1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive 10 // stores that can be put together into vector-stores. Next, it attempts to 11 // construct vectorizable tree using the use-def chains. If a profitable tree 12 // was found, the SLP vectorizer performs vectorization on the tree. 13 // 14 // The pass is inspired by the work described in the paper: 15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/PostOrderIterator.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SetOperations.h" 26 #include "llvm/ADT/SetVector.h" 27 #include "llvm/ADT/SmallBitVector.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/ADT/SmallSet.h" 30 #include "llvm/ADT/SmallString.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/ADT/iterator.h" 33 #include "llvm/ADT/iterator_range.h" 34 #include "llvm/Analysis/AliasAnalysis.h" 35 #include "llvm/Analysis/AssumptionCache.h" 36 #include "llvm/Analysis/CodeMetrics.h" 37 #include "llvm/Analysis/DemandedBits.h" 38 #include "llvm/Analysis/GlobalsModRef.h" 39 #include "llvm/Analysis/IVDescriptors.h" 40 #include "llvm/Analysis/LoopAccessAnalysis.h" 41 #include "llvm/Analysis/LoopInfo.h" 42 #include "llvm/Analysis/MemoryLocation.h" 43 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 44 #include "llvm/Analysis/ScalarEvolution.h" 45 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 46 #include "llvm/Analysis/TargetLibraryInfo.h" 47 #include "llvm/Analysis/TargetTransformInfo.h" 48 #include "llvm/Analysis/ValueTracking.h" 49 #include "llvm/Analysis/VectorUtils.h" 50 #include "llvm/IR/Attributes.h" 51 #include "llvm/IR/BasicBlock.h" 52 #include "llvm/IR/Constant.h" 53 #include "llvm/IR/Constants.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/DebugLoc.h" 56 #include "llvm/IR/DerivedTypes.h" 57 #include "llvm/IR/Dominators.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/IRBuilder.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/NoFolder.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PatternMatch.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/IR/Verifier.h" 75 #include "llvm/InitializePasses.h" 76 #include "llvm/Pass.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/Compiler.h" 80 #include "llvm/Support/DOTGraphTraits.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/GraphWriter.h" 84 #include "llvm/Support/InstructionCost.h" 85 #include "llvm/Support/KnownBits.h" 86 #include "llvm/Support/MathExtras.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 89 #include "llvm/Transforms/Utils/LoopUtils.h" 90 #include "llvm/Transforms/Vectorize.h" 91 #include <algorithm> 92 #include <cassert> 93 #include <cstdint> 94 #include <iterator> 95 #include <memory> 96 #include <set> 97 #include <string> 98 #include <tuple> 99 #include <utility> 100 #include <vector> 101 102 using namespace llvm; 103 using namespace llvm::PatternMatch; 104 using namespace slpvectorizer; 105 106 #define SV_NAME "slp-vectorizer" 107 #define DEBUG_TYPE "SLP" 108 109 STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); 110 111 cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, 112 cl::desc("Run the SLP vectorization passes")); 113 114 static cl::opt<int> 115 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, 116 cl::desc("Only vectorize if you gain more than this " 117 "number ")); 118 119 static cl::opt<bool> 120 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, 121 cl::desc("Attempt to vectorize horizontal reductions")); 122 123 static cl::opt<bool> ShouldStartVectorizeHorAtStore( 124 "slp-vectorize-hor-store", cl::init(false), cl::Hidden, 125 cl::desc( 126 "Attempt to vectorize horizontal reductions feeding into a store")); 127 128 static cl::opt<int> 129 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, 130 cl::desc("Attempt to vectorize for this register size in bits")); 131 132 static cl::opt<unsigned> 133 MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, 134 cl::desc("Maximum SLP vectorization factor (0=unlimited)")); 135 136 static cl::opt<int> 137 MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, 138 cl::desc("Maximum depth of the lookup for consecutive stores.")); 139 140 /// Limits the size of scheduling regions in a block. 141 /// It avoid long compile times for _very_ large blocks where vector 142 /// instructions are spread over a wide range. 143 /// This limit is way higher than needed by real-world functions. 144 static cl::opt<int> 145 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, 146 cl::desc("Limit the size of the SLP scheduling region per block")); 147 148 static cl::opt<int> MinVectorRegSizeOption( 149 "slp-min-reg-size", cl::init(128), cl::Hidden, 150 cl::desc("Attempt to vectorize for this register size in bits")); 151 152 static cl::opt<unsigned> RecursionMaxDepth( 153 "slp-recursion-max-depth", cl::init(12), cl::Hidden, 154 cl::desc("Limit the recursion depth when building a vectorizable tree")); 155 156 static cl::opt<unsigned> MinTreeSize( 157 "slp-min-tree-size", cl::init(3), cl::Hidden, 158 cl::desc("Only vectorize small trees if they are fully vectorizable")); 159 160 // The maximum depth that the look-ahead score heuristic will explore. 161 // The higher this value, the higher the compilation time overhead. 162 static cl::opt<int> LookAheadMaxDepth( 163 "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, 164 cl::desc("The maximum look-ahead depth for operand reordering scores")); 165 166 // The Look-ahead heuristic goes through the users of the bundle to calculate 167 // the users cost in getExternalUsesCost(). To avoid compilation time increase 168 // we limit the number of users visited to this value. 169 static cl::opt<unsigned> LookAheadUsersBudget( 170 "slp-look-ahead-users-budget", cl::init(2), cl::Hidden, 171 cl::desc("The maximum number of users to visit while visiting the " 172 "predecessors. This prevents compilation time increase.")); 173 174 static cl::opt<bool> 175 ViewSLPTree("view-slp-tree", cl::Hidden, 176 cl::desc("Display the SLP trees with Graphviz")); 177 178 // Limit the number of alias checks. The limit is chosen so that 179 // it has no negative effect on the llvm benchmarks. 180 static const unsigned AliasedCheckLimit = 10; 181 182 // Another limit for the alias checks: The maximum distance between load/store 183 // instructions where alias checks are done. 184 // This limit is useful for very large basic blocks. 185 static const unsigned MaxMemDepDistance = 160; 186 187 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling 188 /// regions to be handled. 189 static const int MinScheduleRegionSize = 16; 190 191 /// Predicate for the element types that the SLP vectorizer supports. 192 /// 193 /// The most important thing to filter here are types which are invalid in LLVM 194 /// vectors. We also filter target specific types which have absolutely no 195 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just 196 /// avoids spending time checking the cost model and realizing that they will 197 /// be inevitably scalarized. 198 static bool isValidElementType(Type *Ty) { 199 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && 200 !Ty->isPPC_FP128Ty(); 201 } 202 203 /// \returns true if all of the instructions in \p VL are in the same block or 204 /// false otherwise. 205 static bool allSameBlock(ArrayRef<Value *> VL) { 206 Instruction *I0 = dyn_cast<Instruction>(VL[0]); 207 if (!I0) 208 return false; 209 BasicBlock *BB = I0->getParent(); 210 for (int I = 1, E = VL.size(); I < E; I++) { 211 auto *II = dyn_cast<Instruction>(VL[I]); 212 if (!II) 213 return false; 214 215 if (BB != II->getParent()) 216 return false; 217 } 218 return true; 219 } 220 221 /// \returns True if all of the values in \p VL are constants (but not 222 /// globals/constant expressions). 223 static bool allConstant(ArrayRef<Value *> VL) { 224 // Constant expressions and globals can't be vectorized like normal integer/FP 225 // constants. 226 for (Value *i : VL) 227 if (!isa<Constant>(i) || isa<ConstantExpr>(i) || isa<GlobalValue>(i)) 228 return false; 229 return true; 230 } 231 232 /// \returns True if all of the values in \p VL are identical. 233 static bool isSplat(ArrayRef<Value *> VL) { 234 for (unsigned i = 1, e = VL.size(); i < e; ++i) 235 if (VL[i] != VL[0]) 236 return false; 237 return true; 238 } 239 240 /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. 241 static bool isCommutative(Instruction *I) { 242 if (auto *Cmp = dyn_cast<CmpInst>(I)) 243 return Cmp->isCommutative(); 244 if (auto *BO = dyn_cast<BinaryOperator>(I)) 245 return BO->isCommutative(); 246 // TODO: This should check for generic Instruction::isCommutative(), but 247 // we need to confirm that the caller code correctly handles Intrinsics 248 // for example (does not have 2 operands). 249 return false; 250 } 251 252 /// Checks if the vector of instructions can be represented as a shuffle, like: 253 /// %x0 = extractelement <4 x i8> %x, i32 0 254 /// %x3 = extractelement <4 x i8> %x, i32 3 255 /// %y1 = extractelement <4 x i8> %y, i32 1 256 /// %y2 = extractelement <4 x i8> %y, i32 2 257 /// %x0x0 = mul i8 %x0, %x0 258 /// %x3x3 = mul i8 %x3, %x3 259 /// %y1y1 = mul i8 %y1, %y1 260 /// %y2y2 = mul i8 %y2, %y2 261 /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 262 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 263 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 264 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 265 /// ret <4 x i8> %ins4 266 /// can be transformed into: 267 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, 268 /// i32 6> 269 /// %2 = mul <4 x i8> %1, %1 270 /// ret <4 x i8> %2 271 /// We convert this initially to something like: 272 /// %x0 = extractelement <4 x i8> %x, i32 0 273 /// %x3 = extractelement <4 x i8> %x, i32 3 274 /// %y1 = extractelement <4 x i8> %y, i32 1 275 /// %y2 = extractelement <4 x i8> %y, i32 2 276 /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 277 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 278 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 279 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 280 /// %5 = mul <4 x i8> %4, %4 281 /// %6 = extractelement <4 x i8> %5, i32 0 282 /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 283 /// %7 = extractelement <4 x i8> %5, i32 1 284 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 285 /// %8 = extractelement <4 x i8> %5, i32 2 286 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 287 /// %9 = extractelement <4 x i8> %5, i32 3 288 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 289 /// ret <4 x i8> %ins4 290 /// InstCombiner transforms this into a shuffle and vector mul 291 /// Mask will return the Shuffle Mask equivalent to the extracted elements. 292 /// TODO: Can we split off and reuse the shuffle mask detection from 293 /// TargetTransformInfo::getInstructionThroughput? 294 static Optional<TargetTransformInfo::ShuffleKind> 295 isShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { 296 auto *EI0 = cast<ExtractElementInst>(VL[0]); 297 unsigned Size = 298 cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); 299 Value *Vec1 = nullptr; 300 Value *Vec2 = nullptr; 301 enum ShuffleMode { Unknown, Select, Permute }; 302 ShuffleMode CommonShuffleMode = Unknown; 303 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 304 auto *EI = cast<ExtractElementInst>(VL[I]); 305 auto *Vec = EI->getVectorOperand(); 306 // All vector operands must have the same number of vector elements. 307 if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) 308 return None; 309 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); 310 if (!Idx) 311 return None; 312 // Undefined behavior if Idx is negative or >= Size. 313 if (Idx->getValue().uge(Size)) { 314 Mask.push_back(UndefMaskElem); 315 continue; 316 } 317 unsigned IntIdx = Idx->getValue().getZExtValue(); 318 Mask.push_back(IntIdx); 319 // We can extractelement from undef or poison vector. 320 if (isa<UndefValue>(Vec)) 321 continue; 322 // For correct shuffling we have to have at most 2 different vector operands 323 // in all extractelement instructions. 324 if (!Vec1 || Vec1 == Vec) 325 Vec1 = Vec; 326 else if (!Vec2 || Vec2 == Vec) 327 Vec2 = Vec; 328 else 329 return None; 330 if (CommonShuffleMode == Permute) 331 continue; 332 // If the extract index is not the same as the operation number, it is a 333 // permutation. 334 if (IntIdx != I) { 335 CommonShuffleMode = Permute; 336 continue; 337 } 338 CommonShuffleMode = Select; 339 } 340 // If we're not crossing lanes in different vectors, consider it as blending. 341 if (CommonShuffleMode == Select && Vec2) 342 return TargetTransformInfo::SK_Select; 343 // If Vec2 was never used, we have a permutation of a single vector, otherwise 344 // we have permutation of 2 vectors. 345 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc 346 : TargetTransformInfo::SK_PermuteSingleSrc; 347 } 348 349 namespace { 350 351 /// Main data required for vectorization of instructions. 352 struct InstructionsState { 353 /// The very first instruction in the list with the main opcode. 354 Value *OpValue = nullptr; 355 356 /// The main/alternate instruction. 357 Instruction *MainOp = nullptr; 358 Instruction *AltOp = nullptr; 359 360 /// The main/alternate opcodes for the list of instructions. 361 unsigned getOpcode() const { 362 return MainOp ? MainOp->getOpcode() : 0; 363 } 364 365 unsigned getAltOpcode() const { 366 return AltOp ? AltOp->getOpcode() : 0; 367 } 368 369 /// Some of the instructions in the list have alternate opcodes. 370 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); } 371 372 bool isOpcodeOrAlt(Instruction *I) const { 373 unsigned CheckedOpcode = I->getOpcode(); 374 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; 375 } 376 377 InstructionsState() = delete; 378 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) 379 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} 380 }; 381 382 } // end anonymous namespace 383 384 /// Chooses the correct key for scheduling data. If \p Op has the same (or 385 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p 386 /// OpValue. 387 static Value *isOneOf(const InstructionsState &S, Value *Op) { 388 auto *I = dyn_cast<Instruction>(Op); 389 if (I && S.isOpcodeOrAlt(I)) 390 return Op; 391 return S.OpValue; 392 } 393 394 /// \returns true if \p Opcode is allowed as part of of the main/alternate 395 /// instruction for SLP vectorization. 396 /// 397 /// Example of unsupported opcode is SDIV that can potentially cause UB if the 398 /// "shuffled out" lane would result in division by zero. 399 static bool isValidForAlternation(unsigned Opcode) { 400 if (Instruction::isIntDivRem(Opcode)) 401 return false; 402 403 return true; 404 } 405 406 /// \returns analysis of the Instructions in \p VL described in 407 /// InstructionsState, the Opcode that we suppose the whole list 408 /// could be vectorized even if its structure is diverse. 409 static InstructionsState getSameOpcode(ArrayRef<Value *> VL, 410 unsigned BaseIndex = 0) { 411 // Make sure these are all Instructions. 412 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) 413 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 414 415 bool IsCastOp = isa<CastInst>(VL[BaseIndex]); 416 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); 417 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); 418 unsigned AltOpcode = Opcode; 419 unsigned AltIndex = BaseIndex; 420 421 // Check for one alternate opcode from another BinaryOperator. 422 // TODO - generalize to support all operators (types, calls etc.). 423 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { 424 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode(); 425 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) { 426 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 427 continue; 428 if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && 429 isValidForAlternation(Opcode)) { 430 AltOpcode = InstOpcode; 431 AltIndex = Cnt; 432 continue; 433 } 434 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) { 435 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType(); 436 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType(); 437 if (Ty0 == Ty1) { 438 if (InstOpcode == Opcode || InstOpcode == AltOpcode) 439 continue; 440 if (Opcode == AltOpcode) { 441 assert(isValidForAlternation(Opcode) && 442 isValidForAlternation(InstOpcode) && 443 "Cast isn't safe for alternation, logic needs to be updated!"); 444 AltOpcode = InstOpcode; 445 AltIndex = Cnt; 446 continue; 447 } 448 } 449 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) 450 continue; 451 return InstructionsState(VL[BaseIndex], nullptr, nullptr); 452 } 453 454 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), 455 cast<Instruction>(VL[AltIndex])); 456 } 457 458 /// \returns true if all of the values in \p VL have the same type or false 459 /// otherwise. 460 static bool allSameType(ArrayRef<Value *> VL) { 461 Type *Ty = VL[0]->getType(); 462 for (int i = 1, e = VL.size(); i < e; i++) 463 if (VL[i]->getType() != Ty) 464 return false; 465 466 return true; 467 } 468 469 /// \returns True if Extract{Value,Element} instruction extracts element Idx. 470 static Optional<unsigned> getExtractIndex(Instruction *E) { 471 unsigned Opcode = E->getOpcode(); 472 assert((Opcode == Instruction::ExtractElement || 473 Opcode == Instruction::ExtractValue) && 474 "Expected extractelement or extractvalue instruction."); 475 if (Opcode == Instruction::ExtractElement) { 476 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); 477 if (!CI) 478 return None; 479 return CI->getZExtValue(); 480 } 481 ExtractValueInst *EI = cast<ExtractValueInst>(E); 482 if (EI->getNumIndices() != 1) 483 return None; 484 return *EI->idx_begin(); 485 } 486 487 /// \returns True if in-tree use also needs extract. This refers to 488 /// possible scalar operand in vectorized instruction. 489 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, 490 TargetLibraryInfo *TLI) { 491 unsigned Opcode = UserInst->getOpcode(); 492 switch (Opcode) { 493 case Instruction::Load: { 494 LoadInst *LI = cast<LoadInst>(UserInst); 495 return (LI->getPointerOperand() == Scalar); 496 } 497 case Instruction::Store: { 498 StoreInst *SI = cast<StoreInst>(UserInst); 499 return (SI->getPointerOperand() == Scalar); 500 } 501 case Instruction::Call: { 502 CallInst *CI = cast<CallInst>(UserInst); 503 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 504 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 505 if (hasVectorInstrinsicScalarOpd(ID, i)) 506 return (CI->getArgOperand(i) == Scalar); 507 } 508 LLVM_FALLTHROUGH; 509 } 510 default: 511 return false; 512 } 513 } 514 515 /// \returns the AA location that is being access by the instruction. 516 static MemoryLocation getLocation(Instruction *I, AAResults *AA) { 517 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 518 return MemoryLocation::get(SI); 519 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 520 return MemoryLocation::get(LI); 521 return MemoryLocation(); 522 } 523 524 /// \returns True if the instruction is not a volatile or atomic load/store. 525 static bool isSimple(Instruction *I) { 526 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 527 return LI->isSimple(); 528 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 529 return SI->isSimple(); 530 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 531 return !MI->isVolatile(); 532 return true; 533 } 534 535 namespace llvm { 536 537 static void inversePermutation(ArrayRef<unsigned> Indices, 538 SmallVectorImpl<int> &Mask) { 539 Mask.clear(); 540 const unsigned E = Indices.size(); 541 Mask.resize(E, E + 1); 542 for (unsigned I = 0; I < E; ++I) 543 Mask[Indices[I]] = I; 544 } 545 546 /// \returns inserting index of InsertElement or InsertValue instruction, 547 /// using Offset as base offset for index. 548 static Optional<int> getInsertIndex(Value *InsertInst, unsigned Offset) { 549 int Index = Offset; 550 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { 551 if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2))) { 552 auto *VT = cast<FixedVectorType>(IE->getType()); 553 if (CI->getValue().uge(VT->getNumElements())) 554 return UndefMaskElem; 555 Index *= VT->getNumElements(); 556 Index += CI->getZExtValue(); 557 return Index; 558 } 559 if (isa<UndefValue>(IE->getOperand(2))) 560 return UndefMaskElem; 561 return None; 562 } 563 564 auto *IV = cast<InsertValueInst>(InsertInst); 565 Type *CurrentType = IV->getType(); 566 for (unsigned I : IV->indices()) { 567 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 568 Index *= ST->getNumElements(); 569 CurrentType = ST->getElementType(I); 570 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 571 Index *= AT->getNumElements(); 572 CurrentType = AT->getElementType(); 573 } else { 574 return None; 575 } 576 Index += I; 577 } 578 return Index; 579 } 580 581 namespace slpvectorizer { 582 583 /// Bottom Up SLP Vectorizer. 584 class BoUpSLP { 585 struct TreeEntry; 586 struct ScheduleData; 587 588 public: 589 using ValueList = SmallVector<Value *, 8>; 590 using InstrList = SmallVector<Instruction *, 16>; 591 using ValueSet = SmallPtrSet<Value *, 16>; 592 using StoreList = SmallVector<StoreInst *, 8>; 593 using ExtraValueToDebugLocsMap = 594 MapVector<Value *, SmallVector<Instruction *, 2>>; 595 using OrdersType = SmallVector<unsigned, 4>; 596 597 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, 598 TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, 599 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, 600 const DataLayout *DL, OptimizationRemarkEmitter *ORE) 601 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), 602 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { 603 CodeMetrics::collectEphemeralValues(F, AC, EphValues); 604 // Use the vector register size specified by the target unless overridden 605 // by a command-line option. 606 // TODO: It would be better to limit the vectorization factor based on 607 // data type rather than just register size. For example, x86 AVX has 608 // 256-bit registers, but it does not support integer operations 609 // at that width (that requires AVX2). 610 if (MaxVectorRegSizeOption.getNumOccurrences()) 611 MaxVecRegSize = MaxVectorRegSizeOption; 612 else 613 MaxVecRegSize = 614 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 615 .getFixedSize(); 616 617 if (MinVectorRegSizeOption.getNumOccurrences()) 618 MinVecRegSize = MinVectorRegSizeOption; 619 else 620 MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); 621 } 622 623 /// Vectorize the tree that starts with the elements in \p VL. 624 /// Returns the vectorized root. 625 Value *vectorizeTree(); 626 627 /// Vectorize the tree but with the list of externally used values \p 628 /// ExternallyUsedValues. Values in this MapVector can be replaced but the 629 /// generated extractvalue instructions. 630 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues); 631 632 /// \returns the cost incurred by unwanted spills and fills, caused by 633 /// holding live values over call sites. 634 InstructionCost getSpillCost() const; 635 636 /// \returns the vectorization cost of the subtree that starts at \p VL. 637 /// A negative number means that this is profitable. 638 InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = None); 639 640 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 641 /// the purpose of scheduling and extraction in the \p UserIgnoreLst. 642 void buildTree(ArrayRef<Value *> Roots, 643 ArrayRef<Value *> UserIgnoreLst = None); 644 645 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for 646 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking 647 /// into account (and updating it, if required) list of externally used 648 /// values stored in \p ExternallyUsedValues. 649 void buildTree(ArrayRef<Value *> Roots, 650 ExtraValueToDebugLocsMap &ExternallyUsedValues, 651 ArrayRef<Value *> UserIgnoreLst = None); 652 653 /// Clear the internal data structures that are created by 'buildTree'. 654 void deleteTree() { 655 VectorizableTree.clear(); 656 ScalarToTreeEntry.clear(); 657 MustGather.clear(); 658 ExternalUses.clear(); 659 NumOpsWantToKeepOrder.clear(); 660 NumOpsWantToKeepOriginalOrder = 0; 661 for (auto &Iter : BlocksSchedules) { 662 BlockScheduling *BS = Iter.second.get(); 663 BS->clear(); 664 } 665 MinBWs.clear(); 666 InstrElementSize.clear(); 667 } 668 669 unsigned getTreeSize() const { return VectorizableTree.size(); } 670 671 /// Perform LICM and CSE on the newly generated gather sequences. 672 void optimizeGatherSequence(); 673 674 /// \returns The best order of instructions for vectorization. 675 Optional<ArrayRef<unsigned>> bestOrder() const { 676 assert(llvm::all_of( 677 NumOpsWantToKeepOrder, 678 [this](const decltype(NumOpsWantToKeepOrder)::value_type &D) { 679 return D.getFirst().size() == 680 VectorizableTree[0]->Scalars.size(); 681 }) && 682 "All orders must have the same size as number of instructions in " 683 "tree node."); 684 auto I = std::max_element( 685 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(), 686 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1, 687 const decltype(NumOpsWantToKeepOrder)::value_type &D2) { 688 return D1.second < D2.second; 689 }); 690 if (I == NumOpsWantToKeepOrder.end() || 691 I->getSecond() <= NumOpsWantToKeepOriginalOrder) 692 return None; 693 694 return makeArrayRef(I->getFirst()); 695 } 696 697 /// Builds the correct order for root instructions. 698 /// If some leaves have the same instructions to be vectorized, we may 699 /// incorrectly evaluate the best order for the root node (it is built for the 700 /// vector of instructions without repeated instructions and, thus, has less 701 /// elements than the root node). This function builds the correct order for 702 /// the root node. 703 /// For example, if the root node is \<a+b, a+c, a+d, f+e\>, then the leaves 704 /// are \<a, a, a, f\> and \<b, c, d, e\>. When we try to vectorize the first 705 /// leaf, it will be shrink to \<a, b\>. If instructions in this leaf should 706 /// be reordered, the best order will be \<1, 0\>. We need to extend this 707 /// order for the root node. For the root node this order should look like 708 /// \<3, 0, 1, 2\>. This function extends the order for the reused 709 /// instructions. 710 void findRootOrder(OrdersType &Order) { 711 // If the leaf has the same number of instructions to vectorize as the root 712 // - order must be set already. 713 unsigned RootSize = VectorizableTree[0]->Scalars.size(); 714 if (Order.size() == RootSize) 715 return; 716 SmallVector<unsigned, 4> RealOrder(Order.size()); 717 std::swap(Order, RealOrder); 718 SmallVector<int, 4> Mask; 719 inversePermutation(RealOrder, Mask); 720 Order.assign(Mask.begin(), Mask.end()); 721 // The leaf has less number of instructions - need to find the true order of 722 // the root. 723 // Scan the nodes starting from the leaf back to the root. 724 const TreeEntry *PNode = VectorizableTree.back().get(); 725 SmallVector<const TreeEntry *, 4> Nodes(1, PNode); 726 SmallPtrSet<const TreeEntry *, 4> Visited; 727 while (!Nodes.empty() && Order.size() != RootSize) { 728 const TreeEntry *PNode = Nodes.pop_back_val(); 729 if (!Visited.insert(PNode).second) 730 continue; 731 const TreeEntry &Node = *PNode; 732 for (const EdgeInfo &EI : Node.UserTreeIndices) 733 if (EI.UserTE) 734 Nodes.push_back(EI.UserTE); 735 if (Node.ReuseShuffleIndices.empty()) 736 continue; 737 // Build the order for the parent node. 738 OrdersType NewOrder(Node.ReuseShuffleIndices.size(), RootSize); 739 SmallVector<unsigned, 4> OrderCounter(Order.size(), 0); 740 // The algorithm of the order extension is: 741 // 1. Calculate the number of the same instructions for the order. 742 // 2. Calculate the index of the new order: total number of instructions 743 // with order less than the order of the current instruction + reuse 744 // number of the current instruction. 745 // 3. The new order is just the index of the instruction in the original 746 // vector of the instructions. 747 for (unsigned I : Node.ReuseShuffleIndices) 748 ++OrderCounter[Order[I]]; 749 SmallVector<unsigned, 4> CurrentCounter(Order.size(), 0); 750 for (unsigned I = 0, E = Node.ReuseShuffleIndices.size(); I < E; ++I) { 751 unsigned ReusedIdx = Node.ReuseShuffleIndices[I]; 752 unsigned OrderIdx = Order[ReusedIdx]; 753 unsigned NewIdx = 0; 754 for (unsigned J = 0; J < OrderIdx; ++J) 755 NewIdx += OrderCounter[J]; 756 NewIdx += CurrentCounter[OrderIdx]; 757 ++CurrentCounter[OrderIdx]; 758 assert(NewOrder[NewIdx] == RootSize && 759 "The order index should not be written already."); 760 NewOrder[NewIdx] = I; 761 } 762 std::swap(Order, NewOrder); 763 } 764 assert(Order.size() == RootSize && 765 "Root node is expected or the size of the order must be the same as " 766 "the number of elements in the root node."); 767 assert(llvm::all_of(Order, 768 [RootSize](unsigned Val) { return Val != RootSize; }) && 769 "All indices must be initialized"); 770 } 771 772 /// \return The vector element size in bits to use when vectorizing the 773 /// expression tree ending at \p V. If V is a store, the size is the width of 774 /// the stored value. Otherwise, the size is the width of the largest loaded 775 /// value reaching V. This method is used by the vectorizer to calculate 776 /// vectorization factors. 777 unsigned getVectorElementSize(Value *V); 778 779 /// Compute the minimum type sizes required to represent the entries in a 780 /// vectorizable tree. 781 void computeMinimumValueSizes(); 782 783 // \returns maximum vector register size as set by TTI or overridden by cl::opt. 784 unsigned getMaxVecRegSize() const { 785 return MaxVecRegSize; 786 } 787 788 // \returns minimum vector register size as set by cl::opt. 789 unsigned getMinVecRegSize() const { 790 return MinVecRegSize; 791 } 792 793 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 794 unsigned MaxVF = MaxVFOption.getNumOccurrences() ? 795 MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); 796 return MaxVF ? MaxVF : UINT_MAX; 797 } 798 799 /// Check if homogeneous aggregate is isomorphic to some VectorType. 800 /// Accepts homogeneous multidimensional aggregate of scalars/vectors like 801 /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, 802 /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. 803 /// 804 /// \returns number of elements in vector if isomorphism exists, 0 otherwise. 805 unsigned canMapToVector(Type *T, const DataLayout &DL) const; 806 807 /// \returns True if the VectorizableTree is both tiny and not fully 808 /// vectorizable. We do not vectorize such trees. 809 bool isTreeTinyAndNotFullyVectorizable() const; 810 811 /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values 812 /// can be load combined in the backend. Load combining may not be allowed in 813 /// the IR optimizer, so we do not want to alter the pattern. For example, 814 /// partially transforming a scalar bswap() pattern into vector code is 815 /// effectively impossible for the backend to undo. 816 /// TODO: If load combining is allowed in the IR optimizer, this analysis 817 /// may not be necessary. 818 bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; 819 820 /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values 821 /// can be load combined in the backend. Load combining may not be allowed in 822 /// the IR optimizer, so we do not want to alter the pattern. For example, 823 /// partially transforming a scalar bswap() pattern into vector code is 824 /// effectively impossible for the backend to undo. 825 /// TODO: If load combining is allowed in the IR optimizer, this analysis 826 /// may not be necessary. 827 bool isLoadCombineCandidate() const; 828 829 OptimizationRemarkEmitter *getORE() { return ORE; } 830 831 /// This structure holds any data we need about the edges being traversed 832 /// during buildTree_rec(). We keep track of: 833 /// (i) the user TreeEntry index, and 834 /// (ii) the index of the edge. 835 struct EdgeInfo { 836 EdgeInfo() = default; 837 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) 838 : UserTE(UserTE), EdgeIdx(EdgeIdx) {} 839 /// The user TreeEntry. 840 TreeEntry *UserTE = nullptr; 841 /// The operand index of the use. 842 unsigned EdgeIdx = UINT_MAX; 843 #ifndef NDEBUG 844 friend inline raw_ostream &operator<<(raw_ostream &OS, 845 const BoUpSLP::EdgeInfo &EI) { 846 EI.dump(OS); 847 return OS; 848 } 849 /// Debug print. 850 void dump(raw_ostream &OS) const { 851 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") 852 << " EdgeIdx:" << EdgeIdx << "}"; 853 } 854 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } 855 #endif 856 }; 857 858 /// A helper data structure to hold the operands of a vector of instructions. 859 /// This supports a fixed vector length for all operand vectors. 860 class VLOperands { 861 /// For each operand we need (i) the value, and (ii) the opcode that it 862 /// would be attached to if the expression was in a left-linearized form. 863 /// This is required to avoid illegal operand reordering. 864 /// For example: 865 /// \verbatim 866 /// 0 Op1 867 /// |/ 868 /// Op1 Op2 Linearized + Op2 869 /// \ / ----------> |/ 870 /// - - 871 /// 872 /// Op1 - Op2 (0 + Op1) - Op2 873 /// \endverbatim 874 /// 875 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. 876 /// 877 /// Another way to think of this is to track all the operations across the 878 /// path from the operand all the way to the root of the tree and to 879 /// calculate the operation that corresponds to this path. For example, the 880 /// path from Op2 to the root crosses the RHS of the '-', therefore the 881 /// corresponding operation is a '-' (which matches the one in the 882 /// linearized tree, as shown above). 883 /// 884 /// For lack of a better term, we refer to this operation as Accumulated 885 /// Path Operation (APO). 886 struct OperandData { 887 OperandData() = default; 888 OperandData(Value *V, bool APO, bool IsUsed) 889 : V(V), APO(APO), IsUsed(IsUsed) {} 890 /// The operand value. 891 Value *V = nullptr; 892 /// TreeEntries only allow a single opcode, or an alternate sequence of 893 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the 894 /// APO. It is set to 'true' if 'V' is attached to an inverse operation 895 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise 896 /// (e.g., Add/Mul) 897 bool APO = false; 898 /// Helper data for the reordering function. 899 bool IsUsed = false; 900 }; 901 902 /// During operand reordering, we are trying to select the operand at lane 903 /// that matches best with the operand at the neighboring lane. Our 904 /// selection is based on the type of value we are looking for. For example, 905 /// if the neighboring lane has a load, we need to look for a load that is 906 /// accessing a consecutive address. These strategies are summarized in the 907 /// 'ReorderingMode' enumerator. 908 enum class ReorderingMode { 909 Load, ///< Matching loads to consecutive memory addresses 910 Opcode, ///< Matching instructions based on opcode (same or alternate) 911 Constant, ///< Matching constants 912 Splat, ///< Matching the same instruction multiple times (broadcast) 913 Failed, ///< We failed to create a vectorizable group 914 }; 915 916 using OperandDataVec = SmallVector<OperandData, 2>; 917 918 /// A vector of operand vectors. 919 SmallVector<OperandDataVec, 4> OpsVec; 920 921 const DataLayout &DL; 922 ScalarEvolution &SE; 923 const BoUpSLP &R; 924 925 /// \returns the operand data at \p OpIdx and \p Lane. 926 OperandData &getData(unsigned OpIdx, unsigned Lane) { 927 return OpsVec[OpIdx][Lane]; 928 } 929 930 /// \returns the operand data at \p OpIdx and \p Lane. Const version. 931 const OperandData &getData(unsigned OpIdx, unsigned Lane) const { 932 return OpsVec[OpIdx][Lane]; 933 } 934 935 /// Clears the used flag for all entries. 936 void clearUsed() { 937 for (unsigned OpIdx = 0, NumOperands = getNumOperands(); 938 OpIdx != NumOperands; ++OpIdx) 939 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 940 ++Lane) 941 OpsVec[OpIdx][Lane].IsUsed = false; 942 } 943 944 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. 945 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { 946 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); 947 } 948 949 // The hard-coded scores listed here are not very important. When computing 950 // the scores of matching one sub-tree with another, we are basically 951 // counting the number of values that are matching. So even if all scores 952 // are set to 1, we would still get a decent matching result. 953 // However, sometimes we have to break ties. For example we may have to 954 // choose between matching loads vs matching opcodes. This is what these 955 // scores are helping us with: they provide the order of preference. 956 957 /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). 958 static const int ScoreConsecutiveLoads = 3; 959 /// ExtractElementInst from same vector and consecutive indexes. 960 static const int ScoreConsecutiveExtracts = 3; 961 /// Constants. 962 static const int ScoreConstants = 2; 963 /// Instructions with the same opcode. 964 static const int ScoreSameOpcode = 2; 965 /// Instructions with alt opcodes (e.g, add + sub). 966 static const int ScoreAltOpcodes = 1; 967 /// Identical instructions (a.k.a. splat or broadcast). 968 static const int ScoreSplat = 1; 969 /// Matching with an undef is preferable to failing. 970 static const int ScoreUndef = 1; 971 /// Score for failing to find a decent match. 972 static const int ScoreFail = 0; 973 /// User exteranl to the vectorized code. 974 static const int ExternalUseCost = 1; 975 /// The user is internal but in a different lane. 976 static const int UserInDiffLaneCost = ExternalUseCost; 977 978 /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. 979 static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL, 980 ScalarEvolution &SE) { 981 auto *LI1 = dyn_cast<LoadInst>(V1); 982 auto *LI2 = dyn_cast<LoadInst>(V2); 983 if (LI1 && LI2) { 984 if (LI1->getParent() != LI2->getParent()) 985 return VLOperands::ScoreFail; 986 987 Optional<int> Dist = 988 getPointersDiff(LI1->getPointerOperand(), LI2->getPointerOperand(), 989 DL, SE, /*StrictCheck=*/true); 990 return (Dist && *Dist == 1) ? VLOperands::ScoreConsecutiveLoads 991 : VLOperands::ScoreFail; 992 } 993 994 auto *C1 = dyn_cast<Constant>(V1); 995 auto *C2 = dyn_cast<Constant>(V2); 996 if (C1 && C2) 997 return VLOperands::ScoreConstants; 998 999 // Extracts from consecutive indexes of the same vector better score as 1000 // the extracts could be optimized away. 1001 Value *EV; 1002 ConstantInt *Ex1Idx, *Ex2Idx; 1003 if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) && 1004 match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) && 1005 Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue()) 1006 return VLOperands::ScoreConsecutiveExtracts; 1007 1008 auto *I1 = dyn_cast<Instruction>(V1); 1009 auto *I2 = dyn_cast<Instruction>(V2); 1010 if (I1 && I2) { 1011 if (I1 == I2) 1012 return VLOperands::ScoreSplat; 1013 InstructionsState S = getSameOpcode({I1, I2}); 1014 // Note: Only consider instructions with <= 2 operands to avoid 1015 // complexity explosion. 1016 if (S.getOpcode() && S.MainOp->getNumOperands() <= 2) 1017 return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes 1018 : VLOperands::ScoreSameOpcode; 1019 } 1020 1021 if (isa<UndefValue>(V2)) 1022 return VLOperands::ScoreUndef; 1023 1024 return VLOperands::ScoreFail; 1025 } 1026 1027 /// Holds the values and their lane that are taking part in the look-ahead 1028 /// score calculation. This is used in the external uses cost calculation. 1029 SmallDenseMap<Value *, int> InLookAheadValues; 1030 1031 /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are 1032 /// either external to the vectorized code, or require shuffling. 1033 int getExternalUsesCost(const std::pair<Value *, int> &LHS, 1034 const std::pair<Value *, int> &RHS) { 1035 int Cost = 0; 1036 std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}}; 1037 for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) { 1038 Value *V = Values[Idx].first; 1039 if (isa<Constant>(V)) { 1040 // Since this is a function pass, it doesn't make semantic sense to 1041 // walk the users of a subclass of Constant. The users could be in 1042 // another function, or even another module that happens to be in 1043 // the same LLVMContext. 1044 continue; 1045 } 1046 1047 // Calculate the absolute lane, using the minimum relative lane of LHS 1048 // and RHS as base and Idx as the offset. 1049 int Ln = std::min(LHS.second, RHS.second) + Idx; 1050 assert(Ln >= 0 && "Bad lane calculation"); 1051 unsigned UsersBudget = LookAheadUsersBudget; 1052 for (User *U : V->users()) { 1053 if (const TreeEntry *UserTE = R.getTreeEntry(U)) { 1054 // The user is in the VectorizableTree. Check if we need to insert. 1055 auto It = llvm::find(UserTE->Scalars, U); 1056 assert(It != UserTE->Scalars.end() && "U is in UserTE"); 1057 int UserLn = std::distance(UserTE->Scalars.begin(), It); 1058 assert(UserLn >= 0 && "Bad lane"); 1059 if (UserLn != Ln) 1060 Cost += UserInDiffLaneCost; 1061 } else { 1062 // Check if the user is in the look-ahead code. 1063 auto It2 = InLookAheadValues.find(U); 1064 if (It2 != InLookAheadValues.end()) { 1065 // The user is in the look-ahead code. Check the lane. 1066 if (It2->second != Ln) 1067 Cost += UserInDiffLaneCost; 1068 } else { 1069 // The user is neither in SLP tree nor in the look-ahead code. 1070 Cost += ExternalUseCost; 1071 } 1072 } 1073 // Limit the number of visited uses to cap compilation time. 1074 if (--UsersBudget == 0) 1075 break; 1076 } 1077 } 1078 return Cost; 1079 } 1080 1081 /// Go through the operands of \p LHS and \p RHS recursively until \p 1082 /// MaxLevel, and return the cummulative score. For example: 1083 /// \verbatim 1084 /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] 1085 /// \ / \ / \ / \ / 1086 /// + + + + 1087 /// G1 G2 G3 G4 1088 /// \endverbatim 1089 /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at 1090 /// each level recursively, accumulating the score. It starts from matching 1091 /// the additions at level 0, then moves on to the loads (level 1). The 1092 /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and 1093 /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while 1094 /// {A[0],C[0]} has a score of VLOperands::ScoreFail. 1095 /// Please note that the order of the operands does not matter, as we 1096 /// evaluate the score of all profitable combinations of operands. In 1097 /// other words the score of G1 and G4 is the same as G1 and G2. This 1098 /// heuristic is based on ideas described in: 1099 /// Look-ahead SLP: Auto-vectorization in the presence of commutative 1100 /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, 1101 /// Luís F. W. Góes 1102 int getScoreAtLevelRec(const std::pair<Value *, int> &LHS, 1103 const std::pair<Value *, int> &RHS, int CurrLevel, 1104 int MaxLevel) { 1105 1106 Value *V1 = LHS.first; 1107 Value *V2 = RHS.first; 1108 // Get the shallow score of V1 and V2. 1109 int ShallowScoreAtThisLevel = 1110 std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) - 1111 getExternalUsesCost(LHS, RHS)); 1112 int Lane1 = LHS.second; 1113 int Lane2 = RHS.second; 1114 1115 // If reached MaxLevel, 1116 // or if V1 and V2 are not instructions, 1117 // or if they are SPLAT, 1118 // or if they are not consecutive, early return the current cost. 1119 auto *I1 = dyn_cast<Instruction>(V1); 1120 auto *I2 = dyn_cast<Instruction>(V2); 1121 if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || 1122 ShallowScoreAtThisLevel == VLOperands::ScoreFail || 1123 (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel)) 1124 return ShallowScoreAtThisLevel; 1125 assert(I1 && I2 && "Should have early exited."); 1126 1127 // Keep track of in-tree values for determining the external-use cost. 1128 InLookAheadValues[V1] = Lane1; 1129 InLookAheadValues[V2] = Lane2; 1130 1131 // Contains the I2 operand indexes that got matched with I1 operands. 1132 SmallSet<unsigned, 4> Op2Used; 1133 1134 // Recursion towards the operands of I1 and I2. We are trying all possbile 1135 // operand pairs, and keeping track of the best score. 1136 for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); 1137 OpIdx1 != NumOperands1; ++OpIdx1) { 1138 // Try to pair op1I with the best operand of I2. 1139 int MaxTmpScore = 0; 1140 unsigned MaxOpIdx2 = 0; 1141 bool FoundBest = false; 1142 // If I2 is commutative try all combinations. 1143 unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; 1144 unsigned ToIdx = isCommutative(I2) 1145 ? I2->getNumOperands() 1146 : std::min(I2->getNumOperands(), OpIdx1 + 1); 1147 assert(FromIdx <= ToIdx && "Bad index"); 1148 for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { 1149 // Skip operands already paired with OpIdx1. 1150 if (Op2Used.count(OpIdx2)) 1151 continue; 1152 // Recursively calculate the cost at each level 1153 int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1}, 1154 {I2->getOperand(OpIdx2), Lane2}, 1155 CurrLevel + 1, MaxLevel); 1156 // Look for the best score. 1157 if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) { 1158 MaxTmpScore = TmpScore; 1159 MaxOpIdx2 = OpIdx2; 1160 FoundBest = true; 1161 } 1162 } 1163 if (FoundBest) { 1164 // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. 1165 Op2Used.insert(MaxOpIdx2); 1166 ShallowScoreAtThisLevel += MaxTmpScore; 1167 } 1168 } 1169 return ShallowScoreAtThisLevel; 1170 } 1171 1172 /// \Returns the look-ahead score, which tells us how much the sub-trees 1173 /// rooted at \p LHS and \p RHS match, the more they match the higher the 1174 /// score. This helps break ties in an informed way when we cannot decide on 1175 /// the order of the operands by just considering the immediate 1176 /// predecessors. 1177 int getLookAheadScore(const std::pair<Value *, int> &LHS, 1178 const std::pair<Value *, int> &RHS) { 1179 InLookAheadValues.clear(); 1180 return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth); 1181 } 1182 1183 // Search all operands in Ops[*][Lane] for the one that matches best 1184 // Ops[OpIdx][LastLane] and return its opreand index. 1185 // If no good match can be found, return None. 1186 Optional<unsigned> 1187 getBestOperand(unsigned OpIdx, int Lane, int LastLane, 1188 ArrayRef<ReorderingMode> ReorderingModes) { 1189 unsigned NumOperands = getNumOperands(); 1190 1191 // The operand of the previous lane at OpIdx. 1192 Value *OpLastLane = getData(OpIdx, LastLane).V; 1193 1194 // Our strategy mode for OpIdx. 1195 ReorderingMode RMode = ReorderingModes[OpIdx]; 1196 1197 // The linearized opcode of the operand at OpIdx, Lane. 1198 bool OpIdxAPO = getData(OpIdx, Lane).APO; 1199 1200 // The best operand index and its score. 1201 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we 1202 // are using the score to differentiate between the two. 1203 struct BestOpData { 1204 Optional<unsigned> Idx = None; 1205 unsigned Score = 0; 1206 } BestOp; 1207 1208 // Iterate through all unused operands and look for the best. 1209 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { 1210 // Get the operand at Idx and Lane. 1211 OperandData &OpData = getData(Idx, Lane); 1212 Value *Op = OpData.V; 1213 bool OpAPO = OpData.APO; 1214 1215 // Skip already selected operands. 1216 if (OpData.IsUsed) 1217 continue; 1218 1219 // Skip if we are trying to move the operand to a position with a 1220 // different opcode in the linearized tree form. This would break the 1221 // semantics. 1222 if (OpAPO != OpIdxAPO) 1223 continue; 1224 1225 // Look for an operand that matches the current mode. 1226 switch (RMode) { 1227 case ReorderingMode::Load: 1228 case ReorderingMode::Constant: 1229 case ReorderingMode::Opcode: { 1230 bool LeftToRight = Lane > LastLane; 1231 Value *OpLeft = (LeftToRight) ? OpLastLane : Op; 1232 Value *OpRight = (LeftToRight) ? Op : OpLastLane; 1233 unsigned Score = 1234 getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane}); 1235 if (Score > BestOp.Score) { 1236 BestOp.Idx = Idx; 1237 BestOp.Score = Score; 1238 } 1239 break; 1240 } 1241 case ReorderingMode::Splat: 1242 if (Op == OpLastLane) 1243 BestOp.Idx = Idx; 1244 break; 1245 case ReorderingMode::Failed: 1246 return None; 1247 } 1248 } 1249 1250 if (BestOp.Idx) { 1251 getData(BestOp.Idx.getValue(), Lane).IsUsed = true; 1252 return BestOp.Idx; 1253 } 1254 // If we could not find a good match return None. 1255 return None; 1256 } 1257 1258 /// Helper for reorderOperandVecs. \Returns the lane that we should start 1259 /// reordering from. This is the one which has the least number of operands 1260 /// that can freely move about. 1261 unsigned getBestLaneToStartReordering() const { 1262 unsigned BestLane = 0; 1263 unsigned Min = UINT_MAX; 1264 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; 1265 ++Lane) { 1266 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane); 1267 if (NumFreeOps < Min) { 1268 Min = NumFreeOps; 1269 BestLane = Lane; 1270 } 1271 } 1272 return BestLane; 1273 } 1274 1275 /// \Returns the maximum number of operands that are allowed to be reordered 1276 /// for \p Lane. This is used as a heuristic for selecting the first lane to 1277 /// start operand reordering. 1278 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { 1279 unsigned CntTrue = 0; 1280 unsigned NumOperands = getNumOperands(); 1281 // Operands with the same APO can be reordered. We therefore need to count 1282 // how many of them we have for each APO, like this: Cnt[APO] = x. 1283 // Since we only have two APOs, namely true and false, we can avoid using 1284 // a map. Instead we can simply count the number of operands that 1285 // correspond to one of them (in this case the 'true' APO), and calculate 1286 // the other by subtracting it from the total number of operands. 1287 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) 1288 if (getData(OpIdx, Lane).APO) 1289 ++CntTrue; 1290 unsigned CntFalse = NumOperands - CntTrue; 1291 return std::max(CntTrue, CntFalse); 1292 } 1293 1294 /// Go through the instructions in VL and append their operands. 1295 void appendOperandsOfVL(ArrayRef<Value *> VL) { 1296 assert(!VL.empty() && "Bad VL"); 1297 assert((empty() || VL.size() == getNumLanes()) && 1298 "Expected same number of lanes"); 1299 assert(isa<Instruction>(VL[0]) && "Expected instruction"); 1300 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); 1301 OpsVec.resize(NumOperands); 1302 unsigned NumLanes = VL.size(); 1303 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1304 OpsVec[OpIdx].resize(NumLanes); 1305 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1306 assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); 1307 // Our tree has just 3 nodes: the root and two operands. 1308 // It is therefore trivial to get the APO. We only need to check the 1309 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or 1310 // RHS operand. The LHS operand of both add and sub is never attached 1311 // to an inversese operation in the linearized form, therefore its APO 1312 // is false. The RHS is true only if VL[Lane] is an inverse operation. 1313 1314 // Since operand reordering is performed on groups of commutative 1315 // operations or alternating sequences (e.g., +, -), we can safely 1316 // tell the inverse operations by checking commutativity. 1317 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); 1318 bool APO = (OpIdx == 0) ? false : IsInverseOperation; 1319 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), 1320 APO, false}; 1321 } 1322 } 1323 } 1324 1325 /// \returns the number of operands. 1326 unsigned getNumOperands() const { return OpsVec.size(); } 1327 1328 /// \returns the number of lanes. 1329 unsigned getNumLanes() const { return OpsVec[0].size(); } 1330 1331 /// \returns the operand value at \p OpIdx and \p Lane. 1332 Value *getValue(unsigned OpIdx, unsigned Lane) const { 1333 return getData(OpIdx, Lane).V; 1334 } 1335 1336 /// \returns true if the data structure is empty. 1337 bool empty() const { return OpsVec.empty(); } 1338 1339 /// Clears the data. 1340 void clear() { OpsVec.clear(); } 1341 1342 /// \Returns true if there are enough operands identical to \p Op to fill 1343 /// the whole vector. 1344 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. 1345 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { 1346 bool OpAPO = getData(OpIdx, Lane).APO; 1347 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { 1348 if (Ln == Lane) 1349 continue; 1350 // This is set to true if we found a candidate for broadcast at Lane. 1351 bool FoundCandidate = false; 1352 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { 1353 OperandData &Data = getData(OpI, Ln); 1354 if (Data.APO != OpAPO || Data.IsUsed) 1355 continue; 1356 if (Data.V == Op) { 1357 FoundCandidate = true; 1358 Data.IsUsed = true; 1359 break; 1360 } 1361 } 1362 if (!FoundCandidate) 1363 return false; 1364 } 1365 return true; 1366 } 1367 1368 public: 1369 /// Initialize with all the operands of the instruction vector \p RootVL. 1370 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL, 1371 ScalarEvolution &SE, const BoUpSLP &R) 1372 : DL(DL), SE(SE), R(R) { 1373 // Append all the operands of RootVL. 1374 appendOperandsOfVL(RootVL); 1375 } 1376 1377 /// \Returns a value vector with the operands across all lanes for the 1378 /// opearnd at \p OpIdx. 1379 ValueList getVL(unsigned OpIdx) const { 1380 ValueList OpVL(OpsVec[OpIdx].size()); 1381 assert(OpsVec[OpIdx].size() == getNumLanes() && 1382 "Expected same num of lanes across all operands"); 1383 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) 1384 OpVL[Lane] = OpsVec[OpIdx][Lane].V; 1385 return OpVL; 1386 } 1387 1388 // Performs operand reordering for 2 or more operands. 1389 // The original operands are in OrigOps[OpIdx][Lane]. 1390 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. 1391 void reorder() { 1392 unsigned NumOperands = getNumOperands(); 1393 unsigned NumLanes = getNumLanes(); 1394 // Each operand has its own mode. We are using this mode to help us select 1395 // the instructions for each lane, so that they match best with the ones 1396 // we have selected so far. 1397 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); 1398 1399 // This is a greedy single-pass algorithm. We are going over each lane 1400 // once and deciding on the best order right away with no back-tracking. 1401 // However, in order to increase its effectiveness, we start with the lane 1402 // that has operands that can move the least. For example, given the 1403 // following lanes: 1404 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd 1405 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st 1406 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd 1407 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th 1408 // we will start at Lane 1, since the operands of the subtraction cannot 1409 // be reordered. Then we will visit the rest of the lanes in a circular 1410 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. 1411 1412 // Find the first lane that we will start our search from. 1413 unsigned FirstLane = getBestLaneToStartReordering(); 1414 1415 // Initialize the modes. 1416 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1417 Value *OpLane0 = getValue(OpIdx, FirstLane); 1418 // Keep track if we have instructions with all the same opcode on one 1419 // side. 1420 if (isa<LoadInst>(OpLane0)) 1421 ReorderingModes[OpIdx] = ReorderingMode::Load; 1422 else if (isa<Instruction>(OpLane0)) { 1423 // Check if OpLane0 should be broadcast. 1424 if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) 1425 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1426 else 1427 ReorderingModes[OpIdx] = ReorderingMode::Opcode; 1428 } 1429 else if (isa<Constant>(OpLane0)) 1430 ReorderingModes[OpIdx] = ReorderingMode::Constant; 1431 else if (isa<Argument>(OpLane0)) 1432 // Our best hope is a Splat. It may save some cost in some cases. 1433 ReorderingModes[OpIdx] = ReorderingMode::Splat; 1434 else 1435 // NOTE: This should be unreachable. 1436 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1437 } 1438 1439 // If the initial strategy fails for any of the operand indexes, then we 1440 // perform reordering again in a second pass. This helps avoid assigning 1441 // high priority to the failed strategy, and should improve reordering for 1442 // the non-failed operand indexes. 1443 for (int Pass = 0; Pass != 2; ++Pass) { 1444 // Skip the second pass if the first pass did not fail. 1445 bool StrategyFailed = false; 1446 // Mark all operand data as free to use. 1447 clearUsed(); 1448 // We keep the original operand order for the FirstLane, so reorder the 1449 // rest of the lanes. We are visiting the nodes in a circular fashion, 1450 // using FirstLane as the center point and increasing the radius 1451 // distance. 1452 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { 1453 // Visit the lane on the right and then the lane on the left. 1454 for (int Direction : {+1, -1}) { 1455 int Lane = FirstLane + Direction * Distance; 1456 if (Lane < 0 || Lane >= (int)NumLanes) 1457 continue; 1458 int LastLane = Lane - Direction; 1459 assert(LastLane >= 0 && LastLane < (int)NumLanes && 1460 "Out of bounds"); 1461 // Look for a good match for each operand. 1462 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { 1463 // Search for the operand that matches SortedOps[OpIdx][Lane-1]. 1464 Optional<unsigned> BestIdx = 1465 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes); 1466 // By not selecting a value, we allow the operands that follow to 1467 // select a better matching value. We will get a non-null value in 1468 // the next run of getBestOperand(). 1469 if (BestIdx) { 1470 // Swap the current operand with the one returned by 1471 // getBestOperand(). 1472 swap(OpIdx, BestIdx.getValue(), Lane); 1473 } else { 1474 // We failed to find a best operand, set mode to 'Failed'. 1475 ReorderingModes[OpIdx] = ReorderingMode::Failed; 1476 // Enable the second pass. 1477 StrategyFailed = true; 1478 } 1479 } 1480 } 1481 } 1482 // Skip second pass if the strategy did not fail. 1483 if (!StrategyFailed) 1484 break; 1485 } 1486 } 1487 1488 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1489 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { 1490 switch (RMode) { 1491 case ReorderingMode::Load: 1492 return "Load"; 1493 case ReorderingMode::Opcode: 1494 return "Opcode"; 1495 case ReorderingMode::Constant: 1496 return "Constant"; 1497 case ReorderingMode::Splat: 1498 return "Splat"; 1499 case ReorderingMode::Failed: 1500 return "Failed"; 1501 } 1502 llvm_unreachable("Unimplemented Reordering Type"); 1503 } 1504 1505 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, 1506 raw_ostream &OS) { 1507 return OS << getModeStr(RMode); 1508 } 1509 1510 /// Debug print. 1511 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { 1512 printMode(RMode, dbgs()); 1513 } 1514 1515 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { 1516 return printMode(RMode, OS); 1517 } 1518 1519 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { 1520 const unsigned Indent = 2; 1521 unsigned Cnt = 0; 1522 for (const OperandDataVec &OpDataVec : OpsVec) { 1523 OS << "Operand " << Cnt++ << "\n"; 1524 for (const OperandData &OpData : OpDataVec) { 1525 OS.indent(Indent) << "{"; 1526 if (Value *V = OpData.V) 1527 OS << *V; 1528 else 1529 OS << "null"; 1530 OS << ", APO:" << OpData.APO << "}\n"; 1531 } 1532 OS << "\n"; 1533 } 1534 return OS; 1535 } 1536 1537 /// Debug print. 1538 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 1539 #endif 1540 }; 1541 1542 /// Checks if the instruction is marked for deletion. 1543 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } 1544 1545 /// Marks values operands for later deletion by replacing them with Undefs. 1546 void eraseInstructions(ArrayRef<Value *> AV); 1547 1548 ~BoUpSLP(); 1549 1550 private: 1551 /// Checks if all users of \p I are the part of the vectorization tree. 1552 bool areAllUsersVectorized(Instruction *I, 1553 ArrayRef<Value *> VectorizedVals) const; 1554 1555 /// \returns the cost of the vectorizable entry. 1556 InstructionCost getEntryCost(const TreeEntry *E, 1557 ArrayRef<Value *> VectorizedVals); 1558 1559 /// This is the recursive part of buildTree. 1560 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, 1561 const EdgeInfo &EI); 1562 1563 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can 1564 /// be vectorized to use the original vector (or aggregate "bitcast" to a 1565 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise 1566 /// returns false, setting \p CurrentOrder to either an empty vector or a 1567 /// non-identity permutation that allows to reuse extract instructions. 1568 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 1569 SmallVectorImpl<unsigned> &CurrentOrder) const; 1570 1571 /// Vectorize a single entry in the tree. 1572 Value *vectorizeTree(TreeEntry *E); 1573 1574 /// Vectorize a single entry in the tree, starting in \p VL. 1575 Value *vectorizeTree(ArrayRef<Value *> VL); 1576 1577 /// \returns the scalarization cost for this type. Scalarization in this 1578 /// context means the creation of vectors from a group of scalars. 1579 InstructionCost 1580 getGatherCost(FixedVectorType *Ty, 1581 const DenseSet<unsigned> &ShuffledIndices) const; 1582 1583 /// Checks if the gathered \p VL can be represented as shuffle(s) of previous 1584 /// tree entries. 1585 /// \returns ShuffleKind, if gathered values can be represented as shuffles of 1586 /// previous tree entries. \p Mask is filled with the shuffle mask. 1587 Optional<TargetTransformInfo::ShuffleKind> 1588 isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 1589 SmallVectorImpl<const TreeEntry *> &Entries); 1590 1591 /// \returns the scalarization cost for this list of values. Assuming that 1592 /// this subtree gets vectorized, we may need to extract the values from the 1593 /// roots. This method calculates the cost of extracting the values. 1594 InstructionCost getGatherCost(ArrayRef<Value *> VL) const; 1595 1596 /// Set the Builder insert point to one after the last instruction in 1597 /// the bundle 1598 void setInsertPointAfterBundle(const TreeEntry *E); 1599 1600 /// \returns a vector from a collection of scalars in \p VL. 1601 Value *gather(ArrayRef<Value *> VL); 1602 1603 /// \returns whether the VectorizableTree is fully vectorizable and will 1604 /// be beneficial even the tree height is tiny. 1605 bool isFullyVectorizableTinyTree() const; 1606 1607 /// Reorder commutative or alt operands to get better probability of 1608 /// generating vectorized code. 1609 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 1610 SmallVectorImpl<Value *> &Left, 1611 SmallVectorImpl<Value *> &Right, 1612 const DataLayout &DL, 1613 ScalarEvolution &SE, 1614 const BoUpSLP &R); 1615 struct TreeEntry { 1616 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; 1617 TreeEntry(VecTreeTy &Container) : Container(Container) {} 1618 1619 /// \returns true if the scalars in VL are equal to this entry. 1620 bool isSame(ArrayRef<Value *> VL) const { 1621 if (VL.size() == Scalars.size()) 1622 return std::equal(VL.begin(), VL.end(), Scalars.begin()); 1623 return VL.size() == ReuseShuffleIndices.size() && 1624 std::equal( 1625 VL.begin(), VL.end(), ReuseShuffleIndices.begin(), 1626 [this](Value *V, int Idx) { return V == Scalars[Idx]; }); 1627 } 1628 1629 /// A vector of scalars. 1630 ValueList Scalars; 1631 1632 /// The Scalars are vectorized into this value. It is initialized to Null. 1633 Value *VectorizedValue = nullptr; 1634 1635 /// Do we need to gather this sequence or vectorize it 1636 /// (either with vector instruction or with scatter/gather 1637 /// intrinsics for store/load)? 1638 enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; 1639 EntryState State; 1640 1641 /// Does this sequence require some shuffling? 1642 SmallVector<int, 4> ReuseShuffleIndices; 1643 1644 /// Does this entry require reordering? 1645 SmallVector<unsigned, 4> ReorderIndices; 1646 1647 /// Points back to the VectorizableTree. 1648 /// 1649 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has 1650 /// to be a pointer and needs to be able to initialize the child iterator. 1651 /// Thus we need a reference back to the container to translate the indices 1652 /// to entries. 1653 VecTreeTy &Container; 1654 1655 /// The TreeEntry index containing the user of this entry. We can actually 1656 /// have multiple users so the data structure is not truly a tree. 1657 SmallVector<EdgeInfo, 1> UserTreeIndices; 1658 1659 /// The index of this treeEntry in VectorizableTree. 1660 int Idx = -1; 1661 1662 private: 1663 /// The operands of each instruction in each lane Operands[op_index][lane]. 1664 /// Note: This helps avoid the replication of the code that performs the 1665 /// reordering of operands during buildTree_rec() and vectorizeTree(). 1666 SmallVector<ValueList, 2> Operands; 1667 1668 /// The main/alternate instruction. 1669 Instruction *MainOp = nullptr; 1670 Instruction *AltOp = nullptr; 1671 1672 public: 1673 /// Set this bundle's \p OpIdx'th operand to \p OpVL. 1674 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { 1675 if (Operands.size() < OpIdx + 1) 1676 Operands.resize(OpIdx + 1); 1677 assert(Operands[OpIdx].empty() && "Already resized?"); 1678 Operands[OpIdx].resize(Scalars.size()); 1679 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane) 1680 Operands[OpIdx][Lane] = OpVL[Lane]; 1681 } 1682 1683 /// Set the operands of this bundle in their original order. 1684 void setOperandsInOrder() { 1685 assert(Operands.empty() && "Already initialized?"); 1686 auto *I0 = cast<Instruction>(Scalars[0]); 1687 Operands.resize(I0->getNumOperands()); 1688 unsigned NumLanes = Scalars.size(); 1689 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); 1690 OpIdx != NumOperands; ++OpIdx) { 1691 Operands[OpIdx].resize(NumLanes); 1692 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { 1693 auto *I = cast<Instruction>(Scalars[Lane]); 1694 assert(I->getNumOperands() == NumOperands && 1695 "Expected same number of operands"); 1696 Operands[OpIdx][Lane] = I->getOperand(OpIdx); 1697 } 1698 } 1699 } 1700 1701 /// \returns the \p OpIdx operand of this TreeEntry. 1702 ValueList &getOperand(unsigned OpIdx) { 1703 assert(OpIdx < Operands.size() && "Off bounds"); 1704 return Operands[OpIdx]; 1705 } 1706 1707 /// \returns the number of operands. 1708 unsigned getNumOperands() const { return Operands.size(); } 1709 1710 /// \return the single \p OpIdx operand. 1711 Value *getSingleOperand(unsigned OpIdx) const { 1712 assert(OpIdx < Operands.size() && "Off bounds"); 1713 assert(!Operands[OpIdx].empty() && "No operand available"); 1714 return Operands[OpIdx][0]; 1715 } 1716 1717 /// Some of the instructions in the list have alternate opcodes. 1718 bool isAltShuffle() const { 1719 return getOpcode() != getAltOpcode(); 1720 } 1721 1722 bool isOpcodeOrAlt(Instruction *I) const { 1723 unsigned CheckedOpcode = I->getOpcode(); 1724 return (getOpcode() == CheckedOpcode || 1725 getAltOpcode() == CheckedOpcode); 1726 } 1727 1728 /// Chooses the correct key for scheduling data. If \p Op has the same (or 1729 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is 1730 /// \p OpValue. 1731 Value *isOneOf(Value *Op) const { 1732 auto *I = dyn_cast<Instruction>(Op); 1733 if (I && isOpcodeOrAlt(I)) 1734 return Op; 1735 return MainOp; 1736 } 1737 1738 void setOperations(const InstructionsState &S) { 1739 MainOp = S.MainOp; 1740 AltOp = S.AltOp; 1741 } 1742 1743 Instruction *getMainOp() const { 1744 return MainOp; 1745 } 1746 1747 Instruction *getAltOp() const { 1748 return AltOp; 1749 } 1750 1751 /// The main/alternate opcodes for the list of instructions. 1752 unsigned getOpcode() const { 1753 return MainOp ? MainOp->getOpcode() : 0; 1754 } 1755 1756 unsigned getAltOpcode() const { 1757 return AltOp ? AltOp->getOpcode() : 0; 1758 } 1759 1760 /// Update operations state of this entry if reorder occurred. 1761 bool updateStateIfReorder() { 1762 if (ReorderIndices.empty()) 1763 return false; 1764 InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front()); 1765 setOperations(S); 1766 return true; 1767 } 1768 1769 #ifndef NDEBUG 1770 /// Debug printer. 1771 LLVM_DUMP_METHOD void dump() const { 1772 dbgs() << Idx << ".\n"; 1773 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { 1774 dbgs() << "Operand " << OpI << ":\n"; 1775 for (const Value *V : Operands[OpI]) 1776 dbgs().indent(2) << *V << "\n"; 1777 } 1778 dbgs() << "Scalars: \n"; 1779 for (Value *V : Scalars) 1780 dbgs().indent(2) << *V << "\n"; 1781 dbgs() << "State: "; 1782 switch (State) { 1783 case Vectorize: 1784 dbgs() << "Vectorize\n"; 1785 break; 1786 case ScatterVectorize: 1787 dbgs() << "ScatterVectorize\n"; 1788 break; 1789 case NeedToGather: 1790 dbgs() << "NeedToGather\n"; 1791 break; 1792 } 1793 dbgs() << "MainOp: "; 1794 if (MainOp) 1795 dbgs() << *MainOp << "\n"; 1796 else 1797 dbgs() << "NULL\n"; 1798 dbgs() << "AltOp: "; 1799 if (AltOp) 1800 dbgs() << *AltOp << "\n"; 1801 else 1802 dbgs() << "NULL\n"; 1803 dbgs() << "VectorizedValue: "; 1804 if (VectorizedValue) 1805 dbgs() << *VectorizedValue << "\n"; 1806 else 1807 dbgs() << "NULL\n"; 1808 dbgs() << "ReuseShuffleIndices: "; 1809 if (ReuseShuffleIndices.empty()) 1810 dbgs() << "Empty"; 1811 else 1812 for (unsigned ReuseIdx : ReuseShuffleIndices) 1813 dbgs() << ReuseIdx << ", "; 1814 dbgs() << "\n"; 1815 dbgs() << "ReorderIndices: "; 1816 for (unsigned ReorderIdx : ReorderIndices) 1817 dbgs() << ReorderIdx << ", "; 1818 dbgs() << "\n"; 1819 dbgs() << "UserTreeIndices: "; 1820 for (const auto &EInfo : UserTreeIndices) 1821 dbgs() << EInfo << ", "; 1822 dbgs() << "\n"; 1823 } 1824 #endif 1825 }; 1826 1827 #ifndef NDEBUG 1828 void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, 1829 InstructionCost VecCost, 1830 InstructionCost ScalarCost) const { 1831 dbgs() << "SLP: Calculated costs for Tree:\n"; E->dump(); 1832 dbgs() << "SLP: Costs:\n"; 1833 dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; 1834 dbgs() << "SLP: VectorCost = " << VecCost << "\n"; 1835 dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; 1836 dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " << 1837 ReuseShuffleCost + VecCost - ScalarCost << "\n"; 1838 } 1839 #endif 1840 1841 /// Create a new VectorizableTree entry. 1842 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle, 1843 const InstructionsState &S, 1844 const EdgeInfo &UserTreeIdx, 1845 ArrayRef<unsigned> ReuseShuffleIndices = None, 1846 ArrayRef<unsigned> ReorderIndices = None) { 1847 TreeEntry::EntryState EntryState = 1848 Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; 1849 return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, 1850 ReuseShuffleIndices, ReorderIndices); 1851 } 1852 1853 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, 1854 TreeEntry::EntryState EntryState, 1855 Optional<ScheduleData *> Bundle, 1856 const InstructionsState &S, 1857 const EdgeInfo &UserTreeIdx, 1858 ArrayRef<unsigned> ReuseShuffleIndices = None, 1859 ArrayRef<unsigned> ReorderIndices = None) { 1860 assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || 1861 (Bundle && EntryState != TreeEntry::NeedToGather)) && 1862 "Need to vectorize gather entry?"); 1863 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); 1864 TreeEntry *Last = VectorizableTree.back().get(); 1865 Last->Idx = VectorizableTree.size() - 1; 1866 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); 1867 Last->State = EntryState; 1868 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), 1869 ReuseShuffleIndices.end()); 1870 Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); 1871 Last->setOperations(S); 1872 if (Last->State != TreeEntry::NeedToGather) { 1873 for (Value *V : VL) { 1874 assert(!getTreeEntry(V) && "Scalar already in tree!"); 1875 ScalarToTreeEntry[V] = Last; 1876 } 1877 // Update the scheduler bundle to point to this TreeEntry. 1878 unsigned Lane = 0; 1879 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember; 1880 BundleMember = BundleMember->NextInBundle) { 1881 BundleMember->TE = Last; 1882 BundleMember->Lane = Lane; 1883 ++Lane; 1884 } 1885 assert((!Bundle.getValue() || Lane == VL.size()) && 1886 "Bundle and VL out of sync"); 1887 } else { 1888 MustGather.insert(VL.begin(), VL.end()); 1889 } 1890 1891 if (UserTreeIdx.UserTE) 1892 Last->UserTreeIndices.push_back(UserTreeIdx); 1893 1894 return Last; 1895 } 1896 1897 /// -- Vectorization State -- 1898 /// Holds all of the tree entries. 1899 TreeEntry::VecTreeTy VectorizableTree; 1900 1901 #ifndef NDEBUG 1902 /// Debug printer. 1903 LLVM_DUMP_METHOD void dumpVectorizableTree() const { 1904 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { 1905 VectorizableTree[Id]->dump(); 1906 dbgs() << "\n"; 1907 } 1908 } 1909 #endif 1910 1911 TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } 1912 1913 const TreeEntry *getTreeEntry(Value *V) const { 1914 return ScalarToTreeEntry.lookup(V); 1915 } 1916 1917 /// Maps a specific scalar to its tree entry. 1918 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; 1919 1920 /// Maps a value to the proposed vectorizable size. 1921 SmallDenseMap<Value *, unsigned> InstrElementSize; 1922 1923 /// A list of scalars that we found that we need to keep as scalars. 1924 ValueSet MustGather; 1925 1926 /// This POD struct describes one external user in the vectorized tree. 1927 struct ExternalUser { 1928 ExternalUser(Value *S, llvm::User *U, int L) 1929 : Scalar(S), User(U), Lane(L) {} 1930 1931 // Which scalar in our function. 1932 Value *Scalar; 1933 1934 // Which user that uses the scalar. 1935 llvm::User *User; 1936 1937 // Which lane does the scalar belong to. 1938 int Lane; 1939 }; 1940 using UserList = SmallVector<ExternalUser, 16>; 1941 1942 /// Checks if two instructions may access the same memory. 1943 /// 1944 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it 1945 /// is invariant in the calling loop. 1946 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, 1947 Instruction *Inst2) { 1948 // First check if the result is already in the cache. 1949 AliasCacheKey key = std::make_pair(Inst1, Inst2); 1950 Optional<bool> &result = AliasCache[key]; 1951 if (result.hasValue()) { 1952 return result.getValue(); 1953 } 1954 MemoryLocation Loc2 = getLocation(Inst2, AA); 1955 bool aliased = true; 1956 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { 1957 // Do the alias check. 1958 aliased = !AA->isNoAlias(Loc1, Loc2); 1959 } 1960 // Store the result in the cache. 1961 result = aliased; 1962 return aliased; 1963 } 1964 1965 using AliasCacheKey = std::pair<Instruction *, Instruction *>; 1966 1967 /// Cache for alias results. 1968 /// TODO: consider moving this to the AliasAnalysis itself. 1969 DenseMap<AliasCacheKey, Optional<bool>> AliasCache; 1970 1971 /// Removes an instruction from its block and eventually deletes it. 1972 /// It's like Instruction::eraseFromParent() except that the actual deletion 1973 /// is delayed until BoUpSLP is destructed. 1974 /// This is required to ensure that there are no incorrect collisions in the 1975 /// AliasCache, which can happen if a new instruction is allocated at the 1976 /// same address as a previously deleted instruction. 1977 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) { 1978 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first; 1979 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef; 1980 } 1981 1982 /// Temporary store for deleted instructions. Instructions will be deleted 1983 /// eventually when the BoUpSLP is destructed. 1984 DenseMap<Instruction *, bool> DeletedInstructions; 1985 1986 /// A list of values that need to extracted out of the tree. 1987 /// This list holds pairs of (Internal Scalar : External User). External User 1988 /// can be nullptr, it means that this Internal Scalar will be used later, 1989 /// after vectorization. 1990 UserList ExternalUses; 1991 1992 /// Values used only by @llvm.assume calls. 1993 SmallPtrSet<const Value *, 32> EphValues; 1994 1995 /// Holds all of the instructions that we gathered. 1996 SetVector<Instruction *> GatherSeq; 1997 1998 /// A list of blocks that we are going to CSE. 1999 SetVector<BasicBlock *> CSEBlocks; 2000 2001 /// Contains all scheduling relevant data for an instruction. 2002 /// A ScheduleData either represents a single instruction or a member of an 2003 /// instruction bundle (= a group of instructions which is combined into a 2004 /// vector instruction). 2005 struct ScheduleData { 2006 // The initial value for the dependency counters. It means that the 2007 // dependencies are not calculated yet. 2008 enum { InvalidDeps = -1 }; 2009 2010 ScheduleData() = default; 2011 2012 void init(int BlockSchedulingRegionID, Value *OpVal) { 2013 FirstInBundle = this; 2014 NextInBundle = nullptr; 2015 NextLoadStore = nullptr; 2016 IsScheduled = false; 2017 SchedulingRegionID = BlockSchedulingRegionID; 2018 UnscheduledDepsInBundle = UnscheduledDeps; 2019 clearDependencies(); 2020 OpValue = OpVal; 2021 TE = nullptr; 2022 Lane = -1; 2023 } 2024 2025 /// Returns true if the dependency information has been calculated. 2026 bool hasValidDependencies() const { return Dependencies != InvalidDeps; } 2027 2028 /// Returns true for single instructions and for bundle representatives 2029 /// (= the head of a bundle). 2030 bool isSchedulingEntity() const { return FirstInBundle == this; } 2031 2032 /// Returns true if it represents an instruction bundle and not only a 2033 /// single instruction. 2034 bool isPartOfBundle() const { 2035 return NextInBundle != nullptr || FirstInBundle != this; 2036 } 2037 2038 /// Returns true if it is ready for scheduling, i.e. it has no more 2039 /// unscheduled depending instructions/bundles. 2040 bool isReady() const { 2041 assert(isSchedulingEntity() && 2042 "can't consider non-scheduling entity for ready list"); 2043 return UnscheduledDepsInBundle == 0 && !IsScheduled; 2044 } 2045 2046 /// Modifies the number of unscheduled dependencies, also updating it for 2047 /// the whole bundle. 2048 int incrementUnscheduledDeps(int Incr) { 2049 UnscheduledDeps += Incr; 2050 return FirstInBundle->UnscheduledDepsInBundle += Incr; 2051 } 2052 2053 /// Sets the number of unscheduled dependencies to the number of 2054 /// dependencies. 2055 void resetUnscheduledDeps() { 2056 incrementUnscheduledDeps(Dependencies - UnscheduledDeps); 2057 } 2058 2059 /// Clears all dependency information. 2060 void clearDependencies() { 2061 Dependencies = InvalidDeps; 2062 resetUnscheduledDeps(); 2063 MemoryDependencies.clear(); 2064 } 2065 2066 void dump(raw_ostream &os) const { 2067 if (!isSchedulingEntity()) { 2068 os << "/ " << *Inst; 2069 } else if (NextInBundle) { 2070 os << '[' << *Inst; 2071 ScheduleData *SD = NextInBundle; 2072 while (SD) { 2073 os << ';' << *SD->Inst; 2074 SD = SD->NextInBundle; 2075 } 2076 os << ']'; 2077 } else { 2078 os << *Inst; 2079 } 2080 } 2081 2082 Instruction *Inst = nullptr; 2083 2084 /// Points to the head in an instruction bundle (and always to this for 2085 /// single instructions). 2086 ScheduleData *FirstInBundle = nullptr; 2087 2088 /// Single linked list of all instructions in a bundle. Null if it is a 2089 /// single instruction. 2090 ScheduleData *NextInBundle = nullptr; 2091 2092 /// Single linked list of all memory instructions (e.g. load, store, call) 2093 /// in the block - until the end of the scheduling region. 2094 ScheduleData *NextLoadStore = nullptr; 2095 2096 /// The dependent memory instructions. 2097 /// This list is derived on demand in calculateDependencies(). 2098 SmallVector<ScheduleData *, 4> MemoryDependencies; 2099 2100 /// This ScheduleData is in the current scheduling region if this matches 2101 /// the current SchedulingRegionID of BlockScheduling. 2102 int SchedulingRegionID = 0; 2103 2104 /// Used for getting a "good" final ordering of instructions. 2105 int SchedulingPriority = 0; 2106 2107 /// The number of dependencies. Constitutes of the number of users of the 2108 /// instruction plus the number of dependent memory instructions (if any). 2109 /// This value is calculated on demand. 2110 /// If InvalidDeps, the number of dependencies is not calculated yet. 2111 int Dependencies = InvalidDeps; 2112 2113 /// The number of dependencies minus the number of dependencies of scheduled 2114 /// instructions. As soon as this is zero, the instruction/bundle gets ready 2115 /// for scheduling. 2116 /// Note that this is negative as long as Dependencies is not calculated. 2117 int UnscheduledDeps = InvalidDeps; 2118 2119 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for 2120 /// single instructions. 2121 int UnscheduledDepsInBundle = InvalidDeps; 2122 2123 /// True if this instruction is scheduled (or considered as scheduled in the 2124 /// dry-run). 2125 bool IsScheduled = false; 2126 2127 /// Opcode of the current instruction in the schedule data. 2128 Value *OpValue = nullptr; 2129 2130 /// The TreeEntry that this instruction corresponds to. 2131 TreeEntry *TE = nullptr; 2132 2133 /// The lane of this node in the TreeEntry. 2134 int Lane = -1; 2135 }; 2136 2137 #ifndef NDEBUG 2138 friend inline raw_ostream &operator<<(raw_ostream &os, 2139 const BoUpSLP::ScheduleData &SD) { 2140 SD.dump(os); 2141 return os; 2142 } 2143 #endif 2144 2145 friend struct GraphTraits<BoUpSLP *>; 2146 friend struct DOTGraphTraits<BoUpSLP *>; 2147 2148 /// Contains all scheduling data for a basic block. 2149 struct BlockScheduling { 2150 BlockScheduling(BasicBlock *BB) 2151 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} 2152 2153 void clear() { 2154 ReadyInsts.clear(); 2155 ScheduleStart = nullptr; 2156 ScheduleEnd = nullptr; 2157 FirstLoadStoreInRegion = nullptr; 2158 LastLoadStoreInRegion = nullptr; 2159 2160 // Reduce the maximum schedule region size by the size of the 2161 // previous scheduling run. 2162 ScheduleRegionSizeLimit -= ScheduleRegionSize; 2163 if (ScheduleRegionSizeLimit < MinScheduleRegionSize) 2164 ScheduleRegionSizeLimit = MinScheduleRegionSize; 2165 ScheduleRegionSize = 0; 2166 2167 // Make a new scheduling region, i.e. all existing ScheduleData is not 2168 // in the new region yet. 2169 ++SchedulingRegionID; 2170 } 2171 2172 ScheduleData *getScheduleData(Value *V) { 2173 ScheduleData *SD = ScheduleDataMap[V]; 2174 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2175 return SD; 2176 return nullptr; 2177 } 2178 2179 ScheduleData *getScheduleData(Value *V, Value *Key) { 2180 if (V == Key) 2181 return getScheduleData(V); 2182 auto I = ExtraScheduleDataMap.find(V); 2183 if (I != ExtraScheduleDataMap.end()) { 2184 ScheduleData *SD = I->second[Key]; 2185 if (SD && SD->SchedulingRegionID == SchedulingRegionID) 2186 return SD; 2187 } 2188 return nullptr; 2189 } 2190 2191 bool isInSchedulingRegion(ScheduleData *SD) const { 2192 return SD->SchedulingRegionID == SchedulingRegionID; 2193 } 2194 2195 /// Marks an instruction as scheduled and puts all dependent ready 2196 /// instructions into the ready-list. 2197 template <typename ReadyListType> 2198 void schedule(ScheduleData *SD, ReadyListType &ReadyList) { 2199 SD->IsScheduled = true; 2200 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); 2201 2202 ScheduleData *BundleMember = SD; 2203 while (BundleMember) { 2204 if (BundleMember->Inst != BundleMember->OpValue) { 2205 BundleMember = BundleMember->NextInBundle; 2206 continue; 2207 } 2208 // Handle the def-use chain dependencies. 2209 2210 // Decrement the unscheduled counter and insert to ready list if ready. 2211 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { 2212 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { 2213 if (OpDef && OpDef->hasValidDependencies() && 2214 OpDef->incrementUnscheduledDeps(-1) == 0) { 2215 // There are no more unscheduled dependencies after 2216 // decrementing, so we can put the dependent instruction 2217 // into the ready list. 2218 ScheduleData *DepBundle = OpDef->FirstInBundle; 2219 assert(!DepBundle->IsScheduled && 2220 "already scheduled bundle gets ready"); 2221 ReadyList.insert(DepBundle); 2222 LLVM_DEBUG(dbgs() 2223 << "SLP: gets ready (def): " << *DepBundle << "\n"); 2224 } 2225 }); 2226 }; 2227 2228 // If BundleMember is a vector bundle, its operands may have been 2229 // reordered duiring buildTree(). We therefore need to get its operands 2230 // through the TreeEntry. 2231 if (TreeEntry *TE = BundleMember->TE) { 2232 int Lane = BundleMember->Lane; 2233 assert(Lane >= 0 && "Lane not set"); 2234 2235 // Since vectorization tree is being built recursively this assertion 2236 // ensures that the tree entry has all operands set before reaching 2237 // this code. Couple of exceptions known at the moment are extracts 2238 // where their second (immediate) operand is not added. Since 2239 // immediates do not affect scheduler behavior this is considered 2240 // okay. 2241 auto *In = TE->getMainOp(); 2242 assert(In && 2243 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) || 2244 isa<InsertElementInst>(In) || 2245 In->getNumOperands() == TE->getNumOperands()) && 2246 "Missed TreeEntry operands?"); 2247 (void)In; // fake use to avoid build failure when assertions disabled 2248 2249 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); 2250 OpIdx != NumOperands; ++OpIdx) 2251 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) 2252 DecrUnsched(I); 2253 } else { 2254 // If BundleMember is a stand-alone instruction, no operand reordering 2255 // has taken place, so we directly access its operands. 2256 for (Use &U : BundleMember->Inst->operands()) 2257 if (auto *I = dyn_cast<Instruction>(U.get())) 2258 DecrUnsched(I); 2259 } 2260 // Handle the memory dependencies. 2261 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { 2262 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { 2263 // There are no more unscheduled dependencies after decrementing, 2264 // so we can put the dependent instruction into the ready list. 2265 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; 2266 assert(!DepBundle->IsScheduled && 2267 "already scheduled bundle gets ready"); 2268 ReadyList.insert(DepBundle); 2269 LLVM_DEBUG(dbgs() 2270 << "SLP: gets ready (mem): " << *DepBundle << "\n"); 2271 } 2272 } 2273 BundleMember = BundleMember->NextInBundle; 2274 } 2275 } 2276 2277 void doForAllOpcodes(Value *V, 2278 function_ref<void(ScheduleData *SD)> Action) { 2279 if (ScheduleData *SD = getScheduleData(V)) 2280 Action(SD); 2281 auto I = ExtraScheduleDataMap.find(V); 2282 if (I != ExtraScheduleDataMap.end()) 2283 for (auto &P : I->second) 2284 if (P.second->SchedulingRegionID == SchedulingRegionID) 2285 Action(P.second); 2286 } 2287 2288 /// Put all instructions into the ReadyList which are ready for scheduling. 2289 template <typename ReadyListType> 2290 void initialFillReadyList(ReadyListType &ReadyList) { 2291 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 2292 doForAllOpcodes(I, [&](ScheduleData *SD) { 2293 if (SD->isSchedulingEntity() && SD->isReady()) { 2294 ReadyList.insert(SD); 2295 LLVM_DEBUG(dbgs() 2296 << "SLP: initially in ready list: " << *I << "\n"); 2297 } 2298 }); 2299 } 2300 } 2301 2302 /// Checks if a bundle of instructions can be scheduled, i.e. has no 2303 /// cyclic dependencies. This is only a dry-run, no instructions are 2304 /// actually moved at this stage. 2305 /// \returns the scheduling bundle. The returned Optional value is non-None 2306 /// if \p VL is allowed to be scheduled. 2307 Optional<ScheduleData *> 2308 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 2309 const InstructionsState &S); 2310 2311 /// Un-bundles a group of instructions. 2312 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); 2313 2314 /// Allocates schedule data chunk. 2315 ScheduleData *allocateScheduleDataChunks(); 2316 2317 /// Extends the scheduling region so that V is inside the region. 2318 /// \returns true if the region size is within the limit. 2319 bool extendSchedulingRegion(Value *V, const InstructionsState &S); 2320 2321 /// Initialize the ScheduleData structures for new instructions in the 2322 /// scheduling region. 2323 void initScheduleData(Instruction *FromI, Instruction *ToI, 2324 ScheduleData *PrevLoadStore, 2325 ScheduleData *NextLoadStore); 2326 2327 /// Updates the dependency information of a bundle and of all instructions/ 2328 /// bundles which depend on the original bundle. 2329 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, 2330 BoUpSLP *SLP); 2331 2332 /// Sets all instruction in the scheduling region to un-scheduled. 2333 void resetSchedule(); 2334 2335 BasicBlock *BB; 2336 2337 /// Simple memory allocation for ScheduleData. 2338 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; 2339 2340 /// The size of a ScheduleData array in ScheduleDataChunks. 2341 int ChunkSize; 2342 2343 /// The allocator position in the current chunk, which is the last entry 2344 /// of ScheduleDataChunks. 2345 int ChunkPos; 2346 2347 /// Attaches ScheduleData to Instruction. 2348 /// Note that the mapping survives during all vectorization iterations, i.e. 2349 /// ScheduleData structures are recycled. 2350 DenseMap<Value *, ScheduleData *> ScheduleDataMap; 2351 2352 /// Attaches ScheduleData to Instruction with the leading key. 2353 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> 2354 ExtraScheduleDataMap; 2355 2356 struct ReadyList : SmallVector<ScheduleData *, 8> { 2357 void insert(ScheduleData *SD) { push_back(SD); } 2358 }; 2359 2360 /// The ready-list for scheduling (only used for the dry-run). 2361 ReadyList ReadyInsts; 2362 2363 /// The first instruction of the scheduling region. 2364 Instruction *ScheduleStart = nullptr; 2365 2366 /// The first instruction _after_ the scheduling region. 2367 Instruction *ScheduleEnd = nullptr; 2368 2369 /// The first memory accessing instruction in the scheduling region 2370 /// (can be null). 2371 ScheduleData *FirstLoadStoreInRegion = nullptr; 2372 2373 /// The last memory accessing instruction in the scheduling region 2374 /// (can be null). 2375 ScheduleData *LastLoadStoreInRegion = nullptr; 2376 2377 /// The current size of the scheduling region. 2378 int ScheduleRegionSize = 0; 2379 2380 /// The maximum size allowed for the scheduling region. 2381 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; 2382 2383 /// The ID of the scheduling region. For a new vectorization iteration this 2384 /// is incremented which "removes" all ScheduleData from the region. 2385 // Make sure that the initial SchedulingRegionID is greater than the 2386 // initial SchedulingRegionID in ScheduleData (which is 0). 2387 int SchedulingRegionID = 1; 2388 }; 2389 2390 /// Attaches the BlockScheduling structures to basic blocks. 2391 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; 2392 2393 /// Performs the "real" scheduling. Done before vectorization is actually 2394 /// performed in a basic block. 2395 void scheduleBlock(BlockScheduling *BS); 2396 2397 /// List of users to ignore during scheduling and that don't need extracting. 2398 ArrayRef<Value *> UserIgnoreList; 2399 2400 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of 2401 /// sorted SmallVectors of unsigned. 2402 struct OrdersTypeDenseMapInfo { 2403 static OrdersType getEmptyKey() { 2404 OrdersType V; 2405 V.push_back(~1U); 2406 return V; 2407 } 2408 2409 static OrdersType getTombstoneKey() { 2410 OrdersType V; 2411 V.push_back(~2U); 2412 return V; 2413 } 2414 2415 static unsigned getHashValue(const OrdersType &V) { 2416 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2417 } 2418 2419 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { 2420 return LHS == RHS; 2421 } 2422 }; 2423 2424 /// Contains orders of operations along with the number of bundles that have 2425 /// operations in this order. It stores only those orders that require 2426 /// reordering, if reordering is not required it is counted using \a 2427 /// NumOpsWantToKeepOriginalOrder. 2428 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder; 2429 /// Number of bundles that do not require reordering. 2430 unsigned NumOpsWantToKeepOriginalOrder = 0; 2431 2432 // Analysis and block reference. 2433 Function *F; 2434 ScalarEvolution *SE; 2435 TargetTransformInfo *TTI; 2436 TargetLibraryInfo *TLI; 2437 AAResults *AA; 2438 LoopInfo *LI; 2439 DominatorTree *DT; 2440 AssumptionCache *AC; 2441 DemandedBits *DB; 2442 const DataLayout *DL; 2443 OptimizationRemarkEmitter *ORE; 2444 2445 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. 2446 unsigned MinVecRegSize; // Set by cl::opt (default: 128). 2447 2448 /// Instruction builder to construct the vectorized tree. 2449 IRBuilder<> Builder; 2450 2451 /// A map of scalar integer values to the smallest bit width with which they 2452 /// can legally be represented. The values map to (width, signed) pairs, 2453 /// where "width" indicates the minimum bit width and "signed" is True if the 2454 /// value must be signed-extended, rather than zero-extended, back to its 2455 /// original width. 2456 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; 2457 }; 2458 2459 } // end namespace slpvectorizer 2460 2461 template <> struct GraphTraits<BoUpSLP *> { 2462 using TreeEntry = BoUpSLP::TreeEntry; 2463 2464 /// NodeRef has to be a pointer per the GraphWriter. 2465 using NodeRef = TreeEntry *; 2466 2467 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; 2468 2469 /// Add the VectorizableTree to the index iterator to be able to return 2470 /// TreeEntry pointers. 2471 struct ChildIteratorType 2472 : public iterator_adaptor_base< 2473 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { 2474 ContainerTy &VectorizableTree; 2475 2476 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, 2477 ContainerTy &VT) 2478 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} 2479 2480 NodeRef operator*() { return I->UserTE; } 2481 }; 2482 2483 static NodeRef getEntryNode(BoUpSLP &R) { 2484 return R.VectorizableTree[0].get(); 2485 } 2486 2487 static ChildIteratorType child_begin(NodeRef N) { 2488 return {N->UserTreeIndices.begin(), N->Container}; 2489 } 2490 2491 static ChildIteratorType child_end(NodeRef N) { 2492 return {N->UserTreeIndices.end(), N->Container}; 2493 } 2494 2495 /// For the node iterator we just need to turn the TreeEntry iterator into a 2496 /// TreeEntry* iterator so that it dereferences to NodeRef. 2497 class nodes_iterator { 2498 using ItTy = ContainerTy::iterator; 2499 ItTy It; 2500 2501 public: 2502 nodes_iterator(const ItTy &It2) : It(It2) {} 2503 NodeRef operator*() { return It->get(); } 2504 nodes_iterator operator++() { 2505 ++It; 2506 return *this; 2507 } 2508 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } 2509 }; 2510 2511 static nodes_iterator nodes_begin(BoUpSLP *R) { 2512 return nodes_iterator(R->VectorizableTree.begin()); 2513 } 2514 2515 static nodes_iterator nodes_end(BoUpSLP *R) { 2516 return nodes_iterator(R->VectorizableTree.end()); 2517 } 2518 2519 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } 2520 }; 2521 2522 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { 2523 using TreeEntry = BoUpSLP::TreeEntry; 2524 2525 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 2526 2527 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { 2528 std::string Str; 2529 raw_string_ostream OS(Str); 2530 if (isSplat(Entry->Scalars)) { 2531 OS << "<splat> " << *Entry->Scalars[0]; 2532 return Str; 2533 } 2534 for (auto V : Entry->Scalars) { 2535 OS << *V; 2536 if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { 2537 return EU.Scalar == V; 2538 })) 2539 OS << " <extract>"; 2540 OS << "\n"; 2541 } 2542 return Str; 2543 } 2544 2545 static std::string getNodeAttributes(const TreeEntry *Entry, 2546 const BoUpSLP *) { 2547 if (Entry->State == TreeEntry::NeedToGather) 2548 return "color=red"; 2549 return ""; 2550 } 2551 }; 2552 2553 } // end namespace llvm 2554 2555 BoUpSLP::~BoUpSLP() { 2556 for (const auto &Pair : DeletedInstructions) { 2557 // Replace operands of ignored instructions with Undefs in case if they were 2558 // marked for deletion. 2559 if (Pair.getSecond()) { 2560 Value *Undef = UndefValue::get(Pair.getFirst()->getType()); 2561 Pair.getFirst()->replaceAllUsesWith(Undef); 2562 } 2563 Pair.getFirst()->dropAllReferences(); 2564 } 2565 for (const auto &Pair : DeletedInstructions) { 2566 assert(Pair.getFirst()->use_empty() && 2567 "trying to erase instruction with users."); 2568 Pair.getFirst()->eraseFromParent(); 2569 } 2570 #ifdef EXPENSIVE_CHECKS 2571 // If we could guarantee that this call is not extremely slow, we could 2572 // remove the ifdef limitation (see PR47712). 2573 assert(!verifyFunction(*F, &dbgs())); 2574 #endif 2575 } 2576 2577 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) { 2578 for (auto *V : AV) { 2579 if (auto *I = dyn_cast<Instruction>(V)) 2580 eraseInstruction(I, /*ReplaceOpsWithUndef=*/true); 2581 }; 2582 } 2583 2584 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2585 ArrayRef<Value *> UserIgnoreLst) { 2586 ExtraValueToDebugLocsMap ExternallyUsedValues; 2587 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst); 2588 } 2589 2590 static int findLaneForValue(ArrayRef<Value *> Scalars, 2591 ArrayRef<int> ReuseShuffleIndices, Value *V) { 2592 unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); 2593 assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); 2594 if (!ReuseShuffleIndices.empty()) { 2595 FoundLane = std::distance(ReuseShuffleIndices.begin(), 2596 find(ReuseShuffleIndices, FoundLane)); 2597 } 2598 return FoundLane; 2599 } 2600 2601 void BoUpSLP::buildTree(ArrayRef<Value *> Roots, 2602 ExtraValueToDebugLocsMap &ExternallyUsedValues, 2603 ArrayRef<Value *> UserIgnoreLst) { 2604 deleteTree(); 2605 UserIgnoreList = UserIgnoreLst; 2606 if (!allSameType(Roots)) 2607 return; 2608 buildTree_rec(Roots, 0, EdgeInfo()); 2609 2610 // Collect the values that we need to extract from the tree. 2611 for (auto &TEPtr : VectorizableTree) { 2612 TreeEntry *Entry = TEPtr.get(); 2613 2614 // No need to handle users of gathered values. 2615 if (Entry->State == TreeEntry::NeedToGather) 2616 continue; 2617 2618 // For each lane: 2619 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 2620 Value *Scalar = Entry->Scalars[Lane]; 2621 int FoundLane = 2622 findLaneForValue(Entry->Scalars, Entry->ReuseShuffleIndices, Scalar); 2623 2624 // Check if the scalar is externally used as an extra arg. 2625 auto ExtI = ExternallyUsedValues.find(Scalar); 2626 if (ExtI != ExternallyUsedValues.end()) { 2627 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " 2628 << Lane << " from " << *Scalar << ".\n"); 2629 ExternalUses.emplace_back(Scalar, nullptr, FoundLane); 2630 } 2631 for (User *U : Scalar->users()) { 2632 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); 2633 2634 Instruction *UserInst = dyn_cast<Instruction>(U); 2635 if (!UserInst) 2636 continue; 2637 2638 // Skip in-tree scalars that become vectors 2639 if (TreeEntry *UseEntry = getTreeEntry(U)) { 2640 Value *UseScalar = UseEntry->Scalars[0]; 2641 // Some in-tree scalars will remain as scalar in vectorized 2642 // instructions. If that is the case, the one in Lane 0 will 2643 // be used. 2644 if (UseScalar != U || 2645 UseEntry->State == TreeEntry::ScatterVectorize || 2646 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { 2647 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U 2648 << ".\n"); 2649 assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); 2650 continue; 2651 } 2652 } 2653 2654 // Ignore users in the user ignore list. 2655 if (is_contained(UserIgnoreList, UserInst)) 2656 continue; 2657 2658 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " 2659 << Lane << " from " << *Scalar << ".\n"); 2660 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); 2661 } 2662 } 2663 } 2664 } 2665 2666 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, 2667 const EdgeInfo &UserTreeIdx) { 2668 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); 2669 2670 InstructionsState S = getSameOpcode(VL); 2671 if (Depth == RecursionMaxDepth) { 2672 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); 2673 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2674 return; 2675 } 2676 2677 // Don't handle vectors. 2678 if (S.OpValue->getType()->isVectorTy() && 2679 !isa<InsertElementInst>(S.OpValue)) { 2680 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); 2681 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2682 return; 2683 } 2684 2685 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) 2686 if (SI->getValueOperand()->getType()->isVectorTy()) { 2687 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); 2688 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2689 return; 2690 } 2691 2692 // If all of the operands are identical or constant we have a simple solution. 2693 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) { 2694 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); 2695 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2696 return; 2697 } 2698 2699 // We now know that this is a vector of instructions of the same type from 2700 // the same block. 2701 2702 // Don't vectorize ephemeral values. 2703 for (Value *V : VL) { 2704 if (EphValues.count(V)) { 2705 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2706 << ") is ephemeral.\n"); 2707 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2708 return; 2709 } 2710 } 2711 2712 // Check if this is a duplicate of another entry. 2713 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 2714 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); 2715 if (!E->isSame(VL)) { 2716 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); 2717 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2718 return; 2719 } 2720 // Record the reuse of the tree node. FIXME, currently this is only used to 2721 // properly draw the graph rather than for the actual vectorization. 2722 E->UserTreeIndices.push_back(UserTreeIdx); 2723 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue 2724 << ".\n"); 2725 return; 2726 } 2727 2728 // Check that none of the instructions in the bundle are already in the tree. 2729 for (Value *V : VL) { 2730 auto *I = dyn_cast<Instruction>(V); 2731 if (!I) 2732 continue; 2733 if (getTreeEntry(I)) { 2734 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V 2735 << ") is already in tree.\n"); 2736 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2737 return; 2738 } 2739 } 2740 2741 // If any of the scalars is marked as a value that needs to stay scalar, then 2742 // we need to gather the scalars. 2743 // The reduction nodes (stored in UserIgnoreList) also should stay scalar. 2744 for (Value *V : VL) { 2745 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) { 2746 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); 2747 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2748 return; 2749 } 2750 } 2751 2752 // Check that all of the users of the scalars that we want to vectorize are 2753 // schedulable. 2754 auto *VL0 = cast<Instruction>(S.OpValue); 2755 BasicBlock *BB = VL0->getParent(); 2756 2757 if (!DT->isReachableFromEntry(BB)) { 2758 // Don't go into unreachable blocks. They may contain instructions with 2759 // dependency cycles which confuse the final scheduling. 2760 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); 2761 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2762 return; 2763 } 2764 2765 // Check that every instruction appears once in this bundle. 2766 SmallVector<unsigned, 4> ReuseShuffleIndicies; 2767 SmallVector<Value *, 4> UniqueValues; 2768 DenseMap<Value *, unsigned> UniquePositions; 2769 for (Value *V : VL) { 2770 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 2771 ReuseShuffleIndicies.emplace_back(Res.first->second); 2772 if (Res.second) 2773 UniqueValues.emplace_back(V); 2774 } 2775 size_t NumUniqueScalarValues = UniqueValues.size(); 2776 if (NumUniqueScalarValues == VL.size()) { 2777 ReuseShuffleIndicies.clear(); 2778 } else { 2779 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); 2780 if (NumUniqueScalarValues <= 1 || 2781 !llvm::isPowerOf2_32(NumUniqueScalarValues)) { 2782 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); 2783 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx); 2784 return; 2785 } 2786 VL = UniqueValues; 2787 } 2788 2789 auto &BSRef = BlocksSchedules[BB]; 2790 if (!BSRef) 2791 BSRef = std::make_unique<BlockScheduling>(BB); 2792 2793 BlockScheduling &BS = *BSRef.get(); 2794 2795 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); 2796 if (!Bundle) { 2797 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); 2798 assert((!BS.getScheduleData(VL0) || 2799 !BS.getScheduleData(VL0)->isPartOfBundle()) && 2800 "tryScheduleBundle should cancelScheduling on failure"); 2801 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2802 ReuseShuffleIndicies); 2803 return; 2804 } 2805 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); 2806 2807 unsigned ShuffleOrOp = S.isAltShuffle() ? 2808 (unsigned) Instruction::ShuffleVector : S.getOpcode(); 2809 switch (ShuffleOrOp) { 2810 case Instruction::PHI: { 2811 auto *PH = cast<PHINode>(VL0); 2812 2813 // Check for terminator values (e.g. invoke). 2814 for (Value *V : VL) 2815 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 2816 Instruction *Term = dyn_cast<Instruction>( 2817 cast<PHINode>(V)->getIncomingValueForBlock( 2818 PH->getIncomingBlock(I))); 2819 if (Term && Term->isTerminator()) { 2820 LLVM_DEBUG(dbgs() 2821 << "SLP: Need to swizzle PHINodes (terminator use).\n"); 2822 BS.cancelScheduling(VL, VL0); 2823 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2824 ReuseShuffleIndicies); 2825 return; 2826 } 2827 } 2828 2829 TreeEntry *TE = 2830 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); 2831 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); 2832 2833 // Keeps the reordered operands to avoid code duplication. 2834 SmallVector<ValueList, 2> OperandsVec; 2835 for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { 2836 if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { 2837 ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); 2838 TE->setOperand(I, Operands); 2839 OperandsVec.push_back(Operands); 2840 continue; 2841 } 2842 ValueList Operands; 2843 // Prepare the operand vector. 2844 for (Value *V : VL) 2845 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( 2846 PH->getIncomingBlock(I))); 2847 TE->setOperand(I, Operands); 2848 OperandsVec.push_back(Operands); 2849 } 2850 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) 2851 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); 2852 return; 2853 } 2854 case Instruction::ExtractValue: 2855 case Instruction::ExtractElement: { 2856 OrdersType CurrentOrder; 2857 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); 2858 if (Reuse) { 2859 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); 2860 ++NumOpsWantToKeepOriginalOrder; 2861 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2862 ReuseShuffleIndicies); 2863 // This is a special case, as it does not gather, but at the same time 2864 // we are not extending buildTree_rec() towards the operands. 2865 ValueList Op0; 2866 Op0.assign(VL.size(), VL0->getOperand(0)); 2867 VectorizableTree.back()->setOperand(0, Op0); 2868 return; 2869 } 2870 if (!CurrentOrder.empty()) { 2871 LLVM_DEBUG({ 2872 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " 2873 "with order"; 2874 for (unsigned Idx : CurrentOrder) 2875 dbgs() << " " << Idx; 2876 dbgs() << "\n"; 2877 }); 2878 // Insert new order with initial value 0, if it does not exist, 2879 // otherwise return the iterator to the existing one. 2880 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2881 ReuseShuffleIndicies, CurrentOrder); 2882 findRootOrder(CurrentOrder); 2883 ++NumOpsWantToKeepOrder[CurrentOrder]; 2884 // This is a special case, as it does not gather, but at the same time 2885 // we are not extending buildTree_rec() towards the operands. 2886 ValueList Op0; 2887 Op0.assign(VL.size(), VL0->getOperand(0)); 2888 VectorizableTree.back()->setOperand(0, Op0); 2889 return; 2890 } 2891 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); 2892 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2893 ReuseShuffleIndicies); 2894 BS.cancelScheduling(VL, VL0); 2895 return; 2896 } 2897 case Instruction::InsertElement: { 2898 assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); 2899 2900 // Check that we have a buildvector and not a shuffle of 2 or more 2901 // different vectors. 2902 ValueSet SourceVectors; 2903 for (Value *V : VL) 2904 SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); 2905 2906 if (count_if(VL, [&SourceVectors](Value *V) { 2907 return !SourceVectors.contains(V); 2908 }) >= 2) { 2909 // Found 2nd source vector - cancel. 2910 LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " 2911 "different source vectors.\n"); 2912 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2913 ReuseShuffleIndicies); 2914 BS.cancelScheduling(VL, VL0); 2915 return; 2916 } 2917 2918 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx); 2919 LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); 2920 2921 constexpr int NumOps = 2; 2922 ValueList VectorOperands[NumOps]; 2923 for (int I = 0; I < NumOps; ++I) { 2924 for (Value *V : VL) 2925 VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); 2926 2927 TE->setOperand(I, VectorOperands[I]); 2928 } 2929 buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, 0}); 2930 return; 2931 } 2932 case Instruction::Load: { 2933 // Check that a vectorized load would load the same memory as a scalar 2934 // load. For example, we don't want to vectorize loads that are smaller 2935 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM 2936 // treats loading/storing it as an i8 struct. If we vectorize loads/stores 2937 // from such a struct, we read/write packed bits disagreeing with the 2938 // unvectorized version. 2939 Type *ScalarTy = VL0->getType(); 2940 2941 if (DL->getTypeSizeInBits(ScalarTy) != 2942 DL->getTypeAllocSizeInBits(ScalarTy)) { 2943 BS.cancelScheduling(VL, VL0); 2944 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2945 ReuseShuffleIndicies); 2946 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); 2947 return; 2948 } 2949 2950 // Make sure all loads in the bundle are simple - we can't vectorize 2951 // atomic or volatile loads. 2952 SmallVector<Value *, 4> PointerOps(VL.size()); 2953 auto POIter = PointerOps.begin(); 2954 for (Value *V : VL) { 2955 auto *L = cast<LoadInst>(V); 2956 if (!L->isSimple()) { 2957 BS.cancelScheduling(VL, VL0); 2958 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 2959 ReuseShuffleIndicies); 2960 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); 2961 return; 2962 } 2963 *POIter = L->getPointerOperand(); 2964 ++POIter; 2965 } 2966 2967 OrdersType CurrentOrder; 2968 // Check the order of pointer operands. 2969 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 2970 Value *Ptr0; 2971 Value *PtrN; 2972 if (CurrentOrder.empty()) { 2973 Ptr0 = PointerOps.front(); 2974 PtrN = PointerOps.back(); 2975 } else { 2976 Ptr0 = PointerOps[CurrentOrder.front()]; 2977 PtrN = PointerOps[CurrentOrder.back()]; 2978 } 2979 Optional<int> Diff = getPointersDiff(Ptr0, PtrN, *DL, *SE); 2980 // Check that the sorted loads are consecutive. 2981 if (static_cast<unsigned>(*Diff) == VL.size() - 1) { 2982 if (CurrentOrder.empty()) { 2983 // Original loads are consecutive and does not require reordering. 2984 ++NumOpsWantToKeepOriginalOrder; 2985 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 2986 UserTreeIdx, ReuseShuffleIndicies); 2987 TE->setOperandsInOrder(); 2988 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); 2989 } else { 2990 // Need to reorder. 2991 TreeEntry *TE = 2992 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 2993 ReuseShuffleIndicies, CurrentOrder); 2994 TE->setOperandsInOrder(); 2995 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); 2996 findRootOrder(CurrentOrder); 2997 ++NumOpsWantToKeepOrder[CurrentOrder]; 2998 } 2999 return; 3000 } 3001 // Vectorizing non-consecutive loads with `llvm.masked.gather`. 3002 TreeEntry *TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, 3003 UserTreeIdx, ReuseShuffleIndicies); 3004 TE->setOperandsInOrder(); 3005 buildTree_rec(PointerOps, Depth + 1, {TE, 0}); 3006 LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); 3007 return; 3008 } 3009 3010 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); 3011 BS.cancelScheduling(VL, VL0); 3012 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3013 ReuseShuffleIndicies); 3014 return; 3015 } 3016 case Instruction::ZExt: 3017 case Instruction::SExt: 3018 case Instruction::FPToUI: 3019 case Instruction::FPToSI: 3020 case Instruction::FPExt: 3021 case Instruction::PtrToInt: 3022 case Instruction::IntToPtr: 3023 case Instruction::SIToFP: 3024 case Instruction::UIToFP: 3025 case Instruction::Trunc: 3026 case Instruction::FPTrunc: 3027 case Instruction::BitCast: { 3028 Type *SrcTy = VL0->getOperand(0)->getType(); 3029 for (Value *V : VL) { 3030 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); 3031 if (Ty != SrcTy || !isValidElementType(Ty)) { 3032 BS.cancelScheduling(VL, VL0); 3033 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3034 ReuseShuffleIndicies); 3035 LLVM_DEBUG(dbgs() 3036 << "SLP: Gathering casts with different src types.\n"); 3037 return; 3038 } 3039 } 3040 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3041 ReuseShuffleIndicies); 3042 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); 3043 3044 TE->setOperandsInOrder(); 3045 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3046 ValueList Operands; 3047 // Prepare the operand vector. 3048 for (Value *V : VL) 3049 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3050 3051 buildTree_rec(Operands, Depth + 1, {TE, i}); 3052 } 3053 return; 3054 } 3055 case Instruction::ICmp: 3056 case Instruction::FCmp: { 3057 // Check that all of the compares have the same predicate. 3058 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 3059 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); 3060 Type *ComparedTy = VL0->getOperand(0)->getType(); 3061 for (Value *V : VL) { 3062 CmpInst *Cmp = cast<CmpInst>(V); 3063 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || 3064 Cmp->getOperand(0)->getType() != ComparedTy) { 3065 BS.cancelScheduling(VL, VL0); 3066 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3067 ReuseShuffleIndicies); 3068 LLVM_DEBUG(dbgs() 3069 << "SLP: Gathering cmp with different predicate.\n"); 3070 return; 3071 } 3072 } 3073 3074 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3075 ReuseShuffleIndicies); 3076 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); 3077 3078 ValueList Left, Right; 3079 if (cast<CmpInst>(VL0)->isCommutative()) { 3080 // Commutative predicate - collect + sort operands of the instructions 3081 // so that each side is more likely to have the same opcode. 3082 assert(P0 == SwapP0 && "Commutative Predicate mismatch"); 3083 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3084 } else { 3085 // Collect operands - commute if it uses the swapped predicate. 3086 for (Value *V : VL) { 3087 auto *Cmp = cast<CmpInst>(V); 3088 Value *LHS = Cmp->getOperand(0); 3089 Value *RHS = Cmp->getOperand(1); 3090 if (Cmp->getPredicate() != P0) 3091 std::swap(LHS, RHS); 3092 Left.push_back(LHS); 3093 Right.push_back(RHS); 3094 } 3095 } 3096 TE->setOperand(0, Left); 3097 TE->setOperand(1, Right); 3098 buildTree_rec(Left, Depth + 1, {TE, 0}); 3099 buildTree_rec(Right, Depth + 1, {TE, 1}); 3100 return; 3101 } 3102 case Instruction::Select: 3103 case Instruction::FNeg: 3104 case Instruction::Add: 3105 case Instruction::FAdd: 3106 case Instruction::Sub: 3107 case Instruction::FSub: 3108 case Instruction::Mul: 3109 case Instruction::FMul: 3110 case Instruction::UDiv: 3111 case Instruction::SDiv: 3112 case Instruction::FDiv: 3113 case Instruction::URem: 3114 case Instruction::SRem: 3115 case Instruction::FRem: 3116 case Instruction::Shl: 3117 case Instruction::LShr: 3118 case Instruction::AShr: 3119 case Instruction::And: 3120 case Instruction::Or: 3121 case Instruction::Xor: { 3122 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3123 ReuseShuffleIndicies); 3124 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); 3125 3126 // Sort operands of the instructions so that each side is more likely to 3127 // have the same opcode. 3128 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { 3129 ValueList Left, Right; 3130 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3131 TE->setOperand(0, Left); 3132 TE->setOperand(1, Right); 3133 buildTree_rec(Left, Depth + 1, {TE, 0}); 3134 buildTree_rec(Right, Depth + 1, {TE, 1}); 3135 return; 3136 } 3137 3138 TE->setOperandsInOrder(); 3139 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3140 ValueList Operands; 3141 // Prepare the operand vector. 3142 for (Value *V : VL) 3143 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3144 3145 buildTree_rec(Operands, Depth + 1, {TE, i}); 3146 } 3147 return; 3148 } 3149 case Instruction::GetElementPtr: { 3150 // We don't combine GEPs with complicated (nested) indexing. 3151 for (Value *V : VL) { 3152 if (cast<Instruction>(V)->getNumOperands() != 2) { 3153 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); 3154 BS.cancelScheduling(VL, VL0); 3155 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3156 ReuseShuffleIndicies); 3157 return; 3158 } 3159 } 3160 3161 // We can't combine several GEPs into one vector if they operate on 3162 // different types. 3163 Type *Ty0 = VL0->getOperand(0)->getType(); 3164 for (Value *V : VL) { 3165 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType(); 3166 if (Ty0 != CurTy) { 3167 LLVM_DEBUG(dbgs() 3168 << "SLP: not-vectorizable GEP (different types).\n"); 3169 BS.cancelScheduling(VL, VL0); 3170 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3171 ReuseShuffleIndicies); 3172 return; 3173 } 3174 } 3175 3176 // We don't combine GEPs with non-constant indexes. 3177 Type *Ty1 = VL0->getOperand(1)->getType(); 3178 for (Value *V : VL) { 3179 auto Op = cast<Instruction>(V)->getOperand(1); 3180 if (!isa<ConstantInt>(Op) || 3181 (Op->getType() != Ty1 && 3182 Op->getType()->getScalarSizeInBits() > 3183 DL->getIndexSizeInBits( 3184 V->getType()->getPointerAddressSpace()))) { 3185 LLVM_DEBUG(dbgs() 3186 << "SLP: not-vectorizable GEP (non-constant indexes).\n"); 3187 BS.cancelScheduling(VL, VL0); 3188 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3189 ReuseShuffleIndicies); 3190 return; 3191 } 3192 } 3193 3194 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3195 ReuseShuffleIndicies); 3196 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); 3197 TE->setOperandsInOrder(); 3198 for (unsigned i = 0, e = 2; i < e; ++i) { 3199 ValueList Operands; 3200 // Prepare the operand vector. 3201 for (Value *V : VL) 3202 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3203 3204 buildTree_rec(Operands, Depth + 1, {TE, i}); 3205 } 3206 return; 3207 } 3208 case Instruction::Store: { 3209 // Check if the stores are consecutive or if we need to swizzle them. 3210 llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); 3211 // Avoid types that are padded when being allocated as scalars, while 3212 // being packed together in a vector (such as i1). 3213 if (DL->getTypeSizeInBits(ScalarTy) != 3214 DL->getTypeAllocSizeInBits(ScalarTy)) { 3215 BS.cancelScheduling(VL, VL0); 3216 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3217 ReuseShuffleIndicies); 3218 LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); 3219 return; 3220 } 3221 // Make sure all stores in the bundle are simple - we can't vectorize 3222 // atomic or volatile stores. 3223 SmallVector<Value *, 4> PointerOps(VL.size()); 3224 ValueList Operands(VL.size()); 3225 auto POIter = PointerOps.begin(); 3226 auto OIter = Operands.begin(); 3227 for (Value *V : VL) { 3228 auto *SI = cast<StoreInst>(V); 3229 if (!SI->isSimple()) { 3230 BS.cancelScheduling(VL, VL0); 3231 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3232 ReuseShuffleIndicies); 3233 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); 3234 return; 3235 } 3236 *POIter = SI->getPointerOperand(); 3237 *OIter = SI->getValueOperand(); 3238 ++POIter; 3239 ++OIter; 3240 } 3241 3242 OrdersType CurrentOrder; 3243 // Check the order of pointer operands. 3244 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) { 3245 Value *Ptr0; 3246 Value *PtrN; 3247 if (CurrentOrder.empty()) { 3248 Ptr0 = PointerOps.front(); 3249 PtrN = PointerOps.back(); 3250 } else { 3251 Ptr0 = PointerOps[CurrentOrder.front()]; 3252 PtrN = PointerOps[CurrentOrder.back()]; 3253 } 3254 Optional<int> Dist = getPointersDiff(Ptr0, PtrN, *DL, *SE); 3255 // Check that the sorted pointer operands are consecutive. 3256 if (static_cast<unsigned>(*Dist) == VL.size() - 1) { 3257 if (CurrentOrder.empty()) { 3258 // Original stores are consecutive and does not require reordering. 3259 ++NumOpsWantToKeepOriginalOrder; 3260 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, 3261 UserTreeIdx, ReuseShuffleIndicies); 3262 TE->setOperandsInOrder(); 3263 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3264 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); 3265 } else { 3266 TreeEntry *TE = 3267 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3268 ReuseShuffleIndicies, CurrentOrder); 3269 TE->setOperandsInOrder(); 3270 buildTree_rec(Operands, Depth + 1, {TE, 0}); 3271 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); 3272 findRootOrder(CurrentOrder); 3273 ++NumOpsWantToKeepOrder[CurrentOrder]; 3274 } 3275 return; 3276 } 3277 } 3278 3279 BS.cancelScheduling(VL, VL0); 3280 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3281 ReuseShuffleIndicies); 3282 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); 3283 return; 3284 } 3285 case Instruction::Call: { 3286 // Check if the calls are all to the same vectorizable intrinsic or 3287 // library function. 3288 CallInst *CI = cast<CallInst>(VL0); 3289 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3290 3291 VFShape Shape = VFShape::get( 3292 *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), 3293 false /*HasGlobalPred*/); 3294 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3295 3296 if (!VecFunc && !isTriviallyVectorizable(ID)) { 3297 BS.cancelScheduling(VL, VL0); 3298 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3299 ReuseShuffleIndicies); 3300 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); 3301 return; 3302 } 3303 Function *F = CI->getCalledFunction(); 3304 unsigned NumArgs = CI->getNumArgOperands(); 3305 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); 3306 for (unsigned j = 0; j != NumArgs; ++j) 3307 if (hasVectorInstrinsicScalarOpd(ID, j)) 3308 ScalarArgs[j] = CI->getArgOperand(j); 3309 for (Value *V : VL) { 3310 CallInst *CI2 = dyn_cast<CallInst>(V); 3311 if (!CI2 || CI2->getCalledFunction() != F || 3312 getVectorIntrinsicIDForCall(CI2, TLI) != ID || 3313 (VecFunc && 3314 VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || 3315 !CI->hasIdenticalOperandBundleSchema(*CI2)) { 3316 BS.cancelScheduling(VL, VL0); 3317 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3318 ReuseShuffleIndicies); 3319 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V 3320 << "\n"); 3321 return; 3322 } 3323 // Some intrinsics have scalar arguments and should be same in order for 3324 // them to be vectorized. 3325 for (unsigned j = 0; j != NumArgs; ++j) { 3326 if (hasVectorInstrinsicScalarOpd(ID, j)) { 3327 Value *A1J = CI2->getArgOperand(j); 3328 if (ScalarArgs[j] != A1J) { 3329 BS.cancelScheduling(VL, VL0); 3330 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3331 ReuseShuffleIndicies); 3332 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI 3333 << " argument " << ScalarArgs[j] << "!=" << A1J 3334 << "\n"); 3335 return; 3336 } 3337 } 3338 } 3339 // Verify that the bundle operands are identical between the two calls. 3340 if (CI->hasOperandBundles() && 3341 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), 3342 CI->op_begin() + CI->getBundleOperandsEndIndex(), 3343 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { 3344 BS.cancelScheduling(VL, VL0); 3345 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3346 ReuseShuffleIndicies); 3347 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" 3348 << *CI << "!=" << *V << '\n'); 3349 return; 3350 } 3351 } 3352 3353 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3354 ReuseShuffleIndicies); 3355 TE->setOperandsInOrder(); 3356 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { 3357 ValueList Operands; 3358 // Prepare the operand vector. 3359 for (Value *V : VL) { 3360 auto *CI2 = cast<CallInst>(V); 3361 Operands.push_back(CI2->getArgOperand(i)); 3362 } 3363 buildTree_rec(Operands, Depth + 1, {TE, i}); 3364 } 3365 return; 3366 } 3367 case Instruction::ShuffleVector: { 3368 // If this is not an alternate sequence of opcode like add-sub 3369 // then do not vectorize this instruction. 3370 if (!S.isAltShuffle()) { 3371 BS.cancelScheduling(VL, VL0); 3372 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3373 ReuseShuffleIndicies); 3374 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); 3375 return; 3376 } 3377 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, 3378 ReuseShuffleIndicies); 3379 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); 3380 3381 // Reorder operands if reordering would enable vectorization. 3382 if (isa<BinaryOperator>(VL0)) { 3383 ValueList Left, Right; 3384 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this); 3385 TE->setOperand(0, Left); 3386 TE->setOperand(1, Right); 3387 buildTree_rec(Left, Depth + 1, {TE, 0}); 3388 buildTree_rec(Right, Depth + 1, {TE, 1}); 3389 return; 3390 } 3391 3392 TE->setOperandsInOrder(); 3393 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { 3394 ValueList Operands; 3395 // Prepare the operand vector. 3396 for (Value *V : VL) 3397 Operands.push_back(cast<Instruction>(V)->getOperand(i)); 3398 3399 buildTree_rec(Operands, Depth + 1, {TE, i}); 3400 } 3401 return; 3402 } 3403 default: 3404 BS.cancelScheduling(VL, VL0); 3405 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx, 3406 ReuseShuffleIndicies); 3407 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); 3408 return; 3409 } 3410 } 3411 3412 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { 3413 unsigned N = 1; 3414 Type *EltTy = T; 3415 3416 while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) || 3417 isa<VectorType>(EltTy)) { 3418 if (auto *ST = dyn_cast<StructType>(EltTy)) { 3419 // Check that struct is homogeneous. 3420 for (const auto *Ty : ST->elements()) 3421 if (Ty != *ST->element_begin()) 3422 return 0; 3423 N *= ST->getNumElements(); 3424 EltTy = *ST->element_begin(); 3425 } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { 3426 N *= AT->getNumElements(); 3427 EltTy = AT->getElementType(); 3428 } else { 3429 auto *VT = cast<FixedVectorType>(EltTy); 3430 N *= VT->getNumElements(); 3431 EltTy = VT->getElementType(); 3432 } 3433 } 3434 3435 if (!isValidElementType(EltTy)) 3436 return 0; 3437 uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); 3438 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) 3439 return 0; 3440 return N; 3441 } 3442 3443 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, 3444 SmallVectorImpl<unsigned> &CurrentOrder) const { 3445 Instruction *E0 = cast<Instruction>(OpValue); 3446 assert(E0->getOpcode() == Instruction::ExtractElement || 3447 E0->getOpcode() == Instruction::ExtractValue); 3448 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode"); 3449 // Check if all of the extracts come from the same vector and from the 3450 // correct offset. 3451 Value *Vec = E0->getOperand(0); 3452 3453 CurrentOrder.clear(); 3454 3455 // We have to extract from a vector/aggregate with the same number of elements. 3456 unsigned NElts; 3457 if (E0->getOpcode() == Instruction::ExtractValue) { 3458 const DataLayout &DL = E0->getModule()->getDataLayout(); 3459 NElts = canMapToVector(Vec->getType(), DL); 3460 if (!NElts) 3461 return false; 3462 // Check if load can be rewritten as load of vector. 3463 LoadInst *LI = dyn_cast<LoadInst>(Vec); 3464 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) 3465 return false; 3466 } else { 3467 NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 3468 } 3469 3470 if (NElts != VL.size()) 3471 return false; 3472 3473 // Check that all of the indices extract from the correct offset. 3474 bool ShouldKeepOrder = true; 3475 unsigned E = VL.size(); 3476 // Assign to all items the initial value E + 1 so we can check if the extract 3477 // instruction index was used already. 3478 // Also, later we can check that all the indices are used and we have a 3479 // consecutive access in the extract instructions, by checking that no 3480 // element of CurrentOrder still has value E + 1. 3481 CurrentOrder.assign(E, E + 1); 3482 unsigned I = 0; 3483 for (; I < E; ++I) { 3484 auto *Inst = cast<Instruction>(VL[I]); 3485 if (Inst->getOperand(0) != Vec) 3486 break; 3487 Optional<unsigned> Idx = getExtractIndex(Inst); 3488 if (!Idx) 3489 break; 3490 const unsigned ExtIdx = *Idx; 3491 if (ExtIdx != I) { 3492 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1) 3493 break; 3494 ShouldKeepOrder = false; 3495 CurrentOrder[ExtIdx] = I; 3496 } else { 3497 if (CurrentOrder[I] != E + 1) 3498 break; 3499 CurrentOrder[I] = I; 3500 } 3501 } 3502 if (I < E) { 3503 CurrentOrder.clear(); 3504 return false; 3505 } 3506 3507 return ShouldKeepOrder; 3508 } 3509 3510 bool BoUpSLP::areAllUsersVectorized(Instruction *I, 3511 ArrayRef<Value *> VectorizedVals) const { 3512 return (I->hasOneUse() && is_contained(VectorizedVals, I)) || 3513 llvm::all_of(I->users(), [this](User *U) { 3514 return ScalarToTreeEntry.count(U) > 0; 3515 }); 3516 } 3517 3518 static std::pair<InstructionCost, InstructionCost> 3519 getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, 3520 TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { 3521 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3522 3523 // Calculate the cost of the scalar and vector calls. 3524 SmallVector<Type *, 4> VecTys; 3525 for (Use &Arg : CI->args()) 3526 VecTys.push_back( 3527 FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); 3528 FastMathFlags FMF; 3529 if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) 3530 FMF = FPCI->getFastMathFlags(); 3531 SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end()); 3532 IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, 3533 dyn_cast<IntrinsicInst>(CI)); 3534 auto IntrinsicCost = 3535 TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); 3536 3537 auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 3538 VecTy->getNumElements())), 3539 false /*HasGlobalPred*/); 3540 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3541 auto LibCost = IntrinsicCost; 3542 if (!CI->isNoBuiltin() && VecFunc) { 3543 // Calculate the cost of the vector library call. 3544 // If the corresponding vector call is cheaper, return its cost. 3545 LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, 3546 TTI::TCK_RecipThroughput); 3547 } 3548 return {IntrinsicCost, LibCost}; 3549 } 3550 3551 /// Compute the cost of creating a vector of type \p VecTy containing the 3552 /// extracted values from \p VL. 3553 static InstructionCost 3554 computeExtractCost(ArrayRef<Value *> VL, FixedVectorType *VecTy, 3555 TargetTransformInfo::ShuffleKind ShuffleKind, 3556 ArrayRef<int> Mask, TargetTransformInfo &TTI) { 3557 unsigned NumOfParts = TTI.getNumberOfParts(VecTy); 3558 3559 if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || !NumOfParts || 3560 VecTy->getNumElements() < NumOfParts) 3561 return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); 3562 3563 bool AllConsecutive = true; 3564 unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; 3565 unsigned Idx = -1; 3566 InstructionCost Cost = 0; 3567 3568 // Process extracts in blocks of EltsPerVector to check if the source vector 3569 // operand can be re-used directly. If not, add the cost of creating a shuffle 3570 // to extract the values into a vector register. 3571 for (auto *V : VL) { 3572 ++Idx; 3573 3574 // Reached the start of a new vector registers. 3575 if (Idx % EltsPerVector == 0) { 3576 AllConsecutive = true; 3577 continue; 3578 } 3579 3580 // Check all extracts for a vector register on the target directly 3581 // extract values in order. 3582 unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); 3583 unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); 3584 AllConsecutive &= PrevIdx + 1 == CurrentIdx && 3585 CurrentIdx % EltsPerVector == Idx % EltsPerVector; 3586 3587 if (AllConsecutive) 3588 continue; 3589 3590 // Skip all indices, except for the last index per vector block. 3591 if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) 3592 continue; 3593 3594 // If we have a series of extracts which are not consecutive and hence 3595 // cannot re-use the source vector register directly, compute the shuffle 3596 // cost to extract the a vector with EltsPerVector elements. 3597 Cost += TTI.getShuffleCost( 3598 TargetTransformInfo::SK_PermuteSingleSrc, 3599 FixedVectorType::get(VecTy->getElementType(), EltsPerVector)); 3600 } 3601 return Cost; 3602 } 3603 3604 InstructionCost BoUpSLP::getEntryCost(const TreeEntry *E, 3605 ArrayRef<Value *> VectorizedVals) { 3606 ArrayRef<Value*> VL = E->Scalars; 3607 3608 Type *ScalarTy = VL[0]->getType(); 3609 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 3610 ScalarTy = SI->getValueOperand()->getType(); 3611 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0])) 3612 ScalarTy = CI->getOperand(0)->getType(); 3613 else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 3614 ScalarTy = IE->getOperand(1)->getType(); 3615 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 3616 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 3617 3618 // If we have computed a smaller type for the expression, update VecTy so 3619 // that the costs will be accurate. 3620 if (MinBWs.count(VL[0])) 3621 VecTy = FixedVectorType::get( 3622 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); 3623 3624 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size(); 3625 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 3626 InstructionCost ReuseShuffleCost = 0; 3627 if (NeedToShuffleReuses) { 3628 ReuseShuffleCost = 3629 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy, 3630 E->ReuseShuffleIndices); 3631 } 3632 // FIXME: it tries to fix a problem with MSVC buildbots. 3633 TargetTransformInfo &TTIRef = *TTI; 3634 auto &&AdjustExtractsCost = [this, &TTIRef, CostKind, VL, VecTy, 3635 VectorizedVals](InstructionCost &Cost, 3636 bool IsGather) { 3637 DenseMap<Value *, int> ExtractVectorsTys; 3638 for (auto *V : VL) { 3639 // If all users of instruction are going to be vectorized and this 3640 // instruction itself is not going to be vectorized, consider this 3641 // instruction as dead and remove its cost from the final cost of the 3642 // vectorized tree. 3643 if (!areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || 3644 (IsGather && ScalarToTreeEntry.count(V))) 3645 continue; 3646 auto *EE = cast<ExtractElementInst>(V); 3647 unsigned Idx = *getExtractIndex(EE); 3648 if (TTIRef.getNumberOfParts(VecTy) != 3649 TTIRef.getNumberOfParts(EE->getVectorOperandType())) { 3650 auto It = 3651 ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; 3652 It->getSecond() = std::min<int>(It->second, Idx); 3653 } 3654 // Take credit for instruction that will become dead. 3655 if (EE->hasOneUse()) { 3656 Instruction *Ext = EE->user_back(); 3657 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3658 all_of(Ext->users(), 3659 [](User *U) { return isa<GetElementPtrInst>(U); })) { 3660 // Use getExtractWithExtendCost() to calculate the cost of 3661 // extractelement/ext pair. 3662 Cost -= 3663 TTIRef.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), 3664 EE->getVectorOperandType(), Idx); 3665 // Add back the cost of s|zext which is subtracted separately. 3666 Cost += TTIRef.getCastInstrCost( 3667 Ext->getOpcode(), Ext->getType(), EE->getType(), 3668 TTI::getCastContextHint(Ext), CostKind, Ext); 3669 continue; 3670 } 3671 } 3672 Cost -= TTIRef.getVectorInstrCost(Instruction::ExtractElement, 3673 EE->getVectorOperandType(), Idx); 3674 } 3675 // Add a cost for subvector extracts/inserts if required. 3676 for (const auto &Data : ExtractVectorsTys) { 3677 auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); 3678 unsigned NumElts = VecTy->getNumElements(); 3679 if (TTIRef.getNumberOfParts(EEVTy) > TTIRef.getNumberOfParts(VecTy)) { 3680 unsigned Idx = (Data.second / NumElts) * NumElts; 3681 unsigned EENumElts = EEVTy->getNumElements(); 3682 if (Idx + NumElts <= EENumElts) { 3683 Cost += 3684 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 3685 EEVTy, None, Idx, VecTy); 3686 } else { 3687 // Need to round up the subvector type vectorization factor to avoid a 3688 // crash in cost model functions. Make SubVT so that Idx + VF of SubVT 3689 // <= EENumElts. 3690 auto *SubVT = 3691 FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); 3692 Cost += 3693 TTIRef.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 3694 EEVTy, None, Idx, SubVT); 3695 } 3696 } else { 3697 Cost += TTIRef.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, 3698 VecTy, None, 0, EEVTy); 3699 } 3700 } 3701 }; 3702 if (E->State == TreeEntry::NeedToGather) { 3703 if (allConstant(VL)) 3704 return 0; 3705 if (isa<InsertElementInst>(VL[0])) 3706 return InstructionCost::getInvalid(); 3707 SmallVector<int> Mask; 3708 SmallVector<const TreeEntry *> Entries; 3709 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 3710 isGatherShuffledEntry(E, Mask, Entries); 3711 if (Shuffle.hasValue()) { 3712 InstructionCost GatherCost = 0; 3713 if (ShuffleVectorInst::isIdentityMask(Mask)) { 3714 // Perfect match in the graph, will reuse the previously vectorized 3715 // node. Cost is 0. 3716 LLVM_DEBUG( 3717 dbgs() 3718 << "SLP: perfect diamond match for gather bundle that starts with " 3719 << *VL.front() << ".\n"); 3720 } else { 3721 LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() 3722 << " entries for bundle that starts with " 3723 << *VL.front() << ".\n"); 3724 // Detected that instead of gather we can emit a shuffle of single/two 3725 // previously vectorized nodes. Add the cost of the permutation rather 3726 // than gather. 3727 GatherCost = TTI->getShuffleCost(*Shuffle, VecTy, Mask); 3728 } 3729 return ReuseShuffleCost + GatherCost; 3730 } 3731 if (isSplat(VL)) { 3732 // Found the broadcasting of the single scalar, calculate the cost as the 3733 // broadcast. 3734 return ReuseShuffleCost + 3735 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, None, 3736 0); 3737 } 3738 if (E->getOpcode() == Instruction::ExtractElement && allSameType(VL) && 3739 allSameBlock(VL)) { 3740 // Check that gather of extractelements can be represented as just a 3741 // shuffle of a single/two vectors the scalars are extracted from. 3742 SmallVector<int> Mask; 3743 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = 3744 isShuffle(VL, Mask); 3745 if (ShuffleKind.hasValue()) { 3746 // Found the bunch of extractelement instructions that must be gathered 3747 // into a vector and can be represented as a permutation elements in a 3748 // single input vector or of 2 input vectors. 3749 InstructionCost Cost = 3750 computeExtractCost(VL, VecTy, *ShuffleKind, Mask, *TTI); 3751 AdjustExtractsCost(Cost, /*IsGather=*/true); 3752 return ReuseShuffleCost + Cost; 3753 } 3754 } 3755 return ReuseShuffleCost + getGatherCost(VL); 3756 } 3757 assert((E->State == TreeEntry::Vectorize || 3758 E->State == TreeEntry::ScatterVectorize) && 3759 "Unhandled state"); 3760 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL"); 3761 Instruction *VL0 = E->getMainOp(); 3762 unsigned ShuffleOrOp = 3763 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 3764 switch (ShuffleOrOp) { 3765 case Instruction::PHI: 3766 return 0; 3767 3768 case Instruction::ExtractValue: 3769 case Instruction::ExtractElement: { 3770 // The common cost of removal ExtractElement/ExtractValue instructions + 3771 // the cost of shuffles, if required to resuffle the original vector. 3772 InstructionCost CommonCost = 0; 3773 if (NeedToShuffleReuses) { 3774 unsigned Idx = 0; 3775 for (unsigned I : E->ReuseShuffleIndices) { 3776 if (ShuffleOrOp == Instruction::ExtractElement) { 3777 auto *EE = cast<ExtractElementInst>(VL[I]); 3778 ReuseShuffleCost -= TTI->getVectorInstrCost( 3779 Instruction::ExtractElement, EE->getVectorOperandType(), 3780 *getExtractIndex(EE)); 3781 } else { 3782 ReuseShuffleCost -= TTI->getVectorInstrCost( 3783 Instruction::ExtractElement, VecTy, Idx); 3784 ++Idx; 3785 } 3786 } 3787 Idx = ReuseShuffleNumbers; 3788 for (Value *V : VL) { 3789 if (ShuffleOrOp == Instruction::ExtractElement) { 3790 auto *EE = cast<ExtractElementInst>(V); 3791 ReuseShuffleCost += TTI->getVectorInstrCost( 3792 Instruction::ExtractElement, EE->getVectorOperandType(), 3793 *getExtractIndex(EE)); 3794 } else { 3795 --Idx; 3796 ReuseShuffleCost += TTI->getVectorInstrCost( 3797 Instruction::ExtractElement, VecTy, Idx); 3798 } 3799 } 3800 CommonCost = ReuseShuffleCost; 3801 } else if (!E->ReorderIndices.empty()) { 3802 SmallVector<int> NewMask; 3803 inversePermutation(E->ReorderIndices, NewMask); 3804 CommonCost = TTI->getShuffleCost( 3805 TargetTransformInfo::SK_PermuteSingleSrc, VecTy, NewMask); 3806 } 3807 if (ShuffleOrOp == Instruction::ExtractValue) { 3808 for (unsigned I = 0, E = VL.size(); I < E; ++I) { 3809 auto *EI = cast<Instruction>(VL[I]); 3810 // Take credit for instruction that will become dead. 3811 if (EI->hasOneUse()) { 3812 Instruction *Ext = EI->user_back(); 3813 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3814 all_of(Ext->users(), 3815 [](User *U) { return isa<GetElementPtrInst>(U); })) { 3816 // Use getExtractWithExtendCost() to calculate the cost of 3817 // extractelement/ext pair. 3818 CommonCost -= TTI->getExtractWithExtendCost( 3819 Ext->getOpcode(), Ext->getType(), VecTy, I); 3820 // Add back the cost of s|zext which is subtracted separately. 3821 CommonCost += TTI->getCastInstrCost( 3822 Ext->getOpcode(), Ext->getType(), EI->getType(), 3823 TTI::getCastContextHint(Ext), CostKind, Ext); 3824 continue; 3825 } 3826 } 3827 CommonCost -= 3828 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I); 3829 } 3830 } else { 3831 AdjustExtractsCost(CommonCost, /*IsGather=*/false); 3832 } 3833 return CommonCost; 3834 } 3835 case Instruction::InsertElement: { 3836 auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); 3837 3838 unsigned const NumElts = SrcVecTy->getNumElements(); 3839 unsigned const NumScalars = VL.size(); 3840 APInt DemandedElts = APInt::getNullValue(NumElts); 3841 // TODO: Add support for Instruction::InsertValue. 3842 unsigned Offset = UINT_MAX; 3843 bool IsIdentity = true; 3844 SmallVector<int> ShuffleMask(NumElts, UndefMaskElem); 3845 for (unsigned I = 0; I < NumScalars; ++I) { 3846 Optional<int> InsertIdx = getInsertIndex(VL[I], 0); 3847 if (!InsertIdx || *InsertIdx == UndefMaskElem) 3848 continue; 3849 unsigned Idx = *InsertIdx; 3850 DemandedElts.setBit(Idx); 3851 if (Idx < Offset) { 3852 Offset = Idx; 3853 IsIdentity &= I == 0; 3854 } else { 3855 assert(Idx >= Offset && "Failed to find vector index offset"); 3856 IsIdentity &= Idx - Offset == I; 3857 } 3858 ShuffleMask[Idx] = I; 3859 } 3860 assert(Offset < NumElts && "Failed to find vector index offset"); 3861 3862 InstructionCost Cost = 0; 3863 Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, 3864 /*Insert*/ true, /*Extract*/ false); 3865 3866 if (IsIdentity && NumElts != NumScalars && Offset % NumScalars != 0) 3867 Cost += TTI->getShuffleCost( 3868 TargetTransformInfo::SK_InsertSubvector, SrcVecTy, /*Mask*/ None, 3869 Offset, 3870 FixedVectorType::get(SrcVecTy->getElementType(), NumScalars)); 3871 else if (!IsIdentity) 3872 Cost += TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, SrcVecTy, 3873 ShuffleMask); 3874 3875 return Cost; 3876 } 3877 case Instruction::ZExt: 3878 case Instruction::SExt: 3879 case Instruction::FPToUI: 3880 case Instruction::FPToSI: 3881 case Instruction::FPExt: 3882 case Instruction::PtrToInt: 3883 case Instruction::IntToPtr: 3884 case Instruction::SIToFP: 3885 case Instruction::UIToFP: 3886 case Instruction::Trunc: 3887 case Instruction::FPTrunc: 3888 case Instruction::BitCast: { 3889 Type *SrcTy = VL0->getOperand(0)->getType(); 3890 InstructionCost ScalarEltCost = 3891 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, 3892 TTI::getCastContextHint(VL0), CostKind, VL0); 3893 if (NeedToShuffleReuses) { 3894 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3895 } 3896 3897 // Calculate the cost of this instruction. 3898 InstructionCost ScalarCost = VL.size() * ScalarEltCost; 3899 3900 auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); 3901 InstructionCost VecCost = 0; 3902 // Check if the values are candidates to demote. 3903 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) { 3904 VecCost = 3905 ReuseShuffleCost + 3906 TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy, 3907 TTI::getCastContextHint(VL0), CostKind, VL0); 3908 } 3909 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3910 return VecCost - ScalarCost; 3911 } 3912 case Instruction::FCmp: 3913 case Instruction::ICmp: 3914 case Instruction::Select: { 3915 // Calculate the cost of this instruction. 3916 InstructionCost ScalarEltCost = 3917 TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, Builder.getInt1Ty(), 3918 CmpInst::BAD_ICMP_PREDICATE, CostKind, VL0); 3919 if (NeedToShuffleReuses) { 3920 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 3921 } 3922 auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); 3923 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 3924 3925 // Check if all entries in VL are either compares or selects with compares 3926 // as condition that have the same predicates. 3927 CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE; 3928 bool First = true; 3929 for (auto *V : VL) { 3930 CmpInst::Predicate CurrentPred; 3931 auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); 3932 if ((!match(V, m_Select(MatchCmp, m_Value(), m_Value())) && 3933 !match(V, MatchCmp)) || 3934 (!First && VecPred != CurrentPred)) { 3935 VecPred = CmpInst::BAD_ICMP_PREDICATE; 3936 break; 3937 } 3938 First = false; 3939 VecPred = CurrentPred; 3940 } 3941 3942 InstructionCost VecCost = TTI->getCmpSelInstrCost( 3943 E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); 3944 // Check if it is possible and profitable to use min/max for selects in 3945 // VL. 3946 // 3947 auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); 3948 if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { 3949 IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, 3950 {VecTy, VecTy}); 3951 InstructionCost IntrinsicCost = 3952 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 3953 // If the selects are the only uses of the compares, they will be dead 3954 // and we can adjust the cost by removing their cost. 3955 if (IntrinsicAndUse.second) 3956 IntrinsicCost -= 3957 TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, MaskTy, 3958 CmpInst::BAD_ICMP_PREDICATE, CostKind); 3959 VecCost = std::min(VecCost, IntrinsicCost); 3960 } 3961 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 3962 return ReuseShuffleCost + VecCost - ScalarCost; 3963 } 3964 case Instruction::FNeg: 3965 case Instruction::Add: 3966 case Instruction::FAdd: 3967 case Instruction::Sub: 3968 case Instruction::FSub: 3969 case Instruction::Mul: 3970 case Instruction::FMul: 3971 case Instruction::UDiv: 3972 case Instruction::SDiv: 3973 case Instruction::FDiv: 3974 case Instruction::URem: 3975 case Instruction::SRem: 3976 case Instruction::FRem: 3977 case Instruction::Shl: 3978 case Instruction::LShr: 3979 case Instruction::AShr: 3980 case Instruction::And: 3981 case Instruction::Or: 3982 case Instruction::Xor: { 3983 // Certain instructions can be cheaper to vectorize if they have a 3984 // constant second vector operand. 3985 TargetTransformInfo::OperandValueKind Op1VK = 3986 TargetTransformInfo::OK_AnyValue; 3987 TargetTransformInfo::OperandValueKind Op2VK = 3988 TargetTransformInfo::OK_UniformConstantValue; 3989 TargetTransformInfo::OperandValueProperties Op1VP = 3990 TargetTransformInfo::OP_None; 3991 TargetTransformInfo::OperandValueProperties Op2VP = 3992 TargetTransformInfo::OP_PowerOf2; 3993 3994 // If all operands are exactly the same ConstantInt then set the 3995 // operand kind to OK_UniformConstantValue. 3996 // If instead not all operands are constants, then set the operand kind 3997 // to OK_AnyValue. If all operands are constants but not the same, 3998 // then set the operand kind to OK_NonUniformConstantValue. 3999 ConstantInt *CInt0 = nullptr; 4000 for (unsigned i = 0, e = VL.size(); i < e; ++i) { 4001 const Instruction *I = cast<Instruction>(VL[i]); 4002 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0; 4003 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx)); 4004 if (!CInt) { 4005 Op2VK = TargetTransformInfo::OK_AnyValue; 4006 Op2VP = TargetTransformInfo::OP_None; 4007 break; 4008 } 4009 if (Op2VP == TargetTransformInfo::OP_PowerOf2 && 4010 !CInt->getValue().isPowerOf2()) 4011 Op2VP = TargetTransformInfo::OP_None; 4012 if (i == 0) { 4013 CInt0 = CInt; 4014 continue; 4015 } 4016 if (CInt0 != CInt) 4017 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 4018 } 4019 4020 SmallVector<const Value *, 4> Operands(VL0->operand_values()); 4021 InstructionCost ScalarEltCost = 4022 TTI->getArithmeticInstrCost(E->getOpcode(), ScalarTy, CostKind, Op1VK, 4023 Op2VK, Op1VP, Op2VP, Operands, VL0); 4024 if (NeedToShuffleReuses) { 4025 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4026 } 4027 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 4028 InstructionCost VecCost = 4029 TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind, Op1VK, 4030 Op2VK, Op1VP, Op2VP, Operands, VL0); 4031 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 4032 return ReuseShuffleCost + VecCost - ScalarCost; 4033 } 4034 case Instruction::GetElementPtr: { 4035 TargetTransformInfo::OperandValueKind Op1VK = 4036 TargetTransformInfo::OK_AnyValue; 4037 TargetTransformInfo::OperandValueKind Op2VK = 4038 TargetTransformInfo::OK_UniformConstantValue; 4039 4040 InstructionCost ScalarEltCost = TTI->getArithmeticInstrCost( 4041 Instruction::Add, ScalarTy, CostKind, Op1VK, Op2VK); 4042 if (NeedToShuffleReuses) { 4043 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4044 } 4045 InstructionCost ScalarCost = VecTy->getNumElements() * ScalarEltCost; 4046 InstructionCost VecCost = TTI->getArithmeticInstrCost( 4047 Instruction::Add, VecTy, CostKind, Op1VK, Op2VK); 4048 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 4049 return ReuseShuffleCost + VecCost - ScalarCost; 4050 } 4051 case Instruction::Load: { 4052 // Cost of wide load - cost of scalar loads. 4053 Align alignment = cast<LoadInst>(VL0)->getAlign(); 4054 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 4055 Instruction::Load, ScalarTy, alignment, 0, CostKind, VL0); 4056 if (NeedToShuffleReuses) { 4057 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4058 } 4059 InstructionCost ScalarLdCost = VecTy->getNumElements() * ScalarEltCost; 4060 InstructionCost VecLdCost; 4061 if (E->State == TreeEntry::Vectorize) { 4062 VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, 4063 CostKind, VL0); 4064 } else { 4065 assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); 4066 VecLdCost = TTI->getGatherScatterOpCost( 4067 Instruction::Load, VecTy, cast<LoadInst>(VL0)->getPointerOperand(), 4068 /*VariableMask=*/false, alignment, CostKind, VL0); 4069 } 4070 if (!NeedToShuffleReuses && !E->ReorderIndices.empty()) { 4071 SmallVector<int> NewMask; 4072 inversePermutation(E->ReorderIndices, NewMask); 4073 VecLdCost += TTI->getShuffleCost( 4074 TargetTransformInfo::SK_PermuteSingleSrc, VecTy, NewMask); 4075 } 4076 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecLdCost, ScalarLdCost)); 4077 return ReuseShuffleCost + VecLdCost - ScalarLdCost; 4078 } 4079 case Instruction::Store: { 4080 // We know that we can merge the stores. Calculate the cost. 4081 bool IsReorder = !E->ReorderIndices.empty(); 4082 auto *SI = 4083 cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); 4084 Align Alignment = SI->getAlign(); 4085 InstructionCost ScalarEltCost = TTI->getMemoryOpCost( 4086 Instruction::Store, ScalarTy, Alignment, 0, CostKind, VL0); 4087 InstructionCost ScalarStCost = VecTy->getNumElements() * ScalarEltCost; 4088 InstructionCost VecStCost = TTI->getMemoryOpCost( 4089 Instruction::Store, VecTy, Alignment, 0, CostKind, VL0); 4090 if (IsReorder) { 4091 SmallVector<int> NewMask; 4092 inversePermutation(E->ReorderIndices, NewMask); 4093 VecStCost += TTI->getShuffleCost( 4094 TargetTransformInfo::SK_PermuteSingleSrc, VecTy, NewMask); 4095 } 4096 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecStCost, ScalarStCost)); 4097 return VecStCost - ScalarStCost; 4098 } 4099 case Instruction::Call: { 4100 CallInst *CI = cast<CallInst>(VL0); 4101 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4102 4103 // Calculate the cost of the scalar and vector calls. 4104 IntrinsicCostAttributes CostAttrs(ID, *CI, 1); 4105 InstructionCost ScalarEltCost = 4106 TTI->getIntrinsicInstrCost(CostAttrs, CostKind); 4107 if (NeedToShuffleReuses) { 4108 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost; 4109 } 4110 InstructionCost ScalarCallCost = VecTy->getNumElements() * ScalarEltCost; 4111 4112 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 4113 InstructionCost VecCallCost = 4114 std::min(VecCallCosts.first, VecCallCosts.second); 4115 4116 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost 4117 << " (" << VecCallCost << "-" << ScalarCallCost << ")" 4118 << " for " << *CI << "\n"); 4119 4120 return ReuseShuffleCost + VecCallCost - ScalarCallCost; 4121 } 4122 case Instruction::ShuffleVector: { 4123 assert(E->isAltShuffle() && 4124 ((Instruction::isBinaryOp(E->getOpcode()) && 4125 Instruction::isBinaryOp(E->getAltOpcode())) || 4126 (Instruction::isCast(E->getOpcode()) && 4127 Instruction::isCast(E->getAltOpcode()))) && 4128 "Invalid Shuffle Vector Operand"); 4129 InstructionCost ScalarCost = 0; 4130 if (NeedToShuffleReuses) { 4131 for (unsigned Idx : E->ReuseShuffleIndices) { 4132 Instruction *I = cast<Instruction>(VL[Idx]); 4133 ReuseShuffleCost -= TTI->getInstructionCost(I, CostKind); 4134 } 4135 for (Value *V : VL) { 4136 Instruction *I = cast<Instruction>(V); 4137 ReuseShuffleCost += TTI->getInstructionCost(I, CostKind); 4138 } 4139 } 4140 for (Value *V : VL) { 4141 Instruction *I = cast<Instruction>(V); 4142 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); 4143 ScalarCost += TTI->getInstructionCost(I, CostKind); 4144 } 4145 // VecCost is equal to sum of the cost of creating 2 vectors 4146 // and the cost of creating shuffle. 4147 InstructionCost VecCost = 0; 4148 if (Instruction::isBinaryOp(E->getOpcode())) { 4149 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); 4150 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, 4151 CostKind); 4152 } else { 4153 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); 4154 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); 4155 auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); 4156 auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); 4157 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, 4158 TTI::CastContextHint::None, CostKind); 4159 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, 4160 TTI::CastContextHint::None, CostKind); 4161 } 4162 4163 SmallVector<int> Mask(E->Scalars.size()); 4164 for (unsigned I = 0, End = E->Scalars.size(); I < End; ++I) { 4165 auto *OpInst = cast<Instruction>(E->Scalars[I]); 4166 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 4167 Mask[I] = I + (OpInst->getOpcode() == E->getAltOpcode() ? End : 0); 4168 } 4169 VecCost += 4170 TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, Mask, 0); 4171 LLVM_DEBUG(dumpTreeCosts(E, ReuseShuffleCost, VecCost, ScalarCost)); 4172 return ReuseShuffleCost + VecCost - ScalarCost; 4173 } 4174 default: 4175 llvm_unreachable("Unknown instruction"); 4176 } 4177 } 4178 4179 bool BoUpSLP::isFullyVectorizableTinyTree() const { 4180 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " 4181 << VectorizableTree.size() << " is fully vectorizable .\n"); 4182 4183 // We only handle trees of heights 1 and 2. 4184 if (VectorizableTree.size() == 1 && 4185 VectorizableTree[0]->State == TreeEntry::Vectorize) 4186 return true; 4187 4188 if (VectorizableTree.size() != 2) 4189 return false; 4190 4191 // Handle splat and all-constants stores. Also try to vectorize tiny trees 4192 // with the second gather nodes if they have less scalar operands rather than 4193 // the initial tree element (may be profitable to shuffle the second gather) 4194 // or they are extractelements, which form shuffle. 4195 SmallVector<int> Mask; 4196 if (VectorizableTree[0]->State == TreeEntry::Vectorize && 4197 (allConstant(VectorizableTree[1]->Scalars) || 4198 isSplat(VectorizableTree[1]->Scalars) || 4199 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 4200 VectorizableTree[1]->Scalars.size() < 4201 VectorizableTree[0]->Scalars.size()) || 4202 (VectorizableTree[1]->State == TreeEntry::NeedToGather && 4203 VectorizableTree[1]->getOpcode() == Instruction::ExtractElement && 4204 isShuffle(VectorizableTree[1]->Scalars, Mask)))) 4205 return true; 4206 4207 // Gathering cost would be too much for tiny trees. 4208 if (VectorizableTree[0]->State == TreeEntry::NeedToGather || 4209 VectorizableTree[1]->State == TreeEntry::NeedToGather) 4210 return false; 4211 4212 return true; 4213 } 4214 4215 static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, 4216 TargetTransformInfo *TTI, 4217 bool MustMatchOrInst) { 4218 // Look past the root to find a source value. Arbitrarily follow the 4219 // path through operand 0 of any 'or'. Also, peek through optional 4220 // shift-left-by-multiple-of-8-bits. 4221 Value *ZextLoad = Root; 4222 const APInt *ShAmtC; 4223 bool FoundOr = false; 4224 while (!isa<ConstantExpr>(ZextLoad) && 4225 (match(ZextLoad, m_Or(m_Value(), m_Value())) || 4226 (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && 4227 ShAmtC->urem(8) == 0))) { 4228 auto *BinOp = cast<BinaryOperator>(ZextLoad); 4229 ZextLoad = BinOp->getOperand(0); 4230 if (BinOp->getOpcode() == Instruction::Or) 4231 FoundOr = true; 4232 } 4233 // Check if the input is an extended load of the required or/shift expression. 4234 Value *LoadPtr; 4235 if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || 4236 !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr))))) 4237 return false; 4238 4239 // Require that the total load bit width is a legal integer type. 4240 // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. 4241 // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. 4242 Type *SrcTy = LoadPtr->getType()->getPointerElementType(); 4243 unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; 4244 if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) 4245 return false; 4246 4247 // Everything matched - assume that we can fold the whole sequence using 4248 // load combining. 4249 LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " 4250 << *(cast<Instruction>(Root)) << "\n"); 4251 4252 return true; 4253 } 4254 4255 bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { 4256 if (RdxKind != RecurKind::Or) 4257 return false; 4258 4259 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 4260 Value *FirstReduced = VectorizableTree[0]->Scalars[0]; 4261 return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, 4262 /* MatchOr */ false); 4263 } 4264 4265 bool BoUpSLP::isLoadCombineCandidate() const { 4266 // Peek through a final sequence of stores and check if all operations are 4267 // likely to be load-combined. 4268 unsigned NumElts = VectorizableTree[0]->Scalars.size(); 4269 for (Value *Scalar : VectorizableTree[0]->Scalars) { 4270 Value *X; 4271 if (!match(Scalar, m_Store(m_Value(X), m_Value())) || 4272 !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) 4273 return false; 4274 } 4275 return true; 4276 } 4277 4278 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const { 4279 // No need to vectorize inserts of gathered values. 4280 if (VectorizableTree.size() == 2 && 4281 isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && 4282 VectorizableTree[1]->State == TreeEntry::NeedToGather) 4283 return true; 4284 4285 // We can vectorize the tree if its size is greater than or equal to the 4286 // minimum size specified by the MinTreeSize command line option. 4287 if (VectorizableTree.size() >= MinTreeSize) 4288 return false; 4289 4290 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we 4291 // can vectorize it if we can prove it fully vectorizable. 4292 if (isFullyVectorizableTinyTree()) 4293 return false; 4294 4295 assert(VectorizableTree.empty() 4296 ? ExternalUses.empty() 4297 : true && "We shouldn't have any external users"); 4298 4299 // Otherwise, we can't vectorize the tree. It is both tiny and not fully 4300 // vectorizable. 4301 return true; 4302 } 4303 4304 InstructionCost BoUpSLP::getSpillCost() const { 4305 // Walk from the bottom of the tree to the top, tracking which values are 4306 // live. When we see a call instruction that is not part of our tree, 4307 // query TTI to see if there is a cost to keeping values live over it 4308 // (for example, if spills and fills are required). 4309 unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); 4310 InstructionCost Cost = 0; 4311 4312 SmallPtrSet<Instruction*, 4> LiveValues; 4313 Instruction *PrevInst = nullptr; 4314 4315 // The entries in VectorizableTree are not necessarily ordered by their 4316 // position in basic blocks. Collect them and order them by dominance so later 4317 // instructions are guaranteed to be visited first. For instructions in 4318 // different basic blocks, we only scan to the beginning of the block, so 4319 // their order does not matter, as long as all instructions in a basic block 4320 // are grouped together. Using dominance ensures a deterministic order. 4321 SmallVector<Instruction *, 16> OrderedScalars; 4322 for (const auto &TEPtr : VectorizableTree) { 4323 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); 4324 if (!Inst) 4325 continue; 4326 OrderedScalars.push_back(Inst); 4327 } 4328 llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { 4329 auto *NodeA = DT->getNode(A->getParent()); 4330 auto *NodeB = DT->getNode(B->getParent()); 4331 assert(NodeA && "Should only process reachable instructions"); 4332 assert(NodeB && "Should only process reachable instructions"); 4333 assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && 4334 "Different nodes should have different DFS numbers"); 4335 if (NodeA != NodeB) 4336 return NodeA->getDFSNumIn() < NodeB->getDFSNumIn(); 4337 return B->comesBefore(A); 4338 }); 4339 4340 for (Instruction *Inst : OrderedScalars) { 4341 if (!PrevInst) { 4342 PrevInst = Inst; 4343 continue; 4344 } 4345 4346 // Update LiveValues. 4347 LiveValues.erase(PrevInst); 4348 for (auto &J : PrevInst->operands()) { 4349 if (isa<Instruction>(&*J) && getTreeEntry(&*J)) 4350 LiveValues.insert(cast<Instruction>(&*J)); 4351 } 4352 4353 LLVM_DEBUG({ 4354 dbgs() << "SLP: #LV: " << LiveValues.size(); 4355 for (auto *X : LiveValues) 4356 dbgs() << " " << X->getName(); 4357 dbgs() << ", Looking at "; 4358 Inst->dump(); 4359 }); 4360 4361 // Now find the sequence of instructions between PrevInst and Inst. 4362 unsigned NumCalls = 0; 4363 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), 4364 PrevInstIt = 4365 PrevInst->getIterator().getReverse(); 4366 while (InstIt != PrevInstIt) { 4367 if (PrevInstIt == PrevInst->getParent()->rend()) { 4368 PrevInstIt = Inst->getParent()->rbegin(); 4369 continue; 4370 } 4371 4372 // Debug information does not impact spill cost. 4373 if ((isa<CallInst>(&*PrevInstIt) && 4374 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) && 4375 &*PrevInstIt != PrevInst) 4376 NumCalls++; 4377 4378 ++PrevInstIt; 4379 } 4380 4381 if (NumCalls) { 4382 SmallVector<Type*, 4> V; 4383 for (auto *II : LiveValues) { 4384 auto *ScalarTy = II->getType(); 4385 if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) 4386 ScalarTy = VectorTy->getElementType(); 4387 V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); 4388 } 4389 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); 4390 } 4391 4392 PrevInst = Inst; 4393 } 4394 4395 return Cost; 4396 } 4397 4398 InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { 4399 InstructionCost Cost = 0; 4400 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " 4401 << VectorizableTree.size() << ".\n"); 4402 4403 unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); 4404 4405 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { 4406 TreeEntry &TE = *VectorizableTree[I].get(); 4407 4408 InstructionCost C = getEntryCost(&TE, VectorizedVals); 4409 Cost += C; 4410 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 4411 << " for bundle that starts with " << *TE.Scalars[0] 4412 << ".\n" 4413 << "SLP: Current total cost = " << Cost << "\n"); 4414 } 4415 4416 SmallPtrSet<Value *, 16> ExtractCostCalculated; 4417 InstructionCost ExtractCost = 0; 4418 SmallBitVector IsIdentity; 4419 SmallVector<unsigned> VF; 4420 SmallVector<SmallVector<int>> ShuffleMask; 4421 SmallVector<Value *> FirstUsers; 4422 SmallVector<APInt> DemandedElts; 4423 for (ExternalUser &EU : ExternalUses) { 4424 // We only add extract cost once for the same scalar. 4425 if (!ExtractCostCalculated.insert(EU.Scalar).second) 4426 continue; 4427 4428 // Uses by ephemeral values are free (because the ephemeral value will be 4429 // removed prior to code generation, and so the extraction will be 4430 // removed as well). 4431 if (EphValues.count(EU.User)) 4432 continue; 4433 4434 // No extract cost for vector "scalar" 4435 if (isa<FixedVectorType>(EU.Scalar->getType())) 4436 continue; 4437 4438 // Already counted the cost for external uses when tried to adjust the cost 4439 // for extractelements, no need to add it again. 4440 if (isa<ExtractElementInst>(EU.Scalar)) 4441 continue; 4442 4443 // If found user is an insertelement, do not calculate extract cost but try 4444 // to detect it as a final shuffled/identity match. 4445 if (EU.User && isa<InsertElementInst>(EU.User)) { 4446 if (auto *FTy = dyn_cast<FixedVectorType>(EU.User->getType())) { 4447 Optional<int> InsertIdx = getInsertIndex(EU.User, 0); 4448 if (!InsertIdx || *InsertIdx == UndefMaskElem) 4449 continue; 4450 Value *VU = EU.User; 4451 auto *It = find_if(FirstUsers, [VU](Value *V) { 4452 // Checks if 2 insertelements are from the same buildvector. 4453 if (VU->getType() != V->getType()) 4454 return false; 4455 auto *IE1 = cast<InsertElementInst>(VU); 4456 auto *IE2 = cast<InsertElementInst>(V); 4457 // Go though of insertelement instructions trying to find either VU as 4458 // the original vector for IE2 or V as the original vector for IE1. 4459 do { 4460 if (IE1 == VU || IE2 == V) 4461 return true; 4462 if (IE1) 4463 IE1 = dyn_cast<InsertElementInst>(IE1->getOperand(0)); 4464 if (IE2) 4465 IE2 = dyn_cast<InsertElementInst>(IE2->getOperand(0)); 4466 } while (IE1 || IE2); 4467 return false; 4468 }); 4469 int VecId = -1; 4470 if (It == FirstUsers.end()) { 4471 VF.push_back(FTy->getNumElements()); 4472 ShuffleMask.emplace_back(VF.back(), UndefMaskElem); 4473 FirstUsers.push_back(EU.User); 4474 DemandedElts.push_back(APInt::getNullValue(VF.back())); 4475 IsIdentity.push_back(true); 4476 VecId = FirstUsers.size() - 1; 4477 } else { 4478 VecId = std::distance(FirstUsers.begin(), It); 4479 } 4480 int Idx = *InsertIdx; 4481 ShuffleMask[VecId][Idx] = EU.Lane; 4482 IsIdentity.set(IsIdentity.test(VecId) & 4483 (EU.Lane == Idx || EU.Lane == UndefMaskElem)); 4484 DemandedElts[VecId].setBit(Idx); 4485 } 4486 } 4487 4488 // If we plan to rewrite the tree in a smaller type, we will need to sign 4489 // extend the extracted value back to the original type. Here, we account 4490 // for the extract and the added cost of the sign extend if needed. 4491 auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); 4492 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 4493 if (MinBWs.count(ScalarRoot)) { 4494 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 4495 auto Extend = 4496 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; 4497 VecTy = FixedVectorType::get(MinTy, BundleWidth); 4498 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), 4499 VecTy, EU.Lane); 4500 } else { 4501 ExtractCost += 4502 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); 4503 } 4504 } 4505 4506 InstructionCost SpillCost = getSpillCost(); 4507 Cost += SpillCost + ExtractCost; 4508 for (int I = 0, E = FirstUsers.size(); I < E; ++I) { 4509 if (!IsIdentity.test(I)) { 4510 InstructionCost C = TTI->getShuffleCost( 4511 TTI::SK_PermuteSingleSrc, 4512 cast<FixedVectorType>(FirstUsers[I]->getType()), ShuffleMask[I]); 4513 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C 4514 << " for final shuffle of insertelement external users " 4515 << *VectorizableTree.front()->Scalars.front() << ".\n" 4516 << "SLP: Current total cost = " << Cost << "\n"); 4517 Cost += C; 4518 } 4519 unsigned VF = ShuffleMask[I].size(); 4520 for (int &Mask : ShuffleMask[I]) 4521 Mask = (Mask == UndefMaskElem ? 0 : VF) + Mask; 4522 InstructionCost C = TTI->getShuffleCost( 4523 TTI::SK_PermuteTwoSrc, cast<FixedVectorType>(FirstUsers[I]->getType()), 4524 ShuffleMask[I]); 4525 LLVM_DEBUG( 4526 dbgs() 4527 << "SLP: Adding cost " << C 4528 << " for final shuffle of vector node and external insertelement users " 4529 << *VectorizableTree.front()->Scalars.front() << ".\n" 4530 << "SLP: Current total cost = " << Cost << "\n"); 4531 Cost += C; 4532 InstructionCost InsertCost = TTI->getScalarizationOverhead( 4533 cast<FixedVectorType>(FirstUsers[I]->getType()), DemandedElts[I], 4534 /*Insert*/ true, 4535 /*Extract*/ false); 4536 Cost -= InsertCost; 4537 LLVM_DEBUG(dbgs() << "SLP: subtracting the cost " << InsertCost 4538 << " for insertelements gather.\n" 4539 << "SLP: Current total cost = " << Cost << "\n"); 4540 } 4541 4542 #ifndef NDEBUG 4543 SmallString<256> Str; 4544 { 4545 raw_svector_ostream OS(Str); 4546 OS << "SLP: Spill Cost = " << SpillCost << ".\n" 4547 << "SLP: Extract Cost = " << ExtractCost << ".\n" 4548 << "SLP: Total Cost = " << Cost << ".\n"; 4549 } 4550 LLVM_DEBUG(dbgs() << Str); 4551 if (ViewSLPTree) 4552 ViewGraph(this, "SLP" + F->getName(), false, Str); 4553 #endif 4554 4555 return Cost; 4556 } 4557 4558 Optional<TargetTransformInfo::ShuffleKind> 4559 BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, SmallVectorImpl<int> &Mask, 4560 SmallVectorImpl<const TreeEntry *> &Entries) { 4561 // TODO: currently checking only for Scalars in the tree entry, need to count 4562 // reused elements too for better cost estimation. 4563 Mask.assign(TE->Scalars.size(), UndefMaskElem); 4564 Entries.clear(); 4565 // Build a lists of values to tree entries. 4566 DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>> ValueToTEs; 4567 for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { 4568 if (EntryPtr.get() == TE) 4569 break; 4570 if (EntryPtr->State != TreeEntry::NeedToGather) 4571 continue; 4572 for (Value *V : EntryPtr->Scalars) 4573 ValueToTEs.try_emplace(V).first->getSecond().insert(EntryPtr.get()); 4574 } 4575 // Find all tree entries used by the gathered values. If no common entries 4576 // found - not a shuffle. 4577 // Here we build a set of tree nodes for each gathered value and trying to 4578 // find the intersection between these sets. If we have at least one common 4579 // tree node for each gathered value - we have just a permutation of the 4580 // single vector. If we have 2 different sets, we're in situation where we 4581 // have a permutation of 2 input vectors. 4582 SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; 4583 DenseMap<Value *, int> UsedValuesEntry; 4584 for (Value *V : TE->Scalars) { 4585 if (isa<UndefValue>(V)) 4586 continue; 4587 // Build a list of tree entries where V is used. 4588 SmallPtrSet<const TreeEntry *, 4> VToTEs; 4589 auto It = ValueToTEs.find(V); 4590 if (It != ValueToTEs.end()) 4591 VToTEs = It->second; 4592 if (const TreeEntry *VTE = getTreeEntry(V)) 4593 VToTEs.insert(VTE); 4594 if (VToTEs.empty()) 4595 return None; 4596 if (UsedTEs.empty()) { 4597 // The first iteration, just insert the list of nodes to vector. 4598 UsedTEs.push_back(VToTEs); 4599 } else { 4600 // Need to check if there are any previously used tree nodes which use V. 4601 // If there are no such nodes, consider that we have another one input 4602 // vector. 4603 SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); 4604 unsigned Idx = 0; 4605 for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { 4606 // Do we have a non-empty intersection of previously listed tree entries 4607 // and tree entries using current V? 4608 set_intersect(VToTEs, Set); 4609 if (!VToTEs.empty()) { 4610 // Yes, write the new subset and continue analysis for the next 4611 // scalar. 4612 Set.swap(VToTEs); 4613 break; 4614 } 4615 VToTEs = SavedVToTEs; 4616 ++Idx; 4617 } 4618 // No non-empty intersection found - need to add a second set of possible 4619 // source vectors. 4620 if (Idx == UsedTEs.size()) { 4621 // If the number of input vectors is greater than 2 - not a permutation, 4622 // fallback to the regular gather. 4623 if (UsedTEs.size() == 2) 4624 return None; 4625 UsedTEs.push_back(SavedVToTEs); 4626 Idx = UsedTEs.size() - 1; 4627 } 4628 UsedValuesEntry.try_emplace(V, Idx); 4629 } 4630 } 4631 4632 unsigned VF = 0; 4633 if (UsedTEs.size() == 1) { 4634 // Try to find the perfect match in another gather node at first. 4635 auto It = find_if(UsedTEs.front(), [TE](const TreeEntry *EntryPtr) { 4636 return EntryPtr->isSame(TE->Scalars); 4637 }); 4638 if (It != UsedTEs.front().end()) { 4639 Entries.push_back(*It); 4640 std::iota(Mask.begin(), Mask.end(), 0); 4641 return TargetTransformInfo::SK_PermuteSingleSrc; 4642 } 4643 // No perfect match, just shuffle, so choose the first tree node. 4644 Entries.push_back(*UsedTEs.front().begin()); 4645 } else { 4646 // Try to find nodes with the same vector factor. 4647 assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); 4648 // FIXME: Shall be replaced by GetVF function once non-power-2 patch is 4649 // landed. 4650 auto &&GetVF = [](const TreeEntry *TE) { 4651 if (!TE->ReuseShuffleIndices.empty()) 4652 return TE->ReuseShuffleIndices.size(); 4653 return TE->Scalars.size(); 4654 }; 4655 DenseMap<int, const TreeEntry *> VFToTE; 4656 for (const TreeEntry *TE : UsedTEs.front()) 4657 VFToTE.try_emplace(GetVF(TE), TE); 4658 for (const TreeEntry *TE : UsedTEs.back()) { 4659 auto It = VFToTE.find(GetVF(TE)); 4660 if (It != VFToTE.end()) { 4661 VF = It->first; 4662 Entries.push_back(It->second); 4663 Entries.push_back(TE); 4664 break; 4665 } 4666 } 4667 // No 2 source vectors with the same vector factor - give up and do regular 4668 // gather. 4669 if (Entries.empty()) 4670 return None; 4671 } 4672 4673 // Build a shuffle mask for better cost estimation and vector emission. 4674 for (int I = 0, E = TE->Scalars.size(); I < E; ++I) { 4675 Value *V = TE->Scalars[I]; 4676 if (isa<UndefValue>(V)) 4677 continue; 4678 unsigned Idx = UsedValuesEntry.lookup(V); 4679 const TreeEntry *VTE = Entries[Idx]; 4680 int FoundLane = findLaneForValue(VTE->Scalars, VTE->ReuseShuffleIndices, V); 4681 Mask[I] = Idx * VF + FoundLane; 4682 // Extra check required by isSingleSourceMaskImpl function (called by 4683 // ShuffleVectorInst::isSingleSourceMask). 4684 if (Mask[I] >= 2 * E) 4685 return None; 4686 } 4687 switch (Entries.size()) { 4688 case 1: 4689 return TargetTransformInfo::SK_PermuteSingleSrc; 4690 case 2: 4691 return TargetTransformInfo::SK_PermuteTwoSrc; 4692 default: 4693 break; 4694 } 4695 return None; 4696 } 4697 4698 InstructionCost 4699 BoUpSLP::getGatherCost(FixedVectorType *Ty, 4700 const DenseSet<unsigned> &ShuffledIndices) const { 4701 unsigned NumElts = Ty->getNumElements(); 4702 APInt DemandedElts = APInt::getNullValue(NumElts); 4703 for (unsigned I = 0; I < NumElts; ++I) 4704 if (!ShuffledIndices.count(I)) 4705 DemandedElts.setBit(I); 4706 InstructionCost Cost = 4707 TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true, 4708 /*Extract*/ false); 4709 if (!ShuffledIndices.empty()) 4710 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty); 4711 return Cost; 4712 } 4713 4714 InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const { 4715 // Find the type of the operands in VL. 4716 Type *ScalarTy = VL[0]->getType(); 4717 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) 4718 ScalarTy = SI->getValueOperand()->getType(); 4719 auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); 4720 // Find the cost of inserting/extracting values from the vector. 4721 // Check if the same elements are inserted several times and count them as 4722 // shuffle candidates. 4723 DenseSet<unsigned> ShuffledElements; 4724 DenseSet<Value *> UniqueElements; 4725 // Iterate in reverse order to consider insert elements with the high cost. 4726 for (unsigned I = VL.size(); I > 0; --I) { 4727 unsigned Idx = I - 1; 4728 if (!UniqueElements.insert(VL[Idx]).second) 4729 ShuffledElements.insert(Idx); 4730 } 4731 return getGatherCost(VecTy, ShuffledElements); 4732 } 4733 4734 // Perform operand reordering on the instructions in VL and return the reordered 4735 // operands in Left and Right. 4736 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, 4737 SmallVectorImpl<Value *> &Left, 4738 SmallVectorImpl<Value *> &Right, 4739 const DataLayout &DL, 4740 ScalarEvolution &SE, 4741 const BoUpSLP &R) { 4742 if (VL.empty()) 4743 return; 4744 VLOperands Ops(VL, DL, SE, R); 4745 // Reorder the operands in place. 4746 Ops.reorder(); 4747 Left = Ops.getVL(0); 4748 Right = Ops.getVL(1); 4749 } 4750 4751 void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { 4752 // Get the basic block this bundle is in. All instructions in the bundle 4753 // should be in this block. 4754 auto *Front = E->getMainOp(); 4755 auto *BB = Front->getParent(); 4756 assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { 4757 auto *I = cast<Instruction>(V); 4758 return !E->isOpcodeOrAlt(I) || I->getParent() == BB; 4759 })); 4760 4761 // The last instruction in the bundle in program order. 4762 Instruction *LastInst = nullptr; 4763 4764 // Find the last instruction. The common case should be that BB has been 4765 // scheduled, and the last instruction is VL.back(). So we start with 4766 // VL.back() and iterate over schedule data until we reach the end of the 4767 // bundle. The end of the bundle is marked by null ScheduleData. 4768 if (BlocksSchedules.count(BB)) { 4769 auto *Bundle = 4770 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back())); 4771 if (Bundle && Bundle->isPartOfBundle()) 4772 for (; Bundle; Bundle = Bundle->NextInBundle) 4773 if (Bundle->OpValue == Bundle->Inst) 4774 LastInst = Bundle->Inst; 4775 } 4776 4777 // LastInst can still be null at this point if there's either not an entry 4778 // for BB in BlocksSchedules or there's no ScheduleData available for 4779 // VL.back(). This can be the case if buildTree_rec aborts for various 4780 // reasons (e.g., the maximum recursion depth is reached, the maximum region 4781 // size is reached, etc.). ScheduleData is initialized in the scheduling 4782 // "dry-run". 4783 // 4784 // If this happens, we can still find the last instruction by brute force. We 4785 // iterate forwards from Front (inclusive) until we either see all 4786 // instructions in the bundle or reach the end of the block. If Front is the 4787 // last instruction in program order, LastInst will be set to Front, and we 4788 // will visit all the remaining instructions in the block. 4789 // 4790 // One of the reasons we exit early from buildTree_rec is to place an upper 4791 // bound on compile-time. Thus, taking an additional compile-time hit here is 4792 // not ideal. However, this should be exceedingly rare since it requires that 4793 // we both exit early from buildTree_rec and that the bundle be out-of-order 4794 // (causing us to iterate all the way to the end of the block). 4795 if (!LastInst) { 4796 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end()); 4797 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) { 4798 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I)) 4799 LastInst = &I; 4800 if (Bundle.empty()) 4801 break; 4802 } 4803 } 4804 assert(LastInst && "Failed to find last instruction in bundle"); 4805 4806 // Set the insertion point after the last instruction in the bundle. Set the 4807 // debug location to Front. 4808 Builder.SetInsertPoint(BB, ++LastInst->getIterator()); 4809 Builder.SetCurrentDebugLocation(Front->getDebugLoc()); 4810 } 4811 4812 Value *BoUpSLP::gather(ArrayRef<Value *> VL) { 4813 Value *Val0 = 4814 isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; 4815 FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); 4816 Value *Vec = PoisonValue::get(VecTy); 4817 unsigned InsIndex = 0; 4818 for (Value *Val : VL) { 4819 Vec = Builder.CreateInsertElement(Vec, Val, Builder.getInt32(InsIndex++)); 4820 auto *InsElt = dyn_cast<InsertElementInst>(Vec); 4821 if (!InsElt) 4822 continue; 4823 GatherSeq.insert(InsElt); 4824 CSEBlocks.insert(InsElt->getParent()); 4825 // Add to our 'need-to-extract' list. 4826 if (TreeEntry *Entry = getTreeEntry(Val)) { 4827 // Find which lane we need to extract. 4828 int FoundLane = 4829 findLaneForValue(Entry->Scalars, Entry->ReuseShuffleIndices, Val); 4830 ExternalUses.push_back(ExternalUser(Val, InsElt, FoundLane)); 4831 } 4832 } 4833 4834 return Vec; 4835 } 4836 4837 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { 4838 InstructionsState S = getSameOpcode(VL); 4839 if (S.getOpcode()) { 4840 if (TreeEntry *E = getTreeEntry(S.OpValue)) { 4841 if (E->isSame(VL)) { 4842 Value *V = vectorizeTree(E); 4843 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) { 4844 // Reshuffle to get only unique values. 4845 // If some of the scalars are duplicated in the vectorization tree 4846 // entry, we do not vectorize them but instead generate a mask for the 4847 // reuses. But if there are several users of the same entry, they may 4848 // have different vectorization factors. This is especially important 4849 // for PHI nodes. In this case, we need to adapt the resulting 4850 // instruction for the user vectorization factor and have to reshuffle 4851 // it again to take only unique elements of the vector. Without this 4852 // code the function incorrectly returns reduced vector instruction 4853 // with the same elements, not with the unique ones. 4854 // block: 4855 // %phi = phi <2 x > { .., %entry} {%shuffle, %block} 4856 // %2 = shuffle <2 x > %phi, %poison, <4 x > <0, 0, 1, 1> 4857 // ... (use %2) 4858 // %shuffle = shuffle <2 x> %2, poison, <2 x> {0, 2} 4859 // br %block 4860 SmallVector<int, 4> UniqueIdxs; 4861 SmallSet<int, 4> UsedIdxs; 4862 int Pos = 0; 4863 for (int Idx : E->ReuseShuffleIndices) { 4864 if (UsedIdxs.insert(Idx).second) 4865 UniqueIdxs.emplace_back(Pos); 4866 ++Pos; 4867 } 4868 V = Builder.CreateShuffleVector(V, UniqueIdxs, "shrink.shuffle"); 4869 } 4870 return V; 4871 } 4872 } 4873 } 4874 4875 // Check that every instruction appears once in this bundle. 4876 SmallVector<int, 4> ReuseShuffleIndicies; 4877 SmallVector<Value *, 4> UniqueValues; 4878 if (VL.size() > 2) { 4879 DenseMap<Value *, unsigned> UniquePositions; 4880 for (Value *V : VL) { 4881 auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); 4882 ReuseShuffleIndicies.emplace_back(Res.first->second); 4883 if (Res.second || isa<Constant>(V)) 4884 UniqueValues.emplace_back(V); 4885 } 4886 // Do not shuffle single element or if number of unique values is not power 4887 // of 2. 4888 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 || 4889 !llvm::isPowerOf2_32(UniqueValues.size())) 4890 ReuseShuffleIndicies.clear(); 4891 else 4892 VL = UniqueValues; 4893 } 4894 4895 Value *Vec = gather(VL); 4896 if (!ReuseShuffleIndicies.empty()) { 4897 Vec = Builder.CreateShuffleVector(Vec, ReuseShuffleIndicies, "shuffle"); 4898 if (auto *I = dyn_cast<Instruction>(Vec)) { 4899 GatherSeq.insert(I); 4900 CSEBlocks.insert(I->getParent()); 4901 } 4902 } 4903 return Vec; 4904 } 4905 4906 namespace { 4907 /// Merges shuffle masks and emits final shuffle instruction, if required. 4908 class ShuffleInstructionBuilder { 4909 IRBuilderBase &Builder; 4910 bool IsFinalized = false; 4911 SmallVector<int, 4> Mask; 4912 4913 public: 4914 ShuffleInstructionBuilder(IRBuilderBase &Builder) : Builder(Builder) {} 4915 4916 /// Adds a mask, inverting it before applying. 4917 void addInversedMask(ArrayRef<unsigned> SubMask) { 4918 if (SubMask.empty()) 4919 return; 4920 SmallVector<int, 4> NewMask; 4921 inversePermutation(SubMask, NewMask); 4922 addMask(NewMask); 4923 } 4924 4925 /// Functions adds masks, merging them into single one. 4926 void addMask(ArrayRef<unsigned> SubMask) { 4927 SmallVector<int, 4> NewMask(SubMask.begin(), SubMask.end()); 4928 addMask(NewMask); 4929 } 4930 4931 void addMask(ArrayRef<int> SubMask) { 4932 if (SubMask.empty()) 4933 return; 4934 if (Mask.empty()) { 4935 Mask.append(SubMask.begin(), SubMask.end()); 4936 return; 4937 } 4938 SmallVector<int, 4> NewMask(SubMask.size(), SubMask.size()); 4939 int TermValue = std::min(Mask.size(), SubMask.size()); 4940 for (int I = 0, E = SubMask.size(); I < E; ++I) { 4941 if (SubMask[I] >= TermValue || Mask[SubMask[I]] >= TermValue) { 4942 NewMask[I] = E; 4943 continue; 4944 } 4945 NewMask[I] = Mask[SubMask[I]]; 4946 } 4947 Mask.swap(NewMask); 4948 } 4949 4950 Value *finalize(Value *V) { 4951 IsFinalized = true; 4952 if (Mask.empty()) 4953 return V; 4954 return Builder.CreateShuffleVector(V, Mask, "shuffle"); 4955 } 4956 4957 ~ShuffleInstructionBuilder() { 4958 assert((IsFinalized || Mask.empty()) && 4959 "Shuffle construction must be finalized."); 4960 } 4961 }; 4962 } // namespace 4963 4964 Value *BoUpSLP::vectorizeTree(TreeEntry *E) { 4965 IRBuilder<>::InsertPointGuard Guard(Builder); 4966 4967 if (E->VectorizedValue) { 4968 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); 4969 return E->VectorizedValue; 4970 } 4971 4972 ShuffleInstructionBuilder ShuffleBuilder(Builder); 4973 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); 4974 if (E->State == TreeEntry::NeedToGather) { 4975 setInsertPointAfterBundle(E); 4976 Value *Vec; 4977 SmallVector<int> Mask; 4978 SmallVector<const TreeEntry *> Entries; 4979 Optional<TargetTransformInfo::ShuffleKind> Shuffle = 4980 isGatherShuffledEntry(E, Mask, Entries); 4981 if (Shuffle.hasValue()) { 4982 assert((Entries.size() == 1 || Entries.size() == 2) && 4983 "Expected shuffle of 1 or 2 entries."); 4984 Vec = Builder.CreateShuffleVector(Entries.front()->VectorizedValue, 4985 Entries.back()->VectorizedValue, Mask); 4986 } else { 4987 Vec = gather(E->Scalars); 4988 } 4989 if (NeedToShuffleReuses) { 4990 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 4991 Vec = ShuffleBuilder.finalize(Vec); 4992 if (auto *I = dyn_cast<Instruction>(Vec)) { 4993 GatherSeq.insert(I); 4994 CSEBlocks.insert(I->getParent()); 4995 } 4996 } 4997 E->VectorizedValue = Vec; 4998 return Vec; 4999 } 5000 5001 assert((E->State == TreeEntry::Vectorize || 5002 E->State == TreeEntry::ScatterVectorize) && 5003 "Unhandled state"); 5004 unsigned ShuffleOrOp = 5005 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); 5006 Instruction *VL0 = E->getMainOp(); 5007 Type *ScalarTy = VL0->getType(); 5008 if (auto *Store = dyn_cast<StoreInst>(VL0)) 5009 ScalarTy = Store->getValueOperand()->getType(); 5010 else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) 5011 ScalarTy = IE->getOperand(1)->getType(); 5012 auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); 5013 switch (ShuffleOrOp) { 5014 case Instruction::PHI: { 5015 auto *PH = cast<PHINode>(VL0); 5016 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); 5017 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 5018 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); 5019 Value *V = NewPhi; 5020 if (NeedToShuffleReuses) 5021 V = Builder.CreateShuffleVector(V, E->ReuseShuffleIndices, "shuffle"); 5022 5023 E->VectorizedValue = V; 5024 5025 // PHINodes may have multiple entries from the same block. We want to 5026 // visit every block once. 5027 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 5028 5029 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { 5030 ValueList Operands; 5031 BasicBlock *IBB = PH->getIncomingBlock(i); 5032 5033 if (!VisitedBBs.insert(IBB).second) { 5034 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); 5035 continue; 5036 } 5037 5038 Builder.SetInsertPoint(IBB->getTerminator()); 5039 Builder.SetCurrentDebugLocation(PH->getDebugLoc()); 5040 Value *Vec = vectorizeTree(E->getOperand(i)); 5041 NewPhi->addIncoming(Vec, IBB); 5042 } 5043 5044 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && 5045 "Invalid number of incoming values"); 5046 return V; 5047 } 5048 5049 case Instruction::ExtractElement: { 5050 Value *V = E->getSingleOperand(0); 5051 Builder.SetInsertPoint(VL0); 5052 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5053 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5054 V = ShuffleBuilder.finalize(V); 5055 E->VectorizedValue = V; 5056 return V; 5057 } 5058 case Instruction::ExtractValue: { 5059 auto *LI = cast<LoadInst>(E->getSingleOperand(0)); 5060 Builder.SetInsertPoint(LI); 5061 auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); 5062 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); 5063 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); 5064 Value *NewV = propagateMetadata(V, E->Scalars); 5065 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5066 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5067 NewV = ShuffleBuilder.finalize(NewV); 5068 E->VectorizedValue = NewV; 5069 return NewV; 5070 } 5071 case Instruction::InsertElement: { 5072 Builder.SetInsertPoint(VL0); 5073 Value *V = vectorizeTree(E->getOperand(1)); 5074 5075 const unsigned NumElts = 5076 cast<FixedVectorType>(VL0->getType())->getNumElements(); 5077 const unsigned NumScalars = E->Scalars.size(); 5078 5079 // Create InsertVector shuffle if necessary 5080 Instruction *FirstInsert = nullptr; 5081 bool IsIdentity = true; 5082 unsigned Offset = UINT_MAX; 5083 for (unsigned I = 0; I < NumScalars; ++I) { 5084 Value *Scalar = E->Scalars[I]; 5085 if (!FirstInsert && 5086 !is_contained(E->Scalars, cast<Instruction>(Scalar)->getOperand(0))) 5087 FirstInsert = cast<Instruction>(Scalar); 5088 Optional<int> InsertIdx = getInsertIndex(Scalar, 0); 5089 if (!InsertIdx || *InsertIdx == UndefMaskElem) 5090 continue; 5091 unsigned Idx = *InsertIdx; 5092 if (Idx < Offset) { 5093 Offset = Idx; 5094 IsIdentity &= I == 0; 5095 } else { 5096 assert(Idx >= Offset && "Failed to find vector index offset"); 5097 IsIdentity &= Idx - Offset == I; 5098 } 5099 } 5100 assert(Offset < NumElts && "Failed to find vector index offset"); 5101 5102 // Create shuffle to resize vector 5103 SmallVector<int> Mask(NumElts, UndefMaskElem); 5104 if (!IsIdentity) { 5105 for (unsigned I = 0; I < NumScalars; ++I) { 5106 Value *Scalar = E->Scalars[I]; 5107 Optional<int> InsertIdx = getInsertIndex(Scalar, 0); 5108 if (!InsertIdx || *InsertIdx == UndefMaskElem) 5109 continue; 5110 Mask[*InsertIdx - Offset] = I; 5111 } 5112 } else { 5113 std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); 5114 } 5115 if (!IsIdentity || NumElts != NumScalars) 5116 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()), Mask); 5117 5118 if (NumElts != NumScalars) { 5119 SmallVector<int> InsertMask(NumElts); 5120 std::iota(InsertMask.begin(), InsertMask.end(), 0); 5121 for (unsigned I = 0; I < NumElts; I++) { 5122 if (Mask[I] != UndefMaskElem) 5123 InsertMask[Offset + I] = NumElts + I; 5124 } 5125 5126 V = Builder.CreateShuffleVector( 5127 FirstInsert->getOperand(0), V, InsertMask, 5128 cast<Instruction>(E->Scalars.back())->getName()); 5129 } 5130 5131 ++NumVectorInstructions; 5132 E->VectorizedValue = V; 5133 return V; 5134 } 5135 case Instruction::ZExt: 5136 case Instruction::SExt: 5137 case Instruction::FPToUI: 5138 case Instruction::FPToSI: 5139 case Instruction::FPExt: 5140 case Instruction::PtrToInt: 5141 case Instruction::IntToPtr: 5142 case Instruction::SIToFP: 5143 case Instruction::UIToFP: 5144 case Instruction::Trunc: 5145 case Instruction::FPTrunc: 5146 case Instruction::BitCast: { 5147 setInsertPointAfterBundle(E); 5148 5149 Value *InVec = vectorizeTree(E->getOperand(0)); 5150 5151 if (E->VectorizedValue) { 5152 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 5153 return E->VectorizedValue; 5154 } 5155 5156 auto *CI = cast<CastInst>(VL0); 5157 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); 5158 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5159 V = ShuffleBuilder.finalize(V); 5160 5161 E->VectorizedValue = V; 5162 ++NumVectorInstructions; 5163 return V; 5164 } 5165 case Instruction::FCmp: 5166 case Instruction::ICmp: { 5167 setInsertPointAfterBundle(E); 5168 5169 Value *L = vectorizeTree(E->getOperand(0)); 5170 Value *R = vectorizeTree(E->getOperand(1)); 5171 5172 if (E->VectorizedValue) { 5173 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 5174 return E->VectorizedValue; 5175 } 5176 5177 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); 5178 Value *V = Builder.CreateCmp(P0, L, R); 5179 propagateIRFlags(V, E->Scalars, VL0); 5180 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5181 V = ShuffleBuilder.finalize(V); 5182 5183 E->VectorizedValue = V; 5184 ++NumVectorInstructions; 5185 return V; 5186 } 5187 case Instruction::Select: { 5188 setInsertPointAfterBundle(E); 5189 5190 Value *Cond = vectorizeTree(E->getOperand(0)); 5191 Value *True = vectorizeTree(E->getOperand(1)); 5192 Value *False = vectorizeTree(E->getOperand(2)); 5193 5194 if (E->VectorizedValue) { 5195 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 5196 return E->VectorizedValue; 5197 } 5198 5199 Value *V = Builder.CreateSelect(Cond, True, False); 5200 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5201 V = ShuffleBuilder.finalize(V); 5202 5203 E->VectorizedValue = V; 5204 ++NumVectorInstructions; 5205 return V; 5206 } 5207 case Instruction::FNeg: { 5208 setInsertPointAfterBundle(E); 5209 5210 Value *Op = vectorizeTree(E->getOperand(0)); 5211 5212 if (E->VectorizedValue) { 5213 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 5214 return E->VectorizedValue; 5215 } 5216 5217 Value *V = Builder.CreateUnOp( 5218 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); 5219 propagateIRFlags(V, E->Scalars, VL0); 5220 if (auto *I = dyn_cast<Instruction>(V)) 5221 V = propagateMetadata(I, E->Scalars); 5222 5223 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5224 V = ShuffleBuilder.finalize(V); 5225 5226 E->VectorizedValue = V; 5227 ++NumVectorInstructions; 5228 5229 return V; 5230 } 5231 case Instruction::Add: 5232 case Instruction::FAdd: 5233 case Instruction::Sub: 5234 case Instruction::FSub: 5235 case Instruction::Mul: 5236 case Instruction::FMul: 5237 case Instruction::UDiv: 5238 case Instruction::SDiv: 5239 case Instruction::FDiv: 5240 case Instruction::URem: 5241 case Instruction::SRem: 5242 case Instruction::FRem: 5243 case Instruction::Shl: 5244 case Instruction::LShr: 5245 case Instruction::AShr: 5246 case Instruction::And: 5247 case Instruction::Or: 5248 case Instruction::Xor: { 5249 setInsertPointAfterBundle(E); 5250 5251 Value *LHS = vectorizeTree(E->getOperand(0)); 5252 Value *RHS = vectorizeTree(E->getOperand(1)); 5253 5254 if (E->VectorizedValue) { 5255 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 5256 return E->VectorizedValue; 5257 } 5258 5259 Value *V = Builder.CreateBinOp( 5260 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, 5261 RHS); 5262 propagateIRFlags(V, E->Scalars, VL0); 5263 if (auto *I = dyn_cast<Instruction>(V)) 5264 V = propagateMetadata(I, E->Scalars); 5265 5266 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5267 V = ShuffleBuilder.finalize(V); 5268 5269 E->VectorizedValue = V; 5270 ++NumVectorInstructions; 5271 5272 return V; 5273 } 5274 case Instruction::Load: { 5275 // Loads are inserted at the head of the tree because we don't want to 5276 // sink them all the way down past store instructions. 5277 bool IsReorder = E->updateStateIfReorder(); 5278 if (IsReorder) 5279 VL0 = E->getMainOp(); 5280 setInsertPointAfterBundle(E); 5281 5282 LoadInst *LI = cast<LoadInst>(VL0); 5283 Instruction *NewLI; 5284 unsigned AS = LI->getPointerAddressSpace(); 5285 Value *PO = LI->getPointerOperand(); 5286 if (E->State == TreeEntry::Vectorize) { 5287 5288 Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); 5289 5290 // The pointer operand uses an in-tree scalar so we add the new BitCast 5291 // to ExternalUses list to make sure that an extract will be generated 5292 // in the future. 5293 if (getTreeEntry(PO)) 5294 ExternalUses.emplace_back(PO, cast<User>(VecPtr), 0); 5295 5296 NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); 5297 } else { 5298 assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); 5299 Value *VecPtr = vectorizeTree(E->getOperand(0)); 5300 // Use the minimum alignment of the gathered loads. 5301 Align CommonAlignment = LI->getAlign(); 5302 for (Value *V : E->Scalars) 5303 CommonAlignment = 5304 commonAlignment(CommonAlignment, cast<LoadInst>(V)->getAlign()); 5305 NewLI = Builder.CreateMaskedGather(VecPtr, CommonAlignment); 5306 } 5307 Value *V = propagateMetadata(NewLI, E->Scalars); 5308 5309 ShuffleBuilder.addInversedMask(E->ReorderIndices); 5310 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5311 V = ShuffleBuilder.finalize(V); 5312 E->VectorizedValue = V; 5313 ++NumVectorInstructions; 5314 return V; 5315 } 5316 case Instruction::Store: { 5317 bool IsReorder = !E->ReorderIndices.empty(); 5318 auto *SI = cast<StoreInst>( 5319 IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0); 5320 unsigned AS = SI->getPointerAddressSpace(); 5321 5322 setInsertPointAfterBundle(E); 5323 5324 Value *VecValue = vectorizeTree(E->getOperand(0)); 5325 ShuffleBuilder.addMask(E->ReorderIndices); 5326 VecValue = ShuffleBuilder.finalize(VecValue); 5327 5328 Value *ScalarPtr = SI->getPointerOperand(); 5329 Value *VecPtr = Builder.CreateBitCast( 5330 ScalarPtr, VecValue->getType()->getPointerTo(AS)); 5331 StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr, 5332 SI->getAlign()); 5333 5334 // The pointer operand uses an in-tree scalar, so add the new BitCast to 5335 // ExternalUses to make sure that an extract will be generated in the 5336 // future. 5337 if (getTreeEntry(ScalarPtr)) 5338 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0)); 5339 5340 Value *V = propagateMetadata(ST, E->Scalars); 5341 5342 E->VectorizedValue = V; 5343 ++NumVectorInstructions; 5344 return V; 5345 } 5346 case Instruction::GetElementPtr: { 5347 setInsertPointAfterBundle(E); 5348 5349 Value *Op0 = vectorizeTree(E->getOperand(0)); 5350 5351 std::vector<Value *> OpVecs; 5352 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; 5353 ++j) { 5354 ValueList &VL = E->getOperand(j); 5355 // Need to cast all elements to the same type before vectorization to 5356 // avoid crash. 5357 Type *VL0Ty = VL0->getOperand(j)->getType(); 5358 Type *Ty = llvm::all_of( 5359 VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); }) 5360 ? VL0Ty 5361 : DL->getIndexType(cast<GetElementPtrInst>(VL0) 5362 ->getPointerOperandType() 5363 ->getScalarType()); 5364 for (Value *&V : VL) { 5365 auto *CI = cast<ConstantInt>(V); 5366 V = ConstantExpr::getIntegerCast(CI, Ty, 5367 CI->getValue().isSignBitSet()); 5368 } 5369 Value *OpVec = vectorizeTree(VL); 5370 OpVecs.push_back(OpVec); 5371 } 5372 5373 Value *V = Builder.CreateGEP( 5374 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); 5375 if (Instruction *I = dyn_cast<Instruction>(V)) 5376 V = propagateMetadata(I, E->Scalars); 5377 5378 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5379 V = ShuffleBuilder.finalize(V); 5380 5381 E->VectorizedValue = V; 5382 ++NumVectorInstructions; 5383 5384 return V; 5385 } 5386 case Instruction::Call: { 5387 CallInst *CI = cast<CallInst>(VL0); 5388 setInsertPointAfterBundle(E); 5389 5390 Intrinsic::ID IID = Intrinsic::not_intrinsic; 5391 if (Function *FI = CI->getCalledFunction()) 5392 IID = FI->getIntrinsicID(); 5393 5394 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5395 5396 auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); 5397 bool UseIntrinsic = ID != Intrinsic::not_intrinsic && 5398 VecCallCosts.first <= VecCallCosts.second; 5399 5400 Value *ScalarArg = nullptr; 5401 std::vector<Value *> OpVecs; 5402 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { 5403 ValueList OpVL; 5404 // Some intrinsics have scalar arguments. This argument should not be 5405 // vectorized. 5406 if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) { 5407 CallInst *CEI = cast<CallInst>(VL0); 5408 ScalarArg = CEI->getArgOperand(j); 5409 OpVecs.push_back(CEI->getArgOperand(j)); 5410 continue; 5411 } 5412 5413 Value *OpVec = vectorizeTree(E->getOperand(j)); 5414 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); 5415 OpVecs.push_back(OpVec); 5416 } 5417 5418 Function *CF; 5419 if (!UseIntrinsic) { 5420 VFShape Shape = 5421 VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( 5422 VecTy->getNumElements())), 5423 false /*HasGlobalPred*/); 5424 CF = VFDatabase(*CI).getVectorizedFunction(Shape); 5425 } else { 5426 Type *Tys[] = {FixedVectorType::get(CI->getType(), E->Scalars.size())}; 5427 CF = Intrinsic::getDeclaration(F->getParent(), ID, Tys); 5428 } 5429 5430 SmallVector<OperandBundleDef, 1> OpBundles; 5431 CI->getOperandBundlesAsDefs(OpBundles); 5432 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); 5433 5434 // The scalar argument uses an in-tree scalar so we add the new vectorized 5435 // call to ExternalUses list to make sure that an extract will be 5436 // generated in the future. 5437 if (ScalarArg && getTreeEntry(ScalarArg)) 5438 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); 5439 5440 propagateIRFlags(V, E->Scalars, VL0); 5441 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5442 V = ShuffleBuilder.finalize(V); 5443 5444 E->VectorizedValue = V; 5445 ++NumVectorInstructions; 5446 return V; 5447 } 5448 case Instruction::ShuffleVector: { 5449 assert(E->isAltShuffle() && 5450 ((Instruction::isBinaryOp(E->getOpcode()) && 5451 Instruction::isBinaryOp(E->getAltOpcode())) || 5452 (Instruction::isCast(E->getOpcode()) && 5453 Instruction::isCast(E->getAltOpcode()))) && 5454 "Invalid Shuffle Vector Operand"); 5455 5456 Value *LHS = nullptr, *RHS = nullptr; 5457 if (Instruction::isBinaryOp(E->getOpcode())) { 5458 setInsertPointAfterBundle(E); 5459 LHS = vectorizeTree(E->getOperand(0)); 5460 RHS = vectorizeTree(E->getOperand(1)); 5461 } else { 5462 setInsertPointAfterBundle(E); 5463 LHS = vectorizeTree(E->getOperand(0)); 5464 } 5465 5466 if (E->VectorizedValue) { 5467 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); 5468 return E->VectorizedValue; 5469 } 5470 5471 Value *V0, *V1; 5472 if (Instruction::isBinaryOp(E->getOpcode())) { 5473 V0 = Builder.CreateBinOp( 5474 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); 5475 V1 = Builder.CreateBinOp( 5476 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); 5477 } else { 5478 V0 = Builder.CreateCast( 5479 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); 5480 V1 = Builder.CreateCast( 5481 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); 5482 } 5483 5484 // Create shuffle to take alternate operations from the vector. 5485 // Also, gather up main and alt scalar ops to propagate IR flags to 5486 // each vector operation. 5487 ValueList OpScalars, AltScalars; 5488 unsigned e = E->Scalars.size(); 5489 SmallVector<int, 8> Mask(e); 5490 for (unsigned i = 0; i < e; ++i) { 5491 auto *OpInst = cast<Instruction>(E->Scalars[i]); 5492 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode"); 5493 if (OpInst->getOpcode() == E->getAltOpcode()) { 5494 Mask[i] = e + i; 5495 AltScalars.push_back(E->Scalars[i]); 5496 } else { 5497 Mask[i] = i; 5498 OpScalars.push_back(E->Scalars[i]); 5499 } 5500 } 5501 5502 propagateIRFlags(V0, OpScalars); 5503 propagateIRFlags(V1, AltScalars); 5504 5505 Value *V = Builder.CreateShuffleVector(V0, V1, Mask); 5506 if (Instruction *I = dyn_cast<Instruction>(V)) 5507 V = propagateMetadata(I, E->Scalars); 5508 ShuffleBuilder.addMask(E->ReuseShuffleIndices); 5509 V = ShuffleBuilder.finalize(V); 5510 5511 E->VectorizedValue = V; 5512 ++NumVectorInstructions; 5513 5514 return V; 5515 } 5516 default: 5517 llvm_unreachable("unknown inst"); 5518 } 5519 return nullptr; 5520 } 5521 5522 Value *BoUpSLP::vectorizeTree() { 5523 ExtraValueToDebugLocsMap ExternallyUsedValues; 5524 return vectorizeTree(ExternallyUsedValues); 5525 } 5526 5527 Value * 5528 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) { 5529 // All blocks must be scheduled before any instructions are inserted. 5530 for (auto &BSIter : BlocksSchedules) { 5531 scheduleBlock(BSIter.second.get()); 5532 } 5533 5534 Builder.SetInsertPoint(&F->getEntryBlock().front()); 5535 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); 5536 5537 // If the vectorized tree can be rewritten in a smaller type, we truncate the 5538 // vectorized root. InstCombine will then rewrite the entire expression. We 5539 // sign extend the extracted values below. 5540 auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; 5541 if (MinBWs.count(ScalarRoot)) { 5542 if (auto *I = dyn_cast<Instruction>(VectorRoot)) { 5543 // If current instr is a phi and not the last phi, insert it after the 5544 // last phi node. 5545 if (isa<PHINode>(I)) 5546 Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); 5547 else 5548 Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); 5549 } 5550 auto BundleWidth = VectorizableTree[0]->Scalars.size(); 5551 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); 5552 auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); 5553 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); 5554 VectorizableTree[0]->VectorizedValue = Trunc; 5555 } 5556 5557 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() 5558 << " values .\n"); 5559 5560 // Extract all of the elements with the external uses. 5561 for (const auto &ExternalUse : ExternalUses) { 5562 Value *Scalar = ExternalUse.Scalar; 5563 llvm::User *User = ExternalUse.User; 5564 5565 // Skip users that we already RAUW. This happens when one instruction 5566 // has multiple uses of the same value. 5567 if (User && !is_contained(Scalar->users(), User)) 5568 continue; 5569 TreeEntry *E = getTreeEntry(Scalar); 5570 assert(E && "Invalid scalar"); 5571 assert(E->State != TreeEntry::NeedToGather && 5572 "Extracting from a gather list"); 5573 5574 Value *Vec = E->VectorizedValue; 5575 assert(Vec && "Can't find vectorizable value"); 5576 5577 Value *Lane = Builder.getInt32(ExternalUse.Lane); 5578 auto ExtractAndExtendIfNeeded = [&](Value *Vec) { 5579 if (Scalar->getType() != Vec->getType()) { 5580 Value *Ex; 5581 // "Reuse" the existing extract to improve final codegen. 5582 if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { 5583 Ex = Builder.CreateExtractElement(ES->getOperand(0), 5584 ES->getOperand(1)); 5585 } else { 5586 Ex = Builder.CreateExtractElement(Vec, Lane); 5587 } 5588 // If necessary, sign-extend or zero-extend ScalarRoot 5589 // to the larger type. 5590 if (!MinBWs.count(ScalarRoot)) 5591 return Ex; 5592 if (MinBWs[ScalarRoot].second) 5593 return Builder.CreateSExt(Ex, Scalar->getType()); 5594 return Builder.CreateZExt(Ex, Scalar->getType()); 5595 } 5596 assert(isa<FixedVectorType>(Scalar->getType()) && 5597 isa<InsertElementInst>(Scalar) && 5598 "In-tree scalar of vector type is not insertelement?"); 5599 return Vec; 5600 }; 5601 // If User == nullptr, the Scalar is used as extra arg. Generate 5602 // ExtractElement instruction and update the record for this scalar in 5603 // ExternallyUsedValues. 5604 if (!User) { 5605 assert(ExternallyUsedValues.count(Scalar) && 5606 "Scalar with nullptr as an external user must be registered in " 5607 "ExternallyUsedValues map"); 5608 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 5609 Builder.SetInsertPoint(VecI->getParent(), 5610 std::next(VecI->getIterator())); 5611 } else { 5612 Builder.SetInsertPoint(&F->getEntryBlock().front()); 5613 } 5614 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 5615 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent()); 5616 auto &Locs = ExternallyUsedValues[Scalar]; 5617 ExternallyUsedValues.insert({NewInst, Locs}); 5618 ExternallyUsedValues.erase(Scalar); 5619 // Required to update internally referenced instructions. 5620 Scalar->replaceAllUsesWith(NewInst); 5621 continue; 5622 } 5623 5624 // Generate extracts for out-of-tree users. 5625 // Find the insertion point for the extractelement lane. 5626 if (auto *VecI = dyn_cast<Instruction>(Vec)) { 5627 if (PHINode *PH = dyn_cast<PHINode>(User)) { 5628 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { 5629 if (PH->getIncomingValue(i) == Scalar) { 5630 Instruction *IncomingTerminator = 5631 PH->getIncomingBlock(i)->getTerminator(); 5632 if (isa<CatchSwitchInst>(IncomingTerminator)) { 5633 Builder.SetInsertPoint(VecI->getParent(), 5634 std::next(VecI->getIterator())); 5635 } else { 5636 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); 5637 } 5638 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 5639 CSEBlocks.insert(PH->getIncomingBlock(i)); 5640 PH->setOperand(i, NewInst); 5641 } 5642 } 5643 } else { 5644 Builder.SetInsertPoint(cast<Instruction>(User)); 5645 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 5646 CSEBlocks.insert(cast<Instruction>(User)->getParent()); 5647 User->replaceUsesOfWith(Scalar, NewInst); 5648 } 5649 } else { 5650 Builder.SetInsertPoint(&F->getEntryBlock().front()); 5651 Value *NewInst = ExtractAndExtendIfNeeded(Vec); 5652 CSEBlocks.insert(&F->getEntryBlock()); 5653 User->replaceUsesOfWith(Scalar, NewInst); 5654 } 5655 5656 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); 5657 } 5658 5659 // For each vectorized value: 5660 for (auto &TEPtr : VectorizableTree) { 5661 TreeEntry *Entry = TEPtr.get(); 5662 5663 // No need to handle users of gathered values. 5664 if (Entry->State == TreeEntry::NeedToGather) 5665 continue; 5666 5667 assert(Entry->VectorizedValue && "Can't find vectorizable value"); 5668 5669 // For each lane: 5670 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { 5671 Value *Scalar = Entry->Scalars[Lane]; 5672 5673 #ifndef NDEBUG 5674 Type *Ty = Scalar->getType(); 5675 if (!Ty->isVoidTy()) { 5676 for (User *U : Scalar->users()) { 5677 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); 5678 5679 // It is legal to delete users in the ignorelist. 5680 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) && 5681 "Deleting out-of-tree value"); 5682 } 5683 } 5684 #endif 5685 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); 5686 eraseInstruction(cast<Instruction>(Scalar)); 5687 } 5688 } 5689 5690 Builder.ClearInsertionPoint(); 5691 InstrElementSize.clear(); 5692 5693 return VectorizableTree[0]->VectorizedValue; 5694 } 5695 5696 void BoUpSLP::optimizeGatherSequence() { 5697 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() 5698 << " gather sequences instructions.\n"); 5699 // LICM InsertElementInst sequences. 5700 for (Instruction *I : GatherSeq) { 5701 if (isDeleted(I)) 5702 continue; 5703 5704 // Check if this block is inside a loop. 5705 Loop *L = LI->getLoopFor(I->getParent()); 5706 if (!L) 5707 continue; 5708 5709 // Check if it has a preheader. 5710 BasicBlock *PreHeader = L->getLoopPreheader(); 5711 if (!PreHeader) 5712 continue; 5713 5714 // If the vector or the element that we insert into it are 5715 // instructions that are defined in this basic block then we can't 5716 // hoist this instruction. 5717 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 5718 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 5719 if (Op0 && L->contains(Op0)) 5720 continue; 5721 if (Op1 && L->contains(Op1)) 5722 continue; 5723 5724 // We can hoist this instruction. Move it to the pre-header. 5725 I->moveBefore(PreHeader->getTerminator()); 5726 } 5727 5728 // Make a list of all reachable blocks in our CSE queue. 5729 SmallVector<const DomTreeNode *, 8> CSEWorkList; 5730 CSEWorkList.reserve(CSEBlocks.size()); 5731 for (BasicBlock *BB : CSEBlocks) 5732 if (DomTreeNode *N = DT->getNode(BB)) { 5733 assert(DT->isReachableFromEntry(N)); 5734 CSEWorkList.push_back(N); 5735 } 5736 5737 // Sort blocks by domination. This ensures we visit a block after all blocks 5738 // dominating it are visited. 5739 llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { 5740 assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && 5741 "Different nodes should have different DFS numbers"); 5742 return A->getDFSNumIn() < B->getDFSNumIn(); 5743 }); 5744 5745 // Perform O(N^2) search over the gather sequences and merge identical 5746 // instructions. TODO: We can further optimize this scan if we split the 5747 // instructions into different buckets based on the insert lane. 5748 SmallVector<Instruction *, 16> Visited; 5749 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { 5750 assert(*I && 5751 (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && 5752 "Worklist not sorted properly!"); 5753 BasicBlock *BB = (*I)->getBlock(); 5754 // For all instructions in blocks containing gather sequences: 5755 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { 5756 Instruction *In = &*it++; 5757 if (isDeleted(In)) 5758 continue; 5759 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) 5760 continue; 5761 5762 // Check if we can replace this instruction with any of the 5763 // visited instructions. 5764 for (Instruction *v : Visited) { 5765 if (In->isIdenticalTo(v) && 5766 DT->dominates(v->getParent(), In->getParent())) { 5767 In->replaceAllUsesWith(v); 5768 eraseInstruction(In); 5769 In = nullptr; 5770 break; 5771 } 5772 } 5773 if (In) { 5774 assert(!is_contained(Visited, In)); 5775 Visited.push_back(In); 5776 } 5777 } 5778 } 5779 CSEBlocks.clear(); 5780 GatherSeq.clear(); 5781 } 5782 5783 // Groups the instructions to a bundle (which is then a single scheduling entity) 5784 // and schedules instructions until the bundle gets ready. 5785 Optional<BoUpSLP::ScheduleData *> 5786 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, 5787 const InstructionsState &S) { 5788 if (isa<PHINode>(S.OpValue)) 5789 return nullptr; 5790 5791 // Initialize the instruction bundle. 5792 Instruction *OldScheduleEnd = ScheduleEnd; 5793 ScheduleData *PrevInBundle = nullptr; 5794 ScheduleData *Bundle = nullptr; 5795 bool ReSchedule = false; 5796 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); 5797 5798 auto &&TryScheduleBundle = [this, OldScheduleEnd, SLP](bool ReSchedule, 5799 ScheduleData *Bundle) { 5800 // The scheduling region got new instructions at the lower end (or it is a 5801 // new region for the first bundle). This makes it necessary to 5802 // recalculate all dependencies. 5803 // It is seldom that this needs to be done a second time after adding the 5804 // initial bundle to the region. 5805 if (ScheduleEnd != OldScheduleEnd) { 5806 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) 5807 doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); 5808 ReSchedule = true; 5809 } 5810 if (ReSchedule) { 5811 resetSchedule(); 5812 initialFillReadyList(ReadyInsts); 5813 } 5814 if (Bundle) { 5815 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle 5816 << " in block " << BB->getName() << "\n"); 5817 calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); 5818 } 5819 5820 // Now try to schedule the new bundle or (if no bundle) just calculate 5821 // dependencies. As soon as the bundle is "ready" it means that there are no 5822 // cyclic dependencies and we can schedule it. Note that's important that we 5823 // don't "schedule" the bundle yet (see cancelScheduling). 5824 while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && 5825 !ReadyInsts.empty()) { 5826 ScheduleData *Picked = ReadyInsts.pop_back_val(); 5827 if (Picked->isSchedulingEntity() && Picked->isReady()) 5828 schedule(Picked, ReadyInsts); 5829 } 5830 }; 5831 5832 // Make sure that the scheduling region contains all 5833 // instructions of the bundle. 5834 for (Value *V : VL) { 5835 if (!extendSchedulingRegion(V, S)) { 5836 // If the scheduling region got new instructions at the lower end (or it 5837 // is a new region for the first bundle). This makes it necessary to 5838 // recalculate all dependencies. 5839 // Otherwise the compiler may crash trying to incorrectly calculate 5840 // dependencies and emit instruction in the wrong order at the actual 5841 // scheduling. 5842 TryScheduleBundle(/*ReSchedule=*/false, nullptr); 5843 return None; 5844 } 5845 } 5846 5847 for (Value *V : VL) { 5848 ScheduleData *BundleMember = getScheduleData(V); 5849 assert(BundleMember && 5850 "no ScheduleData for bundle member (maybe not in same basic block)"); 5851 if (BundleMember->IsScheduled) { 5852 // A bundle member was scheduled as single instruction before and now 5853 // needs to be scheduled as part of the bundle. We just get rid of the 5854 // existing schedule. 5855 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember 5856 << " was already scheduled\n"); 5857 ReSchedule = true; 5858 } 5859 assert(BundleMember->isSchedulingEntity() && 5860 "bundle member already part of other bundle"); 5861 if (PrevInBundle) { 5862 PrevInBundle->NextInBundle = BundleMember; 5863 } else { 5864 Bundle = BundleMember; 5865 } 5866 BundleMember->UnscheduledDepsInBundle = 0; 5867 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; 5868 5869 // Group the instructions to a bundle. 5870 BundleMember->FirstInBundle = Bundle; 5871 PrevInBundle = BundleMember; 5872 } 5873 assert(Bundle && "Failed to find schedule bundle"); 5874 TryScheduleBundle(ReSchedule, Bundle); 5875 if (!Bundle->isReady()) { 5876 cancelScheduling(VL, S.OpValue); 5877 return None; 5878 } 5879 return Bundle; 5880 } 5881 5882 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, 5883 Value *OpValue) { 5884 if (isa<PHINode>(OpValue)) 5885 return; 5886 5887 ScheduleData *Bundle = getScheduleData(OpValue); 5888 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); 5889 assert(!Bundle->IsScheduled && 5890 "Can't cancel bundle which is already scheduled"); 5891 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && 5892 "tried to unbundle something which is not a bundle"); 5893 5894 // Un-bundle: make single instructions out of the bundle. 5895 ScheduleData *BundleMember = Bundle; 5896 while (BundleMember) { 5897 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); 5898 BundleMember->FirstInBundle = BundleMember; 5899 ScheduleData *Next = BundleMember->NextInBundle; 5900 BundleMember->NextInBundle = nullptr; 5901 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; 5902 if (BundleMember->UnscheduledDepsInBundle == 0) { 5903 ReadyInsts.insert(BundleMember); 5904 } 5905 BundleMember = Next; 5906 } 5907 } 5908 5909 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { 5910 // Allocate a new ScheduleData for the instruction. 5911 if (ChunkPos >= ChunkSize) { 5912 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); 5913 ChunkPos = 0; 5914 } 5915 return &(ScheduleDataChunks.back()[ChunkPos++]); 5916 } 5917 5918 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, 5919 const InstructionsState &S) { 5920 if (getScheduleData(V, isOneOf(S, V))) 5921 return true; 5922 Instruction *I = dyn_cast<Instruction>(V); 5923 assert(I && "bundle member must be an instruction"); 5924 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); 5925 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool { 5926 ScheduleData *ISD = getScheduleData(I); 5927 if (!ISD) 5928 return false; 5929 assert(isInSchedulingRegion(ISD) && 5930 "ScheduleData not in scheduling region"); 5931 ScheduleData *SD = allocateScheduleDataChunks(); 5932 SD->Inst = I; 5933 SD->init(SchedulingRegionID, S.OpValue); 5934 ExtraScheduleDataMap[I][S.OpValue] = SD; 5935 return true; 5936 }; 5937 if (CheckSheduleForI(I)) 5938 return true; 5939 if (!ScheduleStart) { 5940 // It's the first instruction in the new region. 5941 initScheduleData(I, I->getNextNode(), nullptr, nullptr); 5942 ScheduleStart = I; 5943 ScheduleEnd = I->getNextNode(); 5944 if (isOneOf(S, I) != I) 5945 CheckSheduleForI(I); 5946 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5947 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); 5948 return true; 5949 } 5950 // Search up and down at the same time, because we don't know if the new 5951 // instruction is above or below the existing scheduling region. 5952 BasicBlock::reverse_iterator UpIter = 5953 ++ScheduleStart->getIterator().getReverse(); 5954 BasicBlock::reverse_iterator UpperEnd = BB->rend(); 5955 BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); 5956 BasicBlock::iterator LowerEnd = BB->end(); 5957 while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && 5958 &*DownIter != I) { 5959 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { 5960 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); 5961 return false; 5962 } 5963 5964 ++UpIter; 5965 ++DownIter; 5966 } 5967 if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { 5968 assert(I->getParent() == ScheduleStart->getParent() && 5969 "Instruction is in wrong basic block."); 5970 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); 5971 ScheduleStart = I; 5972 if (isOneOf(S, I) != I) 5973 CheckSheduleForI(I); 5974 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I 5975 << "\n"); 5976 return true; 5977 } 5978 assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && 5979 "Expected to reach top of the basic block or instruction down the " 5980 "lower end."); 5981 assert(I->getParent() == ScheduleEnd->getParent() && 5982 "Instruction is in wrong basic block."); 5983 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, 5984 nullptr); 5985 ScheduleEnd = I->getNextNode(); 5986 if (isOneOf(S, I) != I) 5987 CheckSheduleForI(I); 5988 assert(ScheduleEnd && "tried to vectorize a terminator?"); 5989 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); 5990 return true; 5991 } 5992 5993 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, 5994 Instruction *ToI, 5995 ScheduleData *PrevLoadStore, 5996 ScheduleData *NextLoadStore) { 5997 ScheduleData *CurrentLoadStore = PrevLoadStore; 5998 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { 5999 ScheduleData *SD = ScheduleDataMap[I]; 6000 if (!SD) { 6001 SD = allocateScheduleDataChunks(); 6002 ScheduleDataMap[I] = SD; 6003 SD->Inst = I; 6004 } 6005 assert(!isInSchedulingRegion(SD) && 6006 "new ScheduleData already in scheduling region"); 6007 SD->init(SchedulingRegionID, I); 6008 6009 if (I->mayReadOrWriteMemory() && 6010 (!isa<IntrinsicInst>(I) || 6011 (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && 6012 cast<IntrinsicInst>(I)->getIntrinsicID() != 6013 Intrinsic::pseudoprobe))) { 6014 // Update the linked list of memory accessing instructions. 6015 if (CurrentLoadStore) { 6016 CurrentLoadStore->NextLoadStore = SD; 6017 } else { 6018 FirstLoadStoreInRegion = SD; 6019 } 6020 CurrentLoadStore = SD; 6021 } 6022 } 6023 if (NextLoadStore) { 6024 if (CurrentLoadStore) 6025 CurrentLoadStore->NextLoadStore = NextLoadStore; 6026 } else { 6027 LastLoadStoreInRegion = CurrentLoadStore; 6028 } 6029 } 6030 6031 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, 6032 bool InsertInReadyList, 6033 BoUpSLP *SLP) { 6034 assert(SD->isSchedulingEntity()); 6035 6036 SmallVector<ScheduleData *, 10> WorkList; 6037 WorkList.push_back(SD); 6038 6039 while (!WorkList.empty()) { 6040 ScheduleData *SD = WorkList.pop_back_val(); 6041 6042 ScheduleData *BundleMember = SD; 6043 while (BundleMember) { 6044 assert(isInSchedulingRegion(BundleMember)); 6045 if (!BundleMember->hasValidDependencies()) { 6046 6047 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember 6048 << "\n"); 6049 BundleMember->Dependencies = 0; 6050 BundleMember->resetUnscheduledDeps(); 6051 6052 // Handle def-use chain dependencies. 6053 if (BundleMember->OpValue != BundleMember->Inst) { 6054 ScheduleData *UseSD = getScheduleData(BundleMember->Inst); 6055 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { 6056 BundleMember->Dependencies++; 6057 ScheduleData *DestBundle = UseSD->FirstInBundle; 6058 if (!DestBundle->IsScheduled) 6059 BundleMember->incrementUnscheduledDeps(1); 6060 if (!DestBundle->hasValidDependencies()) 6061 WorkList.push_back(DestBundle); 6062 } 6063 } else { 6064 for (User *U : BundleMember->Inst->users()) { 6065 if (isa<Instruction>(U)) { 6066 ScheduleData *UseSD = getScheduleData(U); 6067 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle) && 6068 // Ignore inner deps for insertelement 6069 !(UseSD->FirstInBundle == SD && 6070 isa<InsertElementInst>(BundleMember->Inst))) { 6071 BundleMember->Dependencies++; 6072 ScheduleData *DestBundle = UseSD->FirstInBundle; 6073 if (!DestBundle->IsScheduled) 6074 BundleMember->incrementUnscheduledDeps(1); 6075 if (!DestBundle->hasValidDependencies()) 6076 WorkList.push_back(DestBundle); 6077 } 6078 } else { 6079 // I'm not sure if this can ever happen. But we need to be safe. 6080 // This lets the instruction/bundle never be scheduled and 6081 // eventually disable vectorization. 6082 BundleMember->Dependencies++; 6083 BundleMember->incrementUnscheduledDeps(1); 6084 } 6085 } 6086 } 6087 6088 // Handle the memory dependencies. 6089 ScheduleData *DepDest = BundleMember->NextLoadStore; 6090 if (DepDest) { 6091 Instruction *SrcInst = BundleMember->Inst; 6092 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); 6093 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); 6094 unsigned numAliased = 0; 6095 unsigned DistToSrc = 1; 6096 6097 while (DepDest) { 6098 assert(isInSchedulingRegion(DepDest)); 6099 6100 // We have two limits to reduce the complexity: 6101 // 1) AliasedCheckLimit: It's a small limit to reduce calls to 6102 // SLP->isAliased (which is the expensive part in this loop). 6103 // 2) MaxMemDepDistance: It's for very large blocks and it aborts 6104 // the whole loop (even if the loop is fast, it's quadratic). 6105 // It's important for the loop break condition (see below) to 6106 // check this limit even between two read-only instructions. 6107 if (DistToSrc >= MaxMemDepDistance || 6108 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && 6109 (numAliased >= AliasedCheckLimit || 6110 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { 6111 6112 // We increment the counter only if the locations are aliased 6113 // (instead of counting all alias checks). This gives a better 6114 // balance between reduced runtime and accurate dependencies. 6115 numAliased++; 6116 6117 DepDest->MemoryDependencies.push_back(BundleMember); 6118 BundleMember->Dependencies++; 6119 ScheduleData *DestBundle = DepDest->FirstInBundle; 6120 if (!DestBundle->IsScheduled) { 6121 BundleMember->incrementUnscheduledDeps(1); 6122 } 6123 if (!DestBundle->hasValidDependencies()) { 6124 WorkList.push_back(DestBundle); 6125 } 6126 } 6127 DepDest = DepDest->NextLoadStore; 6128 6129 // Example, explaining the loop break condition: Let's assume our 6130 // starting instruction is i0 and MaxMemDepDistance = 3. 6131 // 6132 // +--------v--v--v 6133 // i0,i1,i2,i3,i4,i5,i6,i7,i8 6134 // +--------^--^--^ 6135 // 6136 // MaxMemDepDistance let us stop alias-checking at i3 and we add 6137 // dependencies from i0 to i3,i4,.. (even if they are not aliased). 6138 // Previously we already added dependencies from i3 to i6,i7,i8 6139 // (because of MaxMemDepDistance). As we added a dependency from 6140 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 6141 // and we can abort this loop at i6. 6142 if (DistToSrc >= 2 * MaxMemDepDistance) 6143 break; 6144 DistToSrc++; 6145 } 6146 } 6147 } 6148 BundleMember = BundleMember->NextInBundle; 6149 } 6150 if (InsertInReadyList && SD->isReady()) { 6151 ReadyInsts.push_back(SD); 6152 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst 6153 << "\n"); 6154 } 6155 } 6156 } 6157 6158 void BoUpSLP::BlockScheduling::resetSchedule() { 6159 assert(ScheduleStart && 6160 "tried to reset schedule on block which has not been scheduled"); 6161 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { 6162 doForAllOpcodes(I, [&](ScheduleData *SD) { 6163 assert(isInSchedulingRegion(SD) && 6164 "ScheduleData not in scheduling region"); 6165 SD->IsScheduled = false; 6166 SD->resetUnscheduledDeps(); 6167 }); 6168 } 6169 ReadyInsts.clear(); 6170 } 6171 6172 void BoUpSLP::scheduleBlock(BlockScheduling *BS) { 6173 if (!BS->ScheduleStart) 6174 return; 6175 6176 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); 6177 6178 BS->resetSchedule(); 6179 6180 // For the real scheduling we use a more sophisticated ready-list: it is 6181 // sorted by the original instruction location. This lets the final schedule 6182 // be as close as possible to the original instruction order. 6183 struct ScheduleDataCompare { 6184 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { 6185 return SD2->SchedulingPriority < SD1->SchedulingPriority; 6186 } 6187 }; 6188 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; 6189 6190 // Ensure that all dependency data is updated and fill the ready-list with 6191 // initial instructions. 6192 int Idx = 0; 6193 int NumToSchedule = 0; 6194 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; 6195 I = I->getNextNode()) { 6196 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) { 6197 assert(SD->isPartOfBundle() == 6198 (getTreeEntry(SD->Inst) != nullptr) && 6199 "scheduler and vectorizer bundle mismatch"); 6200 SD->FirstInBundle->SchedulingPriority = Idx++; 6201 if (SD->isSchedulingEntity()) { 6202 BS->calculateDependencies(SD, false, this); 6203 NumToSchedule++; 6204 } 6205 }); 6206 } 6207 BS->initialFillReadyList(ReadyInsts); 6208 6209 Instruction *LastScheduledInst = BS->ScheduleEnd; 6210 6211 // Do the "real" scheduling. 6212 while (!ReadyInsts.empty()) { 6213 ScheduleData *picked = *ReadyInsts.begin(); 6214 ReadyInsts.erase(ReadyInsts.begin()); 6215 6216 // Move the scheduled instruction(s) to their dedicated places, if not 6217 // there yet. 6218 ScheduleData *BundleMember = picked; 6219 while (BundleMember) { 6220 Instruction *pickedInst = BundleMember->Inst; 6221 if (LastScheduledInst->getNextNode() != pickedInst) { 6222 BS->BB->getInstList().remove(pickedInst); 6223 BS->BB->getInstList().insert(LastScheduledInst->getIterator(), 6224 pickedInst); 6225 } 6226 LastScheduledInst = pickedInst; 6227 BundleMember = BundleMember->NextInBundle; 6228 } 6229 6230 BS->schedule(picked, ReadyInsts); 6231 NumToSchedule--; 6232 } 6233 assert(NumToSchedule == 0 && "could not schedule all instructions"); 6234 6235 // Avoid duplicate scheduling of the block. 6236 BS->ScheduleStart = nullptr; 6237 } 6238 6239 unsigned BoUpSLP::getVectorElementSize(Value *V) { 6240 // If V is a store, just return the width of the stored value (or value 6241 // truncated just before storing) without traversing the expression tree. 6242 // This is the common case. 6243 if (auto *Store = dyn_cast<StoreInst>(V)) { 6244 if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) 6245 return DL->getTypeSizeInBits(Trunc->getSrcTy()); 6246 return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); 6247 } 6248 6249 if (auto *IEI = dyn_cast<InsertElementInst>(V)) 6250 return getVectorElementSize(IEI->getOperand(1)); 6251 6252 auto E = InstrElementSize.find(V); 6253 if (E != InstrElementSize.end()) 6254 return E->second; 6255 6256 // If V is not a store, we can traverse the expression tree to find loads 6257 // that feed it. The type of the loaded value may indicate a more suitable 6258 // width than V's type. We want to base the vector element size on the width 6259 // of memory operations where possible. 6260 SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; 6261 SmallPtrSet<Instruction *, 16> Visited; 6262 if (auto *I = dyn_cast<Instruction>(V)) { 6263 Worklist.emplace_back(I, I->getParent()); 6264 Visited.insert(I); 6265 } 6266 6267 // Traverse the expression tree in bottom-up order looking for loads. If we 6268 // encounter an instruction we don't yet handle, we give up. 6269 auto Width = 0u; 6270 while (!Worklist.empty()) { 6271 Instruction *I; 6272 BasicBlock *Parent; 6273 std::tie(I, Parent) = Worklist.pop_back_val(); 6274 6275 // We should only be looking at scalar instructions here. If the current 6276 // instruction has a vector type, skip. 6277 auto *Ty = I->getType(); 6278 if (isa<VectorType>(Ty)) 6279 continue; 6280 6281 // If the current instruction is a load, update MaxWidth to reflect the 6282 // width of the loaded value. 6283 if (isa<LoadInst>(I) || isa<ExtractElementInst>(I) || 6284 isa<ExtractValueInst>(I)) 6285 Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); 6286 6287 // Otherwise, we need to visit the operands of the instruction. We only 6288 // handle the interesting cases from buildTree here. If an operand is an 6289 // instruction we haven't yet visited and from the same basic block as the 6290 // user or the use is a PHI node, we add it to the worklist. 6291 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 6292 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I) || 6293 isa<UnaryOperator>(I)) { 6294 for (Use &U : I->operands()) 6295 if (auto *J = dyn_cast<Instruction>(U.get())) 6296 if (Visited.insert(J).second && 6297 (isa<PHINode>(I) || J->getParent() == Parent)) 6298 Worklist.emplace_back(J, J->getParent()); 6299 } else { 6300 break; 6301 } 6302 } 6303 6304 // If we didn't encounter a memory access in the expression tree, or if we 6305 // gave up for some reason, just return the width of V. Otherwise, return the 6306 // maximum width we found. 6307 if (!Width) { 6308 if (auto *CI = dyn_cast<CmpInst>(V)) 6309 V = CI->getOperand(0); 6310 Width = DL->getTypeSizeInBits(V->getType()); 6311 } 6312 6313 for (Instruction *I : Visited) 6314 InstrElementSize[I] = Width; 6315 6316 return Width; 6317 } 6318 6319 // Determine if a value V in a vectorizable expression Expr can be demoted to a 6320 // smaller type with a truncation. We collect the values that will be demoted 6321 // in ToDemote and additional roots that require investigating in Roots. 6322 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, 6323 SmallVectorImpl<Value *> &ToDemote, 6324 SmallVectorImpl<Value *> &Roots) { 6325 // We can always demote constants. 6326 if (isa<Constant>(V)) { 6327 ToDemote.push_back(V); 6328 return true; 6329 } 6330 6331 // If the value is not an instruction in the expression with only one use, it 6332 // cannot be demoted. 6333 auto *I = dyn_cast<Instruction>(V); 6334 if (!I || !I->hasOneUse() || !Expr.count(I)) 6335 return false; 6336 6337 switch (I->getOpcode()) { 6338 6339 // We can always demote truncations and extensions. Since truncations can 6340 // seed additional demotion, we save the truncated value. 6341 case Instruction::Trunc: 6342 Roots.push_back(I->getOperand(0)); 6343 break; 6344 case Instruction::ZExt: 6345 case Instruction::SExt: 6346 if (isa<ExtractElementInst>(I->getOperand(0)) || 6347 isa<InsertElementInst>(I->getOperand(0))) 6348 return false; 6349 break; 6350 6351 // We can demote certain binary operations if we can demote both of their 6352 // operands. 6353 case Instruction::Add: 6354 case Instruction::Sub: 6355 case Instruction::Mul: 6356 case Instruction::And: 6357 case Instruction::Or: 6358 case Instruction::Xor: 6359 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || 6360 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) 6361 return false; 6362 break; 6363 6364 // We can demote selects if we can demote their true and false values. 6365 case Instruction::Select: { 6366 SelectInst *SI = cast<SelectInst>(I); 6367 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || 6368 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) 6369 return false; 6370 break; 6371 } 6372 6373 // We can demote phis if we can demote all their incoming operands. Note that 6374 // we don't need to worry about cycles since we ensure single use above. 6375 case Instruction::PHI: { 6376 PHINode *PN = cast<PHINode>(I); 6377 for (Value *IncValue : PN->incoming_values()) 6378 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) 6379 return false; 6380 break; 6381 } 6382 6383 // Otherwise, conservatively give up. 6384 default: 6385 return false; 6386 } 6387 6388 // Record the value that we can demote. 6389 ToDemote.push_back(V); 6390 return true; 6391 } 6392 6393 void BoUpSLP::computeMinimumValueSizes() { 6394 // If there are no external uses, the expression tree must be rooted by a 6395 // store. We can't demote in-memory values, so there is nothing to do here. 6396 if (ExternalUses.empty()) 6397 return; 6398 6399 // We only attempt to truncate integer expressions. 6400 auto &TreeRoot = VectorizableTree[0]->Scalars; 6401 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); 6402 if (!TreeRootIT) 6403 return; 6404 6405 // If the expression is not rooted by a store, these roots should have 6406 // external uses. We will rely on InstCombine to rewrite the expression in 6407 // the narrower type. However, InstCombine only rewrites single-use values. 6408 // This means that if a tree entry other than a root is used externally, it 6409 // must have multiple uses and InstCombine will not rewrite it. The code 6410 // below ensures that only the roots are used externally. 6411 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); 6412 for (auto &EU : ExternalUses) 6413 if (!Expr.erase(EU.Scalar)) 6414 return; 6415 if (!Expr.empty()) 6416 return; 6417 6418 // Collect the scalar values of the vectorizable expression. We will use this 6419 // context to determine which values can be demoted. If we see a truncation, 6420 // we mark it as seeding another demotion. 6421 for (auto &EntryPtr : VectorizableTree) 6422 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); 6423 6424 // Ensure the roots of the vectorizable tree don't form a cycle. They must 6425 // have a single external user that is not in the vectorizable tree. 6426 for (auto *Root : TreeRoot) 6427 if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) 6428 return; 6429 6430 // Conservatively determine if we can actually truncate the roots of the 6431 // expression. Collect the values that can be demoted in ToDemote and 6432 // additional roots that require investigating in Roots. 6433 SmallVector<Value *, 32> ToDemote; 6434 SmallVector<Value *, 4> Roots; 6435 for (auto *Root : TreeRoot) 6436 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) 6437 return; 6438 6439 // The maximum bit width required to represent all the values that can be 6440 // demoted without loss of precision. It would be safe to truncate the roots 6441 // of the expression to this width. 6442 auto MaxBitWidth = 8u; 6443 6444 // We first check if all the bits of the roots are demanded. If they're not, 6445 // we can truncate the roots to this narrower type. 6446 for (auto *Root : TreeRoot) { 6447 auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); 6448 MaxBitWidth = std::max<unsigned>( 6449 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); 6450 } 6451 6452 // True if the roots can be zero-extended back to their original type, rather 6453 // than sign-extended. We know that if the leading bits are not demanded, we 6454 // can safely zero-extend. So we initialize IsKnownPositive to True. 6455 bool IsKnownPositive = true; 6456 6457 // If all the bits of the roots are demanded, we can try a little harder to 6458 // compute a narrower type. This can happen, for example, if the roots are 6459 // getelementptr indices. InstCombine promotes these indices to the pointer 6460 // width. Thus, all their bits are technically demanded even though the 6461 // address computation might be vectorized in a smaller type. 6462 // 6463 // We start by looking at each entry that can be demoted. We compute the 6464 // maximum bit width required to store the scalar by using ValueTracking to 6465 // compute the number of high-order bits we can truncate. 6466 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && 6467 llvm::all_of(TreeRoot, [](Value *R) { 6468 assert(R->hasOneUse() && "Root should have only one use!"); 6469 return isa<GetElementPtrInst>(R->user_back()); 6470 })) { 6471 MaxBitWidth = 8u; 6472 6473 // Determine if the sign bit of all the roots is known to be zero. If not, 6474 // IsKnownPositive is set to False. 6475 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { 6476 KnownBits Known = computeKnownBits(R, *DL); 6477 return Known.isNonNegative(); 6478 }); 6479 6480 // Determine the maximum number of bits required to store the scalar 6481 // values. 6482 for (auto *Scalar : ToDemote) { 6483 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); 6484 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); 6485 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); 6486 } 6487 6488 // If we can't prove that the sign bit is zero, we must add one to the 6489 // maximum bit width to account for the unknown sign bit. This preserves 6490 // the existing sign bit so we can safely sign-extend the root back to the 6491 // original type. Otherwise, if we know the sign bit is zero, we will 6492 // zero-extend the root instead. 6493 // 6494 // FIXME: This is somewhat suboptimal, as there will be cases where adding 6495 // one to the maximum bit width will yield a larger-than-necessary 6496 // type. In general, we need to add an extra bit only if we can't 6497 // prove that the upper bit of the original type is equal to the 6498 // upper bit of the proposed smaller type. If these two bits are the 6499 // same (either zero or one) we know that sign-extending from the 6500 // smaller type will result in the same value. Here, since we can't 6501 // yet prove this, we are just making the proposed smaller type 6502 // larger to ensure correctness. 6503 if (!IsKnownPositive) 6504 ++MaxBitWidth; 6505 } 6506 6507 // Round MaxBitWidth up to the next power-of-two. 6508 if (!isPowerOf2_64(MaxBitWidth)) 6509 MaxBitWidth = NextPowerOf2(MaxBitWidth); 6510 6511 // If the maximum bit width we compute is less than the with of the roots' 6512 // type, we can proceed with the narrowing. Otherwise, do nothing. 6513 if (MaxBitWidth >= TreeRootIT->getBitWidth()) 6514 return; 6515 6516 // If we can truncate the root, we must collect additional values that might 6517 // be demoted as a result. That is, those seeded by truncations we will 6518 // modify. 6519 while (!Roots.empty()) 6520 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); 6521 6522 // Finally, map the values we can demote to the maximum bit with we computed. 6523 for (auto *Scalar : ToDemote) 6524 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); 6525 } 6526 6527 namespace { 6528 6529 /// The SLPVectorizer Pass. 6530 struct SLPVectorizer : public FunctionPass { 6531 SLPVectorizerPass Impl; 6532 6533 /// Pass identification, replacement for typeid 6534 static char ID; 6535 6536 explicit SLPVectorizer() : FunctionPass(ID) { 6537 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); 6538 } 6539 6540 bool doInitialization(Module &M) override { 6541 return false; 6542 } 6543 6544 bool runOnFunction(Function &F) override { 6545 if (skipFunction(F)) 6546 return false; 6547 6548 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 6549 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 6550 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 6551 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 6552 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 6553 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 6554 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 6555 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 6556 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 6557 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 6558 6559 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 6560 } 6561 6562 void getAnalysisUsage(AnalysisUsage &AU) const override { 6563 FunctionPass::getAnalysisUsage(AU); 6564 AU.addRequired<AssumptionCacheTracker>(); 6565 AU.addRequired<ScalarEvolutionWrapperPass>(); 6566 AU.addRequired<AAResultsWrapperPass>(); 6567 AU.addRequired<TargetTransformInfoWrapperPass>(); 6568 AU.addRequired<LoopInfoWrapperPass>(); 6569 AU.addRequired<DominatorTreeWrapperPass>(); 6570 AU.addRequired<DemandedBitsWrapperPass>(); 6571 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 6572 AU.addRequired<InjectTLIMappingsLegacy>(); 6573 AU.addPreserved<LoopInfoWrapperPass>(); 6574 AU.addPreserved<DominatorTreeWrapperPass>(); 6575 AU.addPreserved<AAResultsWrapperPass>(); 6576 AU.addPreserved<GlobalsAAWrapperPass>(); 6577 AU.setPreservesCFG(); 6578 } 6579 }; 6580 6581 } // end anonymous namespace 6582 6583 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 6584 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 6585 auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 6586 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 6587 auto *AA = &AM.getResult<AAManager>(F); 6588 auto *LI = &AM.getResult<LoopAnalysis>(F); 6589 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 6590 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 6591 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); 6592 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 6593 6594 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); 6595 if (!Changed) 6596 return PreservedAnalyses::all(); 6597 6598 PreservedAnalyses PA; 6599 PA.preserveSet<CFGAnalyses>(); 6600 return PA; 6601 } 6602 6603 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, 6604 TargetTransformInfo *TTI_, 6605 TargetLibraryInfo *TLI_, AAResults *AA_, 6606 LoopInfo *LI_, DominatorTree *DT_, 6607 AssumptionCache *AC_, DemandedBits *DB_, 6608 OptimizationRemarkEmitter *ORE_) { 6609 if (!RunSLPVectorization) 6610 return false; 6611 SE = SE_; 6612 TTI = TTI_; 6613 TLI = TLI_; 6614 AA = AA_; 6615 LI = LI_; 6616 DT = DT_; 6617 AC = AC_; 6618 DB = DB_; 6619 DL = &F.getParent()->getDataLayout(); 6620 6621 Stores.clear(); 6622 GEPs.clear(); 6623 bool Changed = false; 6624 6625 // If the target claims to have no vector registers don't attempt 6626 // vectorization. 6627 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) 6628 return false; 6629 6630 // Don't vectorize when the attribute NoImplicitFloat is used. 6631 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 6632 return false; 6633 6634 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); 6635 6636 // Use the bottom up slp vectorizer to construct chains that start with 6637 // store instructions. 6638 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); 6639 6640 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to 6641 // delete instructions. 6642 6643 // Update DFS numbers now so that we can use them for ordering. 6644 DT->updateDFSNumbers(); 6645 6646 // Scan the blocks in the function in post order. 6647 for (auto BB : post_order(&F.getEntryBlock())) { 6648 collectSeedInstructions(BB); 6649 6650 // Vectorize trees that end at stores. 6651 if (!Stores.empty()) { 6652 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() 6653 << " underlying objects.\n"); 6654 Changed |= vectorizeStoreChains(R); 6655 } 6656 6657 // Vectorize trees that end at reductions. 6658 Changed |= vectorizeChainsInBlock(BB, R); 6659 6660 // Vectorize the index computations of getelementptr instructions. This 6661 // is primarily intended to catch gather-like idioms ending at 6662 // non-consecutive loads. 6663 if (!GEPs.empty()) { 6664 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() 6665 << " underlying objects.\n"); 6666 Changed |= vectorizeGEPIndices(BB, R); 6667 } 6668 } 6669 6670 if (Changed) { 6671 R.optimizeGatherSequence(); 6672 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); 6673 } 6674 return Changed; 6675 } 6676 6677 /// Order may have elements assigned special value (size) which is out of 6678 /// bounds. Such indices only appear on places which correspond to undef values 6679 /// (see canReuseExtract for details) and used in order to avoid undef values 6680 /// have effect on operands ordering. 6681 /// The first loop below simply finds all unused indices and then the next loop 6682 /// nest assigns these indices for undef values positions. 6683 /// As an example below Order has two undef positions and they have assigned 6684 /// values 3 and 7 respectively: 6685 /// before: 6 9 5 4 9 2 1 0 6686 /// after: 6 3 5 4 7 2 1 0 6687 /// \returns Fixed ordering. 6688 static BoUpSLP::OrdersType fixupOrderingIndices(ArrayRef<unsigned> Order) { 6689 BoUpSLP::OrdersType NewOrder(Order.begin(), Order.end()); 6690 const unsigned Sz = NewOrder.size(); 6691 SmallBitVector UsedIndices(Sz); 6692 SmallVector<int> MaskedIndices; 6693 for (int I = 0, E = NewOrder.size(); I < E; ++I) { 6694 if (NewOrder[I] < Sz) 6695 UsedIndices.set(NewOrder[I]); 6696 else 6697 MaskedIndices.push_back(I); 6698 } 6699 if (MaskedIndices.empty()) 6700 return NewOrder; 6701 SmallVector<int> AvailableIndices(MaskedIndices.size()); 6702 unsigned Cnt = 0; 6703 int Idx = UsedIndices.find_first(); 6704 do { 6705 AvailableIndices[Cnt] = Idx; 6706 Idx = UsedIndices.find_next(Idx); 6707 ++Cnt; 6708 } while (Idx > 0); 6709 assert(Cnt == MaskedIndices.size() && "Non-synced masked/available indices."); 6710 for (int I = 0, E = MaskedIndices.size(); I < E; ++I) 6711 NewOrder[MaskedIndices[I]] = AvailableIndices[I]; 6712 return NewOrder; 6713 } 6714 6715 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, 6716 unsigned Idx) { 6717 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() 6718 << "\n"); 6719 const unsigned Sz = R.getVectorElementSize(Chain[0]); 6720 const unsigned MinVF = R.getMinVecRegSize() / Sz; 6721 unsigned VF = Chain.size(); 6722 6723 if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) 6724 return false; 6725 6726 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx 6727 << "\n"); 6728 6729 R.buildTree(Chain); 6730 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 6731 // TODO: Handle orders of size less than number of elements in the vector. 6732 if (Order && Order->size() == Chain.size()) { 6733 // TODO: reorder tree nodes without tree rebuilding. 6734 SmallVector<Value *, 4> ReorderedOps(Chain.size()); 6735 transform(fixupOrderingIndices(*Order), ReorderedOps.begin(), 6736 [Chain](const unsigned Idx) { return Chain[Idx]; }); 6737 R.buildTree(ReorderedOps); 6738 } 6739 if (R.isTreeTinyAndNotFullyVectorizable()) 6740 return false; 6741 if (R.isLoadCombineCandidate()) 6742 return false; 6743 6744 R.computeMinimumValueSizes(); 6745 6746 InstructionCost Cost = R.getTreeCost(); 6747 6748 LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF =" << VF << "\n"); 6749 if (Cost < -SLPCostThreshold) { 6750 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); 6751 6752 using namespace ore; 6753 6754 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", 6755 cast<StoreInst>(Chain[0])) 6756 << "Stores SLP vectorized with cost " << NV("Cost", Cost) 6757 << " and with tree size " 6758 << NV("TreeSize", R.getTreeSize())); 6759 6760 R.vectorizeTree(); 6761 return true; 6762 } 6763 6764 return false; 6765 } 6766 6767 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, 6768 BoUpSLP &R) { 6769 // We may run into multiple chains that merge into a single chain. We mark the 6770 // stores that we vectorized so that we don't visit the same store twice. 6771 BoUpSLP::ValueSet VectorizedStores; 6772 bool Changed = false; 6773 6774 int E = Stores.size(); 6775 SmallBitVector Tails(E, false); 6776 int MaxIter = MaxStoreLookup.getValue(); 6777 SmallVector<std::pair<int, int>, 16> ConsecutiveChain( 6778 E, std::make_pair(E, INT_MAX)); 6779 SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); 6780 int IterCnt; 6781 auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, 6782 &CheckedPairs, 6783 &ConsecutiveChain](int K, int Idx) { 6784 if (IterCnt >= MaxIter) 6785 return true; 6786 if (CheckedPairs[Idx].test(K)) 6787 return ConsecutiveChain[K].second == 1 && 6788 ConsecutiveChain[K].first == Idx; 6789 ++IterCnt; 6790 CheckedPairs[Idx].set(K); 6791 CheckedPairs[K].set(Idx); 6792 Optional<int> Diff = getPointersDiff(Stores[K]->getPointerOperand(), 6793 Stores[Idx]->getPointerOperand(), *DL, 6794 *SE, /*StrictCheck=*/true); 6795 if (!Diff || *Diff == 0) 6796 return false; 6797 int Val = *Diff; 6798 if (Val < 0) { 6799 if (ConsecutiveChain[Idx].second > -Val) { 6800 Tails.set(K); 6801 ConsecutiveChain[Idx] = std::make_pair(K, -Val); 6802 } 6803 return false; 6804 } 6805 if (ConsecutiveChain[K].second <= Val) 6806 return false; 6807 6808 Tails.set(Idx); 6809 ConsecutiveChain[K] = std::make_pair(Idx, Val); 6810 return Val == 1; 6811 }; 6812 // Do a quadratic search on all of the given stores in reverse order and find 6813 // all of the pairs of stores that follow each other. 6814 for (int Idx = E - 1; Idx >= 0; --Idx) { 6815 // If a store has multiple consecutive store candidates, search according 6816 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... 6817 // This is because usually pairing with immediate succeeding or preceding 6818 // candidate create the best chance to find slp vectorization opportunity. 6819 const int MaxLookDepth = std::max(E - Idx, Idx + 1); 6820 IterCnt = 0; 6821 for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) 6822 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || 6823 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) 6824 break; 6825 } 6826 6827 // Tracks if we tried to vectorize stores starting from the given tail 6828 // already. 6829 SmallBitVector TriedTails(E, false); 6830 // For stores that start but don't end a link in the chain: 6831 for (int Cnt = E; Cnt > 0; --Cnt) { 6832 int I = Cnt - 1; 6833 if (ConsecutiveChain[I].first == E || Tails.test(I)) 6834 continue; 6835 // We found a store instr that starts a chain. Now follow the chain and try 6836 // to vectorize it. 6837 BoUpSLP::ValueList Operands; 6838 // Collect the chain into a list. 6839 while (I != E && !VectorizedStores.count(Stores[I])) { 6840 Operands.push_back(Stores[I]); 6841 Tails.set(I); 6842 if (ConsecutiveChain[I].second != 1) { 6843 // Mark the new end in the chain and go back, if required. It might be 6844 // required if the original stores come in reversed order, for example. 6845 if (ConsecutiveChain[I].first != E && 6846 Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && 6847 !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { 6848 TriedTails.set(I); 6849 Tails.reset(ConsecutiveChain[I].first); 6850 if (Cnt < ConsecutiveChain[I].first + 2) 6851 Cnt = ConsecutiveChain[I].first + 2; 6852 } 6853 break; 6854 } 6855 // Move to the next value in the chain. 6856 I = ConsecutiveChain[I].first; 6857 } 6858 assert(!Operands.empty() && "Expected non-empty list of stores."); 6859 6860 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 6861 unsigned EltSize = R.getVectorElementSize(Operands[0]); 6862 unsigned MaxElts = llvm::PowerOf2Floor(MaxVecRegSize / EltSize); 6863 6864 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / EltSize); 6865 unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), 6866 MaxElts); 6867 6868 // FIXME: Is division-by-2 the correct step? Should we assert that the 6869 // register size is a power-of-2? 6870 unsigned StartIdx = 0; 6871 for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { 6872 for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { 6873 ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size); 6874 if (!VectorizedStores.count(Slice.front()) && 6875 !VectorizedStores.count(Slice.back()) && 6876 vectorizeStoreChain(Slice, R, Cnt)) { 6877 // Mark the vectorized stores so that we don't vectorize them again. 6878 VectorizedStores.insert(Slice.begin(), Slice.end()); 6879 Changed = true; 6880 // If we vectorized initial block, no need to try to vectorize it 6881 // again. 6882 if (Cnt == StartIdx) 6883 StartIdx += Size; 6884 Cnt += Size; 6885 continue; 6886 } 6887 ++Cnt; 6888 } 6889 // Check if the whole array was vectorized already - exit. 6890 if (StartIdx >= Operands.size()) 6891 break; 6892 } 6893 } 6894 6895 return Changed; 6896 } 6897 6898 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { 6899 // Initialize the collections. We will make a single pass over the block. 6900 Stores.clear(); 6901 GEPs.clear(); 6902 6903 // Visit the store and getelementptr instructions in BB and organize them in 6904 // Stores and GEPs according to the underlying objects of their pointer 6905 // operands. 6906 for (Instruction &I : *BB) { 6907 // Ignore store instructions that are volatile or have a pointer operand 6908 // that doesn't point to a scalar type. 6909 if (auto *SI = dyn_cast<StoreInst>(&I)) { 6910 if (!SI->isSimple()) 6911 continue; 6912 if (!isValidElementType(SI->getValueOperand()->getType())) 6913 continue; 6914 Stores[getUnderlyingObject(SI->getPointerOperand())].push_back(SI); 6915 } 6916 6917 // Ignore getelementptr instructions that have more than one index, a 6918 // constant index, or a pointer operand that doesn't point to a scalar 6919 // type. 6920 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 6921 auto Idx = GEP->idx_begin()->get(); 6922 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) 6923 continue; 6924 if (!isValidElementType(Idx->getType())) 6925 continue; 6926 if (GEP->getType()->isVectorTy()) 6927 continue; 6928 GEPs[GEP->getPointerOperand()].push_back(GEP); 6929 } 6930 } 6931 } 6932 6933 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { 6934 if (!A || !B) 6935 return false; 6936 Value *VL[] = {A, B}; 6937 return tryToVectorizeList(VL, R, /*AllowReorder=*/true); 6938 } 6939 6940 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, 6941 bool AllowReorder) { 6942 if (VL.size() < 2) 6943 return false; 6944 6945 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " 6946 << VL.size() << ".\n"); 6947 6948 // Check that all of the parts are instructions of the same type, 6949 // we permit an alternate opcode via InstructionsState. 6950 InstructionsState S = getSameOpcode(VL); 6951 if (!S.getOpcode()) 6952 return false; 6953 6954 Instruction *I0 = cast<Instruction>(S.OpValue); 6955 // Make sure invalid types (including vector type) are rejected before 6956 // determining vectorization factor for scalar instructions. 6957 for (Value *V : VL) { 6958 Type *Ty = V->getType(); 6959 if (!isa<InsertElementInst>(V) && !isValidElementType(Ty)) { 6960 // NOTE: the following will give user internal llvm type name, which may 6961 // not be useful. 6962 R.getORE()->emit([&]() { 6963 std::string type_str; 6964 llvm::raw_string_ostream rso(type_str); 6965 Ty->print(rso); 6966 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0) 6967 << "Cannot SLP vectorize list: type " 6968 << rso.str() + " is unsupported by vectorizer"; 6969 }); 6970 return false; 6971 } 6972 } 6973 6974 unsigned Sz = R.getVectorElementSize(I0); 6975 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz); 6976 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF); 6977 MaxVF = std::min(R.getMaximumVF(Sz, S.getOpcode()), MaxVF); 6978 if (MaxVF < 2) { 6979 R.getORE()->emit([&]() { 6980 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0) 6981 << "Cannot SLP vectorize list: vectorization factor " 6982 << "less than 2 is not supported"; 6983 }); 6984 return false; 6985 } 6986 6987 bool Changed = false; 6988 bool CandidateFound = false; 6989 InstructionCost MinCost = SLPCostThreshold.getValue(); 6990 Type *ScalarTy = VL[0]->getType(); 6991 if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) 6992 ScalarTy = IE->getOperand(1)->getType(); 6993 6994 unsigned NextInst = 0, MaxInst = VL.size(); 6995 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) { 6996 // No actual vectorization should happen, if number of parts is the same as 6997 // provided vectorization factor (i.e. the scalar type is used for vector 6998 // code during codegen). 6999 auto *VecTy = FixedVectorType::get(ScalarTy, VF); 7000 if (TTI->getNumberOfParts(VecTy) == VF) 7001 continue; 7002 for (unsigned I = NextInst; I < MaxInst; ++I) { 7003 unsigned OpsWidth = 0; 7004 7005 if (I + VF > MaxInst) 7006 OpsWidth = MaxInst - I; 7007 else 7008 OpsWidth = VF; 7009 7010 if (!isPowerOf2_32(OpsWidth)) 7011 continue; 7012 7013 if ((VF > MinVF && OpsWidth <= VF / 2) || (VF == MinVF && OpsWidth < 2)) 7014 break; 7015 7016 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth); 7017 // Check that a previous iteration of this loop did not delete the Value. 7018 if (llvm::any_of(Ops, [&R](Value *V) { 7019 auto *I = dyn_cast<Instruction>(V); 7020 return I && R.isDeleted(I); 7021 })) 7022 continue; 7023 7024 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " 7025 << "\n"); 7026 7027 R.buildTree(Ops); 7028 if (AllowReorder) { 7029 Optional<ArrayRef<unsigned>> Order = R.bestOrder(); 7030 if (Order) { 7031 // TODO: reorder tree nodes without tree rebuilding. 7032 SmallVector<Value *, 4> ReorderedOps(Ops.size()); 7033 transform(fixupOrderingIndices(*Order), ReorderedOps.begin(), 7034 [Ops](const unsigned Idx) { return Ops[Idx]; }); 7035 R.buildTree(ReorderedOps); 7036 } 7037 } 7038 if (R.isTreeTinyAndNotFullyVectorizable()) 7039 continue; 7040 7041 R.computeMinimumValueSizes(); 7042 InstructionCost Cost = R.getTreeCost(); 7043 CandidateFound = true; 7044 MinCost = std::min(MinCost, Cost); 7045 7046 if (Cost < -SLPCostThreshold) { 7047 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); 7048 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList", 7049 cast<Instruction>(Ops[0])) 7050 << "SLP vectorized with cost " << ore::NV("Cost", Cost) 7051 << " and with tree size " 7052 << ore::NV("TreeSize", R.getTreeSize())); 7053 7054 R.vectorizeTree(); 7055 // Move to the next bundle. 7056 I += VF - 1; 7057 NextInst = I + 1; 7058 Changed = true; 7059 } 7060 } 7061 } 7062 7063 if (!Changed && CandidateFound) { 7064 R.getORE()->emit([&]() { 7065 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0) 7066 << "List vectorization was possible but not beneficial with cost " 7067 << ore::NV("Cost", MinCost) << " >= " 7068 << ore::NV("Treshold", -SLPCostThreshold); 7069 }); 7070 } else if (!Changed) { 7071 R.getORE()->emit([&]() { 7072 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0) 7073 << "Cannot SLP vectorize list: vectorization was impossible" 7074 << " with available vectorization factors"; 7075 }); 7076 } 7077 return Changed; 7078 } 7079 7080 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) { 7081 if (!I) 7082 return false; 7083 7084 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I)) 7085 return false; 7086 7087 Value *P = I->getParent(); 7088 7089 // Vectorize in current basic block only. 7090 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0)); 7091 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1)); 7092 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P) 7093 return false; 7094 7095 // Try to vectorize V. 7096 if (tryToVectorizePair(Op0, Op1, R)) 7097 return true; 7098 7099 auto *A = dyn_cast<BinaryOperator>(Op0); 7100 auto *B = dyn_cast<BinaryOperator>(Op1); 7101 // Try to skip B. 7102 if (B && B->hasOneUse()) { 7103 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); 7104 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); 7105 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R)) 7106 return true; 7107 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R)) 7108 return true; 7109 } 7110 7111 // Try to skip A. 7112 if (A && A->hasOneUse()) { 7113 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); 7114 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); 7115 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R)) 7116 return true; 7117 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R)) 7118 return true; 7119 } 7120 return false; 7121 } 7122 7123 namespace { 7124 7125 /// Model horizontal reductions. 7126 /// 7127 /// A horizontal reduction is a tree of reduction instructions that has values 7128 /// that can be put into a vector as its leaves. For example: 7129 /// 7130 /// mul mul mul mul 7131 /// \ / \ / 7132 /// + + 7133 /// \ / 7134 /// + 7135 /// This tree has "mul" as its leaf values and "+" as its reduction 7136 /// instructions. A reduction can feed into a store or a binary operation 7137 /// feeding a phi. 7138 /// ... 7139 /// \ / 7140 /// + 7141 /// | 7142 /// phi += 7143 /// 7144 /// Or: 7145 /// ... 7146 /// \ / 7147 /// + 7148 /// | 7149 /// *p = 7150 /// 7151 class HorizontalReduction { 7152 using ReductionOpsType = SmallVector<Value *, 16>; 7153 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>; 7154 ReductionOpsListType ReductionOps; 7155 SmallVector<Value *, 32> ReducedVals; 7156 // Use map vector to make stable output. 7157 MapVector<Instruction *, Value *> ExtraArgs; 7158 WeakTrackingVH ReductionRoot; 7159 /// The type of reduction operation. 7160 RecurKind RdxKind; 7161 7162 /// Checks if instruction is associative and can be vectorized. 7163 static bool isVectorizable(RecurKind Kind, Instruction *I) { 7164 if (Kind == RecurKind::None) 7165 return false; 7166 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(Kind)) 7167 return true; 7168 7169 if (Kind == RecurKind::FMax || Kind == RecurKind::FMin) { 7170 // FP min/max are associative except for NaN and -0.0. We do not 7171 // have to rule out -0.0 here because the intrinsic semantics do not 7172 // specify a fixed result for it. 7173 return I->getFastMathFlags().noNaNs(); 7174 } 7175 7176 return I->isAssociative(); 7177 } 7178 7179 /// Checks if the ParentStackElem.first should be marked as a reduction 7180 /// operation with an extra argument or as extra argument itself. 7181 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem, 7182 Value *ExtraArg) { 7183 if (ExtraArgs.count(ParentStackElem.first)) { 7184 ExtraArgs[ParentStackElem.first] = nullptr; 7185 // We ran into something like: 7186 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg. 7187 // The whole ParentStackElem.first should be considered as an extra value 7188 // in this case. 7189 // Do not perform analysis of remaining operands of ParentStackElem.first 7190 // instruction, this whole instruction is an extra argument. 7191 ParentStackElem.second = getNumberOfOperands(ParentStackElem.first); 7192 } else { 7193 // We ran into something like: 7194 // ParentStackElem.first += ... + ExtraArg + ... 7195 ExtraArgs[ParentStackElem.first] = ExtraArg; 7196 } 7197 } 7198 7199 /// Creates reduction operation with the current opcode. 7200 static Value *createOp(IRBuilder<> &Builder, RecurKind Kind, Value *LHS, 7201 Value *RHS, const Twine &Name, bool UseSelect) { 7202 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(Kind); 7203 switch (Kind) { 7204 case RecurKind::Add: 7205 case RecurKind::Mul: 7206 case RecurKind::Or: 7207 case RecurKind::And: 7208 case RecurKind::Xor: 7209 case RecurKind::FAdd: 7210 case RecurKind::FMul: 7211 return Builder.CreateBinOp((Instruction::BinaryOps)RdxOpcode, LHS, RHS, 7212 Name); 7213 case RecurKind::FMax: 7214 return Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS); 7215 case RecurKind::FMin: 7216 return Builder.CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS); 7217 case RecurKind::SMax: 7218 if (UseSelect) { 7219 Value *Cmp = Builder.CreateICmpSGT(LHS, RHS, Name); 7220 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 7221 } 7222 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, LHS, RHS); 7223 case RecurKind::SMin: 7224 if (UseSelect) { 7225 Value *Cmp = Builder.CreateICmpSLT(LHS, RHS, Name); 7226 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 7227 } 7228 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, LHS, RHS); 7229 case RecurKind::UMax: 7230 if (UseSelect) { 7231 Value *Cmp = Builder.CreateICmpUGT(LHS, RHS, Name); 7232 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 7233 } 7234 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, LHS, RHS); 7235 case RecurKind::UMin: 7236 if (UseSelect) { 7237 Value *Cmp = Builder.CreateICmpULT(LHS, RHS, Name); 7238 return Builder.CreateSelect(Cmp, LHS, RHS, Name); 7239 } 7240 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, LHS, RHS); 7241 default: 7242 llvm_unreachable("Unknown reduction operation."); 7243 } 7244 } 7245 7246 /// Creates reduction operation with the current opcode with the IR flags 7247 /// from \p ReductionOps. 7248 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 7249 Value *RHS, const Twine &Name, 7250 const ReductionOpsListType &ReductionOps) { 7251 bool UseSelect = ReductionOps.size() == 2; 7252 assert((!UseSelect || isa<SelectInst>(ReductionOps[1][0])) && 7253 "Expected cmp + select pairs for reduction"); 7254 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, UseSelect); 7255 if (RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 7256 if (auto *Sel = dyn_cast<SelectInst>(Op)) { 7257 propagateIRFlags(Sel->getCondition(), ReductionOps[0]); 7258 propagateIRFlags(Op, ReductionOps[1]); 7259 return Op; 7260 } 7261 } 7262 propagateIRFlags(Op, ReductionOps[0]); 7263 return Op; 7264 } 7265 7266 /// Creates reduction operation with the current opcode with the IR flags 7267 /// from \p I. 7268 static Value *createOp(IRBuilder<> &Builder, RecurKind RdxKind, Value *LHS, 7269 Value *RHS, const Twine &Name, Instruction *I) { 7270 auto *SelI = dyn_cast<SelectInst>(I); 7271 Value *Op = createOp(Builder, RdxKind, LHS, RHS, Name, SelI != nullptr); 7272 if (SelI && RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind)) { 7273 if (auto *Sel = dyn_cast<SelectInst>(Op)) 7274 propagateIRFlags(Sel->getCondition(), SelI->getCondition()); 7275 } 7276 propagateIRFlags(Op, I); 7277 return Op; 7278 } 7279 7280 static RecurKind getRdxKind(Instruction *I) { 7281 assert(I && "Expected instruction for reduction matching"); 7282 TargetTransformInfo::ReductionFlags RdxFlags; 7283 if (match(I, m_Add(m_Value(), m_Value()))) 7284 return RecurKind::Add; 7285 if (match(I, m_Mul(m_Value(), m_Value()))) 7286 return RecurKind::Mul; 7287 if (match(I, m_And(m_Value(), m_Value()))) 7288 return RecurKind::And; 7289 if (match(I, m_Or(m_Value(), m_Value()))) 7290 return RecurKind::Or; 7291 if (match(I, m_Xor(m_Value(), m_Value()))) 7292 return RecurKind::Xor; 7293 if (match(I, m_FAdd(m_Value(), m_Value()))) 7294 return RecurKind::FAdd; 7295 if (match(I, m_FMul(m_Value(), m_Value()))) 7296 return RecurKind::FMul; 7297 7298 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 7299 return RecurKind::FMax; 7300 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 7301 return RecurKind::FMin; 7302 7303 // This matches either cmp+select or intrinsics. SLP is expected to handle 7304 // either form. 7305 // TODO: If we are canonicalizing to intrinsics, we can remove several 7306 // special-case paths that deal with selects. 7307 if (match(I, m_SMax(m_Value(), m_Value()))) 7308 return RecurKind::SMax; 7309 if (match(I, m_SMin(m_Value(), m_Value()))) 7310 return RecurKind::SMin; 7311 if (match(I, m_UMax(m_Value(), m_Value()))) 7312 return RecurKind::UMax; 7313 if (match(I, m_UMin(m_Value(), m_Value()))) 7314 return RecurKind::UMin; 7315 7316 if (auto *Select = dyn_cast<SelectInst>(I)) { 7317 // Try harder: look for min/max pattern based on instructions producing 7318 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2). 7319 // During the intermediate stages of SLP, it's very common to have 7320 // pattern like this (since optimizeGatherSequence is run only once 7321 // at the end): 7322 // %1 = extractelement <2 x i32> %a, i32 0 7323 // %2 = extractelement <2 x i32> %a, i32 1 7324 // %cond = icmp sgt i32 %1, %2 7325 // %3 = extractelement <2 x i32> %a, i32 0 7326 // %4 = extractelement <2 x i32> %a, i32 1 7327 // %select = select i1 %cond, i32 %3, i32 %4 7328 CmpInst::Predicate Pred; 7329 Instruction *L1; 7330 Instruction *L2; 7331 7332 Value *LHS = Select->getTrueValue(); 7333 Value *RHS = Select->getFalseValue(); 7334 Value *Cond = Select->getCondition(); 7335 7336 // TODO: Support inverse predicates. 7337 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) { 7338 if (!isa<ExtractElementInst>(RHS) || 7339 !L2->isIdenticalTo(cast<Instruction>(RHS))) 7340 return RecurKind::None; 7341 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) { 7342 if (!isa<ExtractElementInst>(LHS) || 7343 !L1->isIdenticalTo(cast<Instruction>(LHS))) 7344 return RecurKind::None; 7345 } else { 7346 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS)) 7347 return RecurKind::None; 7348 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) || 7349 !L1->isIdenticalTo(cast<Instruction>(LHS)) || 7350 !L2->isIdenticalTo(cast<Instruction>(RHS))) 7351 return RecurKind::None; 7352 } 7353 7354 TargetTransformInfo::ReductionFlags RdxFlags; 7355 switch (Pred) { 7356 default: 7357 return RecurKind::None; 7358 case CmpInst::ICMP_SGT: 7359 case CmpInst::ICMP_SGE: 7360 return RecurKind::SMax; 7361 case CmpInst::ICMP_SLT: 7362 case CmpInst::ICMP_SLE: 7363 return RecurKind::SMin; 7364 case CmpInst::ICMP_UGT: 7365 case CmpInst::ICMP_UGE: 7366 return RecurKind::UMax; 7367 case CmpInst::ICMP_ULT: 7368 case CmpInst::ICMP_ULE: 7369 return RecurKind::UMin; 7370 } 7371 } 7372 return RecurKind::None; 7373 } 7374 7375 /// Get the index of the first operand. 7376 static unsigned getFirstOperandIndex(Instruction *I) { 7377 return isa<SelectInst>(I) ? 1 : 0; 7378 } 7379 7380 /// Total number of operands in the reduction operation. 7381 static unsigned getNumberOfOperands(Instruction *I) { 7382 return isa<SelectInst>(I) ? 3 : 2; 7383 } 7384 7385 /// Checks if the instruction is in basic block \p BB. 7386 /// For a min/max reduction check that both compare and select are in \p BB. 7387 static bool hasSameParent(Instruction *I, BasicBlock *BB, bool IsRedOp) { 7388 auto *Sel = dyn_cast<SelectInst>(I); 7389 if (IsRedOp && Sel) { 7390 auto *Cmp = cast<Instruction>(Sel->getCondition()); 7391 return Sel->getParent() == BB && Cmp->getParent() == BB; 7392 } 7393 return I->getParent() == BB; 7394 } 7395 7396 /// Expected number of uses for reduction operations/reduced values. 7397 static bool hasRequiredNumberOfUses(bool MatchCmpSel, Instruction *I) { 7398 // SelectInst must be used twice while the condition op must have single 7399 // use only. 7400 if (MatchCmpSel) { 7401 if (auto *Sel = dyn_cast<SelectInst>(I)) 7402 return Sel->hasNUses(2) && Sel->getCondition()->hasOneUse(); 7403 return I->hasNUses(2); 7404 } 7405 7406 // Arithmetic reduction operation must be used once only. 7407 return I->hasOneUse(); 7408 } 7409 7410 /// Initializes the list of reduction operations. 7411 void initReductionOps(Instruction *I) { 7412 if (isa<SelectInst>(I)) 7413 ReductionOps.assign(2, ReductionOpsType()); 7414 else 7415 ReductionOps.assign(1, ReductionOpsType()); 7416 } 7417 7418 /// Add all reduction operations for the reduction instruction \p I. 7419 void addReductionOps(Instruction *I) { 7420 if (auto *Sel = dyn_cast<SelectInst>(I)) { 7421 ReductionOps[0].emplace_back(Sel->getCondition()); 7422 ReductionOps[1].emplace_back(Sel); 7423 } else { 7424 ReductionOps[0].emplace_back(I); 7425 } 7426 } 7427 7428 static Value *getLHS(RecurKind Kind, Instruction *I) { 7429 if (Kind == RecurKind::None) 7430 return nullptr; 7431 return I->getOperand(getFirstOperandIndex(I)); 7432 } 7433 static Value *getRHS(RecurKind Kind, Instruction *I) { 7434 if (Kind == RecurKind::None) 7435 return nullptr; 7436 return I->getOperand(getFirstOperandIndex(I) + 1); 7437 } 7438 7439 public: 7440 HorizontalReduction() = default; 7441 7442 /// Try to find a reduction tree. 7443 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) { 7444 assert((!Phi || is_contained(Phi->operands(), B)) && 7445 "Phi needs to use the binary operator"); 7446 7447 RdxKind = getRdxKind(B); 7448 7449 // We could have a initial reductions that is not an add. 7450 // r *= v1 + v2 + v3 + v4 7451 // In such a case start looking for a tree rooted in the first '+'. 7452 if (Phi) { 7453 if (getLHS(RdxKind, B) == Phi) { 7454 Phi = nullptr; 7455 B = dyn_cast<Instruction>(getRHS(RdxKind, B)); 7456 if (!B) 7457 return false; 7458 RdxKind = getRdxKind(B); 7459 } else if (getRHS(RdxKind, B) == Phi) { 7460 Phi = nullptr; 7461 B = dyn_cast<Instruction>(getLHS(RdxKind, B)); 7462 if (!B) 7463 return false; 7464 RdxKind = getRdxKind(B); 7465 } 7466 } 7467 7468 if (!isVectorizable(RdxKind, B)) 7469 return false; 7470 7471 // Analyze "regular" integer/FP types for reductions - no target-specific 7472 // types or pointers. 7473 Type *Ty = B->getType(); 7474 if (!isValidElementType(Ty) || Ty->isPointerTy()) 7475 return false; 7476 7477 // Though the ultimate reduction may have multiple uses, its condition must 7478 // have only single use. 7479 if (auto *SI = dyn_cast<SelectInst>(B)) 7480 if (!SI->getCondition()->hasOneUse()) 7481 return false; 7482 7483 ReductionRoot = B; 7484 7485 // The opcode for leaf values that we perform a reduction on. 7486 // For example: load(x) + load(y) + load(z) + fptoui(w) 7487 // The leaf opcode for 'w' does not match, so we don't include it as a 7488 // potential candidate for the reduction. 7489 unsigned LeafOpcode = 0; 7490 7491 // Post order traverse the reduction tree starting at B. We only handle true 7492 // trees containing only binary operators. 7493 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; 7494 Stack.push_back(std::make_pair(B, getFirstOperandIndex(B))); 7495 initReductionOps(B); 7496 while (!Stack.empty()) { 7497 Instruction *TreeN = Stack.back().first; 7498 unsigned EdgeToVisit = Stack.back().second++; 7499 const RecurKind TreeRdxKind = getRdxKind(TreeN); 7500 bool IsReducedValue = TreeRdxKind != RdxKind; 7501 7502 // Postorder visit. 7503 if (IsReducedValue || EdgeToVisit == getNumberOfOperands(TreeN)) { 7504 if (IsReducedValue) 7505 ReducedVals.push_back(TreeN); 7506 else { 7507 auto ExtraArgsIter = ExtraArgs.find(TreeN); 7508 if (ExtraArgsIter != ExtraArgs.end() && !ExtraArgsIter->second) { 7509 // Check if TreeN is an extra argument of its parent operation. 7510 if (Stack.size() <= 1) { 7511 // TreeN can't be an extra argument as it is a root reduction 7512 // operation. 7513 return false; 7514 } 7515 // Yes, TreeN is an extra argument, do not add it to a list of 7516 // reduction operations. 7517 // Stack[Stack.size() - 2] always points to the parent operation. 7518 markExtraArg(Stack[Stack.size() - 2], TreeN); 7519 ExtraArgs.erase(TreeN); 7520 } else 7521 addReductionOps(TreeN); 7522 } 7523 // Retract. 7524 Stack.pop_back(); 7525 continue; 7526 } 7527 7528 // Visit left or right. 7529 Value *EdgeVal = TreeN->getOperand(EdgeToVisit); 7530 auto *EdgeInst = dyn_cast<Instruction>(EdgeVal); 7531 if (!EdgeInst) { 7532 // Edge value is not a reduction instruction or a leaf instruction. 7533 // (It may be a constant, function argument, or something else.) 7534 markExtraArg(Stack.back(), EdgeVal); 7535 continue; 7536 } 7537 RecurKind EdgeRdxKind = getRdxKind(EdgeInst); 7538 // Continue analysis if the next operand is a reduction operation or 7539 // (possibly) a leaf value. If the leaf value opcode is not set, 7540 // the first met operation != reduction operation is considered as the 7541 // leaf opcode. 7542 // Only handle trees in the current basic block. 7543 // Each tree node needs to have minimal number of users except for the 7544 // ultimate reduction. 7545 const bool IsRdxInst = EdgeRdxKind == RdxKind; 7546 if (EdgeInst != Phi && EdgeInst != B && 7547 hasSameParent(EdgeInst, B->getParent(), IsRdxInst) && 7548 hasRequiredNumberOfUses(isa<SelectInst>(B), EdgeInst) && 7549 (!LeafOpcode || LeafOpcode == EdgeInst->getOpcode() || IsRdxInst)) { 7550 if (IsRdxInst) { 7551 // We need to be able to reassociate the reduction operations. 7552 if (!isVectorizable(EdgeRdxKind, EdgeInst)) { 7553 // I is an extra argument for TreeN (its parent operation). 7554 markExtraArg(Stack.back(), EdgeInst); 7555 continue; 7556 } 7557 } else if (!LeafOpcode) { 7558 LeafOpcode = EdgeInst->getOpcode(); 7559 } 7560 Stack.push_back( 7561 std::make_pair(EdgeInst, getFirstOperandIndex(EdgeInst))); 7562 continue; 7563 } 7564 // I is an extra argument for TreeN (its parent operation). 7565 markExtraArg(Stack.back(), EdgeInst); 7566 } 7567 return true; 7568 } 7569 7570 /// Attempt to vectorize the tree found by matchAssociativeReduction. 7571 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { 7572 // If there are a sufficient number of reduction values, reduce 7573 // to a nearby power-of-2. We can safely generate oversized 7574 // vectors and rely on the backend to split them to legal sizes. 7575 unsigned NumReducedVals = ReducedVals.size(); 7576 if (NumReducedVals < 4) 7577 return false; 7578 7579 // Intersect the fast-math-flags from all reduction operations. 7580 FastMathFlags RdxFMF; 7581 RdxFMF.set(); 7582 for (ReductionOpsType &RdxOp : ReductionOps) { 7583 for (Value *RdxVal : RdxOp) { 7584 if (auto *FPMO = dyn_cast<FPMathOperator>(RdxVal)) 7585 RdxFMF &= FPMO->getFastMathFlags(); 7586 } 7587 } 7588 7589 IRBuilder<> Builder(cast<Instruction>(ReductionRoot)); 7590 Builder.setFastMathFlags(RdxFMF); 7591 7592 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues; 7593 // The same extra argument may be used several times, so log each attempt 7594 // to use it. 7595 for (const std::pair<Instruction *, Value *> &Pair : ExtraArgs) { 7596 assert(Pair.first && "DebugLoc must be set."); 7597 ExternallyUsedValues[Pair.second].push_back(Pair.first); 7598 } 7599 7600 // The compare instruction of a min/max is the insertion point for new 7601 // instructions and may be replaced with a new compare instruction. 7602 auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) { 7603 assert(isa<SelectInst>(RdxRootInst) && 7604 "Expected min/max reduction to have select root instruction"); 7605 Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition(); 7606 assert(isa<Instruction>(ScalarCond) && 7607 "Expected min/max reduction to have compare condition"); 7608 return cast<Instruction>(ScalarCond); 7609 }; 7610 7611 // The reduction root is used as the insertion point for new instructions, 7612 // so set it as externally used to prevent it from being deleted. 7613 ExternallyUsedValues[ReductionRoot]; 7614 SmallVector<Value *, 16> IgnoreList; 7615 for (ReductionOpsType &RdxOp : ReductionOps) 7616 IgnoreList.append(RdxOp.begin(), RdxOp.end()); 7617 7618 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals); 7619 if (NumReducedVals > ReduxWidth) { 7620 // In the loop below, we are building a tree based on a window of 7621 // 'ReduxWidth' values. 7622 // If the operands of those values have common traits (compare predicate, 7623 // constant operand, etc), then we want to group those together to 7624 // minimize the cost of the reduction. 7625 7626 // TODO: This should be extended to count common operands for 7627 // compares and binops. 7628 7629 // Step 1: Count the number of times each compare predicate occurs. 7630 SmallDenseMap<unsigned, unsigned> PredCountMap; 7631 for (Value *RdxVal : ReducedVals) { 7632 CmpInst::Predicate Pred; 7633 if (match(RdxVal, m_Cmp(Pred, m_Value(), m_Value()))) 7634 ++PredCountMap[Pred]; 7635 } 7636 // Step 2: Sort the values so the most common predicates come first. 7637 stable_sort(ReducedVals, [&PredCountMap](Value *A, Value *B) { 7638 CmpInst::Predicate PredA, PredB; 7639 if (match(A, m_Cmp(PredA, m_Value(), m_Value())) && 7640 match(B, m_Cmp(PredB, m_Value(), m_Value()))) { 7641 return PredCountMap[PredA] > PredCountMap[PredB]; 7642 } 7643 return false; 7644 }); 7645 } 7646 7647 Value *VectorizedTree = nullptr; 7648 unsigned i = 0; 7649 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) { 7650 ArrayRef<Value *> VL(&ReducedVals[i], ReduxWidth); 7651 V.buildTree(VL, ExternallyUsedValues, IgnoreList); 7652 Optional<ArrayRef<unsigned>> Order = V.bestOrder(); 7653 if (Order) { 7654 assert(Order->size() == VL.size() && 7655 "Order size must be the same as number of vectorized " 7656 "instructions."); 7657 // TODO: reorder tree nodes without tree rebuilding. 7658 SmallVector<Value *, 4> ReorderedOps(VL.size()); 7659 transform(fixupOrderingIndices(*Order), ReorderedOps.begin(), 7660 [VL](const unsigned Idx) { return VL[Idx]; }); 7661 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList); 7662 } 7663 if (V.isTreeTinyAndNotFullyVectorizable()) 7664 break; 7665 if (V.isLoadCombineReductionCandidate(RdxKind)) 7666 break; 7667 7668 V.computeMinimumValueSizes(); 7669 7670 // Estimate cost. 7671 InstructionCost TreeCost = 7672 V.getTreeCost(makeArrayRef(&ReducedVals[i], ReduxWidth)); 7673 InstructionCost ReductionCost = 7674 getReductionCost(TTI, ReducedVals[i], ReduxWidth); 7675 InstructionCost Cost = TreeCost + ReductionCost; 7676 if (!Cost.isValid()) { 7677 LLVM_DEBUG(dbgs() << "Encountered invalid baseline cost.\n"); 7678 return false; 7679 } 7680 if (Cost >= -SLPCostThreshold) { 7681 V.getORE()->emit([&]() { 7682 return OptimizationRemarkMissed(SV_NAME, "HorSLPNotBeneficial", 7683 cast<Instruction>(VL[0])) 7684 << "Vectorizing horizontal reduction is possible" 7685 << "but not beneficial with cost " << ore::NV("Cost", Cost) 7686 << " and threshold " 7687 << ore::NV("Threshold", -SLPCostThreshold); 7688 }); 7689 break; 7690 } 7691 7692 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" 7693 << Cost << ". (HorRdx)\n"); 7694 V.getORE()->emit([&]() { 7695 return OptimizationRemark(SV_NAME, "VectorizedHorizontalReduction", 7696 cast<Instruction>(VL[0])) 7697 << "Vectorized horizontal reduction with cost " 7698 << ore::NV("Cost", Cost) << " and with tree size " 7699 << ore::NV("TreeSize", V.getTreeSize()); 7700 }); 7701 7702 // Vectorize a tree. 7703 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); 7704 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues); 7705 7706 // Emit a reduction. If the root is a select (min/max idiom), the insert 7707 // point is the compare condition of that select. 7708 Instruction *RdxRootInst = cast<Instruction>(ReductionRoot); 7709 if (isa<SelectInst>(RdxRootInst)) 7710 Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst)); 7711 else 7712 Builder.SetInsertPoint(RdxRootInst); 7713 7714 Value *ReducedSubTree = 7715 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI); 7716 7717 if (!VectorizedTree) { 7718 // Initialize the final value in the reduction. 7719 VectorizedTree = ReducedSubTree; 7720 } else { 7721 // Update the final value in the reduction. 7722 Builder.SetCurrentDebugLocation(Loc); 7723 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 7724 ReducedSubTree, "op.rdx", ReductionOps); 7725 } 7726 i += ReduxWidth; 7727 ReduxWidth = PowerOf2Floor(NumReducedVals - i); 7728 } 7729 7730 if (VectorizedTree) { 7731 // Finish the reduction. 7732 for (; i < NumReducedVals; ++i) { 7733 auto *I = cast<Instruction>(ReducedVals[i]); 7734 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 7735 VectorizedTree = 7736 createOp(Builder, RdxKind, VectorizedTree, I, "", ReductionOps); 7737 } 7738 for (auto &Pair : ExternallyUsedValues) { 7739 // Add each externally used value to the final reduction. 7740 for (auto *I : Pair.second) { 7741 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 7742 VectorizedTree = createOp(Builder, RdxKind, VectorizedTree, 7743 Pair.first, "op.extra", I); 7744 } 7745 } 7746 7747 ReductionRoot->replaceAllUsesWith(VectorizedTree); 7748 7749 // Mark all scalar reduction ops for deletion, they are replaced by the 7750 // vector reductions. 7751 V.eraseInstructions(IgnoreList); 7752 } 7753 return VectorizedTree != nullptr; 7754 } 7755 7756 unsigned numReductionValues() const { return ReducedVals.size(); } 7757 7758 private: 7759 /// Calculate the cost of a reduction. 7760 InstructionCost getReductionCost(TargetTransformInfo *TTI, 7761 Value *FirstReducedVal, 7762 unsigned ReduxWidth) { 7763 Type *ScalarTy = FirstReducedVal->getType(); 7764 FixedVectorType *VectorTy = FixedVectorType::get(ScalarTy, ReduxWidth); 7765 InstructionCost VectorCost, ScalarCost; 7766 switch (RdxKind) { 7767 case RecurKind::Add: 7768 case RecurKind::Mul: 7769 case RecurKind::Or: 7770 case RecurKind::And: 7771 case RecurKind::Xor: 7772 case RecurKind::FAdd: 7773 case RecurKind::FMul: { 7774 unsigned RdxOpcode = RecurrenceDescriptor::getOpcode(RdxKind); 7775 VectorCost = TTI->getArithmeticReductionCost(RdxOpcode, VectorTy, 7776 /*IsPairwiseForm=*/false); 7777 ScalarCost = TTI->getArithmeticInstrCost(RdxOpcode, ScalarTy); 7778 break; 7779 } 7780 case RecurKind::FMax: 7781 case RecurKind::FMin: { 7782 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 7783 VectorCost = 7784 TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 7785 /*pairwise=*/false, /*unsigned=*/false); 7786 ScalarCost = 7787 TTI->getCmpSelInstrCost(Instruction::FCmp, ScalarTy) + 7788 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 7789 CmpInst::makeCmpResultType(ScalarTy)); 7790 break; 7791 } 7792 case RecurKind::SMax: 7793 case RecurKind::SMin: 7794 case RecurKind::UMax: 7795 case RecurKind::UMin: { 7796 auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VectorTy)); 7797 bool IsUnsigned = 7798 RdxKind == RecurKind::UMax || RdxKind == RecurKind::UMin; 7799 VectorCost = 7800 TTI->getMinMaxReductionCost(VectorTy, VecCondTy, 7801 /*IsPairwiseForm=*/false, IsUnsigned); 7802 ScalarCost = 7803 TTI->getCmpSelInstrCost(Instruction::ICmp, ScalarTy) + 7804 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy, 7805 CmpInst::makeCmpResultType(ScalarTy)); 7806 break; 7807 } 7808 default: 7809 llvm_unreachable("Expected arithmetic or min/max reduction operation"); 7810 } 7811 7812 // Scalar cost is repeated for N-1 elements. 7813 ScalarCost *= (ReduxWidth - 1); 7814 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VectorCost - ScalarCost 7815 << " for reduction that starts with " << *FirstReducedVal 7816 << " (It is a splitting reduction)\n"); 7817 return VectorCost - ScalarCost; 7818 } 7819 7820 /// Emit a horizontal reduction of the vectorized value. 7821 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder, 7822 unsigned ReduxWidth, const TargetTransformInfo *TTI) { 7823 assert(VectorizedValue && "Need to have a vectorized tree node"); 7824 assert(isPowerOf2_32(ReduxWidth) && 7825 "We only handle power-of-two reductions for now"); 7826 7827 return createSimpleTargetReduction(Builder, TTI, VectorizedValue, RdxKind, 7828 ReductionOps.back()); 7829 } 7830 }; 7831 7832 } // end anonymous namespace 7833 7834 static Optional<unsigned> getAggregateSize(Instruction *InsertInst) { 7835 if (auto *IE = dyn_cast<InsertElementInst>(InsertInst)) 7836 return cast<FixedVectorType>(IE->getType())->getNumElements(); 7837 7838 unsigned AggregateSize = 1; 7839 auto *IV = cast<InsertValueInst>(InsertInst); 7840 Type *CurrentType = IV->getType(); 7841 do { 7842 if (auto *ST = dyn_cast<StructType>(CurrentType)) { 7843 for (auto *Elt : ST->elements()) 7844 if (Elt != ST->getElementType(0)) // check homogeneity 7845 return None; 7846 AggregateSize *= ST->getNumElements(); 7847 CurrentType = ST->getElementType(0); 7848 } else if (auto *AT = dyn_cast<ArrayType>(CurrentType)) { 7849 AggregateSize *= AT->getNumElements(); 7850 CurrentType = AT->getElementType(); 7851 } else if (auto *VT = dyn_cast<FixedVectorType>(CurrentType)) { 7852 AggregateSize *= VT->getNumElements(); 7853 return AggregateSize; 7854 } else if (CurrentType->isSingleValueType()) { 7855 return AggregateSize; 7856 } else { 7857 return None; 7858 } 7859 } while (true); 7860 } 7861 7862 static bool findBuildAggregate_rec(Instruction *LastInsertInst, 7863 TargetTransformInfo *TTI, 7864 SmallVectorImpl<Value *> &BuildVectorOpds, 7865 SmallVectorImpl<Value *> &InsertElts, 7866 unsigned OperandOffset) { 7867 do { 7868 Value *InsertedOperand = LastInsertInst->getOperand(1); 7869 Optional<int> OperandIndex = getInsertIndex(LastInsertInst, OperandOffset); 7870 if (!OperandIndex) 7871 return false; 7872 if (isa<InsertElementInst>(InsertedOperand) || 7873 isa<InsertValueInst>(InsertedOperand)) { 7874 if (!findBuildAggregate_rec(cast<Instruction>(InsertedOperand), TTI, 7875 BuildVectorOpds, InsertElts, *OperandIndex)) 7876 return false; 7877 } else { 7878 BuildVectorOpds[*OperandIndex] = InsertedOperand; 7879 InsertElts[*OperandIndex] = LastInsertInst; 7880 } 7881 LastInsertInst = dyn_cast<Instruction>(LastInsertInst->getOperand(0)); 7882 } while (LastInsertInst != nullptr && 7883 (isa<InsertValueInst>(LastInsertInst) || 7884 isa<InsertElementInst>(LastInsertInst)) && 7885 LastInsertInst->hasOneUse()); 7886 return true; 7887 } 7888 7889 /// Recognize construction of vectors like 7890 /// %ra = insertelement <4 x float> poison, float %s0, i32 0 7891 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 7892 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 7893 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 7894 /// starting from the last insertelement or insertvalue instruction. 7895 /// 7896 /// Also recognize homogeneous aggregates like {<2 x float>, <2 x float>}, 7897 /// {{float, float}, {float, float}}, [2 x {float, float}] and so on. 7898 /// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples. 7899 /// 7900 /// Assume LastInsertInst is of InsertElementInst or InsertValueInst type. 7901 /// 7902 /// \return true if it matches. 7903 static bool findBuildAggregate(Instruction *LastInsertInst, 7904 TargetTransformInfo *TTI, 7905 SmallVectorImpl<Value *> &BuildVectorOpds, 7906 SmallVectorImpl<Value *> &InsertElts) { 7907 7908 assert((isa<InsertElementInst>(LastInsertInst) || 7909 isa<InsertValueInst>(LastInsertInst)) && 7910 "Expected insertelement or insertvalue instruction!"); 7911 7912 assert((BuildVectorOpds.empty() && InsertElts.empty()) && 7913 "Expected empty result vectors!"); 7914 7915 Optional<unsigned> AggregateSize = getAggregateSize(LastInsertInst); 7916 if (!AggregateSize) 7917 return false; 7918 BuildVectorOpds.resize(*AggregateSize); 7919 InsertElts.resize(*AggregateSize); 7920 7921 if (findBuildAggregate_rec(LastInsertInst, TTI, BuildVectorOpds, InsertElts, 7922 0)) { 7923 llvm::erase_value(BuildVectorOpds, nullptr); 7924 llvm::erase_value(InsertElts, nullptr); 7925 if (BuildVectorOpds.size() >= 2) 7926 return true; 7927 } 7928 7929 return false; 7930 } 7931 7932 static bool PhiTypeSorterFunc(Value *V, Value *V2) { 7933 return V->getType() < V2->getType(); 7934 } 7935 7936 /// Try and get a reduction value from a phi node. 7937 /// 7938 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions 7939 /// if they come from either \p ParentBB or a containing loop latch. 7940 /// 7941 /// \returns A candidate reduction value if possible, or \code nullptr \endcode 7942 /// if not possible. 7943 static Value *getReductionValue(const DominatorTree *DT, PHINode *P, 7944 BasicBlock *ParentBB, LoopInfo *LI) { 7945 // There are situations where the reduction value is not dominated by the 7946 // reduction phi. Vectorizing such cases has been reported to cause 7947 // miscompiles. See PR25787. 7948 auto DominatedReduxValue = [&](Value *R) { 7949 return isa<Instruction>(R) && 7950 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent()); 7951 }; 7952 7953 Value *Rdx = nullptr; 7954 7955 // Return the incoming value if it comes from the same BB as the phi node. 7956 if (P->getIncomingBlock(0) == ParentBB) { 7957 Rdx = P->getIncomingValue(0); 7958 } else if (P->getIncomingBlock(1) == ParentBB) { 7959 Rdx = P->getIncomingValue(1); 7960 } 7961 7962 if (Rdx && DominatedReduxValue(Rdx)) 7963 return Rdx; 7964 7965 // Otherwise, check whether we have a loop latch to look at. 7966 Loop *BBL = LI->getLoopFor(ParentBB); 7967 if (!BBL) 7968 return nullptr; 7969 BasicBlock *BBLatch = BBL->getLoopLatch(); 7970 if (!BBLatch) 7971 return nullptr; 7972 7973 // There is a loop latch, return the incoming value if it comes from 7974 // that. This reduction pattern occasionally turns up. 7975 if (P->getIncomingBlock(0) == BBLatch) { 7976 Rdx = P->getIncomingValue(0); 7977 } else if (P->getIncomingBlock(1) == BBLatch) { 7978 Rdx = P->getIncomingValue(1); 7979 } 7980 7981 if (Rdx && DominatedReduxValue(Rdx)) 7982 return Rdx; 7983 7984 return nullptr; 7985 } 7986 7987 static bool matchRdxBop(Instruction *I, Value *&V0, Value *&V1) { 7988 if (match(I, m_BinOp(m_Value(V0), m_Value(V1)))) 7989 return true; 7990 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(V0), m_Value(V1)))) 7991 return true; 7992 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(V0), m_Value(V1)))) 7993 return true; 7994 if (match(I, m_Intrinsic<Intrinsic::smax>(m_Value(V0), m_Value(V1)))) 7995 return true; 7996 if (match(I, m_Intrinsic<Intrinsic::smin>(m_Value(V0), m_Value(V1)))) 7997 return true; 7998 if (match(I, m_Intrinsic<Intrinsic::umax>(m_Value(V0), m_Value(V1)))) 7999 return true; 8000 if (match(I, m_Intrinsic<Intrinsic::umin>(m_Value(V0), m_Value(V1)))) 8001 return true; 8002 return false; 8003 } 8004 8005 /// Attempt to reduce a horizontal reduction. 8006 /// If it is legal to match a horizontal reduction feeding the phi node \a P 8007 /// with reduction operators \a Root (or one of its operands) in a basic block 8008 /// \a BB, then check if it can be done. If horizontal reduction is not found 8009 /// and root instruction is a binary operation, vectorization of the operands is 8010 /// attempted. 8011 /// \returns true if a horizontal reduction was matched and reduced or operands 8012 /// of one of the binary instruction were vectorized. 8013 /// \returns false if a horizontal reduction was not matched (or not possible) 8014 /// or no vectorization of any binary operation feeding \a Root instruction was 8015 /// performed. 8016 static bool tryToVectorizeHorReductionOrInstOperands( 8017 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R, 8018 TargetTransformInfo *TTI, 8019 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) { 8020 if (!ShouldVectorizeHor) 8021 return false; 8022 8023 if (!Root) 8024 return false; 8025 8026 if (Root->getParent() != BB || isa<PHINode>(Root)) 8027 return false; 8028 // Start analysis starting from Root instruction. If horizontal reduction is 8029 // found, try to vectorize it. If it is not a horizontal reduction or 8030 // vectorization is not possible or not effective, and currently analyzed 8031 // instruction is a binary operation, try to vectorize the operands, using 8032 // pre-order DFS traversal order. If the operands were not vectorized, repeat 8033 // the same procedure considering each operand as a possible root of the 8034 // horizontal reduction. 8035 // Interrupt the process if the Root instruction itself was vectorized or all 8036 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized. 8037 // Skip the analysis of CmpInsts.Compiler implements postanalysis of the 8038 // CmpInsts so we can skip extra attempts in 8039 // tryToVectorizeHorReductionOrInstOperands and save compile time. 8040 SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0}); 8041 SmallPtrSet<Value *, 8> VisitedInstrs; 8042 bool Res = false; 8043 while (!Stack.empty()) { 8044 Instruction *Inst; 8045 unsigned Level; 8046 std::tie(Inst, Level) = Stack.pop_back_val(); 8047 Value *B0, *B1; 8048 bool IsBinop = matchRdxBop(Inst, B0, B1); 8049 bool IsSelect = match(Inst, m_Select(m_Value(), m_Value(), m_Value())); 8050 if (IsBinop || IsSelect) { 8051 HorizontalReduction HorRdx; 8052 if (HorRdx.matchAssociativeReduction(P, Inst)) { 8053 if (HorRdx.tryToReduce(R, TTI)) { 8054 Res = true; 8055 // Set P to nullptr to avoid re-analysis of phi node in 8056 // matchAssociativeReduction function unless this is the root node. 8057 P = nullptr; 8058 continue; 8059 } 8060 } 8061 if (P && IsBinop) { 8062 Inst = dyn_cast<Instruction>(B0); 8063 if (Inst == P) 8064 Inst = dyn_cast<Instruction>(B1); 8065 if (!Inst) { 8066 // Set P to nullptr to avoid re-analysis of phi node in 8067 // matchAssociativeReduction function unless this is the root node. 8068 P = nullptr; 8069 continue; 8070 } 8071 } 8072 } 8073 // Set P to nullptr to avoid re-analysis of phi node in 8074 // matchAssociativeReduction function unless this is the root node. 8075 P = nullptr; 8076 // Do not try to vectorize CmpInst operands, this is done separately. 8077 if (!isa<CmpInst>(Inst) && Vectorize(Inst, R)) { 8078 Res = true; 8079 continue; 8080 } 8081 8082 // Try to vectorize operands. 8083 // Continue analysis for the instruction from the same basic block only to 8084 // save compile time. 8085 if (++Level < RecursionMaxDepth) 8086 for (auto *Op : Inst->operand_values()) 8087 if (VisitedInstrs.insert(Op).second) 8088 if (auto *I = dyn_cast<Instruction>(Op)) 8089 // Do not try to vectorize CmpInst operands, this is done 8090 // separately. 8091 if (!isa<PHINode>(I) && !isa<CmpInst>(I) && !R.isDeleted(I) && 8092 I->getParent() == BB) 8093 Stack.emplace_back(I, Level); 8094 } 8095 return Res; 8096 } 8097 8098 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V, 8099 BasicBlock *BB, BoUpSLP &R, 8100 TargetTransformInfo *TTI) { 8101 auto *I = dyn_cast_or_null<Instruction>(V); 8102 if (!I) 8103 return false; 8104 8105 if (!isa<BinaryOperator>(I)) 8106 P = nullptr; 8107 // Try to match and vectorize a horizontal reduction. 8108 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool { 8109 return tryToVectorize(I, R); 8110 }; 8111 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI, 8112 ExtraVectorization); 8113 } 8114 8115 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI, 8116 BasicBlock *BB, BoUpSLP &R) { 8117 const DataLayout &DL = BB->getModule()->getDataLayout(); 8118 if (!R.canMapToVector(IVI->getType(), DL)) 8119 return false; 8120 8121 SmallVector<Value *, 16> BuildVectorOpds; 8122 SmallVector<Value *, 16> BuildVectorInsts; 8123 if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts)) 8124 return false; 8125 8126 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n"); 8127 // Aggregate value is unlikely to be processed in vector register, we need to 8128 // extract scalars into scalar registers, so NeedExtraction is set true. 8129 return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false); 8130 } 8131 8132 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI, 8133 BasicBlock *BB, BoUpSLP &R) { 8134 SmallVector<Value *, 16> BuildVectorInsts; 8135 SmallVector<Value *, 16> BuildVectorOpds; 8136 SmallVector<int> Mask; 8137 if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) || 8138 (llvm::all_of(BuildVectorOpds, 8139 [](Value *V) { return isa<ExtractElementInst>(V); }) && 8140 isShuffle(BuildVectorOpds, Mask))) 8141 return false; 8142 8143 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IEI << "\n"); 8144 return tryToVectorizeList(BuildVectorInsts, R, /*AllowReorder=*/false); 8145 } 8146 8147 bool SLPVectorizerPass::vectorizeSimpleInstructions( 8148 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R, 8149 bool AtTerminator) { 8150 bool OpsChanged = false; 8151 SmallVector<Instruction *, 4> PostponedCmps; 8152 for (auto *I : reverse(Instructions)) { 8153 if (R.isDeleted(I)) 8154 continue; 8155 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I)) 8156 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R); 8157 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I)) 8158 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R); 8159 else if (isa<CmpInst>(I)) 8160 PostponedCmps.push_back(I); 8161 } 8162 if (AtTerminator) { 8163 // Try to find reductions first. 8164 for (Instruction *I : PostponedCmps) { 8165 if (R.isDeleted(I)) 8166 continue; 8167 for (Value *Op : I->operands()) 8168 OpsChanged |= vectorizeRootInstruction(nullptr, Op, BB, R, TTI); 8169 } 8170 // Try to vectorize operands as vector bundles. 8171 for (Instruction *I : PostponedCmps) { 8172 if (R.isDeleted(I)) 8173 continue; 8174 OpsChanged |= tryToVectorize(I, R); 8175 } 8176 Instructions.clear(); 8177 } else { 8178 // Insert in reverse order since the PostponedCmps vector was filled in 8179 // reverse order. 8180 Instructions.assign(PostponedCmps.rbegin(), PostponedCmps.rend()); 8181 } 8182 return OpsChanged; 8183 } 8184 8185 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { 8186 bool Changed = false; 8187 SmallVector<Value *, 4> Incoming; 8188 SmallPtrSet<Value *, 16> VisitedInstrs; 8189 8190 bool HaveVectorizedPhiNodes = true; 8191 while (HaveVectorizedPhiNodes) { 8192 HaveVectorizedPhiNodes = false; 8193 8194 // Collect the incoming values from the PHIs. 8195 Incoming.clear(); 8196 for (Instruction &I : *BB) { 8197 PHINode *P = dyn_cast<PHINode>(&I); 8198 if (!P) 8199 break; 8200 8201 if (!VisitedInstrs.count(P) && !R.isDeleted(P)) 8202 Incoming.push_back(P); 8203 } 8204 8205 // Sort by type. 8206 llvm::stable_sort(Incoming, PhiTypeSorterFunc); 8207 8208 // Try to vectorize elements base on their type. 8209 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), 8210 E = Incoming.end(); 8211 IncIt != E;) { 8212 8213 // Look for the next elements with the same type. 8214 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; 8215 while (SameTypeIt != E && 8216 (*SameTypeIt)->getType() == (*IncIt)->getType()) { 8217 VisitedInstrs.insert(*SameTypeIt); 8218 ++SameTypeIt; 8219 } 8220 8221 // Try to vectorize them. 8222 unsigned NumElts = (SameTypeIt - IncIt); 8223 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs (" 8224 << NumElts << ")\n"); 8225 // The order in which the phi nodes appear in the program does not matter. 8226 // So allow tryToVectorizeList to reorder them if it is beneficial. This 8227 // is done when there are exactly two elements since tryToVectorizeList 8228 // asserts that there are only two values when AllowReorder is true. 8229 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, 8230 /*AllowReorder=*/true)) { 8231 // Success start over because instructions might have been changed. 8232 HaveVectorizedPhiNodes = true; 8233 Changed = true; 8234 break; 8235 } 8236 8237 // Start over at the next instruction of a different type (or the end). 8238 IncIt = SameTypeIt; 8239 } 8240 } 8241 8242 VisitedInstrs.clear(); 8243 8244 SmallVector<Instruction *, 8> PostProcessInstructions; 8245 SmallDenseSet<Instruction *, 4> KeyNodes; 8246 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 8247 // Skip instructions with scalable type. The num of elements is unknown at 8248 // compile-time for scalable type. 8249 if (isa<ScalableVectorType>(it->getType())) 8250 continue; 8251 8252 // Skip instructions marked for the deletion. 8253 if (R.isDeleted(&*it)) 8254 continue; 8255 // We may go through BB multiple times so skip the one we have checked. 8256 if (!VisitedInstrs.insert(&*it).second) { 8257 if (it->use_empty() && KeyNodes.contains(&*it) && 8258 vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 8259 it->isTerminator())) { 8260 // We would like to start over since some instructions are deleted 8261 // and the iterator may become invalid value. 8262 Changed = true; 8263 it = BB->begin(); 8264 e = BB->end(); 8265 } 8266 continue; 8267 } 8268 8269 if (isa<DbgInfoIntrinsic>(it)) 8270 continue; 8271 8272 // Try to vectorize reductions that use PHINodes. 8273 if (PHINode *P = dyn_cast<PHINode>(it)) { 8274 // Check that the PHI is a reduction PHI. 8275 if (P->getNumIncomingValues() == 2) { 8276 // Try to match and vectorize a horizontal reduction. 8277 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R, 8278 TTI)) { 8279 Changed = true; 8280 it = BB->begin(); 8281 e = BB->end(); 8282 continue; 8283 } 8284 } 8285 // Try to vectorize the incoming values of the PHI, to catch reductions 8286 // that feed into PHIs. 8287 for (unsigned I = 0, E = P->getNumIncomingValues(); I != E; I++) { 8288 // Skip if the incoming block is the current BB for now. Also, bypass 8289 // unreachable IR for efficiency and to avoid crashing. 8290 // TODO: Collect the skipped incoming values and try to vectorize them 8291 // after processing BB. 8292 if (BB == P->getIncomingBlock(I) || 8293 !DT->isReachableFromEntry(P->getIncomingBlock(I))) 8294 continue; 8295 8296 Changed |= vectorizeRootInstruction(nullptr, P->getIncomingValue(I), 8297 P->getIncomingBlock(I), R, TTI); 8298 } 8299 continue; 8300 } 8301 8302 // Ran into an instruction without users, like terminator, or function call 8303 // with ignored return value, store. Ignore unused instructions (basing on 8304 // instruction type, except for CallInst and InvokeInst). 8305 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) || 8306 isa<InvokeInst>(it))) { 8307 KeyNodes.insert(&*it); 8308 bool OpsChanged = false; 8309 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) { 8310 for (auto *V : it->operand_values()) { 8311 // Try to match and vectorize a horizontal reduction. 8312 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI); 8313 } 8314 } 8315 // Start vectorization of post-process list of instructions from the 8316 // top-tree instructions to try to vectorize as many instructions as 8317 // possible. 8318 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R, 8319 it->isTerminator()); 8320 if (OpsChanged) { 8321 // We would like to start over since some instructions are deleted 8322 // and the iterator may become invalid value. 8323 Changed = true; 8324 it = BB->begin(); 8325 e = BB->end(); 8326 continue; 8327 } 8328 } 8329 8330 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) || 8331 isa<InsertValueInst>(it)) 8332 PostProcessInstructions.push_back(&*it); 8333 } 8334 8335 return Changed; 8336 } 8337 8338 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { 8339 auto Changed = false; 8340 for (auto &Entry : GEPs) { 8341 // If the getelementptr list has fewer than two elements, there's nothing 8342 // to do. 8343 if (Entry.second.size() < 2) 8344 continue; 8345 8346 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " 8347 << Entry.second.size() << ".\n"); 8348 8349 // Process the GEP list in chunks suitable for the target's supported 8350 // vector size. If a vector register can't hold 1 element, we are done. We 8351 // are trying to vectorize the index computations, so the maximum number of 8352 // elements is based on the size of the index expression, rather than the 8353 // size of the GEP itself (the target's pointer size). 8354 unsigned MaxVecRegSize = R.getMaxVecRegSize(); 8355 unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin()); 8356 if (MaxVecRegSize < EltSize) 8357 continue; 8358 8359 unsigned MaxElts = MaxVecRegSize / EltSize; 8360 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) { 8361 auto Len = std::min<unsigned>(BE - BI, MaxElts); 8362 ArrayRef<GetElementPtrInst *> GEPList(&Entry.second[BI], Len); 8363 8364 // Initialize a set a candidate getelementptrs. Note that we use a 8365 // SetVector here to preserve program order. If the index computations 8366 // are vectorizable and begin with loads, we want to minimize the chance 8367 // of having to reorder them later. 8368 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); 8369 8370 // Some of the candidates may have already been vectorized after we 8371 // initially collected them. If so, they are marked as deleted, so remove 8372 // them from the set of candidates. 8373 Candidates.remove_if( 8374 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); }); 8375 8376 // Remove from the set of candidates all pairs of getelementptrs with 8377 // constant differences. Such getelementptrs are likely not good 8378 // candidates for vectorization in a bottom-up phase since one can be 8379 // computed from the other. We also ensure all candidate getelementptr 8380 // indices are unique. 8381 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { 8382 auto *GEPI = GEPList[I]; 8383 if (!Candidates.count(GEPI)) 8384 continue; 8385 auto *SCEVI = SE->getSCEV(GEPList[I]); 8386 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { 8387 auto *GEPJ = GEPList[J]; 8388 auto *SCEVJ = SE->getSCEV(GEPList[J]); 8389 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { 8390 Candidates.remove(GEPI); 8391 Candidates.remove(GEPJ); 8392 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { 8393 Candidates.remove(GEPJ); 8394 } 8395 } 8396 } 8397 8398 // We break out of the above computation as soon as we know there are 8399 // fewer than two candidates remaining. 8400 if (Candidates.size() < 2) 8401 continue; 8402 8403 // Add the single, non-constant index of each candidate to the bundle. We 8404 // ensured the indices met these constraints when we originally collected 8405 // the getelementptrs. 8406 SmallVector<Value *, 16> Bundle(Candidates.size()); 8407 auto BundleIndex = 0u; 8408 for (auto *V : Candidates) { 8409 auto *GEP = cast<GetElementPtrInst>(V); 8410 auto *GEPIdx = GEP->idx_begin()->get(); 8411 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); 8412 Bundle[BundleIndex++] = GEPIdx; 8413 } 8414 8415 // Try and vectorize the indices. We are currently only interested in 8416 // gather-like cases of the form: 8417 // 8418 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... 8419 // 8420 // where the loads of "a", the loads of "b", and the subtractions can be 8421 // performed in parallel. It's likely that detecting this pattern in a 8422 // bottom-up phase will be simpler and less costly than building a 8423 // full-blown top-down phase beginning at the consecutive loads. 8424 Changed |= tryToVectorizeList(Bundle, R); 8425 } 8426 } 8427 return Changed; 8428 } 8429 8430 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { 8431 bool Changed = false; 8432 // Attempt to sort and vectorize each of the store-groups. 8433 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; 8434 ++it) { 8435 if (it->second.size() < 2) 8436 continue; 8437 8438 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " 8439 << it->second.size() << ".\n"); 8440 8441 Changed |= vectorizeStores(it->second, R); 8442 } 8443 return Changed; 8444 } 8445 8446 char SLPVectorizer::ID = 0; 8447 8448 static const char lv_name[] = "SLP Vectorizer"; 8449 8450 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) 8451 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 8452 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 8453 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 8454 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 8455 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 8456 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 8457 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 8458 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 8459 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) 8460 8461 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); } 8462