 TmpVec = createBinOp(Builder, ReductionOpcode, TmpVec, Shuf, "bin.rdx"); 3861 } 3862 } 3863 3864 // The result is in the first element of the vector. 3865 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 3866 } 3867 }; 3868 3869 /// \brief Recognize construction of vectors like 3870 /// %ra = insertelement <4 x float> undef, float %s0, i32 0 3871 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 3872 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 3873 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 3874 /// 3875 /// Returns true if it matches 3876 /// 3877 static bool findBuildVector(InsertElementInst *FirstInsertElem, 3878 SmallVectorImpl<Value *> &BuildVector, 3879 SmallVectorImpl<Value *> &BuildVectorOpds) { 3880 if (!isa<UndefValue>(FirstInsertElem->getOperand(0))) 3881 return false; 3882 3883 InsertElementInst *IE = FirstInsertElem; 3884 while (true) { 3885 BuildVector.push_back(IE); 3886 BuildVectorOpds.push_back(IE->getOperand(1)); 3887 3888 if (IE->use_empty()) 3889 return false; 3890 3891 InsertElementInst *NextUse = dyn_cast<InsertElementInst>(IE->user_back()); 3892 if (!NextUse) 3893 return true; 3894 3895 // If this isn't the final use, make sure the next insertelement is the only 3896 // use. It's OK if the final constructed vector is used multiple times 3897 if (!IE->hasOneUse()) 3898 return false; 3899 3900 IE = NextUse; 3901 } 3902 3903 return false; 3904 } 3905 3906 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 3907 return V->getType() < V2->getType(); 3908 } 3909 3910 bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 3911 bool Changed = false; 3912 SmallVector<Value *, 4> Incoming; 3913 SmallSet<Value *, 16> VisitedInstrs; 3914 3915 bool HaveVectorizedPhiNodes = true; 3916 while (HaveVectorizedPhiNodes) { 3917 HaveVectorizedPhiNodes = false; 3918 3919 // Collect the incoming values from the PHIs. 3920 Incoming.clear(); 3921 for (BasicBlock::iterator instr = BB->begin(), ie = BB->end(); instr != ie; 3922 ++instr) { 3923 PHINode *P = dyn_cast<PHINode>(instr); 3924 if (!P) 3925 break; 3926 3927 if (!VisitedInstrs.count(P)) 3928 Incoming.push_back(P); 3929 } 3930 3931 // Sort by type. 3932 std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc); 3933 3934 // Try to vectorize elements base on their type. 3935 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 3936 E = Incoming.end(); 3937 IncIt != E;) { 3938 3939 // Look for the next elements with the same type. 3940 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 3941 while (SameTypeIt != E && 3942 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 3943 VisitedInstrs.insert(*SameTypeIt); 3944 ++SameTypeIt; 3945 } 3946 3947 // Try to vectorize them. 3948 unsigned NumElts = (SameTypeIt - IncIt); 3949 DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n"); 3950 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R)) { 3951 // Success start over because instructions might have been changed. 3952 HaveVectorizedPhiNodes = true; 3953 Changed = true; 3954 break; 3955 } 3956 3957 // Start over at the next instruction of a different type (or the end). 3958 IncIt = SameTypeIt; 3959 } 3960 } 3961 3962 VisitedInstrs.clear(); 3963 3964 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) { 3965 // We may go through BB multiple times so skip the one we have checked. 3966 if (!VisitedInstrs.insert(&*it).second) 3967 continue; 3968 3969 if (isa<DbgInfoIntrinsic>(it)) 3970 continue; 3971 3972 // Try to vectorize reductions that use PHINodes. 3973 if (PHINode *P = dyn_cast<PHINode>(it)) { 3974 // Check that the PHI is a reduction PHI. 3975 if (P->getNumIncomingValues() != 2) 3976 return Changed; 3977 Value *Rdx = 3978 (P->getIncomingBlock(0) == BB 3979 ? (P->getIncomingValue(0)) 3980 : (P->getIncomingBlock(1) == BB ? P->getIncomingValue(1) 3981 : nullptr)); 3982 // Check if this is a Binary Operator. 3983 BinaryOperator *BI = dyn_cast_or_null<BinaryOperator>(Rdx); 3984 if (!BI) 3985 continue; 3986 3987 // Try to match and vectorize a horizontal reduction. 3988 HorizontalReduction HorRdx; 3989 if (ShouldVectorizeHor && HorRdx.matchAssociativeReduction(P, BI) && 3990 HorRdx.tryToReduce(R, TTI)) { 3991 Changed = true; 3992 it = BB->begin(); 3993 e = BB->end(); 3994 continue; 3995 } 3996 3997 Value *Inst = BI->getOperand(0); 3998 if (Inst == P) 3999 Inst = BI->getOperand(1); 4000 4001 if (tryToVectorize(dyn_cast<BinaryOperator>(Inst), R)) { 4002 // We would like to start over since some instructions are deleted 4003 // and the iterator may become invalid value. 4004 Changed = true; 4005 it = BB->begin(); 4006 e = BB->end(); 4007 continue; 4008 } 4009 4010 continue; 4011 } 4012 4013 // Try to vectorize horizontal reductions feeding into a store. 4014 if (ShouldStartVectorizeHorAtStore) 4015 if (StoreInst *SI = dyn_cast<StoreInst>(it)) 4016 if (BinaryOperator *BinOp = 4017 dyn_cast<BinaryOperator>(SI->getValueOperand())) { 4018 HorizontalReduction HorRdx; 4019 if (((HorRdx.matchAssociativeReduction(nullptr, BinOp) && 4020 HorRdx.tryToReduce(R, TTI)) || 4021 tryToVectorize(BinOp, R))) { 4022 Changed = true; 4023 it = BB->begin(); 4024 e = BB->end(); 4025 continue; 4026 } 4027 } 4028 4029 // Try to vectorize horizontal reductions feeding into a return. 4030 if (ReturnInst *RI = dyn_cast<ReturnInst>(it)) 4031 if (RI->getNumOperands() != 0) 4032 if (BinaryOperator *BinOp = 4033 dyn_cast<BinaryOperator>(RI->getOperand(0))) { 4034 DEBUG(dbgs() << "SLP: Found a return to vectorize.\n"); 4035 if (tryToVectorizePair(BinOp->getOperand(0), 4036 BinOp->getOperand(1), R)) { 4037 Changed = true; 4038 it = BB->begin(); 4039 e = BB->end(); 4040 continue; 4041 } 4042 } 4043 4044 // Try to vectorize trees that start at compare instructions. 4045 if (CmpInst *CI = dyn_cast<CmpInst>(it)) { 4046 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) { 4047 Changed = true; 4048 // We would like to start over since some instructions are deleted 4049 // and the iterator may become invalid value. 4050 it = BB->begin(); 4051 e = BB->end(); 4052 continue; 4053 } 4054 4055 for (int i = 0; i < 2; ++i) { 4056 if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i))) { 4057 if (tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R)) { 4058 Changed = true; 4059 // We would like to start over since some instructions are deleted 4060 // and the iterator may become invalid value. 4061 it = BB->begin(); 4062 e = BB->end(); 4063 break; 4064 } 4065 } 4066 } 4067 continue; 4068 } 4069 4070 // Try to vectorize trees that start at insertelement instructions. 4071 if (InsertElementInst *FirstInsertElem = dyn_cast<InsertElementInst>(it)) { 4072 SmallVector<Value *, 16> BuildVector; 4073 SmallVector<Value *, 16> BuildVectorOpds; 4074 if (!findBuildVector(FirstInsertElem, BuildVector, BuildVectorOpds)) 4075 continue; 4076 4077 // Vectorize starting with the build vector operands ignoring the 4078 // BuildVector instructions for the purpose of scheduling and user 4079 // extraction. 4080 if (tryToVectorizeList(BuildVectorOpds, R, BuildVector)) { 4081 Changed = true; 4082 it = BB->begin(); 4083 e = BB->end(); 4084 } 4085 4086 continue; 4087 } 4088 } 4089 4090 return Changed; 4091 } 4092 4093 bool SLPVectorizer::vectorizeStoreChains(BoUpSLP &R) { 4094 bool Changed = false; 4095 // Attempt to sort and vectorize each of the store-groups. 4096 for (StoreListMap::iterator it = StoreRefs.begin(), e = StoreRefs.end(); 4097 it != e; ++it) { 4098 if (it->second.size() < 2) 4099 continue; 4100 4101 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 4102 << it->second.size() << ".\n"); 4103 4104 // Process the stores in chunks of 16. 4105 // TODO: The limit of 16 inhibits greater vectorization factors. 4106 // For example, AVX2 supports v32i8. Increasing this limit, however, 4107 // may cause a significant compile-time increase. 4108 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) { 4109 unsigned Len = std::min<unsigned>(CE - CI, 16); 4110 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), 4111 -SLPCostThreshold, R); 4112 } 4113 } 4114 return Changed; 4115 } 4116 4117 } // end anonymous namespace 4118 4119 char SLPVectorizer::ID = 0; 4120 static const char lv_name[] = "SLP Vectorizer"; 4121 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 4122 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 4123 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 4124 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 4125 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 4126 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 4127 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 4128 4129 namespace llvm { 4130 Pass *createSLPVectorizerPass() { return new SLPVectorizer(); } 4131 } 4132